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Message from the General Chair

Welcome to the 17th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL). This is the flagship European conference dedicated to European and international resear-
chers, covering a broad spectrum of research areas of Computational Linguistics and Natural Language
Processing.

Organizing a scientific conference of the prestige and size of EACL is always a great honor associated
with several challenges. Our team had to tackle unusual complexities: this conference was one of the
first scheduled to be in person after the long period of online conferences forced by COVID pandemic.
The bidding process for a location, which typically takes place several years before the actual start of the
conference, is mainly driven by the aim of expanding and involving the science community of all Euro-
pean countries: EACL selected Kyiv, Ukraine, as the physical location. As you all know, in February
2022, an unpredictable and dramatic event happened, the war between Russian and Ukraine, which made
the organization in Kyiv impossible.

Considering the importance of physical interaction among researchers, especially after the restrictions
imposed by the COVID pandemic, we worked hard with the EACL and ACL boards to find an alter-
native location, able to delight our attendees. Our team achieved this seemingly impossible goal of
organizing a conference in a new location a few months before its start: we selected Dubrovnik, Croatia,
while preserving the original aim of strengthening the connection with the Ukrainian community. In this
respect, the Ukraine local committee will feature a dedicated panel session, “Low-resource languages in
NLP products”, and a workshop to highlight work on Ukrainian language technologies. Following the
latest conference, EACL 2023 will be “hybrid,” serving both virtual and in-person participants. As our
official local chairs are not from the physical location, we needed a local team from Croatia for helping
with the logistics. As a result, the main unexpected novelty of EACL 2023 is to have two local organizing
committees from two different European countries.

In the remainder of this preface, I would like to thank EACL contributors chronologically with respect
to my work timeline for EACL: Roberto Basili and Shuly Wintner, the new and former Presidents of
ACL, along with the EACL board – thanks for having trusted me to manage the organization of the
conference in rather complicated times. I started to be confident that we would have done a good job after
Isabelle Augenstein and Andreas Vlachos accepted the role of PC Chairs. They have performed amazing
work, creating an outstanding program, and also helping me in recruiting our fantastic organization
team. A special thank is due to Preslav Nakov (EACL officer) for his support: thanks to his action, the
proactiveness of David Yarowsky, and the fairless effort of Jennifer Rachford (our new secretary of the
ACL business office), we successfully implemented the apparently unrealistic idea of switching from the
already planned online conference to a hybrid setting with a physical location in Dubrovnik. Regarding
the online side of our hybrid conference, we partnered with Underline (Sol Rosenberg, Damira Mrsic and
Luka Simic), who also gave us support for managing the entire conference. While finalizing the location,
we started to activate the different sections of the conference, for which my acknowledgements are again
in chronological order:

• Ukraine Local Committee, Viktoria Kolomiets, Mariana Romanyshyn, Oleksii Molchanovskyi,
Oles Dobosevych, was instrumental in preserving our initial goal of connecting the Ukraine re-
search community, organizing a panel and a workshop.

• The website chairs, Pepa Atanasova and Julius Cheng, started immediately to design our website,
even when almost no information was available.

• The workshop chairs, Zeerak Talat and Antonio Toral, selected our conferences and led the selec-
tion of workshops for the joint ACL call.
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• The tutorial chairs, Sameer Pradhan and Fabio Massimo Zanzotto, together with the ACL chairs,
took care of the tutorial selection for the ACL related conferences.

• The demonstration chairs, Danilo Croce and Luca Soldaini, created a parallel conference program
to select exciting demos.

• The Publicity Chairs, Laura Biester, Leshem Choshen and Joel Tetrault, have been our interface
with the science community through social media platforms.

• The Publication Chairs, Carolina Scarton and Ryan Cotterell, produced high-quality proceedings,
thanks to their competence and experience.

• The diversity and inclusion chairs, Sara Tonelli, Elena Cabrio, Verena Rieser, Spandana Gella,
took care of DI and performed an amazing job, also working on hundreds applications.

• The Local Organising Committee of Croatia, Marko Tadić, Krešimir Šojat, and Daša Farkaš, gave
essential help for the logistics, Visa, and student volunteers.

• Student Research Workshop Chairs, Matthias Lindemann, Alban Petit, and Elisa Bassignana, along
with their faculty advisors Valerio Basile and Natalie Schluter, helped in setting the bases for
forming great NLP researchers of the future.

• Our entire program committee, Senior Area Chairs, Area Chairs, reviewers, and best paper com-
mittee, was essential for obtaining our high-quality scientific program.

• The ACL’s sponsorship director Chris Callison-Burch took care of our sponsorships.

• The student volunteers, as usual, are essential for a successful conference execution.

• Priscilla Rasmussen, our former ACL business office secretary, continued to provide us with useful
advice.

Finally, I would like to thank our sponsors for helping us to fund scholarships and DI initiatives.

Alessandro Moschitti
Amazon Alexa AI, Los Angeles, USA
EACL 2023 General Chair
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ACL Statement on the Ukraine situation

March 11, 2022

The Association for Computational Linguistics (ACL) condemns in the strongest possible terms the ac-
tions of the Russian Federation government in invading the sovereign state of Ukraine and engaging in
war against the Ukrainian people. We stand together with Ukrainian NLP colleagues, the Ukrainian peo-
ple, Russian NLP colleagues and Russian people who condemn the actions of the Russian Federation
government, and all those around the world who have been impacted by the invasion.

As a small token of our solidarity with the Ukrainian people, the ACL has decided to temporarily sever
its ties with Russia-based organizations, while at the same time allowing Russian scientists to remain part
of the ACL community. In practice, this means that the ACL will refrain from accepting any sponsorship
or allowing any exhibits from Russian-headquartered entities at ACL-run events. Russian scholars are
still welcome to participate in ACL events and publish at ACL venues.

The ACL is committed to peace and condemns any form of violence and harassment. We are also com-
mitted to peaceful co-operation, mutual understanding, and tolerance across borders. NLP scholars from
both Ukraine and Russia are welcome to get in touch with the ACL with any concerns.

Tim Baldwin, on behalf of the ACL Executive
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Message from the Program Chairs

Welcome to the 17th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL). After the last edition in 2021 having been held fully online due to the COVID pandemic,
EACL 2023 is being held in “hybrid” mode this year, serving both virtual and in-person participants in
Dubrovnik, Croatia. While the original plan was to hold the conference in Kyiv (which was the plan
originally for EACL 2021), the ongoing war made the organisation in Ukraine impossible. In order to
ensure that the original aim of strengthening the connections with the Ukrainian community is still ser-
ved, our program features a dedicated session and a workshop to highlight work on Ukrainian language
technologies.

Submission and Acceptance

EACL 2023 accepted direct submissions, as well as submissions via ARR. For direct submissions, ab-
stracts were needed to be registered one week prior to the submission date.
In total, EACL 2023 received 1550 submissions, the largest number to date, with the 2021 edition having
received 1400 submissions. Out of those, 1045 were long and 505 were short paper submissions. 81 were
ARR papers that were committed to EACL. 249 submissions were withdrawn throughout the reviewing
process, including before the full paper submission deadline. 55 papers were desk rejected for various
reasons (missing the limitations section, anonymity policy, multiple submission policy, plagiarism or
formatting violations).
By the time we as the programme chairs made acceptance decisions, 1166 submissions were still active in
the system. We kept the acceptance rate in line with previous *ACL conferences, resulting in 281 papers
accepted to the main conference (24.1%), and 201 papers accepted to the Findings of EACL (17.2%),
with the remaining 58.7% being rejected. One paper accepted to the main conference and four papers
accepted to Findings were subsequently withdrawn. Out of the final set of accepted main conference
papers, we invited 178 to be presented orally, and all 281 papers accepted to the main conference to be
presented during in-person sessions, as well as a plenary virtual poster session. The EACL 2023 program
also features six papers from the Transactions of the Association for Computational Linguistics (TACL)
journal, and one from the Computational Linguistics (CL) journal.

Limitations Section

Following EMNLP 2022, we required that each submitted paper must include an explicitly named Li-
mitations section, discussing the limitations of the work. This was to counterbalance the practice of
over-hyping the take-away messages of papers, and to encourage more rigorous and honest scientific
practice. This discussion did not count towards the page limit, and we asked reviewers to not use the
mentioned limitations as reasons to reject the paper, unless there was a really good reason to.

Areas

To ensure a smooth process, the submissions to EACL 2023 were divided into 21 areas. The areas
mostly followed these of previous EACL, and more broadly *ACL conferences, reflecting the typical
divisions in the field. We also had a special area for papers for which both SACs had a conflict of
interest. Those papers were reviewed by the reviewers and ACs in their original areas, but the paper
recommendations were made by a dedicated SAC, who was a senior member of the NLP community.
The most popular areas with over 100 submissions were “Generation and Summarization”, “Language
Resources and Evaluation”, and “Machine Learning in NLP”.
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Best Paper Awards

From the papers submitted to EACL 2023, we selected 25 papers accepted to the main conference as
candidates for a Best Paper award, based on nominations by the reviewers. These papers were assessed
by the Best Paper Award Committee, who also determined the types of paper awards, following the ACL
Conference Awards Policy. The selected best papers and runner-ups will be announced in a dedicated
plenary session for Best Paper Awards on 4 May 2023.

Programme Committee Structure and Reviewing

Similar to prior NLP conferences, we adopted the hierarchical program committee structure, where for
each area we invited 1-2 Senior Area Chairs (SACs), who worked with a team of Area Chairs (ACs), and
a larger team of reviewers. We relied on statistics from prior years to estimate how many SACs, ACs and
reviewers would be needed and ended up with 43 SACs, 118 ACs and 1634 reviewers. For identifying
ACs and reviewers, we used the reviewer lists from prior *ACL conferences, and also encouraged all
EACL 2023 authors to serve as reviewers, using a mandatory form requesting further information on
their ability to serve as ACs, reviewers or emergency reviewers, which authors had to fill in on Softconf
when registering their abstracts. We passed this information on to SACs, who were responsible for
recruiting ACs and reviewers.
Rather than making assignments using a matching algorithm, we asked ACs and reviewers to bid on
registered abstracts within their areas, to achieve a better fit. We went with this solution as the number
of papers per area was relatively small, and we wanted to avoid poor reviewing assignments as much
as possible. We then made an initial paper assignment, in which we ensured that each paper would be
reviewed by at least one reviewer who bidded “yes” for the submission, and by no reviewers who bidded
“no” for the submission.
Afterwards, we asked the SACs to fine-tune the allocations, and ensure each paper had one AC and three
reviewers assigned to it.
To ensure the review quality, we provided detailed guidelines about what reviewers should and shouldn’t
do in a review, based on the EMNLP 2022 guidelines. We also asked reviewers to flag papers for potential
ethical concerns.
For pre-reviewed ARR papers, we asked SACs to not rely mainly on the reviewer scores, but to make their
recommendations based on the text of the reviews, meta-reviews and the papers themselves. For making
acceptance decisions, we mostly followed SAC recommendations, though also taking into account the
overall quality of papers submitted to the conference. Where recommendations seemed overly harsh
or lenient given the reviewers’ scores, reviews, author responses, or discussions amongst reviewers, we
engaged in a dialogue with the respective SACs to make the final decision about the papers in question.

Ethics Committee

We also formed an Ethics Committee (EC) dedicated to ethical issues. The ethics committee considered
21 papers that were flagged by the technical reviewing committee for ethical concerns. Out of these, 10
were conditionally accepted, meaning the ethics issues had to be addressed in the camera-ready version,
to be verified by the EC prior to final acceptance, and the other 11 were accepted as is. The authors of
all conditionally accepted papers submitted the camera-ready version and a short response that explained
how they had made the changes requested by the EC. The EC double-checked these revised submissions
and responses, and confirmed that the ethical concerns had been addressed. As a result, all conditionally
accepted papers were accepted to the main conference or Findings.
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ACL Rolling Review

ACL Rolling Review (ARR) is an initiative of the Association for Computational Linguistics, where the
reviewing and acceptance of papers to publication venues are done in a two-step process: (1) centralized
rolling review and (2) the ability to commit the reviewed papers to be considered for publication by a pu-
blication venue. For EACL 2023, we decided to follow EMNLP 2022’s example and run a process which
is separate from ARR, but also allows for ARR submissions. Specifically, authors could either submit
papers to EACL 2023 directly, or commit ARR reviewed papers by a certain date. We coordinated with
the ARR team to extract the submission, review and meta-review from the OpenReview system, accor-
ding to a submission link that the author provided when committing their ARR submission to EACL.
The ARR commitment deadline was set one month after the direct submission deadline since the ARR
submissions already have their reviews and meta-recommendation. These ARR papers were then ranked
by the SACs together with the direct submissions in the track, and based on the reviews and meta-reviews
from ARR. Overall, EACL had 81 papers committed from ARR, of these 24 were accepted to the main
conference and 20 were accepted to Findings of EACL.

Presentation Mode

We made the decision on which papers would be invited for oral poster presentations based on several
factors: the relative rank of the paper according to SAC recommendation, whether the paper had been
recommended for a best paper award by at least one reviewer, and for TACL and CL papers, the authors’
preference of presentation mode.

Keynotes and Panel

Another highlight of our program are the plenary sessions, for which we scheduled three talks, as well a
panel:

• a keynote talk by Joyce Chai (University of Michigan) on “Language Use in Embodied AI!

• a keynote talk by Edward Greffenstette (Cohere AI and University College London) on “Going
beyond the benefits of scale by reasoning about data”

• a keynote talk by Kevin Munger (Penn State University) on Chatbots for Good and Evil"

• a panel on “low-resource languages in NLP products” led by Mariana Romanyshyn with Viktoria
Kolomiets (Grammarly), Mariana Romanyshyn (Grammarly), Oleksii Molchanovskyi (Ukrainian
Catholic University) and Oles Dobosevych (Ukrainian Catholic University)

Thank Yous

EACL 2023 is the result of a collaborative effort and a supportive community, and we want to acknow-
ledge the efforts of so many people with whom we worked directly and made significant efforts in putting
together the programme for EACL 2023!

• Our General Chair, Alessandro Moschitti, who led the whole organising team, and helped with
many of the decision processes;

• Our 43 Senior Area Chairs, who were instrumental in every aspect of the review process, from
recruiting Area Chairs, correcting reviewer assignments, to making paper acceptances;

• Our 118 Area Chairs, who had the role of interacting with the reviewers, leading paper review
discussions, and writing meta-reviews;
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• The 1634 reviewers, who provided valuable feedback to the authors; The emergency reviewers,
who provided their support at the last minute to ensure a timely reviewing process;

• Our Best Paper Selection Committee, who selected the best papers and the outstanding papers: Jo-
nathan Kummerfeld (chair), Joakim Nivre, Bonnie Webber, Thamar Solorio and Hanna Hajishirzi;

• Our Ethics Committee, chaired by Zeerak Talat, for their hard work to ensure that all the accepted
papers addressed the ethical issues appropriately, under a very tight schedule;

• Our amazing Publication Chairs, Carolina Scarton and Ryan Cotterell for compiling the procee-
dings in good time for the conference;

• Our Publicity Chairs, Laura Biester, Leshem Choshen and Joel Tetrault, for their work on managing
the communications on social media platforms;

• Our website chairs, Pepa Atanasova and Julius Cheng for putting together the website for the
conference and keeping it up to date;

• Damira Mrsic from Underline, for her support in developing the virtual conference platform;

• Jennifer Rachford, who has worked tirelessly online and on-site to ensure that EACL 2023 is a
success.

We’re looking forward to a great EACL 2023!

Isabelle Augenstein (University of Copenhagen, Denmark)
Andreas Vlachos (University of Cambridge, UK)
EACL 2023 Programme Committee Co-Chairs
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Le An Ha, Katharina Haemmerl, Gholamreza Haffari, Joonghyuk Hahn, Michael Hahn, Udo Ha-
hn, Eva Hajicova, Dilek Hakkani-tur, Kishaloy Halder, Karina Halevy, Jiuzhou Han, Lifeng Han,
Ting Han, Xudong Han, Yo-sub Han, Viktor Hangya, Sanda Harabagiu, Mareike Hartmann, Sadid
A. Hasan, Sabit Hassan, Nabil Hathout, Amartya Hatua, Annette Hautli-janisz, Adi Haviv, Yoshi-
hiko Hayashi, Shirley Anugrah Hayati, T. J. Hazen, Rishi Hazra, Han He, Wanwei He, Wei He,
Xiaoting He, Xuanli He, Xuehai He, Yun He, Behnam Hedayatnia, Kevin Heffernan, Benjamin
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ortiz, Mathias Müller

Dawn Nafus, Masaaki Nagata, Saeed Najafi, Tetsuji Nakagawa, Yuta Nakashima, Diane Napo-
litano, Jason Naradowsky, Vivi Nastase, Anmol Nayak, Ambreen Nazir, Ani Nenkova, Mariana
Neves, Jun-ping Ng, Raymond Ng, Vincent Ng, Axel-cyrille Ngonga Ngomo, Dat Quoc Nguyen,
Kiet Nguyen, Nhung Nguyen, Quoc-an Nguyen, Trung Hieu Nguyen, Vincent Nguyen, Xuanfan
Ni, Garrett Nicolai, Massimo Nicosia, Feng Nie, Yixin Nie, Jan Niehues, Mitja Nikolaus, Giannis

xix



Nikolentzos, Takashi Ninomiya, Kosuke Nishida, Sergiu Nisioi, Gibson Nkhata, Tadashi Nomoto,
Aurélie Névéol

Alexander O’connor, Tim Oates, Kemal Oflazer, Shu Okabe, Naoaki Okazaki, Tsuyoshi Okita,
Oleg Okun, Eda Okur, Antoni Oliver, Mattia Opper, Abigail Oppong, Brian Ore, Hadas Orgad,
Maite Oronoz, Petya Osenova, Jessica Ouyang

Teresa Paccosi, Ankur Padia, Aishwarya Padmakumar, Shramay Palta, Tuğba Pamay Arslan, Mug-
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rescu, Urmish Thakker, Mokanarangan Thayaparan, Anton Thielmann, Brian Thompson, Craig
Thomson, Camilo Thorne, Tristan Thrush, Jörg Tiedemann, Refael Tikochinski, Erik Tjong Kim
Sang, Evgeniia Tokarchuk, Takenobu Tokunaga, Nadi Tomeh, Marc Tomlinson, Atnafu Lambebo
Tonja, Samia Touileb, Marcos Treviso, Chen-tse Tsai, Adam Tsakalidis, Yu-hsiang Tseng, Yuen-
hsien Tseng, Eleftheria Tsipidi, Don Tuggener, Martin Tutek

Kiyotaka Uchimoto, Dennis Ulmer, Kanimozhi Uma, Prajna Upadhyay, Masao Utiyama

Sowmya Vajjala, Marco Valentino, Antal Van Den Bosch, Daan Van Esch, Carel Van Niekerk,
Vincent Vandeghinste, Keith Vanderlinden, Lindsey Vanderlyn, Natalia Vanetik, Rossella Varva-
ra, Shikhar Vashishth, Eva Maria Vecchi, Giulia Venturi, Rakesh Verma, Rohil Verma, Giorgos
Vernikos, David Vilar, Serena Villata, Esau Villatoro-tello, Juraj Vladika, Piek Vossen, Thuy Vu,
Xuan-son Vu, Ekaterina Vylomova

Tomasz Walkowiak, Yu Wan, Chuan-ju Wang, Fei Wang, Hai Wang, Haoyu Wang, Hong Wang,
Jianzong Wang, Jiayi Wang, Jin Wang, Jing Wang, Kaifu Wang, Liang Wang, Lingzhi Wang,
Longshaokan Wang, Longyue Wang, Miaosen Wang, Ping Wang, Qingyun Wang, Shun Wang,
Wei Wang, Weichao Wang, Xin Wang, Xing Wang, Xinyi Wang, Xu Wang, Yasheng Wang, Yi-
ning Wang, Zhaowei Wang, Zhilin Wang, Zhiruo Wang, Prashan Wanigasekara, Moshe Wasser-
blat, Shinji Watanabe, Lucas Weber, Anna Wegmann, Jerry Wei, Wei Wei, Benjamin Weiss, Gail
Weiss, Leonie Weissweiler, Charles Welch, Rongxiang Weng, Aaron White, John Wieting, Gijs
Wijnholds, Adina Williams, Miles Williams, Steven Wilson, Genta Winata, Guillaume Wisniew-
ski, Seungpil Won, Ka Ho Wong, Alina Wróblewska, Di Wu, Fangzhao Wu, Minghao Wu, Stephen
Wu, Winston Wu, Xianchao Wu, Xiaofeng Wu, Xixin Wu, Yuxiang Wu, Joern Wuebker, Amelie
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Abstract

This work empirically investigates punctuation
insertions as adversarial attacks on NLP sys-
tems. Data from experiments on three tasks,
five datasets, and six models with four attacks
show that punctuation insertions, when limited
to a few symbols (apostrophes and hyphens),
are a superior attack vector compared to char-
acter insertions due to 1) a lower after-attack
accuracy (Aaft−atk) than alphabetical charac-
ter insertions; 2) higher semantic similarity be-
tween the resulting and original texts; and 3)
a resulting text that is easier and faster to read
as assessed with the Test of Word Reading Effi-
ciency (TOWRE)). The tests also indicate that
4) grammar checking does not mitigate punc-
tuation insertions and 5) punctuation insertions
outperform word-level attacks in settings with a
limited number of word synonyms and queries
to the victim’s model. Our findings indicate
that inserting a few punctuation types that re-
sult in easy-to-read samples is a general attack
mechanism. In light of this threat, we assess the
impact of punctuation insertions, potential mit-
igations, the mitigation’s tradeoffs, punctuation
insertion’s worst-case scenarios and summa-
rize our findings in a qualitative casual map, so
that developers can design safer, more secure
systems.

1 Introduction

The goal of an attack is to disrupt a natural language
processing (NLP) model’s classification accuracy.
The motivation behind researching these adversar-
ial attacks is to create a toolbox of methods to attack
systems while also pointing out flaws to improve
the models’ robustness. Previous work on adver-
sarial research showed that deep learning-based
NLP models are sensitive to slight changes in the
input (Ebrahimi et al., 2018) such as character per-
turbations or word substitutions. However, these
attack vectors have three major flaws: 1) letter per-
turbations can be detected by grammar checkers;
2) these attacks may change the meaning or, worse,

the human label of the sentence (e.g., ‘she’ to ‘he’
with a character deletion for a gender classification
system (Zang et al., 2020)); 3) they can make a
sample unreadable. Although word-level attacks
that change words to a perturbing synonym make
these perturbations almost invisible to humans, the
cumulative effect of multiple synonym substitu-
tions in a sentence can make the sample harder to
understand. Furthermore, the attack must find per-
turbing word synonyms when attacking samples in
a specific domain, such as biology or law, which
may be challenging if the algorithm uses general
word embeddings with no domain knowledge.

Punctuation insertions, on the other hand, may
be a feasible attack vector that is unaffected by
the limitations of character perturbations/word sub-
stitutions, since it is hard for grammar checkers
to detect punctuation (Section 5.5) while also not
drastically changing the meaning of the sentence
(Sections 5.7, 5.8). Removing punctuation causes
deep learning models to perform worse (Ek et al.,
2020), as punctuation contains critical information
that models require to function correctly (Jones,
1994). Furthermore, punctuation can hold adversar-
ial downstream information (Formento et al., 2021)
that may be exploited by malicious users. Punctua-
tion attacks remain an understudied area: Previous
works on the topic (Hosseini et al., 2017; Eger and
Benz, 2020; Formento et al., 2021) only casually
explored punctuation and ignored whether it can
generalize or show which punctuation symbols are
best suited for intrusion attacks.

Contributions: Through extensive empirical
studies, we have determined that punctuation inser-
tions can outperform, in terms of Aaft−atk, alpha-
betical character insertions (as shown in Section
5.1) and, under certain conditions, word substitu-
tion (5.2), allowing for a user-controllable tradeoff
between after-attack accuracy (Aaft−atk), sample
quality, and attack time efficiency when used to-
gether in a multi-level attack (5.3). Specifically,
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hyphen (Hy) and apostrophe (Ap) insertions are the
most effective at avoiding straightforward defense
mechanisms (as shown in Sections 5.4, 5.5) while
preserving the original meaning, as evidenced by
achieving 100% semantic similarity in our tests (as
shown in Section 5.7). Additionally, by using the
TOWRE test, we have demonstrated that inserting
only one punctuation type significantly increases
attack readability by increasing reading speeds by
800% compared to character insertions, and 96.8%
compared to using multiple types of punctuation
(as shown in Section 5.8) without compromising
the attack performance (Section 5.9). To aid in
the understanding of our findings, we have also
introduced a casual map in Figure 5.

2 Related Work

Adversarial attacks on NLP systems can be cate-
gorized in terms of the level of granularity of the
perturbation. Character-level attacks (Ebrahimi
et al., 2018; Eger and Benz, 2020; Eger et al., 2019;
Belinkov and Bisk, 2018; Sun et al., 2020; Boucher
et al., 2021) modify individual characters in words
to force the tokenizer to process multiple unrelated
embeddings instead of the original, resulting in de-
creased performance. Word-level attacks (Jin et al.,
2020; Li et al., 2020; Maheshwary et al., 2020) em-
ploy a search algorithm to locate useful perturbing
embeddings (Jin et al., 2020; Li et al., 2020; Ma-
heshwary et al., 2020) or operations (Tan et al.,
2020; Li et al., 2021) that are clustered close to the
candidate attack word’s embedding given a simi-
larity constraint (such as the Universal Sentence
Encoder (Cer et al., 2018)). Multi-level attacks
combine multiple types of perturbations, making
the attack cumulative. Textbugger (Li et al., 2019),
which uses both character-level and word-level at-
tacks, is an example of a multi-level attack.

Although previous research has investigated
character and word-level attacks, few have studied
the use of punctuation attacks. To the best of our
knowledge, only Zéroe (Eger and Benz, 2020), Pre-
spective Atk (Hosseini et al., 2017) and SSTA (For-
mento et al., 2021) have researched punctuation as
an attack vector. While the former two randomly
insert symbols within a word, the third revealed
that symbols contain adversarial information and
can be inserted as padding with little further opti-
mization. Zéroe, in particular, is a benchmark of
ten different character attacks. Out of these ten,
Zéroe Intrude is the only one focusing on punctua-

tion and is thus used as one of the gold standards
in this paper.

Our work builds on these previous works by
further exploring Zéroe Intrude and the concept,
introduced initially in SSTA, that model-specific
symbols can attack binary classifiers when used as
padding. Our work contributes to the discussion on
punctuation symbols being a general mechanism to
attack deep learning models while also improving
readability through the novel use of the TOWRE
metric, which tracks how quickly someone can read
the adversarial text.

3 Methodology

3.1 Overview

Suppose we have a sequence classifier f : X 7→
Y , that takes an input sequence of words x =
(τ1, . . . , τn) ∈ X with ground truth label y and
outputs a prediction ŷ = f(x). An adversarial at-
tack on input x and classifier f would perturb τ ,
for example, using character manipulations or word
substitutions, to produce a new adversarial sample
x̂ that is misclassified by f such that f(x̂) ̸= y.

We investigate punctuation and multi-level at-
tacks in gray-box and black-box settings. Specif-
ically, we explore the effects of inserting punctu-
ation when the victim’s model classification logit
is leaked (gray-box) and when it is not (black-
box). We use a variation of DeepWordBug (DWB)
and the original Zéroe Intrude (ZI) attack in these
settings. In addition, we combine punctuation to-
gether with word substitutions in a gray-box set-
ting (multi-level) to evaluate if punctuation can
augment word-level attacks. We provide a more
detailed description of the respective attacks used
in the following sections.

3.2 Attack foundations and baselines

We build upon and compare our results to the fol-
lowing four attack baselines: 1) Zéroe Intrude (ZI),
a simple black-box attack (see Section 3.5 (Eger
and Benz, 2020)); 2) DeepWordBug (DWB), which
uses four-character level perturbations including
delete, swap, insert, and nearby character swap
(Gao et al., 2018); 3) TextFooler, a popular base-
line that uses word synonyms from counterfeited
embeddings to perturb the sample perturbation (Jin
et al., 2020); and 4) SememePSO, a recent method
that uses a seme (e.g., a morpheme) to create a
word substitution together with PSO (Zang et al.,
2020).
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3.3 Gray-box punctuation attack
As a representative gray-box punctuation attack,
we implement a variant of DWB through the Tex-
tAttack framework that performs only punctuation
insertions instead of alphabetical insertions, swaps,
deletions, and substitutions. We denote this punc-
tuation variant as DeepWordBugPunc (DWBP).
DWBP has three main steps:

• Step 1: Determine the essential words with set
τR = {τ1...τk} for an NLP model f using a
word delete schema, ranking them from high-
est to lowest in terms of output logit change. A
delete schema, popularized by BERT-Attack
(Li et al., 2020), analyzes the logit change
when a word is removed from a sample.

• Step 2: Use user-defined set γ (e.g. γ = {-’})
and the RPos (Random Position) and RPunc
(Random Punctuation) flags to return a set
of transformations {τk} from highest-ranking
word τk from Step 1.

• Step 3: Search over the attack space by query-
ing the victim’s model with samples modified
with the transformations from Step 2. Keep
the best transformation with regard to the logit
and semantic similarity score. The next word
from τR is then perturbed. This is repeated
until either f(x) ̸= f(x̂) or the algorithm iter-
ates through τR. This process is called Greedy
Search with Word Replacement (GSWR).

In summary, for a sample x, the algorithm identi-
fies the top words in τR. It gradually modifies them
by inserting one punctuation symbol and making
calls to the victim’s model through the GSWR Al-
gorithm 1. Optimizing over τR results in GSWR be-
ing a time-efficient query alternative to the greedy
search algorithm. It gradually replaces τR in x with
transformations from Step 2 by calling Algorithm
2.

Algorithm 2 takes a word and decides the loca-
tion and punctuation type to insert with the RPos
and RPunc flags. These two flags, when set to
false, allow the algorithm to explore the entire at-
tack space. This in turn creates many transforma-
tion variations with γ, therefore allowing GSWR to
check the adversarial performance of each symbol
in γ at each position within the word τk. GSWR
keeps the transformation if the change creates a
successful reduction in logit score. After an adver-
sarial candidate x̂ is found, the semantic similarity

between x and x̂ with S
′
= Sim(x, x̂) is calcu-

lated with a deep learning model (Cer et al., 2018).
GSWR will reject all perturbations that miss a se-
mantic similarity threshold, set at 0.8, which en-
sures a good tradeoff between sample quality and
adversarial strength (Li et al., 2019). The algorithm
repeats this procedure until the end condition.

The difference between DWBP and DWB is that
DWB transforms a word with a composition of
transformations (letter substitution, deletion, swap,
or insertion), and all the transformed words are
added to {τ̂k}. Appendix D.1 gives an extended de-
scription for the three steps. We tested all variants
of RPos and RPunc when applicable.

Algorithm 1 τk Transform Function with GSWR
Input: Word ranking τR, Sample x, Symbols γ
Output: Adversarial sentence x̂

1: Initialize x̂ = x
2: for each τk in τR do
3: if len(τk) < 2 or τk = Stop-Word then
4: skip
5: else
6: Transformations Set {τ̂k} = TFγ(x(τk), γ)
7: for τ̂k in Transformations Set {τ̂k} do
8: x̂← τ̂k
9: x̂Adv , x̂AdvScore = f(x̂)

10: if Perturbation successful then
11: Keep best τ̂k
12: else
13: Don’t keep change→ next word
14: return x̂

Algorithm 2 Step2: τk Transform Function TF
Input: Word τk, Symbols γ, Bool: RPos/RPunc
Output: Adversarial word τ̂k

1: Transformations = ∅
2: if RPos then
3: if RPunc then
4: i = RandInt(StartIdx, EndIdx)
5: Transformations←τ̂k= τk[: i] + γrandom + τk[i :]
6: else
7: i = RandInt(StartIdx, EndIdx)
8: for j in γ do
9: Transformations←τ̂k = τk[: i] + γj + τk[i :]

10: else
11: if RPunc then
12: for i in |StartIdx − EndIdx| do
13: Transformations ←τ̂k = τk[: i] + γrandom +

τk[i :]
14: else
15: for i in |StartIdx − EndIdx| do
16: for j in γ do
17: Transformations←τ̂k = τk[: i] + γj + τk[i :]
18: Return Transformations
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3.4 Gray-box multi-level attack
We also evaluated the performance of punctuation
insertions when used in conjunction with word-
level attacks. To conduct this assessment, we em-
ployed two baselines TextFooler and SememePSO.

• TextFooler/DWBP: This variant uses the same
word scoring function and the GSWR search
algorithm. However, τ̂k will be a mix of word
synonym and punctuation insertion transfor-
mations of τk.

• SememePSO/DWBP: This variant uses the
same word scoring function but with particle
swarm optimization (PSO) as a search tech-
nique. PSO uses a population-based evolu-
tionary algorithm that exploits the interactions
between individuals in a population to find a
solution in a search space. τ̂k will be a mix
of sememes (a type of word substitution) and
punctuation insertion transformations of τk.

See Section D.5 in the Appendix for details on
TextFooler/DWBP and SememePSO/DWBP.

3.5 Black-box punctuation attack
As a representative black-box attack, we imple-
ment a variant of the ZI algorithm instead of DWB,
as the latter requires access to logits that are ab-
sent in this setting. ZI is a simple black-box at-
tack that randomly perturbs a word in a sample
with probability p. It then adds a random symbol
from this list—!”#$%&’()∗+,-./:;<=>?@[\]^‘{|}—
between two letters with the same probability p,
which we define as baseline ZI. In our variant, ZI
perturbs a word with probability p (defined as ZIP)
but uses the same predefined symbol.

4 Experimental Setup

4.1 Backbone models and tasks
We evaluated the BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019), DistilBERT (Sanh et al., 2020) models on
classification (MR), entailment (MNLI, SNLI), and
question answering (QNLI, QQP) tasks. We also
used a CNN and LSTM for MR (details are provided
in Appendix C).

4.2 Evaluation metrics
We use the evaluation framework previously pro-
posed in (Morris et al., 2020), where an evalu-
ation set is perturbed and out of the Total At-

tacked Samples (TAS) set the Number of Suc-
cessful Attacks (Nsucc−atk), Number of Failed At-
tacks (Nfail−atk) and Number of Skipped Attacks
(Nskp−atk) are recorded. After attack accuracy
(Aaft−atk =

Nfail−atk
TAS ), the most important met-

ric, represents how well the attacker can fool the
model across a dataset. Lower values of Aaft−atk
indicate that the attacker can fool the model better.
After success rate (Asucc−rte =

Nsucc−atk
TAS−Nskp−atk ),

is similar to Aaft−atk but ignores previously mis-
classified samples. Percentage of perturbed words
refers to the percentage of words the algorithm
perturbs out of the number of words in the sample.
This metric should be as low as possible, as perturb-
ing more words makes the sample’s perturbation
more detectable. Semantic similarity (Jin et al.,
2020; Maheshwary et al., 2020) is an automatic
similarity index that describes the visual difference
between two samples using a deep learning model.
In this case, the Universal Sentence Encoder (Cer
et al., 2018) is used, along with a cosine similarity
measure between the output embeddings. A value
of 1 indicates that the two inputs are semantically
equivalent, while 0 represents no similarity. Aver-
age number of queries represents the number of
times the algorithm must invoke the model to per-
form inference. This metric should be kept low to
avoid detection.

4.3 Human evaluation

To evaluate the quality of adversarial samples, we
conducted four human studies. The first three are
the same tests used in TextFooler (Jin et al., 2020),
and Hard-Label (Maheshwary et al., 2020). These
tests analyzed the adversarial sample for 1) gram-
matical correctness, where reviewers rate the gram-
matical correctness of the original and adversarial
samples on a scale from 1–5, where 1: many gram-
matical mistakes and 5: no grammatical mistakes;
2) reviewer classification accuracy, where review-
ers predict the label of each sample; and 3) simi-
larity, where reviewers rate if the two samples are
similar (1), dissimilar (0), or ambiguous (0.5); 4)
readability, where the novel application of TOWRE
(Tarar et al., 2015) was used to analyze the quality
of adversarial words in character-level black-box at-
tacks. TOWRE is a widely used test that measures
an individual’s reading accuracy and speed. We
adapted TOWRE to record the quality of adversar-
ial examples. Specifically, the reviewer pronounces
a list of words, where each word was modified with
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one out of four different perturbation types intro-
duced with the ZI algorithm. We record the words
per minute (WPM) and error rates. All tests had
two reviewers who reviewed 100 samples in the
first three tests and 36 in the fourth. Agreement
between the reviewers was assessed with Krippen-
dorff’s alpha, where a score of 1 indicates complete
agreement and -1 indicates complete disagreement.
Further implementation details on the human test-
ing method and details on Krippendorff’s alpha are
in Appendix F.

4.4 Defense Baselines

We evaluate fine-tuning and adversarial training
as baseline defenses. In detail, it is possible to
remove all punctuation during training, fine-tune
the model for further epochs on this new punctua-
tionless dataset, and at inference, always strip all
punctuation (Table 18). We also experimented with
adversarial training (Table 15 in Section 5.6) by us-
ing a standard technique (Morris et al., 2020) that
is further described in Appendix E.3.

5 Experiments

We use the methodology in Section 3 and experi-
mental setup to explore how punctuation insertions
compare to character manipulations (Section 5.1).
In Section 5.4, 5.5 and 5.6 we demonstrate how
straightforward defence techniques fail and suc-
ceed and Sections 5.7, 5.8, and 5.9 highlight the
advantages of punctuation insertions where no de-
fence technique is present. The γ choices for each
test are summarized and justified in Appendix E.2.

5.1 Punctuation vs character manipulations

How does an attack change when using punctuation
insertions instead of letter manipulations? Punc-
tuation insertions can degrade NLP model perfor-
mance while preserving semantic similarity. The
system’s Aaft−atk is overall reduced (see Figure
1) while semantic similarity remains at 0.96–1.00
when using punctuation insertions (DWBP) com-
pared to 0.87–0.90 when using DWB. Each DWBP
box represents the Aaft−atk for a dataset across all
models with RPos = False. The lower the Aaft−atk
the more perturbing the attack.

Hyphen, apostrophe, full stop, or comma inser-
tions lower Aaft−atk more than any other letter
in the alphabet (Figure 2). Values in Figure 2 re-
flect the after-attack difference [%] between using
a letter or punctuation type in an intrusion attack.

MR MNLI SNLI QNLI QQP
Attack/Dataset
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Figure 1: Gray box attack performance

Green/positive values represent an improvement
and purple/negative values a decrease between the
punctuation symbol on the x-axis and the letters
on the y-axis when using DWBP. Each attack in
Figure 2 has a constant number of queries, [%] of
perturbed words, and query time. The extended
results are in Appendix L.

Observation This experiment clarifies that if
any internal punctuation is present, the system
is vulnerable and that it is more susceptible to
such insertions than other character manipulations
and alphabet insertions. We limit our reporting to
BERT on MR because other model results are con-
sistent. Full tabular results for other Models and
datasets for Figure 1 are in Appendix I in Tables 6
and 7 (“Without Grammar”). While Figure 2 has
the other model’s results in Appendix L.

Apostrophe Hyphen Comma Full Stop

a
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c
d

e
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g
h

i
j

k
l

m

5.2 3.2 7.4 8.2
1.8 -0.2 4 4.8
4 2 6.2 7
3.2 1.2 5.4 6.2
3 1 5.2 6
4.4 2.4 6.6 7.4
2.6 0.6 4.8 5.6
2.8 0.8 5 5.8
2.8 0.8 5 5.8
4 2 6.2 7
2 0 4.2 5
1.6 -0.4 3.8 4.6
3.2 1.2 5.4 6.2

MR:BERT-BASE-UNCASED

−4.5

−3.0

−1.5

0.0
1.0

2.5
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Figure 2: Punctuation vs character insertions. Green in-
dicates positive values; purple indicates negative values

5.2 Punctuation vs word-level attacks
Are there advantages in using punctuation inser-
tions instead of word substitutions? DWBP can
also be compared to TextFooler since, with DWBP,
a punctuation symbol is mapped to an embedding
when using a word piece tokenizer. Figures 3
and 4 each show increasing numbers of unique
punctuation symbols from γ (DWBP) or synonyms
per word (TextFooler), ranging from 1 to 10. For

5



DWBP, γ is set to . for N = 1, .’ for N = 2, up
to .’-”[,](:) for N = 10. In TextFooler, N repre-
sents the number of synonyms per word. Figure 3
displays the relationship between N (represented
by the points and the x-axis) and improvement in
Asucc−rte (y-axis). Figure 4 displays the relation-
ship between N (represented by the points), num-
ber of queries (x-axis), and the effect on Aaft−atk
(y-axis). Both experiments used all variations of
RPunc/RPos on BERT–MR.

Observation The effectiveness of punctuation
insertions is demonstrated DWBP when con-
strained on N and queries, as seen by the higher
Asucc−rte with low N in Figure 3 and the low
Aaft−atk with few queries in Figure 4. Similar
results for MNLI can be found in Appendix H.
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Figure 3: Punctuation embedding efficiency.
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Figure 4: Punctuation query efficiency.

5.3 Punctuation as a multi-level attack

We investigate a composite experiment where τk
is composed of word substitutions and punctuation
insertions. The methodology is introduced in Sec-
tion 3.4 and the details are given in Appendix D.5.
We set RPunc = False, RPos = False, and γ = -’.

Observation: The results in Table 1 indicate
that incorporating punctuation insertions into the
optimization process enhances TextFooler and Se-
memePSO on BERT trained on MR. The additional
findings in Section G.1 of the appendix present re-

sults for all tasks and models, and provide further
observations.

Dataset Model
(Orig Acc) Method After Attack

Acc [%]
Perturbed
Words [%]

Semantic
Sim

Avg Time
Taken [s]

Avg Number
Queries

MR
BERT
(83.8)

DWBP 17.4 18.32 1 0.721 74.7
TextFooler 9.4 17.54 0.82 1.3072 118.5
TextFooler/DWBP 7.6 18.31 0.89 1.122 105.35
SememePSO 7 16.52 0.81 16.1811 4950.71
SememePSO/DWBP 6 9.99 0.89 7.3252 988.44

Table 1: Multi-level DWBP. Full results in Appendix J

5.4 Removing punctuation as a defense
How does removing punctuation perform as a de-
fense? In this section, we sought to evaluate the ef-
fectiveness of simple defenses in countering punc-
tuation attacks by examining the impact of vari-
ous forms of punctuation removal on attack perfor-
mance. To aid in this assessment, we employed the
use of a casual map in Figure 5, which allows for
tracking of the defender’s behavior in response to
the attacker’s changing strategy.

The casual map, presented in the blue quadrant,
begins with the "Base Model" on the right-hand
side, representing the unchanged finetuned model
from Hugging Face, in this instance, specifically
BERT finetuned on MR. Adjacent to this model is
a large red table, which represents the significant
performance drop when utilizing punctuation in-
sertions. For the sake of simplicity, in this map,
we limited ourselves to the use of full stops (FS),
commas (Co), which are common external punc-
tuation types, and apostrophes (Ap) and hyphens
(Hy), which are common internal punctuation types.
Given this threat, we identified and explored three
options for the defender to take. Beneath the "Base
Model," the first option is to remove all punctua-
tion ("All"), which secures the system but leads
to an original performance drop of -2.6%. The
second option, just beneath "All" is to remove all
punctuation found inside of words. While this ap-
proach solves the problem, it becomes challenging
to identify if a punctuation was inserted by mistake
by a user or to prevent the attacker from insert-
ing a whitespace before or after the punctuation
insertion. If the attacker adds a whitespace, the
attack defaults to the large red table. Furthermore,
removing all internal punctuation has a noticeable
original performance drop of -1.2%. An alterna-
tive to this is to remove all internal punctuation
but make an exception for Hy and Ap, reducing
the original performance drop to 0%, however, the
system remains vulnerable to Ap and Hy. Given
the persistent vulnerability to Ap and Hy, the de-
fender may employ a grammar checker to reject all
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samples that do not meet a certain grammatical cor-
rectness level. When implemented, the robustness
of the model increases dramatically, resulting in a
semi-secure model.

The blue quadrant also shows "Finetune with
punctuation." This base model was further trained
and then compared to further training the model
when all the punctuation is removed (See "All +
Finetune"). As previously highlighted, removing
all punctuation can secure the system, the reduced
performance drop of -0.6% now indicates that this
approach has less of a trade-off between securing
the system and original accuracy drop.

In addition, we also explored adversarial training.
We discuss the findings of this quadrant in Section
5.6 and it’s experimental setup in Section E.3 in
the Appendix.

Observation Using a grammar checker in-
creases the robustness of this task. However, as
pointed out in the next section in Figure 6, the red
candlesticks representing DWBP have a large at-
tack variance depending on the dataset, symbol
used, and model. Hence, for a task that results in
a semi-secure model, another task may result in a
semi-broken model. This reasoning also applies to
black box punctuation attacks with ZIP, as pointed
out by the large variance in the red candlesticks in
Figure 7. Another aspect to consider is the original
accuracy drop in performance experienced in the
yellow boxes. Depending on the application, this
may be acceptable/negligible or unacceptable/too
high.

5.5 Grammar checkers as a defense

If a grammar checker preprocesses an input, how
does the attack performance change? Another com-
mon idea is that character-level attacks are easy
to defend against using a grammar checker (Zang
et al., 2020). Although adding a grammar checker
before processing the input lowers the effectiveness
of the attack, punctuation is nonetheless a success-
ful insertion technique with RPos = False, partic-
ularly when compared to DWB (Figure 6). Punc-
tuation insertions are also effective in black-box
settings (ZIP) and are as competitive as alphabet-
ical character manipulations in gray-box settings
(DWB) (Figure 7). The high variance of ZIP means
that inserting some symbols can lower performance
comparably, if not more than any character manipu-
lation technique introduced in DWB. For example,
ZIP Ap achieves a 7.8% lowerAaft−atk than DWB.

The full results can be found in Appendix I (col-
umn "With Grammar" in Tables 6 and 7, and the
performance of ZIP in Table 10).

Observation DWBP is more successful with the
attack, except on the [%] of perturbed words. These
results show a curious property of punctuation at-
tacks by highlighting that the [%] of perturbed
words is not necessarily aligned with semantic sim-
ilarity. Therefore, it is possible to have a highly
perturbed sample (in terms of [%] of perturbed
words) that is nonetheless readable and potentially
preserves the original information.

5.6 Adversarial training as a defense

How does adversarial training benefit learning?
In this section, we aimed to robustify the model
by experimenting with adversarial training on the
MR dataset. To test this, we employed the use of
the DWBP with hyphens and apostrophes (Hy and
Ap). Our findings suggest that adversarial training
for language models improves Aaft−atk. Specif-
ically, Aaft−atk increased by 7.4% with Hy and
6.4% with Ap on BERT, as shown in Figure 5.
This is demonstrated in the "Adv Training" quad-
rant, where this model was further finetuned for 4
epochs on the base dataset, while the models be-
neath it were trained for 4 epochs where the base
dataset was extended by 20% with adversarial sam-
ples containing either apostrophes or hyphens. The
effects of adversarial training were minimal, but did
result in an improvement to the model not undergo-
ing any adversarial training. This can be observed
by comparing the values in the Broken model to
the left of "Adv Training" and to the Broken mod-
els that have been adversarially trained beneath
"Adv Training". On LSTM, Aaft−atk increased by
2.4% with Hy and 1.6% with Ap, with negligible
drops/increases in original accuracy, as shown in
Table 15 in the appendix.

Observation Our findings are in agreement with
previous works, which highlight that adversarial
training on large language models, such as BERT
or LSTMs, can improve both original and adversar-
ial accuracy (Zhu et al., 2020; Miyato et al., 2017;
Cheng et al., 2019; Yoo and Qi, 2021). However,
other studies suggest that robustness and general-
ization may be at odds with one another (Li et al.,
2021; Eger and Benz, 2020; Meng and Wattenhofer,
2020). Our experiments also indicate that although
adversarial training improves the Aaft−atk, there
is still a large drop in performance.
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FS 71.2% 78.2%
Co 80% 81.6%
Ap 65.6% 77.0%
Hy 66.8% 74.2%

Model still 

vulnerable to 

Ap/Hy

Base "All" Model

Drop -2.6%
Orig Acc 81.2%
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RPos=False

Hy 36.8%

Broken Model
RPos=False

Ap 23.4%

Base Model
"Adv Training With Ap"

Drop -0.2%
Orig Acc 84%

Base Model
"Adv Training With Hy"

Drop +0.2%
Orig Acc 84.4%

Base Model
"Finetune With Punctuation"

Drop 0%
Orig Acc 85.3%

Base Model
"Adv Training"

Drop 0%
Orig Acc 84.2%

Base Model

Drop 0%
Orig Acc 83.8%

Figure 5: Qualitative casual map for defender/attacker strategy (Section 5.4), values represent BERT–MR.
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Figure 6: Gray-box attacks against grammar checker
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Figure 7: Black-box attacks against grammar checker

5.7 Semantic similarity of punctuation attacks

How similar are samples that have been perturbed
with punctuation to the originals? Earlier tests con-
cluded that removing punctuation is an impractical
defense technique. We now evaluate the pertur-
bation quality. Apostrophe and hyphen insertions
attained a perfect score of 1 for similarity across all
samples (in both human and automatic evaluations),
a 98% on reviewer classification accuracy (nomi-
nal Krippendorff’s alpha = 0.960), and a grammat-
ical correctness score difference of 1.29 between
the original samples (3.14/5) and adversarial sam-

ples (4.43/5), with ordinal Krippendorff’s alphas
of 0.459 and -0.004 for the original and adversar-
ial samples, respectively. We provide qualitative
examples in Table 2 to highlight how the sample
changes with punctuation insertions.

MR
(Negative
Sentiment)

A dark comedy that goes for sick and demented
humor simply to do so . the movie is without
intent .

TextFooler
(Positive
Sentiment)

A dark comedy that goes for psychopathic
and coot humor honestly to do so . the
film is without object .

DWBP
(Positive
Sentiment)

A dark comedy that goes for sick and
demented humor simply to do so . the movie
is withou’t intent .

Table 2: Qualitative examples of DWBP and TextFooler.
Bold words represent a perturbed word

Observation The grammar test is widely used
(Jin et al., 2020; Maheshwary et al., 2020). How-
ever, the low Krippendorff’s alphas for grammat-
ical correctness suggest the low reliability of the
test in indicating grammatical correctness. Analyz-
ing the visual effect of inserting punctuation makes
it possible to observe that the semantics remained
unchanged. However, such changes are very no-
ticeable to a human (Table 2).

5.8 Limiting punctuation and readability

Does limiting the punctuation types improve read-
ability? Our tests suggest that focusing on a few
types of punctuation facilitate meaning preserva-
tion (Section 5.7). Another reason to limit punctu-
ation insertions is to improve readability. To test
readability, we used TOWRE, where a reviewer
pronounces a list of words with four different per-
turbations in the test using the Zéroe algorithm with
p = 0.8 (high perturbation strength). The four types
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are: 1) no perturbation (original); 2) ZIP with apos-
trophe (ZIP Ap), 3) ZI; and 4) character insertions.
ZI uses all punctuation symbols from Section 3.5
and character insertions uses all alphabetic charac-
ters. Our ZIP Ap method has the fastest reading
speeds. Specifically, Table 4 shows an improve-
ment in WPM from 7 WPM (chracter insertion) to
32 WPM (ZI) to 63 WPM (ZIP Ap), with a ratio
Krippendorff’s alpha of 0.977 and a consistent er-
ror rate reduction from character insertions (71.43)
to ZI (6.17) to ZIP Ap insertions (1.43). In terms
of reading speeds, ZIP Ap is an improvement over
character insertions by 800% and by 96% over ZI.

Observation Compared to character insertions
and ZI, apostrophe insertions by ZIP Ap are easier
and faster to read, as seen with the perfect semantic
similarity, WPM improvement, and error reduction.
We also show, for the first time, that an attacker
cannot use alphabetical character insertions in a
high perturbation black-box setting as the samples
become too scrambled (Table 3).

MNLI

Original
Premise

Not only that but they don’t
pay the money either

Hypothesis
They also do not contribute
financially.

Character
Insertions

Hypothesis
Thzezy also do not contribute
fdiunlavnyckiwaulvlwyv.

Zéroe
Intrude

Hypothesis
Th]e|y also do not contribute
f)i^n>a]n{c-i{a}l∗l{y’.

Insertions
(Full Stop)

Hypothesis
Th.e.y also do not contribute
f.i.n.a.n.c.i.a.l.l.y..

Table 3: Qualitative examples of FS Insertions vs ZI vs
Ch. Bold words represent a perturbed word

TOWRE Method

Original ZIP
Ap

Zéroe
Intrude

Character
Insertions

Time [s] 24.54 33.60 60.00 60.00
WPM 86.64±9.6 63.35±7.3 32.50±1.5 7.00±0
Errors 0.00±0 0.50±0.5 2.00±0 5.00±1
Error Rate [%] 0.00±0 1.43±1.4 6.17±0.2 71.43±14.3
Self-Corrections 1.00±0 0.50±0 1.50±0 0.50±0.5
Self-Correction Rate [%] 2.86±0 1.43±1.4 4.55±1.3 7.14±7.1

Table 4: Reading efficiency for the four perturbations

5.9 Limiting punctuation types
Is the attack still effective when using a limited
punctuation set? Despite limiting the types of punc-
tuation, ZIP performs similarly to ZI and better
than character insertions (Figure 8). The test in Fig-
ure 8 explores the ability of ZIP with Ap (apostro-
phe), Hy (hyphen), Co (comma), and FS (full stop)
insertions to generalize to black-box attacks. We
compare these ZIP intrusions to ZI with all punctu-
ation types and character insertions (Ch) with all al-
phabet letters using the ZI algorithm on MR-BERT.

Figure 8 shows the delta change in Aaft−atk for
each attack technique against the others for p = 0.8.
Each square represents the Aaft−atk from the x-
axis attack method minus the Aaft−atk from the
y-axis attack method. Table 14 in the Appendix
displays the Aaft−atk [%] and semantic similarity
(S) values for Figure 8. Limiting punctuation with
ZIP also avoids grammar checking better than us-
ing all punctuation types with ZI (Figure 7) as ZIP
can focus on one highly perturbing symbol.

Observation ZIP Ap achieved comparable re-
sults to that of Ch and ZI (Figure 8) where the dif-
ference is even smaller when comparing with other
models. Using character insertions can thus be
deemed counterproductive and should be avoided.
Attacks should instead focus on only one punctua-
tion type, such as Ap, since, compared to Ch and ZI
as Section 5.8 highlighted, readability is preserved.

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-27 -10 -2.2 3.8 -2.6

17 25 31 25

8 14 7.6

6 -0.4

-6.4

−18.0
−13.5
−9.0
−4.5

0.0
4.0
8.5
13.0
17.5

Figure 8: X-Axis Aaft−atk minus Y-Axis Aaft−atk.
ZIP (Ap, Hy, Co, Fs) vs ZI, Ch

6 Conclusion

Researching adversarial attacks aims to create a
toolbox to identify flaws and improve model ro-
bustness. Results show that punctuation insertions
as an attack are more effective than character ma-
nipulations (Figure 1) and alphabetical character
insertions (Figure 2) and better evade grammar
checkers (Figures 6, 7). Punctuation insertions
preserve more information and are faster to read
(Section 5.7, 5.9). Simple defenses and adversarial
training are not necessarily effective (Section 5.4,
5.6). The information-preserving characteristic of
this attack could potentially evade censorship. Con-
versely, this highlights that a system deployed to
combat fake news and offensive language propaga-
tion can potentially be compromised by this use of
punctuation. Our defense findings are summarized
in Figure 5. We hope this inspires further research
in the under-explored area of punctuation and how
to process it. The code is available1.

1Provided at EmpiricalPunctuationInsertionAttacks
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7 Limitations

This work considers only classification tasks,
which raises questions on whether such punctu-
ation types can generalize to research tasks such
as fake news, offensive content detection, and seq-
to-seq tasks such as translation. From our experi-
ments, we can conclude that punctuation insertion
attacks (DWBP) with one symbol (apostrophe or
hyphen), given our evaluation metrics work bet-
ter in terms of after-attack accuracy, readability,
and defense avoidance than alphabetical character
insertions. However, We’ve found some limita-
tions and cases where punctuation insertions with
apostrophes or hyphens don’t work better than the
alternative. For example, ZI with all punctuation
symbols can achieve on some datasets and models
a lower after-attack accuracy, therefore, a better
attack success rate Figure8 than using ZIP with an
apostrophe of 3.8%. This increase in performance,
however, has a cost since the sample will be harder
to read. We only tested on English language, punc-
tuation insertions on other languages are mostly
unexplored.
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A Future Work

How punctuation attacks can augment an effective
adversarial learning schema is still an open ques-
tion. Our punctuation insertion serve as a founda-
tion for future punctuation manipulation. Hyphens,
for example, can be used to s-p-e-l-l out words,
syl-la-bi-fi-ca-tion, or to indicate s-stammering or
so-so-sobbing in a sentence. There is no research
exploring whether stammering or sobbing punctu-
ation perturbations could generate a high-quality
adversarial attack on NLP without compromising
the meaning.

Exploring whether the identified punctuation
types and attacks generalize to more complex pre-
diction tasks like fake news, offensive content de-
tection, and seq-to-seq tasks such as translation is
an interesting topic for future work.

B Appendix: Ethics Statement

This research was conducted in accordance with
the ACM Code of Ethics.

C Appendix: Task and Datasets

MR: The Rotten Tomatoes movie review dataset
holds a sentiment classification task with pos-
itive/negative reviews. QNLI: Is a question-
answering dataset where an annotator extracts the
answer from a reference text. The task is to allow
the model to predict whether the context sentence
holds the answer to the question. QQP: Is a du-
plicate question detection task, where the model is
required to detect if the two questions are asking the
same thing. SNLI: Is composed of human-written
sentence pairs where each annotator generates an
entailing for each given premise. MNLI: It is simi-
lar to SNLI but covers multiple genres.

Task Dataset Train Test Avg Len
(Test) Classes

Sentiment
Classification

MR 8.5k 1k 18.7 2

Entailment
MNLI 392k 9.8k 29.2 3
SNLI 550k 10k 21.4 3

Question
Answering

QNLI 105k 5.4k 37.6 2

Duplicate
Question

QQP 363k 40k 22.2 2

Table 5: Overview of datasets used in experiments

D Appendix: Methodology Details

Each attack composition has three components, a
word scoring function, a set of transformation func-

tions, and a search algorithm.

D.1 Gray-box
D.2 Step 1: Word scoring function
The original DeepWordBug paper introduces four
word scoring functions: Replace-1 Score, Tempo-
ral Head Score, Temporal Tail Score, and Com-
bination Score. All of which are now outdated.
Therefore, for the Gray-Box tests, we use the same
schema as that of TextFooler, popularized by BERT-
Attack (Li et al., 2020). BERT-Attack records
the original sentence’s inference logit. Then for
each word in the input, the word is deleted. BERT-
Attack then extracts a new logit with the remainder
of the sample, tracking the difference in value be-
tween the original logit and the new logit for each
word. It then regards the words with the most sig-
nificant output change as the most important to
f . The original input sentence x with τn words is
turned to zL tokens through a tokenizer function
Ft in z ∈ (z1...zL) tokens. To find the set of most
important words, which we call τR = {τ1...τk},
that need to be perturbed to attack f , the delete
schema associates a rank value Rk for each xτk , or
sample x without top word τk. Rk. Calculate τk
with:

Ri = f(Ft(x))xScore−f(Ft(xx∩x\τk ))xScore (1)

where x\τk = (τ1, ..., τk−1, τk+1, ..., τk). There-
after ∀Rk ∈ R each word τi are ranked highest to
lowest, resulting in τR, xScore represents the output
logit from model f .

D.3 Step 2: Transformation
For every top word in step 1, the second step finds
‘transformation’ candidates.

DeepWordBug returns four total candidates.
The first candidate has a random letter character
inserted in a random position. The second has a
random letter deleted. The third has a random letter
substituted with another, and the fourth changes the
position of two adjacent letters.

DeepWordBugPunc adds punctuation symbols
in the sentence to create candidates. The number
of candidates depends on γ, RPos, and RPunc. γ is
user-specific and is the punctuation types that can
be inserted. An example is γ = { - ’ }. With RPos
and RPunc It is possible to choose whether to insert
a γrandom punctuation symbol at a random location,
or return candidates for all possible punctuation
insertions and position of such insertions.
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D.4 Step 3: Optimization

For every word, Algorithm 2 returns a set of trans-
formations. To choose which transformation is best
and whether to keep it, we explore Greedy Search
with Word Replacement (GSWR). GSWR is a time-
efficient query modification applied to the greedy
search algorithm. It replaces with a transformation
only words strongly correlated with a change in the
output when removed from the input. GSWR keeps
the transformation if the change creates a success-
ful perturbation. After an adversarial candidate is
found the semantic similarity is calculated, with a
deep learning model (Cer et al., 2018), between x
and x̂ with S

′
= Sim(x, x̂). GSWR will reject all

perturbations that do not meet a semantic similarity
threshold (set at 0.8).

If |τk| = 1 or the word is part of a predefined
set of stop words, the algorithm does not do the
operation. As the algorithm perturbs top words τk,
it checks for: if the i perturbation was successful at
reducing the logit score, if so, the algorithm keeps
the perturbation with γi, we define this new sample
as x̂. This is repeated until either f(x) ̸= f(x̂) or
the algorithm runs out of τk.

D.5 Multi-level extension

We also evaluated the performance of punctuation
insertions when used in conjunction with word-
level attacks. To conduct this assessment, we em-
ployed two baselines: 1) TextFooler, a popular
method that utilizes word synonyms from counter-
feited embeddings to perturb the sample (Jin et al.,
2020); and 2) SememePSO, a recent approach that
employs a sememe (e.g., a morpheme) to create a
word substitution, in conjunction with the use of
PSO (Zang et al., 2020).

D.5.1 Gray-box multi-level attack
We explored two multi-level attacks based on
TextFooler and SememePSO respectively:

• TextFooler/DWBP: This variant uses the same
word scoring function and the GSWR search
algorithm. However, τ̂k will be a mix of word
synonym and punctuation insertion transfor-
mations of τk.

• SememePSO/DWBP: This variant uses the
same word scoring function but with particle
swarm optimization (PSO) as a search tech-
nique. PSO uses a population-based evolu-
tionary algorithm that exploits the interactions

between individuals in a population to find a
solution in a search space. τ̂k will be a mix
of sememes (a type of word substitution) and
punctuation insertion transformations of τk.

We performed multi-level attacks to explore
their effect on deep learning models. The
TextFooler/DWBP and SememePSO/DWBP meth-
ods result in {τ̂k} having both word substitu-
tions and punctuation insertion candidates. For
TextFooler/DWBP, TextFooler returns 20-word sub-
stitutions, and since RPunc and RPos are both false,
DWBP returns K transformations. K is propor-
tionate to the number of letters in the word and the
length of γ. In our tests, γ = {-’}. Appendix D.5
gives an extended description for the two multi-
level attacks and the TextFooler/SememePSO base-
lines.

To be clear, although we change SememePSO
in the SememePSO/DWBP test and TextFooler
in the TextFooler/DWBP, we compare Se-
memePSO/DWBP and TextFooler/DWBP to their
unaltered baselines.

D.5.2 TextFooler
Where Line 6 returns only TextFooler’s word syn-
onym substitutions. For τk, the algorithm will
return 50-word substitutions. This baseline uses
GSWR.

D.5.3 TextFooler/DWBP
Line 6 in Algorithm 2 is changed to both call
TextFooler’s word substitution and DeepWordBug-
Punc’s punctuation insertion functionality and con-
catenating the resulting transformations in Transfor-
mation Set τ̂k. For TextFooler/DWBP, TextFooler
returns 20-word substitutions, and since RPunc
and RPos are both False, DWBP returns N num-
ber of transformations. N is proportionate to
the number of letters in the word and the length
of γ. In our Tests γ = { ’ - }. This base-
line uses GSWR. Hyperparameter-wise, we reduce
TextFooler/DeepWordBugPunc word embeddings
for TextFooler from 50 to 20 on all tasks.

D.5.4 SememePSO
uses word substitutions based on sememes together
with a different search algorithm based on particle
swarm optimization (PSO). We use an existing im-
plementation of SememePSO from the TextAttack
library. PSO exploits a swarm composed of indi-
vidual samples called particles that interact within
a space to find a solution iteratively. Every particle,
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which in the case of SememePSO is a sample with
a sememe word substitution, has a position in the
search space and a velocity. Multiple samples with
a sememe word substitution form a swarm. Each
particle in the swarm is initialized with a random
velocity and position. PSO, after that, records for
each particle its own best position in the search
space and a global best position. This best position
is calculated using an optimization score, which
is the victim’s output logit for a classification task.
If one of the samples achieves the desired opti-
mization score, the algorithm is terminated since
this sample can attack the model. Otherwise, each
particle has its position and velocity updated with
values from the individual best position, global best
position, the inertia weight, two acceleration coeffi-
cients, and two random coefficients. The PSO com-
ponents would replace lines 10-13 in Algorithm
2.

D.5.5 SememePSO/DWBP
uses both sememe word substitutions and punc-
tuation insertions to construct {τk} and uses
PSO to find the best substitution out of this set.
Hyperparameter-wise for SememePSO/DWBP, the
attack is changed by reducing the SememePSO
population size from 60 to 5 (MR, QNLI) to 2
(MNLI, SNLI, and QQP) and reducing the number
of iterations from 20 to 2 for all tasks.

E Appendix: Implementation Details

E.1 Attack detail

All tests were carried out with the TextAttack (Mor-
ris et al., 2020) framework to ensure repeatability,
standardization, and ease of future integration. The
DeepWordBug baseline, for fairness comparison,
has a cosine semantic similarity constraint set to
0.8 with (Cer et al., 2018) to ensure the perturbed
sample does not differ too much from the origi-
nal sample and is comparable to other baselines.
For TextFooler, SememePSO we keep the default
implementation from TextAttack when comparing
them with DWBP in Table 1, Tables in Appendix J
and Figure 4,3.

For each sample, we keep the After attack ac-
curacy, the number of queries, semantic similarity,
and [%] of perturbed words. These metrics are
then averaged across 500 samples to complete each
test. All data was sourced from the test set of
their respective dataset and sampled under a com-
mon/standard seed ∈ 755, which is the standard

seed used in the TextAttack framework. For Deep-
WordBugPunc the tests in Section 5.2 have been
conducted on one punctuation symbol and with
RPos = False while γ = {’ -}, RPos = True and
RPunc = True for tests in section 5.3.

We used BERT, XLNET, and RoBERTa with
110 million parameters and DistilBERT with 66
million parameters. Every test has been run on a
32GB NVIDIA Tesla V100. The TextFooler and
DeepWordBugPunc tests took approximately be-
tween 30 min and 1 hour to run, while PSO took
between 5 and 10 hours. Regarding the human
studies, the participants were not paid and were
sourced from a lab at a university. All the partic-
ipants were made aware verbally of how the data
would be used. All scientific artifacts from this
paper will be made available on GitHub under an
MIT license.

It is possible to keep the perturbed words %,
semantic similarity, the average time taken, and
the average number of queries to concentrate on
changes in Aaft−atk by adding a word limit con-
straint on the % of words perturbed in the input.
We use this strategy to construct Figure 2.

E.2 Choice of symbols
The experiments in 5 narrow down a choice for γ.
We focus on the most frequent punctuation for each
dataset (Table 16 in the Appendix) and find that
the distribution of common punctuation is similar
across datasets. We therefore use all punctuation
for Section 5.1 and 5.5 and the ten most popular
symbols for Section 5.2, while the other tests focus
on apostrophes, hyphens, commas, and full stops
(the two most common internal and non-internal
symbols; Figure 2, Section 5.9; Figure 8). We
use the results from Sections 5.1 and 5.2 to justify
multi-level attacks with apostrophes and hyphens.
γ = {-’} is a good choice since they are internal
punctuation and create added problems to the de-
fender (see Sections 5.4 and 5.5). The human stud-
ies in Sections 5.7 and 5.8 tested γ = {-’} and γ =
{’}; we did not do human tests on other punctuation
insertions as they are visually similar. Nonetheless,
we believe the results will be similar regardless of
the punctuation type inserted (full stop, comma,
apostrophe, or hyphen).

E.3 Adversarial training details
The standard adversarial technique in (Morris et al.,
2020; Yoo and Qi, 2021) works by, at each epoch,
finding the adversarial sample for each datapoint
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(if it exists). It then extends the base dataset by
20% using the adversarial data. For MR, we do
fine-tuning and adversarial training for 4 epochs
with a batch size of 16 and a learning rate of 2e−5.
We compare this by fine-tuning the same model
using the same hyperparameters but on the base
dataset.

F Appendix: Human Evaluation Details

F.1 Appendix: Gray-box and multi-level
human evaluation

We follow the evaluation strategy used in
TextFooler (Jin et al., 2020) and Hard-Label (Ma-
heshwary et al., 2020). Therefore evaluate the qual-
ity of the generated samples across three metrics;
Grammatical Correctness: Measures in the Likert
scale, between 1 and 5. The reviewer compares the
adversarial sentence to the grammar of the original
as a reference. Classification: Asks the reviewer
to classify the sample. We then check if the hu-
man classification matches the true label, Similar-
ity: The user inputs a number representing one of
three choices where dissimilar is 0, ambiguous 0.5,
and 1 similar. The three tests were conducted with
two native English-speaking students from India
and the UK who have a tertiary university educa-
tion. They were trained using 3 test samples. We
sampled 100 samples at random from MR targeting
BERT for this test.

F.2 Appendix: Black-box human evaluation

Finally, we introduce a novel application of
TOWRE (Tarar et al., 2015). To generate the word
list, we extract all words from the NLTK python
package and pick six words randomly for each
word length between 4 and 9. The reviewer pro-
nounces 36 words as accurately and fast as possible.
The test reports the number of words correctly pro-
nounced, the number of errors, self-corrections,
and the time to pronounce the 36 words or the num-
ber correctly pronounced in 1 minute. The WPM
(Words Per Minute) metric extrapolates from the
time or the correct number of words. The reviewers
conducting TOWRE are from Singapore and Brazil.
Both hold tertiary education. All the tests were con-
ducted in one sitting and took 15 minutes each. To
ensure no duplicates existed in the word list, we
manually checked the 145 words across the 4 tests
and found no duplicates. TOWRE was initially
introduced to measure sight word reading fluency.
It is widely used in clinical practices to diagnose

dyslexia or reading difficulties in children.

F.3 Krippendorff’s alpha

We use the Krippendorff’s Alpha reliability metric
to detect whether a test has statistical significance.
Krippendorff’s Alpha extracts a value between -
1 and 1 after highlighting the agreement between
multiple reviewers in a trial. This metric can calcu-
late statistical reliability for nominal (classification,
semantic similarity), ordinal (grammar test), and
ratio (WPM) data types. A value close to -1 rep-
resents complete disagreement between reviewers
normalizing by chance, 0 represents neither statis-
tical agreement nor disagreement, and 1 is perfect
agreement.

G Extra Findings

G.1 Punctuation as a multi-level attack

Extra Observation We find an interesting trade-
off between Aaft−atk, sample quality, and attack
time efficiency depending on the influence of
punctuation insertions over the word-level attacks.
Hyperparameter-wise, the changes in Section D.5.1
increase the attack effectiveness of punctuation in-
sertions by decreasing classification accuracy after
the attack (Aaft−atk) while increasing the qual-
ity/meaning/readability of the text. These changes
are also more efficient compared to other hyperpa-
rameters because the number of queries and amount
of time taken to optimize the sample are decreased.

Other hyperparameters can achieve lower
Aaft−atk but at the cost of time, queries, and sam-
ple quality. We hypothesize that this interesting
behavior derives from punctuation insertions being
unconstrained by a similarity constraint. These at-
tacks can inject information from different parts of
the embedding space by inserting punctuation and
avoiding word substitutions. Analyzing the visual
effect of inserting punctuation makes it possible
to observe that the semantics remained unchanged.
However, such changes are more noticeable than
word substitutions (Table 2).

H Appendix: Extended Budget Study

Figure 9 illustrates how the Asucc−rte improves as
each word in the sample can be either replaced with
N synonyms (TextFooler) or have one of N punc-
tuation characters inserted in the word (DWBP)
in four different ways according to how the flags
RPos/RPunc are set. The behavieour of RPos and
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RPunc changes DWBP, as previously explained in
Section 3.3.

Increasing the number of word synonyms in
TextFooler or potential punctuation symbols in
DWBP results in more transformations (τ̂k) that the
GSWR algorithm needs to evaluate by performing
queries to the victim model, therefore seaching for
the optimal transformation. The query response is
shown in Figure 10. Both tests suggest that DWBP
performs better with limited word synonyms and
limited queries from the attacker. On the other
hand, TextFooler performs better when the algo-
rithm has many synonym candidates to chose from
for each word.
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Figure 9: After Success Rate (higher is better) as the
number of characters in γ is increased for DWBP vs the
number N of synonyms is increased for TextFooler
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Figure 10: After Attack Accuracy (Lower is better) vs
the number of queries required to find an adversarial
solution. Each point represents the number of unique
punctuation symbols ( for DWBP) or synonyms (for
TextFooler) from 1 to 10

I Appendix: Extended
Non-Grammar/Grammar Checker
Attack Results

The extended results of DWBP when a model em-
ploys a grammar checker (Language Tool) as a

defense technique are in Table 6. The table is with
RPos = False. With RPos = True (Table 8), al-
though it requires less queries the attack is not
as effective, especially when there is a grammar
checker (Figure 11 and 12). We also report the re-
sults for the most frequent non internal punctuation
with RPos = False (Table 7) and with RPos = True
(Table 9). Limiting punctuation is also effective
against a grammar checker. The findings in fact
generalize to a black box attack (Table 10). This
table shows that Zeroe with all characters is ineffec-
tive and limiting punctuation is competitive with a
gray-box character attack technique.
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Figure 11: Summary of ’With Grammar Checker’ (Ta-
ble 8 and 9) Aaft−atk across datasets with RPos = True
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Figure 12: Summary of ’Without Grammar Checker’
(Table 8 and 9) Aaft−atk across datasets with RPos =
True

J Appendix: Extended Multi-level Attack
Results

The results for multi-level DWBP and DWBP on
MR, MNLI, SNLI, QQP and QNLI across all mod-
els is shown in Table 11,12,13
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Dataset Model
(Orig Acc) Method Without Grammar Checker With Grammar Checker

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

MR

CNN
(76.6)

DWB 34.2 9.86 0.87 32.3 66.4 7.41 0.88 26.23
DWBP - 26.6 14.24 1 44.09 54.6 9.61 1 29.9
DWBP ’ 14.8 16.86 1 43.23 53.8 10.3 1 28.22

LSTM
(77)

DWB 29.2 10.16 0.87 32.05 66 7.5 0.88 26.32
DWBP - 26.4 13.71 1 43.1 53.8 10.8 1 30.02
DWBP ’ 19.2 14.91 1 42.2 55.6 10.33 1 28.44

BERT
(83.8)

DWB 43.2 10.79 0.87 35.5 77.8 8.4 0.89 26.95
DWBP - 33.4 14.59 1 46.51 66.8 11.75 1 31.58
DWBP ’ 19.6 17.89 1 47.02 65.6 12.54 1 29.52

RoBERTa
(88)

DWB 50 11.58 0.87 35.17 80.8 8.64 0.87 26.73
DWBP - 36.2 16.44 1 45.88 71.2 12.66 1 31.25
DWBP ’ 18.8 19.64 1 47.53 72.6 13.14 1 30.02

XLNet
(87)

DWB 43.4 11.06 0.86 34.92 78.2 7.77 0.88 26.89
DWBP - 35.8 15.77 1 46.29 70 12.69 1 31.58
DWBP ’ 20.2 19.63 1 47.86 71 12.02 1 30.11

MNLI

BERT
(82.8)

DWB 15.6 7.67 0.9 38.98 62.2 5.94 0.91 31.89
DWBP - 18.4 7.61 1 39.07 46 7.42 1 33.82
DWBP ’ 12.2 8.62 1 40.36 42.6 8.62 1 33.85

DistilBERT
(80.6)

DWB 17.8 7.24 0.9 38.84 60.4 6.15 0.9 31.82
DWBP - 18.6 7.54 1 38.93 42.4 7.25 1 33.68
DWBP ’ 12 8.22 1 40.19 42 8.39 1 33.7

SNLI

BERT
(91.2)

DWB 13.4 8.45 0.88 29.58 69.4 6.28 0.89 23.83
DWBP - 18.8 7.44 1 29.71 51.2 7.41 1 25.41
DWBP ’ 10.2 8.28 1 30.23 52.4 7.7 1 25.12

DistilBERT
(86.6)

DWB 12.8 8.51 0.89 29.92 72 6.13 0.89 24.25
DWBP - 19.4 7.48 1 29.73 52.6 7.14 1 25.65
DWBP ’ 7.4 8.79 1 30.56 48.8 8.4 1 25.45

QNLI

BERT
(91.2)

DWB 30.8 8.98 0.9 65.04 74 6.37 0.92 47.69
DWBP - 38 7.7 1 70.61 59.8 7.4 1 51.46
DWBP ’ 27.6 9.54 1 75.12 55.4 8.56 1 51.86

RoBERTa
(92)

DWB 36.4 9.79 0.9 65.86 80.6 5.99 0.93 47.94
DWBP - 44.8 9.39 1 76.46 71.6 7.08 1 52.79
DWBP ’ 32 11.36 1 80.47 66.6 8.86 1 53.72

DistilBERT
(86.2)

DWB 28.4 9.23 0.91 63.68 73.4 6.23 0.92 47.96
DWBP - 35.4 7.87 1 71.42 58.6 6.55 1 51.5
DWBP ’ 26.2 9.41 1 74.53 55.4 7.56 1 51.94

QQP

BERT
(90.4)

DWB 46.8 8.42 0.9 39.42 79.6 7.48 0.9 25.79
DWBP - 50.6 7.4 1 39.24 61.2 8.07 1 28.58
DWBP ’ 47 8.44 1 41.98 62.8 8.95 1 28.68

DistilBERT
(90.8)

DWB 41 9.77 0.89 37.87 79.4 7.01 0.91 25.97
DWBP - 53.2 7.35 1 38.67 62.8 8.11 1 28.53
DWBP ’ 45 9.16 1 41.62 61.4 9.37 1 28.7

XLNet
(91.2)

DWB 44.6 9.58 0.89 38.93 79.6 7.44 0.9 25.95
DWBP - 53.2 8.85 1 38.91 68.8 9.65 1 28.6
DWBP ’ 47.6 10.18 1 42.8 70.2 10.46 1 29.05

Table 6: Results without (Original) and when using the LanguageTool grammar checker with RPos=False and
internal punctuation

K Appendix: Black-Box Heatmaps

The extended results for the performance differ-
ence between ZIP (apostrophe (Ap), hyphen (Hy),
comma (Co), full stop (FS) and for QQP question
mark (Qu)), character insertions, Zéroe on MR,
MNLI, SNLI, QQP and QNLI are in Figure14 for
LSTM on MR, Figure 13 for BERT on MR, Figure
16 for DistilBERT on MNLI, Figure 15 for BERT
on MNLI,18 for DistilBERT on SNLI, Figure 17
for BERT on SNLI, 20 for DistilBERT on QNLI,
Figure 19 for BERT on QNLI, 22 for DistilBERT
on QQP, Figure 21 for BERT on QQP. For BERT
on MR we present the values to construct figure 13
in Table 14 as an example.

L Appendix: Punctuation vs Characters

The extended results for the performance increase
in terms of after attack accuracy between insert-
ing letters and punctuation (apostrophe, hyphen,
comma, full stop), character insertions, Zéroe on
MR, MNLI, SNLI, QQP and QNLI are in Figure
23 for LSTM on MR, Figure 24 for BERT on MR,
Figure 25 for DistilBERT on MNLI, Figure 26 for
BERT on MNLI,27 for DistilBERT on SNLI, Fig-
ure 28 for BERT on SNLI, 29 for DistilBERT on
QNLI, Figure 30 for BERT on QNLI, 31 for Distil-
BERT on QQP, Figure 32 for BERT on QQP.

The results show a constant improvement across
all tasks except for QQP when inserting punctua-
tion. Interestingly the strongest punctuation inser-
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Dataset Model
(Orig Acc) Method Without Grammar Checker With Grammar Checker

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

MR

CNN
(76.6)

DWBP . 15.4 16.61 0.97 44.1 62.2 9.43 0.99 27.42
DWBP , 14.6 16.84 1 43.2 71 6.14 1 24.27
DWBP " 27.2 14.12 1 44.2 75.8 4.47 1 22.11

LSTM
(77)

DWBP . 19.4 14.86 0.97 42.93 63.4 8.73 0.99 27.31
DWBP , 19.2 14.91 1 42.2 72.6 5.76 1 24.28
DWBP " 26.6 13.62 1 43.16 76.2 4.7 1 22.01

BERT
(83.8)

DWBP . 18.4 16.72 0.97 45.57 71.2 10.1 0.98 27.81
DWBP , 18.4 16.64 1 45.78 80 9.1 1 24.57
DWBP " 29.4 14.43 1 44.94 83.2 6.15 1 22.32

RoBERTa
(88)

DWBP . 19.4 19.35 0.96 48.81 79.2 9.96 0.98 28.22
DWBP , 18.6 19.53 1 47.12 85 5.06 1 24.6
DWBP " 34.6 16.5 1 46.49 87.4 6.24 1 22.34

XLNet
(87)

DWBP . 17.8 19.85 0.97 48.34 75.6 10.44 0.99 28.31
DWBP , 18 19.68 1 47.46 84.4 5.85 1 24.7
DWBP " 34 15.89 1 45.69 87 0 0 22.41

MNLI

BERT
(82.8)

DWBP . 14 7.94 1 39.98 47.8 7.46 1 32.62
DWBP , 12.6 7.77 1 39.59 76 4.1 1 30.09
DWBP ) 11.6 8.08 1 40.04 71.2 5.38 1 30.4

DistilBERT
(80.6)

DWBP . 12.8 7.36 1 39.47 45.4 7.28 1 32.37
DWBP , 13.2 7.41 1 39.28 74 5.28 1 30.07
DWBP ) 10.4 7.95 1 39.49 70.4 6.22 1 30.4

SNLI

BERT
(91.2)

DWBP . 10 7.88 1 29.98 57 6.92 1 24.2
DWBP , 10.6 8.31 1 30.08 85.6 5.92 1 22.54
DWBP " 17 7.75 1 29.79 91.2 0 0 22.13

DistilBERT
(86.6)

DWBP . 9.6 8.14 1 30.26 54 7.55 1 24.6
DWBP , 4 8.84 1 30.19 80.6 5.91 1 23.01
DWBP " 16.8 7.36 1 29.58 85.8 5.81 1 22.58

QNLI

BERT
(91.2)

DWBP , 25 9.36 1 73.9 83.6 5.12 1 42.49
DWBP . 26.8 9 1 74.66 66.6 7.27 1 48.93
DWBP ? 25 9.92 1 74.08 58.2 8.33 1 50.53

RoBERTa
(92)

DWBP , 28.6 12.23 1 79.46 88.6 4.62 1 42.47
DWBP . 32.2 11.6 1 80.69 76.4 7.69 1 49.69
DWBP ? 31.4 11.84 1 81.15 71 8.39 1 52.09

DistilBERT
(86.2)

DWBP , 19 10.09 1 70.73 79.2 4.93 1 42.5
DWBP . 19.2 9.66 1 70.2 63 7.11 1 48.87
DWBP ? 23.2 7.66 1 71.08 46.4 7.78 1 49.13

QQP

BERT
(90.4)

DWBP ? 46.2 8.41 1 41.96 64.4 8.33 1 28.03
DWBP , 48.6 8.29 1 42.31 86.8 6.28 1 23.5
DWBP " 49.4 7.78 1 39.01 88.6 8.86 1 23.28

DistilBERT
(90.8)

DWBP ? 43.4 9.39 1 41.27 64.8 9.39 1 28.04
DWBP , 46.2 8.98 1 41.69 87.2 6.27 1 23.54
DWBP " 50.4 7.82 1 37.95 88.2 6.98 1 23.26

XLNet
(91.2)

DWBP ? 47.4 10.19 1 42.83 70.8 10.65 1 28.33
DWBP , 47.6 10.34 1 42.64 89.2 7.12 1 23.6
DWBP " 53.8 9.45 1 38.69 89.4 7.64 1 23.32

Table 7: Results without (Original) and when using the LanguageTool grammar checker with RPos=False and most
frequent non internal punctuation from Table 16

tion appears to vary between tasks. For example,
the comma is the strongest in MNLI for BERT,
while the full stop is strongest for SNLI on BERT.
Moreover, whether there are character insertions
or punctuation insertions in the QQP task seems
to have little to no difference; at times, character
insertions are better, for example, when inserting a
hyphen in QQP when trained on BERT. We spec-
ulate that QQP is hard to attack, whether using
character or punctuation insertions. It could be
hard to attack because a model is sensitive to sam-
ples with similar question pairs. Hence, it is easy
to perturb them to become unsimilar by adding
character or punctuation symbols. However, to per-
turb a nonsimilar question pair to become similar is
harder, and neither character nor punctuation sym-

bols can do this. Future research to prove this can
investigate this phenomenon by plotting the ROC
and Precision/Recall graphs. However, the high
Aaft−atk in 13 and Table 6 in the Appendix, espe-
cially compared to other tasks, is a good indication
of this theory being correct. Exploring the reasons
behind these phenomena, and introducing a novel
attack that can further decrease the Aaft−atk of
QQP, could be an interesting entry point for future
research.

M Appendix: Adversarial training results

See Table 15 for the results of adversarial training
using DWBP with hyphen insertions.

18



Dataset Model
(Orig Acc) Method Without Grammar Checker With Grammar Checker

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

MR

CNN
(76.6)

DWB 34.2 9.86 0.87 32.3 66.4 7.41 0.88 26.23
DWBP - 26.8 14.18 1 26.54 67 9.42 1 24.39
DWBP ’ 14.8 16.85 1 26.37 68.4 7.11 1 23.99

LSTM
(77)

DWB 29.2 10.16 0.87 32.05 66 7.5 0.88 26.32
DWBP - 26.6 13.57 1 26.23 64.2 9.43 1 24.29
DWBP ’ 19.2 14.91 1 26.05 67.2 7.87 1 23.87

BERT
(83.8)

DWB 43.2 10.79 0.87 35.5 77.8 8.4 0.89 26.95
DWBP - 47.2 15.49 1 28.67 74.2 11.05 1 24.86
DWBP ’ 39 18.21 1 28.94 77.4 9.61 1 24.37

RoBERTa
(88)

DWB 50 11.58 0.87 35.17 80.8 8.64 0.87 26.73
DWBP - 55.2 16.24 1 28.58 81.2 11.28 1 24.85
DWBP ’ 43.6 19.12 1 29.43 83.8 9.48 1 24.45

XLNet
(87)

DWB 43.4 11.06 0.86 34.92 78.2 7.77 0.88 26.89
DWBP - 57.6 14.6 1 28.79 79.2 9.35 1 25.02
DWBP ’ 47.4 19.22 1 29.72 82.4 9.04 1 24.55

MNLI

BERT
(82.8)

DWB 15.6 7.67 0.9 38.98 62.2 5.94 0.91 31.89
DWBP - 33.8 7.99 1 32.58 63.4 6.84 1 31.42
DWBP ’ 26 9.54 1 33.04 68 6.56 1 31.21

DistilBERT
(80.6)

DWB 17.8 7.24 0.9 38.84 60.4 6.15 0.9 31.82
DWBP - 31.4 8.25 1 32.49 60 6.9 1 31.29
DWBP ’ 24.4 9.5 1 32.88 62.8 6.89 1 31.24

SNLI

BERT
(91.2)

DWB 13.4 8.45 0.88 29.58 69.4 6.28 0.89 23.83
DWBP - 39.8 8.43 1 24.63 72.6 7.02 1 23.43
DWBP ’ 33.8 10.12 1 24.98 76.4 6.9 1 23.14

DistilBERT
(86.6)

DWB 12.8 8.51 0.89 29.92 72 6.13 0.89 24.25
DWBP - 40.8 7.8 1 24.89 72.8 6.45 1 23.74
DWBP ’ 28.6 9.7 1 25.2 72 6.43 1 23.52

QNLI

BERT
(91.2)

DWB 30.8 8.98 0.9 65.04 74 6.37 0.92 47.69
DWBP - 48.4 7.95 1 47.62 76.4 6.07 1 43.75
DWBP ’ 39.6 9.55 1 48.67 77.8 6.34 1 43.71

RoBERTa
(92)

DWB 36.4 9.79 0.9 65.86 80.6 5.99 0.93 47.94
DWBP - 62.4 8.56 1 49.13 83.4 5.86 1 43.96
DWBP ’ 52.6 10.83 1 50.83 84.4 6.18 1 43.75

DistilBERT
(86.2)

DWB 28.4 9.23 0.91 63.68 73.4 6.23 0.92 47.96
DWBP - 48.6 7.85 1 47.87 75.2 6.15 1 43.89
DWBP ’ 39.8 9.57 1 48.88 75 6.43 1 43.88

QQP

BERT
(90.4)

DWB 46.8 8.42 0.9 39.42 79.6 7.48 0.9 25.79
DWBP - 54.2 8.53 1 27.46 73.4 7.95 1 25.1
DWBP ’ 52.4 9.22 1 28.01 77.6 7.72 1 25.05

DistilBERT
(90.8)

DWB 41 9.77 0.89 37.87 79.4 7.01 0.91 25.97
DWBP - 57.4 8.1 1 27.44 73.4 7.67 1 25.12
DWBP ’ 52.4 10.39 1 28.1 78.8 7.68 1 25.15

XLNet
(91.2)

DWB 44.6 9.58 0.89 38.93 79.6 7.44 0.9 25.95
DWBP - 59.8 9.91 1 27.53 81.4 8.07 1 25.26
DWBP ’ 60.2 11.18 1 28.46 84.4 8.75 1 25.32

Table 8: Results without (Original) and when using the LanguageTool grammar checker with RPos=True and
internal punctuation

N Appendix: Analysis

N.1 Empirical punctuation counts across
datasets

The variance of symbols within each dataset is high.
Table 16 shows the number of punctuation symbols
and their proportion as a percentage of other char-
acters for each dataset. The table is subdivided into
‘Total Punctuation’ and ‘Internal punctuation’ or
the punctuation only appearing within words, such
as apostrophes and hyphens. This distinction is
essential, as Section 5 empirically motivates why
punctuation can be used as an attack vector and
cannot be easily defended.

N.2 Removing Punctuation

Table 17 shows the impact on all models across all
datasets of removing either all punctuation, only in-
ternal punctuation, or just removing internal punc-
tuation except the apostrophe and hyphen, which
the two punctuation characters over-represented
within words, as seen from Table 16. On the other
hand, Table 18 shows how the original accuracy
changes if the models are finetuned on data with
no punctuation.

N.3 Most frequent punctuation in dataset
attack

Table 19 highlights the drop in performance by the
type of punctuation symbol used in the attack. The
attack uses the most frequent symbols in a sample
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Dataset Model
(Orig Acc) Method Without Grammar Checker With Grammar Checker

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

MR

CNN
(76.6)

DWBP . 16.2 16.41 0.97 26.34 70.2 7.21 0.99 23.51
DWBP , 14.6 16.83 1 26.35 74 4.55 1 22.47
DWBP " 27 14.15 1 26.56 76.2 5 1 21.89

LSTM
(77)

DWBP . 20 14.68 0.98 26.03 70.2 7.21 0.99 23.34
DWBP , 19.2 14.91 1 26.05 74.8 6.37 1 22.34
DWBP " 26.6 13.58 1 26.23 76.6 4.67 1 21.77

BERT
(83.8)

DWBP . 36.2 16.26 0.97 28.47 78 7.74 0.98 23.73
DWBP , 35.8 16.19 1 28.5 81.6 8.65 1 22.64
DWBP " 44.4 13.91 1 28.33 83.2 6.15 1 22.05

RoBERTa
(88)

DWBP . 46 18.44 0.98 29.42 86 8.91 1 23.85
DWBP , 42.8 18.9 1 29.25 87.4 5.94 1 22.66
DWBP " 55.2 14.86 1 28.55 88 0 0 22.09

XLNet
(87)

DWBP . 43.6 18.52 0.97 29.4 84.4 7.22 0.99 23.95
DWBP , 45.6 18.53 1 29.53 85.2 6.39 1 22.79
DWBP " 56.4 15.3 1 28.73 87 0 0 22.16

MNLI

BERT
(82.8)

DWBP . 22 9.63 1 32.86 63.8 5.92 1 30.76
DWBP , 23.2 8.76 1 32.79 79.8 3.76 1 29.71
DWBP ) 22.8 9.64 1 32.9 77.2 5.11 1 29.95

DistilBERT
(80.6)

DWBP . 21.8 8.77 1 32.65 62 5.76 1 30.75
DWBP , 22.4 9.01 1 32.67 77.6 5.09 1 29.67
DWBP ) 21.2 9.15 1 32.67 77.2 4.52 1 29.93

SNLI

BERT
(91.2)

DWBP . 33.4 9.17 1 24.87 76.4 6.76 1 22.85
DWBP , 31 9.68 1 24.85 89 6.53 1 22.21
DWBP " 39.8 9.23 1 24.69 91.2 0 0 22.09

DistilBERT
(86.6)

DWBP . 29.4 9.68 1 25.21 75.8 5.86 1 23.25
DWBP , 30.4 9.33 1 25.15 85.2 4.71 1 22.64
DWBP " 37.2 8.34 1 24.87 86.2 5.16 1 22.52

QNLI

BERT
(91.2)

DWBP , 37.6 9.79 1 48.5 88.6 4.99 1 40.14
DWBP . 40.6 8.98 1 48.59 81.6 5.01 1 42.52
DWBP ? 36.2 9.99 1 48.36 81.4 5.05 1 43.1

RoBERTa
(92)

DWBP , 52.4 11.43 1 50.71 89.8 3.76 1 39.97
DWBP . 56.4 9.99 1 51 87 4.62 1 42.45
DWBP ? 54.8 10.6 1 51.06 85.8 5.22 1 43.05

DistilBERT
(86.2)

DWBP , 36.8 10.06 1 48.7 82.8 4.97 1 40.1
DWBP . 33.8 9.62 1 47.88 77 5.09 1 42.46
DWBP ? 35 8.13 1 47.85 69.2 5.27 1 42.67

QQP

BERT
(90.4)

DWBP ? 54.8 9.45 1 28.08 78.4 8.18 1 24.79
DWBP , 53.6 9 1 28.01 88.8 8.2 1 23.08
DWBP " 55.4 8.41 1 27.45 90.2 5 1 23

DistilBERT
(90.8)

DWBP ? 53.6 9.86 1 28.07 80.4 7.6 1 24.81
DWBP , 54.4 10.1 1 28.17 89 6.4 1 23.11
DWBP " 56.4 8.82 1 27.38 89.8 7.36 1 23.03

XLNet
(91.2)

DWBP ? 58.8 11.63 1 28.51 83.6 7.68 1 24.88
DWBP , 58.4 11.57 1 28.46 90.6 7.82 1 23.15
DWBP " 64.4 10.14 1 27.63 90.4 6.98 1 23.1

Table 9: Results without (Original) and when using the LanguageTool grammar checker with RPos=True and most
frequent non internal punctuation from Table 16

for each task in Table 16.
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Apostrophe Hyphen Comma Full Stop
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2.8 2.8 6 4.2
2.4 2.4 5.6 3.8
4.2 4.2 7.4 5.6
3 3 6.2 4.4
3.2 3.2 6.4 4.6
4 4 7.2 5.4
3.6 3.6 6.8 5
4.2 4.2 7.4 5.6
3.8 3.8 7 5.2
3.2 3.2 6.4 4.6
3 3 6.2 4.4
1.4 1.4 4.6 2.8
0.2 0.2 3.4 1.6
3.4 3.4 6.6 4.8
3.2 3.2 6.4 4.6
1.8 1.8 5 3.2
5.2 5.2 8.4 6.6
2.4 2.4 5.6 3.8
1.2 1.2 4.4 2.6
1.2 1.2 4.4 2.6
2.6 2.6 5.8 4
3.6 3.6 6.8 5
0.2 0.2 3.4 1.6
1.6 1.6 4.8 3
2.2 2.2 5.4 3.6
4.6 4.6 7.8 6
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Apostrophe Hyphen Comma Full Stop
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4 2.6 3.8 6.4
2.4 1 2.2 4.8
3.4 2 3.2 5.8
2.2 0.8 2 4.6
3.2 1.8 3 5.6
2.2 0.8 2 4.6
1.8 0.4 1.6 4.2
2 0.6 1.8 4.4
0.8 -0.6 0.6 3.2
2.2 0.8 2 4.6
2.8 1.4 2.6 5.2
2.8 1.4 2.6 5.2
2 0.6 1.8 4.4
0.8 -0.6 0.6 3.2
4 2.6 3.8 6.4
3.2 1.8 3 5.6
2.2 0.8 2 4.6
4.8 3.4 4.6 7.2
1.4 0 1.2 3.8
2.4 1 2.2 4.8
2.4 1 2.2 4.8
4.6 3.2 4.4 7
3 1.6 2.8 5.4
3 1.6 2.8 5.4
2.6 1.2 2.4 5
3 1.6 2.8 5.4
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3.2 3 5.2 7
3.2 3 5.2 7
2.4 2.2 4.4 6.2
2.8 2.6 4.8 6.6
3.8 3.6 5.8 7.6
3 2.8 5 6.8
3 2.8 5 6.8
3.4 3.2 5.4 7.2
5.2 5 7.2 9
3.4 3.2 5.4 7.2
1.6 1.4 3.6 5.4
4.4 4.2 6.4 8.2
2.4 2.2 4.4 6.2
2.8 2.6 4.8 6.6
4.8 4.6 6.8 8.6
3.6 3.4 5.6 7.4
1.8 1.6 3.8 5.6
4.2 4 6.2 8
3.6 3.4 5.6 7.4
4.2 4 6.2 8
2.8 2.6 4.8 6.6
3.2 3 5.2 7
2.8 2.6 4.8 6.6
2.2 2 4.2 6
3 2.8 5 6.8
2.4 2.2 4.4 6.2
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0.4 3.2 4 4.6
0.6 3.4 4.2 4.8
1.2 4 4.8 5.4
0.8 3.6 4.4 5
0.8 3.6 4.4 5
2 4.8 5.6 6.2
1.6 4.4 5.2 5.8
1 3.8 4.6 5.2
1.2 4 4.8 5.4
1.2 4 4.8 5.4
1.2 4 4.8 5.4
0.6 3.4 4.2 4.8
0.8 3.6 4.4 5
1.6 4.4 5.2 5.8
1.2 4 4.8 5.4
1.8 4.6 5.4 6
0 2.8 3.6 4.2
1.6 4.4 5.2 5.8
1.6 4.4 5.2 5.8
1.2 4 4.8 5.4
1 3.8 4.6 5.2
1 3.8 4.6 5.2
0.2 3 3.8 4.4
0.2 3 3.8 4.4
-1 1.8 2.6 3.2
0.2 3 3.8 4.4
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2 0 1.8 0.4 0.2
0 -2 -0.2 -1.6 -1.8

-0.2 -2.2 -0.4 -1.8 -2
0.2 -1.8 0 -1.4 -1.6
2.8 0.8 2.6 1.2 1
0.6 -1.4 0.4 -1 -1.2
0.6 -1.4 0.4 -1 -1.2
-0.2 -2.2 -0.4 -1.8 -2
0.8 -1.2 0.6 -0.8 -1
2.6 0.6 2.4 1 0.8
-0.6 -2.6 -0.8 -2.2 -2.4
-0.6 -2.6 -0.8 -2.2 -2.4
0.2 -1.8 0 -1.4 -1.6
-0.6 -2.6 -0.8 -2.2 -2.4
0 -2 -0.2 -1.6 -1.8
-2 -4 -2.2 -3.6 -3.8
0.4 -1.6 0.2 -1.2 -1.4
1.8 -0.2 1.6 0.2 0
-1.4 -3.4 -1.6 -3 -3.2
1.6 -0.4 1.4 0 -0.2
0.2 -1.8 0 -1.4 -1.6
0 -2 -0.2 -1.6 -1.8
0.6 -1.4 0.4 -1 -1.2
-0.2 -2.2 -0.4 -1.8 -2
1.6 -0.4 1.4 0 -0.2
0.6 -1.4 0.4 -1 -1.2
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Dataset Model Method After Attack Acc [%] Perturbed Words [%] Semantic Sim Average Time Taken [s] Avg Number Queries Drop [%]

MR

CNN
(76.6)

Zeroe 75 11.33 0.88 0.4007 0 1.6
DWB 66.4 7.41 0.88 0.8542 26.23 10.2
ZIP - 69 15 1 0.2901 0 7.6
ZIP ’ 68.8 25.94 1 0.5539 0 7.8

LSTM
(77)

Zeroe 75.2 8.49 0.92 0.4879 0 1.8
DWB 66 7.5 0.88 1.0247 26.32 11
ZIP - 66.8 14.02 1 0.3308 0 10.2
ZIP ’ 65.4 24.26 1 0.5739 0 11.6

BERT
(83.8)

Zeroe 82.2 7.43 0.89 0.3426 0 1.6
DWB 77.8 8.4 0.89 1.0962 26.95 6
ZIP - 78 13.46 1 0.4014 0 5.8
ZIP ’ 70 25.12 1 0.5532 0 13.8

RoBERTa
(88)

Zeroe 87.6 12.27 0.95 0.2185 0 0.4
DWB 80.8 8.64 0.87 0.9447 26.73 7.2
ZIP - 80.6 14.26 1 0.3216 0 7.4
ZIP ’ 78.2 24.09 1 0.4729 0 9.8

XLNet
(87)

Zeroe 85.6 6.64 0.95 0.7718 0 1.4
DWB 78.2 7.77 0.88 1.9823 26.89 8.8
ZIP - 79.6 13.6 1 0.5011 0 7.4
ZIP ’ 76.8 24.36 1 0.6806 0 10.2

MNLI

BERT
(82.8)

Zeroe 75.6 5.14 0.93 0.329 0 7.2
DWB 62.2 5.94 0.91 0.8279 31.89 20.6
ZIP - 64.6 6.9 1 0.2379 0 18.2
ZIP ’ 57 11.2 1 0.3272 0 25.8

DistilBERT
(80.6)

Zeroe 75.4 4.73 0.95 0.3012 0 5.2
DWB 60.4 6.15 0.9 0.7645 31.82 20.2
ZIP - 69.6 7.49 1 0.1913 0 11
ZIP ’ 57.6 11.99 1 0.3292 0 23

SNLI

BERT
(91.2)

Zeroe 86.2 6.32 0.94 0.2505 0 5
DWB 69.4 6.28 0.89 0.5844 23.83 21.8
ZIP - 61 6.16 1 0.1865 0 30.2
ZIP ’ 65.8 10.33 1 0.2095 0 25.4

DistilBERT
(86.6)

Zeroe 84.2 6.61 0.92 0.2391 0 2.4
DWB 72 6.13 0.89 0.434 24.25 14.6
ZIP - 74.4 6.37 1 0.165 0 12.2
ZIP ’ 65.2 11.37 1 0.2254 0 21.4

QNLI

BERT
(91.2)

Zeroe 88.6 5.94 0.94 1.6294 0 2.6
DWB 74 6.37 0.92 1.7717 47.69 17.2
ZIP - 81.2 10.69 1 0.5898 0 10
ZIP ’ 73.4 21.69 1 1.0907 0 17.8

RoBERTa
(92)

Zeroe 90.6 3.19 0.96 0.9367 0 1.4
DWB 80.6 5.99 0.93 1.7655 47.94 11.4
ZIP - 82 10.59 1 0.7899 0 10
ZIP ’ 77 22.08 1 1.0432 0 15

DistilBERT
(86.2)

Zeroe 84.4 7.36 0.94 0.9437 0 1.8
DWB 73.4 6.23 0.92 1.6188 47.96 12.8
ZIP - 76 10.14 1 0.5882 0 10.2
ZIP ’ 66.2 20.63 1 1.0017 0 20

QQP

BERT
(90.4)

Zeroe 87.6 6.56 0.92 0.3038 0 2.8
DWB 79.6 7.48 0.9 0.6998 25.79 10.8
ZIP - 74.4 8.79 1 0.2272 0 16
ZIP ’ 68.4 14.55 1 0.3317 0 22

DistilBERT
(90.8)

Zeroe 87.8 7.26 0.93 0.3298 0 3
DWB 79.4 7.01 0.91 0.6158 25.97 11.4
ZIP - 72.8 8.33 1 0.1927 0 18
ZIP ’ 69.8 14.29 1 0.2581 0 21

XLNet
(91.2)

Zeroe 89.8 7.26 0.92 0.8158 0 1.4
DWB 79.6 7.44 0.9 1.6554 25.95 11.6
ZIP - 78 8.77 1 0.3762 0 13.2
ZIP ’ 75.8 14.34 1 0.455 0 15.4

Table 10: Results of Zeroe, DWB and ZIP attacks while using the LanguageTool grammar checker
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Dataset Model
(Orig Acc) Method After Attack

Acc [%]
Perturbed
Words [%]

Semantic
Sim

Avg Time
Taken [s]

Avg Number
Queries

MR

CNN
(76.6)

DWBP 14.6 16.99 1 0.0513 69.01
TextFooler 0.4 11.82 0.85 0.2144 74.79
TextFooler/DWBP 0.2 13.09 0.89 0.1145 69.75
SememePSO 2.6 13.73 0.83 0.6824 2711.91
SememePSO/DWBP 2 10.97 0.86 0.4516 1012.17

LSTM
(77)

DWBP 19.2 15.13 1 0.066 66.9
TextFooler 0.8 11.43 0.86 0.1943 71.03
TextFooler/DWBP 0.4 12.87 0.89 0.1289 67.95
SememePSO 2.8 13.17 0.83 0.7235 2342.27
SememePSO/DWBP 1.6 10.26 0.86 0.5366 923.21

BERT
(83.8)

DWBP 17.4 18.32 1 0.721 74.7
TextFooler 9.4 17.54 0.82 1.3072 118.5
TextFooler/DWBP 7.6 18.31 0.89 1.122 105.35
SememePSO 7 16.52 0.81 16.1811 4950.71
SememePSO/DWBP 6 9.99 0.89 7.3252 988.44

RoBERTa
(88)

DWBP 14 19.08 1 0.71 72.42
TextFooler 5.4 16.21 0.83 1.1566 106.89
TextFooler/DWBP 5.8 16.92 0.89 0.9861 94.63
SememePSO 6 17.44 0.8 15.9324 4855.71
SememePSO/DWBP 5.8 10.96 0.88 9.4678 1225.24

XLNet
(87)

DWBP 16.2 19.1 1 2.8193 74.35
TextFooler 7.4 15.68 0.83 4.4761 108.5
TextFooler/DWBP 5.4 17.19 0.88 3.9146 96.17
SememePSO 5.8 16.75 0.81 53.6015 4619.19
SememePSO/DWBP 6 10.8 0.88 35.2176 1162.83

Table 11: Results on classification for multi-level DWBP

Dataset Model
(Orig Acc) Method After Attack

Acc [%]
Perturbed
Words [%]

Semantic
Sim

Average Time
Taken [s]

Avg Number
Queries

MNLI

BERT
(82.8)

DWBP 9.6 8.43 1 0.5381 51.26
TextFooler 12.2 6.99 0.9 0.8749 76.18
TextFooler/DWBP 4.2 8.02 0.96 0.706 63.68
SememePSO 20.2 5.9 0.9 2.0034 1200.36
SememePSO/DWBP 5 6.16 0.94 2.068 208.73

DistilBERT
(80.6)

DWBP 11.4 7.95 1 0.2668 50.55
TextFooler 12.6 7.54 0.9 0.516 77.88
TextFooler/DWBP 5.4 7.95 0.96 0.3899 64.85
SememePSO 21.6 6 0.89 1.0294 1146.93
SememePSO/DWBP 6.2 6.44 0.94 1.0934 220.54

SNLI

BERT
(91.2)

DWBP 7.2 7.99 1 0.4037 38.57
TextFooler 14 7.46 0.9 0.6992 64.2
TextFooler/DWBP 3.2 7.72 0.97 0.523 47.96
SememePSO 16.6 6.9 0.88 2.1876 764.64
SememePSO/DWBP 2.8 6.63 0.93 1.3637 139.42

DistilBERT
(86.6)

DWBP 6.6 8.36 1 0.2101 38.77
TextFooler 10 7.75 0.9 0.4072 64.33
TextFooler/DWBP 1.6 7.79 0.96 0.2848 48.09
SememePSO 14.4 6.66 0.88 1.1608 689.18
SememePSO/DWBP 2 6.68 0.93 0.7641 151.06

Table 12: Results on entailment for multi-level DWBP
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Dataset Model Method After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Average Time
Taken [s]

Avg Number
Queries

QNLI

BERT
(91.2)

DWBP 24.4 10.01 1 0.9616 114.79
TextFooler 22.6 9.46 0.9 1.6601 168.88
TextFooler/DWBP 18.2 10.32 0.95 1.413 156.15
SememePSO 37.4 11.13 0.88 44.0359 12838.6
SememePSO/DWBP 27.2 5.79 0.96 18.2188 2093.68

RoBERTa
(92)

DWBP 26.8 11.9 1 1.0311 120.65
TextFooler 26.8 9.94 0.9 1.6683 174.98
TextFooler/DWBP 18.8 11.45 0.94 1.4461 159.57
SememePSO 41 11.32 0.87 40.4838 14041.7
SememePSO/DWBP 32.4 6.45 0.95 28.7531 2325.13

DistilBERT
(86.2)

DWBP 23.8 9.28 1 0.4786 110.45
TextFooler 22 10.04 0.9 0.9577 168.64
TextFooler/DWBP 13.8 10.66 0.95 0.7953 145.54
SememePSO 37.2 11.28 0.88 18.1074 13254.8
SememePSO/DWBP 28.4 6.26 0.96 15.2255 2207.65

QQP

BERT
(90.4)

DWBP 45.2 8.31 1 0.388 60.53
TextFooler 42.2 8.44 0.9 0.7218 116.5
TextFooler/DWBP 41.2 8.43 0.97 0.6001 102.06
SememePSO 50.4 7.94 0.88 2.2428 10858
SememePSO/DWBP 42.8 7.36 0.96 3.8072 398.73

DistilBERT
(90.8)

DWBP 45.4 8.62 1 0.2059 60.1
TextFooler 38.6 9.48 0.9 0.4686 114.73
TextFooler/DWBP 37.6 9.9 0.95 0.3919 100.76
SememePSO 50 8.59 0.88 2.925 11194.4
SememePSO/DWBP 40.8 7.84 0.95 1.9978 397.52

XLNet
(91.2)

DWBP 44.8 9.88 1 1.7345 61.85
TextFooler 38.8 9.6 0.89 3.1888 115.37
TextFooler/DWBP 37.2 9.71 0.94 2.6764 100.81
SememePSO 49.4 8.3 0.88 10.0921 10057.7
SememePSO/DWBP 41.4 7.91 0.93 10.092 400.73

Table 13: Results on question answering tasks for multi-level DWBP
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P ZIP Ap ZIP Hy ZIP Co
Aaft−atk S Aaft−atk S Aaft−atk S

0.2 77.8 1.0 79.2 1.0 77.0 1.0
0.5 68.2 1.0 75.2 1.0 68.0 1.0
0.8 47.8 1.0 75.0 1.0 58.0 1.0

P ZIP FS ZI Ze ZI Ch
Aaft−atk S Aaft−atk S Aaft−atk S

0.2 78.4 0.97 77.6 0.91 78.6 0.83
0.5 66.8 0.94 61.6 0.79 68.2 0.72
0.8 50.0 0.91 44.0 0.69 50.4 0.62

Table 14: Results of black-box insertions on MR/BERT

Dataset Model Baseline
Orig Acc [%]

Baseline
After Attack

Acc [%]

Robust
Orig Acc [%]

Robust
After Attack

Acc [%]
LSTM 78.2 29.8 77.6 32.2

MR Hy
BERT 84.2 29.4 84.4 36.8
LSTM 78.2 19.8 78.8 21.4

MR Ap
BERT 84.2 17.0 84.0 23.4

Table 15: Adversarial training

Dataset Punctuation Counts Percentage

MR

Total Punctuation Count
. 2596 1.37E+00%
, 1934 1.02E+00%
’ 1073 5.68E-01%
- 1007 5.33E-01%
" 146 7.72E-02%
[ 58 3.07E-02%
] 58 3.07E-02%

Internal Punctuation Count
’ 922 5.02E-01%
- 718 3.91E-01%
/ 17 9.26E-03%
] 4 2.18E-03%
[ 2 1.09E-03%

MNLI

Total Punctuation Count
. 3499 1.22E+00%
, 2041 7.13E-01%
’ 1460 5.10E-01%
- 527 1.84E-01%
) 156 5.45E-02%
( 150 5.24E-02%
? 125 4.37E-02%

Internal Punctuation Count
’ 1347 4.81E-01%
- 496 1.77E-01%
. 68 2.43E-02%
, 49 1.75E-02%
? 15 5.36E-03%

SNLI

Total Punctuation Count
. 3523 1.99E+00%
, 598 3.38E-01%
- 113 6.39E-02%
’ 54 3.06E-02%
" 28 1.58E-02%
& 3 1.70E-03%
/ 1 5.66E-04%

Internal Punctuation Count
- 113 6.55E-02%
’ 50 2.90E-02%
. 5 2.90E-03%
/ 1 5.79E-04%
, 1 5.79E-04%

QNLI

Total Punctuation Count
, 3755 9.98E-01%
. 2328 6.18E-01%
? 1983 5.27E-01%
- 734 1.95E-01%
’ 715 1.90E-01%
" 672 1.79E-01%
( 562 1.49E-01%

Internal Punctuation Count
- 708 1.93E-01%
’ 611 1.67E-01%
. 202 5.52E-02%
, 155 4.23E-02%
– 55 1.50E-02%

QQP

Total Punctuation Count
? 4220 2.10E+00%
, 521 2.60E-01%
" 470 2.34E-01%
’ 460 2.29E-01%
. 349 1.74E-01%
- 162 8.08E-02%
( 138 6.88E-02%

Internal Punctuation Count
’ 397 2.04E-01%
- 146 7.50E-02%
. 93 4.78E-02%
/ 89 4.57E-02%
( 30 1.54E-02%

Table 16: Frequency of total punctuation in samples and
frequency of punctuation only found within words
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Dataset Model Method New Orig
Acc [%] Drop [%]

All 72.2 4.4
Internal 74.4 2.2CNN

(76.6)
Internal With Exception 76.6 0
All 72.8 4.2
Internal 74.2 2.8LSTM

(77)
Internal With Exception 77 0
All 81.2 2.6
Internal 82.6 1.2BERT

(83.8)
Internal With Exception 83.8 0
All 86.2 1.8
Internal 87.8 0.2RoBERTa

(88)
Internal With Exception 88 0
All 84.6 2.4
Internal 86.4 0.6

MR

XLNet
(87)

Internal With Exception 87 0
All 80.8 2
Internal 82.4 0.4BERT

(82.8)
Internal With Exception 82.4 0.4
All 78.4 2.2
Internal 80 0.6

MNLI
DistilBERT
(80.6)

Internal With Exception 80.4 0.2
All 90.8 0.4
Internal 91.2 0

BERT
(91.2)

Internal With Exception 91.2 0
All 86.6 0.4
Internal 87 0

SNLI
DistilBERT
(87)

Internal With Exception 87 0
All 87.2 4
Internal 90.6 0.6BERT

(91.2)
Internal With Exception 90.8 0.4
All 91.2 0.8
Internal 92 0

RoBERTa
(92)

Internal With Exception 92 0
All 84.2 2
Internal 85.8 0.4

QNLI

DistilBERT
(86.2)

Internal With Exception 85.8 0.4
All 88.6 1.8
Internal 90 0.4BERT

(90.4)
Internal With Exception 90 0.4
All 88.6 2.2
Internal 90.6 0.2DistilBERT

(90.8)
Internal With Exception 90.8 0
All 89.8 1.4
Internal 91.2 0

QQP

XLNet
(91.2)

Internal With Exception 91.2 0

Table 17: Results when punctuation is removed

Dataset Model
Baseline

Finetune with punctuation
Eval Acc [%]

Finetune with no punctuation
Eval Acc [%] Drop [%]

LSTM 79.8±0.5 78.9±0.4 0.9
MR

BERT 85.3±0.8 84.7±0.6 0.6
MNLI BERT 84.9 83.5 1.4
SNLI BERT 89.9 88.6 1.3

Table 18: Finetuning on no punctuation

Dataset Model
(Orig Acc) Method After Attack

Acc [%]
Average Time

Taken [s] Drop [%]

DWBP . 15.4 0.0412 61.2
DWBP , 14.6 0.0407 62CNN

(76.6)
DWBP " 27.2 0.0391 49.4
DWBP . 19.4 0.0574 57.6
DWBP , 19.2 0.0564 57.8LSTM

(77)
DWBP " 26.6 0.0544 50.4
DWBP . 18.4 0.4748 65.4
DWBP , 18.4 0.462 65.4BERT

(83.8)
DWBP " 29.4 0.4428 54.4
DWBP . 19.4 0.499 68.6
DWBP , 18.6 0.4812 69.4RoBERTa

(88)
DWBP " 34.6 0.4459 53.4
DWBP . 17.8 1.8583 69.2
DWBP , 18 1.855 69

MR

XLNet
(87)

DWBP " 34 1.7026 53
DWBP . 14 0.4317 68.8
DWBP , 12.6 0.4317 70.2BERT

(82.8)
DWBP ) 11.6 0.4423 71.2
DWBP . 12.8 0.2232 67.8
DWBP , 13.2 0.2195 67.4

MNLI
DistilBERT
(80.6)

DWBP ) 10.4 0.2231 70.2
DWBP . 10 0.323 81.2
DWBP , 10.6 0.3258 80.6BERT

(91.2)
DWBP " 17 0.3175 74.2
DWBP . 9.6 0.1677 77
DWBP , 4 0.175 82.6

SNLI
DistilBERT
(86.6)

DWBP " 16.8 0.168 69.8
DWBP , 25 0.6877 66.2
DWBP . 26.8 0.6731 64.4BERT

(91.2)
DWBP ? 25 0.7068 66.2
DWBP , 28.6 0.756 63.4
DWBP . 32.2 0.7564 59.8RoBERTa

(92)
DWBP ? 31.4 0.7678 60.6
DWBP , 19 0.377 67.2
DWBP . 19.2 0.3675 67

QNLI

DistilBERT
(86.2)

DWBP ? 23.2 0.3559 63
DWBP ? 46.2 0.311 44.2
DWBP , 48.6 0.3075 41.8BERT

(90.4)
DWBP " 49.4 0.305 41
DWBP ? 43.4 0.169 47.4
DWBP , 46.2 0.1698 44.6DistilBERT

(90.8)
DWBP " 50.4 0.1617 40.4
DWBP ? 47.4 1.3345 43.8
DWBP , 47.6 1.3518 43.6

QQP

XLNet
(91.2)

DWBP " 53.8 1.3201 37.4

Table 19: Results when only one punctuation symbol
type is used in the attack
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MR
(Negative)

A dark comedy that goes for sick and demented
humor simply to do so . the movie is without
intent .

TextFooler
(Positive)

A dark comedy that goes for psychopathic
and coot humor honestly to do so . the
film is without object .

DWBP
(Positive)

A dark comedy that goes for sick and
demented humor simply to do so . the movie
is withou’t intent .

MNLI
(Entailment)

Premise:
Sit down, will you?" Tuppence sat down on the
chair facing him.
Hypothesis:
He asked Tuppence to sit on a red chair.

TextFooler
(Neutral)

He asked Tuppence to assisi on a flushed
chair.

DWBP
(Neutral)

He asked Tuppence to sit on a r’ed c’hair.

Table 20: Qualitative examples of DWBP vs TextFooler. Bold words represent a perturbed word
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Abstract

While multimodal sentiment analysis (MSA)
has gained much attention over the last few
years, the main focus of most work on MSA has
been limited to constructing multimodal rep-
resentations that capture interactions between
different modalities in a single task. This was
largely due to a lack of unimodal annotations in
MSA benchmark datasets. However, training a
model using only multimodal representations
can lead to suboptimal performance due to in-
sufficient learning of each uni-modal represen-
tation. In this work, to fully optimize learn-
ing representations from multimodal data, we
propose SUGRM which jointly trains multi-
modal and unimodal tasks using recalibrated
features. The features are recalibrated such that
the model learns to weight the features differ-
ently based on the features of other modali-
ties. Further, to leverage unimodal tasks, we
auto-generate unimodal annotations via a uni-
modal label generation module (ULGM). The
experiment results on two benchmark datasets
demonstrate the efficacy of our framework. 1

1 Introduction

These days, we can easily spot AI systems in our
society that serve or assist humans. Understand-
ing human emotions has become a critical factor
for these AI systems to seamlessly integrate into
human’s life (Castillo et al., 2018; De Graaf and
Allouch, 2013). However, understanding humans’
emotions is not a trivial task. This is because hu-
mans tend to express their feelings through multiple
cues in a complex form. Emotions can be expressed
simply through language, but they can also be man-
ifested through facial expression, behaviors or even
tone of voice (Morency et al., 2011). Moreover,
sometimes these cues signal a compatible emotion,
while other times they signal conflicting emotions,

1Our code is available at: https://github.com/
skystarhyw/SUGRM

e.g., positive language with a condescending tone
of voice indicates sarcasm (Robins et al., 2009).

Taking this nature into account, multimodal sen-
timent analysis (MSA) has become an active field
of research which aims to understand the affec-
tive state of humans through visual, acoustic, and
textual features. In general, when working with
multimodal data like in MSA, each modality con-
tains both supplementary and complementary infor-
mation to each other, providing richer information
about the data. This leads to improved performance
over using only one modality (Vaezi Joze et al.,
2020). However, capturing information in each
modality as well as modeling the interactions be-
tween different modalities still remain challenging
tasks to unravel (Hazarika et al., 2020).

Most of the existing works on MSA revolve
around learning a joint representation which em-
compasses information from all modalities through
sophisticated fusion methods varying from tensor-
based (Zadeh et al., 2017) to attention-based meth-
ods (Tsai et al., 2019; Rahman et al., 2020), where
the learning process happens in a single task. Sin-
gle task learning was a dominant learning frame-
work in MSA particularly due to the nature of the
benchmark datasets: CMU-MOSI (Zadeh et al.,
2016) and CMU-MOSEI (Bagher Zadeh et al.,
2018). Considering all modalities, only one com-
prehensive sentiment intensity value (i.e., multi-
modal label, ym) is annotated in both datasets due
to the laborious labeling process. Meaning, uni-
modal labels (yt, ya, yv) are omitted in the datasets.
However, a recent study (Yu et al., 2021) argued
the absence of unimodal annotations hinders cap-
turing modality-specific information and proposed
a module that auto-generates unimodal annotations
from the multimodal labels.

In this work, we propose a novel framework,
SUGRM, which leverages a self-supervised uni-
modal label generation strategy using recalibrated
modality representations for MSA. First, we recali-
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brate modality representations using Modality Re-
calibration Module (MRM). This allows the model
to dynamically adjust features based on the features
of other modalities. Further, motivated by (Yu et al.,
2021), we propose a new unimodal label genera-
tion module (ULGM), which generates unimodal
annotations (yt, ya, yv) based on the multimodal
annotation (ym) in a self-supervised manner.

Different from (Yu et al., 2021), which preserves
feature space of each modality, we project features
of each modality into a common semantic feature
space. Thus, our ULGM hypothesizes the distance
between two features in a common semantic fea-
ture space is proportional to the distance between
the corresponding labels in a label space. This not
only allows simpler calculation of the offset (see
section 3.3), but also avoids the problem in (Yu
et al., 2021); that is, when two distances from a
multimodal feature 1) to the center of negative mul-
timodal features and 2) to the center of positive
multimodal features are approximately equal, the
generated unimodal label diverges. This could lead
to unstable learning, potentially causing the model
to fall into a local minima.

Our experiment results not only empirically val-
idate our hypothesis, but also prove that using re-
calibrated modality representation as well as our
ULGM lead to enhanced performance. The main
contributions of our work can be summarized as
follows:

• We introduce Modality Recalibration Module
(MRM) for MSA which recalibrates modality
features based on features of other modalities.

• We design a novel unimodal label generation
module (ULGM) to expand MSA to multi-task
learning and jointly train unimodal and multi-
modal tasks.

• Not only does our method outperform the pre-
vious SOTA results, but the experiment results
validate the effectiveness of our framework.

2 Related Work

Prior works of MSA mainly focused on improv-
ing fusion between multi-modalities as well as
learning joint representations. In earlier works,
early fusion (Pérez-Rosas et al., 2013; Poria et al.,
2016) and late fusion (Zadeh et al., 2016) were
popular fusion methods to combine the multiple
modalities. Later, more sophisticated methods of

fusion were proposed using a multi-dimensional
tensor (Zadeh et al., 2017), attention mechanism
(Zadeh et al., 2018a,b), multi-stage fusion (Liang
et al., 2018) and low rank tensors to improve effi-
ciency of fusion (Liu et al., 2018). In (Wang et al.,
2019), the authors dynamically adjusted a word
representation by calculating a shift caused by ac-
companying nonverbal information. More recent
works have focused on applying Transformer ar-
chitecture to better capture interactions between
modalities and learn feature representations. For
instance, (Rahman et al., 2020) was directly built
upon (Wang et al., 2019), but used pretrained Trans-
former based language models to improve the per-
formance. (Tsai et al., 2019) proposed cross-modal
attention to latently adapt a target modality from
source modalities. (Cheng et al., 2021) reduced
the computational burden in (Tsai et al., 2019), by
generating sparse attention matrices and compress-
ing a long sequence to a short sequence. Further, a
multi-task learning approach has been applied in
recent MSA (Akhtar et al., 2019; Yu et al., 2021)
to increase data efficiency.

Taking inspiration from the previous work (Yu
et al., 2021), we expand a learning framework of
MSA to multi-task learning. The benefits of multi-
task learning is that each task helps a learning pro-
cess of other tasks. This allows the model to learn
better generalized representations that are shared
across the tasks. Further, we recalibrate features
of each modality and efficiently model inter-, intra-
modality relationships by adopting the work of (Hu
et al., 2018; Vaezi Joze et al., 2020; Cheng et al.,
2021).

3 Methodology

3.1 Problem Definition

We define the input to the model as Is∈{t,a,v} which
is composed of three types of modalities-text, au-
dio, and video. The goal of our model is to take Is
as input and predict a sentiment intensity ŷ ∈ R.
To aid the learning process, our model generates
labels for each modality ys ∈ R during training.

3.2 Overall Architecture

Our framework consists of multimodal and uni-
modal tasks where they share modality representa-
tions as shown in Figure 1.
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Figure 1: The overall architecture of SUGRM. The ya, yv , and yt are the unimodal annotations generated from our
ULGM based on the human-annotated multimodal label ym to enable supervised learning of the unimodal tasks.
The ŷa, ŷv , ŷt, and ŷm are the predicted sentiment values from the unimodal and multimodal tasks.

3.2.1 Multimodal Task
In the multimodal task, modality features
(F i

s∈{t,a,v}) are initially extracted from pretrained
BERT (Devlin et al., 2019), COVAREP (Degottex
et al., 2014), and FACET (iMotions, 2013) for tex-
tual, acoustic, and visual information, respectively.
Then these features are passed through Modality
Recalibration Module (MRM) for feature recalibra-
tion. After the features are recalibrated, the final
feature representation of each modality is captured
using Sparse Phased Transformer (SPT).

Modality Recalibration Module. MRM recal-
ibrates modality features using squeeze and exci-
tation (SE) technique (Hu et al., 2018). This par-
ticular idea was studied in the case of CNN in
(Vaezi Joze et al., 2020). Here, we show how SE
can be expanded to the MSA application. MRM
receives F i

s ∈ Rls×ds as input, where ls is the se-
quence length and ds is the feature dimension of s-
modality, and squeeze the input along the sequence
length using global average pooling:

Ss(d) =
1

ls

ls∑

l=1

F i
s(l, d) ,

where s ∈ {t, a, v} and d = 1, ..., ds. Then the
excitation process is performed to apply differ-
ent weight calibrations for each modality. First,

squeezed features are concatenated and fed into a
series of a fully connected network and ReLU to
learn a global multimodal embedding Z:

Z = ReLU(Wz[St;Sa;Sv] + bz) .

Here, the fully connected network reduces feature
dimension. Then we compute excitation signals
using another fully connected network as follows:

Es = WsZ + bs .

The second fully connected network restores the
original feature dimension, adopting bottleneck ar-
chitecture. The reason for this is to reduce the
number of computations and improve generaliza-
tion (Hu et al., 2018). Finally, the input features
are recalibrated through a following gating mecha-
nism:

F̃ i
s = 2× σ(Es)⊙ F i

s ,

where σ(·) is the sigmoid function and ⊙ is the
element-wise product along the feature dimension.
Since the numbers returned by sigmoid function
(between 0 and 1) are multiplied by the original
features, each feature is rescaled based on its im-
portance. Finally, the textual, acoustic, and visual
features after MRM can be described as follows:

F̃ i
s =MRM(F i

s ; θ
mrm) ∈ Rls×ds ,
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where θmrm are the parameters of MRM.
Sparse Phased Transformer. SPT (Cheng et al.,

2021) extracts the final feature representation of
each modality using the recalibrated features. The
motivation behind SPT is twofold: to extract more
informative features by modeling intra- and inter-
modalities (preferred over LSTM2) and to build a
more efficient and lighter model (preferred over
(Cheng et al., 2021)2). SPT alleviates the com-
putational burden of the self-attention mechanism
in the vanilla Transformer. Instead of generating a
full attention matrix, SPT generates a sparse atten-
tion matrix to reduce computational complexity.3

Multimodal SPT is composed of input attention,
cross attention, and self attention. Input attention
(IA) compresses input sequence into hidden states.
Then the hidden states of two different modalities
are interacted through cross attention (CA). Finally,
self attention (SA) refines the feature representa-
tions of each modality. For the technical details
of SPT, refer to (Cheng et al., 2021) on which our
implementation of SPT is based.

We denote the final feature representation for
each modality as follows:

Fs = SPT (F̃ i
s ; θ

spt) ∈ Rds ,

where SPT is the process of [IA→CA→SA]
repeated 4 times and θspt are the parameters of
SPT. Finally, the last element of the sequence is
selected as a sequence representation.

To obtain a fusion representation, we concate-
nate each modality representation and project into
a lower-dimensional feature space Rdc as follows:

F ∗m = ReLU(Wm
1 [Ft;Fa;Fv] + bm1 ) .

Lastly, the multimodal sentiment is predicted as
follows:

ŷm = Wm
2 F ∗m + bm2 .

3.2.2 Unimodal Task
For the unimodal task, we use the feature represen-
tation of each modality obtained from the multi-
modal task (Fs∈{t,a,v}). Then we map each feature
representation into the same feature space as Rdc
(i.e., a common semantic feature space) as follows:

F ∗s = ReLU(W s
1Fs + bs1) .

2Three options were considered as a final feature extractor:
LSTM, multimodal Transformer (Cheng et al., 2021), and SPT
(See Table 4).

3The authors of SPT (Cheng et al., 2021) claim that the
number of parameters is reduced to 10% of (Tsai et al., 2019)
which utilizes the vanilla Transformer encoder.

Figure 2: The distance from multimodal feature (F ∗
m)

to s-modal feature (F ∗
s ) in a common semantic feature

space: DF
m→s, and the distance from multimodal label

(ym) to s-modal label (ys) in a label space: DL
m→s.

Then the final sentiment prediction from each
modality is obtained through an independent fully-
connected layer:

ŷs = W s
2F
∗
s + bs2 .

The unimodal tasks are trained using supervised
learning, where labels for each modality are ob-
tained via non-parametric Unimodal Label Genera-
tion Module (ULGM):

ys = ULGM(ym,F
∗
m,F

∗
s ) .

Finally, the multimodal task and three unimodal
tasks are jointly trained.

3.3 ULGM
The goal of ULGM is to generate labels for each
unimodality based on multimodal labels and modal-
ity representations. As shown in Figure 2, our
ULGM is designed based on the notion that the
distance between two features in a common se-
mantic feature space is proportional to the distance
between the corresponding labels in a label space:

DF
m→s ∝ DL

m→s ,

where s ∈ {t, a, v}. Our ULGM computes the
offset of unimodal label ys with respect to the mul-
timodal label ym based on the distance from the
multimodal feature to each unimodal feature. We
consider two factors when computing the offset:
the magnitude and the direction.

Magnitude of offset. To calculate the offset,
we argue that the maximum distance within the
common semantic feature space is proportional to
the maximum distance within the label space. In
CMU-MOSI and -MOSEI datasets, the multimodal
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labels range from -3 to +3, meaning the distance
between multimodal features with labels -3 (F ∗−3m )
and +3 (F ∗+3

m ) must correspond to the maximum
distance within the common semantic feature space.
Therefore, any DF

m→s greater than the maximum
distance is clipped to DF

max = ||F ∗+3
m − F ∗−3m ||:

DF
m→s =

{
||F ∗m − F ∗s ||, if DF

m→s ≤ DF
max ,

DF
max, otherwise ,

where F ∗+3
m and F ∗−3m are the mean of F ∗+3

m and
F ∗−3m , respectively, and || · || is L2 normalization.

Based on our notion and the above argument, we
can consider the following relationship from which
we can obtain the magnitude of the offset from a
multimodal label to an unimodal label:

DF
m→s/D

F
max = DL

m→s/D
L
−3→+3 ,

DL
m→s =

DF
m→s

DF
max

DL
−3→+3 .

Direction of offset. In order to determine the di-
rection of the offset, we identify the position of the
s-modal feature with respect to the multimodal fea-
ture. To do that, we first take the average of the mul-
timodal features with positive annotations (F ∗+m )
and negative annotations (F ∗−m ). Then we locate
the multimodal and the s-modal features within
this realm of feature space as shown in Figure 3.
Using the distance from modality representations
(F ∗x∈{m,t,a,v}) to F ∗+m and F ∗−m , we can determine
the direction of the offset as follows:

Direction =





+, if Dps
Dns

< Dpm
Dnm

,

-, if Dps
Dns

> Dpm
Dnm

,

0, if Dps
Dns

= Dpm
Dnm

,

where Dp
s = ||F ∗s − F ∗+m ||, Dn

s = ||F ∗s − F ∗−m ||,
Dp
m = ||F ∗m − F ∗+m ||, and Dn

m = ||F ∗m − F ∗−m ||.
Finally, we obtain the unimodal label ys as follows:

ys =





ym +DL
m→s, if direction is + ,

ym −DL
m→s, if direction is − ,

ym, if direction is 0 .

Unimodal Label Update Scheme. We update
the generated unimodal labels using a momentum-
based update policy (Yu et al., 2021) as follows:

yes =




ym for e = 1 ,
e− 1

e+ 1
y(e−1)s +

2

e+ 1
yes for e > 1 ,

Figure 3: An illustration of positions of modality rep-
resentations with respect to the mean of multimodal
representations with positive labels (F ∗+

m ) and negative
labels (F ∗−

m ) in the common semantic feature space.

where s ∈ {t, a, v} and e is epoch. This scheme
is used to mitigate the instability of labels that are
generated at the beginning of epochs in which the
learning of the modality features is trivial. This
update scheme allows the labels generated in later
epochs to have greater impact than the ones gen-
erated in earlier epochs. After a sufficient number
of iterations, unimodal labels become stabilized,
resulting in a stable training process of unimodal
tasks. As can be seen in Figure 4, the labels stabi-
lize within 15 epochs.

3.4 Objective Function for Training

For the objective function, we investigated three
loss functions that are widely used in regression
tasks: L1 loss, L2 loss, and Huber loss. Based on
our loss ablation study (see Table 8 in Appendix),
we use L1 loss as the objective function for both
multimodal and unimodal tasks. We minimize the
sum of the two loss functions over N training sam-
ples to optimize the entire model as follows:

L =
1

N

N∑

i

(|ŷim − yim|+
{t,a,v}∑

s

wis ∗ |ŷis − yis|) ,

where the first term corresponds to the multimodal
task, and the second term corresponds to the uni-
modal tasks optimization. Note the loss functions
for the unimodal tasks are weighted by wis, where
wis = tanh(|yis − yim|) (Yu et al., 2021) such that
the model can target the samples with larger differ-
ence between the multimodal label and the gener-
ated unimodal label more rigorously during train-
ing.

39



4 Experimental Settings

4.1 Datasets
We use the two most popular English benchmark
datasets for MSA: CMU-MOSI (Zadeh et al., 2016)
and CMU-MOSEI (Bagher Zadeh et al., 2018).
CMU-MOSI dataset consists of 2,199 labeled video
clips taken from 93 videos by 89 speakers. The
videos were crawled from YouTube and encompass
opinions on movies, books, and products. Each
video is annotated with sentiment on a [-3,3] range.
CMU-MOSEI dataset is the most comprehensive
dataset for sentiment analysis and emotion recogni-
tion which comprises more than 65 hours worth of
23,453 annotated video segments from 1,000 speak-
ers addressing 250 different topics. Each video is
annotated with sentiment on a [-3,3] range as well
as six discrete emotions: happy, sadness, anger, dis-
gust, surprise, and fear. We only utilize sentiment
values from CMU-MOSEI in this task. See Table
6 in Appendix for the dataset split.

4.2 Baselines
We compare the performance of our model with
previous state-of-the-art MSA models. The super-
script A indicates the proposed method only works
on the aligned settings, while UA indicates the pro-
posed method works on both unaligned and aligned
settings.4

EF-LSTM.A Early Fusion LSTM concatenates
the multimodal features at the input level.

LF-LSTM.UA Late Fusion LSTM combines
modality-wise decisions using a voting mechanism.

TFN.A The Tensor Fusion Network (Zadeh et al.,
2017) models intra- and inter-modality dynamics
through multi-dimensional tensors.

RAVEN.A The Recurrent Attended Variation
Embedding Network (Wang et al., 2019) models
nonverbal sequences and dynamically shifts word
representations based on nonverbal cues.

MCTN.A The Multimodal Cyclic Translation
Network (Pham et al., 2019) learns robust joint
representations via multimodal cyclic translations
using a cycle consistency loss.

4Multimodal data in CMU-MOSI and MOSEI are loaded
from different sources which come at different frequencies,
making the multimodal data “unaligned” in terms of sequence
length. (The lengths of text, audio, video segments are 50, 375,
500, respectively for the unaligned dataset.) These unaligned
data have been preprocessed through CMU-Multimodal SDK
(https://github.com/A2Zadeh/CMU-MultimodalSDK) to align
different modalities such that they have the same sequence
length of 50. Note, our method works on both aligned and
unaligned settings.

MulT.UA The Multimodal Transformer (Tsai
et al., 2019) uses cross-modal attention to model
interactions between asynchronous modalities and
latently adapt one modality to another.

MAG-BERT.A The Multimodal Adaptation
Gate for BERT (Rahman et al., 2020) is an im-
provement of RAVEN which applies multimodal
adaptation gate at the first layer of the BERT model.

SPT.UA The multimodal Sparse Phased Trans-
former (Cheng et al., 2021) is an improvement of
MulT in terms of efficiency by using a sampling
function to generate a sparse attention matrix.

Self-MM.UA The Self-Supervised Multi-task
Multimodal sentiment analysis network (Yu et al.,
2021) generates a unimodal label for each modality
and jointly trains multimodal and unimodal tasks.

4.3 Implementation Details

We trained our framework using NVIDIA TITAN
Xp and Intel i7-9700K. We use the batch size of
32 and Adam as the optimizer for both datasets.
For more implementation details such as hyper-
parameters for each dataset, see Table 7 in Ap-
pendix.

4.4 Evaluation Metrics

We evaluate our model using four metrics:
weighted binary F1 score (F1-Score), binary clas-
sification accuracy (Acc2), Mean Absolute Error
(MAE), and Pearson correlation (Corr). For F1-
Score and Acc2, we report the model performance
in two ways: negative/non-negative (Zadeh et al.,
2017) and negative/positive (Tsai et al., 2019).

5 Results and Analysis

5.1 Quantitative Results

Tables 1 and 2 show the experiment results on the
aligned and unaligned MOSI and MOSEI datasets,
respectively. Our model outperformed all of the
previous SOTA baseline models on all metrics for
the MOSI dataset, and achieved either SOTA or
comparable-to-SOTA results on the MOSEI dataset
for both the aligned and unaligned datasets. Note,
CTC (Graves et al., 2006) was introduced to allow
some models (Wang et al., 2019; Pham et al., 2019)
that originally only work on the aligned dataset
to work on the unaligned dataset in Table 2. Un-
like the previous observation (Tsai et al., 2019),
our model shows greater strength in the unaligned
dataset than the aligned dataset. This is beneficial
in that it allows omission of extra data alignment
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Figure 4: Visualization of the generated unimodal labels update process throughout epochs on CMU-MOSI dataset

step and data to have its inherent trait of unalign-
ment, which could further facilitate real-time senti-
ment analysis.

5.2 Ablation Study

To explore the contributions of the unimodal tasks
in our model, we conducted experiments using
combinations of different unimodal tasks as shown
in Table 3. The general trend of the results shows
that incorporating the unimodal tasks leads to im-
provement in the model performance, which proves
the effectiveness of our model. Particularly, using
all three unimodal tasks along with the multimodal
task resulted in substantial performance gain on
all metrics compared to using the multimodal task
alone on the MOSI dataset. An interesting trend
on the MOSI dataset is that the performance rather
decreased when only one of the unimodal tasks
was added. However, we can observe that the ad-
dition of more than one unimodal task helps the
model to achieve better results. On the other hand,
introducing all the unimodal tasks (M,T,A,V) on
the MOSEI dataset did not show as apparent per-
formance gain as the MOSI dataset. However, we
can easily observe a generally increasing trend in
performance with the addition of unimodal tasks
on the MOSEI dataset.

To compare our ULGM as well as the effective-
ness of our architecture against that of Self-MM
(Yu et al., 2021), we conducted an ablation study
as shown in Table 4. Our model surpassed the
performance of Self-MM via the combination of
MRM, SPT, and ULGMours modules. To study the
effectiveness of each module, we added MRM to
Self-MM, replaced LSTM in Self-MM with SPT
for learning sequence representation, and replaced
ULGMSelf-MM with ULGMours. The addition of

MRM and the replacement of SPT on the MOSI
dataset certainly led to improved performance but
on a limited range of metrics. However, the re-
placement of ULGMours significantly increased the
performance on all metrics. Results on the MO-
SEI dataset show a notable performance boost in
all tasks across a wide range of metrics. Particu-
larly, the replacement of SPT, which showed trivial
results on the MOSI dataset, played an important
role in improving the performance on the MOSEI
dataset.

Similarly, we removed or replaced MRM, SPT,
and ULGMours to evaluate their contribution to our
model. First, we removed MRM, replaced SPT
with the vanilla Transformer encoder (TE) (Tsai
et al., 2019) and LSTM, and replaced ULGMours
with ULGMSelf-MM. The results in Table 4 predomi-
nantly show that the inclusion of all modules results
in the best performance. Replacing SPT with the
vanilla Transformer encoder and ULGMours with
ULGMSelf-MM led to an increase in certain metrics.
However, not only the improvement is minuscule
for both replacements, but the opportunity cost for
exchanging computational efficiency with such mi-
nuscule improvement is rather counterproductive
particularly for the SPT →TE replacement.

5.3 Qualitative Results

To evaluate the quality of the generated labels of
each modality, we display four samples from the
CMU-MOSI dataset in Table 5. We observe that
the generated unimodal annotations are generally
in line with the descriptions from the text, acoustic,
and visual information. This further confirms the
efficacy of our ULGM.
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Table 1: Results on the aligned CMU-MOSI and CMU-MOSEI datasets. In Acc2 and F1-Score, the left side of the
“/” is the “negative/non-negative” method and the right side is the “negative/positive” method.

Model
MOSI MOSEI

F1-Score Acc2 MAE Corr F1-Score Acc2 MAE Corr

EF-LSTM -/75.6 -/75.8 1.053 0.613 -/78.8 -/79.1 0.665 0.621
LF-LSTM -/75.4 -/76.4 1.037 0.620 -/80.0 -/79.4 0.625 0.655
TFN 74.1/75.2 74.8/76.0 0.955 0.649 - - - -
RAVEN -/76.6 -/78.0 0.915 0.691 -/79.5 -/79.1 0.614 0.662
MCTN -/79.1 -/79.3 0.909 0.676 -/80.6 -/79.8 0.609 0.670
MulT -/82.8 -/83.0 0.871 0.698 -/82.3 -/82.5 0.580 0.703
SPT -/82.9 -/82.8 - - -/82.8 -/82.6 - -
MAG-BERT 82.4/84.0 82.5/84.0 0.778 0.766 81.7/84.7 81.3/84.8 0.567 0.742
Self-MM 82.3/84.4 82.4/84.5 0.736 0.786 83.2/85.0 82.9/84.8 0.533 0.766
Ours 82.8/84.5 82.8/84.5 0.723 0.798 83.9/85.1 83.9/85.0 0.541 0.758

Table 2: Results on the unaligned CMU-MOSI and CMU-MOSEI datasets. Note that CTC method (Graves et al.,
2006) was employed to EF-LSTM, RAVEN, and MCTN to apply these models on the unaligned setting.

Model
MOSI MOSEI

F1-Score Acc2 MAE Corr F1-Score Acc2 MAE Corr

EF-LSTM+CTC -/74.5 -/73.6 1.078 0.542 -/75.9 -/76.1 0.680 0.585
LF-LSTM -/77.8 -/77.6 0.988 0.624 -/78.2 -/77.5 0.624 0.656
RAVEN+CTC -/73.1 -/72.7 1.076 0.544 -/75.7 -/75.4 0.664 0.599
MCTN+CTC -/76.4 -/75.9 0.991 0.613 -/79.7 -/79.3 0.631 0.645
MulT -/81.0 -/81.1 0.889 0.686 -/81.6 -/81.6 0.591 0.694
SPT -/81.3 -/81.2 - - -/82.7 -/82.4 - -
Self-MM 82.8/84.6 82.9/84.6 0.733 0.780 82.0/84.6 81.7/84.7 0.530 0.765
Ours 84.3/86.3 84.4/86.3 0.703 0.800 83.6/84.0 83.7/84.4 0.544 0.748

Table 3: An ablation study on the benefits of the unimodal tasks using the unaligned datasets. The bold numbers
indicate the best performance, and the underlined numbers indicate enhanced performance from introducing the
unimodal tasks to the multimodal task.

Model
MOSI MOSEI

F1-Score Acc2 MAE Corr F1-Score Acc2 MAE Corr

M 82.5/84.1 82.5/84.0 0.755 0.779 81.5/84.7 80.9/84.7 0.539 0.759
M,V 81.1/82.1 81.1/82.0 0.774 0.757 79.5/83.7 78.9/83.6 0.543 0.752
M,A 81.9/83.6 81.9/83.5 0.764 0.770 82.7/85.2 82.4/85.3 0.532 0.763
M,T 81.0/81.5 80.9/81.4 0.773 0.779 80.8/83.7 80.4/83.8 0.530 0.763
M,A,V 83.6/85.0 83.5/84.9 0.731 0.782 81.6/84.4 83.3/84.6 0.533 0.757
M,A,T 82.7/84.2 82.7/84.2 0.804 0.762 82.9/84.5 82.8/84.8 0.535 0.752
M,V,T 83.6/84.7 83.5/84.6 0.748 0.778 82.9/82.7 83.4/83.4 0.540 0.748
M,T,A,V 84.3/86.3 84.4/86.3 0.703 0.800 83.6/84.0 83.7/84.4 0.544 0.748

Table 4: An ablation study on the contribution of MRM, SPT, and our ULGM using the unaligned datasets. The
bold numbers indicate the best performance, and the underlined numbers indicate enhanced performance compared
to the baseline model. Superscript A, RP, and RM indicate added, replaced, and removed module, respectively.

Baseline Added/Removed/
Replaced Module

MOSI MOSEI

F1-Score Acc2 MAE Corr F1-Score Acc2 MAE Corr

Self-MM

- 82.8/84.6 82.9/84.6 0.733 0.780 82.0/84.6 81.7/84.7 0.530 0.765
MRMA 82.4/84.1 82.5/84.2 0.718 0.791 83.5/85.0 83.3/85.1 0.542 0.756
SPTRP 82.8/84.3 82.8/84.3 0.735 0.785 82.7/85.6 82.3/85.7 0.534 0.771

ULGMours
RP 83.5/85.6 83.7/85.7 0.710 0.790 83.0/85.3 82.7/85.3 0.538 0.757

Ours

- 84.3/86.3 84.4/86.3 0.703 0.800 83.6/84.0 83.7/84.4 0.544 0.748
MRMRM 81.5/82.9 81.5/82.8 0.761 0.767 79.2/83.4 78.5/83.4 0.541 0.746

TERP 84.2/85.6 84.1/85.5 0.720 0.802 82.1/81.9 83.8/82.8 0.553 0.750
LSTMRP 79.2/81.7 79.5/81.9 0.801 0.740 77.3/82.1 76.5/82.0 0.556 0.744

ULGMSelf-MM
RP 82.1/83.3 82.1/83.2 0.726 0.797 0.79.5/84.1 78.8/84.0 0.541 0.756
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Table 5: Four samples from the CMU-MOSI dataset. It shows the predictions from each modality as well as the
generated unimodal annotations (SG, where S ∈ {T,A, V }) during training.

Text Acoustic Visual Prediction Annotation

"Everytime that was like Fast paced slightly M: 0.1, T: 0.1 M: 0.8, TG: 0.6
a jump everyone jumped," slightly thrilled smiling A: 0.5, V: 0.7 AG: 0.9, VG: 0.7

"I was really hoping that Monotonic and Slightly M: -0.1, T: -0.2 M: -0.8, TG: -0.3
this one be just as good." emphasis on “really” frowning A: 0.5, V: 0.2 AG: 0.0, VG: -0.7

"Looks exactly the same as Relaxed Squinting eye and M: 0.2, T: -0.1 M: 0.2, TG: 0.1
this character in Defiance." and firm raising eyebrows A: 0.5, V: 0.3 AG: 0.7, VG: 0.1

"I don’t know what they High pitched and smiling and M: 1.1, T: 0.3 M: 1.8, TG: 0.9
are complaining about it." emphasis on “what” head roll on “what” A: 1.7, V: 1.6 AG: 1.5, VG: 1.5

6 Conclusion and Future Work

In this paper, we proposed SUGRM, a novel frame-
work for multimodal sentiment analysis (MSA)
which incorporates unimodal subtasks to aid the
learning process of the multimodal task. To en-
able this, we first designed Modality Recalibration
Module (MRM) so that features of each modal-
ity are recalibrated based on the features of other
modalities. Then, we designed a unimodal label
generation module (ULGM) based on the notion
that the distance between two features in a common
semantic feature space is proportional to the dis-
tance between the corresponding labels in a label
space. From this, ULGM was able to generate uni-
modal annotations from the multimodal label in a
self-supervised manner, which saved a tremendous
amount of human labor. The experiment results
validated our notion as well as the reliability of the
unimodal labels generated from our ULGM.

For future work, expanding the framework to
jointly train sentiment and emotion tasks could
be worthwhile. Recently (Akhtar et al., 2019) pro-
posed that MSA and Multimodal Emotion Recogni-
tion are closely correlated; therefore their tasks can
be carried out jointly. Applying contrastive learn-
ing for different emotion classes and exploiting
correlation between sentiment and emotion could
help achieve better results in both tasks.

Limitations

A limitation of our work is that the initial features
for audio and video are extracted using off-the-
shelf frameworks: COVAREP and FACET. There-
fore these features are fixed and cannot be further
fine-tuned unlike the text features which are fine-
tuned during training. Working with fixed features,
compared to dynamic features which can be ad-
justed via learning, inevitably results in subpar

performance. We expect this limitation can be
alleviated by making our framework completely
end-to-end by using raw audio and video data and
introducing learning-based audio and video fea-
ture extraction modules. However, using raw data
can exponentially increase memory usage which
is another challenge that needs to be considered.
Further, by introducing additional MRM and SPT
modules, our method took approximately twice the
time as the (Yu et al., 2021) during inference using
the unaligned MOSI dataset.5 Double in inference
time hinders the community’s strive to build faster
and more compact models.
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A Appendices

A.1 Dataset Split

Table 6: Train, validaton, test set split for CMU-MOSI
and CMU-MOSEI datasets.

Dataset # Train # Valid # Test # All

MOSI 1284 229 686 2199
MOSEI 16326 1871 4659 22856

A.2 Hyper-parameter Settings

Table 7: Hyper-parameters used in the two datasets. The
second half of the hyper-parameters (bottom row) are
for the SPT.

Hyper-parameter CMU-MOSI CMU-MOSEI

Batch size 32 32
LR for BERT 5e− 5 5e− 5
LR for others 1e− 2 1e− 3
output dropout 0.3 0.1

# Encoder layer 4 4
# Head 8 4
Embed size 32 32
Attn dropout 0.3 0.1
ReLU dropout 0.3 0.1
Residual dropout 0.3 0.1
Embed dropout 0.3 0.2

A.3 Loss Function Ablation Study

Table 8: Loss function ablation study on the unaligned
MOSI dataset. In Acc2 and F1-Score, the left side of
the “/” is the “negative/non-negative” method and the
right side is the “negative/positive” method.

Loss type F1-Score Acc2 MAE Corr

L1 loss 84.3/86.3 84.4/86.3 0.703 0.800
L2 loss 80.8/81.0 80.8/81.0 0.832 0.737
Huber loss 78.1/79.2 78.2/79.2 0.818 0.744
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Abstract

Searching troves of videos with textual descrip-
tions is a core multimodal retrieval task. Owing
to the lack of a purpose-built dataset for text-to-
video retrieval, video captioning datasets have
been re-purposed to evaluate models by (1)
treating captions as positive matches to their
respective videos and (2) assuming all other
videos to be negatives. However, this methodol-
ogy leads to a fundamental flaw during evalua-
tion: since captions are marked as relevant only
to their original video, many alternate videos
also match the caption, which introduces false-
negative caption-video pairs. We show that
when these false negatives are corrected, a re-
cent state-of-the-art model gains 25% recall
points—a difference that threatens the validity
of the benchmark itself. To diagnose and miti-
gate this issue, we annotate and release 683K
additional caption-video pairs. Using these, we
recompute effectiveness scores for three mod-
els on two standard benchmarks (MSR-VTT and
MSVD). We find that (1) the recomputed met-
rics are up to 25% recall points higher for the
best models, (2) these benchmarks are nearing
saturation for Recall@10, (3) caption length
(generality) is related to the number of pos-
itives, and (4) annotation costs can be miti-
gated through sampling. We recommend re-
tiring these benchmarks in their current form,
and we make recommendations for future text-
to-video retrieval benchmarks.

1 Introduction

Text-to-video retrieval (TVR) is a challenging multi-
modal retrieval task (Hu et al., 2011) with practical
applications ranging from web search to organiz-
ing media collections (Lew et al., 2006). To mea-
sure TVR model improvement—despite a dearth
of purpose-built TVR benchmarks—researchers
created benchmarks by re-purposing video cap-
tioning datasets such as MSR-VTT (Xu et al.,

∗Correspondence to me@pedro.ai
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Figure 1: MSR-VTT and MSVD have one positive video
per caption (each video’s caption). Captions often match
multiple videos, leading to false negatives. When mod-
els rank false negatives highly, model quality is under-
stated (full example in Appendix Figure 5). This leads
to evaluations where reported metrics do not reflect their
true value and are therefore not internally valid (§2.2.1).

2016), MSVD (Chen and Dolan, 2011), and Activi-
tyNet (Heilbron et al., 2015; Krishna et al., 2017).
Early work established an evaluation paradigm that
treated captions as search queries over the collec-
tion of captioned videos (Zhang et al., 2018; Yu
et al., 2018; Gabeur et al., 2020); each caption and
their corresponding video are positives (relevant)
during retrieval, and all other caption-video pairs
are negatives (irrelevant).

However, even a cursory inspection of videos
and captions reveals many additional positive
caption-video pairs (§2). In current benchmarks,
true positives that are not the video’s original cap-
tion are falsely assumed to be negatives. Wray
et al. (2021) first identified this fundamental, false-
negative problem in TVR evaluation; our work
builds on this by quantifying the absolute metric
differences that false negatives induce (see discus-
sion in §6). Accurate absolute metrics are cru-
cial in industrial settings where deployment cri-
teria are often defined by minimum quality tar-
gets. These False Implicit Relevance labels intro-
duce measurement error—e.g., CLIP4CLIP’s (Luo
et al., 2021) Recall@1 is underestimated by 25%
points (§2.2). We estimate measurement error by
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annotating 683K additional caption-video pairs,
which we call the FIRE dataset (§3).1

A core measurement principle is that operational-
ized metrics should strongly correlate to the quan-
tity they intend to measure (Mathison, 2004; Liao
et al., 2021). For example, Recall@K operational-
izes the intent to measure retrieval quality. Label
errors are a common way that measurements are
invalidated (Bowman and Dahl, 2021; Northcutt
et al., 2021). Our work shows that since TVR met-
rics are computed with false negative label errors,
Recall@K does not accurately reflect retrieval qual-
ity, which negates the measurement’s validity. In
the remainder of this paper, we posit rationales of
why models gain different score boosts (§4.1) and
estimate how useful the FIRE dataset is for evaluat-
ing future models (§4.2 and §4.3).

To conclude, we review the implications of our
findings. Looking to the past, retrieval effective-
ness has been understated for some models, which
gives an overly pessimistic view of recent ad-
vances (Bowman, 2022). Critically, our results
also suggest that the MSR-VTT benchmark is near-
ing saturation and should be retired soon in favor
of a purpose-made benchmark. Looking outward,
we identify structurally similar benchmarks—such
as photo retrieval—that likely also have the same
False Implicit Relevance problem. A successful
benchmark should avoid the pitfalls we identify in
this paper, be faithful to the real-world user task it
targets (Rowe and Jain, 2005; de Vries et al., 2020),
improve reproducibility, and evolve (§7).

2 Text-to-Video Retrieval Evaluation

This section reviews current TVR evaluation prac-
tices using two concepts: internal validity (Camp-
bell, 1957, §2.2.1) and construct validity (Tague-
Sutcliffe, 1992, §2.2.2). Internal validity refers to
whether an evaluation reliably establishes a cause-
effect relationship between the measured depen-
dent variable and the independent variable to be
estimated (Brewer and Crano, 2014; Liao et al.,
2021). In TVR evaluations, false negatives con-
found model quality and label errors (i.e., is the
model wrong or is the label wrong?) which makes
reliably establishing cause (model quality) and ef-
fect (retrieval score) difficult. Construct validity
“pertains to the degree to which the measure of a
construct sufficiently measures the intended con-
cept” (O’Leary-Kelly and J. Vokurka, 1998)—in

1Data and Code: pedro.ai/multimodal-retrieval-evaluation.

TVR evaluations, an important intended concept is
real-world search quality. Construct validity asks:
can we expect that measuring retrieval quality with
the benchmarks at hand generalizes to real-world
search quality? This section argues that TVR evalu-
ations are not internally valid or construct valid.

2.1 Model Evaluation

Multimodal retrieval evaluations typically focus
on two tasks: text-to-video and video-to-text re-
trieval. The first task’s goal is—given a text query—
to retrieve videos that match; the second task’s
goal is—given a video—to retrieve the matching
queries. The applications of text-to-video search
are straightforward: it is useful for searching the
web and personal media.2 Since the applications
of TVR are clear, and the false-negative problem is
present in both tasks, here we focus on TVR.

The MSR-VTT and MSVD Datasets: It is stan-
dard for TVR evaluations (Zhang et al., 2018; Yu
et al., 2018; Gabeur et al., 2020) to report on MSR-
VTT and MSVD, so in the interest of comparabil-
ity, we use these benchmarks too. Although these
datasets were originally meant for evaluating video
captioning models, they have been repurposed for
TVR (Zhang et al., 2018; Gabeur et al., 2020). In
this paper, we focus our investigation on MSR-VTT

and MSVD since they are the most prevalent in
prior work. MSR-VTT consists of 10K videos, 1K
of which are in the test split. Each video has twenty
captions, but for evaluation, only one (arbitrarily
chosen) caption is used. MSVD contains 1,970
videos, 960 of which are in the test split. Videos
have about forty captions; unlike with MSR-VTT,
retrieval quality for each caption is evaluated.

Fundamentally, both MSR-VTT and MSVD are
video captioning datasets—not retrieval datasets.
MSVD addressed the lack of standard benchmarks
for paraphrasing (Chen and Dolan, 2011). In the
original task, annotators selected short clips from
YouTube, watched the clip, and wrote a sentence
describing its contents. The process was repeated
for each video, with each sentence being written by
a new annotator. This conditional independence—
given the video—resulted in a diverse set of cap-
tions. MSR-VTT captions were collected similarly:
independent annotators captioned the same video.
Videos were sourced from the output of a commer-
cial video search engine (Xu et al., 2016). In both

2The applications of video-to-text retrieval—that are not
simply captioning—are not clear to us.
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datasets, video captions are used as search queries
and labeled relevant to the original video.

Metrics: Previous TVR work (Zhang et al., 2018;
Yu et al., 2018; Gabeur et al., 2020; Luo et al., 2020;
Zhu and Yang, 2020; Li et al., 2020; Xu et al., 2021;
Park et al., 2022) reports Recall@K (R@K)3 and
sometimes supplemental metrics such as median
or mean rank of the first correct result. However,
R@K in TVR work differs from the textbook infor-
mation retrieval definition (Manning et al., 2008, p.
155) where

R@K =
# retrieved positives in top K
# total positives in collection

. (1)

In TVR work, query retrieval results are scored one
if a relevant video is in the top K and zero other-
wise. The traditional definition of Recall@K only
reduces to this when there is exactly one positive
in the collection but is not comparable when there
are multiple positives per caption—as in this case.

With the difference now salient, we avoid confu-
sion by defining a new quantity Correct@K (C@K)
which is 1 if at least one positive is in the top K
and 0 otherwise. Correct@K naturally reduces to
Recall@K—as defined in prior work—when there
is exactly one positive, but handles the additional
positives in our work. We recommend reporting
Correct@K as well as mean average precision (Su
et al., 2015; Mitra and Craswell, 2018, MAP), a
metric widely used in Information Retrieval.

The drawback of Correct@K—shared by me-
dian (or mean) rank to first positive—is that it does
not directly factor in rank order when there are mul-
tiple positives in retrieved results, only coarsely
factoring in rank via K value. MAP (Mitra and
Craswell, 2018, p. 19) is calculated by taking the
mean of

AvgPrecq =

∑︁
⟨i,v⟩∈Rq Precq,i × relq(v)∑︁

v∈V relq(v)
(2)

for each test query q where i is a video’s position
in the ranked list Rq of videos, v is a video in
collection V , and relq(v) denotes whether query q
is relevant to video v. Intuitively, this translates to
calculating the mean of Precision@K for every K
where a positive occurs in ranked predictions Rq.
In all experiments, we report Correct@K and MAP.

2.2 Questioning the Validity of Evaluations

In this section, we experimentally argue that cur-
rent TVR evaluations are not internally valid. Then

3Typical K values include 1, 5, 10, and 50.

we argue that they are not construct valid by con-
sidering actual use-cases for video search.

2.2.1 Internal Validity

If an evaluation metric is internally valid (Liao
et al., 2021), then model effectiveness (cause)
should be accurately and reliably reflected in met-
rics (effect) (Brewer and Crano, 2014). A central
hypothesis of this paper is that the prevalence of
false negatives invalidates the cause-effect relation-
ship between measured model effectiveness and
actual effectiveness–i.e., that correcting false nega-
tives will significantly change metrics.4

To test this hypothesis, we build the FIRE dataset,
which Fixes Implicit Relevance Errors. We de-
tail the dataset later (§3), but in short, we take
strong retrieval models from the past few years
and annotate their top ten predictions on both
MSR-VTT and MSVD. This process—called system
pooling—has been used for decades in information
retrieval (Spark-Jones, 1975) and, by construction,
eliminates implicit false negatives.5 For MSR-VTT,
we collect annotations from TeachText (Croitoru
et al., 2021), Support-Set Bottlenecks (Patrick et al.,
2021, SSB), and CLIP4CLIP (Luo et al., 2021) mod-
els; for MSVD, we collect annotations from Teach-
Text and CLIP4CLIP models.6,7 Next, we compute
model scores using the original positives and com-
pare them to scores calculated with both the origi-
nal positives and the new positives in FIRE.

Table 1 clearly demonstrates that FIRE annota-
tions reveal large metric differences in both MSR-
VTT and MSVD. For example, the C@1 score of
CLIP4CLIP is understated by 25% points, and its
C@10 score arguably saturates the benchmark at
95.7%. Even “small” differences such as those for
TeachText and SSB are on par with the differences
used to claim state-of-the-art results. False nega-
tives directly cause high measurement error, which
invalidates the internal validity of the benchmark.

4We do not see rank changes in our three models, but score
differences suggest that ranks may change with more models.

5By implicit, we mean false negative from the lack of
labeling and presuming non-positives are (implicitly) negative.
There may still be false negatives arising from human error
during annotation.

6We prioritize models that are (1) publicly available and
(2) have sufficient documentation to reproduce.

7Annotating MSR-VTT predictions translates to 1,000 * 10
= 10K annotations since only one caption per video is used.
This is easy compared to MSVD annotation, which uses tens
of captions per video.
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Dataset Metric TeachText SSB CLIP4CLIP

MSR-VTT C@1 24.1 (23.3 + 0.800)% 27.3 (26.8 + 0.500)% 67.4 (42.4 + 25.0)%
MSR-VTT C@5 53.2 (50.9 + 2.30)% 55.9 (54.5 + 1.40)% 90.7 (70.4 + 20.3)%
MSR-VTT C@10 67.0 (64.8 + 2.20)% 68.9 (66.3 + 2.60)% 95.7 (80.2 + 15.5)%
MSR-VTT AP 36.1 (35.8 + 0.296)% 39.3 (39.2 + 0.0374)% 69.5 (54.9 + 14.7)%

MSVD C@1 34.7 (19.6 + 15.2)% Not Annotated 65.3 (46.6 + 18.8)%
MSVD C@5 64.7 (48.9 + 15.8)% Not Annotated 89.6 (76.8 + 12.8)%
MSVD C@10 76.1 (63.9 + 12.2)% Not Annotated 94.0 (85.4 + 8.61)%
MSVD AP 44.3 (33.1 + 11.2)% Not Annotated 71.3 (59.7 + 11.6)%

Table 1: The table shows the impact of FIRE annotations on MSR-VTT and MSVD text-to-video retrieval metrics. “A
(B + C)” has metrics computed with FIRE positives (A), only original positives (B), and the delta (C). The deltas
emphasize the deleterious effects of false negatives: CLIP4CLIP’s C@1 on MSR-VTT is understated by 25% points.

2.2.2 Construct Validity
In addition to problems with internal validity, we
posit that TVR evaluations are also not construct
valid (Cronbach and Meehl, 1955; O’Leary-Kelly
and J. Vokurka, 1998). Construct validity is re-
lated to “how closely our evaluations hit the mark
in appropriately characterizing the actual antici-
pated behaviour of the system in the real world or
progress on stated motivations and goals for the
field” (Raji et al., 2021). What is the real-world
use of text-to-video retrieval (or alternatively, the
field’s motivations)? Consider the most straight-
forward answer: that such systems will be used by
users to search through video collections, whether
on the web or in personal collections. First, search
queries issued by real users are very likely not sim-
ilar to captions written by crowd annotators; this is
easily observed by inspecting captions in Table 5
and Appendix Table 6. Second, the video distribu-
tion is unlikely to reflect real use-cases as they were
selected by annotators or are search results from
seed queries. Due to these problems, it seems un-
likely that the evaluations are construct valid, and
future benchmarks should improve this by building
evaluations that match the intended use of models—
i.e., be ecologically valid (de Vries et al., 2020).

3 FIRE Dataset Collection and Validation

Next, we describe and analyze the FIRE dataset.

3.1 Annotation Task and Dataset Collection

In the FIRE annotation task, annotators mark
whether the displayed caption is relevant to the
displayed video. Implicitly, the caption’s video is
relevant to it, but how do we judge whether another
arbitrary video is relevant? In other words, how
should annotators mark whether a caption is rele-
vant to a video? In both datasets (§2.1), the caption

must be completely consistent with the video; oth-
erwise, it would not be an accurate caption. There-
fore, we enforce the same condition in our task to
preserve the original relevance semantics.8

Annotators are instructed to mark a caption as
relevant to a video only if every element men-
tioned in the query could be reasonably consid-
ered present. Elements included persons, objects,
locations, and activities, as well as quantifiers, qual-
ifiers, and adjectives. Raters are given some leeway
to use interpretation and inference but instructed to
err in favor of not relevant if the caption is ambigu-
ous or vague. For example, for the caption “a boy
playing the violin,” the video must show a boy who
is playing the violin, not a video of only violins or
a video with only a boy. Screenshots of the anno-
tation interfaces and details of sensitive category
handling are in Appendix B. Complete annotation
guidelines are included in supplemental materials.

To select caption-video pairs to annotate, we
obtain the top ten MSR-VTT and MSVD test set
predictions from three models: CLIP4CLIP (Luo
et al., 2021), SSB (Patrick et al., 2021), and Teach-
Text (Croitoru et al., 2021). For TeachText, we use
model checkpoints available on their webpage. For
CLIP4CLIP and SSB, checkpoints are not available,
so we train new models and verify that retrieval
quality is on par with the literature (see Table 1).

Table 2 summarizes the resulting FIRE dataset.
During data collection, 683K labels were collected
across a set of 579K unique caption-video pairs.
Some duplication was intentional: we obtained a
second label for 10% of annotations, and if the la-
bels disagreed, we collected a third label to resolve
the disagreement. Elsewhere, duplication was unin-
tentional: for MSVD we did not deduplicate caption-
video pairs between two models, so where the pre-

8Requiring complete matches makes the annotation task
easier by eliminating ambiguous partial match cases.
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Dataset # Pairs Percent # Labels
MSR-VTT 24,183 100% 24,507
⌞ Agreement 24,167 99.9% -
⌞ Relevant 2,855 11.8% -
⌞ Irrelevant 21,312 88.2% -

⌞ Disagreement 16 0.0662% -

MSVD 555,391 100% 659,126
⌞ Agreement 553,832 99.7% -
⌞ Relevant 39,909 7.21% -
⌞ Irrelevant 513,923 92.8% -

⌞ Disagreement 1,559 0.281% -

Table 2: The FIRE dataset is composed of labels for
MSR-VTT and MSVD text-video pairs. The positive-to-
negative ratio is skewed, reflecting that queries do not
match most videos. We multiply annotate a subset to
compute annotator agreement rates and Krippendorff’s
α. Agreement on MSR-VTT was .931 with α = .691
and on MSVD was .958 with α = .798. Appendix C
disaggregates agreement rates which are consistent.

dictions overlapped, we obtained additional labels.
Fortunately, this provided an unexpected opportu-
nity to further validate dataset quality.

3.2 Dataset Quality Validation

Before, throughout, and after the collection, we
took steps to collect high-quality data and validate
its quality. The annotation task was completed by
a team of one hundred raters specifically trained
to review caption-video pairs and assess relevance.
These annotators completed a 1,000 job training
queue, which was reviewed by data quality leads
and this paper’s authors. This allowed annotators
to learn to annotate according to our guidelines,
request clarification to the guidelines, and request
tooling improvements. Annotators could also es-
calate tasks for being too ambiguous or confusing,
which occurred less than 0.0001% of the time.

After the dataset was collected, we computed
three measures of quality in Table 2: (1) the rate
that judgments resolved to a label (Percent), (2)
the degree to which examples with multiples la-
bels agreed (Agreement), and (3) the Krippendorff
alpha score amongst examples with multiple la-
bels (Krippendorff, 2004). Caption-video pairs re-
solved to a label 99.9% of the time in MSR-VTT and
99.6% of the time in MSVD. Agreement in both
datasets exceeded 90%, and the Krippendorff score
suggests reasonable agreement as well. Based on
this analysis, we see no evidence of data quality
issues. The next section digs deeper into FIRE and
suggests explanations for the observed phenomena.

Dataset Models Overlap RBO

MSR-VTT C4C & SSB 0.0638 0.0568
MSR-VTT C4C & TT 0.0610 0.0509
MSR-VTT TT & SSB 0.440 0.231
MSVD C4C & TT 0.411 0.211

Table 3: Annotated predictions of one model boost the
score of another model when predictions overlap. In
MSR-VTT, there is little overlap between CLIP4CLIP and
other models; there is far more overlap in MSVD.

Model Data C@1 C@5 C@10

CLIP4CLIP All 0.674 0.907 0.957
CLIP4CLIP New 0.430 0.713 0.812

TeachText All 0.241 0.532 0.670
TeachText New 0.239 0.527 0.663

SSB All 0.273 0.559 0.689
SSB New 0.271 0.553 0.679

Table 4: We compare C@K of a MSR-VTT model: (1)
with all annotations (All) and (2) without the model’s
annotated predictions to emulate model development
(New). CLIP4CLIP exhibits large differences.

4 Analysis Experiments

The difference FIRE makes on metrics (Table 1) is
striking, which begs the question: why are there
such large differences? We suggest explanations
for these differences (§4.1) while investigating how
these metrics vary under commonplace evaluation
settings such as new model development (§4.2).

4.1 Why Are Score Boosts Not Uniform?

FIRE-based metrics are interesting for at least two
reasons: (1) the magnitude of difference and (2) the
non-uniformity of boosts. Specifically, CLIP4CLIP

has a larger boost than TeachText and SSB on MSR-
VTT. First, we investigate the degree of prediction
overlap between models. When predictions over-
lap, the models share the boost. Likewise, when
they do not overlap, there is an opportunity for dif-
fering boosts. Table 3 shows this: on MSR-VTT,
CLIP4CLIP and the other two models have little
overlap; in contrast, TeachText and SSB have sub-
stantial overlap and their boosts are of roughly the
same magnitude. Overlap is computed between the
top ten predictions of each model using simple over-
lap and rank-biased overlap (Webber et al., 2010,
RBO).9 As we might expect based on CLIP4CLIP

9If the ordering of predictions amongst the top ten did not
matter, the overlap would be acceptable. However, as in most
IR settings, we do care about the order so use a rank-aware
metric like RBO.
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and TeachText having large boosts on MSVD, their
predictions also overlap. This mechanically ex-
plains the difference but fails to explain “why?”

We test the hypothesis that shorter queries
have more positives because they are less spe-
cific (i.e., general) and speculate that differences in
CLIP4CLIP and TeachText pre-training could make
CLIP4CLIP fare better on general queries. Intu-
itively, shorter captions should be less specific and
therefore match more videos, so models that handle
general captions well should benefit the most. Ta-
ble 5 and Appendix Table 6 validate this intuition
by showing MSVD and MSR-VTT captions. The cap-
tions are sampled from the shortest 100 captions,
median length captions, and longest 100 captions.

First, we empirically validate that short captions
have more positive videos. Figure 2 shows that
longer captions have fewer positive videos while
shorter captions have more. By construction, since
we find only positives if a model predicts them,
these are where models make gains.

Figure 3 takes the next step and compares model
accuracy as a function of caption length. For each
bin of caption lengths (e.g., captions of length zero
to twenty characters), we show the proportion of
whether both CLIP4CLIP and TeachText are correct,
neither are correct, or only one is correct. Empiri-
cally, we observe that CLIP4CLIP makes the largest
gains from accounting for false negatives with FIRE

when queries are short—whether this is due to short
queries containing more positives or CLIP4CLIP

handling these better is difficult to discern. Al-
though it is difficult to validate, our best, educated
guess at a causal reason for CLIP4CLIP finding
more positives in MSR-VTT is that its image-text
backbone, CLIP (Radford et al., 2021), was trained
with text that contains many general captions.

4.2 Does System Pooling Generalize?

Although system pooling eliminates (implicit) false
negatives, it comes with the substantial drawback
that every new model must have its predictions
annotated—otherwise, the results are potentially
biased against the new model due to the possibil-
ity of false negatives in novel predictions (Yilmaz
et al., 2020).10 System pooling has traditionally
been used in synchronized shared tasks where all
models are submitted by a deadline and evaluated

10If a model predicts a video that no prior model does and
it is a false negative, then the model’s effectiveness will be un-
derestimated. Yilmaz et al. (2020) study this when comparing
traditional and deep learning IR systems.

at the same time, as in the Text REtrieval Confer-
ences (TREC) in IR.11 However, the trend in ma-
chine learning and NLP is for continuously running
or even dynamic benchmarks (Kiela et al., 2021).
Beyond benchmarking, even the development of
new models is affected since gains from improved
modeling may be understated. The question then is:
how large is this bias, and how fast does it decrease
with the number of pooled models?

The magnitude of the bias is affected by two fac-
tors: (1) the percent of model predictions that do
not exist in pooled annotations and (2) the preva-
lence of false negatives in this subset.12 While Ta-
ble 3 captures prediction overlap between pairs of
models, it does not capture the setting where some
number of models have annotated predictions, and
we wish to test a new model. Table 4 calculates (1)
model scores when using all annotated predictions
versus (2) model scores using only annotated pre-
dictions from the other two models. In this small
three-model experiment, the bias is unfortunately
still significant (24.4% for C@1) for the best model
(CLIP4CLIP). Thus, the degree to which the FIRE

dataset will mitigate the false negative problem in
new model development is dependent on the simi-
larity of new models to current ones. The general-
izability also depends on the number of unknown
positives, which we indirectly study by plotting the
ranks of positive videos (Appendix G).

4.3 Mitigating Annotation Costs by Sampling
A limitation of our method is that until existing an-
notations include most positives, our method either
disadvantages new models or introduces non-trivial
annotation costs. Indeed, the costs of exhaustive
annotation in our work are substantial, but exhaus-
tive annotation is also excessive if the goal is only
to (robustly) estimate model scores. Instead, we
propose that future work need only annotate the
top 10 predictions from N examples in the evalu-
ation data. But how large should N be so that we
can be confident that the difference between model
scores is statistically significant? In our next exper-
iment, we use bootstrap sampling to characterize
the relationship between N and the effect size cor-
responding to a statistically significant difference
at the 95% confidence level.

In our bootstrap sampling experiment, we treat
the 27,763 MSVD test examples as a sample from

11https://trec.nist.gov
12See Appendix F for analysis of the number of known

positive videos per query.
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MSVD Short Length Captions MSVD Median Length Captions

playing panda a gymnast falls off a balance beam
some work a person is riding a horse
a man a girl is riding a bicycle
a baby two men are pushing an airplane
jumping dachsund the turtle is playing with the cat
naah piano is played by an artist
amanplaysaguitar the girl put stickers on her face
a woman a boy is reading a card
camp a little boy is playing golf
plying music a man is slicing a tomato

MSVD Long Length Captions

a man holding an open umbrella jumps across a wooden stand in a park and then does a summersault after kicking a wall
a man in a jail cell motions to a man in another cell who shows the first man his middle finger
a bowling man picks up a spare in his lane and manages to knock over the one remaining pin in the lane to his right
a woman is exercising by stepping from right to left and then from left to right while swinging her arms back and forth
a man wearing a black cape is walking toward a group of people and a man in the group is shooting at him with a pistol

Table 5: This table shows three sets of MSVD captions sampled from: (1) the 100 shortest captions, (2) median
length captions, and (3) the 100 longest captions. As also observed in MSR-VTT captions (Table 6), short captions
are general (e.g., “a man”) compared to the longest captions.

a population.13 We characterize the population
distribution through bootstrap re-sampling of the
original sample. Specifically, we estimate the abso-
lute difference in model scores that correspond to a
statistically significant effect size (i.e., score differ-
ence) at the 95% confidence level. For each sample
size N ∈ [500, 1000, 3000], we (1) re-sample N
examples from MSVD evaluation data, (2) calcu-
late scores on the re-sample, (3) repeat this 10,000
times, (4) average the scores then calculate the ab-
solute value of the difference between the average
score and score calculated with the full dataset,
and finally (5) plot the distribution and score cor-
responding to the 95% percentile. The experimen-
tal results (Figure 4) demonstrate that annotation
volumes of 1,000 detect statistically significant dif-
ferences when C@1 differs by 0.029. The results
demonstrate that (1) annotating a subset of test ex-
amples detects absolute differences of one absolute
point, and (2) the number of annotated test predic-
tions varies based on the metric of interest.

5 Recommendations for Benchmarks

Towards improving TVR evaluations, we make rec-
ommendations for both current and future bench-
marks. This paper only investigated the effects of
false negatives in MSR-VTT and MSVD. However,
it is likely that other similarly constructed bench-
marks exhibit the same problem, and testing this
is important. Second, we show that for MSR-VTT

13MSR-VTT is small. To avoid convergence to the sample
mean, bootstrap sizes need to stay low.

and MSVD, certain metrics such as Correct@10
are potentially saturated since improvements above
CLIP4CLIP’s 95.7% and 94% are plausibly noisy.
Consequently, since the remaining gains reside in
re-ranking the top K, the community should con-
sider retiring these evaluations. Third, the intro-
duction of multiple positives and use of various
K values makes mean average precision attractive
since: (1) it factors in preference for correctness at
higher ranks and (2) it handles multiple positives.

It is difficult to recommend that model develop-
ers exhaustively annotate model predictions. This
suggests a future where query or video set size
is a trade-off between annotation load and evalu-
ation quality. For example, one might choose to
trade-off annotation load with statistical power to
differentiate between models (Card et al., 2020).
TREC-style, annual shared tasks are one model for
this (Voorhees, 2019; Church and Hestness, 2019);
instead of building a monolithic benchmark that
becomes overfit over time (Blum and Hardt, 2015;
Anderson-Cook et al., 2019), stakeholders develop
evaluations that evolve with research objectives.

Looking forward, TVR evaluation would ben-
efit from: (1) a purpose-built benchmark that is
grounded in an actual use case so as to be eco-
logically valid (de Vries et al., 2020) and (2) cen-
tralized evaluation by submitting runnable models
to shared infrastructure such as Dynabench (Kiela
et al., 2021). This would improve reproducibil-
ity, which was a limiting factor in selecting which
model predictions to reproduce in this paper. This
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Figure 2: This figure shows the relationship between the number of positive videos and the length of captions in
words for MSR-VTT and MSVD. We show a log-scale density heatmap binned by the number of positive videos and
caption length; on the margins, are histograms. From this figure, we can infer that: (1) if a caption is long, it is less
likely to have many positive videos, and (2) if a caption is short, then the number of positive videos can vary widely.

also makes calculating statistical tests easy (Etha-
yarajh and Jurafsky, 2020), which are often not
reported (Dror et al., 2018; Dodge et al., 2019).
TVR modeling has advanced enough to demand
better benchmarks for measuring future progress.

6 Related Work

The paper draws on ideas in multimodal retrieval,
information retrieval, and evaluation methodology.

Improving Benchmark Quality: Wray et al.
(2021) is directly relevant to our work, and we
share their motivation: to study the effects of false
negatives in TVR evaluations. While we share moti-
vation and our works are complementary, our work
differs substantially in methods, contributions, and
conclusions. The primary difference is this: our
goal is to quantify the difference in absolute met-
rics that false negatives cause, even if there is no
promise the data can be effectively reused in the
future; Wray et al. (2021) develop automatically
runnable proxy measures that improve the reliabil-
ity of model rankings, but do not precisely quantify
the impact of false negatives on existing metrics
since automatic labeling is not equivalent to hu-
man annotation. Both these works are valuable:
our work conclusively quantifies that false nega-
tives create differences of 25% absolute points and
demonstrate that new measures like those by Wray
et al. (2021) are necessary for current benchmarks.

Wang et al. (2022) argue that video captioning
datasets used in TVR evaluation are noisy due to

low-quality captions but differ by identifying single
query tasks as the root problem (as opposed to false
negatives) and recommend multi-query evaluation
where users make followup refinement queries.
While the multi-query problem is important, we
do not agree with the assessment that single-query
problems should be abandoned for multi-query
problems: for example, users often have a low tol-
erance for voice assistant errors and abandon their
query entirely after an error. Both problems are
important. Fortunately, the approaches are com-
plementary and should be combined: the multi-
query setting still has false negatives, whose effects
on measurement can be mitigated with our meth-
ods (§4.3). Just as we use predictions to improve
datasets, Beyer et al. (2020) improve ImageNet la-
bels by using predictions to reduce the label space
which makes the annotation task easier.

Benchmarking: Across machine learning, com-
puter vision, and natural language processing (Eger
et al., 2020; Bowman and Dahl, 2021; Rogers,
2021) there is a broad effort to critically examine
the benchmarks (Schlangen, 2021), data (Linzen,
2020; Thrush et al., 2022), evaluation methods (Ro-
driguez et al., 2021), and evaluation paradigms (Ro-
driguez and Boyd-Graber, 2021; Kiela et al., 2021)
used in research studies. This effort goes beyond
particular methodologies and extends to identify-
ing the values prized by the community (Sculley
et al., 2018; Dotan and Milli, 2020) which are
subsequently operationalized in computer vision
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Figure 3: On MSR-VTT, we show relative model effectiveness differences (y-axis and color bars) broken down by
test caption length (x-axis); we super-impose the caption length distribution (black line). Short captions tend to be
more general, so they should match more videos and produce more false negatives. The gains for both models and
especially CLIP4CLIP occur predominantly on this subset (reduction of “None”) as we would expect.
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datasets and benchmarks (Wu et al., 2017; Scheuer-
man et al., 2021). Our work is in line with this
broader initiative and critically examines text-to-
video retrieval evaluation methodology.

We examine internal validity (§2.2.1) and find
a broken yardstick (Hernandez-Orallo, 2020). By
examining construct validity (§2.2.2), we also ar-
gue that TVR evaluations should prize usefulness
to ecologically valid use cases such as real-world
text-to-video search (de Vries et al., 2020). Lastly,
our experimental results suggest we may not be far
off from retiring MSR-VTT and MSVD for TVR eval-
uation, something we should not be afraid to do in
general (Boyd-Graber and Börschinger, 2020). An
alternate approach is smaller, periodic evaluations
as in TREC (Smeaton et al., 2002; Voorhees and
Tice, 2000; Smeaton et al., 2009). Part of the so-
lution is to create purpose-built datasets with clear
goals (Gebru et al., 2021; Bender and Friedman,
2018) as opposed to continually re-using datasets
intended for different uses (Koch et al., 2021).

Structurally Similar Tasks: TVR is not the only
evaluation with the implicit false negative problem.
Our critique is applicable to image retrieval bench-

marks that use caption-media pairs from image cap-
tioning datasets (Lin et al., 2014; Plummer et al.,
2015) as the only positives (Karpathy and Fei-Fei,
2015; Kim et al., 2021; Singh et al., 2022).

7 Conclusion

In this work, we show that label errors (false nega-
tives) in text-to-video retrieval benchmarks invali-
date their internal validity—the measured metrics
do not accurately reflect reality (§2). Following
this, we critique the applicability of benchmarks
to real-world use cases (construct validity). To
estimate the impact of false negatives on bench-
mark metrics, we collect the FIRE dataset (§3)
which contains 683K relevance judgements. Anal-
ysis experiments (§4) suggest explanations for why
CLIP4CLIP scores higher and estimate system pool-
ing generalization. Based on our findings, we high-
light properties that future TVR benchmarks should
have and outline approaches to addressing inher-
ent challenges in retrieval evaluation (§5). Finally,
we position our work in the broader effort to im-
prove benchmarking by better aligning tasks with
the intended use and improving measurement (§6).
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8 Limitations

Our work has several notable limitations. First, our
experiments use two representative and commonly
used TVR datasets (MSR-VTT and MSVD). While
we expect that our results will generalize, it is still
possible that these results do not generalize. For ex-
ample, both datasets are based on YouTube videos
and annotator-written captions: perhaps videos and
captions from alternate sources differ by too much.
Similarly, our experiments use three well-known
models, so while we expect our results to gener-
alize to similar models, future models may differ
substantially in ways that cause the empirical re-
sults not to hold. This said, system pooling has
long been used in TREC (Voorhees et al., 2005), so
we expect this to work for future models as well.

Beyond limitations in generalizability, the in-
principle critiques in our work apply only to bench-
marks where implicit false positives are likely to
be prevalent; it does not apply to benchmarks in
general. From the methods perspective, while our
computational experiments are coded to be easily
reproduced, the scale of our annotations is difficult
to reproduce (hence limited reproducibility in this
sense), but we do study sampling-based alternatives
to mitigate this limitation.

9 Ethics

This section discusses potential ethical issues re-
lated to our dataset-centric work. First, we discuss
data-related ethics. The FIRE dataset is built on
MSR-VTT and MSVD. We distribute the minimal
amount of data related to these datasets necessary
to reproduce our experiments: triplets of caption
identifiers, video identifiers, and annotated labels.
Section 3 and Appendix B describe how the data
was collected. All annotators were compensated,
and the data collection was reviewed before start-
ing. Potential risks due to the use of our dataset
are limited by the additional labels we provide for
an existing dataset. We thoroughly discuss the
risks associated with negatively influencing bench-
mark reliability (i.e., prediction overlap with future
models), and these risks are mitigated by our rec-
ommendation that more appropriate datasets be
developed.

Our work does not directly have negative soci-
etal impacts, but it is feasible that the improved
model scores we report could be used to misrepre-
sent the capability of retrieval systems. For exam-
ple, while we only claim that a model achieves a

particular measure of effectiveness on a particular
benchmark, the media often inflates the importance
of these metrics (Cuthbertson, 2018). In our work,
we intentionally do not connect these higher met-
rics to more general capability and emphasize the
importance of establishing construct validity.
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A Model Prediction Comparison

As part of this paper, we develop several web apps
to make exploring the data more accessible. For ex-
ample, Figure 5 compares the predictions of three
models along with the labels in the original MSR-
VTT dataset compared to augmenting them with
FIRE’s labels. The source code repository provides
instructions to run these web app demos.

B Annotation Interfaces

The FIRE dataset (§3) was collected using the an-
notation interface in Figure 6.

In addition to the previously described annota-
tion instruction (§3.1), raters were also instructed
on how to handle sensitive categories. The raters
were instructed to accept the caption as accurate
unless they had compelling, concrete reasons to
believe otherwise (e.g., a little baby should be not
considered old, and octogenarians with white hair
and wrinkled skin should not be considered young);
raters should not attempt to make more fine-grained
distinctions. In particular, they were instructed not
to make any assumptions about gender and accept
the gender described by the caption.

C FIRE Data Quality

This section provides additional evidence to vali-
date the quality of the FIRE dataset. Specifically,
Figure 7 complements the agreement metrics com-
puted in §3.2 and Table 2 by un-aggregating agree-
ment rates.

D Shorter Captions, Their Generality,
and Correlation to Model Behavior

Experiments in §4.1 establish that shorter captions
have more positives and longer captions have fewer.
We intuitively explain this by stating that shorter
captions by nature are less specific, so will, in prin-
ciple, match more videos. For example, one of
the shortest captions in MSVD is “a man” (Table 5)
which is less specific than one of the longest cap-
tions like “a man holding an open umbrella jumps
across a wooden stand in a park and then does a
summersault after kicking a wall.” Inspecting these
captions also validates our construct validity cri-
tique (§2.2.2): they do seem like search queries.

In previous experiments (§4.1), we discussed
how caption length is related to which models gain
higher boosts. This section breaks down which
models gain the most on MSR-VTT by train-test

overlap. We take inspiration from question answer-
ing and language modeling, where unintentional
textual overlap between train and test sets degrades
evaluation and model quality (Lewis et al., 2021;
Borgeaud et al., 2021; Lee et al., 2022). Our objec-
tive is to measure the degree to which test captions
in MSR-VTT are present in the training captions—
be it word-for-word or approximate. To measure
this, we use Scikit-Learn (Pedregosa et al., 2011)
to fit a 5-gram character TF-IDF encoder to the test
captions and compute the cosine similarity of each
test caption to each train caption. For each test
caption, we compute the mean similarity of the
top train ten captions and combine this informa-
tion with Correct@5 scores (Figure 8). The results
suggest that TeachText overfits the train set, which
may explain its comparatively better scores on the
original positives—were it not overfit, train-test
overlap should not matter.

Lastly, these factors are not unrelated. Since
shorter captions tend to be less specific, these are
also the captions that we would expect are more
prevalent in the training set, whether in exact form
or approximate (e.g., the phrase “a man” is likely
in the train set). To test whether these factors are
related, we compute the Kendall Tau correlation
and Spearman Rank correlation between the train-
test textual similarity score and caption length (in
both words and characters). As we expect, there is
a non-trivial negative correlation between caption
length and similarity score (Table 7): the lower
the caption length, the higher the train-test overlap
score.

E Can Annotation Costs be Mitigated
Through Sampling?

In our experiments, we use bootstrap sampling
to estimate the number of example annotations
needed to detect given effect sizes at the 95% confi-
dence level (§4.3). Figure 4 reports these results for
CLIP4CLIP since it was the best model; in practice,
it represents the type of model we would test after
models like TeachText. Figure 9 extends the results
from C@1 to C@5 and C@10. Figure 10 replicates
these results, but using the TeachText model.

F Number of Positive Videos per Text
Query

The generalization of the FIRE dataset to newer
models is reliant on two factors: (1) the number
of positive videos per query and (2) whether the
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Figure 5: The web application shows the ranked predictions of three models: CLIP4CLIP, TeachText, and SSB.
Qualitatively, CLIP4CLIP predictions better match the query by showing only cartoon videos. This is reflected
quantitatively when FIRE labels are incorporated. Lastly, the ranked predictions also show some of the overlap that
TeachText and SSB shared.
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Figure 6: To annotate the FIRE dataset, raters used this annotation interface. The interface shows the candidate query
(caption) and video; raters are trained to select “relevant” or “irrelevant” based on whether every component of the
query matches the video.
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Figure 7: The agreement rate of annotators is broken down by the number of labels. For example, about 10,000
MSVD examples (text-video pairs) were annotated twice; of those, the two labels agreed on about 95% of examples.
As we did with the MSR-VTT collection, our intent for the data collection was to de-duplicate text-video pairs
and only annotate about 10% of the data multiple times to estimate reliability. However, we accidentally omitted
this step for the MSVD collection which resulted in some examples being annotated many times. Fortunately, this
provides an unplanned opportunity to further validate inter-annotator agreement.
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MSR-VTT Short Length Captions

a man playing video games
anchor talking about a shows
a woman is stirring food
sports are being played
a woman holding a ribbon
a diver goes underwater
baseball player hits ball
cartoon show for kids
two women are embracing
advertisement of seat basket

MSR-VTT Median Length Captions

a man runs into the crowd when trying to catch a basketball
in a music video a man is laying with women while singing
some people video conferencing as they watch a movie
a boy is trying out for a part on the voice kids
basketball players making a shot in the last seven seconds
views of two persons working on the super computer with the head phones on
a character is jumping and floating in the air in a video game
two people playing basketball and the one with a hat makes every shot
batman is beating up bane in a scene from a batman movie
a girl being surprised with a stuffed animal by male friend

MSR-VTT Long Length Captions

a man and a woman are sitting in front of a television and addressing and audience
a woman stirs up some soup sprinkles a spice in and drops a shot of liquid into it
a man is filming as he and a woman watch the news where it shows an area filled with smoke
flight is shaken and the pilots trying to land the flight while they opened the air
the chef adds fish sauce and fish paste to a large stainless steel cooking pot
a girl wearing a dress stands to the side of the screen while lyrics to a song playing in the background appear on the other
side
the man is giving an informational speech to a group of people about telling someone something
a girl in blue color dress wearing siting speaking and television screen with black shirt man beside still image displaying
on screen
a man plays a video game where the player has a first person perspective and shoots other characters
a man playing a video game character that is carrying a sword and killing animals with it

Table 6: This table shows three sets of captions from MSR-VTT sampled from: (1) the 100 shortest captions, (2)
the median length captions, and (3) the 100 longest captions. As we argued by intuition (§4.1), inspecting these
samples validates that the shorter captions are more general (e.g., “sports are being played”) and longer captions are
very specific (e.g., “a woman stirs up some soup sprinkles a spice in and drops a shot of liquid into it”).

models we studied in this work predict all the true
positives. Estimating the number of true positives
per query without exhaustive annotation is difficult
at best. However, we can at least characterize how
many positives there are when including FIRE anno-
tations. Figure 11 shows a histogram of the number
of positive videos per query across MSR-VTT and
MSVD. For example, about 350 MSR-VTT queries
have only one known positive, which implies that
the other 650 have more than one known positive.
Unfortunately, even estimating the upper bound
would require annotating all the videos for each
query in a representative sample (e.g., for a sam-
ple of MSR-VTT 200 queries, exhaustive annotation
would include 200 ∗ 1,000 = 200,000 query-video
annotations).

G Rank of Positive Videos

While we follow prior work in measuring models
based on metrics computed from their top ten pre-
dictions, this still leaves open the question: ignor-
ing prior work, is ten predictions the right choice?
If ten is the correct choice, then we should see a
clear trend that positives are primarily distributed
below ten. Figure 12 plots the rank of positive
videos in CLIP4CLIP predictions (i.e., 1 is top-
ranked) versus their count. As expected, the num-
ber of positives drops dramatically before rank 10
(especially for MSVD), although not to zero; the
ranks of the original positives suggest there is a
long tail of undiscovered positives. Note that the
steep dropoff at 10 is due to annotating only the
top 10; positives beyond this are either from the
original dataset or predicted by other models. From
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Figure 8: Why are the MSR-VTT score differences between CLIP4CLIP and TeachText when using FIRE large? We
test the hypothesis that TeachText (comparatively) overfits textual training data. We compute the textual similarity
of each test caption to each train caption with a 5-gram character model; for each test caption, we calculate the mean
similarity of the ten most similar captions. The plot shows whether both models score a point on Correct@5, binned
by train-test similarity (the overall histogram is shown as the super-imposed line) when using original versus FIRE
annotations. On the original annotations, CLIP4CLIP fares much better compared to TeachText when similarity is
not nearly 1.0 (i.e., not overfitting).

Length Spearman Kendall

Word −0.419 −0.296
Character −0.479 0.334

Table 7: This table shows the Spearman and Kendall rank correlations between the train-test textual similarity score
used to measure train-test overlap (Figure 8) and the length of captions in both words and characters. The results
support our hypothesis that caption length and train-test overlap are correlated.

this, we conclude that although most positives have
likely been collected, there likely remain more past
rank 10, especially in MSR-VTT.

H Computational Resources

This paper was developed using two types of com-
putational resources. To rerun text-to-video re-
trieval models, we trained and evaluated on a sin-
gle AWS p4d compute node which has 96 vCPUs,
1152GB of RAM, and eight Nvidia A100 GPUs.14

All other experiments were run locally on a 16
inch, 2019 Macbook Pro with a 2.4GHz 8-core
Intel Core i9 CPU and 32GB of RAM.

14https://aws.amazon.com/ec2/instance-types/
p4/
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Figure 9: This figure replicates the C@1 results from Figure 4 but adds results for C@5 and C@10. The additional
results are consistent in showing that differences of about 1 point are already detectible with 1,000 annotations.
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Figure 10: Similar to Figure 4, this figure shows the distribution of absolute differences between bootstrap re-sample
estimates of TeachText C@1, C@5, and C@10 scores and their true sample mean (i.e., scores on the full test set).
Compared to CLIP4CLIP, statistically significant differences are marginally harder to detect.
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across both datasets have only one known positive, many others have more than that.
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Figure 12: The figure plots the rank of positive video predictions from CLIP4CLIP versus their count. The plot
displays MSR-VTT and MSVD separately, and it breaks down the source of each positive (from the original dataset
versus from FIRE). While the distribution suggests most positives are found within the top 10, the long tail suggests
that there are still unknown positives.
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Abstract

Numbers have unique characteristics to words.
Teaching models to understand numbers in text
is an open-ended research question. Instead of
discussing the required calculation skills, this
paper focuses on a more fundamental topic: un-
derstanding numerals. We point out that innu-
meracy—the inability to handle basic numeral
concepts—exists in most pretrained language
models (LMs), and we propose a method to
solve this issue by exploring the notation of
numbers. Further, we discuss whether chang-
ing notation and pre-finetuning along with the
comparing-number task can improve perfor-
mance in three benchmark datasets contain-
ing quantitative-related tasks. The results of
this study indicate that input reframing and
the proposed pre-finetuning task is useful for
RoBERTa.

1 Introduction

Numerals are an indispensable part of narratives
and provide much fine-grained information.1 How
models learn the number system has intrigued many
researchers (Spithourakis and Riedel, 2018; Naik
et al., 2019; Chen et al., 2019; Wallace et al., 2019;
Zhang et al., 2020). Researchers have long dis-
cussed some numeracy-related properties of pre-
trained language models (LMs). In this study, we
propose a new concept — innumeracy. The prob-
lem of innumeracy becomes most evident when
models are faced with numerals that do not appear
in training data, e.g., when the range of numerals
in training data is different from that in the test
data. Moreover, LMs often face difficulties un-
derstanding numbers even though the numbers are
present in the training data. One possible cause
of this problem is that numerals can have various
notations, some of which are difficult to understand
from their subwords. Another possible cause is

1In this paper, we focus on the numerals represented by
digits (0 to 9 and decimal point) and do not discuss those
written in words such as “one” and “two”.

Model Notation Tokenized Example

BERT

Org. "147", "##70", "##2"
Digit "1", "4", "7", "7", "0", "2"

SN
"1", ".", "47", "##70", "##200", "##00",
"##0", "##e", "+", "05"

RoBERTa
Org. "147", "702"
Digit "1", "4", "7", "7", "0", "2"
SN "1", ".", "47", "70", "200000", "E", "+", "05"

Table 1: Tokenized example. Org. and SN denote
original and scientific notation, respectively.

that LMs are not pretrained to deal with numbers.
Therefore, in this study, we address the problem
of innumeracy via input reframing and quantitative
pre-finetuning tasks.

Input reframing refers to changing the notations
of numbers, which can be one of the crucial clues
for understanding numerals (Zhang et al., 2020;
Chen et al., 2021). In addition to the original
notation, we consider the digit-based and scien-
tific notations. Table 1 lists examples of using
different representations for numerals. Our exper-
iments indicate that RoBERTa (Liu et al., 2019)
performs poorly than BERT-based models (Devlin
et al., 2019; Yasunaga et al., 2022) in understand-
ing numerals. However, its performance is at par
with vanilla BERT-based models with a proper
input reframing method. Furthermore, in previ-
ous studies, pretraining with the self-supervised
learning approach been determined to be a com-
pelling method (Devlin et al., 2019; Yasunaga et al.,
2022). However, it is costly to pretrain a new
LM from scratch. Thus, an alternative way is to
design pre-finetuning tasks to enhance the abil-
ity of LMs (Aghajanyan et al., 2021). Inspired
by this idea, we propose a novel pre-finetuning
task to enhance the ability of the models to deal
with quantitative questions and improve the nu-
meracy of the models. Specifically, the proposed
method automatically generates a simple dataset
for the comparing-numbers task (ComNum), and
uses it to pre-finetune LMs. This study experi-
ments with representative pretrained LMs, includ-
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ing BERT, RoBERTa, and LinkBERT (Yasunaga
et al., 2022), and the experimental results show
that pre-finetuning with the proposed ComNum im-
proves the performance in the Quantitative Natural
Language Inference (QNLI) task regardless of the
LMs used.

To evaluate the influence of the input re-
framing and the quantitative pre-finetuning task,
we constructed the Quantitative 101 dataset,
which is a combination of three benchmark
datasets: Numeracy-600K (Chen et al., 2019),
EQUATE (Ravichander et al., 2019), and
NumGLUE Task 3 (Mishra et al., 2022). The tasks
in Quantitative 101 include Quantitative Prediction
(QP), QNLI, and Quantitative Question Answer-
ing (QQA). In the future, Quantitative 101 can be
used as a new collection by researchers studying
the quantitative skills of LMs. 2

2 Related Work

Numeracy, one of the recent hot topics in NLP, in-
corporates many skills such as calculation, algebra,
and geometry. Some previous studies (Spithourakis
and Riedel, 2018; Chen et al., 2019) have discussed
the prediction of the masked number tasks, while
others (Wallace et al., 2019; Naik et al., 2019;
Zhang et al., 2020) have explored numeracy from
the perspective of embedding properties. The math
word problem (Chen et al., 2021; Mishra et al.,
2022) is a high-level task requiring several numer-
acy skills. The textual representation of numerals,
such as digit-based or scientific notations-based, is
one of the possible directions for improving numer-
acy. Chen et al. (2021) suggested to use a digit-
based encoder to encode numerals. Meanwhile,
Zhang et al. (2020) used scientific notation to rep-
resent numerals and explored scale understanding
tasks. In this paper, we explore the role of these
notations of numbers in quantitative skill tasks.

A recent trend is to design pretraining tasks to
enhance the capability of models to understand nat-
ural language. Devlin et al. (2019) proposed two
pretraining tasks: masked language model (MLM)
and next sentence prediction (NSP), and broad-
ened the horizons of the transformer-based natural
language processing research direction. Yasunaga
et al. (2022) designed a new cross-document pre-
training task, called document relation prediction
(DRP), to improve the performance of LMs in sev-

2We release this dataset for academic use and follow the
license of the sources (Appendix C).

Task Question Answer

ComNum
[Num 1] is equal to [Num 2].

TRUE/FALSE[Num 1] is smaller than [Num 2].
[Num 1] is larger than [Num 2].

QP
FED’S DUDLEY REPEATS EXPECTS GDP
GROWTH TO PICK UP IN 2014, FROM
[Masked] PCT POST-RECESSION AVERAGE

1

QNLI
S1: Nifty traded above 7500, Trading Calls Today
S2: Nifty above 7400 Entailment

QQA
Elliot weighs 180 pounds whereas Leon weighs
120 pounds. Who has a bigger gravity pull?
Option1: Elliot Option2: Leon

Option 1

Table 2: Example for each task.

eral benchmark datasets, especially those requiring
multi-hop reasoning and multi-document under-
standing skills. To the best of our knowledge, this
is one of the earliest works proposing a tailor-made
pre-finetuning task to understanding numerals. Our
experimental results also support the usefulness of
the proposed task, specifically in the QNLI task.

3 Datasets and Tasks

This section introduces two datasets: the Compar-
ing Numbers Dataset (CND) and Quantitative 101,
with the corresponding quantitative tasks, including
ComNum, QP, QNLI, and QQA.

3.1 Comparing Numbers Dataset (CND)

Comparing numbers (ComNum) is one of the ba-
sic quantitative skills. We propose the Comparing
Numbers dataset (CND) to test the ability of differ-
ent pretrained LMs to perform the ComNum task.
CND is an automatically created dataset, and the
ComNum task is designed as a binary classifica-
tion task. In essence, the models need to determine
whether a given statement of comparing numbers
is true or false. In the CND, there are only three
templates as shown in Table 2. There is one train-
ing set and two test sets in CND. Specifically, we
randomly select two numbers from 0 to 199,999
and insert them into the template. The selected
numbers are deleted from the pool of numbers
to avoid duplication. Finally, 100,000 instances
are obtained, and the numbers in all instances are
unique. Note that the distributions of each template
and answers are balanced. 80% of the dataset is
considered as the training set and the remaining
20% is taken as the CND-T1 test set. Next, two
numbers from 4,000,000 to 5,000,000 are randomly
selected for 10,000 times to construct the CND-T2
test set. Thus, the order of magnitude of the train-
ing set and the first test set (CND-T1) is from 0 to
5, and that of the other test set (CND-T2) is 6. In
this study, we focused on natural numbers, and fu-
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BERT RoBERTa LinkBERT FinBERT
CND-T1 CND-T2 CND-T1 CND-T2 CND-T1 CND-T2 CND-T1 CND-T2

Original 99.86 95.59 (↓ 4.27) 99.44 86.75 (↓ 12.69) 99.92 97.58 (↓ 2.34) 99.55 78.37 (↓ 21.18)
Digit-based 99.96 99.03 (↓ 0.93) 99.92 98.46 (↓ 1.46) 99.99 96.54 (↓ 3.45) 99.96 97.03 (↓ 2.93)
Scientific Notation 99.92 99.68 (↓ 0.24) 99.82 99.13 (↓ 0.69) 99.95 99.81 (↓ 0.14) 99.72 98.78 (↓ 0.94)

Table 3: Experimental results of ComNum task. The evaluation metric is Micro-average of F1 score (%).

Model Notation
QP QNLI

QQA ScoreComment Headline RTE-QUANT AWP-NLI NEWSNLI REDDITNLI Stress Test

BERT

Original 70.44% 57.46% 64.40% 59.20% 72.29% 60.42% 99.91% 53.20% 67.17
Digit-based 65.38% 54.74% 57.86% 56.46% 71.36% 60.11% 99.11% 53.75% 64.85
Scientific Notation 65.31% 55.99% 64.42% 60.73% 72.23% 59.66% 99.56% 53.24% 66.39

CN-BERT
Digit-based 69.93% 54.84% 61.07% 60.27% 75.54% 65.39% 99.42% 52.53% 67.37
Scientific Notation 64.87% 56.40% 66.39% 54.70% 75.41% 63.94% 99.42% 51.90% 66.63

LinkBERT

Original 68.81% 55.70% 59.94% 56.85% 73.43% 59.01% 99.91% 54.14% 65.97
Digit-based 63.76% 55.41% 59.54% 57.42% 73.63% 60.17% 99.73% 53.44% 65.39
Scientific Notation 65.81% 56.05% 57.00% 56.78% 75.51% 58.51% 99.82% 54.33% 65.48

CN-LinkBERT
Digit-based 68.61% 54.44% 63.59% 55.08% 71.21% 58.99% 100.00% 50.44% 65.30
Scientific Notation 63.48% 53.15% 62.02% 59.39% 75.70% 62.61% 99.73% 52.11% 66.02

Table 4: Experimental results of the BERT-based models. The results in bold are the ones that are better than the
Original. The score indicates Quantitative-101 Score.

ture studies can extend our results to decimals and
fractions. Since natural numbers are in the infinite
set, and it is impossible to let models learn with
a dataset containing all magnitudes and numbers,
we designed the task in the way following the hu-
man learning process because human beings do not
need to learn to count from zero to trillion to get
the ability to compare all numbers.

3.2 Quantitative 101

Quantitative 101 collects recent benchmark
datasets and focuses on quantitative tasks. There
are three tasks in Quantitative 101, including Quan-
titative Prediction (QP), Quantitative Natural Lan-
guage Inference (QNLI), and Quantitative Question
Answering (QQA). This section briefly introduces
the tasks, and we further provide details in Ap-
pendix C.

QP is the task of predicting the correct magni-
tude of the masked numeral. Although a possible
choice would be to predict the exact number given
a context, doing so is often very difficult, even for
a human. For example, the QP listed in Table 2,
in which the correct answer is 2.2. However, mak-
ing an accurate rough estimate for the magnitude
would often be feasible only for seasoned experts.
We attempt to test whether models can also learn
such a numeracy skill after being trained with a
large amount of data. Thus, we adopt Numeracy-
600K (Chen et al., 2019) as the dataset for this
task. Chen et al. (2019) designed this task as an
eight-class classification task, which includes the
magnitude from 1 to 6, decimal, and a magnitude

larger than 6. Numeracy-600K contains two sub-
sets: market comments and blog headlines.

QNLI is the task of making natural language
inferences based on quantitative clues. It is a com-
plex version of ComNum, because the given sen-
tences could be varied. The example of QNLI pre-
sented in Table 2 shows that models need to com-
pare numbers based on more complex semantics.
We selected EQUATE (Ravichander et al., 2019)
to experiment on real-world scenarios for QNLI.
EQUATE has five subsets, including RTE-QUANT,
AWP-NLI, NEWSNLI, REDDITNLI, and Stress
Test.

QQA is the other format for testing whether mod-
els can understand numerals and semantics. We
selected the Task 3 subset of NumGLUE (Mishra
et al., 2022) for the QQA experiments. Table 2
provides an example of this dataset. It is under a
binary-classification setting, and each instance has
two options.

We chose these three datasets to test the basic
quantitative skills of models. We noticed that sev-
eral instances in these datasets can be solved using
only the basic ability to understand numbers. How-
ever, the other subtasks in NumGLUE required rea-
soning skills including the generation of equations.
These tasks are not the target of this paper.

4 Methods

4.1 Notation of Numbers
The findings of previous studies (Chen et al., 2021;
Zhang et al., 2020) suggest two methods that are
worth trying: digit-based notation and scientific no-

71



Model Notation
QP QNLI

QQA ScoreComment Headline RTE-QUANT AWP-NLI NEWSNLI REDDITNLI Stress Test

RoBERTa

Original 60.46% 58.03% 60.15% 57.64% 79.58% 58.77% 98.93% 51.96% 65.69
Digit-based 69.25% 57.65% 59.40% 56.69% 78.90% 62.38% 99.91% 54.34% 67.31
Scientific Notation 64.32% 55.49% 60.08% 57.41% 78.68% 60.81% 100.00% 53.67% 66.31

CN-RoBERTa
Digit-based 64.25% 55.92% 68.96% 58.80% 77.99% 60.99% 99.73% 50.88% 67.19
Scientific Notation 60.28% 54.85% 62.15% 58.74% 65.92% 59.59% 99.47% 52.27% 64.16

Table 5: Experimental results of the RoBERTa-based models.

tation. Table 1 shows an example for each method.
Original signifies that we did not perform any pre-
processing on the input data, and the results are
tokenized based on WordPiece (Schuster and Naka-
jima, 2012; Wu et al., 2016) and Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016). In the Digit-
based method, we separated a numeral into digits.
In the Scientific Notation method, we we converted
numerals into scientific notation according to the
method described in Zhang et al. (2020), and Ta-
ble 1 provides examples to show that tokenizers
provide different results in this case. Note that we
pad the mantissa to 10 significant figures to retain
the information of most numerals.

4.2 Pre-Finetuning Task

We pre-finetune LMs with the CND for learning
the numeracy of comparing numbers. We believe
that this learning process can make models aware
of the numerals and may help answer the ques-
tions listed in Table 2. We further test whether
the proposed pre-finetuned method is helpful in
the QP, QNLI, and QQA tasks. We primarily use
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and LinkBERT (Yasunaga et al., 2022) for
the experiments. Since the market comment subset
for the QP task is in the financial domain, we also
experiment with FinBERT (Araci, 2019) in this sub-
set. The pre-finetuned LMs using BERT, RoBERTa,
LinkBERT, and FinBERT as initial models are
named CN-BERT, CN-RoBERTa, CN-LinkBERT,
and CN-FinBERT, respectively. During the pre-
finetuning process, we use the Digit-based or Sci-
entific Notation reframing methods to transform the
numerals in the input data. Thus, each proposed
pre-finetuned LM has two versions depending on
the notation of numbers.

5 Experiment

5.1 Innumeracy

Innumeracy can be tested via various experiments.
In this section, we observe the innumeracy phe-
nomenon with the empirical results of the Com-

Model Reframing QP-Comment

FinBERT
Original 65.26%
Digit-based 69.89%
Scientific Notation 70.03%

CN-FinBERT
Digit-based 68.84%
Scientific Notation 69.76%

Table 6: Results of the FinBERT-based models.

Num task. We aim to answer whether LMs have dif-
ferent performances between CND-T1 and CND-
T2. We use the micro-average of the F1 score to
evaluate the results of the ComNum task. Table 3
shows the results. It is not surprising that models
perform well in CND-T1. However, model per-
formances drop when we test using CND-T2. In
CND-T2, the order of magnitude of the numerals
is different from that in the training set. We call
this phenomenon “innumeracy”, and find that both
Digit-based and Scientific Notation perform well
for most pretrained LMs. In particular, using Scien-
tific Notation method leads to the least performance
drops with all LMs.3

5.2 Experimental Results

We follow the setting of previous studies to use
the macro-average of F1 score for the QP task and
the micro-average of F1 score for the QNLI and
QQA tasks. Table 4 presents the results of the
BERT-based models, and Table 5 presents the re-
sults of the RoBERTa-based models.4 To evaluate
the aggregate performance, we average all results
as in previous studies (Dua et al., 2019; Mishra
et al., 2022), and named this score the Quantitative-
101 Score. First, it can be observed that all nota-
tion methods and the pre-finetuning task improved
the overall performance of RoBERTa, and lead
RoBERTa to perform at par with the BERT-based
LMs. Second, we observed that the proposed pre-
finetuning task helped improve the QNLI task per-
formance. Third, using a proper reframing method
improved the QQA task performance. Fourth, the

3We provide more analysis on this point in Appendix B.
4We provide a fine-grained analysis in Appendix A for the

QNLI-Stress Test.
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Model Preprocessing
QP QNLI

QQA ScoreComment Headline RTE-QUANT AWP-NLI NEWSNLI REDDITNLI Stress Test
RoBERTa

Original
60.46% 58.03% 60.15% 57.64% 79.58% 58.77% 98.93% 51.96% 65.69

CN-RoBERTa 86.86% 77.29% 62.52% 56.70% 78.82% 64.29% 99.94% 50.71% 72.14

Table 7: Results of CN-RoBERTa without input reframing.

reframing methods and the pre-finetuning task were
not helpful for the BERT-based LMs in the QP task
as well as the overall performance.

Table 6 shows the results of the FinBERT-based
models in QP-comment. The results indicate that
the performances of FinBERT can be improved
with a proper reframing method. Additionally, the
proposed CN-FinBERT performs better than the
Original FinBERT.

To sum up our findings, the input reframing
methods can improve the performance of RoBERTa
and FinBERT. However, it does not work for BERT-
based models. The proposed pre-finetuning task
can improve the performance in the QNLI task re-
gardless of the LM used.

5.3 Ablation Analysis

In this section, we train CN-RoBERTa without in-
put reframing for ablation analysis. Table 7 shows
the results. The results indicate that the perfor-
mances of QP tasks were improved significantly,
and the performance of QNLI tasks was also im-
proved. These results indicate the proposed pre-
finetuning task is important for the QP tasks, but
input reframing is not. However, the performance
of the QQA did not improve without input refram-
ing. This result implies that, for QQA, input re-
framing provides some hints to the models to make
predictions. Overall, this study does not find a sil-
ver bullet for solving quantitative problems, but
shows that input reframing and basic quantitative
pre-finetuning design are promising directions.

6 Conclusion

This study deals with the innumeracy of LMs and
shows that the notation of numbers matters, espe-
cially for RoBERTa. We also propose a novel pre-
finetuning task for improving the quantitative skills,
and find that the performance in the QNLI task can
be improved after pre-finetuning. We hope our re-
sults in Quantitative 101 lead to a more in-depth
discussion on the ability of LMs to understand nu-
merals.

Limitations

The first limitation of the paper is that we focus
on the numerals represented by digits (0 to 9 and
decimal point) and do not discuss those written in
words such as “one” and “two”. Future work can
extend the findings of this work and transfer the
numeral words to digits. The second limitation of
this paper is that we do not discuss long text sce-
narios because the length of the instances in the
datasets is within 512. Future work can design
quantitative-related tasks with longer documents
and examine whether the proposed methods still
work. The third limitation of this paper is that we
do not train the model from scratch with the pro-
posed input reframing methods. We leave it as
one of the open questions for future studies. The
fourth limitation of this work is that we do not
experiment with all cases, including using data in
several ranges and experimenting with all kinds
of pretrained LMs, to prove that the innumeracy
phenomenon is a general phenomenon. Instead,
we present a pilot exploration of the phenomenon
and further pay attention to improving the perfor-
mances of other quantitative-related tasks.

Ethical Note

All datasets used in our experiment are available
online, and we provide the details and the license
information in Appendix C. We release the pre-
finetuned LMs (CN-BERT, CN-RoBERTa, CN-
LinkBERT, and CN-FinBERT) on the Hugging
Face models platform.5 Future work can repro-
duce our results easily and use our pre-finetuned
LMs for further research issues. Please refer to
Appendix B for details.
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Figure 1: BERT’s innumeracy phenomenon. (Perfor-
mance Drop between CND-T1 and CND-T2.)
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Figure 2: RoBERTa’s innumeracy phenomenon. (Per-
formance Drop between CND-T1 and CND-T2.)

Xikun Zhang, Deepak Ramachandran, Ian Tenney,
Yanai Elazar, and Dan Roth. 2020. Do language
embeddings capture scales? In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 4889–4896, Online. Association for Computa-
tional Linguistics.

A Analysis of QNLI-Stress Test

QNLI-Stress Test uses the data collected from
AQuA-RAT, and was annotated by an automatic
method (Ravichander et al., 2019). We follow the
splitting method in NumGLUE Task 7 (Mishra
et al., 2022) to separate it into training, develop-
ment, and test sets. First, we find 316 repeated
instances in both training and evaluation sets (de-
velopment and test sets). We already removed these
repeated instances from the training set in our ex-
periment. Second, we check the instances by re-
moving all numerals in each instance and find that
2,229 instances appear in both training and evalua-
tion sets, with 1,639 appearing in the same training
and test sets, and 80.17% have the same answer.
That could be the reason that the models perform
well in this dataset, since most instances do not
need to understand numerals.
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Figure 3: LinkBERT’s innumeracy phenomenon. (Per-
formance Drop between CND-T1 and CND-T2.)

5 10 15 20
−0.3

−0.2

−0.1

0

Epoch

D
ro

p

Original
Digit-based

Scientific Notation

Figure 4: FinBERT’s innumeracy phenomenon. (Perfor-
mance Drop between CND-T1 and CND-T2.)

B Implementation Detail

We used the Hugging Face transformers pack-
age (Wolf et al., 2019) for the experiment. 6 Intel
Xeon Gold CPU and Nvidia Tesla V100 w/32GB
are the CPU and GPU used in our experiment. Ta-
ble 8 provides the links to the LMs used in our
experiment. All pre-finetuned LMs (CN-BERT,
CN-RoBERTa, CN-LinkBERT, and CN-FinBERT)
are released on the Hugging Face platform.

Figure 1 to 4 present the tracing results of the
drop between CND-T1 and CND-T2 during the
training process. It can be observed that when
using Scientific Notation, the performances of LMs
stabilizes more quickly. In contrast, the change
of the performances with the Digit-based method
varies, and we did not obtain stable results in some
cases.

C Dataset

CND is our own generated dataset; therefore, we
did not have to obtain license permissions to use it.
There are three subsets in the proposed Quantita-
tive 101. Numeracy-600K (Chen et al., 2019) for

6https://huggingface.co/docs/
transformers/index
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URL
BERT (Devlin et al., 2019) https://huggingface.co/bert-base-uncased
RoBERTa (Liu et al., 2019) https://huggingface.co/roberta-base
LinkBERT (Yasunaga et al., 2022) https://huggingface.co/michiyasunaga/LinkBERT-base
FInBERT (Araci, 2019) https://huggingface.co/ProsusAI/finbert

Table 8: Reference for the models in our experiments.

Model Reframing Method URL

CN-BERT Digit-based https://huggingface.co/NLPFin/CN-BERT-Digit
Scientific Notation https://huggingface.co/NLPFin/CN-BERT-Sci

CN-RoBERTa
Original https://huggingface.co/NLPFin/CN-RoBERTa
Digit-based https://huggingface.co/NLPFin/CN-RoBERTa-Digit
Scientific Notation https://huggingface.co/NLPFin/CN-RoBERTa-Sci

CN-LinkBERT Digit-based https://huggingface.co/NLPFin/CN-LinkBERT-Digit
Scientific Notation https://huggingface.co/NLPFin/CN-LinkBERT-Sci

CN-FinBERT Digit-based https://huggingface.co/NLPFin/CN-FinBERT-Digit
Scientific Notation https://huggingface.co/NLPFin/CN-FinBERT-Sci

Table 9: Reference for the proposed models.

QP task could be downloaded from GitHub7, and
it is under the Creative Commons Attribution-Non-
Commercial-ShareAlike 4.0 International (CC BY-
NC-SA 4.0) license. EQUATE (Ravichander et al.,
2019) for QNLI task can also be downloaded
from GitHub8, and it is under the MIT License.
NumGLUE (Mishra et al., 2022) for QQA task can
be downloaded from the page of Allen Institute
for AI (AI2)9, and it is under the ODC Attribu-
tion License (ODC-By).10 In the following sub-
sections, we provide details of each subset. The
README document of the dataset provides all de-
tails about the separation. Please download the
dataset from https://huggingface.co/
datasets/NLPFin/Quantitative101.

C.1 Quantitative Prediction
Quantitative prediction (QP) is a task to predict the
correct magnitude of the masked numeral. For ex-
ample, even for a human, it is difficult to predict the
exact numeral (2.2) of the QP’s instance in Table 2;
however, some seasoned experts can make a cor-
rect rough estimate of the magnitude. We attempt
to test whether models also learn to make such pre-
dictions after being trained with a large amount
of data. Thus, we adopt Numeracy-600K (Chen
et al., 2019) as the dataset for this task. Chen et al.

7https://github.com/aistairc/
Numeracy-600K

8https://github.com/
AbhilashaRavichander/EQUATE/blob/master/
LICENSE

9https://allenai.org/data/numglue
10https://github.com/allenai/numglue/

blob/main/license.txt

(2019) designed this task as an eight-class classi-
fication task, which includes the magnitude from
1 to 6, decimal, and the magnitude larger than 6.
We follow their setting in this paper. There are
two subsets, including 600K market comments and
600K news headlines. We use 80%, 10%, and 10%
of instances as training, development, and test sets
in each subset, respectively.

C.2 Quantitative Natural Language Inference

Quantitative Natural Language Inference (QNLI) is
a complex version of ComNum because the given
sentences can be varied. The example of QNLI pro-
vided in Table 2 shows that models need to compare
numbers based on more complex semantics. We se-
lect EQUATE (Ravichander et al., 2019) to experi-
ment on real-world scenarios for QNLI. EQUATE
has five subsets collected from different sources,
including RTE-QUANT, AWP-NLI, NEWSNLI,
REDDITNLI, and Stress Test. Since four of these
subsets are less than 1,000 instances, we perform
the 10-fold cross-validation in the experiments. For
the Stress Test, which contains 7,500 instances, we
follow the splitting method in NumGLUE Task
7 (Mishra et al., 2022) to separate it into train-
ing, development, and test sets. Ravichander et al.
(2019) designed the QNLI task as a two or three-
class classification task depending on the subset.
We follow their settings for each subset.

C.3 Quantitative Question Answering

Quantitative Question Answering (QQA) is the
other format for testing whether models can un-
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derstand numerals and semantics. We selected
the Task 3 subset of NumGLUE (Mishra et al.,
2022) for the QQA experiments. Table 2 provides
an example of this dataset. It is under a binary-
classification setting, and each instance has two
options. We follow Mishra et al. (2022) to separate
the dataset into training, development, and test sets.
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Abstract

Recent advances in text-to-image synthesis
make it possible to visualize machine imagi-
nations for a given context. On the other hand,
when generating text, human writers are gifted
at creative visualization, which enhances their
writings by forming imaginations as blueprints
before putting down the stories in words. In-
spired by such a cognitive process, we ask the
natural question of whether we can endow ma-
chines with the same ability to utilize visual in-
formation and construct a general picture of the
context to guide text generation. In this work,
we propose iNLG that uses machine-generated
images to guide language models (LM) in open-
ended text generation. The experiments and
analyses demonstrate the effectiveness of iNLG
on open-ended text generation tasks, including
text completion, story generation, and concept-
to-text generation in both few-shot and full-data
scenarios. Both automatic metrics and human
evaluations verify that the text snippets gener-
ated by our iNLG are coherent and informative
while displaying minor degeneration.1

1 Introduction

One great resource human writers cherish is the
ability of imagination, with which they render men-
tal images about an actual or vicarious experience
and link knowledge that would later make the writ-
ing more concrete, sensible, and intriguing. Cog-
nitive studies show that visual imagery improves
comprehension during language processing (Gam-
brell and Bales, 1986; Joffe et al., 2007; Sadoski
and Paivio, 2000), and that mental imagery facili-
tates humans’ written language expression at young
ages (Gambrell and Koskinen, 2002).

When it comes to the study of Artificial Intelli-
gence (AI), one classic challenge for AI systems
is to generate informative and coherent text snip-
pets. Open-ended text generation is such a task that
provides an input context, and asks the model to

1Our code & data: https://github.com/VegB/iNLG.

Context: The individual adds chicken to the pan and cooks it. The 
individual adds chopped onions and mushrooms to the pan and cooks 
them. The individual adds some other ingredients…

Repetitive to the input context.  
Not informative.

: and the individual adds them to the pan.

Text-only Input

: and stirs them into the soup.

Text Input + Visual Imagination

Machine
Imagina!on

Context 1: One of the guys hits the ball over to the other side and they 
hit it back. Then on the other side of the beach there is a group of 
women also playing volleyball. They…

(a1) Retrieved Image (b1) Generated Image

Context 2: A boy is talking to a camera. He goes into a bathroom and 
drinks a cup of mouthwash. He…

(a2) Retrieved Image (b2) Generated Image Figure 1: When performing open-ended text generation,
the language models prompted with text-only input may
generate repetitive or unilluminating contents, which is
also known as degeneration. Hereby, we propose to use
machine-generated images as additional visual supervi-
sion to guide the language models in generating more
informative and coherent text with the given context.

generate a piece of text that is consistent with the
context. This is the cornerstone of a wide range of
downstream tasks such as text completion (Guan
et al., 2019; Radford et al., 2019), story genera-
tion (Fan et al., 2018; Goldfarb-Tarrant et al., 2020;
Swanson et al., 2021; Su et al., 2022b), and dia-
logue systems (Schatzmann et al., 2007; Wen et al.,
2015, 2017; Wei et al., 2018; Wu et al., 2021), and
has received much attention throughout the years.
Inspired by human writers’ common practice of
creative visualization, we ask the following ques-
tion: Can we endow machines with the same ability
to construct a general picture of the context and use
it as a blueprint to guide text generation?

Recent advances in text-to-image generation
make it possible to visualize machine imaginations
for a given context (Ramesh et al., 2021; Rom-
bach et al., 2022; Crowson et al., 2022; Wang et al.,
2022b; Saharia et al., 2022). Moreover, this line
of work shows great potential in utilizing textual
information to guide image synthesis. It comes nat-
urally that one may attempt to complete the loop by
using visual supervision to guide text generation.

In this work, we propose using machine-

78

https://github.com/VegB/iNLG


generated images to guide the language model
(LM) in open-ended text generation. More specif-
ically, we visualize machine imagination for the
input context by rendering images with StableD-
iffusion (Rombach et al., 2022), a state-of-the-art
text-to-image generator. The machine imagination
acts as additional visual supervision to guide LMs
in generating informative and coherent text in two
ways. Firstly, the machine-generated images are
introduced as the input to the LM in the form of the
visual prefix. Secondly, we designed a contrastive
training objective that enforces the generated text
to be semantically similar to the visual supervision.

We conduct experiments on three open-ended
text generation tasks, namely text completion, story
generation, and concept-to-text generation. Exten-
sive experiments in the few-shot settings show bet-
ter or competitive performance to state-of-the-art
baselines on both automatic metrics and human
evaluation. Experiments with full-data settings
show that introducing machine-generated visual
supervision with our iNLG yields consistent im-
provements on various LM models including GPT-
2 (Radford et al., 2019), BART (Lewis et al., 2020),
and T5 (Raffel et al., 2020).

Our main contributions are as follows:
• We introduce a novel paradigm that lever-

ages machine-generated images to guide open-
ended text generation. This endows the ma-
chines with the ability of creative visualization
that human writers often demonstrate.

• We distill the vision information from the pre-
trained multimodal models and further con-
struct visual prefixes to guide language mod-
els performing text generation with teacher
forcing and contrastive objectives.

• Extensive experiments show the effective-
ness of iNLG as a model-agnostic framework
in open-ended text generation tasks, includ-
ing text completion, story generation, and
concept-to-text in both few-shot and full-data
settings.

2 Related Work

Open-ended Conditional Text Generation is
the task of generating a coherent portion of the
text based on the given context. Recent advances
in pre-trained models have pushed frontier in the
open-ended conditional text generation, such as
text completion(See et al., 2019; Ippolito et al.,
2020), story generation (Guan et al., 2020; Fan

et al., 2018; Yao et al., 2019) and concept-to-text
generation (Zhou et al., 2021; Liu et al., 2021). De-
spite the success of large language models, text
degeneration and semantic coverage still remain
as two core technical challenges in few-shot open-
ended text generation. To improve the text cover-
age, StoryEndGen (Guan et al., 2019) leverages the
knowledge graph to encode context sequentially.
Fan et al. (2018) and Yao et al. (2019) plan the
content (premise or keywords) first and then en-
courage the generation based on planned content.
To mitigate the text degeneration, SimCTG (Su
et al., 2022b) uses a contrastive training strategy
to encourage the model to learn isotropic token
embeddings. Similar to our approach, Wang et al.
(2022a) generates a scene graph for each concept
and combines them with text for the model input.
Previous work has proposed to add visual informa-
tion to LM by retrieving images from the Internet
or large-scale image sets (Yang et al., 2020; Cho
et al., 2021; Su et al., 2022a). However, the re-
trieved images may fail to fully incorporate the
context, which will misguide the LM from yield-
ing contextually consistent predictions.2 Unlike
prior work, our approach leverages images gener-
ated conditioning on the context to assist the text
generation process.

Visually-aided NLP Recent work show the
power of visual guidance in natural language pro-
cessing, spanning from the language representation
learning (Lu et al., 2019; Li et al., 2019; Sun et al.,
2019; Luo et al., 2020; Chen et al., 2020; Li et al.,
2020; Tan and Bansal, 2020; Lu et al., 2022), the
downstream tasks (Grubinger et al., 2006; Elliott
et al., 2016; Xie et al., 2019; Christie et al., 2016;
Shi et al., 2019; Lu et al., 2022) and evaluation (Zhu
et al., 2021). They either leverage visual informa-
tion from an external vision-and-language corpus
or obtain such visual knowledge from the large pre-
trained model. In this line of work, imagination
achieves promising performance in various NLP
domains (Long et al., 2021; Zhu et al., 2021; Wang
et al., 2022a; Lu et al., 2022). Previous imagination-
based work in NLP either study non-generation
problems (Zhu et al., 2021; Lu et al., 2022) or
utilize non-visual information (Long et al., 2021;
Wang et al., 2022a). Our work explores the poten-
tial of generating visual imagination to improve
open-ended text generation tasks.

2Figure 8 shows examples where the image retrieved from
the search engine is irrelevant with the input context.
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Input Context x  
A man is seen skiing behind a boat. He holds on tight as he is pulled through the water. The man …

Target :  is water skiing until the end of the clip.y
Prediction : then moves to the side and begins to swim.̂y
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Figure 2: An overview of our iNLG. Given an input context x, we first visualize the context with the text-to-image
generation model. Then we use the machine-generated image I as the additional visual supervision to guide the
language model in open-ended text generation. The visual feature is provided as a source of input to the LM in the
form of the visual prefix. Aside from the teacher forcing objective Lteacher, we also enforce the LM to generate text
that is semantically similar to the machine imagination with a contrastive training objective Lcontrastive.

3 Method

3.1 Overview

Open-ended text generation is a task that provides
an input context, and asks the model to generate a
piece of text that is consistent with the context.

This work mainly focused on introducing
machine-rendered images to assist LM in perform-
ing open-ended text generation. More specifically,
given the context xi, we first use a text-to-image
generator to illustrate an image Ii that depicts the
input context. The LM is prompted with image
Ii as the visual prefix along with the text context
xi, and will incorporate the multimodal input to
generate the output text ŷi.

Figure 2 provides an overview of our iNLG
framework, which mainly involves two modules.
The first module is a text-to-image generator that
takes in the input context and illustrates a descrip-
tive image, which we also refer to as the machine
imagination. The second module is a visually-
guided language model that utilizes the machine
imagination as a source of input and also a supervi-
sion that encourages the LM to generate text that is
semantically similar to the visual information.

3.2 Text-to-Image Rendering

In this work, we propose to use images gener-
ated conditioning on the context by the machines
as additional visual information to the LM. The
text-to-image generation backbone is StableDiffu-
sion (Rombach et al., 2022), which mainly consists

of a text encoder, a diffusion model, and an au-
toencoder. The text encoder is from the frozen
CLIP ViT-L/14 (Radford et al., 2021) and encodes
the input text to textual embeddings. The diffu-
sion model uses UNet (Ronneberger et al., 2015)
to provide noise estimation. The UNet is modi-
fied so as to attend to the input textual embeddings.
The encoder of the pretrained autoencoder encodes
images into the lower-resolution latent maps zT .
At each step t, the diffusion model provides the
noise estimation ϵ and modifies zt correspondingly.
The decoder of the pretrained autoencoder takes
the final noise-free latent map z and generates the
image prediction. StableDiffusion is trained with
LAION-5B (Schuhmann et al., 2022).

3.3 Visually Guided Text Generation
Visual Prefix Construction One can encode the
visual information with the pre-trained visual mod-
els. However, such visual embedding may lie in a
representation space different from the LM due to
the discrepancy between models. One way of intro-
ducing features extracted by another network to the
current model is through feature mapping (Mokady
et al., 2021). With a dataset of image-text pairs
pI 1,x1q, we can pre-train a mapping network F for
a given LM in an image captioning formulation.
More specifically, we encode I 1 with the visual
encoder Encvisual and receive its visual features v1.
Then we apply the mapping network F over v1,
and receive a sequence of l visual prefixes:

c1
1, c

1
2, . . . , c

1
l “ Fpv1q “ FpEncvisualpI 1qq (1)
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We provide the list of visual prefix as input to the
LM with the corresponding text x1 as the target
output. Such a pre-training process enables F to
project visual features into the visual prefix that
lies within the same embedding distributions as
the LM. The mapping network is agnostic of the
downstream task, and only depends on the visual
source and the LM.

After generating a descriptive image Ii for the
input context xi, we use CLIP to encode Ii and
receive its visual features vi. We apply the pre-
trained mapping network F over vi, and receive
the visual prefix ci of length l:

ci “ tci1, ci2, . . . , cilu “ FpCLIPpIiqq (2)

Visually-guided Language Modeling We use
the visual information to guide text generation
in two ways, reflected in the following two train-
ing objectives. Firstly, we directly introduce the
machine-generated visual information as input to
the LM. We concatenate the visual prefix ci and
the text embeddings ti for the input context xi

with m tokens. LM input can be denoted as
rci; tis “ tci1, . . . , cil, ti1, . . . , timu. With yi “
tyi1, yi2, . . . , yinu denoting the target output of n to-
kens, and θ denoting the trainable parameters, we
can list out the teacher forcing training objective as
follows:

Lteacher “ ´
nÿ

j“1

log pθpyij |ci; ti;yiăjq (3)

In addition, we design a contrastive objective to
enforce the generated text to be semantically simi-
lar to the input visual supervision with the InfoNCE
loss (van den Oord et al., 2018; Yan et al., 2021):

Lcontrastive “ ´ log
exppsimpvi, t̂iq{τq

ř
j‰i exppsimpvi, t̂jq{τq

(4)

in which t̂ is the projected representation of the
decoder’s last layer’s output, and can be viewed as
the sentence-level representation of the generated
text. Here simp¨, ¨q first normalizes the two vectors,
then compute their cosine similarity, and τ is the
temperature.

3.4 Training & Inference
We first pre-train the mapping network on the pre-
training dataset with the teacher-forcing objective.
Such pre-training is agnostic of the downstream
task, and only depends on the type of base LM.

When applying our iNLG on downstream tasks,
we train the base LM with the teacher forcing ob-
jective for the first Nno_contra epochs. Then, we
introduce the contrastive objective and tune the
base LM together with the mapping network and
projection layer by minimizing the following loss
L. Here ep denotes the epoch and λ is the factor:

L “
#
Lteacher, ep ă Nno_contra,

Lteacher ` λLcontrastive, ep ą Nno_contra,

(5)
During inference, we provide the context and

machine-generated image to the LM. We use beam
search during decoding with a beam width of 10.

4 Experimental Setup

4.1 Tasks, Datasets, and Baselines

We apply our iNLG on three open-ended text gen-
eration setups: sentence completion, story genera-
tion, and concept-to-text generation. Table 1 shows
examples for each task.

Sentence Completion is a task of finishing the
sentence in a commonsense inference scenario. We
conduct experiments on the ActivityNet (Heilbron
et al., 2015) subset3 of HellaSwag (Zellers et al.,
2019), which is a benchmark for commonsense
natural language inference that ask the model to
predict the most likely follow-up among several
choices given a specific context. We compare with
StoryEndGen (Guan et al., 2019) which encodes
the given context incrementally and attends to the
one-hop knowledge graph retrieved from Concept-
Net for the context tokens. We implement our
iNLG on top of the GPT-2 (Radford et al., 2019),
which by nature, can generate the follow-up for an
arbitrary input in a zero-shot manner.

Story Generation requires the model to com-
pose a story based on the given title or context.
We conduct experiments on the widely used story
generation benchmark ROCStories (Mostafazadeh
et al., 2016). Each data item consists of a story title
and a human-written five-sentence everyday life
story that incorporates commonsense related to the
title.4 We provide the story title and the story’s first
sentence as the input context, and ask the LM to pre-
dict the following four sentences. We consider the

314740/982/2261 samples for train/validation/test.
4We use the split provided by Su et al. (2022a), which is

based on the ROCStories Winter 2017 release and contains
49666/1500/1500 items for the train/validation/test sets.
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Task Input Context Target Output

Text Completion
Different people are interviewed on camera while several others
are shown raking up the leaves. A man is seen sitting in his car
and another puts his gloves on. The camera

pans over the raked up leaves while several others discuss their
hard work.

Story Generation Live Show. Tim was in his school’s play.
He was nervous about their first show. He almost dropped out.
The show went smoothly. Tim was excited for his second show.

Concept-to-Text grow, flower, pavement Wild flower growing through crack in the tiled pavement.

Table 1: Exemplars of the input context and corresponding target output for three open-ended text generation task
covered in this study, namely story generation, text completion, and concept-to-text generation.

following methods as baselines: Action-Plan (Fan
et al., 2018) first predicts the premise of a story with
the convolutional LM (Dauphin et al., 2017), then
use the fusion mechanism (Sriram et al., 2018) to
encourage a convolutional seq2seq model (Gehring
et al., 2017) to generate the story from the premise.
Plan-and-Write (Yao et al., 2019) first plans a sto-
ryline that consists of keywords, then generate the
story conditioned on the storyline. Its model struc-
ture is built upon GRU (Cho et al., 2014). Sim-
CTG (Su et al., 2022b) proposes a contrastive train-
ing objective that encourages the LM to learn dis-
criminative and isotropic token representations, and
is implemented on GPT-2 (Radford et al., 2019).

Concept-to-Text is a relatively more constrained
conditional text generation task involving common-
sense reasoning. This task provides a set of con-
cepts as input, and requires the model to generate
a piece of text that incorporates the concepts and
describes an everyday scenario. We conduct experi-
ments on the CommonGen (Lin et al., 2020) bench-
mark.5 We compare against the following models:
KG-BART (Liu et al., 2021) encompasses the re-
lations of concepts with the knowledge graph and
augments the BART (Lewis et al., 2020) encoder
and decoder with graph representations. Mode-
lAdapt (Ma et al., 2021) is built upon BART and
removes the positional embedding in the encoder.
Imagine-and-Verbalize (I&V) (Wang et al., 2022a)
predicts a scene graph for each set of concepts, and
uses it as an additional input to the LM. In contrast
to I&V, we directly visualize the concepts and use
the machine-generated images as the auxiliary in-
formation to assist the concept-to-text generation.

4.2 Evaluation

Automatic For sentence completion and story
generation, we follow previous work and eval-

5We use the in-house split provided by Wang et al.
(2022a), which contains 65323/2066/4018 samples for
train/validation/test.

uate the quality of the generated text from the
aspect of model degeneration level (rep-n, di-
versity, distinct-n), text distribution divergence
(MAUVE), and semantic similarity (BERTScore):
(1) rep-n = 1.0 - |unique n-grams|

|total n-grams| measures sequence
level repetition by computing the portion of du-
plicate n-grams (Welleck et al., 2020). (2) di-
versity =

ś4
n=2p1 ´ rep-nq measures the diversity

of n-grams (Su et al., 2022a). (3) distinct-n =
|unique n-grams|

|length of text| measures the portion of distinct n-
grams in the text (Li et al., 2016). (4) MAUVE mea-
sures the learned distributions divergence between
the generated text and human-written text (Pillutla
et al., 2021),6 a low MAUVE indicates a great dif-
ference between the distributions of generated text
and human text. (5) BERTScore assesses contex-
tual text similarity between two pieces of texts by
computing the cosine similarities between their to-
kens’ embeddings (Zhang* et al., 2020),7 a low
BERTScore means the generated text is contextu-
ally different from the ground-truth.

For concept-to-text, following prior work, we
report the metrics scores on BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), SPICE (Anderson
et al., 2016), and BERTScore (Zhang* et al., 2020).

Human We also set up a human evaluation as a
complementary evaluation beyond the automatic
metrics. We select 100 samples from the test set
for sentence completion and story generation and
perform the head-to-head comparison between the
text snippets generated by our iNLG and the base-
line models. We invite human annotators to com-
pare the text quality from the following three inde-
pendent aspects: (1) Coherence: Which snippet is
more semantically consistent with the context, and
follows the logic of the context more naturally. (2)
Fluency: Which snippet is more fluent in English.
(3) Informativeness: Which snippet contains more

6We report MAUVE with gpt2-large as the base model.
7We report BERTScore with roberta-large as base model.
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Task * Setting rep-2 Ó rep-3 Ó rep-4 Ó diversity Ò distinct-2 Ò MAUVEÒ BERTScoreÒ

Sentence
Completion

0 Human 0.45 0.05 0.01 99.50 77.32 - -
1 GPT2 no finetune (Radford et al., 2019) 6.71 6.87 10.13 78.07 74.83 44.19 22.57

2 StoryEndGen (Guan et al., 2019) 39.53 35.11 39.30 34.12 44.57 0.45 -47.29
3 GPT2 text-only finetune 4.20 4.03 5.53 86.85 75.14 49.45 24.13
4 GPT2 `iNLG 2.43 2.61 3.57 91.63 75.92 60.30 24.25

Story
Generation

5 Human 1.76 0.38 0.15 97.71 56.34 - -
6 GPT2 no finetune 37.65 22.76 21.92 45.67 43.42 0.43 -7.77

7 Action-Plan (Fan et al., 2018) 52.05 35.58 28.11 26.97 21.43 0.41 -18.32
8 Plan-and-Write (Yao et al., 2019) 45.22 32.86 23.34 30.71 20.83 0.41 -37.35
9 SimCTG (Su et al., 2022b) 28.72 24.02 20.61 43.00 42.06 0.43 18.01
10 GPT2 text-only finetune 25.41 18.51 14.41 52.10 46.60 9.10 21.23
11 GPT2 `iNLG 10.73 5.64 3.42 81.36 51.91 35.94 23.03

Table 2: Generation quality scores for few-shot text completion on the ActivityNet and few-shot story generation on
ROCStories. “Human” shows the human performance and “GPT2 no finetune” denotes the vanilla GPT2 model
without tuning. All the other listed models are trained with 1% of the training data. “`iNLG” denotes introducing
machine-generated images on top of the base LM.

interesting content, and describes the scenes that
are more likely to happen in real life. Three human
judges rate each comparison.

4.3 Implementation Details

We use StableDiffusion-v1-1 (Rombach et al.,
2022) to render a 512x512 image from the context,
and use CLIP ViT/B-32 to extract features offline.
The mapping network is an 8-layer Transformer,
and the visual prefix length is 20. For the sentence
completion and story generation tasks, the mapping
network is pre-trained on the MSCOCO (Lin et al.,
2014) dataset. For the concept-to-text task, the
mapping network is pre-trained on VIST (Huang
et al., 2016).8 We pre-train the mapping network
for 5 epochs with a batch size of 128. Results are
reported on three repeat runs. Detailed hyperpa-
rameters are listed in the Appendix.

5 Result and Analysis

5.1 Few-Shot Learning Results

Open-ended text generation is a broad topic with
flexible and inexhaustible setups, many of which
have low resources. Collecting annotations is often
extremely expensive and time-consuming. There-
fore, we first report few-shot results to check if our
iNLG can rapidly adapt to new task setups with a
few examples, which is more practical in real-life.

More specifically, we report few-shot open-
ended text generation results with 1% of the train-
ing data. For sentence completion and story gen-

8CommonGen is built upon image and video caption-
ing datasets including MSCOCO. To avoid data leakage, we
choose to pre-train the mapping network on VIST, which is
not revealed to CommonGen.

eration tasks, the base LM is GPT2-base (Radford
et al., 2019). For concept-to-text, we test it with
BART-base (Lewis et al., 2020) as the base LM.

Sentence Completion As shown in Table 2, Sto-
ryEndGen (#2) suffers from degeneration with the
highest rep-n and the lowest diversity. Training
with only 1% of the training data improves GPT2’s
performance on all metrics (#3 vs. #1). Under the
same few-shot setting, adding additional machine-
generated images with our iNLG (#4) further al-
leviate model degeneration. The improvement on
MAUVE also indicates that introducing visual in-
put can aid GPT2 in generating text that is more
similar to the human-written ones.

Story Generation As shown in Table 2, for the
story generation task that requires the LM to com-
pose longer text, we see the vanilla GPT2 with-
out tuning suffering from more severe degener-
ation compared to rendering a sentence ending
(#6 vs. #1). The high rep-n scores indicate that
the two non-Transformer-based baselines Action-
Plan (#7) and Plan-and-Write (#8) stammer with
repetitive tokens, which greatly differs from the
human-written text (leads to low MAUVE) and
does not have concrete meanings (leads to low
BERTScore). The models based on GPT-2 (#9-
#10) yield more complete sentences with concrete
meanings (BERTScore gets higher). However, they
keep repeating the same sentence, which is still
quite different from human language (MAUVE re-
mains low). Applying iNLG to GPT-2 leads to
minor degeneration and has the best performance
on all metrics (#11). Examples of generated text
snippets can be found in Figure 6 and in Appendix.
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Task Models Coherence Fluency Informativeness

Win(%) Tie(%) Lose(%) Win(%) Tie(%) Lose(%) Win(%) Tie(%) Lose(%)

Sentence Completion
Ours vs. StoryEndGen 51.67 20.33 28.00 44.67 19.33 36.00 41.33 18.33 40.33
Ours vs. GPT2 no finetune 51.00 22.67 26.33 45.00 22.33 32.67 41.00 21.00 38.00
Ours vs. GPT2 text-only finetune 58.00 24.33 17.67 43.33 18.67 38.00 42.33 21.67 36.00

Story Generation

Ours vs. Action-Plan 51.00 24.67 24.33 54.67 16.33 29.00 52.00 15.00 33.00
Ours vs. Plan-and-Write 45.33 25.67 29.00 53.00 16.67 30.33 54.67 17.00 28.33
Ours vs. SimCTG 42.00 27.67 30.33 40.33 25.67 34.00 43.33 18.33 38.33
Ours vs. GPT2 no finetune 43.33 24.33 32.33 43.67 20.33 36.00 44.67 19.00 36.33
Ours vs. GPT2 text-only finetune 39.33 26.67 34.00 38.67 26.67 34.67 44.33 22.67 33.00

Table 3: Human evaluation results for the sentence completion task and the story generation task. The scores
indicate the percentage of win, tie or lose when comparing our iNLG with the baseline models.

* Setting B-4 M. CIDEr SPICE BertS.

1 BART-base text-only finetune 20.72 25.47 114.49 24.58 59.76
2 `KG (Liu et al., 2021) 15.26 24.44 98.53 23.13 52.76
3 `Adapt (Ma et al., 2021) 23.11 25.96 123.44 25.14 61.53
4 `I&V (Wang et al., 2022a) 24.50 25.89 119.61 25.59 57.29
5 `iNLG 25.07 26.48 127.93 26.32 63.37

Table 4: Automatic metrics scores for few-shot concept-
to-text generation on CommonGen with 1% of the train-
ing data. All listed models are implemented on BART-
base. “`KG” adds knowledge graph, “`Adapt” ap-
plies model adaption, “`I&V” adds scene graph, and
“`iNLG” introduces machine-generated images as input.
B-4: BLEU-4; M.: METEOR; BertS.: BERTScore.

Concept-to-Text Table 4 shows that knowledge
graph information may not be fully exploited under
the few-shot setting (#2), while removing the infor-
mation of relative positions between input concepts
helps the LM write better sentences (#3). Intro-
ducing machine-generated images can improve the
base LM’s performance on concept-to-text gener-
ation (#5 vs. #1). While both I&V and our iNLG
involve machine “imagination”, we provide such
information in different forms (scene graphs vs.
images). Comparing #4 and #5, our iNLG outper-
forms I&V with BART-base as the base LM. This
suggests that the additional information introduced
by I&V and iNLG is complementary.

Human Evaluation Table 3 lists out human eval-
uation results on text completion and story gener-
ation. Our iNLG outperforms the compared base-
lines on all three criteria in the model-level head-
to-head comparisons. This further verifies the ef-
fectiveness of our iNLG in generating fluent and
informative text snippets that better align with the
given context.

5.2 Model-Agnostic Improvement

We further report open-ended text generation re-
sults with various base LM when trained with the
full set of data. For concept-to-text, we experiment

Base LM Setting Metrics

Concept-to-Text B-4Ò MET.Ò CIDErÒ SPICEÒ BertS.Ò

BART-base
text-only 30.32 31.35 158.92 31.22 68.50
`iNLG 30.60 31.44 160.63 31.42 69.02

BART-large
text-only 32.38 33.06 169.69 33.01 70.33
`iNLG 32.76 33.17 171.47 33.35 70.79

T5-base
text-only 30.39 30.87 163.67 32.77 70.03
`iNLG 31.09 31.18 165.52 32.81 70.35

T5-large
text-only 34.13 32.91 175.67 34.30 72.44
`iNLG 34.50 33.87 177.65 35.48 72.70

Sentence Completion rep-4Ó div.Ò dist-2Ò MAUVEÒ BertS.Ò

GPT2-base
text-only 4.20 87.46 72.87 61.42 29.84
`iNLG 3.95 89.33 74.09 64.01 30.10

GPT2-large
text-only 1.77 96.54 76.74 87.81 31.66
`iNLG 2.05 95.90 76.80 89.11 32.15

Story Generation rep-4Ó div.Ò dist-2Ò MAUVEÒ BertS.Ò

GPT2-base
text-only 7.83 68.42 49.53 33.13 28.81
`iNLG 6.80 71.17 49.92 38.86 29.13

GPT2-large
text-only 1.02 91.91 54.17 82.81 31.86
`iNLG 0.85 92.51 54.54 87.83 32.03

Table 5: Automatic metric scores when trained with the
full set of data with ablations of the base LM. Introduc-
ing our iNLG leads to model-agnostic improvements
across the board. B-4: BLEU-4; MET.: METEOR;
BertS.: BERTScore; div.: diversity; dist-2: distinct-2.

with BART-base/large (Lewis et al., 2020) and T5-
base/large (Raffel et al., 2020). For sentence com-
pletion and story generation, we record results on
GPT2-base/large (Radford et al., 2019). As shown
in Table 5, introducing machine-generated visual
supervision with our iNLG leads to model-agnostic
improvements over text-only finetuning. This holds
true for all the listed base LM with different ar-
chitectures and verifies that our iNLG is a model-
agnostic framework.

5.3 Performance Analysis

Source of Image We first perform an ablation
study to understand how the source of visual infor-
mation affects our iNLG framework. We compare
retrieved/generated images from four sources: (1)
the first returned result by Yahoo Image Search;9

9https://images.search.yahoo.com/
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Context 1: One of the guys hits the ball over to the other side and they 
hit it back. Then on the other side of the beach there is a group of 
women also playing volleyball. They…

(a1) Retrieved Image (b1) Generated Image Context: The individual adds chicken to the pan and cooks it. The 
individual adds chopped onions and mushrooms to the pan and cooks 
them. The individual adds some other ingredients…

Repetitive to the input context.  
Not informative.

: and the individual adds them to the pan.

Text-only Input

: and stirs them into the soup.

Text Input + Visual Imagination

Machine
Imagina!on

Context 2: A boy is talking to a camera. He goes into a bathroom and 
drinks a cup of mouthwash. He…

(a2) Retrieved Image (b2) Generated Image

Text2Img Model trender

StableDiffusion   5s

OFA 57s

VQGAN+CLIP 63s

(a) (b)

Figure 3: (a) iNLG’s performance on CommonGen and
ActivityNet with visual supervisions retrieved from the
web or generated by machines. Scores are reported
with error bars. (b) Average time to render an image on
TITAN RTX with each text-to-image generator.

(2) images rendered by VQGAN+CLIP (Crowson
et al., 2022);10 (3) images rendered by OFA (Wang
et al., 2022b),11 and (4) images rendered by Sta-
bleDiffusion (Rombach et al., 2022), with which
we report the main results.

As shown in Figure 3(a), the images generated
by machines act as a more effective supervision
than the retrieved images. This validates our mo-
tivation of introducing machine-generated images
over retrieved ones to guide LM in performing text
generation. Among the three text-to-image genera-
tors, VQGAN+CLIP is slightly inferior to the other
two, while StableDiffusion and OFA have mixed
performance. Images generated by StableDiffusion
rank first on CommonGen, while images rendered
with OFA score slightly higher on ActivityNet. Fig-
ure 3(b) reports the average image rendering time,
where StableDiffusion is 10ˆ faster when render-
ing images than the other two.

Contrastive Training We examine the effect of
the contrastive training objective on CommonGen,
and the results are presented in Figure 4. We notice
that introducingLcontrastive improves iNLG’s perfor-
mance on 4 out of 5 listed few-shot setups, which
suggests that our contrastive training objective gen-
erally can assist the LM in composing open-ended
text snippets. One exception is in the extreme few-
shot setting with only 0.1% of training data, where
the amount of data is insufficient to let the LM
form a decent representation. In this case, enforc-
ing the sentence representation to be similar to the
visual supervision with Lcontrastive might misguide
the LM.

Mapping Network & Visual Prefix We discuss
the effects of different types of mapping networks
and various visual prefix lengths. Aside from the
8-layer Transformer we used in the main experi-

10https://github.com/nerdyrodent/VQGAN-CLIP
11https://github.com/OFA-Sys/OFA
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Figure 4: Performance of applying our iNLG on BART-
base for few-shot concept-to-text with ablated training
objective Lcontrastive on various few-shot settings. Scores
are reported with error bars.
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Figure 5: Performance of our iNLG on few-shot sen-
tence completion with various visual prefix lengths and
with MLP and Transformer as mapping network. Scores
are reported with error bands.

ments, we also tried a simple Multi-Layer Percep-
tron (MLP) with two fully-connected layers. As
shown in Figure 5, the Transformer-based mapping
network outperforms MLP on all listed l. MLP
has the best performance when visual prefix length
l “ 15, while the Transformer-based mapping net-
work scores highest when l “ 20.

Model Weight Tuning Table 6 compares the in-
fluence of pre-training/tuning the weights of differ-
ent modules of our iNLG. Generally speaking, tun-
ing the weights during training outperforms freez-
ing the weights, which applies to both the base LM
and the mapping network. In addition, considering
our few-show setup, pre-training the mapping net-
work also helps our iNLG gain better performances.
The best combination is applying the pre-trained
mapping network, and tuning it together with the
base LM on the few-shot downstream task.

Showcase Figure 6 provides two showcases on
few-shot sentence completion and story generation
to compare our iNLG with the GPT2-based base-
lines. SimCTG and GPT2 tuned with text-only
corpus rendering repeated segments, either copy-
ing from the input context, or simply repeating
themselves. In comparison, our iNLG has minor
degeneration and writes coherent sentence endings
or stories with more creative details in both tasks.

85

https://github.com/nerdyrodent/VQGAN-CLIP
https://github.com/OFA-Sys/OFA


Tune LM Pretrain Map. Tune Map. diversity Ò MAUVE Ò
✗ ✗ ✗ 15.52 0.47
✗ ✗ ✓ 78.20 33.79
✗ ✓ ✗ 27.06 1.83
✗ ✓ ✓ 76.36 25.15
✓ ✗ ✗ 87.45 48.06
✓ ✗ ✓ 88.68 51.81
✓ ✓ ✗ 89.05 55.61
✓ ✓ ✓ 92.68 60.62

Table 6: Performance of our iNLG on few-shot sentence
completion with ablated settings on whether to tune the
LM, pretrain the mapping network (Pretrain Map.) and
tune the mapping network (Tune Map.).

Context: They mix the eggs around a bowl and place butter and milk into 
another bowl and mix them all together. They…

GPT2

(no finetune)

will be very soft and fluffy.

GPT2 

(text-only finetune)

are ready to use.

GPT2 + iNLG then put a bowl on the end of the sink and 
put the mixture in the sink.

Generated 
Image:

Context:    Barry at the Mall. Barry and his friends spent a day at the mall.

SimCTG

Barry was at the mall with his friends. They were 
all very excited to see him at the mall. They all 
had a great time at the mall. They all had a great 
time at work. They all had a great time at school

GPT2 

(text-only)

They went to the local mall and bought a new car. 
They drove to the mall and bought a new car. 
They drove to the mall and bought a new car. 
Barry's friends were very happy they bought a 
new car.

GPT2 

+iNLG

They were swamped by the crowds. Barry was 
scared to go home. They tried to avoid the mall, 
but they were stopped by the people at the mall.

Generated 
Image:

Context:      Two girls are standing in a yard wearing cheerleading outfits. 

                     A girl…

GPT2 

(text-only)

is standing in a yard with a group of girls.

GPT2 

+iNLG is wearing a white bikini and blue shorts.

Generated Image:

(a) Sentence Completion

(b) Story Generation

Figure 6: Sentence ending and stories generated by
GPT2-based methods tuned with 1% of the training
data. Repetitive contents are underlined. The sentence
ending and story written by our iNLG is coherent with
the context, related to the machine-generated image, and
has minor degeneration. More demonstrative examples
can be found in the Appendix.

6 Conclusion

In this work, we propose iNLG, a framework
that introduces machine-generated images to guide
open-ended text generation. This endows the ma-
chines with the ability of creative visualization
that human writers often demonstrate. We distill
the vision information from the pre-trained multi-
modal models and further construct visual prefixes
to guide language models to perform text gener-
ation with the teacher forcing and the contrastive
objective. Extensive experiments show the effec-
tiveness of iNLG in open-ended text generation
tasks, including text completion, story generation,
and concept-to-text generation in few-shot settings.

Limitations

This work mainly focuses on open-ended text gen-
eration, where the search space for the target output
is infinite, and the language model would benefit
from additional visual imagination distilled from
large text-to-image generation models to produce
coherent and meaningful content. However, we
should note here that despite the commendable per-
formance of text-to-image generation models, there
are certain terms and concepts that are inherently
challenging to visualize, such as numerical values
and abstract philosophical terms. This problem it-
self is an interesting open research question for all
tasks involving text-and-vision.

In our current approach, the images are gener-
ated offline. In future work, one may explore the
integration of text-to-image and image-to-text mod-
ules in an end-to-end manner, which may be more
suitable for longer text generation that is not cov-
ered in this work.

Text-to-image generation models currently have
a length limit on the input text prompt, which may
impede their ability to visualize long text inputs
in a single image. Furthermore, as previously dis-
cussed, text-to-image models may also encounter
difficulties in generating images of complex scenes
or situations that are challenging to depict through
a single image. Future research could explore the
use of multiple images or supplementary videos
as visual input in order to provide a more com-
prehensive representation of the scene or situation
in question. The iNLG framework can be easily
extended to take video representation by taking
longer visual prefixes or iteratively applying visual
prefixes at each step.

Ethics Statement

In this work, we use pre-trained multimodal models
to visualize machine imagination. The machine-
generated images may contain uncontrolled bias
if any inductive bias exists from the pre-training
data. Even though we do not witness such an issue
in our study, this may be a potential factor that
affects the quality of the generated text. We do not
anticipate any major ethical concerns given that
all the datasets and models used in this study have
already been released to the public. We reproduce
baselines with the released code repository. For
human evaluation, our study is approved for IRB
exempt. The estimated hourly wage paid to MTurk
annotators is $10.
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A Appendix

A.1 Experiment Details

Pretraining We pre-train the mapping network
for GPT-2-base (Radford et al., 2019) on the
MSCOCO (Lin et al., 2014) dataset with 414,113
(image, text) pairs for training. We pre-train the
mapping network for BART-base (Lewis et al.,
2020) on VIST (Huang et al., 2016) story-in-
sequence subset, with 141,593 (image, text) pairs
for training after excluding the images that the
users have removed. For each setting, we pre-train
the mapping network for 5 epochs with a batch size
of 128, learning rate of 2e-5, weight decay of 0.01,
and warmup steps of 5,000.

Few-Shot Training for Downstream Tasks Ta-
ble 7 lists out the hyperparameters we used during
few-show experiments on the three open-ended text
generation tasks.

Hyperparameters Concept-to-Text Text
Completion

Story
Generation

Base LM BART-base GPT2-base GPT2-base
Batch Size 8 8 8
Training Epoch 20 20 20
Nno_contra 4 10 15
λ 1.5 1 0.2
Learning Rate 2e-5 2e-5 2e-5
Weight Decay 0.01 0.01 0.01
Warmup Steps 400 400 400
Max Output Length 64 100 150
Num of Beam 10 10 10

Table 7: Hyperparameter settings for few-shot open-
ended text generation.

Parameter Search We tried the learning rate in
the following setting: {1e-5, 2e-5, 5e-5, 1e-4}, and
tried the batch size in {4, 8, 16, 32}.

Parameter Size Table 8 lists out the parameter
size for the network modules used in our study.

Environment & Run Time Table 9 lists out the
execution time for the three open-ended text gen-
eration tasks with 1% of the training data. Experi-
ments are conducted on NVIDIA A100.

A.2 Human Evaluation

We invite Amazon Mechanical Turk12 annotators
to judge the quality of the generated text. Figure 7
shows an example template we use for head-to-
head comparison.

12https://www.mturk.com/
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Figure 7: A screenshot of the Amazon Mechanical Turk interface for our human evaluation on text coherency.

Task Model Prameter Size

Sentence Completion
StoryEndGen 11M
GPT-2 base 117M
GPT-2 base`iNLG 160M

Story Generation
Action-Plan 43M
Plan-and-Write 34M
SimCTG 117M

Concept-to-Text

BART-base 110M
KGBART 439M
ModelAdapt 110M
Imagine-and-Verbalize 880M
BART-base`iNLG 153M

Table 8: Parameter sizes of the network modules used
in our study.

Dataset Text-only ` iNLG

ActivityNet 50min 70min
ROCStories 70min 95min
CommonGen 40min 55min

Table 9: The average execution time for one single run
(training + inference) on each dataset. Text generation
experiments are conducted on NVIDIA A100.

A.3 More Showcases
Figure 8 compares the images retrieved from
Yahoo Image Search and the images generated
by StableDiffusion-v1-1 (Rombach et al., 2022),
which is the text-to-image generation model we
used in this work. Figure 9 and Figure 10 show
more examples comparing the sentence endings
and stories generated by different models.

Context 1: One of the guys hits the ball over to the other side and they 
hit it back. Then on the other side of the beach there is a group of 
women also playing volleyball. They…

(a1) Retrieved Image (b1) Generated Image

Context 2: A boy is talking to a camera. He goes into a bathroom and 
drinks a cup of mouthwash. He…

(a2) Retrieved Image (b2) Generated Image

Figure 8: With the context as input, (a1)(a2) is the first
returned image by the Yahoo image search engine,13and
(b1)(b2) is generated by StableDiffusion-v1-1 (Rom-
bach et al., 2022). The two input contexts are from
the ActivityNet (Heilbron et al., 2015) subset in Hel-
laSwag (Zellers et al., 2019).

13The screenshots of the search results returned by Yahoo
Image Search as of Feb.3rd 2023: link1, link2.
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Context: A leaf blower is shown blowing a large pile of leaves across a green lawn in front of residential houses. The leaves…

StoryEndGen is her hands . the woman
GPT2 (no finetune) are then blown by a small wind turbine.

GPT2 (text-only finetune) are then shown in a large circle and the roof is shown in a close up.
GPT2 + iNLG are placed on the ground and the man is shown sitting on the back.

Generated Image:

Context: Men are standing in the edge of a trampoline preparing to make a jump into a pool in a roofed pool. People…

StoryEndGen then then the camera and then the camera and the camera and the camera

GPT2 (no finetune) are standing in the edge of a trampoline preparing to amke a jump into a 
pool in a roofed pool.

GPT2 (text-only finetune) are standing in the middle of the pool preparing to jump into a pool in a 
roofed pool.

GPT2 + iNLG are swimming in the pool and throwing a ball.

Generated Image:

Context: They mix the eggs around a bowl and place butter and milk into another bowl and mix them all together. They…

StoryEndGen the cake ups and the cake and then the cake and then the cake and the 
cake and then the cake and then the cake and

GPT2 (no finetune) will be very soft and fluffy.
GPT2 (text-only finetune) are ready to use.
GPT2 + iNLG then put a bowl on the end of the sink and put the mixture in the sink.

Generated Image:

(a)
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Generated Image:
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GPT2 (text-only finetune) are then shown in a large circle and the roof is shown in a close up.
GPT2 + iNLG are placed on the ground and the man is shown sitting on the back.
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StoryEndGen then then the camera and then the camera and the camera and the camera

GPT2 (no finetune) are standing in the edge of a trampoline preparing to amke a jump into a 
pool in a roofed pool.

GPT2 (text-only finetune) are standing in the middle of the pool preparing to jump into a pool in a 
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Context: They mix the eggs around a bowl and place butter and milk into another bowl and mix them all together. They…

StoryEndGen the cake ups and the cake and then the cake and then the cake and the 
cake and then the cake and then the cake and

GPT2 (no finetune) will be very soft and fluffy.
GPT2 (text-only finetune) are ready to use.
GPT2 + iNLG then put a bowl on the end of the sink and put the mixture in the sink.

Generated Image:

(c)

Figure 9: Comparisons on few-shot sentence completion performance on ActivityNet.

Context: Sushi. Jerry loves to eat food from other nations.

Action-Plan She was to to to a . He . He was to to to the . He . She was to to to . He . She was to the the .

Plan-and-Write

the man was a lot of her . good he had to go good good good good good good good good good 
good good good good good i decided good his new phone good good good good good good good 
good good good good friends # wanted # made # found # happy good good # home good good 
good # time good good good # bought # time 

SimCTG Tom was hungry. He went to the sushi place. There was a lot of sushi. Tom was hungry. He went to 
the sushi place

GPT2 (no finetune) He's a big fan of the Japanese. He's a big fan of the Japanese. He's a big fan of the Japanese. He's 
a big fan of the Japanese.

GPT2 (text-only finetune) He goes to the country to buy the freshest seafood. He buys a lot of seafood. He buys more seafood 
and buys more seafood. Jerry buys more seafood and eats better.

GPT2 + iNLG He was unable to find a slice he wanted. He grabbed a slice of sushi at a fast food restaurant. He 
was able to eat it and it was the perfect meal.

Generated Image:

Edward:/data2/wanrongzhu/inlg/data/story_generation/roc_stories/generated_images/test_42_0.png

(a)

Context: Hole in the House. Tim was putting away some paperwork in the attic.

Action-Plan He was to to to the . He . He was to to the . . He was to to to the . . He was to the the .

Plan-and-Write

# i was a very hot . </s> he decided good to the store good good good good good good good good 
good good good good <EOT> friends # wanted # made # found # happy <EOL> # my friend went 
good with good good good good good good good good good good good good , she had good and 
looked in good good good good good good good good good good good # time # found # home

SimCTG My neighbor's house was burglarized. I went to investigate. My neighbor's house was burglarized. 
My neighbor's house was burglarized. My neighbor's house was burglarized

GPT2 (no finetune)
He was trying to figure out how to get the house to be ready for the next day. He was trying to figure 
out how to get the house to be ready for the next day. “I'm not going to be able to do that," he said. 
"I'm not going to be able to do that.

GPT2 (text-only finetune) He was trying to write a letter to his boss. He was trying to get his boss to write a letter to him. Tim 
was frustrated.

GPT2 + iNLG He saw a map of the area. He went to the bathroom to check. There was nothing there. He was 
surprised to see it was a loophole.

Generated Image:

Edward:/data2/wanrongzhu/inlg/data/story_generation/roc_stories/generated_images/test_202_0.png

(b)

Figure 10: Comparisons on few-shot story generation performance on ROCStories.
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Abstract

Automatic evaluations for natural language gen-
eration (NLG) conventionally rely on token-
level or embedding-level comparisons with the
text references. This is different from human
language processing, for which visual imagi-
nation often improves comprehension. In this
work, we propose IMAGINE, an imagination-
based automatic evaluation metric for natural
language generation. With the help of Sta-
bleDiffusion (Rombach et al., 2022), a state-
of-the-art text-to-image generator, we automat-
ically generate an image as the embodied imag-
ination for the text snippet and compute the
imagination similarity using contextual embed-
dings. Experiments spanning several text gen-
eration tasks demonstrate that adding machine-
generated images with our IMAGINE displays
great potential in introducing multi-modal in-
formation into NLG evaluation, and improves
existing automatic metrics’ correlations with
human similarity judgments in both reference-
based and reference-free evaluation scenarios.

1 Introduction

A major challenge for natural language genera-
tion (NLG) is to design an automatic evaluation
metric that can align well with human judgments.
To this end, many approaches have been inves-
tigated. Metrics that base on matching mecha-
nisms such as BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015), have been widely adopted in the
field. Edit-distance based metrics, such as Char-
acTER (Wang et al., 2016), WMD (Kusner et al.,
2015), SMD (Clark et al., 2019), have also been ex-
plored. Recently, BERTScore (Zhang* et al., 2020)
and BLEURT (Sellam et al., 2020) attempt to lever-
age BERT (Devlin et al., 2019) to compare text em-
bedding similarities, which correlates better with
human judgments than previous methods. These
automatic evaluation metrics make use of textual
information from various angles extensively.

But what happens in our minds when we read,
comprehend, and evaluate text? Research (Just
et al., 2004; Eviatar and Just, 2006) has found that,
unlike commonly designed automatic evaluation
methods that compare the generated candidates
with the references on the text domain only, hu-
mans, in contrast, leverage visual imagination and
trigger neural activation in vision-related brain ar-
eas when reading text. Cognitive studies show that
visual imagery improves comprehension during lan-
guage processing (Gambrell and Bales, 1986; Joffe
et al., 2007; Sadoski and Paivio, 2013). Inspired
by this imagination-based multi-modal mechanism
in human text comprehension, we ask a critical re-
search question: can machines create a visual pic-
ture of any underlying sentence, and use their imag-
inations to improve natural language understand-
ing? The advances of recent pre-trained vision-
language models such as CLIP (Radford et al.,
2021) provide an excellent opportunity for us to
utilize the learned image-text representations. This
enables us to explore the possibility of incorporat-
ing multi-modal information into NLG evaluation.

In this work, we propose IMAGINE, an
imagination-based automatic evaluation metric for
text generation. Specifically, we first use the
state-of-the-art text-to-image generator StableDif-
fusion (Rombach et al., 2022) to visualize machine
imagination from sentences, which is to generate
descriptive images for the candidate text and the
references. Then we receive the IMAGINE scores
by computing two sets of similarity scores with
the pre-trained CLIP model (Radford et al., 2021):
the visual similarity of the generated images, and
the cross-modal similarity between the text and the
generated image. Figure 1 shows an example.

To understand the role the machine-generated
images play in NLG evaluation, we conduct a series
of experiments with IMAGINE on multiple NLG
tasks and datasets, including machine translation,
text summarization, and sentence completion for
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Reference: 
Basketball: Garnett makes triumphant return as 
Celtics top Pistons


Metric Score

BLEU-4 0.0

ROUGE-1 12.5

ROUGE-2 0.0

ROUGE-L 10.9

BERTScore 5.7

ImaginEimage 91.2

ImaginEtext&image 63.7

Human 4.2/5.0

GigaWord, idx=148

Hypothesis: 
Celtics sink Detroit ##-## in NBA semi-final rematch

Text for Summarization:  
Kevin Garnett scored ## points in his return after a one-game suspension and the Boston Celtics ripped Detroit 
##-## here Thursday in a rematch of last season's NBA semi-finals.

ImaginationRef ImaginationHyp

IMAGINEimage
Cosine Similarity

Render 
Imagination

!StableDiffusion Render 
Imagination

!StableDiffusion

"CLIP "CLIP

❌

❌

❌

❌

❌

✅

✅

✅

"CLIP

IMAGINEtext&image

Cosine Similarity

"CLIP

Figure 1: An evaluation example on GigaWord for text summarization. IMAGINE visualizes machine imagination
with StableDiffusion (Rombach et al., 2022) and extracts textual and visual representations with CLIP (Radford
et al., 2021). While traditional evaluation metrics for natural language generation rely on n-grams matching or
textual embeddings comparison, IMAGINE incorporates machine-generated images into the evaluation process and
enhances the understanding of the text snippet as a whole through the integration of multi-modal information.

open-ended text generation, aiming to answer the
following questions:
1. How influential is IMAGINE in NLG evaluation

in terms of correlations with human judgments?
Can it provide additional reference information
on top of existing metrics?

2. What are the applicable scenarios of introduc-
ing IMAGINE to NLG evaluation? When and
why do machine-generated images help?

3. What are the potentials and limitations of intro-
ducing machine-generated images with IMAG-
INE to NLG evaluation?
Experimental results show that IMAGINE can

serve as a complementary evaluation metric to text-
based ones, and adding IMAGINE scores to ex-
isting metrics surprisingly improves most of the
popular metrics’ correlations with human perfor-
mance on various text generation tasks. This holds
for both reference-based evaluation and reference-
free evaluation. We further conduct comprehensive
quantitative analyses with case studies to verify its
effectiveness. Overall, IMAGINE displays great po-
tential in introducing multi-modal information into
NLG evaluation.

2 Related Work

Automatic Metrics for Natural Language Gen-
eration Common practices for NLG evaluation
compare the generated hypothesis text with the
annotated references. Metric performance is con-
ventionally evaluated by its correlation with hu-
man judgments. Existing automatic evaluation met-
ric calculations are mainly based on three mech-
anisms: n-grams overlap, edit distance, and em-

bedding matching. BLEU (Papineni et al., 2002),
ROUGE-n (Lin, 2004), METEOR (Banerjee and
Lavie, 2005) and CIDEr (Vedantam et al., 2015)
are a few widely used n-gram based metrics for text
generation tasks. Another direction is based on edit
distance (Tomás et al., 2003; Snover et al., 2006;
Panja and Naskar, 2018; Tillmann et al., 1997;
Wang et al., 2016), where they calculate the edit dis-
tance between the two text snippets with different
optimizations. Embedding-based metrics (Kusner
et al., 2015; Rubner et al., 1998; Clark et al., 2019;
Lo, 2017, 2019) evaluate text quality using word
and sentence embeddings, and more recently, with
the help of BERT (Zhang* et al., 2020; Sellam
et al., 2020).

Multi-Modal Automatic Metrics Aside from
previous text-only metrics, some metrics utilize
pre-trained multi-modal models and introduce vi-
sual features on top of text references for NLG
evaluation. TIGEr (Jiang et al., 2019) computes
the text-image grounding scores with pre-trained
SCAN (Lee et al., 2018). ViLBERTScore-F (Lee
et al., 2020) relies on pre-trained ViLBERT (Lu
et al., 2019) to extract image-conditioned embed-
dings for the text. The CLIPScore (Hessel et al.,
2021) proposes a metric for image captioning by
directly comparing images with captions using
CLIP (Radford et al., 2021). Our method differs
in that we use visual picture generation as embod-
ied imagination and apply our metric to various
text-to-text generation tasks.

Mental Imagery The debate between pictorial-
ists and propositionalists about how imagery infor-
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mation is stored in the human brain is still an open
question in the neuroscience and psychology com-
munity (Troscianko, 2013). We follow the views
from pictorialists that information can be stored
in a depictive and pictorial format in addition to
language-like forms (Kosslyn et al., 2001; Pearson
and Kosslyn, 2015). In pictorialists’ model, mental
imagery is constructed in the “visual buffer” either
from the retinal image in seeing or from a long-
term memory store of “deep representations” in the
brain. Our image generation method is to mimic
the generation of deep representations in machines,
with the help of recent powerful text-to-image mod-
els. Inspired by empirical studies from cognitive
science that visual imagination improves human
text comprehension (Gambrell and Bales, 1986; Sa-
doski and Paivio, 1994; Nippold and Duthie, 2003;
Just et al., 2004; Joffe et al., 2007; Sadoski and
Paivio, 2013), we are interested in exploring if one
can draw similar conclusions from automatic text
evaluations by machines.

3 IMAGINE

This section describes how our IMAGINE metric
evaluates the similarity between two pieces of text
with the help of machine imagination. Figure 2
provides an overview of our method.

3.1 Model Details
CLIP We use the cross-modal retrieval model,
CLIP (Radford et al., 2021), for our evaluation
purposes. CLIP jointly trains an image encoder
and a text encoder to predict the correct pairing of
image-text pairs with InfoNCE (van den Oord et al.,
2018) on 400M image-text pairs gathered from
the web. We utilize the CLIP-ViT-B/32 variant,
which consists of a 12-layer, 8-head Transformer
text encoder with a hidden size of 512, and a Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021;
Vaswani et al., 2017) image encoder adopting the
BERT-base configuration and using a 32ˆ32 input
patch size. Both the text and image representations
are normalized and projected into the multi-modal
space before computing pairing likelihood through
cosine similarity.

StableDiffusion We perform text-to-image gen-
eration with StableDiffusion (Rombach et al.,
2022), which is a denoising diffusion probabilistic
model (Ho et al., 2020). The model comprises
three key components: a text encoder, a diffu-
sion model, and an autoencoder. The text encoder,

adopted from the frozen CLIP-ViT-L/14 (Radford
et al., 2021), is utilized to encode the input text
into textual embeddings. The diffusion model,
which leverages UNet (Ronneberger et al., 2015)
for noise estimation, is modified to attend to the
input textual embeddings. We conduct experiments
with StableDiffusion-v1-1, which was trained with
LAION (Schuhmann et al., 2022), using 256ˆ 256
images for pre-training, followed by 512 ˆ 512
images for fine-tuning.

3.2 IMAGINE Similarity Score
In our proposed approach, as depicted in Fig-
ure 2, the computation of IMAGINE consists of
three sequential steps. Firstly, the StableDiffusion
model (Rombach et al., 2022) is utilized to generate
descriptive images, referred to as machine imagi-
nation, from the two text snippets being compared.
Secondly, both the text snippets and the generated
images are encoded using the CLIP model (Rad-
ford et al., 2021). Finally, IMAGINE is calculated
by computing the cosine similarities of the result-
ing text and visual features, both in a mono-modal
and cross-modal manner.

Step 1: Render Imagination For each image,
StableDiffusion randomly initializes a latent matrix
H from the standard normal distribution and uses
the encoder of the pre-trained autoencoder to en-
code H into the lower-resolution latent map zT (T
is the total inference steps). At each step t, the dif-
fusion model estimates the noise, ϵ, and subtracts
it from zt. The decoder of the pretrained autoen-
coder takes the final noise-free latent map z and
generates the image prediction I of size 512ˆ 512.

Step 2: Extract Feature In the previous step, we
generate the corresponding images I1 and I2 for
the pair of text x1 and x2 for comparison with the
text-to-image synthesis backbone. Then we pass
the machine-generated images I1 and I2 and the
input text x1 and x2 through corresponding CLIP
encoders to receive the visual representations v1,
v2, and the textual representation t1, t2.

Step 3: Measure Similarity With simp¨, ¨q de-
noting the process of first normalizing the two vec-
tors, then computing their cosine similarity, we
compute two types of similarity scores for IMAG-
INE with the extracted textual and visual features:

(1) IMAGINEimage computes the visual repre-
sentation similarity between v1 and v2:

IMAGINEimage “ F psimpv1,v2qq (1)
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Text 1 x1 :  
Beef Kway Teow originates from Singapore 
and is also made in Indonesia. One of the 
ingredients in the dish is oyster sauce.

Metric Score
BLEU 3.91

METEOR 19.14
ROUGE_L 15.21

CIDEr
 5.38
BERTScore 39.04

ImaginE_text 73.63
ImaginE_image 69.04

Human 4/3/2/2/1

Imagination_Ref
Imagination_Hyp

Text 2 x2 : 
Oyster sauce is a dish from Singapore, where 
Oyster sauce is a dish from Indonesia.

Stable 
Diffusion

CLIP

Stable 
Diffusion

STEP 1: 
Render Imagination

text representations

visual representations

IMAGINEimage

I2

I1 v2
v1

STEP 2: 
Extract Feature

STEP 3: 
Measure Similarity

t1
v2

v1
t2

IMAGINEtext&image

Figure 2: Illustration of the computation process of the IMAGINE metric. Given the two pieces of text for
comparison, x1 and x2, we render the machine imagination by generating two images I1 and I2 with the pre-
trained StableDiffusion (Rombach et al., 2022). We extract features of the input text and corresponding generated
images with CLIP (Radford et al., 2021). We receive two variants of IMAGINE by computing the cosine similarity
of the extracted features, in which IMAGINEimage measures mono-modal similarities on the visual side, while
IMAGINEtext&image conducts cross-modal matching.

(2) IMAGINEtext&image (IMAGINEt&i) takes
both the text and the generated image into con-
sideration, and conducts cross-modal comparisons
between (t1, v2), as well as (t2, v1):

IMAGINEt&i “ F
ˆ
simpt1,v2q ` simpt2,v1q

2

˙

(2)
The cosine similarity between the text and im-

age representations theoretically has a range of
r´1, 1s. However, in practice, the IMAGINE simi-
larity scores tend to cluster within a more narrow
interval rl, hs. Following Hessel et al. (2021), we
use a linear function F to stretch the similarity
score distribution to the range of r0, 1s, which is
also the score range for most of the automatic met-
rics covered in this study. Eq. (3) shows how we
re-scale the similarity score s into s1. Appendix
Figure 6 plots the two IMAGINE variants’ distribu-
tions before and after rescaling.

s1 “ s´ l

h´ l
,

rl, hs “
#

r0.1, 1.0s, for IMAGINEimage,

r0.1, 0.4s, for IMAGINEtext&image.
(3)

3.3 Integration with Existing Metrics
The IMAGINE similarity scores can serve as stan-
dalone automatic metrics. Additionally, IMAGINE
can be incorporated as an extension to existing
metrics, as it offers multimodal references and ad-
dresses the limitations of current text-only evalua-
tions that only compare tokens or text embeddings.
This mimics the human process of comprehending

text, where both text and visual imagination are
utilized. The integration of IMAGINE with other
automatic metrics is straightforward, achieved by
summing the IMAGINE similarity score with the
other automatic metric’s score for each example:

metric_score1 `“ IMAGINEsimilarity_score (4)

4 Experimental Setup

4.1 Tasks, Datasets, and Models

We evaluate our approach on three popular natural
language generation tasks: machine translation,
abstractive text summarization, and open-ended
text generation.

Machine Translation We use Fairseq (Ott et al.,
2019) to generate English translation from Ger-
man on IWSLT’14 (Cettolo et al., 2014) and
WMT’19 (Barrault et al., 2019) datasets.

Abstractive Text Summarization We use the
implementation of Li et al. (2017) to generate sum-
marization on DUC20041 and use ProphetNet (Qi
et al., 2020b) for generation on Gigaword.2 Both
datasets are built upon news articles.

Open-ended Text Generation We perform ex-
periments on the ActivityNet (Heilbron et al., 2015)
subset of HellaSwag (Zellers et al., 2019), which is
a benchmark for commonsense natural language in-
ference that ask the model to predict the most likely
follow-up among several choices given a specific

1https://duc.nist.gov/duc2004/
2https://catalog.ldc.upenn.edu/LDC2011T07
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Metric IWSLT’14 WMT’19

Original `IEimage `IEtext&image Original `IEimage `IEtext&image

BLEU-1 21.47 21.38˘1.53 21.86˘0.82 13.74 14.71˘1.19 16.40˘0.73
BLEU-2 20.82 21.17˘1.45 21.53˘0.68 12.50 12.93˘1.13 15.11˘0.64
BLEU-3 19.17 19.88˘1.39 20.31˘0.62 11.31 12.07˘1.09 13.90˘0.58
BLEU-4 17.60 18.57˘1.36 19.08˘0.60 9.10 9.15˘1.06 11.84˘0.54
METEOR 20.60 21.44˘1.54 21.30˘0.99 13.47 14.77˘1.33 16.80˘0.91
ROUGE 20.55 20.69˘1.54 21.26˘0.80 11.40 11.58˘1.16 14.34˘0.68
CIDEr 21.98 22.12˘0.24 22.25˘0.07 11.82 11.86˘0.18 12.05˘0.07
BERTScore 23.95 24.02˘1.41 24.09˘0.65 17.01 17.08˘1.22 18.88˘0.78
BLEURT 22.93 22.99˘0.64 23.40˘0.41 18.81 19.36˘0.82 19.59˘0.37

Table 1: The effect of applying our IMAGINE similarities on automatic metrics for machine translation, reflected
in the Pearson correlation with human judgments. The image generation process is conducted over five different
random seeds for each piece of text. We report the mean and standard deviation of the repeated runs. IE: IMAGINE.

context. The dataset is derived from ActivityNet
video captions and we use it for the task of sentence
completion, where the model is given a context and
asked to complete the sentence. The predicted sen-
tence endings generated by StoryEndGen (Guan
et al., 2019) and GPT-2 (Radford et al., 2019) are
collected and used in the following evaluation.

4.2 Automatic Metrics

Machine Translation & Summarization In the
evaluation of machine translation and text sum-
marization tasks, it is a common practice to com-
pare the predicted text with the reference. Adher-
ing to previous studies, we present results using
reference-based metrics. For machine translation,
we present scores using BLEU-n (n=1,2,3,4) (Pap-
ineni et al., 2002), METEOR(Banerjee and Lavie,
2005), and CIDEr (Vedantam et al., 2015). Mean-
while, for text summarization, we present ROUGE-
n (n=1,2) (Lin, 2004) precision scores. Addi-
tionally, we report the scores of ROUGE-L (Lin,
2004), BERTScore (Zhang* et al., 2020), and
BLEURT (Sellam et al., 2020) for both tasks.

Open-ended Text Generation In the context of
open-ended text generation, where the number of
possible answers for a given scenario can be in-
exhaustible, evaluating the quality of generated
text through a comparison with a fixed set of refer-
ences is challenging. To address this issue, previ-
ous studies have proposed to utilize reference-free
metrics to evaluate the quality of the generated text.
In this work, we experiment with the following
reference-free metrics which assess model degener-
ation: (1) div-n = |unique n-grams|

|total n-grams| measures sequence
level repetition by computing the portion of dupli-
cate n-grams (n=2,3,4) (Welleck et al., 2020). (2)
diversity =

ś4
n=2 rep-n measures the diversity of

n-grams (Su et al., 2022), and assesses the model
degeneration. (3) distinct-n = |unique n-grams|

|length of text| mea-
sures the portion of distinct n-grams (here n=2) in
the text (Li et al., 2016). In addition, we report
results on BERTScore (Zhang* et al., 2020) and
BLEURT (Sellam et al., 2020) for comparison of
contextual similarity.

4.3 Human Evaluation
We invite Amazon Mechanical Turk3 annotators to
evaluate the quality of the generated text. Due to
cost constraints, when conducting human evalua-
tion, we randomly sample 1,000 test examples for
each dataset, except for DUC2004 which has 500
examples in the test set. Each example is evaluated
by three human judges using a 5-point Likert scale,
which assessed the fluency, grammar correctness,
and factual consistency of the generated text with
the reference text. The overall human assessment
score is calculated as the mean of the scores ob-
tained from the three aspects. We compute the Pear-
son correlation (Freedman et al., 2007) between the
human scores and the scores obtained from the au-
tomatic metrics, and the results are reported as a
multiple of 100 for clarity.

5 Results and Analysis

5.1 Main Results
Machine Translation Table 1 presents the re-
sults of the system-level Pearson correlation with
human judges when extending the IMAGINE
similarity metric to various existing automatic
natural language generation (NLG) metrics on
the IWSLT’14 and WMT’19 German-to-English
datasets. The results demonstrate that the addition
of both IMAGINEimage and IMAGINEtext&image

3https://www.mturk.com/
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Metric DUC2004 GigaWord

Original `IEimage `IEtext&image Original `IEimage `IEtext&image

ROUGE-1 13.66 16.77˘1.31 13.45˘0.80 12.90 17.52˘0.73 16.78˘0.66
ROUGE-2 9.74 15.71˘1.65 11.19˘1.08 7.75 14.26˘0.83 13.33˘0.77
ROUGE-L 13.14 16.35˘1.47 13.17˘0.95 14.31 17.44˘0.77 16.78˘0.70
BERTScore 19.44 20.60˘1.29 20.26˘0.78 19.59 20.47˘0.64 20.10˘0.57
BLEURT 23.59 25.20˘0.72 24.46˘0.42 20.23 21.08˘0.39 20.74˘0.35

Table 2: The effect of applying our IMAGINE similarities on automatic metrics for text summarization, reflected
in the Pearson correlation with human judgments. The image generation process is conducted over five different
random seeds for each piece of text. We report the mean and standard deviation of the repeated runs. IE: IMAGINE.

Metric Reference-based Reference-free

Original `IEimage `IEtext&image Original `IEimage `IEtext&image

div-2 27.21 28.01˘0.49 28.08˘0.34 27.21 26.51˘0.42 27.29˘0.58
div-3 26.80 27.67˘0.49 27.78˘0.35 26.80 26.17˘0.43 26.98˘0.59
div-4 26.20 27.14˘0.48 27.28˘0.36 26.20 25.71˘0.44 26.55˘0.60
diversity 27.40 28.19˘0.41 28.23˘0.30 27.40 26.89˘0.36 27.55˘0.50
distinct-2 26.72 27.76˘0.56 27.90˘0.40 26.72 25.54˘0.48 26.49˘0.66
BERTScore 23.47 25.92˘0.50 25.43˘0.36 25.10 23.47˘0.56 25.26˘0.78
BLEURT 19.99 22.47˘0.83 21.55˘0.72 18.70 19.67˘0.88 20.56˘1.25

Table 3: The effect of applying our IMAGINE similarities on ActivityNet for open-ended text generation, reflected
in the Pearson correlation with human judgments. In the “Reference-based” setting, we compare the predictions
with the references, while in the “Reference-free” setting, we compare the predictions with the input contexts. The
image generation process is conducted over five different random seeds for each piece of text. We report the mean
and standard deviation of the repeated runs. IE: IMAGINE.

improves the Pearson correlation for all metrics
listed. Among the two variants, the mean of
IMAGINEtext&image consistently performs better
on both datasets. It is observed that there is a more
substantial variance in IMAGINEimage, which is at-
tributed to the difference in the images generated by
the StableDiffusion model (Rombach et al., 2022)
due to varying random seed and initialization val-
ues. As a result, IMAGINEimage, which compares
two machine-generated images, has a higher stan-
dard deviation compared to IMAGINEtext&image.

Abstractive Text Summarization The results
in Table 2 demonstrate the system-level Pearson
correlation with human judges when incorporat-
ing our IMAGINE similarity into existing auto-
matic NLG metrics on the DUC2004 and Giga-
word datasets. In alignment with the observations
made in the machine translation task, the addition
of both IMAGINEimage and IMAGINEtext&image
results in an improvement in Pearson correlation
across all metrics. On the two summarization
datasets, we notice that the correlation after in-
corporating IMAGINEimage exhibits higher mean
values along with larger variances compared to the
correlation with IMAGINEtext&image.

Open-ended Text Generation For the sentence
completion task, we conduct evaluations in two
setups. In the reference-based evaluation, we com-

pare the predicted sentence ending with the ground-
truth ending provided in the dataset. In reference-
free evaluation, we compare the predicted sentence
ending with the input context. This setup is de-
signed to assess the coherence of the prediction
with the input context, as it is hypothesized that a
high-quality prediction for open-ended text genera-
tion should be consistent with the input context.

The results of extending our IMAGINE similar-
ity metric to existing automatic NLG metrics for
the sentence completion task on the ActivityNet
dataset are shown in Table 3. In the reference-
based setting, both IMAGINE variants demonstrate
improvement over the listed metrics and exhibit
comparable performances. In the reference-free set-
ting, the introduction of IMAGINEtext&image con-
tinues to enhance the Pearson correlation, while
the implementation of IMAGINEimage results in a
decrease in correlation. One possible reason for the
decline in correlation when IMAGINEimage is used
in the reference-free setting of the sentence com-
pletion task on ActivityNet (which is comprised
of video captions) is that, despite the requirement
for the predicted continuation to be coherent with
the given context, the visual representation of the
context and continued text may differ greatly in
this scenario (e.g., due to a plot twist in the video).
Consequently, direct comparison of images through
IMAGINEimage may result in a decrease in correla-
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Src.: Also entschied ich mich eines tages den filialleiter zu besuchen, und 
ich fragte den leiter, "funktioniert dieses modell, dass sie den menschen all 
diese möglichkeiten bieten wirklich?" 
Ref.:  So I one day decided to pay a visit to the manager, and I asked the 
manager, "is this model of offering people all this choice really working?"

Hyp.:  So I decided to visit the filialler one day, and I asked the ladder, "does 
this model work that you really offer to the people all these possibilities?"

ImaginationRef ImaginationHyp

Metric Score

BLEU-1 69.70

ROUGE-L 50.00

BERTScore 58.88

BLEURT 55.73

ImaginEimage&text 23.85

Figure 3: A case study on IWSLT’14 German-
to-English translation with images rendered by
StableDiffusion-v2-1. Src.: input source text. Ref.:
reference text. Hyp.: generated hypothesis text.

tion. However, the inherent coherence between the
input text and the continued text may be captured
through cross-modal comparison, which may ex-
plain why IMAGINEtext&image still improves the
correlation for the listed metrics.

5.2 Performance Analysis

Why is ImaginE helpful? As shown in Ta-
bles 1 to 3, the incorporation of certain variants
of IMAGINE improves the correlation between the
reference-based and reference-free metrics and hu-
man scores in the majority of cases. This indi-
cates the usefulness of extending text-only metrics
with multi-modal knowledge. However, how do
these machine imaginations actually help text un-
derstanding and evaluation? In this section, we
further explore how and why IMAGINE works. We
first provide a case study to show the uniqueness of
IMAGINE over text-based metrics, then systemati-
cally analyze the effectiveness of our method from
different perspectives.

Case Study Figure 3 shows an example in which
IMAGINE effectively detects the dissimilarity in
keywords between two text snippets. Despite the
similarity in sentence structure between the refer-
ence and hypothesis, the crucial distinction lies in
the inclusion of the terms “manager” and “ladder”.
While traditional automatic metrics that rely on
n-grams matching (BLEU, ROUGE) or textual em-
bedding comparison (BERTScore, BLEURT) may
exhibit high scores, the quality of the generated text
remains questionable. In contrast, IMAGINE gen-
erates distinctive images and exhibits a relatively
low cross-modal similarity score, which aligns with
human perception.

Metric Original +IEipdVAEq +IEipBigGANq +IEipVQ-GANq +IEipSDq
ROUGE-1 13.7 15.9 ˘ 0.9 15.7 ˘ 1.0 15.9 ˘ 0.8 16.8 ˘ 1.3
ROUGE-2 9.7 14.9 ˘ 1.2 14.6 ˘ 1.3 14.9 ˘ 1.0 15.7 ˘ 1.7
ROUGE-L 13.1 16.0 ˘ 1.0 15.8 ˘ 1.1 16.0 ˘ 0.9 16.4 ˘ 1.5

Table 4: The Pearson correlations with human judges
when using IMAGINEimage (IEi) to augment ROUGE-
1/2 and ROUGE-L on DUC2004. We compute four sets
of IMAGINEimage similarity scores (mean˘std) with
dVAE, BigGAN, VQGAN, and StableDiffusion (SD).

dVAE BigGAN VQGAN StableDiffusion

Entity Recall 88.8% 41.2% 87.2% 94.1%

Table 5: Entity recall rate on the visualizations for
Flickr30k captions. We report results for images gener-
ated by dVAE, BigGAN, VQGAN, and StableDiffusion.

People sitting at a bench talking to each other by a body of water .

dVAE BigGAN VQGAN StableDiffusion

Figure 4: An example caption from Flickr30k Entities,
and images rendered by dVAE, BigGAN, VQGAN and
StableDiffusion. The bounding boxes point to the visu-
alizations of the entities marked in the same color.

Sensitivity to Different Image Generation Back-
bones In previous sections, we utilize StableDif-
fusion (Rombach et al., 2022) as the image genera-
tion backbone for IMAGINE. Here, we examine the
influence of the image generation backbone on the
evaluation performance of IMAGINE by conducting
experiments on the DUC2004 dataset for summa-
rization and comparing StableDiffusion with three
alternative models: dVAE (Ramesh et al., 2021),
BigGAN (Brock et al., 2019), and VQGAN (Esser
et al., 2021). The results, as shown in Table 4, in-
dicate comparable performance of IMAGINEimage
with dVAE and VQGAN, both of which outper-
form BigGAN across all metrics. StableDiffusion
achieves the highest mean value, but also displays
the largest variance among the models. These find-
ings highlight the significance of considering the
image generation architecture when evaluating text,
as it can result in varying machine-generated im-
ages and affect the final evaluation outcomes.

Reliability of Machine-Generated Images The
reliability of IMAGINE’s visualization capabil-
ity is further evaluated on the Flickr30k Entities
dataset (Plummer et al., 2015), which consists of
annotated image captions. We randomly sample
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Figure 5: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in DUC2004. Lower: The
relative image similarity decrease after masking each
syntax tag. Baseline: The average intra-group pairwise
image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.

100 captions and use the four generative backbones
to render images. We present the captions and
generated images to human annotators, and ask
them to indicate if the entities mentioned in the
captions are visually represented. The results, in
terms of entity recall rates, are presented in Table 5.
A higher recall rate indicates that the text-to-image
generator is more capable of visualizing the con-
tent described in the text. The results show that
StableDiffusion has the highest entity recall rate
of approximately 94%, followed closely by dVAE
and VQGAN. In contrast, BigGAN has the lowest
recall rate of around 41%. An example of entity
recall for a set of images generated by the four
generative backbones is shown in Figure 4.

Syntax Importance to Machine-Generated Im-
ages We evaluate the significance of different syn-
tax tokens in the image generation process using
the DUC2004 summarization dataset. We utilized
the Stanza (Qi et al., 2020a) part-of-speech (POS)
tagger to parse the text and created ablated exam-
ples by masking out a token of a specific syntax
tag.4 The visual similarity of the images gener-
ated from the ablated examples is then compared
to the visualization of the original text. The re-
sults, as reported in Table 5, indicated that the re-

4We report Universal POS tags in this study:
https://universaldependencies.org/u/pos/

POS Tag 10 Most Frequent Tokens

NOUN
president, minister, government, space, party, station,
budget, game, right, arrest

PROPN
U.S., Clinton, China, Korea, Gaza, Microsoft, Congo,
Israel, Livingston, Lebanon

ADJ
new, prime, Russian, international, Asian, possible,
Cambodian, first, human, economic

Table 6: The most frequent NOUN, PROPN, and ADJ
tokens in DUC2004.

moval of PROPN and ADJ tags has a significant
impact on the visualization results, resulting in a
12% decrease in visual similarity. Conversely, re-
moving NOUN tokens has a comparatively smaller
effect. The most frequent NOUN, PROPN, and
ADJ tokens in the DUC2004 dataset were listed
in Table 6. For DUC2004 built upon new clusters,
PROPN and ADJ tokens cover concrete concepts
such as nations, corporations, and celebrities, while
NOUN tokens involve more abstract concepts such
as government, party, and right. For this partic-
ular dataset, our IMAGINE approach pays more
attention to PROPN and ADJ tokens that are easier
to visualize by nature. Further analysis for other
dataset domains can be found in the Appendix.

Which IMAGINE Variant to Report? From Ta-
bles 1 to 3, we can see a mixed trend of perfor-
mance between the two IMAGINE variants. In
general, IMAGINEtext&image has smaller variances
among repeated runs. Nevertheless, we would still
suggest reporting both IMAGINE variants since
they conduct comparisons from different aspects,
with IMAGINEimage comparing similarity within
the visual modality, while IMAGINEtext&image
compares cross-modal similarity.

IMAGINE as a Standalone Metric Table 7
presents the Pearson correlation with human evalua-
tions on each dataset when utilizing the two IMAG-
INE variants as standalone metrics. The results
reveal that both IMAGINE variants demonstrate a
lower correlation compared to other metrics as re-
ported in Tables 1 to 3. Additionally, the scores
produced by IMAGINE are not determinate, given
the probabilistic nature of text-to-image models
that generate various images with different random
seeds. Hence, IMAGINE may not be an optimal
choice as a standalone metric. Nonetheless, it is
important to emphasize the capability of IMAGINE
in introducing multimodal aspects to traditional
text-only metrics. In this study, integrating IMAG-
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IWSLT’14 WMT’19 DUC2004 GigaWord AN(w/ ref) AN(w/o ref)

IEi 19.1˘1.5 13.8˘1.7 10.6˘1.5 15.9˘1.1 18.9˘1.5 16.8˘1.9
IEt&i 18.0˘1.5 12.9˘1.8 9.6˘1.6 15.3˘1.1 18.4˘1.6 18.2˘1.8

Table 7: The Pearson correlation between IMAGINE
variants and human assessments on each dataset. Here
we use IMAGINEimage (IEi) and IMAGINEtext&image

(IEt&i) as two individual metrics. AN: ActivityNet, “w/
ref”: reference-based, “w/o ref”: reference-free.

INE with text-only metrics leads to an improvement
in the Pearson correlation with human evaluations.
Future work may explore alternative methods of
integrating multimodal information in text evalua-
tion.

6 Conclusion

We present IMAGINE, a novel automatic evaluation
metric for NLG that is based on machine imagi-
nation. Our experiments on five datasets across
three different NLG tasks demonstrate the poten-
tial of incorporating IMAGINE similarity scores as
a supplement to existing automatic NLG metrics,
which can lead to improvement in their correla-
tion with human evaluations in various scenarios.
In the future, it is interesting to explore effective
ways of visualizing abstract concepts, and how to
incorporate machine imagination efficiently. We
hope our work can contribute to the discussion and
advancement of multi-modal studies.

Limitations

The current limitations of IMAGINE include the
length constraint of the CLIP text encoder, which
is limited to 77 BPE tokens (including [BOS] and
[EOS]), thus limiting its applicability to longer
text generation tasks such as story generation or
document summarization. As a metric that re-
lies on “machine imagination”, IMAGINE is lim-
ited by the inherent limitations of the generative
models for images. The non-determined nature
of machine-generated images can lead to non-
determined IMAGINE scores. Possible solutions to
mitigate this issue includes but are not limited to
fixing the random seeds or repeating the evaluation
process several times to reduce the variance effect.
Additionally, it remains a challenge for machines
to properly visualize certain abstract concepts or
numerical values, which could limit the scope of
IMAGINE’s applicability.

Ethical Statement
Our study has received IRB exempt status and the
estimated hourly wage paid to MTurk annotators
is $12. It is important to note that our “imagina-
tion” approach may raise questions of fairness if
the training dataset for CLIP or StableDiffusion
contains any biases. This could result in a ten-
dency for IMAGINE to generate certain types of im-
ages based on what it has seen in the training data.
While we did not observe such issues in our study,
it is important to consider that such unfair behavior
would undermine the effectiveness of IMAGINE as
an evaluation tool.

All of the datasets used in our study on machine
translation, abstractive text summarization and
open-ended text generation tasks are publicly avail-
able. We use the public repositories to implement
IMAGINE. The implementations of image genera-
tors used in our study are DALL-E(dVAE+CLIP),5

Big-Sleep(BigGAN+CLIP),6 VQGAN+CLIP,7 and
StableDiffusion.8
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A Appendix

A.1 Score Distributions
In this study, we use cosine similarity to evalu-
ate the similarity between features, which yields
a score distribution in the range of r´1, 1s. How-
ever, our results indicate that negative scores were
not observed when computing the similarities be-
tween the features generated by CLIP. The score
distributions of the two IMAGINE variants are de-
picted in Figure 6. Prior to re-scaling, the scores
generated by IMAGINEimage typically fall within
the range of r0.1, 0.4s, while those generated by
IMAGINEtext&image are within r0.1, 1.0s. Follow-
ing re-scaling, both IMAGINE metrics are linearly
transformed to lie within the range r0, 1s.
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Figure 6: The score distributions of IMAGINEimage and
IMAGINEtext&image before and after re-scaling.

A.2 Syntax Importance to Imaginations
In Section 5.2, we discussed the impact of
DUC2004 Part-of-Speech (POS) tags on the qual-
ity of generated images. In this section, we extend
our examination to another dataset domain, the
Flickr30k Entities dataset (Plummer et al., 2015),
which is an image captioning corpus. While the
domain of the Flickr30k Entities dataset is distinct
from that of the DUC2004 (based on news articles),
similar trends are observed. The results displayed
in Figure 7 also suggest that concrete concepts are
easier to be visualized and play a more significant
role in the visualization process, similar to the re-
sults observed in Figure 5.DUC2004 POS Flickr30k POS

Figure 7: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in Flickr30k. Lower: The
relative image similarity decrease after masking each
syntax tag. Baseline: The average intra-group pairwise
image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.
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Abstract

Fake news and misinformation spread rapidly
on the Internet. How to identify it and how to
interpret the identification results have become
important issues. In this paper, we propose a
Dual Co-Attention Network (Dual-CAN) for
fake news detection, which takes news con-
tent, social media replies, and external knowl-
edge into consideration. Our experimental re-
sults support that the proposed Dual-CAN out-
performs current representative models in two
benchmark datasets. We further make in-depth
discussions by comparing how models work in
both datasets with empirical analysis of atten-
tion weights.1

1 Introduction

The development of the Web and social media plat-
forms helps us obtain news quickly, but also pro-
vides a gateway for spreading false information.
The impact of false information is wide, and the
spread speed might be even faster than the actual
one (Vosoughi et al., 2018). For example, fake
news is proven empirically to influence the 2016
U.S. presidential election (Bovet and Makse, 2019;
Grinberg et al., 2019; Budak, 2019). Given the
impact of false information, previous studies paid
a lot of effort to detect it from different aspects, in-
cluding (1) news content only (Santos et al., 2020;
Kim and Ko, 2021), (2) the combination of news
articles and social media replies (Li et al., 2020;
Lu and Li, 2020), and (3) additional publisher/user
information (Long et al., 2017; Yuan et al., 2020;
Del Tredici and Fernández, 2020). In this work,
we focus on using both news contents and social
media replies, and further add external knowledge
to enhance the model’s ability to capture critical
entities.

Named entities play an important role in docu-
ment understanding and influence text generation

1Code repository: https://github.com/SinHanYang/
Dual-CAN

performances (Narayan et al., 2021, 2022). In-
spired by this notion, we design a novel model,
named Dual Co-Attention Network (Dual-CAN),
which takes entities’ descriptions into considera-
tion to enhance the background knowledge of the
model. The proposed Dual-CAN is modified based
on one of the representative fake news detection
models, dEFEND (Shu et al., 2019a). There are
three major improvements in the proposed Dual-
CAN: (1) Inspired by Hu et al. (2021), we add en-
tities’ descriptions for enhancing the performance.
(2) Instead of using LSTM-based architectures
(Shu et al., 2019a; Lu and Li, 2020), we adopt
attention architecture (Vaswani et al., 2017) as the
backbone. (3) We further tailor-made a co-attention
layer for comparing the given news article with en-
tity descriptions. In sum, in addition to adopting
entity descriptions from Wikipedia, we design a
new architecture to fusion all information. Our
main contribution is providing a novel model for
fake news detection and pointing out a new direc-
tion for enhancing performance.

2 Related Works

Previous works in fake news detection mainly fo-
cused on two aspects: news content based and so-
cial context based. Rashkin et al. (2017) focus
on the linguistic characteristics of the news con-
tent to detect fake news, and find that fake news
often contain specific kinds of words. Ma et al.
(2016) use recurrent neural networks (RNN) to
learn the hidden representations from the contex-
tual information of relevant posts over time. Monti
et al. (2019) analyze social graph and user profile
to predict fake news. Shu et al. (2019b) find that
user profile features are useful in fake news de-
tection. Shu et al. (2019a) and Lu and Li (2020)
use co-attention model to leverage news content
and social context. Their models not only have
better performance but also provide interpretability
to their models. Several works also use external
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knowledge to improve model’s predictions. Wang
et al. (2020) and Hu et al. (2021) use entity linking
method to capture entity descriptions and leverage
them in their models. Inspired by these works, we
use external knowledge for entities to enhance per-
formance, and use both news content and social
media context in the proposed model.

3 Method

Figure 1 shows the architecture of the proposed
Dual-CAN. This section describes the details of the
proposed Dual-CAN model, which is composed of
five components.2 The first one is news content
encoder, which employs word-level attention net-
work and sentence-level encoder to generate fea-
tures for the corresponding news contents. The sec-
ond is entity description encoder. For each entity
in news content, entity description encoder grabs
its descriptions from the external knowledge base
and creates features to represent them. The third
is user engagement encoder, which employs the
same method as news content encoder to create
features to represent user comments. The fourth is
dual co-attention component, which captures the
relation between (news content, entity description)
and (news content, user engagement) pairs. The
last is prediction component, which combines all
information from the previous components to make
the final predictions.

3.1 News Content Encoder

A news story is composed of a sequence of sen-
tences S = [s1, s2, ..., sN], and a sentence is com-
posed of up to M words si = [wi1,w2i, ...,wiM].
Here, N is the maximum number of sentences in a
piece of news, and M is the maximum number of
words in a sentence. We perform padding to con-
trol the maximum number of sentences and words
in news content. To create features to represent a
news story, we use word-level attention network
to encode each sentence, and use sentence-level
encoder to encode all sentences in news content.

3.1.1 Word-Level Attention Network
We use Glove (Pennington et al., 2014) to create
word embedding of d dimensions during the pre-
processing stage for each word in sentences. For
a sentence s ∈ Rd×M , we utilize bi-directional
Gating Recurrent Units (GRU) (Chung et al., 2014)
to learn the word-level representation. The output

2The hyperparameters are reported in Appendix B.

Figure 1: Architecture of Dual-CAN. D.C.L., E.D.E.,
N.C.E., and U.C.E. stand for dual co-attention layer,
entity description encoder, news content encoder, and
user comment encoder, respectively.

of the BiGRU is vi = BiGRU(wi) ∈ R2h, i ∈
{1, 2, ...M}, where h is the dimension of the GRU.
Next, we perform the basic attention mechanism to
increase performance and interpretability (Lu and
Li, 2020) of the word encoder. Attention weight αi
shows the importance of the ith word. The word-
level attention network generates the representation
of a sentence vector v′ ∈ R2h×1 calculated as fol-
lows:

v′ =
M∑

i=1

αivi (1)

where ai is:

ki = tanh(Pnvi + bn)

αi =
exp(unki)∑M
j=1 exp(unkj)

(2)

Pn ∈ R2h×h, un ∈ Rh×1 are learnable parame-
ter. We preform a linear layer on vi, and use a
parameter kj to calculate the attention weight.

3.1.2 Sentence-Level Encoder
We use BiGRU again to encode sentences in a news
story. A sentence vector si ∈ R2h×1 is calculated
from the output of word-level attention network:

si = BiGRU(v′i), i ∈ {1, 2, ..., N} (3)

Finally, single news content is represented by a list
of sentence vectors S = [s1, s2, ..., sN] ∈ R2h×N .

3.2 Entity Description Encoder
For each news content, we identify entities in it
and grab their descriptions from Wikipedia using
tools TAGME (Ferragina and Scaiella, 2010). For
each entity description, we only use the first E
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sentences. With the word-level attention network in
Section 3.1.1, we create features that describe entity
descriptions D = [d1,d2, ...,dE]. Finally, entity
descriptions for a piece of news is represented by
a list of sentence vectors D = [d1,d2, ...,dE] ∈
R2h×E .

3.3 User Comment Encoder

For all user comments related to a news story, we
only use the first U sentences. We extract features
to describe user comments C = [c1, c2, ..., cU]
with the word-level attention network in Sec-
tion 3.1.1. Finally, user comments for a news
story are represented by a list of sentence vectors
C = [c1, c2, ..., cU] ∈ R2h×U .

3.4 Dual Co-Attention Component

Because we want to know whether the entity de-
scription confirms/refutes the news content and
whether user comments reflect the character of
the news content, we adopt co-attention net-
work for capturing the relationship between news
content and entity descriptions, and another co-
attention network for linking the relationship be-
tween news content and user comments. Given
news content feature vectors S = [s1, s2, ..., sN] ∈
R2h×N , entity description feature vectors D =
[d1,d2, ...,dE] ∈ R2h×E , and user comments fea-
ture vectors C = [c1, c2, ..., cU] ∈ R2h×U , we
use dual co-attention mechanism for interpreting
model predictions.

3.4.1 Entity Description Co-attention
First, we compute a relation matrix F

F = tanh(DWrS) ∈ RE×N (4)

to capture the relationship between news content
and entity descriptions, where Wr ∈ R2h×2h is a
learnable parameter. Second, we calculate interac-
tion maps for news content Hs and entity descrip-
tion Hc,

Hs = tanh(WsS+WdDFT )

Hd = tanh(WdD+WsSF)
(5)

where Ws,Wd ∈ R2h×2h are learnable parame-
ters. Third, we calculate attention weights on each
sentence in news content and entity descriptions.

as1 = softmax(whsHs)

ad = softmax(whdHd)
(6)

where whs and whd ∈ R1×2h are learnable pa-
rameters. After we get attention weights as1 ∈
R1×N ,ad ∈ R1×E , we generate new feature vec-
tors for news contents and entity descriptions:

ŝ1 = as1S
T

d̂ = adD
T

(7)

Finally, we represent news content in a feature vec-
tor ŝ1 ∈ R1×2h, and entity descriptions in a feature
vector d̂ ∈ R1×2h.

3.4.2 User Comment Co-attention
We apply co-attention model as shown in Sec-
tion 3.4.1 to news content and user comments.
We represent news content in a feature vector
ŝ2 ∈ R1×2h, and user comments in a feature vector
ĉ ∈ R1×2h. The attention weights vector for news
content and user comments are as2 ∈ R1×N and
ac ∈ R1×U .

3.5 Prediction Component
Our task is a binary classification task with
real/fake labels. First, we concatenate all feature
vectors f = [ŝ1, d̂, ŝ2, ĉ], and feed the result into a
2-layer linear neural network. It is calculated by:

ŷ = W2(W1f + b1) + b2 (8)

where W1 and W2 are learnable parameters and
b1,b2 are bias terms. The prediction result ŷ =
[y0, y1] indicates the probabilities of label 0 is y0,
and label 1 is y1. We choose cross entropy as our
loss function:

L(θ) = −ylog(ŷ1)− (1− y)log(1− ŷ0) (9)

where θ is all parameters in our model. We choose
Adam optimizer (Kingma and Ba, 2014) to opti-
mize all parameters θ.

4 Experiments

4.1 Datasets
We adopt two datasets in our experiment. The first
dataset is GossipCop (Shu et al., 2018), which col-
lects both news content and social context from
fact-checking website. The second dataset is
CoAID (Cui and Lee, 2020), which is a benchmark
dataset for COVID-19 misinformation. Please re-
fer to Appendix A for the statistics of the datasets.
We follow the evaluation settings as previous stud-
ies (Shu et al., 2018; Cui and Lee, 2020) to use (Ac-
curacy, F1, Precision, Recall) for GossipCop and
use (PR-AUC, F1, Precision, Recall) for CoAID.
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Model (Input) (# of Parameters)
GossipCop CoAID

Accuracy F1 Precision Recall PR-AUC F1 Precision Recall

BiGRU (N+C+E) (28M) 0.580 0.367 0.290 0.500 0.876 0.782 0.769 0.804
BERT (N+C+E) (339M / 110M) 0.787 0.776 0.787 0.771 0.940 0.877 0.901 0.859
RoBERTa (N+C+E) (384M / 125M) 0.894 0.890 0.896 0.887 0.918 0.877 0.901 0.859
LinkBERT (N+C+E) (330M / 110M) 0.824 0.811 0.841 0.802 0.927 0.880 0.903 0.863
dEFEND (N+C) (5M) 0.771 0.758 0.771 0.754 0.749 0.799 0.792 0.808

Dual-CAN (N+E) (33M) 0.895 0.891 0.901 0.885 0.853 0.884 0.905 0.868
Dual-CAN (N+C) (33M) 0.914 0.912 0.913 0.911 0.937 0.887 0.907 0.872
Dual-CAN (N+C+E) (33M) 0.949 0.947 0.946 0.949 0.954 0.884 0.905 0.868

Table 1: Experimental results. N, C, and E denote news content, user comments, and entity description, respectively.
BERT-based models are implemented in two methods (details in Appendix B) with different number of parameters.

4.2 Results
We compare the results with the following repre-
sentative models: BiGRU (Chung et al., 2014),
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), LinkBERT (Yasunaga et al., 2022)), and
dEFEND (Shu et al., 2019a).3 Table 1 shows
our experimental results. Our Dual-CAN outper-
forms all baselines in both datasets. In addition,
our Dual-CAN uses fewer parameters than BERT-
based models. Our approach also performs better
than dEFEND (Shu et al., 2019a) when no entity
descriptions are provided. This is because we use
different preprocessing methods, and the differ-
ences between two model architectures. The bot-
tom half of Table 1 shows ablation analysis of the
proposed model. The results indicate the impor-
tance of adding entity information to the proposed
model, especially in GossipCop. However, only a
few improvements in PR-AUC when experiment-
ing with CoAID. CoAID usually are short posts that
contain few entities, which results in the limitation
of the proposed entity-aware concept. The main
source to predict whether a piece of news is fake is
the news content itself. Therefore, N+E, N+C, and
N+C+E results only have small differences because
they both contain N. The roles of C and E are to
improve the predictions.

5 Interpretability

We examine attention weights [as1 ,ad,as2 ,asc ] to
find those sentences that the proposed model is fo-
cusing on when making predictions. Figure 2 illus-
trates the results. We find that our model pays a cer-
tain degree of attention to the first sentence in the
entity descriptions of both datasets (Figure 2a,2c).

3Because Shu et al. (2019a) did not release the information
for dataset separation, we use the same hyperparameter re-
ported in their work to reproduce the results. All implemental
details are provide in Appendix B

(a) (b) (c) (d)

Figure 2: Attention weights of: (a) GossipCop entity
description, (b) GossipCop user comments, (c) CoAID
entity description, and (d) CoAID user comments. Dark
colors means higher attention weights. The vertical axis
means the index of the sentence.

Our intuition about this phenomenon is that the
first sentence always provides a brief definition of
the entity, and it would be helpful for models to
understand the given entity. On the other hand,
model’s attention weights on user comments of
both datasets are in the middle replies, as shown in
Figure 2b and Figure 2d. It follows our intuition be-
cause the sentences like “FYI. It’s a fake news.” for
clarifying the given news/post is fake news always
appears later than some discussions. Based on Fig-
ure 2d, we also find that models give little attention
weight to the twelfth or later sentences. Besides
weight distributions studies, we also did some case
studies in Appendix C. The results show that atten-
tion weights do reflect the important parts of the
input, which help us interpret the model better. For
example, we understood the importance and usage
of entity descriptions from attention weights.

6 Conclusion

We propose a dual co-attention network for fake
news detection, which improves the previous rep-
resentative model, dEFEND, by (1) adding entity
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description as external knowledge and (2) redesign-
ing co-attention architecture for using all input in-
formation. Our results support the usefulness of the
proposed Dual-CAN model. The interpretability
based on the attention weight is also discussed.

Limitations

The major limitation of the proposed model is that
when the given text (news article or social media
post) is short, and the performance of adding entity
description may not be significantly improved. It is
because such text provides few entities in the nar-
rative, and it will limit the proposed entity-aware
concept.
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We will follow the licenses of GossipCop (Shu
et al., 2018) and CoAID (Cui and Lee, 2020) to
share the training, development, and test datsets in
our experiments.

Acknowledgments

This research is supported by National Science and
Technology Council, Taiwan, under grants 110-
2221-E-002-128-MY3, 110-2634-F-002-050-, and
111-2634-F-002-023-.

References
Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Alexandre Bovet and Hernán A Makse. 2019. Influence
of fake news in twitter during the 2016 us presidential
election. Nature communications, 10(1):1–14.

Ceren Budak. 2019. What happened? the spread of fake
news publisher content during the 2016 us presiden-
tial election. In The World Wide Web Conference,
pages 139–150.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS 2014 Workshop on Deep Learning,
December 2014.

Limeng Cui and Dongwon Lee. 2020. CoAID: Covid-
19 healthcare misinformation dataset.

Marco Del Tredici and Raquel Fernández. 2020. Words
are the window to the soul: Language-based user
representations for fake news detection. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5467–5479, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME:
On-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of the 19th ACM
International Conference on Information and Knowl-
edge Management, CIKM ’10, page 1625–1628, New
York, NY, USA. Association for Computing Machin-
ery.

Nir Grinberg, Kenneth Joseph, Lisa Friedland, Briony
Swire-Thompson, and David Lazer. 2019. Fake news
on twitter during the 2016 us presidential election.
Science, 363(6425):374–378.

Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong,
Duyu Tang, Chuan Shi, Nan Duan, and Ming Zhou.
2021. Compare to the knowledge: Graph neural fake
news detection with external knowledge. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 754–763.

Gihwan Kim and Youngjoong Ko. 2021. Graph-based
fake news detection using a summarization technique.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 3276–3280, Online.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Jiawen Li, Yudianto Sujana, and Hung-Yu Kao. 2020.
Exploiting microblog conversation structures to de-
tect rumors. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
5420–5429, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yunfei Long, Qin Lu, Rong Xiang, Minglei Li, and
Chu-Ren Huang. 2017. Fake news detection through
multi-perspective speaker profiles. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 252–256, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Yi-Ju Lu and Cheng-Te Li. 2020. GCAN: Graph-aware
co-attention networks for explainable fake news de-
tection on social media. In Proceedings of the 58th

110

https://doi.org/10.48550/ARXIV.2006.00885
https://doi.org/10.48550/ARXIV.2006.00885
https://doi.org/10.18653/v1/2020.coling-main.477
https://doi.org/10.18653/v1/2020.coling-main.477
https://doi.org/10.18653/v1/2020.coling-main.477
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.18653/v1/2021.eacl-main.287
https://doi.org/10.18653/v1/2021.eacl-main.287
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.18653/v1/2020.coling-main.473
https://doi.org/10.18653/v1/2020.coling-main.473
https://aclanthology.org/I17-2043
https://aclanthology.org/I17-2043
https://doi.org/10.18653/v1/2020.acl-main.48
https://doi.org/10.18653/v1/2020.acl-main.48
https://doi.org/10.18653/v1/2020.acl-main.48


Annual Meeting of the Association for Computational
Linguistics, pages 505–514, Online. Association for
Computational Linguistics.

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon,
Bernard J Jansen, Kam-Fai Wong, and Meeyoung
Cha. 2016. Detecting rumors from microblogs with
recurrent neural networks.

Federico Monti, Fabrizio Frasca, Davide Eynard, Da-
mon Mannion, and Michael M Bronstein. 2019. Fake
news detection on social media using geometric deep
learning. arXiv preprint arXiv:1902.06673.

Shashi Narayan, Gonçalo Simões, Yao Zhao, Joshua
Maynez, Dipanjan Das, Michael Collins, and Mirella
Lapata. 2022. A well-composed text is half done!
composition sampling for diverse conditional genera-
tion. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1319–1339, Dublin,
Ireland. Association for Computational Linguistics.

Shashi Narayan, Yao Zhao, Joshua Maynez, Gonçalo
Simões, Vitaly Nikolaev, and Ryan McDonald. 2021.
Planning with learned entity prompts for abstractive
summarization. Transactions of the Association for
Computational Linguistics, 9:1475–1492.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and po-
litical fact-checking. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2931–2937, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Roney Santos, Gabriela Pedro, Sidney Leal, Oto Vale,
Thiago Pardo, Kalina Bontcheva, and Carolina Scar-
ton. 2020. Measuring the impact of readability fea-
tures in fake news detection. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 1404–1413, Marseille, France. European
Language Resources Association.

Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee,
and Huan Liu. 2019a. defend: Explainable fake news
detection. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery &
data mining, pages 395–405.

Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dong-
won Lee, and Huan Liu. 2018. FakeNewsNet: A
data repository with news content, social context and
spatialtemporal information for studying fake news
on social media.

Datasets GossipCop CoAID

Word Embedding
Glove
100d

Glove
300d

Glove
100d

Glove
300d

Max sentence length 120 120
Max sentence number
per news N

40 4

Max sentence number
per entity description

4 4

Max sentence number
per user comment

2 2

Max sentence number
of total entity description E

100 20

Max sentence number
of total user comment U

100 20

Embedding dimension 100 300 100 300
h 100 300 100 300
Batch size 16 32
learning rate 0.001 0.001

Table 2: Model parameters.

Kai Shu, Xinyi Zhou, Suhang Wang, Reza Zafarani,
and Huan Liu. 2019b. The role of user profiles for
fake news detection. In Proceedings of the 2019
IEEE/ACM international conference on advances in
social networks analysis and mining, pages 436–439.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. volume 30.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018.
The spread of true and false news online. Science,
359(6380):1146–1151.

Youze Wang, Shengsheng Qian, Jun Hu, Quan Fang,
and Changsheng Xu. 2020. Fake news detection via
knowledge-driven multimodal graph convolutional
networks. In Proceedings of the 2020 International
Conference on Multimedia Retrieval, pages 540–547.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022. LinkBERT: Pretraining language models with
document links. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8003–8016,
Dublin, Ireland. Association for Computational Lin-
guistics.

Chunyuan Yuan, Qianwen Ma, Wei Zhou, Jizhong
Han, and Songlin Hu. 2020. Early detection of fake
news by utilizing the credibility of news, publish-
ers, and users based on weakly supervised learn-
ing. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 5444–
5454, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

A Dataset

Table 3 reports the statistics of the datasets.
We will release the datasets for reproduction,
and follow the same license of GossipCop

111

https://doi.org/10.18653/v1/2022.acl-long.94
https://doi.org/10.18653/v1/2022.acl-long.94
https://doi.org/10.18653/v1/2022.acl-long.94
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D17-1317
https://doi.org/10.18653/v1/D17-1317
https://doi.org/10.18653/v1/D17-1317
https://aclanthology.org/2020.lrec-1.176
https://aclanthology.org/2020.lrec-1.176
https://doi.org/10.48550/ARXIV.1809.01286
https://doi.org/10.48550/ARXIV.1809.01286
https://doi.org/10.48550/ARXIV.1809.01286
https://doi.org/10.48550/ARXIV.1809.01286
https://aclanthology.org/2022.acl-long.551
https://aclanthology.org/2022.acl-long.551
https://doi.org/10.18653/v1/2020.coling-main.475
https://doi.org/10.18653/v1/2020.coling-main.475
https://doi.org/10.18653/v1/2020.coling-main.475
https://doi.org/10.18653/v1/2020.coling-main.475


Datasets GossipCop CoAID

Total news 4,273 2,162
True news 2,562 1,590
Fake news 1,711 572
User Comments 309,059 37,187
Entity Descriptions 95,150 5,666

Table 3: Dataset statistics.

and CoAID. Due to the size limits, we cannot
upload the dataset via the submission system.
Please download it via the following anonymous
link: https://drive.google.com/file/d/
1QuZeINFHqy8OF1Av5627zTyyVVg7g2HD/view?
usp=sharing.

B Implementation Detail

Below are the implementation details of the base-
line models:

• BiGRU (Chung et al., 2014): We use Glove
300d for word embedding of news content,
entity descriptions and user comments. The
word embedding of three resources are feed
into BiGRU and concatenate their results T =
[vn, vd, vc]. Second, we feed T into linear
neural network described in Section 3.5 to get
final result.

• Pretrained language models (BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019),
LinkBERT (Yasunaga et al., 2022)): We
adopt three representative pretrained language
models for comparison, and implemented in
two different ways.

– Method 1
For each experiment, we feed news con-
tent, entity descriptions, and user com-
ments into three tokenizers respectively.
Afterwards, we feed input id and atten-
tion masks of each resource into three
pretrained language models respectively.
Each pretrained model handles one re-
source. Finally, we concatenate the out-
puts of three pretrained models, and pass
a linear layer to output probability of two
labels ŷ. This method is used for Gossip-
Cop dataset in Table 1.

– Method 2
The number of parameters in Method
1 is huge, but it’s necessary for Gossip-
Cop dataset. We tried another method

to reduce the number of parameters. We
concatenate all three resources and feed
into one tokenizer. Second, we feed in-
put id and attention masks into one pre-
trained models. The final procedure is
same as the previous method. The ex-
periment results for CoAID dataset are
in Table 1, and the results are better than
Method 1’s. The experiment results for
GossipCop dataset is in Table 4. The
performances are worse than Method
1’s. We believe it’s because GossipCop
dataset’s data are too long for a single
pretrained model. Therefore, we tried
Longformer (Beltagy et al., 2020) which
accept longer input. The performance be-
comes better, but this methods uses more
parameters.

• dEFEND (Shu et al., 2019a): dEFEND is
one of the representative fake news detection
methods. It is based on co-attention model to
increase explainability.4

Table 2 reports the hyperparameters used in the
proposed Dual-CAN. In the ablation study, we re-
move the original data of entity description E or
user comments C, and replace them with padding
token <PAD>. Therefore, the model architecture
remains the same as Section 3 stated. We have sub-
mitted the code for review, and it will be released
on GitHub.

C Case Study of Interpretability

We analyzed individual sentences and words which
have higher attention weight, in order to figure out
the explanability of the attention weight.

For sentence-level analysis, entity descriptions
that define an entity would have higher attention
weights. Here are two example entity descriptions
that have higher attention weights:

1. {Dataset: GossipCop, id: 587, attention
weight: 0.036 >average 0.01}: “IMDb (an
abbreviation of Internet Movie Database) is
an online database of information related to
films, television series, home videos,. . . ”

4Because Shu et al. (2019a) did not release the informa-
tion for dataset separation, we use the same hyperparameter
reported in their work to reproduce the results. We will release
the datasets for reproduction.
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Model (Input) (# of Parameters)
GossipCop

Accuracy F1 Precision Recall

BERT (N+C+E) (110M) 0.643 0.587 0.645 0.599
RoBERTa (N+C+E) (125M) 0.698 0.631 0.774 0.646
LinkBERT (N+C+E) (110M) 0.702 0.694 0.694 0.693
Longformer (N+C+E) (148M) 0.752 0.742 0.758 0.723

Table 4: Method 2 experiment results of GossipCop dataset. N, C, and E denote news content, user comments, and
entity description, respectively.

2. {Dataset: CoAID, id: 48, attention weight:
0.182 >average 0.05}: “The Centers for Dis-
ease Control and Prevention (CDC) is the
national public health agency of the United
States.”

3. {Dataset: CoAID, id: 1304, attention
weight: 0.119 > average 0.05}: “Getty Im-
ages, Inc. is a British-American visual media
company and is a supplier of stock images, ed-
itorial photography, video and music for busi-
ness and consumers, with a library of over
477 million assets.”

Moreover, we can see some correlation between
highlighted entity descriptions and news content
that contain them. For example, the news sentence
which contains entity (2,3), both have higher atten-
tion weight than average.

1. {Dataset: CoAID, id: 48, attention weight:
0.33 >average 0.25}: “enters for disease con-
trol and prevention, cdc twenty four seven,
saving lives protecting people centers for dis-
ease control and prevention”

2. {Dataset: CoAID, id: 1304, attention
weight: 0.33 > average 0.25}: “getty images
the antimalarial drug hydroxychloroquine is
being widely promoted as a cure for covid-19
but we still lack good data on its true benefits.”

Case studies indicate that our model performs
like it is doing “fact-checking”, which is an use-
ful and important strategy for fake news detection.
Meanwhile, entity descriptions are essential for
fact-checking. Therefore, with the good usage of
entity descriptions, fake news detection can achieve
better performance, same as the ablation studies in
Section 4.2 shown.

For word-level analysis, we discovered similar
results as (Lu and Li, 2020) did. Some fake news
contains emotional words or words that catch peo-
ple’s attention like “Breaking”or “warn”.
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Abstract

We propose a new commonsense reasoning
benchmark to motivate commonsense reason-
ing progress from two perspectives: (1) Eval-
uating whether models can distinguish knowl-
edge quality by predicting if the knowledge is
enough to answer the question; (2) Evaluating
whether models can develop commonsense
inference capabilities that generalize across
tasks. We first extract supporting knowledge
for each question and ask humans to anno-
tate whether the auto-extracted knowledge is
enough to answer the question or not. Af-
ter that, we convert different tasks into a uni-
fied question-answering format to evaluate the
models’ generalization capabilities. We name
the benchmark Commonsense Inference with
Knowledge-in-the-loop Question Answering
(CIKQA). Experiments show that with our
learning paradigm, models demonstrate en-
couraging generalization capabilities. At the
same time, we also notice that distinguish-
ing knowledge quality remains challenging for
current commonsense reasoning models.

1 Introduction

Understanding human language requires both lan-
guage knowledge (e.g., grammar and semantics)
and world knowledge, which can be further di-
vided into factual and commonsense knowledge
(Katz and Fodor, 1963). Recently, the commu-
nity has made great progress in helping machines
acquire and apply language and factual knowl-
edge. However, how to help machines acquire
and infer over commonsense is still unclear. To
answer this question, many commonsense rea-
soning datasets (Roemmele et al., 2011; Sak-
aguchi et al., 2020; Talmor et al., 2019; Zellers
et al., 2019; Lin et al., 2020) have been pro-
posed. Even though they target different knowl-
edge types, modalities, and formats, they often

∗ This work was done when the second author was vis-
iting HKUST.

follow a standard supervised learning setting that
aims at helping machines solve a specific task with
training data. However, two limitations of this
learning paradigm have restricted the development
of commonsense reasoning systems.

First, there is no clear separation between
knowledge and inference. As discussed in Elazar
et al. (2021), a common phenomenon is that
larger training data will lead to better perfor-
mance, mainly because richer knowledge is cov-
ered. However, due to the large scale of com-
monsense knowledge, it is infeasible to annotate
a large enough training set for each task, and the
responsibility of the training data should be teach-
ing models how to make inferences rather than
acquire commonsense knowledge. Several recent
works have explored using structured knowledge
for commonsense reasoning tasks (Lin et al., 2019;
Lv et al., 2020; Paul and Frank, 2020). However,
as these works did not clearly analyze the cover-
age of the structured knowledge (i.e., knowledge
graphs (KGs)), it is still unclear what the perfor-
mance means, better knowledge coverage, or bet-
ter inference capability. To investigate what is be-
hind this learning process, we propose to equip
each question with auto-extracted knowledge and
ask humans to annotate whether the knowledge is
sufficient to answer the question. By doing so,
we could evaluate whether models can know if
the provided knowledge is good or not and how
well they can conduct inference over the provided
knowledge to solve the task.

Second, supervised learning may force the
model to learn the distribution of the training data
rather than a universal inference model. As a re-
sult, the model may perform well on the test set
that follows the same distribution but fail to gen-
eralize (Kejriwal and Shen, 2020). Previously, as
different tasks have different formats, it is hard
to evaluate the generalization ability of common-
sense reasoning models. Following the trend of
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Figure 1: CIKQA demonstration. All tasks are converted into a unified format such that we can easily evaluate
the generalization capability of all models. We also equip all questions with auto-extracted knowledge graphs from
existing KGs and ask humans to annotate whether the knowledge is gold or not. In this example, we expect models
to first identify the quality of the knowledge and then conduct inference over the knowledge to solve the question.

using a unified format (i.e., question answering)
for different tasks (Khashabi et al., 2020), we pro-
pose to convert various commonsense reasoning
tasks into a unified QA format such that we can
easily and fairly evaluate the generalization ability
of learned commonsense reasoning models.

Combining these two lines of effort, we pro-
pose a new commonsense inference benchmark
Commonsense Inference with Knowledge-in-the-
loop QA (CIKQA). An example is shown in Fig-
ure 1. We first convert several popular common-
sense reasoning tasks into a unified QA format and
equip them with the relevant knowledge from ex-
isting commonsense knowledge graphs. We lever-
age human annotation to label whether the pro-
vided knowledge is correct and enough1 to answer
the question. The CIKQA benchmark can moti-
vate us to answer two questions: (1) Whether cur-
rent models can distinguish the knowledge is gold
or not; (2) Can current commonsense inference
models generalize across different commonsense
reasoning tasks?

Experiments with several recent knowledge-
based commonsense reasoning models show that
even though current deep models could learn to
conduct simple inferences after training with a
few examples when gold knowledge is provided,
they still cannot learn to distinguish gold knowl-
edge very well. Moreover, although current mod-

1In the rest of the paper, we denote such knowledge as the
gold knowledge.

els demonstrate encouraging generalization abil-
ity across the three tasks we consider, they still
struggle with complex inference (e.g., abductive
reasoning). We hope that our benchmark2 can
motivate more advanced commonsense inference
methods in the future.

2 Dataset Construction

In CIKQA, to encourage a generalizable com-
monsense inference model, we follow previous
work (Khashabi et al., 2020; Cohen et al., 2020;
Wu et al., 2020; Du and Cardie, 2020) to unify
all selected tasks as a binary question answering
problem, and equip each question with a support-
ing knowledge graph G retrieved from existing
commonsense KGs. We leverage crowd-sourcing
workers to annotate whether the knowledge is gold
(i.e., accurate and enough) for answering the ques-
tion. With that, we can evaluate whether mod-
els know how to distinguish gold and knowledge
and whether they can learn the generalizable in-
ference with the help of the knowledge. In total,
CIKQA contains 15 thousand instances from four
kinds of commonsense reasoning tasks. Details
about task selection, format unification, knowl-
edge extraction, and annotation are as follows.

2.1 Task Selection
In CIKQA, we select the following four popular
commonsense reasoning tasks:

2Available at https://github.com/CogComp/CIKQA.
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Task Name Original Assertion Transformed Question Answer

HardPCR The fish ate the worm. It was
hungry.

The fish ate the worm. It was hun-
gry. What was hungry?

(A) Fish; (B) Worm

CommonsenesQA What is a place that someone
can go buy a teddy bear?

What is a place where someone can
go buy a teddy bear?

(A) Toy store; (B) Shelf

COPA I drank from the water fountain. I drank from the water fountain.
What was the cause of this?

(A) I was thirsty.; (B) I felt
nauseous.

ATOMIC PersonX buys the bike. Before PersonX buys the bike, what
did PersonX want?

(A) To be social.; (B) To
have transportation.

Table 1: Demonstration of the original assertion, transformed questions, and answers. Correct and wrong answers
are indicated in blue and red, respectively.

1. HardPCR (Zhang et al., 2021): The hard pro-
noun coreference resolution (HardPCR) task is
one of the most famous commonsense reason-
ing tasks. For each question, a target pronoun
and two candidate mentions are provided, and
the task is to select the correct mention that
the pronoun refers to. Careful expert annota-
tions are conducted to get rid of the influence of
all simple linguistic rules, and the models are
required to solve the problem with common-
sense reasoning. We include instances from
WSC (Levesque et al., 2012), DPR (Rahman
and Ng, 2012), and WinoGrande (Sakaguchi
et al., 2020). To create a question regarding
the target pronoun, we first find the sentence
that contains the target pronoun and then deter-
mine whether the participating pronoun refers
to a person or an object.

2. CommonsenseQA (Talmor et al., 2019) is
a multiple-choice question answering dataset.
For each question-answer pair, four relevant but
wrong concepts are used as the other candi-
dates, and the models are required to select the
correct one out of five candidates. In CIKQA,
we randomly sample a negative answer to make
it a binary choice task, which is consistent with
other datasets.

3. COPA (Roemmele et al., 2011) focuses on eval-
uating the understanding of event causality.
Two follow-up events are provided for a target
event, and models are asked to predict the one
caused by or the reason for the target event.

4. ATOMIC (Sap et al., 2019): is a common-
sense knowledge graph, which we convert into
a completion problem. Given a head concept
(e.g., “eat food”) and a relation (e.g., “cause”),
we want to predict the tail concept, focusing on
predicting the edges of ATOMIC.

In COPA and ATOMIC, where the task is to
predict the relations between two events or states
(e.g., “PersonX eats”-Causes-“PersonX is full”),
for each triplet, we randomly sample another event
or state as the negative tail and ask the model to
select the correct one. To make the task challeng-
ing and avoid sampling irrelevant events or states,
we restrict the sampled negative event or state to
be connected with the head of a different triplet
(e.g., “PersonX is hungry” from the triplet “Per-
sonX eats”-CausedBy-“PersonX is hungry”). For
each relation, we write a pattern to generate the
question. For example, for the “Causes” relation,
we will ask “What can be caused by the event ‘Per-
sonX eats’?”. Examples of instances in the orig-
inal datasets and their transformed questions and
candidate answers are presented in Table 1.

2.2 Supporting Knowledge Extraction

As discussed in Section 1, a limitation of existing
commonsense reasoning benchmarks is that there
is no clear boundary between knowledge and in-
ference. As such, it is unclear what is learned from
the training data, the knowledge, how to perform
inference, or a combination of both. We propose
to equip each question with supporting knowledge
to address this issue and encourage models to learn
inference rather than knowledge from the training
data. The question is selected as part of the dataset
only if we find supporting knowledge to answer
the question. Note that this procedure serves as
an improved evaluation setup than purely super-
vised learning and not as a solution to common-
sense reasoning. This section introduces the se-
lected commonsense knowledge graphs and then
introduces how we extract the corresponding com-
monsense knowledge for each question.
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2.2.1 Commonsense KG Selection
Many commonsense knowledge graphs were de-
veloped to enhance machines’ commonsense rea-
soning abilities, including ConceptNet (Liu and
Singh, 2004), ATOMIC (Sap et al., 2019),
GLUCOSE (Mostafazadeh et al., 2020), and
ASER (Zhang et al., 2020a). Among these four,
ConceptNet, ATOMIC, and GLUCOSE were con-
structed via crowd-sourcing, while ASER was
constructed automatically with information ex-
traction techniques. Besides ATOMIC, which is
used as one of the tasks, we use the other KBs as
supporting knowledge resources.

2.2.2 Supporting Graph Extraction
Here we introduce how to extract the supporting
knowledge from external commonsense knowl-
edge bases. For each question, we need to obtain
a sub-graph from supporting knowledge graphs
to contain the relevant commonsense knowledge
about the question. The sub-graph extraction pro-
cess includes the following three steps: (1) Pre-
processing: Convert each question into several key
sentences; (2) Matching: Match the sentences into
nodes in the KG; (3) Extraction: Retrieve the rel-
evant sub-graphs from the entire KG. In what fol-
lows, we give some more details on each of the
steps.
Data Pre-processing: For each question and the
associated candidate answers, we first replace the
question words (e.g., “What”) with the two candi-
date answers such that they become two declara-
tive sentences. For instance, if the question is “The
fish ate the worm. It was hungry. Who is hun-
gry?” and the candidates are “Fish” and “Worm,”
we will convert the question into the declarative
sentence: “The fish is hungry” and “The worm is
hungry.” As a result, we will get three sentences
for this question: “The fish ate the worm,” “The
fish is hungry,” and “The worm is hungry.”
KG Matching: After getting the declarative sen-
tences containing the question and key answers,
we map them to nodes in knowledge graphs to
extract the relevant knowledge. Considering that
each sentence may have multiple words and it is
often hard to find an exact match, we adopt an
embedding-based fuzzy matching technique. For
each sentence and node in the KG, we treat them
as a sentence and get the corresponding repre-
sentations with SimCSE (Gao et al., 2021). For
each input sentence, SimCSE encodes the sen-
tence into a vector. A close distance between two

vectors indicates that the two sentences are simi-
lar to each other. We use cosine similarity on the
obtained representations to measure the similarity
between two sentences.3 Since there are 287 thou-
sand nodes in GLUCOSE and 194 million nodes
in ASER, it is computationally infeasible to com-
pute the cosine similarity between sentences pair
by pair. Thus we use an approximation. For each
extracted sentence, we first apply Faiss (Johnson
et al., 2017), a large-scale similarity-based match-
ing algorithm that first clusters all KG nodes in the
vector space to increase the matching efficiency
when finding the top N nodes in the KG. We en-
code all the nodes of the graph and index them us-
ing Faiss (Johnson et al., 2017). Then, we can per-
form fast and quick retrieval of the most-similar
nodes with each query sentence. After that, we
sort the N nodes based on the cosine similarity to
find the top K similar nodes. We set N and K
to be 60 and 1, respectively. On average, it takes
25 seconds to retrieve the relevant nodes for each
question.
Graph Extraction: Next, we extract the sub-
graph that contains all the relevant nodes. We de-
note the extracted m nodes as n1, n2, ..., nm, and
for each of them, we findK similar nodes from the
KG. The resulting matched node sets are denoted
as N1,N2, ...,Nm. For any pair of nodes n ∈ Ni
and n′ ∈ Nj (i ̸= j), if there exists a path in the
KG between n and n′, we will keep that path. Af-
ter adding all paths together, we will get the final
sub-graph. On average, constructing a graph for
each question takes less than two seconds.
Knowledge Quality Annotation: Since our ex-
traction method is automatic, some of the sub-
graphs may be irrelevant or insufficient for an-
swering the questions. We use crowdsourcing to
annotate whether the extracted knowledge is gold
(i.e., accurate and enough), five per example. The
average Inter-annotator agreement (Cohen’s kappa
statistic) is 0.83, indicating our annotation’s high
quality. In the end, we apply a strict standard (at
least four of five annotators need to vote for gold)
to select the gold knowledge.

2.3 CIKQA Statistics
We report the dataset statistics in Table 2. In
total, CIKQA contains 14,599 instances, among
which Hard PCR and ATOMIC provide the most

3We also tried other techniques such as string match,
ROUGE (Lin, 2004), and BLEURT (Sellam et al., 2020), but
found them to be either inaccurate or too slow for our scale.
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Task Name # Instance by Knowledge Resource # Total Instance Avg Sub-graph Size # Gold InstanceASER ConceptNet GLUCOSE

HardPCR 2,030 202 2,143 4,375 2.85 670
CommonsenseQA 530 31 37 598 3.19 59
COPA 103 41 149 293 3.03 78
ATOMIC 5,655 212 3,466 9,333 2.67 2,200

Total 8,318 486 5,795 14,599 2.75 3,007

Table 2: CIKQA statistics. “Avg Sub-graph Size” is the average graph size measured by the number of edges.
“# Gold Instance” means the number of instances supported by different knowledge resources and annotated gold
(i.e., Accurate and Enough) knowledge.

questions because their original datasets are much
larger than others. According to the annotation,
20.59% of the instances contain gold knowledge.
Based on our analysis, annotators hold a very strict
standard for selecting the gold knowledge. We
randomly split the dataset into training, develop-
ment, and testing sets for each task with a standard
8:1:1 splitting. As a result, we get 11,678 training,
1,459 development, and 1,462 testing instances.

3 Experiment Setup

We present the performance of the following com-
monsense inference models on CIKQA:
(1) Vanilla LM: We use the language model (LM)
based multiple-choice (MC) model as the basic
baseline. For each candidate answer, we concate-
nate it with the question and feed it to the model.
After getting the sentence representation, a linear
layer is used to obtain a score and trained with a
cross-entropy loss.
(2) KagNet: As one of the pioneering works that
utilized structured knowledge for solving com-
monsense reasoning tasks, KagNet (Lin et al.,
2019) first uses a graph convolution network to
encode the knowledge graph and then apply an
LSTM based hierarchical attention mechanism to
encode the knowledge paths that start with the
nodes corresponding to the question and end with
nodes corresponding to the answer. At the same
time, KagNet encodes the question and answers
with pre-trained LMs. In the end, it concatenates
all representations for the final prediction.
(3) Graph-Based Reasoning (GBR): Instead of
only encoding paths starting with the question
nodes and ending with answer nodes, in GBR (Lv
et al., 2020), they propose to run a depth-first al-
gorithm over the knowledge graph to generate a
sequence of paths as the supporting knowledge
paths.
(4) Multi-Head Knowledge Attention (MHKA):

To further utilize the knowledge, MHKA (Paul
and Frank, 2020) uses a transformer network to
model the paths from the question nodes and an-
swer nodes, then concatenates the knowledge and
context representation for the final prediction.
(5) Graph-to-Text (G2T): In the end, we also
evaluate a simple yet effective approach of com-
bining structured knowledge and language mod-
els: Graph-to-Text (Bian et al., 2021), which first
verbalizes knowledge into a sentence and then
concatenates the knowledge sentence and target
question together. On top of that, a transformer-
based model is used to encode the input sentence
and make the final prediction.

Implementation Details We implement all ex-
periments with Huggingface (Wolf et al., 2019).
We select BERT-base (Devlin et al., 2019) as the
base language model for all models. The batch
size is set to 16. All models are trained for 10,000
steps4, and the best-performing checkpoints on
the dev set are evaluated. For our model, we set
both the number of random walk paths and the
walk length to five. Considering that the auto-
extracted knowledge could contain noise or miss
certain knowledge, we add a “gold knowledge”
setting, where only examples with the gold knowl-
edge are used for training and testing, for all mod-
els as the upper bound of their model. All other
hyper-parameters are the same as the base lan-
guage model. All models are trained with GTX
2080, and the average running time is 12 hours.

4 Result Analysis

We first conduct analysis experiments to evalu-
ate to what extent the provided knowledge could
help existing models. For each model, we train
it with different numbers of training instances and
report the average performance and standard de-

4All models converge at 10,000 steps.
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Figure 2: Learning curves of all evaluated models on
all instances of CIKQA. We evaluate all models with
the full dataset.

viation of five trials. Experiment results with all
instances and the gold subset of CIKQA, where
only instances with gold knowledge are used for
training and testing, are presented in Figure 2
and 3, respectively. From the results, we can make
the following observations. First, when explic-
itly including the knowledge, all inference models
outperform the baseline model with no support-
ing knowledge, especially G2T. When the auto-
extracted and gold knowledge is provided, G2T
outperforms the baseline Vanilla LM model by
4.17 and 15.34 accuracy, respectively. It supports
our assumption that learning all knowledge from
the limited training data is hard, and external struc-
tured knowledge could help. At the same time,
we also notice a significant gap between auto-
extracted knowledge and gold knowledge. For
example, if gold knowledge is available, models
could learn to answer the questions with only a
few examples. This indicates that the knowledge
quality can significantly impact models’ perfor-
mance, which further shows the importance of dis-
tinguishing whether the knowledge is gold or not
automatically. Last but not least, we can see that
G2T outperforms other inference models in most
settings, which shows that with the help of cur-
rent large-scale LMs, jointly encoding questions
and knowledge is more efficient and a more effec-
tive strategy than acquiring them separately. Due
to the simplicity and efficiency of G2T, we will
conduct the rest analysis experiments with G2T.

Figure 3: Learning curves of all evaluated models on
the gold subset of CIKQA, where only instances with
gold knowledge are used for training and testing.

4.1 Distinguishing the Gold Knowledge

Humans can say “I do not know” when they find
out that they cannot answer a question with their
knowledge. To investigate whether current deep
models have a similar capability, we use G2T as
an example to test whether these deep models can
distinguish the gold knowledge. For each (ques-
tion, answer, and knowledge) triplet, we train and
test G2T with annotated knowledge quality la-
bels. To address the imbalanced distribution prob-
lem, we randomly select the same number of “Not
Gold” examples as the “Gold” ones to make the
dataset balanced. From the results in Figure 4,
we can see that the performance of G2T can be
improved slightly with the increase of training
data. However, after seeing thousands of exam-
ples, it still can only achieve 0.65 accuracy on a bi-
nary classification problem. It shows that knowing
when to say “I do not know” is still a challenging
task for current deep models, which is consistent
with the observations in previous literature that
deep models cannot understand the reasons and
knowledge they used to answer questions (Zhang
et al., 2020b; Sanh et al., 2022). We hope that
CIKQA could motivate more future work on this
important research problem.

4.2 Generalization Ability

An important assumption and motivation behind
the unified problem design of CIKQA is that even
though the commonsense could be enormous, the
inference rules over commonsense knowledge can
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Training Task Testing Task
Hard PCR CommonsenseQA COPA ATOMIC

Hard PCR - 37.50→ 52.30 75.00→ 53.24 44.13→ 53.32
CommonsenseQA 50.00→ 50.14 - 62.50→ 56.67 56.34→ 70.56
COPA 45.95→ 51.26 62.50→ 58.33 - 49.77→ 62.96
ATOMIC 39.19→ 50.76 50.00→ 76.67 62.50→ 73.33 -

(a) Full Dataset (Vanilla LM (without knowledge)→ G2T (with knowledge))

Training Task Testing Task
Hard PCR CommonsenseQA COPA ATOMIC

Hard PCR - 46.67→ 51.67 63.33→ 56.67 51.85→ 55.78
CommonsenseQA 49.32→ 50.32 - 50.00→ 75.00 60.39→ 91.08
COPA 52.51→ 54.79 56.67→ 87.50 - 53.01→ 76.06
ATOMIC 50.46→ 51.35 68.33→ 93.75 56.67→ 87.50 -

(b) Gold Subset (Vanilla LM (without knowledge)→ G2T (with knowledge))

Table 3: Generalization ability demonstration. We report the performance on both the full dataset and the gold
dataset (i.e., only questions with gold knowledge are selected for training and testing) to show the generalization
ability. Strong and moderate generalization settings are indicated with the green and orange background, respec-
tively.

Figure 4: The learning curve of G2T on the gold knowl-
edge identification task.

be limited. As a result, even though we could
not learn all the commonsense from limited train-
ing data, we can learn how to conduct inference
with several tasks and then generalize to others.
In this section, we conduct experiments with both
the “Without Knowledge” and “With Knowledge”
models to show that we can gain such generaliza-
tion ability across different tasks with our unified
formulation. We conduct experiments on two set-
tings: (1) Full Set: We train and test the model
with the whole dataset; (2) Gold Subset: We only
train and test the model on questions where the
supporting graph is annotated as gold. We train
the model with questions from a specific task and

test it on all tasks. The results are in Table 3.

From the results, we can see that the knowledge
can help models to generalize well among Com-
monsenseQA, COPA, and ATOMIC. The only ex-
ception is HardPCR. This is mainly because the
inference needed for solving HardPCR is more
complex than the other tasks, where we not only
need to find the relevant knowledge but also need
to replace the target pronouns with the entity in
the provided knowledge. As shown in Figure 5,
two paths can be found relevant to question: (1)
“I am drunk”→Co Occurrence→“I hit someone”;
(2) “I am drunk”→Co Occurrence→“That is not
fair”→Co Occurrence→“You kick me”. For the
correct inference, we need to know when there is
a conflict, we should trust the one-hop inference
more because the additional node in the two-hop
path may introduce extra noise. As a compari-
son, for other tasks, the main inference we need
is to find the relevant paths, which is relatively
easy. How to train a model that can learn to con-
duct such complex reasoning is a problem worth
exploring in the future.

In general, the observed generalization ability
is encouraging because if we can learn a good
model on CIKQA, based on the assumption that
there are limited types of inference, we can po-
tentially solve any commonsense reasoning task
as long as the needed inference types are covered
by CIKQA. At the same time, we also notice that
models typically generate better when gold knowl-
edge is provided, further proving the importance
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Figure 5: CIKQA Case Study. Mapped nodes for the question/answers are in blue/pink. Other nodes are white.
Edge weights are in brackets. We only show the relevant parts of the graphs for clear representation.

of the gold knowledge identification task.

5 Related Work

To help machines understand commonsense, the
community has devoted great efforts to construct-
ing commonsense knowledge bases with either
crowdsourcing (e.g., ConceptNet (Liu and Singh,
2004) and ATOMIC (Sap et al., 2019)) or infor-
mation extraction techniques (e.g., ASER (Zhang
et al., 2020a)). Typically, crowd-sourced knowl-
edge bases are of higher quality, and the auto-
constructed ones have broader coverage. Besides
acquiring commonsense knowledge, the commu-
nity also developed many commonsense reasoning
datasets to train and test models’ commonsense
reasoning abilities. Even though these datasets
may have different formats (e.g., slot fitting in
Winogrande (Sakaguchi et al., 2020) and question
answering in CommonsenseQA (Talmor et al.,
2019)), knowledge types (e.g., causal common-
sense in COPA (Roemmele et al., 2011) and nu-
merical commonsense in NumerSense (Lin et al.,
2020)), or modalities (e.g., visual commonsense
in VCR (Zellers et al., 2019) and textual common-
sense in many others), they follow a standard su-
pervised learning setting, and aim at helping ma-
chines to solve a specific commonsense task in an
end-to-end manner. Given this setting, it is of-
ten difficult to tell what has been learned during
the training. Was it used to acquire commonsense
knowledge, learn to conduct commonsense infer-
ence, or both? Such ambiguity limits our progress
in solving these commonsense reasoning tasks. In
this work, we connect the efforts on common-
sense acquisition and inference by creating a com-
monsense inference benchmark CIKQA , where
models can focus on learning to identify the gold
knowledge and perform inference over the sup-

porting commonsense knowledge.
Answering questions in natural language based

on a knowledge base (KB) is a mature research
topic in the NLP community, which is also known
as the KBQA problem (Clark et al., 1999; Yih
et al., 2015, 2016; Usbeck et al., 2017; Cui et al.,
2017). Previous work mainly focuses on factual
knowledge, which is stored in the triplets format.
The main challenge is to parse the question and
then precisely and effectively identify the correct
path over a large-scale KB to make the inference.
Compared with inference over factual knowledge,
inference over commonsense knowledge brings
the following unique challenges: (1) Common-
sense is a kind of preference rather than fixed
knowledge. As a result, the ideal commonsense
reasoning process could involve the comparison of
multiple candidates. For example, both “drink cof-
fee” and “drink bear” could happen in the morn-
ing, but a normal person will prefer “drink coffee;”
(2) Beyond named entities, commonsense knowl-
edge also covers daily entities and events, and thus
it is difficult to find an exact node from the com-
monsense KB that matches the question, and we
may need to conduct inference based on the partial
match (i.e., the extracted nodes are relevant but not
identical).

6 Conclusion

In this paper, we present CIKQA, a unified com-
monsense inference benchmark. Specifically, we
first convert several popular commonsense tasks
into a unified QA format and then equip each ques-
tion with a supporting commonsense knowledge
graph. We also leverage humans to annotate the
quality of auto-extracted knowledge. Experiments
show that even though models can better learn how
to perform commonsense inference with a few ex-
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amples and significantly outperform the baseline
method that does not use structured knowledge in
the data-scarce setting, identifying the gold knowl-
edge is still a challenging problem. More in-
terestingly, with our unified formulation, models
demonstrate the encouraging generalization abil-
ity across tasks. As both the format unification
and supporting graph extraction are automatic, we
can easily extend to other commonsense reasoning
tasks in the future.
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Limitations

A common limitation of existing semi-parametric
models is the coverage of knowledge resources.
CIKQA also faces this limitation. Based on
our analysis, the largest commonsense knowledge
bases can still cover part of the questions in exist-
ing commonsense benchmarks. How to populate
these commonsense knowledge graphs is an im-
portant research question in the future.
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Billion-scale similarity search with gpus. CoRR,
abs/1702.08734.

Jerrold Katz and Jerry Fodor. 1963. The structure of a
semantic theory. Language, 39:170–210.

Mayank Kejriwal and Ke Shen. 2020. Do fine-tuned
commonsense language models really generalize?
CoRR, abs/2011.09159.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. Unifiedqa: Crossing format
boundaries with a single QA system. In Proceedings
of EMNLP 2020 Findings, pages 1896–1907.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Proceedings of KR 2012.

122

https://ojs.aaai.org/index.php/AAAI/article/view/17490
https://ojs.aaai.org/index.php/AAAI/article/view/17490
https://ojs.aaai.org/index.php/AAAI/article/view/17490
https://www.aaai.org/Papers/Symposia/Fall/1999/FS-99-02/FS99-02-009.pdf
https://www.aaai.org/Papers/Symposia/Fall/1999/FS-99-02/FS99-02-009.pdf
https://arxiv.org/abs/2010.04829
https://arxiv.org/abs/2010.04829
http://www.vldb.org/pvldb/vol10/p565-cui.pdf
http://www.vldb.org/pvldb/vol10/p565-cui.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.819
https://doi.org/10.18653/v1/2021.emnlp-main.819
https://doi.org/10.18653/v1/2021.emnlp-main.819
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
http://arxiv.org/abs/1702.08734
https://doi.org/10.2307/411200
https://doi.org/10.2307/411200
https://arxiv.org/abs/2011.09159
https://arxiv.org/abs/2011.09159
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4492


Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. Kagnet: Knowledge-aware graph net-
works for commonsense reasoning. In Proceedings
of EMNLP-IJCNLP 2019, pages 2829–2839.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xi-
ang Ren. 2020. Birds have four legs?! numersense:
Probing numerical commonsense knowledge of pre-
trained language models. In Proceedings of EMNLP
2020, pages 6862–6868.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74–81.

Hugo Liu and Push Singh. 2004. Conceptnet: a practi-
cal commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226.

Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang,
Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang,
Guihong Cao, and Songlin Hu. 2020. Graph-based
reasoning over heterogeneous external knowledge
for commonsense question answering. In Proceed-
ings of AAAI 2020, pages 8449–8456.

Nasrin Mostafazadeh, Aditya Kalyanpur, Lori Moon,
David Buchanan, Lauren Berkowitz, Or Biran, and
Jennifer Chu-Carroll. 2020. GLUCOSE: GeneraL-
ized and COntextualized story explanations. In Pro-
ceedings of EMNLP 2020, pages 4569–4586.

Debjit Paul and Anette Frank. 2020. Social common-
sense reasoning with multi-head knowledge atten-
tion. In Proceedings of the EMNLP 2020, Findings,
pages 2969–2980.

Altaf Rahman and Vincent Ng. 2012. Resolving
complex cases of definite pronouns: The winograd
schema challenge. In Proceedings of CoNLL 2012,
pages 777–789.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In Proceedings of AAAI 2011 Spring Sym-
posium, pages 90–95.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. Winogrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of AAAI 2020, pages 8732–8740.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Tae-
woon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian
Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Ab-
heesht Sharma, Andrea Santilli, Thibault Fevry, Ja-
son Alan Fries, Ryan Teehan, Teven Le Scao, Stella

Biderman, Leo Gao, Thomas Wolf, and Alexan-
der M Rush. 2022. Multitask prompted training en-
ables zero-shot task generalization. In Proceedings
of ICLR 2022.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
ATOMIC: an atlas of machine commonsense for if-
then reasoning. In Proceedings of AAAI 2019, pages
3027–3035.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. BLEURT: learning robust metrics for text
generation. In Proceedings of ACL 2020, pages
7881–7892.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of NAACL 2019, pages
4149–4158.

Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bas-
tian Haarmann, Anastasia Krithara, Michael Röder,
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Abstract

Scarcity of large-scale datasets, especially for
resource-impoverished languages encouraged
exploration of data-efficient methods for hate
speech detection. In this work, we progress
implicit and explicit hate speech detection us-
ing an input-level data augmentation technique,
task reformulation using entailment and cross-
learning across five languages. Our proposed
data augmentation technique EasyMixup, im-
proves the F1 performance across languages by
0.5-9%. We also observe substantial F1 gains
of 1-8% by reformulating hate speech detec-
tion as Entailment-style problem. We
further probe the contextual models and ob-
serve that higher layers encode implicit hate
while lower layers focus on explicit hate, high-
lighting the importance of token-level under-
standing for explicit and context-level for im-
plicit hate speech detection. 1

1 Introduction

Deep learning based methods (Badjatiya et al.,
2017; Zhang et al., 2018; Kshirsagar et al., 2018)
have shown impressive results in detecting hate
speech. Transformer based models (Caselli et al.,
2021; Tekiroğlu et al., 2020; Aluru et al., 2020;
Mozafari et al., 2019; Dutta et al., 2022) have fur-
ther pushed the state-of-the-art by leveraging large
amount of unlabeled data in a self-supervised man-
ner. Various hate speech detection datasets have
been contributed in textual (Gibert et al., 2018;
Davidson et al., 2017; Founta et al., 2018), au-
dio (Gupta et al., 2022) and visual (Gomez et al.,
2020) domains. However, these algorithms are
data-hungry and motivate development of algo-
rithms which are data-efficient.

To tackle this, we introduce an input-level
data augmentation technique EasyMixup and im-
prove hate speech detection in monolingual and

∗Work done during internship at ShareChat
1Code and Dataset splits - https://github.com/

Sumegh-git/data_efficient_hatedetect

multilingual settings. EasyMixup is inspired
by mixup based augmentation techniques which
are broadly categorized into input-level mixup (Yun
et al., 2019; Kim et al., 2020; Uddin et al., 2021;
Walawalkar et al., 2020) and hidden-level mixup
(Verma et al., 2019). EasyMixup follows the
input-level paradigm and leverages a simple ob-
servation that the label of a hateful instance is
preserved on concatenation with a hateful or non-
hateful instance. Similarly, label of a non-hateful
instance does not change on concatenation with
another non-hateful instance.

We also study the efficacy of reformulating hate
speech detection as Entailment-style prob-
lem. We extend the work by (Wang et al., 2021)
and perform detailed experiments under implicit,
explicit and multilingual settings. We observe that
monolingual entailment performs better than En-
glish based entailment. This observation is intu-
itive because the models are pretrained using pair
of sentences from same language and monolingual
entailment reflects the same settings.

Majority of the existing textual datasets focus
on explicit hate speech where swear, cuss, abusive
words are used to express the hateful intent. In
contrast, implicit hate speech employs subtle, indi-
rect and contextual ways for expressing hate speech
making it extremely harmful and difficult, as shown
in (ElSherief et al., 2021). Acknowledging this dif-
ference of expression, we explore the relationship
between explicit and implicit hate speech using
cross-learning and observe strong correlations. We
also perform probing experiments and observe that
lower layers focus on explicit hate speech while
higher layers are responsible for encoding implicit
hate speech. This alludes to the hypothesis that im-
plicit hate speech is more contextual in nature and
requires more understanding, while explicit hate
speech can be detected by leveraging lower-level
information.

In summary, our main contributions are:
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• We propose input-level data augmentation
technique EasyMixup which outperforms
previous methods for our task.

• We show performance gains by reformulat-
ing hate speech detection as monolingual
Entailment-style problem.

• We probe contextual models and observe that
higher layers encode implicit hate speech
while lower layers focus on explicit hate
speech.

• We show that correlations exist between ex-
plicit and implicit hate speech and leverage
that for improving hate speech detection.

Figure 1: (top) Mixing hateful (red) samples with either
hate (red) or non-hate (green) samples doesn’t change the final
label. Similarly mixing two non-hate (green) samples preserve
the final label. (bottom) Posing hatespeech classification as
entailment task. [Best viewed in color]

2 Methodology

2.1 EasyMixup

EasyMixup is an input-level data augmentation
technique where we leverage the observation that
ground truth label of a hateful sample does not
change on concatenation with another hateful or
non-hateful samples. Similarly, concatenation of
a non-hate sample with another non-hate sample
results in a novel non-hate sample as shown in
Figure 1(top). More formally, let’s say (si, yi) is
the sentence and it’s corresponding label y ∈ {hate,
non-hate} in a minibatch S and D is the entire

dataset,

S = {(s0, y0), (s1, y1), ..., (sn, yn)|(si, yi) ∈ D}

For every sample in the batch, si ∈ S, we
randomly select (si, yi) ∈ D with si ̸= si and
augmentation probability paug to create new aug-
mented sample:

siaug = ϕ(si, si), yiaug = yi ∨ yi

where ϕ is defined as :

ϕ(si, si) =

{
concat(si; si) p > pflip

concat(si; si) , otherwise

where, pflip is the sentence flipping probability and
concat() refers to concatenation. Flipping intro-
duces more augmentation and prevents the model
from learning positional bias. Finally, we get the
updated minibatch S by replacing original with
augmented samples (siaug , yiaug).

2.2 Entailment-style

We reformulate hate speech classification task
as an entailment-style task (Wang et al., 2021).
The (input, target) for the contextual model is:
(si[sep]lj , yi), where, si is the original sentence,
lj is the label-prompt, [sep] is the separator and
yi ∈ {0, 1} as shown in Figure 1 (bottom). Label-
prompt represents the ground-truth label of the sen-
tence in textual format. For example, this post
contains hatespeech / this post contains normal
words can be used as label-prompt for hate and
non-hate sentences respectively (Table B). The tar-
get to the model, yi = 0 indicates that the sentence,
si and label-prompt, lj do not entail each other.
yi = 1 indicates entailment. We extend analysis of
Entailment-style for multiple languages us-
ing monolingual and multilingual label-prompts.

2.3 Explicit and Implicit Hate Speech

In this section, we study the correlation between
explicit and implicit. As discussed previously, ex-
plicit hate speech comprises of cuss, swear, abu-
sive, profane words but implicit hate speech is more
contextual and indirect. While the manner of ex-
pression is different, the intent behind both these
modes is similar. To leverage this, we pretrain
on the task of explicit hate speech detection and
finetune it on implicit hate speech dataset and vice-
versa and observe consistent gains. We probe the
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Model Acc F1 ∆F1
RoBERTa-base 68.61 67.20 -
RoBERTa-Tw 69.18 67.64 +0.44
RoBERTa-TwS 69.54 67.88 +0.24
RoBERTa-TwS-EasyMixup 69.80 68.33 +0.45
Mathew et al. (2021) 69.00 67.40 -

Table 1: Explicit Hate: Accuracy and F1 score on
HateXplain dataset averaged over 3 runs.

Model Acc F1 ∆F1
RoBERTa-base 76.91 74.09 -
RoBERTa-Tw 77.86 75.77 +0.68
RoBERTa-TwS 78.36 76.13 +0.36
RoBERTa-TwS-EasyMixup 78.38 76.66 +0.53
ElSherief et al. (2021) 77.50 70.40 -

Table 2: Implicit Hate: Accuracy and F1 score on
LatentHatred dataset averaged over 3 runs.

layers of contextual models by extracting the fea-
tures from each layer and training a classifier over
these representations to understand how contextual
models encode the information about hate speech
and observe that explicit and implicit hate speech
is encoded differently.

3 Dataset and Models

Explicit: We experiment with HateXplain
(HX)(Mathew et al., 2021) dataset for explicit hate
speech study. HateXplain (HX) captures ex-
plicit lexicon based hate speech posts collected
from popular social media sites like Twitter and
Gab.
Implicit: For implicit hate speech, we use
LatentHatred (LH)(ElSherief et al., 2021),
which comprises of implicit hate speech containing
indirect/coded language.
Multilingual: We also experiment with explicit
hate speech datasets in French (FR), Spanish (ES),
Arabic (AR) and Portuguese (PT) 2 for evaluating
our methodolgy for different languages. Since the
taxonomy was different for each label, we focus
on the datapoints annotated with hate and non-hate
labels only (Poletto et al., 2021). In Appendix
Section A, we summarize the details and statistics

2hatespeechdata.com

Model Accuracy F1 Score ∆F1
RoBERTa-Tw 69.18 67.64 -
RoBERTa-Tw-IH 70.74 68.88 +1.24
RoBERTa-Tw 77.86 75.77 -
RoBERTa-Tw-EH 78.38 75.95 +0.18

Table 3: Cross-Learning results between explicit and implicit
hate speech detection.

Lang DL XLM-R XLM-Tw XLM-TwS EM-mo EM-mu
FR 65.95 64.48 68.36 72.73 78.58 81.16
ES 73.29 76.99 77.27 77.87 79.23 80.66
AR 83.20 82.36 83.57 84.50 84.80 85.60
PT 69.41 71.83 72.35 72.76 73.60 74.09

Table 4: F1 score on two-way classification (hate, non-
hate) for different languages using adaptation and mono-
lingual (EM-mo) and multilingual (EM-mu) variations of
EasyMixup augmentation. DL((Aluru et al., 2020))

Baseline + prompt-en + prompt
Acc F1 Acc F1 Acc F1

HX 69.85 68.36 72.97 71.39 72.97 71.39
LH 77.81 74.42 78.57 75.97 78.57 75.97
FR 88.46 84.62 88.55 84.64 94.23 92.83
ES 76.13 75.87 77.06 76.74 80.44 79.97
AR 89.67 78.09 89.30 78.51 90.41 82.03
PT 72.19 66.50 75.00 67.98 79.23 71.04

Table 5: F1 score on entailment task for all datasets using en-
glish prompts (prompt-en) and language-specific prompts
(prompt). Baseline corresponds to BERT-base for HX,
LH and mBERT for rest. For English datasets, prompt is
equivalent to prompt-en.

of all the datasets.
Models: We consider RoBERTa-base (Liu et al.,
2019) and XLM-R (Conneau et al., 2020) as
the baseline model for English and other lan-
guages respectively. For exploring the impact
of domain adaptive models, we experiment with
RoBERTa-Tw and XLM-Tw models. For the mul-
tilingual experiments, we use XLM-TwS, which
is the XLM-Tw model finetuned on the UMSAB
dataset (Barbieri et al., 2021).More details in Ap-
pendix Section C.

4 Results

Explicit: In Table 1, we report the results
on HateXplain dataset. We observe that
RoBERTa-Tw improves upon the results of
RoBERTa-base model. This shows that the pre-
training over similar domain (social media) helps
in achieving better performance. RoBERTa-TwS
which has been trained for sentiment detection
demonstrates further improvement highlighting
the correlation between sentiments and hate-
speech detection. On adding our augmentation
(RoBERTa-TwS-EasyMixup), we notice fur-
ther performance gains demonstrating the bene-
fits of EasyMixup augmentation. Overall, our
results improve upon the previously reported base-
line (Mathew et al., 2021).
Implicit: We conduct similar experiments on
LatentHatred dataset. We notice gains by
using the domain adapted RoBERTa-Tw model.
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Figure 2: Layer-wise probing results on HateXplain
(top) and LatentHatred (bottom) datasets for
RoBERTa-base, RoBERTa-Tw and RoBERTa-TwS
[Best viewed in color].

RoBERTa-TwS does not improve the accuracy
but improves upon the F1 score which is a bet-
ter metrics due to data imbalance. Addition
of EasyMixup (RoBERTa-TwS-EasyMixup)
further improves the performance. Our results im-
prove upon the previously reported state-of-the-art
results 2.
Explicit-Multilingual: We evaluate our method
on 4 more languages in Table 4 and observe similar
trends. For all the languages, multilingual domain
(XLM-Tw) and task adapted (XLM-TwS) mod-
els perform better than the base model (XLM-R).
On integration of EasyMixup, we further note
improvements. We also experiment with sam-
pling augmented samples from other languages
(EM-mu) and notice further gains highlighting
the cross learning between languages by 1-3%.
We compare EasyMixup with state-of-the-art
method SSMixup in Table 6 and observe that
EasyMixup improves the performance by 1-2%
for both implicit and explicit hate-speech detection.
Entailment-style: In Table 5, we report the re-
sults using monolingual3 and English prompts and
observe that monolingual prompts outperform En-
glish prompts. This is not surprising considering
that models are trained on pairs of sentences from
same language only. We use mBERT/ BERT-base
for this study as it has been trained with NSP task
which aligns with Entailment-style. Check
Appendix B for more details.
Implicit-Explicit Correlation: We finetune the
RoBERTa-Tw model on implicit hate speech

3We used Google Translate to obtain monolingual prompt

Model Acc F1
LatentHatred

BERT-base 76.51 73.70
+SSMixup (Yoon et al., 2021) 77.30 74.76
+EasyMixup 77.52 75.28

HateXplain
BERT-base (Mathew et al., 2021) 69.00 67.40
+SSMixup 69.59 67.72
+EasyMixup 69.70 68.66

Table 6: Comparing EasyMixupwith SSMixup (Yoon et al.,
2021)

(RoBERTa-Tw-IH) before training it for implicit
hate speech and observe the F1 improvement from
67.64 to 68.88 in Table 3. This shows that implicit
hate speech detection benefits the task of explicit
hate speech. Similarly, F1 score of implicit hate
speech detection improves from 75.77 to 75.95 by
finetuning using explicit hate speech dataset.

Probing: In Figure 2, we plot the F1 score of
RoBERTa-base and RoBERTa-Tw for explicit
and implicit hate speech across different layers of
the contextual model. We note that lower layers
show higher F1 for explicit hate speech detection
(expected layer = 0.98), while higher layers demon-
strate better implicit hate detection performance
(expected layer = 5.12). This alludes to the hypoth-
esis that implicit hate speech is contextual in nature
while explicit hate speech can be detected by using
token-level information also. Training details are
described in Appendix Section D.

5 Conclusion

In this work, we introduced a novel input-
level data-augmentation technique, EasyMixup
which shows performance gains over monolin-
gual and multilingual settings. We also explored
reformulation of hate speech classification as
Entailment-style problem and achieved sub-
stantial performance gains using monolingual en-
tailment. We also performed layer probing to
find that higher layers encode implicit hate in-
formation, while lower layers are more focused
on explicit hate speech highlighting the contex-
tual nature of implicit and token-level depen-
dence of explicit hate speech. In future work,
we would like to explore how EasyMixup and
Entailment-style perform when ensembled
together in both mono, multi-lingual settings.
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6 Limitations

One limitation would be that EasyMixup won’t
be applicable in tasks like sentiment analysis where
the final mixed label might not be binary.
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A Dataset

In Table 7, we note the dataset size and source
of the datasets used in our study. Majority of the
datasets are source from Twitter and have data im-
balance.
Explicit Hate (HX): HateXplain dataset has
been sourced from Twitter and Gab. The lexicon
set from (Davidson et al., 2017), (Ousidhoum et al.,
2019a) & (Mathew et al., 2019) is combined to sam-
ple 1% tweets in the period Jan-2019 to Jun-2020.
For Gab, they use the dataset provided by (Mathew
et al., 2019). All posts containing embedded links,
pictures, videos were removed and usernames were
anonymized by replacing with user token. Each
post in the dataset is labelled into 3 categories: Nor-
mal, Offensive or Hateful. For the annotation task,
Amazon Mechanical Turk (MTurk) workers are
used where each post is labelled by 3 annotators
and the ground truth class is chosen by majority
voting. Finally, 19,229 posts were annotated of
which 5,935 were hateful, 5,480 were offensive
and 7,814 were normal. For the rest 919 posts the
annotators provided 3 different classes and hence
these were discarded.
Implicit Hate (LH): LatentHatred introduces
a theoretically-justified taxonomy of implicit hate-
speech with fine-grained labels on eight ideological
clusters of US hate groups as given by the SPCL
report - Black Separatist, White Nationalist, Neo-
Nazi, Anti-Muslim, Racist Skinhead, Ku Klux Clan,
Anti-LGBT and Anti-Immigrant. For high-level
categorization, the tweets were categorized into ex-
plicit hate, implicit hate & non-hateful. Overall,
the dataset contains 21,480 tweets, where 7,100
were implicit hate, 1,089 explicit hate and 13,291
non-hateful. Using majority vote, labels were ob-
tained for 19,112 tweets of which 4,909 were im-
plicit hate, 13,291 non-hateful and rest 933 explicit
hate were discarded. For a finer categorization, 6
labels were chosen representing principal axes of
implicit hate - White Grievance, Incitement, Inferi-
ority, Irony, Stereotypes & Threatening. The 4,909
implicit hate tweets labeled in the high-level stage
were further annotated using the above mentioned
fine-grained labels.
Multilingual: We collected 6 publicly available
datasets in 4 different languages - French, Spanish,
Arabic and Portuguese and combined them individ-
ually. Each dataset had a variety of labels - hate,
abusive, profanity, offensive etc. Since the taxon-
omy is different for each label, we focus on the

Dataset Source #datapoints %hate
HateXplain Twitter, Gab 19,229 30.86
LatentHatred Twitter 20,391 34.82
Arabic Twitter 5,418 17.07
Portuguese Twitter 5,670 31.53
Spanish Twitter 11,150 33.29
French Twitter 1,028 20.14

Table 7: Dataset Statistics

datapoints annotated with hate and non-hate labels.
We describe each dataset in following section.

• Arabic (AR): Mulki et al. (2019) contains
Syrian/Lebanese political tweets labeled as
abusive, normal or hate. (Ousidhoum et al.,
2019b) consists of multi-labeled tweets based
on attributes like hostility, target, directness,
etc.

• Spanish (ES): Basile et al. (2019) provided
a multilingual hatespeech dataset against
women & immigrants. Quijano-Sanchez et al.
(2019) collected a small hatespeech dataset in
spanish with hate/non-hate labels.

• Portuguese (PT): Fortuna et al. (2019) pro-
vided a hierarchically labeled hatespeech
dataset of which we use only the binary la-
bels for our task.

• French (FR): Ousidhoum et al. (2019b) con-
sists of multi-labeled tweets based on at-
tributes like hostility, target, directness, etc.

B Prompts used for
Entailment-style task

Refer to Table 8.

C Model Details

RoBERTa-Tw is based on RoBERTa-base
model trained on 60M English tweets. XLM-Tw
(Barbieri et al., 2021) is a XLM-R model trained
on 200M tweets retrieved from 30+ languages. For
task-adaptive models, we take RoBERTa-TwS and
RoBERTa-Tw-EH which are initialized with the
RoBERTa-Tw model and further finetuned using
Sentiment and Hatespeech classification data from
the TweetEval (Barbieri et al., 2020) benchmark.

D Implementation Details

We perform all experiments with 3 different seeds
on a single NVIDIA V100 GPU and report the
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Language Label Description
HateXplain this post contains hate speech / this post contains {offensive,normal} words
LatentHatred this is implicit hate / this is normal
French c’est odieux / c’est normal
Spanish esto es odioso / esto es normal
Arabic
Portuguese este post contém discurso de ódio / este post contém palavras normais

Table 8: Prompts used across various datasets for Entailment-style task.

average score. We use a batch size of 16 and
maximum sequence length of 128. We choose
initial learning rate from {3e-5, 4e-5, 5e-5} and
perform linear decay after 10% warmup steps. We
use the AdamW optimizer and train our models
for 5 epochs. The classifier head consists of a
2-layer MLP with ReLU activation. We choose
the best checkpoint using validation metrics ev-
ery epoch. From our experiments, we found best
reported results were obtained by combining offen-
sive+normal & hate+normal classes for HateX-
plain and hate+normal classes for LatentHatred
and keeping paug = 0.2 and pflip = 0.5.

For the probing experiments, we train the 2-layer
MLP probe classifier for 50 epochs with batch size
64 and learning rate 1e-3.

For the entailment experiments, we use a batch
size 128 (required for entailment method to get
good gains) consistently for all methods and learn-
ing rate 3e-5.

E Effect of Length

We used the max sequence length of 128 in
our experiments. < 1% of samples exceed
this limit across all datasets - HateXplain,
LatentHatred, MultilingualHate.
Thus, length of 128 tokens does not degrade
Entailment-style performance. However,
in case of EasyMixup, length of concatenated
sentences could exceed 128 tokens. To evaluate
the impact, we repeat experiments using best per-
forming model - RoBERTa-TwS-EasyMixup
(averaged over 3 random seeds) keeping maximum
sequence length as 512. For HateXplain,
∆ Accuracy / F1 ∼ 0.00 / -0.03 % and for
LatentHatred ∆ Accuracy / F1 ∼ +0.21 /
-0.05 %. As we can see there is no significant
impact from the reported results. This can be
attributed to the fact that we do probabilistic mixup
in EasyMixup (paug = 0.2 and pflip = 0.5).
Thus the model sees all type of examples during
the training phase.

F Ethical Considerations

All the datasets that we use are publicly available.
We report only aggregated results in the main paper.
We have not or do not intend to share any Person-
ally Identifiable Data with this paper. We release
the code and data associated with this paper as well
- https://anonymous.4open.science/
r/data_efficient_hatedetect/
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Abstract

Large Language Models (LLMs) handle phys-
ical commonsense information inadequately.
As a result of being trained in a disembodied
setting, LLMs often fail to predict an action’s
outcome in a given environment. However,
predicting the effects of an action before it is
executed is crucial in planning, where coher-
ent sequences of actions are often needed to
achieve a goal. Therefore, we introduce the
multi-modal task of predicting the outcomes
of actions solely from realistic sensory inputs
(images and text). Next, we extend an LLM to
model latent representations of objects to bet-
ter predict action outcomes in an environment.
We show that multi-modal models can capture
physical commonsense when augmented with
visual information. Finally, we evaluate our
model’s performance on novel actions and ob-
jects and find that combining modalities help
models to generalize and learn physical com-
monsense reasoning better.

1 Introduction

Large Language Models (LLMs) are trained on
large corpora of disembodied texts. They are typi-
cally pre-trained on a masked language modeling
task: the model must predict a masked word in a
text given its context. LLMs have achieved state-
of-the-art performance on many NLP tasks (Devlin
et al., 2019; Brown et al., 2020), but they can also
fail on seemingly easy and obvious tasks and in un-
predictable ways (McCoy et al., 2020; Bommasani
et al., 2021). Commonsense knowledge is shared
knowledge and is often so obvious that it is absent
from the LLMs’ training data: people don’t men-
tion what is already known to their interlocutors.
This includes physical commonsense information,
including how executed actions affect the physical
attributes of objects; e.g., shape and weight (Forbes
et al., 2019). Humans may learn such knowledge
from their embodied environment. But LLMs, be-
ing trained on disembodied text, can make incorrect

predictions about physical attributes and how these
change when actions occur. For instance, when
asked what the weight of a 150 grams potato after
it is sliced, GPT-3 (Brown et al., 2020) incorrectly
answers 75 grams (see Appendix A for the exact
prompt). GPT-3 is an LLM with 175 billion param-
eters, and nonetheless its disembodied existence
limits its physical commonsense estimates.

Zellers et al. (2021) inject physical common-
sense information into LLMs via their model
PIGLeT—a modified LLM that is trained on
their PIGPeN simulated 3D environment dataset.
PIGLeT estimates how an environment changes as
a result of specific actions. In training and testing,
the model uses ground-truth symbolic representa-
tions of the environment but not the images: it
ignores visual sensory observations. These sym-
bolic representations of objects in an environment
are chosen to capture the possible effects of ac-
tions, and include attributes like weight, size and
temperature. However, in an embodied situation,
an agent needs to use visual perception to estimate
its interpretation of the scene. Therefore, the sym-
bolic representations should be treated as latent
rather than observed.

We propose an alternative to the PIGLeT model,
PIGLeT-Vis, which uses images directly as input
into a multi-modal LLM to ground the model to its
physical environment. We compare our approach
to the original PIGLeT model and evaluate the gen-
eralization capabilities gained from using image
inputs. At test time, our model foregoes symbolic
labels: only the images and the name of the action
are observed. Thus our model tackles a more chal-
lenging task than the original PIGLeT model in that
it must not only predict the effect of actions but also
(indirectly) estimate the symbolic representations
of objects in the images. We also evaluate a model
for predicting the effects of actions that trains on
PIGPeN’s images and their associated natural lan-
guage (NL) descriptions, eliminating the need for
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Figure 1: Original PIGLeT Physical Dynamics Model (Zellers et al., 2021). During pre-training the model
receives as input the full symbolic representation of two objects (o0pre and o1pre) before the action is taken and the
symbolic representation of the action itself (a) and is tasked with predicting the attributes of the objects after the
action (o0

post and o1post). During fine-tuning, the action encoder is replaced by an LLM to process a natural language
description of the action being taken and with what objects.

formal symbolic representations.
Our contributions are three-fold. First, we show

that it is possible to predict the physical effects of
actions from visual data. Second, we show that it
is possible to learn the task on training data where
formal symbolic representations, which are unob-
servable in real-world settings, are replaced with
NL descriptions (which can be observed through
natural interaction). Third, we evaluate all our mod-
els in a stricter zero-shot setup to promote ways
to train agents that generalize. Overall our work
paves the way for multi-modal models that learn
the effects of actions in realistic environments.

2 Related Work

Commonsense reasoning has been highlighted as a
potential weak point of LLMs in recent years (Shen
and Kejriwal, 2021; Forbes et al., 2019; Bisk et al.,
2020). Datasets such as PIGPeN (Zellers et al.,
2021), commonsenseQA (Talmor et al., 2019),
VCR (Zellers et al., 2019) and GD-VCR (Yin et al.,
2021) help evaluate different aspects of common-
sense reasoning in modern LLMs. In this paper, we
focus on physical commonsense reasoning, which
involves understanding the (often) unexpressed
rules of the physical world.

Forbes et al. (2019) reported that neural repre-
sentations found it challenging to infer the link
between actions and what they imply about the
attributes of objects. Accordingly, Zellers et al.
(2019) introduced the Visual Commonsense Rea-
soning (VCR) task to test how images can inform

question answering models that tackle common-
sense information. Bisk et al. (2020) designed the
PIQA benchmark to evaluate physical common-
sense reasoning in LLMs through question answer-
ing. Sampat et al. (2021) proposed an extension to
the CLEVR dataset, where an agent must reason
and answer questions about a scene after a hypo-
thetical action is taken.

Multiple approaches can improve the capabil-
ities of LLMs in commonsense reasoning, such
as using handcrafted knowledge graphs (Hwang
et al., 2021) or leveraging simulated environments
(Zellers et al., 2021). PIGLeT, in particular, com-
bines a traditional LLM and a “Physical Dynamics”
model to ground an LLM (Zellers et al., 2021). The
Physical Dynamics model enhances the common-
sense knowledge of an LLM by fine-tuning it, using
trajectories sampled from a realistic environment
(see Figure 1). Trajectories are an action and a
pair of environment states (before and after the ac-
tion) expressed in a formal symbolic representation.
Zellers et al. (2021) found that fine-tuning LLMs
with symbolic data from the simulated environment
helped them outperform other models in physical
commonsense reasoning tasks: in particular, pre-
dicting the effects of an action when executed in a
particular state.

Image inputs offer a way to ground an LLM, as
they only require general alignment with a text or
symbolic input and do not require the comprehen-
sive environment ground-truth labels that PIGLeT
uses. Gao et al. (2018) used multi-modal web
data to learn actions and their effects from images
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Figure 2: PIGLeT-Vis. We introduce PIGLeT-Vis, where we modify the PIGLeT architecture to replace its
Symbolic Object Encoder with a vision component that makes use of images of the environment before and after
an action is taken to predict the symbolic representation of objects post-action. We use an attention mechanism
over the extracted bounding boxes to obtain a visual hidden representation of an object given its name. The only
remaining symbolic inputs during pre-training are the action description and object names.

and corresponding text descriptions. Zellers et al.
(2019) used an off-the-shelf ResNet50 model (He
et al., 2016) to augment an existing BERT language
model (Devlin et al., 2019) with vision capabilities.
Transformer models such as UNITER (Chen et al.,
2020), ERNIE-ViL (Yu et al., 2021), VisualBERT
(Li et al., 2020), and ViLBert (Lu et al., 2019)
have been applied to visual commonsense reason-
ing. These models use a joint transformer backbone
for images and text and vary their pre-training ob-
jectives. However, most of these models are trained
on static text-image pairs: they aren’t designed to
capture the dynamics of an environment, partic-
ularly how object attributes change with actions.
Notably, recent work by Hanna et al. (2022) uses
CLIP (Radford et al., 2021) and MOCA (Singh
et al., 2021) embeddings to predict a post-action
image given a set of possible images. In contrast,
we focus on adapting an LLM with a vision-based
component to predict the consequences of actions
on the environment.

3 Method

We propose PIGLeT-Vis (Figure 2) for learning the
effects of actions on objects from images. We use a
pre-trained vision backbone, DETR (Carion et al.,
2020), as a Vision Object Encoder and combine
it with a RoBERTa LLM (Liu et al., 2019) as an
Action Encoder. We experiment with different con-
figurations of inputs to measure the impact of the
various components of our architecture. In partic-
ular, we test a variation in which we remove the
formal symbolic labels even in training, replacing

them with NL text labels. To evaluate our models,
we use the PIGPeN dataset (Zellers et al., 2021),
which consists of a symbolic and visual representa-
tion of an environment before and after an action is
taken. However, we filter PIGPeN to create a viable
testing ground for visual grounding of physical ac-
tions and more accurately measure generalization
capabilities of models.

3.1 Architecture

PIGLeT-Vis (shown in Figure 2) consists of sepa-
rate components, which can combine multi-modal
inputs in different ways. Through this modular
approach, we can turn off specific components to
evaluate how different inputs and model structures
affect performance on the task. We test models
with and without symbolic inputs and image inputs.
For all components, we use a dropout of p = 0.1
in between layers and a default hidden layer size
of h = 64.

3.1.1 Object Encoder
We reproduce Zellers et al. (2021), where all ac-
tions are assumed to involve two objects, o0 and
o1, and the symbolic representation of objects are
encoded in an Object Encoder model. The sym-
bolic representation of an object before the action
is represented by opre. Both objects (o0pre and o1pre)
in the environment are described by a vector of
38 attributes, chosen on the basis that they are the
kinds of physical attributes that are influenced by
actions. They describe an object as small/large,
cold/hot, empty/full, etc.

We first embed these symbolic object attributes
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using an embedding layer Ee×h, where e = 329 is
the total number of unique attributes and h is our
hidden size. For an object k:

ôkpre = E(okpre) (1)

The Object Encoder Oencoder takes in the embed-
ded object attributes through a set of multi-head
attention layers to encode the symbolic representa-
tion of each object. We use the default Pytorch im-
plementation of the Transformer Encoder (Paszke
et al., 2019) with three layers and 4 heads. The first
encoded output of each object sequence is used for
representing the entire object.

hkpre = Oencoder(ôkpre) (2)

3.1.2 Action Encoder
Actions are encoded either as a symbolic triplet
⟨action, action object, action receptacle⟩ or as an
annotated text describing an action being taken
(e.g., “robot empties the cup”).

During pre-training, the Action Encoder
Apretrain uses an action embedding layer E′ to
embed the first dimension of the action, and re-
uses the object embedding layer E to embed the
action object name ao and action receptacle name
ar. The action embedding layer E′ has dimension-
ality 10× h for the 10 distinct actions. The three
embedded representations are summed and passed
to the Action Encoder’s linear layers to produce ha
(see equation 3). Similarly to Zellers et al. (2021),
a tanh activation is applied after each linear layer.

ha = Apretrain(E′(a) + E(ao) + E(ar))) (3)

When fine-tuning on the annotated dataset, the
action input is text and therefore we switch out the
Action Encoder Apretrain for Afinetune—our text-
based Action Encoder. Afinetune uses a RoBERTa-
base1 model (Liu et al., 2019) to process a tok-
enized version of the text input at. The first token
([CLS]) of the RoBERTa output layer is used to rep-
resent the action sequence and then passed through
a linear layer to map the dimensionality of the hid-
den states from 256 to h.

ha = Afinetune(at) (4)
1Implementation and pre-trained model weights are taken

from the Huggingface library (Wolf et al., 2019).

3.1.3 Vision Object Encoder
The Vision Object Encoder takes in images (ipre
and ipost) to provide a visual representation of each
object k before and after (hkpre and hkpost). We
use the DETR1 (Carion et al., 2020) model as a
backbone to predict N bounding boxes in a pair
of images (pre- and post-action). As DETR is pre-
trained on the COCO object detection dataset (Lin
et al., 2014), its predicted object labels do not align
with those in PIGPeN. Therefore, we instead learn
a mapping between the predicted bounding box
representations and the PIGPeN objects. For each
image, we obtain a hidden representation hb of
dimensionality N × 256 where N = 100.

We use an attention mechanism over the bound-
ing boxes’ hidden representation, conditioned on
the object names. For a given object ok, its condi-
tional representation hkc is the encoded name of the
object: E(okname). We can therefore obtain the at-
tention score of a given object ok and image im by
calculating the alignment between the conditional
representation hkc and the hidden representations of
bounding boxes hbm :

hbm = DETR(im) (5)

αk
m = Softmax

(
h∑

i=1

(hkchbm)i

)
(6)

We obtain the final representation for a given ob-
ject and image by multiplying our attention scores
α with the extracted output representation from
DETR and summing along the bounding box axis:

hkom = W




b∑

j=1

(αk
mhbm)j


 (7)

We use a final output layer W to decrease the di-
mensionality of ho from the DETR dimensionality
of 256 to h.

Through the Vision Object Encoder, we replace
the previously symbolic inputs with images and can
extract [h0

preh1
pre] and [h0

posth1
post] from ipre and

ipost respectively. Note that we make the implicit
assumption that ipre and ipost contain the informa-
tion necessary to predict object attributes of the
objects post-action.

3.1.4 Action Apply
The Action Apply Model β is a simple fuse op-
eration (concatenation in the hidden dimension)
followed by three linear layers, which combine
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the action representation ha and an object repre-
sentation of the scene pre-action hkpre. The model
outputs an object’s representation hka, containing
information conditioned all inputs:

hka = β(ha,hkpre) (8)

3.2 Object Decoder
Finally, the Object Decoder is a transformer mod-
ule that maps the object representations ho from
the pre-action state back to 38 symbolic attributes.
It uses a default three layer Transformer Decoder
(Paszke et al., 2019) that takes the hidden repre-
sentation from the Action Apply hka as an encoded
memory state and hkpre as the source sequence to
predicts a label for each attribute.

ȯkpost = Odecoder(hka,h
k
pre) (9)

When we use image inputs, we also have access
to the post-action visual representation and can
therefore use hkpre + hkpost instead of hkpre.

The output has post-action object states ȯkpost
which are compared to the ground truth okpost to
calculate cross-entropy. As an additional loss, we
also use the cross-entropy between ȯkpre and okpre by
passing an empty hka to force the Object Decoder
to recreate the attributes in the pre-action state. We
weight both losses equally.

3.3 Evaluation Metrics
Since our task involves predicting 38 attributes
for two different objects per example, we follow
Zellers et al. (2021) and report different types of
accuracy metrics on the test set (after fine-tuning).
We measure the overall accuracy by scoring how
many objects have all attributes correctly predicted
(exact match). Note that this is a high bar for a
model where the symbolic representations are la-
tent: to predict an object correctly, our model must
first estimate its attributes before the action and
then estimate whether and how these change given
an action. So we also measure the attribute-level
and action-level accuracies of each model, so as
to explore which attributes and actions are more
difficult to predict than others.

3.4 PIGPeN-Vis Dataset Split
To evaluate physical commonsense reasoning using
PIGLeT-Vis, we filter PIGPeN (Zellers et al., 2021)
to create a subset (PIGPeN-Vis) which we use for
all our experiments. We motivate PIGPeN-Vis as

a way to isolate the effects of adding our vision
component, because while PIGPeN already has
images, these images were not used in PIGLeT.

The PIGPeN dataset consists of trajectories of
an environment before (pre) and after (post) an
action is taken. Each trajectory contains repre-
sentations of two distinct objects before and af-
ter. One of the objects is usually targeted by the
action, while the other acts as a distractor. In ad-
dition, image pairs (ipre, ipost) for each trajectory
are provided, where each image is snapshot of the
simulated photo-realistic 3D environment which
contains the objects in view (see Appendix B for
an example). Each image is an RGB image of
dimensions 640× 385.

The original dataset is separated into two distinct
sets:

1. A pre-training set of 278, 009 trajectories,
which includes the symbolic representations
of objects o before and after a symbolic action
a is taken. A separate validation set of 33, 042
examples is also included.

2. A fine-tuning set of 1, 000 trajectories which
has been annotated to replace the symbolic ac-
tion a with a textual representation at describ-
ing the action. Separate validation and test
sets of 500 examples each are also included.
All metrics are reported on the test set.

In PIGPeN, the object states opre and opost con-
tained 40 different attributes and 13 different ac-
tions a. Attributes range from intrinsic such as
name or moveable to stateful such as distance or
isCooked. In forming PIGPeN-Vis, we remove
two attributes and three actions from the dataset
to obtain 38 attributes and 10 possible actions (see
Appendix B for more details).

3.4.1 Viewpoint and Action Filtering
Since the PIGPeN images were not generated with
the goal of being used as input data, we identified
several issues with the quality of certain scenes.
A notable difficulty is that in some cases, the be-
fore and after images are not captured from the
same camera angle or they have different light-
ing conditions. Changing orientations and lighting
conditions makes it difficult to use an image pair
(ipre, ipost) to isolate the outcome of an action. Con-
versely, image pairs with too few perceivable differ-
ences also break our assumption that the changes in
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the environment are perceivable. Therefore, we fil-
ter the dataset using pixel statistics to remove image
pairs that have either large perceivable differences
(likely due to changes in viewpoint) or small per-
ceivable differences (where the action’s results are
not visually salient enough) (see Appendix B.2).
We exclude 15.4% of the total dataset through
visual filtering of the original dataset.

3.4.2 Zero-Shot Filtering
To evaluate the generalization capabilities gained
from a vision component, we further filter the
dataset to exclude a subset of training examples.
Unlike the original PIGPeN dataset which only
tested for zero-shot generalization at the level of
the fine-tuning data, we remove all instances with
selected specific objects or action-object pairs from
all training and validation sets. To minimize the
effect of removing examples from the dataset, we
pick objects and action-object pairs with an already
low number of samples in the training sets. In total,
we exclude 14 objects and 27 action-object pairs,
which amounts to less than 3% (6, 816 samples)
of the remaining training sets (see Appendix B.3).
These zero-shot examples comprise around 10% of
the test set.

After both filtering stages, PIGPeN-Vis contains
a pre-training dataset of 232, 625 trajectories with a
validation set of 26, 823, and a fine-tuning training
set of 750 examples with a validation set of 367
examples and a test set of 398 examples.

3.5 Training Configurations

We evaluate the impact of the vision component on
PIGPeN-Vis through five different setups:

• base: We implement a baseline model with-
out symbolic object inputs. Our implemen-
tation removes the Object Encoder entirely,
such that the model must predict the attributes
of objects solely from knowing the action and
the object names that it relates to. This model
acts as a lower bound on the capabilities of the
vision model: its performance would match
the vision model if images are irrelevant to
solving the task.

• base+symbolic: This is our implementation
of the original Zellers et al. (2021) PIGLeT
model, shown in Figure 1. This model acts as
an upper bound on the capabilities of the vi-
sion model since it observes the true symbolic

representations of objects before the action
(which the vision model must estimate).

• base+images: This is our proposed PIGLeT-
Vis, shown in Figure 2, where the Vision Ob-
ject Encoder replaces the previously symbolic
Object Encoder. This model leverages the
before and after images of the environment
as well as the name of the objects to extract
representations of the object attributes.

• base+symbolic+images: We sum the hid-
den symbolic representations of objects with
their visual representations in a unified model.
Through this setup, we evaluate whether im-
ages can provide additional information to the
already comprehensive symbolic representa-
tions.

• base+images+text-labels: We convert the
symbolic representations of the labels for the
object names and actions to their text label and
encode them using a frozen LLM during pre-
training. We use the same LLM to encode the
text labels that we later use in the fine-tuning
stage. This setup replaces all symbolic inputs
from the pre-training stage to only language
and image inputs.

Note that there are a few differences between the
original Zellers et al. (2021) model and our im-
plementation of base+symbolic. For instance,
for simplicity, we opted to use an off-the-shelf
RoBERTa-base (Liu et al., 2019) model instead
of training our own custom GPT2 (Radford et al.,
2019). Additionally, we also reduce the dimen-
sionality of the PIGLeT layers from h = 256 to
h = 64. We found that not only does this allow
faster training times as it shrinks the Physical Dy-
namics model from 11.9 million parameters to 2
million parameters, it also improves the overall
accuracy by a small margin (+1.51%).

We train each model for 80 epochs with a batch
size of 256 using the Pytorch implementation of
the Adam optimizer (Kingma and Ba, 2014) and a
learning rate of 10−3 during pre-training and 10−5

during fine-tuning. We run each setup over 10
different seeds and report the average and standard
deviation for each metric (see Appendix C.1 for
more details).
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Accuracy (%± σ)
Overall Zero-Shot

base 21.23± 0.72 5.34± 2.77

base+symbolic (PIGLeT) 85.03± 0.45 39.04± 3.37
base+symbolic+images 86.01± 0.89 35.89± 3.47

base+images (PIGLeT-Vis) 45.47± 1.50 7.53± 2.60
base+images+text-labels 47.55± 2.10 8.90± 3.24

Table 1: Overall and zero-shot accuracies (PIGPeN-Vis)

4 Results and Discussion

We evaluate all models on our PIGPeN-Vis split
and report the overall (exact match), zero-shot,
action-level, and attribute-level accuracy results
for all setups in Tables 1 and 2. For completeness,
we also evaluate models on the original PIGPeN to
contrast the effects of our filtering operations (see
§3.4 and Appendix D) and find PIGPeN-Vis is a
more challenging subset for all models.

The base model provides a low bar estimate of
what is achievable using only the action encoder
inputs. Unsurprisingly, the base model performs
worst on overall accuracy, which demands an ex-
act match of all attributes. It does relatively well
on (individual) attribute-level accuracy, primarily
because it predicts the most common attribute for
each object. Some actions are also easier than
others—for instance, the model reaches 27.38% ac-
curacy on ToggleOn from only knowing the action
and object names. This is likely because ToggleOn
is constrained to a small set of objects and effects.

Our base+symbolic model obtains similar re-
sults to the original implementation by Zellers et al.
(2021), with an overall accuracy of 85.03%. How-
ever, it performs much worse on the zero-shot split
(39.04%) than the original PIGLeT model reported
(80.2%) (Zellers et al., 2021). This disparity can
be explained by the fact that the original zero-shot
PIGPeN dataset was not a true zero-shot dataset, be-
cause the Physical Dynamics model was exposed
to the “unseen” objects in its pre-training. The
base+symbolic model provides a high bar esti-
mate of what could be achievable if: (i) ipre and
ipost capture the symbolic environment; and (ii) the
Vision Object Encoder can subsequently extract
these features. However, as we will argue in Sec-
tion 6, both (i) and (ii) are unrealistic given the
constraints of both the dataset and the model.

Our base+images (PIGLeT-Vis) model scores
45.28% in overall accuracy but only 7.53% on the
zero-shot set. Nevertheless, it outperforms the
base model in overall accuracy (p < 0.0001) and
in zero-shot accuracy (p = 0.08), which demon-

strates that the images improve the prediction of
the effects of actions. The base+images model
also performs significantly better than base on dif-
ficult attribute-level accuracies such as distance
(p < 0.0001). However, as before, accuracy on
individual attributes benefits from the skewed dis-
tributions of their values and does not necessar-
ily translate to high scores on predicting all 38
attributes correctly.

Utilizing both images and symbolic representa-
tions as inputs helps the base+symbolic+images
model outperform purely symbolic inputs in over-
all accuracy, from 85.03% to 86.01% (p < 0.01).
However, image inputs also decrease the model’s
zero-shot performance from 39.04% to 35.89%, al-
though this isn’t statistically significant (p = 0.05)
due to high variance. We suspect that this high
variance is caused by an increase in noise in the
model resulting from adding images to the sym-
bolic model. However, the overall picture is more
complicated, as images can also provide gains on
certain actions (e.g., PickUp accuracy increases
from 80.48% to 86.14%) even though it causes a
decrease in many other cases (e.g., ToggleOn).

Finally, when we utilize NL descriptions to re-
place the formal symbolic inputs (action name
and object names), base+images+text-labels
improves overall accuracy when compared to
base+images from 45.47% to 47.55% (p = 0.02).
Text inputs appear to improve zero-shot accuracy,
but not by a statistically significant margin (p =
0.31). Accuracy also improves in most actions,
for instance the Slice accuracy improves from
41.64% to 45.57% (p = 0.03). So the NL descrip-
tions inform the task in a beneficial way, over and
above the raw images. But encoding the labels as
text rather than formal symbolic representations
also adds noise.

Nevertheless, text labels improve accuracy on
actions where the semantic information contained
in the label provides a richer context to help gen-
eralize to similar objects. For instance, a “cup”
and a “mug” are semantically close, and thus learn-
ing the effects of actions on a “cup” might help
the model predict the same effects on a “mug”
even if the word forms are different. In con-
trast, the formal symbolic representations treat
the predicate symbols cup and mug as unrelated,
and so don’t benefit from the lexical relationships
that the LLM captures. Fully removing the sym-
bolic representations allows us to adapt our model
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Action Accuracy (%) Attribute Accuracy (%)
Open Pickup ToggleOn Slice size distance temperature

base 8.33 10.96 27.38 22.13 73.78 51.01 95.91
base+symbolic (PIGLeT) 85.73 80.48 96.90 75.41 94.98 95.13 99.85
base+symbolic+images 88.75 86.14 92.86 81.31 96.35 96.13 99.59
base+images (PIGLeT-Vis) 20.83 33.49 70.24 41.64 87.03 76.62 96.10
base+images+text-labels 22.92 40.12 67.14 45.57 87.89 78.06 96.72

Table 2: Action and attribute specific accuracies for a subset of actions and attributes; for a comprehensive table
with standard deviations see Appendix D. size and distance each have eight possible classes while temperature
has three.

Apple Apple PotCounterTop

Be
fo

re
Af

te
r

SliceObject(Apple) on (CounterTop,Apple) PutObject(Apple, Pot) on (Apple,Pot)

Figure 3: We visualize the attention of the Vision Object Encoder from a trained base+images model on two
different actions and environments. The left grid focuses on the effect of Slice(Apple) on CounterTop and Apple,
while the right grid focuses on the effects of Slice(Apple) on Apple and Pot objects.

to any possible unseen object during test time.
base+images+text-labels is adaptable to gen-
eral settings without knowing the symbolic map-
ping of objects and actions in the environment.

The results of both base+symbolic+images and
base+images+text-labels make the case multi-
modal modeling of commonsense reasoning, as
both language and images are complementary to
generalize to unseen settings.

4.1 Qualitative Attention Maps
Visualizing attention is another benefit of a vision
component, as we can see what the model focuses
on and partially explain its predictions. Figure 3
shows two separate examples and corresponding at-
tention maps. In the left example, base+images is
tasked with predicting the attributes of CounterTop
and Apple after the Slice action is applied on the
Apple. In the right example, the Put action is ap-
plied on the Apple, and the model must predict
the attributes of the Apple and the distractor object
Pot. The two rows are the before and after images
(ipre and ipost), and the two columns are the two
objects used to condition the attention. The atten-
tion maps display the strength of the attention for
each bounding box given an object name.

Both examples in Figure 3 show that the Vision

Object Encoder can map known objects to relevant
bounding boxes. The model successfully tracks the
Apple in both cases by placing the most weight on
the bounding box targeting the Apple. However,
these examples also show the difficulty of this task—
the environments are realistic and can be filled with
more than one instance of an object.

5 Conclusion

In this paper, we tackle the task of predicting the
effects of actions on objects’ physical attributes. In
contrast to (Zellers et al., 2021), our model does
not treat the formal symbolic representation of the
images as observed. Instead, PIGLeT-Vis supports
inference when the inputs are images alone or im-
ages plus NL descriptions and a phrase denoting
the action (e.g., “the robot empties the cup”). While
PIGPeN offers challenges for applying a multi-
modal approach, our model can extract useful in-
formation from images, opening the door for gen-
eralizing learning physical commonsense to real-
world data. Importantly, our PIGPeN-Vis split can
be used to evaluate the zero-shot capabilities of
different model configurations. Moreover, while
base+symbolic still outperforms base+images, it
does so without estimating the attributes of ob-
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jects and thus solves a much easier but unrealistic
task. Through base+images+text-labels, we
show that, when replacing symbolic inputs, the
best solution is to complement image inputs with
NL descriptions to leverage information from both
modalities. Finally, our results show the need to
improve the generalization capabilities of multi-
modal models such that they can learn and adapt to
unseen situations.

6 Limitations

There are several limitations to our approach that
result directly from the inherent limitations of PIG-
PeN and our proposed Vision Object Encoder re-
spectively.

PIGPeN was not originally designed for test-
ing commonsense reasoning using images and con-
tains numerous inconsistencies which cannot all be
solved with the PIGPeN-Vis split obtained from
filtering (Section 3.4.1). Given the presence of non-
physically salient attributes such as temperature,
images are not guaranteed to fully capture their
symbolic representations. PIGPeN includes certain
attributes which are not discernible from images,
e.g., even humans would be unable to tell a hot
plate from a cold plate from vision alone. The im-
ages in PIGPeN can also contain more than one
object (e.g., more than one cup) without ever speci-
fying which one the symbolic representation refers
to. This causes difficulty for our approach because
judging specific attributes such as distance is im-
possible if there are two cups at different distances
from the viewpoint. Additionally, PIGPeN also
discretizes continuous variables such as distance
into categories which can be hard to disambiguate.

To approach the accuracy of base+symbolic
with our vision component, we also need a vision
representation from which to correctly estimate
all latent attributes. Even if images are assumed
to be perfect representations of the symbolic en-
vironment, the model still has to extract each of
the 38 attributes correctly for both objects using
only two images. It is possible (and likely) for
the vision detection backbone to miss the target
object entirely because it is not trained to detect
the specific object in question. We see this effect
in Figure 3, where the model falls back to using a
bounding box around the sink area to describe the
CounterTop object. The DETR vision model used
to extract bounding boxes was pre-trained on the
COCO dataset (Lin et al., 2014) which does not

contain CounterTop as an object. PIGLeT-Vis is
therefore ultimately limited by the capabilities of
its vision backbone.
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A GPT-3 Example of Physical Reasoning

The weight of the potato is 150 grams.
The robot then slices the potato into thin slices.

The weight of the potato is now 75 grams.

Figure 4: Example of incorrect physical commonsense
by an LLM. When predicting what comes after the input
text, the large 175 billion parameter GPT-3 (Brown
et al., 2020) predicts that the weight of the potato
halves after a slicing action is taken.

EmptyLiquidFromObject 

object=Cup


Action

Annotated Action "The robot empties the
cup into the sink."


Figure 5: Image pair and actions for a selected PIGPeN
example.

pre post

ocuppre ofaucetpre ocuppost ofaucetpost

ObjectName Cup Faucet Cup Faucet
Contained Objects
Is contained in...
Mass 1 to 2lb Massless 1 to 2lb Massless
Size small medium small medium
Temperature RoomTemp RoomTemp RoomTemp RoomTemp
Distance 1 to 2ft 3 to 4 ft 1 to 2ft 3 to 4 ft
Breakable Yes No Yes No
Cookable No No No No
CanBecomeDirty Yes No Yes No
IsBroken No No No No
IsCooked No No No No
IsDirty No No No No
IsFilledWithLiquid Yes No No No
IsOpen No No No No
IsPickedUp Yes No Yes No
IsSliced No No No No
IsToggled No No No No
Moveable No No No No
Openable No No No No
Pickupable Yes No Yes No
CanHoldItems Yes No Yes No
Sliceable No No No No
Toggleable No Yes No Yes
Materials Ceramic Ceramic

Table 3: Attributes for a selected PIGPeN example. The
total number of attributes is 38 as the Materials attribute
is a multi-hot encoding.
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B PIGPeN-Vis

We select an example from PIGPeN to display in
Figure 5 and Table 3.

From the original dataset, we re-
move two attributes (isUsedUp and
salientMaterials_Organic) because they
are unchanged in all examples. We also remove
3 actions (ThrowObject10, ThrowObject100
and ThrowObject1000) which are all related
to throwing an object across a certain distance.
These actions account for only a small subset of
the dataset and create inconsistent image pairs
due to the agent’s momentum being captured in
the images. The angle of the camera changes
as a result of ThrowObject and this breaks our
assumption that the difference between ipre and
ipost solely reflects the effects of the action on the
environment (and not on the viewer). We therefore
reduce the total number of symbolic attributes per
object to 38 and the number of possible actions to
10.

B.1 Attributes

The following 38 symbolic attributes are used to
describe an object in PIGPeN:

ObjectName, parentReceptacles,

receptacleObjectIds, distance, mass,size,

ObjectTemperature, breakable, cookable,

dirtyable, isBroken, isCooked, isDirty,

isFilledWithLiquid, isOpen, isPickedUp,

isSliced, isToggled, moveable, openable,

pickupable, receptacle, salientMaterials_Ceramic,

salientMaterials_Fabric, salientMaterials_Food,

salientMaterials_Glass, salientMaterials_Leather,

salientMaterials_Metal, salientMaterials_Paper,

salientMaterials_Plastic,

salientMaterials_Rubber, salientMaterials_Soap,

salientMaterials_Sponge, salientMaterials_Stone,

salientMaterials_Wax, salientMaterials_Wood,

sliceable, toggleable

B.2 Filtering Statistics

We initially filter the PIGPeN dataset using two
main strategies to remove images with too much or
too little change between the pre and post images.
In both cases, the goal is to remove pairs of images
in which it would be impossible for a vision model
to predict what has changed.

Images with too many changes are often images
taken from different viewpoints or with different
lighting conditions. We filter these images by look-

Figure 6: Distribution of the number of pixels changed
per image in the PIGPeN dataset.

Figure 7: Distribution of the maximum pixel value
changed per image in the PIGPeN dataset.

ing at the number of pixels changed between ipre
and ipost. We show the distribution of the num-
ber of pixels changed per image over the training
dataset in Figure 6. Using this visualization we
can clearly see a small peak at the extreme - where
almost all the pixels in ipost are different from ipre.
Note that since each image is an RGB image of
dimensions 640× 385, the max number of change
is 640 × 385 × 3 = 739, 200 (we also compare
pixels across color channels). We opt to remove
all images with more than 400, 000 changes, which
corresponds to around 6.2% of the training dataset.

Images with too little change could be exam-
ples of where the action has no visual outcome and
ipre and ipost are indistinguishable. To filter these
images we measure the maximum magnitude of
change in each pixel and each color channel be-
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tween the pairs of images. We visualize the max
change across the training dataset in Figure 7. Here
a low values implies almost no salient change, and
as max change approaches zero - it becomes un-
likely that a human would be able to perceive the
difference between the pair of images. We opt for
to keep images with a max change greater than
0.2 which corresponds to excluding 7.8% of the
training dataset.

Filtering on the number of changed pixels lead
to the exclusion of around 13.89% of the training
dataset.

B.3 Zero-shot Filtering

We remove the following 14 objects from both the
train and validation (3, 401 examples total):
HandTowel, Towel, Plunger, Watch, CD, SoapBottle,

Pen, RemoteControl, SoapBar, Box, Bottle,

CreditCard, Statue, KeyChain

We remove the following 27 action-object pairs
from both the train and validation (3, 278 examples
total):
(CloseObject,Toilet),

(DirtyObject,Pan), (DirtyObject,Pot),

(EmptyLiquidFromObject,Bottle),

(EmptyLiquidFromObject,Pot), (OpenObject,Toilet),

(PickupObject,Box), (PickupObject,CellPhone),

(PickupObject,CreditCard),

(PickupObject,KeyChain), (PutObject,CD),

(PutObject,CreditCard), (PutObject,HandTowel),

(PutObject,Laptop), (PutObject,Lettuce),

(PutObject,Pen), (PutObject,Plunger),

(PutObject,Pot), (PutObject,RemoteControl),

(PutObject,SoapBar), (PutObject,SoapBottle),

(PutObject,Statue), (PutObject,ToiletPaper),

(PutObject,Towel), (PutObject,Watch),

(ToggleOff,CellPhone), (ToggleOff,Television)

C Code Release and Training

Our full code, models, and PIGPeN-Vis split can
be found at github.com/gautierdag/piglet-vis.

C.1 Additional Training Details

As previously mentioned, there are a few differ-
ences between the original Zellers et al. (2021)
model and our implementation of base+symbolic.
We use an off-the-shelf RoBERTa-base (Liu et al.,
2019) model instead of a custom GPT2 (Radford
et al., 2019). Additionally, we also reduce the di-
mensionality of the PIGLeT layers from h = 256
to h = 64. This shrinks the overall model (ex-

cluding the LLM) from 11.9 million parameters to
less than 2 million parameters during pre-training
and improves the overall accuracy by a small mar-
gin (+1.51%). We do not run any other hyper-
parameter search throughout our experiments and
wherever possible use the same hyper-parameters
as PIGLeT. We also reduce the batch size from
1024 to 256 because we use a mix of NVIDIA
GTX 1080 and NVIDIA A100 GPUs and wish to
keep batch size constant.

The +images models use the extracted represen-
tations from a frozen off-the-shelf DETR model
(41.3 million parameters), however it is ran only
once over all images as we cache its predictions.
We do not use the “NO OBJECT” predictions from
DETR, and simply pass all 100 bounding boxes
representations to the attention mechanism. Since
we do not have access to the true bounding boxes
in PIGPeN, we do not fine-tune DETR and there-
fore ignore its prediction heads which have also
been trained on COCO and mismatch our possible
objects.

The +symbolic models use the Symbolic Object
Encoder which is an additional 800, 000 parame-
ters on its own. During fine-tuning all models use a
RoBERTA-base model (+120 million parameters)
in the Action Encoder. The +text-label model
also uses the RoBERTA-base model during pre-
training, but again this is frozen and its outputs are
cached for the full dataset.

We pre-train each model for 80 epochs and fine-
tune for 60 epochs. For all setups, pre-training
takes between 1 to 2 hours and fine-tuning takes
less than 1 hour on an NVIDIA A100 GPU. We use
the Pytorch implementation of the Adam optimizer
(Kingma and Ba, 2014) and a learning rate of 10−3

during pre-training and 10−5 during fine-tuning.
We use early stopping on the validation loss with
a patience of 10 epochs. We run each setup over
10 different seeds (s ∈ [1, 2, ..., 10] and report the
average and standard deviation for each metric.

D Accuracy Results

D.1 Comparing PIGPeN and PIGPeN-Vis

Table 4 compares the overall accuracy on the orig-
inal PIGPeN dataset with our proposed PIGPeN-
Vis split. We find that our PIGPeN-Vis split is
consistently harder to solve than the original PIG-
PeN dataset. We explain the increased accuracy in
the original dataset with the fact that some of the
filtered out actions (see Appendix B) are easy to
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Overall Accuracy (%± σ)
PIGPeN PIGPeN-Vis ∆

base 29.18± 0.34 21.23± 0.72 −7.95%
base+symbolic (PIGLeT) 86.39± 0.79 85.03± 0.45 −1.36%
base+symbolic+images 87.45± 0.66 86.01± 0.89 −1.44%
base+images (PIGLet-Vis) 49.13± 1.53 45.47± 1.50 −3.66%
base+images+text-labels 51.28± 1.68 47.55± 2.10 −3.73%

Table 4: Overall Accuracies comparing full PIGPeN
with the PIGPeN-Vis split across 10 seeds.

Overall Accuracy (%± σ)
validation test

base 23.85± 0.95 21.23± 0.72

base+symbolic (PIGLeT) 88.08± 0.50 85.03± 0.45
base+symbolic+images 89.49± 0.82 86.01± 0.89

base+images 50.73± 2.97 45.47± 1.50
base+images+text-labels 53.33± 3.15 47.55± 2.10

Table 5: Validation and test overall accuracies. Note the
zero-shot accuracy is not calculated on the validation
set since there are no unseen examples in the validation
set to prevent leakage.

solve from knowing the object name and action:
e.g., most of the images we exclude due to little
salient changes are appliances like stoves being
turned on or off. However, it is easy for a model
to predict the post-condition attributes of a stove,
which are mostly static, across all examples given
an action such as ToggleOn, which always has the
same effect.

D.2 Complete Accuracy Results on
PIGPeN-Vis

Table 5 shows the overall accuracies for both the
test and validation sets. The full accuracy results
for all actions in Table 6 and for all attributes in
Table 7.

E Additional Attention Maps

We plot additional attention visual-
izations for all three image models
base+images, base+symbolic+images, and
base+images+text-labels in Figures 8, Fig-
ures 9, and Figures 11. Since the DETR object
detector remains frozen, all models have access
to the same bounding boxes and bounding
box representations. Qualitatively, we find
that the attention weights of base+images and
base+images+text-labels both learn to map
to globally relevant bounding boxes given an
objects. We also find the attention maps in
base+images+text-labels to be less confident
overall than base+images, likely due to the noise
introduced by the semantic text inputs. As a result,
base+images+text-labels makes less mistakes

by not focusing too much attention to the wrong
bounding box.

On the other hand, base+symbolic+images
focuses on seemingly random bounding boxes.
Since base+symbolic+images already receives
the full representation of each objects, it does
not learn to complement the object’s represen-
tation with accurate visual information. While
base+symbolic+images extracts 1% of additional
overall accuracy from image inputs when compared
to base+symbolic, it does so by falling back to
vision for visually salient actions such as Pickup.
base+symbolic+images focuses only a narrow set
bounding boxes with overconfidence with no re-
gard for whether or not the bounding box relates
to the object. We posit that the model might use
vision to better estimate more difficult attributes to
predict such as distance in some contexts. Note
Pickup is a salient action because when the agent
in the environment picks an object up, the object is
placed directly in the middle of its field of vision
(as if the agent were holding the object in front of
it).
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(a) base+images (b) base+symbolic+images (c) base+images+text-labels

Figure 8: Attention maps for the effects of the EmptyLiquid action on Bowl with objects Fridge and Bowl. The top
row of each grid maps to the before environment and the bottom row maps to the after environment. The columns
map to each respective object. The Fridge object appears in the lower left of the image, and is only correctly
identified by base+images+text-labels, even though the model does place more weight to the bounding box of
the stove (lower right).

(a) base+images (b) base+symbolic+images (c) base+images+text-labels

Figure 9: Attention maps for the effects of the Slice action on Apple with objects CounterTop and Apple. The top
row of each grid maps to the before environment and the bottom row maps to the after environment. The columns
map to each respective object.

(a) base+images (b) base+symbolic+images (c) base+images+text-labels

Figure 10: Attention maps for the effects of the Dirty action on Bowl with objects Bowl and None. The top row of
each grid maps to the before environment and the bottom row maps to the after environment. The columns map to
each respective object. None can be an object in PIGPeN, but we do not predict its attributes and exclude it in all
model predictions.

(a) base+images (b) base+symbolic+images (c) base+images+text-labels

Figure 11: Attention maps for the effects of the Open action on Toilet with objects Toilet and ToiletPaper.
The top row of each grid maps to the before environment and the bottom row maps to the after environment. The
columns map to each respective object. This particular example is an unseen combination of action and object that
has been excluded from the training and validation set.
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Action Accuracy (%± σ)
Close Dirty EmptyLiquid HeatUpPan Open

base 13.20± 1.06 17.71± 1.20 24.75± 5.75 36.33± 4.14 8.33± 1.84

base+symbolic 85.98± 1.77 94.00± 3.42 99.34± 1.15 100.00± 0.00 85.73± 0.99
base+symbolic+images 86.80± 3.29 90.29± 5.90 99.02± 2.07 99.17± 1.62 88.75± 3.02

base+images 27.42± 3.71 58.57± 2.78 69.34± 4.17 68.67± 3.75 20.83± 4.63
base+images+text-labels 28.87± 3.19 57.71± 3.24 70.16± 3.17 74.00± 3.16 22.92± 5.79

Pickup Put Slice ToggleOff ToggleOn

base 10.96± 1.92 27.95± 1.19 22.13± 0.86 30.83± 3.39 27.38± 2.57

base+symbolic 80.48± 2.88 58.39± 1.94 75.41± 1.89 99.40± 0.84 96.90± 1.61
base+symbolic+images 86.14± 2.56 57.59± 2.31 81.31± 3.96 99.05± 0.75 92.86± 5.14

base+images 33.49± 3.45 34.91± 2.43 41.64± 3.80 71.43± 2.75 70.24± 16.00
base+images+text-labels 40.12± 2.61 38.30± 3.11 45.57± 3.85 69.05± 5.81 67.14± 16.53

Table 6: Full accuracy results table including the standard deviation over 10 seeds for all actions and setups.

Attribute Accuracy (%± σ)
Name Temperature attribute breakable cookable dirtyable distance isBroken isCooked isDirty

base 99.66± 0.07 95.91± 0.41 96.12± 0.07 91.46± 0.36 99.95± 0.07 99.95± 0.10 51.01± 0.93 99.86± 0.00 98.60± 0.06 97.93± 0.19
base+symbolic 99.64± 0.12 99.85± 0.04 99.48± 0.03 99.84± 0.09 100.00± 0.00 100.00± 0.00 95.13± 0.35 100.00± 0.00 99.85± 0.04 99.71± 0.14
base+symbolic+images 99.62± 0.09 99.59± 0.27 99.48± 0.04 99.78± 0.10 100.00± 0.00 99.97± 0.09 96.13± 0.40 100.00± 0.00 99.85± 0.04 99.52± 0.32
base+images 97.34± 0.65 96.28± 0.74 97.25± 0.13 92.63± 0.75 99.91± 0.10 99.62± 0.20 76.90± 1.05 99.85± 0.05 98.68± 0.19 97.87± 0.34
base+images+text-labels 98.44± 0.35 96.05± 1.23 97.46± 0.13 93.19± 0.31 99.96± 0.09 99.93± 0.10 78.56± 1.16 99.84± 0.09 98.19± 0.84 97.78± 0.24

isFilledWithLiquid isOpen isPickedUp isSliced isToggled mass moveable openable parentReceptacles pickupable

base 96.79± 0.50 98.84± 0.23 94.83± 0.82 97.99± 0.09 98.36± 0.23 96.51± 0.15 99.90± 0.09 99.97± 0.06 87.44± 0.42 99.84± 0.09
base+symbolic 99.93± 0.12 98.95± 0.09 99.27± 0.31 100.00± 0.00 99.88± 0.12 99.33± 0.14 99.99± 0.04 99.97± 0.06 97.78± 0.47 99.90± 0.11
base+symbolic+images 99.84± 0.19 98.67± 0.38 98.96± 0.31 99.97± 0.06 99.74± 0.30 99.59± 0.09 100.00± 0.00 99.99± 0.04 97.26± 0.44 99.88± 0.10
base+images 96.88± 0.55 98.81± 0.97 97.43± 0.37 98.28± 0.30 97.92± 0.83 96.41± 0.41 99.79± 0.21 99.74± 0.20 91.05± 0.77 99.59± 0.17
base+images+text-labels 97.25± 0.45 98.11± 1.14 97.54± 0.53 98.34± 0.29 98.06± 0.55 96.74± 0.24 99.89± 0.09 99.95± 0.10 92.49± 0.69 99.70± 0.09

receptacleIds receptacle Ceramic Fabric Food Glass Leather Metal Paper Plastic

base 84.20± 0.61 99.85± 0.10 98.26± 0.17 99.55± 0.07 99.99± 0.04 98.91± 0.13 99.89± 0.06 98.69± 0.15 99.73± 0.00 98.30± 0.10
base+symbolic 96.36± 0.18 99.90± 0.09 100.00± 0.00 99.96± 0.07 100.00± 0.00 99.99± 0.04 100.00± 0.00 99.99± 0.04 100.00± 0.00 99.97± 0.06
base+symbolic+images 96.13± 0.30 99.92± 0.10 99.99± 0.04 99.85± 0.10 99.99± 0.04 99.97± 0.06 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.96± 0.07
base+images 82.87± 0.55 99.47± 0.21 99.03± 0.22 99.50± 0.19 99.92± 0.10 99.16± 0.21 99.97± 0.06 98.31± 0.37 99.67± 0.21 98.83± 0.31
base+images+text-labels 83.91± 0.56 99.69± 0.11 99.36± 0.19 99.44± 0.12 99.96± 0.09 99.37± 0.24 99.95± 0.10 98.69± 0.30 99.56± 0.19 99.08± 0.20

Rubber Soap Sponge Stone Wax Wood size sliceable toggleable

base 100.00± 0.00 99.99± 0.04 100.00± 0.00 99.34± 0.09 100.00± 0.00 99.51± 0.16 73.78± 0.29 98.02± 0.12 99.95± 0.07
base+symbolic 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.99± 0.04 100.00± 0.00 99.99± 0.04 94.98± 0.19 100.00± 0.00 99.99± 0.04
base+symbolic+images 99.97± 0.06 99.99± 0.04 100.00± 0.00 99.99± 0.04 100.00± 0.00 100.00± 0.00 96.35± 0.20 99.99± 0.04 99.96± 0.09
base+images 99.88± 0.08 99.89± 0.11 99.92± 0.10 99.48± 0.14 99.92± 0.10 99.25± 0.22 87.03± 1.15 98.32± 0.32 99.81± 0.17
base+images+text-labels 99.85± 0.08 99.92± 0.10 99.88± 0.14 99.60± 0.19 99.95± 0.07 99.37± 0.22 87.89± 1.11 98.32± 0.36 99.95± 0.07

Table 7: Full accuracy results table including the standard deviation over 10 seeds for all attributes and setups.
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Abstract

The widely used Fact-based Visual Question
Answering (FVQA) dataset contains visually-
grounded questions that require information re-
trieval using common sense knowledge graphs
to answer. It has been observed that the original
dataset is highly imbalanced and concentrated
on a small portion of its associated knowledge
graph. We introduce FVQA 2.0 which con-
tains adversarial variants of test questions to
address this imbalance. We show that systems
trained with the original FVQA train sets can
be vulnerable to adversarial samples and we
demonstrate an augmentation scheme to reduce
this vulnerability without human annotations.

1 Introduction

Knowledge-based Visual Question Answering (KB-
VQA) lies at the intersection of Computer Vision,
Natural Language Processing, and Information Re-
trieval. A KB-VQA system must access external
knowledge sources to find a correct and complete
answer, a task that is sometimes hard for humans.

Fact-based Visual Question Answering
(FVQA) (Wang et al., 2017) is a VQA task in
which visually-grounded questions and answers
about images are grounded by knowledge-graph
(KG) triplets taken from several ‘common sense’
knowledge bases, such as ConceptNet (Speer
et al., 2017), Webchild (Tandon et al., 2017),
and DBpedia (Auer et al., 2007). For instance,
“Question: Which thing in the image can be used
for scooping food? Answer: spoon” is associated
with the KG triplet “spoon - UsedFor - scooping
food”. These questions are challenging in that
retrieving information from external KGs is
necessary.

The original FVQA dataset (Wang et al., 2017)
has several readily observed limitations. First, the
dataset is small (5486 samples) and the annotations
are limited to a single answer per question, ignor-
ing other correct answers. This limitation arises

from the FVQA creation process in which annota-
tors were first asked to select a KG triplet on which
they would ask a question about an image. This
approach prevented the annotators from labeling
other valid KG triplets. Secondly, the dataset is
highly imbalanced. Some triplets and answers are
frequently used, but other KG triplets and answers
are severely underrepresented in training. For ex-
ample, there are 1,129 possible answers in total,
but over 90% of questions focus on only a half of
them; 792 (70%) answers appear less than 3 times;
only 4,216 out of ∼220k triplets are used.

These limitations lead to a potential problem:
KB-VQA systems trained on this dataset overfit on
these frequently used triplets and perform poorly
on variants that contain other valid triplets or other
images. Also, extensive overlap between training
and test can lead to an unrealistically high ques-
tion answering baseline performance. We noted
that a question with a triplet unseen in training is
often answered with ‘person’, since it is the most
frequent answer in the original data distribution.

To overcome these limitations, we introduce an
enlarged test set that contains two types of adver-
sarial samples (as shown in Fig. 1): (1) FixQ: the
question remains the same, but is associated with
a different image and a different correct answer.
This ensures that a system is less able to achieve
high performance if it is biased by language pat-
terns in questions; (2) FixA: the answer remains
the same, but the question is asked in a different
way. This favours systems that do more than make
straightforward associations between questions and
answers based on the training data. In contrast to
the original test set, this new set further challenges
KB-VQA system to retrieve knowledge from KBs
and answer questions without being biased towards
frequent answers in the original dataset. We show
that models trained on the original FVQA training
sets are significantly less robust on these adversar-
ial test samples.
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Q: which object
in this image is a

kind of sport
equipment? A:

snowboard

Q: which object
in this image is a

kind of sport
equipment? A:

surfboard

Q: which object in this
image is a kind of land
transportation device?

A: snowboard

[[snowboard]] is a subclass of [[sports equipment]]
[[surfboard]] is a subclass of [[sports equipment]]

[[racket]] is a subclass of [[sports equipment]]

[[snowboard]] is a subclass of [[land transportation device]]

... is a subclass of [[device powered by kinetic energy]]

obtain templates from original questions obtain alternative KG triplets Construct FixQ questions Construct FixA questions

Figure 1: The workflow of constructing adversarial samples (FixQ and FixA questions) from the original test set
questions.

Given that it is hard to guarantee a good triplet
coverage during annotation, we explore an aug-
mentation scheme to address this problem without
costly human annotation of large-scale adversarial
training samples. Our scheme generates slightly
noisy adversarial samples that improve the cover-
age of valid KG triplets to enhance model training.

Our contributions are:
(1) We introduce FVQA 2.0, which adds an ad-

versarial test set that challenges KB-VQA system
robustness to adversarial variants of questions.

(2) We demonstrate the performance gap be-
tween the original test set and the adversarial test
set, showing that considering adversarial samples
is important for better realistic KB-VQA perfor-
mance.

(3) To further demonstrate the importance of ad-
versarial samples, we leverage a semi-automated
augmentation scheme to improve system robust-
ness on the adversarial test through the creation of
large-scale noisy adversarial examples.

2 Related Work

KB-VQA questions can focus on facts and con-
cepts, as in FVQA (Wang et al., 2017) and OK-
VQA (Marino et al., 2019). Such questions chal-
lenge the information retrieval ability of systems.
KB-VQA questions can also require common-
sense reasoning, as in parts of OK-VQA and A-
OKVQA (Schwenk et al., 2022). In particular,
S3VQA (Jain et al., 2021) is an augmented ver-
sion of OKVQA, improving both the quantity and
quality of some question types. A-OKVQA has
shifted its core task to “reasoning questions”. Only
18% of questions in A-OKVQA require answers
from an external knowledge base.

VQA 2.0 (Goyal et al., 2017) collects ‘comple-
mentary images’ such that each question is associ-
ated with a pair of images that result in different
answers. Jain et al. (2021) derive new S3VQA
questions from manually defined question tem-
plates. They annotated spans of objects that could
be replaced, and then substituted them with a com-

plicated substitute-and-search system. In contrast
to their labour-intensive annotation work, our ad-
versarial samples are collected through a semi-
automatic approach that fully leverages the struc-
tural information in KGs to significantly reduce the
human work required.

More broadly, in Knowledge-Graph Question
Answering (KG-QA), work has exploited KG to
generate synthetic data in unseen domains (Lin-
jordet, 2020; Trivedi et al., 2017; Linjordet and
Balog, 2020). Our work extends visually-grounded
questions with valid common sense KG triplets.

3 Method

Extracting Question Templates. We extract ques-
tion templates that can be used to reconstruct new
questions using other valid KG triplets. We apply
a rule-based system to replace KG entities that ap-
pear in the questions. For example, ‘what is used
for storing liquid in this image?’ is transformed to
‘what is used for <t> in this image?’ given that the
associated KG triplet is “bottle (<h>) - /r/UsedFor
(<r>) - store liquid (<t>)”.

For each template, we construct new question-
answer pairs by exploring the node structure of the
KG. For example, “bottle - /r/UsedFor - hold water”
is also a valid triplet from ConceptNet, whose head
and relation are the same as the original triplet. A
new question “Q: what is used for holding water in
this image? A: bottle” can now be constructed.

Template Filtering. We focus on questions
about object concepts that are transferable to other
images, ignoring a small portion (<10%) of FVQA
questions to which the answers are based on par-
ticular scenes (e.g. ‘what can you often find in the
place shown in this picture?’).

Human annotators are employed to filter out non-
transferable templates, such as questions that con-
tain specific object positioning (“what is the object
in the lower right of this image used for?”). This
process takes around 1 hour with two annotators to
obtain 440 valid templates after removing highly
similar templates.
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Matching Suitable Images. We use 619 of
FVQA images1 that are also present in the Visual
Genome dataset (Krishna et al., 2017). Using the
object annotations of the VG dataset to determine
if an image contains the object being asked, we em-
ploy a rule-based system to assign a suitable image
to each generated adversarial sample, within which
process all images are assigned to approximately
the same number adversarial samples by a simple
approach described in Appendix B. We limit the
number of FixQ and FixA questions generated by
each template to 5, which guarantees a reasonable
dataset size. 3,805 questions are generated.

Manual Verification. We conduct manual ver-
ification to rule out samples that are incorrectly
generated. 432 counter-intuitive KG triplets are
removed in this step. Finally, we obtain 2,820 ad-
versarial samples, offering 1,671 new valid triplets
from the KG. Around 75% samples are verified
as correct, showing that the rule-based generation
works well. The remainder are discarded.

The official FVQA evaluation performs 5-fold
validation: each split preserves around half its sam-
ples for testing. As a naming convention, under
each split, the templates extracted from the orig-
inal training samples are called ‘train templates’
while the rest are ‘test templates’. Since the train
templates may contain language patterns that have
been learned in training, we ensure that only ques-
tions derived from test templates are used in the
adversarial testing. As a result, we have 1,376 ad-
versarial test samples per split on average, with
1,129 FixQ and 246 FixA questions.

Augmentation with Adversarial Data. We ex-
plore an augmentation scheme to augment the train-
ing data with slightly noisy but auto-generated ad-
versarial samples, which avoids heavy annotation
work. In each split, only the train templates (de-
fined in the above paragraph) are used to gener-
ate adversarial samples for training such that no
information of test samples is leaked to training.
This avoids biasing the training to the test sets,
which would make the test sets less indicative of
true system performance. We obtain an augmenta-
tion set with 2,262 questions per split on average
semi-automatically, which would otherwise cost
hundreds of hours to build from scratch. The ori-
gins of these adversarial samples are referred to
as ‘Originating Questions’. There are 435 such

1FVQA images are from Microsoft COCO (Lin et al.,
2014) and ILSVRC (Russakovsky et al., 2015).

questions per split. In training, these questions are
randomly replaced by their adversarial variants.

4 FVQA 2.0 Statistics

Set Name #Samples std

Standard Train Set 2,927 69
Standard Test Set 2,899 69

Originating Questions Set 435 52
Adversarial Test Set 1,376 193

- FixA Questions 1,129 157
- FixQ Questions 246 38

Augmentation data 2,262 267

Table 1: Dataset Statistics. #Samples: average number
of samples across 5 folds; std: the standard deviation
over 5 folds.

The numbers of samples in each set are pro-
vided in Table 1. The official FVQA dataset cre-
ates 5 folds by splitting the images being used.
Half of these images are used in training while
the other half are reserved for testing. In all our
new sets, under each split, questions for training
are not leaked to testing. The ‘Originating Ques-
tion Set’ is a subset of Standard Test Set by its
definition (Sec. 3). The Adversarial Test Set is
formed by FixA questions and FixQ questions; it
is created by automatically generating adversarial
question variants from the questions in the ‘Origi-
nating Question Set’. It covers relationships such as
/r/RelatedTo, /r/IsA, /r/PartOf, /r/HasA, /r/UsedFor,
/r/CapableOf, /r/AtLocation, /r/Desires, /r/MadeOf.
The augmentation data consists of adversarial vari-
ants that are derived from the questions in the Stan-
dard Train Set.

5 Experiments

Baseline Systems We use several FVQA systems
for comparison2: FVQA (Wang et al., 2017), the
baseline system provided in the official FVQA
dataset paper; GCN (Narasimhan et al., 2018),
a model that leverages graph convolutional net-
works (GCNs) to aggregate features from vi-
sual/language/fact modalities; Mucko (Zhu et al.,
2020), the current state-of-the-art system that uses
GCNs to combine visual, fact, and semantic graphs.

We test our augmentation scheme on several sys-
tems that have code available: RAVQA-NoDPR

2Since many recent FVQA systems are not open-sourced,
we additionally include KB-VQA systems from OKVQA.
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and RAVQA-DPR (Lin and Byrne, 2022), T5 (Raf-
fel et al., 2020)-based models that transform im-
ages into texts (e.g. objects, attributes, and image
captions) and the DPR version additionally uses
Dense Passage Retrieval (Karpukhin et al., 2020)
to retrieve documents from knowledge bases3;
TRiG (Gao et al., 2022), a model that is similar to
RAVQA-DPR but different in embedding fusion;
ZS-F-VQA (Chen et al., 2021), an FVQA system
that obtains the final prediction by fusing the indi-
vidual predictions in answer/fact/relation graphs.

Metrics. We report accuracy and standard
deviation over 5 splits (Sec. 4). In calculat-
ing accuracy for open-ended generation systems
(RAVQA/TRiG), a question is considered success-
fully answered if the generated answer string is
an exact match to the ground-truth answer node,
which is the closest KG node to the ground-truth an-
swer string (shortest in Levenshtein distance com-
puted from node names).

Performance and Discussion. Table 2 shows
that the systems used for evaluating the new ad-
versarial set are sufficiently strong (e.g. 69.56%
accuracy by RAVQA-DPR) in comparison with
the three models that do not have code available,
which achieve 58.76% (FVQA), 69.35% (GCN),
and 73.06% (Mucko, current state-of-the-art) re-
spectively. RAVQA-NoDPR achieves 84.59% ac-
curacy on the originating questions but obtains only
71.48% accuracy on the adversarial samples de-
rived from them. Such performance gaps are read-
ily observed on all systems. Systems trained on the
original training sets fail to perform equally well
on the two sets, showing that the original FVQA
training data does not contain adversarial variants
and the resulting systems are vulnerable to them.

By incorporating adversarial variants in training,
all systems achieve much better performance on the
challenging adversarial set, e.g. RAVQA-NoDPR
is improved from 71.48% to 82.38% (+10.9%).
The performance on the standard and adversarial
test sets now match well, with the gap reduced from
more than 10% to ∼3%, showing that the augmen-
tation scheme significantly improves systems’ reli-
ability and robustness. The relative improvement
is slightly less (+8.1%) for RAVQA-DPR, which
is expected given that it is a retrieval-based system
designed to answer both seen and unseen questions
with its strong retrieval ability. ZS-F-VQA benefits

3In our experiments, the knowledge base consists of sur-
face texts of triplets (e.g. “[car] has [4 wheels]”).
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Figure 2: Performance on FixQ and FixA questions.

0-10 10-20 20-30 30-40 40-50 50-max
answer occurrences in FVQA

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

36

55
62

69

83 80

58

74 72

90 86 91

trained with original data
trained with augmented data

0

50

100

150

200

250

300

an
sw

er
 o

cc
ur

re
nc

es
 in

 th
e 

tra
in

in
g 

se
t

standard train set
augmented train set

Figure 3: RAVQA-DPR accuracy on adversarial ques-
tions and answer occurrences in the standard/augmented
training sets. They are grouped by the number of answer
occurrences in the original FVQA dataset. For example,
a question is counted towards the ‘0-10’ group if its an-
swer appears less than 10 times in the original dataset.

greatly from augmentation: its adversarial perfor-
mance is improved by 24.09%. This is because
its model size is much smaller and it can easily be
biased by language patterns, images, and frequent
answers seen in training.

In summary, systems trained on the original train-
ing sets are vulnerable to adversarial variants of the
test questions. We show that through generating
adversarial samples for data augmentation, systems
become much more robust to these variants.

Analysis of Model Vulnerability. As shown in
Fig. 2, RAVQA systems trained with original train-
ing sets perform better on FixA questions (∼88%)
than on FixQ questions (∼69%). This suggests that
systems perform worse when asked the same ques-
tions on different images. This is potentially be-
cause the language patterns seen in training bias the
models to frequent choices, lowering the FixQ gen-
eralizability. In contrast, systems are less distracted
by different ways of asking for the same answer,
potentially due to the strong language modelling
capability of T5 used by them. The augmentation
scheme improves systems on both types of ques-
tions significantly (by∼10% on each), showing the
value of adversarial samples in training.
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Test on: Standard Test Set Originating Question Set Adversarial Test Set

Trained on: Original Augmented Original Augmented Original* Augmented (improv. over *)

ZS-F-VQA 48.16 ±1.03 48.57 ±1.00 63.67 ±0.88 64.63 ±0.81 49.97 ±2.37 74.06 ±1.92 +24.09
TRiG 64.94 ±0.93 65.73 ±0.33 81.67 ±1.12 83.48 ±1.89 68.86 ±3.26 79.79 ±1.34 +10.93
RAVQA-NoDPR 66.19 ±1.15 66.70 ±1.00 84.59 ±1.24 85.75 ±0.90 71.48 ±2.08 82.38 ±1.65 +10.90
RAVQA-DPR 69.56 ±0.78 69.90 ±0.56 87.52 ±1.68 88.33 ±1.40 76.91 ±1.93 85.05 ±1.15 +8.14

Table 2: Model performance on the standard test set, originating questions (from which the adversarial questions are
derived), and adversarial test set. Results are reported as the average of 5 folds with standard deviations.

Fig. 3 plots the RAVQA-DPR performance on
the adversarial test set questions that are grouped
by their answer occurrences in the original FVQA
dataset. The answer distribution of the original
dataset affects adversarial performance greatly: sys-
tems perform much worse on questions whose an-
swers appear less frequently in FVQA. In contrast,
the performance deterioration that arises from an-
swer rarity is mitigated significantly after augmen-
tation. The augmentation scheme (red v.s. green
curve in Fig. 3) compensates for the imbalanced
answer distribution by providing more question
variants so that systems are trained on both popular
and rare answers.

6 Conclusion

We show that the FVQA test sets are not sufficiently
indicative of true system performance through pro-
viding a new human-verified adversarial test set
that contains adversarial variants of the original
test set questions. We show the value of adversar-
ial samples in KB-VQA datasets by showing an
augmentation scheme that leverages structural in-
formation in KGs to create augmentation questions
for training, which improves models’ robustness to
adversarial variants.

We release the dataset and the codes in Github
(https://github.com/LinWeizheDragon/Retrieval-
Augmented-Visual-Question-Answering).

7 Limitations

The adversarial test set was firstly generated from
the original FVQA dataset by a rule-based system
and then filtered by human annotators. As a result,
the new set is limited with respect to the question
types, language patterns, and knowledge triplets
used in FVQA. One potential solution to overcome
this limitation is to invest more human effort to
generate adversarial questions from scratch, which
is, however, much more expensive than the semi-
automatic approach presented here.

The proposed augmentation approach also relies
on the relationships encoded in the knowledge base
(e.g. ConceptNet (Speer et al., 2017)). These will
influence the quality and diversity of the augmented
data, with the expectation that improvements in KG
scope and quality will improve data augmentation.

The number of adversarial examples introduced
in this work is sufficiently large for investigating
the performance discrepancies (on the original and
adversarial test sets) and demonstrating the neces-
sity of KB-VQA adversarial samples. However,
it is considered beneficial to introduce adversarial
samples on a larger scale by considering them in
the design of future KB-VQA datasets.

8 Ethics Statement

Our dataset was created semi-automatically from
the FVQA dataset and ConceptNet, a crowd
sourced common sense knowledge graph. Though
we have included human annotators in the loop
to remove sexual, offensive, and other inappropri-
ate data samples that were automatically generated
(we removed ∼200 inappropriate knowledge graph
triplets during annotation), we recognize that the
dataset may still contain a small number of inappro-
priate samples. Any developers who replicate the
semi-automatic methodology described in the pa-
per to extend the datasets should include a similar
review step in the manual work flow. We also rec-
ognize that the systems trained on this dataset may
convey such inappropriate information to users in
real-life applications. Therefore, extra care must be
taken when using this dataset in applications that
interact directly with real users.
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A Training Details

ZS-F-VQA: The experiments were performed on
1 × Nvidia RTX 3090. We used the code from the
official repository4. The original paper dropped
questions that have rare answers. For fair compari-
son with other models, we added these rare answers
back and performed training and testing. We chose
to report the performance of the system which uses
‘SAN’ as the base model (details are in the paper
and the repository), since this setting has achieved
the best performance. The hyperparameters for
training are kept the same as the original paper. In
testing, we selected ke = 10; kr = 1; score = 10
by grid search (search range: 0 ≤ ke ≤ 20; 0 ≤
kr ≤ 20; 0 ≤ score ≤ 20).

4https://github.com/China-UK-ZSL/ZS-F-VQA

RA-VQA-NoDPR/RAVQA-DPR/TRiG: All
experiments were performed on 1 × Nvidia A-100
GPU. We chose Adam (Kingma and Ba, 2015) as
the optimizer. When the model has a DPR compo-
nent, we trained the DPR component for 4 epochs
with a constant learning rate 10−5. In training the
answer generator, the learning rate linearly decays
from 6×10−5 to 0 after 10 epochs, as suggested in
the original paper. For each split, the checkpoints
at global step 2k (around 3.5 epochs) were used in
testing. We retrieve 5 best documents when pre-
dicting the answer (Ktrain = 5), since this number
was reported to best balance the computation and
performance (Lin and Byrne, 2022).

We obtained the pre-trained model parameters
(T5-large and BERT-base) from Huggingface (Wolf
et al., 2020). These systems are implemented with
Huggingface Python libraries (under Apache Li-
cense 2.0). The FAISS (Johnson et al., 2019) sys-
tem is under MIT License.

B Balancing Images in Adversarial
Variants

In assigning suitable images to question templates,
it is necessary to ensure the diversity of images
being used. We achieve this by controlling the
number of assignments per image with a simple
approach so that the numbers are approximately
the same for all images.

In the process, for each new question-answer
pair that needs an image, we rank all the images
that contain the object being asked in the the ques-
tion by their current total number of assignment.
We select the image that satisfies the conditions as
well as having the fewest number of assignment as
the associated image of the new sample. We found
that by applying this simple yet effective strategy,
the assigned images present a good diversity.

C Annotation Details

Two annotators (volunteers in the research group)
worked independently to rule out incorrectly gener-
ated examples. An example was accepted only if
the two annotators achieved consensus. The anno-
tators attempted to fix grammar errors that caused
severe misunderstanding, while mild errors were
kept (for example, ‘is used for carry people’ does
not prevent models/people from understanding the
question, and thus the annotators are not required
to fix them).
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In particular, questions that might contain infor-
mation of individuals / private information were
dropped, though it is a very rare case.

Questions with multiple answers: when a ques-
tion can be answered with multiple instances in an
image, all possible answers are included. During
annotation, incorrect answers were dropped from
the list. In evaluation, answering any correct an-
swer is considered successful. There are around
11% multiple-answer questions at the end.

D Additional Results

We include some additional baseline performance
in Table 3. It can be easily seen that the perfor-
mance on originating questions (the original FVQA
questions that are used to derive the adversarial
samples) is very high even when images are ex-
cluded. This further supports our argument that
the original dataset is heavily biased to frequent
answers. The performance on the adversarial set is
lower, showing that this new test set is more chal-
lenging and less biased toward language patterns.

E More Examples of FVQA 2.0

We demonstrate some more examples from the new
Adversarial Test Set in Fig. 4.
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Models Standard Test Set Originating Question Set Adversarial Test Set

RAVQA-DPR 69.56 ±0.78 87.52 ±1.68 76.91 ±1.93

(without triplets) 66.19 ±1.15 84.59 ±1.24 71.48 ±2.08

(without images) 43.83 ±0.68 57.53 ±2.93 50.02 ±1.00

(without triplets and images) 40.29 ±1.60 51.41 ±3.25 42.55 ±0.90

Table 3: The performance of some additional baseline systems on the standard test set, originating questions (from
which the adversarial questions are derived), and adversarial test set. Results are reported as the average of 5 folds
with standard deviations.

Question: which object in this
image is hollow?

Triplet: [[a bowl]] is
[[hollow]]

Answer: bowl

Originating Question Set Adversarial Test Set (FixA)

Question: which object in this
image can hold liquid?

Triplet: [[A glass]] can [[hold
liquid]]

Answer: glass

Question: which object in this
image can break easily?

Triplet: [[glass]] can [[break
easily]]

Answer: glass

Question: which object in this
image is hollow?

Triplet: [[Tennis balls]] are
[[hollow]]

Answer: tennis ball

Question: which object in this
image is used for carry person?

Triplet: [[A bus]] is used to
[[carry people]]

Answer: bus

Question: which object in this
image is used for travel around
town?

Triplet: You can use [[a bus]]
to [[travel around town]]

Answer: bus

Question: which object in this
image has a frame?

Triplet: [[A frame]] is part of
[[a bed]]

Answer: bed

Question: which object in this
image has a frame?

Triplet: [[bicycle]] has
[[frame]]

Answer: bicycle

Originating Question Set Adversarial Test Set (FixQ)

Figure 4: More examples taken from the FVQA 2.0 adversarial test set. The questions in the left column are from
the official FVQA test set. They are used to derive the adversarial questions in the right column. FixA: the answer
remains the same while the way of asking for the answer is different; FixQ: the question remains the same, but the
answer changes in a different image. More details are presented in Sec. 1.
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Abstract

Knowledge distillation (KD) is a highly promis-
ing method for mitigating the computa-
tional problems of pre-trained language mod-
els (PLMs). Among various KD approaches,
Intermediate Layer Distillation (ILD) has been
a de facto standard KD method with its perfor-
mance efficacy in the NLP field. In this paper,
we find that existing ILD methods are prone to
overfitting to training datasets, although these
methods transfer more information than the
original KD. Next, we present the simple obser-
vations to mitigate the overfitting of ILD: distill-
ing only the last Transformer layer and conduct-
ing ILD on supplementary tasks. Based on our
two findings, we propose a simple yet effective
consistency-regularized ILD (CR-ILD), which
prevents the student model from overfitting the
training dataset. Substantial experiments on
distilling BERT on the GLUE benchmark and
several synthetic datasets demonstrate that our
proposed ILD method outperforms other KD
techniques. Our code is available at https:
//github.com/jongwooko/CR-ILD.

1 Introduction

Recent advances in NLP have shown that using
PLMs such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) on downstream tasks
is effective. Although these models achieve state-
of-the-art performances in various domains, the
promising results of PLMs require numerous com-
putation and memory costs. Deploying such large
models on resource-constrained devices such as
mobile and wearable devices is impractical. It is
thus crucial to train computationally efficient small-
sized networks with similar performance to that of
large models.

KD is promising model compression technique
where knowledge is transferred from a large and
high-performing model (teacher) to a smaller
model (student). KD has been shown to be re-
liable in reducing the number of parameters and

computations while achieving competitive results
on downstream tasks. Recently, KD has attracted
more attention in the NLP field, especially due to
large PLMs. However, it is clear that the original
KD (Hinton et al., 2015) is not performing well
in terms of maintaining the performance of com-
pressed PLMs and that it needs to have additional
auxiliary training objectives (Sun et al., 2019; Jiao
et al., 2020).

ILD methods (Jiao et al., 2020; Wang et al.,
2020), which encourage the student model to ex-
tract knowledge from the Transformer layers of
the teacher network, have demonstrated efficacy
in improving student model performance and have
become a de facto standard in KD. Despite of suc-
cess of ILD methods, many research have been
proposed to design layer mapping functions (Li
et al., 2020; Wu et al., 2020) or new training ob-
jective (Park et al., 2021) to transfer the teacher’s
knowledge better. These ILD methods transfer
more knowledge to the student model from the in-
termediate Transformer layers of the teacher model.
However, we find that the use of ILD in fine-tuning
may induce performance degradation in some cases.
As shown in Figure 1, while existing ILD methods
such as TinyBERT (Jiao et al., 2020) and BERT-
EMD (Li et al., 2020) work well on standard GLUE
benchmark (Wang et al., 2019), we observe that
these methods have performance degradation com-
pared to original KD on ill-conditioned datasets
such as those with few-samples and label noise.
Because few-sample (Zhang et al., 2021) or hetero-
geneous datasets (Jin et al., 2021; Liu et al., 2022)
can be easily found in real-world datasets, the ex-
isting ILD methods, which show performance re-
duction in Figure 1, are hard to use in real-world
applications.

To mitigate such performance degradation, we
identify the main problem as that intermediate
Transformer knowledge can incur overfitting on the
training dataset of the student model. We further
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Figure 1: The motivation of our work. While existing ILD methods (Jiao et al., 2020; Li et al., 2020) work well on
the standard GLUE benchmark (Wang et al., 2019), we observe that the existing ILD methods are problematic under
few-samples training datasets or the presence of label noise. However, our proposed method shows robustly higher
performance than the original KD for all datasets. We use BERTSmall (Turc et al., 2019) as the student model and
BERTBASE (Devlin et al., 2019) as the teacher model. The detailed descriptions for dataset are in Appendix B.

discover that distilling only the last Transformer
layer knowledge and using supplementary tasks can
alleviate the overfitting. Through our observations,
we finally propose a simple yet effective method,
consistency-regularized ILD (CR-ILD) with sev-
eral analyses. Our main contributions are:

• We design and conduct comprehensive exper-
iments to identify that overfitting is one of
the main problems for performance degrada-
tion of ILD in fine-tuning. To the best of our
knowledge, this is the first study to find that
existing ILD methods have overfitting issues.

• Based on our findings, we propose the consis-
tency regularized ILD (CR-ILD) that a student
self-regularized itself from risk of overfitting
from ILD. We further provide empirical (and
theoretical) analyses for our proposed method.

• We experimentally demonstrate that our pro-
posed method achieves state-of-the-art per-
formance on both standard GLUE and ill-
conditioned GLUE (few samples and label
noise), despite its simplicity.

2 Related Works

Model Compression of LMs. Transformer
encodes contextual information for input to-
kens (Vaswani et al., 2017). In recent years,
from the success of Transformer, Transformer-
based models such as GPT (Radford et al., 2018),
BERT (Devlin et al., 2019), and T5 (Raffel et al.,
2020) have become a new state of the arts, driving
out recurrent or convolutional networks on various
language tasks. However, the promising results of
these models are accompanied by numerous param-
eters, which necessitate a high computation and
memory cost for inference. Existing compression
techniques can be categorized as low-rank matrix
factorization (Mao et al., 2020), quantization (Bai
et al., 2021), and KD (Sun et al., 2019).

Knowledge Distillation for LMs. KD is one of
the most well-known neural model compression
techniques. The goal of KD is to enable the student
model with fewer parameters to achieve similar per-
formance to that of the teacher model with a large
number of parameters. In the recent few years, a
wide range of different methods have been devel-
oped that apply data augmentation (Jiao et al., 2020;
Liang et al., 2021), adversarial training (Rashid
et al., 2021), and loss terms re-weighting (Jafari
et al., 2021) to reduce the performance gap be-
tween the teacher and the student. In another line in
the NLP field, ILD-based methods have exhibited
higher effectiveness over original KD (Hinton et al.,
2015) methods for compression PLMs. Sun et al.
(2019) proposed the BERT-PKD to transfer repre-
sentations of the [CLS] token of the teacher model.
Jiao et al. (2020) proposed TinyBERT, which per-
formed Transformer distillation in both pre-training
and fine-tuning. Wang et al. (2020) distilled the
self-attention module of the last Transformer layer
of the teacher. Li et al. (2020) leveraged earth
mover’s distance (EMD) to determine the optimal
layer mapping between the teacher and student
networks. Park et al. (2021) presented new KD
objectives that transfer contextual knowledge via
two types of relationships.

3 Observations: Two Things Everyone
Should Know to Mitigate Overfitting

In this section, we identify that overfitting is the
main problem for performance degradation while
conducting ILD in fine-tuning. This overfitting
problem can occur even in the standard GLUE
benchmark. Moreover, the ill-conditioned dataset,
where overfitting problems can occur more easily,
induces a larger performance reduction. Further-
more, we investigate that this overfitting problem
is able to be reduced by (1) distilling the last Trans-
former layer and (2) conducting ILD on supplemen-
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Figure 2: Performance distribution box plot across 20 random trials and the four datasets with different distillation
methods. As the student model, we apply Truncated BERT (Sun et al., 2019) which initialized as the bottom 6
layers from BERTBASE. Distilling knowledge of the last Transformer layer enhances generalization and reduces the
variance of fine-tuning. The red-dotted lines are baseline performances that only use prediction layer KD.
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Figure 3: Performance distribution box plot across
20 random trials for MRPC and RTE when
BERTSmall (Turc et al., 2019) is used as the student
model. Well-pretrained student models have more con-
sistent performance to the choice of layer mappings.

tary tasks. While our suggested findings already
have worked well in various domains (Wang et al.,
2020; Phang et al., 2018), these previous works
under-explored the effects of the techniques. How-
ever, this is the first work to use such techniques
with empirical justification for mitigating overfit-
ting problems.

Among the various ILD objectives, we focus on
the two most commonly used distillation objectives:
multi-head attention (MHA) and intermediate rep-
resentations (IR). Formally, for the student’s layer
ℓS ∈ [1,M ], the loss function of MHA and IR are
as follows:

LℓSMHA =
1

Ah

Ah∑

a=1

KLD(AT
m(ℓS),a||AS

ℓS ,a) (1)

LℓSIR = MSE(HT
m(ℓS),W

HHS
ℓ ), (2)

where m(·) is layer mapping function that returns
teacher layer m(ℓS) ∈ [1, L]. Note that KLD and
MSE are Kullback-Leibler divergence and mean
squared error, respectively. We denote A and H
as MHA and IR. T and S are superscripts for the
teacher and student model, and a and Ah indicate
the index and the total number of multi-attention
heads, respectively. Note that WH is a learnable
weight matrix for matching the dimension between
representations of the teacher and student. Consis-
tent with previous studies (Sun et al., 2020; Jiao
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Figure 4: Training loss of different distillation ap-
proaches (L-ILD, U-ILD, EMD-ILD) with increasing
Gaussian noise: models trained with L-ILD are more
tolerant of noise, which proves that our L-ILD leads
models to be more general.

et al., 2020), we observe that sequential training of
ILD and original KD (Hinton et al., 2015) shows
better than joint training of ILD and original KD.
We conduct an experimental study on sequential
training of ILD and original KD from our prelim-
inary experiments. All the detailed descriptions
of the scope of our empirical study are in Ap-
pendix C.1.

3.1 Layer Mapping: Distill Only the Last
Transformer Layer

One of the biggest challenges of ILD methods is
establishing a proper layer mapping function that
determines layers of the teacher and student models
to transfer knowledge. In this section, we observe
that transferring layer-to-layer information leads
student models to overfit training samples and is
the primary reason for the degradation of student
performance. Based on our findings, we suggest
that the last layer distillation (Wang et al., 2020,
2021) is promising layer mapping method. Our
empirical analyses can explain the suggested tech-
nique’s success in terms of mitigating overfitting.

Main Observations. We compare three distil-
lation strategies: last Transformer layer distilla-
tion (L-ILD), layer-to-layer distillation using uni-
form layer mapping (U-ILD), and optimal many-to-
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Figure 5: Comparisons for performance of ILD on different supplementary tasks. All students are BERTSmall,
distilled MHA and IR from BERTBASE teachers with L-ILD (blue) and U-ILD (orange). We present the results of
prediction layer KD on the supplementary tasks in red dotted lines. All results are averaged over 20 runs.
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Figure 6: The mean (solid lines) and range (shaded re-
gion) of training and validation loss during fine-tuning
BERT after conducting ILD on different supplementary
tasks, across 20 random trials.

many layer mapping using the EMD (EMD-ILD)
proposed in Li et al. (2020). In Figure 2, L-
ILD (blue box) outperforms other baselines on all
four datasets (MRPC, RTE, SST-2, QNLI) in terms
of the test performance and variance reduction over
the random trials. Note that the U-ILD, which is a
commonly used mapping function (Sun et al., 2019;
Jiao et al., 2020), leads to performance degradation
in most fine-tuning tasks.

We conduct same experiments on the stu-
dent model with different initialization (BERTSmall;
Turc et al. 2019) as shown in Figure 3. We observe
that L-ILD has a higher performance regardless
of the size of the dataset or initialized point. How-
ever, the performance gap between L-ILD and other
mapping functions gets smaller when the dataset
size becomes larger, and the student model is well
pre-trained. On the other hand, although EMD-
ILD alleviates the difficulties in layer mapping be-
tween the teacher and student, it exhibits lower per-
formance than L-ILD. We find that performances
of EMD-ILD vary across the pre-trained methods
while performances of L-ILD are not. These re-
sults validate that the inaccurate layer mapping
between the intermediate Transformer layers is not
the primary problem of ILD; instead, intermedi-
ate Transformer layer distillation itself is the main
problem in the fine-tuning stage.

Analysis. To better understand about the perfor-
mance degradation of distilling the knowledge of
intermediate Transformer layers, we evaluate the
generalizability of the student models of different
layer mapping functions by following Zhang et al.
(2019); Jeong and Shin (2020). We add Gaussian
noise over N (0, σ2I) with different noise radius σ
to the embedding vectors of the three models (L-
ILD, U-ILD, EMD-ILD) and then evaluate their
cross-entropy loss on the training set. More gener-
alizable models are robust to the noisy embeddings,
hence they have a lower training loss although the
magnitude of noise becomes larger.

As shown in Figure 4, transferring knowledge
of the intermediate Transformer layers leads the
student model to the flat minima that are robust
of noise and more generalizable (Hochreiter and
Schmidhuber, 1997; Keskar et al., 2016). We fur-
ther conduct the loss surface (Zhang et al., 2021)
and linear probing (Aghajanyan et al., 2021a) analy-
ses for evaluating the generalizable representations
of PLMs during fine-tuning and report the results
in Appendix E.1.

3.2 Training Data: Use Supplementary Tasks

In this section, we investigate the performance of
ILD in terms of training datasets for transferring
knowledge from teacher to student model. We
observe that conducting ILD even on the last Trans-
former layer has the risk of overfitting to the train-
ing dataset of target task (TT). The Previously sug-
gested augmentation module in Jiao et al. (2020)
generates 20 times the original data as augmented
samples, requiring massive computational over-
head for generating. From our observation, we find
that conducting ILD via supplementary tasks (ST,
Phang et al. 2018) is a simple and efficient method
for overfitting problem. Based on our observation,
we study to find the condition for appropriate ST,
which robustly improves the performance of ILD.
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Figure 7: The conditions for appropriate supplementary tasks. The student models trained on supplementary tasks
that have large datasets, longer effective sequence length, and high similarity with the target task tend to have higher
performances. Size, Len., and Sim. denote the size of the dataset, effective sequence length, and similarity.

Main Observations. As shown in Figure 5, in
most downstream tasks, except for STS-B, the per-
formance of combining ILD with other STs is supe-
rior to that when using the original dataset. Among
the tasks with small dataset (CoLA, MRPC, RTE,
STS-B), although STS-B exhibits superiority as an
ST for ILD, all student models with ILD on CoLA
exhibit the worst performance for all TTs. For large
tasks (MNLI, QNLI, QQP, SST-2) as STs, student
models trained on MNLI and SST-2 exhibit the best
and worst performance for all TTs.

Analysis. To understand performance gain from
using STs, we compare the loss dynamics for
fine-tuning of RTE task using the cross-entropy
loss after conducting ILD on the TT (RTE) and
STs (MRPC, STS-B, QNLI). Notably, the student
model with ILD on RTE shows a faster decrease
and increase in the training and validation loss, re-
spectively, than the student model with ILD on the
STs, as shown in Figure 6. From the results, we
verify that conducting ILD over TT incurs mem-
orization of the student model to training data of
TT while performing ILD over ST prevents this
memorization yet effectively transfers knowledge
of the teacher model.

3.2.1 Ablation Study
Although the combination of ST with ILD gener-
ally improves the performances of student mod-
els, decreased performances are observed in some
cases. These results emphasize the need to se-
lect appropriate ST. In this section, we present
exploratory experiments on synthetic datasets ex-
tracted from the English Wikipedia corpus to pro-
vide further intuition for the conditions of convinc-
ing STs.

Dataset Size. According to the results in Figure 5,
student models trained on STs with large datasets,
such as MNLI and QQP, perform better. We con-
ducted experiments on synthetic datasets extracted

from the Wikipedia corpus with different dataset
sizes to validate our observations. The results in
Figure 7a and 7b indicate that as the size of the
synthetic datasets grows larger, the performance of
the student models improves.

Effective Sequence Length. A surprising result
of Figure 5 is that ILD on single sentence tasks such
as SST-2 or CoLA exhibits lower performances
than those of the smaller sentence pair tasks. This
phenomenon is much more evident in U-ILD. Mo-
tivated by these results, we conducted experiments
on synthetic datasets with the same dataset size
of 30k and different effective sequence lengths
(measured without considering [PAD] tokens). Fig-
ures 7c and 7d show that as the effective sequence
length of the datasets increases, so do the perfor-
mances of the student models.

Task Similarity. Finally, we investigate the effect
of task similarity between TTs and STs. We only
use datasets in the GLUE benchmark for computing
the similarity and do not use synthetic Wikipedia
datasets. To measure the task similarity, we use the
probing performance of the TT after performing
ILD for each ST, following Pruksachatkun et al.
(2020). We conduct ILD on different STs and then
conduct probing and fine-tuning on the TT. Fig-
ure 7e and 7f summarize the correlation between
the probing and fine-tuning performances for CoLA
and STS-B as the TT. The fine-tuning performances
get better as the probing performances get better,
and it is proven that ILD is better when done on an
ST that has a high correlation with the TT.

4 Method: Consistency Regularized ILD

In this section, we propose a simple yet effective
ILD method for improving the robustness of the
student models called consistency regularized ILD
(CR-ILD) that applies interpolation-based regular-
ization (Sohn et al., 2020; Zheng et al., 2021) on
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Figure 8: Comparison of training loss of different distillation approaches (ILD, ILD+MixUp, and CR-ILD) with
increasing Gaussian noise: models trained with CR-ILD are more tolerant to noise which verify that our CR-ILD
leads model to flat minima which have higher generalization.

Algorithm 1 Consistency Regularized ILD
Input: embedding layers WT

e ,W
S
e , model param-

eters ΘT ,ΘS , training dataset D, MixUp hyper-
parameter α, warmup iteration T , regularization
coefficient wCR

MHA, w
CR
IR

Output: ΘS

1: initialize t← 0
2: for each minibatch B do
3: sample |B| pairs of (xi,xj) for xi,xj ∈ B
4: sample λ ∼ Beta(α, α)
5: hSi = WS

e xi,h
S
j = WS

e xj
6: hTi = WT

e xi,h
T
j = WT

e xj

7: h̃Si = Mixλ(h
S
i ,h

S
j )

8: h̃Ti = Mixλ(h
T
i ,h

T
j )

9: compute RMHA and RIR from h̃Si ,h
S
i ,h

S
j

10: compute LMHA and LIR from h̃Si , h̃
T
i

11: w̃CR
MHA = max( tT , 1) · wCR

MHA
12: w̃CR

IR = max( tT , 1) · wCR
IR

13: L ←∑
k∈{MHA,IR} LMk + w̃CR

k Rk
14: update ΘS using gradient descent methods
15: update t← t+ 1
16: end for

MHA and IR of the student models. Our method ef-
ficiently enhances the generalization by leading the
student model to the flat minima (Section 3.1) and
introducing appropriate ST (Section 3.2). We first
introduce the proposed method and then provide
analyses of CR-ILD.

4.1 Proposed Method: CR-ILD

To implement the CR, we apply MixUp (Zhang
et al., 2018), which is an interpolation-based reg-
ularizer to improve the robustness in NLP (Chen
et al., 2020). The direct application of MixUp
to NLP is not as straightforward as images, be-
cause the input sentences consist of discrete word
tokens. Instead, we perform MixUp on the word

embeddings at each token by following Chen et al.
(2020); Liang et al. (2021). Thus, MixUp samples
with embeddings hi,hj from sentences xi,xj and
λ ∈ [0, 1] are generated as:

Mixλ(hi,hj) = λ · hi + (1− λ) · hj ,
Note that λ ∼ Beta(α, α) is randomly sampled
value from Beta distribution with hyperparameter
α ∈ (0,∞) for every batch.

Then, we introduce our CR-ILD, as follows:

Rfθ = d(fθ(Mixλ(hi,hj)), Mixλ(fθ(hi), fθ(hj))),

where fθ denotes the Transformer layer outputs
(e.g., MHA and IR) of the model with param-
eter θ and embedded input hi,hj . Note that
Mixλ(fθ(hi), fθ(hj)) = λ·fθ(hi)+(1−λ)·fθ(hj)
is interpolation of outputs from hi,hj . d(·, ·) is a
distance metric for regularization, with KLD for
MHA and MSE for IR. For example, we have:

RMHA = KLD
(

MHA(Mixλ(hi,hj)) ||
Mixλ(MHA(hi),MHA(hj))

)

RIR = MSE
(

IR(Mixλ(hi,hj)) ,

Mixλ(IR(hi), IR(hj))
)

for CR terms of MHA and IR. Hence, the overall
loss function of CR-ILD is as follows:

L = LMMHA + LMIR + w̃CR
MHARMHA + w̃CR

IR RIR,

where w̃CR
MHA and w̃CR

IR are coefficients for regu-
larization. As the student models are underfitted
to training dataset in the early training phase, we
first set the coefficients to zero and gradually in-
crease the values to wCR

MHA and wCR
IR , respectively.

Note that both LMMHA and LMIR are computed by out-
puts from the teacher and student model with the
same MixUp samples as inputs through Eq. (1) and
Eq. (2). All ILD loss and CR term are computed
from the last Transformer layer outputs based on
Section 3. We describe the overall algorithm of
CR-ILD in Algorithm 1.
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Table 1: 6-layer student results on GLUE development set averaged over 4 runs. † indicates reported results from
the Park et al. (2021). Other results are from our re-implementation based on officially released code of original
works (Sun et al., 2019; Jiao et al., 2020; Li et al., 2020).

Model #Parmas #FLOPs Speedup CoLA MNLI SST-2 QNLI MRPC QQP RTE STS-B AVG

BERTBASE 110M 22.5B 1.0x 59.9 84.6 92.2 91.5 90.9 91.2 70.8 89.5 83.8

Truncated BERT (Sun et al., 2019) as student model initialization

KD 67.5M 11.3B 2.0x 36.7 82.1 90.0 88.9 89.2 90.4 65.7 88.5 78.9
PKD 67.5M 11.3B 2.0x 37.4 82.2 90.2 89.1 89.3 90.3 66.3 87.4 79.0
TinyBERT 67.5M 11.3B 2.0x 31.4 81.3 89.2 86.7 87.1 90.2 57.2 84.8 76.0
BERT-EMD 67.5M 11.3B 2.0x 34.6 81.5 88.5 87.9 89.1 90.2 66.4 87.9 78.3
Ours 67.5M 11.3B 2.0x 40.4 82.3 91.1 90.1 89.6 90.7 67.9 89.0 80.1

BERTSmall (Turc et al., 2019) as student model initialization

KD† 67.5M 11.3B 2.0x - 82.5 91.1 89.4 89.4 90.7 66.7 - -
PKD† 67.5M 11.3B 2.0x 45.5 81.3 91.3 88.4 85.7 88.4 66.5 86.2 79.2
TinyBERT† 67.5M 11.3B 2.0x 53.8 83.1 92.3 89.9 88.8 90.5 66.9 88.3 81.7
BERT-EMD 67.5M 11.3B 2.0x 50.5 83.5 92.4 90.4 89.4 90.8 68.3 88.5 81.7
CKD† 67.5M 11.3B 2.0x 55.1 83.6 93.0 90.5 89.6 91.2 67.3 89.0 82.4
Ours 67.5M 11.3B 2.0x 55.6 83.9 92.7 91.4 90.5 91.2 70.2 88.8 83.0

4.2 Analysis on CR-ILD

In this section, we provide analytical results of CR-
ILD to obtain further intuition on our proposed
methods. Our CR-ILD regularizes the student
model to not learn an undesirable bias by (1) en-
couraging generalizable student via incurring con-
sistent predictions between MixUp and original
samples and (2) generating appropriate ST through
MixUp operation.

To validate that our CR-ILD makes more gener-
alizable functions empirically, we conduct a simi-
lar experiment with Figure 4 for comparing three
models (ILD, ILD+MixUp, CR-ILD) as shown in
Figure 8. ILD+MixUp is the simple combination
of ILD and MixUp, which is the same as CR-ILD
with wCR

MHA, and wCR
IR for zero. Note that we only

use the last Transformer layer for all ILD methods
in Figure 8. From the results, we obtain that our
CR-ILD effectively regularizes the student model
not to overfit training data and to be robust to noise
injected in embedding spaces. Moreover, it is note-
worthy that this smooth regularization is from CR-
ILD, whereas the naive application of MixUp does
not regularize the student model efficiently.

Here, we introduce our theoretical analysis that
CR-ILD explicitly leads the functions (i.e., MHA,
IR) to be convex which is smooth for all data points.

Theorem 4.1 (Informal). Assume that fθ satisfies
the Assumption A.2. With the second order Taylor
approximation for λ in Definition A.1, the Lmix

becomes L̂mix which can be represented as:

L̂mix = Lstd −
2α+ 1

(4α+ 4)|I|
∑

j∈I
Dℓ,jH

−1
ℓ,j D

⊤
ℓ,j ,

+
α+ 1

(8α+ 4)|I|2
∑

i,j∈I
R∗(fθ(hi), fθ(hj),yi,yj)

where Hℓ,j = Hessℓ(fθ(hj),yj), and Dℓ,j =
Dℓ(fθ(hj),yj).

The detailed form of R∗(fθ(hi), fθ(hj),yi,yj)
can be found in Appendix A. Theorem 4.1 states
that the regularization effect of CR-ILD that makes
the significant performance gain of CR-ILD. When
we assume that the Hessian can be approximated
by the gradient square or outer product of the gra-
dients as in the Gauss-Newton method, the first
negative term can be treated as nearly constant. We
have the positive term, which performs regulariza-
tion, and the near-constant negative term. As we
discussed earlier, the trainable part of regularizing
term reduces the offset related to curvature infor-
mation. Furthermore, the regularization scheme of
CR-ILD can be explained variously. If we assume
that the set of data has a non-empty interior, f(h)
becomes a linear function, therefore, we can say
there is a trend that the function is regularized as a
simple smooth function.

Moreover, thanks to MixUp (Zhang et al., 2018;
Liang et al., 2021) operation, we can effectively
generate the appropriate ST (Section 3.2.1) via:

• From the MixUp operation, the possible num-
ber of MixUp samples can be increased in-
finitely with the choice of original samples
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Table 2: The performance averaged over 4 runs on the GLUE development set of 6-layer student models, which
were trained on a 1k down-sampled GLUE training set or a GLUE training set under symmetric label noise. We use
officially released codes for the re-implementation of PKD (Sun et al., 2019), TinyBERT (Jiao et al., 2020), and
BERT-EMD (Li et al., 2020). For label noise experiments, we do not consider STS-B for computing average values.

Model #Parmas #FLOPs Speedup CoLA MNLI SST-2 QNLI MRPC QQP RTE STS-B AVG

1k down-sampled (Zhang et al., 2021) for few-samples experiments

BERTBASE 110M 22.5B 1.0x 41.6 61.1 85.8 80.8 88.2 75.9 66.1 87.6 73.4

KD 67.5M 11.3B 2.0x 17.6 58.0 83.4 78.9 86.2 74.8 59.6 83.9 67.8
PKD 67.5M 11.3B 2.0x 17.7 57.8 83.8 75.2 86.3 73.9 59.1 83.4 67.2
TinyBERT 67.5M 11.3B 2.0x 9.3 55.5 80.2 71.7 85.2 72.0 57.8 82.1 64.2
BERT-EMD 67.5M 11.3B 2.0x 18.8 58.0 84.2 78.5 86.3 74.3 62.1 84.8 68.4
Ours 67.5M 11.3B 2.0x 20.1 59.6 85.0 80.3 87.2 75.7 63.5 85.8 69.7

Under the presence of uniform (symmetric) label noise (Jin et al., 2021; Liu et al., 2022) with 30% noise rate

BERTBASE 110M 22.5B 1.0x 39.6 81.7 90.4 86.4 82.3 86.3 57.0 - 74.8

KD 67.5M 11.3B 2.0x 37.3 80.3 88.4 85.6 81.3 86.1 59.6 - 74.1
PKD 67.5M 11.3B 2.0x 36.8 80.0 87.6 85.4 81.1 86.2 56.2 - 73.3
TinyBERT 67.5M 11.3B 2.0x 29.7 79.9 87.2 84.6 81.2 85.7 51.6 - 71.4
BERT-EMD 67.5M 11.3B 2.0x 38.5 80.6 87.8 84.9 81.2 86.0 57.0 - 73.7
Ours 67.5M 11.3B 2.0x 39.6 81.2 89.1 86.0 82.3 86.9 61.8 - 75.3

and λ. This operation increases the dataset
size with high task similarity since the MixUp
samples are created from the interpolation of
the original target task.

• If sentence xi contains more word tokens than
sentence xj , then the extra word embeddings
are mixed up with embeddings of [PAD] to-
kens. This operation lengthens the effective
sequence length of the dataset in Section 3.2.1,
which improves the performance of ILD.

From our analysis, we verify that our proposed
CR-ILD can effectively transfer the knowledge of
teacher models with less overfitting on the training
dataset.

5 Experiments

To verify the effectiveness of CR-ILD, we compare
the performance of ours with previous distillation
methods on the standard GLUE and ill-conditioned
GLUE benchmark. The descriptions for experi-
mental setup are in Appendix B and C.

5.1 Main Results
Standard GLUE. Following the standard
setup (Sun et al., 2019), we use the BERTBASE
as the teacher and 6-layer Truncated BERT (Sun
et al., 2019) and BERTSmall (Turc et al., 2019) as
the student models. Table 1 summarizes that Ours
consistently achieve state-of-the-art performances
for almost GLUE benchmark, except for SST-2
and STS-B for BERTSmall. Despite the simplicity
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Figure 9: Ablation study on the standard GLUE (CoLA,
RTE) with Truncated BERT and BERTBASE as student
and teacher models, respectively.

and efficiency of our proposed method, we obtain
strong empirical performance.

Ill-conditioned GLUE. To verify the robustness
of our proposed method, we further conduct the
experiments on ill-conditioned GLUE, a synthetic
dataset with downsampling or injecting label noise
to the GLUE benchmark. Since STS-B is a re-
gression task, we cannot inject noise into STS-B.
Hence, we do not consider the STS-B task in label
noise experiments. The detailed descriptions for
ill-conditioned GLUE are in Appendix B. Table 2
demonstrate that our proposed method alleviates
the overfitting and enhances the performance of the
student model under few-samples training datasets
or the presence of 30% of label noise. The results
for other noise rate are in Appendix C. The experi-
mental results encourage us to use our method on
real-world applications which have a high risk of
overfitting on the training datasets. Notably, our
proposed method achieve higher performance than
the teacher model under the presence of label noise.
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5.2 Ablation Study
To obtain further intuition on CR-ILD, we conduct
an ablation study on each component (i.e., L-ILD,
ST through MixUp, and CR) of our method. Our
experiments are conducted on the standard GLUE
benchmark with Truncated BERT (Sun et al., 2019)
as the student models and BERTBASE as the teacher
models. Figure 9 summarizes that all our findings
are meaningful, as the performance improves with
each addition of a component.

6 Conclusion

This paper introduces a better use of ILD that trans-
fer knowledge by using outputs of Transformer
layers of the teacher and the student models. We
found that existing ILD methods may lead the stu-
dent model to overfit the training dataset of target
tasks and degenerate the generalizability. Further-
more, we investigated that conducting the ILD (1)
only for the last Transformer layer and (2) on sup-
plementary tasks can alleviate the overfitting prob-
lems. Based on our observations, we proposed
consistency-regularized ILD that incurs smoother
functions and enhance the generalizability of the
student models. Our proposed method effectively
distills the knowledge of teacher models by (1) en-
couraging the flat minima of function from consis-
tency regularization between original embeddings
and MixUp embeddings of the student models and
(2) efficiently generating appropriate supplemen-
tary tasks demonstrated in our findings via MixUp
operation. The experimental results showed that
our proposed method could achieve state-of-the-
art performance on various datasets, such as the
standard and ill-conditioned GLUE benchmarks.

Limitations

Our work handles the over-fitting of the student
network caused by the layer mapping between the
teacher and the student networks, which is widely
used in Jiao et al. (2020); Li et al. (2020). Although
we show that our proposed regularization technique
can mitigate the over-fitting of the student, the re-
lationship between layers inside the model and
the hidden state of tokens in one layer (Park et al.,
2021) was not sufficiently considered. In addition,
we back up our proposed idea with theoretical anal-
ysis and extensive experiments in sentence classi-
fication. We plan to perform token classification
and question-answering experiments to expand our
methods to other tasks.
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Appendix
Revisiting Intermediate Layer Distillation for Compressing Language Models: An

Overfitting Perspective

A Theoretical Analysis of CR-ILD

This section gives the theoretical argument that CR-ILD gives additional explicit regularization. We
analyze the effect of the MixUp objective function beyond the standard loss function when the CR
condition is satisfied. We use the below formulation for objective functions. For readability, we partially
apply one column style for this section.

Definition A.1 (Objective Functions). Let us define Dλ := Beta(α, α), h̃ij := λhi + (1 − λ)hj , and
ỹij := λyi + (1− λ)yj . Consider the index set I . Then the objective functions can be written as:

Lstd :=
1

|I|
∑

i∈I
ℓ
(
fθ(hi),yi

)
Lmix := Eλ∼Dλ

[ 1

|I|2
∑

i,j∈I
ℓ
(
fθ(h̃ij), ỹij

)]
,

We assume that CR loss is always optimized during training. That is, if CR loss is 0, each pair of
function values in the loss coincides. Therefore, we can write the first assumption as follows:

Assumption A.2 (Continuation of fθ (♠)). we assume that fθ has continuation on the expanded domain
{λhi + (1− λ)hj : λ ∈ [0, 1] , i, j ∈ I} and the for any convex combination, function value becomes:

fθ(λhi + (1− λ)hj) = λfθ(hi) + (1− λ)fθ(hj)

Note also that this continuation can always be well defined if {hi}i∈I are in general position. Under this
assumption, the MixUp loss possesses a regularization effect, which stabilizes the functional outcomes.

Theorem A.3. Assume that fθ satisfies the Assumption A.2. With the second order Taylor approximation
for λ, the Lmix becomes L̂mix which can be represented as:

L̂mix = Lstd +
α+ 1

(8α+ 4)|I|2
∑

i,j∈I

∥∥∥(fθ(hj),yj)− (fθ(hi),yi) + (2α+ 1)H−1ℓ,j D
⊤
ℓ,j)
∥∥∥
2

Hℓ,j

− 2α+ 1

(4α+ 4)|I|
∑

j∈I
Dℓ,jH

−1
ℓ,j D

⊤
ℓ,j ,

where Hℓ,j = Hessℓ(fθ(hj),yj), and Dℓ,j = Dℓ(fθ(hj),yj).

Note also that the expectation on higher order of λ exponentially decreases as EDλ [λn]∼2−n, if α is
sufficiently large. The above formulation indicates that the MixUp training with consistency regularization
gives further regularization terms, which stabilizes function values fθ(hi).

A.1 Derivation of the Theorem A.3

Let us write vxθ,ij = fθ(hi) − fθ(hj), vθ,ij = (vxθ,ij ,yi − yj). We first state the second-order Taylor
approximation of loss function ℓ:

Lmix = Eλ∼Dλ
[ 1

|I|2
∑

i,j∈I
ℓ
(
fθ(h̃ij), ỹij

)]

♠
= Eλ∼Dλ

[ 1

|I|2
∑

i,j∈I
ℓ
(
λfθ(hi) + (1− λ)fθ(hj), λyi + (1− λ)yj

)]

Taylor
=

1

|I|
∑

i∈I
ℓ(fθ(hi),y)

︸ ︷︷ ︸
=:Lstd

+
1

|I|2
∑

i,j∈I

[1
2
Dℓ,jvθ,ij +

1

2

α+ 1

4α+ 2
v⊤θ,ijHℓ,jvθ,ij

]
,
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since Eλ∼Dλ [λ] = 1/2 and Eλ∼Dλ [λ2] = (α+ 1)/(4α+ 2). Then,

LmixLstd +
1

2|I|2
∑

i,j∈I

[
Dℓ,jvθ,ij +

1

2

α+ 1

2α+ 1
v⊤θ,ijHℓ,jvθ,ij

]

= Lstd +
1

2|I|2
∑

i,j∈I

[
− 2α+ 1

2α+ 2
Dℓ,jH

−1
ℓ,j D

⊤
ℓ,j+

1

2

α+ 1

2α+ 1
(vθ,ij +

2α+ 1

α+ 1
H−1ℓ,j D

⊤
ℓ,j)
⊤Hℓ,j(vθ,ij +

2α+ 1

α+ 1
H−1ℓ,j D

⊤
ℓ,j)
]

= Lstd +
α+ 1

(8α+ 4)|I|2
∑

i,j∈I
∥vθ,ij + (2α+ 1)H−1ℓ,j D

⊤
ℓ,j∥2Hℓ,j −

2α+ 1

(4α+ 4)|I|
∑

j∈I
Dℓ,jH

−1
ℓ,j D

⊤
ℓ,j .
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B Dataset Description

Standard GLUE. The GLUE benchmark (Wang
et al., 2019) cover four tasks: natural language
inference (RTE, QNLI, MNLI), paraphrase detec-
tion (MRPC, QQP, STS-B), sentiment classifica-
tion (SST-2), and linguistic acceptability (CoLA).
We mainly focus on four tasks (RTE, MRPC,
STS-B, CoLA) that have fewer than 10k train-
ing samples. While BERT fine-tuning on these
datasets is known to be unstable, the ILD on
few samples is under-explored. The evalua-
tion metrics for each task of GLUE benchmark
are accuracy (MNLI, SST-2, QNLI, QQP, RTE),
Mcc (CoLA), F1 score (MRPC), and spearman cor-
relation (STS-B). We utilize original split of train,
validation (development) dataset for our experi-
ments.

Ill-conditioned GLUE. We use two types of
modification on GLUE benchmark, including
down-sampling for few-sample GLUE and inject-
ing label noise for corrupted GLUE. For generating
few-samples GLUE, we randomly down-sample
1k-sized dataset for each task by following Zhang
et al. (2021). For corrupted GLUE, we follow the
experimental setups of Jin et al. (2021) and inject
uniform randomness into a fraction of labels. All
other attributes are same for the standard GLUE.
Also, we do not modify the development dataset of
GLUE benchmark.

Extracted Wiki Corpus in Section 3.2.1 To gen-
erate synthetic data, we randomly generate the
sample which is consist of two sentences from
the Wikipedia corpus (version: enwiki-20200501
from Huggingface). We filter the generated sample
by sequence length (for experiments of effective-
ness of sequence length). We generate new dataset
for every single experiment instead of conducting
numerous experiment trials to reduce the random-
ness.

C Additional Description for
Experiments

C.1 Scope of Empirical Study in Section 3

Transformer-based Language Models. Trans-
former encodes contextual information for input
tokens (Vaswani et al., 2017). We denote the
concatenation of input vectors {xi}|x|i=1 as H0 =[
x1, . . . ,x|x|

]
. Then, the computation for encod-

ing vectors via stacked Transformer layers is via:

Hℓ = Transformerℓ(Hℓ−1), ℓ ∈ [1, L].

The attention mechanism in Transformer improves
the performance of NLP significantly and becomes
essential. For the ℓ-th Transformer layer, the output
for a self-attention head Oℓ,a, a ∈ [1, Ah] is via:

Qℓ,a = Hℓ−1W
Q
ℓ,a,Kℓ,a = Hℓ−1W

K
ℓ,a,

Aℓ,a = SoftMax(
Qℓ,aK

⊺
ℓ,a√

dk
),

Vℓ,a = Hℓ−1W
V
ℓ,a,Oℓ,a = Aℓ,aVℓ,a,

where the previous layer’s outputs Hℓ−1 ∈
R|x|×dh are linearly projected to a triple of
queries, keys, and values using parameter matrices
WQ

ℓ,a,W
K
ℓ,a,W

V
ℓ,a ∈ Rdh×dk , respectively. Note

that Ah is the number of attention heads.

Multi-Head Attention. Many approaches (Jiao
et al., 2020; Sun et al., 2020; Wang et al., 2020)
train the student, making the MHA of the stu-
dent (AS) imitate the MHA of the well-optimized
teacher (AT ).

LℓSMHA =
1

Ah

Ah∑

a=1

KLD(AT
m(ℓS),a||AS

ℓS ,a),

where KLD is KL-divergence as the loss function.
Note that m(·) is the layer mapping function for
input as student layer ℓS ∈ [0,M ] and output as
teacher layer m(ℓS) ∈ [1, L]. We compare the
KLD and mean squared error (MSE) for the loss
function, and report the results that KLD shows
better performance in Table 3.

Table 3: Comparison between KLD and MSE as the
loss function for MHA distillation.

CoLA MRPC RTE STS-B

MHA (KLD) 38.1 (1.5) 89.3 (0.5) 67.0 (0.8) 89.1 (0.1)
MHA (MSE) 37.6 (0.7) 89.1 (0.5) 66.5 (1.3) 89.0 (0.1)

MHA (KLD) + IR 38.4 (1.3) 89.3 (0.3) 67.2 (1.1) 89.1 (0.1)
MHA (MSE) + IR 38.0 (1.7) 89.1 (0.3) 66.3 (0.9) 89.1 (0.1)

Intermediate Representation. Additionally, we
study IR, common distillation objective regardless
of the network architectures. The MSE between
the IR of the teacher (HT ) and student (HS) is used
as the knowledge transfer objective:

LℓSIR = MSE(HT
m(ℓS),W

HHS
ℓ ).
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(a) CoLA (b) MRPC (c) RTE

Figure 10: 2D loss surfaces in the subspace spanned by δ1 = θ1 − θ0 and δ2 = θ2 − θ0 on MRPC and RTE.
θ0, θ1, θ2 denote the parameters of the Truncated BERT (blue), Last model (green) and Uniform model (red).
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Figure 11: Results from our layer-wise (x-axis) probe comparing student models trained on RTE with L-ILD and
U-ILD., respectively. The student model trained with L-ILD have more generalizable representations than U-ILD.

Note that WH is learnable weight matrix for
matching the dimension between representations
of the teacher and student. We further compare the
IR and patience (Sun et al., 2019) in Table 3.

Table 4: Comparisons between Pool and Patience as
representation for IR distillation.

RTE (RTE) STS-B (STS-B) RTE (MNLI) STS-B (MNLI)

Pool 60.6 (1.2) 86.2 (0.3) 69.9 (0.8) 89.2 (0.1)
Patience 66.2 (1.0) 88.3 (0.4) 68.8 (0.5) 88.8 (0.2)

Pool + MHA 67.2 (1.1) 89.1 (0.1) 70.6 (1.0) 89.6 (0.1)
Patience + MHA 66.5 (1.5) 88.4 (0.2) 68.7 (1.2) 88.4 (0.2)

Prediction Layer. The most standard form of KD
is logit-based KD (Hinton et al., 2015) for training
prediction layer.

LPL = CE(zT /t, zS/t).

We use the cross-entropy (CE) as the loss function
with inputs zS and zT as the logit vectors of the
student and teacher. We compare the sequential and
joint training ILD (i.e., MHA, IR) and prediction
layer distillation (PLD) and report the results that
sequential training shows better in Table 5.

Table 5: Comparisons between Sequential and Joint

RTE (RTE) STS-B (STS-B) RTE (MNLI) STS-B (MNLI)

Sequential 67.2 (1.1) 89.1 (0.1) 70.6 (1.0) 89.6 (0.1)
Joint 66.7 (1.5) 88.8 (0.2) 68.9 (1.4) 89.3 (0.2)

D Experimental Setup

In this section, we describe the setup for our exper-
imental results. Note that all single experiments

are conducted on a single NVIDIA GeForce RTX
2080Ti GPU.

D.1 Setup for Section 3 and Section 4
For teacher model, we fine-tune the uncased, 12-
layer BERTBASE model with batch size 32, dropout
0.1, and peak learning rate 2 × 10−5 for three
epochs. For student model, we mainly use with
6-layer BERT model with initialize point as Trun-
cated BERT (Sun et al., 2019) and BERTSmall (Turc
et al., 2019). For fine-tuning student model, un-
der the supervision of a fine-tuned BERTBASE, we
firstly perform ILD for 20 epochs with batch size
32 and learning rate 5× 10−5 as follows Jiao et al.
(2020). Then, we conduct prediction layer distilla-
tion (PLD) for 4 epochs with choosing batch size
16 and learning rate from 2 × 10−5. Unlike the
logit-based KD, we only use PLD term and do
not use supervision from true labels. while We
utilize GLUE (Wang et al., 2019) benchmark for
exploratory experiments and set the maximum se-
quence length is set to 128 for all tasks.

D.2 Setup for Section 5
For achieve higher performance with our methods,
we conduct hyper-parameter search as follows:

• Peak learning rate (ILD): [2×10−5, 5×10−5]

• Batch size (PLD): [16, 32]

• MixUp parameter (α): [0.5, 1.0, 2.0, 3.0]

For other hyper-parameter settings are not in the
list, we use same parameter values as described in
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Table 6: The performance averaged over 4 runs on the GLUE development set of 6-layer student models, which
were trained on GLUE training set under symmetric label noise (10% and 20%). We use officially released codes
for the re-implementation of PKD (Sun et al., 2019), TinyBERT (Jiao et al., 2020), and BERT-EMD (Li et al., 2020).
For label noise experiments, we do not consider STS-B for computing average values.

Model #Parmas #FLOPs Speedup CoLA MNLI SST-2 QNLI MRPC QQP RTE STS-B AVG

Under the presence of uniform (symmetric) label noise (Jin et al., 2021; Liu et al., 2022) with 10% noise rate

BERTBASE 110M 22.5B 1.0x 54.0 83.1 91.1 90.0 90.6 89.7 67.5 - 80.9

KD 67.5M 11.3B 2.0x 44.9 81.6 90.6 88.9 88.7 89.6 65.0 - 78.5
PKD 67.5M 11.3B 2.0x 45.2 81.2 90.5 89.0 89.1 89.4 65.4 - 78.5
TinyBERT 67.5M 11.3B 2.0x 35.4 81.9 90.1 88.3 88.3 89.6 59.9 - 76.2
BERT-EMD 67.5M 11.3B 2.0x 48.2 81.3 90.5 88.0 89.2 89.1 66.1 - 78.9
Ours 67.5M 11.3B 2.0x 50.1 82.0 90.7 89.2 89.2 89.6 66.5 - 79.6

Under the presence of uniform (symmetric) label noise (Jin et al., 2021; Liu et al., 2022) with 20% noise rate

BERTBASE 110M 22.5B 1.0x 50.8 82.4 90.0 88.6 87.7 87.9 63.2 - 78.7

KD 67.5M 11.3B 2.0x 42.7 81.5 90.1 88.4 87.6 88.1 64.6 - 77.6
PKD 67.5M 11.3B 2.0x 41.8 81.4 89.4 87.9 87.5 88.0 63.0 - 77.3
TinyBERT 67.5M 11.3B 2.0x 31.6 81.8 89.0 87.7 87.6 88.0 56.7 - 74.6
BERT-EMD 67.5M 11.3B 2.0x 40.7 81.0 89.7 87.6 88.0 87.9 64.6 - 77.1
Ours 67.5M 11.3B 2.0x 44.6 81.9 89.8 88.6 88.1 88.2 65.2 - 78.1

main text or Appendix D.1. We find that 2× 10−5

is the best peak learning rate of ILD for all tasks
except for STS-B. For batch size of PLD stage,
RTE, MNLI and QNLI shows higher performance
with batch size of 32 and other tasks shows higher
performance with batch size of 16. For α, a hy-
perparameter for MixUp operation in CR-ILD, we
choose the value of 1.0 by the result of our hyper-
parameter search. All hyperparameter search are
conducted by using grid search with averaged
three runs.

E Further Experiments on BERT

E.1 Further Observation for Section 3.1
Loss Surface Analysis. To get further intuition
about the performance degradation of distilling
the knowledge of intermediate Transformer lay-
ers, we provide loss surface visualizations of the
U-ILD and L-ILD settings. The parameters of the
Truncated BERT, the Last model (student model
trained with L-ILD), and the Uniform model (stu-
dent model trained with U-ILD) are θ0, θ1, θ2, re-
spectively. In the subspace spanned by δ = θ1− θ0
and δ = θ2 − θ0, we plot two-dimensional loss
surfaces f(α, β) = L(θ0+αδ1+βδ2) centered on
the weights of Truncated BERT θ0. As shown in
Figure 10, transferring knowledge of the intermedi-
ate Transformer layers leads the student model to
sharp minima, which results in poorer generaliza-
tion (Hochreiter and Schmidhuber, 1997; Keskar
et al., 2016). Thus, the knowledge from the in-
termediate Transformer layer causes the student

model to overfit the training dataset and reduce the
generalization.

Linear Probing Analysis. Probing experiments
can be used for evaluating the degradation of the
generalizable representations of PLMs during fine-
tuning. Similar to Aghajanyan et al. (2021b), we
conduct the probing method by first freezing the
representations from the model trained on one
downstream task, and then fine-tuning linear clas-
sifiers on top of all Transformer layers to measure
the generalization performance of the layers of the
teacher and student models.

Through probing experiments, we observe that
the lower-level representations of the student model
related to U-ILD are overfitted to the training
dataset of the target task. Figure 11a shows that the
probing performances for 1 to 3 layers of the stu-
dent model with U-ILD are higher than those of the
Last model on the training set of RTE. According to
Howard and Ruder (2018); Zhang et al. (2021), it is
crucial to train PLMs so that lower layers have gen-
eral features and higher layers are specific to target
tasks. The overfitting of lower layers to the target
task leads to performance degradation in the higher
layers, as illustrated in Figure 11b. Moreover, for
the other tasks, the student models with L-ILD have
higher probing performance for all layers than the
Uniform models, except for the performance of the
first layer on MRPC as indicted in Figure 11c and
11d.
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E.2 Experimental Results for Different Label
Noise Ratio

We conduct additional experiments on the GLUE
benchmark with different label noise ratios (10%
and 20% of uniform label noise) as shown in Ta-
ble 6. While BERT-EMD (Li et al., 2020) shows the
second best performance in small noise ratio (10%)
and achieve better performance than the original
KD, the original KD and PKD (Sun et al., 2019)
present the higher performance in severe noise rate
(20% in Table 6 and 30% in Table 2) than BERT-
EMD. Surprisingly, our CR-ILD (Ours) shows the
best performance for all noise ratios consistently
which verifies that our proposed method encour-
ages the distilling of the knowledge effectively and
prevents overfitting on the training datasets.

F Further Experiments on
Encoder-Decoder Models

F.1 T5: Study on Encoder-Decoder Models
In this section, we apply our approaches to T5 to
generalize our result from the encoder-based model
to the encoder-decoder model. First, we explain our
experimental setup in the experiments conducted
on T5. Secondly, we examine (1) two findings
(last Transformer layer, supplementary task) and (2)
our proposed method, CR-ILD suggested with the
experiments on BERT can boost the performance
of T5 model as well as the encoder-based model.

F.2 Experimental setup
We experiment with our proposed training strate-
gies on the encoder-decoder model. As a teacher
model, we use T5BASE fine-tuned to the target task
with batch size 8, learning rate 1 × 10−3 for ten
epochs, which follows a training scheme for fine-
tuning T5 on an individual GLUE task proposed
in (Raffel et al., 2020). As a student model, we use
the pre-trained T5Small. During the distillation, we
distill the knowledge from the teacher model to the
student model consecutively, similar to the train-
ing scheme described in the experimental setup of
BERT distillation. We first distill the knowledge
using the given distillation objective (i.e., atten-
tion, intermediate states) depending on the task.
Unlike the BERT experiments, we fine-tune the
T5 model on the target task after the ILD since
the performance decreases in a few tasks when
we apply logit-based KD (Hinton et al., 2015). To
distill the transformer layers and the intermediate
states, we use methods proposed by (Wang et al.,

2021) and (Jiao et al., 2020). Specifically, before
distilling the attention scores, we applied relation
heads proposed in (Wang et al., 2021) and calcu-
lated attention scores since the number of attention
heads of the student and the teacher differs. After
matching the number of relation heads, we distill
attention scores of relation head and the hidden
states, using the methods of (Jiao et al., 2020).
Regarding the supplementary tasks, we use the
same hyperparameters as the ILD experiments. In
CR-ILD experiments, we set wCR

MHA as 0.2 and 0.3
for the MRPC and RTE task individually.

F.3 Experimental Results: Last Transformer
Layer and Supplementary Task

In this section, we focus on whether two findings
from the experiments on BERT show consistent
results in the experiments on T5.

Last Transformer Layer. We evaluate the su-
periority of distilling the last Transformer layer
knowledge in T5 models. Unlike BERT, T5 has
an additional Transformer layer of the decoder net-
work and cross-attention (CA). Therefore, we also
conduct additional comparisons between the distil-
lation on the decoder network and the distillation
on both the encoder and decoder network, as well
as the comparison between the last Transformer
layer mapping and uniform layer mapping. Fur-
thermore, we examine the effectiveness of the dis-
tillation on the cross-attention when we distill the
knowledge in the decoder network.

In Figure 12a, 12b, and 12c, the blue boxes, and
the orange boxes denote the distillation on the de-
coder network, the distillation on both the encoder
and decoder network, respectively. In most cases,
distilling only from the decoder network tends to
show higher results than distilling from the encoder
and decoder network. In addition, distilling the
last Transformer layer shows better performance
than the distilling Transformer layers uniformly.
Lastly, compared to distilling the self-attention and
the cross-attention of the last Transformer decoder
layer (green bar in Figure 12), distilling only the
self-attention of the last Transformer decoder layer
(the first blue bar) shows better performance. In
conclusion, We observe that distilling knowledge
from only the last layer of the decoder network
shows the highest performance across the target
tasks. This result is consistent with the previous
results of the experiments on BERT.
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Figure 12: We compare the performance for different layer mapping functions and distillation objectives in (a)-(c).
The distillations of the last layer, uniform layer mapping, self-attention, and IR are denoted by L, U, S, and R,
respectively. The blue (Enc.) and orange (Dec.) bar denote the application of ILD to the decoder network only and
to both encoder and decoder network, respectively. We also denote ILD with CA and CR as the green and brown
bars in (a)-(c), respectively. (d)-(e) are results for using ST for TTs of MRPC and RTE. We only distill self-attention
of the last layer of the decoder when using ILD with ST and CR

Supplementary Task We further evaluate the
effectiveness of the supplementary tasks on ILD
for the encoder-decoder models. Figure 12d and
12e summarize the performance of RTE and MRPC
tasks, dependiong on the supplementary task initial-
ization. Blue, red and orange lines denote distilling
self-attention of the last Transformer layer, logit-
based distillation, and fine-tuning, respectively. Us-
ing the distillation on the self-attention of the last
Transformer layer, initialization from the supple-
mentary task training shows better performance
than PLM initialization regardless of the supple-
mentary task.

F.4 Experimental Results: CR-ILD
In this section, we examine whether our CR-ILD
method could mitigate the over-fitting of the stu-
dent model when the teacher and the student are
T5 models. In Figure 12a, 12b, and 12c, the brown
box denotes to distill the self attention of last Trans-
former decoder layer with the consistency regu-
larization, CR-ILD. In order to see the difference
according to the presence or absence of the consis-
tency regularization, we compare the brown box
and the first blue box, which denotes to distill the
self attention of last Transformer decoder layer
without CR-ILD. In the all tasks (MRPC, RTE, and
SST-2), the consistency regularization boost the
performance of the student model. That is, the ef-
fect of the consistency regularization is consistent
with the result of the experiment on BERT.
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Abstract

Leveraging contextual knowledge has become
standard practice in automated claim verifica-
tion, yet the impact of temporal reasoning has
been largely overlooked. Our study demon-
strates that time positively influences the claim
verification process of evidence-based fact-
checking. The temporal aspects and relations
between claims and evidence are first estab-
lished through grounding on shared timelines,
which are constructed using publication dates
and time expressions extracted from their text.
Temporal information is then provided to RNN-
based and Transformer-based classifiers before
or after claim and evidence encoding. Our time-
aware fact-checking models surpass base mod-
els by up to 9% Micro F1 (64.17%) and 15%
Macro F1 (47.43%) on the MultiFC dataset.
They also outperform prior methods that explic-
itly model temporal relations between evidence.
Our findings show that the presence of tempo-
ral information and the manner in which time-
lines are constructed greatly influence how fact-
checking models determine the relevance and
supporting or refuting character of evidence
documents.1

1 Introduction

Automatically verifying information and flagging
engineered falsities have been high on the politi-
cal, media, and - subsequently - research agenda
for quite some time (European Commission, 2022).
However, the role of time in machine-assisted fact-
checking has been inadequately investigated. Time
can affect the veracity of previously uttered claims
and the relevance of supporting or refuting evi-
dence. This is evident in research, for example,
where newly acquired knowledge may question,
confirm, or refute established facts. This study pro-
poses to ground claims and associated evidence in

1The code of this paper is publicly avail-
able: https://github.com/Marlon668/
VerificationClaimsWithTimeAttribution.
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Figure 1: An evidence-based fact-checking model veri-
fies a given claim against a set of Web documents serv-
ing as supporting or refuting evidence. In this study, we
let the model implicitly reason over the temporal aspects
of the claim and evidence, and their relations. For this,
both inputs are grounded at two levels on a shared time-
line: at the document level using their publication dates
(in yellow, dotted line) and at the content-level using
time expressions in their text (in blue, dashed line).

time and incorporate temporal reasoning abilities in
the claim verification process of computational fact-
checking models (Figure 1). Here, temporal rea-
soning is implicit since the models are not expected
to make explicit predictions about time. They in-
stead learn from data how to leverage temporal
information.

Grounding a claim or evidence document in time
is a complex task. On the one hand, it can be
achieved through document-level grounding, which
involves positioning the entire document on a time-
line based on its publication date. On the other
hand, a document may discuss several events that
have occurred in the past, present, or future. To fa-
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cilitate more fine-grained grounding on the content
level, time expressions in the text are used to to
place the document on multiple positions on a time-
line. Such expressions can be explicit (e.g., 27 June
2022), implicit (e.g., Christmas 2022), and relative
(e.g., mid-September), which may require addi-
tional temporal information for grounding (Ströt-
gen and Gertz, 2013; Leeuwenberg and Moens,
2019). In this study, we ground claims and evi-
dence on both the document and content level. This
is accomplished by extracting and normalising their
publication date and in-text time expressions, and
subsequently relating them in terms of distance in
time. This enables fact-checking models to reason
over the temporal relations between a claim and its
evidence on more than one level.

Contributions This study demonstrates that rea-
soning over temporal aspects and relations of
claims and evidence not only improves fact-
checking models’ prediction performance but also
influences their estimation of the relevance and
the supporting/refuting character of the evidence.
The effects on performance are even reinforced
when claims and evidence are grounded at both
the document and content level, showing the ap-
propriateness of multi-level temporal reasoning in
automated fact-checking.

2 Related Work

Automated fact-checking is usually a two-phase
process consisting of claim detection/selection and
claim verification (Zeng et al., 2021; Guo et al.,
2022). Time is arguably important in both phases.
When detecting and ultimately selecting claims to
fact-check, fact-checkers heed the current interest
of the public in certain topics and election cycles,
and rank the claims accordingly (Allein and Moens,
2020). Moreover, many selected claims mention
dates or time periods (Hidey et al., 2020). Shaar
et al. (2020) looked in the past and filtered out
claims that are semantically similar to previously
fact-checked claims to expedite the claim selection
process.

While evidence-based claim verification has
been widely studied (Zhong et al., 2020; Liu et al.,
2020; Chen et al., 2021; Si et al., 2021; Jin et al.,
2022; Xu et al., 2022; Hu et al., 2022), few stud-
ies explicitly focused on incorporating temporal
reasoning in the verification process. Zhou et al.
(2020) constructed (entity, value, time)-tuples rep-
resenting supposedly temporal facts and verified

their correctness using probabilistic graphical mod-
els. Allein et al. (2021) constrained the evidence
ranking in fact-checking models on time using
silver-standard evidence rankings respecting four
assumptions on temporal relevance. Instead of ver-
ifying the temporal correctness of claim tuples or
explicitly enforcing time-dependent evidence rank-
ings, we let fact-checking models reason implicitly
over temporal aspects of claims and evidence in
natural language when checking the claims.

3 Task Description

Classifier f takes a textual claim c and an asso-
ciated set of N text documents {ei}N serving as
evidence of c, and returns a claim veracity label y.

f : c, {ei}N −→ y (1)

To allow f to reason over temporal aspects of c
and ei, we extract and normalise publication dates
and time expressions in c and ei, and assign them
to time buckets. Temporal representations ct and
ei,t are sequences of time bucket indices and are
given as additional input to f :

f : c, ct, {ei}N , {ei,t}N −→ y (2)

4 Two-Level Grounding and Reasoning

To obtain temporal representations ct and ei,t, we
ground c and ei in time by positioning them on a
joint timeline using either their publication date
(ct = cdoct ; ei,t = edoci,t ) or in-text time expressions
(ct = ccont ; ei,t = econi,t ). A fact-checking model
can then reason over their temporal aspects and
relations at the document level or the content level,
respectively (Figure 2).

4.1 Reasoning at Document Level
The publication date of c serves as reference point
for grounding ei. This way, we lay bare the tem-
poral relation between c and ei at the document
level. We adopt the approach of Allein et al. (2021)
and compute the distance in days ∆pub ∈ Z be-
tween the publication date of c and that of ei, where
∆pub < 0 indicates that ei was published before c,
∆pub = 0 indicates that ei and cwere published on
the same day, and ∆pub > 0 indicates that ei was
published after c. The publication date of ei is then
assigned to a time bucket bpub ∈ T doc given ∆pub.
Ultimately, the document-level temporal represen-
tation of ei, edoci,t , is a sequence of indices corre-
sponding to bpub in T doc, with |edoci,t | = 1 since ei
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Figure 2: Illustration of two-level grounding: (a) at the document level using publication dates (PD) and (b) at
the content level using in-text time expressions (TE). All PD and TE are assigned to time buckets bpub and btext,
respectively. V means that a publication date was found (only for claims) and X that no publication date was found.

has only one publication date. When a publication
date for ei could not be extracted, edoci,t corresponds
to the index of a dedicated time bucket indicat-
ing date unavailability. Lastly, the document-level
temporal representation of the claim, cdoct , merely
indicates the availability of a publication date for
the claim. We motivate and discuss the choice of
T doc in Section 4.3.

4.2 Reasoning at Content Level

While the document-level approach grounds c and
ei as whole documents, the content-level approach
places them on various positions on a timeline us-
ing time expressions found in their text. Each time
expression in ei and c is first extracted and nor-
malised, and its distance in days ∆exp ∈ Z to the
publication date of c is computed. They are then
assigned to time buckets btext ∈ T con given ∆exp.
The choice of T con is discussed in Section 4.3. The
content-level temporal representation of ei is econi,t
is a sequence of indices where each index corre-
sponds to a btext ∈ T con. The length of econi,t equals
the number of time expressions found in ei, and
the jth element of econi,t corresponds to the index of
the time bucket of the jth time expression in ei. A
time bucket index can occur multiple times in econi,t .
The same grounding procedure is applied to obtain

content-level temporal representation ccont for c. In
contrast to cdoct , ccont does not merely reflect the
availability of a publication date for c but grounds
time expressions in the claim text with respect to
the claim’s own publication date. The content-level
grounding approach allows a fact-checking model
to reason over the temporal aspects of the events
discussed in ei and c, and their temporal relation to
the publication date of c.

4.3 Creating Time Buckets

Time buckets bpub ∈ T doc and btext ∈ T con repre-
sent time intervals with respect to the publication
date of c (e.g., bpub = [1, 4] indicates that ei was
published between 1 and 4 days after c had been
published). Following the cluster hypothesis of Jar-
dine and van Rijsbergen (1971) which states that
documents in a cluster contain similar information,
the similar information in a bucket is the distance
in time to c. For document-level grounding and rea-
soning, the construction and choice of T doc goes
as follows: (1) ∆pub for each ei in the training set
is computed; (2) all ∆pub are ordered in ascend-
ing order; (3) and, finally, all ∆pub are subdivided
in 20 quantiles, containing a similar number of ei
(µ = 8530.5, σ = 266.87). Each quantile repre-
sents one bucket bpub. Various numbers of quantiles
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were tested, and 20 returned the best performance
on the validation set. Three buckets denoting a lack-
ing publication date for ei, an available publication
for c, and a lacking publication date for c are added;
hence, |T doc| = 23. A similar procedure is applied
for constructing T con using ∆exp (|T con| = 24,
µ = 13390.75, σ = 2050.4). However, no extra
buckets btext denoting (un)availability of date are
added. An overview of all bpub and btext can be
found in Appendix A. Note that the intervals of
bpub and btext become smaller when its bounds ap-
proach 0, allowing for more fine-grained reasoning
for evidence published around or at the same time
as the claim. Time buckets approaching 0 (i.e., ei
situates around the same time as c) have smaller
intervals than those far from 0, with even a dedi-
cated time bucket for those evidence published or
discussing events happening on the same day as the
claim. The advantage of using such time buckets is
that the model is more robust against bias towards
larger buckets. In the fact-checking models, each
bucket corresponds to a unique embedding stored
in a randomly-initialised time embedding matrix,
which is updated during model training.

5 Methodology

5.1 Fact-Checking Model

We take the Joint Veracity Prediction and Evi-
dence Ranking model introduced in Augenstein
et al. (2019) as base model (Figure 3). Taking
c and ei represented by their word embeddings
w ∈ RD1 , the text encoder encodes them to their
latent representations h(c) and h(ei) ∈ RD2 . Meta-
data m linked to c is encoded in parallel, yielding
g(m). Next, h(c), h(ei), and g(m) are combined
into a joint claim-evidence representation si using
the matching approach introduced by Mou et al.
(2016):

si = [h(c);h(ei);h(c)−h(ei);h(c) ·h(ei); g(m)]
(3)

with [; ] denoting concatenation, and [·] the dot
product. The evidence scorer projects each si to
oi ∈ R, forming evidence score vector o ∈ RN .
The label scorer projects each si to its label score
vector qi ∈ RL forming scoring matrixQ ∈ RN×L,
with L the number of veracity labels. o⊺ ·Q gives
a final score vector for all labels L, to which a soft-
max is applied to obtain a probability distribution
over all veracity labels.
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Figure 3: Overview of the fact-checking model, where
temporal information on claim and evidence (in blue) is
integrated before text encoding (local level; in green) or
after text encoding (global level; in yellow).

5.2 Incorporating Temporal Reasoning

Temporal representations ct and ei,t are trans-
formed to their time embeddings, ĉt and êi,t, and
given as additional model input. The embedding
dimensions depend on the stage at which they are
integrated in the model.

Local integration ct and ei,t are integrated be-
fore encoding claim and evidence c and ei to h(c)
and h(ei). Time embeddings ĉt, êi,t for each time
bucket index in ct and ei,t are taken from the em-
bedding matrix and projected onto the same dimen-
sion as the word embeddings w ∈ RD1 of tokens
in c and ei using a linear transformation layer l.

For document-level reasoning (DLloc, eq. 4),
the embeddings (there is max. one publication
date; hence one time embedding per document) are
prepended to those of c and ei. These are then sent
to the text encoder.

c = [l(ĉdoct );w0, ..., w|c|]

ei = [l(êdoci,t );w0, ..., w|ei|]
(4)
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For content-level reasoning (CLloc, eq. 5), local
integration is more complex. Firstly, ccont and econi,t
may refer to more than one time bucket as there
may be more than one time expression in c and ei.
Secondly, the position of a time expression and the
predicate it belongs to may provide rich informa-
tion about a mentioned event. We first identify the
type of each token in c and ei (see Table 1).

Position, predicate, and time expression marking
Tokens Storm Al- berto expected to make landfall to- morrow
Type O O O O O B-PRED O B-TIME TIME

Pos / / / / / +2 / / /
Time / / / / / / / 0 /

Table 1: Additional sentence preprocessing when inte-
grating ccont and econi,t at the local level. The predicate
(PRED) and the time expressions (TIME) are marked,
with B indicating their first token, and the token distance
between B-TIME and B-PRED is computed.

We then introduce three new embeddings: pred-
icate embedding pr ∈ RD1 marks the predicate,
position embedding po ∈ RD1 marks the posi-
tion of the predicate, and expression embedding
te ∈ RD1 marks the time expression. These addi-
tional embeddings are learned during training. The
word embedding w of a token in c depends on that
token’s type (same for ei and econi,t ):

w =





γw + (1− γ)(l(ĉcont,j ) + te) if B-TIME

γw + (1− γ)te if TIME

γw + (1− γ)(pr + po) if B-PRED

γw + (1− γ)pr if PRED

w otherwise

(5)

Embedding ĉcont,j refers to the embedding of time
bucket btext to which the jth time expression in c
refers.

Global integration ct and ei,t are integrated af-
ter c and ei have been transformed by the text en-
coder to their latent representations h(c) and h(ei)
∈ RD2 . An embedding for each time bucket in
ct and ei,t is taken and projected onto the same
embedding space RD2 using a linear transforma-
tion layer k. If ct or ei,t are represented by more
than one time bucket, the embeddings are averaged.
Fusion is performed using a weighted sum. For
document-level reasoning (DLglob):

h(c) = αh(c) + (1− α)k(ĉdoct )

h(ei) = αh(ei) + (1− α)k(êdoci,t )
(6)

And for content-level reasoning (CLglob):

h(c) = αh(c) + (1− α)Avg(k(ĉcont ))

h(ei) = αh(ei) + (1− α)Avg(k(êconi,t ))
(7)

with Avg the average. We also experiment with
a combination of document-level and content-
level reasoning (DL+CLglob, eq. 8) where tempo-
ral information from both levels is provided to the
model:

h(c) = αh(c) + βk(ĉdoct )

+ (1− α− β)Avg(k(ĉcont ))

h(ei) = αh(ei) + βk(êdoci,t )

+ (1− α− β)Avg(k(êconi,t ))

(8)

6 Experiments

6.1 Dataset
Experiments are conducted on MultiFC2 (Augen-
stein et al., 2019), a large-scale dataset containing
34,924 English claims from various fact-checking
websites (= ‘domains’) where each claim is asso-
ciated with at most 10 a posteriori retrieved Web
documents (319,721 documents in total). It also
provides metadata on speaker, category, tags, and
linked entities regarding the claim. We refer to Au-
genstein et al. (2019) for a more detailed descrip-
tion of the data. Although other datasets for fact-
checking have been proposed (Zeng et al., 2021),
they either lack naturally occurring claims, publica-
tion dates, or multiple evidence documents (Thorne
et al., 2018; Jiang et al., 2020; Ostrowski et al.,
2021; Schuster et al., 2021). Nonetheless, the large
size, wide diversity of topic and data sources, and
high quality of the MultiFC dataset should be suf-
ficient for showcasing the appropriateness of our
approach.

6.2 Time Extraction and Normalisation
In this section, we discuss the procedure for extract-
ing and normalising publication dates and in-text
time expressions.

6.2.1 Publication Dates
The dataset provides the publication date of a claim
as structured metadata. The date is represented as
Year-Month-Day using rule-based temporal tagger
HeidelTime (Strötgen and Gertz, 2013). The pub-
lication date of an evidence document, however,

2The data is publicly available on CodaLab.
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is not given in the metadata. Since its publication
date is often communicated before the ellipsis (‘...’)
at the beginning of its text, we can automatically
extract the date from the text (Allein et al., 2021).
If we cannot extract a date at that position, we look
for occurrences of ‘published’ or ‘posted’ in com-
bination with a date. We again use HeidelTime for
structuring the publication dates. In total, we ob-
tain a publication date for 34,808 (99.67%) claims
and 213,165 (66.67%) evidence documents.

6.2.2 In-Text Time Expressions

Extracting and normalising in-text time expressions
is more challenging as they can be implicit or rel-
ative. Since in-text time expressions are usually
not annotated in datasets used for fact-checking,
we need to reside to pretrained methods for ex-
tracting them. We implement the Open Informa-
tion Extraction (OIE) model of Stanovsky et al.
(2018), which parses a sentence and labels its ar-
guments. In this work, we focus on temporal ar-
guments (ArgM − TMP ). Since inaccurate use
or absence of capital letters has been shown to de-
crease the performance of OIE models (Alam and
Awan, 2018), the OIE model is expected to return
a high number of inaccurate parses for capitalised
news headlines – which make up a large portion of
the claims in the data. We therefore implement a
pretrained Named Entity Recognition (NER) model
(Peters et al., 2017) to first detect people, locations,
and organisations in the text. Then, the first token
of each entity is capitalised while all other tokens
are lowercased. Although capitalised temporal ex-
pressions such as weekdays and holidays are au-
tomatically lowercased too, we observed a higher
quality of OIE parses when adopting this approach.
We normalise the extracted temporal expressions
using HeidelTime. The document creation time
(DCT) of a piece of information, in this study the
publication date, is used as reference point for nor-
malising in-text temporal expressions. In total, we
obtain 321,278 in-text time expressions.

Quality assessment Implementing pretrained ex-
traction and normalisation models inevitably intro-
duces noise in the data. We therefore manually
assess the quality of the NER, OIE, and Heidel-
Time models to ensure that the noise is limited.
The assessment is performed on a randomly se-
lected set of 10 claims and their accompanying
evidence documents (104 in total) from the dataset,
and performance is measured using precision (P),

recall (R), and F1. Regarding NER, we investi-
gate whether all entities have been recognised and
completely extracted. The label correctness does
not need to be evaluated. NER performance is
0.9054/0.9134/0.9094 (P/R/F1). For the OIE task,
we assess whether all temporal expressions have
been correctly extracted and parsed. OIE perfor-
mance is 0.9608/0.5568/0.7050 (P/R/F1), indicat-
ing that while quite some time-related expressions
have not been extracted, those found have been cor-
rectly parsed. Lastly, we evaluate the normalisation
of the found expressions: HeidelTime performance
is 0.9736/0.8409/0.9024 (P/R/F1). In all, we deem
the quality of the pretrained extraction and normal-
isation models sufficiently high.

6.3 Experimental Setup

Hyperparameter settings Both c and ei are to-
kenised3 and represented using word embeddings
(size = 300 (BiLSTM); 768 (DistilRoBERTa)).
We experiment with two neural text encoders for
encoding c and ei: a two-layered bidirectional
LSTM with skip-connections (dropout = 0.1,
hidden size = 128) and a pretrained Sentence-
DistilRoBERTa, which is a faster, distilled version
of Sentence-RoBERTa (Sanh et al., 2019; Reimers
and Gurevych, 2019). For sake of brevity, we con-
tinue to refer to this model as RoBERTa. Metadata
m is represented as a one-hot vector and encoded
by a CNN (filter size = 3, kernel size = 3) with
ReLU activation and 1D max pooling. The label
scorer consists of two fully-connected layers (hid-
den size = 100; 50), both with ReLU activation.
The evidence scorer is a fully-connected layer (hid-
den size = 100) with Leaky ReLU activation. All
parameters except those of the pretrained RoBERTa
model are initialised following a Xavier Uniform
distribution. More detailed settings for reproducing
the experiments, such as hyperparameter tuning, is
provided in Appendix B.

Pretraining and fine-tuning The experiments
are conducted on the disjunct, label-stratified train
(80%), validation (10%), and test set (10%) pro-
vided by Augenstein et al. (2019). We adopt the
pretraining and fine-tuning setup of Allein et al.
(2021) to ensure transparent comparison. During
pretraining, the model is trained on all 26 fact-
checking domains where each domain is only pre-
sented once in each epoch (batch size = 32 (BiL-

3Huggingface implementation of the DistilRoBERTa tok-
enizer: sentence-transformers/all-distilroberta-v1.
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BiLSTM RoBERTa
Micro F1 Macro F1 Fusion Weights Micro F1 Macro F1 Fusion Weights

Base .5520 (.0023) .3239 (.0064) - .6952 (.0195) .5532 (.0246) -

DLloc .5501 (.0095) .3343 (.0277) - .5640 (.0084) .3357 (.0174) -
DLglob .6006 (.0090) .4271 (.0107) α = 0.90 .6973 (.0439) .5608 (.0488) α = 0.75

CLloc .6098 (.0028) .4491 (.0120) γ = 0.50 .5685 (.0075) .3601 (.0090) γ = 0.10
CLglob .6089 (.0167) .4425 (.0167) α = 0.25 .6882 (.0208) .5744 (.0376) α = 0.10

DL+CLglob .6417 (.0033) .4743 (.0080) α = 0.20 .6947 (.0135) .5739 (.0332) α = 0.20
β = 0.40 β = 0.20

Table 2: Average test results over three (BiLSTM) and two (RoBERTa) runs - with standard deviation in brackets -
aggregated over all 26 fact-checking domains. Experiments are conducted for document-level (DL) and content-level
(CL) temporal reasoning, where temporal information is integrated before (loc) or after (glob) encoding.

STM); 16 (RoBERTa)), mitigating model bias to-
wards larger domains. After each epoch, the batch
order is randomly shuffled, and Adam with linear
scheduler (lr = 1e−4 (BiLSTM)) or RMSprop (lr
= 2e−4 (RoBERTa)) optimizes the model param-
eters using the cross-entropy loss on the predic-
tion output. The best-performing model for each
fact-checking domain is selected based on the val-
idation loss. Each domain-specific model is then
fine-tuned on only data from that domain and the
best-performing model is again selected based on
the validation loss.

7 Results

Table 2 reports model performance on the test
set, aggregated over all domains, in terms of Mi-
cro F1 and Macro F14. The results show that
the effect of temporal reasoning depends on (a)
the level at which temporal information is inte-
grated in the model (global vs. local), (b) the
grounding/reasoning level (document vs. con-
tent), and (c) the model architecture (BiLSTM
vs. RoBERTa). Regarding the integration level,
global integration (glob) substantially surpasses lo-
cal integration (loc) for document-level reasoning
(both models; .5501/.3343 −→ .6006/.4271 [BiL-
STM]; .5640/.3357 −→ .6973/.5608 [RoBERTa])
and content-level reasoning (.5685/.3601 −→
.6882/.5744 [RoBERTa]). Regarding the tem-
poral grounding and reasoning level, the results
show that the combination setup where claim
and evidence are grounded at both the document
and content level (DL+CL) yields the overall
highest performance for BiLSTM (.6417/.4743),
while marginally improving RoBERTa by 2%
Macro F1 (.5739). Lastly, temporal reasoning ap-

4Computed using the scikit-learn Python package.

pears to impact the prediction performance of the
less parameterised BiLSTM model more strongly
than that of the Transformer-based RoBERTa
model: .5520/.3239 −→ .6417/.4743 [BiLSTM];
.6952/.5532 −→ .6947/.5739 [RoBERTa]. A similar
effect was observed by Allein et al. (2021), who
explicitly modeled temporal relations between a
claim and its evidence by constraining model pa-
rameters on evidence rankings following various
assumptions on temporal relevance. This could
be attributed to the expressive power of large pre-
trained Transformers-based language models and
the orders of magnitude of their pretraining set size.

Table 3 shows the comparison between our best
performing set-up with the baseline from Augen-
stein et al. (2019) and the model with explicit tem-
poral reasoning from Allein et al. (2021). Overall,
our approach outperforms the baseline and the ex-
plicit temporal reasoning approach, especially on
the Macro F1-score. This demonstrates the appro-
priateness of our implicit, two-level temporal rea-
soning method over an approach without temporal
reasoning and one that explicitly models temporal
relations using only publication dates.

8 Discussion

Weighting text and time We ran experiments
with various weight values (α, β, γ) for combin-
ing the text features of a claim and its evidence
with their temporal information5. Table 2 presents
the best-performing weight values for each setting
based on the validation loss. When reasoning over
the document-level temporal relations (DL), the
results suggest that higher importance should be
attributed to the text of the claim and its evidence

5A full overview of tested values and the tuning approach
is provided in Appendix A.
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BiLSTM Transformer
Micro F1 Macro F1 Micro F1 Macro F1

No temporal reasoning (Augenstein et al., 2019) .5520 .3239 .6952 .5532
Explicit temporal reasoning (Allein et al., 2021) .6265 .3673 .5921† .3135†

Implicit temporal reasoning (Ours) .6417 .4743 .6947 .5739

Table 3: Results of our implicit temporal reasoning approach vs. the baseline results of Augenstein et al. (2019)
(our implementation) and the explicit temporal reasoning method of Allein et al. (2021), with a BiLSTM and a
Transformer text encoder. †: DistilBERT (Sanh et al., 2019) instead of RoBERTa.

rather than to their temporal information. How-
ever, this is the opposite when reasoning at the
content level (CL). The combined setup (DL+CL)
aligns with (CL) by attributing more importance
to time than text. This suggests that specially in-
text time expressions carry useful information for
fact-checking a claim.

Impact on evidence relevance and label scores
We analyse how and to which extent temporal rea-
soning influences a model’s assessment of the rel-
evance (oi) and supporting/refuting nature (qi) of
evidence in relation to a claim. Since the model
computes oi and qi for each evidence document
associated with the claim, a ranking of all evi-
dence can be derived based on either oi or qi. We
then measure the difference in such rankings be-
tween the base and the best-performing temporal
models. Following Allein et al. (2021), we rely
on the Spearman’s rank correlation rs, which is
a non-parametric, distribution-independent metric
for computing the correlation between two rank-
ings. The correlation between the base model
and the temporal reasoning models with regard
to evidence relevance ranking is very weak, with
0 < |rs| < 0.19 for both BiLSTM and RoBERTa.
Also between the temporal models, those correla-
tions are generally very weak. Interestingly, the
impact of implicit temporal reasoning on a fact-
checking model’s estimation of evidence relevance
is arguably as strong as when performing explicit
temporal reasoning (Allein et al., 2021). The cor-
relations fall within the range of .17 < |rs| < .24.
The correlations regarding label scoring (qi) are
comparable to those for evidence ranking, ranging
from weak (0.2 < |rs| < 0.39) and to very weak.
We can thus conclude that a model’s estimation
of the relevance and supporting/refuting nature of
evidence documents is strongly influenced not only
by the ability to reason over time, but also by the
way a claim and its evidence are grounded on a
timeline.

Importance of time in final prediction While
we have shown that temporal reasoning strongly in-
fluences relevance estimations and label scores per
evidence document, we now measure how much
the time-aware fact-checking models rely on tem-
poral information for their final veracity predic-
tions. For this, we attribute the prediction of the
models to the input using integrated gradients (Sun-
dararajan et al., 2017). This attribution technique
measures the attribution strength of text and time
features on the final prediction. We focus on the
base BiLSTM model and its best-performing tem-
poral variants. Given the high dimensionality of
text and time embeddings, the attribution strengths
across all dimensions are summed to obtain an total
attribution value for claim, evidence, and time (ct
and ei,t). Figure 4 illustrates the attribution values
of a single data entry and presents the ranking of
evidence text and time according to their attribu-
tion strength. The models typically attributed the
prediction to both the claim and evidence, with a
stronger emphasis on the collected evidence than
on the claim. However, when time information
was introduced, the attribution strength of claim
and evidence texts strongly decreased, especially
when evidence was grounded at the content level
(CL/DL+CL). This indicates that time indeed influ-
ences model prediction.

Interestingly, the attribution ranking of temporal
information was found to be distinct from that of
the content, as demonstrated by the example in Fig-
ure 4. The publication dates that are closer to that
of the claim obtain higher attribution strength than
those far from the claim. In line with this, statisti-
cal correlation testing between ei,t and label scores
qi - where each label score in qi for ei,t in the same
bucket is compared to the label score in qi for ei,t
in different buckets - show that evidence contained
within the same time bucket tend to prefer the same
prediction labels as their label rankings strongly
correlate (ρ = 0.7). We can thus conclude that time
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Claim: From                                   ,Australians will begin receiving survey forms for the Australian Marriage Law Postal Survey, 
which the Government has commissioned in place of a plebiscite.
Title: Fact check: Is Australia the only advanced English-speaking country without same-sex marriage?
Publication date: November 30 2017
Label: in-the-red (chosen from 1: in-between, 2: in-the-red,3: in-the-green)

Evidence 2: 
Title: 'Turnbull Government - Wikipedia'
Text: The Turnbull Government was the federal executive 
government of Australia led  by the 29th Prime Minister of 
Australia, Malcolm Turnbull, from                to               . It  
succeeded the Abbott Government, which brought the 
Coalition to power at ….  A                                     leadership 
spill was called, with Turnbull challenging Abbott, and …
Publication date: 

Evidence 1:    
Title:   'Report on the conduct of the Australian Marriage 
Law Postal Survey’
Text:                            … Particular effort was made to ensure 
the survey was simple … Government  initiative to conduct 
a voluntary postal vote to give all Australians ... The ABS is  
Australia's national statistical agency,providing trusted 
official  Survey  collection was open between                                                                                               

    and 
Publication date:

Mid-September

2015 2018 

Nov 7, 2016

12 September 2017 7 November 2017

September 2015

November 7 2016 (-740 till -361 days)

Evidence 3:    
Title:   'Fact check: Is the same-sex marriage survey a 
'completely novel' idea?
Text:                              ... Is it correct that Australia has never 
before engaged in a survey like this one? ...  The Australian 
Marriage Law Postal Survey — as it is formally ... For a 
national  vote to take place in the case of a plebiscite, the 
Government must first ... the vote  to be conducted by the 
Australian Electoral Commission (AEC).
Publication date: 

Aug 21, 2017

Evidence 4:    
Title:   Report on the conduct of the Australian Marriage 
Law Postal Survey
Text: 2166 items ... Particular effort was made to ensure 
the survey was simple ... Source: Australian  Marriage Law 
Postal Survey,               ... 1.1 Government direction to the 
ABS ....  The survey collection was open between                            

    and ... 
locations to check the electoral roll and issue replacement 
forms.
Publication date: 

Evidence 5:    
Title:   postal survey on marriage equality
Text:                              ... Australia is now voting in a 
compulsory plebiscite or referendum on ... will begin  
mailing #MarriageEquality postal surveys & the YES vote 
can begin! ... The  question is, 'should the law be changed 
to allow same-sex couples to marry?'.  abs australia postal 
survey form marriage equality same-sex marriage.
Publication date: 

Evidence 6:    
Title:   How to have your say in Australia | SBS Radio
Text:                              ... For new migrants to Australia, the 
bureaucracy of government can sometimes ...  The current 
postal survey on same-sex marriage is not a "vote" such as 
in an ... or  not the law should be changed to allow same-
sex marriage. ... You will then  receive a survey-form in the 
mail, including a reply-paid envelope.
Publication date: 

Evidence 7:    
Title:   Australian Marriage Law Postal Survey - WikiVisually
Text: The Australian Marriage Law Postal Survey was a 
national survey designed to  gauge .... the government 
directed the Australian Statistician to begin the process  of 
.... The ABS advised Australians who received extra survey 
forms, addressed  to the ..... As of mid-September, 
prominent "No" campaigner Lyle Shelton was …
Publication date: 

Evidence 8:    
Title:   Bringing them home
Text:                               ... The Laws: Western Australia ... 
Australian Government responses to the Bringing  them 
home .... Bring students together to form mixed ability 
groups for a  discussion ... concepts of time, people and 
place help us to understand history.  ... Other surveys have 
produced similar results, such as a survey held in …
Publication date: 

Evidence 9:    
Title:   Hansard - 
Text:                              ... ACT government to provide 
adequate funding and services for the ..... Australian  
Criminal Intelligence Commission that, if we in the ACT did 
not ... We've become  a safe place to operate. …community 
through the anticipated marriage equality  plebiscite ... Not 
one postal survey has been sent out yet, and.
Publication date: 

2017 

12 September 2017 7 November 2017

Sep 12, 2017

Sep 21, 2017

Dec 2, 2001

17 August 2017

Aug 17, 2017

unknown

August 21 2017 (-145 till -35 days)

unknown

September 12 2017 (-145 till -35 days)

September 21 2017 (-145 till -35 days)

unknown

August 17 2017 (-145 till -35 days)

December 2 2001 (-∞  till -1596 days)

Strength of attribution

less more

(a) Ranking of evidence by attribution strength in terms of text
and publication date (DL reasoning).

Base DL CL DL+CL

Label (1) 5.3e−4 (1) 1.1e−7 (1) .076 (1) .174
distribution (2) 2.5e−3 (2) .530(✓) (2) .172 (2) .266

(3) .996 (3) .470 (3) .752 (3) .560

Claim (text) 16.029 2.688 0.0613 0.0049
Claim (PD) - 0.994 - 0.0296
Claim (TE) - - 0.0899 0.0441

Evidence (text) 5.279 0.4434 0.0007 0.001
Evidence (PD) - 0.3213 - 0.008
Evidence (TE) - - 0.005 0.008

(b) Predicted label distribution and absolute attribution
strengths. Note that strengths for evidence are for a single
evidence document.

Figure 4: Illustration of BiLSTM (glob) attribution
strengths for an example taken from MultiFC.

influences both interim and final prediction.

9 Conclusion

Grounding claims and associated evidence doc-
uments on a shared timeline and implicitly rea-
soning over their temporal relations noticeably im-
proves the verification performance of automated
fact-checking models. Time plays a dual role in this
process, serving both as a source of information for
verifying claims, as well as influencing the evalu-
ation of the relevance and supporting or refuting
nature of evidence documents. Further research
may look into integrating temporal reasoning in
claim detection and evidence retrieval processes

or implementing even more sophisticated temporal
reasoning during claim verification by examining
the temporality of events discussed in a claim and
their relation to the evidence.

Limitations

The limitations of this work mainly originate from
the data and the use of pretrained models for
grounding claims and evidence documents in time.
Since the evidence documents were retrieved af-
ter the claim had been fact-checked by giving the
claim verbatim to a search engine and selecting
the first ten search results, their quality and rel-
evance to the claim is not ensured. As a result,
evidence-based fact-checking models risk relying
on spurious signals in the evidence documents for
predicting a claim’s veracity. Moreover, the evi-
dence documents are presented as short snippets
which only reflect small parts of the full Web docu-
ments. This not only affects content representation,
but it also limits temporal information extraction
since many time expressions may have been omit-
ted from the shortened text. Regarding temporal
information extraction and normalisation, we had
to rely on pretrained models to obtain temporal rep-
resentations of claims and its associated evidence
documents. This not only introduces noise in the
input data, but also requires time-expensive prepro-
cessing.

Ethics Statement

Automated fact-checking technology aims to assist
people in distinguishing between verified and un-
verified content in professional contexts and during
their daily information consumption. Neverthe-
less, the fact-checking models constructed in this
paper - like all fact-checking models - should be
deployed with caution and its predictions should
never be taken as final without further human eval-
uation. Computational predictions are anything but
flawless, and incorrect predictions may unjustly
discredit the person or group who uttered the fact-
checked statement(s).
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A Time Buckets

Table 4 presents an overview of time buckets bpub
with their interval bounds used for document-level
grounding, while Table 5 presents time buckets
btext with their interval bounds used for content-
level grounding.

B Reproducibility Settings

This section contains settings for reproducing the
experiments in this paper.

Computing infrastructure The BiLSTM mod-
els were trained on a Skylake processor type with
one compute node, 9 cores per node, one GPU
(GPU partition of Skylake) and 5 GB memory per
core. The DistilRoBERTa models were trained on
a Cascadelake processor type with one compute
node with 4 cores per node, one GPU and 5 GB
memory per core.

Average runtime Preprocessing, i.e., extraction
of timex annotations via Heideltime, open infor-
mation extraction (where before this a correction
of uppercase characters is done via Named Entity
Recognition), and construction of the dataset where
claims and evidence are already put into buckets
and the predicates and timexes are marked in the
text of all the data took approximately 150 hours.
Training a BiLSTM model for each domain took on
average 45 hours, while a DistilRoBERTa model
took 72 hours.
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Overview of time buckets for document-level grounding and reasoning: bpub
Start End Number of evidence documents
∞ days before the claim 1596 days before the claim 8536
1596 days before the claim 741 days before the claim 8547
740 days before the claim 361 days before the claim 8528
360 days before the claim 146 days before the claim 8517
145 days before the claim 35 days before the claim 8626
34 days before the claim 4 days before the claim 8962
3 days before the claim 1 day before the claim 7549
on the same day as the claim on the same day as the claim 8963
1 day after the claim 4 days after the claim 8735
5 days after the claim 24 days after the claim 8548
25 days after the claim 85 days after the claim 8345
86 days after the claim 187 days after the claim 8534
188 days after the claim 325 days after the claim 8551
326 days after the claim 498 days after the claim 8515
499 days after the claim 736 days after the claim 8502
737 days after the claim 1061 days after the claim 8533
1062 days after the claim 1436 days after the claim 8529
1437 dagen na de claim 1997 days after the claim 8537
1998 days after the claim 2605 days after the claim 8531
2606 days after the claim ∞ days after the claim 8522

Table 4: Overview of time buckets bpub with their interval bounds.

Overview of time buckets for content-level grounding and reasoning: btext
Start End Number of evidence documents
∞ days before the claim 18172 days before the claim 12853
18171 days before the claim 6295 days before the claim 12851
6294 days before the claim 2928 days before the claim 12856
2927 days before the claim 1678 days before the claim 12862
1677 days before the claim 989 days before the claim 12855
988 days before the claim 569 days before the claim 12863
568 days before the claim 323 days before the claim 12833
322 days before the claim 145 days before the claim 12935
144 days before the claim 42 days before the claim 12771
41 days before the claim 6 days before the claim 13191
5 days before the claim 1 day before the claim 13269
on the same day as the claim on the same day as the claim 22966
1 day after the claim 8 days after the claim 15135
9 days after the claim 42 days after the claim 12665
43 days after the claim 124 days after the claim 12832
125 days after the claim 241 days after the claim 12739
242 days after the claim 378 days after the claim 12888
379 days after the claim 581 days after the claim 12828
582 days after the claim 834 days after the claim 12852
835 days after the claim 1178 days after the claim 12862
1179 days after the claim 1582 days after the claim 12834
1583 days after the claim 2134 days after the claim 12848
2135 days after the claim 2734 days after the claim 12848
2735 days after the claim ∞ days after the claim 12842

Table 5: Overview of time buckets btext with their interval bounds.
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Number of model parameters BiLSTM:
16,129,125 learnable parameters per model;
DistilRoBERTa: 82,933,601 learnable parameters
per model.

Number of training and evaluation runs With-
out parameterisation by α, β, and γ: 150 epochs
pretraining, 100 epochs fine-tuning (both BiLSTM
and DistilRoBERTa).With parameterisation: 600
epochs pretraining, 300 epochs fine-tuning (BiL-
STM); 800 epochs pretraining, 300 epochs fine-
tuning (DistilRoBERTa).

Hyperparameter bounds We manually tested
following combinations for α when integrating
the time attribution vectors at the global level for
document-level (DL) or content-level reasoning:
α ∈ {0.10, 0.25, 0.50, 0.75, 0.90}. Final α-values:
BiLSTM (DLglob): α = 0.10; BiLSTM (CLglob):
α = 0.25; DistilRoBERTa (DLglob): α = 0.75
(see Figure 5); DistilRoBERTa; DistilRoBERTa
(CLglob): α = 0.10. We tested following combi-
nations for γ when integrating the time attribution
vectors at the local level for content-level reason-
ing (CL): γ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}. Fi-
nal γ-values: BiLSTM (CLloc): γ = 0.50; Distil-
RoBERTa (CLloc): γ = 0.10. We tested following
combinations for α and β when grounding the time
attribution vectors at both the document and con-
tent level (DL+CL): [(α = 0.20, β = 0.20), (α =
0.20, β = 0.35), (α = 0.20, β = 0.40), (α =
0.20, β = 0.55), (α = 0.20, β = 0.60), (α =
1
3 , β = 1

3), (α = 0.35, β = 0.20), (α =
0.35, β = 0.55), (α = 0.40, β = 0.20), (α =
0.40, β = 0.40), (α = 0.55, β = 0.20), (α =
0.55, β = 0.35), (α = 0.60, β = 0.20)]. Final
α- and β-values: BiLSTM (DL+CLglob): (α =
0.20, β = 0.40); DistilRoBERTa (DL+CLglob):
(α = 0.20, β = 0.20). We performed a hyper-
parameter search trial of 100 epochs pretraining for
each combination of hyperparameters. The criteri-
ons used to select the final hyperparameter values
are the prediction performance (Micro/Macro F1)
on the validation loss and the evolution of the vali-
dation loss (visualised on a plot, see Figure 5).

Other parameters tested

• Without linear scheduler;

• With linear scheduler with warm up;

• With linear learning scheduler;

• Learning rates: 0.001, 0.005, 0.0002 (only for
RMSprop), 0.0001, 0.00001 (for pretraining
and fine-tuning);

• Adam, RMSProp (Only BiLSTM), AdamW
(only DistilRoBERTa);

• With weight decay: 0.001, 0.0001;

• Without weight decay.
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Figure 5: Tuning α for DistilRoBERTa (DLglob) based on the prediction performance on the validation set (metrics:
Micro/Macro F1) and the validation loss.
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Abstract

To mitigate the impact of the scarcity of la-
belled data on fact-checking systems, we focus
on few-shot claim verification. Despite recent
work on few-shot classification by proposing
advanced language models, there is a dearth of
research in data annotation prioritisation that
improves the selection of the few shots to be la-
belled for optimal model performance. We pro-
pose Active PETs, a novel weighted approach
that utilises an ensemble of Pattern Exploit-
ing Training (PET) models based on various
language models, to actively select unlabelled
data as candidates for annotation. Using Active
PETs for few-shot data selection shows consis-
tent improvement over the baseline methods, on
two technical fact-checking datasets and using
six different pretrained language models. We
show further improvement with Active PETs-o,
which further integrates an oversampling strat-
egy. Our approach enables effective selection
of instances to be labelled where unlabelled
data is abundant but resources for labelling are
limited, leading to consistently improved few-
shot claim verification performance.1

1 Introduction

As a means to mitigate online misinformation, re-
search in automated fact-checking has experienced
a recent surge of interest. Research efforts have
resulted in survey papers covering different per-
spectives (Thorne and Vlachos, 2018; Kotonya and
Toni, 2020; Nakov et al., 2021; Zeng et al., 2021;
Guo et al., 2022) and novel datasets with enriched
features (Augenstein et al., 2019; Chen et al., 2019;
Ostrowski et al., 2021; Jiang et al., 2020; Schuster
et al., 2021; Aly et al., 2021; Saakyan et al., 2021).
Recent work has addressed various challenges, e.g.
generating and utilising synthetic data (Atanasova
et al., 2020; Pan et al., 2021; Hatua et al., 2021),
joint verification over text and tables (Schlichtkrull

1Our code is available here: https://github.com/
XiaZeng0223/active_pets.

et al., 2021; Kotonya et al., 2021), investigating
domain adaptation (Liu et al., 2020; Mithun et al.,
2021), achieving better evidence representations
and selections (Ma et al., 2019; Samarinas et al.,
2021; Si et al., 2021; Bekoulis et al., 2021), and
performing subtasks jointly (Yin and Roth, 2018;
Jiang et al., 2021; Zhang et al., 2021a).

As a core component of a fact-checking system,
a claim validation pipeline consists of document
retrieval, rationale selection and claim verification
(Zeng et al., 2021). Our main focus here is claim
verification, the task of assessing claim veracity
with retrieved evidence. It is typically treated as
a natural language inference (NLI) task: given a
claim and an evidence, the aim is to predict the
correct veracity label out of “Support”, “Neutral”
and “Contradict”. Substantial improvements have
been achieved in the performance of claim valida-
tion models when a considerable amount of train-
ing data is available (Pradeep et al., 2021; Li et al.,
2021; Zeng and Zubiaga, 2021; Zhang et al., 2021b;
Wadden et al., 2021). However, where new do-
mains needing fact-checking emerge, collecting
and annotating new relevant datasets can carry an
impractical delay. Availability of unlabelled data
can often be abundant, but given the cost and ef-
fort of labelling this data, one needs to be selec-
tive in labelling a small subset. In these circum-
stances, rather than randomly sampling this subset,
we propose to optimise the selection of candidate
instances to be labelled through active learning,
such that it leads to overall improved few-shot per-
formance.

To the best of our knowledge, our work repre-
sents the first such effort in proposing an approach
leveraging an active learning strategy for the claim
verification problem, as well as the first in further-
ing Pattern Exploiting Training (PET) with an ac-
tive learning strategy. To achieve this, we propose
Active PETs, a novel methodology that enables
the ability to leverage an active learning strategy
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Figure 1: Illustration of the data annotation prioritisation
scenario with a committee of 6 PETs. For each itera-
tion, firstly the committee retrieves k new unlabelled
samples (k=10 in our experiments), secondly the human
annotators label them, lastly each of the PET based on
different PLMs is trained individually with all of the
labelled samples at hand. Our experiments start from 0
labelled samples and end at 300 labelled samples.

through a committee of PETs. Figure 1 illustrates
the application of the active learning strategy on
data annotation priotisation.

By exploring effective prioritisation of unla-
belled data for annotation and making better use
of a small amount of labelled data, we make the
following novel contributions:

• we are the first to study data annotation priori-
tisation through active learning for few-shot
claim verification;

• we are the first to study the extensibility of
PET to enable active learning, by proposing
Active PETs, a novel ensemble-based cold-
start active learning strategy that enables mul-
tiple pretrained language models (PLMs) to
collectively prioritise data instances;

• we further investigate the effect of oversam-

pling on mitigating the impact of imbalanced
data selection on few-shot learning, when
guided by active learning;

• we conduct further corpus-based analysis on
the selected few-shot data instances, which
highlights the potential of Active PETs to lead
to improved lexical and semantic characteris-
tics that benefit the task.

Our results show consistently improved per-
formance of Active PETs over the baseline ac-
tive learning strategies on two datasets, SCIFACT
(Wadden et al., 2020) and Climate FEVER (Diggel-
mann et al., 2021). In addition to improved perfor-
mance over the baselines, our research emphasises
the importance of the hitherto unexplored data pri-
oritisation in claim verification, showing remark-
able performance improvements where time and
budget are limited.

2 Background

2.1 Claim Verification

Claim verification is typically addressed as an
NLI problem (Thorne and Vlachos, 2018). Re-
cent progress has enforced a closed-world reliance
(Pratapa et al., 2020) and incorporated multiple
instance learning (Sathe and Park, 2021). While
data scarcity poses a major challenge on automated
fact-checking (Zeng et al., 2021), research on few-
shot claim verification is limited to date. Lee et al.
(2021) investigated a perplexity-based approach
that solely relies on perplexity scores from PLMs.
Their model was tested on binary claim verifica-
tion, as opposed to the three-way classification in
our work. Zeng and Zubiaga (2022) introduced
SEED, a vector-based method that aggregates pair-
wise semantic differences for claim-evidence pairs
to address the task of few-shot claim verification.
While their model addresses three-way classifica-
tion, the experiments are only conducted in ideal
scenarios where oracle evidences are available. To
the best of our knowledge, however, no work has
investigated the use of active learning in the con-
text of claim verification. To further research in this
direction, we propose Active PETs, a model that
incorporates active learning capabilities into PET
(Schick and Schütze, 2021a,b). PET has shown
competitive performance in a range of NLP clas-
sification tasks, but its adaptation to the context
of automated fact-checking and/or active learning
settings has not been studied.
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2.2 Active Learning

Active Learning (AL) is a paradigm used where la-
belled data is scarce (Ein-Dor et al., 2020). The key
idea is that a strategic selection of training instances
to be labelled can lead to improved performance
with less training (Settles, 2009). Active learning
methods are provided with an unlabelled pool of
data, on which a querying step is used to select
candidate instances to be annotated with the aim of
optimising performance of a model trained on that
data. The goal is therefore to optimise performance
with as little annotation –and consequently budget–
as possible. Traditional active learning query strate-
gies mainly include uncertainty sampling, query-
by-committee (QBC) strategy, error/variance re-
duction strategy and density weighted methods
(Settles, 2012). Recent empirical studies have re-
visited the traditional strategies in the context of
PLMs: Ein-Dor et al. (2020) examined various ac-
tive learning strategies with BERT (Devlin et al.,
2019), though limited to binary classification tasks.
Schröder et al. (2022) conducted experiments with
ELECTRA (Clark et al., 2020), BERT, and Distil-
RoBERTa (Sanh et al., 2019) respectively, while
limiting the scope to uncertainty-based sampling.

Recent efforts on combining active learning with
PLMs go into both warm-start and cold-start strate-
gies. Warm-start strategies require a small initial
set of labelled data to select additional instances,
while cold-start strategies can be used without an
initial set of labelled data. Ash et al. (2020) pro-
posed Batch Active learning by Diverse Gradient
Embeddings (BADGE) that samples a batch of in-
stances based on diversity in gradient loss. Mar-
gatina et al. (2021) proposed Contrastive Active
Learning (CAL), the state-of-the-art (SOTA) warm-
start strategy that highlights data with similar fea-
ture space but maximally different predictions. Fur-
thermore, Active Learning by Processing Surprisal
(ALPS) (Yuan et al., 2020), the SOTA cold-start
strategy, utilises masked language model (MLM)
loss as an indicator of model uncertainty. We use
BADGE, CAL and ALPS for baseline comparison,
please see detailed descriptions in section 4.3.

To the best of our knowledge, QBC strategies
(Seung et al., 1992; Dagan and Engelson, 1995; Fre-
und and Haussler, 1997) that utilise a committee of
models remains to be explored with PLMs, as pre-
vious studies limit their scope at measuring single
model uncertainty. Nowadays various PLMs are
publicly available that applying an ensemble-based

query strategy on a downstream task becomes re-
alistic, especially in few-shot settings where the
computation required is relatively cheap. Further-
more, previous studies always perform fine-tuning
to get classification results from PLMs. Our work
presents the first attempt at integrating an active
learning strategy into PET, which we investigate in
the context of claim verification for fact-checking.

3 Methodology

In this section, we first describe PET, then intro-
duce our model Active PETs, and finally describe
the oversampling mechanism we use.

3.1 Pattern Exploiting Training

Pattern Exploiting Training (PET) (Schick and
Schütze, 2021a,b) is a semi-supervised training pro-
cedure that can reformulate various classification
tasks into cloze questions with natural language
patterns and has demonstrated competitive perfor-
mance in various few-shot classification tasks. To
predict the label for a given instance x, it is first
reformulated into manually designed patterns that
have the placeholder [mask]. Then, the probability
of each candidate token for replacing [mask] is
calculated by using a pretrained language model,
where each candidate is mapped to a label accord-
ing to a manually designed verbaliser.

3.2 Proposed method: Active PETs

Having a large pool of unlabelled data, our ob-
jective is to design a query strategy that selects
suitable candidates to be labelled, such that the la-
belled pool of instances leads to optimal few-shot
performance. Our query strategy is rooted in the
intuition that disagreement among different PETs
in a committee can capture the uncertainty of a
particular instance.

Based on the assumption that performance of
different language models is largely dependent on
model size (Kaplan et al., 2020), we introduce a
weighting mechanism: each PET is first assigned a
number of votes Vi that is proportional to its hidden
size,2 and ultimately all votes are aggregated. Al-
gorithm 1 presents the pseudo-code for executing a
single query iteration with Active PETs.

2For example, if we use a committee formed of only base
models that have 6 hidden layers and large models that have
12 hidden layers, proportionally each of the base models is
allocated one vote and each of the large models is allocated
two votes.
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Algorithm 1 A Single Query Iteration

Require: The last trained Commitee of PETs C,
unlabelled data pool U , query size k

for PETi ∈ C do
vi ← Size(PETi)/min∀PETi∈C Size(PETi)

end for ▷ assign number of votes
for instance x ∈ U do

for PETi ∈ C do
Vxi ← resize(ŷxi , vi)

end for ▷ predict label and vote
Sx = −∑∀Vxi∈Vx

Vxi
|V | log

(Vxi )

|V |
end for ▷ calculate entropy scores

return Sort(S)[: k] ▷ return top k instances

We then quantify the disagreement by calculat-
ing vote entropy (Dagan and Engelson, 1995):

scorex = −
∑

ŷ

vote(x, ŷ)

count(V )
log

vote(x, ŷ)

count(V )
(1)

where ŷ is the predicted label, x is the instance,
vote(x, ŷ) are the committee votes of ŷ for the
instance x, and count(V ) is the number of total
assigned votes. It can be viewed as a QBC general-
isation of entropy-based uncertainty sampling that
is designed to combine models of different sizes.

3.3 Data Oversampling

One of the risks of the proposed active learning
strategy is that the resulting training data may not
be adequately balanced, which can impact model
performance. An accessible solution is oversam-
pling: resample the instances from the minority
class with replacement until balanced. Note that
this does not increase the labelling effort as in-
stances are repeated from the labelled pool. Instead
of random resampling (Japkowicz, 2000), we pro-
pose a novel technique of integrating resampling
with the committee’s preference. For each minority
class, we start resampling from the instance that
has the highest disagreement score to the instance
that has the lower disagreement score. In highly
imbalanced cases, resampling is repeated from the
highest to lowest priority until the overall label
distribution is balanced. Algorithm 2 presents the
pseudo-code for executing the training loop with
the option of conducting oversampling with Active
PETs.

Algorithm 2 Training

Require: Labelled and sorted data D, A initial
Commitee of PETs C

if Oversampling then
c← max∀class∈Dcount(data ∈ class)
D ← resize∀class∈D(class, c)

end if ▷ oversampling
for PETi ∈ C do

PETi ← train(PETi, D)
end for ▷ train the commitee of PETs

return C ▷ return trained PETs

4 Experimental Settings

Here we present the datasets and models used.

4.1 Datasets

SCIFACT

‘Support’ ‘Neutral’ ‘Contradict’

UP 266 (9.31%) 2530 (88.55%) 61 (2.14%)

Test 150 (33.33%) 150 (33.33%) 150 (33.33%)

cFEVER

‘Support’ ‘Neutral’ ‘Contradict’

UP 1789 (24.78%) 4778 (66.19%) 652 (8.66%)

Test 150 (33.33%) 150 (33.33%) 150 (33.33%)

Table 1: Label distribution of SCIFACT and cFEVER.
UP = unlabelled pool of training data.

We choose real-world datasets with real claims,
SCIFACT and Climate FEVER, known to be chal-
lenging, technical and free of synthetic data.3

SCIFACT provides scientific claims with their
veracity labels, as well as a collection of scientific
paper abstracts, some of which contain rationales
to resolve the claims. In addition, it provides the
oracle rationales that can be linked to each claim.

For SCIFACT, we perform the pipeline includ-
ing abstract retrieval and claim verification. For
the abstract retrieval step, we use BM25 to retrieve
the top 3 abstracts, skipping the more specific ratio-
nale selection, as the SOTA system for this dataset
suggested (Wadden et al., 2021). We chose BM25
based on high recall results reported in previous
work (Pradeep et al., 2021). We merge original
SCIFACT train set and dev set and redistribute the
data to form a test set that contains 150 instances

3See data samples in Appendix A.
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for each class and use the rest in the unlabelled
pool. The reformulated data is highly imbalanced
as presented in Table 1.

Climate FEVER (cFEVER) is a challenging
large-scale dataset that consists of claim and ev-
idence pairs on climate change, along with their
veracity labels. As it does not naturally provide
options of setting up retrieval modules, we directly
use it on the task of claim verification. Similarly
we reserve 150 instances for each class to form a
test set and leave the rest in the unlabelled pool.
Data in the unlabelled pool is heavily skewed, as
shown in Table 1.

4.2 Active PETs

Committees of five to fifteen models are com-
mon for an ensemble-based active learning strat-
egy (Settles, 2012). Here we form a committee
of 6 PETs with 3 types of PLMs: BERT-base,
BERT-large (Devlin et al., 2019), RoBERTa-base,
RoBERTa-large (Liu et al., 2019), DeBERTa-base
and DeBERTa-large (He et al., 2021). Given the
commonalities between the NLI and claim verifi-
cation tasks, we use the PLM checkpoints already
fine-tuned on MNLI (Williams et al., 2018).

Despite a line of research in optimising PET pat-
terns and verbalisers (Tam et al., 2021), that is not
our main focus. We use the following pattern and
verbaliser for PET: [claim]? [mask], [evidence];
“Support”:“Yes”, “Contradict”:“No”, “Neu-
tral”:“Maybe”, as they yielded best performance
on NLI tasks in our preliminary experiments.
Figure 2 provides an example of performing claim
verification using PET.

There are two steps in our approach: (1) an en-
semble method is used for data annotation prioriti-
sation, after which data is selected and annotated,
and (2) with the data instances drawn and anno-
tated, we train a PET model that uses a single PLM
to make the predictions. An ensemble method is
key in step (1) to support the combined decision-
making of choosing instances to annotate, but not
in step (2) for the PET model which runs on a single
PLM. Hence, results are presented for individual
PETs, even if in all cases the ensemble is involved
in the underlying prioritisation step. We test two
variants: Active_PETs with no oversampling, and
Active_PETs-o with the oversampling described
in Section 3.3.

Figure 2: An example of doing claim verification with
PET.

4.3 Baselines
We compare our method to four baselines: random
sampling, BADGE, CAL and ALPS.

4.3.1 Random sampling
For random sampling, we run each experiment over
10 different sampling seeds ranging from 123 to
132, and present the averaged results.

4.3.2 BADGE
BADGE (Ash et al., 2020) optimises for both un-
certainty and diversity. Gradient embeddings gx
are first computed for each data in the unlabelled
pool, where gx is the gradient of the cross entropy
loss with respect to the parameters of the model’s
last layer. It then applies k-MEANS++ clustering
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on the obtained gradient embeddings, and batch se-
lects instances that differ in feature representation
and predictive uncertainty.

Though BADGE is proposed as a warm-start
method, the required initial set of labelled data is
only used for the initial training the model. In our
experiments on claim verification, PLMs that are
already finetuned on a similar task NLI are used,
hence, BADGE can be used for cold-start sampling.

4.3.3 CAL
CAL (Margatina et al., 2021), the SOTA warm-
start strategy, highlights contrastive data points:
data that has similar model encodings but differ-
ent model predictions. Unlike BADGE, an ini-
tial labelled set of data is essential for CAL. It
first calculates the [CLS] embeddings for all of the
data and then runs K-Nearest-Neighbours (KNN)
to obtain the k closest labelled neighbours for each
unlabelled instance. It further calculates predic-
tive probabilities from the model and measures
Kullback-Leibler divergence on it. Finally it selects
unlabelled instances whose predictive likelihoods
diverge the most from their neighbours.

While CAL achieves SOTA performance as a
warm-start strategy, its dependence on an initial la-
belled set of data makes it incompatible in the same
few-shot active learning settings without an initial
labelled set. However, for comprehensive com-
parison purposes, we still include it as a baseline
starting at 100 labelled instances that are obtained
from random sampling with 10 different random
seeds.

4.3.4 ALPS
ALPS (Yuan et al., 2020), the SOTA cold-start ac-
tive learning method, also aims to take both model
uncertainty and data diversity into account. It cal-
culates surprisal embeddings to represent model
uncertainty. Specifically, for each instance x, it
is passed through the masked language modelling
head of a PLM and then 15% of the tokens in x are
randomly selected to calculate the cross entropy
against their target tokens. The surprisal embed-
dings go through L2-normalisation and then get
clustered to select the top samples.

4.4 Training Details

Hyperparameters. As in few-shot settings we
lack a development set, we follow previous work
(Schick and Schütze, 2021a,b) and use the follow-
ing hyperparameters for all experiments: 1e−5 as

learning rate, 16 as batch size, 3 as the number of
training epochs, 256 as the max sequence length. 4

Labelling budget. We set it to a maximum of 300.
We experiment with all scenarios ranging from 10
to 300 instances with a step size of 10.
Checkpoints. We always use the PLM checkpoints
from the last iteration to perform active learning,
but always train the initial PLMs which have never
been trained on any fact-checking datasets.

5 Results

We next discuss results for our experiments.

5.1 Results on SCIFACT

Figure 3 presents experimental results on SCIFACT,
where the unlabelled pool is large, heavily imbal-
anced and the domain is technical. Each subfigure
shows results for a different PET among the six
under consideration.

Data retrieved with Active PETs brings substan-
tial improvements for all of the models, often from
the very beginning but consistently as the num-
ber of shots increases from around 50 instances.
Despite the performance fluctuations, training us-
ing data sampled with Active PETs rarely under-
performs the baselines for SCIFACT. With Ac-
tive PETs, Bert-base peaks at 0.352, RoBERTa-
base peak at 0.345; DeBERTa-base peaks at 0.385;
BERT-large peaks at 0.380; RoBERTa-large peaks
at 0.409; DeBERTa-large peaks at 0.541. Gener-
ally, Active PETs shows a 10 to 20% increase in
F1 scores, compared with various baselines.

Moreover, with Active PETs-o, i.e. when over-
sampling is further integrated with Active PETs, we
observe a significant performance increase. Models
tend to learn better from the beginning; the increase
trend has less fluctuation; and the overall F1 scores
are much higher. In this case, Bert-base peaks at
0.497, RoBERTa-base peak at 0.539; DeBERTa-
base peaks at 0.551; BERT-large peaks at 0.548;
RoBERTa-large peaks at 0.514; DeBERTa-large
peaks at 0.587. This highlights the potential of
oversampling, which increases the number of in-
stances without additional labelling budget.

Among the baselines, we observe that training
with data retrieved from all baselines failed to
lead to any effective outcomes for BERT-base and
DeBERTa-base within a labelling budget of 300 in-
stances. While BADGE and CAL lead to some im-
provements over BERT-large and RoBERTa-large

4See further details for reproducibility in Appendix B.
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Figure 3: Few-Shot F1 Performance on SCIFACT claim verification.

Figure 4: Few-Shot F1 Performance on cFEVER claim verification.

when given over 100 instances, random and ALPS
failed to bring any improvements. Baseline results
are better with RoBERTa-base and DeBERTa-large,
but underperform Active PETs.

5.2 Results on cFEVER

Figure 4 presents F1 scores on cFEVER, where
the unlabelled pool is large, imbalanced and the
domain is somewhat technical. In this case, models
generally achieve higher F1 scores than on SCI-
FACT. First of all, we observe that Active PETs
outperforms random baseline in a more stable man-
ner. It is over 10% higher than random most of
the time, although it shows large performance fluc-
tuations on RoBERTa-large. With Active PETs,
Bert-base peaks at 0.34, RoBERTa-base peak at
0.524; DeBERTa-base peaks at 0.508; BERT-large
peaks at 0.447; RoBERTa-large peaks at 0.612;
DeBERTa-large peaks at 0.624. Moreover, Active
PETs-o leads to a further performance boost, and
more importantly, smooths out the large perfor-
mance fluctuations. It is about 20% better than
the random baseline most of the time. Specifically,
Bert-base peaks at 0.438, RoBERTa-base peak at
0.571; DeBERTa-base peaks at 0.562; BERT-large
peaks at 0.557; RoBERTa-large peaks at 0.615;
DeBERTa-large peaks at 0.618.

When it comes to the baselines, the baselines do
not struggle as much in the worst cases. Even if
BERT-base’s performance merely increased with
most of the baselines, all of the other models man-
aged to improve within the budget. With ran-
dom sampling, RoBERTa-base, DeBERTa-base,
BERT-large and RoBERTa-large all roughly peak
at around 0.4, while DeBERTa-large is much better

and peaks at around 0.5. BADGE, CAL and ALPS
are in general better than random, but achieves
lower F1 scores than Active PETs, especially in
few-shot settings when the labelling budge is be-
low 100.

6 Ablation Study

With SCIFACT we designed a slightly different
pipeline where we conduct both evidence retrieval
and claim verification – a setting that wasn’t pro-
vided with cFEVER. To assess the impact of the
addition of the evidence retrieval component on
SCIFACT, we further perform ablation experiments
on SCIFACT with oracle evidence.

With oracle evidence, the number of “Neutral”
claim-evidence pairs are significantly reduced, re-
sulting in a more balanced overall label distribution.
After reserving 100 instances from each class for
the test set, the unlabelled pool has 765 instances
in total, where “Support” takes 46.54%, “Neutral”
takes 38.43% and “Contradict” takes 15.03%. As
shown in Figure 5, overall few-shot performance is
much better and active learning demonstrates lesser
performance gains. Sampling with baseline active
learning strategies in general leads to similar results
as random sampling. Surprisingly, coupling Active
PETs with oversampling when the labelled pool is
reasonably balanced, still maintains performance
advantages across models. Under this setting, Bert-
base peaks at 0.645, RoBERTa-base peak at 0.655;
DeBERTa-base peaks at 0.766; BERT-large peaks
at 0.68; RoBERTa-large peaks at 0.657; DeBERTa-
large peaks at 0.86.

As demonstrated above, active learning is much
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Figure 5: Few-Shot F1 Performance on Oracle SCIFACT claim verification.

more helpful for SCIFACT in a real-world setting
than in an oracle setting. We could expect that if
this finding generalises to cFEVER, active learning
in a real-world setting involving evidence retrieval
could possibly lead to larger performance gains.

7 Analysis

To better understand the impact of data prioritisa-
tion, we delve into the labelled data. In the inter-
est of focus, we compare Active PETs with the
SOTA cold-start method ALPS by analysing the
best-performing PLM DeBERTa-large where 300
instances are selected.

7.1 Balancing Effects

Figure 6: Label Distribution of data obtained with ac-
tive learning by DeBERTa-large. The upper row is for
SCIFACT and the lower row is for cFEVER.

We first look at the distribution of labels for
the selected data. Figure 6 shows remarkable dif-
ference on label distribution for different active
learning strategies. ALPS samples over 80% data
from “Neutral”, less than 10% from “Support” and
very few from “Contradict” for SCIFACT; over
60% data from “Neutral”, over 20% from “Support”
and less than 20% from “Contradict” for cFEVER.
They correlate well with original label distribu-
tion of each unlabelled pool, as presented in table
1. It suggests that ALPS is not sensitive to label

distribution. However, Active PETs manages to
sample a much more balanced distribution out of
the extremely skewed original distribution. For
SCIFACT, despite the initial few iterations, Active
PETs samples less than 60% data from “Neutral”,
less than 40% data from “Support”, around 10%
data from “Contradict”; for cFEVER, Active PETs
samples less than 60% data from “Neutral”, over
20% data from “Support”, around 20% data from
“Contradict”. In both datasets, label distribution
from Active PETs are significantly more balanced
than ALPS. Finally, the strategy with oversampling
returns perfectly balanced distribution as expected.
We identify a strong correlation between label dis-
tribution and classification performance.

7.2 Linguistic Effects
Aiming at providing further insights into data qual-
ity, we conduct corpus-based linguistic analysis to
investigate lexical richness and semantic similarity.

Lexical Richness

ALPS Active_PETs Active_PETs-o

SCIFACT 0.0362 0.0387 0.0447

cFEVER 0.0389 0.0413 0.0503

Semantic Similarity

ALPS Active_PETs Active_PETs-o

SCIFACT 0.7921 0.8031 0.8054

cFEVER 0.7449 0.7744 0.7841

Table 2: Lexical richness is measured with Maas Type-
Token Ratio (MTTR) scores and Semantic Similarity is
measured by cosine similarity scores on embeddings of
claims and evidences.

7.2.1 Lexical Richness
A popular metric for calculating lexical richness is
Type-Token Ratio (TTR), where the total number
of unique tokens is divided by the total number
of tokens. We use Maas Type-Token Ratio (Maas
TTR) (Maas, 1972), a logarithmic variant of TTR,
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which is demonstrated to be less sensitive to the
length of the text (McCarthy and Jarvis, 2007):

a2 =
logN − logV

logN2
(2)

where N is the number of tokens in the corpus and
V is the number of unique tokens in the corpus.

As shown in the upper part of Table 2, data se-
lected by ALPS has the lowest lexical richness,
while Active PETs leads to higher lexical richness
for both datasets. Even more surprisingly, when
integrating Active PETs with oversampling, the
corpus has even higher score at lexical richness,
despite that there are multiple duplicated instances
in the corpus. One possibility is that training data
with higher lexical richness may convey more use-
ful information, as a bigger vocabulary enables
more precise expressions.

7.2.2 Semantic Similarity
To investigate the overall data diversity, we calcu-
late the average semantic similarity of all possible
claim-evidence pairs in the corpus.5 We obtain em-
beddings of claims and evidences with the PLM
at interest, namely DeBERTa-large that has been
trained on MNLI. For each embedded claim, we
calculate its cosine similarity score with all em-
bedded evidences in the corpus. The average of
all similarity scores is then obtained. The lower
part of Table 2 shows that ALPS leads to lowest
overall semantic embedding similarity scores and
Active PETs leads to higher scores. Integrated with
oversampling, Active PETs leads to even higher
similarity scores. It correlates well with the design
of the strategies: ALPS explicitly encourages data
diversity, while Active PETs focuses on committee
uncertainty. One possible explanation is that data
diversity is not as beneficial when the unlabelled
pool contains less relevant instances: in the case of
SCIFACT and cFEVER datasets, the majority of
the unlabelled pool belongs to the “Neutral” class
where the evidence is not enough to reach a verdict
for the claim.

8 Conclusions

We present the first study on data annotation pri-
oritisation for claim verification in automated fact-
checking. With our novel method Active PETs,
we demonstrate the potential of utilising a com-
mittee of PETs to collaboratively select unlabelled

5Note that if we only calculate the retrieved pairs, the
average similarity scores are approximately 1 for all strategies.

data for annotation, furthering in turn the exten-
sibility of PET to active learning for the first
time. Experiments on the SCIFACT and cFEVER
datasets demonstrate the effectiveness of our pro-
posed method, particularly in dealing with imbal-
anced data. Our proposed model consistently out-
performs the random, BADGE, CAL and ALPS
baselines by a margin. Further integration with
an oversampling strategy that does not impact la-
belling effort leads to consistent performance im-
provements in all tested settings. Data that is more
balanced shows to have higher lexical richness and
semantic similarity, leading to better training re-
sults. While we have shown its effectiveness for
claim verification here, in the future we aim to
investigate Active PETs in other downstream tasks.

9 Limitations

We focus on demonstrating the effectiveness of Ac-
tive PETs in scenarios where the labelling budget
is limited and the label distribution is very imbal-
anced, as they are major challenges for automated
fact-checking. Active PETs is shown to be particu-
larly beneficial with low labelling budgets and be-
comes less so when the labelling budget increases
and/or the unlabelled pool is balanced. Further-
more, as Active PETs is built on PET, it inherits
the limitations from PET, e.g. a pattern-verbaliser
pair (PVP) is required for any classification tasks.
Note that a good selection of tested PVPs that cover
common NLP tasks are publicly available.

Our experiments are only conducted with PLMs
that are of base and large sizes, e.g., BERT-base and
BERT-large, due to limited computing resources.
Future work may further experiment with giant
models like T5-11b and GPT-3. Another interest-
ing direction would be to extend the proposed vot-
ing mechanism such that giant models and tiny
models can both contribute effectively in the same
committee, e.g., GPT-3 and DistillBert. Ideally,
despite that GPT-3 is much larger than DistillBert,
the extended voting mechanism should still allow
DistillBert to contribute effectively.
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A Example Appendix

We present example instances from SCIFACT and
cFEVER datasets in this section.

B Reproducibility Appendix

We present further experimental details here for
reproducibility.

Number of parameters in each model The
number of parameters for BERT-base, BERT-large,
RoBERTa-base, RoBERTa-large, DeBERTa-base,
DeBERTa-large is 109484547, 335144963,
124647939, 355362819, 139194627 and
406215683 respectively.

Computing infrastructure We use High Perfor-
mance Compute cluster supported by the university.
Each experiment is run with 8 compute cores, 11G
RAM per core and a single NVIDIA A100 GPU.

Run time Table 4 reports the average run time
of executing a sampling iteration of 150 unlabelled
instances and a training iteration with the sampled
data over three datasets. It serves as a good indi-
cator for comparing the efficiency among different

active learning methods. As CAL requires an ini-
tial labelled set of data, we report the total run time
of an iteration of using the random method for 75
instances and an iteration of using CAL method for
another 75 instances. Table 5 further reports the
total run time of the best method Active PETs-o
on different datasets. The actual run time highly
correlates with the size of the unlabelled pool for
each datasets.

Our key focus has been on resource-efficiency
and performance, with a lesser focus on runtime,
hence there can be room for optimisation in fu-
ture work, including: (1) optimising the code e.g.
through parallelisation of the ensembled models
which are now run sequentially, (2) using DL opti-
misation libraries such as deepspeed, and (3) using
dynamic step sizes to reduce the number of iter-
ations, e.g. increase step size if initial iterations
lead to balanced samples. In a real-world, deployed
scenario, one would also need to account for the
time needed by humans to perform the annotation
(in our case simulated).
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SCIFACT

Claim Evidence Veracity

“Neutrophil extracellular
trap (NET) antigens may
contain the targeted au-
toantigens PR3 and MPO.”

“Netting neutrophils in autoimmune small-vessel vasculitis
Small-vessel vasculitis (SVV) is a chronic autoinflammatory
condition linked to antineutrophil cytoplasm autoantibodies (AN-
CAs). Here we show that chromatin fibers, so-called neutrophil
extracellular traps (NETs), are released by ANCA-stimulated
neutrophils and contain the targeted autoantigens proteinase-3
(PR3) and myeloperoxidase (MPO). Deposition of NETs in in-
flamed kidneys and circulating MPO-DNA complexes suggest
that NET formation triggers vasculitis and promotes the autoim-
mune response against neutrophil components in individuals
with SVV.”

“Suppport”

“Cytochrome c is trans-
ferred from cytosol to
the mitochondrial inter-
membrane space during
apoptosis.”

“At the gates of death. Apoptosis that proceeds via the mitochon-
drial pathway involves mitochondrial outer membrane perme-
abilization (MOMP), responsible for the release of cytochrome
c and other proteins of the mitochondrial intermembrane space.
This essential step is controlled and mediated by proteins of the
Bcl-2 family. The proapoptotic proteins Bax and Bak are re-
quired for MOMP, while the antiapoptotic Bcl-2 proteins, includ-
ing Bcl-2, Bcl-xL, Mcl-1, and others, prevent MOMP. Different
proapoptotic BH3-only proteins act to interfere with the function
of the antiapoptotic Bcl-2 members andor activate Bax and Bak.
Here, we discuss an emerging view, proposed by Certo et al.
in this issue of Cancer Cell, on how these interactions result in
MOMP and apoptosis.”

“Contradict”

“Incidence of heart failure
increased by 10% in women
since 1979.”

“Clinical epidemiology of heart failure. The aim of this paper
is to review the clinical epidemiology of heart failure. The
last paper comprehensively addressing the epidemiology of
heart failure in Heart appeared in 2000. Despite an increase
in manuscripts describing epidemiological aspects of heart fail-
ure since the 1990s, additional information is still needed, as
indicated by various editorials.”

“Neutral”

Climate FEVER

Claim Evidence Veracity

“In 2015, among Ameri-
cans, more than 50% of
adults had consumed alco-
holic drink at some point.”

“For instance, in 2015, among Americans, 89% of adults had
consumed alcohol at some point, 70% had drunk it in the last
year, and 56% in the last month.”

“Suppport”

“Dissociative identity disor-
der is known only in the
United States of America.”

“DID is diagnosed more frequently in North America than in
the rest of the world, and is diagnosed three to nine times more
often in females than in males.”

“Contradict”

“Freckles induce neuromod-
ulation.”

“Margarita Sharapova (born 15 April 1962) is a Russian novelist
and short story writer whose tales often draw on her former
experience as an animal trainer in a circus.”

“Neutral”

Table 3: Veracity classification samples from the SCIFACT and Climate FEVER datasets.
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All Six Models Average Single Model

Random 00:05:50 00:00:58

BADGE 00:07:52 00:01:19

CAL 00:14:59 00:02:30

ALPS 00:07:21 00:01:14

Active PETs 00:08:01 00:01:20

Active PETs-o 00:09:10 00:01:32

Table 4: Average run time for a single iteration for
each of the sampling methods. The time format is
hours:minutes:seconds.

CFEVER SCIFACT Oracle SCIFACT

Active PETs-o 05:53:08 04:12:33 02:31:27

Table 5: Total run time for running active PETs with
oversampling iteratively up to 300 instances on different
datasets. The time format is hours:minutes:seconds.
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Abstract

Table-to-text generation aims at automatically
generating text to help people conveniently
obtain salient information in tables. Recent
works explicitly decompose the generation pro-
cess into content planning and surface genera-
tion stages, employing two autoregressive net-
works for them respectively. However, they
are computationally expensive due to the non-
parallelizable nature of autoregressive decod-
ing and the redundant parameters of two net-
works. In this paper, we propose the first totally
non-autoregressive table-to-text model (Plan-
then-Seam, PTS) that produces its outputs in
parallel with one single network. PTS firstly
writes and calibrates one plan of the content
to be generated with a novel rethinking pointer
predictor, and then takes the plan as the context
for seaming to decode the description. These
two steps share parameters and perform itera-
tively to capture token inter-dependency while
keeping parallel decoding. Experiments on two
public benchmarks show that PTS achieves
3.0 ∼ 5.6 times speedup for inference time,
reducing 50% parameters, while maintaining
as least comparable performance against strong
two-stage table-to-text competitors 1.

1 Introduction

Table-to-text generation (Lebret et al., 2016a; Wise-
man et al., 2017) is a long-standing problem that
aims to generate natural language descriptions of
structured table data. A good table-to-text system
can help end users better identify the informative
elements and their relations from a table. There-
fore, developing table-to-text systems is of tremen-
dous value in a wide range of applications, such
as biography generation (Lebret et al., 2016a), bas-
ketball news generation (Wiseman et al., 2017),
advertising text generation (Shao et al., 2019), and
table-based question answering (Yu et al., 2019).

∗∗Corresponding authors: Can Ma, Yongbin Li
1https://github.com/liang8qi/Plan-then-Seam

Key Value

Name Thaila Ayala

Place of birth Brazil

Spouse(s) Paulo Vilhena

Date of birth April 14, 1986

Occupation actress  model

Years active 2002-present

Table Encoder

Plan Decoder

Reference: Thaila Ayala ( born April 14, 1986 in 
Brazil ) is an actress and model .

stage 1: content planning stage 2: surface realization 

(b)

(a)

Input table:

Thaila

Plan Encoder

Text Decoder

… .

<s> .

Content Plan: Thaila  Ayala  April  14 1986 
Brazil actress model

</s>Thaila

Thaila model

at
te
nt
io
n

[BOS]

… Brazil actress model [EOS]

Thaila … Brazil actress model

Plan Encoder

Text Decoder

stage 2: surface generation 

Thaila

at
te
nt
io
n

[BOS]

… and model . [EOS]

Thaila … and model .

Figure 1: (a): example of table-to-text generation from
WikiBio. Tokens from the content planning are colored
in red. (b): two-stage model, which disentangles table-
to-text generation into two stages: content planning and
surface generation.

Recently, neural network-based approaches have
made significant progress in this field. The modern
neural models for table-to-text generation can be
roughly categorized into one-stage models and two-
stage models. One-stage models generate natural
language descriptions directly from the table by
simply relying on representation learning to gener-
ate well-organized fluent descriptions. Along this
line, some studies propose to modify the model
architectures to effectively learn from structured
table (Liu et al., 2018; Gong et al., 2019), while
some other works introduce auxiliary tasks to help
the encoder capture a more accurate semantic rep-
resentation (Liu et al., 2019; Li et al., 2021). The
major drawback of one-stage models is the lack
of interpretability and controllability, making the
models prone to suffer from unfaithful hallucina-
tions (Wiseman et al., 2017).

To alleviate the aforementioned shortcoming of
one-stage models, some researchers propose a two-
stage paradigm for table-to-text generation (Pudup-
pully et al., 2019; Su et al., 2021), which explicitly
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decomposes the whole generation process into two
separate stages: content planning and surface gen-
eration (illustrated in Figure 1). The content plan-
ning model generates an intermediate sequence that
specifies the tokens to be verbalized. The generated
plan provides some interpretability and controlla-
bility, thus can potentially reduce the risk of hal-
lucinations (Puduppully et al., 2019). The surface
generation model then completes the description
based on the intermediate plan.

Although two-stage models have some superior-
ity over one-stage models, they are often compu-
tationally intensive. The cause of the high com-
putational cost is two-fold. Firstly, most two-
stage models use autoregressive (AR) decoders,
which is quite time-consuming due to their non-
parallelizable nature, especially for long sequences
(Gu et al., 2018). Secondly, the two-stage systems
often consist of two different models, which usually
double the parameter scale (see Section 4.4). The
increased parameter scale may introduce more com-
putation overhead and thus slow down the inference
speed. These disadvantages limit the deployment
of current neural table-to-text systems in practical
applications. Recently, non-autoregressive (NAR)
generation has attracted much attention because
it can significantly accelerate inference speed for
text generation (Gu et al., 2018; Stern et al., 2019;
Qian et al., 2021a). However, as demonstrated in
our preliminary experiments (see also Section 4.4),
applying the NAR models directly to table-to-text
generation may suffer from lower generation qual-
ity because NAR models do not explicitly model
the content planning procedure, which can provide
good initial input for NAR decoder.

In this work, we propose to reduce the computa-
tional cost of two-stage models through a unified
NAR framework, which is called Plan-then-Seam
(PTS). PTS is a iterative NAR table-to-text model.
Specifically, PTS first generates the content plan in
the first iteration. Then it fills in the other surface
tokens in subsequent multiple iterations to seam the
intermediate plan tokens. Note that PTS conducts
the content planning and surface generation tasks in
a single model, thus the model size is smaller than
previous two-stage models. Moreover, since PTS
is a NAR model, it is more efficient than the AR
counterparts. Given that fully NAR content plan-
ning may ignore the dependency between planned
tokens, we introduce a rethinking pointer predictor,
which can better calibrate the planning conditioned

on the generated ones. Our contributions can be
summarized as follows:

• We are the first work concerning the com-
putational cost (parameter and inference ef-
ficiency) problem in table-to-text. Contrastly,
previous works only focus on how to improve
the model performance. We hope this can
raise more attention to the computational cost
problem in table-to-text.

• Regarding methodology, we present the first
totally NAR 2 framework for table-to-text gen-
eration, achieving a desired quality–efficiency
trade-off. Further, we introduce a rethinking
mechanism to improve the NAR planning ca-
pability of the model. We demonstrate that
initializing the decoder with a good content
plan is the key to improving the NAR model.

• Experiments show that, compared with previ-
ous strong two-stage competitors, our method
can achieve a 3.0 ∼ 5.6× speedup with only
50% model parameters without degrading the
generation quality.

2 Related Work

Table-to-text generation has long aroused interest
in the Natural Language Generation (NLG) com-
munity (Kukich, 1983; Reiter and Dale, 1997). Re-
cently, neural models have been the mainstream
for this task and made impressive progress. Mod-
els for this task can be mainly categorized into
two types: one-stage models and two-stage mod-
els. One-stage models generate text directly from
structured data through a neural encoder-decoder
architecture (Sutskever et al., 2014). They simply
rely on representation learning to improve the gen-
eration. Liu et al. (2018) propose a structure-aware
seq2seq architecture, which incorporates the filed
information as the additional inputs to the table
encoder. Some works design hierarchical table en-
coder which model table’s representation from the
row and column levels (Gong et al., 2019). Liu
et al. (2019); Li et al. (2021) introduce auxiliary
supervision tasks to help the encoder capture a
more accurate semantic representation of the tables.
However, one-stage methods are prone to produce
unfaithful hallucinations and uncontrollable gener-
ation (Wiseman et al., 2017).

As the improvement, neural two-stage mod-
els (Ma et al., 2019; Puduppully et al., 2019;

2This means both content planning and surface generation
are non-autoregressive.

206



Moryossef et al., 2019; Puduppully and Lapata,
2021; Su et al., 2021) decompose the table-to-text
generation into content planning and surface gener-
ation stages. In general, content planning is imple-
mented by Pointer Networks (Vinyals et al., 2015).
The explicit content planning mechanism not only
decomposes the complex table-to-text generation
into two easier tasks but also makes the generation
process more interpretable and controllable by gen-
erating an intermediate representation. However,
the hallucination problem persists in the surface
generation stage as it is autoregressive (AR). To
address this issue, SANA (Wang et al., 2021) pro-
poses an edit-based non-autoregressive (NAR) sur-
face generation model that generates texts through
iterative insertion and deletion operations while
maintaining an AR planning stage. Existing two-
stage methods solely pay attention to improving
the generation quality while ignoring its efficiency.
Compared with one-stage models, two-stage meth-
ods double the number of parameters. Additionally,
the AR generation is slow at inference time. These
problems hinder the practical deployment of cur-
rent neural table-to-text models.

3 Methodology

Given a region of a table as input, table-to-text
generation is to produce a natural language descrip-
tion Y = {y1, ..., yn} to describe the selected table
region. This paper proposes the first totally non-
autoregressive table-to-text model, Plan-then-Seam
(PTS). As depicted in Figure 2, PTS consists of
three major components, a table encoder, a non-
autoregressive content planning decoder (NAR-P),
and a non-autoregressive seaming decoder (NAR-
S), which collaborate to generate a description for
a source table in an iterative manner. At the first
iteration, NAR-P generates content planning se-
quence in a fully non-autoregressive manner by
conditioning on the source table. At the subsequent
iterations, NAR-S seams the content planning to-
kens by inserting connective tokens between them
to generate a fluent description. Next, we will de-
scribe the proposed PTS in detail.

3.1 Table Encoder

As shown on the left of Figure 2, the source table
is a collection of key-value pairs in which each
value may contain several tokens. Following Le-
bret et al. (2016a), we first linearize the source
table by flattening all its values to a record se-

quence T = {r1, r2, ..., rK}. Each record ri is
represented as a 4-tuple (wi, ki, p

+
i , p

−
i ), where

wi is the value token, ki is its key name. p+i
and p−i are the relative positions of wi, where p+i
counts from the beginning and p−i counts from the
end of the sentence. For example, the key-value
pair <Name, Thaila Ayala> is represented as two
records: (Thaila, Name, 1, 2) and (Ayala, Name, 2,
1). We adopt four trainable embedding matrices to
convert each record represented by (wi, ki, p

+
i , p

−
i )

into dense vectors ewi , eki , ep+i , and ep−i . We con-
catenate these embeddings and use a linear projec-
tion to map the four vectors into ei, which serves
as the initial representation of the corresponding
record ri:

ei = ReLU(We[ewi ; eki ; ep+i
; ep−i

] + be), (1)

where We and be are trainable parameters. [·; ·] de-
notes the vector concatenation operation. Finally,
we transform {e1, e2, ..., eK} into contextual se-
quence representation He = {he1,he2, ...,heK}with
the Transformer encoder (Vaswani et al., 2017).

3.2 Non-autoregressive Content Planning
Decoder

We utilize the Transformer decoder layer (Vaswani
et al., 2017) as the basic building block of the con-
tent planning component. We also remove the
causal mask in self-attention modules to realize
parallel generation. As shown in Figure 2, given
the initial decoder input y0 =[BOS][EOS], non-
autoregressive planning decoder (NAR-P) aims
to generate the planned sequence (e.g., yp =
Thaila Ayalia actress model). yp specifies
the records that are to be verbalized (what to say)
in the description and the order in which they are
described. To this end, NAR-P consists of three
major components: a placeholder predictor πl, a
pointer predictor πp, and a token deleter πd. These
components work in a serial fashion. First, the
placeholder predictor πl determines the number of
plan tokens to be inserted:

πl(l|y0, T ) = Softmax(Wl[h
d1
0 ;hd11 ]), (2)

where hd10 and hd11 are respectively the decoder
states of two symbol tokens in y0, Wl ∈ RL×2d
is the projection matrix and L is the pre-defined
maximal placeholder number. πl(l) ∈ RL denotes
the the probability distribution of possible place-
holder numbers, and we choose the one l with the
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Table Encoder

Placeholder Predictor (!!)

Transformer Decoder

[BOS] [EOS]

Pointer Predictor (!")

Transformer Decoder

[4]

[PLH][PLH][PLH]

Token Deleter (!#)

Transformer Decoder

[BOS] Ayala [EOS]actressThaila

0 0 0

Placeholder Predictor (!")

Transformer Decoder

Token Predictor (!$)

Transformer Decoder

[2]
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Transformer Decoder
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Ayala actressThaila

1 2 5 is an

Thaila actress[BOS] Ayala [EOS]
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1st Iteration (Content Planning) 2nd~N-th Iteration (Content Seaming)
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Key Value

Name Thaila Ayala

Spouse(s) Paulo Vilhena

Occupation actress  model

Years active 2002-present

Thaila[BOS] Ayala Paulo Vihena actress model 2022 -present [EOS]

Name Name Spou Spou Occup Occup YearsA YearsA [EOS]
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[EOS]

[BOS]

[BOS]

[BOS]
[PLH]

model

model

0

[BOS] Ayala [EOS]actressThaila model

model

0

6

[0]

Figure 2: An overview of our Plan-then-Seam non-autoregressive table-to-text model. The modules with the same
color share the parameters. The left part contains an example of how to linearize a table, where Spou, Occup, and
YearsA denote Spouse(s), Occupation, and Years active, respectively.

highest probability. We insert l placeholders [PLH]
between [BOS] and [EOS] to obtain the placeholder
sequence yl.

Then, we need to replace each [PLH] in yl with
an actual token. yl is firstly passed into the Trans-
former decoder layer to generate the decoder state
hd2i of each placeholder. As all plan tokens are
from the source table, we then introduce a pointer
predictor πp that selects tokens from T to reduce
hallucinations. Specifically, for the i-th place-
holder, we calculate the confidence scores αij of
copying the j-th record in T as a plan token by:

πp(αij |yl, T ) = Softmax(Wp[h
d2
i ;hej ]). (3)

Then we replace each placeholder with the most
possible record to get yr.

Last, considering the predictor πp may copy in-
correct or repetitive tokens, we build a token deleter
πd to remove these false plan tokens. For the i-th
token in yr, πd is employed to decide whether it is
required to be deleted or not:

πd(di|yr, T ) = Softmax(Wdh
d3
i ), (4)

where hd3i is the representation generated by trans-
former decoder. πd(di) ∈ [0, 1] is the predicted
probability of the deletion operation. The token
with πd(di = 1) > 0.5 is deleted, which yields the
final content plan yp.

Rethinking Pointer Predictor Although non-
autoregressive models can accelerate the gener-
ation process, they are based on the assumption

2-nd Pointer Predictor

!! !! !"

"ℎ! "ℎ# "ℎ$

ℎ! ℎ# ℎ$

Transformer Decoder  Block

1-st Pointer Predictor

1 6 6

ℎ%

2

"ℎ%

!"

Thaila Ayala model model

Transformer Decoder

record pointers

copied records $!&'(

record embeddings

Thaila Ayala actress model

1 5 62

rethinking…

Figure 3: Architecture of the proposed rethinking
pointer predictor. Our basic idea is to augment the non-
autoregressive predictor with inter-token dependencies.

that the generated tokens are conditionally inde-
pendent with each other (Gu et al., 2018). As a
result, the pointer predictor may suffer from in-
coherence or repetition (Qian et al., 2021a). We
believe that the pointer predictor would produce a
better plan by partially observing generated plan
tokens. Motivated by this intuition, we adapt the
naive pointer predictor and propose its variant re-
thinking pointer predictor. As illustrated in Figure
3, the rethinking pointer predictor first employs a
navie pointer predictor to generate a primary record
plan yr1st = {r1, r2, r6, r6} , then calibrate it with
another pointer predictor. Particularly, for each
record ri in yr1st, we concatenate its embedding ei
with the transformer hidden state hi and further
process it by a linear layer ĥi = Wf [hi; ei]. ĥi
is fed into a transformer decoder block (removing
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causal attention) to rebuild representation for the
token at i-th position in yr1st by conditioning on
the source table T and the generated plan yr1st. By
looking at the tokens in other positions, the 2-nd
pointer predictor can determine if the token at the
i-th position is incorrect or repeated with others.
The rethinking process helps the model adjust the
incorrect tokens in yr1st to generate a precise plan.
Moreover, to improve the confidence of yr1st, both
pointer predictors are supervised by the ground
truth plan when training.

3.3 Non-autoregressive Content Seaming
Decoder

After obtaining the content plan yp, at the seam-
ing stage, the non-autoregressive seaming decoder
(NAR-S) constructs a fluent description y by it-
eratively inserting the connective tokens into yp.
Specifically, we employ yp as the initial input of
NAR-S. In each iteration, similar to NAR-P, NAR-
S also firstly predicts the number of placeholders
should be inserted into at every consecutive posi-
tion pairs in the generated sentence of the previous
iteration, then replace placeholders with actual to-
kens, and finally delete abundant tokens. NAR-S
share parameters in placeholder predictor πl and
token deleter πd with NAR-P. The difference is
that NAR-S replaces the pointer predictor πp with
a token predictor πt that replaces the placeholders
with actual tokens from the predefined vocabulary
rather than copies from the table. For example, as
shown on the right of Figure 2, given the content
plan Thaila Ayalia actress model, NAR-S in-
serts two tokens, is and an, between Ayalia and
actress in the first iteration.

3.4 Training
We joint train the content planning and seaming
tasks and the final learning objective is:

L = λLplan + Lseam, (5)

where λ is the hyper parameter. Next, we describe
them in detail.

The content planning learning objective consists
of three sub-goals: Lplan = Lpl + L

p
p + Lpd. Given

the source table T , the ground truth content plan

yp
∗

as well as its pointers yidx = {yidxi }
|yp∗ |
i=1 with

each entry pointing to an input record in T , the
placeholder predictor learning objective Lpl is com-
puted as follows:

Lpl = − log πl(l∗0|y0, T ), (6)

where l∗0 is the length of ground truth plan yp
∗
.

And then, we replace all the tokens in yp
∗

with
[PLH] to get yl, which is utilized to train the pointer
predictor:

Lpp = −
|yp∗ |∑

i=1

log πp(αi
yidxi
|yl, T ). (7)

To train the deletion predictor, we apply the pointer
predictor πp to yl to yeild yr. The loss for deletion
predictor is calculated as:

Lpd = −
|yr|∑

i=1

log πd(di|yr, T ), (8)

where di is the golden deletion operation at the
i-th position, and is set as 1 if yri is same with yp

∗
i ,

otherwise 0.
The seaming loss also consists of three parts:
Lseam = Lsl + Lsp + Lsd. Its training process is
very similar to content planning task. The biggest
difference between them is the initial input. Given
a source table, a plan and a reference (T , yp

∗
, y∗),

we follow previous works (Gu et al., 2019; Wang
et al., 2021) to construct an intermediate sequence
ym as the initial input to NAR-S. Specially, we
first calculate the longest common subsequence ŷ
between yp

∗
and y∗. And then we apply random

deletion on y∗ except the part of ŷ to obtain ym.
Last, the three subgoals are calculated as following:

Lsl = −
|ym|∑

i=1

log πl(l∗i |ym, T ), (9)

Lsp = −
|y∗|∑

i=1

log πt(y∗i |yl, T ), (10)

Lsd = −
|y∗|∑

i=1

log πd(di|yt, T ), (11)

where l∗i is the number of placeholder that should
be inserted between ymi and ymi+1. l∗i is obtained by
calculating the Levenshtein distance (Levenshtein
et al., 1966) between ym and y∗. yt is yielded by
applying πt on yl.

3.5 Inference
As mentioned above, PTS is an iterative NAR
model. Different from the previous iterative NAR
model, at the first iteration, PTS first utilizes NAR-
P to generate the content plan in a fully NAR man-
ner, where NAR-P alternately performs placeholder
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prediction, pointer prediction, and deletion opera-
tion. In the subsequent iterations, it uses the gen-
erated plan as the initial decoder input for NAR-S,
which iteratively fills in the other surface tokens
between the content planning tokens. We stop the
seaming process when the current text does not
change or the predefined maximum iteration has
been reached.

4 Experiment

4.1 Datasets and Evaluation Metrics
Following Wang et al., we conduct experiments on
two datasets, WikiBio (Lebret et al., 2016b) and
WikiPerson (Wang et al., 2018). Both datasets are
designed to generate descriptions from a Wikipedia
table. Specifically, WikiBio aims to generate the
first sentence of a biograph. The average length
of the description is 26.1 tokens. Different from
Wikibio, the reference of WikiPerson contains mul-
tiple sentences to cover as many factors in the
source table as possible. The average length of
the description in WikiPerson is 70.6. We use the
official training, development, and test splits for
both datasets, which are 582,657/72,831/72,831 in
WikiBio and 250,186/30,487/29,982 in WikiPerson.
We use these two datasets for two considerations.
First, this paper focuses on the inference speed and
generation quality of models with similar frame-
works. The similar input structures allow us to use
the same encoder architecture and prevent us from
designing an additional one. Second, the different
output length distributions of the two datasets facil-
itate us to compare the models’ performance and
efficiency.

We use BLEU (Papineni et al., 2002) and
ROUGE-L to evaluate the fluency, and PARENT
(Dhingra et al., 2019) to examine the faithfulness.
We also employ inference latency to evaluate the
inference speed of the involved approaches. Specif-
ically, Latency is the average time to run an epoch
on the test dataset while the batch size is set to 32
with one NVIDIA Tesla V100 GPU.

4.2 Baselines
To rule out the effect of model architecture on the
inference speed, we only compare our method to
some representative baselines built on the Trans-
former (Vaswani et al., 2017) model:

• TABLETRANSFORMER is a transformer-
based model that replaces the naive trans-
former encoder with the table encoder.

• LEVT (Gu et al., 2019) is an iterative NAR
model. In the first iteration, the decoder input
is initialized by “[BOS][EOS]”.

• CONTENT-PLAN (Puduppully et al., 2019) is
a representative two-stage method that firstly
uses a pointer network to generate the con-
tent plan and then uses a pointer generator to
complete the remaining text. To make a fair
comparison, we reimplement it using Trans-
former. See Appendix B.2 for more details.

• SANA (Wang et al., 2021) is also a two-
stage method. The major difference be-
tween SANA and CONTENT-PLAN lies in
that SANA uses a LEVT for surface token
generation. Additionally, SANA integrates
hard constraints by forbidding the LEVT from
deleting planned tokens.

4.3 Implementation Details

Our method is implemented by fairseq (Ott et al.,
2019). For fair comparison, all the involved sys-
tems use a similar configuration. Specifically, the
vocabulary sizes on WikiBio and WikiPerson are
30K and 50K, respectively. The dimensions of
token embedding, key embedding and position
embedding are set to 420, 80, and 50, respec-
tively. All Transformer components used in our
methods adopt the base Transformer setting with
dmodel = 512, dhidden = 2048, and nhead = 8.
The depth is 6 for both the encoder and the decoder.
Please refer to Appendix B.1 for more details about
training setting. During inferance, the maximum it-
erations of the NAR model is 10 and 40 in WikiBio
and WikiPerson, respectively. We conduct experi-
ments over 4 different random seeds and report the
average scores.

4.4 Main Results

Table 1 shows the performance of our method and
the baselines. For WikiBio, the NAR LEVT model
are approximately 3× faster than the AR TABLE-
TRANSFORMER model. However, the description
quality of LEVT is much lower than TABLETRANS-
FORMER, regarding both fluency (−1.27 BLEU)
and faithfulness (−4.62 PARENT-F1). Moreover,
we observe that two-stage approaches can outper-
form the one-stage ones (e.g., SANA vs. LEVT),
indicating the superiority of explicitly content plan-
ning. However, they double the parameters scale
and increase the inference latency. Surprisingly,
our proposed method can combine the advantages
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Models BLEU ROUGE-L PARENT (P / R / F1) #Param Latency↓ IDEC ↓
One-Stage Systems

TABLETRANSFORMER 44.32±0.32 66.75±0.36 74.09±0.32 / 42.41±0.18 / 51.76±0.31 76 680 22.10
LEVT 43.05±0.21 65.61±0.31 72.22±0.16 / 37.62±0.14 / 47.14±0.11 74 223 2.48

Two-Stage Systems
CONTENT-PLAN 43.44±0.00 66.21±0.31 74.55±0.29 / 43.45±0.30 / 52.38±0.11 150 1,381 30.47
SANA † 45.78 - 76.93 / 46.01 / 55.42 - - -

w/o hard constraints † 45.31 - 76.32 / 45.26 / 54.64 - - -
SANA 45.50±0.13 67.98±0.15 77.01±0.25 / 45.52±0.08 / 55.16±0.10 148 756 11.02

w/o hard constraints 44.94±0.16 67.72±0.16 76.89±0.26 / 44.70±0.26 / 54.68±0.59 148 761 11.03
OURS 45.65±0.13 68.30±0.38 77.29±0.24 / 45.80±0.10 / 55.41±0.24 80 245 3.49

w/o rethinking 45.21±0.07 67.99±0.16 76.88±0.39 / 45.29±0.10 / 55.07±0.17 75 290 3.63

(a) Results on WikiBio

Models BLEU ROUGE-L PARENT (P / R / F1) #Param Latency↓ IDEC ↓
One-Stage Systems

TABLETRANSFORMER 25.11±0.63 44.06±0.56 61.13±0.89 / 52.08±0.90 / 54.45±0.41 92 2,092 62.42
LEVT 22.10±0.36 43.60±0.57 61.43±0.44 / 49.58±0.00 / 53.65±0.16 91 449 3.60

Two-Stage Systems
CONTENT-PLAN 25.17±0.78 44.47±0.03 62.09±0.55 / 53.63±0.44 / 56.68±0.29 187 2,708 82.61
SANA † 25.23 - 65.69 / 56.88 / 59.96 183 - -

w/o hard constraints † 24.97 - 64.72 / 56.42 / 59.29 183 - -
SANA 24.95±0.31 45.35±0.13 69.26±0.83 / 58.16±0.06 / 62.39±0.15 183 1,370 29.20

w/o hard constraints 22.37±0.38 45.08±0.15 69.10±0.49 / 56.62±0.38 / 61.38±0.28 183 1,217 28.92
OURS 25.11±0.35 45.23±0.31 69.72±0.63 / 58.12±0.49 / 62.58±0.36 97 547 4.83

w/o rethinking 24.45±0.28 44.87±0.21 68.17±0.74 / 57.45±0.52 / 61.55±0.43 92 572 4.95

(b) Results on WikiPerson

Table 1: Results on WikiBio and WikiPerson test sets. Results marked with “†” are copied from previous studies
while the other results are implemented in this work. Latency and IDEC denote the average inference time and the
average number of decoder iterations, respectively. Mean (±s.d.) over 4 seeds.

of both the two kinds of baselines. On both Wik-
iBio and WikiPerson, our approach can achieve
comparable description quality with the strong two-
stage baseline (i.e., SANA), while maintaining
the model size and the inference speed. Com-
pared with SANA, our model does not require
external constraints to guarantee the appearance
of planned tokens in the final output. The results
also demonstrate the effectiveness of the newly
proposed rethinking mechanism, confirming that
the inter-dependency between different positions
is essential for NAR-P, which can provide a better
starting point for NAR-S. Additionally, we notice
that the latency increase without rethinking. We
believe this is because removing this module re-
duces the content planning capability of the model,
which in turn lowers the quality of the initial input
to NAR-S, making the model require more iter-
ations to satisfy the termination condition. The
results on WikiPerson show a similar trend to Wik-
iBio. An obvious difference is that the inference
speed is much slower for all models, since the av-
erage description length is longer than WikiBio
(70.6 vs. 26.1). When generating longer sentences,

the speedup of our method over the AR baseline
is much higher. On both datasets, our method can
achieve high description quality and inference effi-
ciency at the same time.

4.5 Analysis and Discussion
Due to the page limit, we have placed more experi-
mental results and analyses in Appendix A.

Content Planning As mentioned above, explicit
content planning is important for table-to-text gen-
eration. We thus further investigate the content
planning performance in Table 2. We compare our
method with two baselines: POINTERNETWORK

and NAR-P. POINTERNETWORK is a widely used
planning method for two-stage models (Puduppully
et al., 2019; Wang et al., 2021). The results indicate
that our proposed PTS model performs compara-
ble with POINTERNETWORK. NAR-P has a same
architecture with PTS, the difference is that NAR-
P is totally trained with the content planning task,
while PTS is trained to perform both content plan-
ning and seaming. The results show that training
the model with both content planning and seaming
does not significantly affect the planning perfor-
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Models BLEU #Param Latency
WikiBio

POINTERNETWORK 64.97 76 261
w/o beam search 62.03 76 259

NAR-P 64.78 80 54
w/o rethinking 64.36 75 59

PTS-PLAN 64.75 80 64
w/o rethinking 64.43 75 59

WikiPerson
POINTERNETWORK 52.42 91 851

w/o beam search 43.48 91 926
NAR-P 52.51 97 61

w/o rethinking 52.14 92 63
PTS-PLAN 52.27 97 60

w/o rethinking 51.67 92 58

Table 2: Performance of different content planning mod-
els. “NAR-P” is solely trained using the content plan-
ning objective, while “PTS-PLAN” is to use the final
PTS model to perform content planning.

! = 2

! = 3

%&'( = 5

! = 2

! = 3

! = 4

%&'( = 1

Figure 4: Quality-Speed trade-off on the WikiBio test
set. Quality is estimated by BLEU. For clarity, the
inference speed is measured by the relative speedup
with respect to TABLETRANSFORMER with beam size =
5. N ∈ [1, 10] denotes the maximum iteration number.

mance, which implies that learning the two tasks
with a unified model does not decrease the model’s
planning ability.

Quality-Speed Trade-off Since PTS is an itera-
tive NAR model, it is easy to balance the descrip-
tion quality and the inference speed by changing
the number of the iterations. As shown in Figure 4,
PTS achieves comparable performance with sub-
stantially higher speed up than the other involved
models. For PTS, increasing the iteration number
can improve the description quality while reduce
the inference speed. In practice, we can change
the iteration number to meet different requirements
under various application cases.

Tokens Generated at the Seaming Stage To
build a deeper understanding of the proposed PTS
model, we investigate the problem of which tokens

Token Percentage (%)
, 8.01%
. 7.69%
-lrb- 7.28%
-rrb- 7.26%
a 5.21%
is 5.07%
born 4.51%
the 3.12%
an 2.74%
was 2.27%
and 2.41%
in 2.26%
– 2.13%
of 2.12%
who 1.64%
Total 64.18%

Table 3: Top 15 tokens generated by our proposed PTS
at the seaming stage on WikiBio test set. -lrb- and
-rrb- represent ( and ), respectively.

are most likely to be generated by PTS at the seam-
ing stage on the WikiBio test set. Specifically, we
first remove the words generated at the planning
stage from the descriptions generated by PTS to
obtain a word set. Then, we count the token fre-
quency for the word in the set. We present the top
15 frequent tokens in Table 3. As we can see, at
the seaming stage, PTS is more likely to generate
connective tokens, e.g., punctuation, and copulas,
than the specific tokens existing in the input table,
such as name, time, etc. And the connective tokens
are mainly used to link planning words (seaming).
The observation is consistent with our motivation
and design that PTS first copies content from the
input table to construct a plan sequence and then in-
serts tokens from a pre-defined vocabulary between
plan tokens to generate a fluent description. We
believe this make our approach more interpretable
and controllable.

5 Human Evaluation

To verify whether the system performance is con-
sistent with what the automatic metrics show, we
further conduct a human evaluation on the WikiBio
test set. We randomly sample 50 instances from
each model’s generated outputs. Then, we invite
three graduate students, whose English level is very
high to understand the text, to score each generated
text from 1 to 5 in terms of two criteria: Fluency (is
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Models Fluency Faithfulness
TABLETRANSFORMER 3.24±0.77 2.89±0.86

LEVT 2.75±0.89 2.57±0.78

CONTENT-PLAN 3.18±0.32 3.01±0.72

SANA 3.31±0.74 3.26±0.69

OURS 3.42±0.58 3.42±0.59

Table 4: Human evaluation results on WikiBio test set.

the sentence fluency?) and Faithfulness (is the sen-
tence related to the input table?). For each criterion,
we average the scores from all annotators as the
final score. When evaluating, each annotator is pro-
vided the input tables as the references and does not
know which model the generated text comes from.
The results are summarized in Table 4. As we can
see, the overall trend of the human evaluation is
similar to the automatic metrics in Table 1. First,
the two-stage systems have an advantage over the
one-stage ones in generating result fidelity. Second,
our method is competitive to these table-to-text
baselines regarding generation fluency and faith-
fulness. Meanwhile, our approach performs better
than the LEVT transferred from machine transla-
tion. These results indicate that introducing the
content planning process in the NAR process and
using its results as the initial decoder input can
significantly improve the NAR model.

6 Conclusion

We propose a unified non-autoregressive frame-
work, Plan-then-Seam (PTS), for table-to-text gen-
eration. Given a source table, PTS first generates
the content plan in a fully NAR manner. Then we
iteratively fill in the other surface tokens. Exper-
imental results demonstrate that PTS achieves a
3.0 ∼ 5.6 speedup with only 50% model parame-
ters compared with previous two-stage table-to-text
models, without degrading the description quality.
Further analysis reveals that the success of PTS
comes from the proposed NAR-P with a rethinking
mechanism, whose content planning performance
is comparable with AR models. By changeing the
iteration number, PTS can balance the generation
quality and inference efficiency for various practi-
cal application requirements.

Limitations

As described in the paper, the content planning abil-
ity is important for table-to-text models. However,
the planning performance of all the involved meth-
ods is still far from satisfactory. We will explore

more advanced methods to improve the content
planning performance. Moreover, we train all the
models on WikiBio and WikiPerson from scratch,
and the training cost is rather expensive: 2.5 days
using 4 NVIDIA V100 32G GPUs. Lastly, this pa-
per does not compare the pre-trained language mod-
els (PLMs) (Devlin et al., 2019; Raffel et al., 2020),
though our approach may also benefit from some
pre-trained table encoders, such as TAPAS (Müller
et al., 2021). The main reasons why we do not
consider PLMs are that PLMs will bring an un-
fair comparison and bring more variables and may
make our work lose focus. See Appendix B.2 for
detailed justification. In the future, we will explore
how pre-trained models, e.g., pre-trained table en-
coder TAPAS, can be used to improve our model’s
performance and accelerate the training process.

Ethics Statement

We consider our work can make more researchers
in table-to-text pay attention to the computational
cost problem, which may benefit from saving the
cost of the online table-to-text model. We experi-
mented on the public datasets with no discrimina-
tory or insulting sentences.
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Models Token Repetitions (%) Dist-1 Dist-2
Gold 12.58 5.6 22.83
TableTransformer 9.29 1.5 10.87
LevT 14.59 2.1 13.97
Content-Plan 9.81 4.7 15.11
SANA 9.93 5.0 19.32
Ours 8.22 4.9 18.15

Table 5: The token repetitions and diversity on WikiBio
test dataset. Dist-1 and Dist-2 denote Distinct-1 and
Distinct-2, respectively.

Models BLEU PARENT(P / R / F1)
CONTENT-PLAN 43.72 76.55 / 38.79 / 49.02

+ Golden Plan 51.16 76.32 / 47.33 / 56.45
SANA 45.68 76.79 / 45.64 / 55.12

+ Golden Plan 54.30 80.03 / 51.02 / 61.01
OURS 45.75 77.34 / 45.91 / 55.48

+ Golden Plan 55.50 79.59 / 51.92 / 61.14

Table 6: Effect of golden plan on two-stage methods.

A More Experimental Results

A.1 Token Repetitions and Diversity
Previous works manifest NAR model tends to pre-
dict the same token with high confidence, but at
different positions, which is caused by the multi-
modality problem. Therefore, we doubt whether
the NAR table-to-text generation has any prefer-
ence towards token repetitions and diversity. We
measure the percentage of repetitive tokens in the
generated sent as a proxy metric for the multi-
modality problem (Gu et al., 2018). Additionally,
we utilize Distinct-1 and Distinct-2 (Li et al., 2016)
to evaluate the diversity of the output text. All
results are summarized in Table 5. We observe
that the AR model TABLETRANSFORMER signif-
icantly reduces the lexical diversity. Therefore,
to better train the non-autoregressive model, AR
model is usually used as a teacher model to reduce
the complexity of the training corpus (Knowledge
Distillation) (Gu et al., 2018). And then, LEVT
tends to generate repetitive tokens. We can see
that, when explicitly modelling the content plan-
ning, two-stage methods can increase the tokens
diversity. Especially, the content planning can sub-
stantially reduce the tokens repetitions for NAR
models (e.g., LEVT vs. SANA and OURS).

A.2 Performance Bottleneck of Two-stage
Model

We provide the ground-truth content plan to the
models at the second stage, and the results are sum-
marized in Table 6. When fed with the golden plan,
all the two-stage models achieves better fluency

and faithfulness. The results indicate that the qual-
ity of content planning is a important bottleneck
for two-stage table-to-text approaches.

A.3 Case Study

Table 7 shows the descriptions generate by PTS
from the test set of WikiBio. First, we observe that
when the number of tokens in the generated plan
is relatively small, the 1-st pointer predictor can
generate a precise content plan. However, when
the number of planning tokens increases, it tends to
produce repetitive and incorrect ones. We consider
this is because the fully NAR generation cannot ac-
curately model the dependencies between planning
tokens. After introducing the rethinking mecha-
nism, the 2-nd pointer predictor can determine if
the token is incorrect or repeated with others and
calibrate it by looking at the tokens in other posi-
tions. Therefore, the model can generate a more
precise plan.

B More Implementation Details

B.1 Training and Hyper-parameter Settings

All models are optimized by Adam (Kingma and
Ba, 2015). We use the same learning rate schedule
as presented in Vaswani et al. (2017). The max-
imum value of the learning rate is 5e-4 and the
warmup step is set to 10K. The maximum training
step is set to 300K. We use the validation BLEU
for early stopping and explore λ = [0.05, 0.08].
During inferance, we use beam search with a beam
size 5 for the autoregressive models and the max-
inum decoding lengths are set to 80 and 160 in
WikiBio and Wikiperson. For non-autoregressive
models, we set the maximum iterations as 10 and
40 in WikiBio and WikiPerson, respectively.

B.2 Experimental Setting Details

To rule out the effect of model architecture on
the inference speed and make a fair comparison,
we only compare our method to some table-to-
text models built on the Transformer model. For
the one-stage models, we chose the autoregressive
TableTrasnforme and non-autoregressive LevT. For
the two-stage methods, we compare with Content-
Plan and SANA. Both planning generation and
tableau generation of the former are autoregres-
sive, while the second stage of the latter is a non-
autoregressive process. All these baselines employ
the same table encoder as ours. Additionally, the
original Content-Plan is implemented by LSTM.
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To make a fair comparison, we re-implemented
Content-Plan by replacing its LSTM-based encoder
and decoder with Transformer-based ones. And the
transformer setting is the same as our model.

We do not consider the pre-trained models
(PLMs) in this paper, though our model’s perfor-
mance may be significantly improved by initializ-
ing our table encoder with the pre-trained one, such
as TAPAS (Herzig et al., 2020). The reasons why
we do not consider PLMs are as follows:

• We consider PLMs will bring an unfair com-
parison. Because most PLMs (e.g., TAPAS,
T5 (Raffel et al., 2020)) are pre-trained on
Wikipedia data, and WikiBio and WikiPerson
are built from Wikipedia. It may lead to data
leakage. Moreover, to our best knowledge,
most of the works in the NAR machine trans-
lation (please refer to Appendix C) do not
compare with PLMs.

• This paper focuses on comparing inference
speed and quality under a similar model ar-
chitecture rather than improving the model
performance. And our experimental setting
is fair, and all the baselines employ a sim-
ilar setting as our model. Additionally, in
related domains such as neural machine trans-
lation, previous work (Zhu et al., 2020) in-
dicates that simply initializing the encoders
of sequence-to-sequence models with the pre-
trained BERT (Devlin et al., 2019) will actu-
ally hurt the performance. And directly fine-
tuning NAR sequence-to-sequence models ini-
tialized by BERT is very unstable and sensi-
tive to the learning rate (Guo et al., 2020).
Therefore, though pre-trained checkpoint may
benefit our model, it will bring more variables
and may make our work lose focus. We leave
this for feature work.

B.3 Content Plan Annotation
We follow previous work (Wang et al., 2021) to em-
ploy the heuristic method to obtain the content plan
annotation for WikiBio and WikiPerson. Specifi-
cally, we start by counting the tokens that appear
both in the table and in the corresponding descrip-
tion. Then we remove the stop tokens in the tokens
collection and sort the rest of the tokens by the their
positions in the description in ascending order. The
sorted sequence is regard the content planning se-
quence. We refer the readers to Wang et al. (2021)’s
paper for more details.

C Non-autoregressive Neural Machine
Translation

Recently, autoregressive (AR) models have
achieved outstanding performances in natural lan-
guage generation tasks (Raffel et al., 2020). How-
ever, AR is quite time-consuming when gener-
ating target sentences, especially for long sen-
tences. To overcome this problem and accelerate
decoding, Gu et al. (2018) first propose the non-
autoregressive generation (NAR) for machine trans-
lation, which generates all the target tokens in paral-
lel and hugely increases the inference speed. There-
fore, much attention has been attracted to NAR
with impressive progress (Stern et al., 2019; Qian
et al., 2021a; Song et al., 2021; Qian et al., 2021b).
However, compared with AR models, the genera-
tion quality is sacrificed because NAR breaks the
conditional dependence assumption that prevents a
model from properly capturing the highly multi-
modal distribution of target translations, which
is called the "multi-modality" problem Gu et al.
(2018). To mitigate the problem, some studies (Lee
et al., 2018; Stern et al., 2019; Ghazvininejad et al.,
2019; Gu et al., 2019; Saharia et al., 2020) propose
the iterative NAR models which need N iterations
for inference and keep the non-autoregressive prop-
erty in every iteration step. More specifically, the
generated results of the previous iteration will be
fed into the decoder again for refinements. In this
way, partial target information is provided in each
iteration step.
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First Example

Source Table
<Name: sean macias>, <Birth Place: california>, <Known For: litigation>,
<Occupation: lawyer>, <Nationality: american>, <Article Title: sean
macias>.

Flatten Table
(Name, sean, 1, 2), (Name, macias, 2, 1), (Birth Place, california, 1, 1),
(Known For, litigation, 1, 1), (Occupation, lawyer, 1, 1), (Nationality,
american, 1, 1), (Article Title, sean, 1, 2), (Article Title, macias, 2, 1).

Rerence sean ernesto macias -lrb- born 31 october 1972 -rrb- is a pasadena-based
litigation lawyer known for handling high-profile cases .

PTS

1st iteration
1st pointer predictor sean macias american litigation lawyer
2nd pointer predictor sean macias american litigation lawyer

2nd Iteration sean macias is an american litigation lawyer .
Second Example

Source Table

<Name: dave green>, <Poisition: punter placekicker >, <Number: 4>,
<Birth Date: 21 september 1949>, <Debutyear: 1973>, <Finalyear: 1978>,
<Draftyear: 1972>, <Draftround: 17>, <Draftpick: 418>, <College: ohio
university>, <Statlabel: punts punting yards punting avg 446 17,883 40.1>,
<Nfl: re162282>, <Brith Place: mason city iowa> ,<Article Title: dave
green -lrb- american football -rrb->.

Flatten Table

(Name, dave, 1, 2), (Name, green, 2, 1), (Poisition, punter, 1, 2), (Poisition,
placekicker, 2, 1), (Number, 4, 1, 1), (Birth Date, 21, 1, 3), (Birth
Date, september, 2, 2), (Birth Date, 1949, 3, 1), (Debutyear, 1973, 1,
1), (Finalyear, 1978, 1, 1), (Draftyear, 1972, 1, 1), ..., (Birth Place, mason,
1, 3), (Birth Place, city, 2, 2), (Birth Place, iowa, 3, 1), (Article Title, dave,
1, 6), (Article Title, green, 2, 5), (Article Title, -lrb-, 3, 4), (Article Title,
american, 4, 3), (Article Title, football, 5, 2), (Article Title, -rrb-, 6, 1).

Rerence dave green -lrb- born september 21 , 1949 in mason city , iowa -rrb- is a
former punter and placekicker in the national football league .

PTS

1st iteration
1st pointer predictor

dave dave september 21 1949 american
city iowa american football punter place-
kicker football

2nd pointer predictor
dave green september 21 1949 mason
city iowa american football punter place-
kicker football

2nd Iteration
dave alan green -lrb- born september 21 , 1949 in mason
city , iowa -rrb- is a former american football punter and
placekicker in the national football league .

3rd Iteration
dave green -lrb- born september 21 , 1949 in mason city , iowa
-rrb- is a former american football punter and placekicker in
the national football league .

Table 7: Two examples from the WikiBio test set that illustrates how PTS generates a description for a source table
by planning and then seaming. The incorrect and repetitive planning tokens are in red.
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Abstract

The paper presents our work on corpus anno-
tation for metaphor in German. Metaphors de-
note entities that are similar to their literal refer-
ent, e.g., when Licht ‘light’ is used in the sense
of ‘hope’. We are interested in the relation be-
tween metaphor and register, hence, the corpus
includes material from different registers.

We focussed on metaphors that can serve as
register markers and can also be reliably inden-
tified for annotation. Our results show huge
differences between registers in metaphor us-
age, which we interpret in terms of specific
properties of the registers.

1 Introduction

This paper presents ongoing work on annotating
a German corpus for metaphor. We are interested
in metaphors as register markers, therefore, the
corpus includes material from a number of different
registers. We annotate all the metaphors in the
corpus but nevertheless put emphasis on a subgroup
of metaphors which we believe can function as
register markers.

The paper is structured as follows. After outlin-
ing the underlying theoretical concepts of metaphor
and register and reviewing previous work, we intro-
duce the corpus. Then we present the annotation
results, which show huge differences in metaphor
usage between the different registers in the corpus.
These differences are then correlated with specific
properties of registers.

2 Theoretical background

In this section, we introduce the two phenomena of
metaphor and register, and the way in which they
are related.

2.1 Metaphor

Metaphors involve a semantic shift of an expression
in context. They refer to an entity that is similar

to the referent of the literal interpretation of the
metaphor. Theories reconstruct this similarity in
different ways (for an overview see e.g. Ritchie,
2013). E.g., vorbeirasen ‘rush by’ in the temporal
sense in (1) is metaphorical and shares with the
literal, spatial interpretation the notion of a very
fast development:

(1) das letzte Jahr ist nur so vorbei gerast
‘the last year has rushed by’

Metaphors can be assigned a degree of con-
ventionalisation, from innovative to fully con-
ventionalised. We distinguish conventionalised
and non-conventionalised metaphors (see Section
3 for details), e.g., the metaphor in (1) is non-
conventionalised.

A small number of metaphors like Blumen ‘flow-
ers’ in (2) is signalled openly by ‘metaphor flags’,
among them wie ‘like’ or praktisch ‘in effect’, but
most metaphors are not.

(2) Wir sind wie Blumen praktisch, geerdet.
‘In effect, we are like flowers, earthed.’

In ‘extended metaphor’ (or ‘metaphor chains’), sev-
eral metaphors in a discourse are based on the
same kind of similarity (Reijnierse et al., 2020).
E.g., once the word Licht ‘light’ is introduced as a
metaphor for hope, other words related to light
like anzünden ‘enkindle’ or Kerze ‘candle’ can
emerge as metaphors for hope-related phenomena,
too (as ‘introduce hope’ and ‘source of hope’, re-
spectively).

Finally, ‘potential metaphor’ combines tokens of
an expression with basic and metaphorical senses
in the same discourse. E.g., in one of our texts the
term dunkel ‘dark’ is used in its basic sense ‘with-
out physical light’ before it is used metaphorically
in the sense of ‘bad’. Potential metaphors typically
participate in extended metaphor structures.

(3) in dem Dunkel, in dem Wurzelbereich bei
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dem Weizen
‘in the dark zone, in the rhizosphere of the
wheat’

(4) die dunkle Erde elterlicher Übermüdung
‘the dark soil of parental fatigue’

2.2 Register

Register refers to the influence of situational and
functional context on intra-individual linguistic
variation (Biber and Conrad, 2009). Systemic-
Functional Linguistics (SFL) decomposes register
into field, tenor, and mode (Halliday and Hasan,
1985). ‘Field’ refers to the nature of a linguistic
interaction, including its subject matter and its pur-
pose. ‘Tenor’ targets the participants, in particular,
their statuses and social relationships. ‘Mode’ is
about the role of language in the interaction, e.g.,
whether it is oral or literal, or a monologue or a
dialogue.

When metaphors are alternatives to reference
via literal expressions, they are optional ways of
referring to an entity. This allows intra-individual
variation in establishing reference to be influenced
by and to influence the situational and functional
embedding of a discourse, viz., register. Thus,
metaphors can contribute to establishing a specific
register or indicate compliance with it.

This relation of metaphors and registers is due
to the fact that the function of a metaphor depends
on the discourse it is part of (Goatly, 2011). For
instance, the function of metaphors can be influ-
enced by the relations between the interlocutors,
in that peers strive to build and maintain rapport,
whereas experts want to offer explanations to non-
experts. Such differences can result in different re-
alisations of the metaphors. For example, Deignan
et al. (2013) report that metaphors in the form of a
simile (‘A is like B’) are more likely in expert-non-
expert communication than in exchanges between
peers.

2.3 Which metaphors for register?

The perspective on metaphor as register marker
(or as a marker for other phenomena) raises issues
with the state of the art in metaphor annotation, as
it was established by Steen et al. (2010) and intro-
duced into computational approaches to metaphor
by Shutova and Teufel (2010) and Shutova et al.
(2013): In these approaches, all metaphorical ex-
pressions are annotated, irrespective of their degree
of conventionalisation.

To be able to function as a marker for register,
however, metaphors must be free choices in the
linguistic system, whose optional use can then be
reused to mark a specific register. In contrast, any
metaphor whose use is necessitated by the language
system cannot be employed for the purpose of reg-
ister.

For example, in the description of temporal con-
stellations it is often not possible not to use highly
conventionalised spatial metaphors, e.g., to express
the fact that one time span is located before or
inside another one. I.e., these interpretations of
prepositions belong to the lexicon as parts of poly-
semous sense structures. Since they are not created
by a productive metaphorical interpretation and
are obligatory irrespective of register, they cannot
function as metaphorical register markers.

Steen (2015) comes to similar conclusions about
highly conventionalised metaphors and focuses on
‘deliberate’ metaphors, i.e., those that are intended
to be recognised as such by the recipient. We be-
lieve that this is the group of metaphors that is
also relevant for the relation between metaphor and
register.

However, deliberate metaphor is hard to define
in formal terms (see e.g. Krennmayr, 2011 and
Reijnierse et al., 2018), which raises doubts as
to whether it can annotated with sufficient accu-
racy. Therefore we based our conclusions predom-
inantly on deliberate metaphors that are recognis-
able with high accuracy in our corpus, viz., those
with a metaphor flag, and non-conventional, ex-
tended, and potential metaphor.

3 Previous work

The interdependence between metaphor and reg-
ister has been investigated for specific registers,
e.g., academic discourse (Littlemore, 2001; Her-
rmann, 2015; Beger, 2015), fiction (Dorst, 2015),
newspapers (Krennmayr, 2011) or educational dis-
course (Cameron, 2003). Functions of metaphors
were correlated with SFL features of metaphors
(Goatly, 2011; Steen et al., 2010). E.g., the latter
claim that metaphor is used in informational regis-
ters (like news, fiction, or academic discourse) to
express content to a much larger extent than in con-
versation. Berber Sardinha (2015) investigates the
influence of metaphor-related features on register
variation.

The group of Gerald Steen created and annotated
the VU Amsterdam Metaphor Corpus (187,000
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subcorpus hierarchical/equal distant/close oral/literal dialogue/monologue
speeches E D L M
sermons H C L M
commentaries H D L M
light fiction E C L M
debates E D O D

Table 1: SFL register properties of the subcorpora

words from the British National Corpus) with the
four registers academic discourse, newspaper texts,
fiction, and conversations (Steen et al., 2010).

Shutova and Teufel (2010) and Shutova et al.
(2013) annotated a corpus of 13,700 words accord-
ing to whether the words were used metaphori-
cally or literally. They report different frequencies
of metaphors for specific registers, in particular,
a very low frequency of metaphor in spoken lan-
guage. Bizzoni and Lappin (2018) compiled a cor-
pus of 200 sets of metaphorical sentences and po-
tential paraphrases (rated for their aptness). Zayed
et al. (2020) created a corpus of 1,500 metaphorical
verbs with a direct object.

Steen et al. (2010) developed detailed guidelines
for the annotation of their corpus (later adapted to
German in Herrmann et al., 2019). They define the
context-based sense of an expression as a metaphor
if it differs from another, more ‘basic’ sense of
the expression (e.g., one which is more concrete
or related to bodily action). These senses must
be similar but not subsumable under a common
hypernym, like in the case of the contextual tem-
poral sense of vorbeirasen ‘rush by’ in (1). Senses
are defined by suitable dictionaries; if both senses
appear in the dictionaries, the metaphor counts as
conventionalised, if only the basic sense does, it is
regarded as non-conventional.

4 Our approach

4.1 The corpus

To investigate the relation of metaphor and register,
we have compiled a corpus that integrates a wide
range of register variation. Its five parts (of even-
tually 30,000 words each) are parliament speeches
from the German Parlamentsreden-Korpus (Blaette,
2017), news commentaries (the Potsdam Commen-
tary Corpus; Stede, 2004), sermons, light fiction
(written by amateurs for their peers), and debates
from competitions of the organisation ‘Jugend de-
battiert’ (Kemmann, 2013).

Table 1 shows the distribution of SFL register
properties in the corpus. We vary two dimensions
of tenor, viz., hierarchy vs. equality and distance
vs. closeness, and the two mode dimensions of
dialogue vs. monologue and of spoken vs. writ-
ten register. Following Koch and Oesterreicher’s
(1994) distinction of conceptual literality vs. oral-
ity, speeches and sermons are classified as literal
(they are prepared and fixed in advance), despite
their oral presentation.

subcorpus reference persuasion
speeches + o
sermons o +
commentaries + +
light fiction - -
debates o +

Table 2: Biber dimension properties of the subcorpora

The subcorpora also represent the variation we
expected along two important Biber (2009) dimen-
sions (Table 2). For ‘situation-dependent vs. elabo-
rated reference’ (how dependent is reference on the
situational context), we expect that commentaries
and speeches relate to concrete extralinguistic situa-
tions and individuals, whereas debates and sermons
are more abstract deliberations, and fiction is highly
detached from reality. Thus, the anticipated level
of situation dependence for reference is low for
fiction, medium for debates and sermons, and high
for commentaries and parliamentary speeches. For
‘overt expression of persuasion’, the expected level
is high for debates, sermons, and commentaries,
moderate for speeches (whose influence on actual
decision making in politics is usually quite low),
and low for fiction.

4.2 The annotation
For the annotation, we use the INCEpTION tool
(Klie et al., 2018). Metaphors are annotated inde-
pendently by two annotators. Inter-annotator agree-
ment for the metaphor classification according to
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subcorpus
metaphor conventionalised non-conventional- extended potential
flags** metaphor*** ised metaphor* metaphor*** metaphor***

speeches 0% 15.13% .12% .01% 0%
sermons .02% 10.14% .24% .29% .27%
commentaries .05% 11.40% .26% .12% .01%
light fiction .04% 4.06% .14% .04% 0%
debates 0% 10.38% .15% .09% 0%

* = significant at p < .05; ** = significant at p < .01; *** = significant at p < .0001

Table 3: Metaphor counts for the subcorpora

subcorpus
metaphor conventionalised non-conventionalised extended

flags metaphor*** metaphor* metaphor***
highly persuasive .03% 10.88% .23% 15%
medium or not persuasive .02% 9.91% .14% .02%

Table 4: Metaphor counts for highly persuasive subcorpora

Krippendorff’s (2011) alpha emerged as .89. The
annotation includes a layer of syntactic structure,
derived by the Stanza package (Qi et al., 2020),
to allow the identification of syntactic constella-
tions for analyses of their metaphorical potential in
future work.

To distinguish degrees of conventionalisation of
the metaphors, we also fell back on suitable lexical
resources, in our case, the Duden dictionary and
the Digitales Wörterbuch der deutschen Sprache1:
When the context-based sense of the expression
qualifies as metaphorical according to definition
of Steen et al. (2010) (see Section 3), we check if
it is listed in at least one of the lexical resources
along with the basic sense of the expression. If yes,
the metaphor is classified as conventionalised, oth-
erwise, we assume that it is non-conventionalised,
like (1).

We created guidelines for the annotation, start-
ing out from the guidelines of Steen et al. (2010)
and Herrmann et al. (2019). The corpus and the
guidelines will be made available to the research
community after their finalisation. See Egg and
Kordoni (2022) for a more detailed description of
the guidelines.

5 Results

The results of our annotation are summarised in Ta-
ble 3 (percentages are calculated for word tokens2),

1www.duden.de and www.dwds.de
2Extended and potential metaphors as a whole are counted

only once. The participating metaphors are then counted sepa-
rately as conventionalised or non-conventionalised metaphors.

showing clear differences in metaphor usage be-
tween the different registers. First, the level of
conventionalised metaphors is high for speeches,
medium for sermons, commentaries, and debates,
and low for fiction. Also, metaphor flags are ex-
tremely rare in general, which parallels the results
of Steen et al. (2010).

Potential metaphor is restricted almost exclu-
sively to sermons. As soon as we omit sermons
from consideration in the evaluation of our corpus,
potential metaphor does not exhibit a correlation
to register anymore (p = .33). Consequently, we
omit it from further investigations into interdepen-
dencies between metaphor types and register prop-
erties.

Non-conventionalised and extended metaphors
pattern similarly, occurring mostly in sermons and
commentaries. We argue that this is due to the
fact that these registers are highly persuasive. This
correlation is less visible in the debates, which we
put down to the time pressure of oral discourse, a
conflicting factor impeding the creation of these
types of metaphor. Table 4 summarises the counts
of highly persuasive against the other registers and
shows that the correlations are significant for these
two types of metaphor.

Next, we investigated a potential interdepen-
dence between metaphoricity and the distinction in
oral and literal discourse (summarised in Table 5).
Our results first show that oral and literal discourse
do not differ significantly for conventionalised and
non-conventionalised metaphor. What is more, our
oral register did not exhibit a significantly lower
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subcorpus
metaphor conventionalised non-conventionalised extended

flags* metaphor metaphor metaphor
literal .033% 10.62% .21% .12%
oral .000% 10.38% .17% .09%

Table 5: Metaphor counts for literal and oral subcorpora

subcorpus
metaphor conventionalised non-conventionalised extended

flags* metaphor*** metaphor** metaphor***
hierarchical .04% 11.01% .25% .17%
equal .01% 10.07% .15% .03%

Table 6: A competing hypothesis: hierarchy

score for extended metaphor as well, even though
this kind of metaphor is non-local in that it is based
on more than one expression in the discourse, as
two or more expressions have to share the same
kind of metaphorical similarity. In contrast, con-
ventionalised and non-conventionalised metaphor
are local in that they are based on single expres-
sions.

There is a difference between the extended
metaphors in debates and in the other registers,
however, which has to do with the fact that debates
are dialogues that consist of comparatively short
turns of different speakers: We found that many
extended metaphors are the result of the collab-
oration of different speakers, in that one speaker
introduces a metaphor with a specific kind of simi-
larity and other speakers subsequently pick up this
metaphor or use metaphors that exhibit the same
kind of similarity.

To sum up, our results for the oral register
of debates thus suggest that previous very low
metaphoricity scores for oral discourse as in Steen
et al. (2010) might not be related to orality in gen-
eral but to the conversational nature of their data,
which calls for further investigation of differences
within oral registers.

As for individual registers, our data first sug-
gest a mixed pattern for fiction, like in Reijnierse
et al. (2019) in that it is low on conventionalised
metaphors but occupies a middle position w.r.t. non-
conventionalised and extended metaphor. At the
same time, the register in the corpus that conveys
the highest degree of register marking are sermons:
they exhibit a high degree of non-conventional
metaphors, also, extended and potential metaphor
emerge as clear register markers for sermons.

6 Conclusion

We presented current work on a German corpus
with different registers, which is annotated for
metaphors. Future work will use the corpus to
investigate the metaphoric potential of specific syn-
tactic constellations (like verb-object and adjective-
noun) and include metonymy as another register-
sensitive phenomenon (Deignan et al., 2013; Little-
more, 2015).

Also, our results suggest that further research on
oral registers is called for to delimit the actual inter-
dependence between metaphor and the distinction
between oral and literal registers. As a first step in
this direction, we will include TEDx talks into our
corpus, which complement the debates in that they
are also oral but at the same time monologic and
not persuasive. Other registers we plan to look into
are sales talks and classroom interactions.

Limitations

In our study, we have argued for a correlation be-
tween forms of metaphor (non-conventional, ex-
tended, and potential) and persuasiveness. How-
ever, we are at this stage not yet in a position to rule
out the competing hypothesis that there is a relation
between metaphor and tenor in that metaphor cor-
relates with a hierarchical difference between the
interlocutors. Table 6 shows that this hypothesis
would be significant for the corpus in its present
form, which shows that the inclusion of further
registers into the corpus is needed in order to dis-
tinguish between the competing hypotheses.

Ethics Statement

We took great care in the compilation of the corpus
to include only material that can be published in
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this form in order to be able to make the corpus
available to the scientific community.

The debates consist of material produced my mi-
nors (16-18 years). In the corpus, we anonymised
the names of the debaters throughout as ‘Speaker
1-4’. At the same time, we transcribed only de-
bates that had already been made public on the
Youtube canal of ‘Jugend debattiert’ (URL) in or-
der to include only material whose publication had
already been accepted by the respective speakers.
At the same time, we contacted the spokesperson
of ‘Jugend debattiert’ and got his consent on our
activities as far as they include the debates.

The other material is either taken from already
licenced corpora (for the parliament speeches and
the commentaries) or has an appropriate CC license.
Still, we contacted the authors to inform them about
our project and to confirm their willingness to have
their material included in our corpus.
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Abstract

Prior work in semantic parsing has shown that
conventional seq2seq models fail at composi-
tional generalization tasks. This limitation led
to a resurgence of methods that model align-
ments between sentences and their correspond-
ing meaning representations, either implicitly
through latent variables or explicitly by tak-
ing advantage of alignment annotations. We
take the second direction and propose TPOL, a
two-step approach that first translates input sen-
tences monotonically and then reorders them
to obtain the correct output. This is achieved
with a modular framework comprising a Trans-
lator and a Reorderer component. We test
our approach on two popular semantic pars-
ing datasets. Our experiments show that by
means of the monotonic translations, TPOL
can learn reliable lexico-logical patterns from
aligned data, significantly improving composi-
tional generalization both over conventional
seq2seq models, as well as over other ap-
proaches that exploit gold alignments. Our
code is publicly available at https://github.
com/interact-erc/TPol.git

1 Introduction

The goal of a semantic parser is to map natural
language sentences (NLs) into meaning represen-
tations (MRs). Most current semantic parsers are
based on deep sequence-to-sequence (seq2seq) ap-
proaches and presume that it is unnecessary to
model token alignments between NLs and MRs
because the attention mechanism can automatically
learn the correspondences (Dong and Lapata, 2016;
Jia and Liang, 2016). However, recent work has
shown that such seq2seq models find compositional
generalization challenging, i.e., they struggle to pre-
dict unseen structures made up of components ob-
served at training (Lake and Baroni, 2018; Finegan-
Dollak et al., 2018).

∗Equal contribution

Figure 1: Examples from the GEOALIGNED dataset. (a)
is a monotonic alignment, (b) is non-monotonic.

This limitation motivated the resurgence of ap-
proaches that model alignments between NL sen-
tences and their corresponding MRs more simi-
larly to classical grammar and translation-based
parsers (Herzig and Berant, 2021). Alignments can
be modeled either implicitly through latent vari-
ables (Wang et al., 2021), or explicitly by leverag-
ing gold alignment annotations (Shi et al., 2020;
Liu et al., 2021a). We take the second direction
and exploit a recently released multilingual dataset
for semantic parsing annotated with word align-
ments: GEOALIGNED (Locatelli and Quattoni,
2022), which augments the popular GEO bench-
mark (Zelle and Mooney, 1996).

Figure 1 shows some examples of the annota-
tions provided. One key observation is that a signif-
icant percentage of the alignments are monotonic,
i.e., they require no reordering of the target MR
(Figure 1a), as opposed to non-monotonic align-
ments (Figure 1b). This suggests that learning reli-
able lexico-logical translation patterns from aligned
data should be possible. If there are simple patterns,
shouldn’t an ideal model be able to exploit them?

With this in mind, we propose TPOL, a Two-
step Parsing approach that leverages monotonic
translations. TPOL introduces a modular frame-
work with two components: a Monotonic Trans-
lator and a Reorderer. The Translator is trained
from pairs of NLs and MRs, where the MRs have
been permuted to be monotonically aligned. Hence,

227

https://github.com/interact-erc/TPol.git
https://github.com/interact-erc/TPol.git


the Translator’s output will be an MR whose order
might not correspond to that of the gold truth. For
this reason, the Reorderer is trained to restore the
correct order of the original MR.

Our experiments on GEOALIGNED demonstrate
that compared to a multilingual BART model (Liu
et al., 2020), TPOL achieves similar performance
on the random test split but significantly outper-
forms on the compositional split across all lan-
guages. For example, on the query split in En-
glish, mBART obtains 69.4% in exact-match ac-
curacy and TPOL obtains 87.8%. This result also
improves on the 74.6% obtained by SPANBASED

(Herzig and Berant, 2021), another approach that
leverages alignment annotations.

Because most semantic parsing datasets do not
contain alignment information, we experiment with
alignments generated automatically. On GEO,
TPOL trained with automatic alignments still out-
performs mBART, and in particular on the English
query split it improves by almost 10 points. Further-
more, we show competitive results on the popular
SCAN dataset (Lake and Baroni, 2018).

In summary, the main contributions of this paper
are:

1. We propose TPOL, a modular two-step ap-
proach for semantic parsing which explicitly
leverages monotonic alignments;

2. Our experiments show that TPOL improves
compositional generalization without compro-
mising overall performance;

3. We show that even without gold alignments
TPOL can achieve competitive results.

2 Related Work

Recently, the semantic parsing community has
raised the question of whether current models can
generalize compositionally, along with an effort to
test for it (Lake and Baroni, 2018; Finegan-Dollak
et al., 2018; Kim and Linzen, 2020). The consen-
sus is that conventional seq2seq models struggle
to generalize compositionally (Loula et al., 2018;
Keysers et al., 2020). Moreover, large pre-trained
language models have been shown not to improve
compositional generalization (Oren et al., 2020;
Qiu et al., 2022b). This has prompted the com-
munity to realize that parsers should be designed
intentionally with compositionality in mind (Lake,
2019; Gordon et al., 2020; Weißenhorn et al., 2022).

It has also been pointed out that compositional ar-
chitectures are often designed for synthetic datasets
and that compositionality on non-synthetic data is
under-tested (Shaw et al., 2021).

Data augmentation techniques have been pro-
posed to improve compositional generalization
(Andreas, 2020; Yang et al., 2022; Qiu et al.,
2022a). Another strategy is to exploit some level of
word alignments. In general, there has been a resur-
gent interest in alignments as it has been shown that
they can be beneficial to neural models (Shi et al.,
2020). It has also been conjectured that the lack of
alignment information might hamper progress in
semantic parsing (Zhang et al., 2019). As a result,
the field has seen some annotation efforts in this
regard (Shi et al., 2020; Herzig and Berant, 2021;
Locatelli and Quattoni, 2022).

Alignments have been modeled implicitly: Wang
et al. (2021) treat alignments as discrete structured
latent variables within a neural seq2seq model, em-
ploying a framework that first reorders the NL and
then decodes the MR. Explicit use of alignment
information has also been explored: Herzig and Be-
rant (2021) use alignments and predict a span tree
over the NL. Sun et al. (2022) recently proposed
an approach to data augmentation via sub-tree sub-
stitutions. In text-to-SQL, attention-based models
that try to capture alignments have been proposed
(Lei et al., 2020; Liu et al., 2021b), as well as at-
tempts that try to leverage them directly (Sun et al.,
2022).

Our two-step approach resembles statistical ma-
chine translation, which decomposes the translation
task into lexical translation and reordering (Chang
et al., 2022). Machine translation techniques have
previously been applied to semantic parsing. The
first attempt was by Wong and Mooney (2006),
who argued that a parsing model can be viewed as
a syntax-based translation model and used a statis-
tical word alignment algorithm. Later a machine
translation approach was used on the GEO dataset,
obtaining what was at the time state-of-the-art re-
sults (Andreas et al., 2013). More recently, Agar-
wal et al. (2020) employed machine translation to
aid semantic parsing.

3 Preliminaries: Word Alignments

This section briefly explains word alignments,
showing the difference between monotonic and
non-monotonic alignments, and illustrates the no-
tion of monotonic translations.
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Assume that we have a pair of sequences
x = x1, . . . , xn and y = y1, . . . , ym, where n
and m are the respective sequence lengths. A
bi-sequence is defined as the tuple (x,y). In
our application, x is a NL sentence, and y is its
corresponding MR. For example:

x = which city has the highest population density?
y = answer(largest(density(city(all))))

A word alignment is a set of bi-symbols A,
where each bi-symbol defines an alignment from a
token in the NL to a token in the MR. For instance,
the bi-symbol (xi, yj) aligns token xi to token yj .
In our example, the tokens "which" and "answer"
could be paired by a bi-symbol (which, answer).

If a token xi does not align to anything in y,
an ε is introduced in y: the resulting bi-symbol
(xi, ε) corresponds to a deletion. In our example,
the token "has" in the NL can be deleted with a
bi-symbol (has, ε). Similarly, if a token yj is not
aligned to a token in x, an ε is introduced in x:
(ε, yj) is an insertion. In our example, the token
"all" in the MR is inserted with bi-symbol (ε, all).

The bi-symbols in A are all one-to-one. Hence,
to map a single token to a phrase, i.e., to multi-
ple tokens, it is necessary to choose a head token
in the phrase, while the remaining tokens require
insertion or deletion. In our example, the token
"density" in the MR corresponds to "population
density" in the NL, and, if "density" is chosen as
the head token in the NL, "population" needs a dele-
tion: the alignment will be given by the bi-symbols
(population, ε) and (density, density).1 Following
this strategy, this notation can account for one-to-
many and many-to-one alignments with deletion
and insertion operations.

Figure 2a shows a possible bi-sequence word
alignment for the aforementioned example. Each
bi-symbol is conveniently represented by a hori-
zontal line connecting the tokens it aligns.

Alignments can be monotonic or non-monotonic.
An alignment is monotonic if it does not involve
any crossing, i.e., a mapping that does not require
reordering tokens. In our example, the alignment
is non-monotonic because the bi-symbol (city,city)
crosses over others. By permuting the MR, we can
obtain a monotonic translation of the NL: Figure

1Locatelli and Quattoni (2022) showed that annotators are
consistent in the way they pick head-tokens, and reported high
inter-annotator agreement scores on GEOALIGNED.

Figure 2: (a) A possible alignment for an NL-MR pair.
(b) The corresponding monotonic translation. For sim-
plicity, we removed the brackets and question mark.

2b shows such permutation. The next section illus-
trates how TPOL can leverage these translations.

4 Translate First Reorder Later

We propose TPOL, a two-step parsing approach
with a modular framework made up of two com-
ponents: a Monotonic Translator and a Reorderer.
Figure 3 shows how our semantic parser takes an
input sentence x and predicts the corresponding
MR y. In the first step, x is fed to the Translator,
which outputs a monotonic translation z. In other
words, z is the target MR that has been permuted so
that it aligns monotonically to the input NL. Then,
in a second step, z is fed to the Reorderer, which is
trained to place the MR tokens back into the correct
order to produce the final prediction y.

The main idea behind TPOL is decomposing the
task into lexical translation and reordering, to learn
more reliable translation patterns. We purport that
modeling monotonic alignments eases the learning
of novel pattern combinations of seen structures,
improving compositional generalization.

An alternative approach would be to permute the
NL inputs rather than the MRs monotonically. We
do not follow this direction due to the observation
that in semantic parsing, multiple NLs can map to
the same MR. In other words, the NL domain is
larger than that of the MRs, and thus we believe
that learning to reorder the MRs is more feasible.

4.1 Monotonic Translator

The Monotonic Translator is responsible for mak-
ing an initial prediction of the MR sequence, which
will contain the correct tokens in monotonic or-
der. To create the training bi-sequences, we use
alignment information and permute the gold MR

229



Figure 3: The TPOL parsing approach. An input sentence x is fed to the Monotonic Translator that predicts an
intermediate monotonic MR z. This is in turn fed to the Reorderer, which outputs the final prediction y.

sequences to obtain a monotonic mapping with
the NL. As a concrete example, consider the non-
monotonic alignment in Figure 2a, and its mono-
tonic translation in Figure 2b.

The translation task can be formulated in various
ways. In our implementation, we work with two
alternative approaches: a seq2seq Translator, and
a tagger Translator. In the seq2seq formulation, x
is fed into an encoder network, which produces a
hidden vector. The hidden vector is fed to a de-
coder network which produces the output z, i.e.,
the monotonically aligned MR. This can be imple-
mented, for example, with a BART model (Lewis
et al., 2020), which uses a bidirectional encoder
and a left-to-right decoder. In our experiments, we
use the multilingual version of BART (Liu et al.,
2020). In the tagging formulation, the Translator
assigns an MR token to each token in x, obtaining
the monotonic translation z by explicitly aligning
in a token-by-token fashion. We implement this
with a BERT model (Devlin et al., 2019) and we
use its classification head as the tagger.

A crucial difference between the seq2seq and
the tagger Translator is that the latter needs x and
z to be the same length. The seq2seq Translator
can learn to perform deletion operations from the
raw NL, without needing epsilons in the input to
perform insertions. By contrast, the tagger Trans-
lator needs insertions to be performed on x before
predicting z. In general, NL sequences are signif-
icantly longer than the MR sequences, i.e., most
epsilons are in the MR sequence. In other words,
deletions are more frequent than insertions.

However, for some datasets, some alignments
contain epsilons in the NL sequence: at prediction
time, we will not know where insertions might
occur, and thus we need a way to predict them.
For this purpose, for every token followed by an
epsilon in the train split, we add an epsilon after it

at test time. We saw that this strategy was sufficient
in our experiments. Alternatively, this step could
be done by a trained model or with a rule-based
system similar to Ribeiro et al. (2018).

4.2 Reorderer
The Reorderer module is responsible for taking
the monotonic predictions of the Translator and
putting them back into the correct order to obtain
the final prediction. This model is trained from
pairs of MR sequences (z,y) where the input z is a
monotonically permuted MR and the output y is the
target MR in its correct order. These training pairs
can be generated from the alignment annotations.

Similarly to the Translator module, the Re-
orderer can be implemented both as a seq2seq
model and as a tagger. We use mBART in the
seq2seq formulation and BERT as a tagger in our
experiments. Note that we do not enforce the out-
put to be a permutation of the input.

5 Experiments

5.1 Datasets
We test TPOL on two semantic parsing datasets,
training with gold and automatically generated
alignments in multiple languages, on standard IID
partitions and the more challenging compositional
ones.

5.1.1 GEOALIGNED

GEOALIGNED (Locatelli and Quattoni, 2022) aug-
ments the popular GEO semantic parsing bench-
mark (Zelle and Mooney, 1996) with token align-
ment annotations. The dataset contains questions
about US geography and corresponding meaning
representation using the FunQL formalism (Kate
et al., 2005). In total, there are 880 examples, all
annotated with token alignments. We evaluate on
three partitions: question (?), query (Q) and length
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(LEN). The question partition is a standard IID
split where test and train are sampled from the
same distribution. The query partition, introduced
by Finegan-Dollak et al. (2018), is designed to be
compositional by ensuring that the templates of the
MRs in the test set are never seen during training.
The length partition, introduced by Herzig and Be-
rant (2021), assigns the longest sequences to the
test.

The dataset comes in English, Italian and Ger-
man: in this way we can test our approach across
different languages. In our experiments, we do
not anonymize constants: in other words, we keep
the original NL and MR sequences which include
names of cities, states, etc. We follow Wang et al.
(2021) in removing brackets.

5.1.2 SCANSP
SCANSP (Herzig and Berant, 2021) is a set of nav-
igational commands presented in natural language
paired with action sequences. It is based on the
SCAN dataset by Lake and Baroni (2018), which
does not contain program MRs. Herzig and Berant
(2021) translated the sequences into programs to
obtain a semantic parsing version of the dataset.
Besides the IID split, we test on the compositional
partitions based on the "right" (RX) and "around
right" (ARX) primitives from Loula et al. (2018).
SCANSP has 20,910 commands distributed roughly
as 12,000 train, 3,000 validation, and 4,000 test ex-
amples.

The SCANSP dataset does not come with align-
ments. Therefore we employ the IBM models
(Brown et al., 1993) to generate them automatically
using the GIZA++ toolkit (Och and Ney, 2003). We
also do this for GEO to compare the performance
of TPOL when trained with gold and automatic
alignment annotations.

5.2 Models for comparisons

We compare with competitive baselines and
state-of-the-art models that do not leverage
alignments and competing models that do.

• LSTM: a standard seq2seq model with a bi-
directional LSTM encoder and an LSTM decoder
with attention (Bahdanau et al., 2015). We use
pre-trained GloVe embeddings for the three lan-
guages: English (Pennington et al., 2014), Italian
and German (Ferreira et al., 2016).

• mBART (Liu et al., 2020): a multilingual ver-
sion of BART (Lewis et al., 2020), a pre-trained

Transformer-based seq2seq model that has been
successfully applied to parsing (Bevilacqua et al.,
2021).

• mT5 (Xue et al., 2021): a multilingual version
of T5 (Raffel et al., 2020), pre-trained on the mC4
dataset (Xue et al., 2021).

• SPANBASED (Herzig and Berant, 2021): a se-
mantic parser that predicts a span tree over an input
utterance trained with gold alignment trees. The
authors provided annotations for the English ver-
sion of GEO and SCANSP. For the other languages
of GEO we train without gold alignments. We use
their model without the lexicon, as that would be
unfair with respect to the other models.

• LEAR (Liu et al., 2021a): a model that learns
to recombine structures recursively by predicting
a latent syntax tree and assigning semantic opera-
tions to non-terminal nodes. LEAR explicitly uses
alignments using a phrase table.

• REMOTO (Wang et al., 2021): a model that
first reorders the tokens in the NL and then pre-
dicts the MR. REMOTO is not trained with gold
alignments.2

5.3 Evaluation metric
We follow the standard practice of using exact-
match accuracy for evaluation: the predicted MR
is correct only if it is the same as the gold.

5.4 Main Results
We report the results of our experiments in Table 1.
For TPOL, the choice of the modules’ architecture
is validated on the development set, and we report
a performance breakdown in Section 7.

We first consider the results of TPOL trained
with gold alignments. On the GEO dataset, the
LSTM and mT5 achieve the lowest performance
in all the partitions. Looking at the question par-
tition (?), the models show similar performance
to mBART and SPANBASED, which is not sur-
prising as the test split does not require composi-
tional generalization. On the query partition (Q),
designed to test for compositional generalization,
TPOL shows significant improvements over all the
other models across all languages. In English it
obtains 87.3% outperforming mBART (69.4%),
SPANBASED (74.6%) and LEAR (84.1%). In Ital-
ian and German, it obtains 81.6% and 69.4% re-
spectively, while mBART 67.4% and 56.3%. On

2For LEAR and REMOTO, we report results directly from
the respective papers, noting that in their setting constants,
such as names of states, cities, and so on, are anonymized.
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GEO

Model EN IT DE SCANSP

? Q LEN ? Q LEN ? Q LEN IID RX ARX

LSTM 52.9 24.9 5.0 46.4 18.1 4.3 42.9 17.6 3.2 100 24.4 1.1
mT5 80.0 60.0 19.3 73.2 44.9 20.4 68.2 47.8 18.6 100 41.2 99.8
mBART 87.5 69.4 27.5 86.6 76.4 23.3 75.5 56.3 18.2 100 99.4 100
LEAR - 84.1 - - - - - - - - - -
SPANBASED 87.7 74.6 55.0 - - - - - - 100 100 100

- gold 66.4 51.8 24.6 49.6 37.3 10.4 40.4 21.4 5.0 100 100 100
REMOTO 75.2 43.2 23.2 - - - 55.6 22.3 16.6 100 - -
TPOL 87.3 87.8 41.9 85.9 81.6 31.3 73.3 69.4 22.9 - - -

- gold 85.8 79.0 35.6 83.6 75.1 20.2 73.8 60.7 17.5 100 99.4 100

Table 1: Exact-match accuracy of all models on GEOALIGNED and SCANSP datasets. ? stands for question, Q
for query and LEN for the length partition. RX stands for right and ARX for around right partitions. LEAR and
REMOTO both anonymize constants in GEO, and the results are taken directly from the respective papers.

the length partition (LEN), TPOL does better than
all the baselines across all languages, except for
SPANBASED, which fares better on LEN(English).
This is only the case, however, when gold align-
ments are provided.

Looking at the results obtained without gold
alignments, TPOL shows considerable improve-
ments over REMOTO and SPANBASED. In particu-
lar, it improves on the English query partition ob-
taining 79% against 43.2% and 51.8%, respectively.
Furthermore, the accuracy does not drop signifi-
cantly compared to TPOL trained with gold align-
ments. We tested using automatic alignments from
IBM models 3, 4, and 5 and picked the best out
of the three. In general, all lead TPOL to achieve
similar performance.

Finally, looking at SCANSP, as expected, the
models designed for compositional generalization
achieve perfect performance on the dataset. What is
surprising is that also mBART can do so, contrary
to other deep models. With some internal testing,
we have seen that this is not the case for English
BART, as opposed to the multilingual version. We
hypothesize that model size and pre-training might
be a factor of success for mBART.

6 Error Analysis

Table 3 shows a breakdown of performance of
TPOL on the English version of GEOALIGNED.
The results indicate the exact-match accuracy
achieved by the two modules: we can check
whether the model struggles more with the trans-

lation or reordering step. To analyze the Trans-
lator’s performance, we regard the monotonically
aligned MRs as the gold truth. For the Reorderer,
we provide it with the monotonically aligned MRs
in input. In other words, the evaluation of the Re-
orderer assumes that the Translator makes a correct
prediction.

The performance of the two modules is fairly
similar, and, by comparing these results with Table
1, we see that the accuracy of each component is not
much higher than the overall accuracy, suggesting
that neither component is hampering performance
more than the other. The only exception seems to
be in the length partition, where the Reorderer does
considerably better than the Translator.

Table 2 shows the breakdown of the performance
over monotonically and non-monotonically aligned
MRs. We can observe that, compared to SPAN-
BASED, TPOL generally presents smaller drops
in performance over the non-monotonic sequences.
For instance, in the question partition, SPANBASED

drops from 94.7% over the monotonic examples
to 73.7% over the non-monotonic, while TPOL

drops from 89.9% to 81.4%. When we look at the
query partition, we see that for both of these mod-
els, the drop is much higher than the one on the
question partition: SPANBASED goes from 89.6%
to 39.8%, while TPOL drops from 93.7% to 69.9%.
In other words, both models struggle more with
non-monotonic examples when compositional gen-
eralization is required. TPOL, however, still per-
forms significantly better.
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GEO EN

Model ? Q LEN

MN NMN MN NMN MN NMN

mBART 90.4 81.0 67.1 76.5 29.2 25.1
SPANBASED 94.7 73.7 89.6 39.8 68.1 35.9
TPOL 89.9 81.4 93.7 69.9 55.5 23.2

Table 2: Performance breakdown of TPOL over monotonic (MN) and non-monotonic (NMN) sequences in
GEOALIGNED English. In Appendix B we report the number of MN and NMN examples.

GEO EN

Module ? Q LEN

Translator 86.1 86.2 42.5
Reorderer 87.6 87.3 57.1

Table 3: Performance breakdown of TPOL modules.

Surprisingly, mBART shows the opposite trend
on the query partition, with the non-monotonic ac-
curacy being higher than the monotonic one. By
contrast, most of TPOL’s improved performance
comes from better modeling of the monotonic se-
quences (67.1% → 93.7%). TPOL’s results sug-
gest that regular patterns in the non-monotonic se-
quences can be learned. Its generalization problems
can be attributed to the difficulty of learning the
more challenging non-regular patterns in a small
dataset. On the other hand, mBART appears to
have the capacity to model these challenging re-
orderings better. Still, this comes at the cost of
failing on the regular monotonic ones, leading to a
lower performance overall.

Interestingly, the SPANBASED approach shows
a similar improvement on monotonic sequences
compared to mBART (67.1% → 89.6%). This
suggests that exploiting lexico-logical alignments
allows models to capture the simpler patterns that
mBART fails to learn. Most of TPOL’s gains
over SPANBASED come from better modeling the
non-monotonic examples in the query partition
(39.8% → 69.9%). This shows that the two-step
approach offers the best of both worlds: it can cap-
ture the simple monotonic patterns while maintain-
ing reasonable performance over the more complex
alignments on which SPANBASED fails.

Figure 4 shows the average drop in performance
of the different models trained with automatic IBM
alignments compared to the same model trained

Figure 4: Average error of IBM alignment models over
all partitions and languages on GEOALIGNED. We also
plot the average drop in performance for each TPOL
model trained with IBM alignments with respect to the
corresponding one trained with gold alignments.

with gold alignments. We also report the corre-
sponding alignment error, calculated as the percent-
age of bi-symbols that differ from the gold anno-
tations from GEOALIGNED. We observe that, in
general, higher alignment error is associated with a
higher drop in performance. This validates the im-
portance of the alignment information and points
to improving the unsupervised alignment algorithm
as a natural line of future work. We believe that one
possible reason for the drop in performance when
training with IBM alignments might be because
the GEO dataset is of relatively small size, and the
IBM models might have difficulty learning good
alignments. That would explain why in contrast to
GEO, the performance over SCAN is not affected
by automatic alignments since SCAN is a much
larger dataset.
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GEO

Model EN IT DE

? Q LEN ? Q LEN ? Q LEN

BERT2BERT 74.9 84.6 41.9 74.0 74.2 31.3 62.5 67.5 22.9
BERT2mBART 82.1 87.8 36.4 76.9 81.6 27.5 63.2 68.9 20.0
BERT2mBART SILVER 82.5 87.0 34.6 76.6 81.1 27.0 65.4 69.4 19.9
mBART2BERT 74.5 70.7 24.5 77.7 76.1 24.2 65.7 56.1 17.5
mBART2mBART 87.3 72.2 25.2 85.7 76.3 23.1 73.3 59.2 16.3
mBART2mBART SILVER 86.4 71.5 24.9 85.9 75.8 20.0 73.2 59.5 17.0

Table 4: Performance breakdown of TPOL for different module architectures on GEOALIGNED.

7 Architecture study

We emphasize here that our approach is an abstract,
high-level methodology and does not place any
constraint on the underlying architectures of the
two components. We believe that different architec-
tures, particularly specialized ones for each module,
could be beneficial for parsing performance. We
encourage further work to be carried out in this
regard. To this purpose, we present some archi-
tectural studies using BERT (Devlin et al., 2019)
and mBART (Liu et al., 2020) as components. We
employ them as both Translator and Reorderer, ex-
amining all possible combinations. As explained in
Section 4.1, mBART is used as a standard seq2seq
model, and BERT is employed with a classification
head to function as a tagger for every input token.

Additionally, when mBART is used as a Re-
orderer, we introduce a silver training setting. In
the normal setting, the Reorderer is trained by tak-
ing the gold alignment annotations and outputting
the meaning representation. In the silver setting,
we use the predictions of the Translator model as
training input. By doing so, the Reorderer trains
on inputs that mimic more closely what it will ac-
tually receive at test time: this is done straightfor-
wardly for a seq2seq model like mBART, while for
our BERT tagger, every token in input needs to be
aligned with a token in output, and when the input
is corrupt it is not possible to achieve the same
training technique.

In Table 4, we present the results for our different
architectural components. To distinguish among
the different model combinations, we use a [Trans-
lator]2[Reorderer] naming convention, meaning
that mBART2BERT uses mBART as the Translator
and BERT as the Reorderer. We observe that our
two-step approach seems to be robust overall.

We can discern trends in different architecture
combinations, which can be helpful when choos-
ing an architecture for a specific task. One impor-
tant observation is that the architectures that use
BERT as a Translator are consistently better than
the ones using mBART over the compositional par-
titions. We hypothesize that the BERT Translator
can achieve higher compositional generalization
because it can better leverage alignment informa-
tion to predict unseen combinations of observed
training patterns. We believe this is because a tag-
ger’s predictions can be more naturally broken into
parts that can be recombined. In contrast, encoder-
decoder architectures fare better on the IID parti-
tion but struggle to generalize to unseen patterns.
One possible reason is that these models have a
harder time inducing local patterns that can be re-
combined since they encode and decode complete
structures all at once.

8 Conclusion

Seq2seq models have become increasingly popu-
lar in semantic parsing. However, they are limited
in their abilities to generalize to unobserved struc-
tures. Here, we proposed TPOL: a two-step parsing
approach that leverages alignment annotations with
a modular framework composed of a Translator
and a Reorderer.

We showed that TPOL improves compositional
generalization over conventional seq2seq models
and over competing models that also leverage align-
ment information. Our results also showed that our
approach is robust when trained with automatically
generated alignments, demonstrating competitive
results on two semantic parsing datasets.

We have experimented with two possibilities
for the Translator and Reorderer, but we believe
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that different architectural components could fur-
ther improve performance. The divide-and-conquer
strategy of breaking the problem into two simpler
sub-tasks is designed to enable further component
specialization.

9 Limitations

Regarding the limitations of our approach, our ex-
periments used the standard FunQL meaning rep-
resentation. Transitioning to a different meaning
representation might need some adaptation of the
framework. In particular, the alignments between
NL and MRs for other meaning representations
might require more insertion and deletion opera-
tions. We might also expect that other MRs might
require more reordering.

A second limitation of our work is training with
gold alignments. We partially address this by train-
ing TPOL with automatic alignments obtained with
the IBM models. Still, we believe there is room
for more work to be done so that this approach can
be more easily scaled to datasets that do not have
alignment annotations.

Despite TPOL’s partial improvements on the
length test splits, this type of partition remains chal-
lenging for all models. Here, models are required
to generate predictions of greater length than what
they have seen during training. This requires com-
plex compositional productivity skills, i.e., recom-
bining known constituents into larger structures.
Further work is needed to address the limitation of
the current state-of-the-art on compositional pro-
ductivity benchmarks.
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A Experimental details

For our experiments with TPOL we report the aver-
age of three runs for every result. We select the hy-
perparameters with grid search on the development
set performance stopping when there is no more
improvement. We choose the learning rate among
1e−4, 1e−5 and 1e−6 and the batch size between
the bounds of 4 and 32. Usually the best perform-
ing models choose a learning rate of 1e−5 and batch
size of 8. An experiment takes about 20 minutes
on a single Nvidia V100 GPU. Our BERT (110M
parameters) and mBART (680M parameters) im-
plementations are taken from the transformers li-
brary (Wolf et al., 2020). We use for English bert-
base-uncased, for Italian dbmdz/bert-base-italian-
uncased and for German dbmdz/bert-base-german-
uncased. For mBART we use facebook/mbart-
large-50. For mT5 we use the google/mt5-small
pre-trained checkpoint from the Transformers li-
brary.

B GEOALIGNED statistics

Table 5 provides statistics from the English version
of GEOALIGNED (Locatelli and Quattoni, 2022).
In particular, we report the number of examples
that fall in the monotonic (MN) and non-monotonic
(NMN) categories.

GEO EN

Category ? Q LEN

MN 194 154 162
NMN 86 51 118

Table 5: Number of examples that belong to the mono-
tonic (MN) and non-monotonic (NMN) categories in
GEOALIGNED English.

238

https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009


Findings of the Association for Computational Linguistics: EACL 2023, pages 239–253
May 2-6, 2023 ©2023 Association for Computational Linguistics

PePe: Personalized Post-editing Model utilizing User-generated Post-edits

Jihyeon Lee*†

gina.lee@kakaobrain.com

Taehee Kim*

taehee.kim@letsur.ai

taeheekim@kaist.ac.kr

Yunwon Tae*‡

yunwon.tae@vuno.co

Cheonbok Park
cbok.park@navercorp.com

Jaegul Choo
jchoo@kaist.ac.kr

Abstract

Incorporating personal preference is crucial in
advanced machine translation tasks. Despite
the recent advancement of machine translation,
it remains a demanding task to properly reflect
personal style. In this paper, we introduce a per-
sonalized automatic post-editing framework to
address this challenge, which effectively gen-
erates sentences considering distinct personal
behaviors. To build this framework, we first
collect post-editing data that connotes the user
preference from a live machine translation sys-
tem. Specifically, real-world users enter source
sentences for translation and edit the machine-
translated outputs according to the user’s pre-
ferred style. We then propose a model that com-
bines a discriminator module and user-specific
parameters on the APE framework. Experimen-
tal results show that the proposed method out-
performs other baseline models on four differ-
ent metrics (i.e., BLEU, TER, YiSi-1, and hu-
man evaluation).

1 Introduction

Language usage is strongly influenced by the state
of the individual, which can be considered by mul-
tiple attributes such as age, gender, socioeconomic
status, and occupation (Tannen et al., 1991; Pen-
nebaker et al., 2003). Taking these aspects into
account in the machine translation task, we need
personalized translations to reflect individual char-
acteristics that vary from person to person; thus, the
translation system should consider not only fluency
and content preservation, but also personal style.

However, most existing neural machine transla-
tion (NMT) models ignore personal style (Mirkin
et al., 2015). Previous studies attempt to address
this problem by personalizing the NMT models,
but in these studies the definition of personal style

* Indicates equal contribution.
†Work done at Korea Advanced Institute of Science and

Technology, correspondence to jihyeonlee@kaist.ac.kr.
‡Work done at Korea University, correspondence to

tyj204@korea.ac.kr.

Figure 1: Example of a personal post-editing triplet (i.e.,
source (src), machine translation (mt), and post-edit
(pe)) given the source text in English and the translated
text in Korean. A post-edited sentence does not only
contain error correction of an initial machine transla-
tion result but also reflects individual preference. For
instance, a human post-editor modifies the word ”primar-
ily” to ”primary,” but also change ”공헌” to its synonym
”기여” while keeping the rest as it is (e.g., ”research”).

is often over-simplified (Rabinovich et al., 2017;
Sennrich et al., 2016; Si et al., 2019). For example,
Rabinovich et al. (2017) and Sennrich et al. (2016)
define the personal style as politeness and gender
respectively, which is not sufficient to tackle the
multifarious character of an individual. Namely,
previous works defined the personal style in a con-
strained form.

In contrast with previous studies, we propose a
method based on an APE framework and newly
utilize post-editing data to capture diverse personal
traits in translation. Originally, the need for post-
editing data is to improve the quality of machine-
translated sentences in an APE task (Simard et al.,
2007; Pal et al., 2016; Correia and Martins, 2019).
However, we suggest that the post-editing data can
also be adequate references for personalized trans-
lation if various users post-edit sentences accord-
ing to their preferences. In this respect, we collect
a user-generated post-editing dataset called USP
through a live translation system. After the system
translates a source sentence (src) to a target sen-
tence, i.e., machine-translated sentence (mt), each
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user edits the translated result according to their
purpose or preferences, i.e., post-edited sentence
(pe). We collect (src, mt, pe) triplets called per-
sonalized post-editing triplets for each user and an
example is depicted in Fig 1.

Along with the personalized post-editing data,
we develop a model which utilizes user parame-
ter and a discriminator module. The user-specific
parameters allow the model to adapt to each user
in that the model can consider inter-personal vari-
ations. These parameters are aggregated with the
output word probability such that the generation
word probability distribution differs by each partic-
ular user. Moreover, since the prevalence of pre-
trained language models encourages significant
performance improvements on various natural lan-
guage generation tasks (Song et al., 2019; Lewis
et al., 2019; Correia and Martins, 2019), we exploit
the pre-trained language model (LM) but do not
fully lean on it. We assume that not all the features
from the pre-trained LM contribute to capturing
the distinct taste of users that are departing from
the neutral and standardized patterns. Thus, our
discriminator module, inspired by adversarial train-
ing (Goodfellow et al., 2014), attempts to disman-
tle the unnecessary features from a pre-trained LM,
while tuning the model to incorporate a personal
style. The details will discuss in Section 3.

Experiments on our dataset and speaker anno-
tated TED talks dataset (Michel and Neubig, 2018)
(SATED) demonstrate that the proposed approach
generates diverse translations for different users.

In summary, our contributions include the fol-
lowing:

• To the best of our knowledge, this is the first
work that leverages the APE framework to a
personalized translation task.

• We propose a personalized post-editing model
based on user-generated post-edits, which is
able to capture the inter-personal variations
that consist of multiple attributes.

• Extensive experimental results show that the
proposed method robustly reflects personal
traits and consistently outperforms baselines
in three different quantitative metrics and hu-
man evaluation results.

2 Related Work

Our work is closely related to the recent work on
personalized neural machine translation and auto-

matic post-editing.

Personalized neural machine translation.
Standard NMT systems are not able to consider the
personal preference in a machine-translated out-
put (Mirkin et al., 2015). Mima et al. (1997) is the
early paper that proposes a concept of reflecting
an author’s properties, such as gender, dialog do-
main, and role in the translation. However, includ-
ing Mima et al. (1997), most studies conduct a lim-
ited range of personalized translations, which ad-
dress only a single attribute (e.g., politeness) (Sen-
nrich et al., 2016; Rabinovich et al., 2017).

Turchi et al. (2017) and Karimova et al. (2018)
fine-tune the model on the human post-edits to im-
prove the NMT quality, which can be viewed as a
naive approach to handle the personalized transla-
tion without attribute labels. Wuebker et al. (2018)
extend this approach to adjust only a small number
of parameters, but still requires extensive training
resources. Meanwhile, Michel and Neubig (2018)
and Huan et al. (2021) propose a generalized form
of a personalized translation method, which are
closely related work with ours. Michel and Neubig
(2018) cast this problem as an extreme form of do-
main adaptation, while Huan et al. (2021) introduce
cache module and contrastive learning to increase
the diversity on dissimilar users. However, the ref-
erence sentences for personalized translation were
constructed by a few professional translators, not
by a variety of people with diverse characteristics;
personal preferences reflected in the dataset are
limited. Our user-generated post-edits are edited by
a large number of people who provide the original
sentences.

Automatic post-editing. Prior to the emergence
of the transformer (Vaswani et al., 2017), RNN
based APE models (Pal et al., 2016; Junczys-
Dowmunt et al., 2016; Junczys-Dowmunt and
Grundkiewicz, 2017) are actively studied. Subse-
quently, as self-attention based models show signif-
icant improvements on various downstream tasks,
transformer based models also prevail in the APE
task. Specifically, a popular approach is to set a sep-
arate encoder for the source and machine-translated
(MT) output. Separately encoded representations
are joined in the following encoder (Pal et al.,
2018) or fused in the decoder (Tebbifakhr et al.,
2018; Junczys-Dowmunt and Grundkiewicz, 2018).
More recently, Correia and Martins (2019) improve
the performance of APE tasks by leveraging a
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Figure 2: An overview of our proposed method. PePe consists of two parts: 1) Clustering module that relies on
pre-trained LM encoder and Gaussian mixture model. 2) APE architecture that includes an auxiliary discriminator
and user-specific parameters.

(a) Data points colorized
with user label

(b) Data points colorized
with GMM cluster label

Figure 3: Source sentences of USP embedded with
the pre-trained LM. (a) and (b) shows the discrepancy
between the user data distribution and the contextual
similarity-based data distribution.

pre-trained LM. Compared to these studies, our
work is the first attempt to examine the neural net-
work based APE model for personalized translation.
There is a study where they use an APE module
for domain adaptation (Isabelle et al., 2007), but
the explored one is based on a statistical machine
translation system.

3 Proposed Method

Overview: It is challenging to generate appropri-
ate translations that impose personal variations. To
address such a demanding problem, we take a de-
tour by applying an APE framework. We propose
PePe, a personalized post-editing model utilizing
user-generated post-edits. PePe includes a discrim-
inator module to allow the model to dismantle the
pre-trained LM features. Specifically, we maximize
the discriminator loss to encourage the encoder
to throw away irrelevant pre-trained LM features,
while minimizing the APE loss to guide the model

to utilize the pre-trained LM features that are useful
for personalization. In addition, PePe utilizes user-
specific parameters to capture the personal style.
User-specific parameters are combined at the end
of the decoder layer to adjust the prediction of the
word probability, i.e., the word choice based on
a user preference. Our strategy does not require
expensive supervision on the personal style, such
as explicit attribute labeling or an attribute-tailored
model architecture.

The overall architecture of PePe is illustrated in
Fig. 2. The two following subsections will describe
the modules shown in Fig. 2-(a), (b), (c), (d), and
(e), respectively.

3.1 Contextual Similarity vs. User-specific
Style

The pre-trained LM is well known for capturing
the contextual similarity that is useful to define
the label for in-domain data (e.g., sports, IT, and
economy). However, the user-specific style is far
from those domains; it does not coincide with con-
textual similarity yet involves somewhat arbitrary
traits (i.e., user preferences). Hence, we argue that
some of the features from a pre-trained LM distract
personalized translation, which rather requires gen-
erating biased results to meet the individuals’ needs.
Fig. 3 demonstrates the discrepancy between the
user data distribution and the contextual similarity-
based data distribution.

We map the sampled sentences from USP to the
embedding space of the pre-trained LM. Each sen-
tence is encoded with RoBERTa (Liu et al., 2019)
and visualized using t-SNE (van der Maaten and
Hinton, 2008). The data on both sides show the
same embedding representations obtained from the
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same set of sentences, but labeling is different. The
data items in Fig. 3a are color-coded by the users,
whereas those in Fig. 3b are color-coded by the
semantic cluster labels obtained from the Gaussian
mixture model (GMM) (Rasmussen, 2000), which
allocates the similar sentences to the same label
based on the RoBERTa embedding of each.

In Fig. 3b, semantically similar points, which are
close in embedding space, belong to the same clus-
ters. However, the red and blue points in Fig. 3a,
which indicate sentence representations from two
different users, are distributed unruly instead of be-
ing grouped by semantic similarity. In other words,
the fine-grained style differences of each user are
somewhat distant from the contextual similarity of
the sentences; thus it is hard to distinguish user-
specific preferences when the model is highly ori-
ented to learning the contextual similarity.

3.2 Generating Cluster Labels based on
Pre-trained LM

Inspired by the finding in Section 3.1, we devise a
discriminator module that uses the semantic cluster
labels to unlearn the features from the pre-trained
LM that are unnecessary to reflect the personal
styles. Before introducing the details about PePe,
we describe how to generate the semantic cluster la-
bels from a pre-trained LM in an unsupervised man-
ner. We first encode src into encoded vectors using
a pre-trained LM1 as shown in Fig 2-(a). Based
on these encoded vectors, semantic cluster labels
are generated by GMM (Rasmussen, 2000) as illus-
trated in Fig 2-(b). A Gaussian mixture is a function
made up of the k number of Gaussian components,
where k is the number of clusters2 and is a hyper-
parameter. Specifically, in GMM,

∑k
i=1 πipi(h|θi)

represents the distribution of data point h, where
h is an encoded vector of the first token of src, i.e.,
[CLS] token, πi is the probability of each Gaussian
fitting the data, and pi is the Gaussian density func-
tion parameterized by θi. We assign each sentence
to a Gaussian that best describes the data, and the
Gaussian corresponds to the semantic cluster la-
bel. The label, i.e., T = t1, ..., tk, is then used as a
classification label for our discriminator, which is
described in the following subsection.

1Though we use RoBERTa as a pre-trained LM to generate
cluster labels, other pre-trained LMs can also be used in our
approach.

2Ten clusters are used for all the experiments in the main
paper.

3.3 PePe: Personalized Post-editing Model
utilizing User-generated Post-edits

We adopt BERT-based Encoder-Decoder APE
model (Correia and Martins, 2019) called Dual-
Source BERT (DS-BERT) as our backbone, which
is based on transformer (Vaswani et al., 2017) with
pre-trained multilingual BERT (Devlin et al., 2019).
DS-BERT uses a single encoder which is used to en-
code both the src and the mt by concatenating them
with the specialized token [SEP ] as described in
Fig 2-(c).

Our model also learns to generate y =
[y1, ..., yn], i.e., pe, from x, i.e., src, and ỹ =
[ỹ1, ..., ỹm], i.e., mt, by maximizing the likelihood,

P (y|x, ỹ; θAPE) =
n∏

i=1

P (yi|x, ỹ, y<i; θAPE),

where yi is the i-th target word and y<i = y1...yi−1
is the partial translation result. θAPE represents the
parameters for translating source sentence into post-
edited sentence with machine-translated result ỹ.

In order to adapt user-specific linguistic styles,
we add user-specific parameters before the softmax
layer in the decoder as shown in Fig 2-(d), i.e.,

P (yi|x, ỹ, y<i; θAPE, θuser) = f(FFN(oi) + θuser),

where FFN and f are a feed-forward network and
softmax function, respectively. oi is the output for
the i-th target word from the decoder. θuser ∈ RV
is a user-specific embedding vector from a set
of trainable user embedding matrix U ∈ RN×V
where N is the number of users and V is the size
of vocabulary.

The model is then optimized by minimizing
LAPE defined as

LAPE = −
n∑

i=1

logP (yi|x, ỹ; θAPE, θuser).

Furthermore, as shown in Fig 2-(e), we introduce
a discriminator module to unlearn the contextual
similarity feature learned from a pre-trained LM.
To train the discriminator, we compute the discrim-
inator loss LDisc defined as

LDisc =

k∑

i

tilog(t̃i),

where k is the number of classes (i.e., the number
of Gaussians we pre-defined) and ti is the ground-
truth label of the semantic cluster. t̃i represents the
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output from the discriminator which is a single-
layer feed-forward network for the classification of
semantic cluster labels. We use the first token of a
source sentence to extract a sentence representation
from the encoder and pass it to the discriminator
as an input. Note that we use the gradient ascent
method to prevent the encoder from classifying the
clusters. In this way, we diminish the unnecessary
feature from pre-trained LM, while our APE loss
function incorporated with user-specific parameters
leads the model to capture the user-specific style.

Finally, PePe optimizes a combination of two
losses, LDisc and LAPE, with a adjustment rate β,
i.e.,

LTrain = β · LDisc + (1− β) · LAPE.

4 Experiments

In this section, we qualitatively and quantitatively
demonstrate the effectiveness of our proposed
method. We validate PePe, described in Section 3,
against other baseline methods using a real-world
user dataset USP. We also provide a detailed ex-
planation for the dataset. Moreover, through ex-
tensive experiments and analyses, we show that
PePe can incorporate inter-personal variations into
a target sentence. We provide training details in
Appendix A.

4.1 Dataset

We collect the user-generated post-editing dataset,
USP, from a publicly available online translation
system3 (e.g., Google Translate). Fig 4 illustrates
the user experience flow. The users enter the sen-
tences they want to translate, and the system pro-
vides the corresponding outputs that are generated
by the high-quality commercialized machine trans-
lator. From the machine-translated outputs, users
can start to edit the translated sentences accord-
ing to their preference by clicking the “post-edit”
button. Consequently, when the users click the “Fin-
ish” button after completing the changes, a triplet
of the source sentence, machine-translated output,
and personalized post-edit is sent to our database.
Note that the origin of post-edited sentences is each
particular user, which makes USP contains inter-
personal variation, unlike existing APE datasets.

3We collected data only from users who consent to the
data collection for research purposes. In addition, there is
no privacy issue because de-identification had taken for the
collected data.

Figure 4: Illustration of the user experience flow for
post-edit log generation.

Since we collect USP from the real-world users’
inputs that contain various noises (e.g., unedited,
duplicated, or meaningless examples), we prepro-
cess the data to eliminate these noises. Furthermore,
most users only edited few examples, which are
not sufficient to represent their style. Therefore,
we select the users who left more than 100 sam-
ples, i.e., 30 users with 7K sentences and 70 users
with 9K sentences for en→ko and ko→en USP
dataset, respectively. For users who left less than
100 samples, we aggregate the samples (i.e., 0.12M
sentences) and utilize them as training data for
the task-adaptive pre-training (Gururangan et al.,
2020). The discriminator module and user-specific
parameters are not used in the task-adaptive pre-
training and only the parameters for DS-BERT are
utilized for the pre-training stage. Details of data
preprocessing are in Appendix A.

Additionally, we adopt a Speaker Annotated
TED (SATED) dataset (Michel and Neubig, 2018)
containing more than 2,000 sets of speaker style-
contained source sentences, which is publicly avail-
able. We select the dataset to show the robustness
of our model regarding different datasets and lan-
guages.

4.2 Experimental Setup

Evaluation metric. We use three different met-
rics to evaluate how well our proposed model pre-
serves the content and incorporates the personal
preferences. BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) scores are considered
to assess the translated sentence where the ground-
truth sentence is a pe sentence. We also leverage
YiSi-1 (Lo, 2019) that computes the semantic sim-
ilarity of phrases between the model output and
pe, which can be sensitive to detailed styles. We
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Methods
en→ko ko→en

BLEU↑ TER↓ YiSi-1↑ BLEU↑ TER↓ YiSi-1↑
(1) Uncorrected 64.9 (-5.6) 21.1 (+1.2) 87.3 (-1.1) 75.1 (-3.5) 17.7 (+1.4) 88.9 (-0.8)

(2) DS-BERT 68.4 (-2.1) 21.1 (+1.2) 87.6 (-0.8) 77.1 (-1.5) 17.6 (+1.3) 89.1 (-0.6)

(3) DS-BERT + Full Bias 68.6 (-1.9) 20.9 (+1.0) 88.0 (-0.4) 78.0 (-0.6) 16.9 (+0.6) 89.6∗ (-0.1)

(4) DS-BERT + Factor Cell 67.5 (-3.0) 22.1 (+2.2) 88.0 (-0.4) 76.5 (-2.1) 18.4 (+2.1) 89.2 (-0.5)

(5) DS-BERT + User CLS 69.0 (-1.5) 20.9 (+1.0) 87.1 (-1.3) 78.1 (-0.5) 16.5 (+0.2) 89.4 (-0.3)

(6) DS-BERT + User Token 68.8 (-1.7) 20.5 (+0.6) 87.0 (-1.4) 74.3 (-4.3) 21.6 (+5.3) 88.5 (-1.2)

(7) PePe 70.5 19.9 88.4 78.6 16.3 89.7

(8) -discriminator 68.6 (-1.9) 20.9 (+1.0) 88.0 (-0.4) 78.0 (-0.6) 16.9 (+0.6) 89.6∗ (-0.1)

(9) -(8) & user bias 68.4 (-2.1) 21.1 (+1.2) 87.6 (-0.8) 77.1 (-1.5) 17.6 (+1.3) 89.1 (-0.6)

(10) -(9) & pre-training 60.2 (-10.3) 31.9 (+12.0) 86.3 (-2.1) 67.6 (-11.0) 28.7 (+12.4) 87.6 (-2.1)

Table 1: Quantitative comparison with the baselines on the USP dataset that contains en→ko language pairs and vice
versa. (8) to (10) denotes the ablation results. The ablation study is designed to verify each module in PePe. User
bias in (9) denotes the user-specific parameters located at the end of the decoder, and pre-training in (10) denotes the
task-adaptive pre-training stage. The bold represents the significant difference (p < 0.05) against other baselines.
We conduct the t-test with five runs and report the average score of it. ∗ means that there is no significant difference
in the scores between the model and PePe.

also conduct a human evaluation, which will be
described in the following section.

Baseline Methods. We compare the performance
of our method with the following baselines. Since
this is the first attempt to personalize the translation
using post-edits, we newly adjust existing personal-
ized translation methods onto the APE framework
for comparisons.

1) Uncorrected is the same as mt in person-
alized post-editing data, which is generated from
the online MT system. No correction was made
on it. 2) DS-BERT is a transformer based post-
editing model (Correia and Martins, 2019) that
we adopt as our backbone in the method sec-
tion. DS-BERT is a general approach in the re-
cent APE task. To our knowledge, the recently pro-
posed state-of-the-art APE models (Yang et al.,
2020; Oh et al., 2021) are either based on the
Dual-Source Transformer (Junczys-Dowmunt and
Grundkiewicz, 2018) or DS-BERT. We believe that
demonstrating the feasibility of personalized post-
editing using a fundamental APE model is more
suitable than models that use APE task-specific
techniques. 3) DS-BERT + Full bias (Michel and
Neubig, 2018) utilizes additional user bias vec-
tors on the decoder’s output. 4) DS-BERT + Fac-
tor bias (Michel and Neubig, 2018) uses factor-
ized user bias on the output of the decoder. User-
independent biases are shared with all users. How-
ever, the user-specific vector can adjust each user-
independent vector’s magnitude. 5) DS-BERT +

User CLS is a multi-task composed of a user clas-
sification and APE task. The first token of an en-
coder input is used to stand for user identity. The
corresponding output vector is used to classify a
ground-truth user label. A single layer of a feed-
forward neural network is used for the classifier. 6)
DS-BERT + User Token (Sennrich et al., 2016)
adds a token at the start of each post-edited sen-
tence to indicate the user for each sentence. We
train the model in a teacher-forcing manner.

4.3 Quantitative Evaluation

Results using automatic metrics and human evalua-
tion are presented in this section. PePe consistently
outperforms the baselines on all datasets we consid-
ered. We also show the robustness of PePe regard-
ing the different number of users, data distributions,
and language pairs.

Performance of PePe against other baselines.
(1) to (7) in Table 1 shows the personalized trans-
lation results of varied baselines. Our proposed
method outperforms the six baselines with the non-
trivial margin both on en→ko and ko→en USP
dataset. For instance, BLEU score increased in the
range of 1.7 to 5.6, YiSi-1 increased in the range
of 0.4 to 1.4, and TER decreased in the range of
0.6 to 2.2 over baselines, in en→ko dataset. Con-
sistent results from these three different metrics
verify that PePe easily figure out distinct taste of
users while preserving source contents. Especially,
experiments in en→ko dataset show the most out-
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Metrics PePe DS-BERT Uncorr.

Style - 1st 59.6 18.1 22.2
Style - 2nd 21.0 39.1 39.9
Style - 3rd 19.5 42.6 37.9

Non-Style 3.94(1.08) 3.60(1.19) 3.82(1.16)

Table 2: Human evaluation on en→ko USP dataset.
Style and non-style factors are both surveyed. For the
style factor, each score represents the proportion. For
instance, 59.6% of evaluators choose PePe as the first
place among other models. For the non-style factor, a
Likert scale from 1 to 5 evaluates fluency and source
contents preservation. We report the average score and
the standard deviation.

Model
en→de en→fr

BLEU↑ BLEU↑

Michel and Neubig (2018) 27.2 38.5
DS-BERT 30.4 42.2
PePe 31.2 43.7

Table 3: Experiments on the SATED dataset. PePe out-
performs DS-BERT on different language pairs even
for a synthetic post-editing dataset. The bold represents
the best score among the baselines and significantly
(p < 0.05) outperforms DS-BERT.

standing performance gains since the data mostly
come from the users whose first language is Ko-
rean; the users can reflect the linguistic preference
more naturally on this dataset.

Ablation study. The comparison between PePe
and (8) in Table 1 shows the importance of the
discriminator module. When we exclude the dis-
criminator module, the BLEU and TER scores
are decreased on both en→ko and ko→en. The
results of the vanilla APE model (i.e., (9) in Ta-
ble 1) show that the user-specific parameters are
also significant for personalized translation. More-
over, when we do not adopt the APE task-adaptive
pre-training (i.e., (10) in Table 1), the performance
of the model drops even further. Overall, our ab-
lation study demonstrates that each component is
essential for the task.

Human evaluation. To validate the advantage of
our approach, we conduct human evaluations. Hu-
man evaluation can be a reasonable measurement
choice to evaluate the personalization task because
even sophisticated evaluation metrics can fail to
capture the abstract (i.e., high-level) user behavior

Figure 5: Robustness on the number of users. The dark
squares denote the BLEU score, and the light circles
denote the TER score. The number of clusters is equally
adopted as ten for all cases. The users are randomly
selected from the USP dataset.

reflected in the pe sentence. We hired 20 Korean-
English who are bilingual and engaged in the fields
of linguistics and machine learning for human eval-
uation. We randomly select 30 source sentences
and generate corresponding target sentences from
Uncorrected, DS-BERT, and PePe before carrying
out two types of questions to compare different met-
rics. 1) We ask participants to annotate generated
sentences along with fluency and content preser-
vation. Sentences are measured on a Likert scale
from 1 to 5. 2) We take three sentences generated
from three different models. Participants rank these
sentences from first to third, i.e., asking which sen-
tence is most similar to the ground-truth pe that
contains distinct writing styles.

As reported in Table 2, PePe is ranked 1st by
most evaluators. PePe not only achieved the best
score on style evaluation but also on non-style
factors (i.e., fluency and contents preservation),
which is essential for the translation task. DS-
BERT achieves the lowest score on both measures,
indicating that the ambiguous reflection of style is
worse than none. The human evaluation results are
consistent with our quantitative results measured
by automatic metrics.

Robustness of our model. Table 3 shows the per-
sonalized translation results on en→de and en→fr
SATED dataset. Since the dataset is initially con-
structed for the machine translation task where post-
edited sentences do not exist, we utilize target sen-
tence (i.e., mt) in the place of pe and independently
generate mt from a particular translation model
(i.e., pre-trained transformer based NMT model).
Regardless of the language, the results demonstrate
that PePe and DS-BERT, which leverages triplets
(src, mt, pe), outperform Michel and Neubig (2018)
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en→ko

src Immediately provide non-monetary benefits as required.
mt 필요에따라즉시비화폐성편익을제공하십시오.
PePe 요구된대로비화폐성혜택을즉시제공한다.
pe 요구되어진비화폐성혜택을즉시제공한다.

src Choose this option to make the current preset load whenever a new multi Instrument is created.
mt 새멀티계측기가생성될때마다현재사전설정된로드를만들려면이옵션을선택하십시오.
PePe 새 multi instrument가생성될때마다현재 preset을만들려면이옵션을선택하십시오.
pe 새 multi instrument가생성될때마다현재 preset load를만들려면이옵션을선택하십시오.

ko→en

src 겨울왕국 2속에나오는장면이있다.
mt there is a scene in winter kingdom 2.
PePe there is a scene in frozen 2.
pe there is a scene in frozen 2.

src 관사아래에있는모음코드가이렇게바뀌어진다.
mt the vowel code under the official building changes like this.
PePe the vowel code under the article changes like this.
pe the vowel code under the article changes like this.

Table 4: Qualitative examples of post-edited sentences generated from PePe. User-specific parts in pe and corre-
sponding parts in mt are colored. We highlight the post-edited words in PePe with bold if the words are identical
to pe. Corresponding parts in src are underlined. Our model finds an appropriate combination of attributes in
accordance with sentences and users.

that relies on paired sentences (src, mt). In addi-
tion, the results also show that even if pe is not
edited from the mt, PePe translates the source sen-
tence close to the ground-truth target sentence that
connotes the speaker’s characteristics.

Fig. 5 shows that our model works well regard-
less of the number of users. Grey-colored lines are
the performance of the baseline model, and colored
lines are the performance of PePe. TER axis is re-
versed on the graph to make consistency with the
BLEU score. Note that the higher points denote a
better score than the lower points.

Furthermore, we conduct additional experiments
that show the robustness of our approach regarding
the number of clusters and adjustment rates, which
are hyperparameters. We represent the results in
Appendix B.

4.4 Qualitative Analysis

To understand how user-specific preferences are
incorporated into the sentences, we qualitatively
analyze the post-edited results of our model as
shown in Table 4. A typical example of the multi-
attribute correction appears in the first row, which
changes the sentence structure and the preferred
word choices. Our model tends to retain the over-
all meaning of the source sentence while precisely
treating an abstractive personal behavior. The out-
put of PePe in the second row tends to keep loan-
words in English instead of translating them into
Korean (i.e., “multi instrument”, “preset load”),

while mt suffers from generating sentences that
consider those preferences. An example of chang-
ing a homonym to a suitable word is shown in
the last row. Since “official building” and “arti-
cle” are homonyms in Korean, PePe chooses the
word that is appropriate for the semantic meaning
of the sentence. We further provide several exam-
ples that consider the multidimensional attributes
in Appendix C. In either a single attribute or a multi
attributes case, our model properly reflects distinct
preferences.

5 Conclusion

In this work, we propose a personalized post-
editing method, PePe, utilizing user-generated post-
edits. Based on the APE framework, PePe lever-
ages two modules, 1) user-specific parameters and
2) a semantic cluster-based discriminator module.
These modules lead to reflect the multifarious inter-
personal variations, where the former allows the
model to learn user-dependent probabilities for
each word while the latter unlearns the detrimental
features in a pre-trained language model and main-
tains advantageous effects of the transfer learning.
We empirically demonstrate that PePe reflects fine-
grained user preference in a variety of settings. To
the best of our knowledge, this work is the first
attempt to utilize the APE framework with the user-
generated post-edits for personalized translation.
We believe that our work can draw more attention
toward personalized translation, which is the ul-
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timate direction that the neural translation model
should go forward.

6 Limitations

Promising future work is analyzing the pattern of
personalization depending on language pairs. De-
pending on the nationality of users, the pattern of
personalization may appear differently due to cul-
tural differences, and extensive experiments on var-
ious language pairs are required to analyze this.
In addition, if anyone can access the personalized
model, there is a potential risk that the model can
be abused to disguise itself as a specific individual.
Therefore, there is a need for a strategy of limit-
ing the authority to access the personalized model
or verifying a person who uses the personalized
model.
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Supplementary Material

This material complements our paper with addi-
tional experimental results and miscellaneous de-
tails. Section A provides the implementation details.
Section B addresses the additional experiments that
show the robustness of our model against a varied
number of clusters and adjustment rates. In Sec-
tion C, we demonstrate the variety of qualitative
examples of post-edited sentences generated from
PePe.

A Training details

Data Prepossessing. For the data preprocessing,
we first filter out the duplicate lines and normalize
the data such that each line represents a single sen-
tence. Also, we exclude sentence that is longer than
100 words. Then, we utilize term frequency inverse
document frequency (TF-IDF) to compute the user
similarity score and filter out the noisy users. To
be specific, we form a document for each user by
aggregating src. If a particular user has a lower than
0.1 similarity score, we exclude those users. We
assume that if a user has a lower similarity score
with others, then those users may contain noisy sen-
tences. After prepossessing noisy data for USP, we
divide the dataset into train/valid/test, which results
in 5,207, 1,001, and 1,125 samples for Korean to
English language pair, and 6,330, 1,360, and 1,357
samples for English to Korean. Since we split into
train/valid/test for each user, the user appearing in
the train dataset guarantees to appear in the test
dataset.

Training and Inference Procedures. The main
difference between training and inference proce-
dures is the existence of a discriminator module. In
other words, the clustering module and the discrim-
inator are not utilized during the inference proce-
dure. However, similar to the training procedure,
we utilize the trained user-specific bias vector that
corresponds to the user ID of each input sentence
while generating a post-edited sentence.

Evaluation and HyperParameter Details. We
evaluate all experiments based on SacreBLEU4,
TER5, and YiSi-16 scores. Since YiSi-1 requires
pre-trained word embedding vectors, we utilize
fastText7 to pretrain word embeddings. For the

4https://github.com/mjpost/sacrebleu
5https://www.statmt.org/wmt18/ape-task.html
6https://github.com/chikiulo/yisi
7https://github.com/facebookresearch/fastText

Hyperparameters Value

Pre-trained LM BERT-base-multilingual
Learning rate 0.00005
Batch size 512
Accumulation step 2
Optimizer AdamW
Dropout 0.1
Label smoothing 0.1
Random seed 42, 101, 1215, 1129, 909
Decoding strategy Beam search
Beam size 3

Table 5: Hyperparameter settings. AdamW (Loshchilov
and Hutter, 2019) is the Adam (Kingma and Ba, 2015)
optimizer with weight decay.

hyper-parameter settings, we use 10 clusters with
0.3 adjustment rates for all the experiments in the
main paper. We select the combination of hyper-
parameters by manual tuning, which achieves the
highest performance in the validation set based on
the TER metric. Conditions for early-stopping and
decoding are equally applied to the baselines. We
follow the settings of hyperparameters in Correia
and Martins (2019) except sharing the weight of
the encoder and the decoder. We conducted all the
experiments five times, and the random seeds used
were 42, 1215, 101, 909, and 1129. We selected the
highest performance learning rate value between
0.00005 and 0.0001. We report the configuration
of our best model in Table 5.

Environment Details. All experiments in Table 1
is examined with CentOS Linux release 7.8.2003,
Tesla P40 GPU, and Intel Xeon CPU E5-2630. Re-
sults in Table 3 are examined with Ubuntu 16.04.6,
Intel Xeon processor, and Tesla V100-PCIE-32GB
GPU. The versions of the libraries we used in all
experiments are 3.7.6 for Python and 1.4.0 for Py-
torch.

B Robustness to the number of cluster
and hyperparameter

In the main paper, we conduct all experiments with
10 cluster labels. However, to be useful for the var-
ied settings, it is crucial to demonstrate the model’s
robustness to the number of clusters and adjust-
ment rate. Here we provide the results trained on
30 cluster labels with various adjustment rates from
0.1 to 0.5. Identical with Table 1, we utilize en→ko
dataset of 30 users. Table 6 indicates that PePe
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Models BLEU↑ TER↓
Uncorrected 64.9 21.1
DS-BERT 68.5 21.1

PePe (k30, m0.1) 70.2 20.2
PePe (k30, m0.2) 69.7 20.3
PePe (k30, m0.3) 69.9 19.9
PePe (k30, m0.4) 69.0 20.8
PePe (k30, m0.5) 70.2 20.3

Table 6: Experiments on various hyperparameter set-
tings on a USP dataset. k denotes the number of clusters
and m denotes the adjustment rate.

consistently generates high-quality sentences, re-
gardless of the hyperparameters.

C Additional qualitative examples

This section provides additional qualitative exam-
ples from PePe. We choose the samples from the
inference results of USP dataset, and both ko→en
and en→ko language pairs are reported. As shown
in Table 7, Table 8, Table 9, Table 10, Table 11, and
Table 12, the tables are organized according to the
typical personalization cases (i.e., error correction,
word choice, politeness, and multiple attributes).
Red color represents error correction case, Yellow
color represents word choice case, and Green color
represents politeness case. Each case also accom-
panies the insertion and deletion of the words (i.e.,
tokens). Sentences inferred from PePe show that it
well reflects the personal traits of each user and the
characteristics of each language.

D Importance of personalized translation

The importance of stylized translation can stand
out in certain scenarios, such as the translation of
everyday conversations. For example, when an En-
glish speaker uses a translator to talk to a German
speaker, he or she may wish to communicate with
a translation result that includes an individual’s per-
sonality rather than a normal translation of a neu-
tral tone (e.g., replacing with a word that the user
likes to use). At this time, our personalized transla-
tion methodology can be used to deliver translation
results containing the user’s personality to the Ger-
man speaker without post-processing. We believe
that in order for a translation model to be utilized
in the everyday conversation of various users, it is
ultimately important to consider the individuality
of each user beyond fluency.
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Error Correction (en→ko)

src Begin the stroke by moving the hand , while the elbow remains still and high.
mt 팔꿈치가가만히있고높게유지되는동안손을움직이면서뇌졸중을시작한다.
PePe 팔꿈치가가만히있고높게유지되는동안손을움직이면서팔동작을시작한다.
pe 팔꿈치가가만히있고높게유지되는동안손을움직이면서팔동작을시작한다.

src Periodically check on her progress.
mt 정기적으로진행상황을확인합니다.
PePe 정기적으로그녀의진행상황을확인합니다.
pe 정기적으로그녀의진행상황을확인합니다.

src All manual checks unclaimed for more than 6 months shall be canceled.
mt 6개월이상청구되지않은모든수동점검은취소된다.
PePe 6개월이상청구되지않은모든수동수표는취소된다.
pe 6개월이상청구되지않은모든수동수표는취소된다.

src If a signal has finite power its energy will be infinite.
mt 만약어떤신호가한정된힘을가지고있다면그에너지는무한할것이다.
PePe 만약어떤신호가한정된전력을가지고있다면그에너지는무한할것이다.
pe 만약어떤신호가한정된전력을가지고있다면그에너지는무한할것이다.

src The historical cost of the intangible fixed assets transferred shall be the historical cost recorded in the accounting
records of the receiver.

mt 이전하는무형고정자산의역사적원가는수취인의회계기록에기록된역사적원가를말한다.
PePe 이전하는무형고정자산의취득원가는수취인의회계기록에기록된취득원가를말한다.
pe 이전하는무형고정자산의취득원가는수취인의회계기록에기록된취득원가를말한다.

src Emotional exhaustion is the central quality and the most obvious manifestation of burnout.
mt 감정기진맥진은중심적인질이고가장명백한소진증상이다.
PePe 정서적소진은중심적인질이고가장명백한번아웃증상이다.
pe 정서적소진은번아웃의중심특성이자가장명백한징후이다.

Table 7: PePe generates post-edited sentences that corrects the grammar errors from the machine-translated outputs.

Word Choice (en→ko)

src Hide the layer containing the cutting lines.
mt 절단선이들어있는레이어를숨긴다.
PePe 커팅라인이들어있는레이어를숨긴다.
pe 커팅라인이들어있는레이어를숨긴다.

src The worker explores cultural diversity factors that may be a part of the problem or situation.
mt 노동자는문제나상황의일부일수도있는문화적다양성요소를탐구한다.
PePe 사회복지사는문제나상황의일부일수도있는문화적다양성요소를탐구한다.
pe 사회복지사는문제나상황의일부일수도있는문화적다양성요소를탐구한다.

src Exemestane is one of the most potent aromatase inhibitors presently available.
mt exemestane은현재사용가능한가장강력한방향족억제제중하나이다.
PePe exemestane은현재사용가능한가장강력한 aromatase억제제중하나이다.
pe exemestane은현재사용가능한가장강력한 aromatase억제제중하나이다.

src You do not want them drunk and lazy.
mt 너는그들이술에취해서게을러지는것을원하지않는다.
PePe 당신은그들이술에취해서게을러지는것을원하지않는다.
pe 당신은그들이술에취해서게을러지는것을원하지않는다.

src By combining the two outputs without the external phase shift, a sum signal is provided for range tracking.
mt 외부위상이동없이두출력을결합함으로써범위추적을위한합계신호가제공된다.
PePe 외부위상이동없이두출력을결합함으로써거리추적을위한합계신호가제공된다.
pe 외부위상이동없이두출력을결합함으로써거리추적을위한합계신호가제공된다.

src What are my needs for developing my capacity and potentiality?
mt 내능력과잠재력을개발하기위한나의필요성은무엇인가?
PePe 내능력과잠재력을개발하기위한나의 needs는무엇인가?
pe 내능력과잠재력을개발하기위한나의 needs는무엇인가?

Table 8: PePe changes the words that are not suitable for personal style but are grammatically correct to other
candidates, such as synonyms and loanwords.
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Politeness (en→ko)

src Spend some time looking over the meeting agenda in advance and think about some of the key topics.
mt 회의안건을미리살펴보고몇가지주요주제에대해생각해보십시오.
PePe 회의안건을미리살펴보고몇가지주요주제에대해생각해보라.
pe 회의안건을미리살펴보고,몇가지주요주제에대해생각해보라.

src She wants the assignment.
mt 그녀는그과제를원한다.
PePe 그녀는그과제를원합니다.
pe 그녀는그과제를원합니다.

src Watch this video for directions on how to complete the S1 Conversations challenge.
mt 대화과제를완료하는방법은이비디오를참조하십시오.
PePe 대화과제를완료하는방법은이비디오를참조하세요.
pe 대화과제를완료하는방법은이비디오를참조하세요.

src According to the U.S. Bureau of Census, there are approximately 90 million households in the United States.
mt 미국인구조사국에따르면,미국에는약 9천만가구가살고있다고합니다.
PePe 미국인구조사국에따르면,미국에는약 9천만가구가살고있다고한다.
pe 미국인구조사국에따르면,미국에는약 9천만가정이살고있다고한다.

src The store is located inside the Terminal 1.
mt 그상점은터미널 1안에있다.
PePe 지점은터미널 1안에있습니다.
pe 지점은터미널 1내에있습니다.

src Maps are also available that show the tract boundaries, making the data readily discernible.
mt 트랙경계가표시된지도도사용할수있어데이터를쉽게식별할수있습니다.
PePe 트랙경계가표시된지도도사용할수있어데이터를쉽게식별할수있다.
pe 통로경계를보여주는지도도제공되므로데이터를쉽게식별할수있다.

Table 9: PePe controls the level of politeness. The usage of the honorifics varies from language to language.

Multiple Attributes (en→ko)

src Our staff will send you back to the airport.
mt 우리직원이너를공항으로돌려보낼것이다.
PePe 저희직원이공항으로돌려보낼것입니다.
pe 저희직원이고객님을공항으로데려다줄것입니다.

src When the machine receives the data, it automatically reads the crop marks using a sensor, and then starts cutting.
mt 기계가데이터를받으면자동으로센서를이용해자르기표시를읽은뒤절단을시작한다.
PePe 장비가데이터를받으면자동으로센서를이용해 crop mark를읽은뒤커팅을시작한다.
pe 장비가데이터를받으면자동으로센서를이용해 crop mark를읽은뒤커팅을시작한다.

src When transferring major repairs of fixed assets for non-business activities, the following accounts shall be recorded.
mt 비사업활동용고정자산의주요수리를이전할때에는다음사항을기재하여야한다.
PePe 비영리활동용고정자산의주요수리를이전할때에는다음과같이회계처리하여야한다.
pe 비영리활동용고정자산의주요수리를이전할때에는다음과같이회계처리하여야한다.

src The free shuttle bus will come to pick you up around 10 minutes.
mt 무료셔틀버스가약 10분정도당신을데리러올것이다.
PePe 무료셔틀버스가약 10분정도고객님을데리러올것입니다.
pe 무료셔틀버스가약 10분정도고객님을데리러올것입니다.

src If using 3 crop marks, select 3-point start.
mt 3개의자르기표시를사용하는경우 3-point start를선택하십시오.
PePe 3개의 crop mark를사용하는경우 3-point start를선택한다.
pe 3개의 crop mark를사용하는경우 3-point start를선택한다.

src The following parameters control the display of points-clouds (right).
mt 다음매개변수는점구름 (오른쪽)의표시를제어합니다.
PePe 다음파라미터는포인트클라우드 (오른쪽)의표시를제어합니다.
pe 다음파라미터는포인트클라우드 (오른쪽)의표시를제어합니다.

Table 10: PePe not only tackles a single attribute but also generates high-quality sentences with multiple attributes
revised. Each attribute is colored with a corresponding color.
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Error Correction (ko→en)

src 그래서전치사 ‘reo’는 ‘to’와 ‘for’의의미가있다.
mt so the prepositions ‘reo’ have the meaning of ‘to’ and ‘for’.
PePe so the preposition ‘reo’ has the meaning of ‘to’ and ‘for’.
pe so the preposition ‘reo’ has the meaning of ‘to’ and ‘for’.

src 관사아래에있는모음코드가이렇게바뀌어진다.
mt the vowel code under the official building changes like this.
PePe the vowel code under the article changes like this.
pe the vowel code under the article changes like this.

src professor는단일한관리통제기구보다상업적차원,정부차원등다차원적모델의시도를결합하는노력이
필요하다고지적한다.

mt the processor points out that efforts need to be made to combine attempts by multi-dimensional models
such as commercial and government levels rather than single management and control organizations.

PePe the professor points out that efforts need to be made to combine attempts by multi-dimensional models
such as commercial and government levels rather than single management and control organizations.

pe the professor gasser points out that efforts need to be made to combine attempts by multi-dimensional models
such as commercial and government levels rather than single management and control organizations.

src ‘dagesh’가놓일수없다.
mt ‘dagesh’ can’t be let go.
PePe ‘dagesh’ can’t be placed.
pe ‘dagesh’ can’t be placed.

Table 11: PePe generates post-edited sentences that corrects the grammar errors from the machine-translated outputs.

Word Choice (ko→en)

src 내부배선의색상은아래와같이구분하여사용하여야한다.
mt the colour of the inner wiring shall be used separately as follows.
PePe the color of the inner wiring shall be used separately as follows.
pe the color of the inner wiring shall be used separately as follows.

src 추정공시가격이올해거래된 urgent sale price를앞서고있다.
mt the estimated official price is ahead of the current sales price traded this year.
PePe the estimated official price is ahead of the urgent sale price traded this year.
pe the estimated official price is ahead of the urgent sales price traded this year.

src 12월싱가폴,말레이시아지역패키지상품판매확대
mt expanding sales of package products in singapore and malaysia in december.
PePe expanding sales of pkg products in singapore and malaysia in december.
pe expanding sales of pkg products in singapore and malaysia in december.

src 한해전에쓰고남은돈이 1억2천만원정도였다.
mt the remaining money was about 120 million won a year ago.
PePe the remaining money was about krw 120 million a year ago.
pe the remaining money was about krw 120 million a year ago.

Table 12: PePe changes the words that are not suitable for personal style but are grammatically correct to other
candidates, such as synonyms and loanwords.
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Abstract

In multi-turn dialog understanding, semantic
frames are constructed by detecting intents and
slots within each user utterance. However, re-
cent works lack the capability of modeling
multi-turn dynamics within a dialog in nat-
ural language understanding (NLU), instead
leaving them for updating dialog states only.
Moreover, humans usually associate relevant
background knowledge with the current dialog
contexts to better illustrate slot semantics re-
vealed from word connotations, where previous
works have explored such possibility mostly in
knowledge-grounded response generation. In
this paper, we propose to amend the research
gap by equipping a BERT-based NLU frame-
work with knowledge and context awareness.
We first encode dialog contexts with a unidirec-
tional context-aware transformer encoder and
select relevant inter-word knowledge with the
current word and previous history based on a
knowledge attention mechanism. Experimen-
tal results in two complicated multi-turn dialog
datasets have demonstrated significant improve-
ments of our proposed framework. Attention
visualization also demonstrates how our mod-
ules leverage knowledge across the utterance.

1 Introduction

In conventional task oriented dialog systems, natu-
ral language understanding (NLU) modules aim
to transform utterances into meaningful seman-
tic representations for dialog management (Weld
et al., 2021; Zhang et al., 2020). It mainly de-
tects associated dialog acts or intents and extracts
key slot information as so-called ‘semantic frames’
(Abbeduto, 1983), shown in Table 1. Humans usu-
ally associate relevant knowledge and previous con-
texts with current utterance’s entities to understand
an utterance. Similarly, models’ prediction of over-
all intent semantics and slot values can benefit from
act relations such as ‘Inform’ may follow ‘Request’
acts, and background knowledge which is usually

Speaker Utterance

1. User Is there something that’s
maybe a good intelligent comedy?

Act & Slots: Request (genre: comedy)

Knowledge:
(intelligent; related to; well_informed)
(comedy; related to; comic)
(comedy; is a; drama)

2. System
Whiskey Tango Foxtrot is the only
Adult comedy I see playing in your
area. Would you like to try that?

Act & Slots:

Inform (movie: Whiskey Tango Foxtrot)
Inform (genre: Adult comedy)
Inform (distance limits: in your area)
Confirm_question

Knowledge:

(foxtrot; related to; dance)
(foxtrot; related to; rhythm)
(adult; capable of; work)
(area; is a; region)

Table 1: Excerpt of a single turn within a dialog with
corresponding dialog acts, slots and knowledge samples
that are related to keywords in the utterance.

represented as triples in knowledge graphs (Wang
et al., 2021a).

However such intuition has not been emphasized
when automating NLU tasks. In early attempts of
NLU systems, utterances were isolated and ana-
lyzed separately for user intents and semantic slots
(Raymond and Riccardi, 2007; Liu et al., 2017).
Models that maximize the joint distribution likeli-
hood were proposed to allow transitions between
two tasks (Liu and Lane, 2016; Wang et al., 2018;
Wu et al., 2021a; Li et al., 2018a). While driven
by large pretrained corpora, these methods still fall
short of employing complete dynamic interactions
within dialogs, especially in multiple intent cases
(Qin et al., 2019; Rashmi Gangadharaiah, 2019;
Qin et al., 2020). Some works have then integrated
dialog contexts for more robust NLU (Wang et al.,
2019; Gupta et al., 2019; Su et al., 2021; Wu et al.,
2021c). However, many of them could not capture
dialog flows well with RNN encoders or explain
how contexts should affect the slot filling task.

Publicly available models like BERT or XLNet
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provide universal contextualized representations
that could be adapted for learning task-oriented
contexts. However, it may not give full play to its
value when tagging some rare words like Foxtrot to-
gether with Tango as Movie in Table 1 that may ap-
pear in a domain-specific dataset. One can pretrain
these models beforehand emphasizing such phrase
relationship which nevertheless tends to be time-
consuming and computationally expensive. There-
fore, directly integrating external knowledge like a
knowledge graph (KG) becomes a more tractable
solution (Liu et al., 2019; Zhang et al., 2019b; Wu
and Juang, 2022b).

However, there are mainly three challenges ly-
ing in the way of such integration: (1) Hetero-
geneous information fusion: the vector space of
KG entities is inconsistent with that of the pre-
trained models. (2) Knowledge noise: overwhelm-
ing knowledge for models may adversely cause
redundant noises for more ambiguity. Many works
in knowledge grounded dialog generation has ap-
plied term-level denoising (Zheng et al., 2021) or
filtering techniques (Wang et al., 2021b) to refine
the adopted knowledge for better semantic con-
siderations. (3) Inter-token knowledge sharing:
Wang et al. (2019) predicts a slot for a given word
along with its own associated knowledge. However,
real sentences may contain phrases where knowl-
edge between words should be shared to probably
enrich the entire utterance semantics. To overcome
these challenges and ground knowledge in contex-
tual NLU, which is less explored in the research
community, we propose a Context and Knowledge
Awareness NLU Framework (CKA-NLU) to effec-
tively incorporate relevant knowledge and dialog
history in dialog understanding.

The key ingredients lie in how we can efficiently
integrate relevant knowledge and previous history
for understanding. We first introduce a context
attention module to retrieve context-aware repre-
sentations. Different from previous works of de-
termining a given word’s slot based on its own
knowledge, our objectives require models to aggre-
gate both previous dialog contexts and all intra-
sentence knowledge facts together to formulate
context-attended knowledge vectors in the same
space. Such vectors are a weighted combination
of all knowledge facts based on the aggregated
information until the current turn. We use atten-
tion masks and filtering to remove adversarial ef-
fects from redundant knowledge noises. Finally

we adopt these context-attended vectors for NLU
tasks with RNN decoders. Experiment results have
shown superior performances of our methods that
beat all competitive baselines.

Our contributions are as follows:
1. We propose a novel CKA-NLU framework
that incorporates inter-word knowledge with inter-
sentence contexts to fill the void of relevant knowl-
edge exploration for important NLU tasks.
2. We demonstrate the benefits of adopting knowl-
edge for token-level slot filling and dialog history
for sentence-level intent detection.
3. Experimental and attention visualization re-
sults show that our model achieves superior per-
formances over several competitive baselines and
demonstrates how our model adopts the knowledge.

2 Problem Formulation

For each utterance xn = {wn1 , wn2 , . . . , wnT } in a
task-oriented dialog X with N utterances, given
the domain ontology of a dialog act set A and a
slot set S, we aim to find one or more acts {ani }
1 and a sequence of slot tags {sn1 , sn2 , . . . , snT } to
construct a semantic frame. Namely, we hope to
maximize the joint log likelihood of A and S in
Eq 1 given a parametrized model θ, its context
Cn = {x1, . . . , xn−1} and associated knowledge
Kn = ϕ(KG, xn) for the current utterance xn. We
deem KG as an external large knowledge base with
knowledge represented as triples (head h, relation
r, tail t) and ϕ(·) helps to extract related knowledge
pairs for xn (§3.2.1). It will be critical to match
correct knowledge based on current dialog history
and the utterance for better dialog understanding.

L(A,S) ≜
∑

n

log P (An, Sn | xn,Cn,Kn; θ)

(1)

3 Methodology

3.1 Context Attention

Our overall framework is illustrated in Figure 1.
To allow information flow across the dialog, we
first encode the entire dialog with a token-level
BERT (Devlin et al., 2019) encoder and a turn-
level context-aware transformer encoder. Instead
of concatenating all sentences which may cause
an extreme sequence length, we first generate the
token-level representations H = {h1, h2, . . . , hN}

1Dialog acts and intents are equivalent and interchangeably
used in this paper.
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Figure 1: Illustration of our proposed framework for joint dialog act detection and slot filling in multi-turn dialogs.
It consists of context and knowledge attention modules, and two LSTM-based decoders. The utterance-level
representations will be encoded with the context attention module and token-level representations will interact with
their corresponding knowledge in three proposed awareness submodules.

for each utterance xn in a dialog X by taking vec-
tors from each [CLS] token. During testing at turn
n, we may directly reuse these calculated represen-
tations {h1, h2, . . . , hn−1} until turn n− 1.

In contrast with other contextual NLU (Wang
et al., 2019; Gupta et al., 2019) with hierarchi-
cal components, we introduce a GPT-like unidi-
rectional transformer encoder with the hidden size
Ha to encode H ∈ RN×Hb . It consists L lay-
ers of masked multi-head self-attention (MHA),
point-wise feed forward network (FFN), residual
sublayer and layer normalization. The future time
steps are masked for training since we will not
have access to future utterances during testing. We
will send H as the first layer input C1 and itera-
tively encode it with two sublayers in Eq 2. Each
head Ci ∈ RN×(Ha/h) will be first mapped into a
query CQ, a key CK and a value CV which partic-
ipate in the multi-head self-attention. Here f(·) is
softmax function. Finally, we will obtain the final
contextual dialog representations CL.

Cl = FFN(MHA(Cl−1,Cl−1,Cl−1))

(2)

MHA(CQ
i ,C

K
i ,C

V
i ) = f(

CQ
i (CK

i )T√
Hb

)CV
i

(3)

FFN(x) = max(0, xW1 + b1)W2 + b2
(4)

3.2 Knowledge Attention
Humans could naturally associate contexts with
relevant knowledge to predict semantics. Here we
elaborate on how we can leverage current contexts

CL = {cLn} and a relevant knowledge base KG to
induce the intents and slots for each utterance xn.

3.2.1 Knowledge extraction
The first step is to gather all necessary knowledge
triples γ = {h, r, t}, which are head h and tail t
entities with their relation r, related to the current
utterance xn = {wn1 , wn2 , . . . , wnT }. For each word
wni , we first retrieve a list of triples with the exactly
same head entity being wni from a knowledge base
KG. If no head entities are matched, we instead
seek entities that has a substring of wni . Each triple
in the pretrained KG (Bordes et al., 2013) has a
pre-given relation weight wr ∈ [0, 1]. For each
wni , we select |K| triples that have the largest |K|
weights as the final word-level knowledge kni . We
will finally obtain a T length knowledge sequence
Kn = {kn1 , kn2 , . . . , knT } gathered from each word
wni . In case of non-alphabetic or out-of-vocabulary
(OOV) words with no match in KG, we instead
replace their Kn as zero vectors to represent agnos-
ticism of knowledge.

3.2.2 Global awareness
To improve the heterogeneous information fusion
between contexts and knowledge, after obtaining
the knowledge sequence Kn = {kni } (i.e. total
T ×|K| triples γ = {h, r, t}), we aim to obtain the
context-attended knowledge sequence VK = {vni }
by selecting the most appropriate knowledge (i.e.,
removing redundant knowledge noise) within the
entire sentence, given each word wni and its previ-
ous dialog history cLn . Different from the term-level
denoising like Zheng et al. (2021) and Wang et al.
(2019), to allow phrase-level knowledge sharing,
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Figure 2: Knowledge Attention Diagram. (a) Context
Attention module will first process the dialog history and
produce context-aware vectors for each utterance. (b)
Token-level representation will be concatenated with the
context-aware vector. (c) The fused vector will be used
to calculate the attention weights for every knowledge
vector in the utterance. (d) The final context-attended
knowledge vector will be the weighted combination of
all knowledge vectors.

for each word, we aim to globally select all related
knowledge in the sentence after seeing previous
turns cLn . This will allow us to possibly consider
knowledge of words in the same phrase.

Shown in Figure 2, we calculate the vector vni
where rnij , t

n
ij are j-th relation and j-th tail en-

tity vectors for the word wni . WH,WR,WT are
learnable matrices during training. [; ] is the con-
catenation of two vectors:

vni =
T∑

i=1

|K|∑

j=1

αij [r
n
ij ; t

n
ij ] (5)

αij = exp(βij)/

T∑

i′=1

|K|∑

j′=1

exp(βi′j′) (6)

βij = (h̃ni W
H)(tanh(rnijW

R + tnijW
T))T (7)

h̃ni = [hni ; c
L
n ] (8)

We first concatenate the token-level representations
for each word hni in the utterance xn with its con-
text vector cLn , which entails the embedded infor-
mation from previous turns (Eq 8). Then we use h̃ni

to calculate the attention weight αij with any of the
knowledge (rnij , t

n
ij) related to this utterance (Eq 6,

7). Eventually, we linearly combine all knowledge
vectors together to formalize the context-attended
knowledge vector vni (Eq 5). Additionally, to avert
the noise from zero-vectors of non-alphabetic word
knowledge, we introduce an attention mask to cal-
culate αij only on the non-zero knowledge vectors.

3.3 Semantic Decoder
After obtaining the context-attended knowledge
VK = {vni }, context vectors CL and initial token-
level vectors H, we adopt two BiLSTMs to predict
multiple dialog acts and slots which exhibit the
sequential information in BIO scheme.

Hact = BiLSTM([H̃;VK]) (9)

Hslot = BiLSTM([H;VK]) (10)

For dialog act detection, we concatenate VK with
the fused context H̃ = ([H;CL])WH from the
attention mechanism and serve as the inputs of
BiLSTM. For slot filling, since the task focuses
more on token-level information for decision, we
only concatenate raw token-level representations
and VK to be inputs of another BiLSTM, which
empirically works better. Finally, we can gen-
erate logits ŷact = σ(HactWact) by transform-
ing Hact with Wact ∈ RHL×|Ya| and a sigmoid
function σ. HL is LSTM hidden size and |Ya| is
the size of dialog act set. Likewise, we compute
ŷslot = softmax(HslotWslot). Total loss will be
the combination between the binary cross entropy
loss based on ŷact and the cross entropy loss based
on ŷslot as shown in Eq 11, 12. Finally, the joint
objective is formulated as the sum of La and Ls.

La ≜ −
N∑

n=1

|Ya|∑

a=1

(yna log(ŷ
n
a )

+(1− yna )log(1− (ŷna )) (11)

Ls ≜ −
N∑

n=1

T∑

t=1

|Ys|∑

s=1

(y(n,t)s log(ŷ(n,t)s )) (12)

4 Experiment Setting

4.1 Experimental setup
We evaluate our proposed framework on two large-
scale dialog datasets, i.e. Microsoft Dialog Chal-
lenge dataset (MDC) (Li et al., 2018b) and Schema-
Guided Dialog dataset (SGD) (Rastogi et al., 2019).
MDC contains human-annotated conversations in
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three task-completion domains (movie, restaurant,
taxi) with total 11 dialog acts and 50 slots. SGD
entails large-scale task-oriented dialogs over 20 do-
mains ranging from travel, weather to banks, etc.
It has total 18 dialog acts and 89 slots. To compare
the relevant knowledge usage in different domains
and save computational resources, we randomly
select 1k dialogs for each domain in MDC and two
restaurant and flights domains from SGD for to-
tal 5k dialogs in 6:1:3 train, validation, test ratio.
For SGD, Restaurant domain is chosen to compare
with that of MDC and Flights domain is the one not
existing in MDC. Each utterance is labeled with
one or more dialog acts and several slots.

4.2 Baselines
We compare our models with several competitive
baselines which sequentially include more features:

• MID-SF (Rashmi Gangadharaiah, 2019) consid-
ers joint multi-intent and slot detection in use of
BiLSTMs.

• ECA (Chauhan A., 2020) encodes the dialog
context with LSTM for joint tasks.

• KANLUM (Wang et al., 2019) extracts knowl-
edge from the knowledge base and incorporates
dialog history for joint tasks.

• ERNIE (Zhang et al., 2019b): We take ERNIE
backbone to integrate knowledge entities and
take the token and entity outputs for intent detec-
tion and slot filling directly.

• LABAN (Wu et al., 2021b) leverages label infor-
mation to construct a latent semantic space for
utterance projection. It is mainly for the multiple
intent detection task only.

• CASA-BERT (Gupta et al., 2019) encodes the
context with sentence2token and DiSAN which
we replace with BERT for fair comparison with
other BERT-based models.

We also perform several variations of our proposed
framework to conduct the ablation study with the
following detailed descriptions.

• Less-Relevant knowledge triples (LR-KA): We
replace the top |K| knowledge triples with the
less related knowledge triples ranked from |K| ∼
2|K| (from relation weights in KG) to perform
sensitivity analysis on the quality of knowledge.

• Word-Level knowledge attention (WL-KA):
We use the attention-based filter (AF) (Wang
et al., 2021b) to perform token-level knowledge

attention instead of sentence-level attention in
our framework.

• Transformer decoder (Trans): We replace the
semantic decoder (§ 3.3) with a transformer
decoder to both predict dialog acts and slots.

4.3 Implementation details
We adopt the pretrained BERTbase (Devlin et al.,
2019) as our utterance encoder. Context attention
transformer has L = 6-layer attention blocks with
768 head size and 4 attention heads. The max
sequence length is 60. We use ConceptNet knowl-
edge base (Speer et al., 2018) to obtain relevant
knowledge for attention. It involves many crowd-
sourced and expert-created resources like DBPedia,
OpenCyc and WordNet with 1.5M word entities
connected with weighted edges (relation). Each
word or relation is represented as a dense 100-dim
vectors by adopting TransE (Bordes et al., 2013)
learning mode. Each knowledge also contains an
ExternalURL to represent the external source. We
retrieve |K| = 5 most related knowledge from each
word based on weights assigned on the edges. Both
LSTMs have 256 hidden units. We use the batch
size of 2 dialogs for MDC and 1 for SGD. In all
training, we use Adam optimizer with learning rate
as 5e-5. The best performance on validation set is
obtained after training 30 epochs on each model.
For metrics, we report the dialog act accuracy (ex-
act match) and slot filling F1 score. Here we only
consider a true positive when all BIO values for a
slot is correct and forfeit ‘O’ tags.

5 Main Results

5.1 Main results
Table 2 shows our main results on the joint task per-
formance. MID-SF with only LSTMs has relatively
inferior performance on both datasets especially in
SGD. ECA by taking dialog contexts into consid-
eration has much greater increase in SGD than in
MDC. ERNIE and KANLUM have better slot fill-
ing performance which suggests the importance of
further knowledge induction. Leveraging BERT-
based encoder seems to substantially increase se-
mantic visibility in ERNIE, CASA-BERT and our
proposed framework, while introducing dialog con-
texts additionally gives better dialog act detection
performance in CASA-BERT and our model. Even-
tually, our proposed framework beats all baselines
both in MDC and substantially in SGD, by more
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Dataset MDC SGD
Domain Movie Restaurant Taxi Restaurant Flights
Model MDA SL MDA SL MDA SL MDA SL MDA SL
MID-SF (Rashmi Gangadharaiah, 2019) 76.56 67.56 77.35 65.77 85.03 70.03 74.26 81.38 84.74 84.48
ECA (Chauhan A., 2020) 77.10 69.72 77.56 66.85 86.61 71.28 87.98 84.87 95.16 87.91
KANLUM (Wang et al., 2019) 81.86 73.32 80.76 68.36 88.31 74.07 86.81 87.82 92.87 90.05
ERNIE (Zhang et al., 2019b) 81.52 79.18 80.60 74.68 87.72 76.85 88.53 91.37 89.33 90.50
LABAN (Wu et al., 2021b) 82.05 - 82.28 - 88.19 - 90.51 - 94.23 -
CASA-BERT (Gupta et al., 2019) 84.22 79.59 83.17 74.89 90.00 78.54 92.54 94.20 95.00 91.79
CKA-NLU 86.09† 80.58† 84.01† 75.27† 90.80† 79.60† 98.47† 94.86 99.22† 92.67†

Table 2: Experimental Results on several NLU models including our proposed frameworks which are specified in
percentage (%). MDA indicates the dialog act detection accuracy by counting corrects when all acts are predicted
correctly. SL indicates the slot filling F1 score. † indicates the significant improvement of p-value < 0.05, compared
with CASA-BERT.

Dataset MDC SGD
Domain Movie Restaurant Taxi Restaurant Flights
Model MDA SL MDA SL MDA SL MDA SL MDA SL
CKA-NLU 86.09 80.58 84.01 75.27 90.80 79.60 98.47 94.86 99.22 92.67

w/ LR-KA 85.63 80.26 83.43 75.76 89.77 80.03 98.38 94.31 98.93 91.99
w/ WL-KA 85.25 79.46 83.27 74.89 90.05 79.59 96.84 94.61 97.17 91.14
w/ Trans 85.98 79.94 83.27 75.19 90.40 78.33 97.35 94.34 98.20 91.95
w/o KG 86.01 79.92 83.53 74.76 90.56 78.29 97.53 94.83 97.73 92.23
w/o CA 84.87 79.79 81.33 74.68 89.00 78.50 95.88 94.36 97.17 91.94
w/o LSTM 84.57 79.14 82.70 74.35 89.65 79.00 90.96 93.64 94.80 91.33

Table 3: Ablation Results of joint tasks (%) by removing some key components of our proposed model: CKA-NLU.

efficiently incorporating external knowledge and
dialog contexts with the proposed global awareness
attention mechanism.

5.2 Ablation analysis

To better estimate the effectiveness of each module
of our best model, we conduct ablation experiments
in Table 3. We ablate or replace each component
from CKA to observe the performance drops. First,
we could see knowledge quality may affect the per-
formance of joint tasks where most performance
drops are observed with LR-KA, while we found
that slot accuracy may increase if the overall ex-
tracted knowledge is less relevant to utterances. To
note, the word matching accuracies in the knowl-
edge base are 78.12% (MDC) and 80.97% (SGD),
which indicates that there is still about 20% of
zero vectors introduced as redundant noises. Sec-
ond, considering global knowledge across the en-
tire sentence has overall better performance than
only word-level knowledge, where knowledge of
some phrases should be treated jointly. Finally, we
see a single transformer decoder may still entangle
the act and slot information by updating gradients
simultaneously with poorer performance.

By removing the entire knowledge attention
module, we could see a larger accuracy decrease in
slot filling tasks, denoting the necessity of external
knowledge in enriching the current word represen-
tations. By substituting a LSTM on top of BERT

for our context attention module (CA), we obtain
poorer performance in dialog act detection. By
replacing two LSTMs with fully connected layers
after knowledge attention, the performance drops
especially in SGD. Overall, we observe dialog act
detection relies more on contexts while slot filling
tasks may concentrate on inter-utterance relations
where external knowledge benefits more instead.

5.3 Further Discussion

Could knowledge amend the data scarcity? We
also study how knowledge could contribute to the
joint tasks when resources are scarce. Figure 3
shows the performance changes with different num-
bers of training data. We found that inducing the
knowledge will have the positive effect on both
tasks. In the few-shot setting, we see the perfor-
mance difference enlarges where knowledge be-
comes beneficial to enrich the external informa-
tion aside from data itself. However, knowledge
becomes less useful when we have extreme low
dataset particularly for slot detection in MDC. In-
troducing more MDC data at a certain point may
contradict with the external knowledge data base
that possibly makes models hard to generalize,
while it helps dialog act detection that amends the
training instability from data scarcity.
Does global knowledge help non-alphabetic
slots? We are interested if knowledge for other
words would also help with the slot prediction of
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Figure 3: NLU performance gain by using knowledge in
CKA-NLU with a subsample (%) of the original training
data of two datasets: MDC and SGD.

non-alphabetic words. Table 4 shows the results for
each non-alphabetic slot for our global and local
attention models. Since there is no knowledge for
the non-alphabetic words, we observe an overall
2% increase by inducing global attention. Contexts
are beneficial especially for slots associated with
rating, money and address, which should be likely
inferred by other keywords near them. However,
introducing more knowledge noises may not help
to predict time and zip code since they are rather
independent to contexts.

5.4 Knowledge Attention

In Figure 4, we visualize the attention heatmap
of tokens with their slot labels vs. all knowledge
triples from each token. First, we focus on the
rows of the heat map. Without attached knowledge
for the words like numbers or punctuations, their
attention weights are perceived blank across all to-
kens in the utterance. Second, for valid attention
weights, we found the knowledge corresponding
to keywords like ‘you’, ‘with’, ‘restaurant’ and

‘antioch’ are most adopted for overall knowledge
representations across all the utterance. It eluci-
dates that the model will mostly grasp knowledge
in words especially tagged as valued slots (non-O
tag) for overall semantic understanding. Interest-

Slot CKA-NLU (%) WL-KA (%) ∆ (%)
address 17.39 0.00 +17.39
price 66.67 50.00 +16.67
critic_rating 34.48 23.08 +11.41
dress_code 50.00 44.44 +5.56
rating 52.17 49.32 +2.86
cost 95.54 95.29 +0.26
numberofpeople 95.63 95.51 +0.12
date 86.96 86.99 -0.02
pricing 42.55 43.14 -0.58
starttime 76.80 77.68 -0.88
numberofkids 73.68 77.78 -4.09
mpaa_rating 76.92 83.33 -6.41
zip_code 77.65 84.44 -6.80
pickup_time 75.19 82.29 -7.09
total 65.83 63.80 +2.03

Table 4: F1 scores of non-alphabetic slots in overall
SGD dataset when using all (CKA-NLU) or word-level
(WL-KA) knowledge.

ingly, this collection of knowledge is more empha-
sized on predicting a word to be non-valued than
those words with valued slots. For the columns, we
could see for non-valued words, they will rely on
knowledge of valued words like ‘restaurant’ and

‘antioch’, than the knowledge related to itself. It
substantiates the belief that the overall semantics of
the utterance may be driven by these valued words.

In Table 5, we further show an utterance ex-
ample with some highlighted words including

‘you’, ‘restaurant’ and ‘Antioch’ with their ex-
tracted knowledge and weights for semantic detec-
tion. We take the average of all attention weights
across all tokens for that knowledge triple; then nor-
malized across the knowledge triples in the same
word (head). We could see ‘you’ as an object is
most adopted to clarify the user being offered and
informed counts. Then we observe that the knowl-
edge triple (restaurant, atl, city) where restaurant
is at a location of the city is most recognized to
illustrate the relations of restaurant and city tags.
Finally, knowledge for ‘Antioch’ keyword is mostly
relevant to a country which is conducive when the
system seldom sees this word during training. But
without further contexts, our model believes ‘Anti-
och’ is more of a part of Turkey.

6 Related Work

Intent detection and slot filling are two main NLU
tasks (Weld et al., 2021). Many classification or
clustering approaches (Sarikaya et al., 2011; Ray-
mond and Riccardi, 2007; Liu et al., 2017; Wu and
Juang, 2022a) had been proposed for single intent
detection. However, treating two tasks separately
may experience error propagation. Liu and Lane
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Figure 4: Attention visualization of a single utterance
example with respect to all knowledge related to each
word. We denote an utterance with tokens followed by
their predicted tag in x-axis. For y-axis, each word will
have five knowledge triples with each as a single tick.
The blank area is where attention weights are zero.

(2016) first proposed an attention-based LSTM net-
work to model the correlations between intents
and slots. Li et al. (2018a) proposed the gating
mechanism for better self-attention on joint tasks,
which is not scalable for longer sequences. Wang
et al. (2018) instead proposed the bi-model to di-
rectly model the cross impacts and Zhang et al.
(2019a) utilized capsule neural networks. Memory
networks are also popular choices to model long-
range dependency (Wu et al., 2021a). However, a
single utterance may have many intents. Qin et al.
(2019) proposed a stack-propagation networks to
predict intents on each token. Rashmi Gangadhara-
iah (2019) and Qin et al. (2020) considered the
dynamic interactions between two tasks by jointly
detecting multiple intents. Wu et al. (2021b) ex-
tended the multiple intent scenario with zero-shot
cases. These methods nevertheless restrict their re-
sources to current utterances for prediction where
we consider the multi-turn dialogs jointly where
dialog acts could be context-sensitive (Bothe et al.,
2018).

Contexts and knowledge Contexts are also crit-

Utterance Example in Figure 4

Utterance
I found 2 places that may interest you.
Starting with Celia’s Mexican restaurant
located in Antioch.

Dialog acts Offer, Inform Count

Slots O O O O O O O O O O B-res I-res I-res
O O B-city

Keyword Knowledge

you (hc, noun) (0.29), (hc, object) (0.7)
(rel, guys) (6e-4)

restaurant (isa, establishment) (8e-9), (atl, hotel) (0.2)
(atl, town) (0.14), (atl, city) (0.65)

Antioch (rel, orontes) (4e-5), (rel, swiss) (2e-2)
(rel, usa) (5e-2), (ptof, turkey) (0.9)

Table 5: The utterance example in Figure 4 for joint task
prediction. Knowledge (Relation, Tail) related to three
keywords as head are presented with their attention
weights (number after the knowledge). We only show
the top four knowledge adopted for each keyword based
on the attention weights. ‘hc’ represents ‘has context’,
‘rel’ represents ‘related to’, ‘atl’ represents ‘at location’
and ‘ptof’ represents ‘part of’.

ical for dialog understanding. Bertomeu et al.
(2006) first studied the contextual phenomena in
words. Bhargava et al. (2013) and Shi et al.
(2015) then introduced contextual signals to the
joint intent-slot tasks. Advanced hierarchical struc-
tures are also emphasized to encode multi-turn dia-
log contexts efficiently (Chauhan A., 2020; Wang
et al., 2019; Gupta et al., 2019; Wu et al., 2021c).
Knowledge is also another important resource to in-
duce commonsense for understanding. It is widely
adopted for knowledge-enhanced pretraining to en-
rich representations (Liu et al., 2019; Zhang et al.,
2019b). In task-oriented dialogs, main emphasis
lies in the interaction with task-related knowledge
bases (Madotto et al., 2020; Yang et al., 2020).
Most of works also focus on open-domain dialog
response generation (Zhao et al., 2020; Wang et al.,
2021b; Rashkin et al., 2021; Zheng et al., 2021) or
task-specific responses (Wang et al., 2021a). How-
ever, commonsense knowledge is seldom adopted
in NLU. Wang et al. (2019) tried to apply knowl-
edge in NLU but it is not suitable for complex
dialog modeling. To amend the gap in modeling
such knowledge and context interactions, we follow
these previous works’ paradigms and explore the
mechanisms of characterizing their mutual effects.

7 Conclusion

In this paper, we propose a novel BERT-based
knowledge-augmented network to effectively in-
corporate dialog history and external knowledge
in the joint NLU tasks. Compared to recent works
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which consider only intra-word knowledge, we in-
stead raise the knowledge awareness by selecting
all relevant knowledge triples in an utterance with
the current dialog contexts. We found that our
framework is verified to be effective in two com-
plex multi-turn dialog datasets where contexts and
knowledge are crucial in dialog act detection and
slot filling respectively. The visualization shows
that our models adopt some key knowledge in par-
ticular words and learn to grasp useful information
for better interpretability. These context-attended
knowledge vectors could be easily applied to down-
stream dialog state tracking or management tasks.

Limitations

The possible limitations for our works are two-
folds. First, the scalability of our method is subject
to the size of the knowledge base and the number of
incorporated knowledge since selecting from larger
knowledge candidates may require more computa-
tional memory and training time but with higher
performance. Exact string matching between con-
text words and knowledge entities is relatively sim-
ple and could be replaced with more advanced se-
mantic matching techniques, which nevertheless
may increase model complexity. Second, depend-
ing on the domains of datasets to apply, too many
out-of-vocabulary words (OOV) with no match in
the knowledge base may affect the model perfor-
mance and our future works will investigate a better
solution to replace zero-vectors that are associated
with non-alphabetic words.
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Abstract

While there has been a recent burgeoning of ap-
plications at the intersection of natural and pro-
gramming languages, such as code generation
and code summarization, these applications are
usually English-centric. This creates a barrier
for program developers who are not proficient
in English. To mitigate this gap in technol-
ogy development across languages, we propose
a multilingual dataset, MCoNaLa, to bench-
mark code generation from natural language
commands extending beyond English. Mod-
eled off of the methodology from the English
Code/Natural Language Challenge (CoNaLa)
dataset, we annotated a total of 896 NL-Code
pairs in three languages: Spanish, Japanese,
and Russian. We present a systematic evalu-
ation on MCoNaLa by testing state-of-the-art
code generation systems. Although the diffi-
culties vary across three languages, all systems
lag significantly behind their English counter-
parts, revealing the challenges in adapting code
generation to new languages.1

1 Introduction

There are an increasing number of applications
related to “code intelligence”, such as code sum-
marization (Allamanis et al., 2016; Hu et al., 2018;
Ahmad et al., 2020) and natural language (NL)
to code generation (Ling et al., 2016; Rabinovich
et al., 2017; Yin et al., 2018a; Xu et al., 2020;
Norouzi et al., 2021; Wang et al., 2021), accompa-
nied by code-specific tasks and benchmarks (Oda
et al., 2015; Zhong et al., 2017; Yin et al., 2018b;
Lu et al., 2021). However, in the cases where
these benchmarks include natural language, that
language is almost invariably English.

There are a few exceptions, but most of them ei-
ther focus on languages of specific domains (Sher-
borne and Lapata, 2021; Sherborne et al., 2020;

∗Equal contribution.
1Code and data are available at https://github.com/zorazrw/

multilingual-conala

Spanish

¿Cómo sumar el campo `precio` de todos los elementos del 

modelo `Precompra` en Django?

(How to sum the `precio` field of all the elements of the 

`Precompra` model in Django?)

totaldos =  Precompra.objects.aggregate(Sum(precio)).values()[0])

Japanese

2次元配列`arr`の要素となっている1次元配列から先頭の値のみを抜き出す

(Extract only the first value from the 1D array that is the element 

of the 2D array `arr`)

arr[:, 0]

Russian

Установить кодировку `my_encode` для переменных 
окружения пользователя ‘username’

(Set `my_encode` encoding for ‘username’ environment variables)

os.environ(‘username’).decode(my_encode)

Figure 1: Examples in the MCoNaLa dataset, that aim
to generate general-purpose Python code snippets from
source intent of multiple natural languages.

Moradshahi et al., 2020) or types of code (Oda
et al., 2015; Liang et al., 2021), or contain NL in-
tents collected via automatic translation (Li et al.,
2021) (Appendix A). However, similarly to how
Kwiatkowski et al. (2019) argue that “natural ques-
tions” are necessary to appropriately benchmark
QA systems, we argue that ensuring the naturalness
and coverage of questions is essential for bench-
marking code generation systems as well.

A dataset for English code generation based
on natural programming questions is the CoNaLa
dataset (Yin et al., 2018a). It is based on natural
developer questions harvested from the Stack Over-
flow (SO) question answering forum. In fact, in
addition to English, SO also supports four other lan-
guages (Spanish, Portuguese, Japanese, and Rus-
sian) that have strong developer communities and
engage in non-English programming environments.
In this work, we utilize this resource to construct
the MCoNaLa dataset, consisting of 341, 210, and
345 manually curated parallel samples with nat-
ural intents in Spanish, Japanese, and Russian,
along with corresponding Python code snippets.
Like CoNaLa, these snippets are collected from
language-specific SO sites and annotated by na-
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tive speakers who are also proficient in the Python
programming language.

To provide insights in the state of code gen-
eration on this new resource, we conduct com-
prehensive experiments with three state-of-the-art
text generation models in the context of cross-
lingual transfer, by unifying training and testing
NL via translation (Ruder and Sil, 2021; Shi et al.,
2021; Shima and Mitamura, 2010; Hartrumpf et al.,
2008), or utilizing a multilingual NL encoder such
as MBART (Liu et al., 2020). Our results sug-
gest that cross-lingual NL-to-Code generation is
challenging. Among all languages and experiment
settings, the highest average BLEU score is 7.28,
far behind that of English, which achieves 33.41,
presumably because English resembles Python
more than other NLs. In addition, we find models
with task-specific modules and training outperform
generic seq2seq models, yet the discrepancy be-
tween languages are consistent across all baseline
models. In all, our corpus and experiments demon-
strate the varied difficulty of the NL-to-Code gener-
ation task under different languages, emphasizing
the need to develop a language-comprehensive ap-
proach to code intelligence.

2 The MCoNaLa Dataset

2.1 Task Definition

Concerning the task of answering natural language
questions with machine-executable programs, our
focus is to build a benchmark dataset to evaluate
models for their ability to encode NL intents in
multiple languages and generate code snippets. For
each example in Figure 1, the intent above asks
how to achieve a particular goal, and the snippet
below responds with a piece of Python code.

2.2 Annotation Workflow

Our goal is to collect intent-snippet parallel data
in multiple natural languages. In this section, we
outline the main workflow for data annotation: (1)
language source selection, (2) valid SO post identi-
fication, and (3) parallel sample annotation.

Language source and selection Besides the En-
glish version, Stack Overflow also has forums avail-
able in four other languages: Spanish, Portuguese,
Japanese, and Russian. Data annotation in each
language requires a native speaker of that language,
who should also be proficient in both English and
Python. Due to the high cost and difficulty of hiring

intent

qu
es

tio
n

an
sw

er

snippet

Verificar que un archivo `fname` exista
Verify that a file `fname` exists

rewritten
intent

pair

Figure 2: Illustration of the annotation process.

reliable annotators with such a specialized skill set,
we only employ one Upwork annotator for each of
Spanish, Japanese, and Russian. From the official
SO data dump2 dated March 2021, we obtained all
posts in these languages. However, we were unsuc-
cessful in finding a Portuguese-speaking annotator
at the time of corpus collection.

Identifying how-to questions Following Yin
et al. (2018a), annotators are first asked to iden-
tify valid posts that contain how-to type questions,
which are imperative utterances seeking particular
goals achievable by code. They are often in the post
title or description, such as the example in Figure 2.

Posts are sent in 100-sample batches, and then
categorized by annotators. To improve annotation
efficiency, we bootstrapped a MBART how-to ques-
tion classifier, with English examples, then itera-
tively multilingual samples. It achieves an accuracy
of 72.50%. We then automatically filter the proba-
ble invalid posts using this classifier and designate
the rest for manual annotation. We collect all valid
posts and extract questions as raw intents, for sub-
sequent parallel data annotation.

Collecting intent-snippet pairs For each post,
we ask the annotators to find at most three snip-
pets of Python code that correctly answer the ex-
tracted question. However, questions from post
title or description are often ambiguous, especially
in respective context of answer snippet, such as
the example in Figure 2, that the question does
not specify the names of “data” and “list” vari-
ables to allow precise code implementation. To
disambiguate the intent and align it with a snip-
pet, we ask annotators to rewrite the intent by:
(1) specifying variable names appearing in the an-
swer snippet, and (2) clarifying commands with
reference question descriptions. Concretely, vari-
able names and data types in the rewritten intent

2https://archive.org/details/stackexchange
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1 figure, 3 settings (translate-train, translate-test,  zero-shot)

<English>

Concatenate elements of a list `x` of 
multiple integers to a single integer.
sum(d * 10 ** i for i, d in enumerate(x[::-1]))

<Spanish>, translated from English

Concatena los elementos de una lista `x` de 
varios enteros en un solo entero.
sum(d * 10 ** i for i, d in enumerate(x[::-1]))

train test

<Spanish>

Cómo sumar el campo `precio` de todos los elementos del modelo 

`Precompra` en Django?

totaldos =  Precompra.objects.aggregate(Sum(precio)).values()[0])

<English>, translated from Spanish

How to sum the `precio` field of all elements of the `Precompra` 

model in Django?

totaldos =  Precompra.objects.aggregate(Sum(precio)).values()[0])

translate-test

translate-train

zero-shot

Figure 3: Example usage on the original English and Multilingual samples in three settings.

need to be surrounded by the ASCII grave accent
marks (e.g., `data`), string literals or file paths
should use singular typographic quotation marks
(e.g., ‘file1.txt’, ‘https://www.abc.com/’).

The final MCoNaLa dataset consists of 341, 210,
and 345 intent-snippet pairs in Spanish, Japanese,
and Russian. It is noteworthy that the goal of
MCoNaLa is to benchmark cross-lingual NL-to-
Code generation task and mainly for testing pur-
poses, instead of curating large-scale dataset for
training. While its size is relatively small given the
collection difficulty, we show that it can reliably
inform significant method improvements (§ 3.3).
We believe it is important for our dataset to be rep-
resentative of the naturally occurring questions in
respective language environments.

2.3 Quality Analysis

To ensure high data quality as intended, we checked
15 random samples from each language subset.
Each rater score NL intents and code snippets from
1 to 5 based on their correctness and specificity.

The results demonstrate the high quality of our
dataset, achieving 4.78, 4.65, 4.78 points on Span-
ish, Japanese, and Russian intents; and 4.84, 4.89,
4.78 points on their corresponding code snippets.
Meanwhile, three raters present high agreement –
the Fleiss’ Kappa measure is 64.29 for NL intents
and 69.49 for code snippets – both numbers indi-
cate substantial agreement among the raters.

3 Method

To provide insights about evaluating on MCoNaLa,
we demonstrate potential dataset usage in three
train-test settings (§ 3.1), and propose to adapt three
baseline models from either multilingual (NL) or
code understanding to achieve both ends (§ 3.2).

Because the size of MCoNaLa allows only test-
ing purposes, we resort to its larger English counter-

part, CoNaLa (Yin et al., 2018a), to allow training.
CoNaLa contains 2,879 manually annotated sam-
ples and 600k samples extracted from English SO
forum and API documents, which can serve as a
sufficient source for training. Given this usage, we
denote the three test languages as target languages.

3.1 Train-Test Settings

We adopt three settings from two paradigms (Hu
et al., 2020) as illustrated in Figure 3: (1) trans-
lating intents in train (translate-train) or test
(translate-test) sets to bridge the language gap, (2)
using multilingual encoder to transfer from English
to target languages (zero-shot).

For each target language, we can align the lan-
guages of training and testing intents and use a
monolingual encoder. The translate-train setting
translates English intents in CoNaLa to each target
language for training and then tests with MCoNaLa
samples. translate-test translates MCoNaLa intents
in three target languages into English. Because it
is not feasible to manually translate 600K+ intents,
we use existing multilingual machine translation
(MMT) models to automate translation. We bench-
marked several open-source options, as elaborated
in § 4.2, and settled on the M2M-124 model used
on the FLORES-101 dataset (Goyal et al., 2022).

Also, we can train models on English samples
and directly evaluate on MCoNaLa samples in tar-
get languages zero-shot, requiring models to en-
code multiple NLs, further, transfer the code gener-
ation ability from English context to target ones.

3.2 Baseline Models

We introduce three baseline methods targeting the
above train-test settings. We encourage readers to
refer to the original papers for more details.

In a monolingual context, models should func-
tion in target languages for translate-train and En-
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glish for translate-test. TRANX (Yin and Neubig,
2018) is a BiLSTM-based encoder-decoder model
that uses a transition-based abstract syntax parser
to map NLs into formal meaning representations
(MR) such as Python programs. It is agnostic to
input languages and hence can be evaluated on both
translated settings. TAE (Norouzi et al., 2021) is
the state-of-the-art method on CoNaLa by training
a generic transformer with an added target autoen-
coder (TAE) objective. However, it is built with
(English-)BERT and is intended for English scenar-
ios, therefore only tested on translate-test.

As is required by zero-shot evaluation, we adopt
a multilingual model, MBART (Liu et al., 2020),
which is a seq2seq model pre-trained on 25 natu-
ral languages including our target ones. Note that
MBART can also function in monolingual contexts,
for both translate-train and translate-test settings.

3.3 Experiment
We train baseline models in their available settings,
then tokenize the generated and reference code
snippets following Yin and Neubig (2018) to eval-
uate the BLEU-4 scores. We report the average
scores of five rounds using different random seeds.

Model Setting Language

en es ja ru avg.

MBART
translate-test

25.20
2.38 3.07 2.04 2.50

translate-train 2.64 3.45 2.65 2.91
zero-shot 2.49 1.83 2.28 2.20

TRANX
translate-test

32.26
2.46 8.34 8.12 6.31

translate-train 2.44 6.11 6.02 4.86

TAE translate-test 33.41 2.39 9.90 9.56 7.28

Table 1: BLEU scores of baselines for various train-test
settings in English (en) and target languages (es, ja, ru).

In Table 1, first, scores on target languages av-
erage to at most 7.28, much lower than 33.41
on English, revealing the similarity of English
and Python, and the difficulty of generating code
from other languages. Second, models with code-
specific designs and training (TRANX and TAE)
performs better in general. The lower scores of
MBART potentially suggest a certain representa-
tion gap between NL and PL. Third, results on two
code-specific models show consistent variations
across languages: scores are lower for Spanish,
but rise similarly on Japanese and Russian. As we
will discuss in § 4.1, this is possibly due to the
distributional gap between languages with varied
complexity.

3.4 Significance Test
To verify the effectiveness of MCoNaLa, we per-
form significance tests (Dror et al., 2018) to show
its capability of showing significant differences
between systems. We conduct paired bootstrap re-
sampling tests with each pair of models in their
available settings, using a sample rate of 0.5 and a
sample size of 10, 000.

Setting Language Win Rate (%) Tie p-value
MBART TRANX TAE

translate-test

es
0.532 0.402 - 0.066 0.468
0.522 - 0.396 0.102 0.478

- 0.508 0.448 0.044 0.492

ja
0.000 1.000 - 0.000 0.000
0.000 - 1.000 0.000 0.000

- 0.002 0.998 0.000 0.002

ru
0.000 1.000 - 0.000 0.000
0.000 - 1.000 0.000 0.000

- 0.001 0.998 0.001 0.002

translate-train
es 0.592 0.408 - 0.000 0.408

ja 0.000 1.000 - 0.000 0.000

ru 0.000 1.000 - 0.000 0.000

Table 2: Significance testing results between each pair
of baseline models. ‘-’ marks the model not in the pair.

In both translate-test and translate-train set-
tings of Table 2, code-specific systems (TRANX
and TAE) significantly outperform MBART on
Japanese and Russian. However, no significant dif-
ferences are shown in Spanish, as expected given
its relative difficulty. With significance testing, one
can obtain reliable results even on a small dataset.
While small sizes are not entirely desirable for in-
formative evaluation, we view them as practical
reflections of data scarcity, supporting our call for
more non-English resources.

4 Analysis

4.1 Variations between Languages
We first study the differences in size and snippet
length between languages subsets in MCoNaLa.
As listed in Table 3, snippet lengths vary across lan-
guages, and the average snippet length in Spanish
is around 2.5/1.3 times of that in Japanese/Russian.
A longer snippet is presumably more complex, sug-
gesting that snippets in Spanish samples are harder
to generate, and hence models perform poorer.

4.2 Intent Auto-translation
In § 3.1 we use MMT models for intent trans-
lation. To optimize translation quality, we com-
pare three best performing MMT models: OPUS-
MT (Tiedemann and Thottingal, 2020), M2M-
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original intent (English) Prepend string ‘hello’ to all items in list 'a'

translated intent (Spanish) Preparación (prepare) de la cadena ‘hello’ a todos los elementos en la lista `a`

snippet ['hello{0}'.format(i) for i in a]

original intent (English) add a colorbar to plot `plt` using image `im` on axes `ax`

translated intent (Japanese) 画像`im`を使って`ax`の軸にカラーバーを追加

snippet plt.colorbar(im, ax=ax)

original intent (English) extend dictionary `a` with key/value pairs of dictionary `b`

translated intent (Russian) расширить словарь `a` с ключевыми/значительными (significant) парами словаря `b`

snippet a.update(b)

Analysis, Translation Quality

Figure 4: Examples showing that the translation errors or omits critical words in the original intent.

Language Size # Snippet Tokens

average max min

English 2,879 18.2 170 2

Spanish 341 42.6 343 4
Japanese 210 17.7 94 2
Russian 345 32.0 243 3

Table 3: Data size and snippet length (in number of
tokens) of MCoNaLa samples between target languages.

100 (Fan et al., 2021), and M2M-124 used in
FLORES-101 (Goyal et al., 2022). Since com-
paring in translate-train needs intensive re-training
with different model translations, we ablate in the
translate-test setting, using each model to translate
test intents and evaluate NL-to-Code respectively.

Baseline MMT Language

Spanish Japanese Russian

MBART
M2M-124 2.38 3.08 2.04
OPUS-MT 2.28 3.21 2.46
M2M-100 1.83 2.79 2.00

TRANX
M2M-124 2.46 8.41 8.09
OPUS-MT 2.46 5.09 5.00
M2M-100 2.04 7.38 8.48

TAE
M2M-124 2.39 9.88 9.57
OPUS-MT 3.15 3.89 5.30
M2M-100 2.21 8.20 9.32

Table 4: Comparing MMT models under translate-test.

As in Table 4, their results are close, but M2M-
124 tends to be more stable across languages and
baselines. Despite its relative superiority, its trans-
lation quality may still lag behind human perfor-
mance, with more examples in § 4.3.

4.3 Quality of Auto-translation
To better measure the quality of translated intents,
we manually check the semantic alignment be-

tween the original and translated intents, with the
assistance of the Google Translate API and dictio-
naries. Concretely, we take 20 English CoNaLa in-
tents and check if their semantics preserve after be-
ing translated into three target languages (translate-
train). We similarly examine 20 MCoNaLa intents
in each target language and check their English
translations (translate-test). We use the M2M-124
translations given its best results. As shown in Fig-
ure 4, MMT translations are still sub-optimal: often
mis-translate, even omit, the key words. This is es-
pecially severe on verbs that indicate certain Python
operations. Hence, the translation step may impair
intent-snippet alignment, being one of the major
factors to the poor results in translated settings.

5 Conclusion

In this work, we extend the task of NL-to-Code
generation from English-centric to multilingual sce-
narios. We establish the MCoNaLa benchmark that
contains NL intent and code snippet pairs available
in Spanish, Japanese, and Russian. Our benchmark
serves for the multilingual code generation task, re-
quiring models of both multilingual understanding
and code synthesis. We conduct systematic experi-
ments on three baseline models and show varying
difficulty across languages and settings. We hope to
reveal the necessity to develop, and serve as a solid
test bed for language-comprehensive approaches
regarding code intelligence.
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Limitations

Although the MCoNaLa dataset makes a first step
to include more natural languages aside from En-
glish, it is currently limited to the languages sup-
ported by the StackOverflow forum, since SO pro-
vides the source data for the MCoNaLa creation.
This can be mitigated by extending to more lan-
guages using programming forums in other lan-
guages that have a similar purpose to SO. Besides,
MCoNaLa dataset only supports literal evaluation
methods such as BLEU. Given the executable na-
ture of Python programs, it is beneficial to support
more evaluation metrics such as functional correct-
ness, robustness, and conciseness.

Ethics Statement

The MCoNaLa dataset is built to serve as a testbed
for evaluating code generation systems from nat-
ural languages extending beyond English, given
that an English-centric setting can harm universal
accessibility to language technologies.

We hire annotators who are proficient in target
languages and assist them with clearly documented
instructions, flexible annotation interfaces (e.g.,
Google Sheets), and automated methods (e.g., us-
ing a neural classifier to filter out possibly invalid
cases) to optimize the annotation efficiency. We
carefully check in line with our instructions and
standards, to ensure the quality of both the ques-
tion posts given and the annotation results back
from our annotators. We emphasize the differences
between samples in different languages, because
they are natural reflections of the questions that pro-
grammers asked in each specific language, similar
to many works in fields such as multilingual ques-
tion answering (Clark et al., 2020) and named entity
recognition (Nothman et al., 2013). We reckon that
it is of paramount importance to evaluate on data
that was originally produced in the target language,
and results may be less reliable otherwise.

Nevertheless, with the advances in models capa-
ble of generating code from natural language in-
puts, we should be aware of the potentially harmful
usage such as concealing malicious code (Wallace
et al., 2020), or generating code with security vul-
nerabilities (Verdi et al., 2020; Pearce et al., 2021).
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A Related Work
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CODE (Iyer et al., 2018), and CoNaLa (Yin
et al., 2018a). Other examples include datasets
for problem solving, such as HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), and
APPS (Hendrycks et al., 2021). A number of meth-
ods have been proposed to mine intent-snippet pairs
for the purpose of code search, summarization, or
generation. While our work falls in the line of
mining from SO (Wong et al., 2013; Iyer et al.,
2016; Yao et al., 2018; Yin et al., 2018b), other
work also attempts to exploit other data sources
such as API documentation (Chatterjee et al., 2009;
Movshovitz-Attias and Cohen, 2013; Xu et al.,
2020), code comments (Wong et al., 2015), special-
ized sites (Quirk et al., 2015), and developer com-
munications (Panichella et al., 2012). One prior
methodology to automatically collect large-scale
parallel data is using heuristics to extract intent-
snippet pairs (Chatterjee et al., 2009; Wong et al.,
2013; Zagalsky et al., 2012), but this often results
in compromised data quality (Xu et al., 2020). Our
work resorts to a manual annotation strategy that
often yields accurately aligned intent-snippet pairs.

Multilingual Learning While the bulk of code-
related tasks have their NL components in English,
program developers native in other languages can-
not enjoy the advances in code intelligence tech-
niques, leading to the current lacunae in multilin-
gual learning. Our work intends to mitigate this
gap by facilitating NL-to-Code generation in multi-
ple languages beyond English. To enable language
understanding across multiple languages, a number
of works propose to train language models with
corpus in multiple languages (Devlin, 2018; Liu
et al., 2020; Conneau et al., 2020; Xue et al., 2021).
In addition to multilingual training, other data aug-
mentation techniques commonly used in machine
translation (MT), such as back-translation (Edunov
et al., 2018), monolingual (Sennrich et al., 2016;
Siddhant et al., 2020) or generalized data augmen-
tation (Xia et al., 2019), also inspired our experi-
ments. However, these techniques have rarely been
utilized for NL-conditioned code generation. We
present preliminary attempts in the experiments.
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Abstract
The integration of multimodality in natural lan-
guage processing (NLP) tasks seeks to exploit
the complementary information contained in
two or more modalities, such as text, audio and
video. This paper investigates the integration of
often under-researched audio features with text,
using the task of argumentation mining (AM)
as a case study. We take a previously reported
dataset and present an audio-enhanced version
(the Multimodal USElecDeb60To16 dataset).
We report the performance of two text models
based on BERT and GloVe embeddings, one
audio model (based on CNN and Bi-LSTM)
and multimodal combinations, on a dataset of
28,850 utterances. The results show that mul-
timodal models do not outperform text-based
models when using the full dataset. However,
we show that audio features add value in fully
supervised scenarios with limited data. We find
that when data is scarce (e.g. with 10% of
the original dataset) multimodal models yield
improved performance, whereas text models
based on BERT considerably decrease perfor-
mance. Finally, we conduct a study with arti-
ficially generated voices and an ablation study
to investigate the importance of different audio
features in the audio models.

1 Introduction

In recent years, there has been an increasing in-
terest in multimodal classification, which refers
to the task of automatically classifying an input
based on multiple modalities or sources of informa-
tion, such as text, images and audio (Baltrušaitis
et al., 2018). Multimodal approaches are benefi-
cial as they can reduce the subjectivity of classi-
fication with a single modality and improve the
accuracy of the overall classification. However,
finding the best representations (especially those
that work well with other modalities), aligning and
fusing them, and getting the models to co-learn
are difficult challenges to overcome (Morency and
Baltrušaitis, 2017). A large body of literature has

focused on the combination of image and text for
applications like emotion recognition (Illendula
and Sheth, 2019), fake news detection (Nakamura
et al., 2020), image classification (Guillaumin et al.,
2010), or document image classification (Jain and
Wigington, 2019). Much less attention has been
paid to combining audio with text.

Audio can convey a variety of information about
the pitch or intonation of the speaker that can in-
dicate variance in emotional state as well as better
identify modes of communication like sarcasm that
have been difficult for models to detect. The inte-
gration of audio has successfully improved classifi-
cation tasks like multimodal sentiment analysis and
emotion recognition when compared with classic
NLP models (Yao et al., 2020; Ho et al., 2020). In
this paper, we focus on a less explored NLP area
in terms of multimodality: argumentation mining
(AM). AM is the computational study of arguments
to develop models that can automatically identify,
extract, and represent arguments in text or other
forms of digital communication such as audio or
video. AM has traditionally focused on textual data
such as news articles, blog posts, and online com-
ments, but the advantages of using audio to detect
arguments have not been extensively explored.

In this work, we expand on an existing AM
dataset of US political debates (USElecDeb60To16
by Haddadan et al. 2019) by including audio. We
test the performance of several multimodal AM
models in different variations of the same dataset,
e.g., after balancing the labels and with fractional
datasets. Our contribution is three-fold: i) a new
fully aligned audio dataset, expanding on an ex-
isting AM dataset (Section 3), adding balanced
and fractional subsets for researchers to experiment
with; ii) original multimodal benchmarking results
for this dataset highlighting where audio feature
embeddings add most value compared to text-only
models (Section 4); iii) analysis of audio features
importance, including performance comparison of
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human and computerized voices (Section 5) and an
ablation study (Section 6).

2 Related work

Multimodal approaches including audio have been
mostly used for sentiment analysis or emotion
recognition (Yang et al., 2022; Cai et al., 2019), of-
ten using the IEMOCAP dataset, one of the oldest
datasets that contains 12 hours of dialogue record-
ings with emotion labels in text, audio and video
format (Busso et al., 2008). In recent years newer
datasets have been released, such as the SAVEE
(Jackson and Haq, 2014) and RAVDESS databases
(Livingstone and Russo, 2018), the MELD dataset
(Poria et al., 2018), and the CNU-MOSEI dataset
(Zadeh et al., 2016). Generally, audio-textual multi-
modal approaches contain separate pipelines for au-
dio and text features, sometimes connected through
attention layers. For instance, Cai et al. (2019)
combined GloVe embeddings in a bidirectional
long-short term memory (Bi-LSTM) array for text
with a combination of a convolutional neural net-
work (CNN) and a Bi-LSTM array for the audio.
Likewise, Yoon et al. (2018) used GloVe embed-
dings and recurrent neural networks (RNN) for
both audio and text, reaching accuracies of 71.8
% with the IEMOCAP dataset. Atmaja and Akagi
(2020) used either LSTM or CNN (not at the same
time) for the acoustic pipeline and LSTM with Fast-
Text and GloVe embeddings. Ho et al. (2020) used
a multi-level multi-head fusion attention using bidi-
rectional encoder representations (BERT) for the
text representations, achieving improved accura-
cies in three different datasets.

Audio features in this domain have been gen-
erally embedded using low level descriptors
(LLDs), such as mel-frequency cepstral coefficients
(MFCCs) (Atmaja and Akagi, 2020; Ho et al.,
2020). MFCCs are computed from the mel spec-
trogram of the audio signal by performing a dis-
crete cosine transform (DCT) of its log to reduce
its dimensionality in a way that is highly related
to the raw signal, but approximating the human
auditory system and often yielding higher classifi-
cation performance (Singh et al., 2021). As LLDs
do not contain global information about the utter-
ance, high-level statistical functions (HSFs), such
as mean, kurtosis and quadratic error, among many
others, can also be used. Yao et al. (2020) com-
pared the performance in speech emotion recog-
nition of a HSF classifier based on a deep neural

network (DNN), a LLS classifier based on a re-
current neural network (RNN) and a raw-signal
mel-spectrogram classifier based on a CNN, find-
ing similar performance between the HSF and LLD
models, and a slightly lower performance for the
model using the raw signal, showing the benefits of
the low level representations. The use of RNN with
LLDs has been shown to offer benefits by consid-
ering the temporal dimension of an utterance (Xie
et al., 2019), but several researchers have started
to use both CNNs and RNNs in combination to
learn both temporal and local features in the fre-
quency domain (Zhao et al., 2019; Singh et al.,
2021; Yao et al., 2020). Whereas MFCCs are the
feature of choice for the great majority of appli-
cations, the list of remaining LDDs are virtually
endless, including the zero crossing rate, chroma
vector, entropy of energy, Hammarberg index, spec-
tral slope, harmonic difference, among many oth-
ers (Atmaja and Akagi, 2020). While some efforts
have been made towards standardization of audio
features (Eyben et al., 2016), the choice is generally
pragmatic and depends on the package used by the
researcher, with openSMILE toolkit (Eyben et al.,
2013), Librosa (McFee et al., 2015) and PyAudio-
Analysis (Giannakopoulos, 2015) being those most
commonly chosen ones.

On the other hand, AM research has focused on
a diverse set of applications using the text modality
alone, from online interactions (Ghosh et al., 2014)
and tweets (Alsinet et al., 2019) to argumentative
essays (Stab and Gurevych, 2014) and political
debates (Lawrence and Reed, 2017; Visser et al.,
2021). Regarding multimodal AM, Lippi and Tor-
roni (2016) presented a first step towards the use
of audio features from speech to improve argument
detection. In this paper, they used raw input signals,
which were passed through a speech recognition
API to obtain the text. Then they used bag of words
and bi-grams together with discrete HSF features
from MFCCs, namely minimum, maximum, aver-
age and standard deviation, to train a support vector
machine in an argument classification task. The
results were positive towards the addition of audio,
although the performance was modest due to the
small size of the dataset and the limitations of the
text and audio representations. The only other work
that considered multimodal aspects used the M-arg
dataset (Mestre et al., 2021). There, the authors an-
alyzed argumentative relations in the 2016 US pres-
idential debates using text and audio, building an
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argumentation mining pipeline based on BERT em-
beddings for text and a combination of a Bi-LSTM
and a CNN for the audio. Although the dataset,
annotated for "support" and "attack" between sen-
tences, was rather small and heavily unbalanced
towards the "neither" class, the authors reported a
slight improvement when considering audio and
text together in a multimodal model. Surprisingly,
audio features alone showed a better performance
than the text-only model based on BERT encod-
ings, suggesting that in small datasets, when the
performance of BERT-based models suffers, au-
dio features might provide a handy supplement to
classify arguments. The effect of specific audio
features on performance was not assessed.

Here, we build upon a previous dataset (US-
ElecDeb60To16) presented by Haddadan et al.
(2019), which contained English transcripts of the
US presidential debates from 1960 to 2016 labelled
with more than 29k annotations of argument com-
ponents and their boundaries. We used the original
videos from the debates to obtain aligned times-
tamps at the sentence level following the work of
Mestre et al. (2021), thus enabling the task of mul-
timodal AM with a total of 28,850 aligned and an-
notated sentences. Concurrently to the submission
of our work, Mancini et al. (2022) also presented
and released a multimodal dataset, using the same
videos and alignment process, with 26,791 sen-
tences. Both datasets are complementary, although
our dataset is slightly larger as we did not drop any
of the debate videos (see next section). Mancini
et al. (2022) compare datasets and architectures
from the two previously mentioned works by Lippi
and Torroni (2016) and Mestre et al. (2021), as
well as their new dataset, finding generally positive
results to the addition of audio. In our work, we re-
port an audio feature analysis, as well as the impact
of using computerized voices, and we investigate
the benefit of multimodal models on both balanced
and fractional small data subsets.

3 Methodology

3.1 Dataset construction

In their USElecDeb60To16 dataset, Haddadan
et al. (2019) reported the performance of several
models for argument classification, with the high-
est weighted F-score of 0.673 for the argumenta-
tive component classification (ACC) of premise,
claim and other. They also collapsed all the
premise/claim annotations into one single label,

"argument", and attempted argumentative sentence
detection (ASD), with a weighted F-score of 0.843
using an LSTM array. We used this dataset in its
collapsed version (argument/other) for ASD to as-
sess whether the addition of audio could improve
the reported performance (F-score of 0.843) and
to simplify the task using only 2 classes as a first
step to studying the potential of multimodal AM.
For this, we needed to add the audio of the debates
with sentence-level timestamps.

Videos from each debate were downloaded from
the YouTube channel of the Commission for Presi-
dential Debates.1 Before starting the audio align-
ment process, we fixed a small number of incon-
sistencies in the dataset resulting from errors in
the original transcripts. Some were simple, like
sentences lacking a space between periods, which
made sentence tokenization algorithms fail. In a
couple of debates, full paragraphs were missing
from the transcript, possibly due to an error in the
original web scraping algorithm by Haddadan et al.
(2019). Older debates also had serious transcription
issues in the original source, such as full sentences
or paragraphs missing or speeches being repeated
twice in the transcript. Regarding videos, older
ones also had issues, such as debate 5 (the first
Carter-Ford Debate in 1976), in which the audio
was lost during live transmission, and commenta-
tors, not presidential candidates, spoke for almost
half an hour. This was not reflected in the tran-
script, and we had to manually edit the video to
match the transcript. For two debates (the first and
second Clinton-Bush-Perot debates of 1992), the
Commission decided to split the transcript into two
parts, even though the debates occurred uninter-
rupted. Therefore, we split the videos in two to
match the transcript. Others had cuts or repeated
segments that lasted from a few seconds to several
minutes, and we were forced to adapt the original
dataset to reflect these changes. Whereas preceding
researchers Mancini et al. (2022) were forced to
remove full or part of the debates from their multi-
modal dataset to account for these issues, we rig-
orously edited the USElecDeb60To16 dataset and
videos to reduce unsystematic data loss error, such
that we could provide an enhanced comprehensive
dataset to researchers for further investigation. We
want to highlight that this error reduction does not
cast any doubt on the quality and substantive find-

1https://www.debates.org/voter-education/debate-
transcripts/
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Figure 1: Model architectures used in this paper. a-c) Generic architectures of the text and audio modules. d)
Multimodal model that combines text and audio modules.

ings of that preceding work, as it mostly relates to
sentence omission.

We aligned the transcripts with the audio using
the Aeneas Forced Alignment (v. 1.7.3) tool as
proposed by Mestre et al. (2021). Two researchers
manually checked every debate for major misalign-
ment (and fixed them) until we obtained an almost
perfectly aligned text. After alignment, our dataset
contained 28,850 labelled sentences (76.15% of
them arguments), with timestamps indicating start
and ending times in the audio file. We present
the extended dataset we call Multimodal USE-
lecDeb60To16, with the collapsed original anno-
tations, alongside timestamps to match the audio,
instructions for obtaining the videos and scripts to
extract the audio features, in our GitHub repository
page (Mestre et al., 2023).2

3.2 Model architectures

We used the architectures proposed by Mestre et al.
(2021), which showed the potential of multimodal
argumentation mining in our dataset (Figure 1).
We considered two text modules based on GloVe
and BERT (Devlin et al., 2018). The former used
Wikipedia-trained 200-dimensional GloVe embed-
dings, whose maximum length was given by its
99th percentile to eliminate very long sentences.
They were passed through a Bi-LSTM, followed
by a dropout layer, a dense layer and an output
layer with softmax activation. The latter module
consisted of a BERT pre-processor3 and a BERT
encoder with L=12 hidden layers, a size of H=768
and A=12 attention heads.4 Its pooled output was
also followed by a dropout layer and a dense layer.

2https://github.com/rafamestre/
Multimodal-USElecDeb60To16.

3bert_en_uncased_preprocess v.3
4bert_en_uncased_L-12_H-768_A-12 v.4

The audio module was inspired by Cai et al.
(2019). For each utterance in audio form, the
Python library Librosa was used for audio fea-
ture extraction (McFee et al., 2015). We ex-
tracted the following LLD features: MFCCs (Kla-
puri and Davy, 2006), spectral centroids (Klapuri
and Davy, 2006), spectral bandwidth (Klapuri and
Davy, 2006), spectral roll-off (McFee et al., 2015),
spectral contrast (Jiang et al., 2002a), and a 12-bit
chroma vector (McFee et al., 2015). Motivation
for selection of features and evaluation is further
described in Section 6. For each sentence, the fea-
tures were concatenated to form a tensor of (45, T ),
where T is the duration of the utterance. All utter-
ances were padded with zeros to have the same
length Tmax, which was defined by the 99th per-
centile duration of all utterances. Each utterance
was passed in parallel through a CNN and a Bi-
LSTM to find both local and temporal features.
The CNN consisted of two convolutional layers,
two maxpool layers and batch normalization layers.
Outputs from both modules were flattened, con-
catenated and passed through dropout and dense
layers.

The multimodal model was a combination of the
text and audio modules in which the inputs were
the text string and its corresponding audio, each
passed in parallel. We considered two multimodal
models: one with a BERT text module and another
one with a Bi-LSTM text module.

3.3 Hyperparameter tuning

We developed a robust methodological framework
to tune the hyperparameters for each model. Model
training was performed in a High Performance
Computing (HPC) cluster in dedicated GPUs (with
either nodes of 4 GTX1080 Ti GPUs or nodes of
2 Nvidia Volta V100 GPUs). The hyperparame-
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Model Class Original dataset (N = 28, 850) Balanced dataset (N = 13, 758)
Precision Recall F1 Precision Recall F1

Text
Bi-LSTM

Argument 0.844 ± 0.005 0.950 ± 0.011 0.893 ± 0.004 0.707 ± 0.011 0.789 ± 0.037 0.745 ± 0.012
Other 0.727 ± 0.028 0.429 ± 0.034 0.539 ± 0.023 0.761 ± 0.020 0.669 ± 0.039 0.711 ± 0.017

Wt. average 0.816 ± 0.006 0.827 ± 0.005 0.810 ± 0.006 0.734 ± 0.007 0.730 ± 0.007 0.729 ± 0.007
Macro av. 0.785 ± 0.013 0.690 ± 0.013 0.716 ± 0.012 0.734 ± 0.007 0.729 ± 0.007 0.728 ± 0.007

Text BERT

Argument 0.854 ± 0.004 0.951 ± 0.006 0.900 ± 0.002 0.714 ± 0.013 0.839 ± 0.025 0.771 ± 0.011
Other 0.758 ± 0.018 0.487 ± 0.018 0.593 ± 0.012 0.813 ± 0.017 0.674 ± 0.024 0.737 ± 0.010

Wt. average 0.831 ± 0.004 0.839 ± 0.003 0.826 ± 0.004 0.764 ± 0.007 0.755 ± 0.006 0.754 ± 0.006
Macro av. 0.806 ± 0.008 0.719 ± 0.007 0.746 ± 0.006 0.763 ± 0.007 0.757 ± 0.005 0.754 ± 0.006

Audio

Argument 0.785 ± 0.011 0.973 ± 0.028 0.869 ± 0.005 0.628 ± 0.032 0.517 ± 0.279 0.521 ± 0.204
Other 0.654 ± 0.081 0.135 ± 0.080 0.211 ± 0.089 0.603 ± 0.063 0.670 ± 0.211 0.612 ± 0.064

Wt. average 0.754 ± 0.011 0.775 ± 0.003 0.714 ± 0.017 0.615 ± 0.017 0.595 ± 0.036 0.567 ± 0.078
Macro av. 0.720 ± 0.035 0.554 ± 0.026 0.540 ± 0.042 0.615 ± 0.016 0.593 ± 0.034 0.566 ± 0.080

Multimodal
(Bi-LSTM
+Audio)

Argument 0.879 ± 0.031 0.672 ± 0.255 0.733 ± 0.184 0.765 ± 0.054 0.548 ± 0.259 0.593 ± 0.230
Other 0.451 ± 0.127 0.681 ± 0.173 0.515 ± 0.053 0.661 ± 0.087 0.812 ± 0.104 0.719 ± 0.021

Wt. average 0.776 ± 0.016 0.674 ± 0.153 0.680 ± 0.152 0.713 ± 0.019 0.679 ± 0.079 0.656 ± 0.126
Macro av. 0.665 ± 0.051 0.677 ± 0.046 0.624 ± 0.117 0.713 ± 0.019 0.680 ± 0.078 0.656 ± 0.126

Multimodal
(BERT

+Audio)

Argument 0.851 ± 0.007 0.940 ± 0.006 0.893 ± 0.006 0.730 ± 0.031 0.773 ± 0.057 0.749 ± 0.014
Other 0.723 ± 0.016 0.487 ± 0.020 0.581 ± 0.016 0.762 ± 0.033 0.712 ± 0.059 0.734 ± 0.017

Wt. average 0.820 ± 0.009 0.830 ± 0.008 0.818 ± 0.009 0.746 ± 0.004 0.742 ± 0.005 0.741 ± 0.005
Macro av. 0.787 ± 0.011 0.713 ± 0.010 0.737 ± 0.010 0.746 ± 0.005 0.743 ± 0.004 0.741 ± 0.005

Table 1: Models’ performance for original and balanced datasets. Errors indicate standard deviation after 5
replicates.

ter training was assisted by the Python package
Ray[tune] (Liaw et al., 2018), which allows dis-
tributed parallel hyperparameter tuning with dif-
ferent search strategies and schedulers. We de-
fined our hyperparameter search as shown in the
appendix (Table A1), including training parame-
ters like the learning rate and batch size, and also
architecture-dependent parameters like the kernel
size of the CNN or whether the text embeddings
should be retrained or not. To search over the
defined hyperparameter space, we used the Tree-
structured Parzen Estimator algorithm (Bergstra
et al., 2011), which considers the performance of
previous iterations of the search to choose the next
hyperparameters to test, implemented in the Hy-
perOpt library for parallel optimization (Bergstra
et al., 2013). The training was implemented in
TensorFlow and we included Keras callbacks after
each epoch of training to update the hyperparam-
eter search algorithm. We implemented an early
stopping scheduler algorithm that monitored val-
idation loss at each epoch, stopping the training
before overfitting, with a minimum change of 1e-4
and a patience of 3 epochs. We considered imple-
menting other schedulers like Asynchronous Suc-
cessive Halving Algorithm (ASHA), which stops
unpromising trials if their performance is worse
than that of previous trials (Li et al., 2018), but we
discovered in our experiments that this algorithm
tends to penalize slow learning models, which
sometimes ended up giving the best results. We
sampled 50 times the search space, with validation

split of 20% and test split of 20%, and the best
hyperparameters, used in the remaining sections,
are reported in the appendix (Table A1), as well as
average runtimes and number of parameters. With
our dataset, we provide full details of the training
results, with confusion matrices, training history,
validation metrics plots, etc.

4 Models’ performance

4.1 Full original dataset

Table 1 shows the performance of each one of
the models after training with the original dataset
(N = 28, 850) and optimized parameters. The text-
only models, particularly the BERT model, perform
best in terms of both macro and weighted F-scores,
reaching a weighted average of 0.826 (macro av-
erage of 0.746), comparable to the weighted aver-
age reported by Haddadan et al. (2019) of 0.843
(or macro average of 0.730) using a LSTM net-
work. As in that paper, the precision and recall
of the "other" class is low, but classification of
the "argument" class performs much better, with a
high recall in both the BERT and Bi-LSTM mod-
els. The audio-only model yields a rather low
macro averaged F-score of 0.540, as it relies on
over-classifying the argument class. The BERT-
based multimodal model performs significantly bet-
ter than the audio-only model and similarly to the
text models, with a macro average of 0.737. The
Bi-LSTM-based multimodal model performs bet-
ter than the audio-only model in terms of macro
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Model Class 10% original dataset (N = 2, 885) 10% balanced dataset (N = 1, 376)
Precision Recall F1 Precision Recall F1

Text
Bi-LSTM

Argument 0.816 ± 0.027 0.946 ± 0.022 0.876 ± 0.015 0.686 ± 0.045 0.749 ± 0.025 0.715 ± 0.031
Other 0.669 ± 0.067 0.332 ± 0.092 0.436 ± 0.083 0.723 ± 0.027 0.656 ± 0.061 0.687 ± 0.044

Wt. average 0.781 ± 0.029 0.797 ± 0.024 0.769 ± 0.034 0.705 ± 0.033 0.702 ± 0.035 0.701 ± 0.036
Macro av. 0.743 ± 0.037 0.639 ± 0.039 0.656 ± 0.046 0.704 ± 0.033 0.702 ± 0.035 0.701 ± 0.036

Text BERT

Argument 0.784 ± 0.042 0.985 ± 0.016 0.873 ± 0.020 0.571 ± 0.117 0.712 ± 0.231 0.610 ± 0.101
Other 0.391 ± 0.395 0.148 ± 0.192 0.206 ± 0.262 0.535 ± 0.204 0.441 ± 0.352 0.438 ± 0.317

Wt. average 0.687 ± 0.133 0.782 ± 0.040 0.710 ± 0.082 0.552 ± 0.155 0.570 ± 0.117 0.520 ± 0.174
Macro av. 0.588 ± 0.218 0.567 ± 0.089 0.539 ± 0.140 0.553 ± 0.152 0.577 ± 0.109 0.524 ± 0.168

Audio

Argument 0.806 ± 0.045 0.782 ± 0.419 0.708 ± 0.360 0.614 ± 0.043 0.658 ± 0.256 0.607 ± 0.131
Other 0.477 ± 0.380 0.310 ± 0.400 0.237 ± 0.182 0.670 ± 0.112 0.549 ± 0.238 0.563 ± 0.130

Wt. average 0.731 ± 0.079 0.671 ± 0.232 0.597 ± 0.258 0.639 ± 0.048 0.613 ± 0.023 0.590 ± 0.036
Macro av. 0.642 ± 0.183 0.546 ± 0.050 0.472 ± 0.160 0.642 ± 0.051 0.604 ± 0.027 0.585 ± 0.041

Multimodal
(Bi-LSTM
+Audio)

Argument 0.684 ± 0.382 0.635 ± 0.360 0.657 ± 0.369 0.755 ± 0.140 0.386 ± 0.260 0.445 ± 0.258
Other 0.412 ± 0.103 0.641 ± 0.213 0.472 ± 0.054 0.612 ± 0.059 0.834 ± 0.131 0.697 ± 0.027

Wt. average 0.620 ± 0.316 0.637 ± 0.227 0.614 ± 0.294 0.679 ± 0.044 0.625 ± 0.052 0.581 ± 0.113
Macro av. 0.548 ± 0.241 0.638 ± 0.078 0.565 ± 0.210 0.684 ± 0.052 0.610 ± 0.066 0.571 ± 0.124

Multimodal
(BERT

+Audio)

Argument 0.833 ± 0.030 0.936 ± 0.023 0.881 ± 0.009 0.722 ± 0.017 0.789 ± 0.033 0.753 ± 0.012
Other 0.710 ± 0.060 0.445 ± 0.095 0.538 ± 0.056 0.771 ± 0.021 0.699 ± 0.037 0.732 ± 0.017

Wt. average 0.803 ± 0.012 0.810 ± 0.014 0.793 ± 0.024 0.747 ± 0.009 0.743 ± 0.009 0.743 ± 0.010
Macro av. 0.771 ± 0.017 0.690 ± 0.034 0.709 ± 0.030 0.746 ± 0.009 0.744 ± 0.009 0.743 ± 0.010

Table 2: Models’ performance for 10% of the datasets. Errors indicate standard deviation after 5 replicates.

averaged F-score, with 0.624. Our models perform
slightly better than those of Mancini et al. (2022),
who used the same architecture (although with their
own hyperparameter optimization) and dataset (al-
though slightly smaller). But, like us, they find that
the multimodal models do not significantly (if at
all) outperform the text-only models, with macro
F-scores of 0.674 in both. Their audio-only model
was not better than the random baseline at 0.505.

In both the original work of Mestre et al. (2021)
and the replication by Mancini et al. (2022), the au-
thors show a beneficial impact of audio embeddings
in argument classification. However, that dataset
was significantly smaller (N = 4, 104) and heavily
imbalanced towards one of the classes. Our dataset
is also slightly imbalanced towards the "argument"
class (76.15% arguments) and the text-only models
seem to be reaching saturation, as per the previous
paragraph. Moreover, the low precision and recall
of the "other" class leads us to believe that the mod-
els overly rely on classifying many instances as
"argument". Therefore, we asked ourselves what
would happen: 1) when the dataset is small and the
performance of the text-only model might suffer; 2)
when the dataset is balanced and the models cannot
rely on over-classifying the "argument" class. Does
the addition of audio improve the performance met-
rics in those cases?

4.2 Fractional and balanced datasets

The right-hand side of Table 1 shows the results
with the same models for a balanced dataset. To
obtain a balanced dataset, a random number of "ar-

gument" classes were dropped from the original
dataset, until we obtained an equal number of both
classes, therefore reducing the total size to 13,758
sentences. This table shows how the overall perfor-
mance of the BERT and Bi-LSTM models has been
reduced, reaching macro averaged F-score values
of 0.754 for the BERT model and 0.728 for the Bi-
LSTM model. Moreover, the precision and recall
of both classes are more balanced: whereas in the
original dataset the recall of the "argument" and
"other" classes of the BERT model were 0.951 and
0.487, respectively, they are now 0.839 and 0.674.
The multimodal model continues to perform signif-
icantly better than the audio-only model, but still
not better than the BERT model, to which it still
achieves similar F-score values. It seems, therefore,
that a multimodal model does not provide better
results than text-only models when the datasets are
balanced, at least as long as the number of anno-
tations continues to be large (N = 13, 758). The
text-only models still seem to reach saturation of
what can be accomplished with the dataset.

Table 2 shows the results for a fractional dataset
composed of only 10% of the original and bal-
anced data. We hypothesize that the performance
of the text-only models will start to suffer with
small amounts of training data and the audio fea-
tures from the multimodal models will be able to
partially recover previous performance. Indeed, it
has been shown in some work that BERT models
tend to decline in performance with small datasets
and can be outperformed by simpler models like Bi-
LSTM (Ezen-Can, 2020). Likewise, not only does
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the overall performance suffer, but also the stability
of the model as discussed by Dodge et al. (2020). In
our case, we see that the BERT model shows a large
drop in macro average F-score, down to 0.539, and
high instability, as can be observed from the large
standard error of the "other" class. In this case, the
Bi-LSTM model outperforms the BERT model at
0.656, suggesting that the BERT model is more
sensitive to smaller datasets. The BERT-based mul-
timodal model also outperforms the BERT model,
with a macro average F-score of 0.709, very close
to the best scenario with the original dataset at
0.746. Surprisingly, the Bi-LSTM-based multi-
modal model does not outperform the Bi-LSTM
model, but worsens its performance. On 10% of
the balanced dataset, results are similiar, with the
BERT model suffering and the BERT-based mul-
timodal model outperforming all with F-scores of
0.743, close to the original balanced case.

For intermediate sizes, such as 50% and 20% (re-
ported in Section C) the change seems to be gradual.
For both 50% and 20% of the original dataset, the
performance of the only-text BERT model and the
BERT-based multimodal model is practically iden-
tical. However, for balanced datasets of 20% (with
only N = 2, 751), the performance of the BERT
model starts to decrease and is overcome by the
multimodal model. All these results suggest that
there is a point at around N = 3, 000 or below
where audio features provide an important added
value in the performance of the models. Full details
of all the replicates, including the model history
with validation losses and accuracy, confusion ma-
trices and a full breakdown of the performance met-
rics can be found in the repository of the project5

and its official release (Mestre et al., 2023).

5 Artificial voices

It is not clear what the audio models are specif-
ically looking at when they undergo training, as
the features extracted are not always easy to in-
terpret. One hypothesis is that they learn from the
words being uttered, their pronunciation and associ-
ations thereof in a similar way to text-based models.
However, it is also likely that these audio models
are picking up intonation or pitch features that are
possibly different when one person is making an
argument.

As a first step in investigating what the audio-

5https://github.com/rafamestre/
Multimodal-USElecDeb60To16.

based models are paying attention to, we ran our
models using artificial voices, instead of the orig-
inal voices from the presidential candidates. For
this, we used the computer generated voices from
the Microsoft Window’s Text to Speech (TTS) sys-
tem. Then, we used the text-to-speech conversion
library pyttsx3 (v 2.9) for Python to run each sen-
tence through the Microsoft TTS system and gen-
erate utterances spoken by the so-called Microsoft
Mark and Microsoft Zira, the male and female ver-
sion of US voices. We set the speaking rate at
200 words per minute, but it could be interesting
for future studies to observe the accuracy of the
models when the speech rate is changed. Likewise,
each country package in Microsoft Windows has
its own set of unique voices, even if they speak the
same language, e.g., UK, India, South Africa, and
so on, so it could be interesting to check potential
differences in accuracy with different accents.

We then ran our audio-only models as described
before and the performance metrics are displayed
in Table 3. We only report the F-scores, and not
precision and recall, for simplicity.6 We can see in
this table that, generally, there are no differences in
F-score by gender of the artificial voices, although
there seems to be a bias towards the female Zira
voice. When compared to the audio model run with
original voices, it is interesting to see that whereas
using artificial voices results in a similar score with
the full dataset, with the balanced dataset the re-
sults are improved, going from 0.566 as reported
in 1 to 0.626 using the Zira voice. This improve-
ment is also found with the 10% dataset, which
reported 0.536 and 0.594 for the original and bal-
anced datasets, whereas Table 2 reported 0.572 and
0.585, respectively. In the balanced case, these val-
ues are even better than the BERT model at 0.524.
A potential explanation is that the artificial audio
models lack noise coming from the recording, or
remove variation coming from different people hav-
ing different baseline pitches that might confuse the
model. There might be a trade-off between taking
advantage of pitch or intonation during arguments
(which we were not able to prove produces any ef-
fect) and benefiting from the noise-reduced nature
of artificial audio. In any case, it seems that audio-
only models based on artificial voices can learn
features and classify arguments with an accuracy
comparable to text-only models, and sometimes

6Full information, all the computerized utterances and
scripts to reproduce our results can be found in our repository
(Mestre et al., 2023).
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Voice Class F1

Original dataset Balanced dataset 10% original 10% balanced

Female

Argument 0.874 ± 0.002 0.596 ± 0.141 0.865 ± 0.012 0.555 ± 0.055
Other 0.235 ± 0.029 0.656 ± 0.017 0.207 ± 0.115 0.633 ± 0.051

Wt. average 0.722 ± 0.006 0.626 ± 0.064 0.706 ± 0.024 0.593 ± 0.025
Macro av. 0.555 ± 0.014 0.626 ± 0.063 0.536 ± 0.054 0.594 ± 0.022

Male

Argument 0.871 ± 0.003 0.582 ± 0.126 0.875 ± 0.007 0.496 ± 0.173
Other 0.199 ± 0.043 0.654 ± 0.167 0.191 ± 0.121 0.595 ± 0.127

Wt. average 0.711 ± 0.010 0.618 ± 0.060 0.720 ± 0.032 0.548 ± 0.057
Macro av. 0.535 ± 0.021 0.618 ± 0.059 0.533 ± 0.062 0.545 ± 0.059

Table 3: Audio-only models’ performance with artificial voices. Errors indicate standard deviation after 5 replicates.

even better than those when data is scarce. Models
based on the original voices often struggle, and this
might be due to the inherent noise of the recordings
or differences at the speaker level.

6 Ablation study

Finally, to further understand how the different
LLD audio features might play a role in argument
detection, we perform an ablation study with the
audio model in which we eliminate one of the six
features at a time and assess how the performance
of the model changes. The results are in Table
4 for the full and balanced datasets (we only re-
port F-score for simplicity). The first column in-
dicates the feature that was eliminated from the
feature tensor, which originally had dimensions of
(45, Tmax), whereas the second column displays
the dimensions of the tensor after elimination. In
general, none of the cases deviate much from the
full-feature model with macro F-scores of 0.540
and 0.566 for the original and balanced datasets
(Table 1). The first four features are spectral fea-
tures, meaning that they are features extracted from
the spectrogram of the sound wave. In particular,
the spectral centroid and bandwidth characterize
the center of mass of the spectrum (where most
of the energy is located) and its weighted standard
deviation, respectively (Sandhya et al., 2020). The
spectral rolloff also characterizes the energy spec-
trum by identifying the frequency below which a
certain percentage (in our case, 85%) of the energy
is located, and can be used to differentiate voices
from noise (Syed et al., 2021). These three features
are 1-dimensional and only reduce the feature space
to (44, T ). The spectral contrast feature, however,
is 7-dimensional and works by dividing the spec-
trogram into 6 sub-bands, for which the difference
between their peaks and valleys are computed, and
is commonly used in music identification (Jiang
et al., 2002b). The chromagram, or chroma feature,

is a feature that aggregates all information of a
waveform into the 12 different pitch classes, which
are separated by an octave. This feature is mostly
used for music synchronization and singing voice
separation (Yuan et al., 2022). Finally, MFCCs
are a variable set of features (in our case, we use
12) which describe the shape of the spectral signal.
They are based on human auditive perceptions and
are widely used in the literature to capture pho-
netically relevant features (Mansour and Lachiri,
2017).

From the ablation study, we see that skipping
features does not have a strong influence on the
performance with the original full dataset. With
the balanced dataset, the elimination of the spectral
roll-off feature seems to have a strong effect, as
it decreases its macro F-score to 0.402. A special
mention to the MFCCs is deserved. These are the
most common LDDs in the literature. Eliminat-
ing this feature but keeping the rest does not affect
the performance (F-score of 0.544) in the original
dataset, and improves it in the balanced case to
0.612. As MFCCs (and many of the other features)
are commonly used to distinguish between voices
based on their frequency and pitch, they could bias
the model by considering information about the
speaker, which is not necessarily relevant to the ar-
gument. This would also explain why the artificial
voices performed better than the original dataset
and why some of the simplest features, like spectral
roll-off, have a big influence on performance.

7 Conclusion

In this paper, we explored the possibilities of using
audio to detect arguments with multimodal ma-
chine learning models in a dataset of US presiden-
tial debates that was annotated for arguments. We
found that, generally, BERT-based text-only mod-
els outperformed all models in the original dataset,
but multimodal models can improve performance
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Feature
skipped

Feature
space Class F1

Original dataset Balanced dataset

Spectral
centroids

(44,T)

Argument 0.858 ± 0.010 0.511 ± 0.185
Other 0.225 ± 0.156 0.613 ± 0.005

Wt. average 0.706 ± 0.035 0.561 ± 0.070
Macro av. 0.542 ± 0.075 0.562 ± 0.069

Spectral
bandwidth

(44,T)

Argument 0.869 ± 0.001 0.360 ± 0.270
Other 0.198 ± 0.018 0.653 ± 0.039

Wt. average 0.709 ± 0.001 0.508 ± 0.122
Macro av. 0.534 ± 0.009 0.507 ± 0.122

Spectral
roll-off

(44,T)

Argument 0.777 ± 0.109 0.127 ± 0.118
Other 0.320 ± 0.192 0.677 ± 0.007

Wt. average 0.668 ± 0.065 0.408 ± 0.058
Macro av. 0.548 ± 0.075 0.402 ± 0.059

Spectral
contrast

(38,T)

Argument 0.866 ± 0.002 0.429 ± 0.278
Other 0.201 ± 0.110 0.645 ± 0.025

Wt. average 0.706 ± 0.028 0.537 ± 0.127
Macro av. 0.533 ± 0.055 0.537 ± 0.128

Chroma (33,T)

Argument 0.870 ± 0.003 0.408 ± 0.316
Other 0.196 ± 0.038 0.611 ± 0.061

Wt. average 0.710 ± 0.012 0.509 ± 0.133
Macro av. 0.533 ± 0.020 0.509 ± 0.132

MFCCs (22,T)

Argument 0.869 ± 0.003 0.619 ± 0.032
Other 0.220 ± 0.018 0.605 ± 0.058

Wt. average 0.714 ± 0.011 0.611 ± 0.022
Macro av. 0.544 ± 0.011 0.612 ± 0.021

Table 4: Results from ablation study. The complete
feature space has a dimensions of (45, Tmax), where
Tmax is the 99% percentile length of the utterances.

when the datasets are small and BERT encodings
start performing poorly, in both balanced and un-
balanced versions of the data. Multimodal models
are therefore an alternative that could be used to
improve classifications of arguments when data is
scarce. To further investigate the reasons for these
improvements, we ran audio-only models using
artificially generated voices of male and female
genders. Although we did not find a significant dif-
ference in the performance with the artificial voices
(only a slight preference toward female), we find
that in the most difficult scenarios (balanced and
small datasets), the models with artificial voices
outperform those with the original audio from the
debates. Moreover, we perform an ablation study
and we find that removing certain features like
MFCCs can improve the performance of the mod-
els. We recognize that these features are commonly
used to distinguish between speakers, so irrelevant
characteristics of speakers might be influencing
the capacity of the models to accurately classify
arguments. However, all these features are highly
correlated with one another, so further work should
investigate which features are more independent
of the speakers themselves or if they can be nor-
malized before being fed into the network. These
results should be compared with artificially gener-
ated voices, which could have different accents or
speech rates to understand how those features can
influence the classification of arguments.

Limitations

This paper assesses the benefits of audio features
in the task of argumentation mining. Although the
dataset presented has a large number of annotations
(N = 28, 850) further research should be aimed at
studying its cross-domain adaptability in different
scenarios and datasets. The model architectures
used in this paper are fairly standard in the litera-
ture and thus represent benchmarking results for
further research in the field, as the application of
multimodal sources of data in argumentation min-
ing is still largely unexplored. Newer architectures,
for instance those based on cross-attention mecha-
nisms between the different modalities, should be
explored next to check whether these results could
be improved. It is still not fully clear what informa-
tion from the audio embeddings are being picked
up by the models. Our study on computerized
voices offers an interesting avenue of research, but
it should be further expanded to include a larger ar-
ray of voices, different speech rates and embedding
in fully multimodal models to assess their perfor-
mance. The potential biases of models that use
audio, especially how different voice’s characteris-
tics (such as pitch frequency, which is correlated
to gender) affect the classification, are not fully
studied here, but briefly touched upon in the com-
puterized voice study. This is rather important but
unexplored territory and normalization strategies
should be investigated to solve these issues. Fi-
nally, there are a large number of audio features
that could be explored in this domain. Those used
in this work are just some of the most common
ones, but, as mentioned before, the choice is gen-
erally based on the extraction package used by the
researcher. There is a need for standardization of
these features in the community, so different work
can be better compared.

Ethics Statement

We acknowledge that the use of audio features for
automatic classification can cause potential privacy
issues, as the real voice, and not only the speech,
is used for classification. At this stage, we do
not foresee any outstanding ethical issues from
this research, as we use public domain data that
was televised in public national television and is
widely availabe on the web. Ethics approval for
this research was received from the University of
Southampton’s Faculty of Social Science Ethics
and Research Governance committee, Ref: 66226,
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A Hyperparameter tuning

Table A1 shows the hyperparameter bounds, as
well as the final values selected for each model.
After hyperparameter tuning, BERT-based text-
models took approximately 45 minutes to train,
whereas Bi-LSTM-based text-models took only 2
minutes (on the full dataset). Audio-only mod-
els took 25 min to train (as they would converge
very slowly taking more than 50 training epochs),
BERT-based multimodal models took an average
of 3 hours and Bi-LSTM-based multimodal models
took 8 minutes.

B Notes on alignment

As mentioned in the main text, we used the Ae-
neas package, which is a Python package that uses
“forced alignment” to match the text and audio from
utterances. Briefly, each sentence is provided as
text and the tool uses the espeak Windows speech
synthesizer to generate a computerized voice ut-
tering that sentence. Then, amplitude waves are
contrasted from the real and computer-generated
sentences, and they are aligned to extract the times-
tamps. Two researchers manually checked every
debate for major misalignment (and fixed them)
until we obtained an almost perfectly aligned text.

We indicated omissions to be ignored during
alignment: text between brackets that indicates
transcription tags like "applause", or the interjec-
tion "uh", that appeared (too much) in some of the
transcripts and never in others. This tool comes
with a handy HTML output that allows the user to
click on different parts of the transcript and check
the alignment. Two people manually checked ev-
ery debate for major misalignment (and fixed those
cases as described above) until we obtained an al-
most perfectly aligned text.

Together with the dataset and codes to reproduce
the results, we present our code to reproduce the
alignment process, as well as an exhaustive list
of the problems we encountered during alignment
and how we solved them (e.g., modifications to
the original transcripts, splitting videos, etc.). We
share a folder with all the results from training our
models with original and balanced datasets, as well
as fractional subsets of 50%, 20% and 10%. We
also include the training with artificial voices and
from the ablation study. Each subfolder contains
the parameters used by the model, confusion ma-
trices of each run (5 runs per model), loss value vs
epoch plots, training history with validation met-

rics, and precision/recall/F-score metrics for each
run, as well as the average values.

C Results for 50% and 20% datasets

Tables A2 and A3 show the results for all models
with 50% and 20% fractional datasets.
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Hyper-
parameter Range Bi-LSTM BERT Audio

Multimodal
(Bi-LSTM
+Audio)

Multimodal
(BERT
+Audio)

Learning rate
[0.01,

0.000001]
6.68e−4 2.37e−6 1.89e−5 7.73e−5 2.81e−6

Batch size {16, 32, 64} 16 32 64 16 16
Hidden

activation
{ReLU,Sigm.,

Tanh}
Tanh ReLU Sigm. ReLU ReLU

Trainable {True, False} False True True True
Dropout text [0, 0.9] 0.6 0.8 0.5 0.7

Dropout audio [0, 0.9] 0.6 0.6 0.1
Dropout final [0, 0.9] 0 0.5

# neurons
dense layer

{16, 32, 64,
128, 256}

32 256 32 16 16

# neurons
Bi-LSTM text

{16, 32, 64,
128, 256}

64 64

# neurons
Bi-LSTM audio

{16, 32, 64,
128, 256}

16 32 256

# filters
conv. layer 1

{4, 8, 16,
32, 64}

4 4 8

# filters
conv. layer 2

{4, 8, 16,
32, 64}

4 8 4

Kernel size
conv. layer 1

{1, 3,
5, 7}

3 3 3

Kernel size
conv. layer 2

{1, 3,
5, 7}

5 7 3

Size pooling
layer 1

{2, 4} 2 2 2

Size pooling
layer 2

{2, 4} 2 2 4

Number of
parameters

2,802,074 109,679,619 5,362,110 7,928,618 119,978,775

Table A1: List of hyperparameters, their search range and their optimal value for each model. The range in "learning
rate" (in squared brackets) was given as a log uniform distribution, in the dropout layers a uniform distribution in
multiples of 0.1, whereas in the remaining cases (represented with curly brackets) the choices were from the discrete
set of values shown.
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Model Class 50% original dataset (N = 14, 425) 50% balanced dataset (N = 6, 879)
Precision Recall F1 Precision Recall F1

Text
Bi-LSTM

Argument 0.836 ± 0.014 0.944 ± 0.012 0.886 ± 0.005 0.704 ± 0.025 0.784 ± 0.027 0.741 ± 0.004
Other 0.705 ± 0.044 0.415 ± 0.033 0.521 ± 0.019 0.760 ± 0.020 0.673 ± 0.049 0.713 ± 0.026

Wt. average 0.805 ± 0.006 0.816 ± 0.007 0.798 ± 0.011 0.732 ± 0.008 0.728 ± 0.013 0.727 ± 0.014
Macro av. 0.770 ± 0.016 0.680 ± 0.011 0.704 ± 0.011 0.732 ± 0.008 0.728 ± 0.012 0.727 ± 0.014

Text BERT

Argument 0.841 ± 0.041 0.952 ± 0.028 0.892 ± 0.013 0.719 ± 0.010 0.803 ± 0.023 0.759 ± 0.009
Other 0.776 ± 0.127 0.402 ± 0.224 0.474 ± 0.262 0.773 ± 0.018 0.680 ± 0.027 0.723 ± 0.016

Wt. average 0.826 ± 0.004 0.822 ± 0.031 0.794 ± 0.071 0.746 ± 0.010 0.742 ± 0.010 0.741 ± 0.010
Macro av. 0.809 ± 0.043 0.677 ± 0.098 0.683 ± 0.137 0.746 ± 0.010 0.742 ± 0.010 0.741 ± 0.010

Audio

Argument 0.795 ± 0.032 0.897 ± 0.176 0.833 ± 0.079 0.630 ± 0.030 0.521 ± 0.211 0.547 ± 0.122
Other 0.398 ± 0.246 0.211 ± 0.253 0.216 ± 0.153 0.601 ± 0.067 0.681 ± 0.164 0.623 ± 0.050

Wt. average 0.703 ± 0.066 0.738 ± 0.078 0.690 ± 0.042 0.616 ± 0.022 0.599 ± 0.034 0.584 ± 0.050
Macro av. 0.597 ± 0.126 0.554 ± 0.042 0.524 ± 0.052 0.615 ± 0.023 0.601 ± 0.029 0.585 ± 0.048

Multimodal
(Bi-LSTM
+Audio)

Argument 0.870 ± 0.036 0.756 ± 0.190 0.794 ± 0.113 0.800 ± 0.096 0.330 ± 0.282 0.398 ± 0.271
Other 0.493 ± 0.119 0.622 ± 0.181 0.521 ± 0.049 0.582 ± 0.091 0.887 ± 0.117 0.692 ± 0.029

Wt. average 0.780 ± 0.013 0.722 ± 0.106 0.728 ± 0.092 0.694 ± 0.027 0.603 ± 0.091 0.542 ± 0.154
Macro av. 0.682 ± 0.044 0.689 ± 0.034 0.657 ± 0.073 0.691 ± 0.023 0.609 ± 0.084 0.545 ± 0.149

Multimodal
(BERT

+Audio)

Argument 0.842 ± 0.010 0.946 ± 0.011 0.891 ± 0.223 0.727 ± 0.025 0.778 ± 0.028 0.751 ± 0.020
Other 0.736 ± 0.037 0.457 ± 0.029 0.563 ± 0.014 0.756 ± 0.021 0.701 ± 0.022 0.727 ± 0.010

Wt. average 0.816 ± 0.002 0.825 ± 0.003 0.810 ± 0.005 0.742 ± 0.013 0.740 ± 0.014 0.739 ± 0.013
Macro av. 0.789 ± 0.014 0.701 ± 0.009 0.727 ± 0.006 0.741 ± 0.014 0.739 ± 0.013 0.739 ± 0.013

Table A2: Models’ performance for 50% of the datasets. Errors indicate standard deviation after 5 replicates.

Model Class 20% original dataset (N = 5, 770) 20% balanced dataset (N = 2, 751)
Precision Recall F1 Precision Recall F1

Text
Bi-LSTM

Argument 0.833 ± 0.012 0.941 ± 0.026 0.883 ± 0.012 0.699 ± 0.024 0.723 ± 0.064 0.709 ± 0.032
Other 0.679 ± 0.066 0.386 ± 0.043 0.488 ± 0.019 0.728 ± 0.038 0.701 ± 0.053 0.713 ± 0.028

Wt. average 0.797 ± 0.015 0.810 ± 0.015 0.790 ± 0.013 0.714 ± 0.023 0.712 ± 0.024 0.711 ± 0.024
Macro av. 0.756 ± 0.030 0.663 ± 0.010 0.686 ± 0.009 0.714 ± 0.023 0.712 ± 0.040 0.711 ± 0.024

Text BERT

Argument 0.844 ± 0.015 0.952 ± 0.015 0.895 ± 0.023 0.623 ± 0.112 0.691 ± 0.166 0.648 ± 0.128
Other 0.757 ± 0.047 0.453 ± 0.026 0.566 ± 0.021 0.648 ± 0.117 0.570 ± 0.184 0.598 ± 0.147

Wt. average 0.823 ± 0.019 0.831 ± 0.017 0.815 ± 0.018 0.635 ± 0.113 0.632 ± 0.116 0.624 ± 0.122
Macro av. 0.801 ± 0.026 0.703 ± 0.013 0.731 ± 0.016 0.635 ± 0.113 0.631 ± 0.115 0.623 ± 0.122

Audio

Argument 0.802 ± 0.024 0.770 ± 0.246 0.766 ± 0.131 0.410 ± 0.422 0.207 ± 0.422 0.155 ± 0.279
Other 0.453 ± 0.157 0.365 ± 0.289 0.304 ± 0.132 0.575 ± 0.127 0.817 ± 0.384 0.589 ± 0.205

Wt. average 0.718 ± 0.026 0.677 ± 0.121 0.657 ± 0.079 0.488 ± 0.237 0.519 ± 0.031 0.378 ± 0.051
Macro av. 0.628 ± 0.068 0.568 ± 0.028 0.535 ± 0.037 0.492 ± 0.240 0.512 ± 0.020 0.372 ± 0.048

Multimodal
(Bi-LSTM
+Audio)

Argument 0.873 ± 0.089 0.432 ± 0.398 0.423 ± 0.429 0.751 ± 0.045 0.457 ± 0.118 0.558 ± 0.099
Other 0.357 ± 0.107 0.792 ± 0.200 0.467 ± 0.070 0.610 ± 0.039 0.841 ± 0.068 0.705 ± 0.026

Wt. average 0.748 ± 0.073 0.522 ± 0.254 0.473 ± 0.342 0.681 ± 0.022 0.649 ± 0.037 0.631 ± 0.055
Macro av. 0.615 ± 0.067 0.612 ± 0.102 0.470 ± 0.248 0.680 ± 0.022 0.649 ± 0.035 0.631 ± 0.054

Multimodal
(BERT

+Audio)

Argument 0.843 ± 0.005 0.955 ± 0.011 0.896 ± 0.006 0.714 ± 0.014 0.793 ± 0.047 0.751 ± 0.019
Other 0.745 ± 0.055 0.422 ± 0.027 0.538 ± 0.031 0.761 ± 0.045 0.673 ± 0.288 0.713 ± 0.019

Wt. average 0.820 ± 0.014 0.830 ± 0.010 0.812 ± 0.010 0.738 ± 0.021 0.734 ± 0.017 0.732 ± 0.017
Macro av. 0.794 ± 0.028 0.689 ± 0.015 0.717 ± 0.017 0.738 ± 0.021 0.733 ± 0.018 0.732 ± 0.017

Table A3: Models’ performance for 20% of the datasets. Errors indicate standard deviation after 5 replicates.
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Abstract

We explore zero-shot adaptation, where a
general-domain model has access to customer
or domain specific parallel data at inference
time, but not during training. We build on
the idea of Retrieval Augmented Translation
(RAT) where top-k in-domain fuzzy matches
are found for the source sentence, and target-
language translations of those fuzzy-matched
sentences are provided to the translation model
at inference time. We propose a novel archi-
tecture to control interactions between a source
sentence and the top-k fuzzy target-language
matches, and compare it to architectures from
prior work. We conduct experiments in two
language pairs (En-De and En-Fr) by training
models on WMT data and testing them with
five and seven multi-domain datasets, respec-
tively. Our approach consistently outperforms
the alternative architectures, improving BLEU
across language pair, domain, and number k
of fuzzy matches with almost no trade-off on
inference latency.

1 Introduction

Domain adaptation techniques such as fine-tuning
(Freitag and Al-Onaizan, 2016; Luong and Man-
ning, 2015) are highly effective at increasing in-
domain performance of neural machine translation
(NMT) systems, but are impractical in many re-
alistic settings. For example, consider a single
machine serving translations to thousands of cus-
tomers, each with a private Translation Memory
(TM). In this case, adapting, storing and loading
large adapted models for each customer is compu-
tationally infeasible. In this paper we thus consider
zero-shot adaptation instead, with a single general-
domain model trained from heterogeneous sources
that has access to the customer or domain specific
TM only at inference time.

∗Work done while the authors were at AWS AI Labs.

Our work builds on Retrieval Augmented Trans-
lation (RAT) (Li et al., 2022; Bulte and Tezcan,
2019; Xu et al., 2020; He et al., 2021; Cai et al.,
2021), a paradigm which combines a translation
model (Vaswani et al., 2017) with an external re-
triever module that retrieves the top-k most similar
source sentences from a TM (i.e. "fuzzy matches")
(Farajian et al., 2017; Gu et al., 2017; Bulte and
Tezcan, 2019). The encoder encodes the input sen-
tence along with the translations of the top-k fuzzy-
matches and passes the resulting encodings to the
decoder.

Prior RAT methods for NMT have fallen into
two camps: Early work (Bulte and Tezcan, 2019;
Zhang et al., 2018) concatenated the source sen-
tence and the top-k fuzzy matches before encoding,
relying on the encoder’s self-attention to compare
the source sentence to each target sentences and
determine which target phrases are relevant for the
translation. More recent work (He et al., 2021; Cai
et al., 2021) has opted to encode the source sen-
tences and the top-k fuzzy matches independently,
effectively shifting the entire burden of determin-
ing which target phrases are relevant to the decoder.
We hypothesize that neither approach is ideal: In
the first, the encoder has access to the information
that we expect to be important (namely, the source
and the fuzzy matches), but the self-attention also
has potentially confusing/spurious connections. In
the second, the encoder lacks the self-attention con-
nections between the source and the fuzzy matches.

To address these issues, we propose a novel ar-
chitecture which has self-attention connections be-
tween the source sentence and each fuzzy-match,
but not between fuzzy-matches. We denote this
method RAT with Selective Interactions (RAT-
SI). Our method is illustrated in Figure 1, along
with two previously discussed approaches.

Experiments in five English-German (En-De)
domain-specific test sets (Aharoni and Goldberg,
2020) and seven English-French (En-Fr) domain
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Figure 1: Architectures for retrieval augmented NMT. Left: Plain transformer ingesting source and retrieved fuzzy
matches concatenated with a separator symbol (Bulte and Tezcan, 2019), denoted herein as RAT-CAT. Center:
Transformer with dual encoder, one for encoding the source and one for encoding each retrieved fuzzy-matches,
inspired by He et al. (2021), denoted herein as RAT-SEP. Right: Transformer separately encoding the source and
each source + fuzzy-match pair (this work), denoted herein as RAT-SI.

specific test sets (Pham et al., 2021), for k =
{3, 4, 5}, demonstrate that our proposed method
outperforms both prior approaches in 32 out of
36 cases considered. The proposed method out-
performs the closest competitor by +0.82 to +1.75
BLEU for En-De and +1.57 to +1.93 for En-Fr.

2 Method

To isolate the effects of the underlying modeling
strategy from the various tricks and implementation
details employed in prior papers, we build baseline
models which distill the two primary modeling
strategies used in prior works:

The first concatenates a source sentence with
target-language fuzzy matches and then encodes
the entire sequence, as in Bulte and Tezcan (2019)
and Xu et al. (2020). In this approach, the cross-
attention of the encoder must learn to find the rel-
evant parts of target-language fuzzy-matches by
comparing each fuzzy-match to the source sen-
tence, while ignoring potential spurious fuzzy-
match to fuzzy-match interactions (see the left di-
agram in Figure 1). We denote this method RAT-
CAT.

The second encodes the source and each target-
language fuzzy-match separately (with two distinct
encoders), and instead concatenates the encoded
representations, inspired by He et al. (2021) and
Cai et al. (2021). In this approach, the spurious
connections between the target-language fuzzy-
matches are eliminated, but the connections be-
tween the source and each fuzzy-match are also
eliminated, forcing the attention in the decoder to

find the relevant portions in the fuzzy-match that
are relevant to the source (see the center diagram
in Figure 1). We denote this method RAT-SEP.

Finally, we propose a third method which at-
tempts to build on the strengths of each of the prior
methods. As in RAT-SEP, our method separately
encodes (with the same encoder) the source and
each target-language fuzzy-match; however, each
fuzzy-match is jointly encoded with a copy of the
source, as in RAT-CAT, allowing the encoder to
find portions of the fuzzy-match which are relevant
to the input. Finally, all the encoded inputs are
concatenated and exposed to the decoder; How-
ever, the encoding of the source is only provided
to the encoder once, to avoid potentially spurious
interactions between copies of the input (see the
right diagram in Figure 1). We denote our proposed
method RAT-SI.

3 Experimental Setup

Our experiments are in two language directions:
English-German (En-De) and English-French (En-
Fr). We train models using the public WMT
2014 (Bojar et al., 2014) data set, with 4.5M En-
De sentences and 36M En-Fr sentences.

During training, the model sees target-language
fuzzy-match sentences from the same dataset it is
being trained on (i.e. WMT14), but at inference,
models must perform zero-shot adaptation to five
En-De domain-specialized TMs1 and seven En-Fr
domain-specialized TMs.2 En-De data is taken

1Medical, Law, IT, Religion and Subtitles.
2News, Medical, Bank, Law, IT, TED and Religion.
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from Aharoni and Goldberg (2020), which is a
re-split version of the multi-domain data set from
Koehn and Knowles (2017) while En-Fr data set is
taken from the multi-domain data set of Pham et al.
(2021).

To find target-language fuzzy matches for our
model from domain specific TMs, we use Okapi
BM25 (Robertson and Zaragoza, 2009), a classical
retrieval algorithm that performs search by comput-
ing lexical matches of the query with all sentences
in the evidence, to obtain top-ranked sentences for
each input. To enable fast retrieval, we leverage the
implementation provided by the ElasticSearch li-
brary.3 Specifically, we built an index using source
sentences of each TM, and for every input source
sentence, we collect top-k similar source side sen-
tences and then use their corresponding target side
sentences as inputs to the model.

To explore how each method performs (and how
robust they are) under different conditions, we run
a full set of experiments for k = {3, 4, 5}. We train
separate models for each language pair and k value,
and then apply that model to each of the 5 (En-De)
or 7 (En-Fr) domains.

We report translation quality with BLEU scores
computed via Sacrebleu (Post, 2018).4 We use
compare-mt (Neubig et al., 2019) to perform pair-
wise significance testing with bootstrap = 1000
and prob_thresh = 0.05 for all pairs.

All models employed transformers (Vaswani
et al., 2017) with 6 encoder and 6 decoder lay-
ers. Hidden size was set to 1024 and maximum
input length truncated to 1024 tokens. All models
employed a joint source-target language subword
vocabulary of size 32K using Sentencepiece algo-
rithm (Kudo and Richardson, 2018).

We use the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ϵ = 10−9;
and (ii) increase the learning rate linearly for the
first 4K training steps and decrease it thereafter;
(iii) use batch size of 32K source tokens and 32K
target tokens. Checkpoints are saved after every
10K iterations during training. We train models
with maximum of 300K iterations. We use dropout
of 0.1 and label-smoothing of 0.1.

3https://github.com/elastic/elasticsearch-py
4SacreBleu signature: nrefs:1|case:mixed|eff:no|

tok:13a|smooth:exp|version:2.0.0.

4 Results

Results for En-De are shown in Table 1 and results
for En-Fr are shown in Table 2.

We observe several trends in the results. First,
our proposed RAT-SI method outperforms both the
RAT-CAT and RAT-SEP methods across both lan-
guage pairs, having the best performance in 32/36
cases considered. In En-De, the proposed RAT-SI
method has an average improvement of 1.43 BLEU
over RAT-CAT and 2.35 BLEU over RAT-SEP,
while in En-Fr we observe an average improve-
ment of 1.73 BLEU over RAT-CAT and 2.98 over
RAT-SEP. These results support our hypothesis that
attention connections between the source sentences
and each fuzzy match are critical to translation qual-
ity and the connections between the fuzzy matches
are actually harmful.

Second, on average, k = 5 produces the best
results for the RAT-SI method, but only by a small
amount. However, considering individual language
pair / domain combinations, there are many cases
where k = 5 does not produce the best results,
sometimes by several BLEU points. We hypothe-
size that this is due to the different domains con-
taining, on average, different amounts of relevant
data. This observation underscores the importance
of tuning k, as well as testing new RAT methods
under a variety of conditions, including different k
values.

Finally, consistent with prior work, we see large
improvements for all online domain-adapted meth-
ods (RAT-CAT, RAT-SEP, and RAT-SI) over the
non-domain-adapted baseline, with improvements
of up to +13.85 BLEU. This is not surprising, since
the baseline model does not take advantage of any
domain-specific data.

4.1 Latency

While not the focus of this work, we did a pre-
liminary study of latency, comparing a baseline
transformer to RAT-CAT and RAT-SI models dur-
ing inference. We follow Domhan et al. (2020) and
measure latency values as the 90th percentile of
inference time when translating each sentence indi-
vidually (no batching). We run experiments on an
EC2 p3.2xlarge instance with a Tesla V100 GPU
and report encoding latency results in Table 3. We
use a batch size of 1 and k=3 for all experiments.

We observe a small increase of encoding latency
by using RAT-SI (i.e. 17.48 ms) compared to of
RAT-CAT. We provide a breakdown of the total
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Model k IT LAW REL MED SUBT Average
Baseline n/a 27.92 35.59 11.26 30.74 19.46 24.99
RAT-CAT

k=3
33.97 50.34 25.14 45.05 19.89 34.88

RAT-SEP 32.78 49.04 22.92 44.28 20.48 33.90
RAT-SI (this work) 33.08 52.02* 26.40* 46.16 20.83* 35.70
RAT-CAT

k=4
33.67 49.59 23.40 44.87 20.27 34.36

RAT-SEP 31.84 48.38 24.37 43.55 19.99 33.63
RAT-SI (this work) 33.68 52.00* 28.42* 46.13 20.23 36.09
RAT-CAT

k=5
33.44 49.67 24.95 44.16 20.01 34.45

RAT-SEP 30.84 47.92 23.91 44.10 20.27 33.41
RAT-SI (this work) 33.84 52.17* 27.53* 46.95* 20.49 36.20

Table 1: BLEU scores for En-De experiments. The best BLEU for RAT models with a specific top-k value is bolded,
and "*" indicates the best result is statistically significant compared to both the other methods. The proposed method
(RAT-SI) produces the best results in 13/15 cases considered, with an average improvement of 1.43 BLEU over
RAT-CAT and 2.35 BLEU over RAT-SEP.

Model k LAW MED IT NEWS BANK REL TED Average
Baseline n/a 52.68 31.12 32.22 35.09 41.04 14.51 35.55 34.60
RAT-CAT

k=3
66.32 37.09 39.91 35.09 49.01 61.83 36.39 46.52

RAT-SEP 64.93 37.06 38.02 35.57 49.14 53.34 37.29 45.05
RAT-SI (this work) 66.56 41.30* 40.61 35.53 50.19* 67.55* 37.42 48.45
RAT-CAT

k=4
65.71 37.31 38.71 34.60 49.43 63.55 36.10 46.49

RAT-SEP 64.35 37.89 38.89 35.45 49.28 53.41 37.13 45.20
RAT-SI (this work) 66.63* 39.50* 41.90* 35.71 50.04 65.20* 37.47 48.06
RAT-CAT

k=5
65.60 37.35 38.74 34.46 49.33 63.21 36.08 46.40

RAT-SEP 64.62 38.50 39.53 35.59 49.97 52.56 37.09 45.41
RAT-SI (this work) 67.03* 39.05 41.33* 35.93* 49.82 65.49* 37.90* 48.08

Table 2: BLEU scores for En-Fr experiments. The best BLEU for RAT models with a specific top-k value is bolded,
and "*" indicates the best result is statistically significant compared to both the other methods. The proposed
method (RAT-SI) produces the best results in 19/21 cases considered, with average improvements of 1.73 BLEU
over RAT-CAT and 2.98 over RAT-SEP.

Model Encoding Latency
Transformer 14.80 ms
RAT-CAT 15.23 ms
RAT-SI 17.48 ms

Table 3: Encoding latency in milliseconds of models
(lower is better).

encoding latency in Table 4 which shows encoding
the inputs in RAT-SI is faster than RAT-CAT but
it requires an extra overhead for extracting the en-
coding of fuzzy matches from the joint encoding
of source with fuzzy match. However, the encod-
ing time is a very small fraction of overall latency
(see Table 5) and thus this difference appears to be
negligible.

We find that RAT-CAT and RAT-SI have nearly
identical latencies, and each is only slightly slower
than the baseline transformer (see Table 5). This
is somewhat surprising since both methods make
the input to the decoder significantly longer. We
hypothesize that we are under-utilizing the GPU in
all cases, and thus the increased computations does
not increase latency. Further investigation of this is

RAT-SI Model
Encoding

Latency
Encoding input 14.91 ms
Extra overheads 2.57 ms
Total time 17.48 ms

Table 4: Encoding latency of RAT-SI in milliseconds
(lower is better). Extra overheads include (1): Concate-
nate input and k = 3 input-suggestion pairs (2): Extract
k = 3 suggestion encodings and append them to the
input encoding.

left for future work.

5 Related Work

Bulte and Tezcan (2019) proposed augmenting the
input to NMT with target-language fuzzy-match
sentences from a TM, concatenating the input and
fuzzy-matches together. Their method was sim-
pler than prior works such as (Zhang et al., 2018),
which manipulated n-gram probabilities based on
their occurrence in the fuzzy-matches. Xu et al.
(2020) proposed several enhancements using the
same architecture, including fine-tuning models
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Model Translation Latency
Transformer 574.02 ms
RAT-CAT 597.28 ms
RAT-SI 597.41 ms

Table 5: Translation latency in milliseconds of RAT-
CAT and our model RAT-SI (lower is better). Batch size
was set to one to simulate an on-demand system.

and masking out or marking words not related to
the input sentence, and matching arbitrarily large
n-grams instead of sentences.

More recent work has explored using separate
encoders for input and fuzzy-match (He et al., 2021;
Cai et al., 2021). He et al. (2021) also considers the
realistic scenario where a TM may include noise,
while Cai et al. (2021) explores finding target sen-
tences in monolingual data instead of relying on a
TM at inference time.

Xia et al. (2019) and Xu et al. (2020) explore
aspects of filtering fuzzy-matches by applying sim-
ilarity thresholds, leveraging word alignment in-
formation (Zhang et al., 2018; Xu et al., 2020; He
et al., 2021) or re-ranking with additional score
(e.g. word overlapping) (Gu et al., 2018; Zhang
et al., 2018).

Our work is related to the use of k-nearest-
neighbor for NMT (Khandelwal et al., 2021; Zheng
et al., 2021) but it is less expensive and does not
require storage and search over a large data store
of context representations and corresponding target
tokens (Meng et al., 2021).

Other works have considered online adaptation
outside the context of RAT, including Vilar (2018),
who proposes Learning Hidden Unit Contributions
(Swietojanski et al., 2016) as a compact way to
store many adaptations of the same general-domain
model. For an overview of fuzzy-match augmenta-
tion outside of NMT, see Li et al. (2022).

Domain adaptation can also be performed off-
line, typically via fine tuning (Luong and Manning,
2015). Regularization is often applied during fine
tuning to avoid catastrophic forgetting (Khayrallah
et al., 2018; Thompson et al., 2019a,b).

TMs are commonly used in the localization in-
dustry to provide suggestions to translators in order
to boost their productivity (Federico et al., 2012).
Enhancing translation quality of MT system by
leveraging fuzzy-matches extracted from TMs has
been explored widely for statistical MT (Koehn and
Senellart, 2010; Mathur et al., 2013) and neural MT

systems (Farajian et al., 2017; Gu et al., 2017; Cao
and Xiong, 2018; Bulte and Tezcan, 2019).

6 Conclusion

Previous work in retrieval augmented translation
has used architectures which either have full con-
nections between source and all fuzzy matches, or
independently encode the source and each fuzzy
match. Based on our hypothesize that the attention
connections between source and each fuzzy match
are helpful, but that the the connections between
different fuzzy matches are harmful, we propose
a new architecture (RAT-SI) with the former con-
nections but not the latter. Experiments on several
language pairs, domains, and different numbers of
fuzzy matches (k) demonstrate that RAT-SI sub-
stantially outperforms the prior architectures.

7 Limitations

Due to the availability of domain specific datasets,
we perform experiments on two high-resource lan-
guages, both out of English. It is unclear if our
conclusions would hold on low-resource language
pairs. Furthermore, our domains may or may not
match real world use cases where an MT customer
has their own TM. Real TMs may be significantly
larger/smaller, contain multiple domains, etc.
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Abstract

Causal reasoning is a critical component of hu-
man cognition and is required across a range
of question-answering (QA) tasks (such as ab-
ductive reasoning, commonsense QA, and pro-
cedural reasoning). Research on causal QA
has been underdefined, task-specific, and lim-
ited in complexity. Recent advances in founda-
tion language models (such as BERT, ERNIE,
and T5) have shown the efficacy of pre-trained
models across diverse QA tasks. However,
there is limited research exploring the causal
reasoning capabilities of those language mod-
els and no standard evaluation benchmark. To
unify causal QA research, we propose CALM-
Bench, a multi-task benchmark for evaluating
causality-aware language models (CALM). We
present a standardized definition of causal QA
tasks and show empirically that causal reason-
ing can be generalized and transferred across
different QA tasks. Additionally, we share a
strong multi-task baseline model which out-
performs single-task fine-tuned models on the
CALM-Bench tasks.

1 Introduction

Causal reasoning is a crucial aspect of human
cognition and is critical to the development of
our mental models of reality (Neeleman et al.,
2012; Johnson-Laird and Khemlani, 2017; Grif-
fiths, 2017). Theories of causation have been stud-
ied extensively across philosophy (Beebee et al.,
2009), physics (Dowe, 2009), cognitive science
(Waldmann, 2017), and probability and statistics
(Pearl, 2009), amongst many other fields. Explo-
rations of causality in the language domain tend
to be semantic, linguistic, or logical in nature as
access to direct observational data or event proba-
bilities is not assumed nor is required. Descriptions
of causality can be linguistically valid but factually
incorrect (e.g. butter is the leading cause of factory
deaths). Therefore, causal reasoning in language
should ideally be logically consistent and grounded

Figure 1: An CQA example from the COPA (Gordon
et al., 2012). CQA requires identifying causal concepts,
linking those concepts to causal relations, and reasoning
over those relations.

in commonsense knowledge. The counterfactual
theory of causation (Lewis, 1973) provides a useful
definition of causation for language applications. It
posits that causation is relational (there is a cause
and effect), temporal (the cause must precede the
effect), and counterfactual (if the causing event had
not occurred, the effect would not have occurred).
Various natural language processing (NLP) appli-
cations require identifying causal relations and rea-
soning over those relations.

These NLP applications can be split into two gen-
eral categories: causal relation identification (CRI)
and causal question-answering (CQA). CRI tasks
aim to identify and extract cause/effect spans from
descriptions of causal events. CRI requires lin-
guistic knowledge - relying on lexical triggers (i.e.
causative verbs and causal connectives) and gram-
matical structures (Neeleman et al., 2012; Girju,
2003). Historically, the majority of NLP research
on causality has focused on CRI.

In contrast to CRI, CQA tasks require both back-
ground causal knowledge and reasoning. Consider
the question Air pollution in the city worsened.
What is the cause of this? (Figure 1). To answer
this question, commonsense knowledge about fac-
tories, pollution, and the ability to infer both causal
and counterfactual relations is required. General
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Task Example Size Question Type Format Knowledge

aNLI
(Bhagavatula et al., 2020)

Context: Jessie wants to save the planet. This summer has been the hottest in all history.
Question: Which hypothesis is the most plausible for the provided observations?
A: Jessie decides to buy a new truck.
B: Jessie decides to sell her truck and use public transportation instead.

174,226
Train: 169,654

Val: 1,532
Test: 3,040

cause prediction multiple-choice social, world

COPA
(Gordon et al., 2012)

Question: Air pollution in the city worsened. What is the cause of this?
A: Factories increased their production. B: Factories shut down.

1,000
Train: 800*

Val: 200
Test: 500

cause prediction
effect prediction

multiple-choice world

CosmosQA
(Huang et al., 2019)

Context: Two things happened today in Beijing. First off, incoming journalists were amazed to
find China had successfully lifted the brown haze in city. Skies were crystal blue and the
air felt noticeably lighter.
Question: Why did the sky appear clearer?
A: None of the above choices. B: The citizens learned to ignore the gloomy skies.
C: The citizens made an effort to cut down on pollution. D: A large storm had recently passed.

35,210
Train: 25,262

Val: 2,985
Test: 6,963

cause prediction
effect prediction

multiple-choice social, world

E-Care
(Du et al., 2022)

Question: The city is determined to control air pollution. What is the effect?
A: They have to reduce the number of automobiles.
B: Environmental pollution has been increased.

17,051
Train: 14,929

Val: 2,122
Test: blind

cause prediction
effect prediction

multiple-choice
social, world,

science

ROPES
(Lin et al., 2019)

Context: There are two planets, Glarnak and Bornak, that share the same atmospheric composition.
The planets have nearly identical ecosystems and topography. The main difference between
the two planets is the level of global warming on each planet. Glarnak is experiencing a
strong impact from global warming. Bornak, though, is experiencing practically no effects
of global warming.
Question: Which planet has more pollutants in the atmosphere? Glarnak

14,322
Train: 10,924

Val: 1,688
Test: 1,710

cause prediction
cause comparison
effect prediction

effect comparison

reading comprehension science, world

WIQA
(Tandon et al., 2019)

Context: 1. A seed is in soil. 2: The seed germinates. 3: The plant grows roots.
4: The plant grows out of the ground. 5: The plant gets bigger. 6: The plant flowers.
7: The flower produces fruit. 8: The fruit releases seeds. 9: The plant dies.
Question: Suppose less pollution in the environment happens, how will it affect
the population of plants? A: More B: Less C: No Effect

39,705
Train: 29,808

Val: 6,894
Test: 3,003

effect prediction multiple-choice science, world

Table 1: CALM-Bench is a mutli-task causal question answering benchmark consisting of six diverse QA tasks
requiring both causal reasoning and knowledge.

work on CQA is often under-defined and limited
based on the task definition. For example, previous
work defined CQA as answering variations of What
is the cause/effect of X? style questions where the
model had to select the most plausible cause or
effect from a set of candidate options. While this
task requires causal knowledge, it could be recast
as an information retrieval problem with no further
requirement of causal reasoning. A stronger def-
inition of CQA would allow for more principled
explorations of causal reasoning (e.g. reasoning
over causal chains, abductive inference, counterfac-
tual reasoning, etc) and aid in the development of
stronger NLP models.

Recent advances in foundation language models
have demonstrated the effectiveness of pre-trained
models across a wide range of NLP and general
language understanding tasks. The term founda-
tion model (Bommasani et al., 2021) describes any
monolithic neural model (e.g. BERT (Devlin et al.,
2019)) that captures general knowledge through
pre-training and is able to transfer that knowledge
to a wide range of downstream tasks. Foundation
language models exhibit general reasoning capabil-
ities (Clark et al., 2021), factual knowledge recall
(Petroni et al., 2019), and superior performance
on a wide range of QA tasks (Khashabi et al.,
2020; He et al., 2021; Lourie et al., 2021a). Knowl-
edge in foundation language models is usually in-
jected through denoising objectives (e.g. masked
token prediction) (Sun et al., 2020). However, in-
terpreting and extracting that knowledge is diffi-
cult (requiring specialized probing tasks) and these

models can be susceptible to exploiting superficial
(Kavumba et al., 2019). CQA tasks could pro-
vide a unique opportunity to develop both explain-
able models (through producing causal explanation
chains) and expand the reasoning capabilities of
those models in QA settings. To date, no compre-
hensive study has explored the causal reasoning
capabilities of foundation language models.

We aim to unify research around CQA research
by providing a definition for CQA rooted in the
cognitive understanding of causal learning and pro-
pose CALM-Bench, a multi-task causal question-
answering benchmark for evaluating causality-
aware language models (CALM). CALM-Bench
(Table 1) consists of six different QA tasks (aNLI
(Bhagavatula et al., 2020), COPA (Gordon et al.,
2012), CosmosQA (Huang et al., 2019), E-Care
(Du et al., 2022), WIQA (Tandon et al., 2019),
and ROPES (Lin et al., 2019)) that require both
causal knowledge and causal reasoning. We show
empirically that causal reasoning can be general-
ized across the different tasks in CALM-Bench. We
present a multi-task learning (MTL) setup that out-
performs all single-task fine-tuned baselines and
demonstrates strong results on the COPA task in a
zero-shot setting. Relevant details about the code
and model weights can be found on GitHub 1.

2 Causal question-answering

We define CQA broadly as any QA task which
requires both causal reasoning and causal knowl-

1https://github.com/dhairyadalal/CALM-Bench
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edge provided a real or hypothetical description of
events. Cognitive theories of causal learning pro-
vide a framework for understanding and evaluating
the process of causal question-answering in NLP
applications. The inferential theory of causal learn-
ing posits that causal learning is a slow and effortful
cognitive process that involves drawing causal con-
clusions over propositional premises (Boddez et al.,
2017).

Propositions represent our causal knowledge and
contain both qualified relational information (e.g.
increase of greenhouse gasses in the atmosphere
causes global warming) and propositional beliefs (I
believe that greenhouse gasses cause global warm-
ing). Propositions are compositional (given the
propositions: factories cause air pollution and pol-
lution leads to global warming, we can infer that
factories cause global warming) and directional
(i.e. we would not infer that global warming causes
factories). A key aspect of causal learning is the
ability to generalize specific causal knowledge to
new situations which is known as causal mecha-
nism knowledge. (Johnson and Ahn, 2017; Ahn
et al., 1995).

Causal mechanism knowledge is the mental rep-
resentation of a system of physical or abstract
parts/processes and the expectation of causal in-
teractions between those components that can be
generalized to new situations. For example, an
arson investigator relies on their mechanism knowl-
edge of fire catalysts and forensic experience to
ascertain human involvement. Causal mechanism
knowledge can be succinctly represented as propo-
sitional statements. Causal bridging inferences de-
scribe the relationship between causal knowledge
and reasoning. Singer et al. (1992) found that in-
dividuals invoke causal statements to bridge two
events and then validate those statements against
prior commonsense and causal knowledge. For ex-
ample, given the events Anna added butter to the
hot pan. and The butter melted., we implicitly in-
voke the bridging statement heat caused the butter
to melt based on our prior knowledge.

Solving CQA tasks can be decomposed into
three general steps: causal concept identification,
causal knowledge linking, and causal reasoning.
Consider Figure 1, the causal concepts of air pollu-
tion and factories are identified and then linked to
background knowledge in order to produce causal
knowledge. Causal knowledge can be expressed
as relational triples (e.g. factory, cause-effect, pol-

lution) which are effectively propositional state-
ments. The final step requires reasoning over that
knowledge through both inferential and counter-
factual reasoning. We infer that the increase in
factory production results in worsening air pollu-
tion based on causal knowledge that factory pro-
duction causes pollution. The counterfactual, if
factories shut down then air pollution would not
increase, allows us to eliminate the second option.
Arriving at the correct answer in this example is
difficult without any background causal knowledge
and reasoning over that knowledge.

An important aspect of causal learning is the
ability to generalize causal mechanism knowledge
to novel situations and task settings. We can see
in Table 1 that while thematically all the examples
are about the causal relationship between global
warming and air pollution, each question requires
different types of reasoning over the same knowl-
edge. With the aNLI example, global warming
is not mentioned explicitly but must be inferred
from social commonsense knowledge (i.e. through
the bridging inferences that saving the planet and
the hottest summer are related to global warming)
and then use abductive reasoning to select the most
plausible hypothesis. The COPA example requires
counterfactual reasoning to eliminate the option
that factories shutting down would not contribute
to air pollution and inferential reasoning to infer
that increased factory production results in more
air pollution. The WIQA example requires both
understanding the life cycle of a plant as a proce-
dural chain and predicting the magnitude impact of
environmental pollution as a downstream effect on
the plant population. Finally, the ROPES example
involves generalizing mechanism knowledge to a
fictional setting in order to identify which planet is
more likely to have pollutants in the air.

CALM-bench consists of diverse QA tasks re-
quiring social, world, and science knowledge. Our
empirical experiments aim to validate the assump-
tion that causal reasoning is transferable across
these QA tasks in CALM-Bench and produce strong
baselines for future research in this space.

3 Related Work

3.1 Causal question-answering

COPA was one of the first QA benchmark tasks
which required both background commonsense
knowledge and causal reasoning. It is also included
as part of the SuperGlue (Wang et al., 2019) bench-
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mark. COPA can be considered solved by modern
massive foundation models which achieve near hu-
man performance ( 99% accuracy). However, these
models are very large (the top three models hav-
ing more than 10 billion+ parameters), are trained
on multi-terabyte scale corpora, and require sig-
nificant computing resources. Sharp et al. (2016)
constructed the first CQA dataset from the Yahoo!
Answers corpus using the templates What causes ...
and What is the result of ... to identify causal ques-
tions. Sharp et al. (2016) and Xie and Mu (2019)
investigated different strategies for training dis-
tributed causal embeddings for re-ranking answer
options for those causal questions. Hassanzadeh
et al. (2019) and Kayesh et al. (2020) explored
binary causal questions (i.e. could X cause y) an-
swering using a mixture of co-occurrence statistics
and cosine similarity threshold derived from fixed
BERT embeddings. The proposed solutions were
specific to the task format (i.e. learning threshold
values for predicting the yes option). causalqa intro-
duced CausalQA, a corpus of 1.1 million causality-
related questions and answers extracted from vari-
ous datasets primarily related to open-domain web
queries (e.g. GooAQ (Khashabi et al., 2021), MS-
Marco (Nguyen et al., 2016)). Causal questions
were identified using templates spanning What,
How, and Why style questions whose intent is to
enquire about causes and effects.

Both the CausalQA and the Yahoo Answers!
causal questions focus on causal knowledge re-
trieval or basic reading comprehension without
further requirement of causal reasoning. Causal
knowledge retrieval can be generalized to infor-
mation retrieval where the goal is to ensure the
retrieved passage contains causal explanations re-
lated to the query. Here linguistic cues (Khoo et al.,
1998; Girju et al., 2007; Neeleman et al., 2012)
or semantic similarity (Dalal et al., 2021b) can be
used to identify relevant passages. Likewise, an-
swering What, How, and Why style questions in the
context of reading comprehension (e.g. SQuAD
(Rajpurkar et al., 2016)) focus more on the lexi-
cal overlap between the question and supporting
text and linguistic cues associated with the ques-
tion typologies. CALM-Bench aims to address this
gap by focusing QA tasks that require both causal
knowledge and causal reasoning.

Most recently, CQA research has investigated
augmenting foundation language models with ex-
ternal knowledge for CQA. Dalal et al. (2021a)

proposes augmentation with external causal knowl-
edge graph embeddings derived from CauseNet
(Heindorf et al., 2020) for QA on the COPA and
WIQA tasks and Hosseini et al. (2022) explores
injecting the commonsense knowledge from the
ATOMIC (Sap et al., 2019) commonsense knowl-
edge base using the BERT masked language model-
ing pretraining objective for the COPA task. Recent
interest in question-answering has led to the devel-
opment of many large-scale and complex QA tasks.
CALM-bench consists of curated tasks that require
causal reasoning and are described in Section 4.

3.2 Commonsense Reasoning
Commonsense reasoning is closely related to CQA
and can be considered a broader superset of CQA
depending on the task. Several of the CALM-Bench
tasks (aNLI, COPA, CosmosQA, and E-CARE)
require causal reasoning over commonsense knowl-
edge, and the aNLI, COPA, and CosmosQA tasks
were first introduced as commonsense QA tasks.
Recent work on commonsense reasoning has fo-
cused on probing commonsense knowledge found
in foundation language models (Zhou et al., 2020),
strategies for effective knowledge augmentation
(Fan et al., 2020), and the generation of common-
sense knowledge (Bosselut et al., 2019). Lourie
et al. (2021b) introduced the first multi-task com-
monsense QA benchmark (RAINBOW) and a uni-
versal model (UNICORN) for general common-
sense QA. UNICORN is a T5-11b model (Raffel
et al., 2020) trained on the RAINBOW multi-set
tasks and fine-tuned in a multi-task setting. Our ap-
proach and motivation for multi-task CQA bench-
mark were greatly inspired by (Lourie et al., 2021b).
CALM-bench shares two of its tasks (aNLI and Cos-
mosQA) with the RAINBOW benchmark and we
consider multi-task learning in our experiments.

3.3 Causal Relation Identification
CRI is often the first step for aggregating causal
knowledge when building automated CQA systems
(Hassanzadeh et al., 2020). Extracted causal rela-
tions are often useful for generating causal knowl-
edge graphs (Heindorf et al., 2020) and develop-
ing causal knowledge representations (Sharp et al.,
2016; Dalal et al., 2021a) which can be used to
improve model performance in CQA tasks. CRI
tasks have been studied extensively in the compu-
tational linguistics and NLP domain (Yang et al.,
2022; Drury et al., 2022). Early methods relied
on lexical triggers and linguistic cues (Khoo et al.,

299



1998; Girju et al., 2007; Neeleman et al., 2012).
More recent approaches have explored using neural
methods with word embedding features (Dasgupta
et al., 2018), self-supervision (Zuo et al., 2021),
and external knowledge (Liu et al., 2020). Several
efforts have been undertaken to unify CRI research.
Tan et al. (2022) introduced the UniCausal bench-
mark which consolidates six annotated CRI corpora
across the tasks of causal sequence classification,
cause-effect span detection, and causal pair clas-
sification. (Hosseini et al., 2021) introduced the
CREST schema and toolkit which converts thirteen
commonly used CRI datasets into a unified format.

4 CALM-Bench Tasks

CALM-Bench (Table 1) consists of five multiple-
choice tasks (aNLI, COPA, Cosmos QA, E-Care,
and WIQA) and a reading comprehension task
(ROPES). These tasks require diverse causal knowl-
edge which can be broadly summarized as social
(sociological norms of human behavior), world
(general commonsense knowledge), and science
(specific scientific knowledge of natural processes
such as the precipitation cycle or plant life cycle).
Questions either require predicting the cause or
effect (i.e. cause and effect prediction) provided
a description of events or comparing entities (i.e.
cause and effect comparison) in a causal system.

Abductive Natural Language Inference
(aNLI) (Bhagavatula et al., 2020) is an abductive
reasoning task over narratives of social situations.
Provided a sequential pair of social observations,
the model must predict which of the two provided
hypotheses best explains the observations.

Choice of Plausible Alternatives (COPA) (Gor-
don et al., 2012) is a commonsense causal reason-
ing task. Provided a premise, the goal is to select
the most likely cause or effect from a pair of op-
tions. (Kavumba et al., 2019) introduced 500 ad-
ditional training examples in Balanced-COPA to
mitigate the corpus-level artifacts that were likely
to be exploited by language models during fine-
tuning.

COSMOS QA (Huang et al., 2019) is a multiple-
choice QA task requiring social commonsense
knowledge. Provided a narrative about people in
everyday situations, the goal is to identify the most
plausible cause or effect about agents in the story.

E-Care (Du et al., 2022) consists of two causal
reasoning tasks. The first task, similar to COPA,
requires identifying the most likely cause or effect

Figure 2: Our MTL model adapts the hard-parameter
sharing architecture (Baxter, 2004) where the language
model is shared across all the task heads. During train-
ing, the task losses are averaged and backpropagated to
produce causality-aware contextual embeddings which
are effective across all the CALM-Bench tasks (Table 4).

of the provided premise. The second task requires
generating a causal explanation of the correct an-
swer option. We only consider the first task as part
of CALM-Bench.

Reasoning over Paragraph Effects (ROPES)
(Lin et al., 2019) is a reading comprehension task.
Provided a knowledge passage, the model is re-
quired to reason over the causal and qualitative re-
lations in the passage and apply them to answering
questions about a hypothetical situation. 70% of
background passages contain causal relations and
26% contain both causal and qualitative relations.

What If question-answering (WIQA) (Tandon
et al., 2019) is a multiple-choice QA task requiring
reasoning over procedural descriptions of natural
processes. WIQA requires predicting the down-
stream magnitude (more, less, no effect) effect of a
perturbation to an individual step in the procedural
chain.

5 Methodology

5.1 Language Models

Our experiments consider two different foundation
language models, BERT (Devlin et al., 2019) and
ERNIE 2.0 (Sun et al., 2020). BERT and derivative
models (e.g. RoBERTa (Liu et al., 2019b), De-
BERTa (He et al., 2021), etc) contain unspecified
distributional knowledge which is learned through
the random masked language modeling pretraining
objective. In a contrast, ERNIE 2.0 injects exter-
nal knowledge through a variety of pretraining ob-
jectives including masked knowledge prediction,
discourse relation prediction, and the IR relevance
task. ERNIE 2.0’s underlying transformer encoder
has the same architecture and parameters as the
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BERT Transfer Results

Trained On ⇓ Evaluated On⇒ aNLI COPA CosmosQA E-Care WIQA ROPES

Single Task FT Baseline 0.61 0.64 0.57 0.76 0.65 0.58

aNLI - +0.11 +0.04 0 -0.01 +0.01

COPA +0.02 - +0.04 -0.04 0 -0.06

CosmosQA +0.01 +0.05 - 0 -0.01 +0.02

E-Care +0.02 +0.13 -0.02 - -0.02 -0.05

WIQA 0 0 +0.03 -0.02 - -0.05

ROPES +0.02 +0.07 +0.03 -0.04 -0.02 -

Table 2: This table contains the transfer learning results for the BERT model. Results are read across the rows where
the first column in each row contains the base task selected for transfer learning and the remainder of the columns
are the evaluation results across the target tasks. We provide the single-task finetuned baseline in the second row
and the pp difference between for each experiment. All results presented are accuracy scores with exception of
ROPES which is exact match.

ERNIE 2.0 Transfer Results

Trained on ⇓ Evaluated On⇒ aNLI COPA CosmosQA E-Care WIQA ROPES

Single Task FT Baseline 0.64 0.71 0.63 0.76 0.64 0.53

aNLI - +0.07 0 +0.02 +0.01 +0.08

COPA 0 - -0.01 +0.01 +0.02 -0.03

CosmosQA +0.02 +0.01 - 0 +0.02 -0.12

E-Care 0 +0.08 +0.02 - +0.02 +.11

WIQA 0 +0.01 0 -0.01 - +0.03

ROPES +0.02 -0.06 -0.01 +0.01 +0.02 -

Table 3: This table contains the transfer learning results for the ERNIE 2.0 model. In contrast the BERT model, we
observe general consistent positive improvement across nearly all tasks. This suggests that language models with
grounded knowledge tend to both do better on CQA tasks and are able to transfer causal reasoning across tasks
more effectively.

BERT model and is trained on similar data. ERNIE
2.0 is trained on additional Reddit and Discovery
data but the primary difference is in its knowledge-
focused pretraining objectives.

We hypothesize that ERNIE 2.0 will outperform
BERT across the CQA task as grounded knowl-
edge is a requisite for causal reasoning in our def-
inition. The BERT and ERNIE 2.0 implementa-
tions come from the Huggingface Transformers
library (Wolf et al., 2020). We use the pretrained
base models for both (bert-base-uncased 2 and

2https://huggingface.co/bert-base-uncased

nghuyong/ernie-2.0-base-en respectively 3).

5.2 Language Model Training

Single-task fine-tuning and multi-task fine-tuning
are used to train our models on the CQA tasks.
Sequential fine-tuning (Pratt, 1992) was also in-
vestigated but found to be inconsistent and not as
effective as the other methods (Appendix A.6.2).
Following the task head paradigm introduced in
Devlin et al. (2019), we develop separate classifi-
cation heads for each task(see Appendix A.1 for

3https://huggingface.co/nghuyong/ernie-2.0-base-en
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aNLI COPA CosmosQA E-Care ROPES WIQA Score

Fine-tuned Baseline
Bert-base 0.61 0.64 0.57 0.76 0.58 0.65 0.64
ERNIE-base 0.64 0.71 0.63 0.76 0.53 0.64 0.65
MTL Baseline
Bert-base MTL 0.62 0.75 0.58 0.72 0.61 0.72 0.67
ERNIE-base MTL 0.65 0.80 0.65 0.78 0.58 0.77 0.71

Table 4: We present the baselines results for CALM-bench. All the task are evaluated using the accuracy metric
with the exception of ROPES which displays exact match. Results are presented for the test sets for COPA and
WIQA and on validations sets for aNLI, CosmosQA, E-Care, and ROPES. We find that MTL models outperform
the single-task finetuned models consistently with ERNIE-base MTL model having the best results.

more details). The pooled CLS embedding from
the last layer in the language model is fed into the
classification head to map the language model’s
contextualized output into the task’s classification
space. In the single-task setting, each task is trained
independently. The cross-entropy loss is calculated
per training batch and back-propagated through all
the layers in the language model.

For the multi-task learning (MTL) model, we
adapt a hard-parameter sharing model (Baxter,
2004) and train it using the multi-task fine-tuning
strategy (Liu et al., 2019a). Our MTL model (Fig-
ure 2) consists of a shared base language model
and separate task heads for tasks in CALM-Bench.
For each train step, a train batch is sampled for
each task and the task-specific losses are calculated.
The task losses are averaged before backpropaga-
tion. The MTL model is trained for 8,000 steps on
the aNLI, CosmosQA, E-Care, and WIQA tasks.
The ROPEs task is not included in training as its
format is significantly different from the multiple-
choice tasks and resulted in lower performance in
our early experiments. COPA was also omitted
from the MTL training given its small size (800
training examples) and instead saved for zero-shot
evaluation. At evaluation time, we fine-tune the
MTL model on each target task for one additional
epoch and then evaluate the model on the target
evaluation set.

A hyperparameter search is run to identify the
optimal random seed and the learning rate for each
task (see Appendix A.5.1). Four of the tasks (aNLI,
CosmosQA, E-CARE, and ROPES) have private
test sets and a public leaderboard. For these tasks,
we treat the validation set as the test set during eval-
uation and generate a new validation split from the
training data to be used for training validation. The
general intuition is that fine-tuned language models

should have the best task-specific performance. If
causal reasoning is transferrable, we should see im-
provements over the single-task fine-tuned models
in both the transfer learning and multi-task learning
experiments.

6 Empirical Findings

6.1 Single-task Fine-tuned Baselines

The baseline results for the single-task fine-tuned
language models for all tasks can be found in Table
4. We find the ERNIE model on average outper-
forms the BERT model across most of the CQA
tasks with an average improvement of 5.3pp on
the aNLI, COPA, and CosmosQA tasks. However,
ERNIE does underperform the BERT model on
both the ROPES and WIQA tasks and shows no
improvement on the E-Care task. These results are
used as the baseline for the transfer learning and
MTL experiments in Table 4.

6.2 Transferability of Causal Reasoning

We conduct sixty experiments to see if causal rea-
soning can be generalized and transferred across
the QA tasks in CALM-Bench. For each exper-
iment, we select a base task (e.g. aNLI) and a
different target evaluation task (e.g. COPA). The
language model is first fine-tuned on the base task
and then fine-tuned on the target task. That model
is then evaluated on the target task. Each transfer
learning experiment is independent and the final
results are summarized in Table 2 and 3.

Across both BERT and ERNIE 2.0 models, we
observe that task-specific causal knowledge and
reasoning are transferable. However, the pattern of
transferrence differs across both models.

For the BERT model, the E-Care, WIQA, and
ROPES tasks generally see degradation in accuracy
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and exact match. However, there is improvement
across aNLI, COPA, and CosmosQA tasks with
COPA receiving an average of 7pp gain. We hy-
pothesize this may due to two factors. As noted
earlier, there is no grounded knowledge in BERT.
BERT has to learn both task-specific knowledge
and reasoning processes associated with each task.
Tasks with similar knowledge requirements (aNLI,
COPA, and CosmosQA) benefit from each other
and the shared task format (multiple-choice). In
contrast, the ROPES and WIQA tasks have dif-
ferent task heads and knowledge requirements.
BERT is likely suffering from catastrophic forget-
ting when fine-tuning on the target task.

In contrast, we find consistent general improve-
ment across all the tasks with the ERNIE 2.0 model.
ERNIE 2.0 contains grounded knowledge which
allows for better transfer learning across the tasks.
This was observed with WIQA and ROPES seeing
average improvements of 1.8pp and 1.4pp in con-
trast to the average losses of -0.08pp and -1.5pp
with the BERT model.

To summarize, we provide empirical evidence
that causal reasoning and knowledge can be trans-
ferred across different CQA tasks. We further find
validate our assumptions that CQA requires both
reasoning capabilities and grounded knowledge as
the knowledge-rich ERNIE demonstrates more con-
sistent improvement across the CALM-Bench tasks.

6.3 Multi-Task Learning Results

Figure 3: Zero-shot results on the COPA task. We
present results for both the primary COPA Test set and
the BCOPA Hard (Kavumba et al., 2019) subset. The
dashed lines are the single-task fine-tuned baselines.
Despite each task head having not seen the COPA ex-
amples during the MTL training, they outperform the
single-task fine-tuned baselines.

In Table 4, we provide the baseline results for
both the single-task fine-tuned and multi-task mod-

els on the CALM-Benchmark. The score column
equally averages all metrics to provide a single
value for comparing the different approaches. The
MTL baselines outperform all the single-task fine-
tuned baselines with the ERNIE MTL model pro-
viding the best results. These results further cor-
roborate our claim that causal knowledge and rea-
soning are generalizable across diverse QA tasks.
However, we do observe that task format matters.
The inclusion of ROPES (a reading comprehen-
sion task) during multi-task training resulted in
generally lower performance. As a result, our fi-
nal MTL model was only trained on the subset of
multiple-choice tasks (aNLI, CosmosQA, E-Care,
and WIQA). Future work may consider alterna-
tive ways to weight task-specific losses or different
model architectures (e.g. T5 (Raffel et al., 2020))
which can map all tasks to the same text-to-text
format.

In the context of multiple-choice CQA, we find
consistent and positive improvement across all
tasks in both the single-task transfer learning and
multi-task learning scenarios. We run an addi-
tional zero-shot experiment where is task head in
the MTL model is used to evaluate the COPA test
and BCOPA hard test examples. Figure 3 shows
that both the BERT and ERNIE single-task fine-
tuned baselines are outperformed by an average
of +10pp and +6.6pp on the test set and see an
average of +6.3pp and +1.3pp improvement on
the BCOPA hard subset. For comparison, Hos-
seini et al. (2022) fine-tune a BERT large (345
million parameters) model on 780,000 knowledge
triples from the ATOMIC commonsense knowl-
edge base. Their BERT-Large-ATOMIC model
achieves 88% accuarcy on the COPA test set and
73% accuracy on the BCOPA hard subset. Our
smaller ERNIE 2.0 MTL model achieves 80% fine-
tuned accuracy on the COPA test set with fewer
parameters (110 million) and less training data. Fur-
ther, our MTL model outperforms the BERT-Large-
ATOMIC model on the BCOPA hard subset with
the zero-shot MTL heads averaging around 77%
accuracy and fine-tuned model achieving 79% ac-
curacy.

7 Conclusion

In this paper, we provide a unified definition of
causal question-answering in the context of natural
language applications. Drawing from the cogni-
tive science literature, we posit that CQA tasks
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require both causal reasoning and causal knowl-
edge. Based on this definition, we introduce the
CALM-bench, the first multi-task CQA benchmark
to evaluate the general causal reasoning capabilities
of foundation language models. We provide em-
pirical evidence which validates the intuition that
causal reasoning and knowledge are transferable
across the CQA tasks. Knowledge-enriched lan-
guage models like ERNIE are likely to outperform
distributional models (i.e. BERT) across all tasks
in both the single-task fine-tuning and multi-task
fine-tuning settings. Finally, we provide a set of
strong baselines for future work exploring causal
question-answering and the causal reasoning capa-
bilities of language models.

While our experiments show causal knowledge
is transferable, these models are still opaque. CQA
provides a unique opportunity for model explain-
ability through causal explanation structures and
reasoning chains. The E-Care and WIQA task have
annotated explanations that provide a useful start-
ing point. Causal knowledge sources like CauseNet
(Heindorf et al., 2020), ConceptNet (Speer et al.,
2017), and Wikidata 4 can also be used to gener-
ate causal explanations. We believe the next evo-
lution of foundation language models will have
stronger causal reasoning capabilities and implicit
structured causal knowledge. CALM-bench pro-
vides a starting point for further research on causal
question-answering.

Limitations

Our research assumes the English language due
to the lack of multi-lingual QA datasets. Future
work may consider developing CQA tasks in other
languages.

Additionally, we used the base models for BERT
and ERNIE 2.0 in our experiments for all exper-
iments. The public leaderboards for most of the
tasks in CALM-Bench feature larger models with
the billion parameter plus models occupying the top
spots. Future work can explore scaling our experi-
mental setup to the large and extra-large versions
of our language models used as well as consider-
ing more modern architectures such DeBERTa (He
et al., 2021) and ERNIE 3.0 (Sun et al., 2021). A
challenge for multi-task training with large mod-
els is that the batch size for each task must be
significantly reduced to ensure the model fits in
GPU memory. Smaller batch sizes lead to unstable

4https://www.wikidata.org/

training and convergence. Tricks like gradient ac-
cumulation and modern optimization libraries (e.g.
DeepSpeed 5 and Fairscale 6) can be explored.

Finally, our multi-task model is not truly univer-
sal in the sense that a new task head is required
for each additional CQA task. While there is trans-
ferability across the multiple-choice formats, the
model does struggle to generalize causal reason-
ing across different formats like reading compre-
hension. Our encoder-only approach is unable to
handle generation tasks. As a result, the E-CARE
and aNLI explanation tasks are excluded. Lourie
et al. (2021b) found success using encoder-decoder
models where all tasks are converted to a text-to-
text format. While (Lourie et al., 2021b) only con-
sidered multiple-choice tasks, future work could
explore including reading comprehension and ex-
planation generation tasks using models like Uni-
fiedQA (Khashabi et al., 2020) and T5.
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A Appendix

A.1 Training Details
A.1.1 Training Environment
All models were trained on a single Nvidia A100
GPU and the a2-highgpu-1g Google Cloud Com-
pute (GCP) instance. The GCP instance has 12
virtual CPUs and 85 GB of memory.

Model training was implemented using the Py-
torch Lightning library (Falcon and The PyTorch
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Lightning team, 2019). To ensure reproducibility
we use the Pytorch Lightning seed_everything
function which sets the random seed for the py-
torch, numpy and the python.random libraries and
the seeds used for data sampling.

The AdamW optimizer (Loshchilov and Hut-
ter, 2017) and FP16 precision were used during
training. Task specific learning rates were se-
lected through a hyperpameter search (see Ap-
pendix A.5.1). For single-task fine-tuning exper-
iments, the model was trained for 5 epochs and
the model with the best validation accuracy was se-
lected for evaluation. For the MTL experiment we
train the model for 10,000 steps and checkpoint the
model every 1,000 steps. The checkpoint (8,000
steps) with best average validation accuracy/exact
match was selected for evaluation on the test set.

A.2 Multiple-Choice Tasks
In this section we detail the input format and the
classification heads for the multiple-choice tasks
in CALM-Bench. The aNLI, COPA, CosmosQA,
and E-Care tasks all converted to the SWAG data
format (Zellers et al., 2018) and we adapt the Hug-
gingface BERTforMultipleChoice task head as
the classification head.

The WIQA task is treated as simple multi-class
classification problem. Provided a procedural de-
scription, question, and the answer options (more,
less, and no effect) the input format is as fol-
lows: [CLS] procedural description [SEP]
question [SEP] more [SEP] less [SEP] no
effect[SEP]. The classification head is a single
layer feed forward network which maps the pooled
CLS token embedding of the language model’s last
layer into the label space.

A.3 Reading Comprehension Task
We treat the ROPES task as a SQuAD (Rajpurkar
et al., 2016) style reading comprehension task and
adapt the XLNET reading comprehension task
head (Yang et al., 2019). Provided a question, hypo-
thetical situation, and background passage we for-
mat the input as follows: [CLS] question [SEP]
hypothetical situation [SEP] background
[SEP]

The objective of the task head is to identify the
answer span in the provided input text. The pooled
CLS embedding of the last layer in the language
model is fed to a feed forward network which inde-
pendently predicts the start and end positions of the
answer span in the input text. Beam search is run

to identify the most probable start and end position,
after which the answer text is extracted. Unlike
SQuAD, the answer span is not always present in
the situation description or background passage,
but it is guaranteed to specified in the question text.
As a result, we do not mask the question token
positions during for the task head.

A.4 Sequence Classification Tasks
The causal sequence identification and counter-
factual sequence identification tasks (Appendix
A.6.1 are treated as binary classification tasks. The
pooled CLS embedding of the last layer in the lan-
guage model is fed to a feed forward network which
maps it to a binary classification space.

A.5 Relation Extraction Tasks
We treat causal and counterfactual relation extrac-
tion tasks (Appendix A.6.1) as token classifica-
tion tasks and adopt a custom BIO tagging for-
mat (Ramshaw and Marcus, 1995). Causal and
counterfactual entities are tagged with the <cause>,
<effect>, <antecedent>, and <consequent> begin
and inside tags (e.g. <B-cause> and <I-cause>).
All other tokens are labelled with the outside tag
(<O>). The token embeddings of the last layer in
the model are fed into a single layer feed forward
network which predicts for each token the most
probable tag.

A.5.1 Hyperparameter Details
We run a hyperparameter search for the random
seed and learning rate for each task in CALM-
Bench. We search over the following learning rates:
[0, 1, 42, 1988, 2022, 3023] and randomly selected
seeds: [1e-5, 3e-5, 2e-5, 5e-5]. The search is con-
ducted in a two-stage process where we first iden-
tify the best learning rate and then identify the best
random seed. During the search trial, the model
is trained for 100 steps with the provided hyperpa-
rameter and then evaluated on validation set. The
best hyperparameters are summarized in Table 5
and Table 6.

A.6 Additional Experiments
A.6.1 Transfer Learning Across CRI and

CALM-Bench
For analyzing the relationship between CRI and
CQA in the transfer learning context, we consider
the following CRI tasks:

• Causal sequence identification: a binary
classification task to evaluate if the sentence
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Model Huggingface Alias Parameters Task Seed Learning Rate Batch Size

BERT bert-base-uncased 110 million aNLI 3023 2e-5 24
BERT bert-base-uncased 110 million COPA 1 1e-5 24
BERT bert-base-uncased 110 million CosmosQA 3023 2e-5 24
BERT bert-base-uncased 110 million E-CARE 42 2e-5 24
BERT bert-base-uncased 110 million ROPES 0 5e-5 24
BERT bert-base-uncased 110 million WIQA 1988 2e-5 24

ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million aNLI 0 2e-5 24
ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million COPA 42 2e-5 24
ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million CosmosQA 0 3e-5 24
ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million E-CARE 2022 3e-5 24
ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million ROPES 42 3e-5 24
ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million WIQA 1988 2e-5 24

Table 5: This table summarizes the best single-task fine-tuning hyperparameters task in CALM-Bench.

contains causal relata (i.e. cause and effect
entities and a causal relation)

• Causal relation tagging: a sequence tagging
task that requires identifying cause and effect
spans provided a sequence of a token repre-
senting a sentence.

• Counterfactual sequence identification: a
binary classification task to evaluate if the sen-
tence contains counterfactual relata (i.e. an-
tecedent and consequent entities and a coun-
terfactual relation)

• Counterfactual relation tagging: a sequence
tagging task requires the identification of con-
sequent and antecedent spans from a sequence
of tokens representing a sentence

SemEval 2007 Task 4 (Girju et al., 2007) and 2010
Task 8 (Hendrickx et al., 2010) tasks require clas-
sifying the relation given a pairs of entities in a
sentence. We combine the SemEval 2007 Task 4
and 2010 Task 8 datasets to generate examples for
causal relation identification and tagging. CREST
(Hosseini et al., 2022) is used to convert all exam-
ples from the 2007 and 2010 tasks into a standard-
ized sequence tagging format. For counterfactual
tasks, we use the SemEval 2020 Task 5a and 5b
datasets.

Table 8 and Table 9 summarize the results for
these additional experiments. We find similar pat-
terns to our CQA transfer learning experiments.
With BERT, transfer between CRI and CQA tasks
is not consistent. However, the ERNIE 2.0 model
shows consistent improvement from CQA tasks to
the Causal Id and Causal Relation identification

tasks. Across both models there seems to be no
transfer learning improvements on the counterfac-
tual relation identification tasks.

A.6.2 Sequential fine-tuning Results
Table 7 summarizes the results of the sequential
fine-tuning experiment with the BERT model. We
start with a pretrained BERT model and then se-
quentially train it on the following multiple-choice
tasks: WIQA, aNLI, CosmosQA, and E-Care. The
model initially sees improvements over the single-
task fine-tuned baseline results. However, as ad-
ditional tasks are added, performance starts to de-
grade across several tasks. Due to the unstable
results of sequential fine-tuning, we choose instead
to pursue multi-task learning.
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Model Huggingface Alias Parameters Task Seed Learning Rate Batch Size
BERT bert-base-uncased 110 million Causal Sequence Identification 42 5e-5 24
BERT bert-base-uncased 110 million Causal Relation Identification 1 5e-5 24
BERT bert-base-uncased 110 million Counterfactual Sequence Identification 1 1e-5 24
BERT bert-base-uncased 110 million Counterfactual Relation Identification 3023 5e-5 24

ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million Causal Sequence Identification 0 2e-5 24
ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million Causal Relation Identification 0 5e-5 24
ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million Counterfactual Sequence Identification 42 3e-5 24
ERNIE 2.0 nghuyong/ernie-2.0-base-en 110 million Counterfactual Relation Identification 2022 5e-5 24

Table 6: This table summarizes the best hyperparameter used for all CRI transfer learning experiments.

aNLI COPA CosmosQA E-Care ROPES WIQA

BERT single task-fine baseline 0.61 0.64 0.57 0.76 0.51 0.65
+ WIQA and aNLI 0.61 0.74 0.60 0.75 0.34 0.77
+ CosmosQa 0.61 0.72 0.57 0.75 0.30 0.75
+ E-Care 0.60 0.72 0.59 0.76 0.45 0.70

Table 7: Results from the sequential fine-tuning experiment. As additional tasks are added the model’s performance
starts to degrade across all tasks.

Causal QA Tasks Relation Identification Tasks

aNLI COPA CosmosQA E-Care ROPES WIQA Causal Id. Causal Rel. CF Id. CF Rel.

Baseline .61 .64 .57 .76 .58 .65 .96 .68 .96 .62

aNLI N/A +.11 +.04 0 +.01 -.01 0 +.01 0 -.02

COPA +.02 N/A +.04 -.04 -.06 0 +.01 0 +.01 -.02

CosmosQA +.01 +.05 N/A 0 +.02 -.01 0 -.01 +.01 -.02

E-Care +.02 +.13 -.02 N/A -.05 -.02 -.02 +.02 +.01 0

ROPES +.02 +.07 +.03 -.04 N/A -.02 -.04 0 0 -.03

WIQA 0 0 +.03 -.02 -.05 N/A +.01 +.02 +.01 0

Causal Id. 0 0 +.01 -.02 -.11 -.01 N/A +.02 0 -.03

Causal Rel. +.01 -.17 +.02 -.05 0 0 +.01 N/A 0 -.02

CF Id. +.01 +.04 +.02 0 -.05 +.01 +.01 +.01 N/A -.01

CF Rel. 0 +.01 +.03 -.04 +.02 +.01 +.01 0 0 N/A

Table 8: This heatmap table summarizes the transfer learning results of BERT model on the CALM-bench and CRI
tasks.
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Causal QA Tasks Relation Identification Tasks

aNLI COPA CosmosQA E-Care ROPES WIQA Causal Id. Causal Rel. CF Id. CF Rel.

Baseline .64 .71 .63 .76 .53 .64 .94 .66 .96 .64

aNLI N/A +.07 0 +.02 +.08 +.01 +.01 +.03 0 -.02

COPA 0 N/A -.01 +.01 -.03 +.02 +.03 +.02 0 0

CosmosQA +.02 +.01 N/A -.01 -.12 +.01 +.02 +.03 +.01 -.03

E-Care 0 +.08 +.02 N/A +.11 +.02 +.02 +.05 0 -.02

ROPES +.02 -.06 -.01 +.01 N/A +.02 +.02 +.01 0 +.04

WIQA 0 +.01 0 -.01 +.03 N/A +.03 +.02 +.01 -.01

Causal Id. +.01 0 +.02 -.01 -.11 -.03 N/A +.03 0 0

Causal Rel. +.01 -.08 -.02 -.01 +.04 +.01 +.03 N/A 0 -.06

CF Id. 0 +.03 +.02 -.01 +.11 +.02 +.03 +.01 N/A -.02

CF Rel. +.02 +.01 0 -.01 -.03 +.02 +.03 +.03 0 N/A

Table 9: This heatmap table summarizes the transfer learning results of ERNIE 2.0 model on the CALM-bench and
CRI tasks.
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Abstract

Large-scale, high-quality corpora are critical
for advancing research in coreference reso-
lution. However, existing datasets vary in
their definition of coreferences and have been
collected via complex and lengthy guidelines
that are curated for linguistic experts. These
concerns have sparked a growing interest
among researchers to curate a unified set of
guidelines suitable for annotators with vari-
ous backgrounds. In this work, we develop
a crowdsourcing-friendly coreference annota-
tion methodology, ezCoref, consisting of an
annotation tool and an interactive tutorial. We
use ezCoref to re-annotate 240 passages from
seven existing English coreference datasets
(spanning fiction, news, and multiple other do-
mains) while teaching annotators only cases
that are treated similarly across these datasets.1

Surprisingly, we find that reasonable quality an-
notations were already achievable (>90% agree-
ment between crowd and experts) even with-
out extensive training. On carefully analyzing
the remaining disagreements, we identify the
presence of linguistic cases that our annotators
unanimously agree upon but lack unified treat-
ments (e.g., generic pronouns, appositives) in
existing datasets. We propose the research com-
munity should revisit these phenomena when
curating future unified annotation guidelines.

1 Introduction

Coreference resolution is the task of identifying
and clustering together all textual expressions (men-
tions) that refer to the same discourse entity in a
given document. Impressive progress has been
made in developing coreference systems (Lee et al.,
2017; Moosavi and Strube, 2018; Joshi et al.,
2020), enabled by datasets annotated by experts
(Hovy et al., 2006; Bamman et al., 2020; Uryupina
et al., 2019) and crowdsourcing (Chamberlain et al.,
2016). However, these datasets vary widely in

1Our platform’s code and collected data is available at
https://github.com/gnkitaa/ezCoref

OntoNotes: Maybe we need a [CIA] version of the
Miranda warning: You have the right to conceal
your coup intentions, because we may rat on you.

ARRAU: Maybe [we]e1 need [a  [CIA]  version of
[the Miranda warning]]:  [You]e4  have [the right to
conceal [[your]e5  [coup]  intentions]], because
[we]e6 may rat on [you]e7.

Crowd (this work): Maybe [we]e1 need [a [CIA]

version of [the [Miranda]  warning]]: [You]e3 have
[the right] to conceal [[your]e3 coup intentions],
because [we]e1may rat on [you]e3.


Figure 1: We visualize a common sentence from
news domain annotated by two expert-curated datasets,
OntoNotes (Hovy et al., 2006) and ARRAU (Uryupina
et al., 2019), along with the crowd annotations collected
via our ezCoref platform. OntoNotes does not mark
generic pronouns. ARRAU does not consider them
as coreferent and annotates them using a special re-
lation “undef-reference” (markables with vague inter-
pretations). On the contrary, our crowdworkers assign
all mentions of the generic pronoun “you” to the same
coreference chain. The situation is also similar for the
generic “we.”

their definitions of coreference (expressed via an-
notation guidelines), resulting in inconsistent an-
notations both within and across domains and lan-
guages. For instance, as shown in Figure 1, while
ARRAU (Uryupina et al., 2019) treats generic pro-
nouns as non-referring, OntoNotes (Hovy et al.,
2006) chooses not to mark them at all.

It is thus unclear which guidelines one should
employ when collecting coreference annotations
in a new domain or language. Traditionally, ex-
isting guidelines have leaned towards lengthy ex-
planations of complex linguistic concepts, such
as those in the OntoNotes guidelines (Weischedel
et al., 2012), which detail what should and should
not be coreferent (e.g., how to deal with head-
sharing noun phrases, premodifiers, and generic
mentions). As a result, coreference datasets have
traditionally been annotated by linguists (experts)
already familiar with such concepts, which makes
the process expensive and time-consuming. Crowd-
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sourced coreference data collection has the poten-
tial to be significantly cheaper and faster; however,
teaching an exhaustive set of linguistic guidelines
to non-expert crowd workers remains a formidable
challenge. As a result, there has been a growing
interest among researchers in curating a unified
set of guidelines (Poesio et al., 2021) suitable for
annotators with various backgrounds.

More recently, games-with-a-purpose (GWAPs)
(von Ahn, 2006; Poesio et al., 2013) were proposed
to aid crowdsourcing of large coreference datasets
(e.g., Chamberlain et al., 2016; Yu et al., 2022).
While GWAPs make it enjoyable for crowdworkers
to learn complex guidelines and perform annota-
tions using them (Madge et al., 2019b), they also
require significant effort to attract and maintain
workers. For instance, Phrase Detectives Corpus
1.0 was collected over a span of six years (Cham-
berlain et al., 2016; Poesio et al., 2013; Yu et al.,
2022), which motivates us to instead study coref-
erence collection on more efficient payment-based
platforms.

Specifically, our work investigates the quality
of crowdsourced coreference annotations when an-
notators are taught only simple coreference cases
that are treated uniformly across existing datasets
(e.g., pronouns). By providing only these simple
cases, we are able to teach the annotators the con-
cept of coreference, while allowing them to freely
interpret cases treated differently across the exist-
ing datasets. This setup allows us to identify cases
where our annotators unanimously agree with each
other but disagree with the expert, thus suggest-
ing cases that should be revisited by the research
community when curating future guidelines.

Our main contributions are:

• We develop a crowdsourcing-friendly coref-
erence annotation methodology—ezCoref—
which includes an intuitive, open-sourced an-
notation tool supported by a short crowd-
oriented interactive tutorial.2

• We use ezCoref to re-annotate 240 pas-
sages from seven existing English corefer-
ence datasets on Amazon Mechanical Turk
(AMT), and conduct a comparative analysis
of crowd and expert annotations. We find that
high-quality annotations are already achiev-
able from non-experts without extensive train-

2Our tutorial received overwhelmingly positive feedback.
One annotator commented that it was “absolutely beautiful,
intuitive, and helpful. Legitimately the best one I’ve ever seen
in my 2 years on AMT! Awesome job." (Table A4 in Appendix)

ing (>90% B3 (Bagga and Baldwin, 1998a)
agreement between crowd and experts).

• We further qualitatively analyze remaining dis-
agreements among crowd and expert annota-
tions and identify linguistic cases that crowd
unanimously marks as coreferent but lack
unified treatment in existing datasets (e.g.,
generic pronouns as shown in Figure 1). Addi-
tionally, analyzing inter-annotator agreement
among the crowd reveals that crowd exhibits
higher agreement when annotating familiar
texts (e.g., childhood stories or fiction) com-
pared to texts rich in cataphoras or those re-
quiring world knowledge. Finally, our quali-
tative analysis also provides an empirical evi-
dence to support previous findings in literary
studies (Szakolczai’s (2016) analysis of Bleak
House) and psychology (Orvell et al.’s (2020)
claims about generic “you”).

2 Related Work

Existing coreference datasets: Table 1 pro-
vides an overview of seven prominent corefer-
ence datasets, which differ widely in their anno-
tator population, mention detection, and corefer-
ence guidelines.3 Many datasets are annotated
by experts heavily trained in linguistic standards,
including ARRAU (Uryupina et al., 2019), Lit-
Bank (Bamman et al., 2020), GUM (Zeldes, 2017),
and OntoNotes (Hovy et al., 2006). Due to its
scale and quality, OntoNotes is likely the most
widely used for NLP coreference research, includ-
ing in two CoNLL shared tasks (Pradhan et al.,
2011, 2012). QuizBowl (Guha et al., 2015) has
been annotated by domain (but not linguistic) ex-
perts. Few coreference datasets exists which are
annotated by non-experts, including those created
by part-time non-native English speakers (PreCo;
Chen et al., 2018), and gamified crowdsourcing
without financial compensation (Phrase Detectives;
Chamberlain et al., 2016; Yu et al., 2022).

Coreference annotation tools: Several corefer-
ence annotation tools have been developed (See
Table A3 in Appendix for more details). However,
these are difficult to port to a crowdsourced work-
flow, as they require users to install software on
their local machine (Widlöcher and Mathet, 2012;
Landragin et al., 2012; Kopeć, 2014; Mueller and
Strube, 2001; Reiter, 2018), or have complicated

3Many others exist too; for example, see Jonathan Kum-
merfeld’s spreadsheet list (accessed Jan. 2022).
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Dataset Domains
#(doc, ment, tok) Annotators Mention

Detection
Mention Types Coreference Links

Singletons Entity
Restrictions Copulae Appositives Generics Ambiguity

ARRAU
(Uryupina et al., 2019)

Multiple
(552, 99K, 350K) Single Expert Manual Yes None Special Link No Link Yes Explicit

OntoNotes
(Hovy et al., 2006)

Multiple
(1.6K, 94K, 950K) Experts Mixed No None Special Link Special Link Only with

Pronominals None

LitBank
(Bamman et al., 2020)

Single
(100, 29K, 210K) Experts Manual Yes ACE (selected) Special Link Special Link Only with

Pronominals None

GUM
(Zeldes, 2017)

Multiple
(25, 6K, 20K)

Experts
(Linguistics Students) Manual Yes None Coref

(Sub-Types)
Coref

(Sub-Type) Yes None

QuizBowl
(Guha et al., 2015)

Single
(400, 9.4K, 50K)

Domain
Experts

Manual
& CRF* Yes

Characters,
Books,

Authors*
Coref Coref If Applicable None

PreCo***
(Chen et al., 2018)

Multiple
(38K, 3.58M, 12.5M)

Non-Expert,
Non-Native Manual** Yes None Coref Coref Yes None

Phrase Detectives (PD)
(Chamberlain et al., 2016)

Multiple
(542, 100K, 400K)

Crowd (gamified) +
2 Experts

Semi
Automatic Yes None Special Link Special Link Yes Implicit

ezCoref Pilot Dataset
(this work) Multiple Crowd (paid) Fully

Automatic Yes None Annotator‘s
Intuition

Annotator‘s
Intuition

Annotator‘s
Intuition Implicit

Table 1: Summary of seven datasets analyzed in this work, which differ in domain, size, annotator qualifications,
mention detection procedures, types of mentions, and types of links considered as coreferences between these
mentions.*Allows other types of mention only when this mention is an answer to a question.**We interpret manual identification based on illustrations presented
in the original publication (Chen et al., 2018). ***Inaccessible, see Footnote 8.

Currently Annotating

Entity 1


  Next TargetPrevious Target

was beginning to get very tired of sitting by Alice0

on the bank2 and of having

nothing 3 to do: once or twice  she0 had peeped 

into the book was reading (....)

sister1 0 her

sisterher4

the book4

Submit

Figure 2: Part of the ezCoref interface (§3)

UI design with multiple drag and drop actions
and/or multiple windows (Stenetorp et al., 2012;
Widlöcher and Mathet, 2012; Landragin et al.,
2012; Yimam et al., 2013; Girardi et al., 2014;
Kopeć, 2014; Mueller and Strube, 2001; Oberle,
2018). Closest to ezCoref is CoRefi (Bornstein
et al., 2020), a web-based coreference annotation
tool that can be embedded into crowdsourcing web-
sites. Subjectively, we found its user interface diffi-
cult to use (e.g., users have to memorize multiple
key combinations). It also does not allow for nested
spans, reducing its usability.

Crowdsourcing linguistic annotations: Several
efforts have been made to crowdsource linguistic
annotations (Snow et al., 2008; Callison-Burch,
2009; Howe, 2008; Lawson et al., 2010), includ-
ing on payment-based microtasks via platforms
like AMT and GWAPs (von Ahn, 2006). Many
GWAPs (Poesio et al., 2013; Kicikoglu et al.,
2019; Madge et al., 2019a; Fort et al., 2014) have
been used in NLP to collect linguistic annota-
tions including coreferences; with some broader
platforms (Venhuizen et al., 2013; Madge et al.,

2019b) aiming to gamify the entire text annotation
pipeline. One solution to teaching crowd workers
complex guidelines is to incorporate learning by
progression (Kicikoglu et al., 2020; Madge et al.,
2019b; Miller et al., 2019), where annotators start
with simpler tasks and gradually move towards
more complex problems, but this requires subjec-
tive judgments of task difficulty. In contrast to
the payment-based microtask setting studied in
this work, GWAPs are not open-sourced, need sig-
nificant development, take longer to collect data,
and require continuous efforts to maintain visibil-
ity (Poesio et al., 2013).

3 ezCoref: A Crowdsourced Coreference
Annotation Platform

The ezCoref user experience consists of (1) a step-
by-step interactive tutorial and (2) an annotation
interface, which are part of a pipeline including
automatic mention detection and AMT Integration.

Annotation structure: Two annotation ap-
proaches are prominent in the literature: (1) a local
pairwise approach, annotators are shown a pair
of mentions and asked whether they refer to the
same entity (Hladká et al., 2009; Chamberlain et al.,
2016; Li et al., 2020; Ravenscroft et al., 2021),
which is time-consuming; or (2) a cluster-based
approach (Reiter, 2018; Oberle, 2018; Bornstein
et al., 2020), in which annotators group all men-
tions of the same entity into a single cluster. In
ezCoref we use the latter approach, which can be
faster but requires the UI to support more complex
actions for creating and editing cluster structures.
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Example Phenomena Taught
[John] doesn’t like [Fred], but [he] still
invited [him]to [the party].

(1) personal pronouns
(2) singletons

[This dog] likes to play [catch].[It]’s
better than other [dogs] at [this game].
[[Its] owner] is really proud.

(1) possessive pronouns
(2) semantically similar expression
which are not coreferring
(3) non-person entities (animals)

[Director [Mackenzie]] spent [last two years]
working on a [“Young Adam”]. During
[this time] [he] often had to make [compromises]
but [the movie] turned out to exceed expectations.

(1) nested spans
(2) non-person entities (time, item)

[The office] wasn’t exactly small either.
[I]’m sure that 50, or maybe even 60, [people]
could easily fit [there].

(1) non-person entities (place)

Table 2: Simple coreference cases explained in tutorial.

User interface: We spent two years iteratively
designing, implementing, and user testing the in-
terface to make it as simple and crowdsourcing-
friendly as possible (Figure 2).4 Marked mentions
are surrounded by color-coded frames with entity
IDs. The currently selected mention (“the book"),
is highlighted with a flashing yellow cursor-like
box. The core annotation action is to select other
mentions that corefer with the current mention, and
then advance to a later unassigned mention; an-
notators can also re-assign a previously annotated
mention to another cluster. Advanced users can
exclusively use keyboard shortcuts, undo and redo
actions were added to allow error correction. Fi-
nally, ezCoref provides a side panel showing men-
tions of the entity currently being annotated to spot
mentions assigned to the wrong cluster.

Coreference tutorial: To teach crowdworkers
the basic definition of coreference and familiar-
ize them with the interface, we develop a tutorial
(aimed to take ∼ 20 minutes) that introduces them
to the mechanics of the annotation tool, and then
trains them on simple cases of coreferences. These
cases (e.g., personal/possessive pronouns or de-
terminative phrases which corefer with their an-
tecedents as shown in Table 2) are annotated simi-
larly across all existing datasets and are unlikely to
be disputed. The tutorial concludes with a quality
control example to exclude poor quality annota-
tors.5 These training examples, feedback, and an-
notation guidelines can be easily customized using
a simple JSON schema.

Annotation workflow: The annotators are pre-
sented with one passage (or “document”) at a time
(Figure 2), and all mentions have to be annotated
before proceeding to the next passage. There is no
limitation to the length or language of the passage.

4The interface is implemented in ReactJS.
5Examples of the tutorial interface and the quality control

example are provided in Appendix.

In this work, we divide an initial document into a
sequence of shorter passages of complete sentences,
on average 175 tokens, as shorter passages mini-
mize the need to scroll, reducing annotator effort.
While this obviously cannot capture longer distance
coreference,6 a large portion of important corefer-
ence phenomena is local: within the OntoNotes
written genres, for pronominal mentions, the clos-
est antecedent is contained within the current or
previous two sentences more than 95% of the time.

Automatic mention detection: As a first step to
collect coreference annotations, we must identify
mentions in the documents from each of the seven
existing datasets; this process is done in a diverse
array of ways (from manually to automatic) in prior
work as shown in Table 1. We decided to automati-
cally identify mentions to give all crowdworkers an
identical set of mentions, which simplifies the an-
notation task and also allows us to easily compare
and study their coreference annotations via inter-
annotator agreement. Specifically, we implement a
simple algorithm that yields a high average recall
over all seven datasets.7

Our algorithm considers all noun phrases (includ-
ing proper nouns, common nouns, and pronouns) as
markables, extracting them using the Stanza depen-
dency parser (version 1.3.0; Qi et al., 2020). We
allow for nested mentions and proper noun premod-
ifiers (e.g., [U.S.] in “U.S. policy”). We include all
conjuncts with the entire coordinated noun phrase
([Mark], [Mary], as well as [Mark and Mary], are
all considered mentions); details in Appendix A.3.

4 Using ezCoref to Re-annotate Existing
Coreference Datasets

We deploy ezCoref on the AMT crowdsourcing
platform to re-annotate 240 passages from seven
existing datasets, covering seven unique domains.
In total, we collect annotations for 12,200 mentions
and 42,108 tokens. We compare our workers’ an-

6We leave this for future work—for example, more sophis-
ticated user interfaces to support longer documents, or merging
coreference chains between short passages. As documents get
progressively longer, such as book chapters or books, the task
takes on aspects of cross-document coreference and entity
linking (e.g. Bagga and Baldwin, 1998b; FitzGerald et al.,
2021; Logan IV et al., 2021).

7We acknowledge that any algorithm can be used as long
as its recall across all datasets is high, and ours is only one
such algorithm. However, we do not conduct an ablation study
to compare crowd annotations for mentions obtained from
these potential algorithms as it would be prohibitively expen-
sive. Furthermore, while advanced mention detection methods
can improve annotation quality, our goal is not to collect the
highest-quality coreference dataset, but to study annotator
behavior when a common set of mentions is provided.
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notations both quantitatively and qualitatively to
each other and to existing expert annotations.

Datasets: We collect coreference annotations for
the seven existing datasets described in Table 1:
OntoNotes (Hovy et al., 2006), LitBank (Bam-
man et al., 2020), PreCo8 (Chen et al., 2018), AR-
RAU (Uryupina et al., 2019), GUM (Zeldes, 2017),
Phrase Detectives (Chamberlain et al., 2016), and
QuizBowl (Guha et al., 2015). The sample cov-
ers seven domains: news, opinionated magazines,
weblogs, fiction, biographies, Wikipedia articles,
and trivia questions from Quiz Bowl. For each
dataset with multiple domains, we manually se-
lect a broad range of domain(s) for re-annotation.
From each domain in each dataset, we then select
documents and divide them into shorter passages
(on average 175 tokens each), creating 20 such
passages per dataset. For datasets with multiple
domains, we choose 20 such passages per domain
(see Appendix A.1 for detail). Overall, we collect
annotations for 240 passages with 5 annotations
per passage to measure inter-annotator agreement.

Procedure: We first launch an annotation tutorial
and recruit the annotators on the AMT platform.9

At the end of the tutorial, each annotator is asked
to annotate a short passage (around 150 words).
Only annotators with a B3 score (Bagga and Bald-
win, 1998a) of 0.90 or higher are then invited to
participate in the annotation task.

Training Annotators with Simplified Guidelines
using ezCoref: As the goal of our study is to
understand what crowdworkers perceive as coref-
erence, we train our annotators with simple guide-
lines. We carefully draft our training examples to
include only cases which are considered as corefer-
ence by all the existing datasets. The objective is to

8The PreCo dataset is interestingly large but seems difficult
to access. In November 2018 and October 2021 we filled out
the data request form at the URL provided by the paper, and
attempted to contact the PreCo official email directly, but did
not receive a response. To enable a precise research compari-
son, we scraped all documents from PreCo’s public demo in
November 2018 (no longer available as of 2021); its statis-
tics match their paper and our experiments use this version
of the data. PreCo further suffers from data curation issues
(Gebru et al., 2018; Jo and Gebru, 2020); it uses text from
English reading comprehension tests collected from several
websites, but the original document sources and copyright
statuses are undocumented. When reading through PreCo doc-
uments, we found many domains including opinion, fiction,
biographies, and news (Table A1 in Appendix); we use our
manual categories for domain analysis.

9We allow only workers with a >= 99% approval rate and
at least 10,000 approved tasks who are from the US, Canada,
Australia, New Zealand, or the UK.
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Figure 3: Existing expert annotated datasets entail high
annotator effort (e.g., OntoNotes, ARRAU). Existing
crowdsourced coreference datasets (e.g., Phrase Detec-
tives) entail significant researcher effort. In this work,
we explore the minimum effort scenario for both an-
notators (by providing them simplified guidelines) and
researchers (by open-sourcing ezCoref).

teach crowdworkers the broad definition of coref-
erence while leaving space for different interpreta-
tions of ambiguous cases or those resolved differ-
ently across the existing datasets. Note that a com-
parable experiment with more complex guidelines
is infeasible since it is unclear which guidelines
to choose, and also providing complex linguistic
guidelines to crowdworkers remains an open chal-
lenge. Overall, ezCoref is aimed to minimize both
researcher and annotator effort for new coreference
data collection, compared to prior work (Figure 3).

Worker details: Overall, 73 annotators (includ-
ing 44 males, 20 females, and one non-binary
person)10 completed the tutorial task, which took
19.4 minutes on average (sd=11.2 minutes). They
were aged between 21 and 69 years (mean=38.9,
sd=11.3) and identified themselves as native En-
glish speakers. Most of the annotators had at least
a college degree (47 vs 18). 89.0% of annotators,
who did the tutorial, received a B3 score of 0.90 or
higher for the final screening example, and were
invited to the annotation task. 50.7% of the invited
annotators returned to participate in the main an-
notation task, and 29.2% of them annotated five or
more passages. Annotation of one passage took,
on average, 4.15 minutes, a rate of 2530 tokens per
hour. The total cost of the tutorial was $460.70
($4.50 per tutorial). We paid $1 per passage for
the main annotation task, resulting in a total cost of
$1440.11

5 Analysis

In this section, we perform quantitative and qual-
itative analyses of our crowdsourced coreference
annotations. First, we evaluate the performance

10We did not collect demographic data for the remaining
eight individuals, from an earlier pilot experiment.

11All reported costs include 20% AMT fee.
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of our mention detection algorithm, comparing it
to gold mentions across seven datasets. Next, we
measure the quality of our annotations and their
agreement with other datasets. Finally, we discuss
interesting qualitative results.

5.1 Mention Detector Evaluation

Datasets differ in the way they define their men-
tion boundaries and thus the boundaries for the
same mention may differ. To fairly compare our
mentions with the gold standards, we employ a
headword-based comparison. We find the head of
the given phrase by identifying, in the dependency
tree, the most-shared ancestor of all tokens within
the given mention. Two mentions are considered
same if their respective headwords match.

Table 3 compares our mention detector to the
gold mentions in existing datasets. Our method
obtains high recall across most datasets (>0.90),
which shows that most of the mentions annotated
in existing datasets are correctly identified and al-
lows a direct comparison of crowd annotations with
expert annotations. It has the lowest recall with AR-
RAU (0.84) and PreCo (0.88), which is to be ex-
pected as ARRAU marks all referring premodifiers
(identified manually) and PreCo allows common
noun modifiers, while we identify only the premod-
ifiers which are proper nouns.12

For most datasets, the precision is >0.80, sug-
gesting that the algorithm identifies most of the rel-
evant mentions. We observe a substantially lower
score for OntoNotes, LitBank, and QuizBowl as
these datasets restrict their mention types to lim-
ited entities (refer to Table 1). However, this does
not limit our analysis. In fact, an algorithm with
high precision on LitBank or OntoNotes would
miss a huge percentage of relevant mentions and
entities on other datasets (constraining our analy-
sis) and when annotating new texts and domains.
Furthermore, our algorithm identifies more men-
tions than in the original datasets, which in the best
case allows us to discover new entities and, in the
worst case, may result in more singletons Finally,
the mention density (number of mentions per to-
ken) from our detector remains roughly consistent
across all datasets when using our method, allow-
ing us to fairly compare statistics (e.g., agreement
rates) across datasets.

12We made this decision as identifying automatically all
premodifiers would result in many singletons and lead to more
arduous annotation effort.

Dataset Recall Precision Mentions / Tokens

Gold This Work
OntoNotes 0.957 0.376 0.112 0.286
LitBank 0.962 0.415 0.121 0.280
QuizBowl 0.956 0.543 0.188 0.318
PD (Gold) 0.953 0.803 0.259 0.273
PD (Silver) 0.938 0.791 0.265 0.274
GUM 0.906 0.848 0.269 0.287
PreCo 0.881 0.883 0.287 0.287
ARRAU 0.840 0.870 0.289 0.279

Table 3: Comparison of mentions identified by our men-
tion detection algorithm with the gold mentions anno-
tated in the respective datasets. We use head-word based
comparison to compare mentions of different lengths.
Our method obtains high recall across most datasets and
the mention-density using our mention-detector remains
roughly consistent across datasets, allowing us to do fair
analysis (e.g., agreement) across datasets.

5.2 Agreement with Existing Datasets
How well do annotations from ezCoref agree with
annotations from existing datasets?

Aggregating annotations: To compare crowd-
sourced annotations with gold annotations, we first
require an aggregation method that can combine
annotations from multiple crowdworkers to infer
coreference clusters. We use a simple aggregation
method that determines whether a pair of mentions
is coreferent by counting the number of annota-
tors who marked the two mentions in the same
cluster.13 Two mentions are considered as coref-
erent when the number of annotators linking them
together is greater than a threshold (τ ). After in-
ferring these pairs of mentions, we construct an
undirected graph where nodes are mentions and
edges represent coreference links. Finally, we find
connected components in the graph to obtain coref-
erence clusters.14 We compare aggregated annota-
tions from ezCoref with gold annotations across
the seven datasets using B3 scores (precision, re-
call, and F1),15 as illustrated in Figure 4.

High agreement with OntoNotes, GUM, Lit-
Bank, ARRAU: Our annotators achieve the high-

13Future data collection efforts interested in creating
large resources can utilize more advanced aggregation meth-
ods (Poesio et al., 2019).

14This method resolves to majority voting-based aggrega-
tion when the τ is set so that more than half of annotators
should agree. For τ = N , this method is very conservative,
adding a link between two mentions only when all annotators
agree unanimously. Conversely, for τ = 1, only a single vote
is required to add a link between two mentions.

15For a mention in a given document, B3 recall is the frac-
tion of mentions that are correctly predicted by the system as
coreferent with it out of all mentions that are actually corefer-
ent with it. B3 precision is the fraction of mentions that are
correctly predicted by the system as coreferent with it out of
all system-predicted mentions.
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Figure 4: Agreement with gold annotations across
datasets. B3 (F1) scores shown in parentheses are com-
puted with singletons included.

est precision with OntoNotes (Figure 4), suggest-
ing that most of the entities identified by crowd-
workers are correct for this dataset. In terms of F1
scores, the datasets which are closest to crowd an-
notations are GUM, LitBank, and ARRAU, all of
which are annotated by experts. This result shows
that high-quality annotations can be obtained from
non-experts using ezCoref without extensive train-
ing. We further conducted a qualitative analysis
of high agreement cases for each dataset. Over-
all, we observe that non-experts agree with experts
on chains containing pronouns and named entities.
However, non-experts also mark noun phrases in
appositive constructions as coreferent, consistent
with GUM guidelines. Finally, non-experts also
assign generic mentions to the same coreference
chain, consistent with their treatment by GUM and
ARRAU, and leads to higher agreement with these
datasets.

Low precision with Phrase Detectives and
PreCo, low recall with Quiz Bowl: We observe
that Phrase Detectives has a very low precision
compared to all other datasets, implying that crowd-
workers add more links compared to gold annota-
tions. Our qualitative analysis reveals that PD anno-
tators miss some valid links, splitting entities which
are correctly linked together by our annotators (see
Table 4). Another dataset with lower precision is
PreCo, which also contains many missing links. In
general, we observe more actual mistakes in PreCo
and PD than in the other datasets, which is not sur-
prising as they were not annotated by experts.16

This result is further validated by our agreement
analysis of the fiction domain (Table 5), in which
ezCoref annotations agree far more closely with
expert annotations (GUM, LitBank) than PreCo
and PD. Finally, Quiz Bowl has by far the low-
est recall with ezCoref annotations, which is ex-

16That said, both PreCo and PD were additionally validated
by multiple non-expert annotators.

PD

Not long after [a suitor] appeared, and as [he] appeared to be very rich and
the miller could see nothing in [him] with which to find fault, he betrothed
his daughter to [him] . But the girl did not care for [the man] (...). She did not
feel that she could trust [him] , and she could not look at [him] nor think of
[him] without an inward shudder.

PreCo When I listened to the weather report, I was afraid to see [the advertisements] .
[Those colorful advertisements] always made me crazy.

Table 4: Cases of split entities (missing links) in an-
notations provided with Phrase Detectives and PreCo.
Instead, our crowd annotators mark all mentions as re-
ferring to the same entity in each of these examples.

pected given the difficulty with cataphora and fac-
tual knowledge (examples (c) and (e) in Table 6).

Domain Dataset B3
Precision Recall F1

Fiction

GUM 0.982 0.921 0.950
LitBank 0.959 0.927 0.943
PreCo 0.805 0.963 0.877
Phrase Detectives 0.784 0.775 0.780

Table 5: Agreement with existing datasets for fiction.

Varying the aggregation threshold τ : What is
the effect of varying the aggregation threshold (τ )
on precision and recall with gold annotations? Fig-
ure 5 shows that the Quiz Bowl dataset has the
highest drop in recall (36% absolute drop) when
increasing τ from 1 to 5.17 This indicates that the
number of unanimous clusters (τ = 5) is consider-
ably lower than the total number of clusters found
individually by all annotators (τ = 1); as such, our
annotators heavily disagree about gold clusters in
the QuizBowl dataset. We observe a similar trend
in OntoNotes (26% drop in recall), whereas Phrase
Detectives has the lowest drop in recall (0.07) with
the increase in the number of annotators, which is
expected since Phrase Detectives is crowdsourced.

5.3 What domains are most suitable for
crowdsourcing coreference?

We use the B3 metric18 (Bagga and Baldwin,
1998a) to compute IAA for each domain, exclud-
ing singletons19 (see Table 7). We obtain the high-
est agreement on fiction (72.6%) and biographies
(72.4%). This is because both domains contain a
high frequency of pronouns (see examples a and

17We analyze variations in recall which is more interpretable
than precision, since the denominator is fixed in recall when
varying number of annotators.

18Krippendorff’s alpha/kappa are other possible measures
for IAA. However, prior work (Paun et al., 2022) has raised
concerns over using Krippendorff’s alpha/kappa for anaphora
resolution. Instead, we found B3 intuitive to understand as
a measure of agreement among annotators at the mention
level, i.e. fraction of mentions two annotators agree should be
coreferent with a given mention.

19IAA including singletons is much higher (Appendix A.4).
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Phenomena Dataset (Domain) Example

LitBank
(Fiction) (a)

A Wolf had been gorging on an animal [he] had killed, when suddenly a small bone in the meat stuck in [his] throat and [he] could not
swallow [it]. [He] soon felt a terrible pain in [his] throat (...) [He] tried to induce everyone [he] met to remove the bone. "[I] would
give anything, " said [he] , " if [you] would take [it] out. "

Pronouns GUM
(Biographies) (b)

Despite Daniel’s attempts at reconciliation, [his] father carried the grudge until [his] death. Around schooling age, [his] father, Johann,
encouraged [him] to study business (...). However, Daniel refused because [he] wanted to study mathematics. [He] later gave in to [his]
father’s wish and studied business. [His] father then asked [him] to study in medicine.

Cataphora QuizBowl
(Quizzes) (c)

[One character in this work] is forgiven by [magenta] wife for an affair with a governess before beginning one with a ballerina. [Another
character in this work ] is a sickly, thin man who eventually starts dating a reformed prostitute, Marya Nikolaevna. In addition to [Stiva]

and [Nikolai] , [another character in this work] (...) had earlier failed in [his] courtship of Ekaterina Shcherbatskaya.

OntoNotes
(News) (d) The Soviet Union’s jobless rate is soaring (...), [Pravda] said. Unemployment has reached 27.6 % in Azerbaijan, (...) and 16.3% in Kirgizia,

[the Communist Party newspaper ] said.
Factual
Knowledge QuizBowl

(Quizes) (e)
(...) [ another character in this work ] (...) had earlier failed in [his] courtship of [Ekaterina Shcherbatskaya]. Another character in this work
rejects [Ekaterina] before (...) moving to St. Petersburg. For 10 points name this work in which [Levin] marries [Kitty] , (...) a novel by
Leo Tolstoy.

Table 6: Representative examples showing unique phenomena in each dataset (coreferences are color coded).

Fiction Biographies Opinion Web News Wikipedia Quiz

72.6 72.4 69.5 65.9 62.3 61.8 59.7

Table 7: Domain-wise IAA: B3% scores using CoNLL
script (Pradhan et al., 2014), excluding singletons.

b in Table 6), which our annotators found easier
to annotate. We also observe that the fiction do-
main contains many well-known children stories
(e.g., Little Red Riding Hood) that are likely famil-
iar to our annotators, which may have made them
easier to annotate. Annotators have the least agree-
ment on Quiz Bowl coreference (59.73%), as this
dataset is rich in challenging cataphoras (example
c in Table 6) and often require world knowledge
about books, characters, and authors to identify
coreferences (example e in Table 6).

5.4 Qualitative analysis

To better understand the differences in annotation
quality, we conduct a manual analysis20 of all 240
passages, comparing our ezCoref annotations to
gold annotations from each dataset. Specifically,
we look at each link that was annotated by our
workers but not in the gold data, or vice versa. For
each link, we determine whether crowd or the gold
annotations contained a mistake, or whether the
discrepancy is reasonable under specific guidelines.
We find that ezCoref annotations contain fewer
mistakes than non-expert annotated datasets (PreCo
and PD), almost twice as many mistakes as those of
expert datasets (OntoNotes and GUM), and seven
times as many mistakes as those in the esoteric
Quiz Bowl dataset (Appendix Table A2).

Disagreements and deviations from expert
guidelines: As in Poesio and Artstein (2005), we
identify cases of genuine ambiguity, where a men-
tion can refer to two different antecedents. The

20By a linguist who studied guidelines of all datasets.
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Figure 5: Agreement with gold annotations with varying
voting threshold τ . τ = 3 is majority voting (Figure 4).
B3 scores computed with singletons included.

first row of Table 8 shows an example from Dick-
ens’ Bleak House, where the pronoun “it” could
reasonably refer to either the “fog” or the “river.”
Our annotators have high disagreement on this link,
which is understandable given the literary analysis
of Szakolczai (2016) who interprets the ambiguity
of this pronoun as Dickens’ way to show indeter-
minacy attributed to elements in the scene.21

We observe that generic mentions, especially
generic pronouns, are almost always annotated as
coreferring by crowd, while existing datasets lack
consensus (Table 1). Table 8 (second row) shows
an example where annotators unanimously con-
nected all instances of generic “you.” This obser-
vation is in line with Orvell et al.’s (2020) study
which explains that by using the same linguistic
form (“you”), one invites readers (annotators) to
consider how the situation refers to them. Finally,
while datasets tend to treat copulae and apposi-
tive constructions identically and annotate them

21In LitBank, the source of this passage, the pronoun “it”
is annotated as referring to the “river” as only “river” is a
potential markable per entity restriction (ACE entities only).
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Ambiguity

[Fog] everywhere. [Fog] up [the river] , where [it] flows among green
aits and meadows; [fog] down [the river] , where [it] rolls defiled among
the tiers of shipping and the waterside pollutions of a great (and dirty) city.
- Charles Dickens, Bleak House

Generic

Please , Ma’am , is this New Zealand or Australia? ( and she tried to
curtsey as she spoke – fancy CURTSEYING as [you] ’re falling
through the air! Do [you] think [you] could manage it?)
- Lewis Carroll, Alice in Wonderland

Table 8: Examples of genuine ambiguity and generic
“you” observed in our data.

in a similar way, our annotators intuitively anno-
tate them differently. While crowdworkers almost
always mark noun phrases in appositive construc-
tions as coreferent, the noun phrases in copulae are
linked by majority vote only in ∼ 35% of cases.

6 Conclusion

Existing coreference datasets vary in their defini-
tion of coreferences and have been collected via
complex guidelines. In this work, we investigate
the quality of annotations when crowdworkers are
taught only few coreference cases that are treated
similarly across existing datasets. We develop
a crowdsourcing-friendly coreference annotation
methodology, ezCoref and use it to re-annotate
240 passages from seven existing English coref-
erence datasets. We observe reasonable quality
annotations were already achievable even without
extensive training. On analyzing the remaining
disagreements, we identify linguistic cases that
crowd unanimously agree upon but lack unified
treatments in existing datasets, suggesting cases
the researchers should revisit when curating future
unified annotation guidelines.

7 Limitations

We list some of the limitations of our study which
researchers and practitioners would hopefully bene-
fit from when interpreting our analysis. Firstly, our
analysis is only applicable to the English language
and how native English speakers understand coref-
erences. In this work, we have taken a step towards
building a framework to facilitate the comparison
of the crowd and expert annotations, and the vari-
ations observed in non-native speakers should be
explored in future studies. Secondly, as a result
of resource constraints, we limited ourselves to
one set of guidelines and compared crowd anno-
tations under these guidelines with expert annota-
tions. Understanding the effects of various guide-
lines on annotator behavior is left for future re-
search. Thirdly, even the best automatic mention
detection algorithm could have errors, especially
when tested out-of-domain. Despite this limitation,

we decided to use an automatic method as it allows
us to study annotators’ behavior when a “common
set of mentions” is provided. Some of the proposed
solutions to address this issue are to directly crowd-
source mentions or verify the automatically iden-
tified mentions via crowdsourcing (Madge et al.,
2019b), which can be utilized for future collection
of high-quality corpora. Finally, we also acknowl-
edge that the tool cannot handle split-antecedents or
separate tags for different relations, which we leave
for future work. As a result, our approach focuses
on cases of identity coreferences. However, we be-
lieve that identity coreference supported by our tool
has value as an NLP tool (e.g., studying characters
in narratives (Bamman et al., 2013)), allowing the
collection of more in-domain annotations, neces-
sary to advance such practical applications.

8 Ethics Statement

The data collection protocol was approved by the
coauthors’ institutional review board. All anno-
tators were presented with a consent form (men-
tioned below) prior to the annotation. They were
also informed that only satisfactory performance
on the screening example will allow them to take
part in the annotation task. All data collected dur-
ing the tutorial and annotations (including annota-
tors‘ feedback and demographics) will be released
anonymized. We also ensure that the annotators
receive at least $13.50 per hour. Since base com-
pensation is per unit of work, not by time (the
standard practice on Amazon Mechanical Turk),
we add bonuses for workers whose speed caused
them to fall below that hourly rate.

Consent Before participating in our study, we
requested every annotator to provide their consent.
The annotators were informed about the purpose
of this research study, any risks associated with
it, and the qualifications necessary to participate.
The consent form also elaborated on task details
describing what they will be asked to do and how
long it will take. The participants were informed
that they could choose as many documents as they
would like to annotate (by accepting new Human
Intelligence Tasks at AMT) subject to availability,
and they may drop out at any time. Annotators
were informed that they would be compensated
in the standard manner through the Amazon Me-
chanical Turk crowdsourcing platform, with the
amount specified in the Amazon Mechanical Turk
interface. As part of this study, we also collected de-
mographic information, including their age, gender,
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native language, education level, and proficiency
in the English language. We ensured our annota-
tors that the collected personal information would
remain confidential in the consent form.
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A Appendix

A.1 Details of our crowdsourced data
Table A1 mentions all datasets that we re-annotate
in this work with their breakdown based on do-
mains, number of documents, passages, tokens and
mentions annotated.

Dataset Domain #Docs #Passages #Tokens #Mentions

OntoNotes
News 6 30 4923 1365
Weblogs 5 20 3452 1001
Opinion 12 20 3861 1157

LitBank Fiction 4 30 5455 1494
QuizBowl Quizzes 20 20 3304 1083
ARRAU News 3 20 3336 885

GUM Biographies 4 20 3422 1119
Fiction 4 20 3299 1008

Phrase
Detectives

Wikipedia 7 20 3509 1003
Fiction 4 20 4007 1063

PreCo

Opinion 7 9 1692 495
News 4 8 1318 369
Fiction 2 2 378 105
Biographies 1 1 152 53

Total All 83 240 42108 12200

Table A1: All datasets analyzed in this work with their
breakdown based on domains, number of documents,
passages, tokens and mentions annotated.

A.2 Manual Qualitative Analysis

Dataset Mistakes (our) Mistakes (gold)

PD (silver) 22 76
OntoNotes 81 49
PreCo 12 33
GUM 48 25
ARRAU 33 16
LitBank 21 13
QuizBowl 67 10

Table A2: Number of mistakes in our crowd annotations
vs. gold datasets, obtained through a manual analysis.

A.3 Detailed Mention Detection Algorithm
• We identify all noun phrases using the Stanza

dependency parser (Qi et al., 2020). For each
word with a noun-related part-of-speech tag,22

we recursively traverse all of its children in
the dependency graph until a dependency rela-
tion is found in a whitelist.23 The maximal
span considered as a candidate mention thus
covers all words related by relations in the
whitelist.

• Possessive nominal modifiers are also consid-
ered as candidate mentions. For instance, in
the sentence “Mary’s book is on the table,” we
consider both “Mary” and “Mary’s book” as
mentions.

22Pronouns, nouns, proper nouns, and numbers.
23The whitelist includes all multi-word expression rela-

tions (i.e., compound, flat, and fixed) and modifier relations
(i.e., determiners, adjectival modifiers, numeric modifiers,
nominal modifiers, and possessive nominal modifiers).

• Modifiers that are proper nouns in a multi-
word expression are considered as mentions.
For instance, in “U.S. foreign policy,” the
modifier “U.S.” is also considered as a men-
tion.

• All conjuncts, including the headword and
other words depending on it via the con-
junct relation, are considered mentions in a
coordinated noun phrase. For instance, in
the sentence, “John, Bob, and Mary went to
the party.”, the detected mentions are “John,”
“Bob,” “Mary,” and the coordinated noun
phrase “John, Bob, and Mary.”

• Finally, we remove mentions if a larger men-
tion with the same headword exists. We allow
nested spans (e.g., [[my] hands]) but merge
any intersecting spans into one large span (e.g,
[western [Canadian] province] is merged into
[western Canadian province]).

A.4 Inter-Annotator Agreement Among Our
Annotators Across Domains

Figure 6 illustrates agreement among our annota-
tors computed with B3 scores including singletons.

Opinion Web Wikipedia Fiction Quiz News Tests
Domain

84

86

88

90

92

94

B3
 (%

)

91.41 91.01
90.36

89.82 89.69 89.2
88.23

Figure 6: Inter Annotator Agreement across different
domains. B3 scores with Singletons included.

A.5 Another illustrative example
An example of a single sentence annotated by two
datasets, OntoNotes and ARRAU. These annota-
tions differ widely from each other in kinds of men-
tions and links between mentions.

OntoNotes: [ Lloyd’s, once a pillar of [ the world
insurance market ]e1, ]e2 is being shaken to [
its ]e2 very foundation.

ARRAU: [ Lloyd’s, once [ a pillar of [ the world
[ insurance ]e3 market ]e2 ]eS1 ]e1, is being
shaken to [ [ its ]e1 very foundation ]eS2.
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System Annotate
all clusters

Pre-identified
Mentions

Open
Source Webapp Coref

only
Keyboard
and Mouse

MTurk
Tested

Non-expert
Terminology

Nested Span
Support

Interactive
Tutorial

Stenetorp et al. (2012) ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗∗ ✗

Widlöcher and Mathet (2012) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Landragin et al. (2012) ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Yimam et al. (2013) ✓ ✗ ✓ ✓ ✗ ✗ ✗∗ ✗ ✓ ✗

Poesio et al. (2013) ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓
Girardi et al. (2014) ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Mueller and Strube (2001) ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Kopeć (2014) ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Guha et al. (2015) ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗

Oberle (2018) ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

Reiter (2018) ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Bornstein et al. (2020) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓
Prodigy* ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓

ezCoref (this work) ✓ ✓ ✓∗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table A3: A comparison of different coreference annotation tools. (* — ezCoref code will be open-sourced upon
paper publication; Stenetorp et al. (2012) did not implement nested spans originally, but later added them with
limited functionality. Yimam et al. (2013) have APIs for CrowdFlower integration, but suggest expert annotators.).
*Accessible at: https://prodi.gy/

Tutorial feedback from our crowd annotators

1. This was a really interesting task. The tutorial was very clear and easy to understand. I think it was very helpful when
I completed the final passage.

2. Very great tutorial, I loved how it walked me through each and every step making sure I understood.

3.

excellent interface and very precise instructions! out of curiousity, what is the time-frame and scale for this project?
several weeks? months? hundreds or thousands of hits? I have a ton of projects during the autumn normally but will
definitely make time for this if it’s going to be around for more than a day or two. Looking forward to working with
you folks if possible!

4. I actually enjoyed this. Thank you for the opportunity.

5. it was interesting a bit difficult but overall gave a lot of feedback necessary to do a good job.

6. I loved the tutorial and the layout. I am still a little bit unsure about a couple of the entities and hope I got it right.
For example: would ’legs’ be in ’his’ because it refers to that person? I wasn’t sure and made them separate.

7.

I loved how this tutorial was set up. It was easy to use and made me very interested in doing the actual HITs.
It would have been nice to be able to print out a quick reference guide or something, so we could refer to the
instructions from before while we completed the final task. I don’t think it would be needed for very long after
starting the real HITs, but it would still be nice to have.

8.

On the last test section, there was no place for feedback. There was a section that said ""it was getting dark""
""It was getting late"" Both of those refer to a time of day, but one is light, one is the hour, so I marked them
as different. Not sure of how broad or narrow we need to be when justifying ""same"" entities, as there is an
argument either way.

9. I just wanted to say that I really appreciated how efficiently put together and clear this tutorial was.

10. This was a unique task. Thank you.

11. I feel much better with the help and feedback. It was interesting and definitely way different in a good way than
the usual survey. I did my best and I hope I did well enough. Keep safe and Happy Holidays no matter what happens.

Table A4: Some of the comments received from our annotators after completing the tutorial. We received
overwhelmingly positive feedback; annotators sometimes also mentioned cases they found confusing.
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Figure 7: Screenshot of tutorial task invitation on AMT with detailed instructions.
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Figure 8: Tutorial Interface (Introductory prompt)

Figure 9: Tutorial interface: A sample prompt teaching tool functionality.
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Figure 10: Tutorial interface: A sample prompt teaching basic coreferences.

Figure 11: Tutorial interface: quality control example.
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Figure 12: Annotation task invite on AMT with detailed instructions
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Abstract

The recent increase in the volume of online
meetings necessitates automated tools for orga-
nizing the material, especially when an attendee
has missed the discussion and needs assistance
in quickly exploring it. In this work, we pro-
pose a novel end-to-end framework for gener-
ating interactive questionnaires for preference-
based meeting exploration. As a result, users
are supplied with a list of suggested questions
reflecting their preferences. Since the task is
new, we introduce an automatic evaluation strat-
egy by measuring how much the generated
questions via questionnaire are answerable to
ensure factual correctness and covers the source
meeting for the depth of possible exploration.

1 Introduction

In recent years, video conferencing technology has
gained substantial improvements, and thus, online
meetings have become easily accessible and more
prominent. Primarily due to the pandemic and
working from home, the need for video calling has
grown significantly. Therefore, the high volume
of online meetings necessitates automated tools
for managing and organizing essential information
for attendees. Especially when an attendee has
missed an online meeting, it is critical to access the
required information since quickly reading through
the transcript is quite time-consuming.

Providing meeting summaries is a promising di-
rection (Wang and Cardie, 2013; Jacquenet et al.,
2019; Zhao et al., 2019; Singhal et al., 2020). How-
ever, recent studies show that 1) users’ needs do
not fully align with current approaches to auto-
matic text summarization (ter Hoeve et al., 2020,
2022) and 2) approaches designed for document
summarization could not effectively apply to meet-
ings transcripts (Murray et al., 2010; Mehdad et al.,
2013; Li et al., 2019) due to the following potential
reasons: (R1) Structure: standard documents are
well structured compared to meeting transcripts;

Figure 1: An example of exploring one of the meetings
from the collection (Carletta et al., 2005) based on user
preferences through an interactive questionnaire.

(R2) Language: spoken language used in meetings
is less regular than documents; and (R3) Multiple
speakers: the speaker role is essential. Moreover,
there is little meeting data publicly available that
can be used for experimentation compared to regu-
lar documents such as news or articles. In contrast
with document summarization, when summarizing
a meeting, different users tend different preferences
on what content should be included in the summary.
Therefore, there is an increasing calling for alterna-
tive ways of summarizing, especially for meetings
transcripts. Recently, Zhong et al. (2021) attempted
to tackle this problem by proposing a query-based
multi-domain meeting summary, where a user pro-
vides a query in question form, e.g., ‘What was the
discussion about the jog dial’s function when talk-
ing about changes in the current design?’ to locate
the part of the transcript that related to the query
and then summarize. However, when attendees
have missed the meeting, they cannot formulate
such questions due to no prior knowledge about
the meeting. To overcome this, we aim to address
the following research challenge: How can atten-
dees effectively explore a meeting content without
having prior knowledge about it?

This work is motivated by the fact that asking
questions is a more efficient way for humans to ac-
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Which Aspect of 𝑆𝑛𝑜𝑟𝑚 are you interested

in?

Which Subjest are you interested in?

Questions you might be interested in:

Figure 2: Overview of our framework, Preference-based Meeting Exploration through an Interactive Questionnaire
(PREME), where Q is a comprehensive set of questions, and Si and Aj are extracted pairs of subjects and aspects.

quire information than notes in plain text (Lawson
et al., 2007, 2006; Aliannejadi et al., 2021). Thus,
we address preference-based meeting exploration
by automatically generating a structured interactive
questionnaire for a transcript that covers most of the
discussed topics and quickly walks users through
the discussed content. An example of the desired
questionnaire is shown in Fig. 1. First, the user has
the ability to express their preferences regarding
subjects that have been discussed (Solbiati et al.,
2021; Huang et al., 2018; Zhang and Zhou, 2019;
Sehikh et al., 2017). Next, the questionnaire inter-
actively suggests narrowing down their exploration
if possible by displaying a list of possible related as-
pects. As a result, a ranked list of questions reflect-
ing user preferences is generated. Next, the user
can pick a question that demonstrates their seeking
needs the most and is redirected to the meeting part
containing an answer. Interactively asking for pref-
erences in the questionnaire is beneficial because
the user oversees what has been covered during the
meeting they have missed. In section 4.2 we elabo-
rate on a user study on a number of professionals
who find such application useful for their daily job.
Hence, the goal of proposed questionnaires is two-
fold: (G1) to compactly represent the discussed
content; (G2) to guide users to form questions that
express their preference regarding the transcript.
We require the generated questionnaire to satisfy
the following properties:

P1 Coverage: coverage is the amount of the in-
formation from the source text that a question-
naire points to. The generated questionnaire
must cover the meeting as much as possible;

P2 Answerable: a given meeting transcript should
contain the answers to the questions generated
as a result of the questionnaire.

To address the defined challenge, we propose

a framework, PREME, which consists of several
concrete sequential steps highlighted in Fig. 2. We
start by enchaining the method to extract meet-
ing segments (Solbiati et al., 2021). Due to the
conversational nature of the meeting, topic de-
tection from the segments is challenging (Huang
et al., 2018; Zhang and Zhou, 2019; Sehikh et al.,
2017). Thus, we indirectly extract the topics as
follows. First, we generate questions from each
segments (Brown et al., 2020) since extracting top-
ics from the questions is much more well stud-
ied. Further, we employ a trained Conditional Ran-
dom Field (CRF) model to tag subjects and aspects
(Fig. 1) from generated questions originated from
each segments (Wallach, 2004). Once we got each
segment’s topic list, we proposed a strategy to nor-
malize them to reduce the number of options in
the questionnaire. Recently, Deutsch et al. (2020)
demonstrated that QA-Based evaluation is strongly
correlated with human opinion. Thus, to evaluate
PREME, we employ a similar QA-based strategy.

To summarize, the main contributions are:

C1 We propose PREME, a novel framework to en-
able meetings exploration based on user’s pref-
erences through an interactive questionnaire;

C2 We propose a new method for subject normal-
ization which returns the most informative sub-
ject from a set of phrases and keywords;

C3 We introduce a new automatic evaluation strat-
egy for measuring the effectiveness of the pro-
posed questionnaire to assess the required prop-
erties P1 and P2, which according to (Deutsch
et al., 2020) has a strong correlation with hu-
man judgments; and

C4 We open-source a dataset that includes 1000
questions comprehensively annotated with sub-
ject to their subjects and aspects at https:

//github.com/microsoft/preme
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2 Related Work
2.1 Automatic Textual Summarization

Automatic text summarization task has attracted
lots of attention across Natural Language Process-
ing (NLP) community recently. Many systems
are proposed to summarize documents in differ-
ent domains, including news (Rush et al., 2015;
Nallapati et al., 2017; See et al., 2017; Celikyilmaz
et al., 2018; Liu and Lapata, 2019; Zhang et al.,
2020), academic papers (Manakul and Gales, 2021;
Huang et al., 2021) and books (Kryściński et al.,
2021). Meeting summarization has also emerged
as a widespread need recently. Due to the unique
discourse structure of dialogues, conventional docu-
ment summarization systems are facing challenges
when summarizing meetings (Li et al., 2019; Zhu
et al., 2020). Thus, new models are proposed for
tackling this task. Wang and Cardie (2013) employ
decisions, and action items in dialogues to gener-
ate the summary progressively. Oya et al. (2014)
propose a template-based meeting summarization
system by learning the relationship between sum-
maries and their source meeting transcripts. Shang
et al. (2018) design an unsupervised meeting sum-
marization model with multi-sentence compression
techniques. Li et al. (2019) introduce multi-modal
information into meeting summarization with a hi-
erarchical attention mechanism. Zhu et al. (2020)
propose a hierarchical meeting summarizer that
can process both word-level and turn-level infor-
mation of dialogues. Furthermore, the community
noted that due to the lengthy content and distributed
information, a general summary of the meetings
does not necessarily satisfy what users seek. Thus,
Query-based summarization methods have become
more prevailing for generating concise and spe-
cific summaries. (Litvak and Vanetik, 2017; Nema
et al., 2017; Baumel et al., 2018; Ishigaki et al.,
2020; Kulkarni et al., 2020, 2021; Pasunuru et al.,
2021). Recently, Zhong et al. (2021) proposed
a new framework of query-based summarization
for meetings, in which they annotate QMSUM, a
query-based multi-domain meeting dataset. Each
QMSUM meetings come along with a set of queries
with different levels of abstractness, i.e., general
queries and specific queries. Human annotators
write these queries, and the summaries align with
these queries after reading the meeting transcripts.

While query-based summarization can be a
proper path to provide users with meeting infor-
mation at different specificity levels, we argue that

issuing such specific queries still requires a cer-
tain degree of background knowledge. In real-
life scenarios, users might not be equipped with
that knowledge and issue informative queries, espe-
cially when they did not attend the meeting. Hence,
they can not benefit from query-based summariza-
tion techniques to explore the meetings. We ad-
dress the drawbacks of query-based summarizers
by providing users with an interactive questionnaire
which provides them with potential queries and al-
lows them to explore the meetings more flexibly.

2.2 Evaluation of Summaries Factuality

The summaries often has called out for hallucina-
tion issues (Maynez et al., 2020). Thus, Wang et al.
(2020) propose a framework to evaluate factual
consistency of summaries with the source text Sim-
ilarly, Deutsch et al. (2020) propose a Question An-
swering (QA)-based evaluation approach on sum-
maries’ content quality. They measure how much
information is contained in a candidate summary
by calculating the proportion of questions it can an-
swer. These approaches inspired us for automated
end-to-end evaluations of the questionnaires.

2.3 Question Generation and Filtering

Initial works in Question Generation task leveraged
crowd-sourcing or rule-based methods to generate
pre-defined question templates (Mostow and Chen,
2009; Rus et al., 2010; Lindberg et al., 2013; Fab-
bri et al., 2020; Mazidi and Nielsen, 2014; Lab-
utov et al., 2015). Heilman and Smith (2010)
tackled this problem by over-generating candidate
questions and then using a learning to rank frame-
work to rank them to filter the low-quality ques-
tions.SQUASH (Krishna and Iyyer, 2019) is one
of the recent works in which authors used question
generation methods to convert a document into a
hierarchy of question-answer pairs with the focus
on questions’ granularity level. They employed
a neural encoder-decoder model trained on three
reading comprehension data sets, i.e., SQuAD (Ra-
jpurkar et al., 2016), QuAC (Choi et al., 2018), and
CoQ (Reddy et al., 2019) to generate the questions,
and further, they filtered out the unanswerable
questions using some heuristics and question an-
swering models. While question generation using
question answering data sets seems a general ap-
proach, this method does not work well on meeting-
related questions generated due to many reasons,
including: (1) Different structure of meetings com-
pared to documents; (2) There are not many ques-
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tion-answering datasets available from meetings;
(3) Sometimes, the answer to questions generated
from meetings could be very long, making it hard
to fit the context in neural models. In our work, we
introduce an automatic method that can generate
questions regarding the meeting to overcome the
high price of collecting with annotators.

2.4 Questionnaire Organization

Obtaining users preferences has always shown to
be a challenging task (Jiang et al., 2008; Rokach
and Kisilevich, 2012; Anava et al., 2015; Chris-
takopoulou et al., 2016; Sepliarskaia et al., 2018).
The task becomes more challenging when we aim
to minimize the number of interactions with users
to get to know their preferences. Sepliarskaia
et al. (2018) reformulate this task as an optimiza-
tion problem. They propose a static questionnaire
by choosing a minimal and diverse set of ques-
tions. Similarly, in Liu et al. (2019) proposed a dy-
namic questionnaire generation method for search
of clinical trials. Quiz-style question generation
has also been explored recently by Lelkes et al.
(2021). The authors have formulated the problem
as two sequence to sequence tasks, including the
question-answer generation step and incorrect an-
swer generation step. We argue that while the for-
mer step seems relevant to our work, it could not
be adapted to meeting transcripts since their pro-
posed dataset has been trained on factual question
answering data sets and cannot be used for meeting
purposes. All in all, we can conclude that creat-
ing questionnaires are still under exploration in
different domain. Hence, our effort in organizing
a questionnaire, especially for meetings, is timely
and useful for future research.

3 Proposed Framework: PREME

This section explains PREME, our proposed novel
methodology to explore meetings based on users’
preferences through an interactive questionnaire.
An overview of our methodology is shown in
Fig. 2 in which we first apply a topic segmenta-
tion method (Solbiati et al., 2021) on meeting
transcript to retrieve segments with different topics
(Section 3.1). Then, we generate a set of all pos-
sible questions from each segment (Section 3.2).
Further, we extract the most informative part of
the questions, i.e., the subject and aspect of each
question (Section 3.3). In the last step, we map
the normalized subjects and aspects with generated
questions and form the questionnaire (Section 3.4).

3.1 Meeting Segmentation

A meeting transcript can be extremely long and
contain discussions of various topics.Therefore, our
goal is to divide the meeting text into a sequence
of topically coherent chunks. Thus, we adopted an
unsupervised topic segmentation method based on
the contextualized presentation of meeting (Solbiati
et al., 2021). In this topic segmentation method,
the authors compute the BERT embeddings for ev-
ery utterance of the meeting transcript. Further,
they curated blocks of utterances and performed a
block-wise max-pooling operation to generate con-
textualized embedding for each block. Then, the
semantic similarity between two adjacent blocks is
captured, and a change in the topic is detected if
two adjacent blocks show similarity below a certain
threshold. This approach has several advantages,
including: (1) It is unsupervised; (2) Since we are
just converting the meeting into smaller pieces, and
we are not losing any part of the meeting.

3.2 Question Generation

For question generation from a segment, we lever-
aged the powerful GPT-3 model (Brown et al.,
2020).An impressive capability of the GPT-3 is
to generate very realistic results from few train-
ing samples or even no training sample (few-shot
and zero-shot learning). The variety of the gen-
erated content can be controlled using a tempera-
ture hyper-parameter. To expand the size of gener-
ated questions’ pool as much as possible, in each
segment, the API is called in a zero shot learning
model with different temperature values between
[0-1] with a 0.05 margin, where the value closer
to 1 means more diversified questions. We set the
maximum output length to 128 tokens and then we
repeat the process for 10 trials for each specific
temperature. Given that the maximum context win-
dow for the API was 2048 tokens, we truncate and
slide by half-a-window size of 2048 tokens when-
ever a segment includes more than 2048 tokens.
As a results, A list of questions is extracted based
on random initialization in each API call, meaning
different results are achieved even with the same
hyper-parameters. We extracted five questions on
average per segment in each call. Finally, a union
across all runs is used to form our question pool.

3.3 Subject and Aspect Extraction

Every of the generated questions has one or more
subject(s) that is defined as the principal matter
that attendees have discussed, i.e., the main con-
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Table 1: Examples of annotated questions with their
subjects and aspects . Subjects are highlighted in red

and Aspects are highlighted in green.
Q1 What is the arrow symbol on the remote control for?

Q2 What are the main frustrations people have with the

remote control ?

Q3 How will the logo and color scheme be incorporated

into the product ?

Q4 What are pros and cons of having a

remote with a large number of buttons ?

Q5 What is the most difficult part of the project

from the industrial engineer’s point of view ?

cern of the questions. Some questions might point
to a specific aspect(s) of the subject which is de-
fined as the mentioned details about a given subject.
We aim to extract the primary subjects from any
question and the detailed aspect if it is mentioned.
Table 1 shows examples of annotated subjects and
aspects for a few questions. For instance, in the
question “What is the arrow symbol on the remote
control for?", “remote control" is annotated as the
subject and the “arrow symbol" is the specific as-
pect of the subject. To extract the subjects and
aspects from the questions, we use CRF (Wallach,
2004). We examined SOTA keyword extraction
and contextualized neural embedding-based topic
extraction models; however, the CRF model which
uses word’s identity, suffix, shape and POS tags
as features, seems to work the best among them.
To train the CRF model, we were required to have
annotated questions with subjects and aspects la-
bels. We designed an annotation study using the
UHRS1 crowd-sourcing platform, where we care-
fully trained annotators with detailed instructions
to label randomly selected 1000 questions gener-
ated by GPT3 with their subject and aspects2. Each
question has been assigned to two annotators, and
we report the annotators’ agreement in Section 4.
Further, we employ the trained CRF model to ex-
tract subjects and aspects from the questions.

3.4 Questionnaire Generation

Given a meeting transcript, for each of its segment
T which was initially supposed to coherently point
out one subject, we generate QT , a set of gener-
ated questions from T . In other words, given an
ideal meeting segmentation method, each segment

1https://prod.uhrs.playmsn.com/uhrs/
2We invested in having a few well-trained annotators rather

than having a high number of annotators who have not been
trained well. Thus, annotators were paid hourly and by the
quality of their work and they had no intentions for cheating.

is supposed to be pointed to one subject. Thus,
we assume that each segment has only one valid
topic and as shown in Figure 2, each segment is
being represented with one Snorm. We create a set
SQT

by extracting the subjects from each question
in QT . Therefore, for the segment T , we have at
least |QT | number of subjects. Extracted subjects
from a question set with the same origin segment
must be normalized so that one comprehensive,
general, and informative subject presents a seg-
ment. The more the selected subject representative
covers other concepts in SQT

, the better normal-
ization we employed. This subject normalization
reduces the number of subjects shown to the user at
the first step of the questionnaire and will decrease
the user’s effort, causing figuring out users’ pref-
erences by asking them the minimum number of
questions. In other words, our goal is to select a
single subject Snorm from SQT

which represents
SQT

in the most informative way. To do so, we
define the notion of the subject network as follows.

Definition 3.1. Given a segment T , a set of
generated questions QT , and extracted subjects
SQT

, a subject-network for G(SQT
) is denoted

as G(SQT
) = (V, E, w). It is a weighted undi-

rected graph, where V = {si ∈ SQT
}, and

E = {esi , esj : ∀si, sj ∈ V}. The function
w : E → [0, 1] is the cosine similarity between
the semantic relatedness of the contextualized em-
bedding vectors of two incident subjects of an edge
esi,sj , i.e., vsi and vsj .

In Def. 3.1, we propose a subject-network where
subjects are connected, and edge weights repre-
sent the semantic similarity between the two sub-
jects.We hypothesize that the node with highest
similarity and connection to others is the most cen-
tral one. In other words, since it has great simi-
larity to other subjects, there is a high probability
that it points to a more generic concept and that
covers the other subjects. Hence, the node Snorm

should have high centrality attribute to represent the
main subject of segment S. We employed PageR-
ank (Haveliwala, 2003) value to find the most im-
portant and informative node in this network. Sim-
ilarly, PageRank has shown to have a high correla-
tion with the most important nodes and has been
used in tackling different tasks such as quantifying
term’s specificity or ranking problems in different
information retrieval tasks (Arabzadeh et al., 2020,
2019; Kurland and Lee, 2010). We measure the
PageRank score of each node and select the node
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Figure 3: An example of how extracted subjects and aspects from a given segment are normalized.

Figure 4: An example of subject-network built for one
extracted segments from (Janin et al., 2003). The edge
weights represent the semantic similarity between each
nodes. Higher weights are shown with higher width.

with the highest PageRank value as the representa-
tive subject Snorm of the subject set SQT

for seg-
ment T . In other words, we represent each segment
T by subject Snorm where PageRank(Snorm) >
PageRank (si) for every si ∈ V.

Fig. 4 displays a subject-network generated from
extracted subjects from one of the meetings’ seg-
ments in the QMSUM dataset. subjects such as
“Education", “Schools," “Young people who are
leaving school" are included in this subject set and
represented by nodes in this subject-network. Fur-
ther, we connect every pair of nodes in this graph,
and the edge weight is directly related to their se-
mantic similarity. As presented in Fig. 4, some
nodes have higher edge weights which their con-
nected lines are shown with greater width. We
measure page rank in this weighted network. Here
“Education" got the highest PageRank value in this
subject-network. Hence, we present these subjects
by one subject, i.e., “Education". “Education" can
be a promising representative for these subjects as
it covers more specific concepts such as “schools",
“statutory education," and “post 12 education."

Next, the extracted aspects from each question
set should be mapped to their representative subject.
We remove the redundant and repetitive aspects
and subjects by removing those who have highly
similar n-grams. Plus, There might be several sub-
jects existing in SQT

which all point out to Snorm,
and they might be semantically very similar. In
this step, we must be concerned not to lose any
aspect because of subject normalization. We aim to

Table 2: Annotators agreement on annotated questions
with respect to subjects and aspects using Kripendorff’s
score (Krippendorff, 2011)

Subject Aspect
Hard [Exact Match] 0.459 0.415
Soft [At least one term matched] 0.490 0.485

map every aspect from Snorm and every si in SQT

which is highly similar to Snorm to maximize the
potential of questions we might want to show at
the end of the questionnaire. For instance, in Fig 3
we display a few extracted subjects and aspects
from one segment. If we only consider “education"
and its related aspect, we will lose many aspects
that users might be interested in, and as a result,
the questionnaire coverage will drop. On the other
hand, if we merge the highly similar representative
subjects with, e.g., “school setting" and “Educa-
tion and Skills Committee," we will have a broader
host of questions to suggest to users. Therefore,
we will filter out dissimilar subjects from SQT

to
Snorm and map extracted aspects from filtered SQT

to Snorm as it is shown in Fig. 3. As a result, if
“education" is the subject of interest for a user, they
have the opportunity to select which aspects of edu-
cation they are more interested in, such as "Role" of
education or “challenges" of education. Finally, we
will show users the questions in which the selected
aspects and normalized subjects have appeared.

4 Evaluation Methodology

For experiments, we use the QMSUM
dataset (Zhong et al., 2021), which includes
232 product, academic, and committee meetings
(Janin et al., 2003; Carletta et al., 2005). Each
meeting comes with a set of general and specific
questions; the general ones are out of the scope of
this work since they refer to very broad concepts,
e.g., “summarize the whole meeting.". Further
evaluations are conducted on the QMSUM test set.

4.1 Evaluating Framework Components
The proposed framework consists of several steps
(Fig. 2). The used meeting segmentation (Solbiati
et al., 2021) method has shown to outperform base-
lines (Hearst, 1997; Beeferman et al., 1999; Bad-
jatiya et al., 2018). Hence, we refer to original
paper for evaluation results.
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Figure 5: Coverage of PREMEon QMSUM test set considering different similarity metrics and threshold

Table 3: CRF performance on extracting subjects and
aspects of questions using 10-fold cross validation

Precision Recall F1-Score
Subject 0.64 0.69 0.67
Aspect 0.89 0.80 0.84
N/A 0.63 0.73 0.68

Evaluating Question Generation: We evalu-
ate the quality of our generated questions by mea-
suring the fraction of generated questions by hu-
man annotators in QMSUM that we covered in
PREME. We assume the specific queries in the
QMSUM dataset enjoy relatively high quality be-
cause annotators issued them after comprehen-
sively reading the transcript (gold standard ques-
tions). Hence, Fig. 5 reports the similarity between
most similar questions generated by PREME and
the gold questions by three different similarity met-
rics i.e., Sentence-BERT similarity (Reimers and
Gurevych, 2019), Rouge F-1 score (Lin, 2004),
and BLEU-4 score (Papineni et al., 2002). We
assume a questions from QMSUM is covered if
there is at least a question generated by PREME
that has similarity is higher than a certain threshold
t ∈ [1, 0.9, ..., 0.1, 0]. We report the percentage
of ‘Covered/Not Covered’ questions based on dif-
ferent similarity matching thresholds. Based on
Fig. 5 we conclude while we cover a relatively fair
number of specific questions, there is still room
for improvement. However, we should note that
the questions in QMSUM are very limited, and ini-
tially, they were not supposed to cover all possible
questions that one could raise from the meeting.
Additionally, we observe that questions in QM-
SUM, which are issued by humans, include more
abstractive questions while our generated questions
inclined toward more factual ones.

Evaluating Subject and Aspect Extraction:
To assess the quality of the collected dataset, we
measure Krippendorff’s alpha agreement between
annotators (Krippendorff, 2011) for extracted sub-
ject and aspect of the 1000 questions generated
from the training set. Tab. 2 shows annotators have

agreement ∼ 0.4, which is interpreted as “Moder-
ate” agreement for such a challenging task. Since
different annotators might selected different section
of the text, Tab. 2 reports both hard and soft agree-
ments. we trained the CRF model using crfsuite
library and evaluated it by 10-fold cross-validation.
Given each term in the questions, the model pre-
dicts whether the term is considered the subject,
aspect, or not applicable for labeling (N/A). Tab. 3
shows the result of the CRF model evaluation in
terms of precision, recall, and F1 scores. We no-
tice that the model shows better performance on
detecting aspects compared to the subject.

4.2 Evaluating Questionnaires

To the best of our knowledge, we are first to pro-
pose a preference-based questionnaire as a way for
meeting exploration; thus, no particular gold stan-
dard benchmark or evaluation metrics. Since we
require users to express their preference, it makes
it challenging to simulate ‘enough imaginative con-
text’ among annotators. Thus, we conducted a user
study to highlight the usefulness of exploring meet-
ings through an interactive questionnaire. We pro-
vided 20 participants who were professional work-
ers and graduate students aged between 24-41 with
detailed explanations and examples of results gen-
erated by PREME such as in Figure 1. Participants
on average had over 5 hours of online meetings per
week. Among which, over 80% of them reported
that they need to explore the content of a past meet-
ing, at least a couple of times a week. Finally, over
80% of participants agreed on finding PREME use-
ful for meetings exploration. Also, we introduce
a new evaluation strategy that satisfies the desired
properties on coverage (P1) and the existence of
answers in the transcript (P2). The proposed au-
tomatic metrics capture if our framework is ready
to be tested through a more comprehensive user
study in the future, when we can run a pair-wise
preference-based comparison between PREME and
other meeting exploration methods.
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Table 4: Test set statistics and PREME Performance:
Average number of generated questions and Coverage.

#Meetings Average #
Turns

Average #
Questions Coverage (%)

Academic 9 893 1257 83.07%
Committee 6 214 1105 64.04%
Product 20 569 724 86.25%
All 35 591 927 81.62%

Automatic evaluation: We utilize the model
SOTA called Locator in (Zhong et al., 2021) in
which, given the query, it can extract the relevant
spans from the meeting. The Locator employs a
hierarchical ranking-based model structure based
on CNN (Kim, 2014) and Transformers (Vaswani
et al., 2017) architecture. The Locator embeds each
utterance of the meeting and feeds it to a CNN
network by capturing the local features, and utilize
Transformer layers to obtain contextualized turn-
level representations. In addition, the speaker’s
embedding is also concatenated to the features list.
Finally, the model uses MLP to score each turn,
and the turns with the highest scores are considered
the relevant spans for each question.

To measure the coverage (to satisfy P1), we
adopt the newly proposed QA-style of evalua-
tion (Deutsch et al., 2020; Wang et al., 2020) which
has shown to have substantial correlation with hu-
man judgments in terms of questions quality as-
sessments. Coverage is defined as the fraction of
a meeting that a questionnaire encompasses. To
measure the coverage, first, the relevant answer
spans for the existing questions in a questionnaire
are located. Further, the proportion of utterances
that were already located as relevance answer spans
w.r.t. the whole meeting transcripts, is measured as
the coverage. We believe that that is a promising
indicator of questionnaire informativeness. The
coverage is basically how much of the original
meeting was covered by the questionnaire. We
hypothesize that a good questionnaire should ide-
ally include questions from all parts of a meeting.
i.e., the questionnaire includes questions related
to every part of the meeting so that users are able
to explore their section of interest from the meet-
ing. Therefore, the more the questionnaire covers
the meeting, the better it is. To do so, we find
the answer spans to the generated question in each
questionnaire and we report the percentage of utter-
ances that the locator detected as the answer span
for all the questions in the questionnaire from the
whole meeting. We run our experiments on the
QMSUM test set. Tab. 4 shows the details of this
test set. We over generate the questions and after

Figure 6: Histogram of Confidence Scores of Question-
Answering model on generated questions from PREME.

removing the duplicates, on average, the question-
naire has 1257 unique questions from Academic
meetings, 1105 questions from Committee meet-
ings, and 724 questions from Product meetings.
Further, Tab. 4 reports the percentage of utterances
covered in each meeting. On average, our pro-
posed questionnaire can cover 81% of the meet-
ing. We also compared the coverage on different
types of meetings. While our generated question-
naire covered Committee meetings the least (64%),
the Product and Academic meetings show higher
coverage (over 80%). Further, we evaluate how
much the generated questions in PREME are an-
swerable (to satisfy P2). Inspired by (Krishna and
Iyyer, 2019), we run a pretrained QA model (Sanh
et al., 2019) over generated questions and report
the confidence score for each QA pair in Fig. 6. We
use DistilBERT fine-tuned on SQUAD (Rajpurkar
et al., 2016) dataset. We observe that more than
73% of generated questions from PREME on meet-
ings in test set of QMSUM shows confidence score
higher than 0.5 and more than 42% of questions
shows confidence score greater than 0.7. The re-
sults confirm that a promising portion of generated
questions are answerable.

5 Conclusions and Future Work
We proposed an end-to-end framework, called
PREME, that allows automatically building a ques-
tionnaire that will enable users to explore the most
of discussed subjects and their aspects if desired.
As a result, users are supplied with questions about
the meetings that express their information needs,
and answers can be found in the transcript. Since
simulating actual users’ preferences is challenging
and requires hired annotators, we have ran a small
user study as well running an automatic end-to-end
evaluation strategy to demonstrate the desired prop-
erties (P1 and P2) of the generated questionnaires.
We publicly release the collected dataset of anno-
tated questions concerning its subjects and aspects,
the code for questionnaires generation, and our
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evaluation procedure to carry forward the proposed
state-of-the-art for the newly formulated problem.
In future, and by proposing a new method for ques-
tionnaire generation will allow us to run a user
study for pair-wise comparison of the methods and
reveal the correlation between human and auto-
matic evaluation metrics for the suggested task.

6 Limitations

Generally, there is not much data available for meet-
ing exploration. Thus, all studies on this domain
are limited by small training and exploratory data.
Therefore, it would be beneficial for the commu-
nity to collect more labelled meeting data for meet-
ing exploration and organization purposes. Since
PREME is made of different SOTA components,
its performance is also limited by individual com-
ponents. In future, novel attempts can be made to
address this problem as an end-to-end framework.
In addition, the future works should include an ex-
tensive human evaluation that will reveal additional
requirements for the PREME to satisfy, which will
suggest additional evaluation metrics. Plus, since
this the first work on to tackle meeting exploration
via questionnaire, the preference-based evaluation
is not possible.
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Abstract

The sentence is a fundamental unit in many
NLP applications. Sentence segmentation is
widely used as the first preprocessing task,
where an input text is split into consecutive
sentences considering the end of the sentence
(EOS) as their boundaries. This task formula-
tion relies on a strong assumption that the input
text consists only of sentences, or what we call
the sentential units (SUs). However, real-world
texts often contain non-sentential units (NSUs)
such as metadata, sentence fragments, nonlin-
guistic markers, etc. which are unreasonable
or undesirable to be treated as a part of an SU.
To tackle this issue, we formulate a novel task
of sentence identification, where the goal is to
identify SUs while excluding NSUs in a given
text. To conduct sentence identification, we
propose a simple yet effective method which
combines the beginning of the sentence (BOS)
and EOS labels to determine the most probable
SUs and NSUs based on dynamic program-
ming. To evaluate this task, we design an auto-
matic, language-independent procedure to con-
vert the Universal Dependencies corpora into
sentence identification benchmarks. Finally,
our experiments on the sentence identification
task demonstrate that our proposed method gen-
erally outperforms sentence segmentation base-
lines which only utilize EOS labels.

1 Introduction

The sentence, which we refer to as the sentential
unit (SU), is a fundamental unit of processing in
many NLP applications including syntactic pars-
ing (Dozat and Manning, 2017), semantic parsing
(Dozat and Manning, 2018), and machine transla-
tion (Liu et al., 2020). Existing works mostly rely
on sentence segmentation (a.k.a. sentence bound-
ary detection) as the first preprocessing task, where
we predict the end of the sentence (EOS) to split a
text into consecutive SUs (Kiss and Strunk, 2006;
Gillick, 2009). This approach relies on a strong

assumption that the text only consists of SUs; how-
ever, real-world texts like web contents often con-
tain non-sentential units (NSUs) such as the meta-
data of attachments embedded in the email body,
repetition of symbols for separating texts, irregular
series of nouns, etc. (just to name a few). Such
NSUs may cause detrimental or unexpected results
in the downstream tasks if considered as parts of
the SUs and are more desirable to be distinguished
from SUs in the first preprocessing step.

To tackle this problem, we formulate a novel
task of sentence identification, where the goal is
to identify SUs while excluding NSUs in a given
text (§3). This can be regarded as an SU span ex-
traction task, where each SU span is represented
by the beginning of the sentence (BOS) and the
EOS labels.1 We illustrate the difference between
sentence segmentation and sentence identification
in Table 1. In sentence segmentation, the text frag-
ment of an embedded file (“- TEXT.htm << File:
TEXT.htm >>”) needs to be considered as a part
of an SU. In contrast, sentence identification can
regard it as an NSU and exclude it for downstream
applications such as dependency parsing.

To conduct sentence identification, we propose
a simple method which effectively combines the
BOS and EOS probabilities to determine both SUs
and NSUs (§4). To be specific, we first train
the BOS and EOS labeling models based on ei-
ther the sentence identification dataset (with SUs
and NSUs) or sentence segmentation dataset (only
SUs). Then, we search for the most probable spans
of SUs and NSUs using a simple dynamic program-
ming framework. Theoretically, our method can be
considered as a natural generalization of existing
sentence segmentation algorithms.

To evaluate this task, we design an automatic pro-

1For simplicity, we assume that the input text can be seg-
mented into consecutive, non-overlapping units of SUs and
NSUs. This way, we can also represent and evaluate SU
extraction as an equivalent BIO labeling task (§5-§7).
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Input Text Thank you. - TEXT.htm << File: TEXT.htm >> I was thinking of converting it to a hover
(from EWT) vehicle. I might just sell the car and get you to drive me around all winter.

E

Sentence Thank you. - TEXT.htm << File: TEXT.htm >> I was thinking of converting it to a hover

Segmentation E E

vehicle. I might just sell the car and get you to drive me around all winter.

B E B

Sentence Thank you. - TEXT.htm << File: TEXT.htm >> I was thinking of converting it to a hover

Identification E B E

vehicle. I might just sell the car and get you to drive me around all winter.

Table 1: Illustration of sentence segmentation and sentence identification. In sentence segmentation, EOS labels
(E) are used to segment the input text into consecutive SUs (in blue). In sentence identification, only the spans
bracketed by the BOS (B) and EOS labels are extracted as SUs, while the rest can be excluded as NSUs.

cedure to convert the Universal Dependencies (UD)
corpora (de Marneffe et al., 2021) into sentence
identification benchmarks (§5). To be specific, (i)
we use the original sentence boundaries in UD as
the unit (SU and NSU) boundaries and (ii) classify
each unit as an SU iff it contains at least one clausal
predicate with a core/non-core argument. Impor-
tantly, our classification rule follows the definition
of lexical sentence in linguistics (Nunberg, 1990),
is easily customizable with language-independent
rules, and makes reasonable classification within
the scope of our experiments.

To conduct our experiments, we focus on the
English Web Treebank (Silveira et al., 2014) as the
primary benchmark for sentence identification and
train the BOS/EOS labeling models by finetuning
RoBERTa (Liu et al., 2019) (§6). We also propose
techniques to develop these models using a stan-
dard sentence segmentation dataset, i.e. the Wall
Street Journal corpus (Marcus et al., 1993), which
only contains clean, edited SUs without any NSUs.

Based on our experimental results, we demon-
strate that our proposed method generally outper-
forms sentence segmentation baselines which only
utilize EOS labels (§7). These results highlight
the importance of combining the BOS labels in
addition to the EOS labels for accurate sentence
identification under various conditions.

2 Background

Sentence segmentation, a.k.a. sentence boundary
detection, is the task of segmenting an input text
into the unit of sentences. Despite the long his-
tory of study (Riley, 1989) and its importance in
the entire NLP pipeline (Walker et al., 2001), this
area has received relatively little attention. For
one reason, the task has been recognized as “long

solved” (Read et al., 2012) with the most recent
approach reporting 99.8% F1 score on the standard
English Wall Street Journal (WSJ) dataset (Wicks
and Post, 2021). Their state-of-the-art method ER-
SATZ combines (i) a regular-expression based de-
tector of candidate sentence boundaries, followed
by (ii) a Transformer-based (Vaswani et al., 2017)
binary classifier which predicts whether the can-
didate boundary is EOS based on the local con-
text, i.e. surrounding few words. This modern
context-based approach has been shown to outper-
form competitive, widely used baselines such as
SPLITTA (Gillick, 2009), PUNKT (Kiss and Strunk,
2006), and MOSES (Koehn et al., 2007).

However, two important aspects are not fully ad-
dressed in the current literature. First is the cover-
age of diverse domains, genres, and writing styles.
Existing works (including Wicks and Post, 2021)
focus on formal/edited text and assume the exis-
tence of sentence ending punctuations (e.g. full
stops) at the sentence boundaries. However, social
media texts often lack such punctuations and con-
tain various types of non-linguistic noise, which
can lead to a substantial degradation in the seg-
mentation performance (Read et al., 2012; Rudra-
pal et al., 2015). Speech transcription texts also
usually contain disfluent, ungrammatical, or frag-
mented structures and lack both punctuations and
casing (Wang et al., 2019; Rehbein et al., 2020).
Considering the amount of such informal or non-
standard texts in the real world, it is compelling
to expand the capability of sentence segmentation
beyond formal, standardized text.

The second aspect is the coverage of multiple
languages. Different languages involve different
complexities in sentence segmentation, e.g. Chi-
nese requires the disambiguation of commas as the
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sentence ending punctuation (Xue and Yang, 2011)
and Thai does not mark EOS with any type of punc-
tations (Aroonmanakun et al., 2007; Zhou et al.,
2016). To advance NLP from a multilingual per-
spective, it is crucial to develop and evaluate mod-
els in multiple languages: Wicks and Post (2021)
make an important step in this direction, proposing
a language-agnostic, unified sentence segmentation
model covering a total of 87 languages.

Based on these observations, we first propose to
extend the task of sentence segmentation to sen-
tence identification, which expands the capability
of sentence segmentation beyond formal, standard-
ized text (§3, §4). Secondly, we propose a cross-
lingual method of benchmarking sentence identifi-
cation based on the UD corpora, considering every
word or character as the candidate boundary to
cover diverse domains, genres, and languages that
lack sentence ending punctuations (§5). Finally,
we follow Wicks and Post (2021) to develop mod-
ern neural-based models that require no language-
specific engineering and can be developed for dif-
ferent languages in a unified manner (§6).

3 Task Formulation

3.1 Sentence Segmentation Task

First, we introduce a precise (re-)formulation
of the sentence segmentation task. Let W =
(w0, w1, ..., wN−1) represent the input text, where
each wi denotes a word (but can also be a sub-
word or character). We also define the text span
W [i : j] = (wi, ..., wj−1), their concatenation
W [i : j] ⊕W [j : k] = W [i : k], and SU bound-
ary indices B = (b0, b1, ..., bM ) where b0 = 0,
bM = N , and

⊕M
i=1W [bi−1 : bi] = W (i.e. the

concatenation of all SUs recovers the input text).
Next, we introduce the SU probability pSU(W [i :

j]) which corresponds to the probability of the text
span W [i :j] being an SU. Based on this probabil-
ity, the task of sentence segmentation can be for-
malized as searching for the boundaries B which
maximize the following probability:2

argmax
B

M∏

i=1

pSU(W [bi−1 :bi]) (1)

The most standard approach is to define pSU(W [i :
j]) based on a pretrained EOS labeling model, as
we describe in §4.1. However, our (re-)formulation

2M is a variable and need not be fixed during the search.

as Eq. (1) is more general and permits other defini-
tions of SU probability as well.

3.2 Sentence Identification Task

In sentence identification, we consider the input
text W can be segmented into consecutive, non-
overlapping units of SUs and NSUs. Hence, we
regard B = (b0, b1, ..., bM ) as the unit (SU and
NSU) boundaries and define the unit indicators
A = (a1, a2, ..., aM ) for each unit as follows:

ai =

{
1 if W [bi−1 :bi] is an SU
0 if W [bi−1 :bi] is an NSU

Next, we introduce the NSU probability
pNSU(W [i : j]) which corresponds to the prob-
ability of the text span W [i : j] being an NSU.
Based on pSU and pNSU , we can formalize the
task of sentence identification as searching for the
unit boundaries B and unit indicators A which
maximize the following probability:

argmax
B,A

M∏

i=1

pSU(W [bi−1 :bi])ai pNSU(W [bi−1 :bi])1−ai

(2)
Note that this strictly generalizes the sentence seg-
mentation task in Eq. (1), which is a special case
where ai = 1, ∀ai ∈ A. Based on this task formu-
lation, we discuss how we can define pSU(W [i :j])
and pNSU(W [i :j]) to derive our sentence identifi-
cation algorithm in §4.2.

4 Methods

4.1 Sentence Segmentation Method

In the most standard approach, sentence segmenta-
tion employs an EOS labeling model pEOS to define
the SU probability pSU in Eq. (1). To be specific,
let pEOS(wi|W ; θ) denote the EOS labeling model,
which computes the probability of wi being EOS
in W (θ denotes the model parameters). Typically,
it is straightforward to train this model in a super-
vised learning setup using a dataset annotated with
gold EOS boundaries (Wicks and Post, 2021). For
brevity, we use the notation pEOS(wi) as a short-
hand for pEOS(wi|W ; θ), i.e. we omit W and θ
(unless required) in the rest of this paper.

Based on the pretrained model pEOS , we can
define the SU probability as pSU(W [i : j]) =
pEOS(wj−1)

∏
i≤k<j−1(1 − pEOS(wk)), which re-

quires the last word wj−1 to be EOS and all other
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words to be non-EOS. By substituting this defini-
tion, we can decompose Eq. (1) as follows:

(1) = argmax
B

M∑

i=1

log pSU(W [bi−1 :bi])

= argmax
B

M∑

i=1

{
log pEOS(wbi−1) +

∑

bi−1≤j<bi−1
log (1− pEOS(wj))

}

= argmax
B

∑

i∈BEOS

log pEOS(wi) +
∑

i/∈BEOS

log (1− pEOS(wi))

(3)
where BEOS = {bi − 1 | i ∈ (1, 2, ...,M)} repre-
sents all the EOS indices defined by B.

This is a trivial optimization problem where we
can simply choose BEOS = {i ∈ (0, 1, ..., N −
1) | pEOS(wi) ≥ 0.5} to maximize Eq. (3). This
also shows that sentence segmentation can be con-
ducted by predicting the EOS independently for
each wi based on pEOS(wi). In contrast, sentence
identification involves a more complex optimiza-
tion problem which we solve using dynamic pro-
gramming (§4.2).

4.2 Sentence Identification Method
We extend the method of sentence segmentation
(§4.1) to conduct sentence identification. To be spe-
cific, we employ pretrained BOS and EOS labeling
models pBOS , pEOS to define the SU and NSU prob-
abilities pSU , pNSU in Eq. (2). As a first step, we
need to train the BOS and EOS labeling models:
this can be conducted in a supervised manner using
a dataset containing gold BOS and EOS labels, as
we explain in §6.1.

Based on the pretrained BOS and EOS labeling
models, we can define the SU and NSU probabili-
ties as follows:

pSU(W [i :j]) = pBOS(wi)
∏

i<k≤j−1
(1− pBOS(wk))

× pEOS(wj−1)
∏

i≤k<j−1
(1− pEOS(wk))

pNSU(W [i :j]) =
∏

i≤k≤j−1
(1− pBOS(wk)) ×

∏

i≤k≤j−1
(1− pEOS(wk))

In the SU probability pSU , the first word wi is
required to be BOS, the last word wj−1 to be EOS,
and all other words to be neither BOS nor EOS.
Note that this definition of pSU is a natural gener-
alization from §4.1 which only relies on the EOS
probability pEOS .

In contrast, the NSU probability pNSU requires
all words to be neither BOS nor EOS. Notably, this
definition does not distinguish contiguous NSUs in
the sense that pNSU(W [i :k]) = pNSU(W [i : j])×
pNSU(W [j :k]) if W [i : j]⊕W [j :k] = W [i :k].

This is convenient as we are only interested in the
extraction of SUs and do not need to seek the exact
boundaries between consecutive NSUs.

By substituting these definitions of pSU and pNSU ,
we can decompose Eq. (2) as follows:

(2) = argmax
B,A

M∑

i=1

{
ai log pSU(W [bi−1 :bi])

+ (1− ai) log pNSU(W [bi−1 :bi])
}

= argmax
B,A

∑

i∈BA
BOS

log pBOS(wi) +
∑

i/∈BA
BOS

log (1− pBOS(wi))

+
∑

i∈BA
EOS

log pEOS(wi) +
∑

i/∈BA
EOS

log (1− pEOS(wi))

(4)
where BA

BOS = {bi−1 | i ∈ (1, 2, ...,M), ai = 1}
denotes the BOS indices and BA

EOS = {bi − 1 | i∈
(1, 2, ...,M), ai = 1} denotes the EOS indices,
both defined by B and A.

Therefore, our goal is to choose BA
BOS and BA

EOS

which maximize Eq. (4). To this end, we need
to consider the restrictions that (i) the first label
should be BOS, (ii) the last label should be EOS,
and (iii) BOS and EOS labels need to appear alter-
nately. These restrictions can be incorporated in
our dynamic programming framework to find the
argmax of Eq. (4). For the precise algorithm, we
refer the readers to Appendix A.

5 Evaluation

Due to the novelty of the task, currently there exists
no benchmark for evaluating sentence identifica-
tion. To address this issue, we propose a fully
automatic procedure to convert the Universal De-
pendencies (UD) corpora (de Marneffe et al., 2021)
into sentence identification benchmarks.

Concretely speaking, we conduct the following
two steps based on the gold UD annotation: (i) the
detection of unit (SU and NSU) boundaries and (ii)
the classification of each unit into SU or NSU. As
for (i), we simply use the original sentence bound-
aries in the UD annotation, where UD uses the term
sentence in a broader sense including both SUs and
NSUs (e.g. sentence fragments). Note that the ex-
act boundaries between consecutive NSUs (which
we call NSU–NSU boundaries) do not need to be
accurate or consistent, since we are only interested
in extracting the spans of SUs. However, we do
expect that the original boundaries are generally
reliable in all other cases (SU–SU and SU–NSU
boundaries), which seems to be the case.

The main problem is (ii), i.e. how to classify
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Table 2: Examples of gold NSUs in the English Web
Treebank (EWT) identified based on our procedure.
Each line corresponds to one example of NSU.

each unit as an SU or NSU. To this end, we fol-
low the notion of lexical sentence in linguistics
(Nunberg, 1990) which defines an SU based on the
dependencies among the lexical items, e.g. a group
of words that contain a subject and predicate. In
this work, we build upon the UD dependency re-
lations and define an SU as a unit that contains at
least one clausal predicate with a core or non-core
argument.3 Here, a clause expresses an event or
proposition which we regard as an essential aspect
of SUs. A clausal predicate and a core argument
form the backbone of a clause, while a non-core
argument modifies it (de Marneffe et al., 2021).

Note that our current definition excludes noun
phrases appearing by themselves, since they only
consist of the nominal dependent relations. How-
ever, we can flexibly customize the definition of
SUs to include or exclude such phrases.

Due to the reliance on UD, our conversion proce-
dure can be applied to a wide variety of languages
supported in UD (currently over 100 languages).
However, as a first set of experiments, we focus on
the English Web Treebank (EWT) (Silveira et al.,
2014) as the primary benchmark of sentence identi-
fication. This dataset comprises five genres of web
media texts: namely weblogs, newsgroup threads,
emails, product reviews, and Q&A websites. Con-
sequently, the dataset contains formal SUs, infor-
mal SUs (e.g. without capitalization or punctua-
tions) as well as a wide variety of NSUs.

We show some examples of NSUs in Table 2
(and more in Appendix B) identified based on our

3To check this condition, we simply need to verify whether
there is at least one core argument (e.g. nsubj, obj, ccomp) or
non-core dependent (e.g. obl, advcl, aux). For a full list of the
UD relations, see https://universaldependencies.org/u/dep/.

Train Dev Test

Total SUs 10,356 1,523 1,490
Total NSUs 2,187 478 587

Word-
Level

B-Label 10,356 1,523 1,490
I-Label 160,127 18,791 18,222

O-Label 6,939 1,302 1,822

Character-
Level

B-Label 10,356 1,523 1,490
I-Label 773,223 92,309 88,441

O-Label 47,107 9,925 13,232

Table 3: EWT dataset statistics.

procedure. As shown by the results, our procedure
can identify various NSUs including nonlinguistic
markers, timestamps, lists, contact information, etc.
We can also see that noun/prepositional phrases
are classified as NSUs based on our criteria. By
excluding such NSUs and identifying SUs, we can
clearly separate the portions of the text that are
worth sophisticated linguistic analyses, e.g. based
on dependency parsing or manual inspection.

Finally, we summarize the dataset statistics of
EWT in Table 3. Overall, 17∼28% of the units
were classified as NSUs, with the test set containing
the highest proportion of NSUs. We also regard SU
extraction as a word-level or character-level BIO
labeling task and report the number of gold BIO
labels in Table 3.4 At the word-level, we can see
that the proportion of O-labels (indicating NSUs) is
only 4∼8% and much smaller than the proportion
of NSUs in terms of units: this is because NSUs
are usually short and contain only a few words.
At the character-level, the proportion of O-labels
is slightly larger (6∼13%): this is because NSUs
often contain extraordinarily long words like URLs
and long sequences of nonlinguistic symbols.

Overall, we could verify that there exists a non-
negligible amount of NSUs in the EWT dataset,
which we aim to exclude with sentence identifica-
tion in our experiments.

6 Experimental Setup

6.1 Model Setup

As we discussed in §4.2, our sentence identification
method requires pretrained BOS and EOS labeling
models to identify SUs and NSUs. To develop
these models, we simply finetune RoBERTaBASE

4B = Beginning of SU, I = Inside of SU, and O = Outside
of SU. Details of how we assign the gold BIO labels (at the
word-level and character-level) are provided in Appendix C.
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by adding a binary BOS/EOS classifier on top of
the encoder.

To enable our models to handle various lengths
of the input texts, we concatenate the consecutive
L units of gold SUs and NSUs as the input during
training, where L is sampled from a geometric
distribution with parameter pCC .5 However, the
RoBERTa encoder has the restriction that the input
text size cannot exceed 512 subwords. Therefore, if
the input text size is too large, we replaceLwith the
maximum L′ < L which satisfies this restriction.
Note that this is a common procedure to sample
variable (instead of fixed) lengths of concatenated
units (Joshi et al., 2020).

Assuming the existence of the in-domain sen-
tence identification dataset (EWT Train/Dev), it
is straightforward to train the BOS/EOS labeling
models based on our unit concatenation procedure.
However, we may not always have the gold anno-
tation of SUs and NSUs for the target domain. To
take such cases into account, we also consider a
setup where we only have the standard sentence
segmentation dataset (WSJ Train/Dev) to train the
BOS/EOS labeling models.

When using the sentence segmentation dataset
(WSJ), we need to apply the unit concatenation
procedure using only clean, edited SUs. Unfor-
tunately, this can yield the following data priors
which do not actually hold in a sentence identifi-
cation dataset (EWT): (i) an SU (almost) always
starts with a capitalization and ends with punctua-
tion, (ii) the first word of the input is always BOS
and the last word is always EOS, and (iii) BOS
always directly follows EOS.

To address (i) and (ii), we propose a simple data
augmentation technique to alleviate the discrepancy
in the data priors. To address (iii), we propose
an ensembling technique with the unidirectional
(instead of bidirectional) models which are agnostic
to this data prior.

6.1.1 Data Augmentation (+AUG)
To address (i), we conduct a unit-level data aug-
mentation, i.e. we modify each unit based on the
following rules with a small probability pDA :

• Convert all words in the unit to lower-case,
upper-case, or title-case (e.g. “hello world”,

5With parameter pCC ∈ (0, 1], the probability mass func-
tion of the geometric distribution is p(L = l) = (1 −
pCC )l−1pCC where l ∈ {1, 2, 3, ...}. As pCC decreases,
the distribution gets more skewed towards larger L. With
pCC = 0, we consider p(L =∞) = 1.

Orig.
B E B

Joe went to school. After that he ...

(i)
Unit B E B

Aug. Joe went to school AFTER THAT HE ...

(ii)
Unit B E B

Trunc. Joe went to school AFTER THAT HE ...

Table 4: Illustration of our data augmentation technique.
In (i) unit-level augmentation, we randomly change the
casing or remove the last punctuations of each unit. In
(ii) unit truncation, we randomly truncate the first and
last units of the input (and regard them as NSUs).

“HELLO WORLD”, or “Hello World”).

• Remove sentence ending punctuations based
on a regular-expression matcher (following
ERSATZ, Wicks and Post, 2021).

After the unit-level augmentation, we can apply the
unit concatenation in the exact same manner.

Finally, to address (ii), we randomly apply a unit
truncation to the first and last units of the concate-
nated input. To be specific, we choose a random
word in the first (last) unit and remove all words
prior (posterior) to it with a small probability pTR .
If the truncation is conducted, we regard the unit as
an NSU and fix the gold BOS/EOS labels accord-
ingly. See Table 4 for an illustration.

Based on this procedure, we can expect to allevi-
ate the data priors (i) and (ii). For more details, we
refer the readers to Appendix D.

6.1.2 Unidirectional Model (+UNI)
Simply concatenating SUs (without NSUs) yields
the data prior (iii), i.e. BOS always directly fol-
lows EOS. This prior can be easily captured by the
bidirectional models pBOS(wi|W ), pEOS(wi|W )
conditioned on the whole input W , including our
RoBERTa-based models. For instance, as shown in
Figure 1, the model may predict EOS at the end of
the first unit (w2 = #) just because the next word
(w3 = This) is likely predicted as BOS.

To alleviate this issue, we propose to combine
the predictions of the unidirectional models for
BOS and EOS labeling. To be precise, let W≤i =
(w0, ..., wi) and W≥i = (wi, ..., wN−1). Then,
we can represent the unidirectional BOS model as
pUni
BOS

(wi|W≥i) (looking the context right-to-left)
and EOS model as pUni

EOS
(wi|W≤i) (looking left-to-

right). As illustrated in Figure 1, these models are
agnostic to the data prior (iii). In practice, we can
simply use different attention masks and share the
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Figure 1: Illustration of the bidirectional EOS model
(left) and the unidirectional EOS model (right).

encoder parameters (except the last classifier) for
the unidirectional and bidirectional models.

We can utilize these unidirectional models by
taking a linear intepolation with the bidirectional
models as follows:

p+Uni
BOS

(wi|W ) = λ · pUni
BOS

(wi|W≥i) + (1−λ) · pBOS(wi|W )

p+Uni
EOS

(wi|W ) = λ · pUni
EOS

(wi|W≤i) + (1−λ) · pEOS(wi|W )

Then, we can use p+Uni
BOS and p+Uni

EOS in place of
pBOS and pEOS (respectively) to conduct sentence
identification, as described in §4.2.

Finally, we compare our proposed methods
against sentence segmentation baselines which only
utilize EOS labels.6 As for the baselines, we use
the EOS labeling model developed in the same
manner to segment the input text based on EOS.
Note that we can optionally force the last word in
the input to be EOS: in this case, the result will
only contain SUs since all segments will end with
EOS. By default, we do not force the last EOS: in
this case, the segment after the last EOS (if exists)
is considered as an NSU.

As a default configuration, we use pCC = 0.5,
pDA = 0.3, pTR = 0.1, and λ = 0.5 in our ex-
periments. To ensure reproducibility, we report
more details on the hyperparameters and model
setup in Appendix D. For the precise procedure on
how we convert between the word-, character-, and
subword-level labels (for RoBERTa), we refer the
readers to Appendix C.

6.2 Evaluation Setup

In the evaluation phase, we consider three ways of
assembling the input texts on which we conduct
sentence identification. Firstly, we can apply the
same unit concatenation procedure as described in
§6.1. To be specific, we use pCC =0.5 (same as the

6This EOS-only method is the most reasonable baseline to
quantify the precise advantage from combining BOS labels in
addition to EOS, which is proposed in our methods.

training phase) and pCC =0 (which concatenates
the units up to the maximal length) to simulate both
shorter and longer lengths of the input texts.

However, this approach is relatively synthetic in
the sense that we take the gold unit boundaries for
granted. They are usually unavailable at the infer-
ence time, so we should consider a more realistic
setting for evaluating the methods without relying
on the gold unit boundaries.

To this end, we propose to evaluate sentence
identification as a postprocessing of sentence seg-
mentation. To be specific, we first apply the state-
of-the-art method ERSATZ (Wicks and Post, 2021)
on the raw text of EWT and then apply sentence
identification to each segmented text. Note that ER-
SATZ has high precision but still predicts false EOS
which can fragment a gold SU: in such cases, we
consider the fragmented SUs as NSUs and fix the
labels accordingly (just as we did in unit truncation,
cf. §6.1 and Table 4).

As for the evaluation metrics, we convert the
predictions of our methods into word/character-
level BIO labels (cf. Appendix C) and compute
the F1 score for each label prediction. Then, we
summarize the results as the macro average F1
and weighted average F1. We also compute the
F1 score of the exact SU span extraction at the
word/character-level. Finally, we run each exper-
iment (from model training to testing) five times
with different random seeds and report the average
and standard deviation as the final results.

7 Results

Table 5 summarizes the word-level evaluation re-
sults. The results for the character-level evaluation
show similar tendencies, so we put them in Ap-
pendix E. The F1 score for each BIO label predic-
tion is also available in Appendix E.

Firstly, we take a look at the results when we
have the in-domain sentence identification dataset
(EWT Train/Dev) for model development. In this
setup, we can verify that our proposed method
(BOS&EOS) significantly outperforms the base-
lines (EOS-Only) in all metrics. For instance, our
method achieves consistently high performance of
84∼89% F1 for the exact SU span extraction, both
at the word- and character-level. This is a very
promising result that demonstrates the effective-
ness of our method when we can leverage the gold
SUs and NSUs from the target domain.

Secondly, we focus on the results where we
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Train/Dev
Datasets Model

EWT Test (pCC = 0.5) EWT Test (pCC = 0) EWT Test (Postprocess)

BIO BIO
Span

BIO BIO
Span

BIO BIO
Span

Macro Weighted Macro Weighted Macro Weighted

EWT
Train/Dev

EOS-Only 83.2±1.5 93.9±0.6 72.8±1.8 59.7±0.2 86.4±0.1 58.2±1.1 86.3±2.7 94.6±1.1 81.6±2.4

EOS-Only (force last) 58.6±0.1 86.6±0.0 60.4±0.8 57.6±0.2 85.9±0.1 57.7±1.0 59.1±0.1 85.7±0.0 62.3±0.3

BOS&EOS 93.0±1.4 97.3±0.6 87.3±1.6 91.0±1.8 96.4±0.7 84.1±2.6 92.3±1.0 96.7±0.4 88.8±0.9

WSJ
Train/Dev

EOS-Only 71.7±0.7 88.9±0.4 59.2±2.4 56.9±0.6 85.2±0.3 48.2±2.5 71.5±0.3 87.8±0.3 67.8±0.3

EOS-Only (force last) 57.5±0.3 86.2±0.2 53.6±2.1 55.4±0.7 85.0±0.3 48.2±2.5 58.9±0.1 85.7±0.0 61.1±0.2

EOS-Only (+AUG) 66.4±1.5 88.3±0.4 59.5±1.4 58.3±0.5 86.1±0.3 54.4±2.5 71.1±1.3 88.5±0.6 66.2±1.9

BOS&EOS 71.5±0.2 89.1±0.2 59.1±1.5 57.7±0.9 85.4±0.2 48.8±1.6 71.0±0.3 87.9±0.2 68.4±0.3

BOS&EOS (+UNI) 70.4±0.7 88.2±0.3 60.0±1.1 63.3±0.8 86.0±0.4 53.0±1.3 70.8±0.4 87.6±0.2 68.4±0.1

BOS&EOS (+UNI +AUG) 72.5±0.4 89.5±0.1 66.6±0.2 72.4±1.3 89.1±0.5 63.7±1.0 74.3±1.1 89.6±0.4 71.9±1.4

Table 5: Overall Results (Word-Level). We report the macro/weighted average F1 of the BIO labeling task and the
F1 score of the exact SU span extraction task. Details of our experimental setup are discussed in §6.

only utilize the standard sentence segmentation
dataset (WSJ Train/Dev) for model development.
In this setup, we also report the results of applying
our data augmentation (+AUG) and unidirectional
model (+UNI) techniques from §6.1.7

Due to the data discrepancy between WSJ and
EWT, we find a natural drop in performance com-
pared to the previous setup using in-domain EWT
Train/Dev. However, we can verify that our tech-
niques (+AUG, +UNI) generally help to alleviate
this issue, and our proposed method performs on
par or slightly better than the EOS-only baselines
when applying these techniques. It is especially
worth noting the improvement in the exact SU
span extraction task (reaching 64∼72% F1), where
the advantage of our method is the most conspic-
uous and consistent in both word- and character-
level evaluation. This improvement can also be
explained by the higher performance in the B-label
prediction with our method (Appendix E), which
is a prerequisite for accurate SU span extraction.

Finally, we note that the EOS-only baseline with-
out forcing the last EOS can be quite competitive
with shorter inputs (pCC = 0.5 and postprocessing)
but performs considerably worse when the input
texts are longer (pCC = 0). This is because the
baseline can only predict the last segment of the
input as an NSU, which is less problematic when
the input texts are shorter but becomes increasingly
problematic with longer inputs (since most NSUs
will not be able to be removed). In contrast, our
proposed method performs much more robustly
under various input lengths.

Through further experiments and analyses, we

7We did not observe any improvement from applying these
techniques to the in-domain dataset (EWT Train/Dev), which
is consistent with our motivation and expectation.

found that (i) the results are stable across different
hyperparameter choices, (ii) predictions are reason-
able especially when using the in-domain dataset
(EWT Train/Dev) for model development, and (iii)
our methods do not sacrifice performance on the
formal/edited texts of the sentence segmentation
dataset (WSJ Test). These detailed evidences can
be found in Appendix F.

8 Conclusion

In this paper, we introduced a novel task of sen-
tence identification, where we aim to identify SUs
while excluding NSUs in a given text (§3). Through
sentence identification, we can clearly distinguish
the portions of the text that are appropriate (or not)
for the prediction and evaluation of sophisticated
linguistic analyses, such as dependency parsing,
semantic role labeling, etc.

To conduct sentence identification, we proposed
a simple yet effective method of combining the
BOS and EOS labeling models to determine the
SUs and NSUs (§4). To evaluate sentence iden-
tification, we designed an automatic, language-
independent procedure to convert the UD corpora
into sentence identification benchmarks (§5).

In our experiments, we developed the BOS/EOS
labeling models by finetuning pretrained RoBERTa
(§6). Based on the experimental results, we showed
that our proposed method combining the BOS and
EOS labels outperforms sentence segmentation
baselines which only utilize EOS labels in all of
the considered settings (§7). Overall, we expect
sentence identification to be a fundamental frame-
work for the preprocessing of noisy, informal, or
non-standard texts in the real world.
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Limitations

Firstly, our current experiments are limited to En-
glish and cover only five domains of web media
texts in EWT. However, our task formulation (§3),
method (§4), and evaluation framework (§5) are
fully agnostic to the language and domain. Hence
it is straightforward to conduct experiments in dif-
ferent languages or domains (as long as they are
supported in the UD). While we expect similar re-
sults with different languages/domains, we leave
further investigation as a future work.

Secondly, while our method performs reliably
when the in-domain dataset is available, there is
still a huge room left for improvement without re-
lying on such resources (e.g. only using the stan-
dard sentence segmentation dataset). To make our
method fully practical, we still need to improve on
the accuracy and robustness in such cross-domain
scenarios. One potential approach is to refine the
definitions of SU and NSU probabilities from §4.2
to make sentence identification more robust. For
instance, we can incorporate span-level scores in-
stead of only using word-level BOS/EOS probabil-
ities to define the SU/NSU probabilities. We leave
further improvement and extension of our approach
as an important future work.

Finally, our methods are currently evaluated on
the (exact) SU span extraction task. Ideally, we
should also evaluate the methods on downstream
applications such as POS tagging, syntactic pars-
ing, semantic role labeling, etc. However, we still
expect that the (exact) SU span extraction will play
a primary role in the evaluation, since accurate
(say human-level) identification of SUs/NSUs will
likely provide unprecedented benefits on a wide va-
riety of NLP applications dealing with real-world
texts. While we leave the precise analyses on down-
stream applications as future work, our contribu-
tions make the first foundational step towards ex-
panding the capability of the long-established sen-
tence segmentation task.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

351

https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://aclanthology.org/N09-2061
https://aclanthology.org/N09-2061
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.1162/coli.2006.32.4.485
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343


Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Geoffrey Nunberg. 1990. The linguistics of punctuation.
18. Center for the Study of Language (CSLI).

Jonathon Read, Rebecca Dridan, Stephan Oepen, and
Lars Jørgen Solberg. 2012. Sentence boundary de-
tection: A long solved problem? In Proceedings of
COLING 2012: Posters, pages 985–994, Mumbai,
India. The COLING 2012 Organizing Committee.

Ines Rehbein, Josef Ruppenhofer, and Thomas Schmidt.
2020. Improving sentence boundary detection for
spoken language transcripts. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 7102–7111, Marseille, France. European
Language Resources Association.

Michael D. Riley. 1989. Some applications of tree-
based modelling to speech and language. In Speech
and Natural Language: Proceedings of a Workshop
Held at Cape Cod, Massachusetts, October 15-18,
1989.

Dwijen Rudrapal, Anupam Jamatia, Kunal Chakma,
Amitava Das, and Björn Gambäck. 2015. Sentence
boundary detection for social media text. In Proceed-
ings of the 12th International Conference on Natural
Language Processing, pages 254–260, Trivandrum,
India. NLP Association of India.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor, John
Bauer, and Chris Manning. 2014. A gold standard
dependency corpus for English. In Proceedings of
the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 2897–
2904, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NeurIPS.

Daniel J. Walker, David E. Clements, Maki Darwin, and
Jan W. Amtrup. 2001. Sentence boundary detection:
a comparison of paradigms for improving MT quality.
In Proceedings of Machine Translation Summit VIII,
Santiago de Compostela, Spain.

Xiaolin Wang, Masao Utiyama, and Eiichiro Sumita.
2019. Online sentence segmentation for simultane-
ous interpretation using multi-shifted recurrent neu-
ral network. In Proceedings of Machine Translation
Summit XVII: Research Track, pages 1–11, Dublin,
Ireland. European Association for Machine Transla-
tion.

Rachel Wicks and Matt Post. 2021. A unified approach
to sentence segmentation of punctuated text in many
languages. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics

and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3995–4007, Online. Association for Computa-
tional Linguistics.

Nianwen Xue and Yaqin Yang. 2011. Chinese sentence
segmentation as comma classification. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 631–635, Portland, Oregon, USA.
Association for Computational Linguistics.

Nina Zhou, AiTi Aw, Nattadaporn Lertcheva, and Xuan-
cong Wang. 2016. A word labeling approach to Thai
sentence boundary detection and POS tagging. In
Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical
Papers, pages 319–327, Osaka, Japan. The COLING
2016 Organizing Committee.

352

https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/C12-2096
https://aclanthology.org/C12-2096
https://aclanthology.org/2020.lrec-1.878
https://aclanthology.org/2020.lrec-1.878
https://aclanthology.org/H89-2048
https://aclanthology.org/H89-2048
https://aclanthology.org/W15-5938
https://aclanthology.org/W15-5938
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1089_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1089_Paper.pdf
https://aclanthology.org/2001.mtsummit-papers.66
https://aclanthology.org/2001.mtsummit-papers.66
https://aclanthology.org/W19-6601
https://aclanthology.org/W19-6601
https://aclanthology.org/W19-6601
https://doi.org/10.18653/v1/2021.acl-long.309
https://doi.org/10.18653/v1/2021.acl-long.309
https://doi.org/10.18653/v1/2021.acl-long.309
https://aclanthology.org/P11-2111
https://aclanthology.org/P11-2111
https://aclanthology.org/C16-1031
https://aclanthology.org/C16-1031


A Dynamic Programming Algorithm

To find the maximum value (and the argmax) of
Eq. 4 from §4.2, we rely on a simple dynamic
programming framework. To be specific, we con-
sider the partial labeling of BOS and EOS up to
W≤k = (w0, ..., wk), where k ≤ N − 1. Then,
we aim to compute the maximum log probability
of Eq. 4 based on the partial labeling, i.e. using
W≤k in place of W .

Since the labeling is partial, W≤k may end in-
side the SU (i.e. the last label is BOS) or outside the
SU (i.e. the last label is EOS). Let log pIS(k+1) de-
note the maximum log probability when W≤k ends
inside the SU and log pOS(k + 1) the maximum
log probability when W≤k ends outside the SU.
Then, we can initialize log pIS(0) = log 0 = −∞,
log pOS(0) = log 1 = 0 (since we always start out-
side the SU) and iteratively update the two values
as follows:

log p′
IS
(i) = max { log pIS(i) + log (1−pBOS(wi)),

log pOS(i) + log pBOS(wi) }
log p′

OS
(i) = log pOS(i) + log (1−pBOS(wi))

log pIS(i+1) = log p′
IS
(i) + log (1−pEOS(wi))

log pOS(i+1) = max { log p′
IS
(i) + log pEOS(wi),

log p′
OS
(i) + log (1−pEOS(wi)) }

(5)
Note that we first update pIS(i) → p′

IS
(i) and

pOS(i) → p′
OS
(i) based on the BOS probability

pBOS(wi). Then, we update p′
IS
(i)→pIS(i+1) and

p′
OS
(i)→pOS(i+1) based on the EOS probability

pEOS(wi).
8 The iterative procedure is illustrated in

Figure 2.
Finally, we can compute the log probability

log pOS(N) (since we always end outside the SU),
which corresponds to the maximum value of Eq. 4.
To obtain the argmax, we can simply incorporate
backtracking during the iterative updates of Eq. 5.
Through this dynamic programming framework,
we can ensure that the restrictions from §4.2 are
satisfied: namely, (i) the first label should be BOS,
(ii) the last label should be EOS, and (iii) BOS and
EOS labels need to appear alternately.

In practice, we can limit the candidates of BOS
indices to the subset where pBOS(wi) is higher
than a certain threshold c. This can be efficiently
implemented by simply skipping the updates of
p′
IS
(i) and p′

OS
(i), i.e. using p′

IS
(i) = pIS(i) and

p′
OS
(i) = pOS(i), if pBOS(wi) < c.9 Likewise, we

8Note that if a single word wi is labeled as both BOS and
EOS at the same time, we can extract it as a single SU.

9This is equivalent to forcingwi to be non-BOS, i.e. setting

can limit the candidates of EOS indices by skip-
ping the updates of pIS(i+1) and pOS(i+1) if
pEOS(wi) < c. Generally speaking, this leads to
a more efficient algorithm: therefore, we use the
candidate threshold of c = 0.1 for restricting both
BOS and EOS indices throughout our experiments.

B SU and NSU Examples

In Table 6, we provide more examples of SUs and
NSUs identified based on our procedure described
in §5. As for the SUs, we can verify that EWT con-
tains clean, formal SUs with appropriate capitaliza-
tion and punctuation. We can also verify that EWT
contains various types of informal SUs, e.g. that
lack capitalization/punctuation, use non-standard
casing, end with emoticons, include spelling errors,
concatenate consecutive SUs without a space, etc.

C Label Assignment and Conversion

In this section, we explain the precise procedure
on how we (i) assign the gold character-level
labels, (ii) convert the character-level labels to
word/subword-level labels, and (iii) convert the
subword-level labels to character/word-level labels.
We limit our explanation to BIO labels, since it is
straightforward to convert them to the combination
of BOS and EOS labels (and vice versa).

Firstly, we can assign the gold character-level
labels from the UD annotation by taking the
character-level alignment, which determines the
exact spans of SUs and NSUs. From the character-
level labels, we can assign the word- or subword-
level labels based on the following rule:

• If the word (or subword) contains a character
with the B-label, assign it the B-label.

• Else if it contains a character with the I-label,
assign the I-label.

• Otherwise assign the O-label.

For instance, this procedure is used to create the
subword-level labels for training our BOS/EOS
labeling models.

To evaluate our methods, we need to convert
the subword-level labels produced by our methods
into the character-level labels, which can then be
converted into the word-level labels (based on the
previous procedure). To convert a subword-level
label into a sequence of character-level labels, we

pBOS(wi) = 0 in Eq. 5.
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Figure 2: Illustration of the dynamic programming procedure.

SUs

President Bush on Tuesday nominated two individuals to replace retiring jurists on federal courts in the Washington area.
Unfortunately, Mr. Lay will be in San Jose, CA participating in a conference, where he is a speaker, on June 14.
“In 1972, there was an enormous glut of pilots,” Campenni says.
PS – There is a happy hour tonight at Scudeiros on Dallas Street (just west of the Met Garage) beginning around 5:00.
2) Your vet would not prescribe them if they didn’t think it would be helpful.
BUT EVERYONE HAS THERE OWN WAY!!!!!!
The motel is very well maintained, and the managers are so accomodating, it’s kind of like visiting family each year! ;-)
where can I find the best tours to the Mekong Delta at reasonable prices?
it seems like its healthier too, but its prolly not.
I have wifi at my house, but thats just at my house...is there anyway i can buy some card to make the ipod itself have wifi?

NSUs

—->===}*{===<—-
- Lisa_coverletter.doc << File: Lisa_coverletter.doc >>
Thur. Sept. 28 - Paris (Versailles or Fontainbleu - half day side trip)
9.3m - Number of US unemployed in April 2004.
Game 1: Monday, May 28 @ 2:00PM vs. Los Angeles SPARKS
Mixed Tempura.....................8.25 Shrimp or vegetable tempura & salad.
Infinity stereo, bucket seats, nerf bars, tool box, bed liner, camper tow package, 5 speed manual.
printing, printing, copies, printing, copies, printing,
A++++ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Dear Sir / Madam,

Table 6: Examples of gold SUs and NSUs in the English Web Treebank (EWT) identified based on our procedure
(§5). Each line corresponds to one example of SU or NSU.

apply the following rule (where n denotes the num-
ber of characters in the subword):

• If the subword has the B-label, the character-
level labels are 1 B-label followed by n − 1
I-labels.

• If the subword has the I-label, the character-
level labels are n I-labels.

• If the subword has the O-label, the character-
level labels are n O-labels.

D Details on the Model Setup

As discussed in §6.1, we finetune the pretrained
RoBERTaBASE publicly available on the Hugging-
Face model hub10. We add a binary BOS/EOS
classifier on top of the encoder, which is a single-
layer MLP with a hidden size of 768. We share the
encoder parameters and use different classifiers for
the BOS/EOS predictions. The BOS/EOS models
are trained jointly by summing their losses.

10https://huggingface.co/models

When we combine the unidirectional models
(+UNI), we take the same approach and use differ-
ent classifiers for the unidirectional/bidirectional
models. Again, the encoder parameters are shared
and all models are trained jointly.

As for the training data preparation, we apply the
unit concatenation and data augmentation (+AUG)
on the fly, i.e. we see different concatenation and
augmentation of the units in each iteration. The
same procedure is applied on the validation set.

During data augmentation, we remove the last
sentence ending punctuation based on the following
regular-expression, similar to the candidate bound-
ary detector in ERSATZ (Wicks and Post, 2021):

• (.∗PeP ∗) where P denotes the set of punctua-
tions and Pe ⊂ P denotes the sentence ending
punctuations.

Since our experiments are conducted on English,
we use P = {.?!")’} and Pe = {.?!}.

Finally, all models are implemented in Pytorch
and trained on a single Tesla V100-SXM2-32GB
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GPU. We use a batch size of 8, accumulate the
gradients for 32 batches, and apply the gradient
clipping at 1.0 before updating the model weights.
As for the optimizer, we use Adam with the initial
learning rate of 0.0001 and exponentially decay the
learning rate by γ = 0.95 after each epoch. We
check the validation loss every 200 batches and
stop the training early if there is no improvement
for 5 consecutive evaluations.

E The Full Experimental Results

In this section, we report the full results of our
experiments which did not fit in §7. Table 7 shows
the word-level F1 scores for each B-, I-, and O-
label prediction. Table 8 shows the overall results
for the character-level evaluation.

Generally speaking, we can confirm the same
results as observed in §7. Firstly, our proposed
method significantly outperforms the baselines
when we use the EWT Train/Dev dataset for model
development. Secondly, our method performs
slightly better than (or at least on par with) the
baselines when developed on the WSJ Train/Dev
dataset. Finally, the baseline without forcing the
last EOS is competitive with shorter inputs (pCC =
0.5 and postprocessing) but performs considerably
worse when the input texts are longer (pCC = 0).

F Further Experiments and Analyses

In this section, we provide further experiments
and analyses to complement our study. To be spe-
cific, we provide discussions on the effect of the
choice of hyperparameters (F.1), qualitative anal-
yses based on example model outputs (F.2), and
evaluation of sentence identification based on the
sentence segmentation dataset (F.3).

F.1 Effect of Hyperparameters

As a default configuration, we used pDA =
0.3, pTR =0.1 for the data augmentation (+AUG)
and λ = 0.5 for the unidirectional model ensem-
bling (+UNI). To examine the effect of the choice
of these hyperparameters, we conducted further
experiments by changing these default hyperpa-
rameters. Note that all evaluation results in this
subsection are based on BOS&EOS (+UNI +AUG)
developed on WSJ Train/Dev.

Firstly, we focus on the data augmentation and
report the results of our method trained with dif-
ferent sets of pDA and pTR (with λ fixed at 0.5).
Since increasing pDA leads to higher recall (and

lower precision) of SU extraction and increasing
pTR leads to higher precision (and lower recall),
we used a fixed ratio of pDA : pTR = 3 : 1 which
seemed to make a good trade-off. As shown in
Table 9, the results are generally stable with the
different choices of the hyperparameters. However,
more data augmentation (with larger values of pDA
and pTR) tends to slightly improve the performance,
especially for the exact SU span extraction.

Secondly, we focus on the unidirectional model
ensembling and report the results of changing the
linear interpolation rate λ ∈ [0, 1], where λ = 0 is
equivalent to using only the bidirectional models
and λ = 1 only the unidirectional models. We fix
pDA=0.3 and pTR=0.1 and only change λ at the
inference time without retraining the unidirectional
or bidirectional models. As shown in Figure 3, we
found that unidirectional and bidirectional models
generally have complementary benefits, and choos-
ing the intermediate value of λ leads to the best
performance. The results also indicate that we may
be able to obtain further improvement by tuning
λ on the validation set, although we simply fixed
λ = 0.5 throughout our experiments.

F.2 Qualitative Analyses
In Table 10 and 11, we show the actual predictions
made by our proposed method developed on EWT
Train/Dev and WSJ Train/Dev. For the latter, we
applied +UNI and +AUG with the default hyperpa-
rameters.

In the first example (Table 10), we can verify
that both models identify the correct SU span while
removing the non-sentential header as the NSU.
This is a relatively easy example, since the start of
the SU is capitalized and less ambiguous.

In the second example (Table 11), we can ob-
serve that our method using in-domain data (EWT
Train/Dev) extracts the correct SU span, while our
method developed on out-of-domain data (WSJ
Train/Dev) incorrectly excludes a part of an SU.
This seems to be a relatively difficult example,
since the start of the SU is not capitalized and more
ambiguous. It is worth noting that such SUs can
be reliably extracted when we can leverage the in-
domain annotation of gold SUs and NSUs.

F.3 Evaluation on the Sentence Segmentation
Dataset

Finally, we report the results of sentence identifica-
tion on the standard sentence segmentation dataset
(WSJ Test).
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Train/Dev
Datasets Model

EWT Test (pCC = 0.5) EWT Test (pCC = 0.0) EWT Test (Postprocess)

B-Label I-Label O-Label B-Label I-Label O-Label B-Label I-Label O-Label

EWT
Train/Dev

EOS-Only 85.6±0.8 97.3±0.3 66.6±3.5 78.0±0.6 95.1±0.1 6.0±0.4 90.2±1.2 97.5±0.5 71.3±6.6

EOS-Only (force last) 79.8±0.2 95.9±0.0 0.0±0.0 77.8±0.6 95.1±0.1 0.0±0.0 81.7±0.2 95.7±0.0 0.0±0.0

BOS&EOS 94.3±0.6 98.7±0.3 86.1±3.5 93.0±1.0 98.2±0.4 81.7±4.0 94.7±0.3 98.4±0.2 83.9±2.4

WSJ
Train/Dev

EOS-Only 78.7±1.3 94.4±0.4 42.1±1.3 71.8±1.9 94.3±0.2 4.5±0.4 83.3±0.2 93.8±0.3 37.3±0.9

EOS-Only (force last) 76.7±0.9 95.6±0.1 0.0±0.0 71.7±1.9 94.6±0.2 0.0±0.0 81.0±0.4 95.6±0.0 0.0±0.0

EOS-Only (+AUG) 79.4±1.0 95.4±0.2 24.5±4.1 78.1±1.8 93.3±0.2 1.4±1.1 82.7±1.1 94.9±0.5 35.6±3.2

BOS&EOS 79.4±0.9 94.8±0.2 40.5±0.6 72.9±1.2 94.3±0.2 5.8±2.0 83.9±0.2 94.1±0.2 35.2±0.9

BOS&EOS (+UNI) 79.8±0.6 93.9±0.2 37.5±1.5 76.2±1.3 93.3±0.3 20.2±1.2 83.8±0.1 93.8±0.1 34.7±0.9

BOS&EOS (+UNI +AUG) 83.7±0.1 95.0±0.2 38.7±1.2 83.0±0.6 94.6±0.3 39.7±3.5 85.9±0.6 95.2±0.2 41.9±2.8

Table 7: BIO Labeling Results (Word-Level). We report the F1 scores for each B-, I- and O-label prediction.

Train/Dev
Datasets Model

EWT Test (pCC = 0.5) EWT Test (pCC = 0.0) EWT Test (Postprocess)

BIO BIO
Span

BIO BIO
Span

BIO BIO
Span

Macro Weighted Macro Weighted Macro Weighted

EWT
Train/Dev

EOS-Only 83.8±1.1 92.7±0.5 72.8±1.8 58.5±0.2 81.5±0.0 58.2±1.1 87.7±2.3 93.9±1.2 81.6±2.4

EOS-Only (force last) 57.7±0.1 81.0±0.0 60.4±0.8 56.9±0.2 80.9±0.0 57.7±1.0 58.1±0.1 79.9±0.0 62.3±0.3

BOS&EOS 94.0±1.0 97.2±0.6 87.3±1.6 92.2±1.5 96.3±0.7 84.1±2.6 93.5±0.6 96.6±0.4 88.9±0.8

WSJ
Train/Dev

EOS-Only 72.8±0.6 86.9±0.4 59.1±2.3 56.0±0.6 80.9±0.1 48.2±2.5 73.3±0.4 85.6±0.2 67.7±0.4

EOS-Only (force last) 56.6±0.3 80.9±0.0 53.5±2.0 54.9±0.6 80.7±0.1 48.2±2.5 57.8±0.2 79.9±0.0 61.0±0.3

EOS-Only (+AUG) 64.3±1.5 83.5±0.6 59.5±1.4 57.4±0.5 81.0±0.2 54.4±2.5 69.2±1.7 84.0±0.8 66.2±1.9

BOS&EOS 72.7±0.7 87.1±0.2 59.1±1.5 57.8±1.9 81.6±0.7 48.8±1.6 72.4±1.0 85.2±0.5 68.3±0.3

BOS&EOS (+UNI) 72.4±0.6 86.3±0.3 59.6±1.0 65.3±1.0 83.6±0.5 52.9±1.3 72.8±0.4 85.3±0.2 68.0±0.2

BOS&EOS (+UNI +AUG) 72.2±1.3 86.1±0.6 66.5±0.3 72.8±1.8 86.5±0.9 63.6±1.0 73.2±1.9 85.7±0.9 71.8±1.5

Table 8: Overall Results (Character-Level). We report the macro/weighted average F1 of the BIO labeling task and
the F1 score of the exact SU span extraction task.

In Table 12, we summarize the WSJ dataset
statistics. Note that WSJ only contains SUs and
do not contain any NSUs (O-labels). However, we
can still evaluate the performance using the same
metrics, i.e. the macro/weighted average F1 of the
BIO labeling task and the F1 of the exact SU span
extraction task.11

Table 13 summarizes the word-level evaluation
results. Since we are evaluating on WSJ Test, the
performance is naturally better when the models
are trained on WSJ Train/Dev rather than EWT
Train/Dev (which is now out-of-domain).

When the models are trained on EWT, we found
that the baseline (EOS-Only) forcing the last EOS
performs the best. This is natural, since this base-
line better reflects the nature of the sentence seg-
mentation dataset where all units are SUs. How-
ever, our method (BOS&EOS) is still comparable
to this baseline and do not (or minimally) sacrifice
performance on such datasets.

When the models are trained on WSJ, we found
that our method without +UNI or +AUG performs

11Since the O-label does not exist, we report the macro
average F1 as the average F1 scores of the B-label and I-label
predictions.

the best. This is most likely because we can lever-
age the knowledge of BOS to predict EOS. When
we apply the data augmentation (+AUG) and uni-
directional model ensembling (+UNI), we observe
a slight decrease in performance compared to our
vanilla method. However, the results are still com-
parable and even outperforms the baselines in some
metrics (e.g. the exact SU span extraction task).

Overall, we can conclude that our methods do
not sacrifice the performance on the the clean,
edited texts of the sentence segmentation dataset.
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Evaluation Augmentation Rates
EWT Test (pCC = 0.5) EWT Test (pCC = 0) EWT Test (Postprocess)

BIO BIO
Span

BIO BIO
Span

BIO BIO
Span

Macro Weighted Macro Weighted Macro Weighted

Word-Level
pDA=0.15, pTR=0.05 71.3±1.1 89.0±0.5 65.7±1.3 71.5±0.9 88.6±0.5 62.3±1.7 73.5±1.4 89.2±0.6 71.2±1.8

pDA=0.3, pTR=0.1 72.5±0.4 89.5±0.1 66.6±0.2 72.4±1.3 89.1±0.5 63.7±1.0 74.3±1.1 89.6±0.4 71.9±1.4

pDA=0.45, pTR=0.15 73.2±1.0 90.0±0.1 67.3±0.8 73.0±0.9 89.5±0.6 64.0±1.8 75.1±1.3 90.0±0.4 72.1±0.7

Character-
Level

pDA=0.15, pTR=0.05 72.3±1.9 86.3±1.0 65.4±1.4 73.6±0.7 86.8±0.3 62.2±1.7 73.8±1.5 86.1±0.8 71.0±1.8

pDA=0.3, pTR=0.1 72.2±1.3 86.1±0.6 66.5±0.3 72.8±1.8 86.5±0.9 63.6±1.0 73.2±1.9 85.7±0.9 71.8±1.5

pDA=0.45, pTR=0.15 71.9±1.1 86.1±0.3 67.2±0.8 72.3±0.9 86.3±0.6 64.0±1.8 73.6±1.5 86.0±0.6 72.1±0.7

Table 9: Effect of Data Augmentation Rates (Word/Character-Level). We use different data augmentation rates
(p

DA
and p

TR
) and evaluate BOS&EOS (+UNI +AUG) developed on WSJ Train/Dev. We report the macro/weighted

average F1 of the BIO labeling task and the F1 score of the exact SU span extraction task.

B

Developed ... 06/04/2001 05:54 PM Can you pass this along to Elizabeth to ensure Sanders

on EWT E

is on board as well?

B

Developed ... 06/04/2001 05:54 PM Can you pass this along to Elizabeth to ensure Sanders

on WSJ E

is on board as well?

Table 10: Example Outputs (Both Correct). We show the predictions made by our proposed method (BOS&EOS)
developed on EWT Train/Dev (top) or WSJ Train/Dev (bottom). We can verify that both methods identify the
correct SU span while removing the non-sentential header as the NSU.

B

Developed with my breakfast I like bacon and sausage when I having a big breakfast like

on EWT E

a grand slam with pancakes and the works.

B

Developed with my breakfast I like bacon and sausage when I having a big breakfast like

on WSJ E

a grand slam with pancakes and the works.

Table 11: Example Output with One Incorrect Case. We show the predictions made by our proposed method
(BOS&EOS) developed on EWT Train/Dev (top) or WSJ Train/Dev (bottom). We can verify that the former extracts
the correct SU span, while the latter incorrectly excludes the first prepositional phrase as an NSU.

Train Dev Test

Total SUs 37,447 2,021 7,442
Total NSUs 0 0 0

Word-Level
B-Label 37,447 2,021 7,442
I-Label 805,387 44,354 163,132

O-Label 0 0 0

Character-Level
B-Label 37,447 2,021 7,442
I-Label 4,308,729 236,798 876,461

O-Label 0 0 0

Table 12: WSJ dataset statistics.
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(a) EWT Test (pCC =0.5), BIO Macro (b) EWT Test (pCC =0.5), BIO Weighted (c) EWT Test (pCC =0.5), Span

(d) EWT Test (pCC =0.0), BIO Macro (e) EWT Test (pCC =0.0), BIO Weighted (f) EWT Test (pCC =0.0), Span

(g) EWT Test (Postproc.), BIO Macro (h) EWT Test (Postproc.), BIO Weighted (i) EWT Test (Postproc.), Span

Figure 3: Effect of the Unidirectional Model Interpolation Rate (Word-Level). We change λ ∈ [0, 1] and report
the macro/weighted average F1 of the BIO labeling task and the F1 score of the exact SU span extraction task.
Interpolated results are shown in blue and non-interpolated results (i.e. λ = 0) shown in red. The line shows the
mean and the shade shows the standard deviation from the five experimental runs.

Train/Dev
Datasets Model

WSJ Test (pCC = 0.5) WSJ Test (pCC = 0)

BIO BIO
Span

BIO BIO
Span

Macro Weighted Macro Weighted

EWT
Train/Dev

EOS-Only 97.4±0.1 99.5±0.0 87.3±0.3 97.3±0.0 99.5±0.0 87.2±0.2

EOS-Only (force last) 97.6±0.1 99.9±0.0 87.8±0.3 97.3±0.0 99.6±0.0 87.3±0.2

BOS&EOS 97.1±0.2 99.4±0.0 86.7±0.5 97.0±0.1 99.3±0.0 86.5±0.3

WSJ
Train/Dev

EOS-Only 98.4±0.6 99.7±0.1 92.1±2.9 98.2±0.4 99.7±0.1 90.6±1.8

EOS-Only (force last) 98.4±0.6 99.7±0.1 92.1±2.9 98.2±0.4 99.7±0.1 90.6±1.8

EOS-Only (+AUG) 98.2±1.1 99.1±1.0 92.6±2.5 97.3±1.9 99.3±0.8 87.8±6.3

BOS&EOS 99.2±0.2 99.7±0.3 95.5±0.5 98.7±0.1 99.7±0.2 93.1±0.4

BOS&EOS (+UNI) 98.5±0.3 98.9±0.5 92.9±1.0 98.1±0.3 98.8±0.5 91.4±0.8

BOS&EOS (+UNI +AUG) 98.7±0.2 99.3±0.4 94.0±0.7 98.2±0.3 99.1±0.3 91.8±1.1

Table 13: Overall Results on WSJ Test (RoBERTa, Word-Level). We report the macro/weighted average F1 of the
BIO labeling task and the F1 score of the exact SU span extraction task.
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Abstract

This study presents an analytical evaluation of
neural text simplification (TS) systems. Be-
cause recent TS models are trained in an end-to-
end fashion, it is difficult to grasp their abilities
to perform particular simplification operations.
For the advancement of TS research and devel-
opment, we should understand in detail what
current TS systems can and cannot perform
in comparison with human performance. To
that end, we first developed an analytical eval-
uation framework consisting of fine-grained
taxonomies of simplification strategies (at both
the surface and content levels) and errors. Us-
ing this framework, we annotated TS instances
produced by professional human editors and
multiple neural TS systems and compared the
results. Our analyses concretely and quantita-
tively revealed a wide gap between humans and
systems, specifically indicating that systems
tend to perform deletions and local substitu-
tions while excessively omitting important in-
formation, and that the systems can hardly per-
form information addition operations. Based
on our analyses, we also provide detailed direc-
tions to address these limitations.

1 Introduction

Text simplification (TS) is the task of reducing the
content and structural complexity of text while re-
taining the core part of the original meaning (Alva-
Manchego et al., 2020). TS can not only facilitate
the text reading by children or language learners,
but also improve the performance of downstream
NLP applications, including machine translation
and summarization (Siddharthan et al., 2004; Šta-
jner and Popovic, 2016).

Early studies on TS have separately dealt with
lexical simplification (Glavaš and Štajner, 2015)
and syntactic simplification (Scarton et al., 2017),
and developed simplification techniques special-
ized for particular linguistic phenomena. In con-
trast, recent studies have tackled TS as a task of

Aarti has a growth mindset.

Simplified 
by system

Aarti has a growth mindset, the belief that your intelligence 
can grow.

Aarti has a growth mindset, which means he believes that your 
intelligence can grow.

Surface Strategy:
Content Strategy:

Error:

Complex

Simplified
by human

Grammaticality: 5,  Meaning preservation: 4,  Simplicity: 5

Delete at phrase level
Delete detail / extra information 
No error

Grammaticality: 5,  Meaning preservation: 5,  Simplicity: 4

Surface Strategy:
Content Strategy:

Error:

Replace at clause level
Paraphrase into an explanatory expression 
No error

Figure 1: Example of an analytical evaluation in terms
of editing strategies and errors.

monolingual translation from a complex to a sim-
plified language using deep neural networks. While
neural TS has demonstrated steady improvement,
few studies have attempted to assess what kind of
editing operations are performed by the systems in
concrete terms. To further advance TS research and
development, we should understand the potential
and limitations of current TS technologies and pre-
cisely grasp the gap between human and machine
TS. To do so, we need analytical frameworks that
can be applied to both human and machine TS. In
contrast to (machine) translation research and prac-
tice, where several frameworks have been devel-
oped for analyzing translation strategies (Chester-
man, 2016) and errors (Lommel et al., 2014), no
well-established framework tailored for TS tasks is
available.

Therefore, in this study, we first propose an an-
alytical evaluation framework consisting of tax-
onomies of editing strategies (both at the surface
and content levels) and errors. We then report an
experiment in which we apply our framework to
instances of human and machine TS in various
settings, and concretely describe the gap between
them. Figure 1 shows an example of the evaluation
using our framework, illustrating the detailed dif-
ferences in editing operations between humans and
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TS systems. Our results revealed that current neu-
ral TS systems can frequently replace local spans,
while excessively deleting important parts. More-
over, TS systems cannot perform operations related
to content addition, such as the addition of detail in-
formation. These findings enable us to understand
the fundamental challenges of current technologies
and pursue a promising avenue to fill the gap be-
tween humans and machines.

2 Related Work

To evaluate TS systems, automatic evaluation met-
rics such as SARI (Xu et al., 2016), BLEU (Pa-
pineni et al., 2002), and Flesch–Kincaid Grade
Level (FKGL) (Kincaid et al., 1975) are widely
used. SARI and BLEU use n-gram overlap be-
tween target sentences and human-created refer-
ences, whereas FKGL uses the number of syllables
and words in the output sentences. These metrics
can be easily calculated if references are available
and are indispensable for the rapid cycle of system
development and evaluation. However, their limita-
tions and pitfalls have been acknowledged. Sulem
et al. (2018a), for example, reported that BLEU is
negatively correlated with human evaluation scores,
such as simplicity and grammaticality. Tanprasert
and Kauchak (2021) also showed that the FKGL
score can easily be manipulated by minor modifi-
cations, such as adding periods randomly.

Subjective human evaluation has also been im-
plemented (Štajner and Nisioi, 2018; Sulem et al.,
2018b; Al-Thanyyan and Azmi, 2021). In many
cases, certain aspects of TS quality, namely gram-
maticality/fluency, meaning preservation/adequacy,
and simplicity, are rated on a three- to five-point
Likert scale based on the evaluation criteria.

Importantly, all the abovementioned evaluation
methods only provide summative numerical scores.
These scores are useful for comparing the general
performances of different systems, but do not nec-
essarily provide a guidepost for achieving higher
system performance. To gain a detailed understand-
ing of what TS systems can/cannot do vis-à-vis
editing operations by humans, analytical evalua-
tion methods are required.

The analytical evaluation of TS can be broadly
divided into strategy and error analyses. The for-
mer concerns the type of editing operation (strat-
egy) performed to produce the simplified text. Pre-
vious studies have acknowledged general strategies,
such as paraphrasing, deletion, and splitting (Shard-

low, 2014), and document-level strategies, such as
sentence reordering and sentence-joining opera-
tions (Alva-Manchego et al., 2019b). However,
these roughly typify superficial textual changes
rather than detailed content-level changes that cap-
ture editing operations peculiar to TS. The latter
concerns the type of error in the resulting simplified
text. In contrast to automatic and human evalua-
tions, fewer attempts have been made to conduct
an error analysis (Maddela et al., 2021).1

Proper implementation of analytical evaluation
requires well-formulated frameworks to classify
textual phenomena observed in the outputs. The
general editing strategies mentioned above and
some guidelines for human writers (Mitkov and
Štajner, 2014) are not sufficiently concrete for fine-
grained analysis. Although several typologies of
simplification operations (e.g., Amancio and Spe-
cia, 2014; Brunato et al., 2014; Koptient et al.,
2019) and editing guidelines for human writers
(Mitkov and Štajner, 2014) have been proposed,
the following limitations can be generally acknowl-
edged: (1) content-level operations are not fully
covered; (2) their applicability to outputs of au-
tomatic TS systems has not been verified. In the
field of translation studies, a wide variety of trans-
lation strategies have been proposed to describe the
differences between source and target texts (e.g.,
Vinay and Darbelnet, 1958; Molina and Hurtado
Albir, 2002). Chesterman (2016), for example, de-
veloped a comprehensive taxonomy of translation
strategies that consists of syntactic, semantic, and
pragmatic categories, and each includes ten strate-
gies. Taxonomies of translation errors have also
been developed and are widely used in practice,
such as Multidimensional Quality Metrics (MQM)
(Lommel et al., 2014). Although these existing
frameworks may be useful as points of departure,
detailed ones dedicated to TS tasks are still lacking.

3 Framework of Analytical Evaluation

We developed taxonomies of simplification strate-
gies and errors as the analytical evaluation frame-
work for TS. Simplification strategies consist of
two independent components: surface strategies,
which capture superficial operations for grammat-
ical or textual elements, and content strategies,
which capture semantic or content changes from
the viewpoint of simplification. In this framework,

1The under-reporting of error analysis is a general problem
in NLG literature (van Miltenburg et al., 2021).
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each TS instance (i.e., a minimally decomposed
editing operation) is first judged as an error cate-
gory listed in the error taxonomy. If it is not, the
instance is then independently labeled a surface
and content strategy (see also Figure 1). Our frame-
work includes guidelines for annotating surface and
content strategies in the form of a decision tree.2

3.1 Taxonomy Construction

Specifically referring to Alva-Manchego et al.
(2019b), Chesterman (2016), and Shardlow (2014),
we created taxonomies of the simplification strate-
gies and errors through an analysis of human and
machine TS instances. As manual simplification
data, we used original and simplified news articles
from Newsela,3 which were produced by profes-
sional editors and are expected to include various
types of editing operations, including creative ones.
We selected four articles from Newsela’s Popular
category. Each article has four simplified versions
with different degrees of simplicity, from Lv0 (the
original document) to Lv4 (the simplest document).
We manually aligned sentences from all adjacent-
level documents (e.g., Lv0–Lv1, Lv1–Lv2) and
acquired 551 complex–simplified pairs that exhib-
ited any sort of rewriting.4 Next, we decomposed
the rewriting from complex to simplified sentences
into minimum edits (see Figure 2).5 Consequently,
we acquired 1,133 minimum editing instances of
human simplification.

First, using these instances, we created prototype
taxonomies of the simplification strategies in the
bottom-up procedures: (i) for each instance, we
devised labels for describing surface and content
strategies; and (ii) we aggregated and revised the
labels to form systematic taxonomies. Edit (3) in
Figure 2 is an example of a minimum edit instance:
“hard work will help you reach your goals”→ “hard
work is important”. The same editing operation
is annotated differently with the surface strategy
(“Replace at sentence level”) and content strategy
(“Paraphrase into a direct expression”).

Second, using simplified instances generated by
TS systems, we expanded and modified the proto-

2The decision trees are shown in Appendix A.2.
3https://newsela.com/data
4These pairs included the sentences that were not aligned

because we considered such sentences as instances of addition
or deletion of a sentence.

5Following Miyata and Fujita (2021), we defined a mini-
mum edit as “a small edit that is difficult to be further decom-
posed into more than one independent edit” and that does not
induce “ungrammaticality in the edited sentence” (p. 1541).

2

It shows you that hard work will help you reach your goals.

They show you that hard work will help you reach your goals.

They show that hard work will help you reach your goals.

They show that hard work is important.

Surface Strategy: Replace at word level
Content Strategy: Paraphrase for adjustment

Surface Strategy: Delete at word level
Content Strategy: Delete detail / extra information

Surface Strategy: Replace at sentence level
Content Strategy: Paraphrase into a direct expression

Complex

Simplified

Edit (1)

Edit (2)

Edit (3)

Figure 2: Example of the decomposition of rewriting
instances and labeling of strategies.

type taxonomies to improve their applicability. At
this stage, we created an error taxonomy by ana-
lyzing the system errors.6 We used three neural TS
models, Transformer (Jiang et al., 2020), DRESS
(Zhang and Lapata, 2017), and SUC (Sun et al.,
2020) that were trained on Newsela data.7 From
the same Newsela’s articles, we selected 166, 38,
and 38 sentences for Transformer, DRESS, and
SUC, respectively, to generate their simplified ver-
sions.8 We decomposed 125 outputs that exhibited
any sort of rewriting to acquire 217 minimum edits.
We then separated the non-error and error instances.
Using the prototype taxonomies of the surface and
content strategies, we classified non-error instances
and, if necessary, modified the taxonomies to prop-
erly cover all instances. We also created an error
taxonomy by analyzing the error instances.

3.2 Taxonomy of Surface Strategies

We defined 22 surface strategies, S1–S22, under the
seven general categories: Replacement, Deletion,
Addition, Integration, Splitting, Move, and No
change.9 Replacement, Deletion, and Addition
have the same set of linguistic focuses, i.e., punctu-
ations, words, phrases, clauses, and sentences.

Note that, if the head of a phrase changes (e.g.,
“playing the video games”→ “the video games), it
is classified into the Replacement category. If the
head of a phrase is retained (e.g., “the video games”
→ “the games”), it is classified into the Deletion
rather than Replacement category.

6In principle, simplification instances by professional hu-
man editors seldom include errors.

7We explain the detailed implementation in §4.1.
8We first used the same set of 38 sentences, but we found

out that the outputs of DRESS and SUC consisted of many
error instances. To collect a wide range of non-error instances,
we added another 128 sentences only for Transformer.

9See Table 2 for the detailed surface strategies and Ap-
pendix B for the example sentences.
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3.3 Taxonomy of Content Strategies

We defined 30 content strategies, C1–C30, under
five general categories: No content change, Con-
tent deletion, Content addition, Content change,
and Document-level adjustment.10

Note that while the content strategies in No con-
tent change, except for (C5) Remain unchanged,
change the surface structure or textual element,
they do not change the propositional meaning of the
sentence. Document-level adjustment includes
the change of the sentence order in a document and
the secondary edits that need to be performed due
to changes made to a different sentence; for exam-
ple, some lexical changes might entail changing
the pronouns in the later sentences.

3.4 Error Taxonomy

We defined four error categories: Inappropriate
deletion, Inappropriate addition, Inappropriate
paraphrase, and Non-sentence.11 The first three
categories roughly correspond to Deletion, Addi-
tion, and Replacement in the surface strategies.
Non-sentence covers other error types that make
the sentence ungrammatical or unintelligible.

4 Experimental Setup

To clarify the potential and limitations of current
TS systems in comparison with human perfor-
mance, we designed an experiment to annotate TS
instances produced by human editors and recent
neural TS systems using our taxonomies of simpli-
fication strategies and errors described in §3. We
also conducted a human evaluation to better under-
stand the general tendencies of how strategies and
errors affect the TS quality.

4.1 Neural Text Simplification Systems

We implemented six systems, that is, three neu-
ral models below trained separately with Newsela
(in-domain setting) or Wikipedia (out-of-domain
setting).12 It should be noted that the training data
size and pre-processing methods differed depend-
ing on the models, as we aimed to replicate the
models described in the original papers as much as
possible.

10See Table 4 for the detailed content strategies and Ap-
pendix B for the example sentences.

11See Appendix B for the example sentences.
12We calculated scores of automatic evaluation metrics and

verified that we had appropriately reproduced the implemen-
tations reported in the original papers. See Appendix C.1 for
details on the automatic evaluation.

Transformer (Jiang et al., 2020)13 This BERT-
initialized Transformer model is a state-of-the-art
model. We used the Newsela and Wikipedia mod-
els distributed by the authors.

DRESS (Zhang and Lapata, 2017)14 This
model exploits reinforcement learning, which re-
wards rewriting. Many studies have used this as a
baseline (e.g., Vu et al., 2018; Nassar et al., 2019;
Omelianchuk et al., 2021). To train the Newsela
model, we used newsela_data_share-20150302
from the Newsela corpus, excluding Lv0–Lv1, Lv1–
Lv2, and Lv2–Lv3 pairs, following the original pa-
per. We also excluded sentences that were more
than 85 words per sentence or included “/” because
the original code could not process them. The re-
maining 94,635 sentences15 were used for training
after the named entities were tagged with Stanford
CoreNLP (Manning et al., 2014).16 We used pro-
cessed Wikilarge to train the Wikipedia model.

SUC (Sun et al., 2020)17 This model uses one
target sentence and two preceding and following
sentences as input. Only this model exploits the
context among these three models. Because Sun
et al. (2020) did not provide a Newsela model, we
trained it using Newsela-Auto, the same dataset
used in the Transformer model above. Excluding
Lv0–Lv1, Lv1–Lv2, and Lv2–Lv3 pairs following
Zhang and Lapata (2017), we used the 640,867 sen-
tences with context and 173,105 sentences without
context. To train the Wikipedia model, we used
the first 116,020 sentences with context and all
of the 40,893 sentences without context from the
distributed dataset. We created the vocabularies
for Newsela and Wikipedia models, respectively,
from the training data using spaCy (Honnibal and
Montani, 2017).18

4.2 Annotation of Strategies and Errors

As evaluation data, from three original Newsela
articles (Lv0) in the Popular category, we respec-
tively extracted 13, 11, and 22 sequential sentences
while retaining the textual cohesion. For these 46

13https://github.com/chaojiang06/wiki-auto
14https://github.com/XingxingZhang/dress
15Zhang and Lapata (2017) reported using 94,208 sentences.

Although we processed the corpus in the same manner, we
could not obtain the same number of sentences.

16https://github.com/stanfordnlp/CoreNLP
17https://github.com/RLSNLP/

Document-Context-to-Sentence-Simplification
18https://github.com/explosion/spaCy
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Score Grammaticality (G) Meaning preservation (M) Simplicity (S)

5 Native speaker level fluent Adequately preserved Much simpler
4 Non-native speaker level fluent Mostly preseved Simpler
3 Understandable Partially preserved The same simplicity
2 Partially understandable Completely different More difficult
1 Completely unintelligible Unintelligible Unintelligible

Table 1: Abridged guidelines for human evaluations. The full version is shown in Appendix A.1.

complex sentences, we extracted 54 correspond-
ing simplified sentences from Newsela’s articles
(Lv1) as human references19 and generated 276
simplified sentences (46 sentences × 6 systems)
as system outputs. We decomposed 39 and 191
sentences that exhibited any sort of rewriting to
acquire 105 and 389 minimum edits, respectively,
for human references and system outputs.20

Each editing instance was annotated with strate-
gies and error categories based on the classification
procedures explained in §3. We counted the sen-
tences that were not rewritten as instances of strat-
egy. The annotation was carried out independently
by the first and third authors, who can adequately
understand the English text and have a good com-
mand of the analytical evaluation framework, i.e.,
the taxonomies and guidelines. The inter-annotator
agreement scores (Cohen’s unweighted kappa) for
the surface strategies, content strategies, and er-
rors were 0.806, 0.745, and 0.851, respectively,
indicating substantial agreement (Landis and Koch,
1977).21 After the independent annotation, the an-
notators resolved any disagreement in judgments
through discussions to obtain the final labels.

4.3 Human Evaluation

Using the sentence data used in §4.2, we also con-
ducted a subjective human evaluation to assess the
grammaticality (G), meaning preservation (M), and
simplicity (S) of the simplified sentences generated
by the six systems.

The annotators were two professional translators
who were familiar with Japanese–English transla-
tion, English proofreading, and native language
checking. They assigned a score to each sentence
using a five-point Likert scale by referring to the

19Because human references include the instances of sen-
tence addition and splitting, the number of simplified sen-
tences is larger than that of complex sentences.

20This means that the average rewriting rate for human
editors was 2.69 times per sentence and that of systems was
2.03 times.

21When calculating the agreement scores for the strategies,
we aggregated the annotations for the errors into one class
and vice versa. The detailed distributions of annotations are
presented in Appendix D.

evaluation guidelines, an abridged version of which
is shown in Table 1.22 Before commencement of
the formal evaluation, they evaluated another 29
sentences as a practice to properly understand the
task. They evaluated the same set of sentences that
exhibited any sort of rewriting. We consistently
gave scores of 5, 5, and 3 for G, M, and S, respec-
tively, to the non-rewritten sentences. The inter-
annotator agreement scores (Cohen’s quadratic
weighted kappa) for G, M, and S were 0.541, 0.257,
and 0.628, respectively.23

5 Results and Discussions

5.1 Surface Strategies

Table 2 lists the annotation results for the surface
strategies with human evaluation scores for the
system outputs.24 Note that for each strategy, the
human evaluation score was calculated using sen-
tences that exhibit the strategy. As single sentences
may include multiple strategies, the scores may be
influenced by other strategies. Nevertheless, the
general impact of each strategy can be inferred.

All the systems performed Replacement less
frequently than humans did. The systems chiefly
performed (S2) Replace at word level and could
not perform (S4) Replace at clause level or (S5)
Replace at sentence level, whereas humans per-
formed Replacement strategies at various linguis-
tic levels. This indicates the incapability of current
models to learn replacement operations for linguis-
tic units larger than phrases.

Deletion was the dominant strategy for the sys-
tems; the Transformer systems and in-domain
DRESS system performed Deletion more fre-
quently than humans. Human evaluation scores
suggest the trade-off between meaning preserva-
tion and simplicity according to the size of the lin-
guistic unit that is deleted; the deletion of a larger

22The detailed guidelines are presented in Appendix A.1.
23When calculating the inter-annotator agreement scores,

we excluded the non-rewritten sentences. If we include them,
the scores for G, M, and S rise to 0.618, 0.433, and 0.725,
respectively.

24The overall results of the human evaluation are presented
in Appendix C.2.
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Number of annotated instances
Human Transformer DRESS SUC Human evaluation

Surface strategy ref. IND OOD IND OOD IND OOD G M S

Replacement 29 20 12 19 12 12 0
(S1) Replace at punctuation level (3) (3) (0) (1) (0) (0) (0) 4.63 3.25 3.88
(S2) Replace at word level (4) (10) (5) (13) (11) (10) (0) 3.80 3.72 3.14
(S3) Replace at phrase level (11) (7) (6) (5) (1) (2) (0) 4.26 3.81 3.76
(S4) Replace at clause level (4) (0) (0) (0) (0) (0) (0) - - -
(S5) Replace at sentence level (7) (0) (1) (0) (0) (0) (0) 5.00 4.50 4.50

Deletion 30 39 35 32 17 16 0
(S6) Delete at punctuation level (4) (0) (3) (1) (0) (0) (0) 3.38 3.50 3.00
(S7) Delete at word level (6) (5) (10) (5) (2) (7) (0) 3.67 3.31 3.29
(S8) Delete at phrase level (12) (16) (10) (10) (2) (5) (0) 3.84 3.29 3.78
(S9) Delete at clause level (3) (18) (12) (16) (13) (4) (0) 3.91 3.12 3.91
(S10) Delete at sentence level (5) (0) (0) (0) (0) (0) (0) - - -

Addition 20 1 0 0 0 1 0
(S11) Add at punctuation level (0) (0) (0) (0) (0) (0) (0) - - -
(S12) Add at word level (3) (1) (0) (0) (0) (1) (0) 3.75 4.00 3.50
(S13) Add at phrase level (8) (0) (0) (0) (0) (0) (0) - - -
(S14) Add at clause level (1) (0) (0) (0) (0) (0) (0) - - -
(S15) Add at sentence level (8) (0) (0) (0) (0) (0) (0) - - -

Integration 0 0 0 0 0 0 0
(S16) Integrate two sentences (0) (0) (0) (0) (0) (0) (0) - - -
(S17) Integrate more than two sentences (0) (0) (0) (0) (0) (0) (0) - - -

Splitting 3 0 0 0 0 0 0
(S18) Split by phrase (0) (0) (0) (0) (0) (0) (0) - - -
(S19) Split by clause (3) (0) (0) (0) (0) (0) (0) - - -

Move 8 0 1 0 0 1 0
(S20) Move constituents (4) (0) (1) (0) (0) (1) (0) 3.50 2.50 2.25
(S21) Move a sentence (4) (0) (0) (0) (0) (0) (0) - - -

No transformation 15 4 16 8 23 16 18
(S22) Use an identical sentence (15) (4) (16) (8) (23) (16) (18) 5.00 5.00 3.00

Total 105 64 64 59 52 46 18

Precision 0.313 0.297 0.288 0.327 0.283 0.278
Recall 0.190 0.181 0.162 0.162 0.124 0.048

Table 2: Number of annotated instances for the surface strategies. Three TS systems are trained with in-domain
Newsela data (IND) and out-of-domain Wikipedia data (OOD). Human evaluation scores are the averaged scores
for system outputs that involve each strategy (G: grammaticality; M: meaning preservation; S: simplicity).

unit can increase the simplicity score, but decrease
the meaning preservation score. It is also notable
that the number of (S9) Delete at clause level per-
formed by the systems was much larger than that
performed by humans. This is attributable to the
structure of the training data, which are aligned
at the single-sentence level. Consider the case in
which the complex sentence “I bought an apple
and ate it” is split into two sentences, “I bought an
apple” and “I ate it”. In the current research prac-
tices for preparing training data, the two simplified
sentences are separately aligned with the complex
sentence. This would induce the systems to exces-
sively learn large deletions, such as Examples 1 in
Table 3. It is also important to note that none of
the systems performed (S10) Delete at sentence
level. This may be because the training data did
not include instances of sentence deletion, as the
alignment of such cases is difficult.

The systems seldom performed Addition,
whereas humans performed this 20 times at var-

ious linguistic levels. Although instances of addi-
tion were included in the training data, even word-
and phrase-level addition strategies were hardly ob-
served. This implies the fundamental difficulties
of addition operations for the current models and
training data.

The systems used in this study cannot learn Inte-
gration (S16 and S17)25, Splitting (S18 and S19),
and (S21) Move a sentence because of the afore-
mentioned data structure problem. Although some
end-to-end systems can perform Splitting and In-
tegration (Scarton and Specia, 2018), these supra-
sentential operations remain to be fully achieved
in the neural TS research. To address the Splitting
operation, we can refer to the rich accumulation of
linguistically motivated studies on syntactic simpli-
fication (Scarton et al., 2017).

The final two rows in Table 2 show the overall
25Neither did the humans perform Integration in the evalua-

tion dataset. We observed six instances of Integration in the
1,133 instances used for taxonomy creation.
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# Model Text

1 Input But when schools start later, teens get to class on time and find it easier to stay awake, a new study finds.
Transformer (IND) but when schools start later , teens get to class on time .
DRESS (IND) But when schools start later , teens get to class on time .
Human reference A new study finds that when schools start later, teens get to class on time. They also find it easier to stay awake.

2 Input Not everyone can become a genius or a star athlete, but they can improve the skills they have and develop new ones.
Transformer (IND) not everyone can be a genius or a star athlete .

3 Input Knowing this, schools in several districts have begun to shift their start times.
Human reference Knowing this about teens, schools in several districts have begun to shift their start times.

4 Input Information from millions of cones reaches our brains as electrical signals that communicate all the types of light
reflected by what we see, which is then interpreted as different shades of color.

Human reference The cones then send information to our brains, which interprets the light we see as different colors.

Table 3: Examples of system outputs and references.

precision and recall of adopted strategies by the sys-
tems in comparison with humans’ strategies for the
same sentences. The precision scores are about 0.2–
0.3 and the recall scores are all below 0.2, which
means that humans and systems tend to adopt differ-
ent strategies even for the same sentence. Although
further investigations are needed to draw insights
from these results, we should be aware of the sub-
stantial differences between humans and machines
in terms of simplification operations.26

5.2 Content Strategies

Table 4 lists the annotation results for the content
strategies. While humans performed (C1) Trans-
form syntactic structure nine times, the systems
rarely did. Most C1 cases by humans involved
sentence splitting, and as previously mentioned,
the systems could not learn this operation from the
current training data.

The systems generally performed various Con-
tent deletion strategies. It is worth noting that
(C10) Delete important information, a large dele-
tion corresponding to (S9) Delete at clause level
in surface strategies, was performed frequently. Ex-
ample 2 in Table 3 illustrates the deletion of the
latter clause. Although the output can be regarded
as a simplified version of the input at the sentence
level, this deletion might be inappropriate in terms
of logical flow in the entire document. In this sense,
these categories might be regarded as (E1) Inap-
propriate deletion in the error taxonomy. Indeed,
humans did not adopt this strategy.

The systems did not perform any Content ad-
dition, which corresponds to the lack of Addition
of the surface strategies. These strategies require
contextual information in many cases like “this”→

26These differences might be attributed not only to the in-
ability of systems to replicate human performance, but also
to the nature of TS tasks. Examining the differences between
human editors would be an important future task.

“this about teens” (See Example 3 in Table 3). How-
ever, even the context-aware SUC models cannot
perform these addition operations.

As for Content change, the Transformer and
DRESS performed (C20) Paraphrase into a simi-
lar phrase more than humans. The neural systems
generally have abilities to perform local rewriting
like “become”→ “be” (see Example 2 in Table 3).
Similarly, (C25) Paraphrase into an essential
point, which substantially concerns deleting or al-
tering local elements like “color production” →
“color”, was performed well by the in-domain sys-
tems. By contrast, the systems cannot perform
(C21) Paraphrase into an explanatory expres-
sion and (C24) Paraphrase into a concrete ex-
pression. The former requires external or contex-
tual knowledge to add information, such as “the
belief that your intelligence can grow”→ “which
means he believes that your intelligence can grow”.
The latter requires word sense disambiguation or
anaphora resolution to explicitly indicate the hid-
den meaning, such as “ones”→ “friendships”. In
general, current systems have limitations in per-
forming these sophisticated Content change oper-
ations, such as Example 4 in Table 3.

The systems hardly performed Document-level
adjustment. (C27) Change information flow cor-
responds to (S21) Move a sentence at surface level,
which is architecturally impossible for the systems
used in this study. The other strategies, C28–C30,
depend on the results of other operations in the doc-
ument, and are fundamentally difficult for current
systems that do not exploit the output-side context.

5.3 Errors

Table 5 lists the annotation results for the simpli-
fication errors. As mentioned in §5.2, the number
of (E1) Inappropriate deletion can increase if
we consider (C10) Delete important information
as an error. The instances of (E2) Inappropriate
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Number of annotated instances
Human Transformer DRESS SUC Human evaluation

Content strategy ref. IND OOD IND OOD IND OOD G M S

No content change 31 7 24 11 24 17 18
(C1) Transform syntactic structure (9) (0) (1) (0) (0) (1) (0) 3.50 2.50 2.25
(C2) Paraphrase into an abbreviation (0) (0) (0) (1) (0) (0) (0) 3.00 3.50 4.00
(C3) Paraphrase into a non-abbreviation (1) (0) (2) (0) (0) (0) (0) 3.50 3.25 2.25
(C4) Paraphrase into standard form (6) (3) (5) (2) (1) (0) (0) 4.23 3.73 3.55
(C5) Remain unchanged (15) (4) (16) (8) (23) (16) (18) 5.00 5.00 3.00

Content deletion 24 37 32 31 16 14 0
(C6) Delete introduction / conclusion (2) (1) (0) (1) (0) (1) (0) 2.83 2.83 4.00
(C7) Delete a parallel element (1) (5) (1) (6) (0) (1) (0) 3.50 3.27 3.69
(C8) Delete information for cohesion (5) (6) (6) (7) (3) (3) (0) 3.94 3.30 3.64
(C9) Delete a modifier (9) (6) (10) (4) (2) (5) (0) 3.94 3.37 3.46
(C10) Delete important information (0) (5) (6) (4) (1) (1) (0) 3.91 3.06 3.97
(C11) Delete detail / extra information (7) (14) (9) (9) (10) (3) (0) 3.93 3.19 3.92

Content addition 17 0 0 0 0 0 0
(C12) Add introduction / conclusion (0) (0) (0) (0) (0) (0) (0) - - -
(C13) Add a parallel element (2) (0) (0) (0) (0) (0) (0) - - -
(C14) Add contextual information (0) (0) (0) (0) (0) (0) (0) - - -
(C15) Add information for cohesion (1) (0) (0) (0) (0) (0) (0) - - -
(C16) Add a modifier (4) (0) (0) (0) (0) (0) (0) - - -
(C17) Add detail / extra information (10) (0) (0) (0) (0) (0) (0) - - -

Content change 22 19 8 17 11 15 0
(C18) Change aspect (1) (2) (0) (0) (0) (1) (0) 3.67 3.83 3.67
(C19) Change modality (0) (1) (1) (0) (0) (2) (0) 3.00 3.25 2.50
(C20) Paraphrase into a similar phrase (2) (4) (3) (7) (5) (1) (0) 3.75 3.60 3.18
(C21) Paraphrase into an explanatory expression (4) (0) (0) (0) (0) (0) (0) - - -
(C22) Paraphrase into a direct expression (6) (3) (0) (1) (2) (2) (0) 3.88 3.56 3.44
(C23) Paraphrase into a brief expression (1) (1) (1) (1) (0) (0) (0) 4.00 3.33 4.33
(C24) Paraphrase into a concrete expression (1) (0) (0) (0) (0) (0) (0) - - -
(C25) Paraphrase into an essential point (4) (6) (1) (7) (2) (5) (0) 4.02 3.81 3.55
(C26) Paraphrase into a different view (3) (2) (2) (1) (2) (4) (0) 4.09 3.95 3.00

Document-level adjustment 11 1 0 0 1 0 0
(C27) Change information flow (4) (0) (0) (0) (0) (0) (0) - - -
(C28) Delete for adjustment (2) (1) (0) (0) (1) (0) (0) 4.25 3.25 4.00
(C29) Add for adjustment (2) (0) (0) (0) (0) (0) (0) - - -
(C30) Paraphrase for adjustment (3) (0) (0) (0) (0) (0) (0) - - -

Total 105 64 64 59 52 46 18

Precision 0.219 0.250 0.237 0.308 0.239 0.278
Recall 0.133 0.152 0.133 0.152 0.105 0.048

Table 4: Number of annotated instances for the content strategies.

addition were also observed. In particular, SUC
produced many such instances. Considering the ob-
servation that almost no instance was annotated as
Addition in Table 2, what the systems added to out-
put sentences were not judged as (successful) strate-
gies but as errors. (E3) Inappropriate paraphrase
is the most frequent error type for most systems,
which includes, for example, “intelligence” (being
intellectual) → “spy” and “cells called neurons”
→ “DNA”. These errors are problematic because
incorrect information can be conveyed to readers
without being noticed as errors.

For Transformer and DRESS, the in-domain sys-
tems trained on Newsela generally produced more
errors than the out-of-domain systems trained on
Wikipedia. Considering the fewer number of No
transformation cases of in-domain systems (see
Table 2), in-domain systems tended to be more ag-
gressive but erroneous than out-of-domain systems.

For all the human evaluation scores, except for

the meaning preservation score for (E2) Inappro-
priate addition, the averaged scores are below 3.
This indicates that inclusion of any error can lead
to an unacceptable output sentence.

6 Conclusions and Outlook

To better advance TS research and practice, in this
study, we conducted an analytical evaluation of cur-
rent neural TS systems and showed their potential
and limitations in comparison with human perfor-
mance. Using our proposed evaluation framework
consisting of taxonomies of surface strategies, con-
tent strategies, and errors, we annotated both the
human references and outputs of six systems (three
models trained on in-domain and out-of-domain
datasets). The results demonstrated that, while cur-
rent TS systems can perform deletions and local
substitutions, their performance is far behind hu-
man parity, owing to the following limitations:
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Number of annotated instances
Transformer DRESS SUC Human evaluation

Error category IND OOD IND OOD IND OOD G M S

(E1) Inappropriate deletion 6 2 7 0 9 1 2.62 2.82 2.80
(E2) Inappropriate addition 6 2 4 4 12 51 2.68 3.86 2.11
(E3) Inappropriate paraphrase 17 5 28 14 15 0 2.83 2.53 2.76
(E4) Non-sentence 0 0 0 1 3 0 1.00 1.25 1.00

Total 29 9 39 19 39 52

Table 5: Number of annotated instances for the error categories.

• The systems have difficulties in substituting a
linguistic unit larger than a phrase, including
sentence splitting.

• Excessive deletion of clause-level important
information has occurred frequently.

• The systems tried to perform addition opera-
tions; however, they always failed to produce
correct results.

Our analytical evaluation also suggests detailed
paths to overcome these issues. For example, in
addition to improving the capacity of end-to-end
neural models, utilizing technologies tailored to
particular operations such as sentence splitting and
explanation generation can be helpful. To mitigate
the excessive deletion, it would be effective to re-
fine the alignment methods. Exploiting document-
level contexts on both input and output sides and/or
document-external knowledge is a necessary task
for successful content addition.

Limitations

Applicability. The primary limitation in our study
is that we chiefly used the Newsela dataset to build
the annotation framework, i.e., the taxonomies and
decision trees, and conduct the analytical evalua-
tion. While we assume that the Newsela dataset
includes diverse simplification operations as men-
tioned in §3.1, the applicability of our frame-
work to other domains or datasets, such as Simple
Wikipedia, needs to be investigated.27

The diversity of adopted TS systems is also lim-
ited. As the aim of this pilot study is to demon-
strate the usefulness of analytical evaluation, we
mainly selected orthodox baseline models. To fur-
ther improve the applicability, it is important to
examine other types of TS models, such as control-
lable models (e.g., Maddela et al., 2021; Nishihara
et al., 2019; Scarton and Specia, 2018) and edit-
based models (e.g., Dong et al., 2019; Stahlberg
and Kumar, 2020). Further investigation of various

27The characteristics of Simple Wikipedia as a TS data
resource have been extensively discussed (Xu et al., 2015).

document-level models other than SUC used in this
study will also be needed (Sun et al., 2021).

Although our taxonomies are mostly language
independent, the forms of decision trees for strat-
egy annotation may need to be changed depending
on the language because the decision order was
defined based on the degree of difficulty in iden-
tifying the strategies, which might be language
dependent.28

Feasibility. The annotation of simplification strate-
gies and errors was conducted by the authors, who
were involved in the development of the annotation
framework. Although the authors independently
conducted the annotation task and substantial inter-
annotator agreement was achieved, the feasibility
of annotation by those outside this study has not
been examined. To improve the feasibility, more de-
tailed instructions and a sufficient training session
may be needed. Although sharing the annotated
data would be beneficial for the feasibility, it is
difficult due to copyright issues.
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Score Grammaticality/Fluency (G) Meaning preservation/Adequacy (M) Simplicity (S)

5 The target sentence is fluent (na-
tive speaker level) and grammati-
cally correct.

The target sentence adequately
conveys the core meaning of the
original sentence.

The target sentence is much sim-
pler than the original sentence.

4 The target sentence is almost flu-
ent (non-native speaker level) and
grammatically correct

The target sentence mostly con-
veys the core meaning of the origi-
nal sentence.

The target sentence is simpler than
the original sentence.

3 The target sentence is less fluent
with some ungrammatical parts,
but understandable

The core meaning of the original
text is not conveyed, but the infor-
mation of the the original text is
partially preserved.

The target sentence is as sim-
ple/difficult as the original sen-
tence.

2 The target sentence is ungrammati-
cal, but partially understandable.

The meaning of the target sentence
is completely different from that
of the original sentence.

The target sentence is more diffi-
cult than the original sentence.

1 The target sentence is completely
unintelligible.

It is impossible to assess the mean-
ing of the target sentence because
of its unintelligibility.

It is impossible to assess the sim-
plicity of the target sentence be-
cause of its unintelligibility.

Table 6: Guidelines for human evaluation.

A Guidelines

A.1 Guidelines for Human Evaluation

Table 6 lists the guidelines for human evaluations.
We instructed annotators to consider document-
level coherence when evaluating each sentence.
Additionally, we instructed them to give an S score
of 1 to the sentence that was given an M score of 1
or 2.

A.2 Annotation Guidelines for Simplification
Strategies

Figures 3 and 4 show the guidelines, i.e., decision
trees, for the annotation of simplification strategies.
The procedures to build a decision tree were as
follows: (1) through the classification of sample
instances by trial and error, the first author created
the prototype decision tree in a way that easier
decisions can be made in earlier stages; (2) the
third author validated the prototype by classifying
sample instances using it; (3) based on the feedback
from the third author, the first author refined the
prototype.

L1 represents the category of strategy, and L2
represents the strategy. Note that S# and C# in the
figures do not indicate the strategy numbers. In
the annotation task described in §4.2, we used the
Japanese versions.

B Examples of Strategies and Errors

Tables 7 and 8 list examples of the surface and
content strategies. Table 9 lists examples of er-
rors. These sentences were extracted from the in-

stances of human simplification,29 which are based
on Newsela articles (see §3.1 for detail).

C Additional Evaluation Results

C.1 Automatic Evaluation Scores
Table 10 shows the overall results of the automatic
evaluation in terms of SARI, BLEU, and FKGL, all
of which were measured by using EASSE (Alva-
Manchego et al., 2019a)30 at the corpus level.

For preparing the evaluation data, we manu-
ally aligned complex–simplest sentences for five
Newsela articles. To properly implement SUC, we
excluded sentences that do not have two preceding
or following sentences and that consist of less than
four words. We finally used 1,010 sentences for
the automatic evaluation.

C.2 Overall Human Evaluation Scores
Table 11 shows the overall results of the human
evaluation. The evaluation guidelines are presented
in Appendix A.1.

29An exception is (C10) Delete important information in
Table 8, the example of which was extracted from the outputs
of Transformer.

30https://github.com/feralvam/easse
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S1

Is the sentence rewritten?

Yes

No

Go to S2
L1: No transformation


L2: Use an identical sentence

S2

Do constituents move in the
sentence or does the
sentence move in a

document? 

Yes

No

L1: Move

Go to S4

S3

Does the sentence move in a
document? 

Yes

No

L2: Move a sentence

L2: Move constituents

S4

Is the sentence split or
integrated?

Yes

No

Go to S5

Go to S7

S5

Is the sentence split?

Yes

No

L1: Split

L1: Integration

S12

Are two sentences integrated
into one sentence?

Yes

No

L2: Integrate two sentences
L2: Integrate more than two

sentences

S6

Is the sentence split by a
break between clauses?

Yes

No

L2: Split by clause

L2: Split by phrase

S7

Yes

No

L1: Replacement

Go to S13

Does the rewriting replace anything?
Or is the sentence structure changed

without omitting constituents?
Neg ex) show me that  -> show that

S8

Are punctuation marks
replaced?

Yes

No

L2: Replace at punctuation　
level

Go to S9

S9

Is the unit of the rewriting
sentence level?

Yes

No

L2: Replace at sentence level

Go to S10

S10

Is the functional sentence
type changed?


Ex) declarative, interrogative,
imperative, and exclamatory sentence


Yes

No

L2: Replace at sentence level

Go to S11

S11

Is the sentence pattern
changed, including in a

clause?

Yes

No

L2: Replace at sentence level

Go to S14

S14

Is a word replaced?

Yes

No

Go to S15

Go to S20

S20

Is a phrase replaced?

Yes

No

Go to S21

Go to S30

S21

Is a phrase replaced into a
clause?

Yes

No

L2: Replace at clause level

Go to S22

S22

Is a phrase replaced into a
phrase?

Yes

No

L2: Replace at phrase level

Go to S23

S23

Are dependent elements deleted?

Ex) the video game -> the game


Neg Ex) playing games -> games


Yes

No

L1: Deletion

L2: Replace at phrase level

S24

Is a word deleted?

Yes

No

L2: Delete at word level

L2: Delete at phrase level

S30

Is a clause replaced into a
word or phrase?

Yes

No

L2: Replace at clause level

L2: Replace at sentence level

S13

Are elements added?

Yes

No

L1: Addition

L1: Deletion

S19

Are punctuation marks
added?

Yes

No

L2: Add at punctuation level

Go to S27

S27

Is a sentence added?

Yes

No

L2: Add at sentence level

Go to S28

S28

Is a clause added?

Yes

No

L2: Add at clause level

Go to S29

S29

Is a word added?

Yes

No

L2: Add at word level

L2: Add at phrase level

S25

Are punctuation marks
deleted?

Yes

No

L2: Delete at punctuation level

Go to S26

S26

Is a sentence deleted?

Yes

No

L2: Delete at sentence level

Go to S31

S31

Is a clause deleted?

Yes

No

L2: Delete at clause level

Go to S32

S32

Is a word deleted?

Yes

No

L2: Delete at word level

L2: Delete at phrase level

S15

Is a word replaced into a
phrase?

Yes

No

Go to S16

Go to S18

S16

Are dependent elements added?

Ex) the animals -> the small animals

Yes

No

L1: Addition

L2: Replace at phrase level

S17

Is a word added?

Yes

No

L2: Add at word level

L2: Add at phrase level

S18

Is a word replaced into a
word?

Yes

No

L2: Replace at word level

L2: Replace at clause level

Figure 3: Annotation guidelines for surface strategies.
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C1

Is the sentence meaning changed?

Ex) the rewriting that makes a
sentence more grammatical

NegEx) paraphrasing into a similar
word, a reference, and a pronoun.

Yes

No

Go to CN1

Go to C2

C2

Is any content in the
sentence is deleted?


Yes

No

Go to CD1

Go to C3

C3

Is any content added to the
sentence?


Yes

No

Go to CA1

Go to CC1

CN1

Does the sentence move in a
document? 

Yes

No

L1: Document-level adjustment

L2: Change information flow

L1: No content change

CN2

Is the sentence rewritten?

Yes

No

L2: Remain unchanged

Go to CN3

CN3

Does alternation of an
abbreviation and non-
abbreviation occur?

Yes

No

Go to CN4

Go to CN5

CN4

Is an abbreviation used?

Yes

No

L2: Paraphrasing into an
abbreviation

L2: Paraphrasing into a non-
abbreviation

CN5
Is a variation form or

an ungrammatical
 expression is normalized?

Or unnecessary punctuation
marks are deleted?

Yes

No

L2: Paraphrasing into standard form

L2: Transform syntactic structure

CD1

Is the deletion caused by the
changes in other sentences?


Yes

No

L1: Document-level adjustment

L2: Deletion for adjustment

L1: Content deletion

CD2
Is important information deleted

with degradation of the document-
level coherence?


Ex) You got a phone call while you
were out. -> You were out.


Yes

No

L2: Delete important
information
Go to CD3

CD3

Is an expression that functions as
the introduction or conclusion in

the sentence / paragraph /
document deleted?


Yes

No

L2: Delete introduction /
conclusion
Go to CD4

CD4

Is a parallel element deleted?


Yes

No

L2: Delete a parallel element

Go to CD5

CD5

Is a causal explanation,
discourse marker, or conjunctive

expression deleted?

Ex) It is so popular that SV -> SV 


Yes

No

L2: Delete information for
cohesion

Go to CD6

CD6

Is a modifier deleted?


Yes

No

L2: Delete a modifier
L2: Delete detail / extra

information

CA1

Is the addition caused by
the changes in other

sentences?


Yes

No

L1: Document-level adjustment

L2: Add for adjustment
L1: Content addition

CA2

Is an expression that functions as
the introduction or conclusion in

the sentence / paragraph /
document added?


Yes

No

L2: Add introduction /
conclusion
Go to CA3

CA3

Is a parallel element added?


Yes

No

L2: Add a parallel element

Go to CA4

CA4

Is an explanation or reason
that is inferable without

external knowledge added?

Ex) "The recipe was so popular"

for "Nestlé's sales increased"


Yes

No

L2: Add contextual information

Go to CA5

CA5

Is a causal explanation,
discourse marker, or conjunctive

expression added?

Ex) SV -> It is so popular that SV 


Yes

No

L2: Add information for
cohesion

Go to CA6

CA6

Is a modifier added?


Yes

No

L2: Add a modifier
L2: Add detail / extra

information

CC1

Is the change caused by
the changes in other

sentences?


Yes

No

L1: Document-level adjustment

L2: Paraphrase for adjustment

L1: Content change

CC2

Is the aspect or modality
changed?


Yes

No

Go to CC3

Go to CC4

CC3

Is the aspect changed?


Yes

No

L2: Change aspect

L2: Change modality

CC4

Is an expression paraphrased
into a similar phrase?

Ex) achieve -> reach


men -> people


Yes

No

L2: Paraphrasing into a similar
phrase

Go to CC5

CC5

Is an expression paraphrased
into an explanatory one without

adding information that is beyond
common knowledge?


Yes

No

L2: paraphrase into an
explanatory expression

Go to CC6

CC6

Is a metaphorical, abstract, or
difficult expression paraphrased

into what it directly means?


Yes

No

L2: Paraphrase into a direct
expression
Go to CC7

CC7
Is an expression paraphrased
into a brief expression with the

same or less information?

Ex) a plant called coca plant -> a

coca plant


Yes

No

L2: Paraphrase into a brief
expression
Go to CC8

CC8

Is an expression paraphrased
into a hyponym or referent?

Ex) a instrument -> a guitar


ones -> friendships


Yes

No

L2: Paraphrase into a concrete
expression
Go to CC9

CC9

Is an expression paraphrased
into one that captures the

particular sense of the
original expression?


Yes

No

L2: Paraphrase into an
essential point

L2: Paraphrase into a different
view

Figure 4: Annotation guidelines for content strategies.
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Strategy Example

Replacement
(S1) Replace at punctuation level Comp. ... 10,000 other neurons!

Simp. ... 10,000 other neurons.
(S2) Replace at word level Comp. ... make better surgeons.

Simp. ... make good surgeons.
(S3) Replace at phrase level Comp. ... about playing video games is friendship.

Simp. ... about video games is friendship.
(S4) Replace at clause level Comp. The persistence you use in games ... .

Simp. The persistence in games ... .
(S5) Replace at sentence level Comp. People who tried the syrup liked the taste.

Simp. People liked the taste of the syrup.
Deletion

(S6) Delete at punctuation level Comp. ... “Toll House Chocolate Crunch Cookies.”
Simp. ... Toll House Chocolate Crunch Cookies.

(S7) Delete at word level Comp. ... inside and outside the video game.
Simp. ... inside and outside the game.

(S8) Delete at phrase level Comp. Beating the final boss or another really good player ... .
Simp. Beating another really good player ... .

(S9) Delete at clause level Comp. He licked the ice that was stuck around it.
Simp. He licked the ice.

(S10) Delete at sentence level Comp. So does saving a teammate when they’re down.
Simp. ϕ

Addition
(S11) Add at punctuation level This strategy does not exist in our collected instances.
(S12) Add at word level Comp. Remember games are ... .

Simp. Remember that games are ... .
(S13) Add at phrase level Comp. You have to be smart.

Simp. In video games, you have to be smart.
(S14) Add at clause level Comp. ... — the monkeys, apes, and gorillas— ... .

Simp. ... — the monkeys, apes, and gorillas that are most like human—
... .

(S15) Add at sentence level Comp. ϕ
Simp. Scientists have studied video games.

Integration
(S16) Integrate two sentences Comp. Epperson pulled the stick. He licked the frozen juice.

Simp. Epperson pulled the stick and licked the frozen juice.
(S17) Integrate more than two sentences Comp. We got masks. We got gloves. We got all those hand wipes.

They’re everywhere.
Simp. Now masks, gloves, hand wipes, and other material are every-

where
Splitting

(S18) Split by phrase Comp. Think about how boring it can be to play an easy game
Simp. Think about playing an easy game. It can get boring.

(S19) Split by clause Comp. Ruth Wakefield was an expert chef, and the inn became famous
for its desserts.

Simp. Ruth Wakefield was an expert chef. The inn became famous for its
desserts.

Move
(S20) Move constituents Comp. It can also help fix broken ones.

Simp. It also can help fix broken ones.
(S21) Move a sentence The complex and simplified sentences are identical.

No transformation
(S22) Use an identical sentence The complex and simplified sentences are identical.

Table 7: Examples of surface strategies (Comp.: Complex sentence; Simp.: Simplified sentence).
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Strategy Example

No content change
(C1) Transform syntactic structure Comp. Some people think ... are waste of time or bad for you.

Simp. Some people think ... are a waste of time. Some people
think they are bad for you.

(C2) Paraphrase into an abbreviated form Comp. ... seem like they’ve been around forever.
Simp. ... seem like they have been around forever.

(C3) Paraphrase into a non-abbreviated form Comp. Helping build ... .
Simp. Helping to build ... .

(C4) Paraphrase into a standard form Comp. But ... .
Simp. However, ... .

(C5) Paraphrase into an identical sentence The complex and simplified sentences are identical.
Content deletion

(C6) Delete introduction / conclusion Comp. Think about your favorite games.
Simp. ϕ

(C7) Delete a parallel element Comp. ... feel strong and popular.
Simp. ... feel strong.

(C8) Delete information for cohesion Comp. The treats were so popular that Epperson started ... .
Simp. Epperson started ... .

(C9) Delete a modifier Comp. He licked the ice that was stuck around it.
Simp. He licked the ice.

(C10) Delete important information Comp. Winkler teamed up with another scientist named Greg
Bryant, a professor ... .

Simp. He is a professor ... . [Transformer IND]
(C11) Delete detail / extra information Comp. ... created the semi-sweet morsel, or chocolate chip.

Simp. ... created chocolate chip.
Content Addition

(C12) Add introduction / conclusion Comp. ϕ
Simp. Chocolate chip cookies seem like they’ve been around

forever.
(C13) Add a parallel element Comp. ... a different culture.

Simp. ... a different culture or speak a different language.
(C14) Add contextual information Comp. ϕ

Simp. The company was selling more and more chocolate
bars.

(C15) Add information for cohesion Comp. People can recognize it, even if ... .
Simp. Laughter is so important to humans that people can

recognize it, even if ... .
(C16) Add a modifier Comp. It can help fix broken ones.

Simp. It can also help fix broken ones.
(C17) Add detail / extra information Comp. ... to connect and bond.

Simp. ... to connect and bond with others.
Content change

(C18) Change aspect Comp. You might do ... .
Simp. You might start doing ... .

(C19) Change modality Comp. They can teach ... .
Simp. They teach ... .

(C20) Paraphrase into a similar phrase Comp. ... Nestlé’s sales soared.
Simp. ... Nestlé’s sales increased.

(C21) Paraphrase into an explanatory expression Comp. ... to make a headache medicine.
Simp. ... to make a medicine to fix headaches.

(C22) Paraphrase into a direct expression Comp. ... to shred a guitar in real life.
Simp. ... to play a guitar in real life.

(C23) Paraphrase into a brief expression Comp. ... parts of a plant called the coca plant.
Simp. ... parts of the coca plant.

(C24) Paraphrase into a concrete expression Comp. It also can fix broken ones.
Simp. It also can fix broken friendships.

(C25) Paraphrase into an essential point Comp. It is one of many benefits ... .
Simp. It is one of many good things ... .

(C26) Paraphrase into a different view Comp. The cookies became so popular ... .
Simp. The recipe became so popular ... .

Documet-level adjustment
(C27) Change information flow The complex and simplified sentences are identical.
(C28) Delete for adjustment Comp. This makes you see that solving problems can be fun.

Simp. Solving problems can be fun.
(C29) Add for adjustment Comp. You also have to be smart.

Simp. In video games, you also have to be smart.
(C30) Paraphrase for adjustment Comp. It shows you that ... .

Simp. They shows you that ... .

Table 8: Examples of content strategies (Comp.: Complex sentence; Simp.: Simplified sentence).
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Error Example

(E1) Inappropriate deletion Input When you think, feel, move, or use your senses, signals travel through this
network.

Output When you think , feel , move , or use your senses . [DRESS IND]
(E2) Inappropriate addition Input It’s how we tell friends that we find their joke funny, ...

Output it’s how we tell friends that we find their joke funny funny, ... [Transformer
IND]

(E3) Inappropriate paraphrase Input ... but rats can make a very high-pitched trill.
Output ... but rats can make a very high-pitched noise. [Transformer IND]

(E4) Non-sentence Input The animals that laugh the most include primates like monkeys, rats, and
mammals that live in the ocean like dolphins.

Output humans, on the other hand, like monkeys, rats and mammals that live in
the ocean like dolphins. [Transformer IND]

Table 9: Examples of errors.

Transformer DRESS SUC

IND OOD IND OOD IND OOD

SARI ↑ 37.57 30.89 37.08 31.83 31.09 22.24
BLEU ↑ 32.20 38.22 37.11 39.29 31.92 24.12
FKGL ↓ 3.00 4.40 3.27 4.02 4.20 2.61

Table 10: Results of automatic evaluation. The upper/down arrow indicates that the higher/lower the score, the
better the performance.

Transformer DRESS SUC

IND OOD IND OOD IND OOD

Grammaticality/Fluency 4.30 4.60 3.55 4.45 3.23 3.76
Meaning preservation/Adequacy 3.52 4.21 3.38 4.25 3.35 4.64
Simplicity 3.74 3.42 3.20 3.15 2.46 2.40

Table 11: Results of human evaluation using a five-point Likert scale.
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Figure 5: The distribution of annotations for surface
strategies.

D Distributions of Annotations

Figures 5, 6, and 7 show the distributions of an-
notations conducted by the two annotators in §4.2.
S#, C#, and E# correspond to the surface strat-
egy, content strategy, and error, respectively. When
displaying the distributions for the strategies, we
aggregated the annotations for the errors into one
class and vice versa.
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Figure 6: The distribution of annotations for content
strategies.
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Abstract

Commonsense generation aims to generate
a plausible sentence containing all given un-
ordered concept words. Previous methods fo-
cusing on this task usually directly concatenate
these words as the input of a pre-trained lan-
guage model (PLM). However, in PLMs’ pre-
training process, the inputs are often corrupted
sentences with correct word order. This input
distribution discrepancy between pre-training
and fine-tuning makes the model difficult to
fully utilize the knowledge of PLMs. In this pa-
per, we propose a two-stage framework to alle-
viate this issue. Firstly, in pre-training stage, we
design a new format of input to endow PLMs
the ability to deal with masked sentences with
incorrect word order. Secondly, during fine-
tuning, we insert the special token [MASK] be-
tween two consecutive concept words to make
the input distribution more similar to the in-
put distribution in pre-training. We conduct
extensive experiments and provide a thorough
analysis to demonstrate the effectiveness of our
proposed method. The code is available at
https://github.com/LHRYANG/CommonGen.

1 Introduction

To investigate machines’ ability of generating logi-
cal sentences, Lin et al. (2020) propose the Com-
monsense Generation task. Given a set of concept
words, this task is designed to generate a sentence
which not only contains the given concepts but
also can correctly describe the relations between
concepts. An example is shown in Table 1.

Existing methods employ the Pre-trained
Languege Models (PLMs) such as BART (Lewis
et al., 2020), GPT-2 (Radford et al., 2019) as the
backbone to solve this problem. They (Liu et al.,
2021; Fan et al., 2020; Wang et al., 2021; Li et al.,
2021) usually take the concatenated concepts words
as the inputs. However, such processing of inputs

∗This work was done during an internship at Tencent.

concept words {wear, player, field, jersey}

references The player will wear a jersey while on the field.
A soccer player wears a jersey on the field.
· · ·

output of our model football player wears a jersey on the field.

Table 1: An example of Commonsense Generation task

causes a huge gap between pre-training and fine-
tuning. Specifically, these concept words are un-
ordered which means the order of the input words is
inconsistent with the order of these words in the ref-
erences. It seems incompatible to PLMs pre-trained
with ordered words (For BART (Lewis et al., 2020),
sentence permutation is adopted, nevertheless, the
word order within a sentence remains correct.). As
studied by Zhao et al. (2022) and Ou et al. (2022),
the word order of inputs can hinder the exploita-
tion of knowledge existing in PLMs. Moreover,
even if the word order of inputs is correct, for some
LMs (e.g., BART (Lewis et al., 2020), T5 (Raffel
et al., 2020)), the inputs are masked sentences dur-
ing pre-training, while in commonsense generation
task, the inputs are unconnected word sequences.
This kind of discrepancy also degrades the models’
performance.

In this paper, we propose a two-stage frame-
work to bridge the gap between pre-training and
fine-tuning for this task. Specifically, we firstly
propose to introduce a domain-specific pre-training
stage using the tasks’ training dataset. The pre-
training objective is designed to recover original
sentences given the masked and shuffled sentences.
Therefore, the PLMs’ ability of reasoning out new
concepts or relations (mask operation) and pro-
cessing order-agnostic inputs (shuffle operation)
is enhanced. Secondly, in downstream task fine-
tuning, we insert the special token [MASK] between
two consecutive concept words. This makes the
input distribution more similar to the distribution
in pre-training. The experimental results shows
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Figure 1: An overview of our model. _ represents the [MASK] token.

that our proposed model can significantly improve
the performance of the commonsense generation
task. We also conduct experiments to show that
our model is superior than baselines in terms of
continual learning and few-shot scenarios.

2 Model

We propose a two-stage training framework as
shown in Figure 1. We firstly continually pre-train
the BART with a newly designed input format. Sec-
ondly, we fine-tune the model whose inputs are
inserted with the special token [MASK].

Formally, given a concept word set x =
{x1, x2, · · · , xn} ∈ X (n can be different for
different inputs), the task aims to generate a flu-
ent, plausible and grammatically correct sentence
y = (y1, y2, · · · , ym) ∈ Y containing all the words
in x.

2.1 Domain-Specific Pre-training

Continually pre-training the PLMs on the target
domain is beneficial to improving the performance
of the target task consistently (Gururangan et al.,
2020). We adopt this idea and moreover, we design
a new sentence corruption strategy considering that
the input words order in target task is shuffled. Be-
low is the procedure for constructing the corrupted
inputs for each sentence y ∈ Y in training dataset:

1. Randomly select a subset of words in y and
each word is selected with a probability p
which is also called the mask probability.

2. Replace the selected words with the special
token [MASK]. It should be noted that multi-
ple consecutive [MASK] tokens are merged to
one [MASK] token. This allows the PLMs to
predict a span (multiple words) based on one
[MASK] token, which is more similar to the
commonsense generation task as we will see
below.

3. The unmasked words are shuffled while the
positions of the [MASK] tokens remain un-
changed. The corrupted input is denoted by
ỹ.

An example of the above process is shown in the
upper part of Figure 1. We usually choose a large
value for the probability p instead of 15% used by
BERT (Devlin et al., 2019). We will study the effect
of p (0.5 in our experiment) in Section 3.2. Since a
part of concept words and non-concept words are
masked, this pre-training process can also enhance
PLMs’ ability of reasoning out unseen concepts
and relations between concepts.

Finally, the pre-training loss function is:

L(θ) = − 1

|Y |
∑

y∈Y
log(

m∏

i=1

P (yi|y<i, ỹ; θ)) (1)

2.2 Fine-tuning
Although the domain-specific pre-training can
adapt the PLMs to the target domain and allevi-
ate the problem related to word order, the inputs
during fine-tuning are still a list of words while
in pre-training for many LMs, the inputs are cor-
rupted sentences with [MASK] tokens. Chada and
Natarajan (2021) have shown that aligning the input
distribution between pre-training and fine-tuning
can boost the few-shot performance on QA tasks.
Armed with such finding, we transform the inputs
by inserting [MASK] tokens. Formally, given an
input x = {x1, x2, · · · , xn}, we transform x to 1:

[MASK], x1, · · · , [MASK], xi, [MASK], · · · , xn, [MASK]
Then, we input the transformed x to the PLM to
predict the target y. Through this way, the input
distribution is more similar to that in pre-training
(especially domain-specific pre-training). This in-
put format is similar to the text infilling task (Don-
ahue et al., 2020), the main differences are that

1We send the transformed x to the tokenizer so that [CLS]
and [EOS] will also be added.
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Model \Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE

GPT-2 17.18 39.28 30.70 21.10 26.20 12.15 25.90
UniLM 21.48 43.87 38.30 27.70 29.70 14.85 30.20

T5 22.01 42.97 39.00 28.60 30.10 14.96 31.60
BART 22.23 41.98 36.30 26.30 30.90 13.92 30.60

KG-BART 23.38 44.54 42.10 30.90 32.40 16.83 32.70
NeuroLogic - 44.70 41.3 30.60 31.00 15.90 31.10

CALM - - - 29.50 31.90 15.61 33.20
EKI-out 24.36 45.42 42.90 32.10 32.00 16.80 32.50

Ours 24.17 44.89 43.31 32.49 32.50 17.10 32.81

Table 2: Automatic Evaluation Results.

the words in commonsense generation task are un-
ordered and masked words also account for a large
proportion of sentences.

3 Experiments

3.1 Experimental Settings
Dataset We use the CommonGen dataset
collected by Lin et al. (2020). The dataset contains
67389/4018/6042 training/development/testing
samples with 32651/993/1497 different concept
sets (one concept set has multiple references.). For
evaluation metrics, we use BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005) , CIDEr (Vedantam et al., 2015)
and SPICE (Anderson et al., 2016). We also
report human evaluation score and coverage score.
However, due to the space constraint, regarding
these two scores, please refer to Appendix ?? for
more details.

Baselines We compare our model with several
baselines. For PLMs, we choose GPT-2 (Radford
et al., 2019), UniLM (Dong et al., 2019), T5 (Raf-
fel et al., 2020), BART (Lewis et al., 2020). We
also compare our model with (1) KG-BART (Liu
et al., 2021) which incorporates the knowledge
graph to BART. (2) NeuroLogic (Lu et al., 2021)
which controls the decoding stage to enforce the
satisfaction of the given lexical constraints. (3)
CALM (Zhou et al., 2021) which designs several
self-supervised tasks to obtain a concept-aware lan-
guage model. (4) EKI-out (Fan et al., 2020) which
augments inputs with retrieved sentences from out-
of-domain corpus. Generally, EKI-out is stronger
than other baselines due to the high informativeness
of Wikipedia.

Implementation Details We adopt BART-large
as the generation model. The max length of x and

y are set to 48 and 128 respectively. The batch size
is set to 32. For Domain-Specific Pre-training, the
mask probability p is set to 0.5. The number of
training epochs is 10. We use AdamW (Loshchilov
and Hutter, 2019) with learning rate 1e-7 to op-
timize the model. For fine-tuning, the model is
optimized using AdamW with an initial learning
rate of 2e-5. We also employ linear warmup with
steps 10000. We save the model with the highest
Rouge-L score on development set for testing.

3.2 Results

Main Results As summarized in Table 2, Ours
can generally achieve better performance than all
the baselines on BLEU, MENTOR, CIDEr. On
ROUGE, Ours outperforms most of the baselines
except EKI-out which facilitates the Wikipedia as
the external corpus. On SPICE, Ours is superior
than most of the baselines except CALM.

Ablative Results We conduct ablation study with
three variants. The results are shown in Table 4.
We can see that the performance of -mask (Ours
without adding [MASK] during fine-tuning) and
-pretraining (Ours without pretraining) are infe-
rior than Ours. -both (Ours with neither) obtains
the worst performance. We can also observe that
adding mask and adding pretraining have sim-
ilar degree of improvement compared to -both.
Moreover, since there are numerous ways to in-
sert [MASK] to inputs (different positions or differ-
ent numbers), we compare our model with Ran-
dom Mask: during pre-training and fine-tuning,
one mask token is randomly inserted into the cor-
rupted inputs. We can see from Table 4 that Ours
outperforms Random Mask. Moreover, we provide
some generated examples in Appendix B.
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Model Training on Evaluation on ROUGE-L BLEU-4 METEOR CIDEr SPICE

Ours

Size = 3 Size = 3 45.25 18.74 24.06 14.64 34.92
Size = 4 Size = 3 46.31(+1.06) 19.33(+0.59) 25.76(+1.70) 15.47(+0.83) 36.89(+1.97)

Size = 4 44.97 31.02 31.25 16.14 31.68
Size = 5 Size = 3 45.62(-0.69) 19.38(+0.05) 25.50(-0.26) 15.26(-0.21) 36.51(-0.38)

Size = 4 45.27(+0.30) 32.00(+0.98) 31.63(+0.38) 16.49(+0.35) 31.46(-0.22)

Size = 5 43.53 30.98 30.93 16.12 31.01

-mask

Size = 3 Size = 3 44.80 17.89 24.24 14.68 34.28
Size = 4 Size = 3 45.52(+0.72) 17.46(-0.43) 24.71(+0.47) 14.58(-0.10) 35.38(+1.10)

Size = 4 44.29 31.53 30.98 16.24 32.04
Size = 5 Size = 3 45.36(-0.16) 17.75(+0.29) 24.77(+0.06) 14.69(+0.11) 35.88(+0.50)

Size = 4 44.49(+0.20) 30.99(-0.54) 30.88(-0.10) 16.09(-0.15) 31.17(-0.87)

Size = 5 42.69 29.16 29.63 15.11 30.05

Table 3: Continual Learning Results. The rows with the same color represents the same domain we evaluate the
model on. The red number in parentheses is the improvement compared with the previous time step on the same
domain. For example, (+1.06) = 46.31− 45.25, (-0.69) = 45.62− 46.31, (+0.30) = 45.27− 44.97.

Model ROUGE-L BLEU-4 METEOR CIDEr SPICE

Ours 44.89 32.49 32.50 17.10 32.81
-mask 44.67 31.66 32.09 16.51 32.11
-pretraining 44.35 31.60 31.87 16.57 32.33
-both 43.56 29.61 30.87 15.61 30.93
Random Mask 44.43 31.64 32.23 16.69 32.36

Table 4: Variant Analysis Results.

Effects of Hyperparameter p We investigate the
effects of the mask probability p. As presented
in Table 6, the performance is the best when p
equals 0.5. The reason may be that if p is too
large, it is hardly possible to recover corrupted
sentences during pre-training. However, if p is too
small, most of the masked tokens are not concept
words, thus the pre-trained model cannot learn the
relations between concepts.

Human Evaluation & Coverage To provide
more perspective of the generation quality, we re-
port the human evaluation score and coverage score.
For human evaluation, we randomly select 30 sen-
tences and each sentence is given a score ranging
from one to five to assess the holis- tic quality. We
report the average value of two annotators. The con-
cept coverage score is the average percentage of in-
put concepts that are present in lemmatizatized out-
puts. The results are shown in Table 5. We can see
that Ours achieves the highest human evaluation
score and coverage score and Ours-w/o-pretraining
achieves a slightly better performance than Ours-
w/o-mask, indicating that inserting [MASK] to the
input is more important than adding the pretraining
stage.

3.3 Few-Shot Scenario
We investigate the performance of our model un-
der few-shot scenario. We randomly select n ∈

Model Ours Ours-w/o-mask Ours-w/o-pretraining Ours-w/o-both

human score 4.534 4.367 4.467 4.084
coverage 97.48 96.03 96.07 93.05

Table 5: Human Evaluation Score and Coverage Score

p ROUGE-L BLEU-4 METEOR CIDEr SPICE

0.2 44.36 31.21 31.16 16.48 32.33
0.4 44.32 30.99 32.05 16.64 32.48
0.5 44.89 32.49 32.50 17.10 32.81
0.6 44.37 31.95 32.64 16.91 32.72
0.8 44.58 32.25 32.38 16.83 31.90

Table 6: Effects of p.

{16, 32, 64} samples from original training dataset
as the new training dataset and the testing dataset
remains unchanged. The learning rate is set to 2e-5.
Table 7 shows the results. We can see that insert-
ing [MASK] to the inputs can significantly boost the
performance on all the metrics. Combined with the
result in Table 2, we can conclude that inserting
[MASK] to the inputs is beneficial to the perfor-
mance on both full-data and few-shot settings.

3.4 Continual Learning Scenario

We investigate the performance of our model under
continual learning scenario (Biesialska et al., 2020).
We regard concept sets with the same length as a
domain. The details of the dataset are described
in Appendix A. The model is trained sequentially
from the domain with length 3 to the domain with
length 5. After the model is trained on a new do-
main, we also evaluate it on previous domains to
measure the backward transfer degree. Backward
transfer means that learning a new task may hurt
(negative backward transfer) or improve (positive
backward transfer) the performance of previously
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n model ROUGE-L BLEU-4 METEOR CIDEr SPICE

16

Ours 35.04 16.22 21.98 9.02 21.93
-pretraining 33.49 12.25 19.29 7.46 20.42

-mask 32.33 7.5 19.23 6.16 17.24
-both 31.74 6.75 19.83 6.18 16.30

32

Ours 35.66 19.72 23.20 10.00 21.43
-pretraining 35.92 16.21 21.35 8.88 20.78

-mask 33.98 15.17 21.34 8.63 18.36
-both 33.15 11.73 19.36 7.51 19.13

64

Ours 38.94 22.15 25.96 12.31 26.64
-pretraining 38.17 21.17 25.48 11.6 26.27

-mask 35.75 18.79 24.73 10.73 24.00
-both 35.04 15.43 22.58 9.18 21.23

Table 7: Few-Shot Setting.

learned tasks (Lopez-Paz and Ranzato, 2017). The
results are shown in Table 3. We can see that Ours
generally obtains better performance than -mask.
Also, we can see that our model achieves a larger
positive backward transfer and a smaller negative
backward transfer (forget less) than -mask. For ex-
ample, ROUGE-L of the domain with concept set
size 3 is changed from 45.25 to 46.31 (improved
by 1.06) after the model is trained on the domain
with concept size 4 for our model. While for -mask,
the improvement is only 0.72. Therefore, we can
conclude that bridging such a gap is effective under
continual learning setting.

4 Conclusion

We study the gap issue between pre-training and
fine-tuning for commonsense generation task. We
propose a two-stage training framework which is
composed of a domain-specific pre-training stage
and a fine-tuning stage. Pre-training stage aims to
recover the masked and shuffled sentences which
could enhance the models’ ability of processing
unordered inputs and reasoning out the relations
and concepts. Inserting [MASK] to the inputs dur-
ing fine-tuning have also been demonstrated very
useful. Experimental results show that our model
is superior than many baselines, especially under
few-shot setting.
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Limitations

In this work, we study the gap between pre-training
and fine-tuning for commonsense generation task.
Despite the promising experimental results, there
are still several limitations of our work:

1. The order issue is still not fully solved since
the original pre-training stage uses ordered
sentences. Our proposed domain-specific
training stage can only alleviate this issue in-
stead of completely solving it.

2. During fine-tuning, the optimal positions and
an optimal number of the [MASK] tokens are
not well solved.
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A Continual Learning

We introduce how to construct the dataset used for
continual learning. Table 8 shows the distribution
of the original dataset. Since there is no testing
instances whose concept set size is 3. We randomly
sample a number of instances with concept size 3
from the training dataset. Also, since the dataset
is unbalanced (the number of instances belonging
to the domain with concept size 3 is far larger than
that in other domains.) We re-sample the instances
to make the dataset more balanced. The statistic of
the continual learning setting dataset is shown in
Table 9.

Statistics Train Dev Test

Sentences 67,389 4,018 6,042
Concept-Sets 32,651 993 1,497

-Size = 3 25,020 493 -
-Size = 4 4,240 250 747
-Size = 5 3,391 250 750

Table 8: Statistics of Original Dataset.

Statistics Train Dev Test

-Size = 3 5,867 1,819 2,170
-Size = 4 5,352 1,137 2,993
-Size = 5 3,436 1,062 3,049

Table 9: Statistics of Continual Learning Dataset.

B Generated Examples

We list some examples generated by our proposed
model and ablative models, which are shown in
Table 10.

concept words {sheep, wool, shave, hold}

Ours A man is holding a sheep and shaving its wool.
Ours-w/o-pretraining A woman holds a sheep and shaves its wool.
Our-w/o-mask A man is holding a sheep and shaving it with wool.
Our-w/o-both sheep holding their wool in their beaks as they shave.

concept words {stand, fence, feed, goat}

Ours A goat stands at the fence to be fed.
Ours-w/o-pretraining goats standing next to a fence to feed.
Our-w/o-mask A goat standing next to a fence to feed.
Our-w/o-both A goat stands at the fence to feed a goat.

concept words {hold, bag, popsicle, eat, chip}

Ours A boy is eating a popsicle while holding a bag of chips.
Ours-w/o-pretraining A girl is holding a bag of chips and eating a popsicle.
Our-w/o-mask A man holding a bag of chips and a popsicle to eat.
Our-w/o-both A man holding a bag of chips and a popsicle eats a chip.

Table 10: Generated Examples
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Abstract

Lifelogging has gained more attention due to
its wide applications, such as personalized rec-
ommendations or memory assistance. The is-
sues of collecting and extracting personal life
events have emerged. People often share their
life experiences with others through conver-
sations. However, extracting life events from
conversations is rarely explored. In this pa-
per, we present Life Event Dialog, a dataset
containing fine-grained life event annotations
on conversational data. In addition, we initi-
ate a novel conversational life event extraction
task and differentiate the task from the pub-
lic event extraction or the life event extraction
from other sources like microblogs. We explore
three information extraction (IE) frameworks to
address the conversational life event extraction
task: OpenIE, relation extraction, and event ex-
traction. A comprehensive empirical analysis
of the three baselines is established. The results
suggest that the current event extraction model
still struggles with extracting life events from
human daily conversations. Our proposed life
event dialog dataset and in-depth analysis of
IE frameworks will facilitate future research on
life event extraction from conversations.

1 Introduction

Daily conversation, as a means of communication
and switching information, is full of personal infor-
mation, including personal background, interests
and hobbies, connections to other people, and var-
ious life events. Mining life events lets us better
understand a person. The extracted life events can
be used to construct the personal knowledge base
and benefit a variety of downstream tasks, such as
lifestyle understanding (Doherty et al., 2011) and
memory assistance (Rahman et al., 2018).

Previous research on life event extraction mainly
focuses on life events from microblogs or social

media platforms such as Twitter (Li et al., 2014;
Yen et al., 2018, 2019). However, these events
from a given fixed passage are static. In contrast,
an event mentioned in a conversation might change
its status dynamically throughout the chat. Besides,
conversations allow participants to interact with
each other and gather the information which stimu-
lates participants’ interests, revealing people’s gen-
eral interests in different aspects of information
about a life event and expanding additional event
information. For example, when a person talks
about a travel event only with the destination men-
tioned, the other interlocutor might ask additional
information about who they are traveling with, how
much the trip cost, and the period and timing of
the travel. Nevertheless, life event extraction from
conversations is rarely explored and existing works
only detect course or ambiguous event types (Eisen-
berg and Sheriff, 2020; Kao et al., 2021). The par-
ticipants and status of events are not recognized,
preventing more fine-grained life events analysis
and limiting the applications.

We present Life Event Dialog (LED), a dataset
with refined life event annotations in English.1 We
define life events as activities in a person’s daily life.
Following previous works, our life event definition
is verb-centered. For each event, we annotate three
levels of event type from fine-grained to coarse:
Verb, Class, and Frame. Unlike formal writing and
social network posts, dialogue is usually in a more
flexible and more abstruse style, where the event
type is often omitted. For example, “S1: Can I
get you some coffee? S2: De-caff.” indicates an
“order” event, where the verb “order” does not ap-
pear in the dialogue. Therefore, we also introduce
Explicitness of an event. When the event type can-
not be extracted from the dialogue, we manually

1https://github.com/ntunlplab/LifeEventDialog
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assign a verb to denote the activity and label the
event as an implicit event. Besides event types, we
annotate Subject and Object of each event as event
participants. Furthermore, based on the interactive
nature of a conversation, more detailed event infor-
mation is likely to be revealed as the conversation
continues. People might ask follow-up questions
or clarifications in a response that specify the sta-
tus or attributes of a known event. We consider
the new supplemental information as the event sta-
tus change instead of a new event. To be more
specific, we record three aspects of event status:
Polarity, Modality, and Time. These detailed anno-
tations provide more comprehensive information
about life events and allow us to track the dynamic
event status changes throughout the conversation.

Moving forward from previous research on clas-
sifying the types of life events, we introduce the
Conversational Life Event Extraction task, which
classifies the event type and identifies event partic-
ipants simultaneously from conversations. Classi-
fying the event type of a life event is much harder
than conventional public event extraction because
of the high diversity of life events. The form of
conversation further adds up to the difficulty of this
task. For instance, event participants are challeng-
ing to identify because they are often in free form,
and mentions of the same entity are easily changed
throughout the dialogue. Due to the uniqueness of
conversational life event extraction, there has not
been a model that specifically tackles this problem.

In this paper, we examine multiple informa-
tion extraction (IE) frameworks, including OpenIE,
event extraction (EE), and end-to-end relation ex-
traction (RE) models, for this task. Experimental
results show that the existing information extrac-
tion models, even the recent models on top of their
tasks, still perform poorly in extracting life events
from conversations. We analyze the strengths and
limitations of each model, and urge the develop-
ment of a better model for Conversational Life
Event Extraction. The contributions of this work
are threefold as follows:

• We introduce Life Event Dialog (LED)
dataset, the first dataset annotated with fine-
grained life events in conversations.

• We propose a novel task of Conversational
Life Event Extraction, stepping forward the
event type classification task from previous
works.

• We explore several IE frameworks on the con-
versational life event extraction task and offer
a thorough analysis of the baselines.

2 Related Work

2.1 Life Event Extraction

With the rise of social media platforms, people in-
creasingly document their lives online. A large
amount of personal data is beneficial for applying
to lifelogging tasks. Most life event research col-
lects data from Twitter and contains limited event
types. Li et al. (2014) gathered tweets with con-
gratulations or condolences replies and proposed a
pipeline system to extract 42 major life events like
“getting a job”, “graduation”, or “marriage”. Yen
et al. (2018) constructed a multi-labeled Chinese
tweets dataset with 12 life event types and proposed
multiple LSTM models for life events extraction.
Yen et al. (2019) built a life event corpus on Chi-
nese tweets focusing on general life events such as
dining or visiting a local place, transforming the
extracted events into personal knowledge-based
facts. Other than social media posts, the NTCIR14
Lifelog dataset (Gurrin et al., 2019) consists of
multimodal lifelogs of images and their metadata.
They assorted daily activities into 16 categories,
but targeted visual lifelog retrieval instead of life
event extraction. Although all concentrate on life
events, Conversational Life Event Extraction is dis-
tinct from social media or multimodal sources.

2.2 Conversational Event Extraction

Li et al. (2021) designed a task-oriented dialogue
system especially for the event extraction task,
which differs from our goal of extracting life events
from an existing open-domain conversation. Imani
(2014) studied the performance of OpenIE systems
on conversations collected from reviews, emails,
meetings, blogs, forums, and Twitter. Besides the
small data size of only a hundred sentences and the
dataset not being publically available, their dataset
lacks of auxiliary event information such as the
event status.

2.3 Life Event Extraction from Conversation

Works by Eisenberg and Sheriff (2020) and Kao
et al. (2021) are the most related works to ours.
Eisenberg and Sheriff (2020) collected conversa-
tions from a podcast and classified event features
by SVM. Their event annotations only include the
event tokens and lack other event information. Kao
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D Dialogue i Event Types Participants P M T

1
S1: Bill, I must tell you the truth. You failed the

English exam again. 1
[Explicit]
Verb: failed
Class: fail
Frame: Success Act

[S] You
[O] English exam

+ ⃝ before

S2: Ah? Really? That stinks!

S1: Haha. April Fool’s! Did you forget what day it
is today?

− ⃝ before

2

S1: Excuse me. I would like to purchase some trav-
elers’ checks. 1

[Explicit]
Verb: purchase
Class: purchase
Frame: Buy

[S] I
[O] some
travelers’ checks

+ △ now

S2: Sure. How much do you want? + ⃝ now

S1: $5000 and I want them all in fifties. 2

[Explicit]
Verb: purchase
Class: purchase
Frame: Buy

[S] you
[O] $5000 + ⃝ now

S2: OK, here you are. Please sign your name here. 3

[Implicit]
Verb: give
Class: give
Frame: Giving

[S] S2
[O] S1
[O] $5000

+ ⃝ now

4

[Explicit]
Verb: sign
Class: sign
Frame: Text Creation

[S] S1
[O] your name

+ △ after

S1: Thank you. + ⃝ now

Table 1: Two example dialogues with 1 and 4 events, respectively. D: Dialogue ID, i: Event ID. We display the
coreference cluster in red for S1 and in blue for S2. Verb of explicit events (extractive) are underlined. For each
event, we show the event types, participants, and status (Polarity (P), Modality (M), and Time (T)). +: positive
event, −: negative event,⃝: actual event,△: hypothetical event.

et al. (2021) also constructed a dataset from Daily-
Dialog (Li et al., 2017), but they only annotated the
frame name for each event. Both works also aimed
at extracting personal life events from conversa-
tions, yet their proposed datasets only contain plain
event annotations. In contrast, our LED dataset has
more comprehensive annotations, including partic-
ipants, status, event category, and the coreference
clusters of participants.

3 Life Event Dialog

In this paper, we define life events as daily life
activities, personal habits, life experiences, or per-
sonal information of the interlocutors or related
people. On the other hand, personal feelings or
preference, public issues, and general knowledge
are not considered life events in our dataset.

3.1 Event Schema
Event Type: We define three granularities of event
type: Verb, Class, and Frame. We also labeled
the Explicitness based on whether Verb can be ex-
tracted from the dialogue.

• Explicitness (E) is determined by whether a
verb exists in the dialogue that triggers an
event. If no explicit verb exists in the dia-
logue, but an event is recognized and labeled

by annotators, we consider it as an implicit
event. See Dialogue 2 Event 3 in Table 1 for
an example.

• Verb is a verb event trigger, which might be
a span extracted from the dialogue (explicit
event) or abstractly written by annotators (im-
plicit event).

• Class is the fine-grained event type deter-
mined by the lemma of Verb.

• Frame is the coarse event type selected from
FrameNet (Fillmore et al., 2002) by annota-
tors. This event type is also used in previous
works (Yen et al., 2019; Eisenberg and Sheriff,
2020; Kao et al., 2021; Wang et al., 2020).

Note that Frame and Class are not one-to-one map-
pings. For example, Class “get” could belong to
Frame “Possession”, “Receiving”, or “Giving”. In
LED, each Class belongs to 1.25 Frame on average.
Participant: We label the span for Subject (S) and
Object (O). In a conversation, the same S/O en-
tity might appear recurrently in different mentions,
therefore, we also include the coreference cluster
ID for S/O as their entity ID.
Status: Three event properties that might change
dynamically throughout the dialogue are recorded,
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# Dialogs U Evt Unique Evt

Train 858 3,823 5,529 1,856
Valid 75 349 593 179
Test 70 313 426 151

Total 1,003 4,485 6,548 2,186

Table 2: Dataset Statistics. The number of utterances
(U) is the number of training instances (a training in-
stance is an utterance with its dialogue history), and
the number of events (Evt) is the cumulative number of
events of a training instance. Also, we consider events
with same event types and participants as the same event
(Unique Evt), which might have different event status.

including Polarity, Modality, and Time.

• Polarity (P) is a binary class of whether an
event happens (positive) or does not happen
(negative). In some conversations, a life event
is specifically expressed in a negative form.
Given an utterance, “You did not invite me
to the party.” We consider the negativity in
this sentence as a strong indication of a par-
ticular event rather than a random event that
doesn’t happen. Moreover, an event might
change its Polarity as the conversation con-
tinues. As shown in Dialogue 1 Event 1 in
Table 1, (You, failed, English exam again) is
a positive event in the first two utterances, but
after the speaker S1 says it’s an April Fool’s
joke, Polarity becomes negative. Therefore,
we especially mark the negative event status
to keep track of the polarity changes of a life
event in the conversation.

• Modality (M) refers to whether an event has
happened/is happening (actual), or is men-
tioned in the dialogue that it will happen in
the future (hypothetical), as illustrated in Dia-
logue 2 Event 1. Note that an event is hypo-
thetical only when indicated in an affirmative
sentence and not in a question. For example,
(We, have, meeting) in “We will have a meet-
ing at 9 a.m. tomorrow.” is a hypothetical
event, but (she, call, you) in “Can she call you
back?” is not.

• Time (T) is labeled as one of “before”, “now”,
“after”, “continuously”, or a specified time
span if the time information is explicitly men-
tioned in the dialogue. Time might be related
to Modality. For instance, one hypothetical

event might have Time “after”, waiting for
confirmation. After the next utterance reply,
the event status would become an actual event
with time labeled “now”. Dialogue 2 Event 4
is an example that changes its status after the
last turn is given.

The default event status is positive, actual, and
happens at now.

3.2 Annotation Details

We recruited three annotators with a linguistic de-
gree to annotate the data. The dialogue is aug-
mented by one turn at each time, and annotators
are asked to label life events for the whole con-
versation up to the given turns. To calculate the
agreement, we sampled 40 dialogues and asked
all annotators to annotate them. We calculate the
agreement on the Frame of all positive and actual
events in the last turn of each dialogue (the accu-
mulated events in one dialogue). The total number
of annotated events are 550. The annotation agree-
ment is 0.81, measured by Krippendorff’s alpha
(Krippendorff, 2011). For the disagreed cases, we
conducted the majority vote or discussed with an-
notators to re-annotate the event. The annotation
guideline and more annotation details are provided
in Appendix A.

3.3 Dataset Construction

We sample 1,003 dialogues from the DailyDialog
dataset (Li et al., 2017) as the material for life event
annotation. DailyDialog is a multi-turn English di-
alogue dataset, which contains daily life conversa-
tions from various English learning websites. The
conversations usually focus on a certain topic and
under a certain situation, such as a customer find-
ing some goods in a shop. We take the five most
frequent topics, including Relationship (35%), Or-
dinary Life (28%), Work (20%), Tourism (9%),
and Attitude & Emotion (8%), and annotate four
to six utterances of each conversation. We include
conversations with (73.5%) and without (26.5%)
events to reflect the real world scenario that not all
conversations contain life events. Overall, we an-
notate 2,186 unique life events (Unique Evt) from
4,485 utterances. Note that one training instance is
an utterance (U) with its dialogue history, and the
events of an instance (Evt) would be the cumulative
events from the utterance and its dialogue history.
The statistics of our dataset is shown in Table 2.

For every unique event, the event status might
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Unique Event Types Status Change

Verb Class Frame P M T

695 371 175 26 58 117

Table 3: The number of unique categories in each event
type and the number of times when an event changes
one of its status.

Figure 1: Statistics of Explicitness (E) and event status.
Green and orange colors stand for explicit/implicit, pos-
itive/negative, and actual/hypothetical, for E, P, and M,
respectively. Colors of T from left to right are “before”,
“now”, “after”, “continuously”, and the specified time.

change throughout the conversation. We list the
number of event status change for P, M, and T,
as well as the number of unique event types for
Verb, Class, and Frame in Table 3. The ratio of
explicit vs. implicit, positive vs. negative, actual
vs. hypothetical events, and the distribution of the
T labels are shown in Figure 1.

4 Dataset Analysis

4.1 Life Events Distribution
We list the top five most frequent Class and Frame
among 371 classes and 175 frames in Table 4, from
which we can see that either Class or Frame is
sparsely distributed. Even the most frequent Class
accounts for only 3.9% of all, and the dominant
Frame makes up only 6.1%. The majority event
status change is the change of Time, which usu-
ally happens when people specify the event time.
The top five implicit event classes are: “receive”,
“hear”, “give”, “invite”, and “pay”. In contrast,
the top explicit event classes are: “have”, “tell”,
“go”, “see”, and “be”. Three classes (“go”, “hear”,
and “bring”) are overlapped in top 10 explicit and
implicit events classes.

4.2 Comparison with Event Extraction and
Relation Extraction Benchmarks

Both event extraction (EE) and relation extraction
(RE) aim to predict the event type and participant

Figure 2: Subject analysis. When S is the speaker, the
listener, or others, the mention of S usually belongs to
one of the five categories: Self, We, You, Omit, Names.

information. For EE, each event has a event type
(subtype) and argument roles. We regard Frame
and Class in LED as the type and sub-types and
map S, O, and event status (Polarity, Modality, and
Time) as the argument roles. The RE output is a
(head, relation, tail) triple. We consider (S, event
type, O) in LED as the mapping of a RE triple.
The major difference between the life events from
our LED dataset and the public events from EE/RE
benchmarks is the event domain and the distribu-
tion of event types. Life events in LED belong
to a wide variety of categories that are sparsely
distributed. In contrast, current EE and RE bench-
marks are often from news reports and focus on
certain limited event types. We compare two EE
benchmarks (ACE2005 (Walker et al., 2006) and
MAVEN (Wang et al., 2020)) and one RE bench-
mark (CONLL04 (Roth and Yih, 2004)) in Table 4,
demonstrating the distinguishable event type dis-
crepancy on domain and distribution.

Further, the arguments in EE benchmarks are
often a single entity or the head word of a noun
phrase, but we often want to keep the informative
descriptions of life events, especially for objects.
The average object length in LED is 2.95, which
is 2.5 times of argument length in ACE2005. In
addition, a quarter of life events are implicit events,
which means 25% of the event trigger (Verb) cannot
be found in the text input, whereas all event triggers
and arguments are extractable from the given text
in EE benchmarks.

4.3 Comparison with Life Event Datasets

LiveKB (Yen et al., 2019) is a large-scale life event
dataset crawled from Chinese Twitter with an event
schema similar to ours. The major difference be-
tween LiveKB and Life Event Dialog derives from
the characteristics of a single-person narrative ver-
sus interactions between two people. In a tweet,
the event subject is almost always the author of
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LED (Frame) % LED (Class) % ACE2005 % MAVEN % CONLL04 LiveKB

Statement 6.1 have 3.9 Attack 28.8 Action 46.9 kill Perception
Perception 5.3 go 3.8 Transport 13.5 Change 27.5 work for Presence

Motion 3.8 tell 3.5 Die 11.2 Scenario 13.4 organization based on Using
Request 3.2 hear 2.8 Meet 5.2 Sentiment 6.4 live in Motion
Ingestion 3.2 see 2.8 End-Position 4.0 Possession 5.7 located in Ingestion

Table 4: Top 5 event types of our LED dataset compared to other datasets.

Dataset Task Source # Docs # Events # Types (Subtypes) # Arg Roles Coref

ACE2005 (2006) EE News 599 5,349 8 (33) 35
CONLL04 (2004) RE News 1,437 2,041 5 4
LiveKB (2019) Life EE Twitter 25,344 15,525 137 6
PEDC (2020) Life EE Podcast 1,038 3,664 278 0
DiaLog (2021) Life EE DailyDialog 600 780 21 0

Life Event Dialog Life EE DailyDialog 1,003 2,186 175 (371) 5 ✔

Table 5: Datasets comparison. EE: Event Extraction, RE: Relation Extaction.

Framework Original Output LED Output

OpenIE (head, relation, tail) (S, Verb (explicit), O)
RE (head, relation, tail) (S, Verb/Class/Frame, O)

EE
[T span, T type,
A1 span, A1 type, A2 span, A2 type, ...]

[Verb (explicit), Class/Frame,
S/O, “subject”/“object”]

Table 6: Outputs from OpenIE, RE, and EE frameworks and their mapping to LED output. For EE framework,
original output is the span and type of event trigger (T) and the span and type of arguments (A). The T span maps to
the span of Verb of explicit events; T type maps to Class or Frame of that event; A span maps to the span of S or O
with corresponding “subject” or “object” string as their A type.

the tweet if not mentioned. In contrast, the event
subject in a dialogue is half time the speaker, 40%
the listener, and 10% the others, as shown in Fig. 2.
The case of the subject being the listener happens
when the event of the listener is told by the speaker,
such as “You are hired by our compan”, “You get
high marks in the exam”, or “I’m Jame, your neigh-
bor when you lived here last year (indicating the
event of the listener living here last year)”. Also,
besides the case when the speaker themselves being
the subject (when the mention is self-referred), the
mention of the subject is often omitted (and anno-
tated as S1/S2) or being “you”. It usually happens
when the speaker is confirming an event. For exam-
ple, S1: “Could you please sign this memo?” S2:
“No problem.” The event (S2, sign, memo) becomes
positive after S2’s confirmation. These kinds of
events that happen after user interactions only ap-
pear in our Life Event Dialog data. There is some-
times an ambiguity regarding the event subject, e.g.,
S mention “we” might refer to only the speaker or

both participants in the dialogue. Further, compar-
ing the top 10 Frame in LED and LiveKB, we find
that LED has more interactive activities, such as
“Statement”, “Request”, and “Acquaintance”. In
contrast, LiveKB activities are more self-centered,
like “Presence”, “Create”, and “Buy”.

Both conversational event extraction datasets,
PEDC (Eisenberg and Sheriff, 2020) and DiaLog
(Kao et al., 2021), only annotate event type labels.
The former is collected from podcast transcripts
and focuses on event from life stories told by first-
person narrators. The latter classifies events by
FrameNet and is also from the DailyDialog. Our
LED has more data, more event types, and addi-
tional annotations of argument roles, event status,
and coreference clusters, compared with them.

5 Conversational Life Event Extraction

We define Conversational Life Event Extraction as
the combination of two subtasks: (1) Event Type
Classification and (2) Participants Identification.
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Given a dialogue Du = {T1, T2, ..., Tu} of u turns
utterances, we extract i events Eiu = {e1u, ..., eiu}
from Du, where an event e comprises an event
type from either Verb, Class, or Frame and spans
of participants (S and O). We consider an input
instance as the concatenation of turns T1 to Tu.

5.1 Frameworks

We aim to identify the event type and participants
simultaneously. By contrast, previous works on
life event extraction only dealt with event type pre-
diction. Hence no model specifically tackles our
proposed task of conversational life event extrac-
tion. As a result, we examine different information
extraction frameworks, including (1) OpenIE, (2)
Event Extraction (EE), and (3) Relation Extraction
(RE), for this task. We transform our data schema
to fit the original schema of each framework, as
shown in Table 6. Both OpenIE and RE output
(head, relation, tail) triples. We consider the head
and tail to be S and O and relation to be an event
type. EE outputs the span and type of an event
trigger, as well as the span and type of arguments.
When converting to our LED schema, the event
trigger can be seen as the event type and arguments
as participants. Due to limitations of each frame-
work, the output from each framework is slightly
different when adapting to our dataset. The major
constraint is that OpenIE and EE frameworks can
only predict explicit events because both output
spans from the input dialogue.
OpenIE: OpenIE requires each element in the
triplet to be a span from the input, therefore, it is
not able to predict event types of Class and Frame,
nor the implicit event which Verb is written by an-
notators. Also, OpenIE always outputs the whole
event triplet, so it can never correctly predict the
events without object. We use Stanford Open IE
system (Angeli et al., 2015) as the OpenIE baseline
to extract life event triples.
Relation Extraction: RE framework also gener-
ates triples as output. REBEL (Huguet Cabot and
Navigli, 2021) is selected as the relation extrac-
tion baseline, which is based on an autoregressive
model BART-large (Lewis et al., 2019). Since
REBEL is a generation model, it can generate to-
kens not in the given dialogue and avoid the limita-
tions of OpenIE framework.
Event Extraction: Event Extraction framework
predicts both spans and their type; thus, the im-
plicit events without trigger span can never be pre-

dicted. We choose DyGIE++ (Wadden et al., 2019)
as our event extraction baseline. DyGIE++ is a
span-based model with RoBERTa-base (Liu et al.,
2019) backbone, which can perform multi-tasks
training on entity recognition, relation extraction,
event extraction, and coreference resolution.

5.2 Evaluation

Evaluation metrics vary between frameworks. We
evaluate the output triples from OpenIE and RE
using precision (P), recall (R), and micro-F1, fol-
lowing previous works (Huguet Cabot and Navigli,
2021). We adapt the strict evaluation (Taillé et al.,
2020), that is, a triple is considered as correct only
if the whole triple is exactly the same as the ground
truth triplet. EE results are evaluated by P, R, and
F1 of span identification and type classification. An
event trigger is correctly identified if the span is
correct and is correctly classified if the event type
is correct. An event argument is correctly identified
if both the event type and the argument span are
correct, and is correctly classified if the argument
type is correct.

We unite evaluation metrics for all frameworks
using a lenient evaluation metric. For each life
event, we first evaluate the event type classification
(ET-C) by P, R, and F1. Then, for those events
with correct event type, we evaluate the participants
identification by P, R, and F1 of S (S-ID) and O
(O-ID F1). We also compute BERT Score (Zhang
et al., 2020) for the object (O-ID BS), because O
in LED are often longer than a single token, unlike
in EE/RE datasets (as discussed in Sec 4.2).

5.3 Analysis

Table 7 presents the result of employing each frame-
work on explicit life event extraction, suggesting
that the EE framework works the best on event type
classification (ET-C) and subject identification (S-
ID) over different granularities of event type. We
think the graph-based EE model (DyGIE++) can
better capture critical entities and their interactions
for event type and S. The other thing we can ben-
efit from DyGIE++ is that it is compatible with
the coreference training, so we can make use of
our annotations on participants’ coreference clus-
ters. However, we are surprised to find that the
additional coreference training does not help. We
suspect that a large amount of examples of the same
mention referring to different entities in a dialogue
confuse the coreference training. For example, the
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Event Type Framework ET-C S-ID O-ID
Granularity P R F1 P R F1 P R F1 BS

Verb
OpenIE 18.5 29.1 22.6 17.3 27.2 21.1 6.5 10.2 7.9 33.5

RE 28.5 49.8 36.2 23.6 41.3 30.1 15.4 26.9 19.6 66.2
EE 79.0 30.0 43.5 64.2 24.4 35.4 28.4 10.8 15.6 42.0

EE + coref 84.1 24.9 38.4 63.5 18.8 29.0 30.2 8.9 13.8 19.7

Class RE 27.6 49.3 35.4 22.9 40.8 29.3 14.7 26.3 18.9 64.4
EE 67.8 27.7 39.3 55.2 22.5 32.0 26.4 10.8 15.3 42.0

EE+coref 59.2 19.7 29.6 40.8 13.6 20.4 26.8 8.9 13.4 19.7

Frame RE 23.4 40.4 29.6 16.3 28.2 20.7 12.0 20.7 15.1 61.1
EE 58.6 23.9 34.0 46.0 18.8 26.7 26.4 10.8 15.3 40.2

EE+coref 57.4 12.7 20.8 57.4 12.7 20.8 21.3 4.7 7.7 64.0

Table 7: Result on explicit events across different frameworks evaluated by our lenient evaluation. ET-C: Event
Type Classification, S-ID: Subject Identification, O-ID: Object Identification, BS: BERT Score.

Event Type
Granularity Data ET-C S-ID O-ID

(F1 ∆) (F1 ∆) (F1 BS)

Verb E 36.2 -6.3 30.1 -9.4 19.6 66.2
E+I 29.9 20.7 13.9 57.7

Class E 35.4 -7.0 29.3 -8.4 18.9 64.4
E+I 28.4 20.9 12.0 57.9

Frame E 29.6 -5.3 20.7 -4.3 15.1 61.1
E+I 24.3 16.4 12.4 58.3

Table 8: Event extraction with (E+I) and without (E)
implicit events by RE framework.

same subject mention “I” might refer to S1 or S2
in different events.

As for object identification (O-ID), the RE frame-
work gets the top. We can see from Table 7 that
the bottleneck of Conversational Life Event Ex-
traction is on O-ID, whose F1 score is much lower
than the ET-C and S-ID. The reason might be the
high variance of object mentions. We think the best
performing RE model (REBEL), an autoregressive
model based on a large pretrained language model,
is better at copying a sequence of input for O, there-
fore, can get the best result on O-ID. We also found
that REBEL often generates repeated output and
has higher recall (R) than precision (P), in contrast
to DyGIE++, which gets a higher P than R.

For the three event type granularities, Verb is
the easiest to predict, and Frame is the most chal-
lenging. The result in Table 7 shows a consistent
decreasing trend from Verb, Class, to Frame across
all frameworks. For ET-C, the gap from Verb to
Class (RE: -0.8, EE: -4.2) is smaller than from
Class to Frame (RE: -5.8, EE: -5.3). This is intu-
itive because Verb and Class are more similar. The
drastic drop on Frame demonstrates the difficulty
of inferring the frame name from the dialogue.

RE is the only framework among the three that

Event Type
Granularity Framework ET-C

(F1)
S-ID
(F1)

O-ID
(F1xxxxBS)

Verb
OpenIE 37.6 37.6 12.5 36.8

RE 25.6 22.8 15.9 50.0
EE 21.7 21.7 0.0 8.0

Class RE 22.5 22.5 12.5 44.3
EE 21.7 21.7 0.0 8.0

Frame RE 0.0 0.0 0.0 51.6
EE 0.0 0.0 0.0 0.0

Table 9: Zero-shot result on explicit events across dif-
ferent frameworks.

can deal with implicit events. The implicit events
account for 31.4% of all events; hence, we further
analyze their impact. Table 8 shows the results
from the RE framework with and without implicit
events. Despite event type granularities, the re-
sults drop after adding implicit events. Particularly,
when the event type is of Verb or Class, the nega-
tive effect of implicit events is significant (see the
∆ column). The results with implicit events are
almost the same as the result of explicit events’
frame name prediction. In other words, predict-
ing an event type that is not in the input dialogue
is extremely difficult, and current models cannot
achieve promising results.

We examine the zero-shot result over the three
frameworks, when the testing event types are not
seen in training time. The result is shown in Table 9.
OpenIE performs the best for ET-C and S-ID on the
setting of Verb zero-shot. Since OpenIE is a rule-
based model and does not need any training, it is
better than the models required training for unseen
event types. In addition, for the trained models
of RE and EE frameworks, they cannot infer any
unseen frame name. Since life events are broad
and not fully covered in our dataset, developing
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models that can extract unseen event types remains
an essential research question.

6 Conclusion

This work presents Life Event Dialog: a compre-
hensive life event dataset annotated on DailyDialog
conversations. The main differences between our
dataset and previous datasets on personal life event
extraction are: (1) Life Event Dialog is built on top
of conversations instead of microblogs like Twitter.
The interaction between speakers adds dynamics
to events, such as information expansion or status
modification, and indicates people’s general inter-
ests in multiple aspects of other’s life events. (2)
Life Event Dialog contains more data, more types,
and more fine-grained event annotations compared
to other conversational life event datasets.

We propose the Conversational Life Event Ex-
traction task, extending life event extraction tasks
from social media to the conversation domain and
from event type detection to predicting both event
type and participants simultaneously. We then care-
fully examine three information extraction frame-
works: OpenIE, relation extraction (RE), and event
extraction (EE), for the pilot study on this task. The
result suggests that current top models on three
closely related fields cannot perform well in the
Conversational Life Event Extraction task. Improv-
ing object identification and implicit event extrac-
tion, detecting unseen life events, and keeping track
of event status, constitute our future work.

Limitations

Our LED dataset is annotated on DailyDialog.
While annotating on another dataset brings some
benefits, it also constrains our dataset. For instance,
our dataset is limited to the top five frequent top-
ics in DailyDialog, which might not be enough
to cover all life events in various scenarios. Also,
DailyDialog only contains conversations between
two interlocutors. For a multi-party conversation,
the conversational life events extraction would be
much more complicated and interesting.

The other limitation of LED is the size of the
dataset. Although with more comprehensive an-
notations of life events, the number of events in
our dataset might not be enough for today’s data-
hungry models. There is always room for larger
datasets and more annotations. Compared to the
entity types in RE like “person”, “organization”,
“location”, to name a few. We do not label such so-

phisticated argument roles but only “subject” and
“object”. We leave this part to our future work. Be-
sides, we only consider up to 6 turn utterances, yet
a dialogue might be much longer in real life.

Lastly, the definition of life events varies from
individual to individual, and our definition of life
events might not suit everyone’s needs. However,
our exploration of the zero-shot experiment shows
that it is still possible to find unseen events, and a
better model for zero-shot life extraction is needed.

Ethics Statement

Our Life Event Dialogs dataset is an extension of
an existing public dataset DailyDialog, with all
speakers being anonymized in the original release.
In other words, our dataset does not contain any
personally identifiable information that would in-
fringe on someone’s privacy. In this work, we will
only release the life event annotations for research
purposes. The dialogues in DailyDialog will not
be included in LED, but one can access the full
DailyDialog dataset from the author’s website.2

Our dataset is constructed upon a considerable
amount of human annotation. We recruited three
annotators and paid them a local hourly wage for
the time they spent. The annotation period spanned
1.5 months and resulted in 1,003 annotated conver-
sations (including conversations without events).
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A Annotation Guideline

A.1 Goal
We want to extract personal life events related to
the speaker according to their dialogue, so that we
can construct a personal life knowledge base and
benefit other downstream tasks.

A.2 What are personal life events?
1. The event happens or might happen in

the future to the interlocutor themselves or
their relatives and friends.

• Example: “I went to Salt Lake City on
business with Mr. Wang.”

2. The event must occur before the dialog or
before the dialog ends.

3. When expressing personal thoughts or
feelings, the context implies life events.

• Example: “These cookies taste deli-
cious.” may imply an event that the
speaker has eaten cookies.

4. The life history or personal information of the
interlocutor.

• Example: summer vacation, school start,
graduation, “I skipped fourth grade.”, etc,
all belong to life experiences.

• Example: “I live in Taiwan.”, “I was born
in 1980.” are personal information.

5. Interlocutor’s personal habits.

• Example: “I usually look at English lan-
guage websites every day and go to my
local English Corner twice a week.”

6. If there is no clear sentence describing an
event in the conversation, use the context to
see if a life event occurred before the conver-
sation completes.

• Example: “S1: What’s for supper? S2:
Red cooked carp and rape with fresh
mushrooms.” When the dialogue is com-
pleted, it can be deduced that the event

“S2 cooked Red cooked carp and rape
with fresh mushrooms for dinner” oc-
curred.

• Example: “S1: I ran a red light? S2: Yes,
you did.”, S1 was originally a question,
and the answer of S2 affirmed the occur-
rence of S1 running a red light.

A.3 What are not personal life events?

1. Public issues or general knowledge

• Examples: news, knowledge, company
business related events.

• Examples: “We run a spotless and
cockroach-less hotel.” Events that rep-
resent the company’s position are not
counted.

2. Only expressing personal feelings and prefer-
ences (related to emotions)

• Examples: “I feel tired,” “I think you
are cute,” “I like Chinese food,” “I’m
worried about his condition,” “I’m tired
of going to school,” etc.

3. Expressing personal abilities

• Example: “I can type 80 words a
minute.”

4. Things that are not guaranteed to happen don’t
need to be marked as possible future events

• Examples: “Can you wait a little while?”
“You should go to school tomorrow.”

5. “Ask questions” and “express opinions” are
not considered life events of themselves (un-
less there is an answer response to judge that
an event has occurred)

• Example: “S1: Did you go to school yes-
terday? S2: No, I didn’t.” Only need to
mark the event “S2 did not go to school
yesterday”, and do not need to mark the
event “S1 asked S2 a question”.

6. A simple description of the environment, peo-
ple, things, and things is not considered a life
event (unless there is an implied life event)

• Example: “That girl standing there is
pretty.”
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A.4 Event Explicitness
Events can be classified into Explicit or Implicit
events, depending on whether there is a clear action
in the sentence to indicate the occurrence of the
event.
Explicit Event: There exists an explicit action
describing a life event.

• As long as the Predicate appears in the dia-
logue that clearly represents the action of the
event, it belongs to the Explicit event. If there
is a verb but it is not clear, please deduce the
explicit verb and mark it as Implicit.

– Example: “S1: I ran a red light? S2:
Yes." → Explicit Event: (Subject= S1,
Predicate= ran , Object= red light, Time=
BEFORE, Polarity= POS, Modality=
ACTUAL)

• Object can be missing, for example: “We’ll
wait.” with a clear action (wait).

• If the life event has been explicitly described,
it is not necessary to extend the label to other
possible events.

– Example: “Today I played basketball.”
There is no need to mark the event of “I
went to the basketball court.”

Implicit Event: Contexts and situations are re-
quired to infer an life event. (As long as the Predi-
cate needs to be deduced, it is considered Implicit).

• Please infer the action most relevant to your
life experience based on the dialogue context.

• A sentence with an ambiguous verb.

– Example: “I want a fillet steak, medium.”
In the context of ordering food, please
deduce that the Predicate is “order”, and
mark the event as Implicit. → Implicit
Event: (Subject= I, Predicate= order
, Object= fillet steak, medium, Time=
NOW, Polarity= POS, Modality= AC-
TUAL)

• Events implicit in the dialogue.

– Example: “S1 : Can I get you some cof-
fee? S2 : De-caff.” → Implicit Event:
(Subject= S2, Predicate= order , Object=
De-caff, Time= NOW, Polarity= POS,
Modality= ACTUAL)

• Implicit event in a sentence.

– “S1 : You must be exhausted after your
long trip from Canada.” → Implicit
Event: (Subject= You, Predicate= travel
from , Object= Canada, Time= BEFORE,
Polarity= POS, Modality= ACTUAL)

• The situations of the dialogue, such as order
meals, make phone calls, send things, job in-
terviews, etc.

– Example: “S1 : This is John speaking.
S2 : Hi, this is Mary.” → Implicit Event:
(Subject= S2(Mary), Predicate= call, Ob-
ject= S1(John))

• Note: Except for the Predicate of Implicit
Event, please use the vocabulary in the sen-
tence for Subject, Predicate, Object, and Time
of Explicit Event, and do not create your own
vocabulary.

A.5 Format Description
The annotation for an event includes the following
fields: Subject, Predicate, Object, Time, Polarity,
Modality.
Subject: The subject is the word that performs the
action. Most subjects are nouns, pronouns, noun
phrases or noun clauses. Subjects are mainly the
two interlocutors, but may also be people or things
related to life events.
Predicate: The action of a life event, expressing
what the subject did or what happened. Usually a
verb, but may also be a preposition (please refer to
the example label below).

• Predicate needs to indicate a clear action.

– Example: "I’d like to take the apartment
I looked at yesterday.", take means ac-
cept, but we know from the above that
the interlocutor wants to rent a house, so
please mark the more specific action rent
as a Predicate.

– Example: “I need a double and three
triples.”, need means need, but it can be
inferred in the dialogue that the interlocu-
tor wants to book a room, so please mark
the action book as Predicate.

– Example: “I’ll be right there.” This sen-
tence means that I will go to a certain
store immediately, please do not directly
mark (I, be, there), please deduce a more
precise action go to from the predicate
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• When Predicate is a preposition, please mark
it according to the following example:

– "with" means "and", which means an
event involving more than two people.

* Example: “I went shopping with her.”
or “I went shopping ... with her.”
→ Explicit Event 1: (Subject= I,
Predicate= went , Object= shopping,
Time= BEFORE, Polarity= POS,
Modality=ACTUAL, )
→ Explicit Event 2: (Subject= I,
Predicate= went with / with , Object=
her, Time= BEFORE, Polarity= POS,
Modality= ACTUAL)

– Modifies verbs, such as prepositions
denoting the destination and means of
movement.

* Example: “I went to San Francisco
by plane.”
→ Event 1: (Subject= I, Predi-
cate= went to , Object= San Fran-
cisco, Time= BEFORE, Polarity=
POS, Modality= ACTUAL)
→ Event 2: (Subject= I, Predicate=
went by , Object= plane, Time= BE-
FORE, Polarity= POS, Modality=
ACTUAL)

* Example: “He is on the school vol-
leyball team."
→ Event: (Subject= He, Predicate=
is on , Object= school volleyball
team, Time= CONTINUOUSLY, Po-
larity= POS, Modality= ACTUAL)

* Example: “S1 : Did you hear it on
the radio? S2 : Yes."
→ Event 1: (Subject= S2, Predi-
cate= hear , Object= it, Time= BE-
FORE, Polarity= POS, Modality=
ACTUAL)
→ Event 2: (Subject= S2, Predicate=
hear on , Object= radio, Time= BE-
FORE, Polarity= POS, Modality=
ACTUAL)

– If the preposition refers to the time,
please mark the time directly in the field
of Time.

* Example: “We ate dinner at 8 pm”
→ Event: (Subject= We, Predicate=
ate, Object= dinner, Time= 8 pm, Po-
larity= POS, Modality= ACTUAL)

• Nested events.

– Example: “I’m planning to sing a song
in front of everybody.”
→ Event 1: (Subject= I , Predicate= ’m
planning to , Object= sing a song in front
of everybody , Time= NOW, Polarity=
POS, Modality= ACTUAL)
→ Event 2: (Subject= I , Predicate=
sing , Object= song , Time= AFTER,
Polarity= POS, Modality= HYPOTHET-
ICAL)
→ Event 3: (Subject= I , Predicate= in
front of , Object= everybody , Time=
AFTER, Polarity= POS, Modality=
HYPOTHETICAL)

• Sentences that describe situations where no
event occurred.

– Example: “John didn’t go to the party
tonight.” Predicate does not need to mark
negative words (didn’t), please mark pos-
itive or negative marks in Polarity.

• Sentences describe possible future events.

– Example: “We will have a meeting at 9
am tomorrow.” Predicate does not need
to mark auxiliary verbs that indicate fu-
ture occurrences (for example: will, is
going to), please mark the form of event
occurrence in Modality.

• Not a predicate of personal life events: think,
know, need, want, hope, trust, like, feel.

Object: The object may be a person, thing, or
object, expressing the relationship with the Subject
through the Predicate. Most are nouns, pronouns,
noun phrases or noun clauses.

Please use words that appear in the dialogue as
much as possible, and only mark words that are
meaningful to the event.

• Example: “I have a hat.” Do not need to anno-
tate articles (such as “a", “the").

• Example: “I made this delicious dinner.” Do
not need to annotate the adjective.

• Example: “I have a problem with my room.”
Supplemental words such as “with my room”
need to be annotated.
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Time: Express the time information of the life
event, such as the time or frequency of the event.

If there is a clear description of the time infor-
mation in the dialogue, for example: yesterday, last
week, directly fill in the time information in the
sentence.

If there is no clear description, the default time
mark can be filled in as follows:

• BEFORE : Indicates that the event occurs be-
fore the dialog occurs.

• NOW : Indicates that the event occurred dur-
ing the period from the beginning of the con-
versation to the end of the conversation

• CONTINUOUSLY : Indicates that the event
has continued to occur from the past to the
present (longer duration).

• AFTER : Indicates that the event (possibly)
happens after the conversation ends.

Please infer which label is suitable for filling in
according to the dialogue.

If there is a vague description in the sentence,
please fill in the mark that matches the meaning of
the adverb of time.

• Example: “I just finished my homework.”
Please fill in NOW for Time.

If people use “after...” or “before...” to describe
the occurrence time in the sentence, you can fill in
it directly.
Polarity: Indicates that the life event is positive or
negative. The default is POS for positive and NEG
for negative.

• Example: “You did not invite me to the party
.”
→ Event 1: (Subject=You, Predicate=invite,
Object=me, Time=BEFORE, Polarity= NEG ,
Modality=ACTUAL)
→ Event 2: (Subject=You, Predicate=invite
to, Object=party, Time=BEFORE, Polarity=
NEG , Modality=ACTUAL)

• Example: “I have no money with me.”
→ Event: (Subject=I, Predicate=have, Ob-
ject=money, Time=NOW, Polarity= NEG ,
Modality=ACTUAL)

Modality: Indicates the form of life events, with
the following symbols:

• ACTUAL: Indicates that the event has oc-
curred before or at the moment when the sen-
tence is spoken.

• HYPOTHETICAL: Indicates that the event
may happen in the future, but only if there
is a clear sentence in the dialogue to affirm
or deny that the future will do. Even if the
next moment of speaking may happen but has
not happened yet, please mark it as HYPO-
THETICAL. After adding the next sentence of
dialogue, the situation can be deduced that it
has happened, and then changed to ACTUAL.

A.6 Coreference Annotation
Mark all words in the dialogue that point to pro-
nouns in the Event. Mark all the words representing
the same thing into the same mention.

• Example: “S1 : Did you eat the cake on the
table? S2 : Yes, I ate that.”
→ Explicit Event: (Subject= I, Predicate= ate,
Object= that, ...)
→ Coref tag: (Subject: (I, S2), Object: (that,
cake on the table))

B Annotation Interface

Figure 3 shows the annotation interface. The anno-
tator was first shown the topic of the conversation,
the number of turns to annotate, and the full di-
alogue. Then, the utterances of the dialogue are
displayed turn by turn cumulatively. The example
in Fig 3 is the second instance of the dialogue. The
annotators should decide whether the cumulative
turns contain life events of the speakers. If answer-
ing “Yes”, they will add the index of “Subject”,
“Predicate” (if it’s an explicit event), and “Object”,
and select the event status.
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Figure 3: The annotation interface.
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Abstract

Evidence data for automated fact-checking
(AFC) can be in multiple modalities such as
text, tables, images, audio, or video. While
there is increasing interest in using images for
AFC, previous works mostly focus on detect-
ing manipulated or fake images. We propose
a novel task, chart-based fact-checking, and
introduce ChartBERT as the first model for
AFC against chart evidence. ChartBERT lever-
ages textual, structural and visual information
of charts to determine the veracity of textual
claims. For evaluation, we create ChartFC,
a new dataset of 15, 886 charts. We system-
atically evaluate 75 different vision-language
(VL) baselines and show that ChartBERT out-
performs VL models, achieving 63.8% accu-
racy. Our results suggest that the task is com-
plex yet feasible, with many challenges ahead.

1 Introduction

Charts are often used to present data in news ar-
ticles, reports, scientific publications, and across
social media posts (Lo et al., 2022; Zhang et al.,
2021). For example, in recent years, charts have
been widely used to guide policymakers in decid-
ing health policies and to communicate COVID
information with the general public; a popular ex-
ample is the coronavirus dashboard by Johns Hop-
kins University,1 which was integrated in several
websites (Perkel, 2020).

Misinformation can spread through charts in var-
ious ways. Previous works in data visualization
have discussed how misleading chart design can
cause misinformation (Lo et al., 2022). However, a
more subtle form of misinformation occurs during
chart interpretation (e.g. through invalid compar-
isons, framing correlation as causation, or spread-
ing of misleading claims). To identify these mis-
information types not only the stand-alone chart
but the chart together with its message need to be

1https://coronavirus.jhu.edu/map.html

Claim: Both Thane Baker and Nate Cartmell were ranked
last.

Evidence:

Label: Supports

Figure 1: An example from the ChartFC dataset where
the claim is supported by the evidence chart.

considered jointly (Lo et al., 2022). In this work,
we focus on verifying whether charts support or
refute claims about them.

There has been substantial progress in automated
fact-checking (AFC) in recent years, with a fo-
cus on verifying claims against text (Wang, 2017;
Thorne et al., 2018; Schuster et al., 2021; Thorne
et al., 2021; Diggelmann et al., 2020), table (Aly
et al., 2021; Diggelmann et al., 2020; Chen et al.,
2020a; Akhtar et al., 2022), and image (Yao et al.,
2022; Zlatkova et al., 2019; Qu et al., 2022) evi-
dence. Previous work has widely ignored claim
verification against chart images. There are sev-
eral challenges related to chart fact-checking as
opposed to other evidence modalities: the struc-
tural information, text in charts, and location of
text need to be considered jointly for chart under-
standing. Text plays a key role and is used, for
example, as bar labels, chart titles, or in legends
to explain the use of colors. Moreover, verifying
claims against charts requires different reasoning
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types, e.g. retrieving values, finding extremes, or
calculating a sum.

To address these challenges, we propose the
chart fact-checking task where, given a text claim
and a chart, the goal is to classify if it supports or
refutes the claim. We introduce ChartBERT as the
first model for AFC against chart evidence com-
prising (i) an OCR-based reading component to
extract text and structural information from chart
images; (ii) a sequence generation component to
process the extracted information; and (iii) an en-
coding component that extends the BERT archi-
tecture (Devlin et al., 2019) with three additional
structural embeddings to jointly learn textual and
structural representations of chart images.

Moreover, we release ChartFC as the first bench-
mark for chart-based AFC, created using TabFact
(Chen et al., 2020a) as a seed dataset. Our dataset
contains 15.9k human-written claims and bars of
different colors, orientations, and backgrounds (see
Figure 1 for an example). Our highest-performing
ChartBERT model achieves 63.8% accuracy on
ChartFC. We compare ChartBERT to 75 vision-
language (VL) baselines, combining five vision
encoders, three language encoders, and five fu-
sion methods. The best-performing VL model is
a transformer-based (Vaswani et al., 2017), dual
encoder architecture that uses a simple, yet effec-
tive fusion block: concatenation and gated recur-
rent units (GRUs) (Bahdanau et al., 2015). Our
results suggest that state-of-the-art VL approaches
struggle with the proposed task, calling for more
research.

Our contributions are as follows: 1) we propose
the chart fact-checking task and build ChartBERT
as the first chart fact-checking model; 2) we intro-
duce ChartFC, the first dataset for AFC with chart
evidence; 3) we systematically evaluate state-of-
the-art language/vision encoders and fusion meth-
ods on the proposed task, highlighting challenges
and providing an analysis of common reasoning
types that contribute to failures.2

2 Related Work

2.1 Verifying Claims against Evidence
Evidence-based fact-checking aims to predict
claims’ veracity given evidence data. While many
datasets focus on text (Thorne et al., 2018; Kotonya
and Toni, 2020; Schuster et al., 2021; Wang, 2017)

2The ChartFC dataset and our code are available at https:
//github.com/mubasharaak/ChartFC_chartBERT.

and table evidence (Chen et al., 2020a; Gupta et al.,
2020; Aly et al., 2021; Wang et al., 2021a; Akhtar
et al., 2022), human fact-checkers use a wider range
of modalities for verification (Nakov et al., 2021b;
Alam et al., 2021). They consult experts and extract
information from databases, text, tables, graphics,
and audio/video material from numerous sources.3

Charts influence how messages are perceived
(Pandey et al., 2014). For example, Lee et al. (2021)
use the term “counter-visualization” to describe
data visualizations by the anti-vaccination commu-
nities in the US who created charts from publicly
available data and interpreted them in a way that
challenged the narrative of the pandemic, leading
to disinformation.

2.2 Automated Fact-Checking with Images

Given that claims and evidence can be conveyed
through different modalities, interest in AFC with
images has increased recently (Nakov et al., 2021a;
Cao et al., 2020; Alam et al., 2021; Yao et al., 2022;
Sharma et al., 2022). Previous tasks focus mainly
on detecting manipulated or fake images rather than
on evidence-based claim verification (Blaier et al.,
2021; Kiela et al., 2020; Alam et al., 2021; Sharma
et al., 2022; Abdali, 2022). Whilst manipulated or
fake images can be detected using the image only,
claim verification requires understanding the claim
and evidence jointly.

2.3 Chart Images in other NLP Tasks

Two tasks related to chart fact-checking are
chart question answering and chart summarization.
Given a chart image, the summarization task re-
quires to generate a summary of the chart in natural
language text (Kantharaj et al., 2022; Tan et al.,
2022). For question answering (chartQA) the an-
swer to natural language questions is extracted
from chart images. However, different to claim
verification, questions typically provide strong in-
dicators for the correct answers. Existing chartQA
datasets are either small (Kim et al., 2020) or
comprise automatically-generated, template-based
questions (Chaudhry et al., 2020; Kahou et al.,
2018; Kafle et al., 2018).

3 ChartBERT Model

We introduce ChartBERT, a first BERT-based chart
fact-checking model. Our model consists of (i) a

3https://ballotpedia.org/The_methodologies_of_
fact-checking
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Figure 2: The ChartBERT architecture.

reading component which extracts text and struc-
tural information from charts (Section 3.2); (ii) a
component for generating textual sequences from
the information previously extracted (Section 3.3);
and (iii) a BERT-based encoder with additional
structural embeddings for the text extracted from
charts (Section 3.4). The model architecture is
shown in Figure 2.

3.1 Task Formulation
Following previous AFC work (Chen et al., 2020a;
Aly et al., 2021; Thorne et al., 2018; Wang et al.,
2021b), we view chart fact-checking as a classifi-
cation task where, given a natural language claim
and a piece of evidence (i.e. the chart image), the
goal is to decide if the evidence supports or refutes
the claim. We use support/refute as labels for claim
classification instead of true/false as we only as-
sess the claim veracity given the provided evidence
rather than claiming universal statements.

Each ChartFC sample i = (ci, imgi, yi) com-
prises a natural language claim ci, a chart image
imgi (see Figure 1 for an example), and a label
yi ∈ {supports, refutes}.

3.2 Reading Text from Chart Images
Given an image imgi, the reading component ex-
tracts text and structural information. First, we
detect text regions in the chart using a Tesser-
act OCR model (Kay, 2007). Specifically, for
each image, the model extracts n text regions
Ti = {t1, t2, ..., tn}n

j=1, where each region tj con-
sists of textj , a sequence of m tokens, and a rect-
angular bounding box bj that surrounds the text
region in the chart. The bounding box is a tuple
bj = (xj , yj , wj , hj) where xj and yj are the pixel

coordinates of the top left point of the box, and wj
and hj represent the width and height of the box in
pixels. Thus, for each image imgi we obtain the
following output oi:

oi = fR(imgi) = {(textj , xj , yj , wj , hj)}n
j=1

3.3 Text Sequence Generation

Next, we process the reading component’s output
into a text sequence si consisting of m tokens:

si = fSeqGen(oi) = [s1, s2, ...sm]

We compare two approaches as follows.
Concatenation: The concatenation method pro-
cesses the text regions (i.e. tj ∈ Ti) based on their
coordinates xj and yj so that texts that are close in
the chart are also close in the generated sequence.
The chart text is concatenated into one sequence
and tokens that belong to different text regions are
separated using a [; ] token. Thus, for the chart Fig-
ure 1 we obtain a text sequence starting with “usain
bolt ; 1 ; andy stanfield ; 2 ; [...].”
Template: We use the structural information (i.e.
x, y, wj , hj) to fill templates and generate text se-
quences. We evaluate three templates (an example
for each template, extracted from Figure 1, is pro-
vided in brackets):
tmp1: entry [num] : [lx] is [textx]; [ly] is [texty]
(entry one: athlete is usain bolt ; rank is 1);
tmp2: “row [num] : [lx] is [textx]; [ly] is [texty]”
(“row 0: athlete is usain bolt ; rank is 1”);
tmp3: “[lx] is [textx] when [ly] is [texty]”
(“athlete is usain bolt when rank is 1”).

The placeholder [lx] is replaced with the x-axis
label from the chart (e.g. “rank” in Figure 1). Simi-
larly, the y-axis label (e.g. “athlete”) replaces [ly].
Based on the coordinates, we classify a bounding
boxes that contain axes labels (i.e. the boxes with
the largest y coordinates).

A counter starting from one replaces [num] and
numbers the bars in the chart. We fill [texty] and
and [textx] with text regions detected as bar labels
and axis ticks given their positions.

3.4 Encoding and Classification

ChartBERT captures the structure of charts through
three learned embeddings: the x coordinate embed-
ding which captures the horizontal location of the
text in the chart, the y coordinate embedding which
captures the vertical location, and the label embed-
ding which takes value 1 if the text region is part
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Figure 3: ChartBERT input representation with the text extracted from the chart and concatenated following
the approach in Section 3.3. We include additional structural embeddings (i.e. x and y coordinates and label
embeddings) to the BERT input embeddings (i.e. token, segment and position embeddings).

of the x-axis label (lx), 2 if the text region is part
of the for y-axis label (ly) and 0 otherwise.

Figure 3 shows an example of the encoder with
the structural embeddings. We concatenate claim
ci and sequence si, separate them with a [SEP ] to-
ken, add [CLS] as the first input token, and feed the
resulting vector as input to ChartBERT which gen-
erates 768-dimensional representations hi ∈ R768.
Finally, we pass hi through a fully connected layer
and determine the predicted label using sigmoid.
ChartBERT uses binary cross entropy to minimize
loss on the training set.

inpi = (ci, si, {xj , yj , lxj, lyj}n
j=1)

hi = fEncoder(inpi)

pi = σ(fFC(hi))

4 Evaluation

For evaluation, we first create a new dataset,
ChartFC. We compare ChartBERT with several
VL baselines, each comprising three components:
a vision encoder, a language encoder, and a fusion
block to obtain joint representations. We evaluate
the dataset size and potential biases, discuss results
obtained with ChartBERT and the baselines, and
analyse reasoning types the models fail on.

4.1 ChartFC Dataset
This section provides an overview of the ChartFC
dataset and its creation process. Each dataset entry
comprises a natural language claim, a chart image,
and a label ∈ {supports, refutes}.

4.1.1 The TabFact Dataset
We use TabFact (Chen et al., 2020a) as a seed
dataset. TabFact is a table fact-checking dataset
of natural language claims and tables extracted
from Wikipedia as evidence, where the veracity
of the claim is decided based on the accompanying
table. Claims were written and evaluated by hu-
man crowdworkers with at least 95% approval rates
for prior tasks and more than 500 accepted HITs
on Amazon Mechanical Turk. The inter-annotator
agreement for the claim verification task is Fleiss
κ = 0.75.

4.1.2 Creation Pipeline
Figure 4 shows the dataset creation process.4 Start-
ing with 117, 784 claims and 16, 000 Wikipedia
tables from TabFact, we first generate sub-tables.
To link the claim text to table columns, we (i) lem-
matize and tokenize the claim and the table con-
tent, (ii) link claim tokens to column headers and
cells using string matching and heuristic rules, and
(iii) decide if a claim token is linked to multiple
columns using the minimum Levenshtein distance

4Figure 8 in the Appendix A illustrates the pipeline.
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Figure 4: Dataset creation process.

Train Valid Test Sum
Support 7,048 896 885 8,829
Refute 5,654 697 706 7,057
Sum 12,702 1,593 1,591 15,886

Table 1: Class distribution across dataset split.

(Levenshtein, 1966), and finally, (iv) filter sub-
tables with a maximum of twenty rows and two
linked columns. This results in a total of 15, 886
pairs of claims and sub-tables.

Finally, we generate charts using the Python li-
braries seaborn and matplotlib. The charts vary
across the dimensions (i) orientation (horizontal,
vertical); (ii) bar colors (green, blue, pink); and
(iii) background (no/white grid lines, white/gray
background color). We show an example in Fig-
ure 1. We partition the dataset into training, val-
idation, and test sets using 8:1:1 ratio and show
statistics in Table 1.

4.1.3 Dataset Evaluation
To assess the data quality, we apply human and
automated evaluation. We evaluate the sub-table
generation step (step 2 in Figure 4) by checking
the verifiability of claims against the extracted sub-
tables with TableBERT (Chen et al., 2020a). We
obtain 69.3% accuracy on our test set, comparable
to 65.1% accuracy reported by Chen et al. (2020a)
on their test set.

For human validation, we extract 100 random
dataset entries and manually evaluate the claims
against sub-tables and charts. Of the 100 claims, 92
were successfully verifiable against their sub-tables
and chart images, six claims were not verifiable
because a relevant column was missing in the sub-
table, and two claims were already mislabelled in
the TabFact dataset.

4.1.4 Chart Reasoning Types
We label 100 random test samples with chart rea-
soning types, using a taxonomy of common reason-
ing types humans apply while interacting with data

Figure 5: Number of chart reasoning types found in
100 dataset entries.

visualisations (Amar et al., 2005). We find seven
reasoning types present in our data: retrieve value,
filter, comparison, compute derived value, find ex-
tremum, determine range, and find anomalies.5 On
average, we find 1.4 different types per claim with
most claims including either one or two different
reasoning types (see Figure 5). The reasoning type
retrieve value, which requires extracting a value
from the chart image given certain criteria, occurs
most frequently (51%), followed by find extremum,
i.e. highest or lowest values in the chart, and fil-
ter, which occur in approximately a quarter of all
labelled claims. More complex types such as com-
pute derived value or extracting all values in a given
range are less frequent.

4.2 Vision-Language Baselines

We evaluate our task with several VL baselines,
which jointly use claim text and visual information
from images for claim verification. We also assess
the top-3 VL baselines with OCR-extracted chart
text as additional input. Each baseline consists of
a language encoder, a vision encoder, and a fu-
sion component to obtain joint representations. We
systematically evaluate various state-of-the-art en-
coders and fusion techniques: we use shallow (e.g.
BERT Embedder (Chen et al., 2020b)) and deep
encoders (e.g. DenseNet (Huang et al., 2017)), as
well as model-agnostic (e.g. concatenation) and
model-based (e.g. transformer layers) fusion meth-
ods.

Language encoders: Given a claim ci, we use a
language encoder to obtain a feature vector:

htext
i = fLangEncoder(ci)

We experiment with three language encoders:
BERT Embedder: Following Chen et al. (2020b),

5We describe the chart reasoning types in detail and give
examples in Appendix B.
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we tokenize the claim text into sub-words. For each
token, we add the word and position embeddings to
obtain the text representation which we then pass
through a normalization (Ba et al., 2016) layer.
LSTM: We encode the text with 32-dimensional
word embeddings and pass them through two
LSTMs (Hochreiter and Schmidhuber, 1997) with
768-dimensional hidden states in each layer. We
use the hidden states of the second layer as text
representations.
BERT: We use a twelve-layer BERT encoder, ini-
tialized with weights from a pretrained BERT-base
model.

Vision encoders: We use a vision encoder to
extract representations for the chart images:

himg
i = fV isEncoder(imgi)

We evaluate five vision encoders:
Fully connected layer: We use a fully connected
layer to extract 768-dimensional representations
per image himg

i ∈ R768.
AlexNet: Using AlexNet (Krizhevsky et al., 2012),
for each image, we obtain a representation vector
himg

i ∈ R1024 by extracting the model output after
the third max pooling layer.
ResNet: We use ResNet-152 (He et al., 2016) to
obtain 2048-dimensional image representations by
extracting the model output before the two final
layers of ResNet-152, i.e. before the average pool-
ing layer.
DenseNet: We use a DenseNet (DN) (Huang et al.,
2017) comprising three dense blocks, with 6, 12,
and 24 layers, respectively. We extract and concate-
nate the output of the first and third dense block
as low- and high-level feature vectors: himg

i =
fconcat(fDN [block1](imgi); fDN [block3](imgi)).
Vision Transformer (ViT): We split images into
sequences of n 16x16 patches before using them as
input to a pretrained base-ViT model (Dosovitskiy
et al., 2021).6 We extract the hidden states from
the model’s final layer and use them as image rep-
resentations, resulting in 768-dimensional vectors
for each patch: himg

i = [h ∈ R768]n.
Fusion methods: We then fuse the text and

image representations:

hjoint
i = fFusion(h

img
i ;htext

i )

We experiment with five fusion methods:
Concatenation and multiplication: Concatena-

6https://huggingface.co/google/
vit-base-patch16-224

tion and multiplication are common baseline ap-
proaches for multimodal fusion (Baltrušaitis et al.,
2018). We reshape the text and image representa-
tions and either (i) concatenate both vectors, or (ii)
perform element-wise multiplication.
Concatenation with GRUs: Inspired by Kafle
et al. (2020), we concatenate the text and image rep-
resentations and pass the resulting vector through
m 1x1 convolutional layers and two GRUs. The
first GRU takes the input in a forward direction,
while the second GRU processes the input vector
in a backwards direction to incorporate contextual
information:

hconcat
i = fconv(fconcat{himg

i ;htext
i })

hjoint
i = fconcat{f−−−→GRU(h

concat
i ); f←−−−GRU(h

concat
i )}

Multimodal Compact Bilinear Pooling (MCB):
MCB is an efficient and popular baseline for multi-
modal fusion (Fukui et al., 2016). The text and im-
age representations are each projected to a higher
dimensional space using the projection function
Count Sketch (Charikar et al., 2004). The outer
product of the projected vectors is then calculated
in Fast Fourier Transform space to obtain a joint
representation for both modalities and thus reduce
the amount of learnable parameters during model
training.
Transformer layers: Given the recent popularity
of transformer layers used for joining text and vi-
sual representations (Tan and Bansal, 2019; Chen
et al., 2020b; Yang et al., 2021), we use a three-
layer transformer to get cross-modal embeddings.

The representation hjoint
i is passed through two

fully-connected layers and sigmoid to obtain the
classification. We use binary cross entropy loss
and stratified sampling in each training batch to
minimize the loss on the training set.

4.3 Experimental Setup

We perform hyper-parameter search on the valida-
tion set and select the best-performing combination
from the following values: {8, 16, 32} for batch
size, {1e−3, 7e−4, 5e−5, 5e−6, 5e−7} for learning
rate, {1, ..., 50} for training epochs with early stop-
ping. We also experimented with different learning
rates for the language and vision encoders. Ulti-
mately, we used one learning rate for the entire VL
model as the modality-specific learning rates did
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SeqGen Val Acc Val F1 Test Acc Test F1

concat. 59.2 55.1 60.6 57.0
temp. tmp1 62.4 59.1 63.3 61.0
temp. tmp2 62.0 59.4 61.9 58.7
temp. tmp3 62.1 59.7 63.8 61.1

Table 2: Results for ChartBERT with different sequence
generation (SeqGen) approaches: concatenation and
template.

V-Encoder Fusion no OCR text concat
ViT concat GRU 59.8 60.5

ResNet mult 60.1 61.3
ResNet concat 59.8 62.7

Table 3: Test accuracy of top-3 VL baselines: without
(no OCR) chart text and chart text concatenated. All
models use BERT as language encoder.

not provide any performance gains.7

We run all experiments on a single NVIDIA
Tesla V100 GPU with 32GB RAM. We measure
model performance with prediction accuracy and
(macro) F1 on the test dataset.

4.4 Results & Discussion

How does ChartBERT perform on the task?
How do different approaches for sequence gen-
eration influence model performance?

Table 2 gives an overview of the results obtained
by ChartBERT. The best ChartBERT variant yields
63.8% test accuracy and processes chart text into
text sequences using the template tmp3. Com-
pared to the concatenation approach, using tmp3
increases the accuracy by +3.2%.

Interestingly, the choice of template design im-
pacts the model performance only slightly. While
template tmp3 might seem more “natural” to hu-
mans, it does not yield much higher performance
compared to tmp2.
How do VL baselines perform on ChartFC?
How does the selection of encoder or fusion
method impact model performance?

In contrast to many state-of-the-art VL ap-
proaches that use simple vision encoders and
attention-based fusion (Chen et al., 2020b; Kim
et al., 2021; Xia et al., 2021), the three best-
performing VL models on ChartFC use BERT as
language encoder, ViT or ResNet to obtain image
representations, and either concatenation, multipli-
cation, or concatenation with GRUs as a fusion
method. Using only the claim and chart as input

7The hyper-parameters for each VL baseline can be found
in our GitHub repo.

(i.e. without the OCR-extracted chart text), the
highest test accuracy we obtain is 60.1% with the
model consisting of BERT, ResNet, and multiplica-
tion fusion (see Table 3).

Regarding the language encoder,8 models that
use BERT perform best, irrespectively of the vi-
sion encoder and fusion method: the best LSTM-
based model achieves 56.1% test accuracy and the
best model with BERT embedder yields 56.5% ac-
curacy, both lower than the best BERT-based VL
model with 60.1% accuracy. In contrast, we obtain
similar accuracy scores across different vision en-
coder: for example, replacing ResNet in Table 3
row two with a fully connected layer reduces the
accuracy slightly by 0.6% to 59.7%. The choice
of fusion method does not impact performance
strongly: while using multiplication mostly outper-
forms other methods by a small margin, no fusion
method stands out across all vision and language
encoders. We also evaluate the chartQA model
PReFIL (Kafle et al., 2020), which uses LSTM as
language encoder, DenseNet for image representa-
tions, and concatenation with GRUs for fusion, and
obtain on ChartFC a low test accuracy of 55.6%.
How does OCR-extracted chart text influence
performance of VL models?

In addition to claim text and chart images used
in VL baselines, we also include the text extracted
from the charts through OCR as input (see Sections
Sections 3.2 and 3.3 for details). Table 3 shows that
using the concatenated chart text as input improves
accuracy compared to the models that do no use
the chart text (e.g. from 59.8% to 62.7%). The
highest accuracy 62.7% is obtained with the BERT-
ResNet-concatenation baseline.
Do models fail on particular chart reasoning
types?

We evaluate the best VL baseline, consisting of
BERT, ViT, and concatenation with GRUs, on the
chart reasoning types present in ChartFC and de-
scribed in Section 4.1.4. We find that the model
performs best on the reasoning types retrieve value,
filter, and finding extremum, while struggling partic-
ularly with compute derived values. Figure 6 shows
that the model classifies correctly 65% (i.e. 33 out
of 51) of claims that require retrieval and 61% of
claims that require filtering. However, only 50%
of comparison claims and 38% of claims required
to compute derived values are correctly predicted.

8The complete set of results obtained with different en-
coders and fusion methods can be found in Tables 5, 6, and 7
in the Appendix.
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Figure 6: Chart reasoning types: total count and correct
predictions of manually annotated test samples.

These results are in line with previous works that
discuss limitations of state-of-the-art models in
tasks requiring numerical reasoning capabilities
(Thawani et al., 2021).
Is the dataset size sufficient for our proposed
task? Do ChartFC claims contain biases?

We evaluate the size of the dataset by training
our VL baseline (i.e. using BERT, ViT, and con-
catenation with GRUs) on various subsets of the
training data as shown in Table 4 and report the
accuracy on the test set. The performance on the
test set improves as the number of training sam-
ples increases. While the performance gain is high
when increasing the training set from 1% to 25%
(51.6% accuracy compared to 57%), the difference
in accuracy between the baseline trained on half
of the training data and the entire training data is
only 2.6%, indicating that our training set has a
reasonable size.

We also train a claim-only BERT model to deter-
mine whether claims contain biases that allow the
model to correctly predict the label while ignoring
the evidence charts. Trained on the claim text only,
the model achieves 52% accuracy on the test set,
compared to ChartBERT’s accuracy of (63.8%).
We conclude that the claim text itself is not suffi-
cient for correct classification.
What are the dis-/advantages of an automated
dataset pipeline for chart fact-checking?

We automatically create ChartFC using a table
fact-checking dataset as seed by identifying sub-
tables relevant to the claims and then building the

Training Samples Test Accuracy
127 (1%) 51.6

3,175 (25%) 57.0
6,351 (50%) 57.1
9,526 (75%) 58.0

12,702 (100%) 59.8

Table 4: Performance of VL baseline (BERT, ViT, and
concatenation with GRUs) with different training set
sizes.

charts. ChartFC includes common stylistic varia-
tions: bars of different colors, horizontal/vertical
orientations, different backgrounds (light/dark, grid
lines/no grid lines). While natural charts come with
large stylistic variation, using them results in re-
duced control over task complexity and dataset.
In future work, we plan to explore two alterna-
tive dataset creation pipelines: first, automated
pipelines for other charts types to extend the cur-
rent dataset, and second, a pipeline with natural
charts where we would create claims for charts.

Using natural charts would require a multi-step
annotation process: selecting and separating charts
from other images (Vougiouklis et al., 2020); writ-
ing claims which support/refute them; evaluating
the claims to check for correctness, typos, etc. We
would require annotators with proficiency in inter-
preting charts, and with basic mathematical and
language skills to create claims with different rea-
soning types (see Figure 5).

5 Conclusion and Future work

We propose the chart fact-checking task and intro-
duce ChartBERT, a novel model for fact-checking
claims against chart images comprising three main
components: a reading component, a sequence
generation component, and an encoder that ex-
tends BERT’s encoder with structural embeddings.
We also introduce ChartFC as the first dataset for
fact-checking against chart images, consisting of
15, 886 claims and chart images.

ChartBERT achieves 63.8% accuracy on
ChartFC. We systematically evaluate 75 different
VL baselines, using various language encoders, vi-
sion encoders, and fusion methods. The highest-
performing VL baseline uses BERT as language
encoder, ResNet to extract image representations,
and concatenation to obtain joint representations
for both modalities. The model achieves 62.7%
test accuracy. Our results indicate that chart fact-
checking, which requires extracting and reasoning
over text and structural information from charts, is
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a challenging task for future research on AFC and
VL methods.

Limitations

The TabFact dataset (Chen et al., 2020a) has been
a valuable resource for creating ChartFC. However,
using it as (the sole) seed dataset has limitations.

ChartFC consists of bar charts only; indeed,
given the claims and tables found in TabFact, the
bar chart was deemed the most appropriate chart
type. Various types of charts exist (e.g. pie charts,
line charts) and their effectiveness in different data
contexts and tasks has been investigated in the lit-
erature. For example, Saket et al. (2019) evaluated
the effectiveness of chart types using crowdsourc-
ing experiments across the chart reasoning types
we discussed in Section 4.1.4. In the context of
small datasets, i.e. up to 34 rows and two columns
which is similar to our setting, Saket et al. (2019)
found bar charts to be the most accurate visualiza-
tion type for the given chart reasoning types. In
addition to bar charts, other types of charts used as
evidence for fact-checking tasks ought to be inves-
tigated. Behrisch et al. (2018) studied visualization
methods for different data types (i.e. multi- and
high-dimensional data, relational data, geo-spatial
data, sequential and temporal data, and text data).
For example, they found that scatter plots were ap-
propriate visualization types for queries regarding
data distribution (e.g. correlations and clusters),
while line charts were more appropriate for queries
about temporal aspects of data. To extend ChartFC
with other chart types, we require more diverse
data types (e.g. sequential and temporal data) and
appropriate claims.

Moreover, ChartFC claims are restricted to En-
glish, whereas misinformation is commonly spread
in different languages. Future work is necessary to
address the limited availability of non-English fact-
checking datasets and to contribute to the efforts
done in this space (Gupta and Srikumar, 2021).
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A Dataset Pipeline

ChartFC charts vary across the dimensions (i)
orientation (horizontal, vertical); (ii) bar colors
(green, blue, pink); and (iii) background (no/white
grid lines, white/gray background color). Figure 7
shows multiple chart examples.

In Figure 8, we give an example of the dataset
creation pipeline. Starting with the claim and initial
TabFact table, we first filter columns required to de-
cide the claims veracity label: “age at appointment”
and “prior occupation”. This sub-table is used to
create the evidence chart (bottom right).

B Chart Reasoning Types

We label 100 random test set samples with chart
reasoning types. Next, we briefly describe each
type, for more details we refer to the taxonomy by
Amar et al. (2005):

• Retrieve Value: Given some conditions, re-
trieve a single value from the chart image.

• Filter: Find all data points in the chart that
fulfill some specified conditions.

• Compute Derived Value: Calculate an aggre-
gated value (e.g. average or count) using data
points extracted from the chart.

• Find Extremum: Extract the top-n data points
given some conditions.

• Determine Range: Based on some conditions,
find a span of values such that all extracted
data points fulfil the conditions.

• Find Anomalies: Find any anomalies in a spec-
ified set of data points.

• Compare: Compare the values of different
data points to each other.

410

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://ojs.aaai.org/index.php/ICWSM/article/view/7335
https://ojs.aaai.org/index.php/ICWSM/article/view/7335
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.1007/978-3-030-88480-2_63
https://doi.org/10.1007/978-3-030-88480-2_63
https://openaccess.thecvf.com/content/CVPR2021/html/Yang_TAP_Text-Aware_Pre-Training_for_Text-VQA_and_Text-Caption_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Yang_TAP_Text-Aware_Pre-Training_for_Text-VQA_and_Text-Caption_CVPR_2021_paper.html
https://doi.org/10.48550/arXiv.2205.12487
https://doi.org/10.48550/arXiv.2205.12487
https://doi.org/10.48550/arXiv.2205.12487
https://doi.org/10.1145/3411764.3445381
https://doi.org/10.1145/3411764.3445381
https://doi.org/10.18653/v1/D19-1216
https://doi.org/10.18653/v1/D19-1216


Figure 7: Examples from the ChartFC dataset.

Figure 8: Example for dataset creation process.
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Figure 9: Encoders and fusion methods used in VL
baselines.

C VL Baselines

Figure 9 provides an overview of all encoders and
fusion methods we use in our evaluation.

Table 5, 6, and 7 provide an overview of all VL
baselines we evaluated on ChartFC.
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Lang Encoder Vis Encoder Fusion Val Acc Val F1 Test Acc Test F1

BERT Emb FC concatenation 56.7 37.8 55.6 36.6
BERT Emb FC concatenation, biGRU 56.2 36.0 55.6 35.7
BERT Emb FC multiplication 56.6 52.8 56.5 52.3
BERT Emb FC MCB 56.2 36.1 55.6 35.7
BERT Emb FC Transformer layers 56.2 36.0 55.6 35.7
BERT Emb AlexNet concatenation 56.5 40.2 55.1 38.1
BERT Emb AlexNet concatenation, biGRU 56.2 36.0 55.6 35.7
BERT Emb AlexNet multiplication 57.0 41.4 55.9 39.9
BERT Emb AlexNet MCB 56.2 36.0 55.6 35.7
BERT Emb AlexNet Transformer layers 56.2 36.0 55.6 35.7
BERT Emb ResNet 152 concatenation 56.5 45.4 56.2 45.5
BERT Emb ResNet 152 concatenation, biGRU 56.2 36.0 55.6 35.7
BERT Emb ResNet 152 multiplication 56.6 38.3 56.3 38.8
BERT Emb ResNet 152 MCB 56.2 36.0 55.6 35.7
BERT Emb ResNet 152 Transformer layers 56.2 36.0 55.6 35.7
BERT Emb DenseNet (6, 12, 24) concatenation 56.5 43.7 54.0 40.7
BERT Emb DenseNet (6, 12, 24) concatenation, biGRU 56.6 45.3 54.1 42.2
BERT Emb DenseNet (6, 12, 24) multiplication 56.5 37.1 55.6 36.4
BERT Emb DenseNet (6, 12, 24) MCB 56.2 36.1 55.6 35.7
BERT Emb DenseNet (6, 12, 24) Transformer layers 56.2 36.0 55.6 35.7
BERT Emb ViT concatenation 56.2 36.0 55.6 35.7
BERT Emb ViT concatenation, biGRU 56.2 36.0 55.6 35.7
BERT Emb ViT multiplication 57.1 42.1 54.8 37.6
BERT Emb ViT MCB 56.2 36.0 55.6 35.7
BERT Emb ViT Transformer layers 56.2 36.0 55.6 35.7

Table 5: VL baselines using BERT embedder for text encoding, different vision encoders, and fusion methods

Lang Encoder Vis Encoder Fusion Val Acc Val F1 Test Acc Test F1

LSTM FC concatenation 56.6 36.9 55.5 35.8
LSTM FC concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM FC multiplication 56.2 36.0 55.6 35.7
LSTM FC MCB 56.2 36.0 55.6 35.7
LSTM FC Transformer layers 56.2 36.0 55.6 35.7
LSTM AlexNet concatenation 56.3 39.6 56.1 39.8
LSTM AlexNet concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM AlexNet multiplication 56.2 36.0 55.6 35.7
LSTM AlexNet MCB 56.2 36.0 55.6 35.7
LSTM AlexNet Transformer layers 56.2 36.0 55.6 35.7
LSTM ResNet 152 concatenation 56.2 36.0 55.6 35.7
LSTM ResNet 152 concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM ResNet 152 multiplication 56.2 36.0 55.6 35.7
LSTM ResNet 152 MCB 56.4 36.3 56.0 35.9
LSTM ResNet 152 Transformer layers 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) concatenation 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) multiplication 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) MCB 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) Transformer layers 56.2 36.0 55.6 35.7
LSTM ViT concatenation 56.2 36.0 55.6 35.7
LSTM ViT concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM ViT multiplication 56.2 36.0 55.6 35.7
LSTM ViT MCB 56.3 36.7 55.7 36.5
LSTM ViT Transformer layers 56.2 36.0 55.6 35.7

Table 6: VL baselines with LSTM as language encoder, different vision encoders, and fusion methods
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Lang Encoder Vis Encoder Fusion Val Acc Val F1 Test Acc Test F1

BERT FC concatenation 59.3 50.7 59.6 51.0
BERT FC concatenation, biGRU 58.8 51.1 58.5 50.2
BERT FC multiplication 59.4 54.5 59.7 54.9
BERT FC MCB 59.7 49.6 59.1 49.3
BERT FC Transformer layers 56.2 36.0 55.6 35.7
BERT AlexNet concatenation 59.5 47.9 59.1 47.6
BERT AlexNet concatenation, biGRU 59.2 48.2 58.0 47.0
BERT AlexNet multiplication 59.0 56.2 59.6 57.0
BERT AlexNet MCB 58.8 45.2 57.4 43.9
BERT AlexNet Transformer layers 57.6 50.8 59.5 52.6
BERT ResNet 152 concatenation 59.8 50.9 59.8 50.8
BERT ResNet 152 concatenation, biGRU 59.1 47.0 58.8 46.7
BERT ResNet 152 multiplication 59.3 52.2 60.1 53.6
BERT ResNet 152 MCB 58.2 47.0 58.7 48.9
BERT ResNet 152 Transformer layers 56.2 36.0 55.6 35.7
BERT DenseNet (6, 12, 24) concatenation 59.1 51.4 59.1 52.4
BERT DenseNet (6, 12, 24) concatenation, biGRU 60.2 53.0 59.0 51.0
BERT DenseNet (6, 12, 24) multiplication 59.4 49.2 58.7 48.7
BERT DenseNet (6, 12, 24) MCB 59.9 49.6 58.8 48.6
BERT DenseNet (6, 12, 24) Transformer layers 58.7 48.0 58.1 46.8
BERT ViT concatenation 56.2 36.0 55.6 35.7
BERT ViT concatenation, biGRU 59.0 51.2 59.8 51.7
BERT ViT multiplication 58.0 42.7 56.6 41.1
BERT ViT MCB 59.2 49.5 59.2 49.6
BERT ViT Transformer layers 57.1 40.8 55.9 39.1

Table 7: VL baselines with BERT as language encoder, different vision encoders, and fusion methods
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Abstract

Entities and events are crucial to natural lan-
guage reasoning and common in procedural
texts. Existing work has focused either exclu-
sively on entity state tracking (e.g., whether a
pan is hot) or on event reasoning (e.g., whether
one would burn themselves by touching the
pan), while these two tasks are often causally
related. We propose CREPE, the first bench-
mark on causal reasoning of event plausibil-
ity and entity states. We show that most lan-
guage models, including GPT-3, perform close
to chance at .35 F1, lagging far behind hu-
man at .87 F1. We boost model performance
to .59 F1 by creatively representing events as
programming languages while prompting lan-
guage models pretrained on code. By injecting
the causal relations between entities and events
as intermediate reasoning steps in our repre-
sentation, we further boost the performance to
.67 F1. Our findings indicate not only the chal-
lenge that CREPE brings for language models,
but also the efficacy of code-like prompting
combined with chain-of-thought prompting for
multihop event reasoning.1

1 Introduction

Event-centric natural language processing (Chen
et al., 2021b) is one of the leading paradigms in
machine understanding of texts. This line of work
focuses on first extracting entities and events from
texts (Yang et al., 2019; Du and Cardie, 2020) and
then making inferences about them (Li et al., 2020;
Du et al., 2021). Even with the recent advances of
large language models (LLMs), reasoning about
events remains challenging as it requires highly
contextual information and ample common-sense
knowledge. For example, the event “adding water
to a pan containing hot oil” causes the event “there
is a sizzling sound” to happen, while “heat up an

∗Equal contribution.
1Data and code can be found at https://github.com/z

harry29/causal_reasoning_of_entities_and_events.

Figure 1: Example of our task CREPE. A procedure
including a goal and some steps are provided. A model
needs to predict the change in the likelihood of an event
throughout the procedure. We show that predicting en-
tity states as an intermediate step improves performance.

empty pan” does not. Any model that can draw the
correct conclusion given these contexts is expected
to have access to some implicit knowledge about
these entities and events.

One type of text which demonstrates these chal-
lenges is procedural text, namely sequences of
events, such as how-to instructions, recipes, nat-
ural processes, scientific protocols, etc. Procedural
texts describe an environment that changes dynam-
ically through a sequence of steps. Therefore, the
exact environment configuration is often implicit.
In the previous cooking example, whether “there is
a sizzling sound” depends on what steps have taken
place. With these interesting challenges coupled
with the added benefit of application to robotics
(Brohan et al., 2022) and household smart assis-
tants such as Alexa (Panagopoulou et al., 2022),
reasoning about procedures attracts great attention
from the NLP community (Zhang, 2022).

Most work on reasoning about procedural texts
has focused solely on either predicting the proper-
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ties of events (e.g., which event is more likely to
happen) (Zhang et al., 2020c; Yang et al., 2021b;
Tandon et al., 2019) or tracking entity states (e.g.,
what is some property of an entity after some step)
(Dalvi et al., 2018; Tandon et al., 2020), while
the causal relation between events and entities
is largely underexplored – for example, whether
“there is a sizzling sound” is determined by the
state of “water” and “oil.” Therefore, we claim that
many event prediction tasks are multihop reasoning
tasks that require the knowledge of intermediate
entity states. Causal reasoning about events and
entities differs from existing multihop reasoning
tasks, such as Yang et al. (2018); Dua et al. (2019)
whose reasoning process is explicitly formulated
by a direct question (e.g., how old is the previous
US president); and Geva et al. (2021) whose sup-
porting evidence is factual and static. In contrast,
causal reasoning in procedures requires models to
first figure out the relevant entity attributes, then
infer their states based on the current context, and
finally predict the event.

To this end, we propose the task of Causal
Reasoning of Entities and Events in Procedural
Texts (CREPE), with an overview in Figure 1.
Given a procedure consisting of a goal (“stir fry
vegetables”) and some steps (“rinse vegetable”...),
a model is to predict the likelihood of some un-
observed events (“there is a sizzling sound”) after
the execution of each step. We provide a hand-
crafted, high-quality benchmark containing 183
procedures, 1219 steps, and 324 changes in the
likelihood of events along with the corresponding
underlying entity state changes. In an in-context
learning setting, we show that most LLMs includ-
ing GPT-3 (Brown et al., 2020) perform no better
(.350 F1) than chance (.297 F1), greatly underper-
forming the human performance of .868 F1, on
the development set. Providing ground-truth entity
state changes to the prompt of GPT-3 shows no
performance gain, indicating that it cannot lever-
age this causal signal. Instead, we draw inspiration
from Madaan et al. (2022) who represented texts as
programming languages as the prompt to code lan-
guage model Codex (Chen et al., 2021a) to perform
event reasoning. We propose a novel Python code
representation of procedures that achieves .585 F1.
Furthermore, our code-like representation allows
us to effectively encode and leverage predicted or
labeled entity state changes by generating them as
an intermediate reasoning step (namely, chain-of-

thought), boosting the performance to .667 using
predicted entity state changes and .715 F1 using
labeled entity state changes.

Our contributions are summarized as follows:
• We propose a novel task, a dataset, and sev-

eral strong baselines for causal reasoning about
events and entities in procedural texts.

• We devise an effective code-like representation of
procedures, leading to superior performance and
allowing the injection of structured knowledge
for reasoning.

• We are among the first to show that code lan-
guage models can apply chain-of-thought to
tackle multihop reasoning.

2 Task and Hypothesis

A procedure P of length n consists of a goal G
and some steps s1 . . . sn ∈ S, each represented as
a short sentence. Each procedure is associated with
a set of hypothetical events e1 . . . em ∈ E whose
likelihood of happening changes throughout the
procedure. The task is to predict the change of
likelihood of a hypothetical event ej from step si−1
(the previous step) to step si (the current step):

δi = p (ej |si, . . . , s1, G)− p (ej |si−1, . . . , s1, G)

The likelihood change δi is positive if the label is
“more likely”, negative if “less likely”, or zero if
“equally likely”.

Predicting the likelihood of hypothetical events,
also known as counterfactual reasoning, is ex-
tremely important for machine reasoning (Pearl
and Mackenzie, 2018) (see more in Section 7). In
our work, we hypothesize that the causal relation
between entity changes and events can be lever-
aged by LLMs to better perform counterfactual
reasoning. In other words, any change of the like-
lihood of a hypothetical event is given rise to by
changes of some entity attributes a1 . . . am ∈ A.

δi = p(aj |si, . . . , s1, G)− p(aj |si−1, . . . , s1, G)

3 Dataset

Our CREPE benchmark dataset has two portions.
The first is handcrafted and cross-validated by six
authors of this paper. The annotation happens in
3 phases: (1) we first write down or acquire a pro-
cedure from the web; (2) we then annotate some
hypothetical events whose likelihood of happen-
ing changes throughout the procedure, and how
their likelihood change after each step; (3) for each
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Data Statistics

Dev Test Total

Num. procedures 42 141 183
Num. steps 295 924 1219
Num. event changes 144 180 324
Avg. step per procedure 7.0 6.6 6.7
Avg. token per step 6.8 6.8 6.8

Procedure Topics

Dev Test Total

Recipe 10 33 43
Household 12 40 52
Craft 4 17 21
Technology 5 19 24
Travel 4 4 8
Sports 2 13 15
Others 5 15 20

Table 1: Statistics of the CREPE dataset.

event, we annotate a tuple of entity, attribute, and
change that causes the event likelihood change. To
obtain interesting and challenging data, we require
annotators to write procedures covering a diverse
range of topics and to prioritize events that undergo
multiple likelihood changes, and those that involve
information implicit from the steps. In our work,
we strictly use this portion as the development set
to inform all our experimental designs.

The second portion, designed to be drawn from
a different distribution to minimize bias, was anno-
tated by students in an Artificial Intelligence class
at the University of Pennsylvania who participated
in an extra-credit assignment. The students were
given an overview of the project and some guide-
lines to annotate data with the aforementioned crite-
ria. We carefully validated all resulting annotations
by discarding or editing erroneous and inappropri-
ate examples. In our work, we strictly use this
portion as the test set to evaluate the generalization
ability of our final models. The complete dataset
and annotation instructions can be found in our pub-
lic repository containing no personally identifiable
information of any annotator.

The statistics of CREPE are in Table 1. In this
work, we consciously focus on few-shot and in-
context settings because our data annotation in-
evitably contains bias and limitation, and thus can-
not be truly representative of counterfactual reason-
ing in every scenario. In such cases, we believe
having a sizeable training set aggravates such bi-
ases and induces spurious artifacts.

4 Event Likelihood Prediction

The task of CREPE is essentially ternary classifi-
cation, where the likelihood change of each event
after each step is labeled as one of “more likely”,
“less likely”, or “equally likely”. In this section, all
models have no access to the annotated entity state
changes until later sections.

4.1 Baselines

To show the challenge CREPE brings to existing
models, we first introduce some naive baselines.
• The chance baseline assigns random labels.
• The majority baseline always assigns the major-

ity label “equally likely”.
Next, we consider the following state-of-the-art

LLMs as strong baselines, where all models are
given exactly three examples in their prompt:
• T5 (Raffel et al., 2020) is one of the state-of-the-

art LLMs. Given the goal, steps, and question
formatted by a prompt template, we compare the
probability of generating “the answer is no|yes.”
We use T0-3B2 with 3 billion parameters.

• T0 (Sanh et al., 2022) is a variant of T5, fine-
tuned on a large set of downstream tasks with
natural language prompts. We adopt the same
inference process as T5 described above. We use
T0pp3 with 11 billion parameters.

• GPT-3 (Brown et al., 2020) is a series
of LLMs that excels at few-shot learn-
ing using the prompting mechanism. We
consider text-curie-001 (7B parameters),
text-davinci-002, text-davinci-003, and
ChatGPT (all 175B parameters). We use default
parameters with a temperature of 0 for determin-
istic predictions. An example of the prompt is
shown in Figure 2.

• GPT-3 finetuned on StrategyQA is a GPT-3
curie model finetuned with StrategyQA (Geva
et al., 2021), a dataset of factual multihop ques-
tions and their decomposition. StrategyQA is
similar to our task in that estimating the change
of event likelihood can also be decomposed into
sub-tasks of estimating the change of state of
related entities (Section 5.1).
Table 2 shows that all state-of-the-art LLMs

we have attempted achieve close-to-chance per-
formance on CREPE around 0.350 F1, whereas
text-davinci-003 and ChatGPT which are

2https://huggingface.co/t5-3b
3https://huggingface.co/bigscience/T0pp
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Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my
feet get wet by wearing the sneakers?
Answer: likely

Figure 2: Our GPT-3 prompt, which is typical for a
QA task. Each likelihood label is compared with the
previous one to get the label for the change.

known to be stronger at reasoning perform bet-
ter. Details about prompt formulation and experi-
mental results on prompt sensitivity are shown in
Appendix B and A.

4.2 Representing Procedures as Python Code

Codex (Chen et al., 2021a) is a variation of GPT-3
that was designed to be prompted with and to gener-
ate code, in addition to natural language texts. Re-
cently, Madaan et al. (2022) found that prompting
Codex with some structured representation such as
Python code. Inspired by this observation, we pro-
pose novel code representations of procedures and
hypothetical events. Among many possibilities we
experimented with, the representation with the best
empirical performance is described below, later
shown to greatly outperform all baseline models.
The representation is exemplified in Figure 3.

The procedure is represented as a class where
the goal G is the class name, followed by the steps
si as comments. Then, each step is defined as a
member function, in which the hypothetical events
ej are represented as objects with comments. Each
event object has an attribute “change” whose value
describes the change of the likelihood. During
inference, Codex is provided with the prompt in-
cluding three in-context examples and the current
procedure up to the definition of the “init” function
and predicts the definition of all step functions. Fi-
nally, we extract the assigned value of the “change”
attribute as the event likelihood change δi.

This prompt design effectively leverages the se-
mantic similarity between procedures with entity
states and functions with variables, by representing
texts as function identifiers and comments. We use
code-davinci-0024 with 175B parameters and
default hyperparameters with a temperature of 0.

4While OpenAI announced that text-davinci-002 is
based on code-davinci-002 (https://platform.opena
i.com/docs/model-index-for-researchers), we empiri-
cally find the former to perform worse with our code prompt
and thus only consider the latter with code prompt.

class Wash_Sneakers:
# Init
# Remove shoelaces
# Rinse
def __init__(self, event0):
self.event0 = event0 # My feet get

wet by wearing the sneakers.
def remove_shoelaces(self):
self.event0.change = "equally likely

" # My feet get wet by wearing
the sneakers.

def rinse(self):
self.event0.change = "more likely" #

My feet get wet by wearing the
sneakers.

Figure 3: Our best-performing Python code representa-
tion of a procedure and hypothetical events, for Codex.

4.3 Results

As CREPE is a ternary classification task, we re-
port the macro F1 score across the three classes.
As shown in Table 2, T5 and T0 perform only
slightly better (.343 and .336 F1) than chance (.297
F1). GPT-3, one of the most dominant models
across a variety of NLP tasks, is no better (.336
F1), whereas finetuning it on another multihop rea-
soning dataset StrategyQA does not bring about any
improvement (.341 F1). The latest GPT-3 models,
text-davinci-003 (.424 F1) and ChatGPT (.470
F1) which were released contemporarily with this
paper, greatly outperform their predecessors.

On the other hand, our code-representation of
events as the prompt to Codex greatly outperforms
all other models with .585 F1. As Codex is trained
on public Github code in addition to the internet
texts that GPT-3 is trained on, it is noteworthy that
Codex can effectively reason about texts with code-
like structures, for a procedure has many analogies
to a class in object-oriented programming.

4.4 Ablation Studies

To understand why the representation in our Codex
prompt is effective, we perform an ablation study
with various changes of the format to the represen-
tation, including:
• Remove steps comments in the beginning
• Remove event comments in step functions
• Use nested functions instead of a class
• Use flat variables to encode goals, steps, and

events (no hierarchical class functions)
Examples of these empirically inferior representa-
tions are shown in Appendix B. As seen in Table 3,
the hierarchical representation of procedures, steps,
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Naive Large Language Models Human

Cha. Maj. T5 T0 GPT3C GPT3C+S GPT3D2 GPT3D3 ChatGPT Codex
(ours)

Params - - 3B 11B 13B 13B 175B 175B 175B 175B -

Dev .262 .297 .343 .336 .346 .341 .350 .424 .470 .585 .868
Test .251 .296 .343 .337 .356 .346 .533 .423 .462 .591 -

Table 2: Macro F1 of baseline models on the CREPE dataset. Human performance is not benchmarked on the test set
as we strictly hold out its labels during all experiments. GPT3C represents the text-curie-001 model. GPT3D2
represents the text-davinci-002 model with an abnormal performance on the test set that we have confirmed but
regrettably cannot explain. GPT3D3 represents the text-davinci-003 model. GPT3C+S represents the GPT-3
curie model finetuned on StrategyQA. All of the above models work with textual prompts. Codex represents the
code-davinci-002 model and works with our proposed code-like prompts.

Dev Test

Codex .585 .591
no step comments .377 .352
no event comments .576 .555
nested function .568 .572
flat variables .338 .341

Table 3: Macro F1 of the ablations of our Codex prompt.

and events as classes or nested functions is critical.
Besides, listing all the steps as comments helps,
mimicking a programmer’s textual explanation of
a class or a function.

5 Causal Reasoning with Entities

When a human tries to predict whether the event
“one would get burnt by touching a pan” is likely,
their reasoning process would first focus on some
entities in the question (e.g., “the pan”), then attend
to some attributes and states of that entity (e.g., the
temperature of the pan is hot), and finally draw a
logical conclusion (e.g., “the pan being hot means
one would get burnt by touching it.”) CREPE is
constructed precisely with this thought process in
mind. An entity-attribute-change tuple is annotated
along with each event likelihood change. In this
section, we study how to explicitly leverage the
intermediate information to assist the prediction of
event likelihood prediction.

5.1 Predicted Entity States as CoT
In CREPE, the task of predicting event likelihood
change can be seen as a case of multihop reason-
ing, where a model first decomposes the question
into some open-ended sub-questions, answer these
sub-questions, and aggregate them as a final an-
swer. LLMs can be prompted to perform chain-of-
thought (CoT) style reasoning (Nye et al., 2021;
Wei et al., 2022). Thus, we ask the question:

Q1. Can LLMs benefit from first predict-

Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my
feet get wet by wearing the sneakers?
Answer: To get feet wet by wearing the
sneakers, the sneakers must be wet. In
the given context, the sneakers are wet.
Therefore, comparing to the previous step,
the likelihood change is "more likely".

Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my
feet get wet by wearing the sneakers?
Follow up: Are the sneakers wet?
Intermediate answer: Yes
Follow up: Will my feet get wet by wearing
wet sneakers?
Intermediate answer: Yes
Answer: likely

Figure 4: Our GPT-3 prompt with intermediate ques-
tions, mimicking the CoT prompt (top) and the Self-Ask
prompt (bottom).

ing entity state changes, as a CoT, before
predicting event likelihood changes?

CoT with GPT-3. First, we prompt GPT-3 with
Wei et al. (2022)’s CoT paradigm and Press et al.
(2022)’s self-ask paradigm, both of which are
shown in Figure 4. While self-ask relies on search
engines for fact retrieval, we use LM generation in-
stead as most of our entity state tracking questions
are heavily context-dependent and unanswerable by
any search engine. When writing demonstrations
for few-shot learning, we impose the following
logic progression for the follow-up questions: (1)
initial followups shall ask questions on the state
of entities that are directly related to the event; (2)
followups following the entity state questions shall
ask for the logical relationship between the entity
states and the original event.
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Naive LLMs CoT Large Language Models Human

Majority GPT-3 Codex GPT-3 + CoT GPT-3+self-ask Codex soft
(ours)

Codex hard
(ours)

Dev .297 .346 .585 0.359 .342 .624 .667 .868
Test .296 .356 .591 0.379 .345 .626 .609 -

Table 4: Macro F1 of chain-of-thought models on the CREPE dataset. GPT-3 + CoT|self-ask represents the
text-davinci-002 model prompted with the CoT or self-ask style prompt.

CoT Codex with Soft Entity Representation.
We modify our Codex prompt in Figure 3, so that a
sub-event is represented as a string variable whose
declaration and value assignments are right before
those of the hypothetical event. We refer to this
as a soft representation of entities (Figure 5). Dur-
ing inference, Codex is provided with the code up
to the step function header and predicts the entity
and event changes for every step function. Our
Codex model achieves the new best performance
of .624 F1, outperforming the same model without
predicted entities as CoT by .039 F1.

class Wash_Sneakers():
# Init
# Remove shoelaces
# Rinse
def init(self, event0, subevent0):
self.event0 = event0 # My feet get

wet by wearing the sneakers.
self.event0.subevent = subevent0 #

The sneakers are wet
def remove_shoelaces(self):
self.event0.subevent.change =
"equally likely" # The sneakers

are wet
self.event0.change = "equally likely

" # My feet get wet by wearing
the sneakers.

def rinse(self):
self.event0.subevent.change =

"more likely" # The sneakers are
wet

self.event0.change = "more likely" #
My feet get wet by wearing the

sneakers.

Figure 5: Our Codex prompt with a soft representation
of entity state changes as strings.

CoT Codex with Hard Entity Representation.
The two approaches above both softly represent the
intermediate entity state changes as texts, either
questions or statements. Here, LLMs are not en-
forced to generate intermediate reasoning steps that
contain entities and attributes. To answer Q1 more
precisely, we experiment with a hard entity repre-
sentation where the entity-attribute-change tuple is
explicitly baked into the Codex prompt as shown
in Figure 6. Here, each entity is represented as an

Dev Test

Majority .297 .296

GPT-3 CoT .342 .345
w/ gold entity changes .351 .380
Codex CoT .667 .609
w/ gold entity changes .715 .722

Human .868 -

Table 5: Macro F1 of GPT-3 and Codex with chain-of-
thought provided with gold entity state changes.

object with an attribute and assigned value. The
hard entity representation leads to a far superior
performance of .667 F1 on the development set but
generalizes worse on the test set with .609 F1.

class Wash_Sneakers():
# Init
# Remove shoelaces
# Rinse
def init(self, event0):
self.sneakers = Sneakers()
self.event0 = event0 # My feet get

wet by wearing the sneakers.
def remove_shoelaces(self):
self.event0.change = "equally likely

" # My feet get wet by wearing
the sneakers.

def rinse(self):
self.sneakers.wet = True
self.event0.change = "more likely" #

My feet get wet by wearing the
sneakers.

Figure 6: Our Codex prompt with a hard representation
of entity states as variables, attributes, and values.

To recap, we have shown that LLMs can be
prompted to exhibit a CoT that first predicts entity
state changes and then event likelihood changes.
Hence, our answer to Q1 raised at the beginning of
this subsection is ‘yes.’

5.2 Annotated Entity States as CoT

In the above section, we have shown how event
likelihood prediction can be improved by first hav-
ing the LLMs predict entity states as a CoT. These
experiments mimic a realistic setting where infor-
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mation about entities is unavailable. However, in
some scenarios, the entity states may be provided.
For example, an embodied agent or a robot might
have a reliable component that tracks entities; some
practitioners might care about a small set of pro-
cedures in a narrow domain with annotated entity
changes; or, some event schemata containing entity
information could be used to predict unseen events.
Here, we try to answer the following question:

Q2. Can LLMs effectively leverage an-
notated entity state changes to better pre-
dict event likelihood changes?

Instead of having LLMs predict entity state
changes, we provide the annotated entity state
changes in the CREPE dataset to GPT-3 and Codex.
Doing so has the additional benefit of verifying that
entity state changes indeed causally benefit LLMs
in predicting events.

As shown in Table 5, our Codex representa-
tion with access to gold entity changes leads to
improved performance of .715 F1 on the devel-
opment set. In contrast, GPT-3 does not see any
gain. Hence, the answer to Q2 is ‘yes’ for the
code-trained LLMs but ‘no’ for standard LLMs.

5.3 Externally Predicted Entity States
As we will discuss further in Section 7, entity state
tracking is an established task in NLP with existing
datasets and models. We have now predicted entity
state changes using LLMs in a few-shot learning
setting. It is then natural to pose the question:

Q3. Do existing entity state tracking
models make predictions that lead to bet-
ter performance on CREPE?

Our definition of causal reasoning of events is di-
rectional since we consider entity state changes as
the cause of the change in event likelihoods. To
this extent, we incorporate OpenPI (Tandon et al.,
2020), the only open-domain entity state tracking
dataset in procedural texts, as a part of the pipeline.
In OpenPI, the input is a goal, a step, and the output
is tuples of an entity, a feature, and two attributes
before and after the execution of the step. For ex-
ample, after “heat the pan [step]“, “the temperature
[feature] of the pan [entity] is cool [attribute] be-
fore and hot [attribute] afterward.” While the origi-
nal paper proposed a GPT2 model (Radford et al.,
2019), we opt to finetune the superior GPT-3 Curie
model on its data. After the model makes a predic-
tion, we post-process it into the format of CREPE

by discarding the feature and producing two entity-
attribute-change pairs (e.g., pan-hot-“more likely”
and pan-cold-“less likely”). We provide Codex
with only the entity changes when the entity is
mentioned in the event. Further, to fit our prompt
in the context window of Codex, we provide Codex
with 5 entity state changes uniformly drawn from
a pool of candidate choices at every step. The re-
sulting OpenPI-prompted Codex gives a degraded
macro F1 score of 0.553 on the development set
and 0.496 on the testing set. Hence, our answer
to Q3 is ‘no,’ suggesting that existing entity state
tracking datasets may be insufficient for our causal
reasoning task.

6 Performance Analysis

In this section, we analyze potential factors that
play a role in our Codex model’s performance. We
investigate three factors: (1) the number of steps in
a procedure; (2) explicit mentions of event-related
entity-of-interest (EoI) in a given step; and (3) the
logical relation (entailment or contradiction) be-
tween the event likelihood change and its related
entity state change. To study factor (1), we di-
chotomize procedures from the development set by
the average length of the procedure. To investigate
factors (2) and (3), we manually labeled the ground
truth EoI mentioning and logical relation for the
development dataset. Intuitively, estimating event
likelihood in lengthy procedures and in steps where
EoI is not explicitly mentioned would be difficult.
Rather surprisingly, Codex shows no significant
performance discrepancy under factors (2) and (3),
and only a slight performance difference in factor
(1) (see Appendix C).

Further, the task of CREPE can be divided into
two sub-tasks, first to identify whether an event
likelihood change occurred at all, and then to clas-
sify the change as either more or less likely. We ob-
serve that CoT Codex outperforms Codex on both
sub-tasks. For the classification task, in particular,
CoT Codex obtained a .149 increase in macro F1
score from .805 to .954. This shows not only that
CoT Codex is effective, but also that its bottleneck
is identifying event likelihood change.

7 Related Work

Event & Entity Extraction and Representation
Event-centric NLP has been a dominant strand of
approaches to machine reasoning. Myriad work
has focused on extracting events from the news
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or web data (Liu et al., 2018; Yang et al., 2019;
Du and Cardie, 2020). The effort of structurally
representing scripts, groups of events in certain sce-
narios including procedures, started decades ago
(Abelson and Schank, 1977) and is receiving re-
vived attention in present years (Li et al., 2020;
Wang et al., 2022a). While this line of work mostly
focuses on the representation as relations (e.g., tem-
poral, hierarchical) among events, we recognize
entities as a cause of event relations and thus pro-
pose a more granular representation. Furthermore,
structured representations of events typically can-
not take advantage of the power of textual LLMs
for challenging downstream tasks. In contrast, we
advance towards the best of two worlds by working
with code language models.

Besides, existing work on jointly extracting and
representing events and entities (Lee et al., 2012;
Wadden et al., 2019; Barhom et al., 2019) neglects
the causal relation therein and treats entities and
events simply as two related tasks to be tackled
simultaneously. We causally bridge the two.

Entity State Tracking Prior work on entity state
tracking spans various disciplines of AI. For in-
stance, object tracking, a sub-task of entity state
tracking, has led to much work in both robotics
(Wang et al., 2007) and computer vision (Comani-
ciu et al., 2003). In NLP, early efforts focus on
synthetic, closed-domain data (Weston et al., 2015;
Long et al., 2016) and more recent ones shift at-
tention to real-world procedures (Bosselut et al.,
2017; Dalvi et al., 2018; Gupta and Durrett, 2019;
Du et al., 2019; Mysore et al., 2019) with a closed
set of entities and attributes or an open-ended set
Tandon et al. (2020). In all prior work, entity state
track is treated as an end-task, whereas we treat it
as a critical intermediate step for event reasoning,
a more practical application.

Counterfactual Reasoning In this work, we
hope to provide evidence that signals of entities
effectively help models reason about events. We
specifically focus on hypothetical event reasoning
because it is a high-level cognitive ability beyond
pattern recognition and a manifestation of com-
plex reasoning ability (Pearl and Mackenzie, 2018;
Pearl, 2019). Counterfactual reasoning has a long
history with formal methods (Forbus, 1984; Lewis,
2013). Less modern work exists in commonsense
(Feng et al., 2021), procedural texts (Tandon et al.,
2019), and even computer vision (Yue et al., 2021).

Multihop Reasoning Prior studies on multihop
reasoning mainly focus on question answering
from a passage (Welbl et al., 2018; Talmor and
Berant, 2018; Yang et al., 2018; Kočiskỳ et al.,
2018; Mihaylov et al., 2018; Khot et al., 2020) and
representing and utilizing multihop information in
the form of structured data (De Cao et al., 2019;
Ding et al., 2019; Qiu et al., 2019; Cao et al., 2019;
Fang et al., 2020; Thayaparan et al., 2019; Zhang
et al., 2020d, 2021; Huang and Yang, 2021).

There are also efforts such as DecompRC, Strat-
egyQA, and CGDe-FGIn that attempt to conduct
multihop reasoning by decomposing the original
task to a series of logically related sub-tasks (Min
et al., 2019; Geva et al., 2021; Cao and Liu, 2022).
Such an approach has recently seen great success
with the Chain-of-Thought (CoT) prompting of
GPT-3, which significantly improves numerous
multihop reasoning tasks (Nye et al., 2021; Ko-
jima et al., 2022; Wei et al., 2022; Wang et al.,
2022c). Following CoT prompting, Self-Ask fur-
ther elicits CoT by demanding GPT-3 to explicitly
generate the reasoning questions raised during its
chain-of-thought process (Press et al., 2022).

Code-Based Language Models and Prompts
Recent work has shown that LLMs trained on pro-
grams or code (PLMs) have an augmented ability
of reasoning over natural language texts. Notably,
Suzgun et al. (2022); Liang et al. (2022) showed
that PLMs outperforms only-text-trained LMs on
certain reasoning tasks even though the prompts
are purely natural language and contain no code.
Moreover, there has been speculation that multihop
reasoning is an emergent ability exclusive to PLMs
and absent in their only-text-trained predecessors
(Fu and Khot, 2022).

Even more interestingly, a line of contemporary
work found that, for some reasoning tasks, prompt-
ing PLMs with certain structured programs (e.g.,
Python code, JSON, PDDL) that represent the orig-
inally textual data outperforms doing so simply
with natural language prompts. These tasks include
math questions (Chen et al., 2022; Lyu et al., 2023;
Mishra et al., 2022) and event reasoning (Madaan
et al., 2022; Wang et al., 2022b) like our work.

Procedural Texts Procedural texts are an attrac-
tive data source to reason about events and enti-
ties which undergo frequent changes. There has
been steady efforts in computer vision (Miech et al.,
2019), robotics (Ahn et al., 2022), and language
(Mujtaba and Mahapatra, 2019; Zhang, 2022). In
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NLP specifically, work on procedures includes ex-
tracting them from instructional texts (Paris et al.,
2002; Delpech and Saint-Dizier, 2008; Zhang et al.,
2012), reasoning about events (Takechi et al., 2003;
Tandon et al., 2019; Rajagopal et al., 2020; Zhang
et al., 2020c), knowledge-base construction (Jung
et al., 2010; Chu et al., 2017; Park and Mota-
hari Nezhad, 2018), or applying them to down-
stream applications (Yang et al., 2021b,a; Zhang
et al., 2020a; Lyu et al., 2021; Dalvi et al., 2019;
Zhang et al., 2020b; Chen et al., 2020). Our work
is scoped in procedural texts due to the outstanding
causal relations between entities and events in a
dynamic environment.

8 Conclusion and Future Work

We present CREPE, a benchmark for causal rea-
soning about events and entities in procedural texts.
We show that mainstream LLMs such as GPT-3
perform close to chance on CREPE, while using
code-like event representation as a prompt to code
language model Codex greatly improves the perfor-
mance. Further, we experiment with various ways
to encode entity information into this representa-
tion and find that eliciting chain-of-thought rea-
soning from Codex further improves performance
while existing CoT approaches with GPT-3 are in-
effective. We clearly show that LLMs benefit from
lower-level entity information when making pre-
dictions about higher-level events. Future work
should explore related tasks such as next-event pre-
diction, event temporal ordering, etc., by injecting
relevant information about entities into our repre-
sentation. Our code-representation of events allows
more powerful expressions than simply entailment
and negation considered in this work. Future work
may explore other forms of code chain-of-thought
such as first-order logic. These expressions gener-
ated by LLMs can be computed objectively, thus
ameliorating LLMs’ hallucinations and improving
the interpretability and faithfulness of predictions.

9 Limitations

Despite our best efforts, our CREPE dataset has in-
herent limitations. First, the choice of studying pro-
cedure texts, despite many discussed advantages,
limits the domain, writing style, and other semantic
features of the texts. As a result, porting our meth-
ods and findings to other text styles such as stories
or news might require domain adaptation. Second,
we prioritize quality over quantity when creating

this benchmark, which suffers from small size and
contains biases from the annotators, even though
we address the latter by having different annotators
label a test set.

When annotating the hypothetical events, our in-
tention is that they represent a wild variety that do-
ers of the procedures, humans or machines, would
care about. However, we also have to ensure these
events are unambiguously bound to some entities
in order to challenge models for their causal rea-
soning ability. While we do our utmost to balance
these two conflicting objectives, the issue might
still persist.

In CREPE, each event likelihood change is
caused by exactly one entity state change. This
is an over-simplification made to facilitate evalu-
ation. In real life, many complex events require
many entity states to be reasoned about, which in
turn may have complex logical relations among
them. We leave this for future work.

While we intend our representation of events
and entities to be a general and effective one, we
have only shown that it works well empirically
using Codex, which is one of the only code lan-
guage models at present. Whether the idea of our
structured representation applies to other models
remains to be explored.
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A Prompt Sensitivity

In addition to the results reported in Table 2, we
also investigated the effect of the number and
choice of in-context examples.

Number of in-context examples The context
window of text-davinci-002 maximally fits 3
shots. We experiment with 1-shot (0.245 f1), 2-
shots (0.348 f1), and 3-shots (0.359 f1) learning us-
ing text-002 with CoT prompting. We see that hav-
ing more context provides limited improvements
in model performance.

Prompt sensitivity with random examples We
tested the text-davinci-002 model with CoT
prompt on the dev set using randomly chosen ex-
amples from our example bank. The F1 scores for
5 runs with randomly chosen in-context examples
are 0.333, 0.327, 0.359, 0.336, and 0.331. The
mean score is 0.337, and the standard deviation is
0.011, implying low sensitivity of in-context exam-
ple selection.

B Prompt Engineering

B.1 Code Prompts for Codex

In Section 4 and 5, we have discussed our best-
performing prompts for GPT-3 and Codex. Here,
we elaborate on inferior Codex prompts and shed
light on why they do not work well empirically.

Best prompt As discussed, our best-performing
prompt represents procedures as classes and steps
as functions.

class Wash_Sneakers:
# Init
# Remove shoelaces
# Rinse
def __init__(self, event0):
self.event0 = event0 # My feet get wet by
wearing the sneakers.

def remove_shoelaces(self):
self.event0.change = "equally likely" # My
feet get wet by wearing the sneakers.

def rinse(self):
self.event0.change = "more likely" # My
feet get wet by wearing the sneakers.

Nested functions Instead of representing proce-
dures as classes as in our best-performing prompt,
we can also represent them as nested functions.

def wash_sneakers(event0):
# Init
# Remove shoelaces
# Rinse
event0 = event0 # My feet get wet by
wearing the sneakers.

def remove_shoelaces(self):
event0.change = "equally likely" # My
feet get wet by wearing the sneakers.

def rinse(self):
event0.change = "more likely" # My
feet get wet by wearing the sneakers.

No step comments The comments displaying
the steps immediately after the class declaration
are removed.

class Wash_Sneakers:
def __init__(self, event0):
self.event0 = event0 # My feet get wet by
wearing the sneakers.

def remove_shoelaces(self):
self.event0.change = "equally likely" # My
feet get wet by wearing the sneakers.

def rinse(self):
self.event0.change = "more likely" # My
feet get wet by wearing the sneakers.

No event comments The comments displaying
the events in step functions except init are removed.

class Wash_Sneakers:
def __init__(self, event0):
self.event0 = event0 # My feet get wet by
wearing the sneakers.

def remove_shoelaces(self):
self.event0.change = "equally likely"

def rinse(self):
self.event0.change = "more likely"

Two-step In this approach, we hypothesize that
providing entity state change at every step is help-
ful. To do this, we first prompt Codex to generate
entity states corresponding to a specific event:

class Wash_Sneakers:
def remove_shoelaces(self):

event = "My feet get wet by wearing
the sneakers."

event.precondition = \
("sneakers", "wet")

def rinse(self):
event = "My feet get wet by wearing

the sneakers."
event.precondition = \

("sneakers", "wet")

We select event-related entities by majority vote.
The resulting entity state bank is used to prompt
Codex to first deduce entity state at every step and
then answer the likelihood of the event.
Flat variables Instead of defining functions us-
ing def or creating class with class, we use only
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variables to define relevant information.

Goal = "Wash Sneakers"

Context = "Remove shoelaces. After this,
the shoelaces are removed"

Question = "What is the likelihood that my feet
get wet by wearing the sneakers?

Options = [
"more likely",
"less likely",
"equally likely",
]

Answer = Options[2]

Context = "Rinse the sneakers. After this,
the sneakers are damp."

Question = "What is the likelihood that my feet
get wet by wearing the sneakers?

Options = [
"more likely",
"less likely",
"equally likely",
]

Answer = Options[0]

B.2 Textual Prompts for GPT-3

For GPT-3, we attempted a dozen of prompt formu-
lations in our preliminary experiments which we
found to differ minimally in performance. Here,
we show one example:

"Wash hands" involves the followings steps:
1. Turn on the tap water.
2. Put hands under running water.
3. Apply soap and rub hands.
4. Turn off the tap water.
5. Dry my hands using a towel.

For every step, find out how likely it is that
water streaming sound can be heard. Answer as
(A) very likely (B) likely (C) not very likely
(D) unlikely.

Step 1: (A) very likely
Step 2: (A) very likely
Step 3: (A) very likely
Step 4: (D) unlikely
Step 5: (D) unlikely

For GPT-3 finetuned with StrategyQA, we ask
two questions regarding the likelihood of the events,
namely whether it is more/less likely that some
event occurs. After obtaining the result, we con-
duct a consistency check. For consistent likelihood
estimates, where only one of the two questions
gives a positive answer, or both questions give neg-
ative answers, we assign the corresponding label to
the event state change. For inconsistent estimates,
where both questions give positive answers, we
assign the event change likelihood to the majority
label, which is "equally likely". An example of

a finetuning prompt-completion pair is shown as
follows

Prompt:
Context: Julius Caesar had three children.
Genghis Khan had sixteen children.
Modern geneticists have determined
that out of every 200 men today
has DNA that can be traced to
Genghis Khan.
Question: Are more people today
related to Genghis Khan than Julius Caesar?
Take it step by step:

Completion:
#1 How many kids did Julius Caesar have?
two
#2 How many kids did Genghis Khan have?
fourth
#3 Is fourth greater than two?
no
Therefore, the answer to the original
question is True

An example of our StrategyQA GPT-3 prompt
on the CREPE task is as follows:

Context: Remove shoelaces. Rinse. Srub the
shoes with cleaning solution. Rinse the shoes
again. Air dry the shoes and put the shoelaces
back on.
Question: Is it more likely that my feet get
wet by wearing the sneakers?
Take it step by step:

Completion:
#1 Is the sneaker wet?
Yes
#2 Will my feet get wet by wearing wet shoes?
Yes
Therefore, the answer to the original question
is True.

B.3 Textual Prompts for ChatGPT

As of the time of camera-ready submission of this
paper (Feburary 1, 2023), OpenAI has not released
the API for ChatGPT. Thus, we use an unofficial
API5 which is believed to behave the same as the
official web playground. Because ChatGPT is de-
signed to only work with a zero-shot and multi-turn
dialog setting, we tweak our prompt as follows:

5https://github.com/acheong08/ChatGPT
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I'm trying to wash hands.
First, I turn on the tap water.
At this point, is it likely that
water streaming sound can be heard?
Answer with yes or no.
[answer]
Then, I put hands under running water.
At this point, is it likely that
water streaming sound can be heard?
Answer with yes or no.
[answer]
...

B.4 Textual Prompts for T5/T0
We design the following prompt for T5 and T0 to
perform our task:

Goal: [The name of the goal]
Step: [The list of steps]
Question: Is that okay that [question]?
Answer: [yes or no, generated by the model]

C Error Analysis

In Section 6, we conclude that the performance
of Codex is not influenced by (1) the number of
steps in a procedure; (2) explicit mentions of event-
related entity-of-interest (EoI) in a given step; and
(3) the logical relation (entailment or contradiction)
between the event likelihood change and its related
entity state change.

Factors Dev

Procedure Length > 7 .629
Procedure Length ≤ 7 .700

EoI Mentioned .481
EoI NOT Mentioned .496

Entailment .482
Contradiction .461

Table 6: Macro F1 Score of error analysis. The scores
for EoI and Logical relation are lower since we do not
consider the majority label, "equally likely", in the error
analysis.

431



Findings of the Association for Computational Linguistics: EACL 2023, pages 432–441
May 2-6, 2023 ©2023 Association for Computational Linguistics

Few-Shot Structured Policy Learning
for Multi-Domain and Multi-Task Dialogues

Thibault Cordier1,2 and Tanguy Urvoy2 and Fabrice Lefèvre1 and Lina M. Rojas-Barahona2

1LIA - Avignon University, France
2Orange Innovation, Lannion, France
thibault.cordier@alumni.univ-avignon.fr

fabrice.lefevre@univ-avignon.fr

{linamaria.rojasbarahona, tanguy.urvoy}@orange.com

Abstract

Reinforcement learning has been widely
adopted to model dialogue managers in task-
oriented dialogues. However, the user simula-
tor provided by state-of-the-art dialogue frame-
works are only rough approximations of human
behaviour. The ability to learn from a small
number of human interactions is hence crucial,
especially on multi-domain and multi-task en-
vironments where the action space is large. We
therefore propose to use structured policies to
improve sample efficiency when learning on
these kinds of environments. We also evaluate
the impact of learning from human vs simu-
lated experts. Among the different levels of
structure that we tested, the graph neural net-
works (GNNs) show a remarkable superiority
by reaching a success rate above 80% with
only 50 dialogues, when learning from simu-
lated experts. They also show superiority when
learning from human experts, although a perfor-
mance drop was observed, indicating a possible
difficulty in capturing the variability of human
strategies. We therefore suggest to concentrate
future research efforts on bridging the gap be-
tween human data, simulators and automatic
evaluators in dialogue frameworks.

1 Introduction

Multi-domain multi-task dialogue systems are de-
signed to complete specific tasks in distinct do-
mains such as finding and booking a hotel or a
restaurant (Zhu et al., 2020). A domain is formally
defined as a list of slots with their valid values. The
most common task, the information-seeking task, is
usually modelled as a slot-filling data-query prob-
lem in which the system requests constraints to the
user and proposes items that fulfil those constraints.

The design of a dialogue manager (DMs) is
costly: hand-crafted policies require a lot of en-
gineering, pure supervised learning (or behaviour
cloning) requires a lot of expert demonstrations,
and pure reinforcement learning requires a lot of

user interactions to converge. The simulators pro-
vided with frameworks, such as PYDIAL (Ultes
et al., 2017) or CONVLAB (Zhu et al., 2020), are
only rough approximations of human behaviour
and the ability to learn from a small number of hu-
man interactions remains crucial. This is especially
true on multi-domain and multi-task environments
where the action space is large (Gao et al., 2018).

A popular approach to reduce these costs is to
wire some knowledge about the problem into the
policy model, namely: few shot learning (Wang
et al., 2020). In particular, structured policies like
graph neural networks (GNNs) are known to be
well suited to handle a variable number of slots and
domains for the information-seeking task (Chen
et al. 2018; Chen et al. 2020). In this paper, we
explore structured policies based on GNN. A graph
in a GNN is fully connected and directed. Each
node represents a sub-policy associated with a slot,
while a directed edge between two nodes represents
a message passing.

For studying sample efficiency, we analyse the
dialogue success rate of structured policies once
trained in a supervised way from expert demonstra-
tions. We consider two types of demonstrations:
human experts extracted from the MULTIWOZ
dataset (Budzianowski et al., 2018), and simulated
experts generated by letting the CONVLAB’s hand-
crafted policy interact with a simulated user.

We perform large scale experiments. We study
the impact of different levels of structure (see them
in Figure 2) on policy success rate after a lim-
ited number of dialogue demonstrations. For each
level of structure, we also compare two sources of
demonstrations: simulated and human dialogues.
We show a notable result: our structured policies
are able to reach a success rate above 80% with
only 50 when following a simulated expert in CON-
VLAB. To the best of our knowledge there are not
previous works that studied the impact of structure
for dialogue policy in a few-shot setting.
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Another important finding is that few-shot learn-
ing from human demonstrations is harder, produc-
ing a lower success rate. This can be explained first
by the large variability of human strategies that
is not covered by simulated users which stick to
more repetitive – easy to learn – dialogue patterns.
Another explanation could be an evaluation bias,
simulated dialogues are more in line with artificial
evaluators.

The remainder of this paper is structured as fol-
lows. We present the related work in Section 2. Sec-
tion 3 presents the proposed GNNs from demon-
strations. The experiments and evaluation are de-
scribed in Sections 4 and 5 respectively. Finally,
we conclude in Section 6.

2 Related Work

Few shot learning takes advantage of prior knowl-
edge to avoid overloading the empirical risk min-
imiser when the number of available examples is
small. In particular, prior knowledge can be used
to constrain hypothesis space (i.e. model param-
eters) with parameter sharing or tying in order to
reduce reliance on data acquisition and on data
annotation (Wang et al., 2020).

Prior knowledge can be built into dialogue sys-
tems by imposing a structure in the neural network
architecture. A first approach is to use hierarchical
reinforcement learning that divides a main problem
into several simpler sub-problems. We refer to Sut-
ton et al. (1999) that introduces semi-Markov deci-
sion process using temporal abstraction and to Wen
et al. (2020) that introduces sub-Markov decision
process using state partition. In the scope of the
paper, a hierarchical policy corresponds to a meta-
controller that chooses to activate a domain and
we have one sub-policy per domain (Budzianowski
et al., 2017; Casanueva et al., 2018; Le et al., 2018).

In the same vein, graph neural networks (GNNs)
have been explored in a wide range of domains
because of their empirical success and their theo-
retical properties which explains its efficiency: the
abilities of generalisation, stability and expressive-
ness (Garcia and Bruna, 2018). GNNs are suitable
for applications where the data have a graph struc-
ture i.e where the graph outputs are supposed to
be permutation-invariant or equivariant to the input
features (Zhou et al., 2020; Wu et al., 2020).

In single-domain dialogue environments, this ar-
chitecture has been adapted to model the DM in
Chen et al. (2018) and Chen et al. (2020). They

have shown that GNNs generalise between similar
dialogue slots, manage a variable number of slots
and transfer to different domains that perform sim-
ilar tasks. We thus adopt in this work the domain
independent parametrisation (DIP) (Wang et al.,
2015), which standardises the slots representation
into a common feature space.

In this work, as in Chen et al. (2018) and Chen
et al. (2020), we propose to improve multi-domain
covering by learning a generic policy based on
GNN. But unlike them, (i) we use a multi-domain
multi-task setting, in which several domains and
tasks can be evoked in a dialogue; (ii) the dialogue
state tracker (DST) output is not discarded when
activating the domain; and (iii) we adapt the GNN
structure to each domain by keeping the relevant
nodes while sharing the edge’s weights.

3 Structured Policies with Expert
Demonstrations

In order to investigate the impact of structured poli-
cies with behaviour cloning in improving sample
efficiency in multi-domain multi-task dialogue en-
vironments, we introduce the dialogue state and
action spaces for structured policies and we present
the different policies and the experts’ nature.

3.1 Dialogue State / Action Representations

In multi-domain multi-task dialogues, the domain
refers to the set of concepts and values speakers can
talk about. Examples of domains are restaurants,
attractions, hotels, trains, etc. A dialogue act is a
predicate that refers to the performative actions of
speakers in conversations (Austin, 1975). These
actions are formalised as predicates like INFORM

(i.e., affirm) or REQUEST with slots or slot-values
pairs as arguments. Examples of system actions
are: REQUEST(food), or INFORM(address). These
structured actions are used to frame a message to
the user. We adopt here the multi-task setting as
presented in CONVLAB (Zhu et al., 2020), in which
a single dialogue can have the following tasks: (i)
find, in which the system requests information in
order to query a database and make an offer; (ii)
book, in which the system requests information in
order to book the item.

We adopt the DIP state and action representa-
tions, which are not reduced to a flat vector but
to a set of sub-vectors: one corresponding to the
domain parametrisation (or slot-independent repre-
sentation), the others to the slots parametrisation
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Figure 1: Structure of the input and graph parsing model in restaurant domain example. The input is a fully-
connected graph with two kinds of nodes and three kinds of edges. The I-NODE are depicted in yellow; the S-NODE
in green. The structured policy is described by successive graph convolutions composed of the shared weights Wl

i,j .

(or slot-dependent representations). For any active
domain, the input to the slot-independent repre-
sentation is the concatenation of the previous slot-
independent user and system actions (see examples
of the output below, and a formal definition in Sec-
tion 3.2), the number of entities fulfilling the user’s
constraints in the database, the booleans indicating
if the dialogue is terminated and whether an offer
has been found / booked. The output corresponds
to action scores such as REQMORE, OFFER, BOOK,
GREAT, etc. Regarding the slot-dependent repre-
sentation, its input is composed of the previous
slot-dependent user and system actions (see output
below), the booleans indicating if a value is known
and whether the slot is needed for the find / book
tasks. Its output are actions scores such as INFORM,
REQUEST and SELECT. The parameterisation used
in CONVLAB does not depend on the probabilistic
representation of the states, i.e. does not consider
the uncertainty in the predictions made by the nat-
ural language understanding (NLU) module.

3.2 Graph Neural Network

Prior knowledge can be integrated in our models
by constraining the layer structure imposing sym-
metries in the neural dialogue policies. Without
prior knowledge, the standard structure used is the
feed-forward neural network layer (FNN). This
unconstrained structure does not assume any sym-
metry in the network.

Assuming that sub-policies associated with the
slots are the same, a better alternative is to use the
graph neural network layer (GNN). This structure
assumes that the state and action representations
have a graph structure that are identically parame-
terised by DIP. The GNN structure is a fully con-
nected and directed graph, in which each node rep-
resents a sub-policy associated with a slot and a
directed edge between two sub-policies represents
a message passing. We identify two roles for sub-
policies: the general node as I-NODE associated

to the slot-independent representation and the slot
nodes denoted as S-NODE associated to the slot-
dependent representations. Both representations
were introduced in Section 3.1. We also identify
the relations: I2S for I-NODE to S-NODE, S2I and
S2S respectively1 (as presented in Figure 1).

We formally define the GNN structure as follows.
Let n be the number of slots and L the number of
layers. Let be x the dialogue state, x0 = ϕ0(x),
hl0 ∀l ∈ [0, L− 1] and y0 be respectively the input,
hidden and output I-NODE representations. Let the
input, hidden and output S-NODES representations
be respectively ∀i ∈ [1, n], xi = ϕi(x), hli ∀l ∈
[0, L−1] and yi. First, the GNN transforms inputs:

∀i ∈ [0, n], h0
i = σ0(W0

i ϕi(x) + b0
i ) (1)

Then, at the l-th layer, it computes the hidden
nodes representations by following message send-
ing2 (Eq. 2), message aggregation (Eq. 3) and rep-
resentation update (Eq. 4). ∀i, j ∈ [0, n]2:

ml
i←j =M l

i←j(h
l−1
j ) = Wl

i,jh
l−1
j + bli,j (2)

ml
i = Ali(m

l
i←∗) =

1
n

∑n
j=0m

l
i←j (3)

hli = U li (m
l
i) = σl(ml

i) (4)

The message sending function M l
i←j is a linear

transformation with bias. The message aggregation
function Ali is the average pooling function. The
representation update function U li compute the new
hidden representation with RELU activation func-
tion and dropout technique during learning stage.
Finally, the GNN concatenates (⊕ symbol) all fi-
nal nodes representations and computes the policy
function with the Softmax activation function.

y = σL(
⊕n

i=0W
L
i h

L−1
i + bLi ) (5)

1We omit the I2I relation because there is only one I-node.
2The notation i← j denotes a message sending from slot

j to slot i. It also corresponds to the directed relation between
the slots j and i. The notation i ← ∗ denotes all messages
sending to slot i.
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(a) FNN. (b) HFNN. (c) HGNN. (d) UHGNN.

Figure 2: Policy and input data structures. Different levels of structure are presented from classical feed-forward
neural network (FNN) to graph neural network (GNN). The prefix H- corresponds to a hierarchical policy and
UH- corresponds to a unique sub-policy for all domains. For a FNN layer, the input data is the concatenation of all
DIP slot representations. For a GNN layer, the input keeps its structure.

3.3 Structured Policies

We propose a wide range of dialogue policies to
study the impact of the structure in sample effi-
ciency. An ablation study progressively adds some
notion of hierarchy to FNNs to approximate the
structure of GNNs. Similarly, we analyse the ad-
vantage of sharing a generic GNN among several
domains versus specialising a GNN to each do-
main. Therefore, we propose from the least to the
most constrained:

• Feed-forward Neural Network (FNN) that
is a classical feed-forward neural network
with DIP parametrisation (Figure 2a).

• Hierarchy of Feed-forward Neural Net-
works (HFNN) that is a hierarchical pol-
icy with hand-crafted domain-selection and
FNNs for each domain. Each domain has one
corresponding FNN model (Figure 2b).

• Hierarchy of Graph Neural Networks
(HGNN) that is a hierarchical policy with
hand-crafted domain-selection and GNNs.
Each domain has one corresponding GNN
model (Figure 2c).

• Hierarchy with Unique Graph Neural Net-
work (UHGNN) that is a HGNN with a
unique GNN for all domains. Each domain
shares the same GNN model (Figure 2d).

3.4 The Expert’s Nature

Since our goal is to learn on observed demonstra-
tions delivered by an expert, we propose to focus
on policies that learn from both simulated and hu-
man experts. For this purpose, we use the dataset
MULTIWOZ (Budzianowski et al., 2018) to follow

human experts and the hand-crafted policy of CON-
VLAB (Zhu et al., 2020) as the simulated expert.

Human expert The MULTIWOZ dataset is a
large annotated and open-sourced collection of
human-human chats that covers multiple domains
and tasks. Nearly 10k dialogues have been col-
lected by a Wizard-of-Oz set-up at relatively low
cost and with a small time effort. However, differ-
ent versions of this dataset corrected and improved
the annotations (Eric et al., 2020; Zang et al., 2020;
Han et al., 2021; Ye et al., 2021). In this work,
we use the MULTIWOZ dataset integrated in CON-
VLAB with extended user dialogue act annotations.

Simulated expert The CONVLAB framework
has been proposed to automatically build, train and
evaluate multi-domain multi-task oriented dialogue
systems based on MULTIWOZ features. It imple-
ments both hand-crafted simulated user and policy.
The latter has been shown to be nearly the optimal
policy according to the CONVLAB evaluation setup
of (Takanobu et al., 2020). Therefore we use it as
the simulated expert.

4 Experiments

In this section we explain the experimental setup,
the proposed models and the evaluation metrics.

4.1 Experiment Setup

We performed an ablation study by gradually
adding different levels of structure from a base-
line FNN to the proposed GNN (Subsection 4.2).
On the one hand, we analyse the learning efficiency
of our models in small training steps. On the other
hand, we compare their generalisation ability in
few shot learning.
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(a) FNN. (b) HFNN. (c) HGNN. (d) UHGNN.

(e) FNN. (f) HFNN. (g) HGNN. (h) UHGNN.

Figure 3: Dialogue manager evaluation with simulated users. We present the success rate on 10 / 100 / 1 000 training
dialogues as a function of the number of gradient descent steps in a short training scenario. Learning is based on
simulated experts (Figures (a) up to (d)) or on human experts (Figures (e) up to (h)). The line plot represents the
mean and the coloured area represents the 95% confidence interval over a sample of 10 runs.

To analyse the learning efficiency, we measure
performance with respect to the number of gradi-
ent descent steps up to 1 000 iterations with a step
size of 100 iterations. We compare learning curves
based on randomly chosen 10, 100 and 1 000 train-
ing dialogues3. We also measure performance as a
function of the number of training dialogues avail-
able (randomly chosen) namely 10, 50, 100, 500
and 1000 when each training is performed up to
10 000 gradient descent steps. All the experiments
were run on CONVLAB, restarted 10 times with
random initialisation and the results estimated on
500 new dialogues.

4.2 Models

The FNN models have two hidden layers, both
with 128 neurons. The GNN models have one
first hidden layer with 64 neurons for both nodes
(S-NODE and I-NODE). Then the second hidden
layer is composed of 64 neurons for each relation
(S2S, S2I and I2S). For training stage, we use the
ADAM optimiser with a learning rate lr = 0.001, a
dropout rate dr = 0.1 and a batch size bs = 64.

4.3 Metrics

We evaluate the performance of the policies for
all tasks as in CONVLAB. Precision, recall and
F-score, namely the inform rates, are used for the

3These values were chosen arbitrarily to give us an insight
into the impact of the number of dialogues on the performance.

find task. Inform recall evaluates whether all the
requested information has been informed while
inform precision evaluates whether only the re-
quested information has been informed. For the
book task, the accuracy, namely the book rate, is
used. It assesses whether the offered entity meets
all the constraints specified in the user goal. The
dialogue is marked as successful if and only if both
inform recall and book rate are equal to 1. The
dialogue is considered completed if it is successful
from the user’s point of view4.

5 Evaluation

First, we evaluate the dialogue manager perfor-
mance when talking to a simulated user. Second,
we evaluate the learned policies within the entire
dialogue system both with simulated and with real
users. The evaluations have been done within CON-
VLAB.

5.1 Dialogue Manager Evaluation
We analyse our models on the learning efficiency in
small training steps and on the ability to generalise
in a few-shot setting.

Efficiency We report in Figure 3 the results of the
ablation study showing the ability of the models
to succeed in a short training stage. First, when

4A dialogue can be completed without being successful if
the information provided is not the one objectively expected
by the simulator.
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(a) Success rate. (b) Inform rate (recall). (c) Book rate.

(d) Success rate. (e) Inform rate (recall). (f) Book rate.

Figure 4: Dialogue manager evaluation with simulated user presenting the success rate based on 10 000 training
iterations as a function of the number of training dialogues in a long learning scenario. Learning is based on a
simulated expert (Figures (a), (b) and (c) ) or human experts (Figures (d), (e) and (f)). The line plot represents the
mean and the coloured area represents the 95% confidence interval over a sample of 10 runs.

learning from simulated demonstrations we notice
in Figure 3a that the baseline (FNN) needs a large
number of training dialogues (more than 100) to
achieve a moderate performance (less than 40%).
We show then in Figure 3b that hierarchical net-
works (HFNN) do improve learning efficiency up
to 60% with 100 dialogues, up to 80% with 1 000
dialogues. Finally we show that graph neural net-
work (HGNN in Figure 3c) and generic policy
(UHGNN in Figure 3d) drastically improve the
efficiency with few dialogues, more than 60% with
10 dialogues, and achieve remarkable performance
above 80% with only 100 dialogues in 1 000 train-
ing steps. These observations confirm that hierar-
chical and generic GNNs allow efficient learning
and collaborative gradient update in a short training
stage.

Although standard or hierarchical policies (FNN
in Figure 3e and HFNN in Figure 3f) are less effi-
cient when learning from human demonstrations,
they are still above baselines. It is worth noting
that structured or generic GNN policies HGNN in
Figure 3g and UHGNN in Figure 3h are able to
reach more than 50% success rate.

Few-Shot We extended the ablation study in a
few-shot scenario focusing on the ability of the

models to succeed on specific dialogue tasks as
reported in Figure 4. In particular, we show the
success rate in Figure 4a, the inform rate (recall)
in Figure 4b and the book rate in Figure 4c when
using simulated demonstrations and respectively
in Figure 4d, Figure 4e and Figure 4f when using
human demonstrations. The more structured the
model, the greater the learning efficiency and the
greater the data efficiency. Likewise, we notice
that learning is more data-intensive when imitating
human strategies. It appears that the booking task
is more difficult to perform according to human
demonstrations (when comparing Figure 4c and
Figure 4f) or using a flat architecture (FNN gets
null results). We therefore foresee that more high
quality data is needed to learn on human dialogues.

5.2 Dialogue System Evaluation

We continue our analysis on the robustness of the
studied models with the entire dialogue system fac-
ing both simulated and human users. The dialogue
system utilises a BERT NLU (Devlin et al., 2019)
and a hand-crafted NLG.

Simulated User Evaluation As in the previous
subsection, we study the robustness of the mod-
els in a few-shot scenario as presented in Figure 5.
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(a) Success rate. (b) Inform rate (recall). (c) Book rate.

(d) Success rate. (e) Inform rate (recall). (f) Book rate.

Figure 5: Dialogue system performance with simulated user based on 10 000 training iterations as a function of the
number of training dialogues in a long training scenario. The supervised DM is based on simulated demonstrations
(Figures (a),(b),(c)) or on human demonstrations (Figures (d),(e),(f)). The line plot represents the mean and the
coloured area represents the 95% confidence interval over a sample of 10 runs.

We observe that FNN (in blue) and HFNN (in or-
ange) learning is collapsing when using simulated
dialogues (see Figures 5a, 5b and 5c). On the op-
posite, HGNN (in green) and UHGNN (in red)
performance appears more stable in the entire dia-
logue system even when using real dialogues (see
Figures 5d, 5e and 5f). Therefore, these results
confirm that behaviour cloning is easier from sim-
ulated than human experts. As observed before in
Subsection 5.2, this can be explained by an large
variability of human strategies (hence the need for
more data to improve performance). Another expla-
nation is that simulated dialogues are more in line
with the artificial evaluator provided in the CON-
VLAB. In addition, it is important not to neglect the
side effects of cascading errors due to successive
NLU, DST, DM and NLG modules. In particu-
lar, the NLU BERT proposed by CONVLAB was
pre-trained and evaluated on 7 372 user utterances
with 14% of errors (F1 86.4%, precision 85.1%,
recall 87.8%). This problem can therefore be exac-
erbated by cascading human errors, as confirmed
in the next paragraph.

Finally, we present a detailed comparison table
with the best structured policies UHGNN trained
on simulated dialogues of CONVLAB noted MLE-

UHGNN-HDC (HDC for hand-crafted policy)
and trained on real dialogues of MULTIWOZ noted
MLE-UHGNN-MW and the baselines of CON-
VLAB (see Table 1). In particular, the maximum
likelihood estimator (MLE) proposed by CON-
VLAB is an implementation of FNN model trained
on MULTIWOZ corpus in a very long training
scenario (multiple passes on all 10k dialogues)5.
Our models show competitive results against CON-
VLAB’s baselines, confirming that the structured
with supervised learning in few-shot settings is
adapted to address the difficulties in multi-task
multi-domain dialogues.

Human Evaluation We organised preliminary
evaluation sessions, in which volunteers were in-
vited to chat on-line with three dialogue systems
that were randomly assigned6. Subjects do not
know which system they are evaluating. Each sys-

5Another difference is that our models returns one unique
action per turn instead of a group of actions.

6Crowdsourcing was not used because of ethical concerns
regarding the work conditions of collaborators. Volunteers
from our research institution were invited to participate and
they were aware of the scientific motivations behind the evalu-
ation. In this sense, they were motivated to participate without
any economic reward implying no pressure and without know-
ing the nature of the models they were evaluating, avoiding in
this way any evaluation bias.
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Configuration Avg Turn Inform rate (%) Book Complete Success
(succ/all) Prec. / Rec. / F1 Rate (%) Rate (%) Rate (%)

Dialogue Management

HDC 10.6/10.6 87.2 / 98.6 / 90.9 98.6 97.9 - 97.3 -
MLE-UHGNN-HDC (ours) 12.8/13.0 95.3 / 98.8 / 96.4 98.5 97.3 (-0.6) 95.4 (-1.9)
MLE-UHGNN-MW (ours) 16.5/20.7 94.3 / 90.7 / 91.6 76.7 81.4 (-16.5) 81.0 (-6.3)

Dialogue System (BERT NLU + hand-crafted NLG)

HDC 11.4/12.0 82.8 / 94.1 / 86.2 91.5 92.7 - 83.8 -
HDC† 11.6/12.3 79.7 / 92.6 / 83.5 91.1 90.5 (-2.2) 81.3 (-2.5)
MLE† 12.1/24.1 62.8 / 69.8 / 62.9 17.6 42.7 (-50.0) 35.9 (-47.9)
PG† 11.0/25.3 57.4 / 63.7 / 56.9 17.4 37.4 (-55.3) 31.7 (-52.1)

GDPL† 11.5/21.3 64.5 / 73.8 / 65.6 20.1 49.4 (-43.3) 38.4 (-45.4)
PPO† 13.1/17.8 69.4 / 85.8 / 74.1 86.6 75.5 (-17.2) 71.7 (-12.1)

MLE-UHGNN-HDC (ours) 14.0/15.4 89.3 / 93.0 / 90.2 84.8 90.0 (-2.7) 82.7 (-1.1)
MLE-UHGNN-MW (ours) 17.0/23.0 84.0 / 87.6 / 84.5 64.8 72.1 (-20.6) 68.1 (-15.7)

Table 1: Dialogue manager and system evaluations with simulated users. When evaluating the dialogue manager,
the simulated user passes directly dialogue acts and vice-versa. Our tested configurations are evaluated and averaged
on 10 run each with 250 dialogues. Configurations with † are taken from the GitHub of CONVLAB.

Dialogue System Avg Satisfaction Nb of
(BERT NLU + Rule NLG) Turn Rate (%) Dial.

HDC 22.6 92.6 ± 9.87 27
MLE-UHGNN-HDC 25.6 50.0 ± 14.8 44
MLE-UHGNN-MW 17.3 36.7 ± 17.2 30

Table 2: Dialogue system evaluation with real users
with a 95% confidence level for satisfaction rate.

tem has a different DM model: HDC (hand-crafted
policy), MLE-UHGNN-HDC (based on simu-
lated demonstrations with HDC policy) and MLE-
UHGNN-MW (based on MULTIWOZ demonstra-
tions) combined with the BERT NLU and the
hand-crafted NLG provided by CONVLAB. At the
end of the chat, evaluators were asked whether or
not they reach the goal and were satisfied with the
performance of the system. The satisfaction rate
is then the proportion of dialogues in which the
system solved the task at the end of the dialogue
according to the human evaluator. We reported
results on roughly 30 dialogues for each method.
The results of this experimentation are presented
in Table 2. Although test is small-sized and not
highly statistically significant, these preliminary
results are disconcerting with respect to the sim-
ulated ones. The HDC does very well whereas
MLE-UHGNN-HDC gets by in half the cases,
MLE-UHGNN-MW fails in most cases.

These results can be explained by the limitations
of the NLU facing impatient evaluators, short and
ambiguous sentences where the active domain is

unclear (as in this example of the user saying "What
is the name?") or typographical errors. Moreover,
it is important to underline that CONVLAB does
not natively propose the management of uncertain-
ties in the state representation which can strongly
restrict the performance of the learning methods in
noisy environments. Another limitation is that the
HDC is more adapted to conventional dialogues
whereas MLE-UHGNNs were trained only on
winning dialogues. This implies that learning meth-
ods are more sensitive to dialogues that break out
of the learned patterns. Similarly, the strategies of
simulated and real users do not seem to be well
aligned with each other and even more strongly
with the expectations of human evaluators.

6 Conclusion

We investigated in this work the impact of policy
structure and experts on success rate in few-shot
learning for multi-domain multi-task dialogues.
Promising results were obtained: hierarchical and
generic GNN policies are able to achieve remark-
able performance with few dialogues and few train-
ing iterations when following a simulated expert.
This confirms the growing interest for these neural
structures. We also present an important finding:
the policy performance degrades in few-shot learn-
ing when using human demonstrations. This fact
questions the alignment between dialogue evalu-
ators and human strategies in state-of-the-art dia-
logue frameworks.
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Limitations

The reduced performance when learning from hu-
man experts suggests that we shall concentrate the
efforts in bridging the gap between automatic eval-
uators and high-quality human-human datasets. We
also devise the use of curriculum learning (Bengio
et al., 2009) strategies: starting from simple – sim-
ulated – dialogues then adding progressively more
complex, human dialogues demonstrations.

It is also necessary to analyse the impact of GNN
policies with neural NLU/NLG modules to study
how to integrate such structures in end-to-end ar-
chitectures.

We point out some limitations of CONVLAB.
The detection of the active domain is sensitive to
the output of the NLU and thus sensitive to ambigu-
ous statements. Data representation restricts the
DST to a deterministic view and must be adapted
to a probabilistic representation to capture the un-
certainties in the user’s input. Similarly, it may be
worthwhile to improve the action space by adding
more possibilities for human users, for instance to
CONFIRM or DENY in a more flexible way.

Finally, the human evaluation was performed on
a small scale and on models trained in a context
with few training iterations. A more in-depth or su-
pervised study could shed more light on the raised
issues.
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Wen, and Milica Gasic. 2017. Pydial: A multi-
domain statistical dialogue system toolkit. In Pro-
ceedings of ACL 2017, System Demonstrations, pages
73–78.

Yaqing Wang, Quanming Yao, James T Kwok, and Li-
onel M Ni. 2020. Generalizing from a few examples:
A survey on few-shot learning. ACM computing sur-
veys (csur), 53(3):1–34.

Zhuoran Wang, Tsung-Hsien Wen, Pei-Hao Su, and Yan-
nis Stylianou. 2015. Learning domain-independent
dialogue policies via ontology parameterisation. In
Proceedings of the 16th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue, pages
412–416.

Zheng Wen, Doina Precup, Morteza Ibrahimi, Andre
Barreto, Benjamin Van Roy, and Satinder Singh.
2020. On efficiency in hierarchical reinforcement
learning. Advances in Neural Information Process-
ing Systems, 33:6708–6718.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. 2020. A com-
prehensive survey on graph neural networks. IEEE
transactions on neural networks and learning sys-
tems, 32(1):4–24.

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz.
2021. Multiwoz 2.4: A multi-domain task-oriented
dialogue dataset with essential annotation corrections
to improve state tracking evaluation. arXiv preprint
arXiv:2104.00773.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,
Raghav Gupta, Jianguo Zhang, and Jindong Chen.
2020. MultiWOZ 2.2 : A dialogue dataset with
additional annotation corrections and state tracking
baselines. In Proceedings of the 2nd Workshop on
Natural Language Processing for Conversational AI,
pages 109–117, Online. Association for Computa-
tional Linguistics.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2020. Graph
neural networks: A review of methods and applica-
tions. AI Open, 1:57–81.

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,
Xiaoyan Zhu, and Minlie Huang. 2020. Convlab-
2: An open-source toolkit for building, evaluating,
and diagnosing dialogue systems. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 142–149.

441

https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13


Findings of the Association for Computational Linguistics: EACL 2023, pages 442–453
May 2-6, 2023 ©2023 Association for Computational Linguistics

Transfer Knowledge from Natural Language to Electrocardiography:
Can We Detect Cardiovascular Disease Through Language Models?

Jielin Qiu1∗, William Han1∗, Jiacheng Zhu1, Mengdi Xu1,
Michael Rosenberg3, Emerson Liu2, Douglas Weber1, Ding Zhao1

1Carnegie Mellon University, 2Allegheny General Hospital, 3University of Colorado

Abstract

Recent advancements in Large Language Mod-
els (LLMs) have drawn increasing attention
since the learned embeddings pretrained on
large-scale datasets have shown powerful abil-
ity in various downstream applications. How-
ever, whether the learned knowledge by LLMs
can be transferred to clinical cardiology re-
mains unknown. In this work, we aim to bridge
this gap by transferring the knowledge of LLMs
to clinical Electrocardiography (ECG). To ad-
dress this problem, we propose an approach
for cardiovascular disease diagnosis and auto-
matic ECG diagnosis report generation. We
also introduce an additional loss function by
Optimal Transport (OT) to align the distribu-
tion between ECG and language embeddings.
The learned embeddings are evaluated on two
downstream tasks: (1) automatic ECG diag-
nosis report generation, and (2) zero-shot car-
diovascular disease detection. Our approach is
able to generate high-quality cardiac diagnosis
reports and also achieves competitive zero-shot
classification performance even compared with
supervised baselines, which proves the feasi-
bility of transferring knowledge from LLMs to
the cardiac domain.

1 Introduction

Heart and cardiovascular diseases are the leading
global cause of death, with 80% of cardiovascu-
lar disease-related deaths due to heart attacks and
strokes. The clinical 12-lead ECG, when correctly
interpreted, is the primary tool to detect cardiac ab-
normalities and heart-related issues. ECG provides
unique information about the structure and electri-
cal activity of the heart and systemic conditions
through changes in the timing and morphology of
the recorded waveforms. Achievements of ECG
interpretation, such that critical and timely ECG
interpretations of cardiac conditions, will lead to
efficient and cost-effective intervention.

∗* marked as equal contribution

LLM starts from the Transformer model
(Vaswani et al., 2017) and grows quickly with a
wide range of applications (Devlin et al., 2019;
Liu et al., 2019b; Brown et al., 2020). Recently,
LLM has shown great potential for accelerating
learning in many other domains since the learned
embeddings can provide meaningful representation
for downstream tasks. Examples include transfer-
ring the knowledge of LLM to, i.e., robotics con-
trol (Liang et al., 2022; Ahn et al., 2022), mul-
timodal reasoning and interaction (Zeng et al.,
2022; Zellers et al., 2021), robotics planning (Shah
et al., 2022; Kant et al., 2022; Jain et al., 2022),
decision-making (Li et al., 2022; Huang et al.,
2022), robotics manipulation (Shridhar et al., 2022;
Ren et al., 2022; Cui et al., 2022; Tam et al., 2022;
Khandelwal et al., 2022), code generation (Fried
et al., 2022), laws (Kaplan et al., 2020), computer
vision (Radford et al., 2021), and so on.

Some previous works explored LLM and biolog-
ical protein (Rives et al., 2021), or health records
(Yang et al., 2022). However, the medical or health-
care domains contain so much domain knowledge
that different sources preserve unique data charac-
teristics without a unified paradigm. To the best
of our knowledge, no previous work explores the
knowledge transfer from LLM to cardiovascular
disease with ECG signals.

In this work, we bridge the gap between LLM
and clinical ECG by investigating the feasibility of
transferring knowledge of LLM to the cardiology
domain. Our contributions are listed as follows:

• To the best of our knowledge, our work is the
first attempt to bridge the gap between LLM
and clinical cardiovascular ECG by leveraging
the knowledge from pretrained LLM.

• We propose a cardiovascular disease diagnosis
and automatic ECG diagnosis report genera-
tion approach by transferring the knowledge
from LLM to the cardiac ECG domain.

• We introduce an additional learning objective
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based on Optimal Transport distance, which
empowers the model to learn the distribution
between ECG and language embedding.

• Our method can generate high-quality car-
diac diagnosis reports and achieve competi-
tive zero-shot classification performance even
compared with supervised baselines, proving
the feasibility of using LLM to enhance re-
search and applications in the cardiac domain.

2 Related Work

Cardiovascular diagnosis via ECG The 12-lead
ECG is derived from 10 electrodes placed on the
surface of the skin (Cadogan, 2020). An ECG
works by recording electrical activity correspond-
ing to the heartbeat muscle contractions (Bonow
et al., 2011). Although computerized interpre-
tations of ECGs are widely used, automated ap-
proaches have not yet matched the quality of expert
cardiologists, leading to poor patient outcomes or
even fatality (Breen et al., 2019).

Deep learning in ECG Deep learning ap-
proaches have been rapidly adopted in many fields
for their accuracy and flexibility, including ECG
domain (Kiranyaz et al., 2015; Nonaka and Seita,
2021; Khurshid et al., 2021; Raghunath et al., 2021;
Giudicessi et al., 2021; Strodthoff et al., 2021; Al-
Zaiti et al., 2020; Acharya et al., 2017; Shanmugam
et al., 2019; Śmigiel et al., 2021). Transformer
(Vaswani et al., 2017) has recently been adopted
in several ECG applications, i.e., arrhythmia classi-
fication, abnormalities detection, stress detection,
etc (Yan et al., 2019; Che et al., 2021; Natarajan
et al., 2020; Behinaein et al., 2021; Song et al.,
2021; Weimann and Conrad, 2021).

LLM in healthcare Zhou et al. (2021) reviewed
existing studies concerning NLP for smart health-
care. Yang et al. (2022) developed a large pre-
trained clinical language model using transformer
architecture. Steinberg et al. (2021) showed that
using patient representation schemes inspired by
techniques in LLM can increase the accuracy of
clinical prediction models. More related work can
be found in Appendix B.

3 Methods

Problem Formulation We formulate the prob-
lem as generating cardiovascular diagnosis reports
through pretrained LLMs. Given ECG signals
x = [x1, x2, ...xt], our goal is to take advantage

Figure 1: The architecture of our model. The Trans-
former encoder takes input ECG to generate ECG fea-
tures as the input to LLM, where LLM transforms it
into generated embeddings. An optimal transport based
loss objective is formulated on generated embeddings
and ground-truth embeddings for the model update.

of the knowledge from LLM and learn a generated
text embedding L = [L1, L2, ..., Lm], which can
then be decoded into natural language as reports or
directly used for disease classification.

Model Architecture The model architecture is
shown in Fig. 1, The ECG inputs are processed by
hierarchical transformer encoders (Vaswani et al.,
2017) to obtain transformed ECG embeddings
X = [X1, X2, ..., Xn]. Then we adopt a pretrained
LLM to transform the ECG embeddings into lan-
guage embeddings L = [L1, L2, ..., Lm]. For the
learning objective, we use expert reports to formal-
ize the learning loss, which includes a new loss
based on Optimal Transport (OT) in addition to the
traditional cross-entropy loss. The learning objec-
tive is to update the transformer encoders, which
can be interpreted as a sequence-to-sequence map-
ping from ECG embeddings X to sentence embed-
dings L. After the learning process, the learned em-
bedding L should be capable of conducting down-
stream applications.

Downstream Applications For the downstream
applications, we first consider a classification prob-
lem that uses the embeddings L for cardiovascular
disease diagnosis. In addition, we consider a text
generation task by decoding the output embeddings
L into a cardiovascular report.

Transformer Encoders The transformer is based
on the attention mechanism (Vaswani et al., 2017).
The original transformer model is composed of
an encoder and a decoder. The encoder maps an
input sequence into a latent representation, and the
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decoder uses the representation with other inputs
to generate a target sequence. Our model only
adopts the encoder since the target is to learn the
representations of ECG features. More details can
be found in Appendix D.

Optimal Transport Loss OT is the problem of
transporting mass between two discrete distribu-
tions supported on latent feature space X . Let
µ = {xi,µi}ni=1 and v =

{
yj ,vj

}m
j=1

be the
distributions of generated embeddings and ground-
truth embeddings, where xi,yj ∈ X denotes the
spatial locations and µi, vj , respectively, denoting
the non-negative masses. Without loss of generality,
we assume

∑
i µi =

∑
j vj = 1. π ∈ Rn×m+ is a

valid transport plan if its row and column marginals
match µ and v, respectively, which is

∑
i πij = vj

and
∑

j πij = µi. Intuitively, π transports πij units
of mass at location xi to new location yj . Such
transport plans are not unique, and one often seeks
a solution π∗ ∈ Π(µ,v) that is most preferable in
other ways, where Π(µ,v) denotes the set of all
viable transport plans. OT finds a solution that is
most cost-effective w.r.t. cost function C(x,y):

D(µ,v) =
∑

ij

π∗
ijC

(
xi,yj

)
= inf
π∈Π(µ,v)

∑

ij

πijC
(
xi,yj

)

(1)

where D(µ,v) is known as OT distance. D(µ,v)
minimizes the transport cost from µ to v w.r.t.
C(x,y). When C(x,y) defines a distance met-
ric on X , and D(µ,v) induces a distance metric
on the space of probability distributions supported
on X , it becomes the Wasserstein Distance (WD).
We use WD as one loss objective, in addition to the
standard cross-entropy loss, for the model update.

4 Dataset and Prepossessing

Dataset We conducted the experiments on the
PTB-XL dataset (Wagner et al., 2020), which con-
tains clinical 12-lead ECG signals of 10-second
length. There are five conditions in total, in-
cluding Normal ECG (NORM), Myocardial In-
farction (MI), ST/T Change (STTC), Conduction
Disturbance (CD), and Hypertrophy (HYP). The
waveform files are stored in WaveForm DataBase
(WFDB) format with 16-bit precision at a reso-
lution of 1µV/LSB and a sampling frequency of
100Hz. The ECG statements conform to the SCP-
ECG standard and cover diagnostic, form, and
rhythm statements.

Prepossessing The raw ECG signals are first pro-
cessed by the WFDB library (Xie et al., 2022) and
Fast Fourier transform (FFT) to process the time se-
ries data into the spectrum, which is shown in Fig. 2.
Then we perform n-points window filtering to fil-
ter the noise within the original ECG signals and
adopt notch processing to filter power frequency
interference (noise frequency: 50Hz, quality factor:
30). The ECG signals are segmented by dividing
the 10-second ECG signals into individual ECG
beats. We first detect the R peaks of each signal
by ECG detectors (Porr et al., 2022), and then slice
the signal at a fixed-sized interval on both sides of
the R peaks to obtain individual beats. More details
can be found in Appendix C.

Feature Extraction Instead of directly using the
time-series signals, we extract time domain and
frequency domain features to better represent ECG
signals. The time-domain features include: maxi-
mum, minimum, range, mean, median, mode, stan-
dard deviation, root mean square, mean square,
k-order moment and skewness, kurtosis, kurtosis
factor, waveform factor, pulse factor, and margin
factor. The frequency-domain features include:
FFT mean, FFT variance, FFT entropy, FFT en-
ergy, FFT skew, FFT kurt, FFT shape mean, FFT
shape std, FFT shape skew, FFT kurt. More details
can be found in Appendix C. An analysis of the
statistics of the processed ECG data can also be
found in Table 1.

Table 1: Statistics of the processed ECG data.

Category Patients Percentage Beats Percentage

NORM 9528 34.2% 28419 36.6%
MI 5486 19.7% 10959 14.1%

STTC 5250 18.9% 8906 11.5%
CD 4907 17.6% 20955 27.0%

HYP 2655 9.5% 8342 10.8%

5 Experiments

5.1 Experimental Settings
Data and Model The dimension of the processed
ECG is 864, including 600 ECG signals and 264
time & frequency domain features. Experiments
are conducted on two NVIDIA A6000 GPUs. All
the models’ parameters are listed in Appendix A.

Tasks To evaluate the learned embeddings from
ECG signals, we tested the performance on two
downstream applications: automatics cardiac re-
port generation as a text generation (TG) task, and
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Table 2: Comparisons of different backbones on Text generation (TG) and Disease detection (DD). (BERT as LLM)

Different backbones + BERT as LLM
Text generation (TG) Disease detection (DD)

BLEU-1(%)
ROUGE-1(%)

Meteor(%) BertScore(%) Acc AUCROC F-1
P R F

MLP (Rumelhart et al., 1986) 22.24 17.68 22.63 18.11 14.27 84.68 0.71 0.89 0.57
LSTM (Hochreiter and Schmidhuber, 1997) 19.74 19.76 18.83 17.99 19.54 84.74 0.73 0.89 0.55
ResNet (He et al., 2016) 21.14 20.35 30.67 25.08 19.55 86.88 0.70 0.86 0.59
Transformer (Vaswani et al., 2017) 26.93 25.35 35.67 28.08 21.23 88.90 0.77 0.92 0.68

Table 3: Comparisons of different LLMs on Text generation (TG) and Disease detection (DD). (Transformer as the encoder).

Different LLMs
Text generation (TG) Disease detection (DD)

BLEU-1(%)
ROUGE-1(%)

Meteor(%) BertScore(%) Acc AUCROC F-1
P R F

BERT (Devlin et al., 2019) 26.93 25.35 35.67 28.08 21.23 88.90 0.77 0.92 0.68
BART (Lewis et al., 2020) 27.21 26.12 35.71 29.56 24.51 89.61 0.75 0.88 0.68
RoBERTa (Liu et al., 2019b) 27.01 25.31 36.01 27.88 22.41 89.72 0.77 0.89 0.70
BioClinical BERT (Alsentzer et al., 2019) 27.91 25.41 36.33 28.42 23.54 87.21 0.78 0.89 0.71
PubMed BERT (Gu et al., 2022) 27.89 25.21 35.97 27.70 24.00 88.56 0.77 0.88 0.69
BioDischargeSummary BERT (Alsentzer et al., 2019) 26.81 25.32 35.66 28.10 21.19 88.90 0.73 0.85 0.66

Table 4: Comparisons with supervised baselines (DD).

Supervised learning baselines Acc AUROC F-1

Transformer (Zhu et al., 2022) 0.75 0.843 0.575
CNN (Śmigiel et al., 2021) 0.72 0.877 0.611
SincNet (Ravanelli and Bengio, 2018) 0.73 0.84 0.6
Contrastive Learning (Lan et al., 2022) – 0.722 –
CNN + Entropy (Śmigiel et al., 2021) 0.76 0.910 0.68

OursBERT 0.77 0.92 0.68

zero-shot cardiac disease detection (DD) as a multi-
class classification task.

Evaluation For text generation evaluation, we
adopted the BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), Meteor (Banerjee and Lavie, 2005),
and BertScore (Zhang et al., 2020) as evaluation
metrics. We report the standard classification eval-
uation metrics for zero-shot cardiac disease detec-
tion: accuracy, AUCROC, and F-1 score.

5.2 Results
In Table 2, we showed the performance of both
text generation and disease detection tasks with
different backbone models as baselines. We found
that the Transformer encoder outperforms other
backbones, i.e., MLP, LSTM, and ResNet, showing
Transformer encoder could be a good selection as
the feature extractor.

In Table 4, we showed the performance of our
zero-shot disease detection approach, compared
with supervised baselines. Even though our method
is in the zero-shot setting, we can already achieve
the same performance with state-of-the-art super-
vised learning methods, demonstrating that the
transferred ECG representation from LLM is al-

Table 5: Examples of comparison on generated re-
ports (marked as Predicted-X) and ground-truth reports
(marked as GT-X).

Backbone Reports

GT-1 “sinus rhythm left type peripheral low voltage”
Predicted-1 “ventricular arrhythmia flatfar arrhythmia”

GT-2 “sinus rhythm incomplete right block other-
wise normal ekg”

Predicted-2 “ventricularear extrasystole block sinus
rhythm or normal.”

ready good for practical usage. We also showed
some examples of generated reports compared with
ground-truth reports in Table 5.

5.3 Ablation Study

Different LLM To further analyze the compo-
nents, we conduct ablation studies on different
LLMs and the number of transformer layers (with
BERT as LLM). Table 3 shows the results of dif-
ferent LLMs for the text generation and disease
detection tasks. We found that all LLMs showed
good performance in both tasks, demonstrating that
knowledge can be transferred from the language
domain to the cardiac domain without constraints.
BART shows good performance in the text gener-
ation task, while BioClinical BERT shows better
performance in the disease detection task, though
the variation between different LLMs is not large.

Transformer Layers To evaluate the impact of
the number of transformer layers, we conducted
additional experiments with different transformer
layers, and the results are shown in Table 6. We
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Table 6: Ablation study of different transformer layers.

Layers
Text generation (TG) Disease detection (DD)

BLEU-1(%)
ROUGE-1(%)

Meteor(%) BertScore(%) Acc AUCROC F-1
P R F

1 25.81 20.36 30.72 23.12 21.38 83.58 0.69 0.83 0.59
2 24.77 19.22 28.55 24.51 20.44 82.89 0.72 0.81 0.61
3 25.44 20.44 27.21 24.81 19.99 84.63 0.75 0.80 0.62
4 25.12 21.36 30.88 25.76 22.68 86.35 0.74 0.80 0.64
5 26.93 25.35 35.67 28.08 21.23 88.90 0.77 0.92 0.68

Table 7: Comparisons with different backbones on the
text generation task, where BERT is used as LLM.

Backbone
BLEU-1(%) ROUGE-1(%) Meteor(%) BertScore

P R F F

MLP 18.16 16.19 13.71 14.48 12.11 80.77
LSTM 19.72 19.67 18.83 17.99 19.54 84.73
Resnet 21.15 20.35 20.67 24.08 19.55 85.22
Transformer 24.51 23.22 30.81 26.19 20.02 85.44

Table 8: Comparisons with different backbones on the
disease detection task, where BERT is used as LLM.

Backbone Acc AUCROC F-1

MLP 0.69 0.77 0.49
LSTM 0.71 0.82 0.59
Resnet 0.70 0.83 0.55
Transformer 0.75 0.81 0.60

found that more layers could lead to better repre-
sentations, achieving better performance for down-
stream applications.

ECG Time Series Signals Only For the results
above, we used ECG signals along with ECG time
& frequency domain features as inputs. To com-
pare the performance, we also conducted the exper-
iments by only using ECG signals as inputs, with
no time & frequency domain features. This set of
experiments can be considered an additional abla-
tion study for the inputs. The results are shown in
Tables 7, 8, 9, 10.

Compare Table 7 & 8 with Table 2, we can find
that the performance of only using ECG signals as
inputs is lower than combining time & frequency
features as inputs in both text generation and dis-
ease detection tasks, which demonstrates that in-
corporating time & frequency features is useful for
capturing the characteristics of ECG and can lead
to better representations through LLM.

In Tables 9, 10, the transformer backbone per-
forms the best compared to others in both disease
detection and text generation tasks, which is in con-
sistent with the findings in the paper, showing that
more layers could lead to better representations,

Table 9: Comparisons of different number of trans-
former layers on the text generation task, where BERT
is used as LLM.

LLM
BLEU-1(%) ROUGE-1(%) Meteor(%) BertScore(%)

P R F F

1 25.52 19.10 27.65 21.43 20.11 86.52
2 24.21 20.00 28.75 23.90 20.32 84.66
3 23.44 20.44 27.21 24.81 19.99 84.63
4 23.17 20.99 28.01 24.44 20.18 87.65
5 25.69 24.75 34.81 27.59 21.03 87.33

Table 10: Comparisons of different numbers of trans-
former layers on the disease detection task, where BERT
is used as LLM..

Num of Layers Acc AUCROC F-1

1 0.62 0.79 0.51
2 0.74 0.80 0.60
3 0.71 0.82 0.59
4 0.72 0.83 0.61
5 0.75 0.88 0.64

achieving better performance for downstream ap-
plications. In addition, compared with Table 6 in
the paper, we can find that the performance in Ta-
bles 9 and 10 are lower than the ones in Table 6,
which also proved the same findings that adding
time & frequency features is useful for learning the
cardiac ECGs.

6 Conclusion

In this paper, we bridge the gap between LLMs
and cardiovascular ECG by transferring knowl-
edge of LLMs into the cardiovascular domain. The
transferred knowledge embeddings can be used for
downstream applications, including cardiovascular
disease diagnosis and automatic ECG diagnosis
report generation. Our results demonstrate the ef-
fectiveness of knowledge transfer, as the proposed
method shows excellent performance in both down-
stream tasks, where our zero-shot classification
approach even achieved competitive performance
with supervised learning baselines, showing the
feasibility of using LLM to enhance applications
in the cardiovascular domain.
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8 Limitations

Due to the constrain of the available datasets,
we only conducted experiments on the PTB-XL
dataset, which is the current largest ECG dataset
that contains high-quality clinical ECG signals and
cardiac reports by experienced cardiologists.

We understand that collecting high-quality clin-
ical data is much more complicated and time-
consuming than collecting other data from online
resources, like images, since it requires expert do-
main knowledge and is limited by many privacy
regulations. We are working with cardiologists,
hospitals, and clinical research labs, hope we can
release a new dataset to provide additional materi-
als for this research direction.

9 Ethics Statement

In this work, the data used as experimental materi-
als are from publicly available databases, where the
patients’ information is anonymized. To the best
of our knowledge, we do not foresee any harmful
uses of this study.
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A Experiment Parameters

We provide the experimental parameters of the
models in the paper in Table 11 and Table 12.

B More Related Work

Cardiovascular Disease in Current Practice
Patients presenting with chest pain to the emer-
gency department (ED) constitute a diagnostic and
logistic challenge as chest pain can be caused by
an extensive variety of disorders (Amsterdam et al.,
2010). Diagnostic tests and decision algorithms
play a critical role in speeding up the appropriate
triage of chest pain patients in the ED, facilitating
further (often more invasive) testing if warranted,
and preventing unnecessary hospitalization of pa-
tients with non-critical disorders. In current prac-
tice, about half of the patients presenting with chest
pain can be discharged from the ED, and only 5.5
percent of all ED visits lead to serious diagnoses
(Hsia et al., 2016). However, research suggests the
diagnosis of chest pain in the ED now costs an esti-
mated $10 to $12 billion per year in the U.S. So a
automatic cardiovascular disease diagnosis system
is essential to provide cost-efficient patient care.

Deep learning in ECG Deep learning ap-
proaches have been rapidly adopted across a wide
range of fields due to their accuracy and flexibil-
ity but require large labeled training sets. With
the development in machine learning, many mod-
els have been applied to ECG disease detection
(Kiranyaz et al., 2015; Nonaka and Seita, 2021;
Khurshid et al., 2021; Raghunath et al., 2021; Giu-
dicessi et al., 2021; Strodthoff et al., 2021; Qiu
et al., 2022b; Zhu et al., 2022). Al-Zaiti et al.
(2020) predicted acute myocardial ischemia in pa-
tients with chest pain with a fusion voting method.
Acharya et al. (2017); Moody and Mark (2001) pro-
posed a nine-layer deep convolutional neural net-
work (CNN) to classify heartbeats in the MIT-BIH
Arrhythmia database. Shanmugam et al. (2019) es-
timate a patient’s risk of cardiovascular death after
an acute coronary syndrome by a multiple instance
learning framework. Recently, Śmigiel et al. (2021)
proposed models based on SincNet (Ravanelli and
Bengio, 2018) and used entropy-based features for
cardiovascular diseases classification. The trans-
former model has also recently been adopted in
several ECG applications, i.e., arrhythmia classi-
fication, abnormalities detection, stress detection,
etc (Yan et al., 2019; Che et al., 2021; Natarajan

et al., 2020; Behinaein et al., 2021; Song et al.,
2021; Weimann and Conrad, 2021).

Multimodal Learning Formalized multimodal
learning research dates back to 1989, when Yuhas
et al. (1989) conducted an experiment that built
off the McGurk Effect for audio-visual speech
recognition using neural networks (Tiippana, 2014;
McGurk and MacDonald, 1976). Aligning repre-
sentations from different modalities is an important
step in multimodal learning. With the recent ad-
vancement in computer vision and natural language
processing, multimodal learning, which aims to ex-
plore the explicit relationship between vision and
language, has drawn significant attention (Wang
et al., 2020). There are many methods proposed
for exploring the multimodal alignment objective.
Torabi et al. (2016); Yu et al. (2017) adopted at-
tention mechanisms, Dong et al. (2021); Qiu et al.
(2022a,d,c) composed pairwise joint representation,
Chen et al. (2020); Wray et al. (2019); Zhang et al.
(2018) learned fine-grained or hierarchical align-
ment, Lee et al. (2018); Wu et al. (2019) decom-
posed the images and texts into sub-tokens, Velick-
ovic et al. (2018); Yao et al. (2018) adopted graph
attention for reasoning, and Yang et al. (2021) ap-
plied contrastive learning algorithms for video-text
alignment.

Multimodal Learning in Healthcare Applica-
tions Many previous works have explored mul-
timodal learning to boost performance in clinical
healthcare applications, i.e., affective computing
for depression disease detection and so on (Liu
et al., 2021; Qiu et al., 2018a; Liu et al., 2019a; Qiu
and Zhao, 2018; Qiu et al., 2018b, 2019; Han et al.,
2022). Liu et al. (2021); Qiu et al. (2018a); Liu et al.
(2019a); Qiu and Zhao (2018); Qiu et al. (2018b)
explored the inner correlation between different
modalities. Bao et al. (2019) investigated the de-
mographics, showing that the subject’s individual
characteristics can also be involved in robustness
and personalized design. Qiu et al. (2019) inves-
tigated the relationship between computational vi-
sion models and computational neuroscience. Hol-
lenstein et al. (2021); Han et al. (2022) explored the
connectivity between natural language and EEG
signals.

C Prepossessing

The raw ECG signals are first processed by the
WFDB library (Xie et al., 2022) and Fast Fourier
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Table 11: Experiment parameters (best ones marked in bold).

Task Batch Size Encoder Layers Att. Heads Dropout Epochs Warmup Steps

Text Generation [8, 16, 32, 64] [1, 2, 3, 4, 5] [1, 2, 3, 4, 5] [0.1, 0.2, 0.3] [10, 20, 50, 100, 200] [1000, 2000]
Disease Detection [8, 16, 32, 64] [1, 2, 3, 4, 5] [1, 2, 3, 4, 5] [0.1, 0.2, 0.3] [10, 20, 50, 100, 200] [1000, 2000]

Table 12: Baseline parameters (best ones marked in bold).

Models Batch Size Layers In Channel Size Kernel Sizes Dropout Epochs Warmup Steps

MLP [8, 16, 32, 64] [2, 3, 4] [128, 256, 512, 1024] [1,3] [0.1, 0.2, 0.3] [10, 20, 50, 100, 200] [1000, 2000]
LSTM [8, 16, 32, 64] [1, 2, 3, 4] [128, 256, 512, 1024] [1,3] [0.1, 0.2, 0.3] [10, 20, 50, 100, 200] [1000, 2000]
Resnet [8, 16, 32, 64] [1, 2, 3, 4] [128, 256, 512, 1024] [1,3] [0.1, 0.2, 0.3] [10, 20, 50, 100, 200] [1000, 2000]
Transformer [8, 16, 32, 64] [1, 2, 3, 4, 5] [128, 256, 512, 1024] [1,3] [0.1, 0.2, 0.3] [10, 20, 50, 100, 200] [1000, 2000]

transform (FFT) to process the time series data
into the spectrum, which is shown in Fig. 2. Then
we perform n-points window filtering to filter the
noise within the original ECG signals and adopt
notch processing to filter power frequency interfer-
ence (noise frequency: 50Hz, quality factor: 30).
The ECG signals are segmented by dividing the
10-second ECG signals into individual ECG beats.
We first detect the R peaks of each signal by ECG
detectors (Porr et al., 2022), and then slice the sig-
nal at a fixed-sized interval on both sides of the R
peaks to obtain individual beats. Examples of the
filtered ECG signal results after n-points window
filtering, notch processing, R peak detection, and
segmented ECG beats are shown in Figures. 3,4,5.

Figure 2: ECG data in the format of time series and
spectrum.

Figure 3: Filtered ECG data in the format of time series
and spectrum.

Figure 4: Detecting R peaks in the ECG signals.

Table 13: ECG statistical features in the frequency do-
main.

Feature Symbol Formula

Z1
1
N

∑N
k=1 F (k)

Z2
1

N−1
∑N

k=1 (F (k)− Z1)
2

Z3 −1×∑N
k=1

(
F (k)
Z1N

log2
F (k)
Z1N

)

Z4
1
N

∑N
k=1(F (k))

2

Z5
1
N

∑N
k=1

(
F (k)−Z1√

Z2

)3

Z6
1
N

∑N
k=1

(
F (k)−Z1√

Z2

)4

Z7

∑N
k=1(f(k)−F (k))∑N

k=1 F (k)

Z8

√∑N
k=1[(f(k)−Z6)

2F (k)]∑N
k=1 F (k)

Z9

∑N
k=1[(f(k)−F (k))3F (k)]∑N

k=1 F (k)

Z10

∑N
k=1[(f(k)−F (k))4F (k)]∑N

k=1 F (k)

Figure 5: Extracted ECG beats divided by R peaks.

Feature Extraction Instead of directly using the
time-series signals, we extract time domain and
frequency domain features to better represent ECG
signals. The time-domain features include: maxi-
mum, minimum, range, mean, median, mode, stan-
dard deviation, root mean square, mean square,
k-order moment and skewness, kurtosis, kurtosis
factor, waveform factor, pulse factor, and margin
factor. The frequency-domain features include:
FFT mean, FFT variance, FFT entropy, FFT en-
ergy, FFT skew, FFT kurt, FFT shape mean, FFT
shape std, FFT shape skew, FFT kurt. The function
of each component is shown in Table 13. An analy-
sis of the statistics of the processed ECG data can
also be found in Table 1.

452



D Transformer Encoders

The input for the Transformer is the ECG signal.
First, we feed out the input into an embedding
layer, which is a learned vector representation of
each ECG feature by mapping each ECG feature
to a vector with continuous values. Then we inject
positional information into the embeddings by:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

) (2)

The attention model contains two sub-modules, a
multi-headed attention model and a fully connected
network. The multi-headed attention computes the
attention weights for the input and produces an out-
put vector with encoded information on how each
feature should attend to all other features in the
sequence. There are residual connections around
each of the two sub-layers followed by a layer nor-
malization, where the residual connection means
adding the multi-headed attention output vector
to the original positional input embedding, which
helps the network train by allowing gradients to
flow through the networks directly.

In our model, our attention model contains
N same layers, and each layer contains two
sub-layers, which are a multi-head self-attention
model and a fully connected feed-forward net-
work. Residual connection and normalization
are added in each sub-layer. So the output of
the sub-layer can be expressed as: Output =
LayerNorm(x + (SubLayer(x))) For the Multi-
head self-attention module, the attention can be
expressed as: attention = Attention(Q,K, V ),
where multi-head attention uses h different linear
transformations to project query, key, and value,
which are Q, K, and V , respectively, and finally
concatenate different attention results:

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO (3)

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ) (4)

where the projections are parameter matrices:

WQ
i ∈ Rdmodel dk , WK

i ∈ Rdmodel dk

WV
i ∈ Rdmodel dv , WO

i ∈ Rhdv×dmodel
(5)

where the computation of attention adopted scaled
dot-product:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

For the output, we use a 1D convolutional layer
and softmax layer to calculate the final output.
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Abstract

Real-world applications of language models
entail data privacy constraints when learning
from diverse data domains. Federated learn-
ing with pretrained language models for lan-
guage tasks has been gaining attention lately
but there are definite confounders that warrants
a careful study. Specifically, understanding the
limits of federated NLP applications through
varying the effects of different aspects (such
as data heterogeneity, the trade-off between
training time and performance, the effect of
different data, and client distributions and sen-
sitivity of the shared model to learning local
distributions) is necessary to evaluate whether
language models indeed learn to generalize by
adapting to the different domains. Towards
that, we elaborate different hypotheses over the
components in federated NLP architectures and
study them in detail with relevant experiments
over three tasks: Stanford Sentiment Treebank-
2, OntoNotes-5.0 and GigaWord. The experi-
ments with different Transformer inductive bi-
ases on the variety of tasks provide a glimpse at
the understanding of federated learning at NLP
tasks. Specifically, the analysis suggests that
regularization due to the ensembling effect may
be masquerading as domain adaptation of feder-
ated learning in NLP with pre-trained language
models.

1 Introduction

The success of large pretrained language models
(Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2019; Lewis et al., 2019) have demonstrated their
applicability in consumer-based natural language
processing (NLP) applications (Otter et al., 2020).
While there are such massive datasets(Kiela et al.,
2021; Wang et al., 2021), making models trained on
these datasets to reflect the data diversity is an im-
portant challenge towards building equitable NLP
systems. Hence, treating the distribution of data
over the users as non-IID (McMahan and Ramage,
2017; Xu et al., 2018; Liu and Mazumder, 2021) to

better emphasize the preferences of users as person-
alization gets naturally extended to the consumer
NLP applications.

But, recent studies highlight that pretrained lan-
guage models (PLMs) (Devlin et al., 2019) tend
to get their predictions skewed by the frequency
effects of tokens in the data distribution (Wei et al.,
2021), this is concerning from a privacy and person-
alization standpoint. Han and Eisenstein (2019);
Ramponi and Plank (2020); Carlini et al. (2022)
show that neural language models (even the large
pretrained architectures) have challenges in adapt-
ing to different data distributions on generative and
classification tasks alike.

Federated learning (FL) (McMahan and Ram-
age, 2017; Konečnỳ et al., 2016) has been gaining
popularity in machine learning as a practical way
to mitigate domain adaptation with the promise of
data privacy. FL as a learning paradigm focuses
on learning a shared model through training data
distributed over several clients. Such approaches
have only recently begun to focus on NLP applica-
tions (Mammen, 2021; Lin et al., 2021). Lin et al.
(2021) suggest that the success of federated algo-
rithms can be improved through adapting over the
client distribution that improves the generalization
performance across the client distributions.

However, the opaqueness of the pretraining rou-
tine — primarily, quantifying what, and how much
of that a language model has learnt from the pre-
training corpora (Zhu et al., 2015; Devlin et al.,
2019; Gao et al., 2020) cast a shadow on evaluating
the effectiveness of these architectures in learning
from diverse domains. Understanding the roles of
different inductive biases not limited to the architec-
ture, loss functions and data distribution becomes
imperative to carefully look at claims of “domain
adaptation” (Kouw and Loog, 2018). The repre-
sentation of texts guided by syntax and semantic
elements makes generalization to non-IID distribu-
tions in NLP more challenging if not the same when

454



compared to domains such as computer vision (Liu
et al., 2020; Luo et al., 2021; Zhuang et al., 2021;
Yang et al., 2021). Then, it becomes imperative
to understand the role of different constituents in
the federated learning in NLP setup to take steps
in the right direction. In that regard, we investigate
four major hypotheses detailing the confounding
variables in federated NLP systems: (1) role of
pretrained weights in FL’s domain adaptation, (2)
distribution of clients, (3) Data homogeneity, and
(4) robustness of personalizing to local distribu-
tion. Although the primary focus of the paper is
to generate discussions along these questions, we
support the discussions with relevant experiments
on 3 different NLP tasks on 2 large Transformer
architectures.

2 Background

Federated Learning Federated learning assumes
the set up of K clients {Ck}Kk=1 with different data
distributions and a single server model S. Each
client model, θCk , is initialized by the server model
θS a dedicated copy of the server model and then
updated locally on the kth client data distribution
using an optimizer OptCk . This distributed learn-
ing is repeated iteratively over R rounds. At each
round r, the client models, θCrk , are initialized with
the aggregated weights of all the client models from
the previous round (r−1), referred to as the central
server model, θrS . The rounds end with accumu-
lation and aggregation of gradients from all the
client models to update the server model with op-
timizer OptS and continued until convergence on
an unseen set (Dtest). FedOpt, a popular federated
learning algorithm is shown in Algorithm 1.

Algorithm 1 FedOpt Algorithm (Asad et al., 2020)

Input: θ0S ,OptCk ,OptS
for r = 1 to R do

for k = 1 to K in parallel do
θrCk ← θr−1S

for e = 1 to E do
gCrk ← ∇θ(θCrk | Dk)
θCrk ← OptCk(θCrk , gC

r
k
)

end for
∆r
k ← θCrk − θ

r−1
S

end for
∆r ← 1

KΣKk=0∆
r
k

θrS ← OptS(θ
r−1
S ,∆r)

end for

The Performance Gap Like in (Lin et al., 2021),
we compare the performance of federated server,
θS , with θcentral over a common unseen set, Dtest

as in Equation 1,

∆Perf = PerfS − Perfcentral (1)

where θcentral is trained over {Dk}Kk=1 until con-
vergence. Accuracy, F1, or Rouge score (Lin, 2004)
can be used for measuring Perf .

Generalization Personalization trade-off Let
the best server generalization performance is mea-
sured over Dtest be P∗server. The generalization
performance of the client model trained in r∗ is
measured on Dtest be P∗clientk . The performance
of the client model on Dk in round r∗ measured be
P̃clientk , which acts as a proxy to the personaliza-
tion on Dk. Then, we measure the difference in the
test loss for every client, k, between θC∗

k
and θ∗−1S

as ∆P .

∆Pk (xi) = P∗clientk (xi)− P
∗−1
server (xi) (2)

For every xi ∈ Dtest, the correlation between
∆Pk(xi) to that of P̃clientk measures the mutual
cost of personalization to Dk on the generalization
performance on Dtest. Also, we measure the aver-
age the empirical risk of θC∗

k
over Dk as ˜Pclientk :

P̃clientk =
1

| Dk |

|Dk|∑

j=0

Pclientk (xj) (3)

We now define the trade-off metric as the slope
between ∆Pk(xi) and P̃clientk over all x ∼ Dtest

and K. m∆P measures the unit increase in gener-
alization performance for adapting to Dk. Or m∆P

estimates the cost of personalizing over the client
distribution. Consequently, we make the interpreta-
tions for the metric m∆P — (a) positive slope (↗)
indicates that learning on local distribution aids in
better generalization, (b) negative slope (↘) indi-
cates that generalization inhibits the learning from
local distributions, or (c) neutral (−→) shows that
the model is unaffected by learning.

3 Related Work

Multi-Domain Learning Realtime applications
of most tasks have shown diverse distribution of
datapoints requiring domain adaptation strategies
(Daumé III, 2009; Dredze and Crammer, 2008).
The effect of such domain shift in NLP has been
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a topic of study for a while (Blitzer et al., 2006;
Quiñonero-Candela et al., 2008; Blitzer, 2008; Ben-
David et al., 2010; Cui and Bollegala, 2019). The
general topic of domain adaptation in NLP shares
similarity with the topics of continual learning (Sun
et al., 2019), transfer learning (Devlin et al., 2019;
Radford et al., 2019), multi-task learning (Col-
lobert and Weston, 2008), and federated learning
(Lin et al., 2021). Federated learning however, is
different from the other paradigms since it empha-
sizes on the notion of preserving privacy of differ-
ent local data distributions. To that, sophisticated
approaches to aggregate the gradients to transfer
learning from clients to the shared model (e.g. Fed-
Prox (Li et al., 2020), FedAvg (McMahan et al.,
2017a), and FedOpt (Asad et al., 2020)) have show-
cased improvements in the generalization of the
shared parameters. On the other hand, due to the
many interactions of the clients with the server,
communication overhead is an important aspect,
and FedOpt (Asad et al., 2020) has been shown to
better address it over existing federated algorithms.

Overview of Federated Learning Federated
learning (McMahan and Ramage, 2017; Mammen,
2021) addresses the challenge of learning from pri-
vate data spanning over multiple clients. Although
the evaluation of such architectures prioritizes the
generalization of the shared model, Mendieta et al.
(2022) highlight that learning from the local distri-
butions is critical towards that. The key to such ef-
ficient learning in federated architectures has been
shaped by homogeneous and heterogeneous data or
model (Li and Wang, 2019) distribution in clients
(model architectures across clients have similar or
different parameters). Further, the emphasis on pri-
vacy of client data has also been mitigated through
the recent progress in knowledge distillation. How-
ever, systematic studies (Kairouz et al., 2021; Li
et al., 2021) over federated architectures have iden-
tified potential biases due to unbalanced data of
clients or diversity in the label distribution among
others. Chen et al. (2018) propose a meta learning
approach for federated learning that improves per-
sonlaizing to the non-IID client distributions. Also,
constraints on data privacy makes it difficult to im-
port approaches (Kirkpatrick et al., 2017; Rolnick
et al., 2019) that avoid catastrophic forgetting of
distributions in continual learning tasks.

Federated Learning for language tasks Dis-
tributed training on language tasks with federated

learning has been gaining some attention. McMa-
han et al. (2017b) trained a differentially private lan-
guage model over non-IID data distributions while
Ge et al. (2020) trained a recurrent + convolutional
architecture for medical named entity recognition
task. Recently, Lin et al. (2021) proposed a frame-
work that enables using modern pretrained lan-
guage models on different language understanding
tasks. Lin et al. (2021) discuss and hypothesizes
a gap between the performance of Transformer ar-
chitectures between the federated and centralized
setting with data heterogeneity. Dupuy et al. (2022)
analyze the effect of having clients with different
amounts of data gathered from Alexa devices and
suggest that non-uniform selection of devices im-
proves the performance of the shared model.

In this work, we attempt to investigate different
possible confounders for domain adaptation claims
of federated systems in NLP and elaborately ana-
lyze them in the language tasks of classification,
sequence tagging and sequence generation tasks
that are popularly used with Transformer architec-
tures.

4 Experiments

Models and Tasks We experiment with a focus
on the pretrain-finetune setup that is popular with
Transformer architectures on many language tasks.
Of the many, we pick three tasks— Stanford Sen-
timent Treebank 2 (SST-2) (Socher et al., 2013),
OntoNotes (v5.0) (Weischedel et al., 2013) and Gi-
gaword (Graff et al., 2003) that fall into the broad
categories of text classification, sequence tagging,
text-generation respectively. The data splits are
as used in (Lin et al., 2021), please refer §B for
details. As for the models1, we use BART-Base
(Lewis et al., 2019) for text generation and Distil-
BERT (Sanh et al., 2019) for the other two tasks.
In the experiments we use the models with ( )
and without ( ) pretrained weights23.

Centralized Training We use batch-wise gradi-
ent descent with AdamW (Loshchilov and Hutter,
2017) as the optimizer along with a linear learning
rate scheduler. We use cross-entropy for model
selection across the tasks. Also, in our analysis, we

1We use the transformer weights shared in huggingface:
‘distilbert-base-uncased’ and ‘facebook/bart-base’.

2Across the experiments the line style and the colour is
used to denote the corresponding model performances.

3The without pretrained weights setting trains the models
from scratch.
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Dataset Model Metric Pretrained Cent. Fed. ∆(Perf ) ∆ (Rel.%)

SST2 DistilBERT Accuracy
✓ 89.0±0.8 87.8±0.4 1.3 −
✗ 69.2±3.2 67.8±1.0 1.4 7.7 ▲

OntoNotes DistilBERT F1
✓ 85.9±0.1 84.4±0.1 1.5 −
✗ 65.1±0.3 55.3±0.3 9.8 550 ▲

Gigaword BART Rouge1
✓ 34.6±0.7 32.5±0.2 2.1 −
✗ 6.1±0.5 2.9±0.6 3.2 50 ▲

Table 1: Comparison between the ∆(Perf) of federated and corresponding centralized set up when using (✓) and
not using (✗) pretrained transformer weights. Across the 3 tasks it can be seen that the gap increases when not using
pretrained weights (▲) suggesting that the pretrained weights of transformer are possibly doing the heavy lifting in
domain adaptation of federated learning in language tasks.

use cross-entropy of samples in the test set to eval-
uate the relative performance of models compared.
The complete results of the experiments are in §F.

Federated Training For the federated experi-
ments, we partition the training dataset for the
clients and train them using the FedOpt algorithm
(Asad et al., 2020) to estimate the server parame-
ter updates. Further, we use AdamW with a linear
learning rate scheduler to estimate the gradients in
our experiments. The round with the best server
test loss is selected as the best round (For the com-
plete results please refer to §F; for their run-time
refer to §E).

Evaluation Metrics The metric of evaluation
(Perf ) is accuracy for sentence classification, F1-
span for sequence tagging and ROUGE1 score for
text summarization.

4.1 Motivation
Federated NLP considers two powerful learning
paradigms— Federated algorithms aggregate the
gradient updates over clients trained with non-
identical data distributions while maintaining pri-
vacy, and PLMs trained over large corpora with a
generic objective that gives a better downstream
performance. Stickland and Murray (2019) and
Peng et al. (2020) show that PLMs are success-
ful in tasks that require domain adaptation. The
motivation primarily relies on verifying if feder-
ated algorithms and PLMs share a synergy in the
extreme domain adaptation scenario.

To that, we first study the role of pretrained
weights as a confounding variable in the feder-
ated setup. The null hypothesis being the feder-
ated learning not affected much by the pretrained
weights should be supported with ∆(Perf) remain-
ing similar in both cases. But, in Table 1 across
different tasks we see that ∆(Perf) increases when

not using pretrained weights. This suggests that the
pretrained weights may be supporting the perfor-
mance of federated learning in NLP applications.
The corollary to this observation could be that the
learning in a federated setting may not be happen-
ing from adapting to the client distributions. This
raises concerns on personalization that if at all the
federated NLP setup with PLM learns anything
from the client distribution.

4.2 Estimating the Confounding Variables

Pretraining and Federated Learning Towards
understanding the essence of the pretrained
weight’s semantic prior as a confounding role in the
success of FL for NLP, we continue to control for
it in the remainder of the experiments. Disentan-
gling such observations is necessary to objectively
analyze the federated algorithm for language tasks.

Contribution by Client size One major chal-
lenge in the realistic setting of federated learning
for data-driven tasks is the data imbalances that
naturally occur among the clients (Lin et al., 2021;
Dupuy et al., 2022). The distribution of number of
data samples that each client has creates two dis-
tinct classes of clients— major and minor players—
whose updates may affect the parameters of the
shared server model differently. Generalization
aside, ensuring personalization to the local distribu-
tion of data in the clients also becomes necessary
in different scenarios arisen from the diverse data
distributions. While extreme distributions may pro-
vide a regularization effect due to the ensemble
learning (Balaji et al., 2018; Kumar et al., 2020;
Stanton et al., 2021), the objective being able to
better generalize through adapting to different lo-
cal distributions require careful consideration of
the distribution of clients. Towards understanding
the limits of learning under the influence of clients
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of different sizes, we evaluate the role of minor
clients by ablating clients smaller than a threshold
(τ ) number of samples.

Client Personalization and Server General-
ization Personalization emphasizes the shared
model’s capacity to be representative of all clients’
distributions alike. But, training on the local distri-
bution may affect the generalized representation of
the shared model similar to the catastrophic forget-
ting in continual learning (Kirkpatrick et al., 2017)
or mode collapse in generative modeling (Salimans
et al., 2016). Using PLMs due to their robust
semantic representations could alleviate some of
these challenges. More specifically, we formulate
our questions as ablation experiments: (a) How are
personalization and generalization related across
different tasks and client distributions (b) Does
removing updates from minor players affect this
relation? We study these questions in experiments
with the help of m∆P metric.

Client data partitioning distribution General-
ization to unseen distribution, and how well the
local client distributions are personalized over the
federated learning rounds is also affected by the
distribution of samples over the clients. Towards
understanding the effect of the sample distribution
on the personalization-generalization relation we
compare the learning of the server model between
non-uniform distribution that is closer to real world
scenario, and a more controlled uniform distribu-
tion of samples among the clients to (a) evaluate
the effect of generalization by the shared model and
the personalization to local distribution by varying
the number of samples per client uniformly over
all the clients, and (b) we perform ablations on
the updates by thresholding the clients on hetero-
geneous data distribution set up to understand the
ideal scenarios in different language tasks.

4.3 Additional Setup

Dataset Partitioning Strategies For the study,
we use data selection for the clients using two dif-
ferent strategies. Please refer to §C for the choice
of hyper-parameters for the two methods.

Random partitioning samples data over {C}Kk=1

by sampling from a Dirichlet distribution over
the K clients with α = 0.1 (Lin et al., 2021).
For ablation on random distribution, we use
hyperparameter τ that denotes the minimum

number of samples in Ci for its parameters to
be aggregated.

Uniform partitioning distributes the data uni-
formly over {C}Ki=1, which is controlled by
a hyperparameter γ. Specifically, uniform dis-
tribution is constructed by sampling at least γ
samples from each class for each client in the
classification tasks. For the text summariza-
tion dataset, we cluster the SentenceBERT
embedding (Reimers and Gurevych, 2019)
and use KMeans++ 4(Arthur and Vassilvit-
skii, 2006) with 8 as the number of clusters,
and sample uniformly over them.

Distributional Similarity We use MAUVE score
(Pillutla et al., 2021) to measure the similarity be-
tween different text distributions in the experiments.
The score uses GPT-2 (Radford et al., 2019) esti-
mating the distributional similarity. Also, we use
mauve_scaling_parameter set to 20. The score
ranges between 0 and 1, where 1 indicates signifi-
cant overlap.

5 Results

Following our motivation in §4.1 and questions
raised for the confounders to the federated system
for NLP tasks in §4.2, we structure the results to
our investigation in this section.

(a) SST2 (b) OntoNotes (c) Gigaword

Figure 1: We observe the effect of domain shift by
measuring the δ change in the loss over every sample in
the test set (Pclient−P∗−1

server) and drawing a correlation
with the average loss over the train distribution in the
clients (P̃client).

5.1 Effectiveness of Pretrained weights in
adapting to client data distributions

An ideal model is expected to not discount the
learning on the client distributions for better gener-

4We use the implementation in www.scikit-learn.org.
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(a) SST2-Random (b) OntoNotes-Random (c) Gigaword-Random

(d) SST2-Uniform (e) OntoNotes-Uniform (f) Gigaword-Uniform

Figure 2: By varying the number of trainable clients in the random setting across the tasks, we measure the sensitivity
of the shared model’s performance (Cent. − Fed.: ▽ indicates federated model performing better) to data removal
as high as ∼ 55% of training data (SST-2: ∼ 55%, OntoNotes: ∼ 33% and Gigaword: ∼ 20% with the smallest
number of clients).

alization performance. To verify whether such dis-
counting happens, we analyze the personalization-
generalization trade-off with the m∆P metric. In
Figure 1, across the datasets we observe that the
correlation stayed more neutral than positive, sug-
gesting that the pretrained model may not be learn-
ing much from the local distributions. We observe a
relatively positivem∆P value when trained without
the pretrained weights. This could be an anticipated
behaviour, as the model relies on the information
in the client distribution for generalization, unlike
the pretrained weights that come with a semantic
prior.

5.2 Client contributions to the metrics

We set up additional experiments to understand the
contribution of clients in more detail. Particularly,
we begin by studying our experiment of ablating up-
dates from the clients that are below threshold (τ )
on the random experiments. We hypothesize that as
the threshold value is increased, the server model is
restricted to learning from fewer client local distri-
butions and the generalization performance should
also decline as a result. On the contrary, we note in
Figure 2 (top row) that the performance of the with
pretrained model remained relatively unchanged
across the datasets. However, the MAUVE scores
estimated over the Ablated, Unablated and Test
(Unseen) distributions of data in Table 2 suggest
that the test distribution are not close to the ablated

Dataset U —A U —T A —T

SST2 0.52±0.06 0.48±0.07 0.47±0.07
OntoNotes 0.64±0.06 0.53±0.07 0.51±0.06
Gigaword 0.58±0.07 0.45±0.07 0.45±0.07

Table 2: The MAUVE score between the distribution of
data in ablated (A), unablated (U) and unseen (T) splits
with maximum value of τ in the random distribution set-
ting. The values indicate the maximal distance between
the distributions across the tasks.

or unablated clients’ distributions5. The perfor-
mance of the pretrained model in the federated
setup, still being little affected only suggests that
pretrained models may not be learning from the
local distributions that hurt the claims of personal-
ization to these distributions.

If not adapting to the local distributions, we fur-
ther investigate whether the pretrained models use
the updates from client distributions as regulariza-
tion. To that, we repeat the same experiments on
the same datasets with the more controlled uniform
distribution setting.

Do client sizes affect the gap To have a clearer
picture of the client size affecting the learning con-
tribution, we use the uniform distribution with γ
controlling the data partitioning size uniformly over
all the clients. In Figure 2 (bottom row), we ob-
serve a trend showing that the models' performance

5Scores closer to 1 indicate significant overlap

459



(a) SST2

(b) OntoNotes

(c) Gigaword

Figure 3: Impact of personalization of clients on gen-
eralization of server —m∆P

values depict the impact
in Random distribution strategy when ablating minor
clients over different τ values.

(pretrained or not) decreases drastically as the num-
ber of clients increases and the client partitioning
sizes progressively become smaller. Similar obser-
vation across the different tasks suggests that the
model requires a quorum of samples to minimize
the gap across (Equation 1) the different tasks in a
federated setup.

Do client sizes affect the trade-off Again here,
we adjust for τ in random setting, where the clients
with less than τ number of samples are restricted
from updating the server parameters. We measure
m∆P values for the varying τ values in Figure 3.
We observe that with updates primarily from more
minor clients (lower τ value), the generalization is
less affected by personalization. But, the gap being
lower as shown in Figure 2 suggests that the noisy
updates with fewer clients be acting as a regularizer
for the server updates. Further, as the value of τ
increases (Figure 3), the trade-off remains healthier
until a certain value of τ and then it drops. This
trend could be attributed to the fact that with a
higher τ value the number of clients updating the
server becomes lesser with more data points, which
provides better generalization but personalization
due to variance in the client distribution gets chal-

lenging.
To understand the impact of varying client dis-

tributions on the trade-off, we perform the same
analysis with uniform distribution shown in Fig-
ure 4. The pretrained model’s generalization re-
mains unaffected with more minor clients across
SST-2 and GigaWord tasks supporting the alternate
that updates from minor clients provide a regular-
ization effect as we also see the gap to remain the
same in Figure 2. On OntoNotes, while the m∆P

value stays the same the gap widens as observed in
Figure 2. The varying results do not provide con-
clusive evidence on whether the pretrained models
can learn to adapt to different domains in such ex-
treme settings. Answering this is non-trivial which
requires a careful consideration of the pretraining
datasets and characterization of domains based on—
task, topic, syntax, style etc.

(a) SST2

(b) OntoNotes

(c) Gigaword

Figure 4: Impact of personalization of clients on gener-
alization of server—m∆P

values depicting the impact
in Uniform distribution strategy with varying sizes of
clients.

Time-Performance trade-off with varying client
sizes The dropping of updates from the minor
clients could also provide acceleration in the num-
ber of rounds, R, as federated learning has a com-
munication overhead. We measure the performance
of server with pretrained weights, PerfS , over the
different tasks and the number of rounds (R) taken

460



(a) SST2-Random-Accuracy (b) OntoNotes-Random-F1 (c) Gigaword-Random-Rouge1

(d) SST2-Uniform-Accuracy (e) OntoNotes-Uniform-F1 (f) Gigaword-Uniform-Rouge1

Figure 5: We compare R taken to converge when varying the number of clients in the uniform and in the random
distribution settings with pretrained weights (✓). We also measure the corresponding PerfS of the server model in
the task.

by the set up to converge.

In Figure 5, we compare across the tasks with
random distribution and the uniform distribution of
samples with pretrained weights by varying the τ
and γ respectively. In the random distribution ex-
periments, as we are discarding parameter updates
from clients we observe a not-so-steep drop in the
PerfS of the server model in SST-2 and OntoNotes.
On the other hand, in Gigaword dataset experi-
ments the impact of dropping the clients did not
affect PerfS . With respect to R, τ value being in-
versely proportional to the number of clients, we
did not see a drastic acceleration to the number of
rounds as lesser clients also increased the difficulty
of the tasks.

In uniform setting, by varying the number of
clients without the data loss, we make two ob-
servations: (1) The PerfS is always better than
when compared with random setting, (2) the per-
formance saturates after a certain γ across the tasks,
and (3) the number of rounds taken by the models
to converge shows drastic decrease as the num-
ber of clients decreases. We hypothesize that with
only major clients the gradient updates are stable
to enable faster convergence. This contradicts with
the observation in (Lin et al., 2021) that shows a
wider gap in the performance when training pre-
trained transformer models in a federated set up,
which we observe only when not using pretrained
weights. Collectively, the results hint that the fed-
erated set up with PLMs suffer from personalizing

to the client distributions, and the generalization
on tasks may be a regularization of the distributed
set-up.

6 Conclusion

This work explores pertinent questions that require
a closer look at evaluating PLMs in the federated
setting. Through empirical observations, we find
that in federated learning, where the emphasis is
more on personalization while ensuring privacy
there could be a risk of pretrained models over-
looking the client distributions. We also evalu-
ated the effects of varying the client distributions
which suggested that the gap between centralized
and federated performance to be reduced when the
samples are uniformly distributed over the clients.
While that is ideal, the random distribution too
does not suffer significant performance loss with
pretrained weights. However, the critical aspect of
the questions stems from the need to investigate the
pretraining routine in identifying the right domain
adaptation challenges for pretrained models. The
gap being minimized while the personalization tak-
ing a toll calls for a deeper inspection to explore
the limits of domain adaptation in PLMs with an
appropriate evaluation framework (datasets, and
metrics) that controls for the leak in the pretraining
corpus.
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Limitations

The study, though, considers sample tasks from
the different language tasks the downstream tasks
generally are smaller in the size, and not much di-
versity with respect to the task complexity is consid-
ered. Though there is motivation for using FedOpt
for training, the claims could have been further
supported by exploring other possible federated al-
gorithms. The scale of the experiments however
do not play in favour of such an exhaustive study.
Although the distributional similarity is measured
with MAUVE, other aspects of texts n-gram, topic
modelling could be explored to understand the do-
main shifts. Further, the study does not consider
language models with different other inductive bi-
ases. The different transformer models and the
effect of their respective pretraining datasets and
task remain unexplored for future work. In addition
to the above, the behaviour of different federated
algorithms in the hypotheses we frame would also
become interesting cases to scale our work.

Broader Impact

The trend of fine tuning transformer models for
downstream tasks as both time and cost-effective
solution for improving performance in downstream
tasks has been gaining enough popularity. With fed-
erated algorithms giving access to learning from
more public data while tackling the privacy con-
cerns, it becomes worthwhile to use pretrained lan-
guage models for language applications. Thus, un-
derstanding the adjustments to this federated lan-
guage task learning with pretrained transformers on
the claims of personalization-generalization trade-
off becomes necessary. Knowledge and role of
variables like client sizes and their distribution on
the federated performance help identifying better
decisions on setting up an appropriate domain for
learning in downstream NLP tasks.

6https://www.mindspore.cn/
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A Reproducibility Checklist

A.1 For all reported experimental results:
1. A clear description of the mathematical set-

ting, algorithm, and/or model: We define the
details of our experimental setup in §4.

2. Description of computing infrastructure used:
We use multiple servers equipped with 8
NVIDIA V100 (32 GB) GPUs and 72 cores
CPU (754 GB) for running our experiments.

3. The average runtime for each model or algo-
rithm (e.g., training, inference, etc.), or es-
timated energy cost and number of parame-
ters in each model: The details of the run-
time costs per experiment and the model have
been reported in Table 8. The experiment runs
have been tabulated in Table 9, Table 10 &
Table 11.

4. Corresponding validation performance for
each reported test result: Not applicable.

5. Explanation of evaluation metrics used, with
links to code: This is specified with references
in paragraph titled ‘Evaluation’ in §2.

A.2 For all experiments with hyperparameter
search:

1. The exact number of training and evaluation
runs: We run all centralized and random distri-
bution on 3 seeds while the uniform distribu-
tion experiments are run on a single seed. The
random distribution leads to different client
size distributions while the uniform distribu-
tion has all clients of similar size.

2. Bounds for each hyperparameter: The tunable
hyperparameters were batch size and learning
rate in both centralized and federated training.
For each dataset in both cases of fine-tuning
and training from scratch, we find the best
learning rate in the range [0.01, 0.000001] for
centralized and federated training by tuning
on the exponent scale. For federated training
we find the best hyperparameters in random
distribution setting which we continue to use
in other variants of our experiments. For the
batch size, we explore in the set 8, 16, 32, 64.

3. Hyperparameter configurations for best-
performing models: The Table 4, Table 5,
Table 6 & Table 7 records the best hyperpa-
rameters in use.

4. Number of hyperparameter search trials: The
best hyperparameters are chosen over 3 seeds.

5. The method of choosing hyperparameter val-
ues (e.g., uniform sampling, manual tuning,
etc.) and the criterion used to select among
them (e.g., accuracy) The best test loss re-
sulting combination of hyperparameters is se-
lected. The grid search method is used.

6. Summary statistics of the results (e.g., mean,
variance, error bars, etc.) The tabulated re-
sults show mean and standard deviation re-
sults while the line plots are created using me-
dian as an estimator. The plots involving test
or train loss account the evaluations done on a
sample level. The plots using Perf evaluations
use set of experiment level values.

A.3 For all datasets used:
1. Relevant details such as languages, and num-

ber of examples and label distributions: The
datasets used are SST2, OntoNotes and Giga-
word which are all in the English language.

2. Details of train/validation/test splits: This can
be found tabulated in Table 3.

3. Explanation of any data that were excluded,
and all pre-processing steps: For the task of
text classification we use the complete sen-
tences as samples instead the parsed phrases.

4. A zip file containing data or link to a down-
loadable version of the data: The references
to the datasets are provided in §4.

5. For new data collected, a complete descrip-
tion of the data collection process, such as
instructions to annotators and methods for
quality control. Not applicable.
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B Dataset Splits

Dataset Train set Test set Labels
SST2 6, 920 1, 821 2

OntoNotes 59, 924 8, 262 37

Gigaword 10, 000 2000 N.A.

Table 3: Statistics for the 3 different dataset used.

C Client Data Distribution

During the gradient accumulation, we normally use uniform weightage. For sanity check if uniform
weighting is the best choice, we made comparison of the random distribution with SST2 dataset using
weighted aggregation where the client gradients are weighted to their size proportions. We did not see any
advantage and hence continued using the uniform weightage. The comparison in performance can be seen
in Table 9.

C.1 Random Distribution

Dataset Clients τ

SST2 3-100 {0, 100, 300, 500}
OntoNotes 4-54 {0, 40, 120, 700, 4000}
Gigaword 7-63 {0, 18, 34, 126, 750, 1200}

Table 4: Statistics for random distribution strategy experiments. The number of clients are effected by the ablation
threshold for minor clients (τ ).

C.2 Uniform Distribution

Dataset Clients γ

SST2 5-173
{600, 500, 485, 460,
320, 190, 80, 40, 20}

OntoNotes 6-54
{1300, 630, 420, 321,

252, 209, 180, 159, 139}

Gigaword 7-63
{180, 90, 60, 45,

36, 30, 26, 22, 20}

Table 5: Statistics for uniform distribution strategy experiments. The client count increases as the number of samples
per label in a client (γ) decreases.
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D Hyperparameters

The experiments on random distribution for all the datasets were carried out with 3 different seeds.
However, for the uniform distribution we use only a single seed for OntoNotes and Gigaword datasets.
Unlike the random distribution where the sampled client sizes keeps varying dramatically, the uniform
distribution has all clients with almost the same number of data samples. Thus, we relax the need for
repeating experiments with multiple seeds in the uniform distribution.

Dataset Pretraining Epochs Batch size L.R.

SST2
✓ 10 8 1.00E-05
✗ 10 8 1.00E-05

OntoNotes
✓ 5 8 2.00E-05
✗ 5 32 2.00E-04

Gigaword
✓ 5 8 3.00E-05
✗ 5 8 3.00E-05

Table 6: The hyperparameters used for the centralized training experiments.

Dataset Pretraining Rounds Batch size L.R.

SST2
✓ 30 64 1.00E-05
✗ 50 64 1.00E-05

SST2 (Weighted Aggregation)
✓ 30 64 1.00E-04
✗ 50 64 1.00E-04

OntoNotes
✓ 30 64 2.00E-05
✗ 50 64 2.00E-05

Gigaword
✓ 10 8 3.00E-05
✗ 15 8 3.00E-05

Table 7: The hyperparameters used for the federated training experiments.

E Runtime of the experiments

Dataset Model (parameters) Experiment Pretrained GPUs Runtime (Hrs)

SST2 distilbert-base-uncased (66.9M)

Centralized Training ✓ 1 ∼0.5
✗ ∼0.5

Random Distribution ✓ 8 5-6
✗ 8-10

Uniform Distribution ✓ 8 9-12
✗ 15-20

OntoNotes distilbert-base-uncased (66.4M)

Centralized Training ✓ 1 ∼1
✗ ∼1

Random Distribution ✓ 8 4-5
✗ 6.5-7.5

Uniform Distribution ✓ 8 6-27.5
✗ 10-46

Gigaword facebook/bart-base (139.4M)

Centralized Training ✓ 1 ∼1
✗ ∼1

Random Distribution ✓ 8 2-15
✗ 3-22.5

Uniform Distribution ✓ 8 3.5-17.5
✗ 5-26.5

Table 8: Time and resource costs per experiment run for the different datasets. The GPU refers to the NVIDIA
V100 (32 GB) in a server having 8 of them.
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F Master Results Tables

F.1 SST2

Centralized learning
Pretraining Test Accuracy (%) Epochs

✓ 89.02 ± 0.83 4.33 ± 2.87
✗ 69.19 ± 3.2 5.33 ± 2.62

Random distribution (τ=0, 100 clients) (Weighted Aggregation)
Pretraining Test Accuracy (%) Rounds

✓ 86.84 ± 0.1 30.0 ± 0.0
✗ 52.99 ± 2.39 49.67 ± 0.47

Random distribution (τ=0, 100 clients)
Pretraining Test Accuracy (%) Rounds

✓ 87.77 ± 0.4 28.67 ± 1.89
✗ 67.78 ± 1.04 50.0 ± 0.0

Random distribution (τ=100, 100 clients)
Pretraining Test Accuracy (%) Rounds

✓ 85.89 ± 1.08 30.0 ± 0.0
✗ 64.34 ± 1.05 49.67 ± 0.47

Random distribution (τ=300, 100 clients)
Pretraining Test Accuracy (%) Rounds

✓ 86.44 ± 0.39 30.0 ± 0.0
✗ 62.84 ± 0.5 50.0 ± 0.0

Random distribution (τ=500, 100 clients)
Pretraining Test Accuracy (%) Rounds

✓ 84.79 ± 1.42 30.0 ± 0.0
✗ 61.14 ± 1.46 50.0 ± 0.0

Uniform distribution (γ=20, 173 clients)
Pretraining Test Accuracy (%) Rounds

✓ 88.05 ± 0.32 29.67 ± 0.47
✗ 66.68 ± 1.17 50.0 ± 0.0

Uniform distribution (γ=40, 87 clients)
Pretraining Test Accuracy (%) Rounds

✓ 88.61 ± 0.23 30.0 ± 0.0
✗ 72.29 ± 0.4 49.33 ± 0.47

Uniform distribution (γ=80, 44 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.07 ± 0.13 29.33 ± 0.94
✗ 74.32 ± 0.64 48.67 ± 0.94

Uniform distribution (γ=190, 19 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.2 ± 0.2 23.67 ± 1.7
✗ 78.0 ± 0.4 47.67 ± 1.7

Uniform distribution (γ=320, 11 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.11 ± 0.32 18.0 ± 1.41
✗ 79.06 ± 0.42 41.0 ± 2.94

Uniform distribution (γ=460, 8 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.38 ± 0.09 16.33 ± 0.47
✗ 79.7 ± 0.14 34.33 ± 1.7

Uniform distribution (γ=485, 8 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.35 ± 0.68 18.0 ± 2.94
✗ 79.64 ± 1.05 32.33 ± 2.87

Uniform distribution (γ=500, 7 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.64 ± 0.13 16.0 ± 0.82
✗ 79.75 ± 0.32 31.33 ± 1.25

Uniform distribution (γ=600, 6 clients)
Pretraining Test Accuracy (%) Rounds

✓ 88.96 ± 0.12 13.67 ± 0.94
✗ 79.33 ± 0.39 28.33 ± 2.05

Table 9: Results of all experiments on SST2 dataset after model selection on the best server test loss.
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F.2 OntoNotes

Centralized learning
Pretraining Test F1 (%) Epochs

✓ 85.93 ± 0.13 3.33 ± 1.7
✗ 65.1 ± 0.29 1.0 ± 0.0

Random distribution (τ=0, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 84.44 ± 0.05 29.67 ± 0.47
✗ 55.31 ± 0.27 49.67 ± 0.47

Random distribution (τ=40, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 84.49 ± 0.05 30.0 ± 0.0
✗ 55.41 ± 0.26 50.0 ± 0.0

Random distribution (τ=120, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 84.48 ± 0.1 29.67 ± 0.47
✗ 55.4 ± 0.16 50.0 ± 0.0

Random distribution (τ=700, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 84.27 ± 0.25 29.67 ± 0.47
✗ 55.08 ± 0.18 49.67 ± 0.47

Random distribution (τ=4000, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 83.98 ± 0.32 30.0 ± 0.0
✗ 53.07 ± 1.23 50.0 ± 0.0

Uniform distribution (γ=139, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 77.7 30.0
✗ 52.67 50.0

Uniform distribution (γ=159, 48 clients)
Pretraining Test F1 (%) Rounds

✓ 79.86 30.0
✗ 54.0 50.0

Uniform distribution (γ=180, 42 clients)
Pretraining Test F1 (%) Rounds

✓ 82.05 30.0
✗ 55.72 50.0

Uniform distribution (γ=209, 36 clients)
Pretraining Test F1 (%) Rounds

✓ 83.43 29.0
✗ 57.38 50.0

Uniform distribution (γ=252, 30 clients)
Pretraining Test F1 (%) Rounds

✓ 84.61 30.0
✗ 60.26 50.0

Uniform distribution (γ=321, 24 clients)
Pretraining Test F1 (%) Rounds

✓ 83.99 29.0
✗ 63.2 50.0

Uniform distribution (γ=420, 18 clients)
Pretraining Test F1 (%) Rounds

✓ 85.16 29.0
✗ 65.22 48.0

Uniform distribution (γ=630, 12 clients)
Pretraining Test F1 (%) Rounds

✓ 84.79 23.0
✗ 67.61 45.0

Uniform distribution (γ=1300, 6 clients)
Pretraining Test F1 (%) Rounds

✓ 84.49 16.0
✗ 66.14 28.0

Table 10: Results of all experiments on OntoNotes dataset after model selection on the best server test loss.
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F.3 Gigaword

Centralized learning
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Epochs

✓ 34.57 ± 0.66 15.92 ± 0.36 32.35 ± 0.59 3.0 ± 1.41
✗ 6.07 ± 0.51 0.36 ± 0.08 5.86 ± 0.5 3.0 ± 1.63

Random distribution (τ=0, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 32.48 ± 0.22 14.28 ± 0.02 30.61 ± 0.19 10.0 ± 0.0
✗ 2.89 ± 0.56 0.05 ± 0.02 2.89 ± 0.54 15.0 ± 0.0

Random distribution (τ=18, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 34.72 ± 0.25 15.57 ± 0.08 32.25 ± 0.16 10.0 ± 0.0
✗ 1.87 ± 0.3 0.01 ± 0.01 1.83 ± 0.33 14.33 ± 0.94

Random distribution (τ=34, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 34.46 ± 0.54 15.48 ± 0.22 32.07 ± 0.36 10.0 ± 0.0
✗ 2.0 ± 0.3 0.03 ± 0.01 1.96 ± 0.32 14.33 ± 0.94

Random distribution (τ=126, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 32.86 ± 0.97 14.45 ± 0.61 30.88 ± 0.82 10.0 ± 0.0
✗ 1.54 ± 0.24 0.02 ± 0.01 1.51 ± 0.26 14.33 ± 0.47

Random distribution (τ=750, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 32.8 ± 1.73 14.54 ± 0.91 30.9 ± 1.39 8.33 ± 1.7
✗ 3.29 ± 1.74 0.01 ± 0.01 3.22 ± 1.68 13.67 ± 1.89

Random distribution (τ=1200, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 34.17 ± 0.38 15.41 ± 0.23 32.09 ± 0.26 9.33 ± 0.47
✗ 4.71 ± 0.98 0.0 ± 0.0 4.67 ± 0.97 11.33 ± 1.25

Uniform distribution (γ=20, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 33.05 14.56 31.04 10.0
✗ 2.41 0.0 2.4 15.0

Uniform distribution (γ=22, 57 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 33.36 14.89 31.35 10.0
✗ 1.58 0.04 1.56 15.0

Uniform distribution (γ=26, 49 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 33.68 15.03 31.66 10.0
✗ 2.07 0.0 2.09 15.0

Uniform distribution (γ=30, 42 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 34.44 15.43 32.32 10.0
✗ 2.06 0.0 2.06 15.0

Uniform distribution (γ=36, 35 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.09 15.88 32.68 10.0
✗ 2.18 0.0 2.17 15.0

Uniform distribution (γ=45, 28 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.48 16.19 33.13 10.0
✗ 5.59 0.11 5.38 15.0

Uniform distribution (γ=60, 21 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.39 16.38 33.11 10.0
✗ 6.44 0.17 6.23 15.0

Uniform distribution (γ=90, 14 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.43 16.32 33.15 10.0
✗ 2.73 0.1 2.69 15.0

Uniform distribution (γ=180, 7 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.8 15.99 33.2 10.0
✗ 10.68 1.65 10.2 15.0

Table 11: Results of all experiments on Gigaword dataset after model selection on the best server test loss.
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Abstract

Propaganda aims to persuade an audience by
appealing to emotions and using faulty reason-
ing, with the purpose of promoting a particular
point of view. Similarly, metaphor modifies the
semantic frame, thus eliciting a response that
can be used to tune up or down the emotional
volume of the message. Given the close rela-
tionship between them, we hypothesize that,
when modeling them computationally, it can
be beneficial to do so jointly. In particular, we
perform multi-task learning with propaganda
identification as the main task and metaphor de-
tection as an auxiliary task. To the best of our
knowledge, this is the first work that models
metaphor and propaganda together. We exper-
iment with two datasets for identifying propa-
ganda techniques in news articles and in memes
shared on social media. We find that leveraging
metaphor improves model performance, partic-
ularly for the two most common propaganda
techniques: loaded language and name-calling.

1 Introduction

Propaganda aims to influence an audience. It is a
type of information that, whether true or false, tries
to promote a particular agenda (Cantril, 1938) by
appealing to emotions or by using faulty reason-
ing (Miller, 1939). Although this communication
strategy comes in many forms, it is conveyed us-
ing specific persuasion techniques that exploit our
psychology to sell us an idea or a point of view
(Da San Martino et al., 2019b). In Figure 1, we can
see an example of such techniques used in a meme
shared on social media.

Another rhetorical device at the heart of many
successful communication strategies is metaphor.
Postulated as a primordial mechanism to conceptu-
alize what we think and experience (Lakoff, 1980),
metaphor works by mapping a concept in one do-
main (often a physical domain) to another domain
(usually an abstract one) by means of a systematic

Figure 1: Meme containing propagandistic techniques
(Dimitrov et al., 2021). These techniques are high-
lighted with bounding boxes for illustration purposes.

association. For instance, the term “paper bullets”1

connects the domains of information and war, illus-
trating the weaponization of information.

In the same way that propaganda can exploit
automatic shortcuts our brain uses to process infor-
mation (e.g., stereotypes) (Tversky and Kahneman,
1974), metaphors can affect how we reason about a
particular situation or issue by evoking a different
semantic frame (Fillmore et al., 2006). Research
shows that characterizing crime as a beast deliv-
ered more punishment-oriented strategies to fight
crime (Thibodeau and Boroditsky, 2011). Con-

1The metaphor “paper bullets” was used during World
War II, where the Germans used tactical aircrafts to drop anti-
Semitic leaflets over American troops (Margolin, 1946) as a
way of psychological warfare.
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versely, referring to crime as a virus gathered a
more significant number of preventive measures
to cure it. As a persuasive device, framing has
successfully been used in politics (Howe, 1988;
Ana, 1999; Lakoff, 2009) to shift the public opin-
ion about a particular topic. Moreover, the use of
metaphors by politicians in their posts on social
media increases engagement with their electorate
(Prabhakaran et al., 2021).

Some propagandist techniques and metaphors
can exhibit a similar intention by the author. For
instance, the most common technique is the use
of loaded language to increase the emotional re-
sponse of the audience (e.g., “... disastrous [nuclear
deal]”). Likewise, metaphor can also elicit an emo-
tionally charged reaction (Mohammad et al., 2016).
The following example combines both: “the ru-
inous reforms”. Similarly, name-calling connects
the object of the propaganda campaign with terms
the target audience sees positively or negatively
(Miller, 1939). This technique seeks a love or hate
emotional response, and it could also alter the se-
mantic frame (e.g., “Crooked Hillary” or “Deep
State officials”).

Other salient examples where different pro-
pagandist techniques employ metaphor can be
found in the Propaganda Techniques Corpus (PTC)
(Da San Martino et al., 2019b), including exagger-
ation (“a tsunami of lies and smear”), appeal to
fear (“[bubonic plague in Madagascar] could even
spill over into neighboring countries and beyond”),
doubt (“Why is the U.S. singling out Iran ...”) and
flag-waving (“it is time to take our government
back ...”), among others.

We explore how metaphor detection can aid pro-
paganda technique classification under the multi-
task learning paradigm. Computational modeling
for propaganda detection was initially studied as
a document-level classification task in news arti-
cles (Rashkin et al., 2017; Barrón-Cedeño et al.,
2019; Martino et al., 2020). More recently, anno-
tation efforts produced datasets that identify the
text spans where particular forms of propaganda
are used. Our work builds upon the most extensive
corpus of fragment-level propaganda techniques to
date (Da San Martino et al., 2019b) and on shared
task 6 from SemEval-2021 (Dimitrov et al., 2021)
to identify persuasive techniques in both news arti-
cles and internet memes, respectively. We analyze
how a multi-task learning approach that leverages
metaphor detection can improve results in propa-

ganda identification.
To our knowledge, this is the first study of the

role of metaphor in computational propaganda iden-
tification. We produce the first models that combine
the two phenomena and analyze their predictive ca-
pability, both quantitatively and qualitatively.

Our findings show that metaphor detection can
increase performance for certain types of propa-
ganda. We see improvements across multiple tasks
covering both datasets. The gains are more pro-
nounced for name-calling, with significant results
for the news domain. Furthermore, our models’
predictions suggest that propagandist content uses
figurative language more extensively than non-
propagandist text.

2 Related work

2.1 Metaphor detection

NLP applications need to distinguish the partic-
ular intent that metaphor plays in context (Veale
et al., 2016). Metaphor detection research has stud-
ied various approaches: hand-crafted features and
word classes (Beigman Klebanov et al., 2016), con-
creteness and imageability word ratings (Broad-
well et al., 2013; Turney et al., 2011), seman-
tic classification making use of lexical databases
(e.g., WordNet, VerbNet, ConceptNet) (Wilks et al.,
2013; Neuman et al., 2013; Mohler et al., 2013;
Tsvetkov et al., 2013), distributional semantic mod-
els (Gutierrez et al., 2016; Bulat et al., 2017; Hovy
et al., 2013), and even visual (Shutova et al., 2016)
or sensorial features (Tekiroglu et al., 2015). More
recently, deep learning methods (Mao et al., 2019;
Dankers et al., 2020; Gao et al., 2018; Rei et al.,
2017; Wu et al., 2018) have been used to detect
metaphors.

Current state-of-the-art textual metaphor detec-
tion is powered by large pre-trained neural network
models (Su et al., 2020; Chen et al., 2020; Gong
et al., 2020; Choi et al., 2021) that have been trained
using datasets of billions of words. These mod-
els can leverage word representations that carry
context-sensitive semantic information. As the lat-
est shared task on metaphor detection highlights
(ACL 2020) (Leong et al., 2020), more than half of
the participants used BERT (Devlin et al., 2019) or
its variants, widely successful pre-trained models
that perform well on downstream tasks.

In addition, metaphor detection has successfully
been used as an auxiliary task in multi-task learning
(MTL) (Caruana, 1993) for emotion classification
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(Dankers et al., 2019), political perspective, affil-
iation, and framing (Huguet Cabot et al., 2020);
and aspect-based sentiment analysis (Mao and Li,
2021), among others. The MTL approach builds on
the idea that the same model can encode valuable
features for different tasks that would help each
other’s performance. As metaphor is extensively
used in everyday language and dramatically influ-
ences the expressiveness of the message, it can help
in a significant number of semantic tasks.

2.2 Propaganda detection
Propaganda is closely related to political bias and
misinformation (colloquially referred to as fake
news) (Guess and Lyons, 2020). This area of re-
search has gained popularity in the last decade due
to concerns regarding the weaponization of social
media and how it can negatively affect political
discourse (Wardle and Derakhshan, 2017). Work
on political bias commonly uses lexicon-based ap-
proaches to detect sentiment on political topics,
while models to expose fake stories usually rely
on publishing patterns and knowledge graphs (Haq
et al., 2020).

However, propaganda does not necessarily have
to be politically driven or rely on untrue or incor-
rect information. While some instances of propa-
ganda usually do (e.g., clickbait) (Martino et al.,
2020), propagandist content varies in accuracy and
the acknowledgment of its sources (Jowett et al.,
2012). In essence, propaganda aims to influence an
audience to exercise a particular agenda (Cantril,
1938) by appealing to emotions or faulty reasoning
(Miller, 1939).

Computational approaches to propaganda detec-
tion are relatively recent and were initially directed
to the document classification of varying sizes,
from news articles to tweets (Barrón-Cedeño et al.,
2019; Rashkin et al., 2017; Volkova et al., 2017).
Proposed models used BERT, LSTM (Hochreiter
and Schmidhuber, 1997), Convolutional Neural
Networks (CNN) (LeCun et al., 1995), and Naive
Bayes models powered by Glove (Pennington et al.,
2014) embeddings. These works rely to different
degrees on the labeling of information sources by
crowd-sourced groups or non-profit organizations
(e.g., MBFC2, PropOrNot3). Unfortunately, this
categorization approach can introduce noise into
the system. Reliable news agencies might occasion-

2https://mediabiasfactcheck.com
3http://www.propornot.com/p/the-list.

html

ally include a propagandist article to fulfill their
interest. Conversely, highly propagandist media
could publish a non-propagandist piece to boost
their credibility.

The latest propaganda detection approaches take
advantage of the rhetorical devices that propaganda
uses to influence reasoning. Although the litera-
ture compiles different accounts of propagandist or
persuasive techniques (Miller, 1939; Shah, 2005;
Abd Kadir and Abu Hasan, 2014), they are mainly
sub-types of the general principles first proposed
in Cantril (1938), which share the aim of connect-
ing an idea or propagandist object to an attitude or
emotion.

The PTC corpus (Da San Martino et al., 2019b)
was the first effort to classify propaganda at a
more granular level. It identifies 18 persuasive
techniques across 451 news articles, making it
the largest of its kind. It annotates the start and
end of each propagandist fragment. This cor-
pus, and a later variant, were used in shared tasks
on propaganda detection (Da San Martino et al.,
2019a, 2020). The best systems used pre-trained
Transformer-based models and ensembles (Yoosuf
and Yang, 2019; Jurkiewicz et al., 2020; Morio
et al., 2020; Chernyavskiy et al., 2020).

More recently, SemEval 2021 Task 6 (Dim-
itrov et al., 2021) has expanded fragment-level
propaganda identification efforts outside the news
corpora. It identifies propaganda techniques in-
grained in the combination of textual and image
data. The task’s dataset consists of 950 internet
memes posted on social media with topics related
to politics, vaccines, COVID-19, and gender equal-
ity. Apart from identifying 20 textual propagan-
dist techniques, it also identifies two that are only
present when in combination with the image. The
most common and best-performing models used
for textual tasks were the transformer-based mod-
els BERT and RoBERTa (Kaczyński and Przybyła,
2021; Gupta et al., 2021).

3 Tasks and datasets

In this work, we examine six tasks for fragment-
level propagandist technique identification. Half of
them use labeled data from news articles, while the
others use textual information from memes shared
on social media. For each domain, we perform
a multi-label classification task — to identify all
propagandist techniques in the dataset — and two
single-label classification tasks to detect the two
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most common persuasive techniques: loaded lan-
guage and name-calling. The single-label tasks
ignore the rest of the labels in the dataset while us-
ing the same textual input as the multi-label tasks.

In addition, MTL models include metaphor de-
tection as an auxiliary task. This task aims to detect
all content words used as metaphors in a given text.

3.1 VUA Metaphor Corpus

We use the data from the ACL 2020 shared task on
metaphor detection (Leong et al., 2020). Specif-
ically, the all-POS subtask that identifies which
content words (i.e., nouns, verbs, adjectives, and
adverbs) are used in their metaphorical sense. The
data for the task comes from the VU Amsterdam
Metaphor Corpus, (Steen et al., 2010) which con-
tains annotations for all words in 117 texts from the
British National Corpus (Clear, 1993) and across
four different registers: academic text, conversa-
tion, fiction, and news. The dataset covers 190K
lexical units over 16,189 sentences with a train/test
split of 12,109 and 4,080 sentences. The preva-
lence of metaphorical use for content words is 6.8%
for the training set and 7.7% for the test set. We
randomly sample 10% of the training split for vali-
dation.

3.2 Propaganda Techniques Corpus

The PTC corpus (Da San Martino et al., 2019b)
identifies 18 propaganda techniques across 451 ar-
ticles (350K tokens) from 49 news outlets. The
annotations were produced by separate teams of
annotators and merged through a consolidation pro-
cess where all disagreements were discussed before
becoming part of the final version. Each annota-
tion identifies the technique used and its start and
end within the news article. The dataset contains
20,339 sentences split into training, validation, and
test sets with 14,263, 2,034, and 4,042 sentences,
respectively.

The number of instances per technique and its
length varies widely. The most common classes
are loaded language with 2,547 occurrences and
name-calling with 1,294. Those techniques have
been used an average of 6.7 and 4.7 times per arti-
cle, whereas all others appear a maximum of twice
per article. We evaluated these two techniques sep-
arately as they provide a larger number of positive
examples and can relate to metaphor as described in
Section 1. Details on the number of annotations per
split and their average length are shown in Table 1.

Dataset #Annotations Length
Prop. technique Total Train Val Test Avg. ± SD

News
Loaded language 2,547 1,811 304 432 23.70 ± 25.30
Name-calling 1,294 931 154 209 26.10 ± 19.88
All combined 7,480 5,114 927 1,439 46.99 ± 61.45

Memes
Loaded language 761 543 68 150 14.87 ± 18.17
Name-calling 408 301 37 70 17.00 ± 11.65
All combined 2,083 1,498 182 403 40.43 ± 48.91

Table 1: Statistics on propaganda technique annotations
and their average length in characters.

3.3 Propaganda detection in memes

SemEval-2021 Task 6 (Dimitrov et al., 2021) aims
to identify the propagandist technique used in
memes shared on social media. The images were
collected from 26 public Facebook groups, which
provided memes on the following topics: politics,
COVID-19, pro-vaccines, anti-vaccines, and gen-
der equality. The annotation process involved a
heterogeneous group of annotators and a consoli-
dation step. The text of the images was retrieved
automatically using Google Vision API4 and manu-
ally corrected afterward. We focus on subtask two,
which only uses the textual data of the meme to
predict where in the text a particular technique is
present.

The dataset contains 951 examples (16,840 to-
kens) divided into 688, 63, and 200 samples for
train, validation, and test splits. The average num-
ber of sentences per meme is 1.68, with a maxi-
mum of 13 sentences in one image alone. Again,
the most common techniques are loaded language
with 761 annotations (36.5%) and name-calling
408 occurrences (19.6%) from 2,083 propagandist
fragments.

We provide a summary of the textual persua-
sion techniques in the Appendix Section A.1 and
examples in the Appendix Table 12.

4 Methods

4.1 Models

We employ the pre-trained ROBERTA-BASE

model (Liu et al., 2019). ROBERTA shares its
architecture with its counterpart BERT (Devlin
et al., 2019), but it improves performance across
many tasks due to its highly optimized training and
the use of ten times more data.

4http://cloud.google.com/vision
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ROBERTA tokenizes inputs using byte-pair en-
codings (Sennrich et al., 2016) and computes con-
textualised embeddings for these input tokens. We
add task-specific classifiers on top of ROBERTA,
consisting of a linear layer followed by the sigmoid
activation function. During inference, tokens with
predicted targets over 0.5 are assigned to the class
corresponding to the classifier. We fine-tune all
of the model parameters in our respective tasks.
Since the datasets provide labels at the word level,
we aggregate predictions for words consisting of
multiple tokens. If the model predicts any token to
belong to a particular class, we assign the label to
the whole word.

4.2 Single-task learning
Our main task is to detect the text span of each pro-
paganda technique from news articles and memes.
When solely training the model on a propaganda
task, we refer to this as single-task learning (STL).
The standard propaganda task as introduced in Sec-
tion 3 is multi label. Since propagandist fragments
can overlap, we perform multi-label classification
by predicting the presence of each technique inde-
pendently at each token, using separate task classi-
fiers per technique as described in Section 4.1.

In addition to the multi-label propaganda tech-
nique identification, we generate two single-label
tasks targeting the most frequent persuasion tech-
niques (i.e., loaded language and name-calling).
Both techniques share common aspects with
metaphor discussed in Section 1, making them par-
ticularly interesting for experimentation.

4.3 Multi-task learning
In the MTL setup, we train the model jointly on two
tasks: one of the propaganda identification tasks
and the metaphor detection task. Similar to the STL
setup, we do this both for single-label and multi-
label classification. As the model learns to iden-
tify metaphors, we hypothesize that the metaphor-
related features benefit the propaganda technique
identification.

We extend the STL models with an additional
classifier to predict metaphor as the auxiliary task.
All tasks share the pre-trained model (ROBERTA)
in a hard parameter sharing fashion. For fine-
tuning, we reuse the best configuration from the
single-task models to facilitate comparison be-
tween the two strategies. We experiment with
different MTL regimes attending to the following
hyper-parameters:

• Task sampling ratios (ra, rm): these ratios
are used to select a task at each update step
during training. With a probability of pm =
rm/(ra + rm) the main task is selected, and
with pa = ra/(ra + rm) the auxiliary task is
selected.

• Epoch sampling coefficients (ca, cm): these
coefficients are used to update the sampling
ratios at every epoch. At epoch n, rmn =
rmn−1 × cm, and , ran = ran−1 × ca.

• Loss scaling factors (sa, sm): these hyper-
parameters are used to scale the losses for
the main task (sm) and the auxiliary task (sa).

Although the MTL models have access to more
data, as they are trained on two datasets, we limit
their computational budget to match the one avail-
able for STL models. Every epoch, the model is
trained in iterations, where the number of iterations
is the same as for the STL model. Each iteration
randomly selects a task for training according to its
sampling probability p. We shuffle all examples in
the training set at the start and after exhaustion of
the training split. We fill each batch with samples
from the selected task at random without replace-
ment.

5 Experiments and results

5.1 Experimental Setup
In the implementation, we use the PyTorch frame-
work and the pre-trained ROBERTA-BASE5 model
from the transformers library (Wolf et al., 2020).
We trained all models using a maximum sequence
length of 512 tokens, a weight decay of 0.01, and
the AdamW optimizer (Loshchilov and Hutter,
2017) with a 10% warm-up period and a cosine-
based learning rate decay function. All hyper-
parameter search trials and the selected configu-
rations for each task are listed in Appendix Table
11. We use the binary cross-entropy loss with mod-
ified class weights to account for class imbalances.
Hyper-parameter search trials are performed over
five different random seeds that dictate the order
of data presentation and the initialisation of the
task-specific classifiers. For the final configuration,
performance is computed over ten different random
seeds.

To ensure that the MTL models do capture mean-
ingful features for metaphor identification – in spite

5https://huggingface.co/roberta-base
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of it being the auxiliary task – we discard hyper-
parameter combinations with a median F1-score
below 0.6 for metaphor identification, asserting the
models exceed the baseline level set out by base-
lines one and two of Leong et al. (2020).

We evaluate the performance of propaganda de-
tection based on the micro-averaged F1 score us-
ing precision (P) and recall (R) metrics defined in
Da San Martino et al. (2019b). These metrics give
partial credit to imperfect matches to account for
overlap between techniques and the significant vari-
ation in length between propagandistic fragments.
We provide details of these calculations in the Ap-
pendix A.2. We use statistical bootstrapping (Efron,
1979) to test the significance of our results and de-
tail the procedure in Appendix A.3. We detail the
system and configurations used for this work in
Appendix A.4 for reproducibility.

5.2 Results

5.2.1 Single-label propaganda technique
detection

Table 2 shows the performance for single-label pro-
paganda detection tasks. The MTL approach im-
proves results for all single-label tasks. Adding
metaphor increases performance in news articles by
1.02 points for name-calling, from 28.72 to 29.74.
This growth is statistically significant under the
paired bootstrap test between learning strategies.
The improvement is milder for loaded language,
with a gain of 0.22 points, although results were
more stable, almost halving the standard deviation
for the metric.

We observe similar results in the memes dataset.
Detection of name-calling improves the F1 met-
ric by 1.24 points to 57.77 when training with
metaphor as an auxiliary task. This increase is
also more stable, lowering the standard deviation
from 2.44 to 1.26. Loaded language improvements
are smaller, adding 0.34 points to a total of 65.5
with lower variability.

5.2.2 Multi-label propaganda technique
detection

Table 3 shows the results for the multi-label propa-
ganda identification task in the news dataset. We
compare our models to previous work (Da San Mar-
tino et al., 2019b) and achieve better results using
a similar pre-trained model with the same number
of parameters. The multi-task models obtained the
best overall performance with an F1 of 24.32 and

Loaded Language Name Calling
Model P R F1 P R F1

News
STL 32.67 48.04 38.72 ± 1.00 24.48 35.25 28.72 ± 1.14
MTL 33.60 46.88 38.94 ± 0.51 26.30 35.35 29.74 ± 1.64

Memes
STL 68.88 62.21 65.16 ± 2.16 52.39 61.70 56.53 ± 2.44
MTL 66.29 64.90 65.50 ± 1.62 59.03 57.13 57.77 ± 1.26

Table 2: Propaganda detection performance for single-
label models. Statistically significant differences be-
tween STL and MTL are underlined (p < 0.05).

Model P R F1

Da San Martino et al. (2019b) 24.42 21.05 22.58

Multi-label STL 20.37 30.42 23.78 ± 2.03
Multi-label MTL 21.98 27.46 24.32 ± 0.48

Table 3: Propaganda technique identification results in
news articles. The highest performance per model type
is shown in bold. Underlined values denote statistical
significance (p< 0.05) via paired bootstrap test between
single-task and multi-task models.

a standard deviation of 0.48. The single-task mod-
els averaged 23.78 F1 score with a much higher
variation (σ = 2.03).

Results for multi-label propaganda detection in
memes are shown in Table 4. State-of-the-art per-
formance for the task reaches an F1 score of 47.6,
(Gupta et al., 2021) but it uses a model with 340M
parameters. This model is three times larger than
the ones we used (110M parameters). Comparing
performance across same-size models, we see that
our STL model performs best with an average F1
score of 46.22 and a standard deviation of 1.82. In
contrast, the multi-task model achieves 44.81±1.31.
Both models outperform the value of 43.9±0.9 re-
ported in Gupta et al. (2021).

In the Appendix, Tables 8 and 9 show the perfor-
mance of multi-label models for all techniques in
the news and memes datasets, respectively.

6 Analysis and discussion

Given the shared traits between the use of metaphor
and specific propagandist techniques, we hypoth-
esized that it can be beneficial to model them
jointly. We split the analysis into two subsections
discussing quantitative and qualitative aspects.

6.1 Quantitative analysis

The results show improvements across most pro-
paganda detection tasks when trained in a multi-
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Model P R F1

Volta (RoBERTa-Large) - - 47.6 ± 1.5

Volta (RoBERTa-Base) - - 43.9 ± 0.9
Multi-label STL 46.02 46.51 46.22 ± 1.82
Multi-label MTL 42.62 47.82 44.81 ± 1.31

Table 4: Propaganda technique identification results in
memes. We include the winning team for the shared
task: Volta Gupta et al. (2021). The highest performance
per model type is shown in bold. Underlined values de-
note statistical significance (p < 0.05) via paired boot-
strap test between single-task and multi-task models.

task setting with metaphor as the auxiliary task.
We hypothesised metaphor detection would benefit
the single-label tasks, due to the use of a different
semantic frame in name-calling and emotionally
charged vocabulary in loaded language. Improve-
ments were more pronounced for name-calling in
both datasets, which suggests that, as anticipated,
metaphorical framing plays a role in this propa-
ganda technique. The fact that the gain in F1-score
is the largest for name calling in both datasets fur-
ther strengths this conclusion.

To further consolidate the relationship between
proganda and metaphor our models identify, we
investigate the prevalence of metaphors’ predic-
tions in propagandistic text fragments. We use our
MTL models to predict metaphors on the propa-
ganda corpora, and observe a higher percentage of
metaphors in propagandist fragments than for non-
propagandist content, and even higher for loaded
language and name-calling. This is shown in the
Appendix, in Figures 2 and 3. These model pre-
dictions hint at the likelihood that propagandist
content, and some techniques in particular, may re-
sort to metaphor more often than non-propagandist
text does. Manual annotation of metaphors in pro-
paganda datasets will allow asserting this with cer-
tainty, yet, we leave this for future work.

Although a slight improvement in task perfor-
mance was observed for multi-label propaganda
identification in the news dataset, this was not the
case for the memes task. This task was the only one
for which the MTL strategy was not superior. The
memes dataset is 20 times smaller than the news
dataset and includes two more labels. These chal-
lenges of size and sparsity could play a role in the
utility of the MTL architecture, particularly when
imposing on it the best hyper-parameters from the
single-task models. We did this to facilitate the

comparison between models, but we risk ending
up with a configuration especially harmful to the
MTL approach. Further experimentation is needed
to investigate this drop in performance.

6.2 Qualitative analysis

To validate the effect of metaphor for the tasks,
we pooled the predictions for all ten models of the
same type trained with different seeds. We use
simple majority voting to harmonize predictions
across the different runs. Next, we identify the
difference in the predicted spans between single-
task and multi-task models. We include gold labels
and the predicted metaphors by multi-task models
for analysis. Examples of models’ predictions for
news articles and memes are shown in Table 5.

MTL models can detect figurative language,
which contributes to detecting propaganda tech-
niques that use this device. Idioms such as “throw
out the window” (ref. LL.N.1) and “kick the can
down the road” (ref. LL.N.2) are correctly iden-
tified, albeit partially, as loaded language in the
context of the news article. This is also the case
for the metaphorical use of the word “dinosaurs”,
present in an example of name-calling, to convey
the point of view that current social media plat-
forms will go extinct (ref. NC.N.1).

Other instances of non-literal meaning deliver in-
correct predictions. However, we believe that some
of those instances could be considered correct. In
the case of name-calling, the models detect “poor
sport” (ref. NC.N.2), which is alluding to a de-
feated candidate in an electoral race. Similarly, the
phrase “you can throw us in jail, but you will never
defeat us” (ref. LL.N.3) signals defiance with a
considerable degree of emotion which borderlines
the loaded language category.

Conversely, the label hardworking used in “hard-
working Georgians” (ref. NC.N.3) cannot be at-
tributed to name-calling as it does not refer to the
propagandist target of the article: Georgia guber-
natorial candidate Stacy Abrams. This mislabeled
example highlights the task’s difficulty and need
for a broader context. Our models received individ-
ual sentences for training and inference, which is
insufficient in this instance to identify the object of
the propaganda campaign.

Looking at predictions on the memes dataset, we
observe that the gains in name-calling for multi-
task models were driven primarily by minimizing
incorrect predictions. The examples NC.M.1 and
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PT Reference Text fragments
N

am
e-

ca
lli

ng

NC.News.1 ... we will rise from the ashes of the social
MTL

media dinosaurs to help build and create new platforms ...

NC.News.2 Talk about a
MTL

poor sport , but Democrats are often like that in these races.

NC.News.3 “The election is over and
MTL

hardworking Georgians are ready to move forward,” he said.

NC.Memes.1 HOLD UP!!!
MTL

Sleepy Joe broke my record?!?!?!?

NC.Memes.2 ... the most corrupt, lying and despised member
MTL

of Congress and the WORST Speaker of the house ...

NC.Memes.3 So Don King and
STL

Beetlejuice had a baby...

NC.Memes.4 WARNING SIGNS OF A
STL

CULT // ...

NC.Memes.5 ATTENTION
STL

PATRIOTS // MEET YOUR
STL

CIVIL WAR OPPONENTS

L
oa

de
d

L
an

gu
ag

e

LL.News.1 Political correctness needs to be
MTL

thrown out the window when dealing with those who...

LL.News.2 In other words, let’s just
MTL

kick the can down
MTL

the road and hope for a more reasonable Iranian regime ...

LL.News.3 You can throw us in jail , but
MTL

you will never defeat us .

LL.Memes.1 WHEN TRUMP IS REELECTED THERE WILL BE
MTL

BLOOD !

LL.Memes.2 WE ARE AT
MTL

WAR !

LL.Memes.3
MTL

FAKE WINNER

LL.Memes.4 ... UNDERCOVER FEDS DOCUMENTING THE FRAUD AND THEY’VE STEPPED INTO A
MTL

TRAP

Table 5: Example predictions of propaganda techniques. Gold labels in yellow, predictions in blue, and their
intersection in green. The underline style identifies predictions only produced by one learning strategy. Predicted
metaphors from MTL models are shown in bold.

NC.M.2 were the only ones containing prediction
spans singular to the multi-task models. Both in-
stances correctly label parts of the text that do not
include predicted metaphors, although they contain
metaphors in their vicinity. In contrast, the single-
task models produced more mislabels on nouns
or noun phrases, see examples NC.M.3, NC.M.4
and NC.M.5. With respect to loaded language, we
observe metaphor predictions falling equally into
correct and incorrect spans, see examples LL.M.1,
LL.M.2, LL.M.3, LL.M.4.

7 Conclusion and Future Work

In this work, we explored the influence of metaphor
detection on propaganda technique identification
in a multi-task learning setup. Joint modelling of
metaphor and propaganda was performed using two
propaganda datasets from different domains: news
articles and internet memes. We experimented with
six different propaganda detection tasks, includ-
ing multi-label propaganda technique identification
and single-label tasks for the two most common
propagandist techniques: name-calling and loaded

language, for each dataset. Incorporating metaphor
detection yielded performance improvements in
five of the six tasks considered, with the highest
improvements observed for the name-calling tech-
nique. Moreover, the different datasets showed
similar patterns in performance changes. We sup-
plemented the task performance results with an
analysis of the prevalence of metaphor in the propa-
ganda corpora and qualitatively examined a range
of examples of metaphorical language use in pro-
pagandist fragments. We are the first to investigate
the interaction of these two phenomena and our
promising results encourage further research in this
direction.

In future work, we plan to extend our analysis
to other propaganda techniques. In view of the
emergence of datasets for other languages, such as
an the Arabic propaganda detection shared task at
WANLP’2022 and the multilingual SemEval-2023
task 3 subtask 3 on propagada detection in English,
French, German, Italian, Polish, and Russian, we
plan future multi/cross-lingual experiments.
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Limitations

Although we established a positive influence of
metaphor detection on propaganda technique iden-
tification, our work also has some limitations. (1)
Considering that this work focused on the two most
common propagandist techniques, future work
could extend this analysis to cover others, although
we should note that these analyses are limited by
a data scarcity issue (in particular in the memes
dataset). (2) While we considered six tasks, these
tasks used one MTL architecture. Previous work
has experimented with more advanced MTL meth-
ods (e.g., soft parameter sharing) and in the future,
these methods could also benefit joint learning of
metaphor and propaganda. (3) Finally, it should
be emphasised that both types of propaganda em-
ployed and the types of figurative language used
are very specific to cultures and languages. As
such, the techniques applied in this study might not
deliver the same effect when using data from differ-
ent geographical locations, or data from languages
other than English. Moreover, the prevalence of
metaphor varies across different propagandist tech-
niques, meaning that not every propaganda-related
task will benefit from joint learning with metaphor.

Ethics and Broader Impact

Intended Use and Misuse Potential Our mod-
els can be of interest to the general public, fact-
checkers, and journalists. However, they could also
be misused by malicious actors. We, therefore, ask
researchers to exercise caution.

Environmental Impact We would like to warn
that the use of large language models requires a
lot of computations and the use of GPUs/TPUs
for training, which contributes to global warming
(Strubell et al., 2019). This is a bit less of an issue
in our case, as we do not train such models from
scratch, we just fine-tune them.
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A Appendix

A.1 Persuasion techniques

The following list compiles the descriptions of
propaganda techniques present in the PTC corpus
(Da San Martino et al., 2019b) and the dataset used
by SemEval-2021 task 6 (Dimitrov et al., 2021).

1. Appeal to authority: stating the validity of
a claim because an expert or authority has
issued it without providing any other evidence.
The datasets include Testimonials as part of
this technique, although they might not refer
to an expert or authority.

2. Appeal to fear/prejudice: building support for
an idea by provoking anxiety/panic to the al-
ternative. In some instances, it leverages prej-
udices to obtain the desired response.

3. Bandwagon: invites the target audience to sup-
port an idea or action with the pretext that
"everyone is doing the same".

4. Black-and-white Fallacy (Dictatorship): in-
troduces two alternatives as the only possible
options to weaken or strengthen one of them.
In the extreme, it morphs into dictatorship
when the choice is made for the audience, and
all other options are considered impossible.

5. Causal Oversimplification: assuming a sin-
gle cause for an issue when there might be
many factors at play in reality. The data also
includes scapegoating in this category - mov-
ing the blame to a person or group without
considering the issue’s complexities.

6. Doubt: questioning the credibility of some-
thing or someone.

7. Exaggeration/Minimisation: representing
something as more extreme/dramatic than it is
or, conversely, downplaying its significance.

8. Flag-waving: rally around a solid national
sentiment to justify an action or idea.

9. Glittering generalities (Virtue) 6: words or
symbols that produce a positive image of the
propagandist object by association with the
preferences of the target audience.

10. Loaded Language: the use of emotionally
charged words to influence an audience. It
often exploits stereotypes and vagueness.

11. Name-calling: referring to the object of the
propagandist campaign with a label that con-
nects the target audience with an emotion, ei-
ther positive (love, praise) or negative (fear,
hate).

12. Obfuscation, Intentional Vagueness, Confu-
sion: deliberately use unclear statements forc-
ing the audience to produce their interpreta-
tion.

13. Red Herring: presenting irrelevant data to di-
vert attention away from the discussed issue.

14. Reductio ad Hitlerum: seek disapproval of a
position by suggesting that it is popular with
a group the target audience hates.

15. Repetition: repeating the same message to
subdue the audience into acceptance.

16. Slogans: brief and memorable motto or phrase
to persuade the audience.

17. Smears 6: effort to damage or question some-
one’s reputation by propounding negative pro-
paganda.

18. Straw Man: misrepresentation of someone’s
position to disprove it leaving the original ar-
gument unaddressed.

19. Thought-terminating cliché: using expres-
sions to prevent critical thinking and mean-
ingful discussions.

20. Whataboutism: replying with a counter-
question or counter-accusation that suggests
the rival is hypocritical concerning their posi-
tion without refuting their argument.

6Only present for propaganda in memes, not for propa-
ganda in the news dataset
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A.2 Evaluation metrics for propaganda

To evaluate the model’s performance in identify-
ing propagandist instances, we follow the meth-
ods used by preceding works. The authors of the
PTC corpus (Da San Martino et al., 2019b) propose
precision and recall metrics based on the overlaps
between the target and predicted spans. These met-
rics are then used to calculate the F1 score for each
technique and all techniques combined.

Should document d be a sequence of charac-
ters, we can represent a propaganda technique span
by t = [ti, ..., tj ] ⊆ d. This ground truth will
be compared against the predicted model outputs
s = [si, ..., sj ]. The labeling function l(x) will
return the propaganda technique associated with
the fragment x. The function δ(la, lb) will return
1 when la equals lb and 0 otherwise. The groups
T and S denote the group of propagandist frag-
ments for gold labels and predictions respectively.
Equation 1 calculates the overlapping number of
character between two spans and divides it by a
given length h.

C(s, t, h) =
|(s ∩ t)|

h
δ(l(s), l(t)) (1)

In turn, Equation 2 reuses C to calculate the pre-
cision metric as the average proportion of correct
prediction spans. Conversely, the Equation 3 de-
fines recall as the average proportion of ground
truth fragments covered by the predicted spans.
Both metrics are similar, but while precision uses
the number and length of the predictions, recall
uses the gold label spans instead.

P (S, T ) =
1

|S|
∑

s∈S,t∈T
C(s, t, |s|) (2)

R(S, T ) =
1

|T |
∑

s∈S,t∈T
C(s, t, |t|) (3)

In contrast, precision and recall metrics for
metaphor are calculated as a binary classification
task at the word level. Only content words are
considered for this task.

A.3 Significance testing

To check the statistical significance of our results,
we use statistical bootstrapping (Efron, 1979). This
powerful non-parametric method is recommended
for evaluation metrics such as precision, recall, and
F-score in NLP tasks (Dror et al., 2018). The main
idea is to assess whether differences in performance

between two models originate from variability in
the data rather than from the superiority of one
model over the other.

First, we create 100 different bootstrap samples
(B1..100) from the test data (T) by sampling with
replacement (i.e., an example can appear multi-
ple times within the same sample while others
might not be present at all). Our examples are
either individual sentences from news articles or
the textual information of a meme, depending on
the dataset used for the task. Each bootstrap sample
has the same size as the test set (|T | = |Bn|∀n ∈
{1, 100}). The premise is that being the test set
a representative sample from all possible data for
the task; we can get a sense of the variability of
the task’s data by comparing performance across
multiple bootstrap samples.

After randomly generating the samples, we per-
formed a paired bootstrap test as suggested in Dror
et al. (2018). We calculate the p-value as the pro-
portion of bootstrap samples where one type of
model outperforms another. Since we use ten dif-
ferent seeds for each setup, comparing results be-
tween single-task and multi-task learning strate-
gies requires calculating the mean across multiple
models’ performances. We start by calculating the
performance of all models of a particular type by
averaging their scores on each bootstrap sample.
We do this for single-task and multi-task models.
Then, we count the number of times one strategy
achieves higher performance than the other. Fi-
nally, we calculate the p-value as the proportion of
samples where that strategy was superior. We use
the standard confidence level of 95% (α = 0.05).

A.4 Reproducibility

We adapted our source code 7 to achieve repro-
ducible results. First, we enabled the use of de-
terministic algorithms in the PyTorch framework.
Next, we manually set the seed for all packages
involved in random number generation. We use
natural numbers for the seeds starting at one and
up to the number of runs for each set of hyper-
parameters tested. Finally, we pined the versions
for all dependencies.

The system we used had the following soft-
ware: Python/3.8.2, GCCcore/9.3.0, CUDA/11.2,
cuDNN/8.2.1.32. Additionally, we assigned
the value ":4096:8" to the environment vari-

7https://github.com/baleato/
paper-bullets
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Duration
Task STL MTL

News
Multi-label 1:31:14 1:31:01
Name Calling 38:53 52:59
Loaded Language 37:06 53:47

Memes
Multi-label 12:38 36:48
Name Calling 6:33 23:59
Loaded Language 15:06 22:36

Table 6: Average training runtime per task. This in-
cludes models discarded in hyper-parameter search tri-
als.

able "CUBLAS_WORKSPACE_CONFIG" as sug-
gested by Nvidia documentation 8 to avoid non-
deterministic behavior. Our models used a single
GeForce 1080Ti GPU for training. The average
training runtime per task is shown in Appendix
Table 6.

A.5 Preprocessing
The PTC dataset used NLTK sentence splitter9 to
break news articles into individual sentences. We
detected duplicates driven primarily by boilerplate
content regarding site functionality (e.g., invitation
to participate in an online poll or request to sub-
scribe to their newsletter). Duplicates were mainly
short sentences that did not include any labels. We
removed these instances from the training set.

We observed that the text in 454 examples (47%
of the data) for the memes dataset was upper-cased.
Since our model is case-sensitive, we true-cased
all instances to minimize the number of out-of-
vocabulary words by the tokenizer.

8https://docs.nvidia.com/cuda/cublas/
index.html

9https://www.nltk.org/api/nltk.
tokenize.html#module-nltk.tokenize.punkt

Non-Propagandist Propagandist (all) Loaded language Name-calling
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Figure 2: Percentages of metaphorical open-class words
predicted by multi-label MTL models in news articles
(test set).
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Figure 3: Percentages of metaphorical open-class words
as predicted by multi-label MTL models in social
memes (test set).

Model F1 score

Multi-label (news) 66.77 ± 0.61
Name Calling (news) 62.95 ± 2.05
Loaded Language (news) 61.42 ± 1.64
Multi-label (memes) 64.09 ± 4.63
Name Calling (memes) 56.23 ± 4.68*
Loaded Language (memes) 63.05 ± 5.73

Table 7: Metaphor F1 score performance for multi-task
models. *The first five runs had a median of 60.79;
however, adding five extra seeds brought it down to
56.23.
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Model / Propagandist Technique P R F1

Single-task learning
- Appeal to Authority 7.58 1.14 1.67 ± 0.80
- Appeal to fear-prejudice 23.66 26.87 24.02 ± 2.67
- Bandwagon 0.00 0.00 0.00 ± 0.00
- Black-and-White Fallacy 8.16 14.97 10.20 ± 2.48
- Causal Oversimplification 4.11 8.02 5.14 ± 1.91
- Doubt 7.02 20.89 10.01 ± 1.42
- Exaggeration, Minimisation 18.16 24.25 20.16 ± 2.12
- Flag-Waving 31.66 49.44 37.83 ± 3.44
- Loaded Language 28.26 47.64 34.79 ± 3.16
- Name Calling 23.74 37.70 28.58 ± 1.63
- Obfuscation, Vagueness, Confusion 0.00 0.00 0.00 ± 0.00
- Red Herring 2.26 1.33 1.65 ± 3.32
- Reductio ad hitlerum 16.81 17.73 15.88 ± 4.26
- Repetition 9.82 6.75 7.23 ± 1.76
- Slogans 31.20 32.68 31.42 ± 1.95
- Straw Men 0.00 0.00 0.00 ± 0.00
- Thought-terminating Cliches 3.82 11.07 5.36 ± 2.69
- Whataboutism 13.42 4.73 5.56 ± 3.67
Multi-task learning
- Appeal to Authority 5.57 0.95 1.50 ± 1.02
- Appeal to fear-prejudice 24.58 24.71 24.44 ± 2.13
- Bandwagon 0.00 0.00 0.00 ± 0.00
- Black-and-White Fallacy 9.05 11.47 9.72 ± 3.44
- Causal Oversimplification 5.39 8.42 6.35 ± 1.88
- Doubt 7.88 15.46 10.31 ± 1.16
- Exaggeration, Minimisation 19.82 21.13 20.29 ± 1.06
- Flag-Waving 34.16 46.40 39.16 ± 1.76
- Loaded Language 29.51 43.40 34.96 ± 0.95
- Name Calling 25.73 34.44 29.36 ± 1.52
- Obfuscation, Vagueness, Confusion 0.00 0.00 0.00 ± 0.00
- Red Herring 1.61 2.00 1.59 ± 2.77
- Reductio ad hitlerum 11.78 16.85 13.59 ± 3.71
- Repetition 10.03 4.54 6.12 ± 1.98
- Slogans 35.35 31.94 32.74 ± 5.45
- Straw Men 0.00 0.00 0.00 ± 0.00
- Thought-terminating Cliches 6.18 13.57 8.32 ± 3.72
- Whataboutism 12.12 3.99 5.89 ± 3.62

Table 8: Performance on propaganda technique identifi-
cation in news articles by multi-label models on every
technique. The highest performance for each metric is
in bold.

Model / Propagandist Technique P R F1

Single-task learning
- Appeal to authority 61.76 45.29 49.67 ± 9.13
- Appeal to fear/prejudice 16.17 6.82 9.05 ± 7.45
- Bandwagon 0.00 0.00 0.00 ± 0.00
- Black-and-white Fallacy 67.70 30.70 41.55 ± 4.01
- Causal Oversimplification 12.20 8.70 8.61 ± 7.63
- Doubt 45.90 13.95 20.98 ± 6.92
- Exaggeration/Minimisation 44.71 35.90 39.44 ± 3.43
- Flag-waving 52.13 35.18 40.88 ± 8.91
- Glittering generalities (Virtue) 33.83 6.74 9.92 ± 7.09
- Loaded Language 60.48 68.93 64.39 ± 1.95
- Name calling 52.90 55.88 54.21 ± 3.23
- Obfuscation, Vagueness, Confusion 0.00 0.00 0.00 ± 0.00
- Red Herring 0.00 0.00 0.00 ± 0.00
- Reductio ad hitlerum 0.00 0.00 0.00 ± 0.00
- Repetition 0.00 0.00 0.00 ± 0.00
- Slogans 32.74 25.58 27.75 ± 6.00
- Smears 30.57 37.19 33.13 ± 2.43
- Straw Man 0.00 0.00 0.00 ± 0.00
- Thought-terminating cliché 23.33 10.16 13.43 ± 10.76
- Whataboutism 21.69 26.25 22.98 ± 6.57
Multi-task learning
- Appeal to authority 51.53 50.93 49.52 ± 6.90
- Appeal to fear/prejudice 11.81 6.80 7.96 ± 5.79
- Bandwagon 0.00 0.00 0.00 ± 0.00
- Black-and-white Fallacy 42.31 28.17 33.23 ± 5.65
- Causal Oversimplification 13.55 19.10 12.74 ± 7.71
- Doubt 43.46 22.48 28.60 ± 6.31
- Exaggeration/Minimisation 37.45 39.07 37.40 ± 5.86
- Flag-waving 45.99 52.85 48.17 ± 6.56
- Glittering generalities (Virtue) 32.43 11.59 16.07 ± 6.80
- Loaded Language 56.68 68.82 61.51 ± 2.90
- Name calling 52.49 57.49 54.50 ± 1.87
- Obfuscation, Vagueness, Confusion 0.00 0.00 0.00 ± 0.00
- Red Herring 0.00 0.00 0.00 ± 0.00
- Reductio ad hitlerum 0.00 0.00 0.00 ± 0.00
- Repetition 10.42 12.50 11.25 ± 19.65
- Slogans 32.49 27.27 28.87 ± 5.63
- Smears 31.49 34.70 32.28 ± 3.52
- Straw Man 0.00 0.00 0.00 ± 0.00
- Thought-terminating cliché 12.87 5.42 6.72 ± 6.86
- Whataboutism 23.49 25.89 22.49 ± 6.66

Table 9: Performance on propaganda technique identifi-
cation in memes by multi-label models on every tech-
nique. The highest performance for each metric is in
bold.

Dataset / Model P R F1

News
- STL Multi-label 24.92 29.26 26.18 ± 1.87
- MTL Multi-label 26.41 26.59 26.39 ± 0.78
- STL Loaded Language 39.03 50.23 43.80 ± 0.77
- MTL Loaded Language 40.20 48.40 43.70 ± 0.99
- STL Name-Calling 30.32 38.29 33.67 ± 0.88
- MTL Name-Calling 30.96 38.68 34.08 ± 0.62
Memes
- STL Multi-label 57.84 54.83 56.23 ± 0.79
- MTL Multi-label 54.75 56.68 55.59 ± 1.20
- STL Loaded Language 77.13 73.07 74.84 ± 1.67
- MTL Loaded Language 71.89 75.62 73.64 ± 1.77
- STL Name-Calling 71.71 69.33 70.32 ± 1.91
- MTL Name-Calling 74.56 71.66 72.88 ± 1.65

Table 10: Performance on the validation set for propa-
ganda technique identification.
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Task Parameter Values

All

dropout 0.0
LR scheduler cosine
warmup 10%
weight decay 0.01

News - Multi label

batch size 8, 16, 32
learning rate 1e-5, 3e-5, 4e-5, 5e-5
max epochs 35
patience 7
task sampling ratio ∗ (1/6, 5/6), (1/5, 4/5), (1/4, 3/4),

(1/3, 2/3), (1/2, 1/2), (2/3, 1/3)
epoch factor ∗ (0.95, 1.0), (0.96, 1.0), (0.97, 1.0),

(0.98, 1.0), (0.99, 1.0), (1.0, 1.0)

News - Name calling

batch size 16, 32
learning rate 5e-6, 1e-5, 3e-5, 5e-5
task sampling ratio ∗ (1/4, 3/4), (1/3, 2/3), (1/2, 1/2)
epoch factor ∗ (0.99, 1.0), (1.0, 1.0)

News - Loaded language

batch size 16, 32
learning rate 5e-6, 1e-5, 3e-5, 5e-5
task sampling ratio ∗ (1/4, 3/4), (1/3, 2/3), (1/2, 1/2)
epoch factor ∗ (0.99, 1.0), (1.0, 1.0)

Memes - Multi label

batch size 8, 16, 32
learning rate 1e-5, 3e-5, 4e-5, 5e-5
max epochs 150
patience 50
epoch factor ∗ (0.98, 1.0), (0.99, 1.0), (0.995, 1.0)

(1.0, 1.0)
task sampling ratio ∗ (1/4, 3/4), (1/3, 2/3), (1/2, 1/2),

(6/10, 4/10), (7/10, 3/10)
loss scaling ∗ (3/4, 1), (1, 1)

Memes - Name calling

batch size 8, 16, 32
learning rate 1e-5, 3e-5, 4e-5, 5e-5
task sampling ratio ∗ (1/5, 4/5), (1/4, 3/4), (1/3, 2/3),

(1/2, 1/2), (6/10, 4/10)
epoch factor ∗ (0.98, 1), (0.99, 1.0), (0.995, 1)

(1.0, 1.0)
loss scaling ∗ (3/4, 1), (1, 1), (5/4, 1)

(1, 5/4), (1, 3/2)

Memes - Loaded language

batch size 8, 16, 32
learning rate 1e-5, 2e-5, 3e-5, 4e-5, 5e-5
task sampling ratio ∗ (1/5, 4/5), (1/4, 3/4), (1/3, 2/3)

(1/2, 1/2), (6/10, 4/10), (7/10, 3/10)
(4/5, 1/5)

epoch factor ∗ (0.98, 1.0), (0.99, 1.0), (0.995, 1.0)
(1.0, 1.0)

loss scaling ∗ (3/4, 1), (1, 1)

Table 11: Best performance parameters after five runs are in bold. Multi-task parameters are identified with an
asterisk, and their values belong to the auxiliary and main tasks.
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Technique Example

Appeal to authority "... information released by investigative reporter Laura Loomer proves that
authorities have directly lied to the American people about the case at least
once ...

Appeal to fear "... students told her daughter that she was going to hell.
Bandwagon "... the likelihood that this disease will move to other more densely populated

regions of the planet has become a huge concern for many.
Black-and-white Fallacy Either you stand with BDS, Hamas, blood libels and those who want to

destroy Israel or with Jews.
Causal Oversimplification On the other hand, it knows that by seeking continued secrecy, it’s essentially

an implicit acknowledgment of guilt.
Doubt What happened during the 6 minutes between Campos being shot and Paddock

opening fire, and why weren’t the police rushing to the scene immediately?
Exaggeration/Minimisation Whatever definition that one might put on that nebulous term, no reasonable

person can honestly believe that the release of 50-year-old records are going to
result in the United States falling into the ocean or even that the communists
are going to take over the federal government.

Flag-waving "I want to get our soldiers out. I want to bring our soldiers back home," Trump
said.

Glittering generalities "... to show the enormous, enthusiastic crowd in front of him.
Loaded Language On both of their blogs the pair called their bans from entering the UK "a striking

blow against freedom" and said the "the nation that gave the world the Magna
Carta is dead".

Straw Man His opinion is: "Take it seriously, but with a large grain of salt." Which is just
Allen’s more nuanced way of saying: "Don’t believe it."

Name-calling "It’s embarrassing for this so-called land of democracy and freedom of
speech," he said.

Obfuscation Accordingly, he rushed to the defense of Bergoglio and his corrupt regime against
"a radicalization of religious conservatism in the neo-traditionalism sense...

Red Herring "The jury of six men and six women, including three immigrants, found the
Mexican national not guilty ...

Reductio ad Hitlerum Exactly what this "special need" is that can constitute a Gestapo like police
state surveilling its own citizens is a moving target that has already been proven
to be abused over and over again.

Repetition Take notice, Dutch Prime Minister Rutte. Take notice, Mrs. Merkel or President
Macron. Take notice: the future is ours and not yours

Slogans Christianity is Europe’s last hope.
Smears No honor, no integrity, no principles, no morals, ...
Thought-terminating cliché This whole idea of a two-state solution, it doesn’t work.
Whataboutism "They interpreted the law in my case to say it was criminal," Saucier told Fox

News, referring to prosecuting authorities in his case, "but they didn’t prosecute
Hillary Clinton.

Table 12: Examples of persuasion techniques are in bold.
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Abstract

Large neural language models (LLMs) can be
powerful tools for research in lexical semantics.
We illustrate this potential using the English
verb break, which has numerous senses and
appears in a wide range of syntactic frames.
We show that LLMs capture known sense dis-
tinctions and can be used to identify informa-
tive new sense combinations for further analy-
sis. More generally, we argue that LLMs are
aligned with lexical semantic theories in provid-
ing high-dimensional, contextually modulated
representations, but LLMs’ lack of discrete fea-
tures and dependence on usage-based data of-
fer a genuinely new perspective on traditional
problems in lexical semantics.

1 Introduction

Pater (2019) builds a compelling case that linguis-
tic and neural network research have great potential
for common ground and common cause. His case
has only grown stronger in recent years, with the
arrival of large neural language models (LLMs)
that provide semantically rich, contextual represen-
tations (McCann et al., 2017; Peters et al., 2018;
Radford et al., 2018; Devlin et al., 2019).

In this paper, we argue that LLMs are power-
ful devices for studying lexical semantics in ways
that can deeply inform linguistic theory. We illus-
trate this with a detailed case study of the lexical
semantics of the English verb break, building on
a richly annotated dataset from Petersen (2020)
and drawing on methods from prior work in this
area (Camacho-Collados and Pilehvar, 2018; Ten-
ney et al., 2019; Garí Soler et al., 2019; Reif et al.,
2019; Wiedemann et al., 2019; Branco et al., 2020;
Nair et al., 2020; Li and Joanisse, 2021; Loureiro
et al., 2021; Trott and Bergen, 2021; Apidianaki,
2022; McCrae et al., 2022). Break has long been

∗ Data and code available at https://github.com/
epetsen/break-llms.

central to theoretical work in lexical semantics be-
cause it has a staggering range of senses that appear
to be systematically related to its argument struc-
ture. Our central empirical finding is that LLM
representations capture many of these known sense
distinctions and can be used to identify new sense
combinations for further analysis.

We use these findings as a chance to reflect on
the core theoretical commitments of lexical seman-
tics as they pertain to LLM-based investigations.
Our discussion is centered around the three tenets
of lexical semantics given in Table 1: lexical repre-
sentations are high dimensional, contextually mod-
ulated, and include discrete features.

The high dimensionality property is not phrased
as a direct claim in the literature as far as we know,
but it reflects the practice of linguists, who iden-
tify numerous interacting features of lexical items.
Section 2 offers a summary picture for break. Sim-
ilarly, discreteness is often assumed by linguists
working in the broadly generative tradition. For
our purposes, the key question is whether there are
any features that are discrete, since LLMs do not
naturally support having such features.

Contextual modulation is a direct claim. We
trace the origins to Dowty (1976, 1979), who ar-
gues that aspectual analyses need to include at
least the entire verb phrase (see also Kratzer 1996).
Borer (2005a,b, 2013) pushes this further, arguing
that open-class lexical items are “tantamount to
raw material, ‘stuff’ which is poured into the struc-
tural mould to be assigned grammatical properties”
(2005a, p. 108). On this view, lexical items are
mostly unvalued discrete feature representations
that are fleshed out and modulated by the environ-
ment in which they appear; there may be a stock
of identifiable lexical items, but they are highly ab-
stract, with almost unlimited potential to become
different items in different contexts.

A similar view is taken by work in the Generative
Lexicon (Pustejovsky, 1991, 1995), which posits
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Linguistics Static vectors LLMs

High dimensionality: Lexical semantic entries consist of
many features.

Yes Yes Yes

Contextual modulation: A word sense will be influenced by
its immediate morphosyntactic context as well as the broader
context of use.

Yes No Yes

Discreteness: The features in lexical semantic entries are
discrete and highly structured.

Yes No No

Table 1: Core tenets. Our focus is in particular on the relationship between ‘Linguistics’ and ‘LLMs’ in this table.

an extensible lexicon that is “open-ended in nature
and accounts for the novel, creative, uses of words
in a variety of contexts by positing procedures for
generating semantic expressions for words on the
basis of particular contexts” (Pustejovsky, 2006).
This also aligns with Clark’s (1997) rejection of the
“Dogma of Sense Selection”, which says “Listen-
ers determine an enumerable set of senses for each
expression, and in understanding what a speaker
means, they select the appropriate sense from that
set.” For Clark, lexical items are highly malleable
and constrained mainly by what the discourse par-
ticipants can reliably communicate with each other
(see also Clark and Clark 1979; Searle 1980). On
all these views, lexical items are highly abstract
objects that can be realized in very diverse ways.

The field of NLP has a complex relation to our
tenets. Early work on symbolic grammars in NLP
was clearly aligned with all the tenets. The Gener-
ative Lexicon is a prominent example and proved
influential in linguistics and NLP. When distribu-
tional methods first became central to NLP, the
dominant mode of lexical representation involved
static vector representations. These representations
align with the consensus in linguistics only regard-
ing high dimensionality, as we discuss in Section 4.

LLMs have changed NLP’s relationship to lexi-
cal semantics considerably. With LLMs, we have
a strong commitment to high dimensionality and
contextual modulation and a denial of discreteness
(Section 5). The points of agreement present a
significant opportunity for linguists and NLP re-
searchers to collaborate, as we hope our case study
shows. The points of disagreement seem also to be
opportunities for people to take new perspectives.
We argue in particular that the facts surrounding
break should lead linguists to reconsider their com-
mitment to discreteness and embrace a more fluid,
usage-based foundation for semantic theory.

2 English Break

English break is one of the best studied lexical
items in lexical semantics, for a few reasons. First,
it is a canonical instance of a change-of-state verb
that undergoes the causative alternation:

(1) The linguist broke the window

(2) The window broke.

In fact, alternating change-of-state verbs are re-
ferred to as break-verbs (Acedo-Matellán and Ma-
teu, 2014; Fillmore, 1970; Levin, 2017; Majid et al.,
2008). The intransitive variant of the causative
alternation (2) is analyzed in terms of the unac-
cusativity hypothesis (Perlmutter, 1978; Burzio,
1986; Levin and Rappaport Hovav, 1995), which
says that the subjects in these cases are underly-
ingly internal arguments to the verb, bearing more
theme-like semantic roles, and have been promoted
to subject position to fulfill a subjecthood require-
ment. Research on break has also contributed to
the study of the lexical properties of unaccusative
verbs (Levin and Rappaport Hovav, 1995).

Second, break can take on a wide array of senses.
Table 2 provides a partial list; we cannot hope to be
comprehensive (there may not even be a fixed stock
of senses; Section 5), but our examples convey the
nature of the attested variation.

Third, the sense distinctions interact with the
causative alternation. Whereas senses 1–4 all al-
ternate, senses 5–11 are all strictly transitive. The
non-alternating senses of break have informed the
debate about which variant of the causative alter-
nation (if any) is basic and which is derived (e.g.
Levin and Rappaport Hovav, 1995; Alexiadou et al.,
2006; Piñón, 2001). Though the debate is still
unsettled, it has evinced that participation in the
causative alternation is not a property of the verb
itself, but of the verb in combination with its theme
argument (Petersen, 2020; Spalek, 2012), just as
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Frame Sense

1. break the vase shatter
2. break the computer render inoperable
3. break the news reveal
4. break the silence interrupt
5. break the record surpass
6. break the code decipher
7. break the law violate
8. break the habit end
9. break the horse tame

10. break a $10 bill make change
11. break the fall lessen
12. the weather broke changed
13. the day broke began

(a) Uses without particles/predicates.

Frame Sense

14. break off the engagement end
15. break out begin
16. break out of jail escape
17. break out in hives get
18. break into the building intrude
19. break down the problem analyze
20. break down the proteins decompose
21. break in enter
22. break in interrupt
23. break free escape
24. break even profit = loss
25. break forth emerge
26. break to the right turn

(b) Uses with particles/predicates.

Table 2: Senses for break. A comprehensive account of senses may not be possible (Section 5.3).

with telicity and other aspectual properties (Dowty,
1976, 1979; Borer, 2005b).

Prior work has sought to capture the obligato-
rily transitive nature of some of these senses by
appeal to a thematic role requirement: break in
combination with its internal argument determines
the range of semantic roles – agent, instrument,
or natural force – that the subject of a transitive
break frame may bear (Rappaport Hovav and Levin,
2012), and some frames require their subjects to
be agentive (Levin and Rappaport Hovav, 1995;
Piñón, 2001; Alexiadou et al., 2006; Schäfer, 2008).
Since necessarily agentive subjects cannot be left
unexpressed, these frames do not show intransitive
variants. However, this cannot be the full story, as
there are some obligatorily transitive break frames
where the subject need not be an agent but which
nonetheless do not alternate, like the cushion broke
her fall vs. *the fall broke (Petersen, 2020).

In addition, examples like break the record
(sense 5) and break the code (sense 6) may be
graded or uncertain in regard to their participa-
tion in the causative alternation. They are often
assumed not to have intransitive uses (Levin and
Rappaport Hovav, 1995; Piñón, 2001; Alexiadou
et al., 2006; Schäfer, 2008; Rappaport Hovav and
Levin, 2012), but there are attested cases like the
following that suggest this is a point of variation.

(3) Almost sixty years later, Frank Rowlett, a
cryptologic pioneer and head of the “Purple”
team, remembered that historic day when the
code broke.

(4) The Guinness World Record broke, our fur-
niture didn’t.

There are also strictly intransitive uses, as in 12–
13 of Table 2a. These are analyzed in the same way
as the intransitive variant of alternating frames (2),
i.e., as unaccusatives. Why these break frames
do not allow a cause subject – e.g., *the Earth’s
rotation broke the day – is an open question.

As seen in Table 2b, break also combines with
a wide range of predicates and particles to create
new senses. Except for 14, 19, and 20, these uses
are all intransitive, but they seem to differ from the
particle-less uses in a key way: whereas intransitive
particle-less break cases are all unaccusative, the
particle cases vary in this regard. For example, the
war broke out seems unaccusative, but we broke
into the building has an agentive subject and so
would not be analyzed as unaccusative.

A key question for lexical semantic theories is
whether there is a single unifying semantic frame
underlying this diverse array of senses – or, if not
a single frame, then perhaps a few of them feed-
ing into distinct sense clusters. This position is
advanced, for example, by Kellerman (1978:65),
for whom “[t]he various meanings of BREAK
[. . . ] can all be subsumed under a ‘deep’ meaning,
‘(cause) not to continue in existing state’, which
links even the most disparate meanings of BREAK’
(see also Spalek 2012 for a similar position for
Spanish romper ‘break’). Another approach would
be to posit a few more primitive semantic dimen-
sions that give rise to a combinatorial space of
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1. We broke the vase 1 0 1 0 1 0 0 0 0 0
2. The vase broke 0 1 0 0 1 0 0 0 0 0
3. We broke the law 1 0 1 1 0 1 0 0 0 0
4. The silence broke a procedural rule 1 0 0 1 0 1 0 0 0 0
5. We broke the silence 1 0 1 1 0 0 1 0 0 0
6. The day broke 0 1 0 1 0 0 0 1 0 0
7. The storm broke 0 1 0 1 0 0 0 1 0 0
8. Sweat broke on his forehead 0 1 0 1 1 0 0 1 0 0
9. We broke out (of jail) 0 0 1 0 0 0 0 0 1 0

10. Fighting broke out 0 1 0 1 0 0 0 0 0 1

Table 3: Partial feature-based analysis of break in different syntactic contexts.

predicted senses, which might in turn lead to pre-
dictions about argument structure realization and
other structural and distributional properties.

3 Feature-based Theories

In this section, we take the somewhat unusual step
of bringing together existing ideas from the linguis-
tics literature into a feature space of the sort one
is likely to encounter in NLP contexts. We do this
for a few reasons. First, it reveals that, though theo-
ries in linguistics and NLP often take very different
forms, there is actually a lot of common ground be-
tween them: on both sides, vector representations
of data can serve as a common language. Second,
the feature space reveals how deeply linguistic the-
ories are committed to our contextual modulation
tenet from Table 1: to honor the insights from the
literature, we have to define the feature space in
terms of (at least) full sentences.

Table 3 is our (highly partial) feature-based anal-
ysis. The Transitive feature captures whether a par-
ticular break frame has two nominal arguments or
one. Causative alternation uses can then be recon-
structed by looking at shared meaning dimensions
that vary in their Transitive value, as in rows 1–2.
We separately define an Unaccusative feature, since
the uses in Table 2b show that these can come apart.
This is evident especially in rows 9–10.

The Agent feature captures whether the subject
of each example is agentive or not. We mentioned
in Section 2 that the obligatory transitivity of some
break frames has been traced, unsuccessfully in
our view, to the agentivity of the subject of these

frames. The Agent feature in combination with
the Transitive feature and the meaning dimensions
reveals the incompleteness of this explanation: ‘vi-
olate’ examples, which are obligatorily transitive,
may have subjects that are agentive (row 3) and
non-agentive (row 4).

We have a column for Metaphorical, though
coding this is sufficiently hard that it looks like
a multidimensional category to us rather than a
single feature. Due to the difficulty of classify-
ing senses of break and other polysemous verbs
as (non)metaphorical, previous literature that has
engaged with this question (e.g. Kellerman, 1978;
Piñón, 2001; McNally and Spalek, 2017, 2022)
has used the heuristic of associating metaphorical
senses with abstract participants, like break the si-
lence, and non-metaphorical ones with concrete
participants, such as break the vase. We follow this
(admittedly simplifying) heuristic in our feature-
based analysis. However, we agree with McNally
and Spalek (2022, 6) that “the distinction between
‘literal’ and ‘figurative’ senses can become blurred
over time, and sometimes can only be diachroni-
cally reconstructed”.

Following these features are a few meaning di-
mensions. The full class of meaning annotations
we use in Section 5.3 has 72 classes, so this is just a
sample. The sample was chosen to emphasize three
aspects of the meanings of break. First, as already
illustrated in Table 2, these meanings are highly
diverse semantically. Second, it is difficult (and
maybe even futile) to determine with confidence
how many distinct (and non-overlapping) senses

493



1. break 11. up
2. breaks 12. trying
3. breaking 13. away
4. end 14. start
5. broke 15. get
6. down 16. again
7. take 17. ’ll
8. let 18. back
9. going 19. out

10. leave 20. off

(a) GloVe, Common Crawl
840B tokens, 300d.

1. breaks 11. brief_respite
2. breaking 12. Nadal_netted_forehand
3. broke 13. loosen
4. broken 14. smash
5. Break 15. rip
6. Breaking 16. overhit_forehand
7. breather 17. miscued_forehand
8. shatter 18. cut
9. crack 19. slip

10. breaker 20. Breaks

(b) word2vec, GoogleNews, 300d.

1. break 11. breakin
2. breaks 12. breaked
3. breaking 13. broken
4. breake 14. legbreak
5. re-break 15. reak
6. break- 16. semi-break
7. unbreak 17. minibreak
8. breakes 18. breaker
9. break. 19. breaking-down

10. broke 20. tea-break

(c) fastTest WikiNews, with sub-
word modeling, 300d.

Table 4: Nearest neighbors of break in static embedding spaces. All the methods place morphological variants of
break next to break itself and seem to sporadically find different senses and near synonyms of break. The lists given
here are, in our judgment, the best from each of the three methods. For additional lists, see Appendix B.

break may express. For example, does break ex-
press the same meaning, ‘appear’, in row 6 as in
row 7, as we suggest in Table 3? Or should these ex-
amples be seen as expressing distinct senses? Third,
we believe there are some examples where break
simultaneously expresses more than one meaning,
as shown in row 8 of Table 3, where break shows
both an ‘appear’ and a ‘separate’ meaning.

Break with particles/predicates can sometimes
express meanings that particle-less break cannot
convey: e.g. ‘escape’ in row 9. We assume that the
particles/predicates contribute an irreducible mean-
ing and reflect this in our feature-based analysis
by preceding these meaning dimensions with the
corresponding particles/predicates: ‘out_escape’.
The particles/predicates do not determine a unique
meaning, though, as we see with the two senses
of break out: ‘out_escape’ and ‘out_begin’. And
we could of course have extended this even further.
There are additional clearly distinct senses like His
face broke out in hives and break out the cham-
pagne, as well as cases like break out in laughter
which might be subsumed under other senses (say,
‘out_begin’).

Potentially all of the columns are actually just in-
formal stand-ins for much more complex concepts.
The labels could be natural language predicates on
par with break, in which case the column names
are really just hooks into a larger lexical web, or
they could be glosses for more intricate theoretical
concepts that demand further decomposition before
the theory can be regarded as complete.

In addition, we can seamlessly integrate this kind
of analysis with more data-driven techniques. As
an illustration, Appendix A reports on an experi-
ment using the WordNet hypernym graph to iden-
tify extremely abstract latent meaning dimensions.

How many lexical items does this theory posit?
The answer to this question is not clear. We could
say that each attested combination of the features is
a new sense, or we could select a few features and
say that specific combinations of them correspond
to distinct senses. Both decisions have a certain
arbitrariness to them given the feature space itself,
and we might infer from this that the theory does
not posit distinct senses or distinct lexical items
as first-class linguistic constructs. This may be a
consequence of the contextual modulation tenet.

Relatedly, it is unclear to us what a complete
analysis in these terms would look like. What
would it mean to have determined all and only
the correct features? Could it be that the investi-
gation will always admit of further dimensions, or
decomposition of existing dimensions?

In sum, it is easy to see how this analysis makes
good on the central tenets in Table 1. The represen-
tations are high-dimensional vectors with discrete
values. In addition, the representations themselves
directly bring in context. The vector for break
alone, if it exists in the theory at all, needs to be
mostly unspecified values that only become values
in specific syntactic or usage contexts.

4 Static Vector Modeling

The above feature-based analysis might be de-
scribed as a sparse vector representation approach.
We now contrast that with a dense vector represen-
tation approach that models individual lexical items
as fixed (static) vectors. A variety of such methods
have been developed. Here we look at the treatment
of break by three prominent methods: word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), and fastText (Mikolov et al., 2018). These
methods have different learning objectives, but all
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are closely related to Pointwise Mutual Information
(PMI; Church and Hanks 1990; Turney 2001). In
PMI, we assign weights to pairs of words wi and
wj based on whether their observed joint probabil-
ity of co-occurrence is larger or smaller than what
we would expect given the null hypothesis that wi
and wj have independent distributions. All three
methods learn regularized, reduced dimensional
representations according to roughly this same goal
(Levy and Goldberg, 2014; Cotterell et al., 2017).

None of these methods use discrete features, and
thus they are in conflict with our discreteness tenet
from Table 1. The raw input to all of them is a
matrix of co-occurrence counts, which could be
viewed as a set of discrete distributional features.
However, much of the power of these models de-
rives from their ability to compress this information
into a lower-dimensional space of continuous val-
ues in which the columns are unlikely to have direct
interpretations as features.

The GloVe vocabulary is largely restricted to in-
dividual words from a fixed list. By contrast, the
vocabulary used for our word2vec instance includes
some phrase-like elements that were inferred by the
authors using simple co-occurrence statistics, and
our chosen fastText model includes sub-word com-
ponents and so also ends up with a more expansive
view of what counts as a lexical item.

All of these models have proven successful as
representations of words and as components in
larger systems. However, we find that these repre-
sentations are disappointing for studying break. In
Table 4, we show the top 20 nearest neighbors (ac-
cording to cosine similarity) for some uses of these
models. We chose what seemed to be the semanti-
cally richest instance of each model from a larger
set of such results (see Appendix B). All of the
models capture morphological variants very clearly.
However, the other semantic associations generally
only weakly indicate other specific senses (via as-
sociations with other words). We do see some
positive benefits from the quasi-phrasal vocabulary
used by word2vec and fastText, but overall these
spaces look like only superficial pictures of the
underlying semantic richness of break.

The cause for this semantic blandness likely
traces to the basic design decision: every word-
form has only a single representation. This means
that a single vector must encode all the different
senses that we see in Table 2 as well as others that
we did not include there. The result is probably

something like a weighted average of these senses,
which seems not to be in a particularly interesting
part of the embedding space.

Adherents to our central tenets (Table 1) might
have predicted this negative result. While static
representations are high dimensional, they do not
allow for contextual modulation. Each basic unit
of the vocabulary is assigned exactly one represen-
tation. Contextual modulation may occur if the
representations are embedded in a larger system,
but it is not intrinsic to the vectors themselves.

5 LLM Investigations

We come now to our primary investigative tool:
LLMs. We concentrate on models that have the
core structure of the Transformer (Vaswani et al.,
2017) and are trained at least in part using masked
language modeling, which allows for bidirectional
context. In the interest of space, we will mostly pre-
suppose familiarity with these models. However,
Appendix C provides an overview of their structure
to try to bridge any gaps between the linguistics
and NLP literature.

In our main text, we report results for RoBERTa-
large (Liu et al., 2019), which has 24 layers.
Our appendices cover BERT and DeBERTa. Our
RoBERTa-large results are slightly better than all
of these others, but the results are generally quite
comparable, suggesting that all of these models can
fruitfully be used for lexical semantics.

Before turning to our experiments, let’s consider
how LLMs relate to our core tenets from Table 1.
First, the representations we obtain at each hidden
layer are all high-dimensional and modulated by
the context. Our experiments show that, for the
case of break, this contextual modulation is rich
and linguistically systematic. Thus, LLMs and tra-
ditional lexical semantic theories are aligned on
these two tenets. However, the two theories part
ways when it comes to the question of having dis-
crete features. The column dimensions of LLM
representations are continuous and highly abstract.
Discrete linguistic features might be latently en-
coded in these representations, or extractable from
them with some noise, but this does not detract
from the fact that these representations are highly
fluid and do not presuppose the existence of any
particular features or dimensions. Rather, all the
features are learned from data in a free-form way
that is grounded entirely in distributions.
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Layer Probe Control Selectivity

1 0.33 0.03 0.30
6 0.81 0.03 0.79

12 0.83 0.03 0.80
18 0.80 0.03 0.76
24 0.86 0.03 0.83

(a) Meaning-class probing results.

Layer Probe Control Selectivity

1 0.50 0.33 0.17
6 0.94 0.34 0.60

12 0.96 0.33 0.63
18 0.96 0.35 0.61
24 0.97 0.32 0.65

(b) Construction-type probing results.

Table 5: RoBERTa-large probing results. We report Macro F1 and Selectivity, which is the Macro F1 score for the
task minus the Macro F1 for a control task (random assignment of tokens to classes). Results for other models are
similar; see Appendix D.

5.1 Annotated Dataset

The basis for our investigation is an annotated
dataset created by Petersen (2020) and subse-
quently updated by us to include more examples
and senses. The examples are extracted from
the Corpus of Contemporary American English
(CoCA; Davies 2008). We focus on a subset
of 1,042 sentences that have been annotated for,
among other things, the core semantic class of the
reading and the construction type (‘unergative’, ‘un-
accusative’, ‘causative’). Petersen assigns a single
semantic class to each example. However, as men-
tioned in Section 3, we believe that, in some cases,
break can be said to simultaneously express more
than one meaning. We use our experiment in Sec-
tion 5.3 to identify examples with this property.

We rely primarily on the meaning class distinc-
tions and make secondary use of the constructional
annotations. Petersen’s annotation scheme uses 72
semantically rich meaning classes, which have a
highly skewed distribution. The full distribution is
given in Appendix E.

5.2 Probing Experiments

We want to explore the LLM representations in a
fluid way that will lead us to identify new read-
ings. Our tools for doing this are supervised probe
models applied to the column of representations
above the break token in each of our examples. We
probe for meaning-class and construction-type (see
also Papadimitriou et al. 2021). These probes serve
as a quantitative evaluation of the extent to which
these break representations encode these important
properties, and they are also tools for heuristically
finding new uses and readings.

For our construction-type probing work, we can
use all 1,042 sentences, since there are only three
classes and all have substantial representation in the

data (causative: 673 examples, unaccusative: 197,
unergative: 172). For the meaning-type work, there
are 72 classes, many with only a few instances.
Thus, we limit attention to just the classes with at
least 10 examples (Appendix E).

Our probe models are L2-regularized classifiers
with a cross-entropy loss. Our core metric is the
macro F1 score, which assigns equal weight to each
class’s F1 score regardless of the class size. Fol-
lowing Hewitt and Liang (2019), we report selec-
tivity scores, which are the probe scores minus the
performance on a control task, which here is ran-
dom assignment of break representations to mean-
ing classes. We report selectivity scores averaged
across 20 random 80%/20% train/test splits.

The probe results show a clear pattern: the low-
est layers are not very robust when it comes to this
probing work, but higher layers are very robust in
this sense (see also Reif et al. 2019; Ethayarajh
2019). We see similar results for other LLMs in
the class we are focused on, as reported in Ap-
pendix D. For this reason, we focus on layer 24 of
RoBERTa-large from now on.

5.3 Discovering New Example Types
Our primary goal is to see whether it is possible
to use LLMs to gain new insights about lexical
semantics. Our probing results suggest that LLM
representations are systematic enough to make this
plausible, but they are very high-level. We need
an investigative technique that is more free-form
and that can bring to our attention new kinds of
theory-relevant examples.

A natural choice is visualization. We provide
t-SNE visualizations (van der Maaten and Hinton,
2008) in Appendix G, and we find that they are
indeed useful: where an example of meaning class
a is nestled among examples of class b, the a-class
example is often an interesting blend of a-class
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Meaning Construction

Sentence Gold Predicted Gold Predicted

1. Patients will sometimes break out in a spontaneous
recitation of the rosary

break_out_
start

break_out_
start

unacc. unerg.

2. It was like you knew something, like you knew the
story was getting ready to break again.

reveal appear unacc. unacc.

3. @(Soundbite-of-music)@!Mr-GELB: (Singing) Tell
me who’s going to pick up the pieces when you start
to break down.

break_down_
separate_into_parts

break_down_
succumb

unacc. unacc.

4. People have so many problems overcoming the dis-
putes that occur when families break up

break_up_
end_relationship

break_up_
separate_into_parts

unacc. unacc.

5. “So why tell the whole story now? Somebody, some
male, has got to be willing to break this code of si-
lence,” he says.

violate end unacc. unacc.

6. So they forwarded the pictures to Madrid, where an-
other officer noticed some printing on a towel that
helped break the case.

decipher end causative causative

7. Then too, stress can also work to break down the im-
mune system, increasing the likelihood of respiratory
and creating gastrointestinal and nervous disorders.

break_down_
render_inoperable

break_down_
destroy

causative causative

8. Wind, naturally acidic rain, and physical processes
such as freezethaw cycles also break down rock.

break_down_
separate_into_parts

break_down_
destroy

causative causative

9. It didn’t take being an ICU exec to break the code:
trade secret.

decipher violate causative causative

Table 6: A curated sample of theoretically informative examples.

and b-class meanings, and such examples seem
genuinely worthwhile to study further. However,
these visualizations introduce known distortions re-
sulting from compressing high-dimensional spaces
into two dimensions (Wattenberg et al., 2016), and
they can even vary in qualitatively substantive ways
across models and runs.

For something more stable, we return to our
probe models. The selectivity scores for both are
conservative if we think of them as tools for finding
new examples: the meaning-class probes achieve
results above 80% macro F1, and the construction-
type probes are nearly perfect in their performance
(where chance is around 33%). Thus, we decided to
extract and review the errors made by these models,
with the expectation that many of these examples
could inform lexical semantic theory itself.

Table 6 is a selection of examples that we ex-
tracted in this way for further analysis. This is a
small curated set of (so-called) errors, though these
examples do not look like errors to us, but rather
like instances in which multiple senses and multi-
ple construction types emerge in the same example.

Example 1 is predicted unergative, whereas the
gold label is unaccusative. For us, this raises a new

question: what is the role of spontaneous in the
overall agentivity of the subject, and should this
play into how we characterize the syntactic frame?

Example 2 looks like a clear case where multiple
senses can be activated and different utterance con-
texts might favor different readings. Is the breaking
of a news story an agentive act of revealing informa-
tion (the gold label), or can it be (or be described
as) something more like a natural process of ap-
pearing (the predicted label)? Both readings seem
available, and individual uses might blend them for
a particular rhetorical effect.

We also find cases where both the gold meaning
and the predicted meaning are in principle avail-
able, and the choice between them depends on
whether we would like to focus on the metaphorical
or the literal meaning of the expression. This can
be seen in examples 3 and 4.

Example 4 also reveals a common pattern we
found in our examples: in many cases where multi-
ple senses are present, there is a contextual entail-
ment relation between them. In example 4, should
we focus on the direct and perhaps metaphorical
reading (gold) or the more literal likely conse-
quence (predicted)? In example 5, violating the
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code of silence entails ending it. In example 6,
deciphering a case entails solving or ending it. In
example 7, the process of breaking down the im-
mune system, which we paraphrased as rendering
it inoperable (gold meaning), could culminate in its
destruction (predicted meaning). And example 8
reveals that the event structure of break examples
can be very complex. When a rock is broken down
by natural forces, we can think of this as a process
of breaking down into smaller parts (gold meaning)
with the end state being total destruction (predicted
meaning). Many examples in which the breaking
event leads to the fragmentation of the theme par-
ticipant can show similar blends.

We also see cases where there seems to be gen-
uine uncertainty about which of the two senses is
intended. Example 9 illustrates this. Depending
on the meaning of the word code (‘encryption’ vs.
‘norm’ ), break can either mean ‘decipher’ (gold) or
‘violate’ (predicted). This example further evinces
the importance of our contextual modulation tenet:
sometimes we have to go even beyond full sen-
tences to be able to determine the meaning of break
in a particular case.

These are just a few examples of a much larger
set of interesting cases that emerge from studying
the interaction between our LLM-based probe mod-
els and our linguistic annotations. Appendix F pro-
vides a larger sample with brief annotations about
potential theoretical relevance. We close this pa-
per by reflecting on how best to incorporate these
insights into the linguistic theory itself.

6 Discussion

The fact that linguistic theory and LLMs agree on
the core tenets of high dimensionality and contex-
tual modulation is a striking alignment of theoreti-
cal ideas with engineering success.

The fact that LLMs do not use discrete features,
but rather derive dense, real-valued representations
from data seems like an opportunity for linguists
to reflect on the role of discreteness. As we noted
in Section 3, it seems unlikely that purely analytic
work and traditional corpus work will lead to an
exhaustive hand-built representation for any lexical
items. With LLMs, we can mine the existing repre-
sentations while considering the LLM architecture
and learned parameters to be a reflection of the core
tenets of the theory.

The deep contextual modulation countenanced
by linguistic theory and operationalized by LLM

embeddings invites a further question: do lexical
items exist outside of their tokens of use? Even for
the hand-built feature representations in Table 3,
the rows could in principle vary based even on
usage information, which would suggest a theory
that is actually more about tokens (instances of use)
than types. Similarly, for LLMs, though they do
contain type-level representations (in the form of an
embedding for the vocabulary), these play a minor
role, and all the representations we have considered
in this paper were in terms of representations that
are more like token-level representations.

Overall, then, a theory of lexical semantics that
draws heavily on LLMs as investigative tools, and
even as ways to state theoretical ideas, is likely to
become more usage-based than traditional theories
would assume. This could lead them to focus less
on pure representation and more on what is actually
communicated between people when they use lan-
guage. Traditional questions are likely to take on
new forms in this setting, and exciting and relevant
new questions – and new pieces of evidence – are
likely to arise.

7 Limitations

Our general thesis is that LLMs are valuable tools
both for conducting lexical semantic analyses and
for providing valuable perspectives for lexical se-
mantic theory design in general. Although we think
this thesis is widely supported by prior literature,
our own case study is limited to just a partial anal-
ysis of a single verb. This creates the risk that our
general conclusions may be more specific to this
verb, or to English, than we would like. The prior
literature inherits many of our English-only biases
as well (but see Papadimitriou et al. 2021).

Our main results use RoBERTa-large, and our
appendices report on parallel analyses with dif-
ferent versions of BERT and DeBERTa. These
models share core architectural features and were
optimized in largely similar ways using very large
– and largely uncontrolled – datasets. This means
that these artifacts are certainly biased in ways that
are relevant for lexical semantics. However, we are
unlikely to be able to identify, isolate, and factor
out these biases with the methods used in our pa-
per. Our core methods are reasonably simple and
lightweight, and we have released all our code. We
hope that these steps allow easy reproduction of our
core analyses whenever newer LLMs are released,
so that we can begin to understand better how LLM
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biases can affect linguistic theorizing in the mode
we are advocating for.

Our current approach also has an analytic limita-
tion: though we fit probe models and use them as
devices for finding potentially relevant examples,
the final step in our analysis involves inspection of
those examples by linguists like ourselves. This
means that the final step is not as reproducible as
the others, and it means that any analytic biases that
the linguists involved might have are likely to make
their way into the analyses. We do not see a way to
avoid these analytic steps entirely, since linguistic
analysis favors this kind of low-level work, but we
do think that we can mitigate the concerns about
analyst bias by making all our data available for
others to inspect, as a way of opening up many per-
spectives on the data and the associated theoretical
questions.
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Supplementary Materials

A WordNet-based Features

The feature-based analyses of Section 3 are easily extended with features obtained using more approximate,
data-driven techniques. To illustrate this potential, we looked to WordNet (Fellbaum, 1998), which has a
very rich picture of break. The lemma break participates in 59 SynSets in WordNet. We built a graph of
these SynSets based on the hypernym relation. The resulting graph has 29 connected components (29
subgraphs). Figure 1 depicts the largest connected components as subgraphs. If we label these subgraphs
with their most-specific shared hypernym, we get potentially new meaning dimensions like “Cause to
change; make different; cause a transformation” and “undergo a change; become different in essence;
losing one’s or its original nature”. These are similar, but only the first conveys agency. Both seem like
plausible latent semantic dimensions that we could add to Table 3, either as primitive features or as sets of
more basic meanings. And of course this is only a single example of many that WordNet would support,
and additional features could be extracted from FrameNet (Baker et al., 1998; Baker and Sato, 2003;
Ruppenhofer et al., 2006).

Figure 1: Largest WordNet connected components for break labeled with the name of their most specific shared
hypernym. These hypernym labels suggest interesting abstract meaning dimensions for these senses.
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B Additional Static Vector Analyses

Table 7 extends Table 4 from the main text with additional variants of word2vec, fastText, and GloVe.
The overall picture seems consistent across these variants. For the main text, we simply chose the variant
of each model that looked the best to us in terms of capturing meaning dimensions of break.

C LLM Structure

The input to the LLMs we consider is always a sequence of tokens [x1, . . . , xn]. Each token may
correspond to a full word type or a word piece, depending on the tokenization method. For instance,
whereas the is tokenized as a single unit, breakage is likely to be analyzed as two pieces, break and ##age,
where the ## prefix indicates a word-internal piece. This is a detail we set aside in our analyses, since we
consider only examples involving break and all the models we use analyze break as a single token.

The elements of the input sequence are looked up in a static embedding space. The result is a sequence
of vectors [x1, . . . xn], where each xj has dimension d. These are akin to the static representations from
models like those in Section 4: there is one vector per word piece and thus no contextual modulation.

The static embeddings are additively combined with one or more separate embeddings that record
aspects of each token’s position in the sequence. In the simplest case, there is a single positional embedding
that is used to create a sequence of vectors [p1, . . . ,pn], each of dimension d, and we obtain positionally
enriched representations as H0 = [x1+p1, . . . , x1+pn]. Thus, already at this point in the model, a single
word will have different representations depending on where it appears in the input sequence.

The positionally-enriched embeddings are fed into the Transformer architecture itself. This creates
numerous interactions between the representations. Each Transformer block i > 0 results in a sequence
Hi = [hi,1, . . . ,hi,n] of hidden representations, each one of dimension d. The models we consider have
between 12 and 24 of these layers.

We focus on models that are trained in the manner of the BERT model. The core of that training regime
is masked language modeling, in which elements of the input sequence are randomly masked out or
replaced with randomly chosen tokens from the vocabulary, and the task of the model is to learn to assign
high likelihood to the actual token, using the entire surrounding sequence. This is a very advanced form
of distributional learning, but the core intuition is very similar to that of the single vector models: we are
learning linguistic properties entirely from co-occurrence patterns in corpus data.

In our main text, we report results for RoBERTa (Liu et al., 2019), which is ‘Robustly optimized
BERT approach’. We focus on the ‘large’ variant, which has 24 hidden layers. In Appendix D, we
report parallel experiments with the case-sensitive version of the original BERT model as well as two
variants of the new DeBERTa model: version 1 and version 3 (which introduces some modifications to
the pretraining regime compared to version 1). DeBERTa is potentially interesting from the perspective
of lexical semantics, because it more fully separates the traditional static embeddings [x1, . . . xn] from
the positional embeddings [p1, . . . ,pn]. This might be taken to reify word types (as separate from token
occurrences) more than the other models do. Like RoBERTa, BERT and the DeBERTa variants have
‘base’ (12-layer) and ‘large’ (24-layers) instances. For our main text, we chose to focus on RoBERTa-large
because it seems slightly better overall than the rest, but our findings indicate that all these models perform
about the same in our evaluations, suggesting that all of them can support lexical semantic investigation.

503



1. break 11. before
2. breaking 12. put
3. broke 13. start
4. breaks 14. take
5. set 15. trying
6. try 16. could
7. chance 17. to
8. time 18. broken
9. again 19. end

10. back 20. finally

(a) GloVe, Wikipedia+Gigaword, 300d.

1. break 11. weeks
2. time 12. start
3. breaks 13. last
4. before 14. end
5. then 15. broke
6. take 16. again
7. days 17. next
8. after 18. maybe
9. let 19. leave

10. up 20. down

(b) GloVe, Twitter, 2B tweets, 200d.

1. break 11. get
2. breaks 12. out
3. breaking 13. trying
4. broke 14. we
5. going 15. broken
6. let 16. again
7. away 17. come
8. take 18. down
9. up 19. make

10. ’ll 20. before

(c) GloVe, Common Crawl 42B tokens,
300d.

1. break 11. up
2. breaks 12. trying
3. breaking 13. away
4. end 14. start
5. broke 15. get
6. down 16. again
7. take 17. ’ll
8. let 18. back
9. going 19. out

10. leave 20. off

(d) GloVe, Common Crawl 840B tokens, 300d (from Table 4).

1. breaks 11. brief_respite
2. breaking 12. Nadal_netted_forehand
3. broke 13. loosen
4. broken 14. smash
5. Break 15. rip
6. Breaking 16. overhit_forehand
7. breather 17. miscued_forehand
8. shatter 18. cut
9. crack 19. slip

10. breaker 20. Breaks

(e) word2vec, GoogleNews, 300d (from Table 4).

1. break 11. follow
2. breaks 12. smash
3. breaking 13. BREAK
4. broke 14. knock
5. Break 15. water-main
6. broken 16. miss
7. crack 17. tie
8. take 18. go
9. shatter 19. relax

10. fix 20. start

(f) fastTest WikiNews, 300d.

1. break 11. breakin
2. breaks 12. breaked
3. breaking 13. broken
4. breake 14. legbreak
5. re-break 15. reak
6. break- 16. semi-break
7. unbreak 17. minibreak
8. breakes 18. breaker
9. break. 19. breaking-down

10. broke 20. tea-break

(g) fastTest WikiNews, subword modeling, 300d (from Table 4).

1. break 11. break.The
2. breaks 12. break.I
3. breaking 13. break.It
4. Break 14. break.This
5. broke 15. broken
6. break.And 16. break.So
7. Breaking 17. break.In
8. break. 18. break-
9. BREAK 19. breack

10. Breaks 20. break.That

(h) fastTest Common Crawl 600B tokens, 300d.

1. break 11. take
2. breaks 12. broken
3. breaking 13. re-break
4. Break 14. breake
5. broke 15. abreak
6. break. 16. break.But
7. break.And 17. break-
8. rebreak 18. break.What
9. break.So 19. bend

10. breack 20. break.That

(i) fastTest, Common Crawl 600B tokens, subword modeling, 300d.

Table 7: Static embedding spaces: closest neighbors of break.
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D Additional Probing Results

Table 8a gives meaning-class probing results for all of the models described in Appendix C, and Table 8b
provides a parellel set of results for the construction-type probes. The models are very consistent with
each other in terms of layer-wise trends and overall performance. Only the DeBERTa variant stands out as
showing differences that may be truly substantive.

Probe Control Selectivity

bert-base-cased
1 0.64 0.04 0.60
6 0.80 0.03 0.77

12 0.81 0.03 0.78

bert-large-cased

1 0.65 0.04 0.61
6 0.78 0.03 0.75

12 0.83 0.03 0.80
18 0.83 0.03 0.81
24 0.84 0.03 0.81

deberta-base
1 0.72 0.03 0.68
6 0.81 0.03 0.78

12 0.85 0.03 0.82

deberta-large

1 0.72 0.04 0.68
6 0.84 0.03 0.81

12 0.81 0.04 0.78
18 0.78 0.04 0.74
24 0.83 0.03 0.81

deberta-v3-base
1 0.70 0.04 0.65
6 0.84 0.03 0.81

12 0.75 0.03 0.72

deberta-v3-large

1 0.66 0.04 0.62
6 0.84 0.04 0.80

12 0.83 0.03 0.79
18 0.80 0.04 0.77
24 0.79 0.04 0.75

roberta-base
1 0.66 0.03 0.63
6 0.81 0.04 0.78

12 0.83 0.03 0.80

roberta-large

1 0.33 0.03 0.30
6 0.81 0.03 0.79

12 0.83 0.03 0.80
18 0.80 0.03 0.76
24 0.86 0.03 0.83

(a) Meaning class.

Probe Control Selectivity

bert-base-cased
1 0.75 0.34 0.40
6 0.93 0.34 0.60

12 0.95 0.33 0.63

bert-large-cased

1 0.72 0.33 0.39
6 0.91 0.34 0.57

12 0.94 0.33 0.62
18 0.97 0.35 0.62
24 0.97 0.33 0.63

deberta-base
1 0.88 0.34 0.54
6 0.96 0.34 0.62

12 0.97 0.32 0.64

deberta-large

1 0.86 0.33 0.53
6 0.96 0.33 0.63

12 0.96 0.33 0.64
18 0.95 0.34 0.61
24 0.96 0.34 0.63

deberta-v3-base
1 0.87 0.32 0.54
6 0.96 0.34 0.62

12 0.94 0.32 0.61

deberta-v3-large

1 0.80 0.34 0.45
6 0.94 0.34 0.61

12 0.96 0.33 0.64
18 0.97 0.32 0.65
24 0.95 0.36 0.60

roberta-base
1 0.82 0.33 0.49
6 0.96 0.34 0.62

12 0.96 0.32 0.64

roberta-large

1 0.50 0.33 0.17
6 0.94 0.34 0.60

12 0.96 0.33 0.63
18 0.96 0.35 0.61
24 0.97 0.32 0.65

(b) Construction type.

Table 8: Full probing results.
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E Full Meaning Class Distribution

Table 9 gives the full set of meaning classes, with their counts, from the dataset of Petersen 2020. There
are 72 classes in all. Our meaning-class probing experiments use only the 27 classes with at least 10
examples. Our construction-type probing experiments use the full dataset.

Meaning class

separate_into_parts 150
end 126
decipher 62
break_down_separate_into_parts 61
violate 59
break_up_separate_into_parts 35
surpass 34
break_down_destroy 31
break_into_intrude 28
reveal 26
appear 25
break_through_pass_through 24
render_inoperable 23
unclassified 21
break_down_render_inoperable 21
break_free_escape 19
break_down_succumb 18
cause_to_fail 17
break_up_end_relationship 17
break_up_end 16
break_out_escape 15
break_even_profit=loss 14
succumb 13
break_out_start 12
experience_sorrow 11
break_away_detach 10
break_off_end 10
break_in_enter 9
break_apart_detach 9
break_off_detach 7
break_for_pause 7
destroy 6
break_into_start 6
pioneer 6
lessen 6
break_with_end_relationship 5

Meaning class

break_open_open 5
break_in_interrupt 5
break_loose_detach 5
begin_construction 4
eat_with_sb 4
change 4
break_from_detach 3
cost_too_much 3
break_loose_start 3
break_through_succeed 3
break_up_destroy 3
break_down_unclassified 3
show_disagreement_with_group 3
slow_down 3
begin_to_sweat 2
break_out_unclassified 2
break_down_pause 2
break_up_unclassified 2
happen 2
break_out_separate_into_parts 2
break_out_prepare_for_consumption 2
break_in_mould_shoes 2
break_down_fail 2
dismantle_camp 2
break_loose_escape 1
break_into_unclassified 1
break_off_stop 1
go_bankrupt 1
break_away_pause 1
break_in_train 1
break_past_pass_through 1
tame 1
break_in_unclassified 1
break_with_detach 1
break_out_have_skin_eruption 1
break_beef 1

Table 9: Full meaning-class distribution.
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F Examples Selected as Theoretically Relevant

Here we provide the full set of examples extracted from our dataset using the procedure described in
Section 5.3 and then selected by us as interesting for lexical semantic theory. The examples in bold are
those that appear in Table 6.

Meaning Construction
Sentence Gold Predicted Gold Predicted Notes

Most of this information exchange
takes place through what are known
as newsgroups, which essentially just
break all this international online bab-
ble up into different topics and areas
of interest.

break_up_
separate_
into_parts

break_
down_

separate_
into_parts

causative causative Both senses seem active or pos-
sible.

What happens, when groups break up
that means somebody got caught steal-
ing the money or some guy does n’t
like it because another guy’s a bigger
star- KING: Or he married someone
who- Mr. GATLIN: Right@!KING.

break_up_
separate_
into_parts

break_up_
end_

relationship

unacc. unacc. Both senses seem active.

Wind, naturally acidic rain,
and physical processes such as
freezethaw cycles also break down
rock.

break_
down_

separate_
into_parts

break_
down_
destroy

causative causative Both senses seem active.

But her husband was determined not
to break up the family.

break_up_
separate_
into_parts

break_up_
end_

relationship

causative causative Both senses seem active.

It was like you knew something, like
you knew the story was getting ready
to break again.

reveal appear unacc. unacc. Both senses seem active.

“So why tell the whole story now?
Somebody, some male, has got to be
willing to break this code of silence,”
he says.

violate end causative causative Contextual entailment relation
between the two labels.

Then too, stress can also work to
break down the immune system, in-
creasing the likelihood of respira-
tory and creating gastrointestinal
and nervous disorders.

break_
down_
render_

inoperable

break_
down_
destroy

causative causative Contextual entailment relation
between the two labels.

If you deprive yourself, you’re going
to break your diet and fall off it.

violate end causative causative Contextual entailment relation
between the two labels.

Sen. BOB KERREY: I don’t want to
destroy Social Security or break a com-
mitment.

violate end causative causative Contextual entailment relation
between the two labels.

So they forwarded the pictures to
Madrid, where another officer no-
ticed some printing on a towel that
helped break the case.

decipher end causative causative Contextual entailment relation
between the two labels.

It’s one example of how the standard
model might break down.

break_
down_
render_

inoperable

break_
down_

succumb

unacc. unacc. Contextual entailment relation
between the two labels.

Instead, crews will break down the
structures over three years, releasing
the water in the reservoirs at a rate
that’s more manageable for the animals
and the people who live in the area.

break_
down_

separate_
into_parts

break_
down_
destroy

causative causative Contextual entailment relation
between the two labels.
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"The Comes would try to break the
Saxon ranks with a mounted charge.

separate_
into_parts

end causative causative Contextual entailment relation
between the two labels.

Then the troops break formation and
move out to a formation and stand
guard, even from above, making sure
the so-called detainees are safely be-
hind the fence.

separate_
into_parts

end causative causative Contextual entailment relation
between the two labels.

The Soviet Union will break up into
between six and twenty (or more) sep-
arate countries.

break_up_
separate_
into_parts

break_up_
end

unacc. unacc. Contextual entailment relation
between the two labels.

It didn’t take being an ICU exec to
break the code: trade secret.

decipher violate causative causative Genuine uncertainty about
which sense is intended.

@(Soundbite-of-music)@!Mr-
GELB: (Singing) Tell me who’s
going to pick up the pieces when you
start to break down.

break_
down_

separate_
into_parts

break_
down_

succumb

unacc. unacc. Gold meaning is literal; pre-
dicted meaning is metaphori-
cal.

“People have so many problems
overcoming the disputes that occur
when families break up, and then to
have to overcome the barriers that
government puts up when they hold
on to the money, literally sends chil-
dren to bed hungry,” says Jensen.

break_up_
end_

relationship

break_up_
separate_
into_parts

unacc. unacc. Gold meaning is metaphorical;
predicted meaning is literal.

"I just don’t want to break up such
happy couples.

break_up_
end_

relationship

break_up_
separate_
into_parts

causative causative Gold meaning is metaphorical;
predicted meaning is literal.

I had to break it up. break_up_
end

break_up_
separate_
into_parts

causative causative Gold meaning is metaphorical;
predicted meaning is literal.

Will the kibbutz movement "renew its
days as of old" when it has recovered
from the present crisis, as did the Hut-
terites at several points in their history?
Will it continue to exist, but in a rad-
ically revised form, like Amana and
other colonies? Or will the kibbutzim
simply break up, to form part of the
historical heritage of the Israeli nation,
and no more– like so many of the well-
preserved sites that aroused such pow-
erful feelings in Yaakov Oved? The
considerations I have advanced here
seem to militate against the first of
these possibilities and favor one of the
others– perhaps a mixture of both.

break_up_
end

break_up_
separate_
into_parts

unacc. unacc. Gold meaning is metaphorical;
predicted meaning is literal.

The past few days had consisted of a
simple routine of drinking melted snow
to stay hydrated and sleeping while
waiting for the storm to break.

appear end unacc. unacc. Model prediction may be cor-
rect.

A small pair of scissors will easily
break the seal, but bringing those scis-
sors in your carry-on bag may no
longer be permitted.

separate_
into_parts

decipher causative causative The decipher prediction seems
sensible given that a seal is like
a lock or (easy) code that needs
to be overcome.

Patients will sometimes break out
in a spontaneous recitation of the
rosary

break_out_
start

break_out_
start

unacc. unerg. The modifier "spontaneous"
seems to affect agentivity and
perhaps also argument struc-
ture.
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Millennial darlings began to break
down like virus-ridden websites, from
the supercharged (Qualcomm, Oracle)
to the superhyped (Amazon, Yahoo!)
to the just plain super (Sun, Lucent,
AOL).

break_
down_

succumb

break_
down_
render_

inoperable

unacc. unacc. There is a comparison of "mil-
lennial darlings" with "virus-
ridden websites". The gold
meaning may apply to "millen-
nial darlings" and the predicted
meaning to "virus-ridden web-
sites".

I felt disappointed, but I waited, hop-
ing the clouds would break.

separate_
into_parts

appear unacc. unacc. Weather events are persistently
uncertain about whether they
describe the start or end of
something. Here, the clouds
are leaving and other things are
presumably appearing.

G Visualizations

Figure 2 uses t-SNE to visualize break embeddings from layer 1 of RoBERTa-large, and Figure 3 shows
the embeddings from layer 24. We use color to distinguish the top 10 meaning classes (and the rest
are gray). Underlined examples are unergative and boxed examples are unaccusative. The layer 24
visualization has much more structure than the layer 1 visualization. By layer 24, the model seems
strikingly well-aligned with the meaning categories and construction types, as evidenced by how examples
with the same color cluster together, and how the construction type annotations also cluster within those
spaces. The other models we consider show effectively these same patterns.
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happen

break-free-escape

end

separate-into-parts

break-down-succumb

break-free-escape

break-up-separate-into-parts

separate-into-parts

break-up-separate-into-parts

break-through-pass-through

break-down-destroy

break-through-pass-through

break-off-end

unclassified

separate-into-parts

unclassified
break-down-destroy

break-up-destroy

break-down-destroy

break-down-separate-into-parts

end

end

break-into-intrude

end

break-free-escape

violate

end

violate

break-down-succumb

break-into-intrude

separate-into-parts

violate

separate-into-parts

end

break-even-profit=loss

violate

end

violate

end

lessen

separate-into-parts

break-out-escape

cause-to-fail

separate-into-parts

break-up-end

render-inoperable

end

experience-sorrow

destroy

separate-into-parts

break-even-profit=loss

surpass

break-down-separate-into-parts

break-up-separate-into-parts

end

end

experience-sorrow

break-off-end

show-disagreement-with-group

break-for-pause

separate-into-parts

experience-sorrow

separate-into-parts

separate-into-parts

break-down-separate-into-parts

break-off-detach

break-out-start

break-down-destroy

break-down-succumb

break-in-enter

break-into-intrude
break-into-intrude

violate

break-in-train

separate-into-parts

succumb

separate-into-parts

succumb

break-for-pause

break-into-start

dismantle-camp

break-down-separate-into-parts

unclassified

break-loose-start

reveal

end

end

separate-into-parts

break-down-render-inoperable

break-away-detach

break-down-render-inoperable

violate

violate

render-inoperable

break-down-separate-into-parts

reveal

break-up-end-relationship

separate-into-parts

separate-into-parts

end

experience-sorrow

separate-into-parts

break-down-separate-into-parts

end

break-out-escape

separate-into-parts

break-in-interrupt

end

cost-too-much

break-through-pass-through

end

separate-into-parts

reveal
break-into-start

end

end
break-in-enter

end

separate-into-parts

break-loose-start

unclassified

break-down-succumb

break-off-end

separate-into-parts

reveal

end

experience-sorrow

violate

decipher

end

decipher

separate-into-parts

break-in-enter

end

separate-into-parts

separate-into-parts

surpass
end

break-through-pass-through

end

separate-into-parts

break-into-intrude

violate

break-up-separate-into-parts

separate-into-parts

break-free-escape

end

break-out-have-skin-eruption

break-apart-detach

unclassified

break-down-render-inoperable

unclassified

break-up-separate-into-parts

separate-into-parts

break-through-pass-through

succumb

reveal

break-through-pass-through
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Figure 2: t-SNE of break with RoBERTa-large, layer 1.
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Figure 3: t-SNE of break with RoBERTa-large, layer 24.
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Abstract

Missing information is a common issue of dia-
logue summarization where some information
in the reference summaries is not covered in the
generated summaries. To address this issue, we
propose to utilize natural language inference
(NLI) models to improve coverage while avoid-
ing introducing factual inconsistencies. Specifi-
cally, we use NLI to compute fine-grained train-
ing signals to encourage the model to generate
content in the reference summaries that have
not been covered, as well as to distinguish be-
tween factually consistent and inconsistent gen-
erated sentences. Experiments on the DIALOG-
SUM and SAMSUM datasets confirm the ef-
fectiveness of the proposed approach in balanc-
ing coverage and faithfulness, validated with
automatic metrics and human evaluations. Ad-
ditionally, we compute the correlation between
commonly used automatic metrics with human
judgments in terms of three different dimen-
sions regarding coverage and factual consis-
tency to provide insight into the most suitable
metric for evaluating dialogue summaries.1

1 Introduction

Dialogue summarization is a text generation task
that aims to produce a compact summary given a
piece of conversation. Conventional approaches to
dialogue summarization rely on features of conver-
sation data (Goo and Chen, 2018; Li et al., 2019;
Oya et al., 2014). Recently, the rise of large pre-
trained language models (LMs) has enabled coher-
ent and fluent summaries to be generated without
these features. However, low coverage and fac-
tual inconsistency remain two pressing issues as
studies have shown that the summaries generated
from these pre-trained LMs often do not fully cover
the reference (Liu and Chen, 2021; Tang et al.,

∗Work done while interning at Amazon.
1We release our source code for research purposes:

https://github.com/amazon-science/AWS-SWING.

GENERATED SUMMARYREFERENCE SUMMARY

Take max
Entailment probability

0.93 0.08

0.01 0.42

0.02 0.92

0.93

0.42

0.92

1. Charlee is in class at the 
university that she attends. 

2. She is preparing a 
performance in Portuguese. 

3. The writer is Mrożek.

2. He and other students are 
preparing a play by Mrożek
translated into Portuguese. 

1. Charlee is attending 
Portuguese theater as a 
subject at university. 

NLI

Figure 1: An illustration of how NLI can help determine
whether a reference sentence is covered by the generated
summary. We compute the entailment probability from
each reference sentence (i.e. premise) to each generated
sentence (i.e. hypothesis). By taking the max value
along the row dimension, the resulting vector denotes
the probability that each reference sentence entails a
sentence in the generated summary. In this example, the
entailment probability for the second reference sentence
is low, indicating that this sentence is likely not covered
by the generated summary.

2022) and that the generated summaries are of-
ten not factually consistent with the inputs (Zhang
et al., 2020b; Maynez et al., 2020; Cao and Wang,
2021). If an unfaithful dialogue summarization
model with low coverage is deployed for public
use, it could spread misinformation and generate
misleading content that only covers partial facts of
a conversation. Hence, we are urgently in need of
a solution to improve coverage without negatively
impacting faithfulness for dialogue summarization.

Relatively little work addresses coverage and
factual inconsistency for dialogue summarization.
Some work addresses the issue of unfaithfulness
with a controllable generation framework guided
by person named entities (Liu and Chen, 2021) or
summary sketches (Wu et al., 2021). Tang et al.
(2022) categorize factual inconsistencies for dia-
logue summarization into different types of errors,
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GENERATED SUMMARYREFERENCE SUMMARY

1. Charlee is attending 
Portuguese theater as a 
subject at university. 

2. He and other students are 
preparing a play by Mrożek
translated into Portuguese. 

3. He enjoy taking the class 
with his classmates.

1. Charlee is in class at the 
high school that he attends. 

2. He and other students are 
preparing a performance in 
Portuguese. 

3. The writer is Mrożek.

4. Charlee likes this class and 
his classmates.

MIXANDMATCH SUMMARY

1. Charlee is attending 
Portuguese theater as a 
subject at university. 

2. He and other students are 
preparing a performance in 
Portuguese. 

3. The writer is Mrożek.

4. Charlee likes this class and 
his classmates.

ENTAILMENT-INDUCED BIPARTITE GRAPH

Figure 2: Illustration of how an entailment-induced bipartite graph is built and how a MIXANDMATCH summary is
derived. With the NLI model, we determine which sentences from each summary contain equivalent information by
computing the entailment probabilities between pairs of generated sentences and reference sentences, as indicated
by the purple edges. Based on the graph, we determine that the generated summary does not cover the first reference
sentence and that the first generated sentence is not faithful. Hence, the MIXANDMATCH summary is formed by
combining the first reference sentence and the second to the fourth generated sentence.

such as missing information and wrong reference.
Their framework integrates a contrastive loss and
a self-supervised loss to reduce multiple types of
errors. However, a great portion (> 40%) of their
outputs does not cover the full content of the ref-
erence summary. Thus, it is important to address
coverage and factual consistency synergistically in
dialogue summarization. The issue where the con-
tent in the reference does not occur in the generated
summary is known as the missing information is-
sue (Liu and Chen, 2021; Tang et al., 2022). In this
work, we aim to mitigate missing information in
the summary while being faithful to the dialogue.

We propose SWING , Summarizing Dialogue
With NLI Guidance. Our approach samples a sum-
mary from the model and utilizes natural language
inference (NLI) to determine (1) the faithfulness of
each generated sentence and (2) whether each ref-
erence sentence has been covered by the generated
summary. An example is shown in Figure 1. Based
on the results computed by NLI, two losses are
proposed to encourage the model to generate miss-
ing information and distinguish between factually
consistent and inconsistent generated sentences.

Our contributions can be summarized as follows:
• We propose SWING, a dialogue summariza-

tion framework that effectively addresses
missing information through two losses
computed using NLI. The first loss encour-
ages the model to recover content missing
from the reference summaries. The second
loss instructs the model to differentiate
between factually consistent and inconsistent

generated sentences.
• Our approach achieves the best performance

in mitigating missing information on two
public dialogue summarization datasets,
DIALOGSUM (Chen et al., 2021b) and
SAMSUM (Gliwa et al., 2019), as validated
by automatic metrics and human judges.

• We measure the correlation of human
judgments with conventional and recently de-
veloped automatic metrics to provide intuition
for future research on evaluating the faithful-
ness and coverage of dialogue summaries.

2 Method

Upon analyzing the dialogue summaries in SAM-
SUM, we observe that dialogues are often summa-
rized linearly, consistent with the findings of Wu
et al. (2021). Therefore, we segment the summaries
into sentences and use a natural language inference
(NLI) model to provide finer-grained training sig-
nals at the sentence level for two goals: (1) en-
courage generating sentences in the reference sum-
maries that have not been covered by the generated
sentences and (2) differentiate factually consistent
generated sentences from inconsistent ones. To
achieve these goals, we first determine the faithful-
ness of each sentence using an entailment-induced
bipartite graph (§2.1). Then, we propose two new
losses addressing each challenge in turn: an Un-
covered Loss that encourages the model to recover
missing information (§2.2) and a Contrastive Loss
that brings closer the representations of the refer-
ence summary and the generated sentences that
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Algorithm 1: Entailment-induced Bipartite Graph

Input: A reference summary S∗ = {s∗1 , ..., s∗n}, a
generated summary S = {s1, ..., sm};

Output: The bipartite mapping ϕ between sentences
in S∗ and S;

1 Initialize ϕ as a zero matrix of size n ×m where
n = ∣S∗∣ and m = ∣S∣;

2 Let τ be the entailment threshold;
3 // Resolve 1-to-many mappings;
4 for i← 1 to n do
5 V ← ∅ ;
6 for j ← 1 to m do
7 if pent(s∗i , sj) > τ and ϕ(i, j) = 0 then
8 V ← V ∪ j;

9 sV ← Concatenate sentences in {sv∀v ∈ V };
10 if V is consecutive and pent(sV , s∗i ) > τ then
11 for v ∈ V do
12 ϕ(i, v) ← 1;

13 // Resolve many-to-1 mappings;
14 for j ← 1 to m do
15 V ← ∅ ;
16 for i← 1 to n do
17 if pent(sj , s∗i ) > τ and ϕ(i, j) = 0 then
18 V ← V ∪ i;

19 s
∗
V ← Concatenate sentences in {s∗v∀v ∈ V };

20 if V is consecutive and pent(s∗V , sj) > τ then
21 for v ∈ V do
22 ϕ(v, j) ← 1;

23 // Resolve 1-to-1 mappings;
24 for i← 1 to n do
25 for j ← 1 to m do
26 if ϕ(i, j) = 0 and pent(sj , s∗i ) > τ and

pent(s∗i , sj) > τ then
27 ϕ(i, j) ← 1;

28 Return ϕ;

contain equivalent information to some sentences
in the reference summary (§2.3). For the rest of
this paper, we use reference sentence and gener-
ated sentence to refer to a sentence in the reference
summary and the generated summary, respectively.

2.1 Entailment-induced Bipartite Graph

To determine which reference sentence has not
been covered by the generated summary and which
generated sentence is not faithful to the reference
summary, we construct a bipartite graph that links
sentences between a reference summary and a gen-
erated summary. An edge indicates the linked sen-
tences contain equivalent information. If no edge
connects to a reference sentence, we consider this
sentence not covered by the generated summary.
Similarly, if a generated sentence is not linked
in the bipartite graph, this sentence is likely not

faithful to the reference summary. We use the en-
tailment probabilities computed by an NLI model
to determine whether a pair of sentences contain
equivalent information. The procedure of construct-
ing the bipartite graph is shown in Algorithm 1.

The NLI model takes in two sentences, a premise
(P ) and a hypothesis (H), and computes whether
P entails, contradicts, or is neutral to H . Here, we
only focus on the entailment probability from the
i-th reference sentence to the j-th generated sen-
tence pent(s∗i , sj). We use the ROBERTA-LARGE

model2 trained on the MNLI dataset, achieving an
accuracy of around 91%, which is on par with the
performance of state-of-the-art models.

Let ϕ(i, j) denote the mapping between the i-th
reference sentence and the j-th generated sentence.
ϕ(i, j) = 1 if a link exists between s∗i and sj ; oth-
erwise, ϕ(i, j) = 0. We first consider a simplified
setting by assuming each reference sentence can
be mapped to at most one generated sentence, and
vice versa (i.e. 0 ≤ ∑j ϕ(i, j) ≤ 1). In this setting,
we can determine whether two sentences contain
equivalent information by checking the entailment
relation from both directions (lines 26-27).

ϕ(i, j) = {1, pent(s∗i , sj) > τ ⋀ pent(sj , s∗i ) > τ
0, otherwise

(1)

Here, τ is a hyperparameter that indicates the en-
tailment threshold.

However, one reference sentence may contain
information equivalent to multiple generated sen-
tences (one-to-many mappings) and vice versa
(many-to-one mappings). In Figure 2, for example,
the second reference sentence contains information
equivalent to the second and the third generated
sentences combined. This relation cannot be dis-
covered if we only check the entailment relation
between pairs of individual sentences.

Therefore, we must resolve one-to-many
and many-to-one mappings before checking
one-to-one mappings. To find one-to-many
mappings, for every reference sentence s

∗
i ,

we look for consecutive generated sentences{sj , sj+1, ..., sj+k} s.t. maxi pent(s∗i , sm) >
τ ∀m ∈ {j, ..., j + k} (lines 6-8). We only check
for consecutive sentences based on our previous
observation that dialogues are often summarized
linearly. For every match, we concatenate the gen-
erated sentences sj∶j+k = {sj , sj+1, ..., sj+k} and

2
https://huggingface.co/roberta-large-mnli
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check whether sj∶j+k entails the reference sentence
s
∗
i (lines 8-9). If the entailment holds, we let
ϕ(i,m) = 1 ∀m ∈ {j, ..., j + k} (lines 11-12).
The same approach is used to address many-to-one
mappings (lines 14-22). Following Algorithm 1, a
bipartite graph is built between the generated sum-
mary and the reference summary. Henceforth, we
denote the reference sentences that have not been
covered as S∗ = {s∗i ∣∀j ϕ(i, j) = 0} and gener-
ated sentences that can be mapped to some of the
reference sentences as S = {sj∣∃i ϕ(i, j) = 1}.

2.2 Uncovered Loss
The objective of the uncovered loss is to encour-
age the model to generate information from the
reference summary that the generated summary
has not covered. To this end, we train the model
with MIXANDMATCH summaries, which are con-
structed by combining reference sentences that are
not covered by the generated summary and gener-
ated sentences that contain information equivalent
to some of the reference sentences. An example is
shown in Figure 2.

The MIXANDMATCHummary Ŝ is constructed
by taking the union of S and S∗ and sorting the
sentences by their index,

Ŝ = SORT(S ∪ S∗). (2)

The uncovered loss is effectively maximum like-
lihood estimation (MLE) with MIXANDMATCH

summaries being the decoding targets:

LUncovered = −∑
t

log p(Ŝt∣Ŝ<t,D), (3)

where D is the original dialogue and Ŝt denotes
the t-th token in the MIXANDMATCH summary.

The main advantages of constructing MIXAND-
MATCH summaries over other positive sample con-
struction approaches, such as back translation and
paraphrasing, are the two desired properties of this
formulation. First, the model already has a high
probability of generating sentences in S. Therefore,
the loss function (Equation (3)) does not penalize
the model much for generating these sentences.
Second, the penalty for generating sentences S∗ is
larger since the model has a lower probability of
generating those sentences.

2.3 Contrastive Loss
In the early stage of our experiment, the original
goal was to discourage the model from generating

factually inconsistent sentences. We adopt unlike-
lihood training (Welleck et al., 2020) to decrease
the probability of sampling these sentences from
the model. However, we found that this objective
causes the model to generate nonsense sequences.
This phenomenon was also observed when we ex-
perimented with CONSEQ (Nan et al., 2021), which
also incorporates such a loss function into its train-
ing process, as shown in §4.1. We hypothesize that
it resulted from the fact that sentences in dialogue
summaries share similar structures. Hence, using
the unlikelihood training objective would confuse
the model.

Instead, we pivoted our focus on differentiating
factually consistent sentences from their inconsis-
tent counterparts with the proposed contrastive loss.
For each summary, we use the factually inconsis-
tent sentences as negative samples (i.e. sj ∉ S) and
consistent sentences as positive samples (i.e. sj ∈
S). The contrastive learning objective takes a sim-
ilar form as the InfoNCE loss (Oord et al., 2018):

LContrastive = − ∑
si∈S

exp(cos(hi, hS∗))
∑sj∈S exp(cos(hj , hS∗)) (4)

, where hi and hj denote the representations of
the generated sentences, hS∗ means the represen-
tations of the reference summary, and cos(, ) de-
notes cosine similarity. The main difference be-
tween our contrastive objective and the other work
(Cao and Wang, 2021; Tang et al., 2022) is granu-
larity. Equation (4) operates at the sentence level
rather than the summary level; therefore, it pro-
vides finer-grained training signals.

2.4 Training
The final loss function that our model is optimized
with is a weighted sum of the two aforementioned
loss functions and MLE,

LFinal = LMLE + αLUncovered + βLContrastive, (5)

where LMLE is:

LMLE = −∑
t

log p(S∗
t ∣S∗

<t,D). (6)

3 Experiments

3.1 Datasets
Experiments are conducted on two English-
language dialogue summarization datasets: SAM-
SUM (Gliwa et al., 2019) and DIALOGSUM (Chen
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DIALOGSUM SAMSUM

Model RLF RLR BSF BSR FCF FCR QS QFE RLF RLR BSF BSR FCF FCR QS QFE

TextRank 27.74 29.16 -3.000 -3.039 60.55 59.54 -1.948 0.566 15.08 16.15 -4.374 -3.891 34.28 33.02 -2.172 0.237
BART-LARGE 50.82 56.78 -2.012 -1.960 82.90 85.86 -1.183 1.854 49.53 52.71 -2.248 -2.332 62.46 61.28 -0.912 2.335
CTRLDIASUMM 48.99 57.25 -2.145 -1.985 82.55 85.96 -1.214 1.817 47.79 51.17 -2.360 -2.414 61.50 61.76 -0.957 2.272
CODS 48.51 48.36 -2.379 -2.214 83.33 86.81 -1.246 1.860 48.39 47.68 -2.643 -2.593 61.21 62.01 -0.867 2.345
CONSEQ 22.82 19.50 -3.480 -3.588 84.24 73.14 -1.474 0.208 12.04 7.62 -5.908 -7.278 41.23 13.77 -2.058 0.035
CLIFF 51.87 56.22 -2.012 -1.973 85.38 86.30 -1.106 2.109 43.70 45.49 -2.485 -2.340 55.47 56.01 -1.063 1.891
CONFIT 50.44 55.65 -2.049 -2.016 83.34 86.37 -1.179 1.790 49.29 52.76 -2.188 -2.316 65.03 63.12 -0.819 2.343

SWING 51.96 59.04∗ -1.999∗ -1.904∗ 86.48 89.03 -1.082∗ 2.087 50.08 52.91 -2.228 -2.310∗ 64.19 63.52 -0.829 2.407∗

- LUncovered 50.94 60.06∗ -2.044 -1.895∗ 83.26 87.45 -1.075∗ 2.339∗ 49.78 53.57 -2.231 -2.295∗ 63.81 63.11 -0.876 1.989
- LContrastive 51.53 59.27∗ -2.012 -1.901∗ 82.90 85.86 -1.130 2.399∗ 49.73 53.95 -2.185∗ -2.143∗ 63.47 63.15 -0.886 2.027

Table 1: Performance comparison on DIALOGSUM and SAMSUM. - LUncovered and - LContrastive denote variants of
SWING by ablating the corresponding loss. RL denotes ROUGE-L (%), BS denotes BARTSCORE, FC denotes
FACTCC (%), QS denotes QUALS, and QFE denotes QAFACTEVAL. The subscripts F and R denote F1 score and
recall, respectively. The proposed method outperforms previous systems on both DIALOGSUM and SAMSUM in
most metrics, especially on the recall measures. Statistical significance over previous best systems computed with
the permutation test (Fisher et al., 1937) is indicated with * (p < .01).

et al., 2021b). SAMSUM contains 16,369 online
chitchat dialogues with an average of around 94
tokens per dialogue. DIALOGSUM is a spoken di-
alogue dataset that consists of 13,460 samples in
total. With an average token count of about 131,
the dialogues in DIALOGSUM are under real-life
scenarios with clear communication patterns and
intents. Details of the dataset statistics can be
found in Appendix A.

3.2 Metrics

Our evaluation focuses on measuring the factual
consistency, particularly the missing information
challenge, of the summarization models. Therefore,
we adopt recently developed metrics that have been
shown to correlate well with human judgments in
terms of faithfulness. BARTScore (Yuan et al.,
2021) computes the semantic overlap between the
generated summary and the reference summary by
calculating the logarithmic probability of generat-
ing each summary conditioned on the other one.
Since our goal is to assess how well the model re-
duce information missing from the reference sum-
mary, we consider the Recall (R) setting where
we assess p(S∗∣S, θ), the likelihood of generating
the reference summary S given the generated sum-
mary S∗. FactCC (Kryscinski et al., 2020) is an
entailment-based metric that predicts the faithful-
ness probability of a claim w.r.t. with the source
texts. Similar to BARTScore, we use FactCC in the
Recall setting where the claim is a reference sen-
tence and the source text is the generated summary.
We report the mean of the average CORRECT proba-
bility of each sentence within a generated summary.

In addition, we report the ROUGE-L metric (Lin,
2004), which has been also shown to better reflect

faithfulness compared to ROUGE-1 and ROUGE-
2 (Pagnoni et al., 2021). For these metrics, we also
consider the F1 setting, where we compute each
metric in the reverse direction (S∗ → S) and then
take the average of both directions, to validate that
the model is not generating too much redundant
information. Finally, two recently introduced QA-
based metrics that have demonstrated close approx-
imation to human judgements in terms of factual-
ity, QUALS (Nan et al., 2021) and QAFACTEVAL

(Fabbri et al., 2022a), are also used for evaluation.

3.3 Implementation Details
We choose BART (Lewis et al., 2020) as the back-
bone seq2seq model as it has demonstrated better
dialogue summarization performance than other
pre-trained language models (Tang et al., 2022),
such as PEGASUS (Zhang et al., 2020a) and T5
(Raffel et al., 2020). The proposed models are
optimized using AdamW (Loshchilov and Hutter,
2019) with learning rate 3e-5 and weight decay
1e-3. The maximum input sequence length is set
to 1024. For all baseline models, we use the best
hyper-parameters reported in their papers. We fix
τ to be 0.5 throughout all our experiments. α and
β are both 1.0.

3.4 Baselines
We compare SWING with the following competi-
tive baseline systems. TextRank (Mihalcea and
Tarau, 2004) is a graph-based ranking algorithm
that performs extractive summarization. BART
(Lewis et al., 2020) is a seq2seq language model
pre-trained on various denoising objectives. CTRL-
DIASUMM (Liu and Chen, 2021) and CODS (Wu
et al., 2021) are controllable generation frameworks
that generate summaries guided by named entity
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(a) Human evaluation results on DIALOGSUM.
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(b) Human evaluation results on SAMSUM.

Figure 3: Human evaluation results. SWING achieves the highest RECALL and FAITHFULNESS scores on both
datasets, suggesting the advantages of our approach in reducing missing information and improving the overall
faithfulness of the generated dialogue summary.

planning and sketches, respectively. CONSEQ
(Nan et al., 2021) learns a contrastive objective
based on unlikelihood training, where positive and
negative samples are selected by QUALS. CLIFF
(Cao and Wang, 2021) and CONFIT (Tang et al.,
2022) are trained with a similar contrastive learn-
ing loss that takes the form of the InfoNCE loss
(Oord et al., 2018), except that CONFIT is opti-
mized with an additional self-supervised loss that
aims to reduce reference errors. BART-LARGE is
used across all experiments that involve pre-trained
language models for fair comparison.

4 Results

4.1 Main results
Table 1 summarizes the main results on DIALOG-
SUM and SAMSUM. SWING outperforms previ-
ous approaches in almost all metrics, especially re-
call measures. This result reflects that the proposed
approach generates summaries that cover more con-
tent in the reference summaries lexically and se-
mantically. One interesting observation was the de-
ficient performance of CONSEQ on both datasets.
We hypothesize that poor performance was the use
of the unlikelihood training objective in their loss,
as mentioned in §2.3. Since sentences of dialogue
summaries often share similar structures, adopting
such an objective could confuse the model. We ver-
ified this hypothesis by running a small experiment
by training BART-LARGE with MLE and negative
samples determined by QUALS, similar to CON-
SEQ. The resulting model also produces signifi-
cantly lower performance than training with MLE
alone. The finding confirms that the poor perfor-
mance of CONSEQ is caused by the unlikelihood
training and that such a loss function is unsuitable
for dialogue summarization.

4.2 Human Evaluation

To further validate the effectiveness of SWING, we
use Amazon’s Mechanical Turk (AMT) to recruit
workers to conduct human evaluations on three
methods: CLIFF, CONFIT and SWING. We sam-
pled 100 dialogues from the test set of DIALOG-
SUM and SAMSUM, respectively. For each dia-
logue, human judges are presented with a pair of
summaries produced by two different approaches
and asked to select the better one with respect to
three dimensions. RECALL assesses the portion
of information in the reference summary covered
by the generated summary. PRECISION considers
whether all the content in the generated summary
occurs in the reference summary. FAITHFULNESS
examines whether the generated summary is factu-
ally consistent with the dialogue. "Tie" is selected
if the judges consider the two summaries to be of
equal quality. The final score of each system is
calculated as the percentage of times the system
is selected as the better one minus the percentage
of times the system is not. To evaluate the annota-
tion quality, we compute the inter-annotator agree-
ment. The average Cohan’s Kappa (Cohen, 1960)
is 54.35%, indicating a moderate agreement. De-
tails of the human evaluation setup can be found in
Appendix B.

The human evaluation results are demonstrated
in Figure 3. We have the following observations.
First, SWING achieves the highest RECALL scores
on both datasets, indicating that our approach is
the best in addressing the missing information is-
sue for dialogue summarization. Second, while
SWING does not score the highest on PRECISION,
we achieve the highest scores on FAITHFULNESS.
This implies that even though our approach of-
ten generates summaries with extra information,
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Reference Summary CONFIT SWING

Mike took his car into garage today. Ernest
is relieved as someone had just crashed
into a red Honda which looks like Mike’s.

Mike took his car to the garage today.
Someone crashed into his car.

Mike took his car into the garage to-
day. Someone just crashed into a red
Honda looking like Mike’s.

Hilary has the keys to the apartment. Ben-
jamin wants to get them and go take a nap.
Hilary is having lunch with some French
people at La Cantina. Hilary is meeting
them at the entrance to the conference hall
at 2 pm. Benjamin and Elliot might join
them. They’re meeting for the drinks in
the evening.

Benjamin, Elliot, Daniel and Hilary
will meet at La Cantina at 2 pm to have
lunch with some French people who
work on the history of food in colonial
Mexico. They will try to avoid talking
about their subject of research.

Hilary has the keys to Benjamin, El-
liot and Daniel’s apartment. They will
meet at the entrance to the conference
hall at 2 pm and go to La Cantina for
lunch with some French people who
work on the history of food in colonial
Mexico.

Table 2: Qualitative analysis on the outputs of SWING and CONFIT. The two rows demonstrate the missing details
and the missing sentences issue of the summaries generated by CONFIT, respectively. The extra information in the
outputs of CONFIT that also occurs in the reference summaries is highlighted in blue. In both cases, SWING is able
to cover more content presented in the reference summaries.

the additional content is likely still faithful to the
input. To measure the amount of additional infor-
mation produced, we compute the average number
of tokens per summary for each model. As seen
in Table 3, the summaries generated by SWING

is only slightly longer than those produced by
CLIFF and CONFIT. This suggests that SWING

achieves significantly higher faithfulness and cov-
erage than CLIFF and CONFIT while maintaining
conciseness.

Model DIALOGSUM SAMSUM

CONFIT 29.46 22.45
CLIFF 27.34 22.30
BART-LARGE 28.03 23.19

SWING 31.32 24.23

Table 3: Average token count per summary generated
by different models.

4.3 Qualitative Analysis
To provide better insight into the effectiveness of
the proposed method, we conduct a qualitative anal-
ysis using the 100 dialogues randomly sampled
from the SAMSUM dataset. Specifically, we fur-
ther categorize missing information errors into two
sub-types: (1) missing details where partial infor-
mation of a sentence in the reference summary is
missing in the generated summary and (2) miss-
ing sentences where the model fails to generate an
entire sentence in the reference summary. An ex-
ample of each sub-type is shown in Table 2. By
comparing the test sets outputs of CONFIT and
SWING, we see that there are 10 improved cases
with less missing details and 6 cases where missing
sentences is mitigated by SWING. Meanwhile, our

proposed approach only introduces missing details
error and missing sentences error in 1 and 2 exam-
ples, respectively. This implies that our approach
is effective in alleviating both sub-types of missing
information error while particularly advantageous
in reducing missing details errors.

4.4 Correlation with Human Judgements

Although recently proposed metrics have been
shown to be highly correlated with human judg-
ments on news summarization in terms of factuality
(Kryscinski et al., 2020; Yuan et al., 2021), no pre-
vious work has studied the transferability of these
metrics to dialogue summarization. We seek to an-
swer this question by computing the correlation of
the automatic metrics in Table 1 with the human
annotations discussed in §4.2. Using Kendall’s Tau
(Kendall, 1938) as the correlation measure, the re-
sults are summarized in Table 4. We observe that:
(1) BARTSCORER is the most consistent and re-
liable metric across the three dimensions. It per-
forms the best in RECALL on both datasets, indicat-
ing that BARTSCORER is most suitable for mea-
suring how well a model resolves the missing in-
formation issue in dialogue summarization. (2) Al-
though a large number of invalid questions and an-
swers are generated, QUALS is the best metric for
assessing PRECISION overall. (3) FACTCCF and
FACTCCR are two of the worst metrics in general.
This could be explained by the fact that FACTCC
constructs negative samples with some semanti-
cally variant transformations. However, these trans-
formations may not be comprehensive enough to
cover all cases. Hence, the poor transferability of
FACTCC on these two datasets.

518



DIALOGSUM SAMSUM

Metric RECALL PRECISION FAITHFULNESS RECALL PRECISION FAITHFULNESS

ROUGE-LF 23.50 24.21 10.29 6.07 10.24 -0.75
ROUGE-LR 23.46 2.51 4.24 29.52 9.61 17.88
BARTSCOREF 18.35 25.94 3.17 15.50 8.00 10.69
BARTSCORER 26.48 14.87 9.25 32.10 9.68 24.11
FACTCCF 6.15 6.93 1.19 -3.43 5.12 -2.28
FACTCCR 4.79 6.86 10.56 4.13 10.32 -1.43
QUALS 14.23 23.61 -0.83 1.55 15.35 4.50
QAFACTEVAL 14.06 16.20 16.80 5.03 2.83 6.26

Table 4: Correlation (%) of automatic metrics with human judgements. We first convert human evaluation results
and automatic metric scores into a scale of {-1, 0, 1}, which corresponds to {LOSE, TIE, WIN}. Then, Kendall’s
Tau (Kendall, 1938) is used to compute the correlation between two sequences.
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Figure 4: Remaining challenges.

4.5 Remaining Challenges

We analyzed the remaining errors by comparing
100 generated summaries with corresponding refer-
ence summaries on the SAMSUM datasets using
the categories of factual errors defined in Tang et al.
(2022). The results are shown in Figure 4. We ob-
serve that missing information still accounts for the
largest portion of factual errors, even though our ap-
proach significantly exceeds prior methods in miti-
gating this issue. This reflects that this issue is chal-
lenging to tackle and that there is still a great op-
portunity to improve the reduction of missing infor-
mation. As a comparison, we manually inspected
outputs of BART-LARGE using the same 100 dia-
logues as input. We found 42 cases where informa-
tion is missing from the dialogue summaries pro-
duced by BART-LARGE. This observation further
confirms the effectiveness of SWING in addressing
insufficient coverage. In addition, redundant infor-
mation is another major source of errors. Although
we have shown in §4.2 that the additional informa-
tion generated by SWING is likely still faithful to
the input dialogue, compactness is one of the im-
portant qualities of a summary. This can be im-
proved by using NLI to guide the model to avoid
generating extra information. Other common mis-
takes are wrong reference and object errors, both
of which can be addressed with the self-supervised

loss discussed in Tang et al. (2022).3

5 Related Work

Dialogue Summarization Early work on dia-
logue summarization focus on the AMI meeting
corpus (McCowan et al., 2005) due to the lack of
dialogue summarization data. These studies en-
hance summarization performance by leveraging
features of conversational data, such as dialogue
act (Goo and Chen, 2018), visual features (Li
et al., 2019), and the relationships between sum-
mary and dialogue (Oya et al., 2014). Later, Gliwa
et al. (2019) released the SAMSUM dataset, the
first large-scale dialogue summarization dataset,
enabling abstractive summarization research on ca-
sual chat dialogue. With the rise of large language
models (LMs), recent work focuses on improving
the controllability of sequence-to-sequence mod-
els built upon large LMs. For instance, Wu et al.
(2021) proposes to utilize a summary sketch to
control the granularity of the summary generated.
Liu and Chen (2021) conditions the generators
with person name entities to control which people
to include in the generating summary. Chan et al.
(2021) improves controllability by formulating
the summarization task as a constrained Markov
Decision Process.

Factual Consistency Enhancement While fac-
tuality has been widely explored in the field of
fact-checking and fake news detection (Thorne
et al., 2018; Wadden et al., 2020; Huang et al.,
2022b; Shu et al., 2018; Pan et al., 2021; Huang
et al., 2022a), factual inconsistency remains a ma-
jor challenge for abstractive summarization. One
line of work attempts to improve the faithfulness of

3This analysis is not comparable to results reported in Tang
et al. (2022) due to differences in the sampled examples.
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the generated summary with a separate correction
model that corrects the errors made by the summa-
rization model (Dong et al., 2020; Cao et al., 2020;
Fabbri et al., 2022b) or directly fix factual incon-
sistencies in the training data (Adams et al., 2022).
Another line of work employs auxiliary loss func-
tions to improve models’ representations or discour-
age the model from generating unfaithful outputs
(Cao and Wang, 2021; Chen et al., 2021a; Nan et al.,
2021; Tang et al., 2022). The main advantage of
these approaches is the efficiency in inference time.

Some studies have attempted to use NLI to de-
tect factual inconsistency in generated summaries.
Early approaches rely on out-of-the-box NLI mod-
els, which did not yield satisfactory results (Falke
et al., 2019). Barrantes et al. (2020) improved the
detection accuracy by using an NLI model fine-
tuned on the Adversarial NLI dataset (Nie et al.,
2020). Laban et al. (2022) addresses the mismatch
issue in input granularity between NLI datasets
and inconsistency detection by passing sentence
pairs as inputs instead of document-summary pairs.
Kryscinski et al. (2020) and Yin et al. (2021) trains
document-sentence entailment models to address
the granularity mismatch issue. Utama et al. (2022)
introduces a controllable generation framework
that generates document-level NLI training data for
identifying factual inconsistency. Our work lever-
ages an NLI model to guide the dialogue summa-
rization model to recover missing information.

6 Conclusion

We have proposed SWING, a dialogue summariza-
tion framework that generates summaries with mit-
igated missing information and improved faithful-
ness. To instruct the model to generate missing con-
tent from the reference summaries and to differen-
tiate factually consistent generated sentences from
their inconsistent counterparts, we propose two
losses based on NLI. Experimental results on the
DIALOGSUM and SAMSUM datasets showed that
our approach achieves significantly higher faithful-
ness and coverage, while still maintaining concise-
ness, compared to prior methods. In addition, we
measure the correlation between the reported au-
tomatic metrics and human judgments to provide
insight into the most suitable metric for evaluating
the coverage and factuality of dialogue summaries
for future research.

7 Ethical Considerations

We acknowledge that the use of large language
models pre-trained on the Web could lead to biased
outputs. We did find out that our model may some-
times generate the incorrect pronouns for neutral
names. For example, in Figure 1, Charlee is being
referred to as a male in the generated summary,
while Charlee is actually a female as shown in the
reference summary. Such an issue is often caused
by under-specified context (e.g. Charlee’s gender
is not mentioned in the input dialogue). Fortu-
nately, we found that such an error accounts for
< 1% of the total outputs from our framework and
the issue can be largely alleviated when enough
context is provided.

8 Limitations

While our proposed approach is effective in mitigat-
ing missing information, this issue is still far from
resolved, as shown in Figure 4. Significant effort
is needed to ensure dialogue summarization mod-
els produce completely factual content. In addition,
our method works as we found that most of the ref-
erence summaries in the two datasets we used are
faithful to the corresponding dialogue. The pro-
posed method may not work on other summariza-
tion datasets, such as XSum, which contains hallu-
cinations in about 70% of the reference summaries
(Maynez et al., 2020).
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A Dataset Statistics

We present the detailed statistics of DIALOGSUM

and SAMSUM in Table 5.

Dataset # Dialogues Avg. Dialogue Words Avg. Summ. Words

DIALOGSUM 13,460 187.5 31.0
SAMSUM 16,369 124.1 23.4

Table 5: Statistics of DIALOGSUM and SAMSUM. We
use the NLTK tokenizer to compute word counts for
both datasets.

B Human Evaluation Details

In this section, we describe the details of our hu-
man evaluation. We recruit AMT workers from the
United States for ensuring language fluency. Quali-
fication requirements are set such that only work-
ers who have an acceptance rate greater than 99%
and have more than 10,000 accepted HITs in the
past are allowed to work on our annotation task.
To further ensure annotation quality, we conducted
two rounds of annotations. In the first round, we
launched 100 HITs to select high-quality annota-
tors in the first round. 8 qualified annotators are se-
lected to enter the second round to conduct the re-
maining evaluation. We set the reward to $0.8 per
HIT to encourage experienced annotators to partic-
ipate. Our annotation interface is displayed in Fig-
ure 5.

For each HIT, annotators are provided with a
piece of dialogue and a corresponding reference
summary as well as two summaries generated from
different systems, demonstrated on the left seg-
ment of the interface. Based on the summaries and
the dialogue, annotators are tasked to answer three
questions shown on the right segment of the inter-
face, each of which corresponds to RECALL, PRE-
CISION, and FAITHFULNESS. They need to deter-
mine which summary is better with regard to each
prompt.

C Comparison with Other Data
Augmentation Methods

We compared our MIXANDMATCH summary
construction technique with other data aug-
mentation methods, including back transla-
tion (BACKTRANSLATE) and paraphrasing
(PARAPHRASING). For back translation, we use
mBART-50 (Tang et al., 2020) to translate a sum-
mary from English to German and then back to En-
glish. For paraphrase generation, we use this open

source package4. The experimental results are
summarized in Table 6. Training with MIXAND-
MATCH summaries achieves the highest scores on
most metrics, indicating that our proposed method
is the most effective in improving the factuality of
the generated summaries.

D Hardware and Software configurations

All experiments are conducted on a Linux machine
with NVIDIA V100. We use PyTorch 1.11.0 with
CUDA 10.1 as the Deep Learning framework and
utilize Transformers 4.19.2 to load all pre-trained
language models.

E Validation Set Performance

We report the validation set performance of our
proposed model in Table 7.

F Number of Parameters

We do not introduce additional parameters to the
backbone language model, BART-LARGE. Dur-
ing training time, the number of parameters equals
to the sum of the number of parameters in BART-
LARGE and ROBERTA-LARGE. In inference time,
since we do not need the NLI component, the num-
ber of parameters is the same as that of BART-
LARGE.

G Scientific Artifacts

The licenses for all the models and software
used in this paper are listed below in parentheses:
BART (MIT License), FACTCC (BSD-3-Clause
License), QAFACTEVAL (BSD-3-Clause License),
BARTSCORE (Apache License 2.0), QUALS
(MIT License), py-ROUGE (Apache License 2.0),
NLTK (Apache License 2.0).

4
https://github.com/Vamsi995/

Paraphrase-Generator
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Figure 5: MTurk UI for our human evaluation.

DIALOGSUM SAMSUM

Model RLF RLR BSF BSR FCF FCR QS QFE RLF RLR BSF BSR FCF FCR QS QFE

MIXANDMATCH 51.53 59.27 -2.012 -1.901 82.90 85.86 -1.130 2.399 49.73 53.95 -2.185 -2.143 63.47 63.15 -0.886 2.027
BACKTRANSLATE 50.41 58.22 -2.012 -2.032 83.20 84.23 -1.230 2.245 49.02 52.93 -2.234 -2.159 64.69 62.10 -1.230 1.984
PARAPHRASING 50.32 59.22 -2.133 -1.936 82.20 87.62 -1.198 2.333 49.23 53.94 -2.320 -2.178 64.78 63.98 -1.130 2.015

Table 6: Performance comparison on DIALOGSUM and SAMSUM with other positive data augmentation methods.

DIALOGSUM SAMSUM

Model RLF RLR BSF BSR FCF FCR RLF RLR BSF BSR FCF FCR

SWING 48.45 51.27 -2.149 -2.169 71.36 70.65 50.61 53.74 -2.212 -2.134 64.27 64.56

Table 7: Validation set performance.
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Abstract

Multilingual machine translation (MMT)
benefits from cross-lingual transfer but is a
challenging multitask optimization problem.
This is partly because there is no clear
framework to systematically learn language-
specific parameters. Self-supervised learning
(SSL) approaches that leverage large quantities
of monolingual data (where parallel data is
unavailable) have shown promise by improving
translation performance as complementary
tasks to the MMT task. However, jointly
optimizing SSL and MMT tasks is even
more challenging. In this work, we first
investigate how to utilize intra-distillation to
learn more language-specific parameters and
then show the importance of these language-
specific parameters. Next, we propose
a novel but simple SSL task, concurrent
denoising, that co-trains with the MMT task
by concurrently denoising monolingual data on
both the encoder and decoder. Finally, we apply
intra-distillation to this co-training approach.
Combining these two approaches significantly
improves MMT performance, outperforming
three state-of-the-art SSL methods by a large
margin, e.g., 11.3% and 3.7% improvement on
an 8-language and a 15-language benchmark
compared with MASS, respectively1.

1 Introduction

Multilingual machine translation (MMT) (Aharoni
et al., 2019; Arivazhagan et al., 2019) comes
with the problem of designing architectures
where certain parameters are shared and certain
parameters are more language-specific. In order
to mitigate negative interference across languages,
recent studies have investigated language-specific
parameters, including searching for more language-
specific parameters (Lin et al., 2021), or adding
extra language-specific components to the original

Work done during an internship at Meta AI Research
1Code is released at https://github.com/

fe1ixxu/CD_ID_MMT.

Figure 1: Concurrent denoising is a complementary task
to the MMT task. Both tasks are applied with intra-
distillation, where we forward pass model twice for the
translation and masked inputs and each time we disable
different subsets of parameters (illustrated by different
colors). Then, for each task, we not only minimize
the difference between the target and two outputs (e.g.,
minimize difference(P1, TP ) and difference(P2, TP )
in the MMT task), we also minimize the difference
between two translated outputs as well as two denoised
outputs (e.g., minimize difference(P1, P2) for MMT).

model (Zhang et al., 2021; NLLB Team et al.,
2022), or even utilizing language-specific pre-
trained language models (Xu et al., 2021;
Yarmohammadi et al., 2021). All these studies
indicate the importance of language-specific
parameters. In this work, we first want to
encourage parameters to have more language-
specific attributes given a fixed model size.

The difficulty of scaling MMT to low-resource
and long-tail languages arises due to the scarcity of
abundantly available parallel aligned data. Previous
works (NLLB Team et al., 2022; Siddhant et al.,
2022; Kim et al., 2021; Wang et al., 2020; Siddhant
et al., 2020) try to tackle this by collecting
massive amounts of monolingual data and using
various types of self-supervised learning (SSL)
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objectives, such as denoising AutoEncoder (DAE)
(Liu et al., 2020) or Masked Sequence to Sequence
(MASS) (Song et al., 2019) as auxiliary tasks to
co-train with the MMT task, to compensate for the
scarcity of parallel data for low-resource languages.
Following this line, we secondly aim to propose a
more effective SSL objective.

With the goal of learning language-aware MMT
models and designing more effective SSL methods
for MMT, we introduce two approaches. The
first approach is Intra-Distillation (ID) (Xu et al.,
2022), which performs a forward pass through
the model K times2, and in each pass disables
a different set of parameters. This enforces
consistent contributions between these disabled
parameters by minimizing the difference between
the K outputs. ID was originally proposed
by Xu et al. (2022) to achieve a balanced
parameter contribution in a model. Here, we
study the effectiveness of ID in learning language-
specific parameters for MMT models. Next, we
introduce Concurrent Denoising (CD) which is
an auxiliary self-supervised task jointly trained
with the MMT task. CD predicts the same
masked sentences both on the encoder and decoder
side with a shared projection layer to facilitate
the consistent understanding between encoder
and decoder representations. We show that CD
outperforms several state-of-the-art SSL methods
for translation. Finally, we apply ID to our co-
training scheme to further improve the MMT
performance by learning more language-specific
parameters. The overall framework is illustrated in
Figure 1 and we summarize our main contributions
below.

• We propose a method to quantify the degree
of language-specificity of all parameters
(Section 2) and perform a thorough analysis
to demonstrate that intra-distillation helps
the model learn more language-specific
parameters. These parameters contribute
more towards a specific language to improve
the overall model generalization performance
(Section 3).

• We propose the concurrent denoising SSL
method and demonstrate its improvements
over other existing SSL objectives for MMT.
Moreover, we introduce a co-training method
of MMT and CD with the help of intra-

2We use K = 2 in this work.

distillation and shows the strong effectiveness
of ID in improving MMT+SSL multi-task
optimization (Section 4).

• We conduct extensive experiments on a 8-
language dataset and a larger 15-language
multilingual dataset, and demonstrate that
MMT with concurrent denoising and intra-
distillation outperforms multiple strong state-
of-the-art methods (Section 5).

2 Preliminary

2.1 Quantify Language-Specific Parameters
Parameter sensitivity is a measure of the impact
on the loss when a specific parameter of a model
is zeroed-out. It is widely used in pruning as
importance score (Ding et al., 2019; Molchanov
et al., 2019; Lubana and Dick, 2021). A parameter
can express different sensitivities depending on
the language of the input data. Those parameters
that have high sensitivity to a specific language
but low sensitivity to others, are language-specific
parameters. We define the ith parameter in a model
parameterized by Θ as θi ∈ R. We further
define Θi = [0, · · · , 0, θi, 0, · · · , 0] ∈ R|Θ| and
Θ−i = [θ1, · · · , θi−1, 0, θi+1, · · · , θ|Θ|] ∈ R|Θ|.
The sensitivity of the ith parameter given input
batch bl from language l is formulated as

S(θi, bl) = |L(Θ, bl)− L(Θ−i, bl)|, (1)

whereL(·) is the loss function given the input batch
and parameters. Then, we use a first-order Taylor
decomposition to approximate the sensitivity of
any arbitrary parameters. Equation 1 then becomes

S(θi, bl) ≈ |ΘT
i ∇ΘL(Θ, bl)|, (2)

where ∇ΘL(Θ, bl) is the gradient of the loss
with respect to the model parameters. In our
implementation, we randomly pick 500 batches
and feed them to the model to retrieve the gradients
and compute the average sensitivity. We then have

S(θi,Bl) ≈
1

|Bl|
∑

bl∈Bl
|ΘT

i ∇ΘL(Θ, bl)|, (3)

where Bl is a set containing 500 random bl batches.
Now, we propose to quantify the degree of

language-specificity of θi with respect to language
l by measuring the relative sensitivity difference
between language l and the other languages as

D(θi, l) =
S(θi,Bl)− S(θi,B−l)
S(θi,B−l) + σ

, (4)
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where B−l represents the set composed of mixed
batches from all training languages except for the
language l, and σ is a very small positive constant3.
The larger D(θi, l) is, the more language-specific
θi is to language l.

2.2 Intra-Distillation
A model with more balanced parameter sensitivity
distribution shows better generalization (Liang
et al., 2022). Xu et al. (2022) propose intra-
distillation (ID) as an effective task-agnostic
training method, aiming to encourage all
parameters to contribute equally, which improves
performance when model size is fixed. However we
argue that, in the multilingual setting, ID actually
helps the model learn more language-specific
parameters resulting in improved performance.
Given an input batch, ID needs to forward pass
the model K times to obtain K outputs and each
time a random subset of parameters is zeroed out.
The core idea of ID is to minimize the difference
of these K outputs to approximate minimizing
the contribution gap of the parameters that are
zeroed-out, because the K outputs are forced to
be the same with different zeroed parameters. Let
{p1, · · · , pi, · · · , pK} denote the K outputs. Note
that the outputs are probability distributions in the
translation and denoising task. The ID loss is then
formulated by the X-divergence (Xu et al., 2022)
to minimize the difference of K outputs as

Lid =
1

K

K∑

i=1

KL(pi ∥ p̄) +KL(p̄ ∥ pi)

where p̄ =
1

K

K∑

i=1

pi

(5)

Let the original task loss be Li for the ith pass.
Then, the total loss is a combination of the original
task losses and ID loss, given as

min
1

K

K∑

i=1

Li + αLid (6)

where α is a hyper-parameter to control the strength
of ID. Similar to Xu et al. (2022), we use dropout to
simulate zeroed-out parameters in all experiments.

Although the explanation for better performance
after using ID is that the model parameters
become more balanced, it is unclear how parameter
contributions to different languages change after

3σ is 1e-8 in our implementation.

applying ID in a multilingual (multitask) setting.
For instance, do parameters become more language-
agnostic and shareable across all languages, or
do they become more language-specific? We
investigate this in more details in Section 3.2.

3 Language-Aware MMT Models

In this section, we study how parameters can
be prompted to be more language-specific by
applying intra-distillation, which improves the
model generalization performance. Specifically,
certain parameters become more language-specific
and tend to contribute more to their specific
language and less to others. We demonstrate
the importance of language-specific parameters by
showing how much they can contribute in pruning
experiments. We begin our analysis from a case
study on MMT experiments with an 8-language
dataset (M8), and then scale up our experiments
to 15 languages (M15) with larger data size in
Section 5. Here, we show results and analysis
on xxx→eng directions. Similar discussions for
eng→xxx directions are shown in Appendix A.

3.1 Experiments on Intra-Distillation

Dataset and Training We train MMT models
with and without ID on the M8 dataset4. M8
is composed of Nigerian Fulfulde (fuv, 18K
parallel sentences), Kimbundu (kmb, 82K), Ganda
(lug, 278K), Chewa (nya, 693K), Swahili (swh,
2.1M), Umbundu (umb, 193K), Wolof (wol, 9K)
and Zulu (zul, 1.2M). Datasets are extracted
from the primary bitext used by the NLLB-200
model (NLLB Team et al., 2022). For ID, we
pass the model twice (K = 2) considering the
computational cost, and set α as 5 suggested by
Xu et al. (2022). We use FLORES-200 as our
dev and test sets (NLLB Team et al., 2022). Our
model training is based on the Transformerbig
architecture (Vaswani et al., 2017) with 32K
vocabulary jointly trained by SentencePiece (Kudo

4The languages were selected in order to have a realistic
dataset reflecting a specific use case. Multilingual training is
crucial for languages that are low-resource, as is the case
for many languages of Africa. We chose two different
language groupings from the African continent: Benue-
Congo languages (Kimbundu, Ganda, Chewa, Swahili,
Umbundu, Zulu) and North-Central Atlantic languages
(Nigerian Fulfulde, Wolof). While these languages may all
belong to the Atlantic-Congo family, this is an extremely
large, varied, and under-researched family, with Glottolog
recording over 1,400 languoids in it – compare this to under
5̃90 languoids recorded for the Indo-European family.
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and Richardson, 2018). We report sacreBLEU
scores (spm tokenizer) (Post, 2018).

Results Following NLLB Team et al. (2022), we
categorized a language as low-resource if there are
fewer than 1M parallel sentences, and as very low-
resource if fewer than 100K (very low-resource
is not the subset of low-resource). Otherwise, the
language is considered as high-resource. We report
the average BLEU scores for each of the three
categories. In Table 1, we show that MMT with
ID outperforms the regular MMT model by a large
margin on all three categorizes by +1.21 BLEU
averaged across all languages.

Method High Low Very Low All
Regular 31.70 12.57 6.92 15.94
Intra-Distillation 33.30 13.63 8.05 17.15

Table 1: M8 results on xxx→eng comparing regular
MMT and MMT with ID. We observe that MMT with
ID outperforms regular MMT by a significant margin.

3.2 Language-Specific or Language-Agnostic?
Next, we study whether parameter contributions
are more language-specific or just shareable across
all languages after ID. Given the ith language li,
we compute the sensitivities (Equation 3) of all
parameters and flatten them into a list. Then, we
calculate the Pearson correlation coefficients (PCC)
pij between sensitivity lists of any arbitrary pair of
languages li and lj . A lower pij indicates that there
are more contribution (sensitivity) disagreements
between languages li and lj . We plot a heat map
to visualize pij for every language pair. Taking
into account that the top 10% parameters usually
dominate the contribution (Xiao et al., 2019; Sanh
et al., 2020), we consider the performance of two
groups of parameters, high-sensitive (top 10% most
sensitive) and low-sensitive (the remaining 90%)
parameters, respectively. Figure 2 shows that all
pij in both groups become lower, indicating there
is lower sensitivity similarity between different
languages for the same parameters, which means
the model becomes more language-specific after
ID. For instance, sensitivity similarity between
zul and wol drops from 0.67 to 0.57 in the
low-sensitive group. However, the pij of low-
sensitive parameters drops much more than high-
sensitive ones, and high-sensitive parameters
still hold high similarity (over 0.9). Thus,
low-sensitive parameters mostly have language-
specific properties while high-sensitive parameters

tend to play ‘language-agnostic’ roles. Overall,
parameters are more language-specific after ID5. In
fact, learning more language-specific parameters
through ID in MMT leads to better performance as
seen in Section 3.1. These findings align with the
results of recent studies which investigate language-
specific parameters (Lin et al., 2021; Zhang et al.,
2021; NLLB Team et al., 2022), indicating the
importance of language-specific parameters.

3.3 The Importance of Language-Specific
Parameters

Here, we study the reason why language-specific
parameters are important and how much they
contribute. To investigate this, we first measure
the degree of language-specificity of all parameters
based on Equation 4. We explore the contribution
of language-specific parameters with respect to
the BLEU scores. Then, we conduct one-shot
unstructured pruning with respect to BLEU scores
in order of the degree of language-specificity for
both models with and without ID, starting with
the least language-specific parameters6. As more
parameters are pruned, a slower performance drop
means that a higher contribution comes from
the remaining more language-specific parameters.
Figure 3 shows the average BLEU drop across
8 languages versus the percentage of parameters
pruned. After pruning the less language-specific
parameters, the rest of the more language-specific
parameters in the model with ID are able
to preserve better performance, indicating the
importance of more language-specific parameters.

4 Proposed Self-Supervision Method

We extend our study of language-awareness to
MMT models co-trained with self-supervised
objectives that have been shown to improve
translation performance. We first propose a simple
but effective self-supervised learning objective,
concurrent denoising (CD), and then investigate
the effectiveness of ID in helping improve multi-
task optimization challenges of co-training CD and

5The overall parameter contribution is still more balanced
as claimed in Xu et al. (2022). We leave further discussion on
this to Appendix B.

6Note that, as shown in Figure 2b, the 10% most sensitive
parameters are highly language-agnostic. They are easy
to classify as less language-specific and can be pruned,
but pruning them would lead to near-random performance
(BLEU≈0), making it hard to evaluate the importance of more
language-specific parameters. Thus, we keep the top 10%
sensitive parameters and prune the rest of parameters that
display a more language-specific behavior.
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(a) 90% low-sensitive parameters

(b) 10% high-sensitive parameters

Figure 2: PCC between the lists of parameter sensitivity of every language (left for regular MMT and right for MMT
with ID). We show contribution similarity of two groups of parameters, i.e., top 10% high-sensitive parameters and
the remaining 90% parameters. The lower score between two languages represents the less similarity of parameter
contributions for these two languages, which means more contribution disagreements and parameters are more
language-specific.

Figure 3: Change in average xxx→eng translation
performance across 8 languages versus pruning ratio.
Models are pruned starting with the least language-
specific parameters.

MMT tasks together by learning more language-
specific parameters.

4.1 Concurrent Denoising
Self-supervised learning objectives usually involve
sentence denoising either on the encoder side, such

as MLM (Devlin et al., 2019), or on the decoder
side, such as DAE (Liu et al., 2020). Jointly
denoising sentences on both the encoder and the
decoder sometimes is better than a single denoising
objective (Wang et al., 2020; Kim et al., 2021)
for MMT, but the training cost is doubled as we
need to calculate the loss for the same monolingual
sentence twice (masked in two different ways). We
propose concurrent denosing, a self-supervised
task that denoises a single masked sentence both
on the encoder and decoder sides, which not only
reduces the training time but also improves the
language understanding of the model to result in
better MMT performance.

We add noise to the monolingual data by whole-
word masking (Devlin et al., 2019), where we
randomly replace rm% words with the special
token <mask>. During the replacement process,
each word has a 10% chance not to be masked,
and another 10% chance to be replaced with other
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Figure 4: Concurrent denoising. In the example input
sentence ‘X1 X2 X3’, the token X2 is masked. The
encoder and decoder share the same output projection
layer and target tokens to predict the masked token. We
only calculate the loss for the masked token prediction.
PD represents the target token loss padding and LG is a
special language token.

random tokens. The encoder and decoder use
a shared output layer to reconstruct the original
sentence. The loss for the encoder and decoder side
are denoted as Le and Ld respectively7. The total
training loss combining translation lossLMMT and
two self-supervised losses is

L = LMMT + Le + Ld. (7)

Concurrent denoising is illustrated in Figure 4. Two
key differences between our concurrent denoising
method and regular MLM or DAE methods are
worth highlighting.

Shared Output Projection Since the decoder
has an output projection layer while the encoder
does not, Wang et al. (2020) train the encoder
with MLM by using an additional projection layer.
However, we utilize the decoder projection layer
as a shared layer for both encoder and decoder
to reconstruct the sentence, which significantly
reduces model parameters. This is because the
projection layer is usually large when we have a
large vocabulary size. We show the effect of using
a shared projection layer in Appendix C.

Shared Target Tokens Since the output
representations of the encoder and decoder are
fed to the same projection layer, we want them to
predict the same target token at the same position
for the stability of the projection layer training.
To achieve this, we carefully design our language
token positions. Instead of only prepending a
special language token at the beginning of the
source sentence (Johnson et al., 2017), we append

7Unlike DAE training on the decoder side, we zero out the
losses which predict non-masked tokens.

the special language token on the source side and
also prepend it on the decoder side (As shown in
Figure 4). This design also applies to MMT. In this
way, we can avoid the encoder and decoder from
predicting the same token at different positions.

4.2 Concurrent Denoising with
Intra-Distillation

We investigate whether ID helps concurrent
denoising to improve overall performance. We
apply ID to the co-training of CD and MMT tasks.
Following Equation 6 and 7, our final loss is

L =
1

K
(
K∑

i=1

LMMTi +
K∑

i=1

Lei +
K∑

i=1

Ldi)+

α(Lid_MMT + Lid_e + Lid_d), (8)

where Lid_MMT , Lid_e and Lid_d respectively
represent the ID loss for translation, encoder
denoising and decoder denoising (i.e., Lid_e
minimizes the difference of the K encoder outputs
based on Equation 5, etc.). The i index in Lei ,
LMMTi and Ldi indicates that these losses are for
the ith forward pass.

5 MMT+SSL Experiments

5.1 Baselines
We consider three strong baselines. All baselines
are our own implementation following the settings
from the original papers.

DAE NLLB Team et al. (2022) learn the effects
of the causal language modeling (LM) and DAE
objectives (Liu et al., 2020). Since they find that
DAE performs better than LM or LM+DAE, we
only compare our methods with the DAE objective.

DAE+MLM Wang et al. (2020) study a multi-
task learning framework which jointly trains
the MMT, MLM and DAE objectives, where
MLM and DAE reconstruct sentences noised by
different masking methods. Kim et al. (2021) also
investigate the effectiveness of ELECTRA (Clark
et al., 2020). They conclude that DAE+MLM is
better than DAE+ELECTRA.

MASS Siddhant et al. (2020) and Siddhant
et al. (2022) utilize MASS (masked sequence
to sequence pre-training) (Song et al., 2019) to
improve the MMT performance. Similar to MLM
which predicts masked tokens on the encoder side,
MASS masks a fragment of a sentence and predicts
the masked fragment but on the decoder side.
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(a) M8 dataset

(b) M15 dataset

Figure 5: The statistics of monolingual and parallel
data for M8 and M15 are presented. The languages are
arranged in descending order of parallel data size.

5.2 Datasets
In addition to the M8 dataset described in Section
3.1, we also build a larger dataset (M15), covering
15 languages. In composing this dataset, we take
into account linguistic diversity and data size. The
resulting dataset has languages from 6 linguistic
families and a balanced number of high-resource,
low-resource and very low-resource languages.
Detailed information on this dataset is in Appendix
D. We randomly sample at most 3M monolingual
samples per language for M8, and 15M for M15.
The distribution of monolingual data and parallel
data for M8 and M15 is shown in Figure 5. Note
that we also use parallel data for self-supervised
learning, so the true monolingual data size includes
bitext data. We use the FLORES-200 dataset for
evaluation. All datasets come from the primary
bitext and monolingual data used for the NLLB-
200 model (NLLB Team et al., 2022).

5.3 Data Sampling
We use a data sampling temperature of T = 1
suggested by NLLB Team et al. (2022) to train on
the MMT objective. For monolingual data, we use
a temperature of 10

7 to balance the SSL training, as
suggested by Liu et al. (2020). During co-training,
we mix the two sources in an equal ratio (50%
monolingual data (including bitext used for SSL

Method High Low Very Low All
M8 results
Regular MMT 31.70 12.57 6.92 15.94
+DAE (NLLB Team et al., 2022) 32.69 13.38 7.57 16.75
+DAE+MLM (Wang et al., 2020) 33.05 13.93 8.20 17.27
+MASS (Siddhant et al., 2020) 32.64 13.03 6.79 16.37
+CD (ours) 32.92 13.94 8.38 17.29
+CD+ID (ours) 35.16 15.18 9.18 18.69
M15 results
Regular MMT 39.87 35.20 24.45 33.17
+DAE (NLLB Team et al., 2022) 38.46 34.05 26.23 32.91
+DAE+MLM (Wang et al., 2020) 38.60 34.00 25.49 32.70
+MASS (Siddhant et al., 2020) 38.53 33.93 22.79 31.75
+CD (ours) 39.23 34.88 28.21 34.11
+CD+ID (ours) 39.58 35.53 29.43 34.85

Table 2: Overall xxx→eng BLEU for M8 and M15.

training) with self-supervision and 50% parallel
data).

5.4 Training and Evaluation Details

All experiments consider both the eng→xxx and
xxx→eng directions and use the Transformer
architecture (Vaswani et al., 2017). We use
Transformerbig (242M parameters, 6 layers,
16 heads, 1,024 hidden dimension, 4,096
FFN dimension) for M8 experiments. For
M15 experiments, we double the layers of
Transformerbig (418M parameters). We use a
vocabulary of size 32k for both M8 and M15 with
SentencePiece (Kudo and Richardson, 2018). The
batch size is 30K tokens. We warm-up for the
first 8K steps. We set the total training steps to
100K and 300k for M8 and M15 respectively, with
patience set to 10 for early stopping. We forward
pass the model twice (K=2) to conduct ID. We set
the ID weight α = 5. During concurrent denoising,
the masking ratio is set to rm = 30%. We also
show the effect of masking ratio in Appendix
E. During generation, we use beam search with
a beam size of 5 and a length penalty of 1.0.
All models are evaluated with sacreBLEU (spm
tokenizer).

Method High Low Very Low All
M8 results
Regular MMT 34.14 11.47 5.75 15.71
+DAE (NLLB Team et al., 2022) 34.35 11.41 5.79 15.74
+DAE+MLM (Wang et al., 2020) 34.48 11.45 5.20 15.64
+MASS (Siddhant et al., 2020) 34.02 11.53 4.75 15.46
+CD (ours) 34.87 11.50 5.90 15.94
+CD+ID (ours) 35.83 11.90 5.81 16.37
M15 results
Regular MMT 38.44 31.62 16.46 28.84
+DAE (NLLB Team et al., 2022) 37.46 30.86 18.39 28.90
+DAE+MLM (Wang et al., 2020) 37.99 30.98 18.05 29.01
+MASS (Siddhant et al., 2020) 38.19 31.20 17.88 29.09
+CD (ours) 37.74 30.94 19.04 29.24
+CD+ID (ours) 38.29 31.71 19.43 29.81

Table 3: Overall eng→xxx BLEU for M8 and M15.
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5.5 Results
The overall results for the xxx→eng and
eng→xxx directions are shown in Tables 2 and
3. For both M8 and M15, and both translation
directions, concurrent denosing is better than all
aforementioned baselines, and combining it with
ID further improves upon the baselines by an
even larger margin. For instance, our method
outperforms MASS by 11.3% and 3.7% on M8 and
M15 respectively, averaged across all languages
and directions. We also show the effectiveness of
ID on other objectives like DAE in Section 6.1, but
the results are subpar compared to CD+ID.

Aligned with the findings of Wang et al. (2020);
Kim et al. (2021), we observe that DAE+MLM is
better than DAE alone in M8 xxx→eng, but the
improvements become very minor when it comes
to M8 eng→xxx or when scaling to 15 languages.
MASS performs similarly or better than DAE in
the eng→xxx but worse in the xxx→eng.

In M15, high-resource languages perform
slightly worse with SSL methods compared to the
MMT only baseline, but improves other categories,
similar to the observations of NLLB Team et al.
(2022). It does not occur on M8, possibly due to the
smaller dataset size allowing for sufficient model
capacity to learn from additional monolingual data.

Note that the effectiveness of SSL such as DAE
and MASS is not as pronounced as reported by
Wang et al. (2020) and Siddhant et al. (2022).
However, it is necessary to consider the for domain
mismatch between the training and evaluation
data. As demonstrated by Siddhant et al. (2022),
a significant decline in performance can occur
when either monolingual or bitexts diverge from
the evaluation domain. In our study, the training
data is sourced from NLLB-200 and FLORES-200,
which encompasses a wide range of domains. we
hypothesize that this contributes to the observed
lessened effectiveness of SSL techniques in our
experiments.

6 Analysis

6.1 Ablation Study
The final loss, described in Equation 8, has 6 loss
terms. Except for the translation loss, we ablate the
relative contribution of all the other 5 loss terms
to the translation task performance. In Table 4,
we show the results of this ablation study on M8
xxx→eng directions. Method 1 is the regular
MMT model and method 2 is ID training only for

MMT (the same result as in Section 3.1). Method
3 is the same as the MMT+DAE method. With the

help of ID for the decoder denoising (method 4 )
and an additional ID for translation (method 5 ),
translation performance can respectively obtain
+0.41 and +0.98 BLEU on average compared to
3 . Note that method 5 is the MMT+DAE+ID

method. Compared to our MMT+CD+ID method,
it substantially underperforms our method (17.73
vs. 18.69), which shows that our method could
better stimulate the potential of ID. The results for
methods 6 , 7 and 8 indicate the effectiveness
of encoder denoising with CD and applying ID.
Overall, the translation performance improves by
including all the loss terms.

Method Avg. BLEU
1 LMMT 15.94
2 L′MMT + Lid_MMT 17.15
3 LMMT + Ld 16.75
4 L′MMT + L′d + αLid_d 17.16
5 L′MMT + L′d + α(Lid_d + Lid_MMT ) 17.73
6 LMMT + Le + Ld 17.29
7 L′MMT + L′e + L′d + α(Lid_d + Lid_e) 17.59
8 L′MMT + L′e + L′d + α(Lid_d + Lid_e + Lid_MMT ) 18.69

Table 4: Ablation study on loss terms. For simplicity,
we use L′ to represent the mean loss of K forward pass,
e.g., L′

e =
1
K

∑K
i=1 Lei .

6.2 Language-Specific Parameters for SSL

In Section 3, we observed that ID helps MMT learn
more language-specific parameters and improve
model generalization. We are also interested in
understanding 1) whether the model also learns
more language-specific parameters for the SSL
task (here we investigate CD), and 2) what is
the relationship of parameter contribution between
MMT and SSL tasks for the same language. We
use the xxx→eng direction of the M8 dataset as
an example to study these questions.

In Figure 6, we plot a heat map to illustrate the
PCC of all parameter sensitivities between every
language pair. As expected, parameter sensitivity
similarity becomes lower for all languages, which
means there are more language-specific parameters
when we train SSL methods with ID. For the
second question, in Figure 7 we show the parameter
sensitivity similarity between the MMT and CD
tasks for each language. The contribution similarity
becomes higher between the two tasks for every
language with ID. This is expected, since the losses
of MMT and CD have the same objective on the
decoder side, i.e., text generation conditioned on
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Figure 6: Parameter contribution similarity among all language pairs, evaluated by PCC for the CD task before (left)
and after (right) ID.

Figure 7: Parameter contribution similarity between
MMT and CD for each language with and without ID.

another text. This is also another reason why SSL
tasks can help multilingual translation.

7 Conclusions

We show extensive analysis that intra-distillation
training helps multilingual translation by learning
more language-specific parameters. We propose
concurrent denoising, improving upon multiple
state-of-the-art self-supervised learning methods.
Moreover, we demonstrate that applying intra-
distillation to the above co-training scheme offers
further improvements to translation performance.

Limitations

Although we show improvements using
our methods on multiple languages from
diverse language families on multilingual
machine translation, it should be noted that the
generalizability of our findings to other multi-task
learning settings, such as those involving the
combination of tasks such as named entity
recognition, part-of-speech tagging, and question
answering, remains uncertain. This is due to

the fact that our study primarily focused on the
utilization of intra-distillation to learn task-specific
parameters on multilingual machine translation
and did not investigate the aforementioned
tasks. Furthermore, with intra-distillation we
need to perform more than one forward pass,
leading to a trade-off between higher performance
and increased training time – which, for many
use-cases, could be arguably acceptable.
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A Analysis of Intra-Distillation for
eng→xxx

Method High Low Very Low All
Regular 34.14 11.47 5.75 15.71
Intra-Distillation 35.05 13.79 5.69 16.07

Table 5: M8 eng→xx results of regular MMT and
MMT with intra-distillation.

Similar to Section 3, the model with intra-
distillation outperforms the regular MMT model
by a large margin in the eng→xxx direction, as
shown in Table 5. We still use a heat map to
visualize the PCC of parameter sensitivity lists
among every language pair in the eng→xxx
direction. In Figure 8, we show that contribution
similarity becomes lower as well, which means
that the model also learns more language-specific
parameters.

Figure 8: PCC between the list of all parameter
sensitivities across every language in the M8
eng→xxx experiments. We compare the similarity
between MMT with and without intra-distillation.

We also evaluate the importance of these
language-specific parameters by following the
same settings in Section 3.3. We conduct one-
shot unstructured pruning, starting with the least
language-specific parameters. We again see that
the average BLEU scores of 8 languages from the
model trained with intra-distillation drop slower
after more parameters are pruned, indicating that
these language-specific parameters learned by intra-
distillation are able to preserve more performance.

B More Balanced Parameter
Contribution

We compute the sensitivity of all parameters
by feeding a set of batches B that contains all
language data in the M8 xxx→eng experiment.
We illustrate parameter sensitivity distribution in
Figure 10. Aligned with the findings in Xu et al.

Figure 9: Change of model performance averaged across
8 languages against increasing pruning ratio for the
eng→xxx translation task. Models are pruned starting
with the least language-specific parameters.

(2022), the distribution of parameter sensitivity
becomes more balanced after using ID.

Figure 10: Sensitivity distribution (violin plots aligned
with left y-axis) along with their standard deviation
(green curve aligned with right y-axis, lower means
more balanced parameter contribution). Note that we
also remove the top 1% highest-sensitive parameters to
ease the illustration.

C Ablation Study on Shared Projection
Layer

Since we use a shared projection layer for both
encoder and decoder denoising as well as for
translation to reduce the model size and save
memory, we investigate whether this sharing leads
to a performance drop. We conduct experiments
on M8 xxx→eng dataset. Table 6 shows that
our method with shared layer slightly outperforms
the one with separate output projection layers on
average.

D M15 Language Information

We give a full account of the 15 languages in the
M15 dataset in Table 7.
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Method High Low Very Low All
CD+ID (shared layer) 35.16 15.18 9.23 18.69
CD+ID (NOT shared layer) 35.09 15.04 9.28 18.61

Table 6: Comparison of concurrent denoising + intra-
distillation with and without using a shared projection
layer.

E Effect of Masking Ratio

We take MMT+CD+ID as our study case to
investigate the effect of masking ratio rm% on the
MMT performance. We conduct experiments on
M8 xxx→eng. Figure 11 shows that there is no
big performance change when we set mask ratio
between 0.3 and 0.6.

Figure 11: MMT performance change along with
masking ratio on the MMT+CD+ID method.

538



Language Language id Parallel Data Size Resource Level Language family Monolingual Data Size
Northern Sotho nso 526K Low Central Narrow Bantu 3.2M
Rundi run 454K Low Central Narrow Bantu 3.8M
Swati ssw 94K Very Low Central Narrow Bantu 1.4M
Indonesian ind 6.5M High Malayio-Polynesian 1.5M
Malay msa 1M High Malayio-Polynesian 15M
Tagalog tgl 1M High Malayo-Polinesian 15M
Bokmål (Norwegian) nob 238K Low North Germanic 2.9M
Icelandic isl 1M High North Germanic 15M
Faroese fao 4K Very Low North Germanic 1.2M
Slovene slv 15M High Southwestern Slavic 13M
Luxembourgish ltz 8K Very Low Western Germanic 5M
Limburgish lim 5K Very Low Western Germanic 8.4M
Catalan cat 634K Low Western Romance 15M
Galician glg 195K Low Western Romance 15M
Friulian fur 6K Very Low Western Romance 730K

Table 7: The information of 15 languages in M15 dataset.
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Abstract

Cloze tests play an essential role in language
assessment and help language learners improve
their skills. In this paper, we propose a novel
task called Cloze Quality Estimation (CQE) —
a zero-shot task of evaluating whether a cloze
test is of sufficient “high-quality” for language
assessment based on two important factors: re-
liability and validity. We have taken the first
step by creating a new dataset named CELA for
the CQE task, which includes English cloze
tests and corresponding evaluations about their
quality annotated by native English speakers,
which includes 2,597 and 1,730 instances in
aspects of reliability and validity, respectively.
We have tested baseline evaluation methods
on the dataset, showing that our method could
contribute to the CQE task, but the task is still
challenging. 1

1 Introduction

A cloze test (Taylor, 1953) is an efficient and
comprehensive tool in language assessment, and
thus it is widely used in language proficiency tests
(Passage and Questions in Table 1), which mea-
sure multiple language abilities of examinees simul-
taneously, for example, grammatical knowledge
(Rye, 1982; Alderson, 1979) and reading com-
prehension ability (Raymond, 1988; Klein-Braley,
1997). The most widespread format of the cloze
test is the multiple-choice word-level cloze test,
which consists of an incomplete passage with sev-
eral blanks and a series of questions, where each
question includes several options (four options in
the usual setting), requiring examinees to fill the
blanks by selecting words (or phrases) from options
that make the passage coherent.

The significantly high price of creating cloze
tests by experts has prompted automatic cloze gen-
eration methods (Goto et al., 2010; Sakaguchi

1The CELA dataset and code of baselines are
available at https://github.com/zz-zhang/
cloze-quality-estimation.

et al., 2013; Hill and Simha, 2016; Panda et al.,
2022). However, automatically generated cloze
tests do not always contribute well to language
assessment and suffer from low quality. In lan-
guage assessment, a reliable and valid cloze test
shows a high ability to measure examinees’ lan-
guage level (Bachman, 1985). Cloze question cre-
ation has two steps, word deletion and distractor
generation, with the latter greatly affecting the abil-
ity to measure language level. As indicated by (Xie
et al., 2018), some cloze tests, particularly automat-
ically generated cloze tests, are created coarsely
and cause two fatal issues in language assessment:
(1) these tests do not guarantee that the answer is
not ambiguous, which means there is a risk that
multiple options fit almost equally well into the
blank; (2) the test creation process considers less
about which aspect of the language phenomenon
is measured in the test; hence, such tests cannot
measure the examinee’s language level. These two
issues make the cloze test unsuitable for measuring
examinees’ language level. The first issue makes
the test unreliable (e.g., Question 4 in Table 1),
which means even if an examinee has enough lan-
guage knowledge to answer the test, the test might
report a wrong score to indicate that the exami-
nee lacks such knowledge. In other words, an un-
reliable cloze test cannot present the examinee’s
language level. The second issue makes the test
invalid (e.g., Question 3 in Table 1). An invalid test
cannot identify the aspect in which an examinee
lags in terms of language knowledge, which indi-
cates that educators cannot identify the knowledge
that the examinee has not acquired.

In this paper, we tackle the issues of evaluating
the appropriateness of cloze tests for language as-
sessment focusing on distractors. By following the
test design principle (ALTE, 2011), we define a
zero-shot task to evaluate cloze tests for language
assessment considering two aspects: reliability and
validity, which is called Cloze Quality Estimation
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Passage:
A policeman was walking along the street. In the doorway of a shop, a man was standing
in the __1__ light, with an unlighted cigar in his mouth. The policeman slowed down
and then walked up to the man. “I’m just waiting for a friend here,” the man said “It’s an
appointment __2__ twenty years ago.” The man struck a match and __3__ his cigar.
The light __4__ a pale face with a little white scar near his right eye. “Twenty years ago
tonight, when I said goodbye to Jimmy Wells, my best friend to start for the West to make
my fortune ...
Questions: Evaluation:
1. A. dark B. bright C. dim D. colorful (reliable, valid_grammar)
2. A. make B. makes C. making D. made (reliable, valid_reading)
3. A. is stopped B. lighted C. burning D. drop (reliable, not_valid)
4. A. formed B. illuminated C. relieved D. showed (not_reliable, not_valid)
... ...

Table 1: Example of cloze test and qualities for each question in CELA. The input consists of a passage with multiple
blanks and a series of questions (tuples of options). The expected output is evaluation tuples to indicate whether
the questions are reliable and valid (and what language ability is tested if valid). Underlined options are the correct
answers, which fit passage perfectly.

(CQE). In CQE, each question in a cloze test is
asked to be estimated, whether it is reliable and
valid. CQE provides a cloze as input (Passage
and Questions in Table 1) and requires estima-
tion of each question as output (Evaluation in
Table 1). We introduce a new test set called the
Cloze Estimation dataset for Language Assessment
(CELA) which includes a variety of cloze tests and
corresponding annotations. These cloze questions
are specifically designed for junior high-school stu-
dents in China. We prepared diverse English cloze
tests including expert-designed and rule-generated
tests and asked native English speakers to solve
them and annotate the quality of each question in
the two aspects of reliability and validity.

We also introduce baseline methods for the CQE
task: we designed option-aware methods that eval-
uate cloze questions by analyzing their options. We
tested the baseline methods with the CELA and com-
pared them against option-agnostic baselines. We
found that detection of unreliable questions is chal-
lenging and that all our baseline methods were wary
to label a question as unreliable. The framework
of our option-aware methods contributed to the va-
lidity evaluation, particularly when implemented
by DNN-based approaches, which outperformed
option-agnostic baselines significantly and showed
potential for improvement.

The main contributions of this work are summa-
rized as follows:

• We propose a new task of quality estimation

of cloze tests (CQE) for language assessment.
We design two sub-tasks: reliability evalua-
tion and validity evaluation.

• We create a new CQE dataset (CELA) for En-
glish learners, including annotations for both
expert-designed and automatically generated
cloze tests.

• We propose the first CQE methods consider-
ing the options of cloze questions. We report
the experimental results using rule-based and
DNN-based approaches.

2 Related Work

Language educators are capable of creating cloze
tests rationally; they select words to be blanked
and design distractors by their experience in lan-
guage education to improve reliability and validity.
CLOTH (Xie et al., 2018), SCDE (Kong et al.,
2020), and CEPOC (Felice et al., 2022) are col-
lections of human-created cloze tests, which are
highly evaluated by experts in terms of measuring
the English ability of examinees. However, design-
ing cloze tests by experts is costly and difficult to
generalize.

Automatic cloze generation methods could de-
crease the cost of creating cloze tests. To avoid gen-
erating useless tests in language assessment, these
methods focus on distractor generation, which af-
fects the quality of tests significantly. Previous
works have conducted trials designing good rules or
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machine learning models. Sakaguchi et al. (2013)
described a method of generating distractors for
assessing an English as second language (ESL)
learner’s ability to distinguish semantic nuances be-
tween vocabulary words. They could generate valid
questions, but these questions are domain-limited,
which is not easy to generalize to cloze tests for
human language assessment. The Children’s Book
Test (CBT) (Hill et al., 2016) deletes named entities,
common nouns, verbs, and prepositions and then
designs distractors having the same part of speech
(POS) as the deleted words to measure abilities in
reading comprehension and vocabulary. Because of
the naive distractor creation, the CBT method has
the risk of generating unreliable questions. Coniam
(1997); Goto et al. (2010); Correia et al. (2012);
Hill and Simha (2016); Jiang et al. (2020) explore
cloze test generation with various features, such
as n-gram frequency and POS tag, and attempt
to select deleted words and create distractors by
using discriminative models including conditional
random fields and support vector machine. Ad-
vanced distractor generation methods (Panda et al.,
2022) that employ large pre-trained language mod-
els (LMs) can provide more valid distractors. These
LMs produce better text representation that cap-
tures rich semantic information, and better text rep-
resentation allows generation methods to produce
more plausible distractors, which could measure
language abilities better. However, designing good
rules or models to improve the quality of cloze tests
is not that easy. Furthermore, these works claimed
they could generate better distractors, but it is diffi-
cult to perform comparisons to previous work. All
the works performed human evaluations using their
own metrics.

Crowdsourcing has been used to evaluate the
quality of cloze tests and explore factors that affect
quality (Skory and Eskenazi, 2010); workers were
required to fill appropriate words in an open cloze-
style sentence (a sentence with a blank, but without
providing options). Answers from workers were
used to calculate Cloze Easiness (Finn, 1977) to
indicate whether the sentence is usable for the test-
ing an examinee’s vocabulary. The Association of
Language Testers in Europe provides a manual for
developing a language test (ALTE, 2011), which
specifies that the statistics of a test’s results reflect
its reliability and validity. It asks various exam-
inees to answer a test and analyzes the statistics
of a question such as the accuracy and the answer

Expert-designed 
cloze tests

Cloze generation 
methods

Automatically-
generated cloze tests

📃

📃💻

🤔
Annotator

Reliable?
Valid?

Figure 1: Flow of creating CELA. Cloze generation meth-
ods use passages and blanks from expert-designed tests
to eliminate the effect of the word deletion strategy.

distribution. However, these evaluation methods
require human resources or experts, which is time-
consuming and sometimes difficult to obtain.

3 Cloze Quality Estimation

Motivated by related work, we propose the task of
evaluating the quality of the cloze test. We intro-
duce the definition of CQE task and CELA, our new
dataset designed specifically for the CQE task. Fig-
ure 1 shows the flow of creating CELA. We collected
expert-designed and automatically generated cloze
tests and asked native English speakers to annotate
whether these tests are reliable and valid.

3.1 Task Definition
First, we define a CQE task as follows. In a CQE
task, given an incomplete passage with blanks and
a series of questions with tuples of options, a qual-
ity estimation model should predict the quality of
the questions and return tuples to indicate whether
these questions are reliable and valid for language
assessment. Here, we formalize a CQE task as two
classification sub-tasks: reliability evaluation and
validity evaluation.

Reliability. In the reliability evaluation, given
a cloze passage with multiple questions (tuples
of options), we perform a binary classification of
whether the questions are reliable (reliable) or not
(not_reliable). In terms of reliability, if a cloze
question has more than one option that fits the con-
text perfectly, there is no guarantee that the ques-
tion can report a stable test score even when taken
by the same examinee. Thus, in the reliability eval-
uation, we define that if a cloze question has more
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than one correct answer, it is not reliable.

Validity. In the validity evaluation, we perform
a three-class classification of either the question
is valid for measuring grammatical knowledge
(valid_grammar), valid for measuring reading
comprehension ability (valid_reading), or invalid
(not_valid). In terms of validity, a valid question
should require examinees to use their language abil-
ity to distinguish the correct answer option from
distractors. If a question measures more than one
language ability, the question is considered to be
too simple to measure the language ability of the
examinee (Rankin, 1976). Thus, in the validity
evaluation, we define that if a question requires
the examinee’s single language ability (grammar or
reading comprehension) to distinguish the answer
option, the question is valid, otherwise it is invalid.

3.2 CELA data preparation

We collected English cloze tests from Chinese
senior-high-school examinations (Xie et al., 2018)
called CLOTH, which is expert-designed. To explore
whether automatically generated cloze questions
are sufficient for language assessment, we also
employed four automatically generated cloze tests
using previous generation methods: Randomized,
Hill, Jiang, and Panda. All generated tests were
based on the same cloze passages from expert-
designed tests, that is, these five settings share the
passages, blanks, and correct answers but have re-
spective distractors in questions.
Randomized is generated using a random sam-

pling method. In this method, we built vocabulary
from CLOTH and randomly selected words from the
vocabulary as distractor options.

Hill is generated using the same method of the
CBT dataset (Hill et al., 2016), which selects words
that have the same POS tag with the answer from
the vocabulary as distractors.
Jiang employs the method of Jiang et al. (2020),

which also selects words from the vocabulary but
considers more factors including POS tag, word
frequency, and spelling similarity. Their method is
designed for the Chinese cloze test, but we adapted
it to the English test.
Panda employs the method of Panda et al.

(2022), which uses round trip translation to para-
phrase a passage and align the paraphrased pas-
sages with the original one. They use aligned words
to the answer as distractor candidates and select
a distractor from candidates considering the syn-

onym and POS tag.
As a result, we collected and generated 150 cloze

tests including 3,000 questions 2.

3.3 CELA annotation

We hired Amazon Mechanical Turkers to annotate
the 3,000 questions. To ensure annotation qual-
ity, we required annotators to have approval rates
over 98% and be native English speakers living in
the United States. We also added attention checks
to avoid bots and irresponsible annotators. Each
question was annotated by three different annota-
tors. Table 2 shows examples of our annotation
task. As a reward, we paid each annotator $1.5 for
a test, which included 20 questions and took 5 to 7
minutes for completion.

We performed inter-annotator analysis on the an-
notations using Fleiss’ kappa score (Fleiss, 1971).
Kappa scores were 0.67 and 0.45 for reliability (bi-
nary) and validity (3-class), respectively. Moderate
kappa scores indicate that the annotation task was
well-defined and the annotation result was trustable.
Furthermore, to improve the annotation quality, we
discarded all disagreed annotations. The majority
of annotations that were rejected on the grounds of
reliability pertained to long-term reasoning ques-
tions. These questions necessitated the integration
of information from multiple sentences, and with-
out taking into account this information, the distrac-
tors appeared to be equally plausible. This led to a
divergence of opinions among some annotators and
ultimately resulted in the determination that these
questions were unreliable. The reasons for rejec-
tion in terms of validity were more varied. One
pattern that emerged was the use of prepositions,
where some annotators classified questions regard-
ing preposition usage as valid_reading instead of
valid_grammar, despite our explicit instructions on
this matter. We posit that this may have been due
to the fact that certain questions involving preposi-
tions necessitate contextual information in order to
deduce the correct answer (e.g., prepositions of lo-
cation), causing some annotators to consider them
as reading comprehension questions.

The processed data statistics are shown in Table
3. Because most blanks in CLOTH are content words
and corresponding questions are designed to mea-
sure reading comprehension ability, there are few
questions that measure grammatical knowledge.

2The cloze tests are collected/generated in five ways, each
accounting for one-fifth of the total.
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Passage . . . He wished to find a good job. One day, he went to a company to ____ for a job.
Example 1
Question A. apply B. vote C. prepare D. wait
Explanation In this question, only option A fits the passage perfectly, so please select “One” in

Number of answer; options B, C, and D don’t fit the passage logically, and you will
eliminate them by the knowledge (ability) of reasoning, so please select “Reading”
option in Measured ability.

Example 2
Question A. apply B. applied C. look D. has applied
Explanation In this question, both option A and C fit the passage perfectly, so please select “More

than one” in Number of answer; except correct answers (option A and C), options
B and D don’t fit the passage grammatically, and you will eliminate them by the
knowledge (ability) of grammar, so please select “Grammar” option in Measured
ability.

Example 3
Question A. apply B. vote C. applying D. waiting
Explanation In this question, only option A fits the passage perfectly, so please select “One” in

Number of answer; option B doesn’t fit the passage logically, option C doesn’t fit
the passage grammatically, and you will eliminate them by the both of knowledge
(abilities). So please select the “None” option in Measured ability. Also, since option
D fits the passage neither logically nor grammatically, you will eliminate it by any of
knowledge (abilities). So you can select the “None” option in Measured ability only
considering option D.

Table 2: Example of annotation. We used following instructions: “Please select an option in the Number of answers
list to indicate whether there is more than one option that fits the passage perfectly; please select what kind of
language ability the question measures in the Measured ability list. You can refer to Table 2 for examples.”

Type #
Reliability questions 2,597
reliable 2,324
not_reliable 273
Validity questions 1,730
valid_grammar 86
valid_reading 921
not_valid 723

Table 3: Statistics of the processed data. Because relia-
bility is easier to annotate, it has higher agreement, and
more annotations are retained than validity.

3.4 CELA analysis

We observed that the five types of cloze tests have
various qualities. Figure 2 shows the quality statis-
tic in CELA according to generation methods.

In reliability, Jiang is the most reliable and
only includes 3.9% of unreliable questions, and
Panda has 22.1%, which is the most unreliable.
Surprisingly, CLOTH and Panda, which are expert-
designed and generated by an advanced generation
method, respectively, are not as reliable as the oth-

ers. We conjecture that these two types of tests tend
to produce more plausible distractors that break
only little coherence of the context. Plausible dis-
tractors are good at measuring learners’ language
ability but have a higher risk of making the question
unreliable. In particular, the Panda system utilizes
round-trip translation and alignment to generate
distractor candidates, which limits the scope of
possible candidates and tends to produce more cred-
ible options compared to those generated by other
systems. Furthermore, the Panda system does not
impose strict limitations on eliminating distractors
that are also suitable for the blank, which increases
the likelihood of generating unreliable questions.
On the other hand, the Randomized system se-
lects distractors from the vocabulary without any
constraints, which reduces the chance of selecting
distractors that are also appropriate for the blank.

In validity, meeting our conjecture, there are
fewer invalid questions in CLOTH and Panda, which
means these two test types are better at measuring
language ability than others. For automatic dis-
tractor generation methods, Panda has the strictest
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Figure 2: Quality statistics of cloze tests in CELA. The left and right buckets represent the ratio of high-quality and
low-quality questions, respectively.

restrictions on distractor selection and produces
the fewest invalid questions. Jiang has more
filters for eliminating distractor candidates than
Hill and could generate more valid questions.
Randomized does not have any restrictions and is
difficult to produce valid questions for language
assessment.

We provide an example of the CELA dataset in Ta-
ble 1. In the CELA dataset, each instance includes an
incomplete passage with blanks and corresponding
sets of options as input (questions). In a question, at
least one option can be filled into the corresponding
blank to make the passage coherent both grammati-
cally and semantically. The label for each question
is a tuple that denotes whether the question is reli-
able and valid, and if the question is valid the tuple
also indicates which aspect of language ability the
question measures.

4 Option-aware CQE Method

We propose two methods to tackle the CQE task,
which analyze all options of cloze questions as
baseline methods for the CQE task.

4.1 Intuition
We designed an option-aware CQE method con-
sidering how options in the question affect relia-
bility and validity. We followed the definition in
Subsection 3.1 and considered that the reliability
and validity of a question is decided by its options.
Thus, to tackle two sub-tasks in CQE, we need to
inspect each option in terms of (1) whether it can
be regarded as the sole answer to the question, and
(2) what language ability it measures.

For the former (reliability), we consider that if
an option breaks neither grammatical nor semantic
coherence of the context, it fits the context per-
fectly and can be regarded as an answer option.
For the latter (validity), if a distractor option only
breaks grammatical (or semantic) coherence, exam-
inees will use grammatical knowledge (or reading
comprehension ability) to eliminate it, and in these
cases, we say the distractor option is a grammatical
(or reading) option; if a distractor option breaks
both coherence, because it is too simple to measure
one’s ability, we say it is a purposeless option.

For example, given a context: I remember sit-
ting in that dark hall listening to Mr. Zigler ____
everyone’s spirits up to the ceiling. and options:
[raise, rise, educate, disappointed], the option
raise does not break neither grammatical nor se-
mantic coherence, so it is an answer option; the
option rise breaks the grammatical coherence be-
cause the blank requires a transitive verb, so it is a
grammatical option; the option educate obeys the
grammatical rule but does not fit context seman-
tically, so it is a reading option; the option disap-
pointed is a purposeless option because it breaks
both grammatical and semantic coherence of con-
text.

Based on this intuition, we implement
two functions, BreakGrammar(·) and
BreakSemantics(·), to judge whether an
option breaks grammatical or semantic coherence.
See Appendix A for a detailed description of the
overall framework. To realize these two functions,
we designed two different approaches: a rule-based
approach and a DNN-based approach.
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4.2 Rule-based approach
The rule-based approach is straightforward. It com-
pares options with the answer to a question. The
answer to a question can fit the context perfectly
and does not break either grammatical or seman-
tic coherence. Thus, we consider that if an option
has the same grammatical/semantical feature as the
answer, it does not break corresponding coherence
either. In this case, functions BreakGrammar(·)
and BreakSemantics(·) require one more param-
eter answer .

Given an answer option answer and an option
opt , we fill answer and opt into context and obtain
POS tags for them. If opt has the same POS tag as
answer , we consider that it does not break gram-
matical coherence, otherwise it breaks grammatical
coherence. For the implementation, we employed
POS tagger in the Stanza library 3.

Similarly, we use a synonym dictionary to judge
if the option breaks grammatical coherence. If opt
is a synonym of answer , opt does not break the
semantic coherence, otherwise it breaks semantic
coherence.

4.3 DNN-based approach
We also designed a DNN-based approach to im-
plement these two functions. By using pretrained
DNN models, we can plug in both grammatical and
semantic knowledge into the CQE model. Unlike
the rule-based approach, the DNN-based approach
does not use answer but opt information for CQE.

We employ an English grammatical error correc-
tor that can detect both grammatical and seman-
tic errors and output the error types. We fill each
option into context as input of the corrector and
check the output. If the output indicates that there
is no grammatical/semantic error, we regard that
the option does not break grammatical/semantic
coherence; otherwise, we think it breaks such
coherence. We need to distinguish grammati-
cal and semantic errors which affect the output
of BreakGrammar(·) or BreakSemantics(·).
We design such a filter based on error types. To
recognize the error type, we use the output tag of
an error annotation toolkit.

5 Experiment

We conduct experiments to determine whether
option-aware CQE methods (§4) can be a good
baseline to estimate the quality of cloze tests,

3https://github.com/stanfordnlp/stanza

by comparing them with option-agnostic baseline
methods (§5.2).

5.1 Configurations

To implement an option-aware baseline with a rule-
based approach, we built an English synonym dic-
tionary 4. Considering that the word inflection
or tense do not affect the meaning, we lemma-
tized both answer and opt into their basic form
to judge if they were synonyms. The word lemma-
tization was implemented by employing the NLTK
library 5 and using the lemmatizer based on Word-
Net (Miller, 1998). We also employed POS tagger
in the Stanza library to assign POS tags to answer
and opt .

As for a DNN-based approach, we employed
GECToR (Omelianchuk et al., 2020), a grammat-
ical error corrector, that provided trained parame-
ters and achieved a considerable performance on
both CoNLL-2014 and BEA-2019 shared task (Ng
et al., 2014; Bryant et al., 2019). We used GECToR
which was implemented by RoBERTa (Liu et al.,
2019). We fed original and corrected sentences
into the ERRor ANnotation Toolkit (ERRANT) 6

to obtain ERRANT tags. If the detected error’s
ERRANT tag is one of ADJ, ADV, NOUN, and
VERB, we considered the error to be a semantic
one and not a grammatical one. Furthermore, we
observed that the tag OTHER might contain both
grammatical and semantic errors; therefore, we set
two configurations for errors with tag OTHER as
either grammatical or semantic errors.

5.2 Option-agnostic baselines

We employed the following random baseline and
majority prediction baseline to show how well
option-agnostic methods could perform on the
CELA. Option-agnostic baselines can also be re-
garded as weak baselines.

Random baseline The random baseline predicts
random class in reliability and validity classifica-
tion. We chose the output class from the uniform
distribution.

Majority prediction baseline The majority pre-
diction baseline predicts the majority class in
each classification sub-task. According to our
CELA dataset, it always predicts reliable and

4collected from https://www.thesaurus.com/
5https://www.nltk.org/
6https://github.com/chrisjbryant/errant
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Methods
Reliability Validity

F1 prec. recall micro F1 macro F1 r.F1 g.F1 n.F1

Option-agnostic (weak)
- Random 17.45 10.56 49.82 32.31 27.90 39.87 8.37 35.45
- Majority prediction 0.00 0.00 0.00 53.24 23.16 69.48 0.00 0.00
Option-aware (strong)
- rule-based 2.87 1.47 66.67 42.35 41.31 30.28 37.05 56.61
- DNN-based (Ō) 19.50 98.53 10.82 54.79 43.11 72.33 47.02 9.96
- DNN-based (O) 19.31 97.80 10.71 58.54 48.25 71.90 53.79 19.05

Table 4: Performance of CQE baseline methods on the CELA dataset. r.F1, g.F1, and n.F1 represent binary F1 score
for valid_reading, valid_grammar, and not_valid questions, respectively. Bold and underline indicate the best and
second-best result, respectively. Ō and O indicate we regard errors from GECToR with tag OTHER as grammatical
and semantic errors, respectively.

valid_reading in the sub-task of reliability and va-
lidity classification, respectively.

5.3 Meta-evaluation metrics

To demonstrate the efficiency of CQE methods in
estimating the quality of cloze tests, we provide
baseline meta-evaluation metrics for the CQE task.
Specifically, in the reliability evaluation, we used
F1, precision, and recall score. Because unreliable
cloze tests are harmful to language assessment, we
must focus on how well CQE models can recognize
unreliable tests; thus we set not_reliable as the pos-
itive label. For the validity evaluation, we used the
micro-averaged and macro-averaged F1 score. To
indicate how well models perform in each class, we
also split the overall F1 score into three parts: F1

for valid_reading, valid_grammar, and not_valid.

5.4 Result

The performance of the baselines on the CELA
dataset is presented in Table 4. For option-agnostic
baselines, because of imbalanced data distribution,
the majority prediction baseline was not able to
detect the not_reliable questions. Both baselines
of random and majority prediction did not perform
well on reliability compared with validity. More-
over, unreliable question detection is important to
language assessment. In future work, improving
the performance on reliability should be considered
preferentially.

The option-aware baseline implemented by the
rule-based approach performed worse than random
baselines on some metrics. Although it achieved
a moderate recall value, the precision was nearly
zero, which denotes it tends to assign reliable to all
questions. On the validity performance, it outper-
formed option-agnostic baselines on some metrics,

but it is still insufficient for evaluating the quality
of cloze tests. One reason is that rules using the
POS tag and synonym list are so naïve that they
only consider partial cases of the option type. For
example, given a context This music made every-
one want to ____. It was an early form of jazz. and
options [dance, sing, laugh, ...], though options
sing and laugh are not the synonyms of the answer
dance, they also fit the context semantically and
should have not been classified into the reading
option.

In most cases, the option-aware method using
the DNN-based approach outperformed option-
agnostic baselines. The DNN models utilized in
this paper were straightforward and rudimentary,
and there is potential for further improvement to
make them more suitable for widespread use. Re-
garding reliability, errors with OTHER as gram-
matical or semantic errors have little effect on the
performance. In terms of validity, when we re-
gard OTHER errors as semantic errors, the mi-
cro F1 value increased because the model could
predict more not_valid questions correctly, which
accounted for a significant proportion in CELA.

Except for hyperparameters, the mis-prediction
caused by the underlying DNN models also leads
to errors. GECToR did not perform well on long-
term reasoning; thus, it was not able to detect some
semantical errors. For example, given a context I
was ____ of flying, ... In order to get rid of my fear
I decided to try a helicopter ride, when filling word
proud into the blank, we expect GECToR to correct
the sentence with some words similar to afraid, but
GECToR did not report any error.
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6 Conclusion and Future Work

We proposed a novel task for evaluating cloze ques-
tions for human language assessment (CQE), which
involved two important factors that affect the qual-
ity of cloze questions, reliability and validity, and
also provided the CELA dataset. In addition, we
explored automated CQE methods that can esti-
mate the quality of cloze tests, by designing option-
aware methods. Our experimental results on the
CELA dataset showed that imbalanced data bring
challenges.

In future work, we would like to investigate more
factors that affect the quality of cloze questions
and expand the CELA dataset. For example, given
the context The sun also ____. and two differ-
ent sets of options [raises, rises, lifts, elevates] as
well as [raises, lives, runs, lefts], although these
two sets of options both measure reading compre-
hension ability, answering the question with the
former set of options is more difficult than the
latter and requires a higher language level. Im-
proving the performance of DNN models and op-
timizing implementation of BreakGrammar(·)
and BreakSemantics(·) can improve the evalu-
ation performance. For example, designing more
detailed filters in the grammatical error corrector
to filter out potential semantic errors or using fine-
designed data to train different language models
for grammatical and semantic error detection sepa-
rately may boost the performance of DNN models.

We hope that the task and our resource will en-
courage further exploration from both computa-
tional linguistics and language education.

Limitations

The first limitation of this study is the coverage. In
this study, the CQE task is defined to evaluate cloze
tests that are generated by distractor generation
methods. Cloze tests in this study are all based on
expert-designed blanks. However, word deletion
methods, which decide which word to be blanked,
affect the quality of cloze tests, too. Investigation
of how blanks influence the quality of cloze tests is
necessary.

The second limitation of this study is the scalabil-
ity of the annotation. In this study, the annotation
of question quality is done by experts, which makes
creating a large-scale dataset not that easy. This
limitation could be mitigated by alternative choice
of target data, i.e., there is room to replace native
speakers with non-native speakers by selecting tar-

get data that do not require English knowledge at
high-level proficiency (e.g., CEFR-A).

Finally, the CQE task and corresponding corpus
are designed specifically for the English language.
However, we are interested in exploring the pos-
sibility of adapting the task and dataset to other
languages. The principles of test design, such as
reliability and validity, apply to other languages as
well, but the specific details may vary based on the
language. For example, questions for a hieroglyph-
based language may require learners to identify
glyphs, which must be taken into consideration
when defining reliability and validity. Adapting the
CQE task to a new target language and creating a
corresponding dataset requires a publicly available
cloze question dataset or effective cloze question
generation techniques in the target language, as
well as experts in the language to evaluate question
quality. In the future, we hope to develop an auto-
matic adaptation method to transfer our task and
dataset to multiple languages.

Acknowledgements

This work was supported by JST, the establishment
of university fellowships towards the creation of
science technology innovation, Grant Number JP-
MJFS2139.

References
J Charles Alderson. 1979. The cloze procedure and

proficiency in English as a foreign language. TESOL
quarterly, pages 219–227.

ALTE. 2011. Manual for Language Test Development
and Examining: For Use with the CEFR. Language
Policy division, Council of Europe.

Lyle F Bachman. 1985. Performance on cloze tests with
fixed-ratio and rational deletions. TESOL Quarterly,
19(3):535–556.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52–75,
Florence, Italy. Association for Computational Lin-
guistics.

David Coniam. 1997. A preliminary inquiry into using
corpus word frequency data in the automatic genera-
tion of english language cloze tests. Calico Journal,
pages 15–33.

548

https://books.google.co.jp/books?id=Ot4ozQEACAAJ
https://books.google.co.jp/books?id=Ot4ozQEACAAJ
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406


Rui Correia, Jorge Baptista, Maxine Eskenazi, and Nuno
Mamede. 2012. Automatic generation of cloze ques-
tion stems. In International Conference on Computa-
tional Processing of the Portuguese Language, pages
168–178. Springer.

Mariano Felice, Shiva Taslimipoor, Øistein E. Andersen,
and Paula Buttery. 2022. CEPOC: The Cambridge
exams publishing open cloze dataset. In Proceedings
of the 2022 International Conference on Language
Resources and Evaluation. European Language Re-
sources Association.

Patrick J. Finn. 1977. Word frequency, information
theory, and cloze performance: A transfer feature
theory of processing in reading. Reading Research
Quarterly, 13(4):508–537.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Takuya Goto, Tomoko Kojiri, Toyohide Watanabe, To-
moharu Iwata, and Takeshi Yamada. 2010. Auto-
matic generation system of multiple-choice cloze
questions and its evaluation. Knowledge Man-
agement & E-Learning: An International Journal,
2(3):210–224.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The Goldilocks principle: Reading
children’s books with explicit memory representa-
tions. In International Conference on Learning Rep-
resentations (ICLR).

Jennifer Hill and Rahul Simha. 2016. Automatic gen-
eration of context-based fill-in-the-blank exercises
using co-occurrence likelihoods and Google n-grams.
In Proceedings of the 11th Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 23–30.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Christine Klein-Braley. 1997. C-tests in the context of
reduced redundancy testing: An appraisal. Language
testing, 14(1):47–84.

Xiang Kong, Varun Gangal, and Eduard Hovy. 2020.
SCDE: Sentence cloze dataset with high quality dis-
tractors from examinations. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5668–5683, Online. Asso-
ciation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach.

George A Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1–14,
Baltimore, Maryland. Association for Computational
Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170, Seattle, WA, USA →
Online. Association for Computational Linguistics.

Subhadarshi Panda, Frank Palma Gomez, Michael Flor,
and Alla Rozovskaya. 2022. Automatic genera-
tion of distractors for fill-in-the-blank exercises with
round-trip neural machine translation. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 391–401, Dublin, Ireland. Association
for Computational Linguistics.

Earl Rankin. 1976. Sequence strategies for teaching
reading comprehension with the cloze procedure. In
Reading: Theory, Research and Practice, 26th Year-
book of the National Reading Conference, pages 92–
98, Atlanta, GA. National Reading Conference.

Patricia M Raymond. 1988. Close procedure in the
teaching of reading. TESL Canada journal, pages
91–97.

James Rye. 1982. Cloze procedure and the teaching of
reading. London.

Keisuke Sakaguchi, Yuki Arase, and Mamoru Komachi.
2013. Discriminative approach to fill-in-the-blank
quiz generation for language learners. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 238–242, Sofia, Bulgaria. Association
for Computational Linguistics.

Adam Skory and Maxine Eskenazi. 2010. Predicting
cloze task quality for vocabulary training. In Pro-
ceedings of the NAACL HLT 2010 Fifth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 49–56, Los Angeles, California.
Association for Computational Linguistics.

Wilson L Taylor. 1953. “Cloze procedure”: A new
tool for measuring readability. Journalism quarterly,
30(4):415–433.

Qizhe Xie, Guokun Lai, Zihang Dai, and Eduard Hovy.
2018. Large-scale cloze test dataset created by teach-
ers. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2344–2356, Brussels, Belgium. Association
for Computational Linguistics.

549

http://www.jstor.org/stable/747510
http://www.jstor.org/stable/747510
http://www.jstor.org/stable/747510
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#HillBCW15
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#HillBCW15
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#HillBCW15
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.18653/v1/2020.acl-main.502
https://doi.org/10.18653/v1/2020.acl-main.502
http://arxiv.org/abs/arXiv:1907.11692
http://arxiv.org/abs/arXiv:1907.11692
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2022.acl-srw.31
https://doi.org/10.18653/v1/2022.acl-srw.31
https://doi.org/10.18653/v1/2022.acl-srw.31
https://aclanthology.org/P13-2043
https://aclanthology.org/P13-2043
https://aclanthology.org/W10-1007
https://aclanthology.org/W10-1007
https://doi.org/10.18653/v1/D18-1257
https://doi.org/10.18653/v1/D18-1257


A Algorithm for option-aware models

Algorithm 1 shows the framework of option-aware
methods considering how to classify questions in
aspects of reliability and validity by using types of
options.

Please note that Algorithm 1 takes only content
word as options. If the option is a functional word,
we only assign answer or grammar as its type
because questions including functional words as
options only measure grammatical knowledge.

Algorithm 1: Framework of option-aware
baseline

Input: context c; a set of options in a
question O = {opt1, ..., optn};

function to judge if option breaks
grammatical coherence
BreakGrammar(·) ∈ {true, false};
function to judge if option breaks semantic
coherence
BreakSemantics(·) ∈ {true, false}
Output: reliability and validity tuple of the

input question (r, v), where
r ∈ {reliable, not_reliable},
v ∈ {valid_grammar,
valid_reading, not_valid}
// Assign type to each option

1 types = [] ;
2 for i← 1 to n do
3 if BreakGrammar(c, opti) ∧

BreakSemantics(c, opti) then
types[i]← purposeless;

4 if ¬BreakGrammar(c, opti) ∧
BreakSemantics(c, opti) then
types[i]← reading;

5 if BreakGrammar(c, opti ∧
¬BreakSemantics(c, opti) then
types[i]← grammar;

6 if ¬BreakGrammar(c, opti) ∧
¬BreakSemantics(c, opti) then
types[i]← answer;

7 end
// Classify question in terms of

reliability and validity by
using option types

8 if types.count(answer) = 1 then
9 r ← reliable ;

10 if types.count(grammar) = n− 1
then v ← valid_grammar;

11 else if types.count(reading) = n− 1
then v ← valid_reading;

12 else v ← not_valid;
13 else
14 r ← not_reliable ;
15 v ← not_valid ;
16 end
17 return (r, v);
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Abstract

While pre-trained language models (PLMs)
have become a de-facto standard promoting
the accuracy of text classification tasks, re-
cent studies (Kong et al., 2020; Dan and
Roth, 2021) find that PLMs often predict
over-confidently. Although various calibration
methods have been proposed, such as ensem-
ble learning and data augmentation, most of
the methods have been verified in computer
vision benchmarks rather than in PLM-based
text classification tasks. In this paper, we
present an empirical study on confidence cali-
bration for PLMs, addressing three categories,
including confidence penalty losses, data aug-
mentations, and ensemble methods. We find
that the ensemble model overfitted to the train-
ing set shows sub-par calibration performance
and also observe that PLMs trained with con-
fidence penalty loss have a trade-off between
calibration and accuracy. Building on these
observations, we propose the Calibrated PLM
(CALL), a combination of calibration tech-
niques. The CALL complements the draw-
backs that may occur when utilizing a cali-
bration method individually and boosts both
classification and calibration accuracy. Design
choices in CALL’s training procedures are ex-
tensively studied, and we provide a detailed
analysis of how calibration techniques affect
the calibration performance of PLMs.

1 Introduction

Trustworthy deployment of machine learning appli-
cations requires accurate and calibrated predictions
to instill their reliability and help users be less con-
fused about models’ decisions (Xiao and Wang,
2019; Liu et al., 2020).

However, modern deep neural networks (DNNs)
produce miscalibrated predictions, i.e., a mismatch
between a model’s confidence and its correctness.
One of the reasons is that an over-parameterized

∗Corresponding author. This work is partially done at
UNIST.

(a) BERT (b) RoBERTa

Figure 1: Reliability diagrams (DeGroot and Fienberg,
1983) on TREC (Li and Roth, 2002) with PLMs. A
dashed line implies a perfect calibration while PLMs
generally show over-confident predictions.

classifier typically produces over-confident predic-
tions (Guo et al., 2017). Moreover, the miscali-
bration can be exacerbated when DNNs make pre-
dictions on test data different from the training
distribution, i.e., distribution shift (Ovadia et al.,
2019).

To obtain the well-calibrated predictions, many
pioneering studies have shown the calibration effect
of ensemble and regularization techniques focused
on computer vision benchmarks. Ensemble learn-
ing has become one of the standard approaches to
reduce calibration errors (Lakshminarayanan et al.,
2017; Bonab and Can, 2019). Pereyra et al. (2017)
propose the entropy regularized loss which penal-
izes confident output distributions in order to re-
duce overfitting. Hongyi Zhang (2018); Hendrycks
et al. (2020) demonstrate that DNNs trained on
diverse augmented data are less prone to produce
over-confident predictions, leading to the calibra-
tion benefit under the distribution shift.

Intense research effort has focused on improving
the calibration performance of vision models on
image datasets. However, exploration of existing
calibration methods with pre-trained Transformers
(PLMs) has received less attention. Moreover, re-
cent studies show that PLMs such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) pro-
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duce miscalibrated predictions introduced by over-
parameterization (Kong et al., 2020). Therefore, it
is necessary to investigate how modern calibration
techniques affect PLMs’ calibration.

In this paper, focused on PLMs in multi-class
classification tasks, we explore widely used calibra-
tion families, including (1) confidence penalty loss
functions that can be used instead of cross-entropy
loss, (2) data augmentations, and (3) ensemble
methods. We consider a low-resource regime since
the small size of the training dataset amplifies the
miscalibration of models (Rahaman et al., 2021).
We also observe PLMs especially produce unre-
liable predictions in the data scarcity setting (see
Figure 1).
Contributions. We conduct a comprehensive em-
pirical study for the effectiveness of the above cali-
bration methods. In this study, our findings are as
follows:

• A PLM trained with imposing a strong penalty
on the over-confident output shows significant
improved calibration performance, but its accu-
racy can slightly deteriorate.

• For ensemble methods, Deep Ensemble (Laksh-
minarayanan et al., 2017) and MIMO (Havasi
et al., 2021) increase the diversity of predictions,
resulting in the well-calibrated predictions in
the data scarcity setting. However, the ensem-
ble methods show insufficient calibration when
each ensemble member is overfitted to negative
log-likelihood for the training dataset.

• Data augmentation methods that can expose di-
verse patterns such as MixUp (Hongyi Zhang,
2018) and EDA (Wei and Zou, 2019) are more
effective for calibration in PLMs compared to
weak text-augmentation methods (Kolomiyets
et al., 2011; Karimi et al., 2021).

Building on our findings, we present Calibrated
PLM (CALL), a blend of the discussed calibra-
tion methods. Numerical experiments demonstrate
that the components of CALL complement each
other’s weaknesses. For instance, data augmen-
tation and ensemble methods offset the accuracy
decline caused by the confidence penalty loss,
while data augmentation and the confidence penalty
loss counteract overfitting in the ensemble model.
Through our extensive experiments, we show the
CALL’s competitiveness on several text classifica-
tion benchmarks.

2 Related Work

The calibration of machine learning models has
been mainly studied for the trustworthy deploy-
ment of image recognition applications (Lakshmi-
narayanan et al., 2017; Hongyi Zhang, 2018; Guo
et al., 2017). Beyond the computer vision fields, re-
search on the calibration ability of language models
in the NLP domain has also recently been attracting
attention (Desai and Durrett, 2020; Dan and Roth,
2021).

Desai and Durrett (2020) investigate the cal-
ibration ability of PLMs, and they demonstrate
that RoBERTa produces more calibrated predic-
tions than BERT. They also show that tempera-
ture scaling (Hinton et al., 2014) and label smooth-
ing (Szegedy et al., 2016) improve the calibration
performance of PLMs for language understanding
tasks. Dan and Roth (2021) conduct an empirical
study of the effects of model capacity on PLMs and
show that smaller pre-trained transformers provide
more reliable predictions. Moon et al. (2020) find
that PLMs tend to produce over-confident outputs
based on in-distribution (ID) keywords rather than
contextual relations between words. They demon-
strate that keyword-biased predictions can be over-
confident even in out-of-distribution samples with
ID keywords.

Kong et al. (2020) suggest two regularizers
using generated pseudo-manifold samples to im-
prove both ID and out-of-distribution calibration
for PLMs. They use MixUp (Hongyi Zhang, 2018)
as a regularization technique for BERT calibra-
tion and show that mixed training samples on the
data manifold improve the calibration performance.
Similarly, Park and Caragea (2022) propose a vari-
ant of MixUp utilizing saliency signals and also
analyze the impact of combining additional cali-
bration methods with MixUp. However, they only
consider temperature scaling and label smoothing
as additional calibration methods.

3 Why Re-assess Calibration Methods?

Guo et al. (2017) observe that a larger DNN tends
to be more poorly calibrated than a smaller one. As
the size of the parameters for modern DNNs con-
tinues to increase, the miscalibration issues need to
be addressed more than ever.

At the same time, the unique character of PLMs
raises concerns about whether previous findings on
calibration obtained from standard convolutional
neural networks (CNNs) can be successfully ex-
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tended to PLM. For example, PLMs with ensemble
learning may have different behavior compared to
randomly initialized CNNs because naive PLMs
have a massive amount of parameters and are ini-
tialized with pre-trained weights in the fine-tuning
stage.

On the other hand, for the data augmentation, be-
cause image transformations (e.g., flipping, trans-
lation, and rotating) can not be directly applied to
text-based samples, thus, it is also necessary to in-
vestigate the effect of text-specific augmentations
on the calibration of PLMs.

4 Calibration Strategies

In this section, we review the existing literature
used in our experiments and how we applied each
method to PLMs. Calibration methods we explore
are denoted by bold.

4.1 Preliminaries
Notation. Let D = {xi, yi}Ni=1 be a dataset con-
sisting of N samples, where xi ∈ X is a input and
yi ∈ Y = {1, ...,K} is a ground truth label. We
denote by p̄i = f(y|xi) the predicted distribution
of a classifier f . Class prediction and associated
confidence (maximum probability) of f are com-
puted as ŷi = argmaxk∈Y p̄i and p̂i = maxk∈Y p̄i,
respectively.

In the BERT-style architecture, output of em-
bedding layer, L attention blocks, and the output
dense layer (with softmax function) are denoted by
zembed, g = {g1, ..., gL}, and h, respectively.
Calibration Metrics. A calibrated model provides
reliable predictive probability whose confidence
aligns with its expected accuracy, i.e. Ep̂[|P(ŷ =
y|p̂) − p̂|]. Given a finite dataset, Expected Cali-
bration Error (ECE; Naeini et al., 2015) is widely
used as a calibration performance measure. ECE
can be computed by binning predictions into T
groups based on predictions of f and then tak-
ing a weighted average of each group’s accu-
racy/confidence difference:

T∑

t=1

|Bt|
N
|acc(Bt)− conf(Bt)|, (1)

where Bt is the group of samples and their cor-
responding confidences belonging to the ( t−1T , tT ].
The acc(Bt) and conf(Bt) denote average accuracy
and confidence of predictions for Bt, respectively.

Model calibration also can be measured using
proper scoring rules (Gneiting and Raftery, 2007)

such as Brier score (Brier et al., 1950) and negative
log likelihood (NLL).

4.2 Confidence Penalty Losses
We explore an alternative loss functions that can be
used instead of cross-entropy (CE) loss.
Brier Loss (BL; Brier et al., 1950) is one of the
proper scoring rules, defined as the squared er-
ror between the softmax output and the one-hot
ground truth encoding. BL is related to ECE in
that it is an upper bound of the calibration error by
the calibration-refinement decomposition (Bröcker,
2009; Liu et al., 2020).
Entropy Regularized Loss (ERL; Pereyra et al.,
2017) penalizes confident output distributions by
adding the negative entropy:

LERL = L′ + β
K∑

k=1

p̄k log p̄k, (2)

where L′ can be an arbitrary classification-based
objective function (e.g., CE and BL), and β is the
hyperparameter that controls the strength of the
confidence penalty.
Label Smoothing (LS; Szegedy et al., 2016) is a
commonly used trick for improving calibration that
generates a soft label by weighted averaging the
uniform distribution and the hard label.

4.3 Data Augmentations
Data augmentations have been widely used to
improve the model’s calibration performance in
computer vision fields (Hongyi Zhang, 2018;
Hendrycks et al., 2020; Wang et al., 2021). How-
ever, text augmentations are often overlooked in
the literature on the calibration in NLP tasks. To
the best of our knowledge, we are the first to ex-
tensively study how text augmentation techniques
such as Synonym Replacement (SR; Kolomiyets
et al., 2011), Easy Data Augmentation (EDA; Wei
and Zou, 2019), and An Easier Data Augmentation
(AEDA; Karimi et al., 2021) affect calibration per-
formance. We also investigate the recent variant of
MixUp (Zhang and Vaidya, 2021).
SR randomly choose n words from the input sen-
tence except for stop words and then replace each
of these words with one of its synonyms chosen
using WordNet (Miller, 1995).
EDA is a token-level augmentation method that
consists of four random transformations: SR, Ran-
dom Deletion, Random Swap, and Random Inser-
tion.
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AEDA only use Random Insertion operator that
insert punctuation marks (i.e., “.”, “,”, “!”, “?”, “;”,
“:”) into a input sentence.
MixUp (Hongyi Zhang, 2018) is a data augmen-
tation strategy using convex interpolations of in-
puts and accompanying labels. Guo et al. (2019)
investigate word- and sentence-level MixUp strate-
gies to apply MixUp to recurrent neural networks.
Zhang and Vaidya (2021) propose MixUp-CLS,
that performs MixUp on the pooled [CLS] token
embedding vector for a last attention layer of PLM.
MixUp-CLS shows improved accuracy for natural
language understanding (NLU) tasks compared to
word-level MixUp. Unless otherwise specified, we
use MixUp-CLS in our experiment.

4.4 Ensembles

Ensemble techniques utilize M models by combin-
ing them into an aggregate model and then aver-
age the predictions to produce calibrated outputs:
1
M

∑M
m=1 fm(y|x). We compare the deterministic

model with three ensemble approaches, and the
computational cost of the ensemble methods used
in the experiment is reported in Appendix A.
Deep-Ensemble (DE; Lakshminarayanan et al.,
2017) consists of M randomly initialized models
and provides a calibration effect leveraging the pre-
dictive diversity of ensemble members. When ap-
plying DE to PLMs, M independent models have
different initialization weights only in a penulti-
mate layer since PLMs are initialized with pre-
trained weights.
Monte Carlo Dropout (MCDrop; Gal and Ghahra-
mani, 2016) interprets Dropout as an ensemble
model, leading to its application for uncertainty
estimates by sampling M times dropout masks at
test time.
Multi-Input and Multi-Output (MIMO). To al-
leviate the high computational cost and memory
inefficiency of DE, Havasi et al. (2021) propose
the multi-input and multi-output architecture by
training M sub-networks inside a CNN.

In original MIMO, the M inputs (images)
{xm}Mm=1 are sampled from Dtrain. MIMO con-
catenates multiple inputs per channel before the
first convolution layer and produces multiple out-
puts usingM independent output dense layers. The
feature extractor of CNN remains unchanged. For
the training procedure, all ensemble members have
the same mini-batch inputs with probability p, and
the inputs are randomly sampled from the training

dataset with probability 1− p.
For applying MIMO to the PLMs, the following

consideration arise; When multiple inputs are con-
nected before the embedding layer, the length of
tokens is M times longer. Thus, applying MIMO
to PLMs in this manner is inefficient for a dataset
that consists of long sentences.

Instead, we modify the original configuration of
MIMO so that it can be applied to various NLP
tasks. For PLM, the output of the first attention
layer z̄ is calculated by averaging multiple outputs
of M independent first attention blocks {gm1 }Mm=1:

z̄ =
1

M

M∑

m=1

gm1 (zembed). (3)

To produce multiple predictions, we use M
modules that consist of the last attention blocks
{gmL }Mm=1 and dense layer h. The ensemble predic-
tion is calculated by:

p̄ =
1

M

M∑

m=1

h(gmL (g′(z̄)), (4)

where g′ = {g2, ..., gL−1} is the shared attention
blocks.

# train # dev # test lavg # classes
SST2 7.0k 0.7k 1.8k 19 2
20NG 9.1k 2.2k 7.5k 320 20
TREC 4.9k 0.5k 0.5k 10 6

Table 1: Summary of data statistics. lavg: Sentence
average length.

5 Experiments

This section presents the experimental results of
the calibration methods. We describe experimen-
tal datasets and settings (Section 5.1 and 5.2), fol-
lowed by empirical results for the low-resource
regime (Section 5.3), overall calibration result (Sec-
tion 5.4), and detailed analysis (Section 5.5). We
then introduce the training procedure of CALL in
Section 6. In our experiments, we set RoBERTa
trained with CE as a baseline. Unless otherwise
specified, ensemble and augmentation methods are
applied to the baseline.

5.1 Datasets and Metrics
Dataset. Following Zhou et al. (2021), we use the
following three text classification datasets. Data
statistics are described in Table 1.
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Acc↑ / ECE↓ / NLL↓ TREC SST2 20NG
RoBERTa (baseline) 94.04 / 4.08 / 24.86 91.23 / 7.42 / 43.08 76.58 / 11.37 / 90.40
CE+ERL 93.72 / 4.05 / 24.20 91.04 / 6.62 / 38.77 76.79 / 11.21 / 90.32
CE+LS 93.84 / 3.37 / 23.71 91.16 / 6.03 / 30.26 76.39 / 11.36 / 90.90
BL 93.24 / 2.69 / 26.55 89.48 / 7.15 / 36.02 75.74 / 7.21 / 86.02
BL+ERL 93.84 / 2.48 / 24.78 90.32 / 5.68 / 29.61 76.13 / 6.62 / 86.11
BL+LS 93.52 / 2.32 / 25.16 91.15 / 5.56 / 29.37 75.83 / 6.57 / 86.31
SR 94.24 / 3.37 / 22.24 90.54 / 7.22 / 38.03 76.45 / 10.54 / 87.64
AEDA 93.76 / 4.68 / 28.36 91.45 / 6.69 / 37.67 76.41 / 11.49 / 91.21
EDA 93.40 / 2.83 / 23.46 91.56 / 5.01 / 29.86 76.01 / 10.52 / 88.89
MixUp 94.76 / 2.23 / 22.02 90.86 / 6.46 / 31.89 76.74 / 11.22 / 90.65
MCDrop 94.20 / 4.16 / 24.45 91.04 / 6.84 / 39.55 76.63 / 10.18 / 87.52
MIMO 94.88 / 3.13 / 20.38 91.26 / 6.21 / 32.78 76.25 / 5.61 / 81.43
DE 95.03 / 2.89 / 19.02 91.44 / 4.88 / 29.51 78.09 / 7.51 / 78.96

Table 2: Results for the low-resource regime. For each dataset, all methods are trained with 10% of training
samples. The best results in each category are indicated in underline and the best results among all methods are
indicated in bold. Accuracy is a percentile. We report ECE and NLL multiplied by 102.

• Stanford Sentiment Treebank (SST2; Socher
et al., 2013) is a sentiment analysis dataset that
consists of sentences from movie reviews.

• 20 Newsgroups (20NG; Lang, 1995) is a topic
categorization dataset which contains news arti-
cles with 20 categories.

• TREC (Voorhees and Tice, 2000) is a dataset
for question classification, and we use its coarse
version with six classes.

To evaluate the effectiveness for calibration meth-
ods in the data scarcity setting, we use 10% of the
training set.
Metrics. We measure ECE and NLL for each cali-
bration method. For ECE, we bin the predictions
into T = 15 equidistant intervals. We report ECE
and NLL multiplied by 102 in all experimental re-
sults for the convenience.

5.2 Training Configurations
We implement our framework upon Huggingface’s
Transformers (Wolf et al., 2020) and build the text
classifiers based on RoBERTa (roberta-base) in
the main experiment. All models are optimized
with Adam optimizer (Kingma and Ba, 2017) with
a weight decay rate of 0.01, warmup proportion
of 0.1, batch size of 16, a dropout rate of 0.1,
and an initial learning rate of 1e-5. We fine-tune
the RoBERTa for 10 epochs. For each calibra-
tion method, hyper-parameters are tuned according
to the classification performance, and the detailed
hyper-parameter setting is described in Appendix
B. We also provide empirical results for BERT

(bert-base-cased) in Appendix C. We report the
averaged performance over 5 runs using different
random seeds and implementation results are avail-
able at https://github.com/kimjeyoung/PLM_
CALL.

5.3 Result for Low-resource Regime

Table 2 represents the classification accuracy and
calibration performances for each dataset in the
low-resource regimes. Most calibration strategies
perform better than the baseline, even in cases
where the baseline calibration results were already
good, e.g., TREC. These results demonstrate that
the existing methods can enhance PLM’s calibra-
tion ability when the annotation budget is small, as
in many real-world settings.

Interestingly, augmentation methods except for
AEDA also result in the calibration benefit. For
example, MixUp and EDA show improved calibra-
tion performances for all datasets compared to the
baseline.

Among confidence penalty losses, BL signifi-
cantly reduces ECE for the three datasets. More-
over, the calibration performance is further im-
proved when BL is combined with an additional
regularization method (i.e., BL+ERL and BL+LS).
However, BL+LS and BL+ERL underperform the
baseline with respect to accuracy, and this perfor-
mance drop is also observed when applied to BERT
(Appendix C).

DE not only shows the most remarkable improve-
ment of NLL but also improves accuracy for all
datasets. MIMO also consistently outperforms the
baseline for ECE. In summary, DE and MIMO are
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Acc↑ / ECE↓ / NLL↓ TREC SST2 20NG
RoBERTa (baseline) 97.40 / 2.41 / 15.24 94.35 / 4.13 / 26.36 86.00 / 9.51 / 68.26
CE+ERL 97.24 / 2.44 / 14.64 94.05 / 4.05 / 26.94 86.13 / 9.41 / 70.18
CE+LS 97.28 / 2.06 / 13.11 94.21 / 3.75 / 20.17 86.14 / 9.81 / 70.16
BL 97.04 / 1.80 / 12.23 94.48 / 2.95 / 17.25 86.06 / 7.06 / 58.37
BL+ERL 97.28 / 1.35 / 12.09 94.97 / 3.21 / 17.31 85.77 / 6.75 / 58.02
BL+LS 96.92 / 1.41 / 12.54 94.34 / 2.78 / 17.74 86.15 / 6.76 / 58.17
SR 97.04 / 2.19 / 12.18 94.31 / 3.48 / 20.81 85.97 / 9.31 / 64.84
AEDA 97.24 / 2.35 / 12.99 94.45 / 3.70 / 23.27 85.89 / 9.85 / 69.41
EDA 97.16 / 1.87 / 11.54 94.21 / 2.95 / 19.27 85.74 / 8.69 / 60.90
MixUp 97.20 / 1.55 / 11.58 94.57 / 3.61 / 19.04 86.21 / 8.72 / 64.48
MCDrop 97.56 / 2.37 / 13.84 94.01 / 3.64 / 24.02 85.97 / 8.61 / 64.49
MIMO 97.32 / 2.30 / 12.86 94.32 / 2.68 / 17.51 85.80 / 8.68 / 60.92
DE 97.32 / 2.09 / 12.83 94.64 / 3.10 / 19.15 86.81 / 7.90 / 62.31

Table 3: Overall calibration results for calibration techniques. For each dataset, all methods are trained with 100%
of training samples.

more effective than the other calibration methods
when considering both accuracy and calibration in
the low-resource regime.

5.4 Overall Result
Overall performance result is reported in Table 3.
Similar to the results in Table 2, most of calibra-
tion methods show better calibration performance
compared to the baseline. In this setting, RoBERTa
trained with BL+ERL works best. For example,
BL+ERL shows NLL results of 17.31 and 58.02 in
SST2 and 20NG, respectively, but DE obtain 19.15
and 62.31. In the data augmentation category, EDA
and MixUp improve ECE and NLL compared to
SR. AEDA underperforms the baseline for 20NG.

5.5 Analysis
Our empirical results raise the following questions:
(1) Why do EDA and MixUp show better calibra-
tion performance than SR or AEDA? (2) How can
we improve the accuracy of BL+ERL? (3) Why are
ensemble methods more efficient than regulariza-
tion methods in the low-resource setting, whereas
BL+ERL is most effective for the full-data avail-
able setting? We further conduct a detailed analysis
focusing on the above questions.
Role of Data Augmentation. Although the PLM
trained on the proper scoring rule reduce calibration
error for the training dataset, minimizing calibra-
tion errors for all unseen ID samples is challenging
because we use finite training data (Liu et al., 2020).
As an alternative, if models trained with augmented
samples learn diverse representations, we expect
to match the distribution of training data with the
distribution of unseen ID data.

Distance TREC SST2 20NG
SR 11.56 / 17.44 7.12 / 12.01 15.54 / 23.02

AEDA 11.57 / 16.95 6.87 / 12.09 16.37 / 22.36
EDA 14.16 / 17.08 8.09 / 10.99 17.27 / 22.24

MixUp 14.52 / 15.44 7.69 / 11.18 16.65 / 21.62

Table 4: (Left) Distance between original and aug-
mented sentences for the training samples. Higher is
better. (Right) Distance between augmented training
sentences and original test samples. Lower is better.
The distance are computed at the last attention layer of
RoBERTa.

Acc / ECE TREC SST2 20NG
BL+ERL 93.84 / 2.48 90.32 / 5.68 76.13 / 6.62

+SR 92.60 / 2.93 91.75 / 4.57 76.40 / 5.49
+AEDA 93.84 / 2.84 91.32 / 5.21 75.83 / 6.14
+EDA 93.40 / 2.83 90.76 / 4.97 76.45 / 5.18

+MixUp 94.76 / 2.23 90.89 / 4.52 76.25 / 6.39

Table 5: Comparison result for augmentation methods.
Each method is trained with 10% of training data.

We analyze the distance between unseen and
training data distribution, assuming that the aug-
mentation scheme that pulls the distribution of
training data towards the unseen data distribution
will be effective for calibration.

To measure the distance between the two dis-
tributions, we use Hausdorff-Euclidean distance.
In Table 4, RoBERTa trained with MixUp shows
the closest distance between training data and test
data, followed by EDA. In addition, the augmented
data generated by MixUp and EDA are far away
from the training data. It can be interpreted that
EDA and MixUp generate more diverse patterns of
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Figure 2: The plot of the NLL (Top) and the norm of weights (Bottom) while training RoBERTa on TREC (Left),
SST2 (Middle), and 20NG (Right), respectively. The weights are extracted from the penultimate layer of RoBERTa
and we use 10% of samples for training.

representations. Hence, matching the distribution
of observed data with the distribution of unseen
data by adopting a proper augmentation method
that generates diverse patterns may help the model
produces calibrated predictions.

On the other hand, since data augmentation gen-
erally helps to improve accuracy, we investigate
whether augmentation methods improve the accu-
racy of BL+ERL. In Table 5, MixUp improves
not only classification accuracy but also calibration
performance on all datasets compared to the naive
BL+ERL.
Role of Regularization. A crucial empirical ob-
servation by Guo et al. (2017) is that overfitting the
NLL during training appears to be associated with
the miscalibration of DNNs.

To better understand the role of strong regulariza-
tion, we visualize the NLL during the training pro-
cess of PLM. In Figure 2, training and test NLL are
reduced at the beginning of training regardless of
regularization methods. However, as training pro-
gresses, the test NLL of RoBERTa trained with CE
increases1. On the other hand, other regularization
methods show an inhibitive effect on overfitting
compared to CE.

A DNN can produce over-confident predictions
if the network increases the norm of its weights,
which results in the high magnitudes of the logits

1Note that we use weight decay and dropout for training
in order to alleviate overfitting.

(Mukhoti et al., 2020). Figure 2 (Bottom) shows
that the RoBERTa trained with CE also has a larger
norm than the regularized models.

(a) TREC (b) SST2

Figure 3: The test NLL for DE. Each arrow denotes the
point at which the validation accuracy is the maximum.

Diversity Analysis in Ensembles. Diversity of
predictions in ensemble is one of the key factor of
determining calibration performances (Havasi et al.,
2021). However, in the presence of overfitting, the
diversity of predictions between ensemble mem-
bers may decrease because the trained individual
members would produce similar predictions that
are overfitted to the same training data distribution
(Shin et al., 2021).

We hypothesize ensemble members of DE ap-
plied to PLMs may also suffer from overfitting.
Thus, we investigate whether the ensemble mem-
bers are overfitted to NLL. In Figure 3, DE trained
with 10% of the training data shows a different test
NLL for each ensemble member, while DE trained
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Acc↑ / ECE↓ / NLL↓ TREC SST2 20NG
Train samples 100 %
RoBERTa (baseline) 97.40 / 2.41 / 15.24 94.35 / 4.13 / 26.36 86.00 / 9.51 / 68.26
DE (ensemble baseline) 97.32 / 2.09 / 12.83 94.64 / 3.10 / 19.15 86.81 / 7.90 / 62.31
BL + ERL 97.28 / 1.35 / 12.09 94.97 / 3.21 / 17.31 85.77 / 6.75 / 58.02
BL + ERL + MixUp 97.28 / 1.95 / 12.22 94.76 / 2.12 / 16.31 86.07 / 5.13 / 56.32
BL + ERL + MixUp + MCDrop 97.32 / 2.76 / 12.13 94.66 / 2.15 / 15.37 86.12 / 4.73 / 55.61
BL + ERL + MixUp + MIMO 97.36 / 2.04 / 12.04 95.01 / 2.12 / 16.82 85.93 / 4.69 / 56.22
BL + ERL + MixUp + DE 97.44 / 2.78 / 11.45 95.31 / 1.56 / 14.24 86.67 / 3.67 / 53.21
Train samples 10 %
RoBERTa (baseline) 94.04 / 4.08 / 24.86 91.23 / 7.42 / 43.08 76.58 / 11.37 / 90.40
DE (ensemble baseline) 95.03 / 2.89 / 19.02 91.44 / 4.88 / 29.51 78.09 / 7.51 / 78.96
BL + ERL 93.84 / 2.48 / 24.78 90.32 / 5.68 / 29.61 76.13 / 6.62 / 86.11
BL + ERL + MixUp 94.76 / 2.23 / 22.02 90.89 / 4.52 / 26.59 76.25 / 6.39 / 84.20
BL + ERL + MixUp + MCDrop 94.68 / 2.41 / 21.92 90.93 / 4.26 / 26.16 76.16 / 4.69 / 82.54
BL + ERL + MixUp + MIMO 94.68 / 1.96 / 20.65 91.75 / 3.13 / 23.96 76.89 / 2.94 / 80.65
BL + ERL + MixUp + DE 94.88 / 3.24 / 18.76 91.76 / 2.36 / 22.23 78.12 / 2.00 / 74.93

Table 6: CALLMIMO: BL+ERL+MixUp+MIMO. CALLDE: BL+ERL+MixUp+DE. The best and second best
results are indicated in bold and underline, respectively.

with 100% of the training data results in a closer
NLL for the ensemble members as the training pro-
gresses.

According to our experimental result, members
within the ensemble often fail to produce different
predictions due to the overfitting, indicating that
additional effective regularization schemes can be
adopted to prevent overfitting when applying the
ensemble to the PLM. This finding also explains
why ensemble techniques shows sub-par calibra-
tion performance compared to the regularization
methods in the setting where full-data available.

(a) Dtrain size: 100 % (b) Dtrain size: 10 %

Figure 4: The diversity of predictions in ensemble with
respect to the regularization methods. Blue: DE; Or-
ange: DE+MixUp; Green: DE+BL+ERL. Results for
MIMO and MCDrop are reported in Appendix D. A
higher disagreement means that the models within the
ensemble make different predictions.

We investigate whether BL+ERL and MixUp
methods can compensate for the aforementioned

limitation of the ensemble method. We measure
disagreement score (see Havasi et al., 2021) to an-
alyze the degree of diversity for predictions. As
shown in Figure 4, DE shows a high disagreement
score in the low-resource regime. When full-data
are available, the disagreement score of DE is con-
sistently the lowest for all datasets. However, we
observe that MixUp and BL+ERL significantly mit-
igate the reduction of predictive diversity for DE.

6 Calibrated PLMs

Through extensive analyses, we find that (1)
MixUP that generate more diverse patterns helps
improve the accuracy of BL+ERL, and (2) the re-
duced predictive diversity in the ensemble can be
mitigated by BL+ERL and MixUp.

To this end, we report the calibration perfor-
mance incrementally applying BL+ERL, MixUp,
and ensemble techniques to the naive RoBERTa.
Specifically, we denote BL+ERL+MixUP+DE,
and BL+ERL+MixUP+MIMO by CALLDE, and
CALLMIMO, respectively.

In Table 6, overall, CALLDE achieves remark-
able performance compared to DE on SST2 and
20NG datasets. CALLMIMO shows competitive per-
formance with DE with respect to ECE and NLL.
This experiment shows that the calibration perfor-
mance can be improved by the combinations using
the ensemble, data augmentation, and confidence
penalty losses in NLP tasks based on PLM, and
each calibration method complements each other
to further improve calibration performance without
compromising accuracy.
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7 Conclusion

In this work, we investigate the calibration effect
of PLMs with various calibration methods applied.
As a result of a comprehensive analysis of how
calibration methods work in PLMs, we find that
(1) the confidence penalty losses have a trade-off
between accuracy and calibration, and (2) ensem-
ble techniques lose predictive diversity as training
progresses, resulting in reduced calibration effec-
tiveness. To address these findings, we propose
CALL, a combination of BL, ERL, MixUp, and
ensemble learning. CALL reduces the risk of accu-
racy reduction through its data augmentation and
ensemble techniques, and enhances the predictive
diversity of ensemble methods by incorporating
strong regularization and data augmentation. On
multiple text classification datasets, CALL outper-
forms established baselines, making it a promising
candidate as a strong baseline for calibration in text
classification tasks.

Limitations

Although the proposed framework achieves signifi-
cantly improved calibration performance compared
to the baselines, CALL still has room for perfor-
mance improvement and may require more diverse
approaches (Zadrozny and Elkan, 2001; Hinton
et al., 2014; Mukhoti et al., 2020; Liu et al., 2020).
Another limitation is that we only address the ID
calibration issue for PLMs. Therefore, whether
CALL could work well for out-of-distribution de-
tection and generalization tasks is unclear. We
leave these questions for future research.

Ethics Statement

The reliability of deep-learning models is crucial
to the stable deployment of real-world NLP appli-
cations. For example, the computer-aided resume
recommendation system and neural conversational
AI system should produce trustworthy predictions,
because they are intimately related to the issue of
trust in new technologies. In this paper, through
extensive empirical analysis, we address diverse
calibration techniques and provide a detailed exper-
imental guideline. We hope our work will provide
researchers with a new methodological perspective.
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A Computational Cost for Ensemble
Methods

Latency ↓ (s)
(Train / Test)

TREC SST2 20NG

RoBERTa 725.9 / 3.0 1031.9 / 8.2 1494.7 / 29.5
MCDrop (M=2) 725.9 / 5.8 1031.9 / 15.6 1494.7 / 58.8
MIMO (M=2) 840.7 / 3.5 1178.3 / 9.1 1720.0 / 34.0

DE (M=2) 1438.2 / 5.8 2060.7 / 15.6 3026.8 / 58.8
CALLMIMO 841.9 / 3.5 1180.2 / 9.1 1721.5 / 34.0

CALLDE 1440.3 / 5.8 2062.1 / 15.6 | 3028.4 / 58.8

Table 7: Comparison of training/test time for ensemble
approaches. We measure the computational time on an
NVIDIA-V100 single GPU.

Table 7 includes computational costs for en-
semble methods on a single GPU. CALLDE
(RoBERTa+BL+ERL+MixUP+DE) is almost the
same as DE since only the regularization term
in the loss function and data augmentation pro-
cess are added. Similarly, the computation cost
of CALLMIMO is almost the same as MIMO, and
CALLMIMO achieves a significant speedup in train-
ing/test time compared to DE.

B Hyperparameter Setting

Selected hyperparameters are highlighted in bold.
ERL. Strength of the confidence penalty β ∈
{0.001, 0.005, 0.01, 0.1}. Empirically, PLMs
trained with high beta (e.g., 0.1) showed sub-par
classification accuracy. We set the low beta as 0.001
for all experiments.
LS. ε-smoothing parameter ε ∈ {0.01, 0.05, 0.1}.
EDA. We follow the parameters recommended by
the authors. Full-data setting: α = 0.1. Data
scarcity setting: α = 0.05. α is a parameter that
indicates the percent of the words in a sentence that
are changed.
AEDA. For each input sentence, p = {5, 10, 15}
percentage of the words are changed for low-
resource regime, otherwise p = {5, 10, 15} words
are changed.
SR. p = {5, 10, 15} percentage of the words are
changed for low-resource regime, otherwise p =
{5, 10, 15} words are changed.
MixUp. α ∈ {0.1, 0.5, 1.0} (strength of interpola-
tion).
MCDrop. p ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.1}
is the Dropout rate. M ∈ {2, 3, 4, 5}. We choose
the hyperparameters when the validation accuracy
is best in each experiment.
MIMO. M ∈ {2, 3, 4, 5}. Validation accu-
racy tends to decrease when M is increased.

We choose input repetition parameter p ∈
{0.1, 0.2, 0.3, 0.4, 0.5} when the validation accu-
racy is best in each experiment. Overall, p = 0.2
is best.
DE. Full-data setting: M ∈ {2, 3, 4, 5}. Data
scarcity setting: M ∈ {2, 3, 4, 5}.

C Empirical Result for BERT

We report empirical results for BERT in Table 8
and Table 9.

(a) Dtrain size: 100 % (b) Dtrain size: 10 %

Figure 5: Effect of regularization with respect to diver-
sity of predictions in ensemble. Blue: MCDrop; Or-
ange: MCDrop+MixUp; Green: MCDrop+BL+ERL.

(a) Dtrain size: 100 % (b) Dtrain size: 10 %

Figure 6: Effect of regularization with respect to diver-
sity of predictions in ensemble. Blue: MIMO; Orange:
MIMO+MixUp; Green: MIMO+BL+ERL.

D Analysis Diversity

We report diversity measure for MCDrop and
MIMO in Figure 5 and Figure 6, respectively.
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Acc↑ / ECE↓ / NLL↓ TREC SST2 20NG
BERT (baseline) 97.24 / 2.44 / 13.20 91.26 / 5.19 / 33.77 85.45 / 9.98 / 70.33
CE+ERL 97.24 / 2.43 / 13.18 91.23 / 5.15 / 33.66 85.45 / 10.26 / 71.58
CE+LS 97.11 / 2.08 / 12.22 91.50 / 5.09 / 26.80 85.39 / 6.42 / 60.39
BL 97.64 / 1.29 / 10.38 91.33 / 5.18 / 28.01 85.28 / 7.25 / 60.46
BL+ERL 96.76 / 1.42 / 12.17 91.29 / 4.99 / 26.66 85.36 / 6.58 / 59.25
BL+LS 97.13 / 1.48 / 12.09 91.07 / 4.85 / 27.02 85.20 / 6.99 / 60.14
SR 97.48 / 1.96 / 10.37 91.83 / 5.11 / 29.53 85.50 / 9.60 / 68.14
AEDA 97.60 / 1.60 / 10.57 91.54 / 7.23 / 43.63 85.49 / 9.76 / 68.87
EDA 97.56 / 1.59 / 10.58 91.63 / 3.44 / 23.63 85.47 / 9.23 / 65.66
MixUp 97.40 / 1.30 / 11.12 91.66 / 5.89 / 28.78 85.63 / 8.92 / 66.20
MCDrop 97.32 / 2.08 / 12.97 91.52 / 5.89 / 31.28 85.35 / 9.90 / 68.56
MIMO 97.44 / 1.63 / 10.68 91.40 / 6.25 / 32.14 85.37 / 8.68 / 62.82
DE 97.32 / 1.98 / 11.26 91.92 / 4.14 / 27.27 85.86 / 7.99 / 62.81
BL+ERL+MixUp+MCDrop 97.34 / 2.01 / 12.37 91.59 / 3.61 / 28.54 85.37 / 5.62 / 60.18
BL+ERL+MixUp+MIMO (CALLMIMO) 97.56 / 1.52 / 10.40 91.37 / 5.03 / 25.96 85.33 / 4.87 / 58.06
BL+ERL+MixUp+DE (CALLDE) 97.79 / 2.82 / 10.18 91.82 / 2.58 / 22.19 86.05 / 3.62 / 54.03

Table 8: Result for BERT with diverse calibration techniques. The best results are indicated in bold.

Acc↑ / ECE↓ / NLL↓ TREC SST2 20NG
BERT (baseline) 93.40 / 4.43 / 25.16 87.47 / 9.49 / 52.36 73.79 / 10.90 / 96.02
CE+ERL 93.40 / 4.40 / 25.13 87.48 / 9.50 / 51.66 73.77 / 10.84 / 95.96
CE+LS 93.28 / 3.87 / 24.13 87.44 / 7.99 / 37.05 73.57 / 8.07 / 94.78
BL 93.60 / 2.33 / 21.54 87.26 / 7.25 / 38.74 73.96 / 6.63 / 91.02
BL+ERL 93.25 / 2.38 / 21.95 87.56 / 6.83 / 36.96 74.21 / 5.63 / 90.94
BL+LS 93.14 / 2.41 / 22.03 87.78 / 6.01 / 36.76 73.91 / 5.89 / 92.37
SR 92.52 / 4.67 / 28.37 87.74 / 8.62 / 46.59 74.00 / 10.93 / 95.34
AEDA 93.44 / 4.36 / 24.48 87.71 / 9.03 / 48.55 73.65 / 11.52 / 97.43
EDA 91.88 / 4.30 / 28.30 87.44 / 8.93 / 44.94 74.04 / 10.33 / 94.26
MixUp 93.88 / 2.76 / 20.47 87.65 / 7.20 / 37.47 74.01 / 9.04 / 95.31
MCDrop 93.56 / 3.53 / 24.89 87.43 / 8.87 / 50.13 73.81 / 10.24 / 94.77
MIMO 93.88 / 2.62 / 21.53 87.55 / 6.09 / 34.82 73.80 / 7.25 / 88.65
DE 93.68 / 2.91 / 21.13 87.92 / 6.76 / 38.44 75.19 / 7.52 / 85.81
BL+ERL+MixUp+MCDrop 93.45 / 3.51 / 23.77 87.58 / 5.42 / 34.31 73.80 / 7.35 / 90.69
BL+ERL+MixUp+MIMO (CALLMIMO) 93.56 / 2.91 / 21.20 87.70 / 5.85 / 34.35 74.11 / 5.21 / 89.93
BL+ERL+MixUp+DE (CALLDE) 94.24 / 3.41 / 19.79 88.25 / 2.48 / 28.65 75.68 / 2.20 / 82.90

Table 9: Result for BERT with diverse calibration techniques on the low-resource regime. The best results are
indicated in bold.
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Abstract
Detecting out-of-distribution (OOD) inputs is
crucial for the safe deployment of natural lan-
guage processing (NLP) models. Though ex-
isting methods, especially those based on the
statistics in the feature space of fine-tuned pre-
trained language models (PLMs), are claimed
to be effective, their effectiveness on different
types of distribution shifts remains underex-
plored. In this work, we take the first step
to comprehensively evaluate the mainstream
textual OOD detection methods for detecting
semantic and non-semantic shifts. We find
that: (1) no existing method behaves well
in both settings; (2) fine-tuning PLMs on in-
distribution data benefits detecting semantic
shifts but severely deteriorates detecting non-
semantic shifts, which can be attributed to the
distortion of task-agnostic features. To alle-
viate the issue, we present a simple yet ef-
fective general OOD score named GNOME
that integrates the confidence scores derived
from the task-agnostic and task-specific repre-
sentations. Experiments show that GNOME
works well in both semantic and non-semantic
shift scenarios, and further brings significant
improvement on two cross-task benchmarks
where both kinds of shifts simultaneously take
place. Our code is available at https://
github.com/lancopku/GNOME.

1 Introduction

The pre-training and fine-tuning paradigm based on
Transformers (Vaswani et al., 2017) has achieved
tremendous success in various natural language
understanding (NLU) tasks (Devlin et al., 2019; Liu
et al., 2019; Qiu et al., 2020). However, fine-tuned
pre-trained language models (PLMs) notoriously
suffer from over-confident predictions on out-of-
distribution (OOD) inputs (Hendrycks et al., 2020).
As this issue threats the reliability of NLP models
deployed in the open world, textual OOD detection
has attracted great attention recently (Podolskiy
et al., 2021; Zhou et al., 2021, 2022; Duan et al.,

Figure 1: OOD detection performance (FAR95↓, lower
is better) in non-semantic and semantic shift scenarios.
No single existing method works well in both scenarios,
but our proposed GNOME mitigates the trade-off.

2022, etc.), which aims to enable the model to
abstain from making unreasonable predictions on
OOD data and resort to human intervention.

Nonetheless, almost all of the current approaches
are assessed under certain assumptions about the
type of OOD texts. One line of works creates
in-distribution (ID) and OOD pairs from arbitrary
datasets for different tasks (Hendrycks et al., 2020),
while another line assumes that OOD data belong
to classes in the ID task but unseen during train-
ing, e.g., in intent recognition (Podolskiy et al.,
2021). Arora et al. (2021) reveal the inconsistency
among the evaluation protocols and category the
distribution shifts to non-semantic shifts (NSS) and
semantic shifts (SS), but a thorough comparison
of existing methods in different settings is miss-
ing as later works either focus on either detecting
NSS (Duan et al., 2022) or SS (Zhou et al., 2022).

In this work, we systematically evaluate the main-
stream textual OOD detection methods on a com-
prehensive suite of benchmarks covering both NSS
and SS scenarios. As shown in Figure 1, no single
method wins across the board. Notably, the detec-
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tors based on the pre-trained features, e.g., the Ma-
halanobis distance detector MDpre (Xu et al., 2021),
excel at detecting non-semantic shifts but fail in de-
tecting semantic shifts. In contrast, when the PLM
is fine-tuned on annotated ID data, the detectors
based on fine-tuned features, e.g., MDft (Podolskiy
et al., 2021), perform well in the SS scenario but
disastrously fail in the NSS setting. These obser-
vations uncover an intriguing trade-off: fine-tuning
contributes to the detection of semantic shifts but
impairs the detection of non-semantic shifts. This
trade-off raises two critical research questions:

RQ1: Why does fine-tuning undermine the detec-
tion of non-semantic shifts? It is relatively easy
to attribute the positive effect of fine-tuning in the
SS setting to the learned class-discriminative fea-
tures (Fort et al., 2021), but it remains unknown
why fine-tuning plays a negative role in the NSS
setting. We empirically find that the adverse ef-
fect comes from the fact that fine-tuning gradually
destructs the pre-trained task-agnostic knowledge
about general linguistic properties, which are use-
ful cues for the detection of non-semantic shifts.

RQ2: How to develop a general textual OOD de-
tection method? Since the type of distribution shifts
is unknown in practice, our findings suggest that a
practical method able to detect different kinds of
OOD texts is yet to be developed. To this end, we
aggregate the distance scores estimated in the fea-
ture space of both pre-trained and fine-tuned mod-
els to derive a GeNeral textual OOD Measurement
scorE (GNOME) capable of detecting both NSS
and SS. On the suite of benchmarks covering both
NSS and SS settings, GNOME (the green star in
Figure 1) surpasses the previous SOTA by 8.13
FAR95 points on average; on two cross-task bench-
marks where both kinds of shifts happen simul-
taneously, GNOME reduces the average FAR95
by 4.88 points. Note that GNOME is not meant
to be a SOTA method in all settings but rather a
simple, principled way to get reasonable detection
performance under various kinds of distribution
shifts—we hope our analysis inspires better ap-
proaches for general textual OOD detection.

2 Related Work

OOD detection aims to detect abnormalities com-
ing from a different distribution from the training
data so that the model can refuse to make predic-
tions on them (Amodei et al., 2016; Yang et al.,

2021). Since it is essential for the security of ma-
chine learning models deployed in the open-world
environment, OOD detection has gained great atten-
tion, first in computer vision (CV). We categorize
the mainstream OOD detection methods into three
groups by way to derive confidence scores: (1)
confidence-based methods using the output prob-
abilities of classifiers trained on in-distribution
(ID) data (Hendrycks and Gimpel, 2017; Laksh-
minarayanan et al., 2017; Liang et al., 2018; Liu
et al., 2020); (2) density-based methods using den-
sity scores derived from generation models (Zong
et al., 2018; Ren et al., 2019; Xiao et al., 2020); (3)
distance-based methods using the distance statis-
tics in the feature space of neural networks (Lee
et al., 2018; Huang et al., 2021; Sun et al., 2022).

Following the progress in CV, textual OOD detec-
tion based on PLMs has also attracted increasing at-
tention. Hendrycks et al. (2020) show that the max-
imum softmax probability (MSP) score (Hendrycks
and Gimpel, 2017) is a strong baseline for PLMs,
followed by a group of works on confidence-based
textual OOD detection (Li et al., 2021; Shen et al.,
2021; Yilmaz and Toraman, 2022). As for the
density-based branch, Gangal et al. (2020) and
Arora et al. (2021) apply the idea to textual OOD
detection by leveraging language models such as
LSTM (Hochreiter and Schmidhuber, 1997) and
GPT-2 (Radford et al., 2019). Regarding the
distance-based methods, Podolskiy et al. (2021) re-
visit the Mahalanobis distance-based detector (Lee
et al., 2018) for textual OOD detection based on
fine-tuned PLMs and achieve performance gains
over confidence-based methods, which is then
further improved by introducing contrastive reg-
ularization (Zhou et al., 2021), utilizing nearest-
neighbor distance (Zhou et al., 2022), and leverag-
ing intermediate features (Chen et al., 2022).

Nonetheless, the NLP community lacks uniform
evaluation criteria for OOD detection. Generally,
ID/OOD pairs for evaluation are constructed in
three ways: (1) the non-semantic shift (NSS) setting
(a.k.a., the background shift setting) (Li et al.,
2021; Arora et al., 2021; Duan et al., 2022), where
ID and OOD data consist of the same semantic
classes but differ in background information,1 e.g.,

1Although the model can also make predictions on the
samples with only non-semantic shifts, the accuracy tends to
significantly drop. As the cost of wrong predictions is great in
safety-critical scenarios, a conservative method for handling
these samples by rejecting them is practical.
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tweets as ID and Wikipedia comments as OOD
in toxicity detection; (2) the semantic shift (SS)
setting (Podolskiy et al., 2021; Zhou et al., 2022),
where OOD data are composed of unseen classes
belonging to the ID task, e.g., new classes in intent
classification; (3) the cross-task setting (Hendrycks
et al., 2020; Zhou et al., 2021), where the ID and
OOD data are from datasets for different tasks
and both semantic and non-semantic shifts happen,
e.g., sentiment analysis data as ID and news
classification data as OOD. Arora et al. (2021) first
notice the inconsistency and compare confidence-
based and density-based methods in NSS and SS
settings, but they neglect the crucial branch of
distance-based methods and the cross-task setting.
In this work, we fill in this gap by presenting a
comprehensive evaluation and developing a general
textual OOD score motivated by our observations.

3 Observations and Explanations

In this section, we first give preliminaries in § 3.1.
Then we introduce our benchmark for evaluating
textual OOD detection (§ 3.2) and the evaluated
methods (§ 3.3). Finally, we present the evaluation
results (§ 3.4) and our interpretation of the observed
trade-off between NSS and SS scenarios (§ 3.5).

3.1 Preliminaries
Problem Formulation The OOD detection prob-
lem can be formulated as a binary classification
problem to decide whether an input example x be-
longs to the training data distribution Pin (ID) or
not (OOD). An OOD detector D makes decisions
for the input x based on the following formula:

D(x) = �������
ID if S(x) ≥ �
OOD if S(x) < � , (1)

where S(x) is the confidence score output by the
detector and � is the threshold chosen by the user.

Metrics We adopt two widely-used metrics AU-
ROC and FAR95 following prior works (Podolskiy
et al., 2021; Zhou et al., 2021). AUROC can be
interpreted as the probability that the model ranks a
random ID sample higher than a random OOD sam-
ple, and FAR95 is the proportion of negative sam-
ples (OOD) wrongly judged as positive (ID) when
the true positive rate is 95%. Higher AUROCs and
lower FAR95s indicate better performance.

Notations Assume M✓ is a PLM where ✓ denotes
its parameters and z = M(x) denotes the feature

Setting Task ID OOD

Non-Semantic
Shift

Sentiment
Analysis

SST-2 IMDB
IMDB SST-2

Toxic
Detection

Twitter Jigsaw
Jigsaw Twitter

Semantic
Shift

News
Categorization

AGNews AGNewsOOD
NC NCOOD

Dialogue Intent
Classification

ROSTD ROSTDOOD
CLINC CLINCOOD

Table 1: The architecture of the constructed suite of
benchmarks categorized as either non-semantic shift
(NSS) or semantic shift (SS). NC is short for the News
Category dataset.

vector for the input sample x derived from M (e.g.,
the last-layer CLS embedding in Transformers).
For a classification task with C classes, the user
fine-tunes M together with a classification head h
and get the fine-tuned model F✓∗,h = h○M✓∗ where
✓∗ denotes the fine-tuned parameters. The output of
F is F✓∗,h (x) = (p1 (x) , p2 (x) , . . . , pC (x))T ,
which denotes the predicted probabilities.

3.2 Benchmark Construction

We aim to build ID/OOD pairs where either the
non-semantic shift (NSS) or the semantic shift (SS)
dominates so that we can fairly compare existing
methods on the ability to detect these two kinds
of shifts separately. (1) For NSS, we choose SST-2
(Socher et al., 2013) and IMDB (Maas et al., 2011)
for sentiment analysis, and Twitter (Founta et al.,
2018) and Jigsaw2 for toxicity detection. Among
the four, any two datasets from the same task can
be regarded as an ID/OOD pair. (2) For SS, we
use four datasets: New Category (NC) (Misra
and Grover, 2021; Misra, 2022), AGNews (Corso
et al., 2005), ROSTD (Gangal et al., 2020), and
CLINC (Larson et al., 2019). For each dataset,
we use some classes as ID and the remaining
classes as OOD. We show the architecture of the
constructed suite of benchmarks categorized as
either non-semantic shift (NSS) or semantic shift
(SS) in Table 1 and more details can be found in
Appendix A. Compared with Arora et al. (2021),
we additionally include toxicity detection data for
NSS and intent recognition data for SS, which
make the suite of benchmarks more representative
of real-world scenarios.

2Available at this link.
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3.3 Evaluated Baselines
OOD Detection Methods We evaluate the main-
stream methods as follows. (1) For confidence-
based methods, we test the MSP baseline (S(x) =
maxy∈{1,2,...,C} py(x)) (Hendrycks and Gimpel,
2017) and its three variants: Scaling (Liang et al.,
2018), Energy Score (Liu et al., 2020), and D2U
(Yilmaz and Toraman, 2022); (2) For density-based
methods, we evaluate the PPL method (Arora et al.,
2021) using the GPT-2 model for language model-
ing (S(x) = 1�PPL(x)); (3) For distance-based
methods, we test the LOF method (Lin and Xu,
2019) that trains a local outlier detector on fine-
tuned features of ID data, and the basic variants of
the Mahalanobis detector (MD): MDpre (Xu et al.,
2021) built on pre-trained features (z = M✓(x))
and MDft (Podolskiy et al., 2021) built on fine-
tuned features (z = M✓∗(x)). Also, we evaluate
two variants of MD built on features derived from
PLMs fine-tuned with supervised contrastive and
margin-based auxiliary targets (Zhou et al., 2021),
namely MDft + Lscl and MDft + Lmargin. Generally,
the confidence score in MD is formulated as:

MD(x) = min
c∈{1,2,...,C} (z − µc)T ⌃−1 (z − µc) ,

S(x) = −MD(x), (2)

where µc is the class centroid for class c and ⌃ is
the global covariance matrix (µ and ⌃ can be esti-
mated on ID training data). Besides, we evaluate
the nearest-neighbor detectors (Sun et al., 2022)
based on pre-trained (KNNpre) and fine-tuned fea-
tures (KNNft). We refer readers to Appendix C for
more details about the baselines.

Model Configuration For the methods based on
fine-tuned PLMs, we build text classifiers by fine-
tuning the RoBERTabase (Liu et al., 2019) model
(110M parameters) on annotated ID data. For
MDpre, we use the pre-trained RoBERTabase model.
For the PPL method, we fine-tune the GPT-2small
model (117M parameters) for language modeling
on ID data. More details can be found in Ap-
pendix B.

3.4 Evaluation Results and Findings
We display the main evaluation results in Table 2.
As shown, the confidence-based methods under-
perform the density-based method PPL in the NSS
setting, while they outrival PPL in the SS setting,
in line with the observations in Arora et al. (2021).
Notably, we notice that the distance-based meth-
ods achieve the best results in both NSS and SS

Category Method Avg. NSS SS

Confidence

MSP 71.63/72.92 65.47/88.94 77.78/56.89
Scaling 71.96/71.62 65.45/88.94 78.47/54.30
Energy 71.75/71.63 64.90/89.05 78.61/54.20
D2U 71.99/71.49 65.47/88.94 78.52/54.04

Density PPL 67.65/79.61 74.28/65.81 61.03/93.42

Distance

MDft 80.39/57.42 72.25/80.95 88.54/33.89
MDft + Lscl 82.22/60.36 76.71/82.57 87.73/38.15
MDft + Lmargin 86.50/44.63 85.45/51.68 87.54/37.57
MDpre 83.76/50.29 93.29/29.90 74.22/70.68
KNNft 81.02/56.91 72.58/80.99 89.47/32.84
KNNpre 85.69/46.29 92.66/28.67 78.72/63.92

Table 2: The performance (AUROC↑/FAR95↓ values
in percentage) of the evaluated approaches. All results
are averaged over five random seeds, and best results
are highlighted in bold. We report results averaged on
the ID/OOD pairs in NSS and SS setting in the last two
columns, respectively, and report the results averaged
on all eight benchmarks in the third column. See full
results on each benchmark in Table 4 and Appendix E.

settings. Concretely, MDpre and KNNpre built on
pre-trained features are the best in the NSS setting,
while MDft and KNNft built on fine-tuned features
are the best in the SS setting. However, no sin-
gle method wins across the board. Thus, we draw
an intriguing trade-off: In textual OOD detection,
fine-tuning PLMs on ID data boosts semantic shift
detection but impairs non-semantic shift detection.

To intuitively understand the effect of fine-tuning,
we visualize the features using t-SNE (Van der
Maaten and Hinton, 2008) in both settings. As plot-
ted in Figure 2, before fine-tuning, the ID and OOD
samples are sharply separated in the NSS setting,
but show a significant overlap in the SS setting;
after fine-tuning, the ID samples are well clustered
on class in both settings and unseen classes (OOD)
in the SS setting are also pulled away from the ID
data, but OOD samples in the NSS setting become
almost indistinguishable from the ID data.

The observed benefits of fine-tuning in the SS set-
ting match the observation in the near-OOD image
detection (Fort et al., 2021), suggesting that the
fine-tuned task-specific representations are more
suitable for detecting unseen classes belonging to
the ID task. Regarding the negative effect of fine-
tuning in the NSS setting, we speculate that it
can be explained in this way: task-agnostic fea-
tures important for detecting non-semantic shifts
are learned during pre-training but discarded in the
fine-tuning stage, for which we will present empiri-
cal evidence in § 3.5. To our knowledge, we are the
first to study the impact of fine-tuning on the de-
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(a) Non-Semantic Shift: SST-2 (ID) vs. IMDB (OOD)

(b) Semantic Shift: ROSTD (ID) vs. ROSTDOOD (OOD)

Figure 2: T-SNE visualizations for the features derived
from pre-trained and fine-tuned RoBERTa models and
the corresponding FAR95 of the Mahalanobis detector.

tection of different kinds of OOD texts and reveal
the trade-off between the NSS setting (fine-tuning
harms) and the SS setting (fine-tuning helps).

In addition, we notice that when the model is fine-
tuned with margin-based contrastive auxiliary tar-
gets (Lmargin) (Zhou et al., 2021), the MD detector
(MDft+Lmargin) substantially surpasses MDft in the
NSS setting with marginal sacrifice in the SS set-
ting, thus it achieves the best performance on aver-
age. However, it still falls far behind MDpre in the
NSS setting. As no single existing method behaves
well in both settings, a general textual OOD detec-
tion method capable of detecting different kinds of
OOD texts is yet to be developed, given the broad
range of distribution shifts in realistic scenarios.

3.5 Empirical Explanations

Probing Analysis. From the view of the oracle,
the OOD data in the NSS setting can be easily dis-
tinguished from the ID data by certain task-agnostic
linguistic features. For example, the IMDB data are
long movie reviews with an average length of 230
tokens, which can be well distinguished by length
from the SST-2 reviews with an average length of
19 tokens. Therefore, we speculate that the nega-
tive effect of fine-tuning arises from the deletion of
general linguistic features during fine-tuning. To
test the conjecture, we evaluate the sentence em-

Figure 3: The dynamics of test accuracy, probing ac-
curacies of SentLen and BShift, and the performance
(AUROC↑) to detect IMDB as OOD in the fine-tuning
process of the RoBERTa model on SST-2. We have seen
similar trends on other datasets in the NSS setting.

Methods Avg. NSS SS

MDpre 50.29 29.90 70.68
MDft 57.42 80.95 33.89
MDft + RecAdam 55.76 78.39 33.13
MDft (head lr × 10) 53.90 76.18 31.63
MDft + LP-FT 50.92 60.26 41.59

Table 3: The performance of MDft coupled with regular-
ization techniques on textual OOD detection. We report
the FAR95↓ values on average.

beddings produced by the model checkpoints in the
fine-tuning process on SST-2 on two classic prob-
ing tasks designed by Conneau and Kiela (2018):
SentLen (sentence length) and BShift (bigram shift).
They are general linguistic features irrelevant to
the class labels in downstream classification tasks,
so the probing accuracies can be regarded as in-
dicators of the preservation of task-agnostic fea-
tures (see details in Appendix A.3). We show the
tendency of the probing accuracies along with cor-
responding OOD detection performance (IMDB
as OOD) and test accuracy in Figure 3. We find
that as fine-tuning goes on, although the classifica-
tion performance on ID test data shows an upward
trend, the OOD detection performance (AUROC)
gradually declines along with the probing accura-
cies. The observed correlations between the OOD
detection performance and the probing accuracies
on SentLen and BShift empirically indicate that
fine-tuning impairs NSS detection by distorting the
task-agnostic features in pre-trained models.

Does Regularization Help? As stated, fine-
tuning may destruct the pre-trained features and
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thus harm NSS detection. If the cause-effect holds,
the negative effect can be alleviated by regular-
ization techniques for preserving pre-trained fea-
tures. To verify this deduction, we investigate three
regularization approaches: (1) the RecAdam opti-
mizer (Chen et al., 2020); (2) a 10× larger learning
rate for the head (Prabhu et al., 2021); (3) the linear-
probing then fine-tuning approach (LP-FT) (Kumar
et al., 2022). As shown in Table 3, the regulariza-
tion techniques applied to MDft bring moderate
improvements in the NSS setting, but they still
fall far behind MDpre that exploits the original pre-
trained features. The results provide further empir-
ical support for our reasoning about the demerits
of fine-tuning. Moreover, they suggest that effec-
tively preserving pre-trained task-agnostic features
suitable for NSS detection in fine-tuned PLMs is
challenging. A plausible solution is to decouple
task-agnostic and task-specific features in a single
fine-tuned model, which we leave for future study.
Another possible solution is to directly leverage the
pre-trained model, which we will introduce next.

4 GNOME for Textual OOD Detection

In view of the observed trade-off, we are moti-
vated to combine the strengths of task-agnostic and
task-specific representations to obtain a confidence
score capable of modeling both non-semantic shifts
and semantic shifts. A straightforward way is to
take the mean of MDpre and MDft scores.3 How-
ever, given that the norm of features can fluctu-
ate and thus the distance scores are not compara-
ble across different spaces, simple averaging may
cause the integrated score to be skewed towards the
side with the larger norm. To alleviate the issue,
we normalize MDpre and MDft before aggregation:

Norm(MDpre(x)) = MDpre(x) − µpre

�pre
,

Norm(MDft(x)) = MDft(x) − µft

�ft
,

(3)

where µ and � are the mean and standard devia-
tion of Mahalanobis distance scores, respectively,
which can be estimated on ID validation sam-
ples. Then we obtain the integrated score GNOME
(GeNeral textual OOD Measurement scorE):

SGNOME(x) = −Agg(Norm(MDpre(x)),Norm(MDft(x)), (4)
3Our core idea is orthogonal to the distance-based scoring

function, so we can also combine KNNpre and KNNft. We have
tested in this way and got similar results to those obtained by
combining MDpre and MDft.

where Agg is the aggregation operator (such as
the mean or max). We use the mean operator for
aggregation in our main experiments. Note that
We do not use a weighted average because it is
not possible to tune the weights when OOD data
is unknown, which follows the mainstream setting
in OOD detection. If the user has prior knowledge
about the type of OOD data, he/she can train the
weights to aggregate the scores.

5 Experiments

5.1 Experimental Setup
Benchmarks Besides the eight benchmarks in-
troduced in § 3.2 that are categorized as either NSS
or SS, we also evaluate GNOME and baselines in
the cross-task setting (Hendrycks et al., 2020; Zhou
et al., 2021) where both kinds of shifts happen si-
multaneously. Following Zhou et al. (2021), we
choose SST-2 (Socher et al., 2013) and 20 News-
groups (Lang, 1995) as ID data, and regard a se-
ries of datasets from different tasks as OOD data:
TREC-10 (Li and Roth, 2002), WMT-16 (Bojar
et al., 2016), Multi30k (Elliott et al., 2016), RTE
(Dagan et al., 2005), and SNLI (Bowman et al.,
2015). Refer to Appendix A for more details.

Models and Metrics We follow the same model
configuration as that in § 3.3 in main experiments
and report FAR95 values in the main text (the trend
of AUROC results in Appendix E is similar).

5.2 Results and Analysis
GNOME works well in both SS and NSS settings
and significantly surpasses baselines in terms
of average performance. As shown in Table 4,
GNOME is competent in both settings (close to
MDpre for NSS and MDft for SS) and achieves the
best performance on average. The average FAR95
is 36.50%, 8.13% lower than the previous SOTA
MDft+Lmargin requiring extra margin-based targets.

GNOME also achieves superior performance
in the cross-task setting. As results in Table 5,
GNOME outperforms all baseline methods (4.88%
FAR95 reduction on average) in the cross-task set-
ting, demonstrating the power of integrating task-
agnostic and task-specific representations when
non-semantic shifts and semantic shifts happen si-
multaneously. Note that among existing methods,
MDpre and KNNpre are the best on the 20 News-
groups benchmark, suggesting that non-semantic
shifts dominate there; MDft+Lmargin is the best on
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Methods Avg.
Non-Semantic Shift (NSS) Semantic Shift (SS)

SST-2 IMDB Twitter Jigsaw NC AGNews ROSTD CLINC

MSP (Hendrycks and Gimpel, 2017) 72.92 90.50 79.20 89.76 96.29 72.16 85.06 51.24 19.08
Scaling (Liang et al., 2018) 71.62 90.50 79.20 89.76 96.29 68.94 80.19 52.15 15.90
Energy (Liu et al., 2020) 71.63 90.58 79.65 89.70 96.27 69.35 79.17 52.53 15.76
D2U (Yilmaz and Toraman, 2022) 71.49 90.50 79.20 89.76 96.29 68.86 79.49 52.14 15.66
PPL (Arora et al., 2021) 79.61 64.65 7.25 94.53 96.79 93.50 95.78 86.99 97.40
LOF (Lin and Xu, 2019) 58.82 93.39 24.28 88.86 92.90 70.83 81.00 4.69 14.58
MDft (Podolskiy et al., 2021) 57.42 91.28 47.78 88.49 96.25 58.16 64.06 1.06 12.26
MDft + Lscl (Zhou et al., 2021) 60.36 88.05 63.11 84.53 94.57 67.00 69.26 3.42 12.90
MDft + Lmargin (Zhou et al., 2021) 44.63 32.61 4.70 72.51 96.90 59.31 67.48 11.07 12.40
MDpre (Xu et al., 2021) 50.29 0.01 1.54 44.40 73.65 90.14 87.64 31.33 73.30
KNNft (Sun et al., 2022) 56.91 87.87 56.81 83.67 95.60 56.51 60.64 0.71 13.50
KNNpre (Sun et al., 2022) 46.29 0.00 1.48 33.11 80.03 84.56 81.89 18.51 70.70
GNOME (Ours) 36.50 0.04 8.24 53.36 85.88 64.81 63.25 1.47 14.94

Table 4: OOD detection performance (FAR95↓, lower is better) on the constructed suite of benchmarks. All values
are percentages averaged over five different random seeds, and the best results are highlighted in bold. The second
column gives the average performance on eight benchmarks.

Methods Avg.
ID Datasets

SST-2 20 NG

MSP 59.98 70.00 49.95
Scaling 50.68 70.00 31.36
Energy 52.31 72.43 32.31
D2U 51.15 70.00 32.29
LOF 51.55 66.29 36.81
MDft 32.29 48.82 15.75
MDft + Lscl 35.30 49.04 21.56
MDft + Lmargin 23.97 29.43 18.51
MDpre 17.90 35.79 0.01
KNNft 43.58 63.73 23.42
KNNpre 20.79 41.57 0.01
GNOME (ours) 13.02 26.02 0.01

Table 5: OOD detection performance in the cross-task
setting. For each ID dataset, we report the macro av-
erage of FAR95↓ on all corresponding OOD datasets,
averaged over five random seeds.

the SST-2 benchmark, indicating that both kinds
of shifts matter there. Without any prior knowl-
edge about the type of distribution shifts, GNOME
yields the best performance on both benchmarks.

5.3 Ablation Study

We examine the rationality of the key components
of GNOME here. As shown in Table 6, when the
normalization operation is absent, the performance
in the SS setting is slightly enhanced (∼3% FAR95
reduction), but the performance in the NSS and
cross-task settings drops by around 7% FAR95
points, which suggests that the normalization
operation helps strike a balance between the two
scenarios and thus achieve better performance on
average. These results also empirically verify that
the mean operator is more suitable than the max

Norm. Agg. Avg. NSS SS CT

!
mean 28.67 36.88 36.12 13.02
max 30.08 38.33 37.90 14.01

%
mean 32.61 44.00 33.32 20.52
max 34.67 45.31 33.88 24.83

Table 6: The performance (FAR95↓) corresponding to
different normalization choices and score aggregators
in GNOME. CT denotes the cross-task setting.

operator for the score aggregation step in GNOME.
We have also tested other common normalization
methods such as min-max and found that they
underperform the standardization normalization
employed in GNOME.

Besides the score-level fusion in GNOME, we have
also tested feature-level fusion (concatenating or
averaging pre-trained and fine-tuning features), but
they lead to a significant drop in the SS setting
(+20% FAR95) while only a slight improvement in
the SS setting. Thus we argue that the score-level
fusion by the mean operator is better.

6 Further Discussion

6.1 Comparison with Ensemble Methods

On the top of MDft based on the fine-tuned PLM,
GNOME is free of modification to the model ar-
chitecture or training, and only requires an ex-
tra inference of the off-shelf PLM to obtain pre-
trained features, thus being practical for real-world
deployment. For a strictly fair comparison un-
der the same inference overhead constraint, we
compare GNOME with previous ensemble meth-
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Methods #Passes Avg. NSS SS

Single Pass
MSP 1 72.92 88.94 56.89
MDft 1 57.42 80.95 33.89
MDpre 1 50.29 29.90 70.68

Model Ensemble
MSP 2 70.25 88.45 52.05
MDft 2 56.09 81.35 30.82
MSP 5 68.59 88.37 48.80
MDft 5 55.35 80.64 30.11

Dropout Ensemble
MC Dropout 2 72.68 88.41 56.95
MC Dropout 5 70.75 85.88 55.62

GNOME 2 36.50 36.88 36.10

Table 7: Comparison with ensemble methods on the de-
veloped benchmark. We report FAR95 values averaged
on the ID/OOD pairs in both SS and NSS settings.

ods, which can be divided into two groups: (1)
Model ensemble (Lakshminarayanan et al., 2017):
summing confidence scores derived from models
trained over different random seeds (we apply it to
MSP and MDft); (2) MC Dropout (Gal and Ghahra-
mani, 2016): summing the probabilities output by
multiple inferences with dropout on.

As the results shown in Table 7, previous ensem-
ble methods that require 2× or 5× forward passes
only slightly raise the performance compared with
their single-pass counterparts, and fall far behind
GNOME in terms of the average detection perfor-
mance. These results also substantiate the power
of integrating pre-trained and fine-tuned features.
We do not compare with the k-Folden method (Li
et al., 2021) that needs (C − 1) sub-models (C is
the number of ID classes) because it does not apply
to binary classification problems and is expensive
for large-scale problems where C is large.

6.2 The Choice of Pre-Trained Features
In the main experiments, we adopt the last-layer
CLS embeddings as the pre-trained features for
simplicity and fair comparison between MDpre and
MDft. As works on unsupervised textual OOD
detection (Xu et al., 2021) and unsupervised sen-
tence embedding (Su et al., 2021) show, pooling
operations such as token-level and layer-level av-
eraging produce better pre-trained features. We
then alternatively use last-avg (the average of to-
ken embeddings in the last layer) and first-last-avg
(the average of token embeddings in the first and
last layers) embeddings as pre-trained features in
MDpre and GNOME. As shown in Table 8, when

Pre-trained
Features Methods Avg. NSS SS

- MDft 57.42 80.95 33.89

last-cls MDpre 50.29 29.90 70.68
GNOME 36.50 36.88 36.10

last-avg MDpre 46.28 36.14 56.41
GNOME 35.88 38.33 33.43

first-last-avg MDpre 41.77 36.00 47.54
GNOME 35.89 37.93 33.85

Table 8: The OOD detection performance (FAR95↓ in
percentage) of different pre-trained features.

Backbone Methods Avg. NSS SS

BERTbase-uncased

MDpre 67.81 60.61 75.01
MDft 59.06 85.05 33.08
GNOME 50.98 65.42 36.55

RoBERTabase

MDpre 50.29 29.90 70.68
MDft 57.42 80.95 33.89
GNOME 36.50 36.88 36.10

RoBERTalarge

MDpre 71.17 58.72 83.60
MDft 58.98 83.33 34.62
GNOME 44.92 54.08 35.76

Table 9: Textual OOD detection performance (FAR95↓
values on average) with different pre-trained backbones.

the last-cls embeddings are replaced with the last-
avg or first-last-avg embeddings, MDpre is mod-
erately degraded in the NSS setting (∼7% FAR95
increase), but it is drastically improved in the SS
setting (∼14% or ∼23% FAR95 reduction). Notably,
the trade-off before and after fine-tuning still holds
when the last-avg or first-last-avg is used to get pre-
trained features. However the pre-trained features
are derived, GNOME consistently brings improve-
ments to the average detection performance.

6.3 Generalization on Other PLMs

To demonstrate the generality of GNOME, we also
test on another two PLMs: BERTbase-uncased (Devlin
et al., 2019) (110M parameters) and RoBERTalarge
(Liu et al., 2019) (355M parameters). As shown in
Table 9, we observe that: (1) The NSS-SS trade-off
is prevalent on different PLMs and GNOME brings
consistent gains over baselines in terms of average
performance. (2) RoBERTabase, which uses more
diverse pre-training data, beats BERTbase-uncased,
suggesting that pre-training on diverse data boosts
textual OOD detection; RoBERTalarge underper-
forms RoBERtabase, indicating that larger models
are not necessarily better at OOD detection.
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7 Conclusion

Aware of the lack of a fair and comprehensive eval-
uation of current textual OOD detection methods,
we take the first step to systematically assess them
under different distribution shifts. Interestingly, we
find that no single method works well in both the
non-semantic shift setting and the semantic shift
setting, and there exists a trade-off: fine-tuning
pre-trained language models on in-distribution data
benefits detecting semantic shifts but undermines
detecting non-semantic shifts. After presenting
empirical explanations for the trade-off from the
perspective of feature distortion, we are then
motivated to fully utilize both the pre-trained and
fine-tuned features to obtain an efficient measure-
ment score GNOME for better detecting diverse
distribution shifts. Extensive experimental results
demonstrate the efficacy and generality of GNOME.
Overall, GNOME is a first step in leveraging the
intuition from our observations and analysis, and
we hope that this work sheds light on the behavior
of pre-trained language models upon detecting
different kinds of distribution shifts and inspires
new methods for general textual OOD detection.

Limitations

Although our approach GNOME yields the best
overall performance on the suite of benchmarks
where either NSS or SS dominates and also
performs best in the cross-task setting where both
kinds of shifts take place, it slightly underperforms
MDpre and KNNpre in the NSS setting and
marginally lags behind MDft and KNNft in the SS
setting. This is comprehensible because it is chal-
lenging for a single method to function perfectly
for arbitrary OOD data without priors on the type
of distribution shifts as analyzed in visual OOD de-
tection works (Ahmed and Courville, 2020). Note
again that we do not intend to present a perfect tex-
tual OOD detector capable of tackling all kinds of
distribution shifts; instead, our core contributions
are that we discover the trade-off between NSS and
SS settings, present an empirical analysis to explain
the phenomenon and provide insights to mitigate
the trade-off for general textual OOD detection.

Ethical Considerations

We believe that our work leads to a better under-
standing of the behavior of pre-trained language
models on OOD texts. We also believe that the

proposed method will facilitate the reliable de-
ployment of NLU models since a model may face
various types of OOD inputs in the wild and our
method contributes to the detection performance on
unknown OOD data in the average sense. All exper-
iments in this work are conducted on open datasets
and all pre-trained models that we investigate are
publicly available. We do not anticipate any nega-
tive social consequences to our work and we hope
to continue to build on our method and develop
more effective textual OOD detectors in the future.
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A Dataset Introduction and Statistics

A.1 The Constructed Suite of Benchmarks
We show the included datasets in Table 10 and give
an introduction to them as follows.

For the NSS setting, we consider two tasks: senti-
ment analysis and toxic detection. For sentiment
analysis, we choose SST-2 (Socher et al., 2013) and
IMDB (Maas et al., 2011). SST-2 contains short
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Dataset # Classes # Train # Dev # Test L

SST-2 2 6,920 872 1,821 19
IMDB 2 23,000 2,000 25,000 230
Twitter 2 69,632 7,737 8,597 17
Jigsaw 2 143,614 15,957 63,978 68
AGNews 4 115,778 3,994 3,993 23
NC 5 68,859 8,617 8,684 30
ROSTD 12 30,521 4,181 8,621 7
CLINC 150 15,000 3,000 4,500 8
AGNewsOOD - - - 3,600 21
NCOOD - - - 11,402 29
ROSTDOOD - - - 3,090 7
CLINCOOD - - - 1,000 9

Table 10: Statistics of the datasets used for the con-
structed suite of benchmarks. L denotes the average
length of each sample.

movie reviews by the audience, while IMDB con-
tains longer and more professional movie reviews.
Therefore, the two datasets can regard each other as
OOD data representing a non-semantic shift. For
toxic detection, we choose Twitter (Founta et al.,
2018) and the Jigsaw dataset from a Kaggle chal-
lenge.4 The Twitter dataset consists of short com-
ments on Tweet, while the Jigsaw dataset consists
of longer Wikipedia comments, so they can regard
each other as OOD data of the NSS type.

For the SS setting, we consider two tasks where
newly emerging classes are common: news topic
categorization and dialogue intent classification.
For news topic categorization, we choose the
AGNews (Corso et al., 2005) and News Category
datasets (Misra and Grover, 2021; Misra, 2022)
to construct ID/OOD pairs. Specifically, we
choose four classes from AGNews and five classes
from News Category as ID data and regard the
remaining classes from the original datasets as
OOD data. For dialogue intent classification, we
use the ROSTD (Gangal et al., 2020) and CLINC
(Larson et al., 2019) datasets as ID data and regard
the annotated unknown intents from the original
datasets as OOD data.

A.2 Cross-Task Benchmarks
For the cross-task setting, we follow Zhou et al.
(2021) to use SST-2 and 20 Newsgroups (20 NG)
(Lang, 1995) as ID data. 20 NG is a news catego-
rization dataset containing 10,182 training samples,
1,132 validation samples, and 7,532 test samples.
The average sample length in 20 NG is 289. Nat-
urally, SST-2 and 20 NG can regard each other as

4Available at this link.

Dataset # Test L

TREC-10 500 10
Multi30k 1,014 13
WMT16 2,000 22
RTE 3,000 48
SNLI 2,000 21

Table 11: Statistics of OOD datasets in the cross-task
setting. L denotes the average length of each sample.

Dataset / Loss Lce Lce + Lscl Lce + Lmargin

SST-2 93.96 94.23 93.69
IMDB 94.56 94.53 94.21
Twitter 93.67 93.64 93.81
Jigsaw 81.82 82.08 82.43
NC 95.39 95.21 95.43
AGNews 91.28 91.03 91.18
ROSTD 99.23 99.21 99.26
CLINC 96.21 96.16 96.08
20 NG 84.52 84.65 84.53

Table 12: Accuracies / F1 scores on the test set of in-
distribution data (averaged over five random seeds). We
report F1 scores for Twitter and Jigsaw toxic detection
and accuracies for other tasks.

OOD data. Besides, we use five additional datasets
from different datasets as OOD test data for each ID
dataset: TREC-10 (Li and Roth, 2002), WMT-16
(Bojaret al., 2016), Multi30k (Elliott et al., 2016),
RTE (Dagan et al., 2005), and SNLI (Bowman
et al., 2015). TREC-10 is a question classification
dataset; Multi30k (Elliott et al., 2016) and WMT16
(Bojar et al., 2016) are parts of the English side data
of English-German machine translation datasets;
RTE (Dagan et al., 2005) and SNLI (Bowman et al.,
2015) are the concatenations of the precise and re-
spective hypotheses from NLI datasets. The statis-
tics of the OOD datasets are listed in Table 11.

A.3 Probing Benchmarks
To probe the linguistic information contained in pre-
trained and fine-tuned features, we use two probing
tasks designed by Conneau et al. (2018). Each
probing dataset contains 100k training samples,
10k validation samples, and 10k test samples. We
use the SentEval toolkit (Conneau and Kiela, 2018)
along with the recommended hyperparameter space
to search for the best probing classifier according to
the validation accuracy and report test accuracies.

B Performance on In-Distribution Data

We fine-tune the RoBERTabase model on the ID
training data to build text classifiers in our main
experiments. The model is optimized with the
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Adam (Kingma and Ba, 2015) optimizer using a
learning rate of 2e-5. We use a batch size of 16
and fine-tune the model for 5 epochs. We evalu-
ate the model on the ID validation set after every
epoch and choose the best checkpoint as the final
model. The setting is the same for other pre-trained
Transformers studied in the paper (BERTbase-uncased
and RoBERTalarge). The performance of fine-tuned
RoBERTabase models is given in Table 12, whereLce denotes the vanilla cross-entropy loss, Lscl de-
notes the supervised contrastive loss (Khosla et al.,
2020), and Lmargin denotes the margin-based con-
trastive loss (Zhou et al., 2021). We report the F1
scores on the test set for toxic detection on Twitter
and Jigsaw and test accuracies for other tasks.

C Details of OOD Detection Baselines

C.1 Confidence-Based Baselines

Notations In a classification problem with C
classes, assume the input is x, we denote fi(x)
is the output logit of class i, and the predicted soft-
max probability of class i is defined as:

pi(x) =max
i

exp (fi(x))∑C
j=1 exp (fj(x)) . (5)

Confidence-based methods obtain the OOD score
based the output logits and softmax probabilities.

MSP Hendrycks and Gimpel (2017) propose the
maximum softmax probabilty (MSP) baseline, in
which the confidence score is defined the predicted
maximum softmax probability among C classes:

S(x) =max
i

pi(x). (6)

Scaling In the ODIN paper (Liang et al., 2018),
tempature scaling is applied to the scoring function:

S(x) =max
i

exp (fi(x)�T )∑C
j=1 exp (fj(x)�T ) , (7)

where T is the temperature term. Following Hsu
et al. (2020), we fix T = 1000 in our experiments.
Note that ODIN (Liang et al., 2018) also propose
an input pre-processing step adding adversarial per-
turbation to the input image, while we do not use
it because it is not directly applicable for discrete
inputs in NLP.

Energy Score (Liu et al., 2020) propose to use
the free energy function for OOD detection, which

is formulated as follows:

E(x) = C�
i=1 efi(x),

S(x) = −E(x). (8)

D2U Yilmaz and Toraman (2022) propose to
improve out-of-scope detection by exploiting the
shape of the entire output distribution. Specifi-
cally, the distance of the output distribition P (x) =(p1(x), . . . , pc(x)) to the uniform distribution U
as the OOD score:

S(x) = dst (P (x) , U) , (9)

where dst is the distance function. We use the
KL divergence as the distance function as recom-
mended in Yilmaz and Toraman (2022) in our ex-
periments. Note that Yilmaz and Toraman (2022)
also propose to use D2U for loss calculation when
out-of-scope training data is available, while we
do not use it in the training because we follow the
mainstream setting in OOD detection works where
OOD data is not available for training.

C.2 Density-Based Baselines
PPL Arora et al. (2021) propose to use the token
perplexity (PPL) score derived from the GPT-2 lan-
guage model (Radford et al., 2019) as the OOD
score. Following the implementation of Arora et al.
(2021),5 we fine-tune the GPT-2small model (117M
parameters, similar to RoBERRabase in size) for
language modeling on the ID training data and use
the inverse of the PPL score as the OOD score. For-
mally, for an input text sequence x = {x1, . . . , xt},

PPL(x) = exp�−1

t

t�
i

log p✓ (xi � x<i)� ,

S(x) = 1�PPL(x), (10)

where t is the number of tokens in x.

C.3 Distance-Based Baselines
Local Outlier Factor (LOF) Lin and Xu (2019)
propose to identify unknown user intents by feed-
ing feature vectors derived from LSTM models to
the density-based novelty detection algorithm, lo-
cal outlier factor (LOF) (Breunig et al., 2000). In
our implementation, we use the last-layer CLS vec-
tor embeddings by the fine-tuned RoBERTa models
as the input and train a LOF model following the

5Available at this Github repository.
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implementation details of Lin and Xu (2019) on
the ID training set. Finally, we use the local density
output as S(x).
Mahalanobis Distance Detector The Maha-
lanobis distance detector (MD) (Lee et al., 2018) is
a classical distance-based OOD detection method
that exploits the sample distance to the nearest ID
class in the embedding space to obtain the OOD
score. Formally, for a given feature extractor  , the
Mahalanobis distance score is defined as:

S(x) = −minc∈⌥ ( (x) − µc)T ⌃−1 ( (x) − µc) , (11)

where ⌥ = {1,2, . . . , C} is the label space contain-
ing C classes in the ID task,  (x) is the embedding
vector of the input x, µc is the class centroid for a
class c, and ⌃ is the covariance matrix. The estima-
tions of µc and ⌃ are defined as:

µc = 1

Nc
�

x∈Dc
in

 (x),
⌃ = 1

N
�
c∈⌥ �x∈Dc

in

( (x) − µc) ( (x) − µc)T ,
(12)

where Dc
in = {x � (x, y) ∈ Din, y = c} denotes the

training samples belonging to the class c, N is
the size of the training set, and Nc is the number
of training instances belonging to the class c. As
for textual OOD detection based on pre-trained
language models, when the feature extractor  is
the off-the-shelf pre-trained model, i.e. detecting
anomalies in the pre-trained feature space (Xu et al.,
2021), it is called MDpre in our paper; when  is the
fine-tuned model, i.e. detecting anomalies in the
fine-tuned feature space (Podolskiy et al., 2021), it
is called MDft in our paper.

Contrastive Fine-Tuning Targets Coupled with
the MD Detector Zhou et al. (2021) propose
to use two forms of contrastive losses to boost
textual OOD detection, i.e., the supervised con-
trastive loss (Lscl) and the margin-based contrastive
loss (Lmargin). For a classification task contain-
ing C classes, given a batch of training examples{xi, yi}Mi=1, where xi is the input and yi is the label,
the supervised contrastive loss term Lscl and the
final optimization target L can be formulated as:

Lscl = M�
i=1

−1
M �P (i)� �p∈P (i) log

ez�i zp�⌧
∑a∈A(i) ez�i za�⌧ ,

L = Lce + Lscl,

(13)

where A(i) = {1, ...,M} � {i} is the set of all an-
chor samples, P (i) = {p ∈ A(i) ∶ yi = yp} is the

set of anchor samples from the same class as i,
⌧ is a temperature hyper-parameter, z is the L2-
normalized CLS embedding before the softmax
layer, Lce is the cross-entropy loss, and � is a posi-
tive coefficient. Following the implementation of
Zhou et al. (2021),6 we use ⌧ = 0.3 and � = 2.

The margin-based loss term Lmargin and the final
optimization target L is formulated as:

Lpos = M�
i=1

1�P (i)� �p∈P (i) �hi −hp�2 ,

Lneg = M�
i=1

1�N(i)� �n∈N(i) �⇠ − �hi −hn�2�+ ,

Lmargin = 1

dM
�Lpos + Lneg � ,

⇠ = M
max
i=1 max

p∈P (i) �hi −hp�2 ,

L = Lce + �Lmargin,

(14)

where N(i) = {n ∈ A(i) ∶ yi ≠ yn} is the set of
anchor samples from other classes than yi, h ∈ Rd

is the unnormalized CLS embedding before the
classification head, ⇠ is the margin, d is the number
of dimensions of h, and � is a positive coefficient.
We use � = 2 following Zhou et al. (2021).

Except for the optimization target, we use the same
hyper-parameters for the two tuning methods as
vanilla tuning.

Nearst-Neighbor-Based Detector Sun et al.
(2022) explore the efficacy of non-parametric
nearest-neighbor distance for OOD detection and
show its advantages over the Mahalanobis distance
detector on visual OOD detection benchmarks.
Specifically, it takes the minus of the average dis-
tance from the test sample to the k-nearest train-
ing samples in the normalized feature space. We
reproduce two variants, i.e., KNNpre using the pre-
trained features and KNNft using the fine-tuned
features. We set the neighborhood size k = 10 in
our experiments.

D Software and Hardware Requirements

We implement our code based on the PyTorch
(Paszke et al., 2019) and HuggingFace Transform-
ers (Wolf et al., 2020) Python libraries. All experi-
ments (training and inference) in this paper can be
conducted on a single NVIDIA TITAN RTX GPU
(24 GB memory), except that the fine-tuning of the
RoBERTalarge model needs 4 TITAN RTX GPUs.

6Available at this Github repository
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Methods Avg.
Non-Semantic Shift (NSS) Semantic Shift (SS)

SST-2 IMDB Twitter Jigsaw NC AGNews ROSTD CLINC

MSP (Hendrycks and Gimpel, 2017) 71.62 67.92 74.09 48.75 71.13 75.12 64.84 75.42 95.72
Scaling (Liang et al., 2018) 71.96 67.92 74.09 48.76 71.03 74.60 67.35 75.71 96.20
Energy (Liu et al., 2020) 71.63 69.73 72.84 47.56 69.49 74.19 67.55 76.52 96.18
D2U (Yilmaz and Toraman, 2022) 71.99 67.92 74.09 48.75 71.13 74.62 67.46 75.72 96.26
PPL (Arora et al., 2021) 67.65 79.65 98.51 34.61 84.36 57.91 50.67 85.05 50.47
LOF (Lin and Xu, 2019) 76.42 53.39 94.87 62.14 57.88 78.39 70.07 97.49 97.17
MDft (Podolskiy et al., 2021) 80.39 69.86 90.87 65.83 62.42 3.41 73.51 99.66 97.57
MDft + Lscl (Zhou et al., 2021) 82.22 83.12 88.28 71.13 64.32 81.68 72.74 99.09 97.39
MDft + Lmargin (Zhou et al., 2021) 86.50 93.84 98.99 83.04 65.94 82.91 72.00 97.68 97.56
MDpre (Xu et al., 2021) 83.76 99.99 98.75 90.59 83.84 57.45 61.53 95.22 82.69
KNNft (Sun et al., 2022) 81.02 72.00 86.07 74.90 57.33 84.82 75.85 99.67 97.53
KNNpre (Sun et al., 2022) 85.69 99.99 98.31 92.80 79.53 65.90 69.28 96.89 82.81
GNOME (Ours) 89.34 99.98 98.25 89.64 81.10 75.50 73.77 99.63 96.84

Table 13: OOD detection performance (AUROC↑, higher is better) on the developed suites of benchmarks. All
values are percentages averaged over five different random seeds, and the best results are highlighted in bold. The
last column gives the average performance on eight datasets.

E Additional Experimental Results

We display the AUROC results of GNOME and the
baselines on the constructed suite of benchmarks
in Table 13. The overall trend is consistent with
that of the FAR95 results reported in Table 4 in the
main text.
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Abstract

Accounting for different degrees of formality
is crucial for producing contextually appropri-
ate language. To assist NLP applications con-
cerned with this problem and formality anal-
ysis in general, we present the first dataset
of sentences from a wide range of genres as-
sessed on a continuous informal-formal scale
via comparative judgments. It is the first corpus
with a comprehensive perspective on German
sentence-level formality overall. We compare
machine learning models for formality scoring,
a task we treat as a regression problem, on our
dataset. Finally, we investigate the relation be-
tween sentence- and document-level formality
and evaluate leveraging sentence-based annota-
tions for assessing formality on documents.

1 Introduction

Textual style can be approached from various
points of view. We focus on its inherent formality
dimension stretching from informal to formal lan-
guage use. See these two sentences, for example:

(1) We gave thorough thought to an adequate example.
Wir haben gründlich über ein adäquates
Beispiel nachgedacht.

(2) racked our brains about a niiice example... :D
haben uns den kopf über ein schööönes
beispiel zermartert... :D

While both sentences transport the same content,
they differ in their degree of formality. (2) is less
formal than (1). It may be suitable only for more
informal discourse contexts and inappropriate in
formal settings. Understanding these different nu-
ances of formality is crucial for effective commu-
nication. Consequently, striking the right tone is
relevant not only for humans but also for various
NLP applications. May it be machine translation in
need to transfer expressions of formality between
different languages adequately (Niu and Carpuat,
2020; Anastasopoulos et al., 2022), chatbots aim-
ing to produce contextually appropriate language
to increase user satisfaction (Chaves et al., 2019;

Elsholz et al., 2019), or writing assistance systems
altering content to be more formal (Saberi et al.,
2020). Hence, intra-lingual formality style transfer,
which deals with generating a formal phrase given
its informal version and vice versa, has recently
also received increased attention (e.g., Shang et al.,
2019 or Zhang et al., 2020).

Our paper addresses a prerequisite for this task:
assessing linguistic formality. Rating the trans-
ferred style strength is necessary for evaluating
formality style transfer models. Further, parallel
corpora with formal and informal language pairs,
often the basis for style transfer, are commonly
built by automatically grading and extracting in-
formal sentences first (Rao and Tetreault, 2018;
Briakou et al., 2021b). For facilitating such formal-
ity assessments and analyzing linguistic formality
in general, we make the following contributions:

1. We present the first dataset of sentences
from a wide range of genres with human formal-
ity assessments on a continuous informal-formal
scale. We ensure a comprehensive perspective on
formality by collecting sentences from diverse do-
mains. Formality annotations are obtained via a
comparative annotation variant (annotators com-
pare items to each other), which is not only more
reliable than the rating scale method (Kiritchenko
and Mohammad, 2017) but also satisfies the princi-
ple that a “continuum of formality” (Heylighen and
Dewaele, 1999) exists rather than categorical dis-
tinctions. The dataset is the first to target German
sentence-level formality unrestrictedly overall.

2. We evaluate several machine learning mod-
els for formality scoring on our dataset, which we
treat as a regression task. Regression models have
been found to be more suitable than classifiers for
evaluating formality style transfer models since
they grasp the broad spectrum of linguistic formal-
ity (Briakou et al., 2021a). Besides fine-tuning
transformers on our dataset, we examine utiliz-
ing formality-informed corpora from different lan-
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guages with coarser or narrower representations
of formality. Further, we employ feature-based
approaches for formality scoring and analyze lin-
guistic properties that constitute formality. For
such analyses, we provide a tool with a variety of
features for profiling characteristics of registers,
genres, and author styles for various languages.

3. We investigate the applicability of sen-
tence-level formality annotations for the formal-
ity assessment of documents. Lately, Jin et al.
(2022) proposed extending formality style trans-
fer, which so far exclusively focuses on the sen-
tence level, to stylistically more complex docu-
ments. However, datasets targeting formality on
this scope are rare and limited in size, probably
because obtaining annotations is more expensive.
Therefore, we analyze how sentence formality con-
tributes to the formality of documents.

2 Related Work

With their continuous formality score based on fre-
quencies of parts of speech, Heylighen and De-
waele (1999) established a milestone for the defini-
tion of formality. Lahiri et al. (2011) adapted this
measure from the document to the sentence level.
Most approaches targeting the lexical dimension
of formality also regarded formality as a contin-
uum (Brooke et al., 2010; Brooke and Hirst, 2014;
Pavlick and Nenkova, 2015; Eder et al., 2021).

To the best of our knowledge, datasets compris-
ing sentences with human formality assessments on
a continuous informal-formal scale have not been
constructed before. Pavlick and Tetreault (2016)
built an English dataset collecting formality an-
notations on a 7-point Likert scale for sentences
from only four sources (compared to the twelve in
our dataset). They introduced formality detection
as a regression task using features based on ana-
lyzing human perceptions of formality for a ridge
regression model. Other datasets targeting sen-
tence-level formality have binary labels since they
primarily serve as parallel data for formality style
transfer and contain formal and informal language
pairs. They cover English (Rao and Tetreault, 2018;
Cheng et al., 2020), Brazilian Portuguese, French
and Italian (Briakou et al., 2021b), and Hindi, Ben-
gali, Kannada and Telugu (Krishna et al., 2022).

Work on formality style transfer mainly used
classification for measuring style strength and a
handful of different classifiers (e.g., Lai et al.
(2021) employed a CNN, Wang et al. (2019) an

LSTM, and Krishna et al. (2020) transformers).
Evaluating the style strength as a regression task,
Rao and Tetreault (2018) borrowed the approach
from Pavlick and Tetreault (2016), and Briakou
et al. (2021b) relied on fine-tuning transformers.

For the German language, not yet considered
for intra-lingual formality style transfer, two sen-
tence collections with binary formality annotations
based on formal and informal direct address ex-
ist (Faruqui and Padó, 2012; Nadejde et al., 2022).
(Since these formality levels do not exist in English,
they pose a problem for machine translation (Nade-
jde et al., 2022).) Hence, these datasets target a
very constrained view of formality only.

Focusing on the document level, several works
used traditional machine learning models for bi-
nary formality classification based on linguistic
features. As training data, Abu Sheikha and Inkpen
(2010) assumed binary labels for formality from
the text genre, and Peterson et al. (2011) manually
annotated emails from the English ENRON corpus
(Klimt and Yang, 2004) with four formality classes.
Treating formality assessment on documents as a
regression task, Chhaya et al. (2018) employed lin-
guistic features for formality scoring on ENRON
emails, which have been rated on a 5-point Likert
scale, whereas Eder et al. (2021) evaluated word
formality scoring on emails from the German cor-
pus CodE Alltag (Eder et al., 2020) based on contin-
uous formality annotations. All these manually la-
beled document collections are small in size (∼1k)
and built from a single domain only, i.e., emails.
None of these works leverages formality-annotated
sentences nor fine-tunes transformer models to as-
sess the formality of documents.

3 Data

To build our dataset, we collected 3,000 German
(DE) sentences from different domains and let
crowdworkers assess their formality on a continu-
ous formality scale via comparative annotations.

3.1 Collecting Sentences

We chose twelve different text sources, which we
assumed to be related to diverse levels of formality,
to cover the broad spectrum of linguistic formality
best possible. From each source, we took 250 sen-
tences. We picked these sentences randomly, but
they had to consist of at least one word. Addition-
ally, we attempted to enhance language variety by
selecting a minimum number of sentences per au-
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thor. We also tried spreading the data over different
topics whenever such information was available.1

We utilized the following sources:
Tweets. We rehydrated tweets from a German

Twitter snapshot (Scheffler, 2014).
Reddit. We extracted posts from the GeRedE

corpus, which contains German communication on
Reddit (Blombach et al., 2020).

Subtitles. To account for spoken language, we
included German sentences from the OpenSubtitles
collection of parallel corpora with movie and TV
subtitles (Lison and Tiedemann, 2016).

Comments. 250 sentences were collected from
the One Million Posts Corpus, which comprises
comments on news articles (Schabus et al., 2017).

Emails. We took sentences from CodE Alltag, a
corpus with German emails (Eder et al., 2020).

Blogs. Using the DWDS platform (Geyken et al.,
2017), we obtained sentences from a blog corpus
(Barbaresi and Würzner, 2014).

Fiction. Due to the lack of accessible corpora
covering contemporary fictional texts, we reverted
to an archive that, besides fan fiction, contains orig-
inal work from nonprofessional writers.2 We ex-
tracted 250 sentences from their short stories.

News. We gathered sentences from the German
news corpus from 2020 provided in the Leipzig
Corpora Collection (Goldhahn et al., 2012).

Wikipedia. From the Leipzig Corpora Collec-
tion, we also used sentences from the German
Wikipedia corpus from 2021.

Political. For potentially more formal spoken
language examples, we extracted sentences from
German political speeches that are included in the
parallel corpus EuroParl (Koehn, 2005).

Legal. We gained sentences from the legal do-
main by utilizing a dataset with German court deci-
sions (Leitner et al., 2019).

Science. We used Springer Link3 to manually
collect sentences from scientific journals, proceed-
ings, and books published between 2000 and 2022
under open access.

3.2 Human Assessment

We gathered human formality assessments for the
resulting 3,000 sentences using Best-worst scaling
(BWS) (Louviere et al., 2015), a form of compar-
ative annotation. BWS delivers more reliable an-

1For some corpora, we subsumed subreddits, blogs, genres,
or articles, to which comments refer, in place of topic.

2https://www.fanfiktion.de/
3https://link.springer.com/

notations than the rating scale method mitigating
issues such as a scale region bias or inconsistent
annotations (Kiritchenko and Mohammad, 2017).
Further, it complies with the notion of formality as
a continuum (Heylighen and Dewaele, 1999).

For BWS, annotators are presented with n items
at a time (typically n = 4). They have to decide
which item from the n-tuple is the best and which is
the worst (i.e., the highest and the lowest regarding
the property of interest). To get real-valued scores
from these BWS annotations, the percentage of
times the term is chosen as worst is subtracted from
the percentage of times the term is chosen as best
(Counts Analysis (Orme, 2009)). Thus, each item
receives a score between +1 (most formal) and −1
(most informal).

We randomly generated 2N 4-tuples (where N
denotes the number of sentences) under the premise
that each term occurs only once in eight different
tuples and each tuple is unique.4 For the annota-
tion process proper, we chose crowdsourcing to
ensure the heterogeneity of annotators. Using the
crowdsourcing platform Clickworker5, German na-
tive speakers assessed each of the 6,000 tuples five
times. Thus, we collected 30,000 annotations from
1,084 different annotators, with an average of 27.7
annotations per annotator.

All five annotators agreed in 19% of the annota-
tions. In two-thirds, three or four annotators chose
the same item, while only in 15% just two of the an-
swers matched. The higher the difference between
the real-valued formality scores of two sentences,
the higher the agreement of the crowdworkers. For
a score difference of just 0.1, the agreement is 64%.
It rises to over 70% for higher score differences,
with over 80% for differences higher than 0.4 and
at least 90% for differences over 0.7.

We computed the split-half reliability4 for our
formality-assessed dataset by randomly splitting
the annotations of a tuple into two halves, calcu-
lating scores independently for these halves, and
measuring the correlation between the resulting
two sets of scores. We got an average Spearman’s
ρ of 0.919 (±0.002) over 100 trials, which indi-
cates a high reliability of the annotations.

3.3 The Final Dataset
Figure 1 displays the distribution of human-as-
sessed formality scores for each of the twelve

4We employed scripts developed for emotion scaling by
Kiritchenko and Mohammad (2016, 2017).

5https://www.clickworker.de
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Figure 1: Distribution of formality scores for our 3,000
sentences per each of the twelve sources ordered by the
average formality score of the source.

sources of the 3,000 sentences in our dataset. As
expected, sentences from online communication
or sources with more spontaneous language use,
e.g., tweets or comments, tend to be linked to lower
scores, while sentences with more elaborated lan-
guage use, e.g., legal or scientific texts, have higher
scores. However, sources scatter broadly, and as-
suming the same degree of formality per genre
seems inappropriate.

Figure 2: Averages of simple linguistic characteristics
(scaled to a range between 0 and 1) of sentences for
each source; sources ordered by their mean formality.

In Figure 2, we plot some simple linguistic fea-
tures, which have been studied in relation to for-
mality (Heylighen and Dewaele, 1999; Pavlick and
Tetreault, 2016, i.a.) for each source. The mean
word formality, token length, sentence length and
parse tree height rise for sources with higher av-

erage sentence formality scores. The proportion
of punctuation characters tends to sink, whereas
the ratios of upper- or lower-case tokens are more
stable. Heylighen and Dewaele’s (1999) F-score in-
dicates a higher formality and the readability score
Flesch Reading Ease (Flesch, 1948) signals a lower
readability for sources with higher mean formality.

In the following, we explore such properties for
scoring the formality of the individual sentences.

4 Formality Scoring on Sentences

We compared different models for predicting for-
mality scores for sentences on our dataset.

4.1 Within-Dataset Experiments

Transformers. We experimented with fine-tuning
transformer models on our dataset. For that, we em-
ployed GBERT-base (Chan et al., 2020), a German
BERT language model.6 For all transformer-based
experiments, we used the NLP library FLAIR (Ak-
bik et al., 2019) as a framework.

Feature-based Models. We evaluated two
feature-based models, which allowed us to ex-
amine the influence of linguistic characteristics
more directly. The first ridge regression model em-
ploys eleven different feature groups and was devel-
oped for scoring the formality of English sentences
(Pavlick and Tetreault, 2016). The second was cre-
ated for English documents, more precisely emails
(Chhaya et al., 2018). It borrows features from the
first model and extends them with affect-based fea-
tures. We adapted these feature sets to German and
adjusted them to work on sentences and documents.
We also employed a ridge regression model. Table
5 in the Appendix contains a detailed breakdown
of the features we implemented.

4.2 Cross-Dataset Experiments

Learning from Other Languages. We examined
using English sentences with formality scores de-
termined via averaging over individual annotations
on a 7-point Likert scale (Pavlick and Tetreault,
2016). This dataset (PT16 in the following) con-
tains about 11k sentences from four sources: news
and blogs from Lahiri (2015) extended by emails
and Q&A sites. We evaluated three different set-
tings. We fine-tuned GBERT-base transformers
on PT16 translated to German and tested them on

6Other German transformers (Chan et al., 2020; Minix-
hofer et al., 2022) either yielded no significant difference or
performed worse (see Table 3 in the Appendix).
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Training Testing Model Spearman’s ρ
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ours (de) GBERT 0.919 (±0.009)
ours (de) ours (de) feature-based (∼ Pavlick and Tetreault, 2016) 0.857* (±0.007)
ours (de) ours (de) feature-based (∼ Chhaya et al., 2018) 0.830* (±0.018)
PT16 (de) ours (de) GBERT 0.877* (±0.018)
PT16 (en) ours (de) XLM-RoBERTa 0.847* (±0.017)
PT16 (en) ours (en) BERT 0.844* (±0.022)
XFORMAL (br-pt+fr+it) ours (de) XLM-RoBERTa 0.768* (±0.020)
GYAFC (en) ours (de) XLM-RoBERTa 0.716* (±0.023)
FP12 (de) ours (de) GBERT 0.595* (±0.042)

Table 1: Evaluation of different models for formality scoring on our sentences; ‘*’ stands for a statistically significant
difference of p < 0.005 with respect to best model (using two-sided Wilcoxon signed-rank test on Spearman’s ρ);
language(s) of datasets in brackets, translated data underlined.

our dataset. Consequently, we utilized BERT-base
(Devlin et al., 2019) for fine-tuning on the original
English PT16 and testing on the English translation
of our dataset. Further, we fine-tuned multilingual
XLM-RoBERTa-base transformers (Conneau et al.,
2020) on the English PT16 and tested them on our
German sentences. For the translations in both
directions, we employed the models from Edunov
et al. (2018) via the fairseq toolkit (Ott et al., 2019).

Formality Classifiers. Since there are huge
datasets with binary formality annotations, we eval-
uated binary formality classifiers leveraging these
data. We used the probability of the class deter-
mined by the classifiers as a prediction of a for-
mality score. For the informal class, we took the
probability as a negative number, thus ending up
with scores from −1 to +1. Lacking more com-
prehensive German data, we experimented with a
dataset from Faruqui and Padó (2012) that com-
prises 60k German sentences with binary formality
annotations based only on formal and informal di-
rect address (unmarked in English yet explicitly
marked in German). We fine-tuned GBERT on this
dataset, FP12 in the following, for binary classifi-
cation. As FP12 is limited to this particular case
of formality, we further utilized parallel datasets
with formal and informal language pairs from lan-
guages other than German. These parallel datasets,
containing informal sentences from a Q&A forum
and their formal rewrites, are GYAFC with 110k
English sentences (Rao and Tetreault, 2018) and
XFORMAL with 23k Brazilian Portuguese, French
and Italian sentences (Briakou et al., 2021b). We
employed binary XLM-RoBERTa-based classifiers
fine-tuned on GYAFC7 and XFORMAL8.

7https://github.com/martiansideofthemoon/
style-transfer-paraphrase (Krishna et al., 2020)

8https://huggingface.co/SkolkovoInstitute/
xlmr_formality_classifier

4.3 Evaluation

Table 1 reports the average Spearman’s ρ for the
different setups. Evaluated in a 10-fold cross-val-
idation manner, the two feature-based models
yielded high results. To explore their relation to for-
mality, Figure 3 shows several linguistic features
used by these models per the formality score of the
sentences. While sentiment seems to be a relatively
constant feature across the formality scale, other
factors correlate better with formality. The punc-
tuation ratio and the Flesch readability score tend
to sink, whereas word formality, token length, con-
stituency tree height, and the number of tokens rise
with increasing sentence formality. According to
SHAP (Lundberg and Lee, 2017)9, among the most
important features of the approach by Chhaya et al.
(2018) are indeed the sentence length, the average
word formality, the Flesch score and the average
token length (already achieving 0.8 Spearman’s ρ
on their own). This shows that such simple linguis-
tic properties are good indicators of formality, at
least at the sentence level.

Figure 3: Relation between several linguistic features
(scaled values) and the formality scores of the sentences.

9SHAP is a game theoretic approach that facilitates inter-
preting predictions of machine learning models.
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However, fine-tuning transformers significantly
outperformed the feature-based approaches (Table
1). In Figure 4, we plot the predictions of GBERT
transformers fine-tuned on our dataset versus the
human-assessed formality scores. The errors are
lower on both ends of the scale. Sentences nearer to
the scale’s middle are more difficult to predict for
the model since they carry fewer linguistic markers
than sentences with extreme (in)formality scores.
But in general, predictions are relatively accurate.

Figure 4: Predictions of the best model versus gold for-
mality scores (brighter colors mean higher predictions).

Table 1 also shows that from the settings uti-
lizing the PT16 dataset, the model fine-tuned on
PT16 translated to German performed best. The
formalization effect of machine translation (infor-
mal sentences get more formal through translation
(Briakou et al., 2021b)) seems to influence the mod-
els using translated data since they tended to predict
higher formality scores, especially for more neutral
sentences. However, the results indicate that this
is less critical when compared to the cross-lingual
regression model fine-tuned on English and tested
on German data. Contrasted to fine-tuning and
testing on our dataset, the PT16 models were still
significantly worse, although PT16 comprises over
three times more sentences than our dataset. This
may also be ascribed to its narrower scale of for-
mality. PT16 models tended to yield lower results
on more formal domains of our dataset (science,
legal and Wikipedia). Scoring these genres seems
more challenging for those models since news, the
most formal source in PT16 (Pavlick and Tetreault,
2016), has only the fifth-highest average formality
score in our dataset (see Figure 1).

The probabilities for being either formal or infor-
mal from the binary formality classifiers fine-tuned
on GYAFC and XFORMAL in a cross-lingual set-

Figure 5: Formal and informal predictions of the
GYAFC model per formality score bin of our sentences.

ting also showed a correlation to the human assess-
ments (Table 1). However, these models performed
worse than regression models. Figure 5 exempli-
fies the class predictions of the binary formality
classifier fine-tuned on GYAFC per formality score
bin (formality scores rounded to one decimal place)
on our dataset. It shows that sentences with lower
formality scores tended to be classified as informal
and sentences with higher scores as formal. How-
ever, formal and informal sentences were predicted
in nearly every formality score bin. From that, we
infer that a binary separation of formality into for-
mal and informal sentences is not reasonable.

Figure 6: Distribution of formality scores of sentences
with formal and informal address.

The monolingual binary classifier fine-tuned on
FP12, which includes only formal and informal
address sentences, performed significantly worse
than all other setups. Figure 6 shows the number
of sentences with formal and informal address in
our dataset (only 137 in total) per formality score
bin. Although they lean towards the lower end,
even these sentences scatter broadly over the for-
mality scale (average formality scores are −0.10
(±0.30) for formal and −0.36 (±0.25) for infor-
mal address). Formality is not only expressed via
these different forms of address. (3) shows a sen-
tence from our dataset with formal address but a
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Training Testing Model Spearman’s ρ

d. E21 (de)

do
cu

m
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ts

E21 (de) GBERT 0.891 (±0.059)

se
nt

. ours (de) E21 (de) GBERT 0.847 (±0.028)
ours (de) E21 (de) feature-based (∼ Pavlick and Tetreault, 2016) 0.686* (±0.039)
ours (de) E21 (de) feature-based (∼ Chhaya et al., 2018) 0.603* (±0.095)

d. C18 (en) C18 (en) BERT 0.827 (±0.041)

se
nt

en
ce

s ours (en) C18 (en) BERT 0.729* (±0.059)
ours (de) C18 (en) XLM-RoBERTa 0.703* (±0.054)
ours (de) C18 (de) GBERT 0.674* (±0.054)
PT16 (en) C18 (en) BERT 0.603* (±0.063)

Table 2: Results for formality scoring on documents; statistically significant differences (calculated with the
two-sided Wilcoxon signed-rank test) are marked with ‘*’ for p < 0.005 with respect to the best models; language(s)
of datasets in brackets, translated data underlined.

low formality score because of other indicators.
Consequently, formality is a much broader concept,
and restricting it to this use case is insufficient for
comprehensive formality analysis.

(3) Wollen Sieformal address nicht reinguckeninformal?
Don’t you want to have a look?

5 Formality Scoring on Documents

Documents may assemble an even more diverse
range of clues for degrees of formality than sen-
tences. Only recently, Jin et al. (2022) proposed
extending style transfer to the more complex doc-
ument level, but manual formality annotations
of documents are more expensive to obtain than
sentence-level assessments. Therefore, this section
investigates how single sentences and linguistic
properties contribute to the overall document for-
mality. We examine if sentence-level formality
annotations are useful for assessing formality on
documents.

5.1 Evaluation on German Documents
We conducted experiments and analyses on Ger-
man documents. For that, we utilized 800 emails
with continuous formality scores (Eder et al., 2021).
Sentences from emails show the highest standard
deviation of formality of all domains in our dataset
and the corpus from Pavlick and Tetreault (2016).
Thus they possess a high stylistic variability. We
denote the dataset E21 in the following.

We compared transformers and feature-based
approaches trained on our formality-informed sen-
tences with transformer models fine-tuned on E21
for predicting formality on this document collec-
tion. The upper half of Table 2 presents the aver-
age Spearman’s ρ for these models. Fine-tuning
GBERT on E21 itself (10-fold cross-validation)
performed best, but there is no statistically signifi-
cant difference between utilizing the documents

or our formality-assessed sentences as training
data. The transformer models grasped the con-
cept of formality more comprehensively since the
feature-based ridge regression models yielded sig-
nificantly worse results. It seems that linguistic
features do not generalize well. Figure 7 shows
some of the most predictive linguistic features for
formality scoring on the sentence level for the doc-
uments. The average word formality and the Flesch
Reading Ease correlate with document formality
in a similar way than with sentence formality (Fig-
ure 3). However, the average sentence length and
average token length are comparably more static
across the formality scale of documents and thus
less suitable features.

Figure 7: Linguistic characteristics (scaled values) of
the documents per their formality scores.

To further understand how the formality of a
document is affected by its sentences, we split the
documents of E21 into separate sentences. Then,
we ran the GBERT model fine-tuned on our dataset
on these sentences to determine their formality.
Taking the average of the calculated scores as
document score still returned a Spearman’s ρ of
0.801. Although this result is significantly worse
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(p < 0.01) than running the model on the docu-
ments directly, it still shows a strong correlation
between the scores of the sentences and the docu-
ment formality score. In Figure 8, we plot the num-
ber of sentences per calculated formality score bin
for each formality score bin of the corresponding
documents. The sentence and document formal-
ity scores show some overlap. Nevertheless, the
sentences in the documents have quite a range of
formality scores.

Figure 8: Frequency of calculated formality scores of
sentences per formality score bin of documents.

How the formality of sentences changes through-
out a document is shown in Figure 9, which depicts
the mean sentence formality by position in the doc-
uments. The formality tends to decrease with in-
creasing position in the text. This observation is in
line with the assumption of Heylighen and Dewaele
(1999) that formality is higher at the beginning of
a text because of the lack of previous discourse to
relate to. For threaded online discussions, Pavlick
and Tetreault (2016) reported congruent findings.

Figure 9: Average sentence formality score by position
in documents; sentence positions are scaled to ten bins.

Concluding, fine-tuning transformers on sen-
tences is applicable for assessing the formality of
documents, as our results show. However, due to
the variety of sentence formality scores, it may not
be helpful to map formality assessments of docu-
ments to their sentences to save annotation efforts
or assume mono-style documents regarding the for-
mality dimension.

5.2 Evaluation on English Documents

To investigate the applicability of transformer mod-
els fine-tuned on our sentences for other languages,
we evaluated them on English documents. We
used 960 emails (C18 in the following) with for-
mality annotations obtained via averaging over
individual assessments on a 5-point Likert scale
(Chhaya et al., 2018). The lower half of Table
2 shows the results. Fine-tuning on the docu-
ments (10-fold cross-validation) significantly out-
performed sentence-based models. We ascribe this
performance decline also to the manual annota-
tions of C18 since we only calculated an aver-
age split-half reliability of 0.573 (±0.015) Spear-
man’s ρ over 100 trials. Given these conditions, a
BERT model fine-tuned on our translated dataset
still achieved a high correlation also compared to
the English PT16 model. Hence, we assume our
dataset is beneficial for formality assessment of
English-language documents too.

6 Conclusion

We presented the first dataset of sentences with
highly reliable human formality assessments on a
continuous informal-formal dimension obtained
via Best-worst scaling. Our dataset comprises
3,000 sentences evenly distributed over twelve dif-
ferent domains to cover the broad spectrum of for-
mality best possible. It is the first for the Ger-
man language with a comprehensive perspective
on sentence-level formality altogether.

We evaluated various machine learning models
for the regression task of assessing formality on
our dataset. We found that a transformer model
fine-tuned on an existing German dataset including
only sentences of formal and informal address (Sie
vs. Du/du) yielded the worst results. Hence, this
restricted view on formality is insufficient to cap-
ture a more comprehensive concept of formality.
Cross-lingual settings utilizing transformer-based
classifiers pre-trained on huge datasets with for-
mal and informal language pairs not restricted
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to a particular form of formality performed bet-
ter. However, a binary categorization of formal-
ity strikes as inappropriate since ridge regression
models employing simple linguistic features out-
performed them. Fine-tuning transformers for re-
gression on an English dataset produced similar
(for the cross-lingual setting or the English trans-
lation of our dataset) or higher (for the German
translation of the training data) results. In compari-
son, a transformer model fine-tuned on our dataset
with its broader formality scale outperformed all
other settings significantly.

Expanding the scope to longer texts, a requested
future research direction of style transfer (Jin et al.,
2022), we investigated the influence of the formal-
ity of sentences on a document’s formality. We
observed that the sentences included in the doc-
uments cover a wide spectrum of formality with
higher formality scores at the beginning. Our re-
sults indicate that a transformer model fine-tuned
for formality scoring on our sentences generalizes
better across text levels than linguistic features and
can be used to predict the degree of formality of
German and English documents. We anticipate our
dataset to facilitate future work on German formal-
ity style transfer and formality analysis in general
on both the document and the sentence level. It
may also be valuable for other languages.

Our dataset and a tool for analyzing styles
with a wide range of linguistic features are
available under https://github.com/ee-2/in_
formal_sentences and https://github.com/
ee-2/register.

Limitations

This work assesses the formality of texts in isola-
tion, excluding any conventional and situational
contexts. However, for different genres and situ-
ations different expectations have to be met. For
example, an expression regarded as formal in one
genre may be perceived as too informal in another.
We also do not take forms of formality beyond
the pure text level into account. Properties that
contribute to formality besides the text itself may
include the structure of a text (e.g., blank lines
in emails (Chhaya et al., 2018)) or the volume,
the pitch, the speech rate, or the rhythm of speech
(Labov, 1972). For future research and downstream
applications, it might be helpful to consider the con-
textual circumstances and non-textual varieties of
formality too.

Our experiments on the document level include
only emails due to the lack of other corpora with
formality annotations on this text level. With their
composition, often including greeting, signoff, and
signature, emails present a particular genre. Poten-
tially, the greeting provides already a good indica-
tion of the formality of the text that follows (e.g.,

‘Dear Mrs. Doe’ vs. ‘Hi Jane’). Although we
anticipate congruent findings, future work should
experiment with other types of documents, possibly
more challenging to assess. Further, extending the
cross-lingual experiments on the document level to
languages other than English (e.g., languages with
multiple forms of honorifics, such as Japanese) will
be required.

Ethical Considerations

We ensured that our dataset can be made publicly
available (sentences from comments are restricted
to non-commercial use only). Since our data orig-
inates from several different domains, we gave
careful consideration to finding a balance between
copyright and data privacy regulations. Finally,
we pseudonymized text spans containing personal
information in user-generated content where nec-
essary (tweets, Reddit posts, comments and blogs).
This means we replaced sensitive text with auto-
matically generated substitutes, e.g., female names
with other female names or locations with other
locations. We only release the IDs for tweets, Red-
dit posts and comments. For blogs, we follow the
license requirements and publish the respective ref-
erence. The corpora with emails and legal texts had
been pseudonymized already, no information on au-
thors is available. For less-privacy-sensitive text
sources, such as subtitles, political speeches, news
and Wikipedia, we report all information shared
in the original corpus, e.g., URLs. The sentences
from fiction and science, which we collected our-
selves, are cited appropriately in order to acknowl-
edge intellectual property rights. People involved
in creating our dataset were compensated at least
following minimum wage requirements.
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A Appendix

A.1 Models for Formality Scoring

Fine-tuned Transformer Models. For fine-tun-
ing transformers, we used the recommended and
default parameter settings of the FLAIR framework
(Akbik et al., 2019) (version 0.10):

• learning rate = 5.0e-5
• maximal epochs = 10
• optimizer = AdamW
• scheduler = linear scheduler with warmup
• warmup fraction = 0.1
• mini batch size = 4

Table 3 shows the results for fine-tuning dif-
ferent transformers on our dataset in a 10-fold
cross-validation setting. We experimented with
the German transformer models GBERT-base,
GBERT-large, GELECTRA-base, GELECTRA-
large (all from Chan et al. (2020)), and WECHSEL-
RoBERTa-base-german (Minixhofer et al., 2022).
The large models possess a high fluctuation in per-
formance. Therefore, we chose the best-performing

Model Spearman’s ρ
GBERT-base 0.919 (±0.009)
GELECTRA-base 0.918 (±0.011)
GBERT-large 0.109* (±0.274)
GELECTRA-large 0.322* (±0.426)
WECHSEL-RoBERTa-base 0.912* (±0.009)

Table 3: Results for different transformer models on
our dataset (10-fold cross-validation); significant differ-
ences (at least p < 0.05) are marked with ‘*’.

(and less expensive) GBERT-base model for our
experiments on German data.

Table 4 displays the performances of transformer
models used in a cross-dataset setting on the orig-
inal data. We report results for fine-tuning regres-
sion models on our dataset and PT16 in a 10-fold
cross-validation setting. For the formality classi-
fier we fine-tuned ourselves, the GBERT model
fine-tuned on FP12, we achieved perfect accuracy
on the original test split of this dataset.

Dataset Model Spearman’s ρ
ours (de) XLM-RoBERTa 0.893 (±0.010)
ours (en) BERT 0.891 (±0.010)
PT16 (de) GBERT 0.762 (±0.011)
PT16 (en) XLM-RoBERTa 0.776 (±0.016)
PT16 (en) BERT 0.820 (±0.010)

Table 4: Results for transformer-based regression mod-
els used in a cross-dataset setting on the original dataset
(10-fold cross-validation).

Feature-based Models. For the feature-based
models, we used spaCy (3.3) (Honnibal et al., 2020)
and its language model de_core_news_sm for basic
NLP processing routines. We utilized the benepar
library (Kitaev and Klein, 2018; Kitaev et al., 2019)
(version 0.2) for constituency parsing and scored
the formality of a word given its word embedding
as proposed by Eder et al. (2021). Emotional fea-
tures are based on the lexicon by Buechel et al.
(2020), whereas sentiment was determined with
the German TextBlob module (0.4.3).10 We used
scikit-learn.org (1.0.2) for the ridge regression im-
plementation with the default parameters. We com-
pared two sets of features adapted from Pavlick and
Tetreault (2016) and Chhaya et al. (2018). In Table
5, we list the concrete features we employed per
setting.

10https://textblob-de.readthedocs.io/
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∼ Pavlick and Tetreault (2016) ∼ Chhaya et al. (2018)
• average token length • average sentence length in tokens
• Flesch Reading Ease • proportion of hedge phrases

• proportion of first person pronouns • proportion of third person pronouns
• proportion of upper case words • proportion of lower case words • proportion of title case words
• proportion of punctuation • proportion of emoticons and emojis • proportion of contractions

• one-hot features for named entity types (e.g., person, location)
• average word formality score • sentiment

• average sentence length in characters
• one-hot features for token uni-, bi- and trigrams

• relative frequencies of POS tags
• average height of constituency trees

• relative frequencies of constituency productions
• one-hot features for combinations of

dependency relation, POS tag of governor
and POS tag of subordinate
• GBERT embeddings

• average word values for the emotions:
valence, arousal, dominance,

joy, anger, sadness, fear and disgust

Table 5: Linguistic features used for formality scoring.

Number of Parameters. Table 6 shows the num-
ber of parameters for the feature-based architec-
tures and the transformer models.

Model Parameters
∼ Chhaya et al. (2018) 26
∼ Pavlick and Tetreault (2016) 106K
GBERT-base 110M
BERT-base 110M
XLM-RoBERTa-base 125M
GELECTRA-base 110M
GBERT-large 335M
GELECTRA-large 335M
WECHSEL-RoBERTa-base 125M

Table 6: Number of parameters per model.

A.2 Annotation
We restricted the pool of crowdworkers to Ger-
man native speakers from Germany, Austria, and
Switzerland who were older than 18 years. No fur-
ther information on the demographics of the annota-
tors is accessible. The crowdworkers were compen-
sated following the minimum wage defined by the
German government (C 9.60 per hour at the time
of annotation). Clickworker, the crowdsourcing
platform we used, does not provide separate qual-
ification tests. Rather it ensures the qualification

of the crowdworkers by their own filtering meth-
ods (e.g., project-independent online tests/training
or evaluation of the work results). The German
annotation guidelines can be found in the project
repository alongside the dataset.

A.3 Computing Details
We carried out our experiments on a NVIDIA
RTX A40 GPU with 48GB RAM. We estimate
a total computational budget of 72 GPU hours.
Fine-tuning GBERT-base, BERT-base, or XLM-
RoBERTa-base on our dataset took under 15
minutes per model. Fine-tuning these models
on PT16 required about 45 minutes per model.
Fine-tuning GBERT on FP12 took about two
hours, and fine-tuning models on German or
English documents needed under five minutes.
Training ten ridge regression models for 10-fold
cross-validation was completed in under two min-
utes for the feature set based on Chhaya et al.
(2018) and in under 15 minutes for the feature set
based on Pavlick and Tetreault (2016).
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Abstract

Multi-task language models show outstanding
performance for various natural language un-
derstanding tasks with only a single model.
However, these language models utilize an un-
necessarily large number of model parameters,
even when used only for a specific task. This
paper proposes a novel training-free compres-
sion method for multi-task language models
using a pruning method. Specifically, we use
an attribution method to determine which neu-
rons are essential for performing a specific task.
We task-specifically prune unimportant neurons
and leave only task-specific parameters. Fur-
thermore, we extend our method to be applica-
ble in low-resource and unsupervised settings.
Since our compression method is training-free,
it uses few computing resources and does not
destroy the pre-trained knowledge of language
models. Experimental results on the six widely-
used datasets show that our proposed prun-
ing method significantly outperforms baseline
pruning methods. In addition, we demonstrate
that our method preserves performance even in
an unseen domain setting.

1 Introduction

Various pre-trained language models with large-
scale data and parameters have emerged (Devlin
et al., 2018; Lewis et al., 2019; Raffel et al., 2019;
Brown et al., 2020). Specifically, pre-trained lan-
guage models like T5 (Raffel et al., 2019) and GPT-
3 (Brown et al., 2020) have shown outstanding
performance on many natural language understand-
ing tasks. These language models can perform
various tasks with a single model by treating ev-
ery text processing problem as a text generation
problem. However, these language models may uti-
lize unnecessary large-scale model parameters even
when performing only a specific task. Previous
works have introduced various compression meth-
ods for language models such as pruning (Chen
et al., 2020; Goyal et al., 2020; He et al., 2021),

knowledge distillation (Sanh et al., 2019; Hou et al.,
2020; Mao et al., 2020; Sun et al., 2020), quan-
tization (Shen et al., 2020), and low-rank factor-
ization (Liu et al., 2021). However, these studies
have (1) not compressed the language models task-
specifically or (2) demanded an additional train-
ing process like the case of knowledge distillation.
This additional training process requires excessive
computing resources and a massive training dataset.
Furthermore, this training process can destroy in-
herent pre-trained knowledge in language models
since it updates the model’s pre-trained parameters
(Toneva et al., 2018). Due to the catastrophic for-
getting (McCloskey and Cohen, 1989) caused by
pre-trained knowledge destruction, models which
are compressed and trained for a specific task, tend
to show degraded performance on solving other
pre-trained tasks (Kirkpatrick et al., 2017; Ritter
et al., 2018). Also, additional memory space is
required to store the trained parameters separately.

In this paper, we propose a novel training-free
attribution-based task-specific pruning method that
enables more efficient compression and inference
by extracting only task-specific parameters from
multi-task language models. We can determine
which neurons are essential to derive a specific out-
put for each neural network layer by using attribu-
tion so that we can extract only task-specific param-
eters from the entire model, as shown in Figure 1.
We can efficiently process input data while preserv-
ing the model’s task performance by selecting only
the important neurons determined by the attribu-
tion method. Furthermore, we extend our method
to be applicable in two challenging scenarios: low-
resource and unsupervised scenarios. The former
alleviates insufficient labeled data situations, and
the latter handles settings when labels are unavail-
able. Both methods can relieve the cost of obtaining
labeled datasets, which requires excessive human
resources and is time-consuming. Especially under
the low-resource setting, our attribution-based task-
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“positive”

“not equivalent”

“entailment”

“sst2 sentence: based on a true and historically
significant story.”

“mrpc sentence1: Security lights have also been installed and police 
have swept the grounds for booby traps. sentence2: Security lights 
have also been installed on a barn near the front gate.”

“rte sentence1: Lin Piao, after all, was the creator of Mao’s “Little Red 
Book” of quotations. sentence2: Lin Piao wrote the “Little Red Book”.”

Figure 1: Task-specific Knowledge of Multi-task Language Models. Not all parameters in a language model behave
as important parameters when performing a single task. For example, in this figure, when a language model receives
SST-2 data, sentiment analysis data, only the parameters expressed in red color behave as essential parameters.

specific pruning requires only a single forward and
backward propagation computation for few-shot
data samples (e.g., only ten samples) to derive attri-
bution of each neuron. Since this pruning process
does not update the model’s parameters, it does not
destroy the pre-trained knowledge of the language
models. Therefore, it is irrelevant to the various
disadvantages that arise during an additional train-
ing process. Since our method is model-agnostic, it
can be applied to any neural network model broadly
and generally. Even we can use it to extract only
task-specific knowledge after other compression
methods are applied.

Experimental results on the six widely-used nat-
ural language understanding tasks show that our
proposed method significantly outperforms base-
line training-free pruning methods. Furthermore,
we demonstrate that our method shows robust per-
formance in both low-resource and unsupervised
settings. Also, we reveal that our proposed method
shows outstanding knowledge preservation even
for an unseen related domain, which suggests that
our method can preserve task-specific knowledge
effectively. We additionally investigate to offer a
guideline for our task-specific compression method
by analyzing which types of layers are significant
for processing task-specific knowledge.

2 Related Works

2.1 Efficient Language Models
As transformer-based (Vaswani et al., 2017) lan-
guage models (Devlin et al., 2018; Radford et al.,
2018; Raffel et al., 2019; Liu et al., 2019; Yang
et al., 2019) have become state-of-the-arts on many
NLP tasks in the last few years, deep neural net-
work model compression methods have been vastly
applied to large-scale language models. Fan et al.
(2019) randomly drops layers at training time,
which enables structured pruning on transformer

layers at inference time. Michel et al. (2019) prunes
less important attention heads at inference time.
Other works (Goyal et al., 2020; Kim et al., 2021)
focus on pruning less important tokens and pro-
gressively remove them during inference. How-
ever, many of the pruning methods (Goyal et al.,
2020; Kim et al., 2021; Chen et al., 2020) require a
following fine-tuning step of the model parameters
after fixing the configuration of a pruned network,
which makes such methods undesirable for efficient
task-specific compression.

On the knowledge distillation side, Sun et al.
(2019); Jiao et al. (2019); Sanh et al. (2019) employ
teacher-student framework (Hinton et al., 2015) to
transfer knowledge from an original large model
(teacher), to a lightweight shallow model (student).
They differ in how the student network is initialized
and to which components knowledge distillation is
applied. On the other hand, Shen et al. (2020) uses
the mixed precision group-wise quantization based
on Hessian information to compress BERT.

There are other streams of works that explore
efficient language models by solving the bottleneck
of the Transformer-based model computation. Belt-
agy et al. (2020) and Zaheer et al. (2020) sparsify
the attention matrix to make transformer-based lan-
guage models more efficient and Wang et al. (2020)
applies low-rank approximation to increase infer-
ence speed. However, such works sparsify the full
self-attention matrix according to attention score,
which does not directly reduce the dimension of
the matrices in the model such as query, key, value,
and feed-forward matrices.

2.2 Network Pruning

One of the ways to categorize network pruning is
to compare structured pruning to unstructured prun-
ing. For structured pruning (Li et al., 2016; Hu
et al., 2016; Wen et al., 2016), groups of weight con-
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nections are removed from a network together, such
as entire channels or filters in CNN-based networks
and layers or attention heads in transformer-based
networks. For unstructured pruning (Han et al.,
2015a,b), weight connections are removed from a
network individually. However, unstructured prun-
ing methods produce large sparse weight matri-
ces which are computationally inefficient unless
equipped with a specifically designed hardware. In
this paper, we utilize the structured pruning method
to propose a compression method that enables effi-
cient weight matrix multiplication computation.

2.3 Attribution Method

We utilize an attribution method (Shrikumar et al.,
2016) to extract the importance of neurons from the
pre-trained language models. Attribution methods
are mostly used to derive important features (i.g.,
pixel, token) to extract interpretability from deep
neural networks (Baehrens et al., 2010; Springen-
berg et al., 2014; Shrikumar et al., 2016). Specifi-
cally, attribution methods are used to compute the
importance of each feature for performing a spe-
cific task. Formally, suppose we have a function
P : Rd → [0, 1]m that represents deep neural net-
works for multi-class classification. The contribu-
tion of the i-th feature in x to the prediction of c-th
class using P is defined as follows:

A
(x,c)
i (x) = xi ×

∂P(c|x)
∂xi

(1)

where ∂P(c|x)/∂xi is the gradient of P(c|x) with
respect to the i-th feature.

3 Methodologies

In this section, we describe our attribution-based
pruning method for extracting only the task-
specific knowledge from a multi-task language
model T5 (Raffel et al., 2019), where attribution
is obtained using gradient information. Further-
more, we extend our method to low-resource and
unsupervised settings to alleviate insufficient la-
beled data situations. We select T5 because it is a
multi-task solving model and can be used in any
natural language understanding setting by treating
every text processing problem as a text generation
problem. For our problem setting, suppose we
have input text x = {x1, ..., xn} and output text
y = {y1, ..., ym} mapped as (x, y) ∈ D, where
each text corresponds to a sequence of tokens, and
an input text contains a prefix task description. We

can represent a standard conditional language mod-
eling objective to maximize the following likeli-
hood:

L(x, y) =
∑

i

logP(yi|x, y1, ..., yi−1; Θ) (2)

where the conditional probability P is modeled
using a neural network with parameters Θ.

3.1 Task-specific Knowledge Extraction
Applying Pruning for Transformer variants
Deep neural networks can be compressed by prun-
ing unimportant i-th neurons of the layer repre-
sentation h (Han et al., 2015a,b). The architec-
ture of Transformer-based models mainly consists
of multi-head attentions and fully connected feed-
forward networks as follows.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i ,KW

K
i , V W

V
i )

FFN(x) = σ(xW1 + b1)W2 + b2
(3)

where WQ,K,V
i ∈ Rdmodel×dq,k,v and WO

i ∈
Rdv×dmodel are the projection matrix parameters
for multi-head attentions. For the fully connected
feed-forward network (FFN), two linear transfor-
mations, denoted with the projection matrix param-
eters W1 and W2 and biases b1 and b2, with an
activation function are used. Transformer (Vaswani
et al., 2017) variants can be compressed by prun-
ing WQ,K,V,O, W1,2, and b1,2 for each transformer
block.

Deriving Attribution for Language Models
Language models generate text outputs by itera-
tively selecting a word-piece from the vocabulary
dictionary. Therefore, the text generation process
can be seen as a classification task dealt with in the
attribution methods, and we can apply the attribu-
tion methods to compute the importance of features
for language models. However, the purpose of this
study is to derive the importance of each neuron
hi in the layer representation h ∈ Rd, rather than
deriving the importance for the input feature xi.
Hence, the attribution formula is adapted to com-
pute a neuron attribution A(x,yj)

i ∈ R as follows:

A
(x,yj)
i (h) = hi ×

∂P(yj |x, y1:j−1)
∂hi

(4)

If the target output text consists of multiple word-
pieces rather than a single word-piece, language

596



0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.5

0.6

0.7

0.8

0.9
Ac

cr
ua

cy

SST-2
T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.5

0.6

0.7

0.8

0.9

Ac
cr

ua
cy

QNLI
T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.5

0.6

0.7

0.8

0.9

Ac
cr

ua
cy

SST-2

T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.5

0.6

0.7

0.8

0.9

Ac
cr

ua
cy

QNLI

T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.4
0.5
0.6
0.7
0.8

Ac
cr

ua
cy

MRPC
T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.2

0.4

0.6

0.8

Ac
cr

ua
cy

CB
T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.4
0.5
0.6
0.7
0.8

Ac
cr

ua
cy

MRPC

T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.2

0.4

0.6

0.8

Ac
cr

ua
cy

CB

T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.5

0.6

0.7

Ac
cr

ua
cy

BoolQ
T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.50

0.55

0.60

0.65

Ac
cr

ua
cy

RTE
T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

(a) Encoder Pruning Results

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.4

0.5

0.6

0.7

Ac
cr

ua
cy

BoolQ

T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rates

0.55

0.60

0.65

0.70

Ac
cr

ua
cy

RTE

T5-AP (Ours)
T5-FPP
T5-RAP
T5-RP
T5-SVD
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Figure 2: Module-specific Pruning Results. Our proposed attribution-based pruning significantly outperforms the
other pruning methods in most cases. Especially, our task-specific pruning is more effective on decoder compression;
these results suggest that most task-specific knowledge exists in the decoder of language models. The standard
deviations of T5-RP and T5-RAP are shown in appendix B.

models must derive the multiple word-piece output
distributions. Therefore, we change the attribution
formula to handle multiple word-piece outputs as
follows:

A
(x,y)
i (h) = hi ×

|y|∑

j=1

∂P(yj |x, y1:j−1)
∂hi

(5)

Since A(x,y)
i is attribution for one sample data x,

we obtain the final neuron attribution by summing
attributions for multiple sample data as shown in
the following formula:

A
(D)
i (h) =

∑

(x,y)∈D
A

(x,y)
i (h) (6)

where D means the entire task-specific dataset. In
low-resource environments, few-shot samples can
be used for D (e.g., only ten samples), which are
sufficient to derive a precise importance score for
each neuron. Experimental results for low-resource
setting are described in section 4.3.

Attribution-based Layer Pruning We focus on
applying attribution-based pruning on the Trans-
former encoder and decoder, more specifically
on multi-head attention and fully connected feed-
forward networks. We use neuron attribution A(D)

i

as the importance for each neuron of a specific
layer. We sort the importance of each neuron in
order of magnitude at each layer, and we can com-
press the model by pruning neurons with lower
importance.

argsorti(A) =|{j|(Ai < Aj) ∪ (Ai = Aj , j < i)}|
where i, j ∈ {1, ..., k} (7)

Once neurons are sorted according to the impor-
tance score, we prune neurons from each layer with
the pruning rate p by constructing a setM of neu-
ron indices to be secured.

M = {i|argsorti(A) < ⌊k × p⌋}
where i ∈ {1, ..., k} (8)

The algorithm for deriving a set M is shown in
appendix A. Suppose W ∈ Rd×k is a linear matrix
multiplication parameter we want to prune, the ma-
trix after pruning is denoted as W̃ = (Wij)1≤i≤d

j∈M
.

If the bias term b ∈ Rk is added to the operation for
an affine transformation, the bias term can also be
compressed by performing the b̃ = (bi)i∈M opera-
tion similarly. The compressed parameters are used
to compute the new representation by performing
the transformation operation hW̃ or hW̃ + b̃.

More specifically, for WQ
i , WK

i , and W V
i from

eq. (3), second dimension (the number of columns)
of the matrix is pruned and for WO

i , W1, and W2,
the first dimension (the number of rows) is pruned
to preserve the original architecture by matching
shape with input processed from the previous layer.
After pruning, multi-head attention and fully con-
nected feed-forward network computations are pre-
cisely the same as before but with the pruned
weight matrices:
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MultiHead(Q,K, V ) = Concat(head1, ..., headh)W̃
O

headi = Attention(QW̃Q
i ,KW̃

K
i , V W̃

V
i )

FFN(x) = σ(xW̃1 + b1)W̃2 + b̃2
(9)

Note that attribution scores are sorted locally within
each layer, and the pruning rate p is applied to each
prunable layer uniformly.

Our proposed compression process utilizes a
structured pruning without any training process.
Therefore, our method can conduct on-demand real-
time task-specific compression and inference for
each task while preserving pre-trained parameters.
The detailed algorithm for on-demand real-time
task-specific compression and inference is shown
in appendix A.

3.2 Unsupervised Pruning

Obtaining labeled data usually requires excessive
human resources and is time-consuming. There-
fore, we propose an additional method to derive
attributions in an unsupervised setting to mitigate
this problem. If the label for the dataset is given,
we can simply compute attribution by summing the
gradients values for the word-piece set composing
the label. However, when the label is not given, the
target word-piece set is ambiguous. To resolve this
problem, we compute task-specific importance by
summing the absolute values of attributions for all
candidate labels as follows:

A
(x,Y)
i (h) =

∑

y∈Y
|hi ×

|y|∑

j=1

∂P(yj |x, y1:j−1)
∂hi

|

(10)
where Y is the candidate label set. The above im-
portance computation formula does not require su-
pervision for any data. Hence, we may not reflect
definite label information when computing each
neuron’s importance under our unsupervised com-
pression setting. However, this setting is helpful
for a resource-constrained environment, where ob-
taining labeled data is challenging.

4 Experiments

4.1 Experimental Setup

Datasets We conduct experiments on six down-
stream tasks (Wang et al., 2018, 2019). Specifi-
cally, we utilize SST-2 (sentiment analysis); MRPC

(semantic textual similarity); BoolQ (question an-
swering); and QNLI, CB, RTE (natural language
inference).

Implementation Details We select pre-trained
T5-base1 as a backbone for the following exper-
iments. T5-base consists of 12 encoder and 12
decoder layers. Each encoder layer contains 6 prun-
able matrices: 4 for the multi-head self-attention
networks and 2 for the feed-forward networks.
Each decoder layer contains 10 prunable matrices:
4 for the multi-head self-attention networks and 2
for the feed-forward networks, and 4 for the cross-
attention networks. T5-base used in our experi-
ments has been fine-tuned by multi-task learning
using the six datasets above. We experiment with
pruning rates ranging from 0.1 to 1.0, and a pruning
rate is applied to each prunable layer uniformly.

4.2 Task-specific Pruning Efficiency

In this section, we validate the effectiveness of our
task-specific attribution-based pruning by compar-
ing the performance with other pruning methods.
We collect compressed models using various prun-
ing methods and evaluate the model’s performance
on testset for all six datasets.

Baselines We select four other training-free prun-
ing methods to compare with our task-specific T5
Attribution Pruning (T5-AP).

• T5 Forward Propagation Pruning (T5-
FPP) derives the importance of each neuron
with the absolute value of the forward prop-
agation value of each neuron. This method
is widely used to compress model in various
studies (Han et al., 2015b; Hu et al., 2016;
Li et al., 2016). Previous studies using FPP
generally fine-tune the compressed model to
increase the model’s performance. However,
we eliminate the fine-tuning process to main-
tain a fair evaluation scenario since we focus
on studying training-free compression.

• T5 Low Rank Factorization (T5-SVD)
prunes weight matrices of neural networks
using Singular Value Decomposition (SVD).
SVD is commonly used as a main matrix com-
pression idea in various researches (Wang
et al., 2020; Noach and Goldberg, 2020).
Specifically, SVD is used to compress a ma-

1https://huggingface.co/t5-base
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Figure 3: Module-integrated Pruning Results. These results reveal that compressing the whole architecture of the
model does not additionally degrade the model’s performance compared to module-specific pruning. We experiment
with the combinations of ten pruning rates for the encoder and decoder, and plot the interpolated results.

trix based on low rank factorization formula
as follows:

W = UΣV ≈
r∑

j=1

σj × (Uj × Vj) (11)

where W ∈ Rd×k is a matrix to compress,
and U ∈ Rd×r and V ∈ Rr×k are the decom-
posed matrices. Σ = diag(σ1, σ2, ..., σr) is
a diagonal matrix consisting of the singular
values σi, where r ≤ min(d, k) is the matrix
rank. Uj is the j-th column of U and Vj is the
j-th row of V . We can compress the matrices
of T5 by determining the rank r = ⌊d×k×pd+k+1⌋
to have the same number of parameters as
T5-AP, where p is the pruning rate defined in
formula 8.

• T5 Random Attribution Pruning (T5-RAP)
randomly selects word-pieces that are not la-
bel, and uses them to compute attribution.
RAP does not derive appropriate task-specific
importance for each neuron since this method
randomly selects word-pieces output. We cal-
culate the final performance of T5-RAP by
averaging the accuracy derived from five tri-
als of random word-pieces selection.

• T5 Random Pruning (T5-RP) randomly se-
lects which neuron to prune. This method can
achieve the lower-bound performance of over-
all training-free pruning methods since it ran-
domly selects which neuron to prune without
any knowledge. We calculate the final perfor-
mance of T5-RP by averaging the accuracy
derived from five trials of random pruning.

Module-specific Pruning For each dataset, we
separately compressed the encoder and decoder
at varying pruning rates to reveal the effect of
our method on the encoder and decoder, respec-
tively. Figure 2 shows the experimental results
for five compression methods, including our pro-
posed method. Experimental results show that our
method outperforms other compression methods
in most cases. Specifically, there is almost no per-
formance difference between the T5-RP and T5-
FPP. These results suggest that the T5-FPP does
not extract task-specific knowledge. In addition,
T5-SVD performs not badly in some cases, but gen-
erally performs similarly to T5-RP. It is because
the low-rank approximation of T5-SVD does not
work task-specifically. Surprisingly, T5-RAP some-
times performs similarly to T5-AP, probably due
to the use of partial gradients information calcu-
lated from model parameters. Our experiments
show that the decoder part of T5 has the robustness
for task-specific compression than the encoder part
of T5. These results demonstrate that T5 decoder
processes more task-specific information than T5
encoder.

Module-integrated Pruning To maximize the
compression efficiency of a language model, we
should compress the whole model instead of
compressing the encoder or decoder, respectively.
Therefore, we also validate our method by com-
pressing the whole architecture of T5. Figure 3
shows the experimental results of simultaneously
compressing both the encoder and decoder using
our method. These experimental results reveal that
compressing the whole architecture of the model,
not compressing each encoder or decoder sepa-
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Figure 4: Experimental results extending our pruning method to challenging settings: (a) Low-resource setting
experiment results. (b) Unsupervised setting experiment results. (c) Unseen domain setting experiment results.
These extensions make our method more practical for use in a real-world setting.

rately, does not degrade the model’s performance
additionally.

Our method focuses on compressing a multi-
task language model without any additional train-
ing process in a model-agnostic way. Therefore,
it is difficult to compare our method with previ-
ous compression research due to the inconsistent
experimental setting since previous studies have
treated training-based and model-specific compres-
sion methods. Since our method is model-agnostic,
it can be utilized broadly and generally to prune
multi-task language models containing only task-
specific knowledge after applying other compres-
sion methods.

4.3 Low-resource Setting

In this section, we demonstrate the results for com-
pressing language models based on the attribution
computed from only few-shot. Specifically, we
compute neuron importance using only 103 and
102, and 101 samples of SST-2 and QNLI datasets
and prune the T5 model with the computed impor-
tance, where we balance the number of samples
for each class when sampling a subset of the whole
dataset. All results are reported by averaging five
trials of random sampling. Figure 4-(a) represents
the pruning results in low-resource setting. For
SST-2 dataset, we find that compression using only
101 data samples yields comparable performance to
the results of using the entire training dataset. The
total number of data samples of SST-2 is 67k, and
101 of data samples corresponds to about only 10−4

of the whole dataset. For the QNLI dataset, we
demonstrate that compression using only 103 data
samples of the labeled training dataset yields com-
parable performance to the results of using the en-
tire training dataset. Furthermore, the performance
degradation is also insignificant when using only

101 samples of the labeled QNLI training dataset.
The total number of data samples of QNLI is 105k,
and 103 and 101 data samples correspond to about
only 10−2, 10−4 of the whole dataset, respectively.
These results suggest that most of the task-specific
knowledge is derived from computing gradients
for only the candidate outputs. We can effectively
reduce the time consumption in this low-resource
setting by using a few labeled instances to com-
pute the attribution, and it is the most significant
advantage over other training-based compression
methods.

4.4 Unsupervised Setting
We suggest an additional method to compute at-
tributions using an unlabeled text dataset in sec-
tion 3.2. We present the pruning results by com-
puting attributions for an unsupervised setting in
Figure 4-(b). Results of encoder compression with
the unsupervised setting for both SST-2 and QNLI
datasets show competitive scores to that of labeled
data. For the decoder, the performance of SST-2
decreases slightly, but the performance of QNLI
rather increases. The experimental result on SST-2
reveals that the compression in an unsupervised
setting shows robust performance maintenance. In
the QNLI result, we observe that computing attribu-
tions using information from all output candidates
enhances the model’s performance.

4.5 Unseen Domain Setting
In this section, we validate the effect of our task-
specific compression on unseen domains. We com-
press the T5 using related and unrelated datasets,
and then compare the performance preservation for
the original dataset. Specifically, we compress the
T5 using attribution computed with SST-2 and RTE,
respectively. And then, we evaluate the compressed
models with the QNLI dataset. QNLI and RTE are
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Figure 5: Layer types analysis: (a) Layer architecture experiment results. (b) Layer depth experiment results. The
higher the degradation, the more essential layers are.

related domains since both are natural language in-
ference datasets, and SST-2 is an unrelated domain
built for sentiment analysis. Figure 4-(c) shows the
evaluation results of the compressed model for re-
lated and unrelated domains. Experimental results
reveal our method’s robust performance mainte-
nance for the related domain. Surprisingly the case
of decoder compression shows even better perfor-
mance maintenance in the related domain than in
the original domain.

4.6 Layer-specific Pruning Analysis

This section further investigates the pruning effect
per layer type. We select two pruning settings: (1)
Layer type-specific and (2) Layer depth-specific.

Layer Type-specific Pruning Analysis Layer
type-specific pruning analysis focuses on under-
standing how the performance of the model varies
depending on the type of compressed layers.
The encoder investigates pruning results for feed-
forward neural networks and self-attention net-
works, and the decoder focuses on feed-forward
neural networks, self-attention networks, and cross-
attention networks.

Layer Depth-specific Pruning Analysis Layer
depth-specific pruning analysis investigates how
the performance of the model changes depending
on the depth of the compressed layers. We select
SST-2 for experiments and separate each encoder
and decoder into three parts: (1) Low-level layer,
(2) Mid-level layer, and (3) High-level layer. Since
T5-base consists of 12 layers for each encoder and
decoder, each depth consists of 4 layers.

Layer-specific pruning results are shown in Fig-
ure 5. For the encoder, self-attention networks are
more critical for preserving the performance than
feed-forward neural networks. For the decoder,
cross-attention networks are more important than

feed-forward neural networks and self-attention
networks. For each layer-depth, we can conclude
that the low-level features are more crucial to pre-
serving the model’s performance. Especially, ex-
perimental results reveal that the model’s perfor-
mance is preserved even if the pruning rate of a
specific layer is 1.0. These results demonstrate that
there is redundant information processing between
layers for performing a specific task. Note that
although the pruning rate is 1.0 for a layer, the rep-
resentation propagated through the pruned layer
does not lose every knowledge completely. It is
because transformer variants have residual connec-
tions to preserve the knowledge of previous layers.

5 Conclusion

This paper proposes a novel training-free
attribution-based task-specific knowledge ex-
traction method for multi-task language models.
Specifically, we use attribution to determine which
neurons are important to derive a specific output
for each task. Then, we prune task-specifically
unimportant neurons to extract only task-specific
knowledge from the entire model. We further
propose a method for computing attributions
in low-resource and unsupervised settings. We
demonstrate that our method outperforms the
other pruning methods on the widely used text
datasets. In addition, we examine that our task-
specific language model pruning method shows
outstanding performance in the unseen domain,
especially when the unseen domain is related
to the dataset used to configure the compressed
version. Our compression method does not update
the pre-trained parameters of the language models,
which enables efficient on-demand compression
and inference. Also, our proposed method is
valuable because it can be universally applied to
any neural network-based model architecture.
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Limitations

To the best our knowledge, this is the first work
to compress a multi-task language model without
extra training on the target task. Due to insuffi-
cient prior work on these training-free compression
methods, we couldn’t include a thorough compari-
son with other baseline algorithms. Also, our work
focused on analyzing the results of six widely-used
natural language understanding datasets among
GLUE benchmark. We believe that extra exper-
iments on various challenging natural language un-
derstanding tasks will show our work’s generaliza-
tion performance. We have conducted experiments
on various settings; varying layer types, layer depth,
low resource, unsupervised, and unseen domain.
However, there are still extra room for improving
this work, such as exploring and applying layer-
specific pruning rates, which we leave for future
work.
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A Algorithms

Our pruning method consists of two stages: (1)
Derivation of task-specific neuron indices per layer
for a specific task (2) Real-time task-specific infer-
ence with previously pruned layers.

Algorithm 1 Deriving task-specific neuron indices
per layer for a task t
Input: task-specific dataset Dt; model P; pruning rate p
Output: listMt with task-specific neuron indices per layer

1: Initialize allMt
l as an empty set and all A(Dt)

i to zero
2: B ← split Dt into mini-batches of size β
3: for each batch b ∈ B do
4: for each layer l ∈ P do
5: for i = 1 to kl do
6: compute neuron importance A(b)

i (hl)

7: A
(Dt)
i (hl)← A

(Dt)
i (hl) +A

(b)
i (hl)

8: for each layer l ∈ P do
9: for i = 1 to kl do

10: if argsorti(A(Dt)(hl)) < ⌊kl × p⌋ then
11: Mt

l ←Mt
l ∪ {i}

returnMt

In the first stage, we sort neuron indices in de-
scending order by computed attribution scores,
leaving high-importance neurons by (1− p) ratio.

Algorithm 2 Real-time task-specific inference with
pruned layers
Input: task t; text inputs x; indices containerM; model P
Output: text outputs y

1: For task t, load correspondingMt

2: for each layer l ∈ P do
3: W l ← (W l

ij)i∈Mt
l′

j∈Mt
l

▷ match rows with a previous layer l′

4: if bias bl exists in layer l then
5: bl ← (bli)i∈Mt

l

6: compute outputs y with x using the pruned model P̃
return y

In the second stage, we prune task-specifically
unimportant neurons when given a user request for
a specific task. We task-specifically compress a
model in real-time and conduct an inference with
the pruned model.

B Statistic of Pruning Results

We compute the pruning results of the baselines
of T5-RP and T5-RAP through five random trials.
The standard deviations of the accuracy for the two
baselines are shown in Table 1.

SST-2 MRPC QNLI RTE CB BoolQ

T5-RP Encoder 0.0202 0.0046 0.0143 0.0426 0.0168 0.0020
Decoder 0.0241 0.0108 0.0003 0.0580 0.0010 0.0060

T5-RAP Encoder 0.0082 0.0080 0.0119 0.0165 0.0099 0.0061
Decoder 0.0159 0.0089 0.0029 0.0123 0.0027 0.0063

Table 1: Standard deviations of Pruning results.

We calculate the standard deviations by averag-
ing the values derived by all pruning rates. These
results reveal that the variances of T5-RP and T5-
RAP are not significant.

604



Findings of the Association for Computational Linguistics: EACL 2023, pages 605–617
May 2-6, 2023 ©2023 Association for Computational Linguistics

Zero-shot Transfer of Article-aware Legal Outcome Classification for
European Court of Human Rights Cases

Santosh T.Y.S.S1, Oana Ichim2, Matthias Grabmair1
1School of Computation, Information, and Technology;

Technical University of Munich, Germany
2Graduate Institute of International and Development Studies, Geneva, Switzerland

{santosh.tokala, matthias.grabmair}@tum.de
oana.ichim@graduateinstitute.ch

Abstract

In this paper, we cast Legal Judgment Pre-
diction on European Court of Human Rights
cases into an article-aware classification task,
where the case outcome is classified from a
combined input of case facts and convention ar-
ticles. This configuration facilitates the model
learning some legal reasoning ability in map-
ping article text to specific case fact text. It also
provides an opportunity to evaluate the model’s
ability to generalize to zero-shot settings when
asked to classify the case outcome with respect
to articles not seen during training. We de-
vise zero-shot experiments and apply domain
adaptation methods based on domain discrim-
ination and Wasserstein distance. Our results
demonstrate that the article-aware architecture
outperforms straightforward fact classification.
We also find that domain adaptation methods
improve zero-shot transfer performance, with
article relatedness and encoder pre-training in-
fluencing the effect.

1 Introduction

Legal Judgment Prediction (LJP) has recently
gained considerable attention in the mainstream
NLP community (e.g., Aletras et al. 2016;
Chalkidis et al. 2019, 2021, 2022b; Santosh et al.
2022, 2023). In LJP, the outcome of a case should
be classified/predicted based on a textual descrip-
tion of case facts. In actual legal reasoning, legal
practitioners (e.g., advocates, judges) determine rel-
evant rules from the sources of law (e.g., statutes,
regulations, precedent) that are relevant to the case
at hand. They then carry out an analysis to deter-
mine which rules apply to the case at hand, and
deduce the outcome of the case by applying them.
Subsuming case facts under elements of rules given
in legal sources plays a critical role in this process.
Many current LJP approaches (e.g., Aletras et al.
2016; Chalkidis et al. 2019, 2022b; Santosh et al.
2023) tackle this as a straightforward classification
problem with the textual descriptions of case fact as

the sole input. This reliance on the model learning
statistical correspondences from case fact descrip-
tions directly to outcomes neglects the role of legal
sources in this relationship. As a consequence,
the model may learn sub-optimal fact-outcome pat-
terns that are informed by the case distribution in
the data rather than learning to align facts with the
legal source text containing applicable rules. The
models may also attend to outcome-correlating dis-
tractors present in the dataset rather than engage in
the legal fact-vs-law reasoning that is required of
legal practitioners for a proper justification of the
outcome (Santosh et al., 2022).

This work seeks to remedy this incomplete infer-
ence and enable the model to learn more authentic
reasoning between rules and case facts by cast-
ing LJP into an article-aware classification setting
and subjecting it to a zero-shot transfer challenge.
Article-aware classification has been explored on
Chinese criminal case corpora (Wang et al., 2018,
2019b; Yue et al., 2021; Chen et al., 2022). Simi-
larly, Holzenberger et al. 2020 has modeled statu-
tory reasoning by classifying US tax law provisions
concatenated with textual case descriptions. We
build on this prior work in two ways. First, we
develop and evaluate our model on a public dataset
(Chalkidis et al., 2022b) of cases by the European
Court of Human Rights (ECtHR), which hears com-
plaints by individuals about possible infringements
of their rights enshrined in the European Conven-
tion on Human Rights (ECHR) by states. To the
best of our knowledge, this is the first work apply-
ing article-aware case outcome prediction setting
to human rights adjudication. Our approach pairs
case fact descriptions with candidate ECHR arti-
cles and assigns a binary target label depending
on whether the article has been alleged/deemed to
have been violated, or not. Our results show that
the article-aware classification model outperforms
the traditional classification setup by a small but
consistent margin.
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Second, we subject the model to a zero-shot
transfer task. Models trained on case facts alone
cannot produce inferences about convention arti-
cles they did not observe during training. By con-
trast, human judges can conduct outcome analysis
with new/amended legal provisions because they
are trained to understand the rules they contain and
apply them to case facts in an expertise-informed
way, even in the absence of secondary sources (e.g.,
commentaries to the rule, etc.). Article-aware clas-
sification allows an emulation of this process by
means of a zero-shot benchmarking task on articles
unseen at training time. We compare two condi-
tions where (1) the model either has no access to
the target articles, or (2) it is allowed to ‘read’ the
target articles but is not given any prediction out-
come labels for case-target article pairs.

We experiment with domain adaptation by
means of a domain discriminator (Ganin et al.,
2016) and Wasserstein distance (Shen et al., 2018).
Our results show that this improves performance
on unseen articles compared to a vanilla model.
We study the impact of law-specific pre-trained en-
coders on this zero-shot transferability compared to
the standard language pre-trained one. Intuitively,
we observe that our models perform better in zero-
shot transfer if the target/unseen articles are seman-
tically related to articles seen at training time.

It should be noted that, despite these tasks being
typically referred to as instances of ‘legal judgment
prediction’, ECtHR fact statements are typically
not finalized until the decision outcome is known,
making the task effectively one of retrospective
classification rather than prediction (Medvedeva
et al., 2021). While this does lead to distracting
and confounding phenomena (see our prior work
in Santosh et al. 2022), the dataset remains a useful
resource for the development of NLP models that
analyze these fact statements for text patterns that
correspond to specific convention articles as drafted
by the court. Consequently, in this paper we hence
speak of our models as engaging in case outcome
classification (COC).

Our main contributions in this paper are1:

• We cast LJP/COC on ECtHR cases as an
article-aware classification task by pairing
case fact descriptions with candidate articles.
Assuming a frozen pre-trained encoder net-
work, our article-aware prediction model out-

1Our code is available at
https://github.com/TUMLegalTech/zeroshotLJP

performs straightforward fact classification.

• We conduct zero-shot transfer benchmarking
of article-aware COC models. We find this to
be a difficult testing task for the generaliza-
tion of COC models. We show that domain
adaptation using a domain discriminator and
a Wasserstein distance method improves gen-
eralization.

• We conduct auxiliary experiments validating
that article relatedness positively affects trans-
fer performance and show an interaction be-
tween domain adaptation and domain specific
encoder pre-training.

2 Related Work

Legal Judgement Prediction: LJP/COC as an
NLP task has been studied using corpora from dif-
ferent jurisdictions, such as the ECtHR (Chalkidis
et al., 2019, 2021, 2022b; Aletras et al., 2016; Liu
and Chen, 2017; Medvedeva et al., 2020; SAYS,
2020; Medvedeva et al., 2021; Santosh et al., 2023)
Chinese Criminal Courts (Luo et al., 2017; Zhong
et al., 2018; Yang et al., 2019; Yue et al., 2021;
Zhong et al., 2020), US Supreme Court (Katz
et al., 2017; Kaufman et al., 2019), Indian Supreme
Court (Malik et al., 2021; Shaikh et al., 2020) the
French court of Cassation (Şulea et al., 2017b,a),
Brazilian courts (Lage-Freitas et al., 2022), the Fed-
eral Supreme Court of Switzerland (Niklaus et al.,
2021), UK courts (Strickson and De La Iglesia,
2020) and German courts (Waltl et al., 2017)

Early works (Aletras et al., 2016; Şulea et al.,
2017a,b; Virtucio et al., 2018; Shaikh et al., 2020;
Medvedeva et al., 2020) used bag-of-words fea-
tures. More recent approaches use deep learn-
ing (Zhong et al., 2018, 2020; Yang et al., 2019).
Large pre-trained transformer models have since
become the dominant model family in COC/LJP
(Chalkidis et al., 2019; Niklaus et al., 2021), in-
cluding legal-domain specific pre-trained variants
(Chalkidis et al., 2020; Zheng et al., 2021) that have
been employed for the benchmark ECtHR corpus
we use in this paper (Chalkidis et al. 2021, 2022b).

Prior work on Chinese criminal case corpora
case extends fact-based classification by providing
the text of legal source articles as additional input.
Luo et al. 2017 used an attention-based neural net-
work which jointly models charge prediction and
relevant article extraction in a unified framework
whose input includes the text of legal articles. Sim-
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ilarly, Wang et al. 2018, 2019b; Chen et al. 2022;
Yue et al. 2021 employ matching mechanism be-
tween case facts and article texts. To the best of our
knowledge, ours is the first work to adapt article-
aware prediction to the ECtHR corpus, which is
situated in the in human rights litigation domain.
Going beyond previous works, we further bench-
mark the zero-shot transfer performance of such
models, providing a test bed to evaluate their ca-
pability to process article texts they have not seen
during training time and applying them to case facts
towards classifying allegations/outcomes.

Domain Adaptation (DA): In transfer learning,
the field of domain adaptation (DA) addresses the
covariate shift between source and target data distri-
butions (Ruder, 2019). It is tackled under three dif-
ferent settings: (1) Semi-supervised DA (Bollegala
et al., 2011; Daume III and Marcu, 2006) where
labels for the source and a small set of labels for the
target domain are available, (2) unsupervised DA
(Ganin et al., 2016; Blitzer et al., 2006) where only
labels for the source domain and unlabelled target
data are given, and (3) Any Domain Adaptation
/ Out of Distribution generalization (Ben-David
et al., 2022; Volk et al., 2022) where only labeled
source data is given. In this work, we distill the
existing public LexGLUE ECtHR dataset into a
new benchmark on more challenging unsupervised
and any domain adaptation settings for COC to em-
ulate legal reasoning involving previously unseen
convention articles.

DA variants have been benchmarked for various
NLP tasks, such as Question answering (Yu et al.,
2018), duplicate question detection (Shah et al.,
2018), sentiment analysis (Li et al., 2017; Ganin
et al., 2016), dependency parsing (Sato et al., 2017),
relation extraction (Wu et al., 2017), POS tagging
(Yasunaga et al., 2018), named entity recognition
(Jia et al., 2019), event trigger identification (Naik
and Rose, 2020), machine reading comprehension
(Wang et al., 2019a), and machine translation (Yang
et al., 2018). To the best of our knowledge, this
work is the first to benchmark domain adaptation
in COC/LJP. While previous works typically in-
volve short text, COC on ECtHR data involves case
facts and articles, both of which typically are long
documents.

Methods proposed for domain adaptation can
be categorized into four types: (a) Instance-based
data selection methods (Jiang and Zhai, 2007; Re-
mus, 2012) which employ similarity metrics to

sample source data points to match the distribu-
tion of the target domain and train models based
on obtained subsamples from the source domain,
(b) Pseudo-labeling approaches (Ruder and Plank,
2018; Rotman and Reichart, 2019) which train a
classifier based on source data initially and use it
to predict labels on unlabeled target data towards
further adapting the model, (c) Pivot-based meth-
ods (Blitzer et al., 2006; Ziser and Reichart, 2017)
which aim to map different domains to a common
latent space (where the feature distributions are
close) by employing auto encoders and structural
correspondence learning, and (d) Loss-based meth-
ods (Ganin and Lempitsky, 2015; Shen et al., 2018)
which employ domain adversaries aiming to mini-
mize the discrepancies between source and target
data distributions. In this woork, we employ loss-
based approaches using a domain discriminator
(Ganin et al., 2016) and Wasserstein distance (Shen
et al., 2018) to enable domain adaptation for our
COC models.

3 Dataset, Tasks & Settings

We use the LexGLUE ECtHR dataset provided by
(Chalkidis et al., 2022b), which consists of 11k case
fact descriptions along with target label information
about which convention articles have been alleged
to be violated (task B), and which the court has
eventually found to have been violated (task A).
The dataset is chronologically split into training
(2001–2016), validation (2016–2017), and test set
(2017-2019) with 9k, 1k, and 1k cases, respectively.
The label set includes 10 prominent ECHR articles,
which forms a subset of all the rights contained
in the convention and its protocols. In both the
ECtHR A and B benchmarks, it is assumed that the
model classified the target from the fact description
alone, which we refer to as the fact classification
variant.

For our article-aware classification settings, we
augment the dataset with the texts of the 10 articles
copied from the publicly available ECHR conven-
tion document2. We formulate the article-aware
prediction variant for both tasks: Given both the
case fact statements and a particular article informa-
tion, the model should classify the binary outcome
of whether an article has been alleged to be vio-
lated by the claimant (task B) or found to have been
violated by the court (task A).

2https://www.echr.coe.int/documents/
convention_eng.pdf
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Our zero-shot transfer task then involves deter-
mining violation/allegation from case facts with
respect to articles which are not seen during train-
ing time. We consider a ‘domain’ to be a particular
convention article (i.e., 10 convention articles form
10 domains). The objective is to train a model on
a source domain (seen articles) with the goal of
performing well at test-time on a target domain
(unseen articles). Following (Yin et al., 2019; Ram-
poni and Plank, 2020), we propose two settings
under zero-shot COC:
Zero-Shot Restrictive / Unsupervised Domain
Adaptation (UDA): In this setting, the model is
given a pair of case facts and the text of training set
articles (i.e., the source domain) along with their
corresponding violation/allegation outcome label.
In the target domain, it is provided with case facts
and article text pairs as well, but the outcome label
is withheld. The goal of UDA is to learn an out-
come classifier from the outcome labelled source
domain which should generalize well on the target
domain by leveraging outcome-unlabeled target
data. This setting is legally realistic, as the text of
new or modified written legal sources is typically
known for a given task and available for domain
adaptation (e.g., a public administration decision
support tool receives an update after relevant legis-
lation has changed).
Zero-shot Wild / Any Domain Adaptation (ADA)
/ Out of Distribution Generalization: In this set-
ting, the model never sees any article data from
the target domain during training, yet should be
able to generalize to it. In the legal setting, this
corresponds to a model which is required to work
with texts of sources only available at query time
(e.g., complex retrieval settings where multiple le-
gal sources potentially apply).

We reorganize the dataset to evaluate our zero-
shot transfer/adaptation models by splitting the 10
ECHR articles into two non-overlapping groups,
such that both contain articles of various frequen-
cies (common, moderate, rare).

• split_0: 6, 8, P1-1, 2, 9

• split_1: 3, 5, 10, 14, 11

We evaluate UDA and ADA on split_0 as source
and split_1 as target, and vice-versa.

4 Method

We employ a hierarchical neural model which takes
the case fact description x along with the article

a as input and outputs a binary outcome (allega-
tion in Task B and violation in Task A) for case
x with respect to article a. Our architecture is a
modified version of the Enhanced Sequential Infer-
ence Model (ESIM) (Chen et al., 2017) incorporat-
ing conditional encoding (Augenstein et al., 2016;
Rocktäschel et al., 2016) that has been adapted to
deal with long input sequences following hierarchi-
cal attention networks (Yang et al., 2016). We ex-
periment with two domain adaptation components
based on adversarial training: (1) a classification-
based domain discriminator and (2) a Wasserstein-
distance based method which aims to reduce the
difference between the source and the target do-
main distributions.

4.1 Article-aware prediction Model

Given the facts of the case x = {x1, x2, . . . , xm}
where xi = {xi1, xi2, . . . , xin} and the article a =
{a1, a2, . . . , ak} where aj = {aj1, aj2, . . . , ajl},
the model outputs a binary label. xi / ai and xjp
/ ajp denote the ith sentence and pth token of the
jth sentence of the case facts / article, respectively.
m/k and n/l denote the number of sentences and
tokens in the ith sentence of case facts / article,
respectively. Our model contains an encoding layer,
followed by an interaction layer, a post-interaction
encoding layer, and a classification header. See Fig.
1 for an overview of our architecture.

4.1.1 Pre-interaction Encoding Layer
Our model encodes the facts of the case x sentence-
wise with LegalBERT (Chalkidis et al., 2020) to ob-
tain token level representations {zi1, zi2, . . . , zin}.
These are aggregated into sentence level represen-
tations using token attention:

uit = tanh(Wwzit + bw) (1)

αit =
exp(uituw)∑
t exp(uituw)

& fi =
n∑

t=1

αitzit (2)

where Ww,bw and uw are trainable parameters.
The sentence level representations {f1, . . . , fn} are
passed through a GRU encoder to obtain context-
aware sentence representations of the facts h =
{h1, h2, . . . , hm}. The analogous article encoder
takes a as input and outputs s = {s1, s2, . . . , sk}.

4.1.2 Interaction Layer
Interaction between the sentences of the case facts
and articles is done via dot product attention be-
tween the two sequences of sentences as follows:
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eij = hTi sj & h′i =
k∑

j=1

exp(eij)∑k
l=1 exp(eil)

sj (3)

s′j =
m∑

i=1

exp(eij)∑m
l=1 exp(elj)

hi (4)

where eij represents the dot product interaction
score between the context-aware representations
of the ith sentence of the case facts and the jth

sentence of the article. h′i and s′j represent article-
aware representations corresponding to the ith sen-
tence of the case facts and the fact-aware repre-
sentation corresponding to the jth sentence of the
article, respectively. Finally, we obtain interaction-
aware sentence representations of the facts h′ =
{h′1, h′2, . . . , h′m}. Similarly for the article, we ob-
tain s′ = {s′1, s′2, . . . , s′k}

4.1.3 Post-Interaction Encoding Layer

The article-dependent final representation of the
case facts is obtained in two steps: (i) we compute
the final representation of the article text and (ii)
use it as a conditional encoding (Augenstein et al.,
2016; Rocktäschel et al., 2016) to obtain the final
article-dependent fact representation.
Final representation of article: We first combine
the pre-interaction sentence encodings and fact-
aware sentence representations of the article:

pi = [si, s
′
i, si − s′i, si ⊙ s′i] (5)

where ⊙ denotes element-wise product. This rep-
resentation aims to capture high-order interaction
between the pre- and post- interaction elements
(Chen et al., 2017). The sentence representations
pi are passed over a non-linear projection and a
GRU (as in the pre-interaction encoder) to perform
context-level modelling among sentence sequences.
The final article representation A is obtained via
sentence attention analogous to eq. 2.
Final Representation of Case Facts: Similarly,
we pass the combined representation of case facts
using pre- and post- interaction similar to Eq. 5
over a non linear projection, a GRU layer, and sen-
tence level attention to the obtain article-dependent
final representation of case facts. To ensure con-
ditioning, we initialize the GRU hidden state with
the final representation of the articles A. This fa-
cilitates capturing the salient case fact information
with respect to the specified article.

Figure 1: Our article-aware prediction model architec-
ture

4.1.4 Classification Layer
We pass the article-dependent final representation
of the case facts through a nonlinear projection to
classify the outcome.

4.2 Domain Adaptation Components

Domain Adaptation aims to make models gener-
alize well from a source to a target domain. Both
domains are mapped to a common latent space,
reducing differences between their distributions
and facilitating domain invariant feature representa-
tions. In our case of article-aware COC, we regard
reasoning with respect to every ECHR article as
a domain and seek to learn article-invariant case
facts representations. Put differently, we want our
model to learn how to read two texts and interre-
late them towards an outcome determination (as
lawyers do) with minimal encoding of the infor-
mation contained in the texts into the model itself.
This way, the models can achieve generalization ca-
pability to adapt and perform reasoning with regard
to articles not seen during training time.

4.2.1 Domain Discriminator
We employ a two layer feed forward network as
a discriminator which takes the article-dependent
case fact representation as input to predict the ar-
ticle (i.e., the domain). We train the discrimi-
nator in an adversarial fashion to maximize the
model’s ability to capture information required for
the outcome task while minimizing its ability to
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predict the article. This guides the model to gener-
ate article-invariant feature representations and im-
proves transferability. Following (Ganin and Lem-
pitsky, 2015; Ganin et al., 2016), we perform a min-
max game adversary objective optimization using a
gradient reversal layer (GRL) between the feature
extractor and discriminator. It acts as the identity
during the forward pass but, during the backward
pass, scales the gradients flowing through by −λ,
making the feature extractor receive the opposite
gradients from the discriminator. The overall ob-
jective function reduces to:

arg min
θF ,θC ,θD

[Lc(C(F (x, a)), ye) + λLd(D(GRL(F (x, a))), ya)]

(6)
where Lc, Ld represents the loss function corre-
sponding to classifier and domain discriminator,
respectively, λ is the GRL hyperparameter, x is the
input, ye is the outcome label, ya is the class-id of
the article, F , C andD represents feature extractor,
classifier, and discriminator with parameters θF ,
θC and θD, respectively. In case of UDA (where
the model has access to the text of target domain
articles), we discriminate among all the source and
target articles. While in case of ADA, we discrimi-
nate among source articles only.

4.2.2 Wasserstein Method (Distance based)
Our second method aims to reduce the Wasserstein
distance (Shen et al., 2018) between different do-
main feature distributions. In a given batch, the
final feature representations will be fed into the do-
main critic (Arjovsky et al., 2017), which is a feed-
forward network whose output is a single scalar
for each batch element. These scalars are then av-
eraged per domain in the batch, resulting in two
numbers representing source and target domains,
respectively. Their difference can be considered
an approximation of the Wasserstein distance be-
tween the two feature distributions and becomes
the Wasserstein loss component of the network. If
the domain critic neural network satisfies the con-
straint of the Lipschitz-1 continuous function, we
calculate the approximate empirical Wasserstein
distance by maximizing the following domain critic
loss:

L(Xp, Xq) =
1

np

∑

xp∈Xp
fw(F (xp))−

1

nq

∑

xq∈Xq
fw(F (xq))

(7)
where fw, F denote the Wasserstein domain critic
and feature extractor, respectively, Xp and Xq de-

Table 1: Fact Classification vs Article-aware prediction
Performance on Task A and Task B. mic. and mac.
indicates micro-F1 and macro-F1 scores, respectively.

Task B Task A
Model mac. mic. mac. mic.
Fact Classification 71.96 77.40 61.21 72.21
Article-aware pred. 74.14 78.49 67.09 74.77

note datasets from two domains p and q with np
and nq samples, respectively.

During optimization, a gradient reversal layer
(Ganin et al., 2016) between the feature extractor
and domain critic ensures that (a) the domain critic
weights are updated such that the Wasserstein loss
becomes maximal, while the encoder weights are
updated towards minimizing it. Through this pro-
cedure, we encourage the model to learn feature
representations that are invariant to the covariate
shift between the source and the target domain.
Since the Wasserstein distance is continuous and
differentiable everywhere, we can train the domain
critic end-to-end. In case of UDA, we minimize the
distance between the source and the target domains,
while in case of ADA, we minimize among the dif-
ferent source domains. To enforce the Lipschitz
constraints, we clip the weights of the domain critic
within a compact space [−c, c] after each gradient
update following (Arjovsky et al., 2017).

5 Experiments & Discussion

5.1 Baseline

For the fact classification variant, we employ an
architecture similar to the article-aware prediction
model but reduced to the case fact based encod-
ing without the interaction mechanism. The output
layer is modified to 10 classes and trained against
a multi-hot target vector using a binary cross en-
tropy loss. Notably, we freeze the weights in the
LegalBERT sentence encoder, both to save compu-
tational resources and to reduce the model’s sus-
ceptibility to shallow surface signals and ensure the
comparability of our domain adaptation methods.
We describe the detailed hyperparameters for the
article-aware prediction model in Appendix Sec. A

5.2 Does Article-aware Classification Perform
Better than Fact-only Classification?

Micro-F1 and macro-F1 scores for both tasks A
and B with regard to the 10 target articles are given
in Table 1. The article-aware model performs better
than fact-only classification across the board. In
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Table 2: Task B F1 performance of baseline and domain adaptation models

Transfer 0→ 1 Transfer 0← 1

source : split_0 target : split_1 source : split_1 target : split_0
Setting Model mac. mic. mac. mic. mac. mic. mac. mic.
Baseline Source only 73.45 75.63 7.32 7.37 70.26 77.10 8.49 9.08

UDA
Domain Disc. 73.81 76.95 13.92 14.94 70.63 77.43 22.50 26.27
Wasserstein 69.63 74.86 13.17 18.16 66.89 75.21 20.78 30.30

ADA
Domain Disc. 73.76 76.13 9.62 10.77 69.71 76.85 9.30 10.45
Wasserstein 70.17 74.80 9.14 9.89 67.46 75.25 9.26 10.38

particular, we notice a greater improvement in the
macro-F1 score, indicating the article-aware classi-
fication approach helps the model to improve per-
formance for sparser articles which are not promi-
nently represented in the case distribution. We
conjecture that this performance difference can be
explained with article-aware classification being
subjected to a different training regime. In fact-only
classification, a given case’s fact text will always be
associated with the same multi-hot outcome vector.
By contrast, in the fact-aware setting, it will oc-
cur multiple times alongside different article texts
and the model is forced to predict a single binary
outcome variable. This seems to lead the model
away from shallow signals towards capturing fact-
article correspondence, resulting in a better model.
Additionally, the beneficial effect is greater for the
harder task of violation classification.

5.3 Does Domain Adaptation Help to Improve
Zero Shot Transferability ?

We evaluate UDA and ADA on both Task A and
Task B with the two article splits. A baseline source
only model is trained without domain adaptation
using the labelled source data only and tested on
the target test data directly. Tables 2 and 3 show
the performance of different models with our two
splits on task B and A, respectively.
Baseline vs Domain Adaptation: From both ta-
bles, we observe that the performance of the source
only model on target data is lower compared to
their domain adaptation counterparts with a sig-
nificant margin. This indicates that, intuitively,
models trained on source data without any adap-
tation do not generalize to unseen articles. This
also highlights the need to have domain adaptation
components to achieve a generalizable model.
UDA: Under unsupervised domain adaptation, we
observe that the Wasserstein distance method per-
forms better on target data than the Domain Dis-
criminator in micro-F1 by a significant margin. It
also improved macro-F1 marginally in Task A tar-

get data, but is inferior in Task B. Most strikingly,
however, Wasserstein performance on source data
is lower than the source only baseline across the
board, especially with respect to macro-F1. These
observations also indicate that the Wasserstein dis-
tance method is able to transfer well to certain
articles more than others. This can be attributed
to the method influencing feature representations
towards a reduction of the mean difference across
articles. The distribution of target articles which
are closer to the source articles distributions might
have gained well. We further validate this hypothe-
sis using an experiment illustrated in sec 5.5. On
source data, the Domain Discriminator performed
better than the source only model, albeit by very
small margins but consistent across the tables.
ADA: On target data, both the Domain Discrimina-
tor and Wasserstein distance are comparable across
the tables in both metrics. With respect to source
data, in task B, the Domain Discriminator per-
formed better than the Wasserstein distance method
in both micro and macro F1. Strikingly, in Task A,
Wasserstein performance on source data picks up
in micro-F1 (slightly even better than source only
baseline) but stays behind in macro-F1.
ADA vs UDA: Unsurprisingly, the performance
on target data under ADA tends to be lower com-
pared to UDA due to no access to target article
information in this setting compared to UDA.

The absolute performance levels on the target
data immediately suggest that the zero-shot trans-
fer task we propose is very difficult and the dis-
crepancy of performance between source and target
data is still large, even in the case of domain adapta-
tion components. This indicates ample opportunity
for further research on neural models capable of
reasoning with legal text in a way that transfers well
to unseen legal domains. Some of the source-target
performance divergence can likely be attributed to
the model falling prey to spurious correlations that
exist in the data, which is especially prominent in
the ECtHR datasets that suffer from fact statements

611



not being finalized until the case outcome is known
(see our prior work in Santosh et al. 2022. Given
this limitation, our zero-shot framework serves as
a challenging benchmark in the development of le-
gal NLP models that learn to interrelate case facts
and legal source text towards supporting domain
experts.

5.4 How does Encoder Pre-Training influence
Zero-Shot Transferability?

We conduct an additional experiment on Task A
with split_1 as source and split_0 as target, where
we replace LegalBERT embeddings used in the en-
coding layer with BERT base embeddings (Kenton
and Toutanova, 2019), and report its performance
in Table 4. Comparing it to Transfer 0 ← 1 in
Table 3, we observe that the BERT base model per-
forms worse on target data than the LegalBERT
encoder. In particular, the best performing Wasser-
stein domain adaptation model drops from 26.2 to
16.36, much more than the Domain Discriminator.
We leave an exploration of this asymmetric effect
of the pre-training regime across different domain
adaptation strategies to future work.

Base BERT performs similarly on the source
domain. This indicates that even a non-legally pre-
trained encoder can be harnessed to reach compa-
rable in-domain performance. However, to gen-
eralize to unseen target articles, domain specific
pre-training is beneficial. It should be noted that
LegalBERT (Chalkidis et al., 2020) has been pre-
trained on a collection of ECtHR decisions that
may include cases from LexGLUE’s test partition,
thereby possibly injecting domain-specific infor-
mation about the target articles into the encoding.

5.5 How does Article Relatedness Affect
Zero-Shot Transferability?

To test whether article relatedness between source
and target domains affect performance, we exper-
iment with Article P1-1 (Article 1 of Additional
Protocol 1 - The Protection of Property) as the tar-
get domain. This simulates the realistic scenario
of our zero shot setting where the convention is
amended with an additional protocol. We then
constructed one related and one unrelated source
domain based on the suggestion provided by a legal
expert (the second author) while ensuring training
sets of similar size. The related domain consists
of articles 6 (right to a fair trial) and 8 (right to
respect for private and family life). The unrelated
domain articles comprise articles 2 (right to life), 3

(prohibition of torture, and 5 (right to liberty and
security).

We report the performance on Task A for target
P1-1 in Table 5. We observe that the related source
domain is able to perform better across the board,
confirming the intuition that relatedness between
source and target is an important factor to be con-
sidered when training a model for transferability.
As before, we observe that UDA achieves higher
performance overall as it has the chance to see arti-
cle P1-1 during training. Interestingly, we observe
the Wasserstein method outperforming the Domain
Discriminator for the related source, but vice versa
for the unrelated source. We believe this is owed
to related articles forming similar feature distribu-
tions and thereby making it easy for the Wasserstein
distance to facilitate adaptation. This case study
suggests the design of domain adaptation compo-
nents which derive information more from related
articles than unrelated ones when transferring to
a target article. This raises a related question of
how article relatedness could be determined by the
model itself rather than a priori by an expert.

6 Conclusion

We cast case outcome classification on ECtHR data
into an article-aware architecture. This configu-
ration is inspired by realistic legal reasoning in-
volving both the case facts and convention arti-
cles to determine possible allegations/violations.
Assuming non-finetuned pre-trained encoders, we
observe a performance improvement over a sim-
ple fact-only classification model. It also enables
us to conduct experiments in zero shot transfer
COC with and without access to unlabeled target
data during domain adaptation. While we show
that domain adaptation techniques are in principle
suitable to facilitate generalization, the divergence
between source and target domain performance is
large and this task variant is very difficult. We
further observe that the effectiveness of domain
adaptation interacts with law-specific pre-training
of transformer-based encoders and with the relat-
edness of the source and target domains. Overall,
this zero-shot COC task formulation opens up new
research opportunities towards legal NLP models
that are more aligned with expert reasoning.

Limitations

We cast the legal judgment prediction task into
an article-aware classification setting and create a
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Table 3: Task A F1 performance of baseline and domain adaptation models

Transfer 0→ 1 Transfer 0← 1

source : split_0 target : split_1 source : split_1 target : split_0
Setting Model mac. mic. mac. mic. mac. mic. mac. mic.
Baseline Source only 63.62 71.98 3.14 3.78 67.79 74.57 5.80 8.02

UDA
Domain Disc. 64.65 72.52 9.52 9.87 68.19 75.32 14.47 16.51
Wasserstein 60.26 71.46 11.04 18.20 63.56 74.89 15.23 26.20

ADA
Domain Disc. 64.89 72.08 7.18 7.78 67.12 74.43 6.45 9.34
Wasserstein 61.78 72.36 7.27 7.61 65.71 74.88 6.71 9.71

Table 4: Task A F1 Performance in one split using BERT
base embeddings (as opposed to Legal Bert)

source : split_1 target : split_0
Setting Model mac. mic. mac. mic.

UDA
Dom. Disc. 68.01 75.26 13.68 15.21
Wasserstein 62.15 74.32 14.12 16.36

ADA
Dom. Disc. 67.92 75.32 4.77 7.44
Wasserstein 66.71 74.95 4.73 7.65

Table 5: Task A F1 target performance on article P1-1
with related and unrelated source domains

Source Related Unrelated
Setting Model mac. mic. mac. mic.

UDA
Dom. Disc. 54.13 73.71 43.52 65.72
Wasserstein 62.35 74.64 34.01 49.62

ADA
Dom. Disc. 42.79 68.46 37.12 56.16
Wasserstein 43.25 69.91 26.87 38.28

zero-shot benchmark on a corpus of ECtHR cases.
Matching between the text of legal sources and case
fact descriptions varies greatly between different
legal systems and subdomains, and is highly depen-
dent on the textual nature of the case fact and legal
sources. Specific to our context, for example, we
have discussed the ECtHR fact statements as being
influenced by the eventual case outcome and not
suitable for prospective prediction in sec 1. COC
as article-aware classification in other jurisdictions
will likely lead to different levels of task difficulty,
absolute performance, and zero shot transferabil-
ity. In particular, many legal areas require multiple
sources to be applied in conjunction to a set of case
facts.

Technically, a major hurdle dealing with corpora
related to the legal domain is their lengthy nature.
We resort to hierarchical models, which are inher-
ently limited in that tokens across long distances
cannot directly attend to one another. This restric-
tion of hierarchical models is still underexplored
(but see preliminary work in, e.g. Dai et al. 2022;
Chalkidis et al. 2022a). Additionally, we freeze the
weights in the LegalBERT sentence encoder, both
to save computational resources and to reduce the
model’s susceptibility to shallow surface signals

and ensure the comparability of our domain adap-
tation methods, in particular with respect to the
impact of domain-specific pre-training. We leave
an exploration of COC as article-aware classifica-
tion with fine-tuned encoders for future work.

Ethics Statement

We experiment with a publicly available datasets of
ECtHR decisions, which has been derived from the
public court database HUDOC3. These decisions
contain real names of the parties involved with-
out any anonymization. We hence do not consider
our experiments to produce any additional harmful
effects relating to personal information.

The task of legal judgment prediction raises eth-
ical, civil rights, and legal policy concerns, both
general and specific to the European Court of Hu-
man Rights (e.g., (Fikfak, 2021) on system bias
and court caseload). The main premise of this
work is to make incremental technical progress to-
wards enabling systems to work with case outcome
information in a way that is aligned with how hu-
man experts analyze case facts through an interplay
with complex legal sources. We do not advocate
for the practical application of COC/LJP systems
by courts, but rather explore how their core func-
tionality of processing legal text can be made as
expert-aligned as possible. Our research group is
strongly committed to research on such models as
a means to derive insight from legal data for pur-
poses of increasing transparency, accountability,
and explainability of data-driven systems in the
legal domain.

We are conscious that, by adapting pre-trained
encoders, our models inherit any biases they con-
tain. Similarly, the ECtHR case collection as histor-
ical data may contain a data distribution in which
sensitive attributes of individuals (e.g., applicant
gender) may have some predictive signal for the
allegation/violation variable (see, e.g., (Chalkidis
et al., 2022c)). We believe the results we observe

3https://hudoc.echr.coe.int
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in our COC experiments to not be substantially re-
lated to such encoded bias. However, legal NLP
systems leveraging case outcome information and
intended for practical deployment should naturally
be scrutinized against applicable equal treatment
imperatives regarding their performance, behavior,
and intended use.

All models of this project were developed and
trained on Google Colab. We did not track compu-
tation hours.
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A Implementation Details

We employ a maximum sentence length of 256
and document length (number of sentences) of 50.
Our word level attention context vector size is 300.

The sentence level GRU encoder dimension is 200
(i.e. 400 bidirectional), and the sentence level at-
tention vector dimension is 200. The entailment
classifier hidden layer also has size 200. Domain
discriminator and critic have two layered networks
with hidden layers of size 200 and 100. The entail-
ment classifier is trained with a binary cross entropy
loss while the domain discriminator is trained with
cross entropy loss over a one-hot domain vector.
The model is optimized end-to-end using Adam
(Kingma and Ba, 2015). The dropout rate (Srivas-
tava et al., 2014) in all layers is 0.1. To handle data
skewness in the entailment setup, we employ a cus-
tom batch sampler which ensures every batch con-
tains 4 different articles as well as 2 positive and 2
negative instances per article. Our batch size is 16.
We employ a learning rate scheduler based on loss
plateau decay. For adversarial training using GRL,
following (Ganin and Lempitsky, 2015), we set
the λ in gradient reversal to be λ = 2

1+exp(−γp) − 1

where p = t
T , where t and T denote current training

step and total training steps. γ is determined using
a grid search over [0.05, 0.1, 0.15, 0.2]. We employ
a 10 class domain discriminator (5 from source and
5 from target) in the case of UDA and a 5 class
discriminator in the case of ADA. We reduce the
mean between instances of a particular article of
source and target in the case of UDA. In the case
of ADA, we reduce the mean between instances of
different articles in the source domain.
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Abstract

Recently, we can obtain a practical abstrac-
tive document summarization model by fine-
tuning a pre-trained language model (PLM).
Since the pre-training for PLMs does not con-
sider summarization-specific information such
as the target summary length, there is a gap
between the pre-training and fine-tuning for
PLMs in summarization tasks. To fill the gap,
we propose a method for enabling the model
to understand the summarization-specific infor-
mation by predicting the summary length in
the encoder and generating a summary of the
predicted length in the decoder in fine-tuning.
Experimental results on the WikiHow, NYT,
and CNN/DM datasets showed that our meth-
ods improve ROUGE scores from BART by
generating summaries of appropriate lengths.
Further, we observed about 3.0, 1,5, and 3.1
point improvements for ROUGE-1, -2, and -
L, respectively, from GSum on the WikiHow
dataset. Human evaluation results also showed
that our methods improve the informativeness
and conciseness of summaries.

1 Introduction

Current abstractive summarization models mostly
utilize pre-trained language models (PLMs) (Liu
and Lapata, 2019; Dou et al., 2021; Liu and Liu,
2021; Narayan et al., 2021; Liu et al., 2022a). Ab-
stractive document summarization requires an en-
coder to determine the important parts in an input
text and a decoder to output a non-redundant sum-
mary of the appropriate length relevant to the input.
Thus, the characteristics required for an abstractive
summarization model differ from those required as
a language model, and are not usually considered
in the pre-training for PLMs (Devlin et al., 2019;
Zhang et al., 2019; Lewis et al., 2020). Hence,
we need to fine-tune a PLM with a summariza-
tion dataset to treat it as an abstractive summariza-
tion model. Unlike training a randomly initialized
model, this fine-tuning maintains and inherits the

Document

Encoder

Positional Embedding
Layer

Generating SummaryPredicted 
Summary Length

Predicted Summary Length

Length Prediction Layer

Subword Embedding
Layer

Decoder

Length-Fusion
Positional Encoding 

Layer 
Subword Embedding 

Layer

Summary

: Pretrained Layer : Randomly Initialized Layer

Figure 1: Overview of our methods. The length pre-
diction layer predicts the summary length. The length-
fusion positional encoding layer controls the decoder to
generate a summary of the appropriate summary length.

parameters learned as an original language model.
Therefore, to learn an abstractive summarization
model by fine-tuning a PLM, it is necessary to sup-
press its characteristics as a language model while
enabling it to learn the unique properties of abstrac-
tive summarization.

For this purpose, we propose two regularization
methods for fine-tuneing a PLM to learn abstrac-
tive summarization. Figure 1 shows an overview
of our methods. The first method is a regulariza-
tion method that uses the encoder’s hidden states
to predict the length of an output summary. When
the length is not given for a summary to be gen-
erated, we believe it is difficult to determine what
volume of important key contents to select from
the original document. Thus, fixing the length for a
summary can make it easier to select key contents
for it. We think humans can also create more in-
formative and concise summaries when a summary
length is given. The system should also be better
trained for selecting key contents in the original
document for a summary in case when it can be
provided with the length of the summary.

The second method provides the decoder with
the length predicted by the first method and enables
it to learn to output a summary of the length. In
addition to regularizing the training of the decoder,
this method reduces the search space by searching
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only for summaries of the appropriate length dur-
ing generation, and so it is expected to produce a
concise and informative summary. Although there
have been studies on adjusting the output length of
summaries, they have focused on controlling the
output length for a given desired length (Kikuchi
et al., 2016; Liu et al., 2018; Takase and Okazaki,
2019; Makino et al., 2019; Saito et al., 2020; Yu
et al., 2021).1 We incorporate a target-length pre-
diction task to the encoder side and then inject the
predicted length to the decoder side to generate the
final summary.

In an evaluation on the WikiHow, NYT, and
CNN/DM datasets, our methods improve the
ROUGE scores of BART with appropriate lengths
of summaries. On the WikiHow dataset, the perfor-
mance improvement reached about 3.0, 1,5, and 3.1
points for ROUGE-1, -2, and -L, respectively, from
GSum. Human evaluation results also showed that
our methods enable the fine-tuning for a PLM to
generate informative and concise summaries.

Our contributions are as follows: (1) We propose
a regularization method that uses the encoder’s hid-
den states by predicting the length of a summary.
(2) We propose a regularization method that re-
duces the search space by injecting the predicted
length of a summary. (3) Both automatic and hu-
man evaluation results show that our novel model
that combines (1) and (2) can generate a summary
closer to its gold summary length by improving
informativeness.

2 Our Methods

We apply our regularization methods to a
transformer-based (Vaswani et al., 2017) PLM to
generate a summary from a given document.

2.1 Predicting Summary Length

We impose summary-length prediction on the en-
coder during fine-tuning to make it easier for the
encoder to determine how much important infor-
mation the given document contains. The en-
coder converts a sequence of n tokens in a doc-
ument x = {x1, x2, ..., xn} into hidden states
{h1, h2, ..., hn}. Note that hn is a hidden state
of an end-of-document symbol xn.

Then, we propose the length-prediction layer by
using hn and a 2-layer feed-forward neural net-
work u to predict the summary length, which is the

1Previous work assumes the desired length is given.

number of subwords in the summary, as follows:

ℓpred = u(hn). (1)

After that, by using the root-mean-square error
(RMSE), the regularization loss for the encoder
Llen is calculated as follows:

Llen =
√
(ℓpred − ℓgold)2, (2)

where ℓgold is the gold length of the target sum-
mary.

2.2 Generating a Summary with the Predicted
Length

We provide the decoder with the predicted sum-
mary length to generate a concise summary of the
appropriate length relevant to the given document.

To encode the information of the predicted
length into the decoder while keeping its pre-
trained information, we insert our Length-Fusion
Positional Encoding layer (LFPE), which is a
transformer layer, before the decoder. Our LFPE
consists of the length-ratio positional encoding
(LRPE) (Takase and Okazaki, 2019) and a trans-
former layer. LRPE converts the position informa-
tion of an output token yt at time t to a continu-
ous vector pt with considering the predicted length
ℓpred as follows:

pt =

{
sin(t/ℓ

2i/dim
pred ) (i ≡ 0 (mod 2))

cos(t/ℓ
2i/dim
pred ) (i ≡ 1 (mod 2)),

(3)

where dim is the dimension size of the embedding.
Then, the transformer layer converts
{p1, p2, ..., pt} into Et = {e1, e2, ..., et} at a
decoding time-step t. When adopting LFPE, we
replace the original sinusoidal positional encoding
of the pre-trained decoder with Et. After that, the
decoder calculates the output probability of yt as
P (yt|yt−1, · · · , y1,x, ℓpred).

Finally, the regularization loss for the decoder
Lgen is calculated as follows:

Lgen=−
m∑

t=1

logP (yt|yt−1,· · ·, y1,x, ℓpred), (4)

where m is the number of tokens in the target sum-
mary. Note that we replace ℓpred with ℓgold in the
decoder during training.
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Dataset Training Valid Test

WikiHow 168,126 (47.2) 6,000 (45.2) 6,000 (45.4)
NYT 44,382 (28.9) 5,523 (31.2) 6,495 (30.9)
CNN/DM 287,084 (20.5) 13,367 (25.1) 11,490 (22.0)

Table 1: Statistics of document summarization datasets.
The value in parentheses indicates the variance of target
summary lengths.

Model R-1 R-2 R-L VAR AVG

WikiHow

PEGASUSLARGE* 43.06 19.71 41.35 -
GSum* 41.74 17.73 40.09 -
GSum 42.04 18.03 40.47 1.38 61.3
BART 42.05 18.06 40.50 1.34 57.5

BART w/ Renc 44.68† 19.48† 43.31† 0.98† 51.5
BART w/ Renc+dec 45.02† 19.53† 43.56† 0.82† 54.4

NYT

GSum 57.63 37.74 41.99 1.62 151.8
BART 57.32 37.63 41.88 1.55 149.3

BART w/ Renc 57.50 37.67 41.92 1.43† 146.8
BART w/ Renc+dec 58.52† 38.65† 43.48† 0.89† 129.9

CNN/DM

PEGASUSLARGE* 44.17 21.47 41.11 -
GSum* 45.94 22.32 42.48 -
GSum 45.79 22.21 42.37 0.76 69.7
BART 44.48 21.41 41.19 0.78 70.7

BART w/ Renc 44.59 21.40 41.07 0.59† 64.3
BART w/ Renc+dec 44.65 21.60 41.25 0.36† 51.0

Table 2: Experimental results on WikiHow, NYT, and
CNN/DM. † indicates the improvement is significant
(p<0.05) compared with the best baseline score (under-
lined) on each dataset. ∗ indicates the reported score in
the original paper. AVG indicates the average generated
summary length.

2.3 Objective Function

To balance the encoder and decoder regularization,
we sum the two losses through a hyperparameter λ
for calculating the final loss as follows:

L = Lgen + λ · Llen. (5)

3 Experiments

3.1 Experimental Settings

Datasets: We used WikiHow (Koupaee and
Wang, 2018) in the knowledge base domain and
NYT2 (Sandhaus, 2008) and CNN/DM (Hermann
et al., 2015) in the news domain. Table 1 shows the
dataset statistics.
Evaluation Metrics: We used F-scores of ROUGE-
1 (R-1), -2 (R-2), and -L (R-L) in our experi-
ments. To evaluate the quality of the predicted
length and the length-controllability, we employed

2Detailed pre-processing steps are described in Appendix
A.

the length variance (VAR): VAR = 0.001 ×
1
n

∑n
i=1 |ypred − ygold|, where ypred is the length

of the generated summary and ygold is the length of
the reference summary in word level, respectively.
Compared Methods: We used BART-large (Lewis
et al., 2020) for constructing baselines and our mod-
els by following the previous work (Dou et al.,
2021). The proposed models are as follows. BART
w/ Renc employs our method only for the en-
coder in §2.1. BART w/ Renc+dec employs our
methods both for the encoder and the decoder.
The baseline models are as follows. BART and
PEGASUS (Zhang et al., 2019) are the original
pre-trained BART and PEGASUS. GSum (Dou
et al., 2021) is a BART-based combination model
that utilizes extracted sentences as a guidance sig-
nal to consider extractive aspects for a summary.
For the guidance signal, it uses the MatchSum
model (Zhong et al., 2020).

We followed the hyperparameters of BART and
GSUM for training and testing the baselines and
our models. We set λ to 0.1, 0.05, and 0.05 for
WikiHow, NYT, and CNN/DM, respectively, on the
basis of validation performances.3

3.2 Automatic Evaluation

The results are shown in Table 2. We can see that
both of our models, BART w/ Renc and BART
w/ Renc+dec, showed significant improvement in
ROUGE scores over BART on WikiHow. These
scores were higher than the combination model
of GSUM and PEGASUS (Zhang et al., 2019),
which yields the current best results reported on
WikiHow. We analyzed relations between lengths
and ROUGE scores. When our BART w/ Renc+dec

predicted summary lengths closer to gold summary
lengths than BART, 95.4% of generated summaries
from ours obtained higher R-1 scores than BART.
In addition, VAR and AVG scores show that our
models can generate summaries closer to the gold
summary lengths and can actually reduce the search
space in decoding steps. These results indicate
that the proposed methods enable BART to gen-
erate highly abstractive summaries of appropriate
lengths.

We can also confirm that the proposed meth-
ods improved summarization performance over
BART on NYT4 and CNN/DM. We can also see that

3Further details are described in Appendix B.
4There is no reported result for PEGASUS on NYT. For

GSum, since the pre-processing could not be made identical,
the reported and our scores were a bit different.
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Model WikiHow CNN/DM

Info Con Info Con

GSUM - - 3.97 4.02
BART 4.00 4.22 3.98 4.02
BART w/ Renc+dec 4.09† 4.19 4.05† 4.07

Table 3: Human evaluation results. The notations are
the same as in Table 2.

our model BART w/ Renc+dec showed significant
improvement in ROUGE scores over GSUM on
NYT. Although GSUM outperformed our BART w/
Renc+dec in ROUGE scores on CNN/DM, it could
generate summaries closer to the gold summary
lengths.

Thus, we tried to investigate what types of
datasets our methods can work better on and found
that the variance of reference summary lengths
might be related to the performance of our models.
Based on the observations from Tables 1 and 2,
our BART w/ Renc+dec can largely improve per-
formances on summarization datasets with a high
variance of summary lengths, such as WikiHow and
NYT.

3.3 Human Evaluation

For human evaluation, we sampled 100 documents
each from WikiHow and CNN/DM. By using Ama-
zon Mechanical Turk, we assigned 40 evaluators
who obtained both US high school and US bache-
lor’s degrees to each dataset for grading the results
with scores from 1 to 5 (5 is the best) in terms of
informativeness (Info) and conciseness (Con).

Table 3 shows the results. These results indicate
that BART w/ Renc+dec generated more informa-
tive summaries than BART, that is consistent with
the results from the automatic evaluation. In some
cases, the generated summaries with BART are just
short summaries on WikiHow due to a high vari-
ance of reference summary lengths, and so the Con
score is slightly lower than the one for BART w/
Renc+dec. However, BART w/ Renc+dec yields the
best overall Info and Con scores, which shows our
regularization methods are essential for fine-tuning
a PLM to learn abstractive summarization models.
We also evaluated GSUM together. BART attained
a 0.01 better score for Info than GSUM even on
CNN/DM since GSUM focuses on generating faithful
summaries with injecting outputs from an extrac-
tive summarization model.

We investigated the tendency of the length of
generated summaries. Figure 2 shows the relation-
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Figure 2: For x-axis, we divided the gold target lengths
into 5 bins with 40 words interval. Y-axis indicates the
length of generated summaries.

BART use this method if you have a digital multimeter with a
diode check function. set your multimeter to resistance mode.
plug the leads into the correct ports. disconnect the diode from
the circuit. touch the leads in the forward-bias direction. lower
the resistance range if the result is 0. test the resistance in the
reverse direction. test a new diode or a working diode.

BART w/ Renc+dec set your multimeter to resistance mode.
plug the leads into the multimeter. disconnect the diode from the
circuit. touch the leads in the forward-bias direction. test in the
reverse direction. try a new diode.

Gold use this method when necessary. set your multimeter to
resistance mode. plug in the leads. disconnect the diode.
measure the forward bias. measure the reverse bias. compare to
a working diode.

Table 4: Example summaries generated from BART w/
Renc+dec, BART, and gold summaries on WikiHow.

ship between gold and generated summary lengths
for each model. We used WikiHow because it con-
tains various target summary lengths. When we
injected the gold summary length, the length of
generated summaries from LFPE (Gold) was al-
most the same as the gold summaries. These re-
sults indicate that LFPE can precisely control var-
ious output lengths.5 In addition, generated sum-
mary lengths from BART w/ Renc+dec show that
the length-prediction layer can also predict various
target summary lengths.

Table 4 shows example generated summaries
with BART w/ Renc+dec, BART, and gold sum-
maries on WikiHow. The summary length predic-
tion is essential for creating an informative and
concise summary that is closer to the gold sum-
mary length.

4 Related Work

In summary length control, previous work mostly
focuses on controlling models for generating sum-
maries with a predefined length (Kikuchi et al.,

5Further details are described in Appendix C.
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2016; Liu et al., 2018; Takase and Okazaki, 2019;
Makino et al., 2019; Saito et al., 2020; Yu et al.,
2021). Our work is novel because it enables a
model dynamically predicts the appropriate sum-
mary length from the input text without relying on
any predefined length.

From the viewpoint of regularization, we can see
such a regularization term like Llen in recent works
of summarization tasks. Kamigaito et al. (2018);
Kamigaito and Okumura (2020) in sentence com-
pression and Ishigaki et al. (2019) in extractive
document summarization incorporate dependency
tree information into the attention (Kamigaito et al.,
2017). Hsu et al. (2018) integrate extractive and ab-
stractive summarization. MatchSum (Zhong et al.,
2020) considers the semantic similarity between a
document and its extracted summary. BRIO (Liu
et al., 2022a) takes multiple similar abstractive
summaries into account by contrastive learning in
sequence-to-sequence (Edunov et al., 2018). Dif-
ferent from these works, our approach focuses on
summary lengths through Llen and can be incorpo-
rated into these works by adding Llen to their loss
function.

5 Conclusion

To fine-tune a pre-trained language model for ab-
stractive document summarization, we proposed a
regularization method that uses the encoder’s hid-
den states to predict the length of an output sum-
mary. We also proposed LFPE, that focuses on gen-
erating a summary with a given target length while
keeping pre-trained information of the transformer-
based model. We used LFPE to regularize the de-
coder during training to generate a summary with
the predicted length.

Automatic evaluation results showed that the
proposed methods enable BART to generate sum-
maries of appropriate lengths while improving
ROUGE scores. Human evaluation results also
showed that the proposed methods enable BART to
generate more informative and concise summaries.

6 Limitations

Although our models can largely improve perfor-
mances on datasets with a high variance of sum-
mary lengths, the gain was small for datasets with a
low variance of summary lengths. In the future, we
will consider external resources to predict a sum-
mary length for the datasets with a low variance of
target summary lengths. We plan to form document

clusters based on each topic since different topics
may have different reference lengths. We believe
this may improve performances for the datasets
with a low variance of summary lengths.
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A Statistics of the datasets

NYT dataset consists of articles from the New
York Times and the associated summaries.6 we
followed the previous preprocessing step and split-
ting (Kedzie et al., 2018). There are two types of
the reference summaries, which are archival ab-
stracts and online teaser meants. From this collec-
tion, we take all articles that have a concatenated
summary length of at least 100 words.

B Model details

We introduce the detailed information of the base-
line and our models.

We used Fairseq7 (Ott et al., 2019) for the model
implementation. As the pretrained weight, we used
bart-large in huggingface8. We used the original
implementation for GSum9. We ran training for
the models on two NVIDIA Tesla V100 with the
multi-GPU setting. As described in the experimen-
tal settings, all hyperparameters were the same as
for the large-scale BART in Lewis et al. (2020).
Hyperparameter λ was set to 0.1, 0.05 and 0.05
for the WikiHow, CNN/DM, and NYT datasets, re-
spectively, on the basis of validation performances.

6https://catalog.ldc.upenn.edu/LDC2008T19
7https://github.com/pytorch/fairseq
8https://huggingface.co/facebook/bart-large
9https://github.com/neulab/guided_

summarization

Model R-1 R-2 R-L VAR

GOLC* (Makino et al., 2019) 38.27 16.22 34.99 5.13
PALUS* (Yu et al., 2021) 39.82 17.31 36.20 0.01
LPAS* (Saito et al., 2020) 43.23 20.46 40.00 -
PtLAAM* (Liu et al., 2022b) 44.17 20.63 40.97 -

BART 44.48 21.41 41.19 0.78
LRPE (Takase and Okazaki, 2019) 45.67 22.11 42.20 0.03

LFPE (Our) 45.93† 22.30 42.44† 0.03

Table 5: Experimental results on CNN/DM with using the
gold summary length information. The notations are the
same as in Table 2.

∆ Generated Summary

+1 She and her husband are celebrating their 10th wed-
ding anniversary.

0 She and her husband are celebrating their 10th an-
niversary.

-1 She and her husband are now married 10 years.

Table 6: Example summaries generated from BART
with LFPE for different lengths on CNN/DM. ∆ = +1/−
1 indicates the injected length is larger/smaller than the
gold summary.

C Length-controllability

We investigated the length-controllability of our
LFPE in §2.2 by comparing it with the original
BART and LRPE. We also compared these meth-
ods with the previously reported scores of GOLC,
PALUS, LPAS, and PtLAAM. We used CNN/DM
and gave the gold summary length to the models
by following the previous work. The results in
Table 5 show that LFPE outperformed other meth-
ods in terms of ROUGE scores and VAR. Thus,
our LFPE can control the output summary length
while keeping ROUGE scores and outperform the
state-of-the-art length-controllable methods.

Next, we analyzed the effect of length-
controllability in actually generated summaries in
CNN/DM. Table 6 shows example generated sum-
maries with injecting different lengths into LFPE.
In this example, when there is no possibility of
dropping a subword, our model paraphrases “10th”
to “10” while maintaining the informativeness and
grammaticality. From this observation, we can
understand that our LFPE controls the summary
length through subword-based paraphrasing, which
is supported by the decoder’s ability of abstraction.
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Abstract

Hierarchical text classification (HTC) aims to
assign the most relevant labels with the hier-
archical structure to an input text. However,
handling unseen labels with considering a label
hierarchy is still an open problem for real-world
applications because traditional HTC models
employ a pre-defined label set. To deal with
this problem, we propose a generation-based
classifier that leverages a Seq2Seq framework
to capture a label hierarchy and unseen labels
explicitly. Because of no available social media
datasets that target at HTC, we constructed a
new (Blog) dataset using pairs of social media
posts and their hierarchical topic labels. Exper-
imental results on the Blog dataset showed the
effectiveness of our generation-based classifier
over state-of-the-art baseline models. Human
evaluation results showed that the quality of
generated unseen labels outperforms even the
gold labels.

1 Introduction

Hierarchical text classification (HTC) aims to as-
sign the most relevant labels with their structure for
a given document. Because real-world applications
categorize documents into a structured class hier-
archy sequence (Silla and Freitas, 2011), such as
patent collections (Tikk et al., 2005), web content
collections (Dumais and Chen, 2000), and medical
record coding (Cao et al., 2020), it is needed to cap-
ture the label hierarchy for better categorization.

To solve the HTC task, recent work has focused
on enhancing label embeddings with a taxonomic
hierarchy (Cao et al., 2020; Zhou et al., 2020; Wang
et al., 2021) or considering a sequential classifica-
tion approach (Rivas Rojas et al., 2020; Yang et al.,
2018, 2019) that leverages a Seq2Seq framework
to capture the label hierarchy. Despite the previous
methods being successful, their approaches classify
labels sequentially by choosing them from the pre-
defined label set in the training dataset. It is still an
open problem for real-world applications to handle

Seq2Set Seq2Gen

Powdered 
milk

Parenting, 
Marriage

Topic Sub-Topic

Input  
Text

Seq2Seq
Model

Pre-defined
Label Set

Seq2Seq
Model

‘Parent', ‘ing’, ‘Marriage’, 
‘>’, ‘Pow’, ‘d’, ‘ered’, ‘milk

Input  
Text

Shared
Dictionary

Sub-word sequence

: Pre-defined : Text

Figure 1: Different from previous Seq2Set (Rivas Rojas
et al., 2020), our Seq2Gen can handle unseen labels
with sub-word level generation.

unseen labels that do not appear in the pre-defined
label set from the training dataset (Banerjee et al.,
2019; Aly et al., 2019; Xu et al., 2021). Due to se-
vere deficiencies in annotating data for labels in a
hierarchy and handling unseen labels for real-world
applications (Liu et al., 2021), we need a general
modeling framework for handling unseen labels
while explicitly incorporating a label hierarchy to
overcome the restriction of the pre-defined label set
for the development of real-world text classification
applications.

For this purpose, we propose a generation-based
classifier that can generate unseen labels in sub-
word level. Our method can directly predict la-
bels within a hierarchical structure by considering
the label hierarchy as the order of the labels in a
sequence. Because all labels are represented as
sub-word strings in a shared vocabulary between
labels and words, our method can predict unseen
labels through generation (Sennrich et al., 2016).
To expand unseen labels considerably, we also pro-
pose a method to extract knowledge of hierarchical
labels from a pre-trained encoder-decoder by semi-
supervised learning.

Since there are no available social media datasets
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for HTC, we constructed a new blog dataset in
Korean that includes a hierarchical label structure.
The dataset contains up to three levels with a doc-
ument. To evaluate the treatment of unseen labels
in detail, we additionally constructed cross-lingual
datasets, consisting of Japanese and English so-
cial media posts from the Kyoto (Hashimoto et al.,
2011) and Reddit (Kim et al., 2019) datasets.

Comparisons between our generation-based and
traditional classifiers on the Blog dataset showed
that our method outperforms state-of-the-art mod-
els for both rank-based and ROUGE metrics. Hu-
man evaluation results showed that the quality
of our generated unseen labels outperforms even
the gold labels. In addition, we confirmed our
generation-based classifier can handle unseen la-
bels even on the cross-lingual datasets in a zero-
shot setting, that shows the potential for tagging
labels with considering a label hierarchy in unseen
languages.

2 Problem Formulation

We introduce the task of traditional HTC and for-
mulate how we solve it in our generation-based
framework. The traditional HTC has been for-
malized as choosing labels one-by-one from a pre-
defined label set in the training dataset, for example,
with a sequential classification method (Seq2Set).
However, handling unseen labels with considering
a label hierarchy is important in designing models
for real-world applications.

To solve this problem, we formulate the task
as topic generation using a Seq2Seq model
(Seq2Gen), such as pre-trained BART (Lewis et al.,
2020). Figure 1 shows the Seq2Seq framework
to generate target labels. It generates labels for
an input text as a sequence of label tokens, and
thus the label hierarchy can be directly considered
through the Seq2Seq model. Because all the labels
are represented as sub-word strings in a shared vo-
cabulary between labels and words (Xiong et al.,
2021), our model is permitted to generate even
unseen labels, that are not included in the pre-
defined label set (Sennrich et al., 2016). Due to the
lack of diverse labels with considering their hierar-
chy in HTC datasets (Kowsari et al., 2017; Sinha
et al., 2018), we utilize semi-supervised learning to
draw the pre-trained knowledge in the pre-trained
Seq2Seq model.

Topic Label Hierarchical Template

L = {l1} l1 is a topic.
L = {l1, l2} l2 is a sub-topic of l1.
L = {l1, l2, l3} l2 is a sub-topic of l1 and l3 is a sub-topic of l2.

Table 1: Hierarchical template to map labels into a target
topic sequence.

3 Generation-based Classifier

Considering HTC as a language generation task,
we use a multi-lingual BART (mBART) (Liu
et al., 2020), which is an extended version of a
transformer-based pre-trained BART for multiple
languages, as our Seq2Seq framework.

3.1 Seq2Seq-based Model

Our generation-based classifier can directly con-
sider a label hierarchy. For learning, we append
“>” as a special symbol representing a hierarchy
between topics, L = {l1, l2, l3}, and concatenate
them as a target topic sequence. Let wi be the i-th
token in a document D = {w1, w2, ..., wn}. D is
fed into the encoder of the mBART, and then the
generated hidden representations with the previous
output token, ci−1, are fed into the i-th step of the
decoder. Finally, we use the cross-entropy loss be-
tween the decoder’s output and the label sequence
to fine-tune the model, as follows:

HEnc= Encoder(D), (1)

HDec= Decoder(HEnc, ci−1), (2)

Loss= −
∑

i∈m
log(Softmax(HDecW+ b)), (3)

where W and b indicate a learnable weight and bias,
respectively, and m indicates the target length.

To show the effectiveness of directly consider-
ing a label hierarchy, we additionally consider a
template-based Seq2Seq model. For learning, we
manually create a hierarchical template, which has
slots to map topic labels into a target topic se-
quence, instead of L. Table 1 shows the hierar-
chical template to map topics into slots.

3.2 Augmentation with Semi-supervision

Since BART is a pre-trained Seq2Seq model
learned with massive text corpora, we assume that
we can draw pre-trained knowledge (Petroni et al.,
2019) from BART to enhance the label hierarchy
and expand labels considerably for dealing with
unseen labels. For this purpose, we augment the
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Training Valid Test

13,705 (1,011) 761 (254) 761 (292)

Table 2: Statistics of Blog. The number in parentheses
indicates the number of different labels in each data.

dataset with a silver dataset, an automatically an-
notated dataset by using a model’s generation in
a manner of semi-supervised learning. As demon-
strated by He et al. (2020), we first train a model
only with the silver dataset, generated by a model
trained with the gold dataset, and then fine-tune it
with the gold dataset.

4 Blog Dataset

We created a new HTC dataset (Blog) by collect-
ing posts and their topic label sequences from
Naver blogs,1 that contain a large number of
different labels compared to the previous HTC
datasets (Kowsari et al., 2017; Sinha et al., 2018).
The topic label sequences contain up to three hierar-
chical topic levels. Extracted topic label sequences
can be noisy because a blogger can choose only
the topic (the top-level class) from 32 classes, and
the remaining topic sequence was automatically
generated by the Naver blog system. Therefore,
we hired experts on social media to annotate a rel-
evance score from 0 to 3 (3 is the best) for a post
and its topic label sequence. We filtered posts with
scores less than 2 to ensure high quality. Then, we
divided them into three parts (training: 90%, valid:
5%, and test: 5%). Table 2 shows the statistics of
the created dataset.

To evaluate unseen label generation in cross-
lingual few- and zero-shot settings, we additionally
created Japanese (Kyoto) and English (Reddit)
datasets from publicly available social media post
datasets (Hashimoto et al., 2011; Kim et al., 2019).
For Kyoto and Reddit, we extracted 249 and 500
posts, respectively. For each post, five human ex-
perts annotated a topic label sequence. After pre-
processing, we obtained 234 and 400 posts with
their label sequences for Kyoto and Reddit, respec-
tively, and divided them into three parts (training:
10%, valid: 5%, and test: 85%). Blog, Kyoto, and
Reddit are available upon request.2

1https://section.blog.naver.com/
2Detailed explanations for the datasets are in Appendix A.

5 Experiments

5.1 Experimental Settings

Datasets: Blog, Kyoto, and Reddit were used
to compare our generation-based and previous
classification methods. To obtain silver data for
semi-supervised learning, we additionally extracted
21,520 Naver blog posts. We also evaluated our
models on the public HTC dataset, Web of Science
(WOS) (Kowsari et al., 2017). It contains 46,985
instances with two levels, where each level consists
of 7 and 134 different labels. We divided them into
three parts (training: 60%, valid: 20%, and test:
20%).
Evaluation Metrics: Previous studies used a short
ranked list of potentially relevant labels to evaluate
the classification quality: the precision at top k
(P@k) and the Normalized Discounted Cumulative
Gain at top k (NDCG@k), where k = 1, 2, 3 (Xun
et al., 2020; Zhang et al., 2021). However, these
rank-based evaluation metrics could not evaluate
the quality of a hierarchical label sequence, and
thus, we also used ROUGE-1-F and ROUGE-2-F,
that can evaluate the quality of hierarchical label
sequences by taking into account label n-grams.
Compared Methods: Our methods are as follows:
Template uses the proposed hierarchical templates
to generate a topic label sequence with mBART.3

Seq2Gen directly generates a topic label sequence
with mBART. Self-Template and Self-Seq2Gen
use Template and Seq2Gen by expanding unseen
labels with semi-supervised learning, respectively.

The baselines, which include state-of-the-art
models that employ a tree structure of labels, are
as follows: CorNet utilizes BERT (Devlin et al.,
2019) by incorporating a feed-forward layer to con-
sider a label hierarchy (Xun et al., 2020). MATCH
utilizes BERT by incorporating hypernymy regu-
larization in a loss function to consider hierarchi-
cal structures (Zhang et al., 2021).4 Seq2Set is
a variant of the state-of-the-art HTC model that
sequentially classifies a topic label sequence from
a pre-defined label set with mBART. We replaced
Bi-GRU with mBART for a fair comparison to our
Seq2Gen (Rivas Rojas et al., 2020).

3Results using different templates are in Appendix B.
4For both CorNet and MATCH, we used a multilingual

BERT instead of the original BERT for the cross-lingual set-
ting.

5The paired-bootstrap-resampling (Koehn, 2004) was used
(p < 0.05).
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Model P&N@1 P@2 P@3 N@2 N@3 R1-F R2-F Unseen

CorNet 77.79 50.72 36.88 70.03 72.76 47.77 8.76 -
MATCH 78.06 50.72 36.05 70.23 72.10 46.76 9.20 -
Seq2Set 92.38 64.72 43.58 88.36 88.23 81.61 35.50 -

Template 92.12 68.13† 46.25† 89.37 89.44 84.60† 43.17† 91
Seq2Gen 92.25 69.58† 47.39† 89.33 89.53 85.51† 45.42† 102

Self-Template 92.38 68.33 46.30 89.79 89.84 85.88 43.36 74
Self-Seq2Gen 92.77 69.84 47.48 90.23 90.36 87.69‡ 45.95 62

Table 3: Experimental results on Blog. Unseen indicates the number of different generated unseen labels on the test
data. † and ‡ indicate the improvement is significant over the underlined score, respectively.5

Model Kyoto Reddit

R1-F R2-F R1-F R2-F

Few-shot
CorNet 47.48 15.83 20.60 0.39

MATCH 48.88 18.08 19.64 0.20
Seq2Set 63.75 51.83 19.69 3.24
Seq2Gen 56.73 35.50 33.20 7.84

Zero-shot
Seq2Gen 41.12 13.83 17.48 4.61

Table 4: Results on Kyoto and Reddit.

Model P&N@1 P@2 N@2 R1-F R2-F Unseen

CorNet 78.76 53.89 59.52 53.89 16.78 -
MATCH 74.14 51.07 56.29 51.07 13.53 -
Seq2Set 91.23 85.94 87.14 85.94 80.55 -

Seq2Gen 91.43 86.32† 87.48 86.32† 81.11† 1

Table 5: Experimental results on WOS. The notations are
the same as in Table 3.

5.2 Automatic Evaluation

Table 3 shows the results on Blog. Generating topic
labels using the mBART-based models consistently
outperformed classifying them using the mBERT-
based models. Specifically, the gain was large in
the ROUGE metrics. In addition, our generation-
based methods, Template and Seq2Gen, outper-
formed the sequential classifier Set2Set. The pro-
posed Seq2Gen outperformed Template, where the
improvement in R2-F was larger than that in R1-
F, that indicates Seq2Gen can capture a hierarchi-
cal sequence directly compared with the hierarchi-
cal template. Moreover, Self-Template and Self-
Seq2Gen, that use the silver dataset to fine-tune the
models, consistently improved the performances.
This is because we succeeded in enhancing the
label hierarchy with diverse unseen labels. For
21,520 posts in the silver dataset, our Seq2Gen

Model Relevance Taxonomy Best

Seq2Set 2.29 2.17 0
Self-Seq2Gen 2.59 2.56† 23

Gold 2.51 2.46 13

Table 6: Human evaluation results. The notations are
the same as in Table 3.

Input: Yoon Restaurant’s Kimchi pancake. How to make kimchi
pancake, recipe for kimchi pancake. It’s been a few days since spring
rain has been so moist, so the air is very fresh:) . . .
Gold: Cooking, Recipe
Self-Seq2Gen: Cooking, Recipe > Kimchi pancake

Input: I can’t go to the gym, I can’t exercise outside, watch diet
YouTube at home. . . . The problem with Home Training is that
all the exercise moves go by so quickly. . . .
Gold: Health, Medicine
Self-Seq2Gen: Sports > Home Training

Table 7: Examples of generated unseen labels from
Self-Seq2Gen in the Blog dataset.

could generate 4,385 different unseen labels.
Table 4 shows the cross-lingual results. The R2-

F scores for Seq2Gen, trained with Blog, in the
zero-shot setting show that it can generate even
cross-lingual unseen labels.6 Table 5 shows the
results on WOS. We can confirm that the generation-
based method outperformed the sequential classifi-
cation method. Thus, our Seq2Gen can work better
even for a smaller number of different labels. How-
ever, we think the improvements and the number of
generated unseen labels are smaller than the ones
on Blog due to the smaller number of different
labels.

5.3 Human Evaluation and Analysis

We conducted a human evaluation for 50 randomly
sampled posts that contain generated unseen labels
from our Self-Seq2Gen. Five human annotators
graded them with scores from 1 to 3 (3 is the best)

6Results including rank-based metrics are in Appendix C.
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in terms of Relevance and Taxonomy.7 We ad-
ditionally asked the annotators to select the best
label sequence from Seq2Set, Self-Seq2Gen, and
Gold label sequences. Best indicates the number
of cases where the majority among the annotators
judged the best. Table 6 shows the human eval-
uation results. The generated unseen labels from
Self-Seq2Gen achieved a higher preference than
the Gold labels.

Table 7 shows example generated unseen labels
from Self-Seq2Gen. As we expected, our Self-
Seq2Gen frequently generated unseen labels with
considering the label hierarchy. In the first example,
the generated unseen label, “Kimchi pancake”, can
be considered as a sub-topic of “Cooking, Recipe”
because the “Kimchi pancake” is a food name. In
the second example, “Home training” can be con-
sidered as a sub-topic of “Sports”.

6 Conclusion

We proposed a generation-based classifier for HTC.
It could handle unseen labels with considering
their label hierarchy. In addition, we constructed
cross-lingual HTC datasets from social media
posts. Automatic evaluation results showed that
our generation-based classifier could outperform
state-of-the-art models. We confirmed our classifier
could handle unseen labels by human evaluation.

7 Ethical Considerations

We created the new datasets of Blog, Kyoto, and
Reddit for the HTC task. The created datasets
have been collected in a manner which is consis-
tent with the terms of use of any sources and the
intellectual property and privacy rights of the origi-
nal authors of the texts. Please note that we have
confirmed by our legal team and the datasets will be
available upon request for only research purpose.

8 Limitations

Although our Seq2Gen could generate unseen la-
bels on cross-lingual datasets in the zero-shot set-
ting, that shows the potential of tagging labels with
considering their label hierarchy, it was difficult to
outperform the few-shot setting. In the future, we
plan to incorporate cross-lingual label trees for the
zero-shot setting.

7Relevance and Taxonomy indicate how much the gener-
ated label sequences are related to the input context and the
quality of the label hierarchy, respectively.
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A 32 Topics for Naver blog System

Table 8 shows 32 topic classes (top-level) from
Naver blog system.

For Kyoto and Reddit, to establish the same set-
ting as for Blog, the experts first annotated the topic
label (the top-level class) from given 32 classes.
Then, they annotated hierarchical label sequences
up to three-levels if they consider subsequent labels
are required. We deleted posts with no majority for
the topic label. We obtained 234 and 400 posts with
their label sequences for Kyoto and Reddit, respec-
tively, and divided them into three parts (training:
10%, valid: 5%, and test: 85%).

For Reddit and Kyoto, each input text is not one-
to-one matching for target labels, which is different
from the Blog dataset. For training, we consid-
ered all different target label sequences. For the
evaluation, we selected maximized scores by re-
grading them as multiple references. To assess the
agreement between the participants for the datasets,
we used Fleiss’ Kappa (L. Fleiss, 1971). We ob-
tained Kappa scores of 0.55 for Kyoto and 0.23 for
Reddit, indicating moderate and fair agreements,
respectively.

B Results using different templates.

We study the various manually created hierarchical
templates using valid Blog because different hier-
archical templates can express the same meaning.
Table 9 shows the performance using different tem-
plates. On the basis of the valid results in terms of
average ROUGE-F scores, we use the top perform-
ing template in our experiments.

C Results on Kyoto and Reddit datasets

Table 10 includes both rank-based and ROUGE
metrics on Kyoto and Reddit.

Topic

1 Literature, Book
2 Movie
3 Art, Design
4 Performance, Exhibition
5 Music
6 Drama
7 Star, Celebrity
8 Cartoon, Anime
9 Broadcast

10 Everyday, Thoughts
11 Parenting, Marriage
12 Pet, Companion animal
13 Good article, Image
14 Fashion, Beauty
15 Interior, DIY
16 Cooking, Recipe
17 Product review
18 Horticulture, Cultivation
19 Game
20 Sports
21 Picture
22 Car
23 Hobby
24 Domestic travel
25 World travel
26 Restaurant
27 IT, Computer
28 Society, Politics
29 Health, Medicine
30 Business, Economy
31 Language, Foreign language
32 Education, Academic

Table 8: 32 topics from Blog datasets.
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Topic Label Hierarchical Template R1-F R2-F Avg R-F

L = {l1} l1 is a topic.
L = {l1, l2} l2 is a sub-topic of l1. 86.92 45.90 66.41
L = {l1, l2, l3} l2 is a sub-topic of l1 and l3 is a sub-topic of l2.

L = {l1} l1 is a topic.
L = {l1, l2} l1 is a topic and l2 is a sub-topic of l1. 86.72 44.88 65.80
L = {l1, l2, l3} l1 is a topic, l2 is a sub-topic of l1, and l3 is a sub-topic of l2.

L = {l1} l1 is a topic.
L = {l1, l2} l1 is a parent topic of l2. 87.31 43.82 65.57
L = {l1, l2, l3} l1 is a parent topic of l2 and l2 is a parent topic of l3.

L = {l1} l1 is a topic.
L = {l1, l2} l1 is a topic and l1 is a parent topic of l2. 85.87 44.20 65.04
L = {l1, l2, l3} l1 is a topic, l1 is a parent topic of l2, and l2 is a parent topic of l3.

Table 9: Results using different hierarchical templates.

Model Kyoto Reddit

P&N@1 P@2 P@3 N@2 N@3 R1-F R2-F P&N@1 P@2 P@3 N@2 N@3 R1-F R2-F

Few-shot
CorNet 54.50 56.50 41.67 55.66 54.61 47.48 15.83 35.59 22.79 17.25 27.03 26.59 20.60 0.39

MATCH 57.50 56.75 43.00 56.92 56.65 48.88 18.08 29.71 20.44 15.78 24.02 25.68 19.64 0.20
Seq2Set 64.00 69.75 46.50 68.45 67.93 63.75 51.83 37.06 21.91 14.71 26.82 26.10 19.69 3.40
Seq2Gen 65.50 62.50 46.50 62.92 60.22 56.43 35.08 51.18 36.76 24.71 41.70 40.01 33.20 7.84

Zero-shot
Seq2Gen 28.00 42.00 28.00 41.73 41.73 41.12 13.83 22.53 15.29 10.20 21.58 21.58 17.48 4.61

Table 10: Evaluation results on the Kyoto and Reddit datasets.
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Abstract

Current multilingual semantic parsing (MSP)
datasets are almost all collected by translat-
ing the utterances in the existing datasets from
the resource-rich language to the target lan-
guage. However, manual translation is costly.
To reduce the translation effort, this paper pro-
poses the first active learning procedure for
MSP (AL-MSP). AL-MSP selects only a sub-
set from the existing datasets to be translated.
We also propose a novel selection method that
prioritizes the examples diversifying the logi-
cal form structures with more lexical choices,
and a novel hyperparameter tuning method that
needs no extra annotation cost. Our experi-
ments show that AL-MSP significantly reduces
translation costs with ideal selection methods.
Our selection method with proper hyperparam-
eters yields better parsing performance than the
other baselines on two multilingual datasets.

1 Introduction

Multilingual semantic parsing converts multilin-
gual natural language utterances into logical forms
(LFs) using a single model. However, there is a
severe data imbalance among the MSP datasets.
Currently, most semantic parsing datasets are in En-
glish, while only a limited number of non-English
datasets exist. To tackle the data imbalance issue,
almost all current efforts build MSP datasets by
translating utterances in the existing datasets from
the resource-rich language (e.g. English) into other
languages (Duong et al., 2017; Li et al., 2021a).
However, manual translation is slow and labori-
ous. In such cases, active learning is an excellent
solution to lower the translation cost.

Active learning (AL) is a family of methods
that collects training data when the annotation bud-
gets are limited (Lewis and Catlett, 1994). Our
work proposes the first active learning approach

∗ Most of this author’s work was completed during his
internship at Openstream.AI.

for MSP. Compared to translating the full dataset,
AL-MSP aims to select only a subset from the ex-
isting dataset to be translated, which significantly
reduces the translation cost.

We further study which examples AL-MSP
should select to optimize multilingual parsing per-
formance. Oren et al. (2021) demonstrated that
a training set with diverse LF structures signifi-
cantly enhances compositional generalization of
the parsers. Furthermore, our experiments show
that the examples with LFs aligned with more di-
versified lexical variants in the training set consid-
erably improve the performance of multilingual
parsing during AL. Motivated by both, we propose
a novel strategy for selecting the instances which
include diversified LF structures with more lexical
choices. Our selection method yields better parsing
performance than the other baselines. By translat-
ing just 32% of all examples, the parser achieves
comparable performance on multilingual GEO-
QUERY and NLMAP as translating full datasets.

Prior works obtain the hyperparameters of the
AL methods by either copying configurations from
comparable settings or tuning the hyperparameters
on the seed evaluation data (Duong et al., 2018).
However, the former method is not suitable as our
AL setting is unique, whereas the second method
requires extra annotation costs. In this work, we
provide a cost-free method for our AL scenario for
obtaining optimal hyperparameters.

Our contributions are i) the first active learn-
ing procedure for MSP that reduces the translation
effort, ii) an approach that selects examples for
getting superior parsing performance, and iii) a hy-
perparameter tuning method for the selection that
does not incur any extra annotation costs.

2 Background

Multilingual Semantic Parsing. A multilingual
semantic parser is a parametric model Pθ(y|x) that
estimates the probability of the LF y ∈ Y condi-
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tioned on the natural language utterance x ∈ Xl in
an arbitrary language from a language set l ∈ L.
The model is trained on the utterance-LF pairs
{(xi,yi)}Ni=1 ∈ XL × Y where XL =

⋃
l∈LXl

includes multilingual utterances.

Figure 1: The example of the compounds in an LF tree,
( lambda $0 e ( and ( ground_transport $0 ) ( to_city $0
ci0 ) ) ).

Atoms and Compounds. Each logical form se-
quence can be represented as a semantic tree,
y = τy. Oren et al. (2021); Shaw et al. (2021)
define the nodes and sub-trees in τy as the atoms
and compounds, respectively. Increasing the diver-
sity of the atoms and compounds in the training
set improves the parser’s compositional generaliza-
tion (Oren et al., 2021; Li et al., 2021b). For exam-
ple, an LF “( lambda $0 e ( and ( ground_transport
$0 ) ( to_city $0 ci0 ) ) )” can be expressed as a
tree as in Fig. 1. The atoms are nodes such as
“lambda”, “$0”, “e” in the LF tree. In this work,
the compounds are defined as two-level sub-trees
such as “( ground_transport $0 )”, “( to _city $0
ci0 )”, “( and ground_transport to_city )”, and “(
lambda $0 e and )” in the LF tree.
Data Collection for MSP. Prior data collection
or active learning works annotates the LFs for the
utterances (Duong et al., 2018; Sen and Yilmaz,
2020) or vice versa (Duong et al., 2018; Wang
et al., 2015). But most MSP works (Susanto and
Lu, 2017; Li et al., 2021a) obtain data by translat-
ing existing datasets from high-resource languages
into low-resource languages, which is less costly
since it does not need annotators’ expertise in LFs.
Following the same annotation paradigm, our AL
does not annotate LFs for multilingual utterances,
but instead chooses the utterances to be translated.

3 Active Learning for MSP

AL-MSP considers only a bilingual scenario for
the proof of concept, while extending our AL
method to more than two languages is easy. The

goal of AL-MSP is to minimize the human ef-
fort in translating utterances while the semantic
parser can still achieve a certain level of perfor-
mance on the bilingual test sets. Starting from
a semantic parser initially trained on the dataset
Ds = {(xsi ,yi)}Ni=1 whose utterances are in the
high-resource language s, AL-MSP selects Kq ex-
amples D̃s = {(xsi ,yi)}

Kq
i=1 from Ds, followed

by manually translating the utterances in D̃s into
a target language t, denoted by D̃t = ts→t(D̃s),
where D̃t = {(xti,yi)}

Kq
i=1. The selection criterion

is based on our proposed acquisition function ϕ(es)
scoring each example, es = (xs,y). The parser is
re-trained on the union of D̃t and Ds. There will
be Q iterations of selection and re-training until
the re-trained parser reaches a good performance
on the bilingual test sets Ts and Tt. Algorithm 1
describes our experimental settings in detail.

Algorithm 1: AL-MSP
Input :Initial training set D0 = D0

s , budget size
Kq , number of the selection rounds Q

Output :A well-learned multilingual parser Pθ(y|x)
Train the parser Pθ(y|x) on the training set D0

for q ← 1 to Q do
Estimate the acquisition ϕ(·)
Select a subset D̃q

s ∈ Dq−1
s of the size Kq based

on the acquisition function ϕ(·)
Translate the utterances in D̃q

s into the target
language, D̃q

t = ts→t(D̃
q
s).

Combine the training sets, Dq = Dq−1 ∪ D̃q
t

Exclude the selected examples D̃q
s from

Dq
s = Dq−1

s \ D̃q
s

Re-train the parser Pθ(y|x) on Dq

Evaluate parser performance on test sets Ts, Tt
end

3.1 Selection Acquisition

Our selection strategy selects the untranslated ex-
amples which maximize the acquisition scores. The
acquisition comprises two individual terms, LF
Structure Diversity and Lexical Choice Diversity.
LF Structure Diversity (LFSD). We give a simple
technique to diversify the LF substructures (atoms
and compounds) in the instances. At qth iteration,
let Dl

s =
⋃q−1
i=1 D̃

i
s denotes all the translated ex-

amples and Du
s = Dq−1

s be the untranslated ones.
We partition their union Du

s ∪Dl
s into |Dl

s|+Kq

clusters with Incremental K-means (Dataiku Lab,
2022). Each example es = (xs,y) is featurized by
extracting all the atoms and compounds in the LF
tree τy, followed by calculating the TF-IDF (Salton
and McGill, 1986) value for each atom and com-
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pound. Incremental K-means considers each ex-
ample of Dl

s as a fixed clustering centroids and
estimates Kq new cluster centroids. For each of the
Kq new clusters, we select one example closest to
the centroid.

Such selection strategy is reformulated as se-
lecting Kq examples with the highest acquisition
scores one by one at each iteration:

ϕs(es) =




−||f(y)− cm(y)||2 if m(y) /∈ ⋃

es∈Dl
s

m(y)

−∞ Otherwise
(1)

where f(·) is the feature function, m(·) maps each
LF into its cluster id and ci is the center embedding
of the cluster i. As in Algo. 1, when a new example
is chosen, none of its cluster mates will be selected
again. The incremental mechanism guarantees the
newly selected examples are structurally different
from those chosen in previous iterations. Since we
use batch-wise AL, we just estimate the clusters
once per iteration to save the estimation cost.
Lexical Choice Diversity (LCD). LCD aims to
select examples whose LFs are aligned with the
most diversified lexicons. We achieve this goal
by choosing the example maximizing the average
entropy of the conditional probability p(xs|a):

ϕc(es) = − 1

|Ay|
∑

a∈Ay

λa
∑

xs∈Vs

p(xs|a) log p(xs|a) (2)

λa =

{
1 if a ∈ Al
β Otherwise, 0 ≤ β < 1

(3)

where a is the atom/compound, Ay is the set of
all atoms/compounds extracted from y, Vs is the
vocabulary of the source language, Al is the set
of atoms/compounds in all selected examples until
now, and p(xs|a) is constructed by counting the co-
occurrence of a and xs in the source-language train-
ing set. To prevent selecting structurally similar
LFs, the score of each selected atom or compound
is penalized by a decay weight β.

Our intuition has two premises. First, the parser
trained on example pairs whose LFs have more lex-
ical choices generalizes better. Second, LFs with
more source-language lexical choices will have
more target-language lexical choices as well.
LF Structure and Lexical Choice Diversity (LFS-
LC-D). We eventually aggregate the two terms to
get their joint benefits, ϕ(xs,y) = αϕs(xs,y) +
ϕc(xs,y), where α is the weight that balances the

importance of two terms. We normalize the two
terms using quantile normalization (Bolstad et al.,
2003) in order to conveniently tune α.
Hyperparameter Tuning. Because our setup is
unique, we can not copy hyperparameters from ex-
isting works. The other efforts (Duong et al., 2018)
get hyperparameters by evaluating algorithms on
seed annotated data. To tune our AL hyperparam-
eters, α and β, a straightforward practice using
seed data is to sample multiple sets of examples
from the source-language data, the target-language
counterparts of which are in seed data, by varying
different hyperparameter configurations and reveal
their translations in the target language, respec-
tively. The parser is trained on different bilingual
datasets and evaluated on the target-side dev set.
We use the one, which results in the best parsing
performance, as the experimental configuration.

Such a method still requires translation costs on
the seed data. We assume if the selected examples
help the parser generalize well in parsing source-
language utterances, their translations should ben-
efit the parser in parsing target languages. Given
this assumption, we propose a novel cost-free hy-
perparameter tuning approach. First, we acquire
different sets of source-language samples by vary-
ing hyperparameters. Then, we train the parser on
each subset and evaluate the parser on the source-
side dev set. Finally, we use the hyperparameters
with the best dev set performance.

4 Experiments

Datasets. We experiment with multilingual GEO-
QUERY and NLMAP. GEOQUERY utterances are
in English (EN), German (DE), Thai (TH), and
Greek (EL); NLMAP utterances are in English and
German. Neither corpora include a development
set, so we use 20% of the training sets of GEO-
QUERY and NLMAP in each language as the de-
velopment sets for tuning the hyperparameters. To
simulate AL process, we consider English as the
resource-rich language and others as the target lan-
guages. After the examples are selected from the
English datasets, we reveal their translations in the
target languages and add them to the training sets.
AL Setting. We perform six iterations, accumula-
tively selecting 1%, 2%, 4%, 8%, 16% and 32% of
examples from English GEOQUERY and NLMAP.
Baselines. We compare four selection baselines
and the oracle setting: i) Random picks En-
glish utterances randomly to be translated, ii) S2S
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(FW) (Duong et al., 2018) selects examples with
the lowest parser confidence on their LFs, iii)
CSSE (Hu and Neubig, 2021) selects the most rep-
resentative and diversified utterances for machine
translation, iv) Max Compound (Oren et al., 2021)
selects examples that diversify the atoms and com-
pounds in the LFs, v) ORACLE trains the parser on
the full bilingual training set.
Evaluation. We adopt the exact match accuracy
of LFs for all the experiments. We only report the
parser accuracy on the target languages as we found
the influence of new data is negligible to the parser
accuracy on English data (See Appendix A.2).
Base Parser. We employ BERT-LSTM (Morad-
shahi et al., 2020) as our multilingual parser. Please
see Appendix A.1 for its detailed description.

4.1 Hyperparameter Tuning
Table 1 displays the experiment results with the hy-
perparameters tuned using only English data (EN)
and the hyperparameters tuned using seed data on
i) English data plus a small subset (10% of train
data plus development data) in the target language
(EN + 10%), ii) the full bilingual data (EN + full),
iii) the same dataset in a different pair of languages
from our experiment languages (Diff Lang), iv)
a different dataset in the same languages as our
experiment (Diff Data).

GEOQUERY NLMAP

DE TH EL DE

EN (Ours) 73.86 74.57 77.57 69.43
EN + 10% 73.86 74.57 77.57 69.02
EN + full 73.86 74.57 77.14 69.43
Diff Lang 73.86 74.04 77.57 -
Diff Data 71.36 - - 67.72

Table 1: The parsing accuracies on GEOQUERY and
NLMAP test sets in various target languages after trans-
lating 16% of the English examples selected by LFS-
LC-D with the optimal hyperparameters obtained by
different tuning approaches.

From Table 1, we can see our approach takes sig-
nificantly fewer annotation resources than others
to find optimum hyperparameters. Adding more
target-language data does not help obtain better
hyperparameters, validating our assumption that
English data is enough for LFS-LC-D to obtain
good hyperparameters. Surprisingly, the hyperpa-
rameters tuned on a different language pair do not
significantly worsen the selection choices. How-
ever, tuning hyperparameters from other datasets
results in inferior parsing performance, which is
anticipated as different datasets include different

LFs, but the performance of LFS-LC-D is closely
related to the LF structures.

4.2 Active Learning Results

Effectiveness of AL-MSP. Fig. 2 shows that only
a small amount of target-language data signif-
icantly improves the parsing performance over
the zero-shot performance. For example, merely
1% of training data improves the parsing accura-
cies by up to 13%, 12%, 15% and 6% on GEO-
QUERY(DE), GEOQUERY(TH), GEOQUERY(EL)
and NLMAP(DE), respectively. With the best se-
lection approach LFS-LC-D, translating 32% of
instances yields parsing accuracies on multilingual
GEOQUERY and NLMAP that are comparable to
translating the whole dataset, with an accuracy gap
of less than 5%, showing that our AL-MSP might
greatly minimize the translation effort.
Effectiveness of LFS-LC-D. LFS-LC-D consis-
tently outperforms alternative baselines on both
multilingual datasets when the sampling rate is
lower than 32%. In contrast, S2S(FW) consis-
tently yields worse parser performance than the
other baselines. Our inspection reveals that the
parser is confident in instances with similar LFs.
MAX COMPOUND diversifies LF structures as
LFS-LC-D, however it does not perform well on
GEOQUERY(TH). CSSE diversifies utterances yet
performs poorly. We hypothesize that diversifying
LF structures is more advantageous to the semantic
parser than diversifying utterances. RANDOM also
performs consistently across all settings but at a
lesser level than LFS-LC-D.
Individual Terms of LFS-LC-D. We also inspect
each individual term, LFSD and LCD, in LFS-
LC-D. As in Fig. 3, both terms have overall lower
performance than LFS-LC-D, indicating the com-
bination of two terms is necessary. Specifically,
LFSD performs poorly on NLMAP at the low sam-
pling region. We inspect that NLMAP includes 5x
more compounds than GEOQUERY. Therefore, it is
difficult for the small number of chosen examples
to encompass all types of compounds. LCD per-
forms poorly on GEOQUERY(TH). We notice that
Thai is an analytic language linguistically distinct
from English, German or Greek, so the entropy
values of the probability p(xs|a) over lexicons in
Thai (p=0.03) is statistically more different to the
ones over English than German (p=5.80e-30), and
Greek (p=1.41e-30)1. Overall, the two terms could

1We use the Student’s t-test (Demšar, 2006).
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Figure 2: The parsing accuracies at different iterations on the test sets of GEOQUERY and NLMAP in German (De),
Thai (Th), and Greek (El) using different selection approaches. All experiments are run five times with different
seeds.

Figure 3: The parsing accuracies at different iterations on the test sets of GEOQUERY and NLMAP in German (De),
Thai (Th) and Greek (El) using LFSD, LCD, and LFS-LC-D, respectively.

benefit each other, so LFS-LC-D performs steadily
across different settings.
Comparison with Machine Translation. We also
evaluate the parsers that utilize machine transla-
tion services. The parsers are trained on a com-
bination of English data and data translated into
the target language by Google Translation (Wu
et al., 2016). The accuracy of parsers evaluated
on test sets of Geo(De), Geo(Th), Geo(El), and
NlMap(De) was 49%, 58%, 75%, and 75%, re-
spectively. These parsing accuracies are signifi-
cantly lower than those attained by parsers trained
on data provided through human translation, which
achieved 80%, 80%, 81%, and 83%, respectively.
This suggests that the performance of the parser
is tightly correlated to the quality of the employed
machine translation system. Clearly, human trans-
lation delivers a greater output quality compared
to machine translation. In addition, the results re-
veal that parsers employing AL methods can easily
outperform those employing machine translation
methods, particularly when the sampling rate for
AL is more than 1%, 4%, 8%, and 32% in the four
data settings.

5 Conclusion

We conducted the first in-depth empirical study to
investigate active learning for multilingual seman-

tic parsing. In addition, we proposed a method to
select examples that maximize MSP performance
and a cost-free hyperparameter tuning method.
Our experiments showed that our method with
the proper hyperparameters selects better examples
than the other baselines. Our AL procedure with
the ideal example selection significantly reduced
the translation effort for the data collection of MSP.

Limitations

To reduce annotation costs, existing data collec-
tion methods for MSP also utilize machine trans-
lation (Moradshahi et al., 2020). Despite the gen-
erally lower quality of machine-generated transla-
tions compared to human translations, the cost of
machine translation services is notably more eco-
nomical. Our study pioneers the investigation into
the feasibility of reducing annotation costs by man-
ually translating only selective portions of the utter-
ance pool. In our work, we provide an initial eval-
uation of parsers using machine translation versus
those using AL methods. Further research is nec-
essary to thoroughly compare these cost-reduction
approaches, highlighting their respective advan-
tages and limitations, which we intend to pursue as
part of our future work.
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A Appendix

A.1 Implementation Details
BERT-LSTM BERT-LSTM is a Sequence-to-
Sequence model (Sutskever et al., 2014) with the
XLM-RoBERTa-base (Liu et al., 2019) as its en-
coder and an LSTM (Hochreiter and Schmidhuber,
1997) as its decoder.

Hyperparameters of the Parsers We tune the
hyperparameters of BERT-LSTM on English data.
For a fair comparison, we fix the hyperparameters
of the parser while evaluating the active learning
methods. Specifically, we set the learning rate to
0.001, batch size to 128, LSTM decoder layers to 2,
embedding size for the LF token to 256, and epochs
to 240 and 120 for the training on GEOQUERY and
NLMAP, respectively.

Hyperparameters of AL For tuning the hyper-
parameters of the active learning method, we grid
search the decay weight β in 0, 0.25, 0.5, 0.75 and
the weight balance rate α in 0.25, 0.5, 0.75, 1. The
optimal hyperparameters are 0.75 and 0.75 for all
language pairs of GEOQUERY and 0.75 and 0.25
for multilingual NLMAP.

In the Diff Lang setting, we assume we can ac-
cess the data in a language pair other than the exper-
imental one. For selecting English utterances to be
translated into German, Thai, and Greek, we tune
the hyperparameters on the data of En-Th, En-EL,
and En-De pairs, respectively.

In the Diff Data setting, we assume we can ac-
cess the data in the same language pair as our ex-
perimental one but in a different domain with a
different type of LF. For selecting English utter-
ances in GEOQUERY for translation, we tune the
hyperparameters on the bilingual NLMAP. For
selecting utterances in NLMAP, we tune the hy-
perparameters on the GEOQUERY in the language
pair, En-De.

A.2 Parser Accuracies on English Test Sets
As in Fig. 4, training the parser on the data in
the target language does not significantly influence
the parser’s performance on the English test sets.
Therefore, in Sec. 4, we only report the experimen-
tal results on the test sets in the target languages.

Figure 4: The parsing accuracies at different iterations
on the English test sets of GEOQUERY and NLMAP af-
ter selecting data in German (De), Thai (Th) and Greek
(El) using LFS-LC-D, respectively.
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Abstract

Language documentation often requires seg-
menting transcriptions of utterances collected
on the field into words and morphemes. While
these two tasks are typically performed in suc-
cession, we study here Bayesian models for
simultaneously segmenting utterances at these
two levels. Our aim is twofold: (a) to study
the effect of explicitly introducing a hierarchy
of units in joint segmentation models; (b) to
further assess whether these two levels can be
better identified through weak supervision. For
this, we first consider a deterministic coupling
between independent models; then design and
evaluate hierarchical Bayesian models. Experi-
ments with two under-resourced languages (Ja-
phug and Tsez) allow us to better understand
the value of various types of weak supervision.
In our analysis, we use these results to revisit
the distributional hypotheses behind Bayesian
segmentation models and evaluate their validity
for language documentation data.

1 Introduction

In computational language documentation, unsu-
pervised segmentation into words or morphemes1

aims to identify boundaries between units in se-
quences of symbols, typically corresponding to a
phonetic or orthographic transcription of an unseg-
mented utterance. These tasks are fundamental, as
they help to identify and analyse possible dictionary
entries. There is a long tradition to handle these
tasks with generative probabilistic models (Brent,
1999; Venkataraman, 2001) initially designed to
model the acquisition of speech by children. The
most successful approaches to date rely on non-
parametric Bayesian models based on Dirichlet
Processes (Goldwater et al., 2006, 2009; Godard
et al., 2016) and Adaptor Grammars (Johnson et al.,
2007; Eskander et al., 2016; Godard et al., 2018;

1In this paper, our position regarding the notions of ‘words’
and ‘morphemes’ is entirely empirical, as we mainly try to
reproduce annotations performed by field linguists.

Eskander et al., 2019). An interesting property of
these generative models is their ability to accom-
modate existing resources (e.g. partial list of word
types) (Sirts and Goldwater, 2013; Ruokolainen
et al., 2016), which are often available in actual
documentation settings (Bird, 2020).

We study here a scenario where we automatically
generate a two-level segmentation,2 identifying si-
multaneously both word and morpheme boundaries.
Figure 1 illustrates such a segmentation, where
whitespaces separate words, while morphemes are
joined with hyphens. Our main task is thus to
identify two types of boundaries from the unseg-
mented stream of symbols (first line) to form the
two-level segmented sentence (penultimate line).
In this work, we only focus on surface segmenta-
tion (e.g. eat+ing) as opposed to canonical segmen-
tation (e.g. hike+ing for hiking) (Cotterell et al.,
2016).

Segmentation Sentence

Unsegmented WýokWatCWpWwGsWmtoa
Word Wýo kW atCW pWwGsWmtoa
Morpheme Wýo-kW-a-tCW-pW-wG-sW-mto-a
Two-level Wýo kW a-tCW pW-wG-sW-mto-a
Translation He let me see my son.

Figure 1: Example of two segmentation levels in Japhug:
words are separated by whitespaces (‘ ’) and morphemes
by hyphens (‘-’). Extract from (Jacques, 2021)

The motivation for this task is two-fold: (a) to
evaluate our ability to obtain annotations such as
Figure 1 in an unsupervised way; (b) to see how
much the two-level model can disambiguate word
from morpheme boundaries, thus improving word
segmentations. Note that in actual documentation
settings, the annotation of morpheme boundaries

2This ‘two-level segmentation’ is unrelated to the ‘two-
level morphology’ (Koskenniemi, 1983), which describes the
association between surface forms and underlying representa-
tions using the formalism of extended rational expressions.
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is usually performed on utterances that are already
segmented into words, hence the need to optimise
this step.

A baseline for this task is a two-pass approach:
first, identify putative word boundaries, then iter-
ate the segmentation procedure on the correspond-
ing set of word types. As we discuss below, un-
supervised word segmentation procedures tend to
generate units that are often halfway between mor-
phemes and words (see e.g. (Goldwater et al., 2009)
or (Godard et al., 2016) who report oversegmenta-
tion for words). This means that the first pass often
delivers units that are too short and inadequate for
the latter processing step. This remains true even
with partial supervision information at the word
level (Okabe et al., 2022).

We therefore study models that explicitly distin-
guish between words and morphemes, considering
both the fully unsupervised and the minimally su-
pervised settings. The research questions that we
address are the following:

• RQ1: Bayesian segmentation models iden-
tify units based solely on distributional proper-
ties, identifying units that are often in between
words and morphemes. Can we improve both
segmentations through an explicit modelling
of these two levels?

• RQ2: a simple baseline is to first segment
sentences into words, then to segment each
word type3 identified in the first step into mor-
phemes. A second question is how much a
single joint segmentation model can mitigate
the error propagation of this two-step baseline.

• RQ3: there are multiple ways to implement
and supervise joint segmentation models, an
important distinction being between linear
(flat) and hierarchical segmentation models.
A third question relates to the strengths and
weaknesses of these approaches, both in the
presence and absence of supervision.

• RQ4: Bayesian segmentation models primar-
ily rely on distributional properties of char-
acters in morphemes and words, and embed
specific assumptions regarding these distribu-
tions. We last question the validity of these
assumptions in a low-resource language docu-
mentation context.

3Types denote unique words, as opposed to tokens, which
encompass all running occurrences of types in a corpus.

More generally, our main goal in this study is to
assess whether statistical cues alone are sufficient
to identify two distinct segmentation levels. To an-
swer this question, we analyse several simple joint
segmentation models introduced in Section 2 and
experiment with two under-resourced languages,
briefly presented in Section 3. Our main results
and analyses are in Section 4. From a practical
perspective, our objective is not to devise directly-
usable models for field work but to observe the
effect of introducing a subword level of segmenta-
tion in Bayesian non-parametric models, especially
in very low-resource situations as in language doc-
umentation: will it improve the (original) word-
level segmentation quality? How can additional
resources help?

2 Segmentation models

2.1 One-level segmentation
For this work, we use our own Python implementa-
tion4 of the unigram version of Goldwater et al.’s
(2009) model: dpseg. This model relies on Dirich-
let Processes to evaluate the probability of a word
sequence, as we briefly recall below. In dpseg, the
probability of a new occurrence w, based on the
observed past words, is expressed through Equa-
tion (1) where w denotes a word w = c1 . . . cL
comprising L characters:

P (w|h−;α) = n
(h−)
w + αP0(w|h−)

n− + α
. (1)

Here, h− denotes the rest of the text (w excluded),
n
(h−)
w the frequency of word w in the text, and n−

the total number of words. α is the concentration
parameter and P0, the base distribution, is defined
by Equation (2):

P0(w) = p#(1− p#)(L−1) ∗
L∏

l=1

Pc(cl), (2)

with p# the probability to terminate a word and Pc
a distribution over the set of characters, assumed
uniform in the dpseg model.

Observing an unsegmented character string
c1 . . . cT , word segmentation can be formalised
with a latent variable model, introducing unob-
served boundary variables b1 . . . bT , where bt = 1
(resp. bt = 0) respectively denotes presence or ab-
sence of a boundary after ct. The inference is typi-

4Available at https://github.com/shuokabe/pyseg.
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cally performed with Gibbs sampling, using Equa-
tion (1) to iteratively resample the latent bound-
ary variables values. To speed up convergence,
Goldwater et al. (2009) additionally use simulated
annealing.

We chose to explore dpseg over alternative seg-
mentation models such as SentencePiece (Kudo
and Richardson, 2018) or Morfessor (Creutz and
Lagus, 2002; Smit et al., 2014) because of its bet-
ter performance in similar language documenta-
tion contexts. It is also well suited to small data
conditions and enables weak supervision (Okabe
et al., 2022). Furthermore, preliminary experi-
ments showed no major difference between using
a Dirichlet process (DP), as we do, and a variant
based on a Pitman-Yor process (PYP), known to
better capture the underlying power-law distribu-
tion. Overall, we believe that using more sophisti-
cated variants or faster implementations of dpseg
would not substantially alter our main observations.

2.2 Pipeline model: two-step segmentation
We now turn to models computing a segmentation
in words and morphemes. Our baseline two-level
model combines in a pipeline two dpseg models:
the first inputs unsegmented text and yields a word-
level segmentation. The word types in this segmen-
tation are then collected and processed by a second
dpseg to get the morpheme-level segmentation. By
design, in this approach, a word type is always
associated with a unique morphological analysis.5

2.3 Flat segmentations with coupling
Two-level segmentation can also be formalised
with latent variables, using two sets of variables, de-
noted as {bw1 . . . bwT } (resp. {bm1 . . . bmT }) for word
(resp. morpheme) boundaries. Obviously, using the
same dpseg model to independently sample these
variables will produce indistinguishable segmen-
tations. It is, however, possible to get two-level
segmentations by introducing interactions between
these two models, so that the values of variables bwt
and bmt are no longer independent. Deterministic
interactions can be introduced in two ways which
both ensure that word and morpheme segmentation
hypotheses always remain consistent: by imposing
either i) that word boundaries also correspond to
morpheme boundaries, or ii) that morpheme inter-
nal positions are also considered word internal.

5This hypothesis corresponds to what we observe in our
corpora, where only a few dozen words occur with more than
one segmentation in morphemes.

In strategy i), we first sample boundary variables
for words and then for morphemes, yielding the
parallel-w approach. If a word boundary is de-
tected (bwt = 1), then we deterministically identify
a morpheme boundary at that position (bmt = 1).
Otherwise (bwt = 0), we sample the value for bmt as
usual. The net effect is to make morpheme bound-
aries more likely than in an independent model and
generate shorter units at the morpheme level; no
change is expected at the word level. In strategy
ii), denoted parallel-m, morpheme variables are
sampled first: if a boundary is detected (bmt = 1),
an extra sample decides the value of bwt ; else, we
readily assign bwt = 0. Here, the effect is re-
versed and makes word boundaries less likely, forc-
ing the word model to generate longer units; the
morpheme-level segmentation remains unchanged.

2.4 Hierarchical segmentations
Inspired by (Mochihashi et al., 2009), we also im-
plement hierarchical segmentation models for the
two-level segmentation task. These models aim to
explicitly represent the structured aspect of the dou-
ble segmentation process. Here, the word model is
nearly identical to the basic version of dpseg, with
a change in the base distribution P0 of Equation (1).
The character model (Pc) is replaced by a second
non-parametric model for morphemes (hence the
hierarchical nature of the model), also based on
dpseg. This morpheme model has a base distribu-
tion that is, as for the original dpseg, a unigram
character model.

Considering a word w (of length L) made of
K morphemes, w = m1 . . .mK , by analogy to
Equation (2), P0 is therefore changed to:

Pw0 (w|h−) = p#(1−p#)(L−1)∗
K∏

k=1

Pm(mk|h−),

(3)
where Pm(mk) is the probability of morphememk

according to the morpheme model (the standard
dpseg model), which is written as follows:

Pm(mk|h−;αm) =
n
(h−)
mk + αmPm0 (mk)

n−m + αm
, (4)

where αm and Pm0 are, respectively, the concen-
tration parameter and the base distribution for
morphemes—the latter being a uniform character
model. Sampling in this model is implemented as
follows: each time a new word is hypothesised, a
morpheme segmentation is obtained from the mor-
pheme model; for words that are actually retained,
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this segmentation is recorded and used for further
occurrences of the same word form. A basic ver-
sion of this approach (denoted hier-type) thus
samples boundary variables for morphemes only
once for each word type.6 Two variants are consid-
ered: in the hier-iter model, morpheme bound-
aries are iteratively resampled for all existing word
types every k iterations of the word-level Gibbs
sampler; in hier-final, this process is only per-
formed once after convergence of the word model,
to make a fair comparison with the pipeline model
of Section 2.2. As in the pipeline model, these
approaches ensure that all occurrences of a given
word type will have the same morphological de-
composition.

2.5 Unsupervised Adaptor Grammars
Another hierarchical baseline is based on the Adap-
tor Grammar (AG) model of (Johnson et al., 2007).
This is a strong unsupervised word segmentation
model that can also capture morphological struc-
ture to some extent. We use the colloc grammar
in (Johnson, 2008), which considers the follow-
ing levels: a Sentence is made of Collocations,
which are made of Words, themselves composed
of Characters. In the same manner as (Johnson,
2008, Section 3.2), we considered the Collocation
tier to correspond to words and the Word tier to
morphemes.7

2.6 Weak supervision
Following (Okabe et al., 2022), we further consider
two types of realistically available resources that
can supervise the segmentation process. The first
takes the form of a small number of segmented sen-
tences (e.g. from previously annotated texts), where
the corresponding boundary variables are observed.
During Gibbs sampling, we skip these positions
and simply use the observed values (0 or 1). This
type of supervision, which gives information at the
token level, is denoted sentence.

A second type of resource corresponds to lists
of lexical units (words and/or morphemes). We
use them to replace in P0 the uniform model with
a bigram model, thus increasing the likelihood of
known units. This supervision method which uses
knowledge about types is denoted dictionary.

Observed word segmentation or the word dic-
tionaries will be used to compute Pw(w|h−, α)

6This is slightly more subtle, as the same word can be
created then deleted during the Gibbs sampling iterations.

7Appendix C details the hyperparameter values.

(Equation (1)). Likewise, observed morpheme
boundaries or morpheme lists will be taken into
account at the morpheme level (e.g. in Equation (4)
for the hierarchical model). In all our experiments,
we assume that weak supervision is available si-
multaneously at the word and morpheme levels.

2.7 Full supervision
An even more favourable situation is when bound-
aries are fully observed for a sufficiently large set of
sentences, warranting the use of supervised learn-
ing techniques such as Conditional Random Fields
(Lafferty et al., 2001). This situation is studied
notably by (Moeller and Hulden, 2018; Kann et al.,
2018). Our experiments with this setting show
that this procedure is sample efficient. It is, how-
ever, also subject to the same confusion between
word and morpheme boundaries and does not sig-
nificantly outperform the weak supervision setting.
Full results are reported in Appendix D.

3 Experimental protocol and material

3.1 Evaluation metrics
Following (Goldwater et al., 2006), the segmenta-
tion outputs are evaluated with F-scores on the two
levels of segmentation (word and morpheme) at
three tiers: BF at the boundary level obtained by
comparing predicted and actual boundary values
(0 or 1), WF for the token level, which focuses on
the correspondence between each unit in the sen-
tences, and LF for the lexicon level, counting the
matches between unit types collected on the whole
text. For finer analyses, we also report the precision
and recall for all three levels in Appendix D.

In addition, some basic statistics regarding the
texts will be presented for both segmentation levels.
Nutt, Ntype, and Ntoken respectively denote the
number of utterances, unit types, and tokens in the
text. We also report the inferred average token
(WL) and type (TL) lengths.

3.2 Linguistic material
This work studies two low-resource languages: Ja-
phug and Tsez.

Japhug is a Sino-Tibetan language from the Gyal-
rong family spoken in the Sichuan province in
China. It notably has a rich morphology for both
nouns and verbs. For example, verbs can use sev-
eral prefixes to express tense or aspect features on
top of suffixes. Japhug is currently being docu-
mented: recordings, annotated corpora, and dictio-
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naries are available in Pangloss.8 Jacques (2021)
comprehensively describes the language. The cor-
pus is composed of all the Japhug examples from
the LATEX source files of this grammar book.9 The
extraction of those sentences is made easier thanks
to the \gll command before the Japhug sentences.

Tsez is a Caucasian language part of the Nakh-
Daghestanian language family, spoken in the Re-
public of Dagestan in Russia. It is officially an
unwritten language, transcribed and transliterated
through the Avar writing system (Comrie and Polin-
sky, forthcoming). Nouns and verbs are mainly in-
flected with a variety of combined suffixes. More-
over, Tsez features a set of clitics that are merged
with the words. The latest grammar is currently
in the process of being published. The only sub-
stantial dictionary of the language contains around
7,500 entries. The Tsez corpus contains sentences
from the Tsez Annotated Corpus of (Abdulaev and
Abdulaev, 2010), used in (Zhao et al., 2020) to
study the generation of interlinear glosses.

language Japhug Tsez
segment word morph. word morph.

Nutt 3628 3628 2000 2000
WL 4.73 2.90 5.61 2.81
TL 7.30 5.41 6.93 5.21
Ntype 6739 2731 5732 1603
Ntoken 28579 46632 20153 40229

Nsuper. 664 493 867 455

Table 1: Statistics for the Japhug and Tsez corpora. Both
are segmented into words and morphemes (morph.).

Table 1 describes the two language corpora, re-
porting statistics at the two segmentation levels.
Japhug word types have an average number of
2.48 morphemes, while in Tsez, that value is 2.37.

For weak supervision, the first 200 sentences of
each corpus are selected as training material, used
as is for boundary supervision (sentence method)
or as a list of unique (word or morpheme) types for
lexical supervision (dictionary method). Nsuper.

above summarises the number of supervision units.

3.3 Experimental settings

In our experiments, the results are obtained after
20,000 iterations of Gibbs sampling, with 10 in-

8https://pangloss.cnrs.fr/corpus/Japhug.
9https://github.com/langsci/295/.

crements of simulated annealing, for quicker con-
vergence as detailed in (Goldwater et al., 2009).
The last iteration of a run returns the final boundary
prediction that is considered to be the model output.
To account for the variability of the sampler, we
report below the average of three runs. We find
that this segmentation procedure is stable with an
average standard deviation of less than 1 for all
metrics.

We use the default values of the base dpseg for
hyperparameters: p# = 0.5 and α = αm = 20.
We set the same initial value of the concentration
parameter for the two levels in both categories of
model. Following Teh (2006) and Mochihashi et al.
(2009), the two concentration parameters, which
both have a Gamma posterior distribution, are re-
sampled after each iteration on the corpus—thus,
upon convergence, we observe α ̸= αm.

For the hierarchical models, hier-final re-
segments word types into morphemes with 1,000 it-
erations of Gibbs sampling, while hier-iter car-
ries out 5 iterations of morphological segmentation
every 100 iterations of word segmentation.

4 Experimental results

4.1 RQ1: unsupervised two-level models

Table 2 reports segmentation results for the Japhug
corpus. The corresponding results for Tsez are in
Table 6 in Appendix D. As briefly stated in the in-
troduction, the one-level dpseg segments into units
that are too short for words (cf. average unit lengths
WL and TL) and seems to segment units that are
closer to morphemes, with higher morpheme F-
scores for all three evaluation tiers. This motivated
our work on two-level segmentation models, which,
contrarily to the basic dpseg, make a distinction
between the two types of boundaries. The more
sophisticated AG model shows a similar trend, out-
putting words and morphemes that are too short,
insufficiently diverse (low LF), and result in too
many tokens (excessive Ntoken).

The pipeline approach only differs from the
one-level dpseg at the morpheme level, where we
see worse F-scores, with a massive drop in LF
score. For the ‘parallel’ models, the expected im-
provements are observed: better morpheme bound-
aries for parallel-w, better word boundaries for
parallel-m. However, these two models deliver
units that remain quite close in average length, and
the F-score improvements remain rather limited in
magnitude. In those experiments, the hierarchical
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model AG dpseg* pipeline parallel-w parallel-m hier-type -final hier-iter
level word morph. word morph. word morph. word morph. word morph. word morph. morph. word morph.

BF 71.0 83.4 73.1 81.0 73.1 80.6 73.3 83.6 73.2 80.8 74.7 62.5 82.3 73.5 81.4
WF 45.8 62.5 46.2 55.1 46.2 57.8 46.5 61.3 46.0 54.7 48.7 24.5 60.9 47.2 59.1
LF 31.1 28.9 20.4 41.4 20.4 17.5 20.6 40.5 23.8 41.4 28.8 17.0 23.4 31.7 24.7

WL 4.72 2.51 3.34 3.34 2.13 3.34 2.98 3.73 3.35 3.93 1.65 2.32 4.29 2.37
TL 6.60 3.27 4.22 4.22 2.64 4.23 3.99 4.77 4.21 4.78 2.83 2.87 5.12 2.88
Ntype 5582 1113 2260 2260 694 2257 1834 2921 2281 3806 1013 911 4925 956
Ntoken 28.6k 53.9k 40.5k 40.5k 63.4k 40.5k 45.4k 36.3k 40.4k 34.4k 82.1k 58.2k 31.5k 57.0k

Table 2: Results on the Japhug corpus for unsupervised one-level (*) and two-level dpseg models. The reference
contains 6,739 words and 2,731 morphemes (Ntype). Bold numbers represent the best result per metrics.

models make a stronger distinction between the
two types of units, yielding well-differentiated av-
erage lengths (WL and TL). Overall, almost all
two-level models but the simple-minded pipeline
improve the baseline scores for at least one level of
segmentation, with the unsupervised parallel-w
flat model delivering the best results on average.

While our answer to RQ1 is positive, we note
that the score differences between approaches are
often small and that all models keep oversegment-
ing words, leading to a too low number of word
types and yielding poor LF scores. The same trend
is observed for the hierarchical models at the mor-
pheme level: they find too few morphemes (cf.
Ntype) and result in poor type-level scores.

4.2 RQ2: error propagation

Compared to the baseline, the unsupervised
pipeline approach obtains poor LF score at the mor-
pheme level (Table 2). As the two approaches have
almost identical BF and WF scores, this means that
pipeline performance is mostly due to its ability
to detect frequent morphemes at the expense of
rarer ones. This is also reflected by the very small
number of morpheme types found by this model.

This is because the pipeline model uses the word
types computed by the regular dpseg to detect mor-
pheme boundaries. As this first step obtains poor
results (WF ≈ 20), cascading errors accumulate.
Wrong detections at the word level are thus counted
twice: once at the word level, once at the mor-
pheme level. The use of joint models slightly reme-
dies this state of play, yielding improvements in
the word dictionary, which then turn into improved
morpheme dictionaries. This allows us to answer
RQ2 positively, even though the recall for mor-
pheme types still remains far from satisfactory. To
progress on that front, the surest way seems to im-
prove word segmentation, if only because many
word types are made of one single morpheme.

4.3 RQ3: flat and hierarchical models
This section compares the flat (parallel) and hi-
erarchical models, first analysing the differences
between variants of the same family, before com-
paring these two approaches.10

Parallel models As explained in § 2.3, each ‘par-
allel’ model only improves the baseline for one type
of unit: morpheme boundaries for parallel-w and
word boundaries for parallel-m (Table 2). This
remains true when using weak supervision. A first
comparison is between the parallel models, where
we see better scores for parallel-w, which out-
performs parallel-m on almost all accounts and
all weak supervision settings. In fact, even with the
help of supervision, parallel-m obtains lower BF
and WF scores at the word level than parallel-w:
more word types are generated, the average length
is increased, but these hypotheses are often wrong.
We do not see the reverse for parallel-w, which
generates fewer morphemes: the decrease in re-
call is almost balanced by the increase in precision,
with little negative impact on the morpheme seg-
mentation quality.

Hierarchical models First, for all three F-scores
at the morpheme level, in any experimental situa-
tion, the hier-type model is consistently worse
than the hier-final model, which carries out ad-
ditional Gibbs sampling steps for the morpheme
variables once the word boundaries have stabilised.
This model finds longer units (cf. WL) with the
additional iterations, which leads to significant im-
provements (+20 points in WF).

The hier-iter variant achieves a fair trade-off
between the boundary and token F-scores on the
one hand, and the type F-score on the other hand:
this model is better when evaluated at the type
level, while hier-final reaches better scores on
the other two levels. As the hier-final model

10Full results in Appendix D.
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Figure 2: Results in Japhug without supervision on the left, with sentence supervision in the middle, and
dictionary supervision on the right of each subplot (row: segmentation level, column: F-score). We use a different
y-axis scale for each F-score.

attains a similar but higher aggregated F-score on
average, we chose it to represent the hierarchical
models for the following sections. This model is
also slightly less computationally involved than
hier-iter, another reason for choosing it in prac-
tical settings.

Comparing two types of models Figure 2 dis-
plays the results for the baselines and best per-
forming flat and hierarchical models on Japhug
with and without supervision, illustrating the
impact of resources. Four models are com-
pared: pipeline, parallel-w, hier-final, and
independent. The latter corresponds to two dis-
tinct dpseg models, one trained for word bound-
aries, the other for morpheme boundaries, each su-
pervised and evaluated at the corresponding level.
It can produce inconsistent segmentations.

By design, independent, pipeline, and
parallel-w generate similar word-level segmen-
tations and improve a lot from dictionary super-
vision. At the morpheme level, the latter model
strongly improves its LF score, equally benefiting
from both weak supervision strategies.

The hierarchical model has the best results
for word-level scores with sentence supervision,
whereas, with dictionary supervision, it lags
behind the other methods. At the morpheme
level, results are less clear. When unsupervised,

hier-final is better than the baselines but worse
than parallel-w; however, it always gets a strong
boost from supervision, more so than its contenders.
In short, sentence is more beneficial for the hi-
erarchical model, while dictionary rather im-
proves the others. Still, these increments remain
small; we conclude that weak supervision does not
seem to help the models better differentiate the two
types of units. Overall, when aggregating F-scores
across settings and languages, models rank as fol-
lows, from worst to best: independent, pipeline,
parallel-w, and hier-final. This answers RQ3.

4.4 RQ4: distributional assumptions

4.4.1 Word distributions in CLD
The parallel and hierarchical models both rely on
the same fundamental assumption: the distribution
of word tokens in a natural corpus follows a power
law, which was a motivation for using Dirichlet
processes in (Goldwater et al., 2006). As described
in (Goldwater et al., 2011), such distributions de-
rive from the use of a two-stage model: a generator
which focuses on creating word types (this is P0 in
the dpseg model) and an adaptor that produces the
‘rich-get-richer’ effect (Equation (1)).

To check how well our data matches this assump-
tion, in Figure 3, we look at type/token curves,
which display the number of word types in texts
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of increasing lengths. We deem this ratio to be a
reasonable proxy to observe the ‘rich-get-richer’
effect on word types. We compare the Japhug and
Tsez texts, their automatic segmentations (‘dp-’),
as well as their English translation (‘-en’) (as in
(Godard et al., 2016)), with five languages of vary-
ing morphological complexity: English, French,
Finnish, German, and Turkish. For these, we use
the 2020 news data from the Leipzig corpus (Gold-
hahn et al., 2012), keeping only the first 2,000 sen-
tences for comparison.
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Figure 3: Type-token curves for several languages

We see that the curves for Japhug and Tsez fol-
low the French and English trends, reflecting a
lesser lexical variation than for German, Turkish,
and Finnish. Looking at their English translations
confirms this trend and hints that the number of
word types in our corpora does not correctly mir-
ror the actual morphological complexity of these
languages. Indeed, corpora collected for language
documentation may present distributional biases:
sentences are often chosen to illustrate relevant lin-
guistic properties, as in our Japhug corpus extracted
from a grammar book. This reduced lexical vari-
ety is amplified in automatically segmented texts,
where we fail to identify most rare words. For ex-
ample, 97% of the words occurring only once are
not found by the unsupervised hier-final model.
See Appendix A for another view of the same phe-
nomena.

4.4.2 Modelling morpheme distributions
Where the parallel and hierarchical versions dif-
fer is how they estimate morpheme models:
parallel-w assumes a power law of morphemes
in running texts, while hier-final assumes it on
word types. We see the impact of these assump-
tions in Figure 4. This graph is based on an esti-

mation of the parameter of the Zipf distributions
of words in the Tsez corpus and of morphemes in
the Tsez word types (see details in Appendix A).
While these parameters strongly depend on the cor-
pus size, they are typically in the range [−1,−1.2]
(Baayen, 2001) — the lower value computed for
the reference Tsez word distribution again hints
at the peculiarity of this distribution, whereas the
corresponding parameters for morpheme are in the
right ballpark.

All inferred segmentations at the word level be-
have similarly, with values steeper than for the
reference, reflecting the effect of using a power-
law model. Once more, we see that supervision is
hardly helping. We observe sharper differences at
the morpheme level, where the hierarchical model
gets much closer to the reference, further boosted
by sentence supervision. This is in line with (Vir-
pioja et al., 2011), which notes the better mor-
pheme segmentations obtained when modelling
types rather than tokens.
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Figure 4: Zipfianity of various segmentations of Tsez.
par is based on parallel-w, htl on hier-final.

5 Related work

Word segmentation and morphological segmenta-
tion are related tasks; however, both segment only
at a single level. We focus here on methods or
objectives of approaches comparable to ours.

Word segmentation with Bayesian non-
parametric models, on the one hand, benefits from
models based on Dirichlet Processes (Goldwater
et al., 2006, 2009), extended with the more general
Pitman-Yor Processes and a hierarchical structure
(Teh, 2006; Mochihashi et al., 2009). In language
documentation settings, unsupervised methods
are applied (Godard et al., 2016). Morphological
segmentation, on the other hand, usually focuses
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on the surface segmentation of word types (Cot-
terell et al., 2016), with models such as Morfessor
(Creutz and Lagus, 2002). Ruokolainen et al.
(2016) extensively survey the task for supervised
conditions. In low-resource settings, recent works
include (Kann et al., 2018; Liu et al., 2021; Moeng
et al., 2021).

For both tasks, the Adaptor Grammar (AG)
(Johnson et al., 2007), capable of modelling hi-
erarchical structure in sequences with trees, of-
ten yields strong results (Johnson, 2008; Eskander
et al., 2016; Godard et al., 2018), especially thanks
to its flexibility in incorporating minimal super-
vision. For instance, Sirts and Goldwater (2013)
explicitly model words as a compound of one or
more morphemes in their AG.

6 Conclusion

By extending a Bayesian non-parametric segmenta-
tion model, dpseg, we have proposed two models
to simultaneously segment into words and mor-
phemes: one segmenting in parallel and the other
in a hierarchical manner. Using corpora of two low-
resource, morphologically complex languages, we
have observed improved performance with respect
to the baselines. These two approaches have been
contrasted in various ways, leading us to favour the
hierarchical approach when supervision is avail-
able. The observed improvements are, however,
modest, partly due to modelling assumptions that
are not fully matched in our data. It remains that
sorting words from morphemes based solely on dis-
tributional cues is difficult, if possible at all, even
with the supervision considered in this work.

Further studies will need to consider other sig-
nals of ‘wordness’. Some can be extracted from
the way units combine with their neighbours, using
contextual word models; some will require new
sources of supervision, e.g. at the phonological
level. Another extension will be to distinguish be-
tween lexical and grammatical morphemes, which
tend to occur and behave differently.

Limitations

The main limitation comes from the use of the un-
igram dpseg model. Although it has strong and
stable performance on the word-level segmenta-
tion task, comparable to its bigram version in our
settings (Godard et al., 2016), some weaknesses
inherent to the unigram assumption appear as in
Appendix B. Moreover, such an assumption at the

morpheme level means that, for example, adding a
distinction between lexical and grammatical mor-
phemes, as suggested in conclusion, will be of little
use since the probability of a morpheme does not
affect that of others in the word for unigram mod-
els. Nevertheless, in our language documentation
setting, we deem this unigram assumption to have
a small impact on the overall results due to data
size.

For some of our two-level models (pipeline and
hierarchical), we also relied on the assumption that
a word can only have a single morphological de-
composition, as stated in Sections 2.2 and 2.4. Al-
though it may not apply in other situations, this
reasonably holds in our two corpora (as briefly ex-
plained in footnote 5) since we found 51 word types
with several morphological analyses in Japhug and
14 in Tsez.

Besides, our work and observation only rely on
two languages. However, the two-level segmen-
tation for very low-resourced languages, as we
displayed, needs a reference text segmented with
distinct boundaries for words and morphemes for
evaluation in particular. Since word segmentation
usually focuses on tokens in sentences and mor-
pheme segmentation on word types, texts explicitly
segmented in two levels are difficult to obtain, even
so of good quality.

Finally, we reckon that our current implementa-
tion of the Gibbs sampler is not particularly op-
timised. For actual deployment, these models
should be designed and implemented in a more
computationally-efficient way or even another lan-
guage than Python.
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A Word and morpheme distributions

According to Zipf’s law, for a unit of rankR, its nor-
malised frequency f (f = F

N with F the frequency
of the unit and N the total number of units in the
corpus) is computed as follows in Equation (5):

f =
c

Ra
, (5)

with c a normalising constant and a the parameter
of the distribution (Baayen, 2001). Hence, the re-
lationship between the log-(normalised) frequency
and the log-rank is:

log(f) = −a log(R) + log(c) (6)

To visualise the linear relationship shown in
Equation (6), we hence fit a (least square) linear
regression. Thus, Figure 4 plots the value of the
slope −a for words (x-axis) and morphemes (y-
axis).
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Figure 5: Log-normalised frequency of words according
to their log-rank for several languages.

In Figure 5, we compare the Japhug text with
three languages of varying morphological complex-
ity (as in Section 4.4.1).

The Japhug curve lies between the English and
Finnish ones, two languages with a clear contrast in
morphological complexity. If for the most frequent
words (i.e. low Zipf rank, on the left), the Japhug
words follow the English or German trend, for rare
words (i.e. high Zipf rank, on the right), it joins the
Finnish trend.

B Output analysis

supervision sentence

dpseg / a mbroWjme zW kÈzo
parallel-w / a mbro-Wjme z WkÈ zo
parallel-w sentence a-mbro Wjme zW kÈ-zo

reference a-mbro W-jme zW kÈ-zo
Land on my horse’s tail

Figure 6: An example Japhug sentence segmented by
various models, with and without supervision.

The example in Figure 6 displays a Japhug sen-
tence segmented by two models. First, without
supervision, dpseg fuses two units that should be
separated by a word boundary (‘mbroWjme’), and
so does parallel-w with ‘WkÈ’. Apart from dimin-
ishing the three F-scores, this kind of error creates
meaningless units. Besides, some reference mor-
pheme boundaries are not identified: no boundary
at all for ‘W-jme’ and a word boundary in ‘a-mbro’.

Once supervised, the parallel-w model cor-
rects its initial error (‘WkÈ’ is segmented) and finds
morpheme boundaries. Indeed, the model seems to
benefit from the supervision data, which contained

the words ‘a-mbro’ and ‘kÈ-zo’. The remaining
error (‘Wjme’) can be explained by the fact that in
the corpus, all occurrences of the morpheme ‘jme’
are always preceded by ‘W-’. The model thus does
not identify nor recreate ‘jme’ as a unit but keeps
‘Wjme’. The negative effect of collocations consti-
tutes an inherent limit of the unigram dpseg model,
already discussed by Goldwater et al. (2006).

C Reproducibility

All presented experiments have been obtained with
the same three random seeds (42, 142, and 1234)
for a fair comparison. Details about the hyperpa-
rameters are in Section 3.3.

The Adaptor Grammar was run with the hyper-
parameter values indicated for MorphAGram11 (Es-
kander et al., 2020).

For reference, a processor of 6 cores and
12 threads takes around two days for a hierarchical
model on the Tsez 2K corpus (20,000 iterations of
Gibbs sampling). With the same setting, a parallel
model takes approximately one day.

D Complete results

This section displays the full results for all our
experimental settings: each model will be un-
supervised or supervised with the sentence or
dictionary supervision and will segment the Ja-
phug and Tsez corpora. The tables also report the
precision and recall for each evaluation tier (BP and
BR for Boundary Precision and Boundary Recall;
WP, WR, and LP, LR, respectively for token and
type evaluation). Bold values are the best score in
a given experimental situation.

D.1 Japhug
Tables 3, 4, and 5 display the full results for the
Japhug text.

D.2 Tsez
Similarly, Tables 6, 7, and 8 display the full results
for the Tsez text.

D.3 Fully supervised model
For the sentence supervision method of Sec-
tion 2.7, we also report the results of a CRF
(Conditional Random Field, Lafferty et al. 2001),
mainly inspired by the methodology of Moeller and
Hulden (2018). Each training sentence is labelled
as in Figure 7.

11https://github.com/rnd2110/MorphAGram.
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Original sentence XpWn W–pW
Translation (EN) little monk

X p W n W p W
B-w I I I B-w B-m I

Figure 7: Example of Japhug sentence labelled for CRF

The ‘B-w’ label indicates the beginning of a
word, while ‘B-m’ marks the start of a morpheme
inside a word. The ‘I’ label is used for all other
characters (inside a morpheme). We use Wapiti12

(Lavergne et al., 2010) for the CRF implementation.
Our feature set only includes basic unigram and
bigram features.

The results in Table 4 and Table 7 show that, on
average, full supervision yields better segmentation
scores than weakly supervised models at the word
level; contrarily, we observe worse scores at the
morpheme level for both languages.

We also note that the CRF model identifies more
than 4,000 morpheme types in both languages (i.e.
much more than what exist in the reference or
our models), which results in less than 36 in F-
score on morpheme types (LF). This suggests that
morphemes are difficult to distinguish from words,
even in this favourable setting, confirming one of
our main conclusions: statistical cues alone do not
seem to be enough to correctly separate these two
types of units.

12https://github.com/Jekub/Wapiti.
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model AG dpseg pipeline parallel-w parallel-m hier-type -final hier-iter
level word morph. word morph. word morph. word morph. word morph. word morph. morph word morph.

BP 70.9 77.3 61.3 87.8 61.3 69.3 61.5 84.9 64.5 87.6 67.6 48.4 73.6 69.6 73.5
BR 71.1 90.4 90.6 75.2 90.6 96.3 90.8 82.4 84.5 75.0 83.4 88.2 93.4 77.8 91.2
BF 71.0 83.4 73.1 81.0 73.1 80.6 73.3 83.6 73.2 80.8 74.7 62.5 82.3 73.5 81.4

WP 45.8 58.3 39.4 59.3 39.4 50.1 39.7 62.1 41.1 58.9 44.6 19.2 54.9 44.9 53.7
WR 45.9 67.3 55.9 51.5 55.9 68.2 56.2 60.4 52.3 51.1 53.7 33.8 68.5 49.6 65.7
WF 45.8 62.5 46.2 55.1 46.2 57.8 46.5 61.3 46.0 54.7 48.7 24.5 60.9 47.2 59.1

LP 34.3 49.9 40.6 45.7 40.6 43.3 41.1 50.5 39.4 45.4 40.0 31.5 46.7 37.5 47.6
LR 28.4 20.3 13.6 37.8 13.6 11.0 13.8 33.9 17.1 37.9 22.6 11.7 15.6 27.4 16.7
LF 31.1 28.9 20.4 41.4 20.4 17.5 20.6 40.5 23.8 41.4 28.8 17.0 23.4 31.7 24.7

WL 4.72 2.51 3.34 3.34 2.13 3.34 2.98 3.73 3.35 3.93 1.65 2.32 4.29 2.37
TL 6.60 3.27 4.22 4.22 2.64 4.23 3.99 4.77 4.21 4.78 2.83 2.87 5.12 2.88
Ntype 5582 1113 2260 2260 694 2257 1834 2921 2281 3806 1013 911 4925 956
Ntoken 28.6k 53.9k 40.5k 40.5k 63.4k 40.5k 45.4k 36.3k 40.4k 34.4k 82.1k 58.2k 31.5k 57.0k

Table 3: Results on the Japhug corpus for unsupervised dpseg and its two-level versions. Bold numbers denote the
best results per metrics. Reference Ntype: 6,739 for words and 2,731 for morphemes.

model CRF dpseg pipe. parallel-w parallel-m hier-type -final hier-iter
level word morph. word morph. morph. word morph. word morph. word morph. morph. word morph.

BP 73.5 83.2 63.8 88.1 79.2 64.0 86.4 66.4 88.9 70.9 63.7 80.9 72.4 80.1
BR 80.8 85.2 91.4 79.6 97.4 91.4 83.7 86.3 77.7 84.0 92.2 96.0 80.2 94.5
BF 77.0 84.2 75.1 83.6 87.3 75.3 85.1 75.0 82.9 76.9 75.4 87.8 76.1 86.7

WP 52.6 66.4 43.7 64.3 67.2 43.9 65.6 44.8 63.6 49.6 43.8 68.5 49.8 66.9
WR 57.3 67.8 60.2 58.7 81.5 60.3 63.7 56.5 56.3 57.5 61.9 80.3 54.5 78.0
WF 54.9 67.1 50.6 61.4 73.6 50.8 64.7 50.0 59.7 53.3 51.3 74.0 52.1 72.0

LP 39.4 27.5 50.7 53.9 61.6 51.2 55.3 47.2 51.1 46.3 49.4 59.6 43.2 60.8
LR 49.5 50.3 19.6 40.2 23.5 19.9 39.4 22.3 42.7 30.0 23.2 25.9 33.4 26.4
LF 43.9 35.5 28.3 45.8 34.0 28.7 46.0 30.3 46.5 36.4 31.6 36.1 37.6 36.8

WL 4.35 2.84 3.44 3.19 2.39 3.45 2.99 3.75 3.28 4.08 2.05 2.48 4.32 2.49
TL 6.67 5.09 4.66 4.25 3.44 4.66 4.12 5.04 4.30 5.13 3.36 3.47 5.33 3.46
Ntype 8453 4999 2610 2061 1040 2627 1946 3182 2283 4363 1285 1186 5208 1185
Ntoken 31.1k 47.6k 39.4k 42.5k 56.5k 39.2k 45.3k 36.0k 41.2k 33.2k 65.9k 54.6k 31.3k 54.4k

Table 4: Results on the Japhug corpus for dpseg and its two-level versions, supervised with dense annotations
(sentence). 200 sentences are used as supervision data.

model dpseg pipe. parallel-w parallel-m hier-type -final hier-iter
level word morph. morph. word morph. word morph. word morph. morph. word morph.

BP 76.6 93.2 87.0 76.6 91.0 76.4 93.0 66.4 58.4 83.6 66.6 84.3
BR 81.0 64.3 83.1 81.2 71.3 74.9 64.2 89.6 89.9 90.2 90.1 90.8
BF 78.7 76.1 85.0 78.8 80.0 75.6 76.0 76.2 70.8 86.8 76.6 87.4

WP 54.4 54.8 65.9 54.5 60.1 51.6 54.4 45.6 30.4 67.2 46.0 68.7
WR 57.1 39.2 63.2 57.4 48.1 50.7 38.9 59.6 45.6 72.1 60.1 73.6
WF 55.7 45.7 64.5 55.9 53.5 51.1 45.4 51.7 36.5 69.6 52.1 71.1

LP 49.9 37.0 47.0 50.5 40.9 46.4 37.2 46.4 51.1 56.0 47.3 57.9
LR 37.3 54.8 43.5 37.8 52.3 36.8 54.8 21.6 30.2 34.3 21.9 34.9
LF 42.7 44.2 45.2 43.2 45.9 41.1 44.3 29.5 38.0 42.5 29.9 43.6

WL 4.51 4.06 3.03 4.49 3.62 4.81 4.06 3.63 1.94 2.71 3.62 2.71
TL 6.18 5.40 4.45 6.16 5.14 6.49 5.38 4.46 3.77 3.84 4.52 3.86
Ntype 5041 4044 2524 5040 3492 5356 4027 3141 1618 1671 3116 1646
Ntoken 30.0k 33.3k 44.7k 30.1k 37.3k 28.1k 33.3k 37.3k 69.9k 50.0k 37.4k 49.9k

Table 5: Results on the Japhug corpus for dpseg and its two-level versions, supervised with a dictionary
(dictionary). 200 sentences are used as supervision data.
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model AG dpseg pipeline parallel-w hier-type -final hier-iter
level word morph. word morph. word morph. word morph. word morph. morph word morph.

BP 67.3 78.1 59.9 91.8 59.9 69.9 59.6 89.3 64.0 47.8 74.4 64.7 74.7
BR 76.6 85.5 87.9 63.9 87.9 88.8 87.4 71.6 83.0 81.7 86.1 77.6 85.1
BF 71.6 81.6 71.3 75.3 71.3 78.2 70.9 79.5 72.2 60.3 79.8 70.6 79.6

WP 41.6 55.6 33.3 52.1 33.3 46.0 32.8 57.7 38.2 19.0 50.8 38.8 51.4
WR 46.7 60.5 47.4 37.1 47.4 57.8 46.6 46.8 48.4 31.9 58.3 45.7 58.2
WF 44.0 57.9 39.1 43.4 39.1 51.2 38.5 51.7 42.7 23.8 54.3 42.0 54.6

LP 45.9 51.3 49.6 41.4 49.6 41.2 49.0 47.7 47.3 24.2 41.1 42.3 43.1
LR 28.8 28.0 16.9 50.4 16.9 16.6 16.7 47.6 22.6 13.1 20.1 25.5 21.8
LF 35.4 36.2 25.2 45.5 25.2 23.6 25.0 47.7 30.5 17.0 27.0 31.8 29.0

WL 4.99 2.58 3.95 3.95 2.24 3.95 3.46 4.43 1.68 2.45 4.76 2.48
TL 6.52 3.52 4.53 4.53 2.89 4.52 4.32 4.95 2.87 3.07 5.35 3.08
Ntype 3597 875 1950 1950 646 1958 1600 2732 867 786 3456 812
Ntoken 22.7k 43.8k 28.6k 28.6k 50.5k 28.6k 32.7k 25.6k 67.4k 46.2k 23.8k 45.5k

Table 6: Results on the Tsez corpus for unsupervised dpseg and its two-level versions. Bold numbers denote the
best results per metrics. Reference Ntype: 5,732 for words and 1,603 for morphemes.

model CRF dpseg pipe. parallel-w hier-type -final hier-iter
level word morph. word morph. morph. word morph. word morph. morph. word morph.

BP 83.3 85.9 65.4 93.3 83.2 65.3 90.6 69.1 65.6 85.0 69.5 84.0
BR 78.3 82.5 90.7 69.3 95.9 90.6 74.7 83.6 88.7 92.9 80.7 91.7
BF 80.7 84.2 76.0 79.5 89.1 75.9 81.9 75.7 75.4 88.8 74.7 87.7

WP 64.5 67.8 42.5 61.8 71.9 42.2 63.2 46.6 46.4 72.5 46.9 70.6
WR 60.9 65.3 57.3 46.7 82.4 56.9 52.6 55.4 62.0 79.0 53.8 76.8
WF 62.6 66.6 48.8 53.2 76.8 48.4 57.4 50.6 53.1 75.6 50.1 73.6

LP 47.6 21.9 62.7 49.1 61.9 62.4 53.4 53.8 46.5 59.8 50.6 59.3
LR 61.0 62.0 26.9 57.5 36.7 26.7 54.6 32.7 33.8 38.9 34.4 38.5
LF 53.5 32.4 37.6 53.0 46.1 37.3 54.0 40.6 39.1 47.1 41.0 46.7

WL 5.94 2.92 4.16 3.72 2.46 4.16 3.38 4.72 2.11 2.58 4.90 2.59
TL 7.83 5.98 5.02 4.58 3.67 5.03 4.40 5.43 3.49 3.70 5.61 3.67
Ntype 7343 4537 2458 1877 950 2450 1639 3479 1165 1043 3902 1041
Ntoken 19.0k 38.7k 27.2k 30.4k 46.1k 27.2k 33.5k 24.0k 53.7k 43.8k 23.1k 43.7k

Table 7: Results on the Tsez corpus for dpseg and its two-level versions, supervised with dense annotations
(sentence). 200 sentences are used as supervision data.

model dpseg pipe. parallel-w hier-type -final hier-iter
level word morph. morph. word morph. word morph. morph. word morph.

BP 73.2 95.8 90.6 73.4 94.3 66.0 58.0 87.1 66.6 87.7
BR 84.9 58.5 79.6 84.9 63.1 91.2 82.0 84.5 90.5 85.4
BF 78.6 72.6 84.7 78.7 75.6 76.6 67.9 85.8 76.7 86.5

WP 50.3 49.7 66.1 50.5 53.1 43.0 29.1 65.8 43.6 67.7
WR 57.6 31.3 58.4 57.7 36.4 57.7 40.5 64.0 57.7 66.1
WF 53.7 38.4 62.0 53.9 43.2 49.3 33.8 64.9 49.7 66.9

LP 62.0 38.0 49.8 62.1 41.5 59.9 43.2 53.7 60.4 55.2
LR 37.2 64.6 54.1 37.3 63.1 26.9 36.2 44.9 27.7 45.9
LF 46.5 47.9 51.9 46.6 50.0 37.1 39.4 48.9 37.9 50.1

WL 4.91 4.47 3.18 4.92 4.10 4.18 2.02 2.89 4.24 2.88
TL 5.86 5.39 4.38 5.88 5.11 4.82 3.73 3.94 4.88 3.94
Ntype 3442 2725 1744 3449 2441 2571 1342 1339 2624 1332
Ntoken 23.1k 25.3k 35.6k 23.0k 27.6k 27.1k 56.1k 39.1k 26.7k 39.2k

Table 8: Results on the Tsez corpus for dpseg and its two-level versions, supervised with a dictionary (dictionary).
200 sentences are used as supervision data. Reference Ntype: 5,732 for words and 1,603 for morphemes.
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Abstract

When humans read a text, their eye move-
ments are influenced by the structural com-
plexity of the input sentences. This cognitive
phenomenon holds across languages and recent
studies indicate that multilingual language mod-
els utilize structural similarities between lan-
guages to facilitate cross-lingual transfer. We
use sentence-level eye-tracking patterns as a
cognitive indicator for structural complexity
and show that the multilingual model XLM-
RoBERTa can successfully predict varied pat-
terns for 13 typologically diverse languages,
despite being fine-tuned only on English data.
We quantify the sensitivity of the model to
structural complexity and distinguish a range
of complexity characteristics. Our results in-
dicate that the model develops a meaningful
bias towards sentence length but also integrates
cross-lingual differences. We conduct a con-
trol experiment with randomized word order
and find that the model seems to additionally
capture more complex structural information.

1 Introduction

Approximately 7,000 languages are currently spo-
ken in the world, exhibiting differences at almost
every level of linguistic organization (Eberhard
et al., 2022). Nonetheless, psycholinguistic the-
ories are predominantly supported by evidence
from a handful of Indo-European languages (Nor-
cliffe et al., 2015). Only recently, researchers have
started to explore cross-linguistic differences in
the neural implementation of language, uncover-
ing both striking similarities across languages and
empirical differences that cannot be explained by a
unitary account (Malik-Moraleda et al., 2022).

In natural language processing, multilingual lan-
guage models are optimized for tasks such as ma-
chine translation or cross-lingual information re-
trieval (Conneau et al., 2020) and follow a linguis-

∗This research was developed when the first author was
affiliated to Vrije Universiteit Amsterdam.

tically naïve training regime. They are trained on
dozens of languages simultaneously and do not
account for typological differences between lan-
guages. Nevertheless, their cross-lingual transfer
performance sets new records, even in zero-shot
settings (Pires et al., 2019). The ability to transfer
knowledge across languages has been attributed
to the shared vocabulary that is used for all lan-
guages (Wu and Dredze, 2019) because it enables
the reuse of common morphological roots for lan-
guages from the same family. However, recent
studies indicate that vocabulary sharing is not a pre-
requisite for cross-lingual transfer (Artetxe et al.,
2020) and that structural commonalities between
languages play a more prevalent role in models
(Karthikeyan et al., 2020).

Human sentence processing is sensitive to struc-
tural complexity. Eye movement data recorded
during reading provide insights into cognitive pro-
cessing patterns with a temporal accuracy of mil-
liseconds (Winke, 2013). Structural processing
difficulty materializes as regressions towards the
complex region and an increase of fixations on that
region (Clifton and Staub, 2011). For example,
sentences with an object-relative structure trigger
more regressions than sentences with more com-
mon subject-relative clauses (Gordon et al., 2006).
A classical example of structural complexity are
garden-path sentences which initially trigger a sim-
plified interpretation that must be revised when
reading the rest of the sentence (Bever, 1970).

On the surface level, eye movement patterns are
language-specific since they are influenced by vi-
sual factors such as orthography and word length
(Kliegl et al., 2004). For example, the Chinese
script is much more visually dense than the al-
phabetic script, resulting in longer fixations and
saccades that move to positions relatively close to
the current word (Liversedge et al., 2016). On a
deeper processing level, reading patterns seem to
converge across languages. Predictability effects
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have been demonstrated in multiple languages (Al-
Jassmi et al., 2022; Laurinavichyute et al., 2019)
and sentences that are matched for content are read
at a similar speed in Chinese, English, and Finnish
(Liversedge et al., 2016).

Sarti et al. (2021) find that the representations of
an English pre-trained transformer-based language
model encode structural complexity more promi-
nently when they are fine-tuned to predict English
eye-tracking patterns. Interestingly, Rama et al.
(2020) claim that structural similarity between lan-
guages is only weakly represented in multilingual
models. Nevertheless, Hollenstein et al. (2021)
show that multilingual models are able to predict
eye movement patterns of reading even for lan-
guages that are not seen during fine-tuning, which
indicates a general learnability of the relationship
between structural complexity and eye movement
patterns. Their results are restricted to four lan-
guages (three of them are from the Germanic fam-
ily), and it remains unclear which structural cues
are leveraged for the cross-lingual prediction be-
cause the test sentences are not aligned across lan-
guages.

Contributions We examine whether the multilin-
gual model XLM-RoBERTa (henceforth XLM-R)
is sensitive to the structural complexity patterns
that can be found in eye-tracking data. We use
data from the newly released Multilingual Eye-
tracking Corpus (Siegelman et al., 2022) to predict
eye movement patterns for parallel texts in 13 ty-
pologically diverse languages. This allows us to
specifically target the model’s sensitivity towards
structural information and rules out the possibil-
ity that the results are influenced by differences in
semantics or dataset sizes.

We show that XLM-R can apply cross-lingual
transfer to predict eye-tracking patterns for all
13 languages while being fine-tuned only on
English eye-tracking data. Our results indicate
that the model develops a meaningful bias towards
sentence length, but also integrates cross-lingual
differences. For a more detailed analysis of
structural sensitivity, we probe the model’s final
layer for complexity features. Based on a control
experiment with randomized word order, we
conclude that the model seems to additionally
capture more complex structural information. All
our experimental code is publicly available at
https://github.com/CharlottePouw/
crosslingual-complexity-transfer.

2 Related Work

We introduce recent findings on the role of struc-
tural information for cross-lingual transfer in multi-
lingual models and motivate the use of eye-tracking
data as a proxy for cognitive processing complex-
ity.

2.1 Cross-lingual Transfer in Multilingual
Models

Massive multilingual language models such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) are trained on more than a hun-
dred languages simultaneously. Wu and Dredze
(2019) show that this approach leads to surpris-
ingly strong performances in cross-lingual trans-
fer settings and attribute the improvements to the
shared subword vocabulary. Pires et al. (2019)
note that the model’s ability to generalize "cannot
be attributed solely to vocabulary memorization".
Complementary, Artetxe et al. (2020) and Liu et al.
(2020) find that a shared vocabulary is not neces-
sary for cross-lingual transfer. Instead, the multi-
lingual model seems to exploit structural similarity
between the training and the target language to
facilitate transfer (Karthikeyan et al., 2020).

Structural similarity is loosely defined as an over-
lap on a subset of typological characteristics which
seem to be better reflected in multilingual language
models explicitly optimizing for cross-lingual trans-
fer (Beinborn and Choenni, 2020; Choenni and
Shutova, 2022). In language-agnostic models such
as mBERT and XLM-R, the multilingual represen-
tations of the input can be separated into language-
specific and language-neutral components (Tanti
et al., 2021; Libovický et al., 2020; Gonen et al.,
2020). While Rama et al. (2020) find that struc-
tural similarity between languages is only weakly
represented in these models, Bjerva et al. (2019) ob-
serve that structural similarity between languages
correlates most with representational similarity. Ex-
periments with artificial languages indicate that
multilingual models are sensitive to hierarchical
structure (De Varda and Zamparelli, 2022) and to
word order (Chai et al., 2022; Deshpande et al.,
2022). Ahmad et al. (2021) show that cross-lingual
transfer can be improved by explicitly encoding
structural information via an auxiliary syntactic
objective and Guarasci et al. (2022) find that struc-
tural complexity knowledge can even be transferred
across languages without explicit training.

656

https://github.com/CharlottePouw/crosslingual-complexity-transfer
https://github.com/CharlottePouw/crosslingual-complexity-transfer


2.2 Predicting Processing Complexity
Recent studies indicate that transformer-based lan-
guage models are sensitive to structural character-
istics of the input sentence when predicting eye-
tracking patterns. Hollenstein et al. (2021) find a
correlation between the Flesch reading ease score
and eye-tracking prediction accuracy of pre-trained
multilingual transformer models which disappears
after fine-tuning. Wiechmann et al. (2022) detect
similar correlations between the prediction accu-
racy of English transformer models and a wider
range of readability features. Finally, Hollenstein
et al. (2022b) find that eye-tracking metrics pre-
dicted by multilingual transformer models corre-
late in a similar way with readability features as
eye-tracking metrics recorded from human readers.

Sensitivity to structural complexity also seems
to increase when incorporating eye-tracking data
in NLP models. Learning eye movement behavior
as an auxiliary task has been shown to facilitate the
prediction of text complexity in English and Por-
tuguese (González-Garduño and Søgaard, 2017;
Evaldo Leal et al., 2020). Barrett et al. (2016)
show that English eye-tracking features improve
the performance a French part-of-speech tagger,
suggesting that information learned from monolin-
gual eye-tracking data is transferable across lan-
guages.

In this work, we explicitly test for sensitivity
to a range of structural characteristics in multi-
lingual models and analyze if structural sensitiv-
ity increases by learning to predict eye-tracking
patterns. We extend previous analyses to a much
wider range of languages from five different fam-
ilies (Indo-European, Koreanic, Semitic, Turkic,
and Uralic).

3 Methodology

We fine-tune a pre-trained multilingual transformer
model to predict eye-tracking metrics in a setting
of zero-shot cross-lingual transfer.

3.1 Data
We use the aligned multilingual eye-tracking cor-
pus MECO for testing. As the multilingual data
consists of only few samples, we use the larger
monolingual English eye-tracking dataset GECO
for training. Size statistics of both corpora can be
found in the appendix in Table 3.

Multilingual Eye-tracking Corpus (MECO)
The Multilingual Eye-tracking Corpus contains par-

allel eye-tracking data of reading in 13 different
languages (Siegelman et al., 2022).1 The reading
material consists of 12 short Wikipedia-style texts
about various topics, which participants read in
their native language. The texts were either directly
translated or carefully matched for topic, genre, and
readability. Each of the 12 texts was presented on
a single screen and in the same fixed order in all
languages. The number of participants ranged from
29 to 54 per language (45 on average).

Ghent Eye-tracking Corpus (GECO) The
Ghent Eye-tracking Corpus contains eye-tracking
data from 14 monolingual English readers (Cop
et al., 2016). They were reading the entire novel
The Mysterious Affair at Styles by Agatha Christie
which was presented on the screen one paragraph
at a time.

3.2 Experimental Setup
We use multi-task learning for predicting four
sentence-level eye-tracking metrics.

Sentence-Level Eye-Tracking Metrics Liv-
ersedge et al. (2016) find that eye movement pat-
terns are more comparable across languages at the
sentence level than at the word level. We select four
sentence-level eye-tracking metrics that cover both
early and late language processing in line with Sarti
et al. (2021). For each sentence s, we consider:

1. Fixation count: number of fixations on s
2. Total fixation duration: total duration of all

fixations on s
3. First-pass duration: duration of the first read-

ing pass over s
4. Regression duration: total duration of all re-

gressions within s.

Duration values are measured in milliseconds. To
obtain generalized eye movement patterns, we av-
erage all eye-tracking metrics over participants and
scale each eye-tracking feature to fall in the range
0–100, so that the loss can be calculated uniformly
for durations and counts (Hollenstein et al., 2021).
The distribution of the four metrics is shown in the
appendix in Figure 7.

Model We use XLM-R (Conneau et al., 2020)
as our multilingual transformer model since it
achieved the best zero-shot results in the CMCL
2022 Shared Task on Multilingual and Crosslingual

1Dutch, English, Estonian, Finnish, German, Greek, He-
brew, Italian, Korean, Norwegian, Russian, Spanish, Turkish.
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Figure 1: Cross-lingual transfer results for predicting cognitive processing complexity (i.e. sentence-level fixation
duration). Prediction performance is evaluated with explained variance and R2 for each language in MECO. The
results are averaged over 5 folds; error bars denote the standard deviation over folds.

Prediction of Human Reading Behaviour (Srivas-
tava, 2022; Hollenstein et al., 2022a). The model
was pre-trained on 2.5TB CommonCrawl data con-
taining 100 languages using the Masked Language
Modelling objective and uses SentencePiece sub-
word tokenization (Kudo and Richardson, 2018).
We select the Huggingface checkpoint xlm-roberta-
base and add a linear dense layer to predict four
sentence-level eye-tracking metrics.

Multi-Task Learning We employ multi-task
learning with hard parameter sharing to fine-tune
the model on all eye-tracking metrics simultane-
ously in line with Sarti et al. (2021). This means
that all model parameters are shared except for the
task-specific regression heads in the final prediction
layer. More specifically, the same sentence repre-
sentation is fed into each of the four regression
heads which predict their respective eye-tracking
metric. The model parameters are optimized jointly
for all regression tasks by summing the individual
MSE losses in line with previous work (Hollenstein
et al., 2021, 2022a; Wiechmann et al., 2022).

Training Parameters We fine-tune XLM-R for
15 epochs with early stopping after 5 epochs with-
out an improvement in the validation accuracy. We
use 10% of the training data as validation data and
evaluate every 40 steps. We employ a batch size of
32 and a learning rate of 1e-5. The sentence repre-
sentation is obtained by mean pooling over token
representations. We train the model on the GECO
data using 5-fold cross-validation and report the
average over the folds for each language in MECO.

Evaluation We report explained variance and R-
Squared (R2) to capture the proportion of variance

in the dependent variable that can be explained by
our model in line with Sarti et al. (2021). Explained
variance uses the biased variance to determine what
fraction of the variance is explained. R2 uses the
raw sums of squares instead and provides comple-
mentary information about systematic offsets in the
predictions. We report both metrics and evaluate
the performance of the fine-tuned model individu-
ally for each of the four eye-tracking metrics.2

4 Cross-Lingual Transfer Results

Figure 1 shows the explained variance and R2

scores of the fine-tuned model for total fixation
duration across languages. In terms of explained
variance, we see that the model achieves a similar
performance across languages, i.e. it captures 60
to 80 percent of the variance in the original eye-
tracking signal for all languages. The R2 scores,
on the other hand, vary much more depending on
the language. Similar results were observed for
two of the other eye-tracking metrics, i.e. fixa-
tion count and first-pass duration, but the model is
worse at predicting regression duration (see Figure
8 in the appendix). To better control for spurious
correlations, we ran the experiment on permuted
input-output pairs, i.e., we paired input sentences
with eye-tracking values corresponding to another
random sentence and averaged the results over 5
folds. For this random baseline setup, both ex-
plained variance and R2 are always strictly nega-
tive for all languages.

2In previous work on token-level eye-tracking prediction,
the mean absolute error was reported instead but it is less
informative for sentence-level predictions because sentence-
level eye-tracking metrics are generally more centered around
the mean.
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Figure 2: The left plot shows the distribution of true and predicted values for total fixation duration for Estonian,
Turkish, English and Korean sentences in MECO. The right figure shows the distribution of values with respect to
sentence length.

To better understand the varied R2 scores for
different languages, we show the distribution of
the true and predicted values for total fixation du-
ration for two languages with high R2 (Estonian,
Turkish) and two languages with low R2 (English,
Korean) in Figure 2. We see that the low R2 for
English and Korean is caused by predictions that
are consistently too high. For Estonian and Turkish,
the difference between true and predicted values
is clearly smaller, resulting in a higher R2. Nev-
ertheless, the model is able to predict a significant
amount of the variance in the eye-tracking signal of
all languages, as expressed by the stable explained
variance scores across languages.

Interestingly, the model performs slightly bet-
ter for most zero-shot languages than for the fine-
tuning language English. Recall that this perfor-
mance difference cannot be attributed to cross-
lingual differences in semantics, since all sentences
are parallel with respect to content. On the right
side of Figure 2, we analyze the predictions with
respect to sentence length and find that both the
model predictions and the true values for fixa-
tion duration correlate with sentence length in all
languages. As sentence length is an indicator of
structural complexity, we further dissect this phe-
nomenon and conduct an analysis of a range of
structural characteristics in the following section.

5 Sensitivity to Structural Complexity

We explore four categories of sentence-level
complexity features: length, frequency, morpho-
syntactic, and syntactic. Word frequencies are ob-
tained as standardized Zipf frequencies using the
Python package wordfreq (Speer et al., 2018). The

package combines several frequency resources, in-
cluding SUBTLEX lists (e.g. Brysbaert and New
(2009)) and OpenSubtitles (Lison and Tiedemann,
2016). The morpho-syntactic and syntactic features
are computed using the Profiling-UD tool (Brunato
et al., 2020).

Cross-Lingual Differences We showcase an in-
dividual example sentence in Table 1 to compare
the predicted fixation duration for English, Finnish
and Turkish. We observe that the highest value
is predicted for the English version. This is most
likely caused by its length, as the sentence is less
complex than the Finnish and Turkish versions in
terms of all other linguistic features.

Interestingly, the model predicts that Finnish
readers will fixate on the sentence longer than Turk-
ish readers, even though both sentences have the
same length. The Turkish sentence contains longer,
less frequent words, and is lexically more dense,
but the Finnish sentence contains longer depen-
dency links. This indicates that the model is more
sensitive to dependency structure than to low-level
complexity (i.e. word length and frequency) when
predicting eye-tracking values for sentences of the
same length.

5.1 Sensitivity to Fine-Tuning Input

To analyze the model’s sensitivity to the structural
complexity of the fine-tuning data, we compare
the performance of the fine-tuned model for in-
domain data (English GECO) and cross-domain
data (English MECO). Table 2 shows the explained
variance and R2 scores of the fine-tuned model
predictions for each eye-tracking metric for both
domains. We see that the model consistently yields
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Example Prediction

English In ancient Roman religion and myth, Janus is the god of beginnings and gates. 42.96
Finnish Muinaisen roomalaisen mytologian mukaan Janus oli alkujen ja porttien jumala. 38.91
Turkish Antik Roma inanışlarında ve mitlerinde, Janus başlangıçların ve kapıların tanrısıdır. 32.28

Structural Complexity English Finnish Turkish

Length Sentence length (tokens) 14 10 10
Avg. word length (characters) 4.57 6.80 7.60

Frequency Avg. word frequency (Zipf) 5.63 4.36 3.46
# low frequency words 2 6 6

Morpho-Syntactic Lexical density 0.57 0.70 0.73
Syntactic Parse tree depth 3 3 3

Avg. dependency link length 2.15 2.78 1.90
Max. dependency link length 7 7 4
# verbal heads 1 1 1

Table 1: Predicted values for total fixation duration for the same example sentence in English, Finnish, and Turkish
(top), and the respective values for the nine structural complexity features (bottom).

more accurate predictions for the in-domain data
than for the cross-domain data.

MECO GECO

EV R2 EV R2

FC .78 (.02) -.63 (.35) .93 (.00) .93 (.01)
TFD .75 (.02) -.65 (.24) .92 (.00) .92 (.01)
FPD .50 (.03) -.87 (.27) .95 (.00) .95 (.01)
RD -.28 (.14) -.96 (.45) .44 (.04) .45 (.05)

Table 2: Explained variance (EV) and R2-scores of
the fine-tuned model predictions for four eye-tracking
metrics from the English parts of MECO and GECO:
fixation count (FC), total fixation duration (TFD), first-
pass duration (FPD), and regression duration (RD). The
results are averaged over 5 folds; standard deviations
are indicated in parentheses.

To better understand why the model does not
generalize well across domains for English, we vi-
sualize the Spearman correlation between complex-
ity features and eye-tracking metrics for English
GECO and MECO sentences in Figure 3. We see
that the predicted values for the MECO sentences
exhibit a similar correlation pattern with the com-
plexity features as the GECO sentences. The true
values of MECO are less consistent with this pat-
tern. Literary texts contain very different words
than encyclopedic texts, which might influence fix-
ation durations and trigger regressions that cannot
solely be explained by structural complexity. In ad-
dition, MECO is significantly smaller than GECO
(99 vs 4,041 English sentences) and contains data
from a higher number of participants (46 vs 14).
The smaller amount of sentences and the larger
amount of readers increase the effect of individ-

ual differences3 which might obscure correlations
between structural complexity and eye movement
patterns. Directly applying the learned correlations
from GECO to MECO might explain why the fine-
tuned model fails to generalize across domains.

The average sentence length is considerably
higher in GECO than in MECO (21 vs 13 words,
see Table 3). As the model predictions strongly
correlate with sentence length, we speculate that
the model overestimates eye-tracking values for
sentences that are longer than the majority of fine-
tuning sentences which would explain the higher
mean of the predictions in Figure 2.

Multi-Task Learning Effect Figure 3 further
shows that regression duration is only weakly cor-
related with the complexity metrics in contrast to
the other eye-tracking metrics. Nevertheless, the
correlations between the model predictions and the
complexity features are similar for all four metrics.
This indicates a drawback of multi-task learning:
since the loss is computed jointly over all tasks, ac-
curate predictions for three out of four tasks already
yield a small loss. The model seems to overfit to
first-pass duration, total fixation duration and fixa-
tion count, which can all be predicted from similar
complexity features, and does not learn the deviat-

3A higher number of participants leads to more diversity
across readers with respect to individual factors that could
influence reading strategies (e.g. age, education level). The
GECO data came from 14 English readers who were all under-
graduate students with an age range of 18-26. The MECO data
came from 29 to 54 readers per language (45 on average), who
had more diverse educational backgrounds and a wider age
range (18-45). Based on these statistics, we assume that the
increased heterogeneity of the MECO participants influences
the correlations observed in Figure 3.
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Figure 3: Spearman correlations between complexity features and eye-tracking metrics of GECO and the English
part of MECO (predicted versus true). A darker color represents a stronger correlation. All GECO correlations are
significant (p < 0.001); MECO correlations above 0.2 are significant (p < 0.01).

ing patterns to predict regression duration. Further
research is needed to better understand the linguis-
tic features underlying regression duration.

5.2 Feature-Based Prediction

To further establish which complexity features are
good predictors for each individual eye-tracking
metric, we examine the extent to which the four
eye-tracking metrics can be predicted from explicit
features. Since multi-task learning seems to have a
negative impact on learning the structural features
underlying each individual eye-tracking metric, we
train a separate feature-based model for each eye-
tracking metric individually. We use support vector
machines (SVM) with a linear kernel as our feature-
based regression models. We employ the SVR
implementation from scikit-learn (Pedregosa et al.,
2011) with all default parameters and use different
subsets of features from Table 1: 1) only the two
length features, 2) only the two frequency features,
3) only the five structural (i.e., morpho-syntactic
and syntactic) features, and 4) all nine features.

As the SVM models predict a simpler problem (a
single eye-tracking metric), it is not surprising that
they outperform the fine-tuned multi-task model
with respect to the absolute predictions (as mea-
sured by R2, see appendix Figure 9). More inter-
estingly, Figure 4 shows that the multi-task model
is able to capture a similar amount of variance as
the length-based SVM. Furthermore, we see that
the length-based SVM performs almost identically
to the SVM trained on all complexity features, out-
performing the SVMs trained on frequency features
and structural features. This shows that length is
a strong predictor for sentence-level eye-tracking
metrics, and suggests that structural and frequency

features do not provide much additional informa-
tion. We further investigate if length is the main
factor affecting the predictions of the fine-tuned
model in the following section.
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Figure 4: Explained variance of the four feature-
based SVM models and the fine-tuned XLM-R model.
The models are trained on GECO using 5-fold cross-
validation and evaluated on the English part of MECO;
error bars denote the standard deviation over folds.

6 The Role of Sentence Length

To test whether the fine-tuned XLM-R model cap-
tures more sophisticated structural information than
sentence length, we conduct two additional exper-
iments. First, we probe the final-layer represen-
tations of the model for the complexity features
from Table 1, both before and after fine-tuning on
eye-tracking data. Second, we compare the per-
formance of the fine-tuned model to a control con-
dition: we randomize the word order within each
MECO sentence to analyze the prediction perfor-
mance on scrambled input.

6.1 Probing Set-up

We train regressors gi to predict a value for each
of the nine latent factors of structural complexity
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Z = z1,...,z9 using XLM-R’s final-layer represen-
tation θ(x) of our input sentence x. The prediction
accuracy of gi is an indication of how prominently
the linguistic property zi is encoded in θ. We an-
alyze this both for the pre-trained and fine-tuned
representations of XLM-R to quantify the relative
increase of sensitivity to zi after fine-tuning on
eye-tracking metrics.

We conduct the probing experiments for three
typologically different languages to analyze if the
structural sensitivity that was acquired from En-
glish eye-tracking data transfers to other languages.
As input, we use 1,000 parallel sentences from the
English, Korean and Turkish parts of the Parallel
Universal Dependencies (PUD) treebanks which
were randomly selected from Wikipedia and news
articles (Zeman et al., 2017). We apply a 5-fold
cross-validation setting with 800 sentences for
training the probing regressors for each language
and the remaining 200 for testing. We use the same
architecture as described in Section 3.2, but freeze
the encoder model and only update the final re-
gression layer during training. The regression layer
contains nine probing heads (one for each linguistic
feature) and is trained for 5 epochs.4

6.2 Results
We report the results of the probing experiments
and the model performance on scrambled inputs.

Probing Figure 5 shows the relative probing per-
formance for each complexity feature. We see
that fine-tuning yields the largest improvements for
probing sentence length and average dependency
link length. For the other complexity features, we
see that the fine-tuned representations yield little
to no improvement in probing accuracy compared
to the pre-trained representations. This mostly con-
cerns the features for which sentence length is fac-
tored out, i.e., average word frequency, average
word length and lexical density. Sarti et al. (2021)
report similar results and show that increased prob-
ing performance for dependency features persists
for sentences of the same length. This provides
additional evidence that structural information is
learned in addition to low-level length information.

We observe only minor differences in probing
accuracy for individual complexity features of En-

4We report results for a multi-task set-up for probing in
line with Sarti et al. (2021) and use the same hyperparameters
as for the fine-tuning experiments but without intermediate
evaluation on a development set. We also ran single-task
probing as a sanity check and obtained similar results.
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Figure 5: Relative improvement in R2 for complexity
features of English, Korean and Turkish sentences in
fine-tuned XLM-R sentence representations over pre-
trained representations. The results are calculated using
probing regressors and averaged over 5 folds.

glish, Korean and Turkish sentences. The gen-
eral pattern is consistent for all languages: fea-
tures related to the structural complexity of sen-
tences are more easily predicted after fine-tuning
on eye-tracking metrics. This indicates that the fine-
tuned model is able to transfer structural complex-
ity knowledge acquired from English eye-tracking
data to other languages.

Influence of Word Order We compare the per-
formance of the fine-tuned model on sentences with
normal versus scrambled word order, both in terms
of explained variance and R2. We measure simi-
lar explained variance scores for both input types.
This indicates that the model is able to account for
a large portion of the variance in our eye-tracking
data by merely considering sentence length. The
R2 scores, on the other hand, are consistently lower
for scrambled inputs, as shown for total fixation
duration in Figure 6 (see appendix Figure 10 for the
other eye-tracking metrics). We conclude that the
model is sensitive to word order and bases its eye-
tracking predictions not only on sentence length
but also on more complex structural characteristics.
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language in MECO, both for sentences with normal and
scrambled word order. The results are averaged over 5
folds; error bars denote the standard deviation.
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7 Conclusion

We find that XLM-R can apply cross-lingual trans-
fer to predict cognitive processing difficulty with
similar performance across 13 typologically di-
verse languages, despite being fine-tuned only on
English data. We conducted a range of experiments
to quantify the model’s sensitivity to structural com-
plexity and find that the fine-tuned model promi-
nently encodes sentence length, but also considers
more complex structural information such as depen-
dency structure and word order for the prediction
of eye-tracking metrics.

Our analyses suggest that domain differences
in training and testing data have a greater im-
pact on model performance than language differ-
ences within the same domain. More specifically,
XLM-R performs better on in-domain GECO data
than cross-domain MECO data, but within MECO,
XLM-R shows similar performance across lan-
guages. This aligns with the findings of Morger
et al. (2022), who show that the correlation be-
tween relative importance metrics and total fixa-
tion duration is influenced by text domain. Our
study highlights the significance of controlling for
text domain and size, as it allows to evaluate cross-
lingual generalization that is independent of dataset
characteristics.

In future work, we plan to better account for in-
dividual differences between readers (Brandl and
Hollenstein, 2022) and spill-over effects across sen-
tence boundaries (Wiechmann et al., 2022). The
modeling approach for learning eye-tracking pat-
terns also needs further exploration. We find that
sentence-level prediction of eye-tracking patterns
works well for learning about structural complex-
ity, but that it is not optimal for capturing lexical
complexity. Token-level measures, as predicted
in Hollenstein et al. (2021), are more likely to be
informative about lexical phenomena. A joint loss
for sentence and token-level eye-tracking metrics
might lead to sensitivity to a wider range of linguis-
tic complexity features.

8 Limitations

The main limitation of our work is the use of rela-
tively small datasets for testing our models due to
limited availability of eye-tracking data in multi-
ple languages. The dataset used for testing cross-
lingual transfer (MECO) contains approximately
100 sentences per language. For probing structural
complexity, we used a sample of 1,000 sentences

per language.
As in related work, we averaged the eye-tracking

metrics over readers to obtain a more robust indi-
cation of human reading behavior. This approach
disregards the fact that reading is a highly individ-
ual process that is dependent on cognitive factors
and experience. A computational model might de-
velop a better sense of linguistic complexity when
it learns about the linguistic properties that lead
to variation across readers and we are working to-
wards methods for integrating this information.
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A Additional Tables and Figures

Dataset Language #Words #Sentences Avg. sent. length Avg. word length

GECO English 52131 4041 12.90 4.60

MECO English 2092 99 21.13 5.32
Dutch 2226 112 19.88 5.54
German 2019 115 17.56 6.38
Finnish 1462 110 13.29 8.19
Estonian 1542 112 13.77 7.35
Norwegian 2106 116 18.16 5.62
Italian 2111 90 23.46 5.70
Spanish 2412 98 24.61 5.01
Greek 2082 99 21.03 5.67
Turkish 1696 104 16.31 6.92
Russian 1827 101 18.09 6.53
Hebrew 1943 121 16.06 4.89
Korean 1699 101 16.82 3.21

Table 3: Size characteristics for the reading materials of GECO and MECO. GECO sentences which are shorter than
five words are removed to ensure that the model sees an adequate amount of complex structures during training.
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Figure 7: Distribution of four sentence-level eye-tracking metrics in English parts of GECO and MECO. All metrics
are scaled between 0-100.
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Figure 8: Cross-lingual transfer results for predicting cognitive processing complexity (i.e. fixation count, first-pass
duration and regression duration). Prediction performance is evaluated with explained variance and R2 for each
language in MECO. The results are averaged over 5 folds; error bars denote the standard deviation over folds.
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GECO using 5-fold cross-validation and evaluated on the English part of MECO; error bars denote the standard
deviation over folds.
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Abstract

Script diversity presents a challenge to Multi-
lingual Language Models (MLLM) by reduc-
ing lexical overlap among closely related lan-
guages. Therefore, transliterating closely re-
lated languages that use different writing scripts
to a common script may improve the down-
stream task performance of MLLMs. We em-
pirically measure the effect of transliteration on
MLLMs in this context. We specifically focus
on the Indic languages, which have the highest
script diversity in the world, and we evaluate
our models on the IndicGLUE benchmark. We
perform the Mann-Whitney U test to rigorously
verify whether the effect of transliteration is
significant or not. We find that transliteration
benefits the low-resource languages without
negatively affecting the comparatively high-
resource languages. We also measure the cross-
lingual representation similarity of the models
using centered kernel alignment on parallel sen-
tences from the FLORES-101 dataset. We find
that for parallel sentences across different lan-
guages, the transliteration-based model learns
sentence representations that are more similar.

1 Introduction

In the last few years, we have seen impressive ad-
vances in many NLP tasks. These advances have
been primarily led by the availability of large rep-
resentative corpora and improvement in the archi-
tecture of large language models. While improving
model architectures, training methods, regulariza-
tion techniques, etc., can help advance the state of
NLP in general, the unavailability of large, diverse
corpora is the bottleneck for most languages (Joshi
et al., 2020). Thus to inclusively advance the state
of NLP across languages, it is crucial to develop
techniques for training MLLMs that can extract the
most out of existing multilingual corpora. Here, we
focus on the issue of diverse writing scripts used by

closely related languages that may prevent MLLMs
from learning good cross-lingual representations.
Previous papers (Pfeiffer et al., 2021) have noted
that low-resource languages that use unique scripts
tend to have very few tokens representing them at
the tokenizer. As a result, these languages tend
to have more UNKnown tokens, and the words in
these languages tend to be more split up by sub-
word tokenizers. Often we can easily transliterate
from one script to another using rule-based sys-
tems. For example, there are established standards
that can be used to transliterate Greek (ISO 843),
Cyrillic (ISO 9), Indic scripts (ISO 15919), and
Thai (ISO 11940) to the Latin script.

In this paper, we focus on the Indic languages,
which have the highest script diversity in the world.
Many South Asian and Southeast Asian languages
are intimately connected linguistically, historically,
phonologically (Littell et al., 2017) and phyloge-
netically. However, due to different scripts, it is
difficult for MLLMs to fully exploit this shared
information. Among the Indic languages we con-
sidered in this study we encounter eleven different
scripts. These are shown in Table 1. Nevertheless,
these scripts have shared ancestry from the ancient
Brahmic script (Hockett et al., 1997; Coningham
et al., 1996) and have similar structures that we can
easily use to transliterate them to a common script.
Also, many of these languages heavily borrow from
Sanskrit, and due to its influence, many words are
shared among these languages. Therefore, due to
their relatedness and highly diverse script barrier,
the Indic languages presents a unique opportunity
to analyze the effects of transliteration on MLLMs.

We empirically measure the effect of translitera-
tion on the downstream performance of MLLMs.
We pretrain ALBERT (Base, 11M Parameters)
(Lan et al., 2020) and RemBERT (Base, 192M Pa-
rameters) (Chung et al., 2020) models from scratch
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on Indic languages. We pretrain two variants of
each model, one with the original writing scripts
and the other after transliterating to a common
writing script. Henceforth, we will refer to the
transliterated script model as uni-script model and
the other as a multi-script model. We evaluate the
models on downstream tasks from the IndicGLUE
benchmark dataset (Kakwani et al., 2020). In order
to rigorously compare the two models, we finetune
using nine random seeds on all downstream tasks.
Then we perform the Mann-Whitney U test (MWU)
between the uni-script and multi-script models. Us-
ing the MWU test, we conclude that transliter-
ation significantly benefits the low-resource lan-
guages without negatively affecting the compara-
tively high-resource languages.

We also measure the Cross-Lingual Representa-
tion Similarity (CLRS) to understand why the uni-
script model performs better than the multi-script
model. To measure the CLRS, we use the centered
kernel alignment (CKA) (Kornblith et al., 2019)
similarity score. We measure the CKA similarity
score between the hidden representations of the
models on the parallel sentences of the Indic lan-
guages from the FLORES-101 dataset (Goyal et al.,
2022). We find that, compared to the multi-script
models, the uni-script models achieve a higher
CKA score, and it is more stable throughout the
hidden layers of the models. Based on this, we
conclude that the uni-script models learn better
cross-lingual representation than the multi-script
models. In summary, our contributions are primar-
ily three-fold:

1. We find that transliteration significantly ben-
efits the low-resource languages without
negatively affecting the comparatively high-
resource languages.

2. We establish this finding through rigorous ex-
periments and show the statistical significance
along with the effect size of transliteration
using the Mann-Whitney U test.

3. Using CKA on the FLORES-101 dataset, we
show that transliteration helps MLLMs learn
better cross-lingual representation.

Our code is available at Github1 and our model

1https://github.com/ibraheem-moosa/
XLM-Indic

weights can be downloaded from HF Hub 2 3 4 5.

2 Motivation and Background

2.1 Motivation

In their study, Joshi et al. (2020) showed the re-
source disparity between low-resource and high-
resource languages, and Ruder (2020) discussed
the necessity of working with low-resource lan-
guages. A large body of work suggests that
language-relatedness can help MLLMs achieve
better performance on low-resource languages by
leveraging related high-resource languages. For
instance, Pires et al. (2019) found that lexical over-
lap improved mBERT’s multilingual representation
capability even though it learned to capture multi-
lingual representations with zero lexical overlaps.
Dabre et al. (2017) showed that transfer learning
in the same or linguistically similar language fam-
ily gives the best performance for NMT. Lauscher
et al. (2020) found that language relatedness is
crucial for POS-tagging and dependency parsing
tasks. Although, corpus size is much more impor-
tant for NLI and Question Answering tasks. Wu
and Dredze (2020) showed that bilingual BERT
outperformed monolingual BERT on low-resource
languages when the languages were linguistically
closely related. Nevertheless, mBERT outper-
formed bilingual BERT on low-resource languages.

2.2 Script Barrier in Multilingual Language
Models

One of the major challenges in leveraging trans-
fer between high-resource and low-resource lan-
guages is overcoming the script barrier. Script bar-
rier exists when multiple closely related languages
use different scripts. Anastasopoulos and Neu-
big (2019) found that for morphological inflection,
script barrier between closely related languages
impedes cross-lingual learning, and language re-
latedness improved cross-lingual transfer. Translit-
eration and phoneme-based techniques have been
proposed to solve this issue. For example, Muriki-
nati et al. (2020) expanded upon Anastasopoulos
and Neubig (2019) and showed that both transliter-

2https://huggingface.co/ibraheemmoosa/
xlmindic-base-uniscript

3https://huggingface.co/ibraheemmoosa/
xlmindic-base-multiscript

4https://huggingface.co/ibraheemmoosa/
xlmindic-rembert-uniscript

5https://huggingface.co/ibraheemmoosa/
xlmindic-rembert-multiscript
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ation and grapheme to phoneme (g2p) conversion
removes script barrier and improves cross-lingual
morphological inflection and Rijhwani et al. (2019)
showed that pivoting low-resource languages to
their closely related high-resource languages re-
sults in better zero shot entity linking capacity
and used phoneme-based pivoting to overcome
the script barrier. Bharadwaj et al. (2016) showed
that phoneme representation outperformed ortho-
graphic representations for NER. Chaudhary et al.
(2018) also used phoneme representation to resolve
script barriers and adapt word embeddings to low-
resource languages.

2.3 Transliteration in Language Modeling

Different works have applied transliteration in dif-
ferent aspect for language models. For instance,
Goyal et al. (2020) and Song et al. (2020) both uti-
lized transliteration and showed that language re-
latedness was required for improving performance
on NMT. Amrhein and Sennrich (2020) studied
how transliteration improved NMT and came to
the conclusion that transliteration offered signifi-
cant improvement for low-resource languages with
different scripts.

Khemchandani et al. (2021) showed on Indo-
Aryan languages that language relatedness could be
exploited through transliteration along with bilin-
gual lexicon-based pseudo-translation and aligned
loss to incorporate low-resource languages into
pretrained mBERT. Muller et al. (2021) showed
that for unseen languages, the script barrier hin-
dered transfer between low-resource and high-
resource languages for MLLMs and transliteration
removed this barrier. They showed that translit-
erating Uyghur, Buryat, Erzya, Sorani, Meadow
Mari, and Mingrelian to Latin script and finetun-
ing mBERT on the respective corpus with masked
language modeling objective improved their down-
stream POS performance significantly. In contrast,
K et al. (2020) and Artetxe et al. (2020) proposes
that mBERT can learn cross-lingual representa-
tions without any lexical overlap, a shared vocabu-
lary, or joint training. However, these works focus
on zero-shot cross-lingual transfer learning only.
From the literature, it can be seen that many in
the community believe transliteration to be a po-
tential solution for script barriers. However, most
of the work shows the benefits of transliteration
for NMT. Nevertheless, there is no solid empirical
analysis of the effects of transliteration for MLLMs

apart from Dhamecha et al. (2021); Muller et al.
(2021). Hence, the motivation behind this paper is
to provide a solid empirical analysis of the effect of
transliteration for MLLMs with statistical analysis
and determine whether or not it helps models learn
better cross-lingual representation.

It should also be noted that, even though our
idea seems to be similar to Muller et al. (2021)
and Dhamecha et al. (2021), there are major differ-
ences. For instance, Muller et al. (2021) adapted
existing pretrained model to very low-resource lan-
guages. Whereas, we focus on training the models
with transliteration from scratch. We also train our
models on 20 languages and evaluate on more than
50 tasks. Unlike Dhamecha et al. (2021), we also
include Dravidian Languages in our analysis. Fur-
thermore, we focused on the issue of script barrier
while Dhamecha et al. (2021) focused on multilin-
gual fine-tuning. Whereas, we adopt multilingual
fine-tuning on all our models. Thus the improve-
ment we see comes only from circumventing the
script barrier. Moreover, we have provided statis-
tical testing to show the significance of translitera-
tion instead of just showing better metrics. We also
performed cross-lingual representation similarity
analysis to show the benefits of transliteration.

2.4 Cross Lingual Similarity Learning in
Language Modeling

Several techniques have recently been used to study
the hidden representations of multilingual language
models. Kudugunta et al. (2019) study CLRS of
NMT models using SVCCA (Raghu et al., 2017).
Singh et al. (2019) used PWCCA (Morcos et al.,
2018) to study the CLRS of mBERT and found
that it drastically fell with depth. (Conneau et al.,
2020) have used CKA to study the CLRS of bilin-
gual BERT models. They found that similarity is
highest in the first few layers and drops moder-
ately with depth. Müller et al. (2021) used CKA
to study CLRS of mBERT before and after finetun-
ing on downstream tasks. They found in all cases
that CLRS increases steadily in the first five layers,
then it decreases in the later layers. From this, they
concluded that mBERT learns multilingual align-
ment in the early layers and preserves it throughout
finetuning. Del and Fishel (2021) applied various
similarity measures to understand CLRS of vari-
ous multilingual masked language models. Their
results also show that CLRS increases in the first
half of the models, while in the later layers, this
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similarity steadily falls.

3 Experiment and Results

3.1 Mann–Whitney U test

We perform Mann–Whitney U test (MWU) (Mann
and Whitney, 1947; Wilcoxon, 1945) to determine
if the performance differences between the multi-
script and the uni-script models are significant. In
short, it tells us the effect of transliteration on
model performance. MWU is a non-parametric
hypothesis test between two groups/populations.
MWU is chosen because it has weak assumptions.
The only assumptions of MWU are that the samples
of the two groups are independent of each other,
and the samples are ordinal. Under the MWU, our
null hypothesis or h0 is that the performances of
the uni-script (group 1) and the multi-script (group
2) models are similar, and the alternative hypoth-
esis or ha is that the performances (groups) are
different. We set our confidence interval α at 0.05
and reject the h0 for the p-values < α. We also
report three test statistics as the p-value only gives
statistical significance, which can be misleading at
times (Sullivan and Feinn, 2012).

The test statistics are three different effect sizes
that convey three different information. These test
statistics are absolute effect size (δ), common lan-
guage effect size (ρ), and standardized effect size
(r). The absolute effect size δ is the difference be-
tween the mean of the models’ performance metric,
which is given as,

δ = µuni-script-µmulti-script

for any given task and language. When the h0 is
rejected for any given task, a positive δ indicates
the uni-script model is better, and a negative δ indi-
cates the multi-script model is better. The details
and results of common language effect size (ρ),
and standardized effect size (r) are presented in
appendix D.

3.2 Dataset

The ALBERT models were pretrained on a sub-
set of the OSCAR corpus containing Indo-Aryan
languages. We use the unshuffled deduplicated ver-
sion of OSCAR corpus (Ortiz Su’arez et al., 2019)
available via Huggingface datasets library (Lhoest
et al., 2021). We pretrain on Panjabi, Hindi, Ben-
gali, Oriya, Assamese, Gujarati, Marathi, Sinhala,
Nepali, Sanskrit, Goan Konkani, Maithili, Bihari,
and Bishnupriya portion of the OSCAR corpus.

The RemBERT models were trained on a signifi-
cantly larger pretraining corpus with additional lan-
guages. We pretrained the RemBERT models on a
combination of Wikipedia (Foundation), mC4 (Raf-
fel et al., 2019), OSCAR2109 (Abadji et al., 2021)
and OSCAR corpus. These datasets are also avail-
able via the Huggingface datasets library. In addi-
tion to the languages in the ALBERT pretraining
corpus, we consider English, four Dravidian lan-
guages Kannada, Telugu, Malayalam, and Tamil,
and an Indo-Aryan language Dhivehi. We evalu-

Lang. Sub-family Script Size(GB)
en Germanic Latin 131
hi Central Indo-Aryan Devanagari 43
mr Southern Indo-Aryan Devanagari 35
bn Eastern Indo-Aryan Bengali 28
ta South Dravidian Tamil 22
ml South Dravidian Malayalam 10
te South-Central Dravidian Telugu 7
kn South Dravidian Kannada 6
si Insular Indo-Aryan Sinhala 5
ne Northern Indo-Aryan Devanagari 4
gu Western Indo-Aryan Gujarati 3.5
pa Northwestern Indo-Aryan Gurmukhi 2
or Eastern Indo-Aryan Oriya 0.5
sa Sanskrit Devanagari 0.2
as Eastern Indo-Aryan Bengali 0.1
dv Insular Indo-Aryan Thaana 0.1
bpy Eastern Indo-Aryan Bengali < 0.1
gom Southern Indo-Aryan Devanagari < 0.1
bh Eastern Indo-Aryan Devanagari < 0.1
mai Eastern Indo-Aryan Devanagari < 0.1

Table 1: Languages in our pretraining corpus and their
writing scripts and the pretraining corpus sizes used for
the RemBERT model

ate the models on four downstream tasks from In-
dicGLUE (Kakwani et al., 2020), which are News
Article Classification, WSTP, CSQA, and NER.
We use the balanced Wikiann dataset from Rahimi
et al. (2019) for NER. In addition, we evaluate the
models on other publicly available datasets that
are part of the IndicGLUE benchmark. These are
BBC Hindi News Classification, Soham Bengali
News Classification, INLTK Headlines Classifi-
cation, IITP Movie, and Product Review Senti-
ment Analysis (Akhtar et al., 2016), MIDAS Dis-
course Mode Classification (Dhanwal et al., 2020)
and ACTSA Sentiment Classification (Mukku and
Mamidi, 2017) datasets.

3.3 Transliteration Method

We transliterate Indic language texts to Latin script
using the ISO 15919 transliteration scheme. We
tested with two publicly available implementations
of this scheme, Aksharamukha (Rajan, 2015) and
PyICU (PyICU). We found the quality of translit-
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eration of the Aksharamukha library to be better.
Thus we use this library for transliterating the in-
puts to the ALBERT uni-script model. However,
the Aksharamukha implementation is very slow
compared to the PyICU implementation. As we
significantly expanded our pretraining corpus for
the RemBERT model, we switched to PyICU for
the RemBERT uni-script model.

3.4 Downstream Finetuning

We finetune the models on each downstream task
independently. The specific hyperparameters used
for each task are reported in the appendix B. On
all tasks, we finetune with nine random seeds and
report the average and standard deviation of the
metrics. In Table 2 and Table 4, we report the per-
formances on IndicGLUE benchmark tasks and in
Table 3 on other publicly available datasets. Here,
we discuss the results on each of the the models on
each of the tasks. Furthermore, in appendix D, we
show the test statistics for all the datasets.

Wikipedia Section Title Prediction: For both
RemBERT and ALBERT models, the uni-script
model performed better on all languages except
Malayalam (ml). We noticed that a letter of Malay-
alam script is not properly transliterated by the
PyICU library. This introduced some artifacts in
the form of unnecessary splitting of words by the
subword tokenizer.

News Category Classification: It is interesting
that on this task the uni-script models performed
better for Panjabi (pa) and Oriya (or) languages.
It is clear from Table 1 that these two languages
are low-resource compared to Bengali (bn) and
Marathi (mr). On Bengali and Marathi we see
slight performance degradation which is not statis-
tically significant. This shows the validity of our
first finding.

Named Entity Recognition: On this task we
see that the uni-script model performs much bet-
ter for Assamese (as), Oriya(or), Panjabi (pa) and
Gujarati (gu). These languages are low-resource
and here again the uni-script model shines. The
large performance improvement on this task can
be explained by the fact that Named Entities usu-
ally have the same spelling after transliteration for
Indian languages. Thus the uni-script model has
better chances for learning various named-entities
during pre-training.

Article Genre, Sentiment & Discourse Mode
Classification: We evaluate the models on various

other sequence classification datasets that are part
of the IndicGLUE benchmark. Here again the uni-
script model usually performs better than the multi-
script model. However for two tasks in Malayalam
(ml) and Tamil (ta) we see better performance for
the multi-script model. We already mentioned that
there is some tokenization issue for Malayalam
which can explain the results for Malayalam. The
results for Tamil suggests that it may be a good
idea to try both uni-script and multi-script model if
they are available to see which performs best on a
particular task. However this is the only instance of
a task where we see the multi-script model perform
better.

3.5 Zero Shot Capability Testing

We use the CSQA task to test the zero-shot capabil-
ity of the models as we can use the models without
finetuning. This task is designed to test whether
language models can be used as knowledge bases
(Petroni et al., 2019). In Table 4 we report the re-
sults. We note that the RemBERT models perform
much better than the ALBERT models on this task.
This is expected as the ALBERT models’ memo-
rization capability is hampered by weight sharing.

The ALBERT uni-script model is better on all
languages compared to the ALBERT multi-script
model. This shows the potential of a uni-script
model in a restricted low parameter situation. For
the RemBERT models, the results are mixed. How-
ever, on average the uni-script model performs bet-
ter than the multi-script model. The worst results
are for Malayalam (ml) which as we mentiond be-
fore has some tokenization issues.

4 Cross-lingual Representation Similarity

In this section, we analyze why the uni-script model
performs better than the multi-script model from
the perspective of Cross-Lingual Representation
Similarity. Following (Müller et al., 2021), (Con-
neau et al., 2020) and (Del and Fishel, 2021) we ap-
ply CKA to measure CLRS. We use the CKA imple-
mentation from the Ecco library (Alammar, 2021).
We use parallel sentences on thirteen languages
from the FLORES-101 (Goyal et al., 2022) dataset.
For the ALBERT models, which are trained on
only the Indo-Aryan languages, we only consider
Panjabi, Hindi, Bengali, Oriya, Assamese, Gujarati,
Marathi, and Nepali sentences. For the RemBERT
models, we additionally consider Kannada, Telugu,
Malayalam, Tamil, and English sentences.
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Model pa hi bn or as gu mr kn te ml ta avg

Wikipedia Section Title Prediction
RemBERTMS 68.42±0.92 70.90±0.39 72.58±0.45 69.92±0.90 68.37±1.37 72.93±0.58 73.23±0.61 71.67±0.41 92.98±0.19 69.03±0.57 69.77±0.45 73.00
RemBERTUS 71.01±0.22 72.45±0.29 73.65±0.21 75.37±0.69 72.50±0.91 76.35±0.29 74.58±0.72 74.21±0.29 93.66±0.09 69.33±0.35 70.63±0.22 74.89
δ 2.59 1.55 1.07 5.45 4.13 3.42 1.34 2.54 0.68 0.31 0.86 1.89
p− value 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0035 0.0004 0.0004 0.2505 0.0006 -

ALBERTMS 74.33±0.83 78.18±0.33 81.18±0.28 74.35±1.2 76.70±0.83 76.37±0.53 79.10±0.84 - - - - 77.17
ALBERTUS 77.55±0.61 82.24±0.18 84.38±0.29 81.47±0.99 81.74±0.82 82.39±0.27 82.74±0.52 - - - - 81.78
δ 3.22 4.06 3.20 7.12 5.04 6.02 3.64 - - - - 4.61
p− value 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 - - - - -

News Category Classification
RemBERTMS 95.67±0.38 - 97.90±0.17 96.59±0.18 - 98.22±0.58 99.16±0.16 97.23±0.10 99.03±0.12 91.25±0.43 97.33±0.18 96.93
RemBERTUS 96.92±0.29 - 97.78±0.12 97.55±0.14 - 99.02±0.14 99.14±0.21 97.10±0.12 99.03±0.66 92.08±0.40 97.49±0.20 97.34
δ 1.24 - -0.11 0.95 - 0.80 -0.03 -0.13 0.00 0.83 0.16 0.41
p− value 0.0003 - 0.0981 0.0004 - 0.0040 0.7783 0.0995 0.7548 0.0014 0.0814 -

ALBERTMS 96.83±0.19 - 98.14±0.14 98.09±0.16 - 98.80±0.43 99.58±0.25 - - - - 98.30
ALBERTUS 97.90±0.17 - 97.99±0.22 98.77±0.12 - 99.40±0.54 99.47±0.21 - - - - 98.70
δ 1.07 - -0.15 0.68 - 0.60 -0.18 - - - - 0.40
p− value 0.0003 - 0.181 0.0004 - 0.03084 0.1683 - - - - -

Named Entity Recognition (F1-Score)
RemBERTMS 69.47±1.72 90.95±0.33 95.51±0.18 87.92±1.26 79±0.22 69±0.94 90.72±0.17 72.65±1.81 81.82±1.81 89.17±0.25 90.07±0.33 83.40
RemBERTUS 81.91±1.93 91.73±0.39 96.19±0.21 88.92±2.88 83.50±2.75 80.25±1.42 90.75±0.35 78.98±1.50 84.97±0.45 89.26±0.46 90.18±0.27 86.97
δ 12.44 0.78 0.68 1.00 4.28 10.31 0.02 6.33 3.15 0.01 0.12 3.56
p− value 0.00004 0.0005 0.00001 0.1615 0.0019 0.00004 0.6665 0.00004 0.00004 0.7304 0.2973 -

ALBERTMS 76.69±1.5 91.80±0.42 96.39±0.19 84.18±1.8 75.45±1.8 69.10±2.9 88.72±0.40 - - - - 83.19
ALBERTUS 85.42±1.9 92.93±0.21 97.31±0.22 93.54±0.58 89.06±2.2 80.16±0.15 90.56±0.44 - - - - 89.85
δ 8.73 1.13 0.92 9.36 13.61 11.06 1.84 - - - - 6.66
p− value 0.0004066 0.0004066 0.0003983 0.0004038 0.000401 0.0004066 0.0004095 - - - - -

orange indicates the multi-script and uni-script models are equal and blue indicates the uni-script model is better

Table 2: Results on Classification Tasks from IndicGLUE Benchmark

Language Dataset RemBERTMS RemBERTUS δ p− value ALBERTMS ALBERTUS δ p− value
Article Genre Classification
hi BBC News 76.80±0.84 77.78±0.92 0.98 0.0466 77.28±1.51 79.14±0.60 1.86 0.0088
bn Soham News Article Classification 92.86±0.10 93.69±0.20 0.83 0.0004 93.22±0.49 93.89±0.48 0.67 0.0090
gu INLTK Headlines 90.27±0.47 91.60±0.28 1.33 0.0004 90.41±0.69 90.73±0.75 0.32 0.6249
mr INLTK Headlines 91.24±0.50 92.27±0.39 1.03 0.0008 92.21±0.23 92.04±0.47 -0.17 0.3503
ml INLTK Headlines 94.11±0.49 93.33±0.22 -0.78 0.003 - - - -
ta INLTK Headlines 95.59±0.70 94.93±0.30 -0.65 0.013 - - - -

Sentiment Analysis
hi IITP Product Reviews 72.17±1.98 72.85±0.63 0.68 0.9646 76.33±0.84 77.18±0.77 0.85 0.04099
hi IITP Movie Reviews 58.66±1.09 62.65±2.74 3.99 0.0023 65.91±2.2 66.34±0.16 0.15 0.8941
te ACTSA 61.18±1.38 60.53±0.85 -0.66 0.1981 - - - -

Discourse Mode Classification
hi MIDAS Discourse 78.07±0.83 79.46±0.67 1.39 0.0415 78.39±0.33 78.54±0.91 0.15 0.7561

orange indicates the multi-script and uni-script models are equal, cyan indicates multi-script is better than uni-script models and blue indicates vice versa

Table 3: Accuracy on Public Datasets

Model pa hi bn or as gu mr ta te ml kn avg

Cloze-style QA (Zero Shot)
RemBERTMS 33.93 39.06 38.93 37.32 37.66 84.21 46.15 37.02 34.42 38.45 40.75 42.53
RemBERTUS 33.92 40.10 39.62 38.28 39.26 85.37 45.92 36.68 34.36 37.16 44.29 43.17
δ -0.01 1.04 0.69 0.96 1.6 1.16 -0.23 -0.34 -0.06 -1.29 3.54 0.64

ALBERTMS 31.04 36.72 35.19 34.63 33.92 59.86 36.14 - - - - 38.21
ALBERTUS 32.77 38.52 36.38 36.00 37.36 70.22 39.53 - - - - 41.54
δ 1.73 1.8 1.19 1.37 3.44 10.36 3.39 - - - - 3.33
cyan indicates multi-script is better than uni-script models and blue indicates vice versa

Table 4: Test accuracy on CSQA

First, we calculate the sentence embeddings of
these parallel sentences from the models. Sentence
embedding is calculated by averaging the hidden
state representations of the tokens. Then, we calcu-
late the CKA similarity score between the sentence
embeddings for each language pair. For each lan-
guage, we average its CKA similarity scores. In
Figure 1 we plot this average CKA similarity for

each layer of the models.

We see that CLRS score drops significantly at the
last layer for all models. However, the uni-script
models retain high CLRS score until the eleventh
layer, whereas the multi-script models have low
CLRS score from the ninth layer. Overall the CLRS
score of the uni-script models are more stable. This
indicates that the uni-script models have learned
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(a) ALBERTMS (b) ALBERTUS

(c) RemBERTMS (d) RemBERTUS

Figure 1: CKA Similarity Score for the multi-script and uni-script models

better cross-lingual representations.

5 Tokenizer Quality Analysis

In terms of performance, we expect the transliter-
ation model to exploit better tokenization across
the languages. Following (Ács, 2019) and (Rust
et al., 2021), we measure the subword fertility (av-
erage number of tokens per word) and the ratio
of words unbroken by the tokenizer. From fig-
ure 2, we can see that transliteration reduces the
splitting of words. This indicates that many words
that were represented by different tokens in the
multi-script model are represented by a single to-
ken in the transliteration model. On average, the
ALBERT uni-script tokenizer has a lower subword
fertility score of 1.55 compared to the multi-script
tokenizer’s 1.825. The uni-scirpt tokenizer also has
a lower proportion of continued word score of 0.36
while the multi-script tokenizer has a score of 0.45.

6 Conclusion and Future Work

In this paper, we show that transliterating closely re-
lated languages to a common script improves mul-
tilingual language model performance and leads to
better cross-lingual representations. We conducted

rigorous statistical analysis to quantify the signif-
icance and effect size of transliteration on down-
stream task performance. We found that translit-
eration especially improves performance on com-
paratively low-resource languages and did not hurt
the performance on high-resource languages. This
findings are in agreement with (Dhamecha et al.,
2021; Muller et al., 2021). Our results indicate that
in other scenarios where closely related languages
use different scripts, transliteration can be used to
improve the performance of language models. For
example, Slavic and Turkic languages present sim-
ilar scenarios. We would like to extend our study
to models at different scales and more languages
in the future. Also, another interesting future di-
rection would be to just use the transliteration for
pretraining signal but give the model the ability to
deal with the original scripts.

Limitations

A limitation of our work is that it introduces a
transliteration step into the model pipeline. Thus
we need a stable implementation of the translitera-
tion scheme. Thus the model can become tied to a
specific version of the transliteration library. Also
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(a) Subword Fertility. (b) Unbroken Ratio.

Figure 2: Subword fertility (lower is better) and unbroken ratio (higher is better)

the transliteration scheme is not perfect as we saw
for Malayalam, it introduced some artifacts. Finally
given our limited computational budget, we could
not run experiments with a lot of models at differ-
ent scales. Thus the impact of transliteration over
different model scales has not been explored. Even
though our work has these limitations, it clearly
shows transliteration as an important tool for train-
ing better multilingual models.

Ethics Statement

In their study, Joshi et al. (2020) showed the re-
source disparity between low-resource and high-
resource languages, and (Ruder, 2020) also high-
lighted the necessity of working with low-resource
languages. However, creating representative and
inclusive corpora is a difficult task and an ongoing
process and is not always possible for many low-
resource languages. Thus to inclusively advance
the state of NLP across languages, it is crucial to
develop techniques for training MLLMs that can ex-
tract the most out of existing multilingual corpora.
Hence, we believe our analysis might help MLLMS
with low-resource languages in real-world appli-
cations. However, there is one ethical issue that
we want to state explicitly. Even though we pre-
train on a comparatively large multilingual corpus,
the model may exhibit harmful gender, ethnic and
political bias. If the model is fine-tuned on a task
where these issues are important, it is necessary
to take special consideration when relying on the
model’s decisions.
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and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118–3135, Online. Association
for Computational Linguistics.

Jasdeep Singh, Bryan McCann, Richard Socher, and
Caiming Xiong. 2019. BERT is not an interlin-
gua and the bias of tokenization. In Proceedings
of the 2nd Workshop on Deep Learning Approaches
for Low-Resource NLP, DeepLo@EMNLP-IJCNLP
2019, Hong Kong, China, November 3, 2019, pages
47–55. Association for Computational Linguistics.

Haiyue Song, Raj Dabre, Zhuoyuan Mao, Fei Cheng,
Sadao Kurohashi, and Eiichiro Sumita. 2020. Pre-
training via leveraging assisting languages for neural
machine translation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 279–
285, Online. Association for Computational Linguis-
tics.

G. M. Sullivan and R. Feinn. 2012. Using Effect Size-or
Why the P Value Is Not Enough. J Grad Med Educ,
4(3):279–282.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
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A Cloze Style QA Evaluation Method

Since a word can be tokenized to multiple tokens
by the subword tokenizer, correctly evaluating the
model on this task requires special care. Specif-
ically, we have to use the same number of mask
tokens as the number of subword tokens that a word
gets split into. Then we calculate the probability
for the word by multiplying the probability of the
subword tokens predicted by the masked language
model.

B Pretraining Details

Corpus Preparation: Since the OSCAR corpus
contains raw text from the Web, we apply a few
filtering and normalization. First, we discard en-
tries where the dominant script does not match
the language tag provided by the OSCAR corpus.
Then we use the IndicNLP normalizer (Kunchukut-
tan, 2020) to normalize the raw text. For the uni-
script model, we then transliterate all the text to
ISO-15919 format using the Aksharamukha (Rajan,
2015) library.

For the RemBERT models we do not perform
any of the filtering mentioned above since our pre-
training corpus is comparatively very large. In this
case, we use the PyICU library (PyICU) for translit-
erating to ISO-15919 format.

Tokenizer Training: For the ALBERT mod-
els, we train two SentencePiece tokenizers (Kudo
and Richardson, 2018) on the transliterated and the
non-transliterated corpus with a vocabulary size of
50,000. For the RemBERT models we train Uni-
gram tokenizers from the Tokenizers library (Wolf
et al., 2020) with a vocabulary size of 65,536.

ALBERT Model Training: We first pretrained
an ALBERT base model from scratch on the non-
transliterated corpus as our baseline. Afterward,
we pretrained another ALBERT base from scratch
on the transliterated corpus. We chose the base
model due to computing constraints. We trained

the models on a single TPUv3 VM. Both models
were trained using the same hyperparameters. We
followed the hyperparameters used in (Lan et al.,
2020) except for batch size and learning rate. The
pretraining objective is also the same as (Lan et al.,
2020).We used a batch size of 256, which is the
highest that fits into TPU memory, whereas the
ALBERT paper used a batch size of 4096. As our
batch size is 1/16th of the ALBERT paper, we use
a learning rate of 1e-3/8, which is approximately
1/16th of the learning rate used in the ALBERT
paper (1.76e-2). Additionally, we use the Adam
optimizer (Kingma and Ba, 2015) instead of the
LAMB optimizer. The rest of the hyperparameters
were the same as the ALBERT paper. Specifically,
we use a sequence length of 512 with absolute po-
sitional encoding, weight decay of 1e-2, warmup
steps of 5000, max gradient norm of 1.0, and Adam
epsilon of 1e-6. The models were trained for 1M
steps. Each model took about 7.5 days to train. We
use the ALBERT implementation from the Hug-
gingface Transformers Library (Wolf et al., 2020).

RemBERT Model Training: We pretrained an
RemBERT base models similar to the ALBERT
models. We trained the models on a single TPUv3
VM. Both models were trained using the same
hyperparameters. We followed the hyperparam-
eters used in (Chung et al., 2020) except for batch
size and learning rate. The pretraining objective
is also the same as (Chung et al., 2020). We used
a batch size of 256, which is the highest that fits
into TPU memory, whereas the RemBERT paper
used a batch size of 2048. As our batch size is 1/8th

of the RemBERT paper, we use a learning rate
of 2e-4/8, which is 1/8th of the learning rate used
in the RemBERT paper. Similar to the ALBERT
model, we use the Adam optimizer (Kingma and
Ba, 2015). The rest of the hyperparameters were
the same as the RemBERT paper. Specifically, we
use a sequence length of 512 with absolute posi-
tional encoding, weight decay of 1e-2, warmup
steps of 15000, max gradient norm of 1.0, and
Adam epsilon of 1e-6. The models were trained
for 1M steps. Each model took about 7.5 days to
train. We use the RemBERT implementation from
the Huggingface Transformers Library (Wolf et al.,
2020).

C Downstream Hyperparameters

Hyperparameters for downstream tasks are pre-
sented in Table 5 and Table 6.
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Task TPU Batch Size Learning Rate Weight Decay Dropout Epochs Warmup Ratio

News Category Classification False 16 2e-5 0.01 0.1 20 0.10
Wikipedia Section-Title Prediction True 256 2e-5 0.01 0.1 3 0.10
Named Entity Recognition True 512 2e-5 0.01 0.1 20 0.10
BBC Hindi News Classification False 16 2e-5 0.01 0.1 20 0.10
Soham Bengali News Classification False 16 2e-5 0.01 0.1 8 0.10
INLTK Headlines Classification False 256 2e-5 0.01 0.1 20 0.10
IITP Movie Review False 64 5e-5 0.01 0.25 20 0.10
IITP Product Review False 16 5e-5 0.01 0.5 20 0.10
MIDAS Discourse Mode False 32 2e-5 0.01 0.5 20 0.10

Table 5: Hyperparameters for ALBERT models

Task TPU Batch Size Learning Rate Weight Decay Dropout Steps Label Smoothing

News Category Classification False 16 1e-5 0.1 0.1 2500 0.0
Wikipedia Section-Title Prediction True 256 8e-6 0.1 0.1 12500 0.0
Named Entity Recognition False 16 5e-5 0.1 0.1 10000 0.0
BBC Hindi News Classification False 16 1e-5 0.01 0.1 2500 0.0
Soham Bengali News Classification False 16 1e-5 0.1 0.1 2500 0.1
INLTK Headlines Classification False 16 1e-5 0.1 0.1 5000 0.0
IITP Movie Review False 16 1e-5 0.1 0.1 5000 0.0
IITP Product Review False 16 1e-5 0.1 0.1 5000 0.0
ACTSA Sentiment Classification False 16 1e-5 0.1 0.1 5000 0.0
MIDAS Discourse Mode False 16 8e-6 0.1 0.1 2500 0.1

Table 6: Hyperparameters for RemBERT models

For the ALBERT models batch size was chosen
to be the maximum that fits in memory. This was
done so that each batch contains approximately the
same number of tokens. Otherwise the hyperparam-
eters were chosen following the recommendations
of (Mosbach et al., 2021). On the highly skewed
IITP Movie Review, IITP Product Review and MI-
DAS Discourse we found that this default setting
resulted in worse performance compared to the in-
dependent baselines. So we finetuned the learning
rate and classifier dropout on the validation set of
these tasks.

For the RemBERT models learning rate, weight
decay, dropout, steps and label smoothing were
chosen based on grid search with a few values.

D Test Statistics Results

ρ gives us the probability of one group being better
than the other group. That is the probability that a
random performance sample of the the uni-script
model is greater than a random performance sam-
ple of the multi-script model. The last test statistic
is r which indicates the magnitude of difference

between the performance values of the uni-script
model (group 1) and the multi-script model (group
2). r shows us how realistically significant the per-
formance differences are between models even if
the performance difference is statistically signif-
icant. It gives us a value between 0 to 1 and its
ranges are: small effect ( 0 ≤ r ≤ 0.3) , medium
effect ( 0.3 < r ≤ 0.5) and large effect (0.5 <
r). We performed MWU on all downstream tasks
except CSQA. On CSQA, we only report the δ.
The MWU is performed using the SciPy library
(Virtanen et al., 2020), and the results are further
validated using R (Lüdecke, 2020). These statistic
are reported in Table 7 for the IndicGLUE classi-
fication tasks and in Table 8 for the public dataset
classification tasks.

E Cross-lingual Similarity of ALBERT
Models on All Language Pairs
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Model pa hi bn or as gu mr kn te ml ta

Wikipedia Section Title Prediction
RemBERTρ 1 1 1 1 1 1 0.91 1 1 0.67 0.99
RemBERTr 0.83 0.83 0.83 0.84 0.83 0.84 0.69 0.83 0.83 0.27 0.81

ALBERTρ 1 1 1 1 1 1 1 - - - -
ALBERTr 0.83 0.83 0.83 0.83 0.83 0.83 0.83 - - - -

News Category Classification
RemBERTρ 1 - 0.27 1 - 0.87 0.46 0.27 0.45 0.94 0.75
RemBERTr 0.85 - 0.39 0.84 - 0.68 0.07 0.39 0.07 0.75 0.41

ALBERTρ 1 - 0.31 1 - 0.80 0.31 - - - -
ALBERTr 0.86 - 0.32 0.83 - 0.51 0.32 - - - -

Named Entity Recognition
RemBERTρ 1.00 0.95 0.99 0.70 0.91 1.00 0.57 1.00 1.00 0.56 0.65
RemBERTr 0.83 0.75 0.81 0.33 0.69 0.83 0.10 0.83 0.83 0.08 0.25

ALBERTρ 1 1 1 1 1 1 1 - - - -
ALBERTr 0.83 0.83 0.83 0.83 0.83 0.83 0.83 - - - -

Table 7: Test Statistics on Classification Tasks from IndicGLUE Benchmark

Language Dataset RemBERTρ RemBERTr ALBERTρ ALBERTr

Article Genre Classification
hi BBC News 0.78 0.47 0.87 0.62
bn Soham News Article Classification 1 0.84 0.87 0.62
gu INLTK Headlines 1 0.84 0.57 0.12
mr INLTK Headlines 0.98 0.79 0.36 0.22
ml INLTK Headlines 0.08 0.70 - -
ta INLTK Headlines 0.15 0.59 - -

Sentiment Analysis
hi IITP Product Reviews 0.51 0.01 0.79 0.48
hi IITP Movie Reviews 0.93 0.72 0.52 0.03
te ACTSA 0.31 0.30 - -

Discourse Mode Classification
hi MIDAS Discourse 0.79 0.48 0.45 0.07

Table 8: Test Statistics on Public Datasets
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(a) multi-script PA-X (b) uni-script PA-X

(c) multi-script HI-X (d) uni-script HI-X

(e) multi-script BN-X (f) uni-script BN-X

(g) multi-script OR-X (h) uni-script OR-X

Figure 3: CKA of multi-script and uni-script on all language pairs for pa, hi,bn and or
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(a) multi-script AS-X (b) uni-script AS-X

(c) multi-script GU-X (d) uni-script GU-X

(e) multi-script MR-X (f) uni-script MR-X

(g) multi-script NE-X (h) uni-script NE-X

Figure 4: CKA of multi-script and uni-script on all language pairs for AS, GU, MR and NE
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Abstract

In this paper, we focus on the topics of mis-
information and racial hoaxes from a per-
spective derived from both social psychol-
ogy and computational linguistics. In partic-
ular, we consider the specific case of anti-
immigrant feeling as a first case study for ad-
dressing racial stereotypes. We describe the
first corpus-based study for multilingual racial
stereotype identification in social media con-
versational threads. Our contributions are: (i)
a multilingual corpus of racial hoaxes, (ii)
a set of common guidelines for the annota-
tion of racial stereotypes in social media texts,
and a multi-layered, fine-grained scheme, psy-
chologically grounded on the work by Fiske
et al., including not only stereotype presence,
but also contextuality, implicitness, and forms
of discredit, (iii) a multilingual dataset in Ital-
ian, Spanish, and French annotated follow-
ing the aforementioned guidelines, and cross-
lingual comparative analyses taking into ac-
count racial hoaxes and stereotypes in on-
line discussions. The analysis and results show
the usefulness of our methodology and re-
sources, shedding light on how racial hoaxes
are spread, and enable the identification of
negative stereotypes that reinforce them.

1 Introduction

Racial Hoaxes (RHs) are “a communicative act
oriented to spread fallacious information against
a social group” (Russell, 1998). As social media
have become a dominant means of communica-
tion, investigating them is crucial for tackling the
spread of RHs. We approach this task combining

* The first three authors contributed equally.

psychological and computational linguistics meth-
ods with a multilingual, cross-cultural perspective
(Italian, Spanish, and French).

In particular, RHs can contribute to the diffu-
sion of stereotypes about people belonging to the
outgroup, i.e., a social group with features that dif-
fer from the ingroup (Rooduijn et al., 2021) and
are, thus, more vulnerable. Even common, naive
users are as likely to become spreaders of RHs as
malicious users (Papapicco et al., 2022). In this
paper, we cover a specific theme: anti-immigrant
stereotypes. The discursive construction of immi-
grants and refugees in user interaction on social
media has been studied by Ekman (2019), who has
shown how racial expressions and overt racism are
becoming increasingly normalized, thus leading to
prejudices and racial stereotypes and, eventually,
even harmful acts.

Overall, the attention to these topics is rela-
tively new in the NLP community, and thus, there
is still a meaningful lack of annotated resources
for the development of automatic tools to detect
stereotypes and related phenomena. Among the
few research contributions in this direction, San-
guinetti et al. (2020) organized the second edi-
tion of HaSpeeDe at EVALITA 2020, asking par-
ticipants to automatically detect hate speech and
stereotypes in Italian tweets and headlines. Sim-
ilarly, in the DETESTS shared task at IberLEF
2022, Ariza-Casabona et al. (2022) proposed a
10-label classification task for the identification
of stereotypes in Spanish; and finally, during
IROSTEREO at PAN/CLEF 2022, Ortega-Bueno
et al. (2022) proposed an author profiling task re-
garding stereotype spreaders and studied the link
with irony in English. Recently, for French, Chiril
et al. (2021) investigated how to improve gender
hate speech classification by leveraging stereotype
detection based on multitask architectures.

686



However, such related works only focus on
monolingual contents, without considering multi-
lingual settings from which cross-cultural differ-
ences and similarities in the expression of stereo-
types can emerge. Furthermore, most of the re-
lated work limits the scope of investigation to
the mere presence/absence of stereotypes in a sin-
gle text, without diving into the finer-grained fea-
tures that arise from psychological studies (Allport
et al., 1954; Fiske et al., 2007; Cuddy et al., 2008),
and without taking into account their propagation
in social media conversational threads. Consid-
ering the gaps in current related work, we pro-
pose a cross-cultural, and multilingual perspective
for studying racial hoaxes and stereotypes. In this
work, our original contributions are:

• A Multilingual Racial Hoaxes Corpus that
was manually created, extracting fake news
about migration and racial content from fact-
checking web sites. The list of hoaxes has
been employed as the core knowledge-base
for extracting texts from social media that
spread RHs and the reactions to them.1

• A methodology that makes it possible to col-
lect a full conversational thread, with replies
and comments that are written under the post
spreading the main racial hoax.

• A multi-layered annotation scheme for the
annotation of racial stereotypes in social me-
dia texts, which allows us to study how
the presence of a racial hoax interacts
with the surrounding textual context. The
scheme, based on psychological work by
Fiske (1998), includes four layers: (a) stereo-
type presence, (b) contextuality, (c) implicit-
ness and (d) forms of discredit.

• A multilingual dataset annotated according to
this scheme. For this first study, we chose
to retrieve data in languages that are spoken
in three countries on the maritime coast of
the Mediterranean basin, where migration is
widespread and has been made a particular is-
sue in local politics: Italy, Spain and France.2

1By ‘reactions’ we refer to replies and comments to the
main thread that is spreading a racial hoax.

1To guarantee anonymity and protect the privacy of Twit-
ter users, throughout this paper, instead of using direct quo-
tations from the tweets, we only provide their English trans-
lations and/or adaptations.

2The annotated dataset will be available for research pur-

• Qualitative and quantitative analyses from
a comparative perspective of the three lan-
guage subsets, focusing in particular on
the interactions between the topics of RHs,
stereotypes and discredit in conversations.

2 Related Work

2.1 RH and stereotypes in Psychology

Hoaxes are a form of ‘misinformation’ that aims
to disseminate false information with the inten-
tion of making it viral in social media (Wardle and
Derakhshan, 2018). In particular, ‘Racial Hoaxes’
are fallacious discursive acts that contribute to the
spread of information against a social group be-
cause of race, religion or origin, such as ‘immi-
grants’ (Cerase and Santoro, 2018).

From a psychological point of view, RHs have
become an important object of study since, firstly,
they help to spread misinformation by attack-
ing, discrediting and damaging immigrants’ im-
age; secondly, they can increase the formation of
people’s prejudices and stereotypes towards the
outgroup (Fiske, 1998). In fact, while the stereo-
type is the cognitive nucleus of prejudice, which
contains a set of beliefs and social images; prej-
udice is a preconceived attitude that is based on
common voices and opinions. RHs, therefore, ap-
pear to install a stereotype facilitating a catego-
rization in which there is a generalization through
a label referring to an entire group, e.g., ‘all immi-
grants are thieves’ (Allport et al., 1954).

The manifestations of stereotypes can range
from a more explicit to a more implicit expression.
It is possible, in fact, to distinguish an EXPLICIT

stereotype content when identifying a direct asso-
ciation between immigrants and a particular qual-
ity, e.g., ‘immigrants bring us diseases’ (Fiske
and Taylor, 2013). IMPLICIT stereotypes can be
expressed through evaluative utterances and fig-
ures of speech such as metaphors, humor, and
irony. For instance, Schmeisser-Nieto et al. (2022)
present criteria to identify and annotate implicit
stereotypes focusing on immigration.

2.2 Stereotypes in Computational Linguistics

The computational linguistics community has only
recently focused on modeling stereotypes in order
to automatically recognize them, e.g., within po-
litical debates (Sánchez-Junquera et al., 2021a) or

poses upon request, together with the complete set of annota-
tion guidelines.
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social media (Sanguinetti et al., 2020; Chiril et al.,
2021), but without considering the conversational
threads in which they occur, nor their reinforce-
ment or confirmation through RHs.

Recently, Sánchez-Junquera et al. (2021a) pro-
posed a taxonomy of stereotypes about immi-
grants and approached the problem of the auto-
matic classification of stereotypes in Spanish by
focusing on the narrative frames that spread the
stereotypes. Similarly, Fokkens et al. (2018) ap-
proached stereotype detection by extracting the
microportraits and Card et al. (2016) by extracting
stories about individuals from text. Beukeboom
and Burgers (2019) propose a framework which
looks at how stereotypes are shared through lan-
guage: bias in labels and bias in the description of
characteristics and behaviors.

Fraser et al. (2022) rely on the Stereotype Con-
tent Model (SCM) and present a computational
method to mine large datasets and then map sen-
tences to the two-dimensional plane of perceived
warmth and competence (Fiske et al., 2007).
Other common computational approaches in NLP
mainly focused on measuring and quantifying so-
cial bias towards different groups, especially using
techniques of word representation, such as word
embedding (Bolukbasi et al., 2016), transform-
ers (Card et al., 2016), techniques of natural lan-
guage inference (Dev et al., 2020) and masking
BERT for racial stereotype detection (Sánchez-
Junquera et al., 2021b). In this context, this mul-
tidisciplinary study on the stereotypes related to
RHs from a multilingual, cross-cultural perspec-
tive represents an interesting, novel opportunity
to understand the expression, perception, and re-
inforcement of stereotypes, stemming from RHs,
against immigrants in conversations on Twitter.

3 From Racial Hoaxes to Reactions

In order to collect reactions to racial hoaxes on so-
cial media, we first created the Multilingual Racial
Hoaxes Corpus (MRHC), a list of 239 RHs in three
languages: Italian, Spanish, and French. Given the
difficulty of spotting them automatically, we col-
lected the entries of the MRHC manually.

Depending on the language, different fact-
checking websites or newspapers commenting on
hoaxes were used as a source for manually ex-
tracting the MRHC between 2019 and 2021. For
instance, for Italian we used the debunking sites
bufale.net and butac.it; for Spanish mald

ita.es and newtral.es; and finally for French
factuel.afp.com and lemonde.fr/les-decod
eurs.

3.1 Topics of the MRHC

Inspired by the taxonomy of stereotypes pro-
posed in Sánchez-Junquera et al. (2021a); Ariza-
Casabona et al. (2022), we defined five macro cat-
egories of topics, in which immigrants are per-
ceived as threat by the society.

Table 1 contains some examples for each topic:
(a) Security for events related to citizen safety,
such as murder, sexual assault, fights, terrorist
attacks, theft, and public disorder; (b) Public
Health related to health issues that may poten-
tially affect the population, mainly infectious dis-
eases (e.g., COVID-19); (c) Migration Control
covers migratory flows, arrivals, disembarkation,
border control and the regulation of immigration;
(d) Benefits describe situations in which the out-
group (immigrants) receives more help, social as-
sistance and welfare benefits than the ingroup; (e)
Religion covers religious and cultural differences
of the out group that threaten the traditions of the
ingroup (even though terrorism and religion are
closely associated in RH, the former category has
been considered under the security topic), and fi-
nally, (f) Others includes RHs about other topics
not included in the previous categories.

In terms of a cross-cultural analysis, we ob-
served variations among the different types of
RHs. As shown in Table 2, the most common topic
of RHs in Italian is related to Security, account-
ing for 58.76% of the total, while in Spanish and
French, RHs are related to Benefits, accounting
for 29.16% and 50% respectively. Another rele-
vant result is that the topic Religion has no rep-
resentation in the Italian subset, which is also the
case of Public Health in the French subset.

3.2 Reactions to RHs

We started the collection procedure by retrieving
texts from Twitter that contained one of the RHs
from the MRHC, or texts that presented a high
similarity to one of those. We searched for texts
containing the same URL as the RH, or same title
of news of the RH on the debunking sites, or even
keywords extracted from the textual body of RH
by using the Twitter APIs v2 for Academia.3 In

3https://developer.twitter.com/en/docs/twitte
r-api/tools-and-libraries/v2
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Example Topic
Immigrants out of control: they flee and injure an officer Security

Migrant with Covid repatriated. And now 100 agents are in quarantine Public Health

The electoral roll increases because the Government nationalizes 200,000 "illegals" Migration Control

A foreign minor, 4,700C per month, your grandmother, 426C pension per month Benefits

In Aubervilliers, the sheep ready to be slaughtered for #Eid on their way to the butcher. ReligionMind boggling! #Ramadam

Table 1: Examples of different topics of RHs. All tweets were originally written either in Italian, Spanish or
French. They have been translated to English and adapted to ensure anonymity and guarantee privacy to users.

Language Benefit Security Migration Public Religion Others TotalControl Health
Italian 4.12% 58.76% 15.46% 20.62% 0.00% 1.03% 97
Spanish 29.16% 25.00% 16.66% 12.50% 13.88% 2.77% 72
French 50.00% 25.00% 19.44% 0.00% 5.56% 0.00% 70

Table 2: Percentages of Types of RHs in the three language subsets.

Figure 1 we show the full pipeline employed for
the collection of “reactions to racial hoaxes”.

Figure 1: Pipeline for the creation of the Multilingual
Racial Hoaxes Corpus (MRHC) and reactions to them.

As can be seen from the picture above, when a
racial hoax from the MRHC was found on Twit-
ter, we referred to it as the ‘Conversational Head’,
because it was the first text in the conversational
thread. Then, for each language, we retrieved all
the conversational heads and, in order to study the
conversational context, we further collected all the
direct replies, and the replies-to-replies.

After the collection and cleaning of data, we

obtained a total of 2,850 unique tweets stem-
ming from Conversational Heads for Italian, 4,751
tweets for Spanish, and 9,305 tweets for French.
In Table 3 we display the information on the three
subsets of the multilingual dataset. We show the
number of the original RHs that we searched for
on Twitter and from which we were able to extract
the Conversational Heads. In the other columns,
we display the number of direct replies, the num-
ber of replies-to-replies, and the total of reactions
(tweets). In many cases, we had to discard the
original RH because it did not originate a conver-
sational thread on Twitter but rather contained just
images, videos or recording from other platforms
that have not been commented on Twitter with tex-
tual content (see the difference between the num-
bers in the first two columns of Table 3).

4 Annotating Reactions to Racial Hoaxes

4.1 A Multi-layered Annotation Scheme

The annotation scheme designed for the multi-
lingual dataset is inspired by studies regarding
stereotypes in the psychological and linguistic lit-
erature (Fiske et al., 2007; Cuddy et al., 2008;
Sánchez-Junquera et al., 2021a). The outcome of
such research is a scheme that consists of four lay-
ers, organized in two levels:

1. The first level refers to the presence of
a racial stereotype as a binary category
(yes/no).

2. The second level can be annotated only if the
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Lang. Original
RHs

RHs found
on Twitter

Conversational
Heads

Direct
Replies

Replies to
Replies

Total of
Reactions

Italian 97 50 273 597 2,253 2,850
Spanish 72 24 353 85 4,313 4,751
French 70 36 36 3,927 5,378 9,305

Table 3: Number of RHs and details about conversational threads.

precedent level is annotated as yes, and it in-
cludes three categories:

(a) Contextuality. It encodes whether, in
order to understand the meaning of the
racial stereotype expressed, you need to
look through the context (such as Twit-
ter thread, the RH that triggered the con-
versation, URLs and images). It is anno-
tated as a binary category (yes/no).

(b) Implicitness. It encodes whether the
stereotype is expressed explicitly in the
message (i.e., a clear span of text where
lexical items can be selected) or whether
at least one inference needs to be made
for the stereotype to be understood). It
is annotated as a binary category (ex-
plicit/implicit).

(c) Forms of Discredit. It encodes the pre-
cise form in which the text spreads a
racial or anti-migration stereotype, at-
tributing a type of behavior to the dis-
criminated target. The values that can be
applied are six: Affective Competence
(AC), Attack to Benevolence (B), Com-
petence (C), Dominance Down (DD),
Dominance Up (DU) and Physical (P).

These six categories inspired by the Stereotype
Content Model proposed by Fiske (1998), can in
turn be encompassed in two: COMPETENCE (in-
cluding C, DD, P) and WARMTH (including AC,
B, DU). In the SCM, these macro-categories are
respectively referred to as “agency” and ‘commu-
nion”. For instance, Cuddy et al. (2008) show how,
depending on the emotion that is elicited primar-
ily by the form of discredit, different ways of sort-
ing and grouping could be admissible. Further-
more, they underline that the main dimensions of
COMPETENCE and WARMTH can be seen as a two-
dimensional array for sorting groups. This is an
ideal solution that includes at least four clusters
which significantly differ regarding warmth and
competence.

This motivates our strategy in which Compe-
tence (C) is grouped with Physical (P) (both forms
of discredit with HIGH COMPETENCE), and At-
tack to Benevolence (B) with Dominance Up (DU)
(both forms of discredit with LOW WARMTH), re-
sulting in the following four clusters for forms of
discredit: C+P, DD, B+DU, AC.4

4.2 Annotation and Agreement
The data were entirely annotated on locally
adapted versions of the LabelStudio5 open source
platform, in which the questions and labels of
the annotation scheme were translated into all the
three languages.

The Italian portion of the dataset was annotated
by two trained native speakers. Concerning the
main dimension of stereotype, they obtained an
inter-annotator agreement (IAA) of κ = 0.48, as
calculated by Cohen’s kappa coefficient (moder-
ate). The remaining disagreement was solved by a
third expert. The Spanish subset was annotated by
three annotators, two of whom are Linguistics stu-
dents trained for the task, along with a researcher.
The IAA was calculated by Fleiss’ Kappa coef-
ficient, resulting in κ = 0.76. The French sub-
set was annotated by a total of four annotators:
an expert and three Linguistics students. Due to
the larger quantity of data to annotate, most of the
subset was annotated separately by two annotators
(two sets of ∼ 4, 250 tweets). The rest was anno-
tated in three sets, each by two annotators, at dif-
ferent stages of the annotation process, to ensure
no degradation in IAA was occurring. The Co-
hen’s Kappa for the French stereotype annotations
is κ = 0.73.

Comparing the scores in the three subsets, it can
be noticed that in Italian the IAA is lower with re-
spect to those obtained in French and Spanish. Our
hypothesis to explain this is linked to the fact that,
in Italian conversational threads, the discussions
among users tends to shift quickly to other sub-

4Please note that the dataset has been annotated according
to the six forms of discredits and that this grouping has been
designed with a computational perspective in mind.

5https://labelstud.io/
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jects that are unrelated to RHs. We think that this
conversational drift in a large number of tweets
created doubt among the annotators and lowered
the overall IAA.

Figure 2: Triplet of tweets from a conversational
thread, with the decision tree of the annotation scheme.

We conclude this section with a commented
example. Figure 2 shows a Twitter conversa-
tional thread and the application of the annota-
tion scheme on it. By looking at the third tweet
of the triplet –in the blue box– it can be observed
how the user reinforces the stereotypical distinc-
tion between “us” and “them”, which highlights
the concept of the ingroup as different from the
outgroup. The anaphorically referenced “them” is
the group (outgroup) to which the immigrant cited
in the SOURCE RACIAL HOAX belongs, and for
this reason the text has been annotated as contain-
ing a racial stereotype.

In order to grasp the presence of the stereo-
type and understand its content, the annotator also
had to read the previous textual context (DIRECT

REPLY and SOURCE RACIAL HOAX), so the di-
mension of contextuality was annotated as posi-
tive. As for the implicitness dimension, the tweet
clearly states that “they do whatever they want”,
and because this sentence is a clear lexical expres-
sion of generalization, the stereotype is annotated
as explicit. Finally, according to what the user

wrote, the immigrant exercises a sort of forceful
dominion and displays aggressive behavior, break-
ing the law. For this reason, the text was annotated
as containing the form of discredit labelled Domi-
nance Up.

5 Cultural and Linguistic Analyses

In this section, we describe the comparative anal-
yses we performed to extract analogies and dif-
ferences in the expression of stereotypes and the
forms of discredit in the reactions to RHs among
the three subsets.

5.1 Quantitative Results

In Table 4 we report the distribution and per-
centage of each annotated dimension. As can be
seen, in the Italian and French data, stereotypes
are found more rarely than in the Spanish subset,
which contains about 30% of stereotypes. Another
commonality between the Italian and French sub-
sets is the distribution of contextuality and implic-
itness. In contrast, the Spanish subset contains a
higher percentage of explicit stereotypes. Finally,
the distribution of forms of discredit is similar in
the French and Spanish subsets. In these two sub-
sets, stereotypes are mainly concerned with the
provision of social and economic benefits by gov-
ernments (DD), as well as criminality, illegality
and fear of invasion (B+DU). In Italian, this last
form of discredit is present with a higher percent-
age, followed by discredit regarding the compe-
tences of immigrants and their physical attributes
(C+P).

In our dataset, the number of tweets contain-
ing stereotype is lower than in other datasets la-
belling the presence of this phenomenon (San-
guinetti et al., 2020; Ortega-Bueno et al., 2022).
Rather than a purposely balanced dataset created
in the context of shared tasks, our multilingual
dataset is a reflection of users’ reactions to RHs
in social media.

5.2 Stereotype, Discredit, and Types of RHs

In this section, we report some observations re-
garding the reactions to RHs retrieved from Twit-
ter in the three languages. For Italian, we were
able to retrieve a total of 67 RHs on Twitter from
the original 97 taken from fact-checking websites
(see Table 2). However, after the annotation pro-
cess and discussion, the gold dataset contains re-
actions to only 50 RHs. Those RHs that foster the
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Forms of Discredit

Language Tweets Stereotype Contextual Implicitness Agency Communion
yes no yes no explicit implicit C+P DD B+DU AC

Italian 2,850 234 2,616 177 57 95 138 71 40 176 12
8.21% 91.79% 75.64% 25.36% 40.60% 59.40% 23.75% 13.38% 58.86% 4.01%

Spanish 4,751 1,449 3,302 549 900 1,344 105 23 761 421 119
30.50% 69.50% 37.89% 62.11% 92.75% 7.25% 1.74% 57.48% 31.79% 8.99%

French 9,305 1,093 8,211 818 275 114 979 43 609 395 97
11.75% 88.25% 74.84% 25.16% 10.43% 89.57% 3.76% 53.23% 34.53% 8.48%

Table 4: Number of texts and label distribution for the categories annotated in the three language subsets. The
numbers in the last four columns do not sum up to the total of the tweets containing stereotype. Indeed, discredit
could be annotated with more than one label per tweet, and tweets could therefore be counted more than once.

Language Benefit Security Migration Public Religion OthersControl Health

Stereotype
Italian 0.21% 51.69% - 48.09% - -
Spanish 38.79% 20.01% 10.97% 0.07% 30.16% -
French 70.91% 9.70% 10.43% - 8.97% -

Table 5: Percentage co-occurrence of the presence of racial stereotypes and topic of the RH originally spread.

most stereotyped conversations are mainly nine,
describing immigrants as threats to public health
and security (see Table 5), as shown in the follow-
ing examples:

(1) Coronavirus spreads, Government goes to se-
cretly take illegal immigrants in Africa

(2) He kills an old Jewish woman at the cry of Allah
Akbar. Acquitted because he was drugged.

The special attention paid to these two topics
is also evident in the analysis of the most used
hashtags in the tweets labelled with the pres-
ence of negative stereotypes, such as: #Crimes-
Immigrants, #SALVINI, #PD, #M5S, #hospital-
ity. By using these hashtags, the users discuss the
adopted policies of hospitality and control of im-
migration of various political parties (#SALVINI,
#PD, #M5S), or depict immigrants as crimi-
nals (#CrimesImmigrants). The tweets containing
these hashtags tend to be labelled with the B+DU
form of discredit.

For Spanish, we were able to retrieve 24 RHs
on Twitter, out of the 72 RHs originally collected
from the fact-checking websites. The most preva-
lent topic within the Spanish context is related
to benefits and the “illegality” of the immigrant.
Those topics are associated directly to the forms
of discredit DD and B+DU. These topics are also
reflected in the use of hashtags such as: #StopIlle-
galImmigration or #Pensions.

Regarding French, from the 70 RHs identified
at the start on the fact-checking website, we ex-
tracted 36 instances published on Twitter. As men-
tioned in Section 3.2, in some cases, we discarded
the original RH because it did not originate a con-
versational Twitter thread or only contained im-
ages and videos without textual content. This was
common in all the three languages considered.

Overall, French RHs had two common themes:
attributing the role of victims to the representatives
of Western civilization and the role of perpetrator
to immigrants, as in Example (3) below; and point-
ing the finger at political decisions, real or fanta-
sized, which would favor migrant populations at
the expense of the “good French” such as farmers
and students, as in Example (4).

(3) Immigrants burn down a refugee center because
there’s not enough Nutella: [URL]

(4) An immigrant who has never paid taxes in France
receives 820 euros per month from the state, in the
meantime some farmers get only 360 euros, how do
you expect French people not to be angry?

The tweets similar to Example (3) are mainly as-
sociated with reactions containing B+DU types of
discredit (around 35% of the total) while those
similar to Example (4) are linked to DD (∼53%).

5.3 Contextuality and Implicitness
Focusing on the textual context, we analyzed how
the stereotypes are propagated from the starting
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point of the conversations throughout the thread,
and if the context is needed to infer implicit forms
of stereotypes in the three languages.

In the Italian subset, the majority of the tweets
(87%) that are conversational heads (see Table 3)
contain negative stereotypes against immigrants.
However, even though a conversational head is
deemed stereotypical, it is not correct to assume
that all the tweets within its thread also contain
stereotypes. Indeed, only about 17% of direct
replies contain stereotypes and only 6% of the re-
maining threads are labelled with the presence of
stereotypes. This is due mainly to two factors: 1)
the tweets spreading fake news or offensiveness
tend to be deleted by Twitter; 2) some of the tweets
in the conversational threads tend to unveil the in-
accuracy of the hoax.

Similarly to what happens in the Italian con-
versations, in the French subset, all conversa-
tional heads contain stereotypes, while 14% of di-
rect replies and 10% of replies-to-replies contain
stereotypes. Indeed, the fact that the RHs were
debunked by fact-checking websites leads many
comments to be criticisms of the conversational
head, and this phenomenon is accentuated even
more when the RH is shared by accounts with
many followers. For the Spanish dataset, only
54% of conversational heads contain stereotypes,
with the vast majority of stereotypes contained in
replies, accounting for 90% of them.

Implicitness
Language χ2

Contextuality
Italian 45.954
Spanish 41.169
French 11.419

Table 6: Association between contextuality and im-
plecitenss. The χ2 tests are statically significant at
p < 0.001 for the three languages.

The results reported in Table 6 show a statically
significant association between the dimensions of
implicitness and contextuality. As defined in Sec-
tion 4, annotators labeled the necessity to use the
context to understand the message or infer the
presence of stereotypes. As expected, in the three
datasets, the inference of stereotypes is especially
facilitated by access to the textual context.

5.4 Lexical Analysis
To better understand the similarities and differ-

ences at the linguistic and cultural level between
the languages, we performed a linguistic analysis,
looking at the discriminative lexica used in texts
containing stereotypes and labeled with specific
forms of discredit. In particular, for all datasets,
we listed: the most relevant n-grams6 of the data
annotated with stereo = yes (comparing them with
the n-grams of the data annotated with stereo =
no), and the most relevant n-grams from the data
annotated with the four forms of discredit.

By looking at the resulting lists of words, we
noticed that, in Italian, the words extracted from
texts that do not contain stereotypes are related to
the emotional sphere (“feeling”, “feel ashamed”,
“hope”), in contrast to those extracted from texts
containing stereotypes, which are related mainly
to the negative actions of immigrants (“immi-
grant rape”, “kill”, “spit”). Regarding the various
forms of discredit, we observed interesting differ-
ences. In general, words such as “invasion”, “oc-
cupation” and “commanding” or expressions like
“walk in underwear” or “laugh in court” are typi-
cal in texts annotated with the labels grouped un-
der communion. In contrast, words such as “lux”,
“gratis”, “withdraw”, “euro”, “gene” or expres-
sions like “psychological disorder”, “return to pre-
history” are present in texts annotated with the la-
bels grouped under agency.

For the French subset, we noticed similar pat-
terns for the terms linked to instances containing
stereotypes, with links to violence (“knife”), but
also to school (“schooling”, “student”), which are
often brought up in instances labeled with dis-
credit under the agency group (more particularly,
DD), in claims that children of immigrants receive
disproportionate financial aid from the state. For
instances which do not contain stereotypes, we no-
tably find terms related to misinformation (“fake”,
“fake news”, “ridiculous”), which are often lev-
elled against tweets containing stereotypes linked
to racial hoaxes.

This underlines the polarization found in the re-
actions to RHs, by which one section of the users
oppose ideas embodied in the RH since they are
spread by a proven fake news, thereby avoiding
playing the game of attributing certain character-
istic to the population designated by the label of

6The n-grams are weighted using the TF-IDF measure on
normalized texts; the phase of preprocessing involved: the
deletion of all user mentions, stop-words, punctuation and
URLs, leaving only words that were lexically significant; the
tokenization, and the lemmatization with the SpaCy library.
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"immigrants"; while another section of the users
deliberately ignores the fact that the news has been
diverted to focus on the designation of immigrants
as the source of a problem. Immigrants are blamed
either by their mere presence, which would rep-
resent a competition for limited resources, or by
their acts, essentializing them as individuals all
alike, violent and imposing their foreign culture.

The Spanish dataset also present interesting
patterns in line with the topics of the grouped data.
Firstly, the most prevalent words from texts with
no stereotypes are related mainly to politics and
economy (“unemployment”, “reform”, “commu-
nist”), whereas texts containing stereotypes show
representative words used in RHs (“illegal immi-
grant”, “tradition”, “pay health care”). In relation
to the categories of discredit, the main characteris-
tic of communion is the perception of immigrants
as violent, but also as victims, a fact that we can
observe in the words like “invasion”, “security”,
“serious” on the negative view, and “poor”, “for-
eigner” and “right” on the patronizing view. On
the other hand, agency takes a rather derogatory
point of view of immigrants, which is displayed in
words such as “idiot”, “inferior race” and “dumb”.
The lexica in all languages reflect the stereotypes
used against immigrants and the different forms of
discredit.

6 Conclusion and Future Work

In this paper, we presented the first outcomes of
a study of the stereotypes that are spread through
racial hoaxes, with the aim of creating NLP re-
sources and tools to automatically detect them. In
order to address this challenging task, we started
with an examination of the psychological and
computational literature on fake news and stereo-
types. This helped us to build the MRHC, the first
multilingual corpus of racial hoaxes, which in-
cludes RHs in Italian, Spanish, and French, classi-
fied according to the topic of the news they spread.
We designed a multi-layered annotation scheme
for the annotation of racial stereotypes that takes
into consideration the conversational thread ex-
tracted from social media. We applied it for the
first time to a newly created multilingual dataset
of Twitter reactions to RHs. Thanks to the out-
comes of the annotation procedure, we were able
to perform cross-cultural and cross-language anal-
yses of these texts that are shaped in a Twitter con-
versational structure.

The results show that the presence of stereo-
type is, in general, lower within the RHs domain,
with respect to its percentage in other pre-existing
more general-purpose datasets (e.g., the ones de-
veloped within shared tasks). Other relevant find-
ings show that, even if the first source RH con-
tains a stereotype, in the following replies in the
conversational thread, the presence of stereotypes
decreases. Additionally, the dimension of implic-
itness was shown to be highly dependent on the di-
mension of contextuality in this domain. Content-
wise, from an observation of RHs’ topics, crossed
with a lexical analysis (counting the most relevant
tokens and expressions in each language subset),
the outcomes show how the presence of stereo-
types is linked to words that are typically grounded
within the specificities of a certain language or
culture. Finally, it can be observed that people who
continue to spread a stereotypical view, originated
in the source tweet and throughout the replies-to-
replies, typically use polarized expressions that are
in line with the original RH that generated the full
conversational thread.

Thanks to the resources and framework elabo-
rated in this study, it will be possible to investigate
the spread of racial stereotypes on social media in
a finer-grained way from a computational perspec-
tive and in a multilingual context. Furthermore,
these steps are essential for developing computa-
tional tools for the automatic detection and classi-
fication of racial stereotypes in real-life scenarios.

Limitations

In this work we presented, for the first time, a
multi-layered scheme for the annotation of racial
stereotypes in social media data in three differ-
ent languages and in conversational threads. This
work can, therefore, be considered pioneering and
its multi-layered annotation scheme might require
adaptation if applied to datasets with very differ-
ent characteristics. The Stereotype Content Model
inspired the annotation and analysis of stereo-
types, by providing a socio-psychological theoret-
ical framework. However, when being as faithful
as possible to it during the annotation process, a
computational setting can benefit from the integra-
tion of a more data-driven perspective.

Furthermore, the three subsets of the multilin-
gual dataset of “reactions to racial hoaxes” now
have very different sizes and present many unbal-
anced dimensions and high data sparsity. If in the
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future they will be used for computational tasks, as
it is intended, they should be made more balanced
and more inclusive in terms of data sources.

Finally, cultural and geographical differences
between the three languages of this study need to
be taken into account and investigated in a deeper
fashion, as it emerged that they are not trivial.
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Abstract

Quotes are critical for establishing credibility
in news articles. A direct quote enclosed in
quotation marks has a strong visual appeal
and is a sign of a reliable citation. Unfortu-
nately, this journalistic practice is not strictly
followed, and a quote in the headline is often
“contextomized." Such a quote uses words out
of context in a way that alters the speaker’s
intention so that there is no semantically
matching quote in the body text. We present
QuoteCSE, a contrastive learning framework
that represents the embedding of news
quotes based on domain-driven positive and
negative samples to identify such an editorial
strategy. The dataset and code are available at
https://github.com/ssu-humane/
contextomized-quote-contrastive.

1 Introduction

A direct quotation, a verbatim replication of a
speaker’s words as opposed to offering news re-
porters’ own opinions, manifests news stories’ neu-
trality, factuality, and objectivity (Zelizer, 1989).
Quoting others also adds color to the news with
authentic expressions and conveniently establishes
authority based on the speakers’ reputation (The
Missouri Group, 2013). Therefore, a direct quota-
tion constitutes an integral element of news report-
ing (Nylund, 2003).

More studies have found a link between the use
of direct quotations and fake news. Content anal-
yses of news stories document evidence such that
deceptive (versus trustworthy) news articles con-
tain more direct quotations (Dalecki et al., 2009;
Govaert et al., 2020). An equally problematic but
less studied concern involving direct quotations
is contextomy, quoting words out of context in a
way that alters the speaker’s intention. A previous
study argued that contextomy is a "common spin
tactic" of news reporters promoting their political
agenda (McGlone, 2006, p. 332).

Figure 1: The central idea of QuoteCSE is based on
journalism principles, where quotes from news head-
lines and body text should be matched. The proposed
contrastive learning framework maximizes the semantic
similarity between the headline quote and the matched
quote in the body text while minimizing the similarity
for other unmatched quotes in the same or other articles.

Some news outlets have been notorious for ed-
itorializing and sensationalizing their stories with
contextomized quotes in news headlines (Han and
Lee, 2013). The first example in Table 1 illustrates
contextomy. This example has a headline, "A gov-
ernment handing out money ... ‘A debt crisis, like
Greece, is on the horizon’." The quoted sentence
rephrased a financial expert saying in the body text,
"If we do not maintain our fiscal health, we may
end up like Greece." This is far from word-for-
word replication. Instead, the headline reduced the
expert’s normative claim about government spend-
ing and fiscal distress to a blurb that blasted the
national leadership, which was on the opposite side
of the political spectrum. As such, a contextomized
quote in a news headline can serve as an editorial
slogan, misinforming public opinion.

We propose a new problem of identifying con-
textomized quotes in news headlines. In contrast
to a modified quote, which corrects grammar, re-
places unheralded pronouns with proper names,
removes unnecessary phrases, and substitutes syn-
onyms, a contextomized quote refers to the ex-
cerpt of words with semantic changes from the
original statement (McGlone, 2006). Hence, the
task is to classify whether a headline quote is se-
mantically matched by comparing quotes in the
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News headline quote Body-text quotes Label

"이대론그리스처럼파탄"
(A debt crisis, like Greece, is
on the horizon)

"건강할때재정을지키지못하면그리스처럼될수도있다"
(If we do not maintain our fiscal health, we may end up like Greece)
"강력한 ‘지출구조조정’을통해허투루쓰이는예산을아껴필요한
곳에투입해야한다" (Wasted budgets should be reallocated to areas
in need through the reconstruction of public expenditure)

Contextomized

"불필요한모임일절자제"
(Avoid unnecessary gatherings
altogether)

"저도백신을맞고해서여름에어디여행이라도한번갈계획을
했었는데..." (Since being vaccinated, I had planned to travel somewhere
in the summer, but ...)
"행사가일단다취소됐고요..." (Events have been canceled...)
"어떤행위는금지하고어떤행위는허용한다는개념이아니라
불필요한모임과약속,외출을일제자제하고. . . ." (It is not a matter of
prohibiting or permitting specific activities, but of avoiding unnecessary
gatherings, appointments, and going out altogether...)

Modified

Table 1: Dataset examples in Korean and their English translations

news headline and body text.
To tackle the detection task, we propose using

contrastive learning for quote representation, which
trains a model to maximize the similarity of sam-
ples that are expected to be similar (known as posi-
tive samples). Simultaneously, the model tries to
reduce the similarity between samples that should
be dissimilar (aka negative samples). Following
the recent research in contrastive sentence embed-
ding (Gao et al., 2021; Chuang et al., 2022), we
introduce a positive and negative sample selection
strategy that is suited to the problem.

Our key idea is illustrated in Figure 1. If a direct
quotation appears in a news headline, there should
be a quote with the same semantics in the body
text. Furthermore, the title quote must be distinct
from other quotes in the same article or from quotes
in other (randomly chosen) news articles. Since
quotes from the same article share common top-
ics, it is more challenging to distinguish a headline
quote from those in its body text than to under-
stand semantic differences between quotes from
distinct articles. Adopting the ‘hard’ negatives in
contrastive loss can help a model learn an effective
representation, thereby capturing nuanced seman-
tic differences between quotes. Evaluation experi-
ments show its effectiveness at the target problem
as well as its high quality in terms of theoretical
measures, such as alignment and uniformity.

Our main contributions are three-fold:

1. Based on journalism research and principles,
we present a new NLP problem of detecting
contextualized quotes in news headlines.

2. We release a dataset for the detection prob-
lem based on a guideline constructed by an-
notators with journalism expertise. The label

annotation by three workers achieved Krip-
pendorff’s alpha of 0.93.

3. We present QuoteCSE, a contrastive quote em-
bedding framework that is designed based on
journalism ethics. A QuoteCSE-based detec-
tion model outperformed existing methods,
including SimCSE and fine-tuned BERT.

2 Related Work

Following the recent success in computer vi-
sion (Chen et al., 2020a; He et al., 2020; Grill
et al., 2020; Chen and He, 2021), previous stud-
ies on contrastive sentence embedding focused on
how to construct a positive pair by employing data
augmentation methods to an anchor sentence (Fang
et al., 2020; Giorgi et al., 2021; Wu et al., 2020; Yan
et al., 2021). A recent study showed that a simple
dropout augmentation (unlike complex augmenta-
tions) with BERT to construct a positive pair could
be an effective strategy known as SimCSE (Gao
et al., 2021). Another study improved the perfor-
mance by combining SimCSE with masked token
detection (Chuang et al., 2022). This study pro-
poses a strategy for selecting positive and negative
samples according to journalistic ethics.

3 Problem and Data

Research Problem Let a given news article be
X : (T,B), where T is the news title, and B is the
body text. Our task is to predict a binary label Y
indicating whether the headline quote in T is either
contextomized (1) or modified (0) by referring to
the body-text quotes. The detection target is news
articles that use at least one direct quotation in the
headline and body text.
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News Data Collection We gathered a nationwide
corpus of Korean news articles published through
Naver, a popular news aggregator service. Direct
quotes in news articles were identified via regular
expression. The dataset contains around 0.4 million
news stories published until 2019.

Label Annotation Two journalism-major under-
graduates were trained to manually label whether
a direct quote in the headline is contextomized or
modified. The contextomized quote refers to the
excerpt of words with semantic changes from the
original statement. The modified quote in a head-
line keeps the semantics of the original expression
but is a different phrase or sentence. A faculty
member in mass communication drafted annota-
tion guidelines that stipulated the definitions of con-
textomized and modified quotations with multiple
examples. The annotators reviewed the guidelines
and labeled 70 (up to 200) news articles per training
session. Inconsistent cases were discussed to reach
a consensus. After the eighth iterative training prac-
tice over two weeks, the annotators achieved high
inter-coder reliability (Krippendorff’s alpha = 0.93
for 200 articles). Then the annotators split the rest
and labeled the news articles separately.

We randomly sampled 2,000 news articles for
the manual annotation. We ignored cases where the
body text includes an identical quote to the one in
the headline because its detection can be achieved
by a string-matching method without learning. As
a result, the final dataset comprises 814 contex-
tomized and 786 modified samples, leaving a total
N of 1,600. Table 1 presents examples. We inves-
tigate contrastive embedding approaches to utilize
the 381,206 news articles that remained unlabeled.

4 Methods

To predict the label L of X : (T,B), we utilize
contrastive embedding and measure the semantic
relationship between quotes in the headline and
body text. We introduce the main framework.

4.1 Background: SimCSE
SimCSE (Gao et al., 2021) is a contrastive learning
method that updates a pretrained bidirectional trans-
former language model to represent the sentence
embedding. Its loss function adapts InfoNCE (van
den Oord et al., 2018), which considers identical
text with a different dropout mask as a positive
sample and the other text within the same batch as
negative samples. Formally, the SimCSE loss of

i-th text xi is

−log
esim(hi,h̃i)/τ

∑N
j=1 e

sim(hi,h̃j)/τ
, (1)

where hi is xi’s embedding1, h̃i is the embedding
of positive sample, τ is temperature hyperparame-
ter, N is the batch size, and sim(·, ·) is the cosine
similarity between embedding vectors.

4.2 Proposed Method: QuoteCSE
We propose QuoteCSE, a domain-driven con-
trastive embedding framework on news quotes. Its
contribution is in defining positive and hard neg-
atives according to journalism principles. This
framework identifies positive and negative samples
for a news headline quote according to the golden
rules of journalism: When a direct quotation ap-
pears in a news headline, its body text should in-
clude a quote that is either identical or semantically
similar to the headline quote. The latter form can
be a good candidate for contrastive learning, where
semantically identical yet lexically different quotes
serve as ‘positive’ samples. The other quotes in the
body text represent different semantics yet cover
the same topic, serving as hard negative samples.

We define the QuoteCSE loss of i-th sample
X(i) : (T (i), B(i)) as

−log
esim(hi,h

+
i )/τ

∑N
j=1{esim(hi,h

+
j )/τ + esim(hi,h

−
j )/τ}

, (2)

where hi is embedding of headline quote for i-th
sample. h+

i and h−i are embedding of positive and
negative quotes in the same body text B(i). h+

j and
h−j are embeddings of X(j), other news articles in
the same batch (i ̸= j), which are negative samples.

We applied SentenceBERT (SBERT) (Reimers
and Gurevych, 2019) to make initial assignments
on positive (i.e., semantically identical) and nega-
tive (i.e., dissimilar) samples among quotes in the
body text. A quote is deemed positive if it appears
the most similar to the quote in the news headline.
After excluding the positive sample, one quote from
the body text was chosen randomly as the negative
sample. We removed news articles where the co-
sine similarity between the anchor and the positive
sample is below 0.75 because the news headline
quote might be contextomized. Additionally, news

1We applied a 2-layer MLP projection head to the hid-
den representation corresponding to the [CLS] token in the
pretrained BERT.
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F1 AUC

BERT 0.665±0.007 0.662±0.006
SBERT 0.44±0.083 0.591±0.020
SimCSE-Quote 0.69±0.009 0.686±0.009
SimCSE-NLI 0.617±0.008 0.623±0.008

BERT fine-tune 0.754±0.006 0.749±0.006
QuoteCSE 0.77±0.007 0.768±0.008

Table 2: Performance comparison with baselines.

articles that did not contain at least two quotes
in the body text were eliminated. The remaining
86,275 articles were divided into 69,020, 8,627,
and 8,628 for training, validation, and testing of
contrastive learning methods.

We compared QuoteCSE with three baseline em-
bedding methods, (i) BERT (Devlin et al., 2019)2,
(ii) SBERT3, and (iii) SimCSE. For BERT and
SBERT, we used the model checkpoint that was
pretrained on a Korean corpus. For SimCSE, we
tested two versions. The first version is to train
BERT on our news corpus by minimizing Eq. 1 on
headline quotes (SimCSE-Quote). The second
version is a publicly available SimCSE embedding
pretrained on a corpus on natural language infer-
ence in Korean (SimCSE-NLI)4. For QuoteCSE
and SimCSE-Quote, we used SBERT for the initial
assignments of positive and negative samples. The
assignments iteratively get updated for every train-
ing step using the target embedding being trained
(e.g., QuoteCSE). QuoteCSE and SimCSE-Quote
were trained on the 69,020 sizes of the unlabeled
corpus with a batch size of 16, which is the upper
limit under the computing environment.

To assess the role of contrastive learning, we
implemented a binary MLP classifier with a 64-
dimensional hidden layer, following an embedding
evaluation framework (Conneau and Kiela, 2018).
The model takes u, v, |u − v|, and u ∗ v as in-
put, where u and v are the embeddings of a news
headline quote and the body-text quote most sim-
ilar to the u, respectively. In deciding v, cosine
similarity is used along with the target embedding.
The classifier predicts whether the headline quote
is contextomized based on a vector relationship
between u and v.

For evaluation, we report the mean F1 and AUC
scores by repeating the split process 15 times on

2huggingface.co/monologg/kobert
3huggingface.co/jhgan/ko-sbert-sts
4github.com/BM-K/KoSimCSE-SKT

Positive Hard Negative F1 AUC

QuoteCSE QuoteCSE 0.77±0.007 0.768±0.008

SimCSE QuoteCSE 0.7±0.005 0.69±0.004
QuoteCSE − 0.674±0.006 0.673±0.006

Table 3: Ablation results confirm the role of both posi-
tive and negative samples in the model.

the labeled dataset with a ratio of 8:2. As a strong
baseline, we also tested a fine-tuned BERT classi-
fier (BERT fine-tune) that takes ’[CLS] qt [SEP]
qb,1, · · · , qb,Nb [SEP]’ where qt is the headline
quote, qb,i is the i-th quote in the body text, and Nb

is the number of body-text quotes. Details of the
model configuration and computing environment
are in Section A.1.

5 Evaluation Results

Table 2 presents the evaluation results for the con-
textomized quote detection. We report the average
performance along with standard errors by repeat-
ing the experiments using each different random
seed. QuoteCSE obtained an F1 of 0.77 and an
AUC of 0.76, outperforming the fine-tuned BERT
and other contrastive learning methods. Among
the baseline models, the fine-tuned BERT model
achieved the best F1 of 0.754, which is signifi-
cantly higher than the performance of the standard
contrastive learning methods. The results point to
the effectiveness of journalism-driven contrastive
quote embedding for the detection problem.

Ablation experiment We examined the impor-
tance of positive and negative samples in the
QuoteCSE framework by removing each compo-
nent. The first model is to replace QuoteCSE’s
positive sample with that of SimCSE, which is
an embedding of the anchor text with a different
dropout mask. The second model is to ignore the
hard negative sample from QuoteCSE. It only dif-
fers from SimCSE in the selection of the positive
sample. We trained two contrastive embeddings
using the 69,020-size unlabeled corpus. Table 3
presents the results. The detection performance of
QuoteCSE was reduced significantly by the abla-
tion of the positive and negative samples. The hard
negative sample turned out to be more critical to
the detection performance, as F1 of the correspond-
ing model decreased by 0.096. The results confirm
the necessity of both positive and negative samples
in the QuoteCSE framework.
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Alignment
(title-title)

Alignment
(title-body)

Uniformity

BERT 0.638 0.738 -0.711
SBERT 0.227 0.329 -1.356
SimCSE-Quote 0.503 0.38 -2.176
SimCSE-NLI 0.319 0.26 -3.257

QuoteCSE 0.15 0.194 -3.562

Table 4: Results of alignment (i.e., closeness of positive
samples) and uniformity (i.e., even distribution) scores

Embedding quality We employed two metrics
to evaluate the quality of contrastive sentence em-
beddings (Wang and Isola, 2020). The first is align-
ment, which measures how closely positive pairs
are located in the embedding space. The next is uni-
formity, which measures how evenly distributed the
target data is. A smaller value denotes a higher em-
bedding quality for both metrics, and their formal
definitions are given in Section A.2. We examined
two alignments: (i) between two embeddings from
the same headline quote with a different dropout
mask (title-title) and (ii) between a headline quote
and a positive quote in the body text (title-body).
We measured the three metrics on the test split
of unlabeled data. Table 4 shows that QuoteCSE
achieves the best result for all types of theoretical
measures, implying a high embedding quality.

Error analysis We identified a common pattern
of false positives where a model deems a quote
contextomized, which turned out to be modified.
They corresponded to instances in which a quote
in the headline represents a claim that combines
multiple quotes in the body text. For example,
in a news article, a headline quote was “감옥같
은 생활... 음식 엉망 (Prison-like conditions...
Poor food)” which could be referred to multiple
quotes in the body text “삿포로생활은감옥처
럼느껴진다 (Living in Sapporo feels like being
in prison)” and “음식도엉망이다 (food is poor).”
Since the current detection framework compares a
headline quote and another quote in the body text,
it could not detect the corner case of a modified
quote. Future studies could investigate an approach
that considers multiple quotes in the body text.

6 Conclusion

Inspired by the importance of direct quotations in
news reporting and their widespread misuse, this
study proposed a new NLP problem of detecting
contextomized news quotes. While there had been

studies on quote identification (Pavllo et al., 2018)
and speaker attribution (Vaucher et al., 2021), this
study is the first to discern a specific type of head-
line news quote that distorts the speaker’s intention
and is cut out of context. Not only does it vio-
late journalism ethics (The Missouri Group, 2013;
Nylund, 2003), but it can also mislead public opin-
ion (McGlone, 2006). Therefore, tackling the prob-
lem of detecting contextomized quotes in news
headlines can significantly aid the existing efforts
to nurture healthy media environments using NLP
techniques (Oshikawa et al., 2020).

Understanding the subtle semantic differences
between quotes from news headlines and those
from body text is a prerequisite for detecting con-
textomized news quotes. To assist with this, we
introduce QuoteCSE, a contrastive learning frame-
work for quote representation. We specifically tai-
lored SimCSE (Gao et al., 2021) to the detection
of the editorial slogan by proposing a positive and
negative sample selection strategy consistent with
journalism ethics. In the evaluation experiments,
we confirmed the effectiveness of both positive and
hard negative samples in the journalism-driven con-
trastive learning framework. Altogether, the find-
ings imply the crucial role of domain knowledge in
tackling computational social science problems.

Limitations and Future Directions

First, since this study was done on a monolin-
gual corpus in Korean, the generalizability of the
method to other languages is unknown. Future re-
search could replicate this study in other languages
to test its broad applicability. Second, the con-
trastive learning techniques were only tested to a
batch size of 16 due to the particular computing
environment. To address this limitation, we also
tested MoCo-based methods that mitigate the mem-
ory limitation (Chen et al., 2020b); however, the
results were unsatisfactory (Section A.3.1). The
effect of large batch sizes might be examined in
future studies. Third, there may be corner cases
that the current detection framework is unable to
handle. Even if a direct quotation in the headline is
schematically consistent with a quote in the body
text, this by no means guarantees the authenticity
of the quoted remark. It could have been made
up by the speaker in the first place. Accordingly,
future research warrants considering labels on ve-
racity in conjunction with labels on whether they
are contextomized or modified.
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Ethics and Impact Statement

Despite the limited headline space, journalism text-
books underscore that direct quotations should
meet the strict verbatim criterion (Brooks et al.,
2001; The Missouri Group, 2013; Cappon, 1982).
This verbatim rule renders news stories with di-
rect quotations more credible and factual. The
aforementioned instances of contextomized quotes,
however, violate this public trust in journalism. We
thus propose a new NLP problem of detecting con-
textomized quotes and aim to better contribute to
the development of responsible media ecosystems.
This study is an example of how social science
theories can be incorporated with NLP techniques.
Thus it will have a broader impact on future studies
in NLP and computational social science.

We used public news dataset published through
a major web portal in South Korea. Our data is con-
sidered clean regarding misinformation because the
platform implements a strong standard in deciding
which news outlets to admit. However, the consid-
ered news data is not free from media bias, and the
learned embedding may learn such political bias.
Therefore, users should be cautious about applying
the embedding to problems in a more general con-
text. We have fewer privacy concerns because our
study used openly accessible news data following
journalistic standards.
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A Appendix

A.1 Details of model configuration and
computing environment

We ran experiments on a machine with an Intel(R)
Xeon(R) CPU E5-2620 v4 running at 2.10GHz,
four TitanXP 12GB GPUs, and 130GB RAM. All
models were evaluated on Python 3.9 with the
Transformers library (ver. 4.19.4). We ran con-
trastive learning experiments with the batch size of
16 using Adam with a learning rate of 0.01, and the
maximum number of epochs was 10. The param-
eter size of KoBERT is 92m, and that of the MLP
projection head is 87k with a hidden dimension of
100. The temperature of the softmax is 0.05, which
is the same as Gao et al. (2021). It took 10 and 13
hours to finish SimCSE and QuoteCSE contrastive
training, respectively. For the detection task, we
trained models with the same configuration. We
did not conduct hyperparameter optimization since
the dataset is small. Instead, we reported summary
statistics of performance by repeating the data split,
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model training, and evaluation process while vary-
ing random seeds (0, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 110, 120, 130, 140).

A.2 Formal definition of alignment and
uniformity

Alignment is

E(x,x+)∼Ppos
∥∥f(x)− f(x+)

∥∥2 (3)

, where x is an anchor text, x+ is positive sample,
and f(·) is an embedding function. Ppos is the
distribution of positive pairs.

Uniformity is

log E(x,y)∼Pdata e
−2∥f(x)− f(y)∥2 (4)

, where Pdata is the distribution of the anchor text.

A.3 Additional evaluations

A.3.1 Momentum-based methods

F1 AUC

MoCo: SimCSE 0.658±0.011 0.667±0.008
MoCo: QuoteCSE 0.756±0.005 0.753±0.006

Table A1: Momentum-based methods underperform
their corresponding general methods.

Our computing environment is limited, such that
all models were trained with a batch size of 16.
Since the batch size decides the number of nega-
tives for InfoNCE-based contrastive learning frame-
works, it was reported that a larger batch size can
result in better performance (Chen et al., 2020a).
To approximate the effects of a larger number of
negatives in a batch, we evaluated MoCo-based ap-
proaches that keep samples in previous batches as
additional negatives with momentum updates (He
et al., 2020). We set the queue size to be 40 accord-
ing to the observation on the effect of queue size in
a previous study (Wu et al., 2022). We make two
observations from Table A1 on the evaluation re-
sults of contextomized quote detection. QuoteCSE
still outperformed SimCSE, but the MoCo versions
performed worse than the general version.

A.3.2 STS benchmark
To see if the learned embeddings are generalizable,
we tested the baseline and proposed models on
the KLUE benchmark on sentence similarity (Park
et al., 2021). Using the same model architecture
for the contextomized quote detection, we trained

F1 AUC

KoBERT 0.636 0.659
SimCSE-Quote 0.633 0.662
QuoteCSE 0.775 0.796

Table A2: Evaluation based on the KLUE-STS bench-
mark indicates the generality of the proposed method.

a model to predict a binary label on whether two
given sentences are similar.

The evaluation results based on the valid dataset
are shown in Table A2. QuoteCSE outperforms
KoBERT and SimCSE-Quote, suggesting that our
model can produce better semantic embedding.

A.3.3 Filtering scenarios in the wild

Figure A1: The precision at k results of QuoteCSE and
SimCSE suggest QuoteCSE’s effectiveness in filtering
contextomized quotes in the wild.

We collected 10,055 news articles published in
July and August 2021. To test the proposed model’s
effectiveness in the wild, we manually evaluated
the top-100 news articles regarding the prediction
scores of SimCSE-Quote and QuoteCSE, respec-
tively. A high prediction score indicates that a
model consider the given news article containing a
contextomized quote in headline with a high con-
fidence, therefore this evaluation assumes a sce-
nario of filtering news articles with contextomized
quotes.

Figure A1 presents the precision at k of the two
models, indicating how many instances turned out
to be correct among the top-k examples, which are
predicted to be contextomized by a model with a
high confidence. Results indicate that QuoteCSE
can achieve a high precision value of 0.7 for the top-
20 examples. The precision decreases as its confi-
dence gets lowered, reaching a plateau around 0.6.
On the contrary, SinCSE achieved a precision lower
than 0.55 even when its confidence is high. The
results suggest the potential of QuoteCSE-based
detection model for filtering contextomized quotes
in the real-world scenario.
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Abstract

What are the events involved in a pandemic
outbreak? What steps should be taken when
planning a wedding? The answers to these
questions can be found by collecting many
documents on the complex event of interest,
extracting relevant information, and analyzing
it. We present a new approach1 in which
large language models are utilized to gener-
ate source documents that allow predicting,
given a high-level event definition, the specific
events, arguments, and relations between them
to construct a schema that describes the com-
plex event in its entirety. Using our model,
complete schemas on any topic can be gener-
ated on-the-fly without any manual data collec-
tion, i.e., in a zero-shot manner. Moreover, we
develop efficient methods to extract pertinent
information from texts and demonstrate in a
series of experiments that these schemas are
considered to be more complete than human-
curated ones in the majority of examined sce-
narios. Finally, we show that this framework is
comparable in performance with previous su-
pervised schema induction methods that rely
on collecting real texts and even reaching the
best score in the prediction task.

1 Introduction

Event processing refers to tracking, analyzing, and
drawing conclusions from streams of information
about events. This event analysis aims at identi-
fying meaningful events (such as opportunities or
threats) in real-time situations and responding ap-
propriately. Event processing can also be utilized
to gain a deep understanding of the specific steps,
arguments, and relations between them that are in-
volved in a complex event. The information above
can be consolidated into a graphical representation
called an event schema (Li et al., 2021). For in-
stance in Fig. 1, the graph representation of events

∗ Indicating equal contribution.
1https://cogcomp.seas.upenn.edu/page/

publication_view/995

and participants assists in gaining an understanding
of the complex event of kidnapping and could help
composing a reaction plan if needed.

The NLP community has devoted much effort to
understanding events that are described in a docu-
ment or in a collection of documents for this pur-
pose. These efforts include identifying event trig-
gers (Lu and Roth, 2012; Huang et al., 2018; Wad-
den et al., 2019; Han et al., 2019), extracting event
arguments (Punyakanok et al., 2008; Peng et al.,
2016; Lin et al., 2020; Zhang et al., 2021a), and pre-
dicting the relations between events, e.g., temporal,
coreferential, causal or hierarchical relations (Do
et al., 2012; Lee et al., 2012; Glavaš et al., 2014;
Ning et al., 2018; Wang et al., 2020; Zhang et al.,
2020a; Trong et al., 2022).

Previous works on event schema induction re-
lied on the information extracted from manually
collected documents to build the schema graph. For
instance, Li et al. (2020) learn an auto-regressive
language model (LM) over paths in the instance
graphs depicting events, arguments and relations of
instances of the complex events, and then construct
a schema graph by merging the top k ranked paths.
Their approach, however, requires access to many
documents on each topic of interest, which can be
extremely laborious and time consuming to obtain.

In this paper, our goal is to allow creating
schemas on-the-fly by taking as input only the
name of the complex event of interest (like a “pan-
demic outbreak” or an “armed robbery”). To avoid
manually collecting many documents on the topic
of the schema, we utilize pre-trained text genera-
tors, e.g., GPT-3 (Brown et al., 2020), to obtain
documents of diverse genres on the desired topic
(examples presented in Fig. 2). These documents
are then processed to extract pertinent informa-
tion from which a schema is constructed. The fact
that we do not collect any data makes our learning
framework zero-shot since we do not rely on any
human-collected articles or example schemas.
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Preparation Kidnapping

Kidnapper
plans
AND

collects
information

Kidnapper
looks for

victim

Kidnapper
chooses

victim OR
location

Kidnapper
kidnaps
victim

Kidnapper
transports

victim

Kidnapper
hides
victim

Kidnapper
asks for
ransom

OR makes
demands

Figure 1: An example schema for the event of Kidnapping. The regular arrows represent temporal relations and
the dashed arrows represent hierarchical relations (PARENT-CHILD).

In addition to eliminating the need to collect data,
we also made the information extraction process
faster by implementing new and efficient methods
for identifying temporal and hierarchical relations
between events mentioned in the text. These two
steps are the most time consuming in the process of
schema induction and could take up to 2 hours each
using state-of-the-art models proposed by Zhou
et al. (2021); Wang et al. (2021). Sending the whole
text as input instead of two sentences at each time,
our proposed model shortens the inference time
significantly to several minutes without enduring a
major loss in performance.

The process of generating texts is explained
in Section §3, and the process of extracting rele-
vant and salient information is described in Sec-
tion §4, then we introduce the construction of
schema graphs in Section §5. To evaluate our
zero-shot schema generator we conduct experi-
ments on a benchmark dataset for schema induc-
tion, LDC2020E25, and provide a new dataset for
further evaluation called Schema-11. Additionally,
we design a subject-matter expert Turing test, a.k.a.
Feigenbaum test (Feigenbaum, 2003), to determine
whether our algorithm could mimic experts’ re-
sponse. We also demonstrate that documents gen-
erated by GPT-3 are informative and useful for the
task of schema induction. The experiments and re-
sults are presented in Section §6. The contributions
of our work include:

1. Predicting an entire schema given the name
of a complex event without collecting data.

2. Implementing a novel and efficient One-Pass

approach for identifying temporal and hierar-
chical relations between events.

3. Presenting a method for automatically induc-
ing logical relations between events based on
temporal relations.

4. Offering a Feigenbaum test for evaluation on
a new schema dataset, Schema-11.

2 Related Work

Schema Induction: Early schema induction ef-
forts focused on identifying the triggers and partic-
ipants of atomic events without considering rela-
tions between atomic events that comprise com-
plex schemas (Chambers, 2013; Cheung et al.,
2013; Nguyen et al., 2015; Sha et al., 2016; Yuan
et al., 2018). More recent work focuses on induc-
ing schemas for pairs of events (Li et al., 2020)
and multiple events (Zhang et al., 2021b; Li et al.,
2021), but they require access to large corpora for
the induction process. In this work, we induce
schemas on-the-fly in a zero-shot manner. As is
standard in state-of-the-art (SOTA) works (Li et al.,
2020, 2021; Wen et al., 2021), we output all the es-
sential information about relations between events
and arguments extracted from the text, in addition
to logical and hierarchical relations not studied pre-
viously in schema induction.

Script Learning: Early script learning work con-
centrated on chains of events with a single pro-
tagonist (Chambers and Jurafsky, 2008, 2009;
Jans et al., 2012; Rudinger et al., 2015; Granroth-
Wilding and Clark, 2016) and later extended to
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multiple protagonists (Pichotta and Mooney, 2014;
Peng and Roth, 2016; Pichotta and Mooney, 2016;
Modi, 2016; Weber et al., 2018, 2020; Zhang et al.,
2020b). All of these works assume there exists a
single line of events that describes all occurrences
within a complex event. This work does not limit it-
self to generating single-chained schemas. We also
consider more complex graphs as schema outputs.
In addition, none of these works deal with zero-shot
scenarios that do not require training data.

Pre-Trained Generation Models: Large-scale
pre-trained text generation models such as GPT-2
(Radford et al., 2019), GPT-3 (Brown et al., 2020),
BART (Lewis et al., 2020), T5 (Raffel et al., 2020),
i.a. have been used in many NLP tasks. These
models are often seen as few-shot learners (Brown
et al., 2020) and therefore used as inference meth-
ods. However, these text generation models are not
explicitly trained to perform inference, but to pro-
duce the most likely sequence of words to proceed
a certain prompt, similar to language models. In
our work, we use these large pre-trained LMs as
text generators. The generated documents on a par-
ticular topic are leveraged as a corpus for extracting
the schema of the given topic. We rely on the in-
tuition that the generated text will include salient
and stereotypical information that is expected to
be mentioned in the context of the topic (e.g., for
the topic of “planning a wedding,” we assume most
documents will include “order catering”).

3 Data Generation

The schema induction process begins with generat-
ing texts using large LMs as text generation models.
These texts are joined to form a knowledge base
for the schema, including all of the potential infor-
mation that the schema may present. One could,
of course, create this knowledge base by crawling
the web for real news articles or Wikipedia entries
related to a certain topic.

We argue, however, that in addition to the obvi-
ous advantages of not having to rely on the avail-
ability of data online and not having to crawl the
entire web for relevant documents on each topic,
the generated data from these large generative mod-
els is more efficient in reporting salient events than
random events described in the news, i.e., gener-
ated texts are more likely to mention important
information than real documents do.

Our analysis shows that the generated stories
contain a higher percentage of relevant tokens than

Generated Text Real Text
# events / # tokens 12.52% 6.31%
# arguments / # tokens 5.45% 3.01%

Table 1: The ratio of relevant events and relevant argu-
ment roles identified in generated texts and real texts
for the scenario of IED attack.

real news articles that are used for schema induc-
tion. To demonstrate this phenomenon, we com-
pare manually collected documents with those that
are automatically generated using GPT-3 for the
event of Improvised Explosive Device (IED) At-
tack (Li et al., 2021). To identify salient events and
arguments concerning IED attacks, we adopt the
DARPA KAIROS Phase 1 (v3.0) ontology2 — a
fine-grained ontology for schema learning, with 24
entity types, 67 event types, and 85 argument roles.

We calculate the number of relevant event trig-
gers and arguments identified in the text, where a
relevant mention is one whose type appears in the
ontology. The results shown in Table 1 demonstrate
that the quality of the generated texts in terms of
conciseness and appearance of important details is
higher than that of real texts. For example, the ratio
of relevant events per token is more than twice as
high in generated texts as it is in real texts. Hence
we are able to not only generate a schema for every
given topic without putting any effort in searching
the web, but the information we generate is also
better suited for our end task of depicting all of the
important aspects of a complex event.

Given a topic for which we want to create a
schema, we generate multiple texts that discuss the
topic event using the OpenAI GPT-3 API3 with the
Davinci-instruct-beta-v3 model and we also experi-
ment with the Hugging Face GPT-2 API4. We use
three prompting methods to generate documents of
diverse genres as follows:

News Articles: We begin by generating a headline
using the prompt: “Write a news headline about
topic.” The output from this prompt is then used
in the following prompt: “Write a news story titled
headline.” The output from the second prompt is
added to the pool of generated texts. The process
is repeated 30 times. See example in Fig. 2b.

How-To Articles: We use the prompt: “Describe
how to topic.” to generate wikiHow-like instruction

2The full ontology definition can be accessed at this link:
https://bit.ly/3mIWJoN.

3https://openai.com/blog/openai-api/.
4https://huggingface.co/gpt2
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Prompt: What are the steps involved in holding a
summit meeting?
1.
Output:

1. Plan the agenda and objectives of the meeting.

2. Select a venue that is appropriate for the meet-
ing’s purpose and size.

3. Send out invitations and ensure all participants
have the appropriate information.

4. Prepare for the meeting by creating materials
and briefing the participants.

5. Hold the meeting and follow up on any action
items that are generated.

(a) Example generated text of steps involved in the
event of “holding a summit meeting”.

First prompt: Write a news headline about filing a patent.
Output: New Patent Filing Could Speed Up Drug Develop-
ment.
Second prompt: Write a news story titled "New Patent
Filing Could Speed Up Drug Development".
Output: The United States Patent and Trademark Office has
just published a new patent that could speed up the drug de-
velopment process. The patent, filed by a team of researchers
from the DPharm Institute, covers a new drug screening pro-
cess that could help identify potential new drugs much more
quickly. The new process, which is based on a computer
algorithm, is said to be up to 10 times faster than traditional
methods. It can identify potential new drugs by screening
through large databases of existing drugs and drug candi-
dates. The DPharm Institute is already in the process of
licensing the patent to several pharmaceutical companies,
and is planning to commercialize the technology over the
next few years.

(b) Example generation of news-like text for the event of
“filing a patent”.

Prompt: Describe how to 3D print an object?
Output: To 3D print an object, you need to first design the object in a 3D modeling program. Once the object
is designed, you need to export it as a 3D printable file format. Next, you need to choose a 3D printer and print
settings. Finally, you need to print the object.

(c) Example generation of How-To article for the event of “3D printing”.

Figure 2: Examples of generated texts using different prompting methods. The highlighted tokens display relevant
events that will be extracted in the information extraction step.

articles. The process is repeated 30 times. See
example in Fig. 2c.

Direct Step-by-Step Schema: We use the prompt:
“What are the steps involved in topic? 1.”5 to di-
rectly generate a schema. We run this process once.
See example in Fig. 2a.

Generating documents of various genres enables
our model to induce comprehensive schemas on
any given topics. Considering that some events are
more likely to be in the news (e.g., elections, pan-
demic outbreaks) while others are more technical
in nature and are hence less newsworthy (such as
earning a Ph.D. degree or planning a wedding), we
generate diverse texts and then use a ranking model
to choose the most relevant documents.

The ranking process includes embedding the
texts and the topic with the model proposed in
Reimers and Gurevych (2019), and then calculat-
ing the cosine similarity between each text and the
topic embeddings. Only the 30 texts closest to the
topic are selected, together with the output from the
direct step-by-step schema. The following section
describes the next step in generating a schema of
extracting relevant information from the texts.

5The “1.” in the prompt is for the LM to automatically
complete the steps.

4 Information Extraction

For each document, we extract event triggers, ar-
guments and relations between the events that are
important and relevant to the schema topic. We do
not work with a predefined ontology that defines
what events and arguments are salient in advance
because we allow generating a schema on any topic.
Instead, we employ a statistical approach by ex-
tracting all the information and later filter it down
to include just frequent items. Here are the steps
involved in our information extraction pipeline:

Semantic Role Labeling (SRL): We use the
SOTA SRL system6 trained on CoNLL12 (Prad-
han et al., 2012) and Nombank dataset (Meyers
et al., 2004) to extract both verb and nominal event
triggers and arguments.

Named Entity Recognition (NER): We employ
the SOTA NER model (Guo and Roth, 2021) to
extract and map entities (potential arguments of
events) into entity types defined in the CoNLL 2002
dataset (Tjong Kim Sang, 2002) and the LORELEI
project (Strassel and Tracey, 2016).

6 https://cogcomp.seas.upenn.edu/page/
demo_view/SRLEnglish
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Constituency Parsing: The arguments extracted
by SRL can be clauses and long phrasal nouns,
hence we employ the AllenNLP7 constituency pars-
ing model for argument head word extraction.

Coreference Resolution: We use the SOTA
model (Yu et al., 2022) for event and entity corefer-
ence resolution to identify within-document coref-
erential relations.

Temporal Relation Extraction: We first try to
use SOTA models (Ning et al., 2019; Zhou et al.,
2021) to predict the temporal relations8 between
all possible pairs of extracted events but since the
SOTA models accept two sentences containing
events as input, the inference time9 for an n-event
document is O(n2), making the schema induction
process several hours long.

One-Pass Model: We develop a One-Pass model
that takes the document as input and uses
the contextual representation of events to pre-
dict relations between them. A document D
is represented as a sequence of tokens D =
[t1, · · · , e1, · · · , e2, · · · , tn] where some of the to-
kens belong to the set of annotated event triggers,
i.e., ED = {e1, e2, · · · , ek}, whereas the rest are
other lexemes. We employ the transformer-based
language model Big Bird (Zaheer et al., 2020) to
encode a whole document and obtain the contex-
tualized representations for all the event mentions.
These representations are fed into a multi-layer per-
ceptron in a pairwise fashion and the cross-entropy
loss for each pair is calculated and accumulated for
a batch of documents. As shown in Tab. 2, the in-
ference time is shortened 63-186 times on average,
while the performance of the One-Pass model is
comparable to SOTA models.

Hierarchical Relation Extraction: The ex-
tremely long inference time of SOTA models for
predicting hierarchical relations (PARENT-CHILD,
CHILD-PARENT, COREF, NOREL) (Zhou et al.,
2020; Wang et al., 2021) also impairs the efficiency
of our schema induction system. Thus we use
the same One-Pass methodology to extract hier-
archical relations. We observe that the inference
time is greatly shortened, and the One-Pass model

7https://demo.allennlp.org/
constituency-parsing.

8The possible temporal relations (start-time comparison)
are: BEFORE, AFTER, EQUAL and VAGUE.

9The inference time is mostly spent on obtaining the con-
textual representation of events using large fine-tuned LMs.

Metrics
Corpus Model F1 score Speed GPU Memory

HiEve
Zhou et al. (2020) 0.489 - -
Wang et al. (2021) 0.522 41.68s 4515MiB
One-Pass model 0.472 0.65s 2941MiB

MATRES
Ning et al. (2019) 0.767 30.12s 4187MiB
Zhou et al. (2021) 0.821 89.36s 9311MiB
One-Pass model 0.768 0.48s 2419MiB

Table 2: Performance comparison between the One-
Pass model and SOTA models for event temporal and
hierarchical relation extraction. We report F1 scores on
benchmark datasets (HiEve for hierarchical relations,
MATRES for temporal relations), speed (average infer-
ence time for 100 event pairs), and required GPU mem-
ory during inference. The One-Pass models are 63-186
times faster than SOTA models and take up only 26%-
65% of the GPU memory required by SOTA models.

achieves comparable results to previous models
while taking up less GPU memory (see Tab. 2).

After processing the data using the procedure
described above, we get a list of events, their ar-
guments, and relations between the events. We
concentrate on events and relations that frequently
appear in the generated texts since we assume those
are the most important to add to the schema (with-
out any other source of information that could iden-
tify what is salient). We describe the process of
building a schema in the following section.

5 Schema Induction

To consolidate the information extracted from the
previous step, we build a schema as follows:

Make a list of events and relations: To compare
similar event mentions in different texts, we com-
pare the event trigger itself (whether they are the
same verb or coreferential verbs10) and the NER
types of its arguments. For example, the trigger
“(take) precautions” appeared in 5 documents gen-
erated for the topic of Pandemic Outbreak. In two
documents the subject of the verb phrase “take pre-
cautions” was “residents”, in another two it was
“people” and in the last one, it was “public”. Nev-
ertheless, the NER type is identical in all cases
(PER), and thus we set the frequency of “(take)
precautions” to 5. Similarly, we calculate the fre-
quency of the temporal and hierarchical relations.
We only consider relations and events that appeared
in more than one document.

Construct timelines: We construct the longest
timelines from the list of temporal relations. This

10We only consider coreferential and hierarchical relations
if they appear in more than 2 documents.
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Figure 3: An example of integrating timelines and logical relations in the schema of Civil Unrest. The four upper
timelines are the ones extracted from the generated texts and the lower one is their merger into a single timeline
with logical relations.

warm up stretch play cool down

warm up stretch

warm up play cool down

stretch

Figure 4: Example of the procedure to amend a time-
line in the schema of “Sports Games”. The timeline
at the top that includes events from different levels
(“warm up” is the parent of “stretch”) is fixed below.
Gray arrows mark temporal relations, and dashed ar-
rows mark PARENT-CHILD.

list is a list of tuples (A,B), indicating that eventA
happened before event B. To construct a timeline,
we search recursively for the longest chains of the
following form (A,B), (B,C), (A,C) and so on.

Fix timelines according to hierarchical rela-
tions: We build a hierarchy of the events using the
hierarchical relation list10 and change the timelines
so that they will only include events that appear in
the same level of hierarchy (see example in Fig. 4).

Add logical relations: The final step is to combine
the timelines and hierarchies into a single schema
graph using logical relations (AND/OR). When ob-
serving two timelines with discrepancies between
the order of events, we place a logical AND be-
tween them, since we interpret this discrepancy as

both events occurring at the same time or there is
no significance to the order between them. We use
a logical OR to mark events that can occur simulta-
neously but not necessarily. See Fig. 3 for example
of both logical relations.

The final output is a schema graph that contains
all the events, arguments, and temporal, hierarchi-
cal and logical relations between the events. It is
noteworthy that our proposed schema generation
model can be easily used to extend the scope of
existing schemas by further querying the model on
more specific topics. For example, the schema in
Fig. 1 does not cover the consequences of kidnap-
ping, probably because the LM did not attend to
this aspect. Hence an analyst can input another
topic (e.g., consequences of kidnapping) to fur-
ther develop the schema. Similarly, analysts can
generate schemas for very specific events (e.g., kid-
napping in a political setting). Next, we provide an
in-depth experimentation for the proposed schema
induction framework.

6 Experiments

6.1 Data

We conduct experiments on a dataset for general
schema learning released by LDC (LDC2020E25).
The corpus includes 84 types of complex events,
such as Cyber Attack, Farming and Recycling. This
dataset includes ground-truth schemas created by
LDC annotators. In addition, we also collected
human generated schemas for 11 newsworthy sce-
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narios11. The schemas were generated by four hu-
man experts who were instructed to write a schema
on each topic based on their commonsense knowl-
edge that includes a list of event triggers, event
arguments and their NER types12, and relations13.

6.2 Evaluation Protocols
We follow Li et al. (2021) to use instance coverage
and last event prediction to evaluate our method
on the LDC dataset. For the Schema-11 dataset,
we ask human testers to assess the completeness
and soundness of both human- and automatically-
generated schemas.

Coverage and Prediction A common evaluation
method in schema induction and script prediction
is to calculate the recall of events and relations
predicted by the model, assuming the human anno-
tations are gold labels (coverage), and to calculate
the accuracy in predicting the final outcome of a
scenario (prediction). For instance, the accuracy of
predicting the last event type of the LDC schemas
is reported in Li et al. (2021). Here we present
the results of predicting the last events using event
triggers instead of event types since our schemas
do not use an ontology of event types.

Feigenbaum Test We show human testers two
schemas on each topic in the Schema-11 dataset
(see example in Appx. §A). One schema is auto-
matically generated by our model, and the other is
randomly sampled from the Schema-11 corpus14.
Then, we ask the testers to determine which events
and relations are valid to appear in the schema
(soundness), and answer the following questions:
which schema is more complete in the sense of in-
cluding all the events needed to describe the topic,
and which schema, in their opinion, was generated
by a human expert (as opposed to a machine).

6.3 Results
Coverage We calculate the intersection between
events in the generated schemas and the gold

11The topics are: Bombing Attack, Business Change, Civil
Unrest, Disaster and Rescue, Elections, International Con-
flict, Kidnapping, Mass Shooting, Pandemic Outbreak, Sports
Games, and Terrorism Attack.

12The annotators are familiar with SRL annotations (e.g.,
ARG0, ARG1, etc.) and NER types (e.g., PER, ORG, etc.).
See additional details in App. C

13No restrictions were placed for the annotators. For ex-
ample, in one case, an annotator mentioned causal relations
that are not covered in our framework.

14In some cases we combine two randomly sampled
schemas because the length of the human schemas tend to
be shorter than the automatically generated ones.

schemas in two ways: (a) the matching of event
triggers, and (b) the matching of event triggers
and synonyms of the events in the gold schemas
(synonym coverage)15. We believe that synonym
coverage is a better evaluation metric to avoid er-
rors such as considering different verbs describing
the same action as different (e.g., “buy” and “ac-
quire”) than using a predefined ontology of event
types such as the one used in Li et al. (2021). The
reason is twofold: firstly, any predefined ontology
is limited to certain scenarios and it may impair the
variety of events extracted; and secondly the typing
mechanism may also inflict errors to the schema.
In the calculation of coverage of relations we only
take into account relations (a, b) where both events,
a and b, appear in the generated schema.

From the results in Table 3, we observe that de-
spite the difficulty of exact matching, our model
with GPT-3 covers 23.73% of the gold events,
showing that generated texts are useful. If we
use synonym coverage as our metric, we achieve a
promising coverage of 37.84% while the SOTA su-
pervised event graph model (Li et al., 2021) covers
54.84% using limited event types. In addition, we
calculated an average number of 26.19 additional
events that appeared in the generated schemas and
not in the LDC schema, pointing to the potential of
using generated documents for expending existing
schemas. With the high quality event representa-
tions obtained from the One-Pass model and the
proposed logical relation induction algorithm, our
method can successfully cover a high percentage
of multiple types of relations.

Prediction In the prediction task, our schemas
are able reach SOTA performance and predict the
final outcome in 63.1% of the cases for the LDC
schemas (see Tab. 4). This result is extremely im-
pressive when it is compared with Li et al. (2021)
since they predict event types instead of verbs,
which is a much easier task due to the fact that
the set of possible answers is limited.

Schema-11 In the soundness experiments, where
the testers are asked to decide which events and re-
lations are valid to appear in the schema, it turns out
that human-schemas contain 7.14% invalid events
and 15.4% invalid relations on average. For the
automatically-generated schemas, 6.06% of the
events and 22.9% of the relations are considered
to be invalid on average, meaning that the average

15Implemented using the NLTK WordNet Python package.
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GPT2 GPT3 Li et al. (2021)
Coverage Coverage (Syn) Coverage Coverage (Syn) Coverage

Event Match 14.88 29.55 23.73 37.84 54.84
Temporal Relations 10.80 33.31 31.07 49.99

-Hierarchical Relations 33.33 33.33 11.11 13.88
Logical Relations 4.16 24.99 43.76 49.81

Table 3: Coverage results for the LDC dataset. The first row presents the percentage of events that appeared in
both the LDC schemas and the automatically generated schemas (out of events in LDC schemas), and the three
bottom rows present the same metric for relations of different types.

Model Accuracy
Event Language Model 49.7
Sequential Pattern Mining 47.8
Human Schema 20.5
Event Graph Model 52.0
Zero-Shot Schema GPT2 25.0
Zero-Shot Schema Synonym GPT2 45.2
Zero-Shot Schema GPT3 35.7
Zero-Shot Schema Synonym GPT3 63.1

Table 4: Experimental results for last event prediction
in the LDC dataset. The top 4 results are from (Li et al.,
2021), and the metric is HITS@1 where the events are
typed based on a predefined ontology.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Human 4 0 1 1 1 2 1 1 0 3 1
Automatic 2 3 4 2 1 1 1 1 4 0 1

Table 5: Distribution of votes for which is the more
complete schema for Schema-11 dataset.

percentage of legitimate events is even higher in
machine-generated schemas. For the completeness
results presented in Tab. 5, in 4 cases the testers
agreed that the automatically generated schemas
are more complete; in 3 cases they claimed that the
human schemas are more complete; and a tie in the
remaining 4 cases. Hence our automatically gener-
ated schemas are of comparable quality to human
generated ones in the sense of completeness.

Finally, in the Feigenbaum test, where testers
are asked to decide whether a schema is gener-
ated by a human or a machine, eight out of eleven
times they correctly identify the human-generated
schema, one incorrectly, and two ties. Some of
the testers who succeeded in their guesses men-
tioned that it was easy to determine which schema
was automatically generated since it tends to be
longer and comprehensive. The full results from
the Feigenbaum test are shown in Appx. §B.

Wizard of Oz Experiment There seems to be
a discrepancy between the low event coverage re-
sults and the quality of generated texts that were
presented in Section §3. We, therefore, conducted

another experiment to identify if the problem stems
from the quality of the generated documents. In this
experiment, one of the authors sampled 10 complex
event names from the LDC dataset and generated,
using GPT-3 text davinci-002 model, 3 texts for
each scenario using the prompting methods pre-
sented in Section §3. Then, the author manually
extracted all relevant events and relations from each
document and built a schema based solely on those
events and relations.

This experiment, in which the author pretends
to be the IE and schema generator models, aims to
demonstrate that if we had perfect IE and schema
induction systems, then the texts generated by GPT-
3 would be sufficient and even superior to other cor-
pora collected manually. The macro-average cov-
erage of events in this experiment is 68% and the
micro-average is 74%. Furthermore, GPT-3 texts
generated schemas that included, on average, 6.5
additional events not mentioned in LDC schemas
but relevant to the scenario at hand. As a result,
we conclude that the generated texts from GPT3
contain much of the necessary information to gen-
erate schemas in a variety of topics, and can even
be used to enrich existing schemas generated by
other models or humans. Two example scenarios
and more details appear in Appx. §D.

7 Conclusion

We propose a method to generate schemas given
the sole input of a topic. We use GPT-3 to generate
texts of diverse genres and a pipeline of informa-
tion extraction tools to obtain relevant information
before inducing logical relations and integrating
the events and relations into a schema graph. To
improve the efficiency of the pipeline, we imple-
ment One-Pass models for identifying temporal
and hierarchical relations that achieve comparable
performances with SOTA models but require far
less inference time and memory space. To evalu-
ate our framework, we conduct experiments on a
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benchmark LDC dataset to show that our schemas
cover a decent amount of pertinent information
and display comparable ability for event prediction
with supervised approaches. We observe a high per-
centage of valid events and relations generated for
the Schema-11 dataset and the testers endorsed the
completeness of our machine-generated schemas.
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9 Limitations

The paper presents a method for building an event
schema without manually collecting documents
from sources such as news articles or Wikipedia.
In order to generate diverse and informative doc-
uments on any topic, we rely on large pre-trained
language models. Our model, which uses GPT-3,
generates schemas that are comparable to those
generated by manually searching the web for docu-
ments, however, when we use inferior LMs such as
GPT-2, we see a decline in performance (see Tab. 3
and Tab. 4).

Our assumption is that the quality of the gener-
ated schema depends on the quality of the LM and
the level of coverage of the selected topic in the LM
training data. If, for instance, we were to ask our
model to generate a schema for a unique topic such
as "conducting an archaeological dig in an unex-
plored territory" we doubt that the results would be
as useful to an archaeologist as if they were looking
for information themselves due to the low coverage
of this topic in the corpus the model was trained on.

Despite our model’s reliance on pre-trained LMs,
we believe the generated schemas can always serve
as a good basis for further development.

10 Ethical Consideration

The proposed schema induction method does not
present any direct societal implications. As is ob-
served in Abid et al. (2021), the text generated by
GPT-3 might include undesired social bias. Ex-
tracting events and relations from text with such
social bias might potentially propagate the bias to
the induced schemas. Besides, there are risks of
malicious or unintended harmful uses of the gen-
erated schemas, for instance, the system might be
used to inquire about making a bomb or contriving
a terrorist attacks. Yet we believe that the proposed
method can benefit various downstream NLP/NLU
tasks like event prediction, task-oriented dialogue
agents (Andreas et al., 2020) and risk detection
(Pohl et al., 2012).
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A Feigenbaum Test Details

The experiment took place online through filling a
Google Form and involved 11 volunteer annotators.
Each annotator got 3-4 scenarios to annotate. The
instructions for the survey appear in Figure 5. An
example scenario and the questions of the survey
are presented in Fig. 6, Fig. 7, Fig. 8, and Fig. 9.

B Feigenbaum Test Results

In this section we present all the results from the ex-
periments on the dataset Schema-11. Tab. 6 shows
the distribution of answers for the question “which
schema is more complete?” (same as depicted in
Tab. 5), Tab. 7 presents the distribution of answers
for the question "which schema was generated by
a human?" together with the correct answer written
in the bottom row, and Tab. 8 presents the percent-
age of invalid events and relations determined by
the majority vote of the annotators in the automatic
schema and the human schema.

C Details on Human Schema Curation

Here are the instructions that were given to the an-
notators that generated the human schemas for the
Schema-11 dataset. All the annotators are graduate
students that previously were involved in research
projects that include schema induction, SRL, NER
or other relevant tasks:

We are developing a system that generates
schemas automatically given a topic. We want
to compare our automatically-generated schema to
schemas derived by people using their common-
sense (without relying on texts). To do this, we
need expert human annotators and would appreci-
ate your assistance.

A schema is defined as a list of events with their
argument types, and the relationships between the
events. For example, here is a schema I wrote that
describes the event of "armed robbery":

List of events and arguments:

• intend: arg0 - perpetrator [PER], arg1 - com-
mit a felony

• acquire: arg0 - perpetrator [PER], arg1 -
weapon [WEA]

• arrive: arg0 - perpetrator [PER], arg-loc -
crime scene [LOC]

• assault: arg0 - perpetrator [PER], arg1 - [PER]

• threaten: arg0 - perpetrator [PER], arg1 -
[PER]

• get: arg0 - perpetrator [PER], arg1 - money or
goods

• injure: arg0 - perpetrator [PER], arg1 - [PER]

• kill: arg0 - perpetrator [PER], arg1 - [PER]

• flee: arg0 - perpetrator [PER], arg-loc - crime
scene [LOC]

• call: arg0 - [PER], arg1 - police [ORG]

• chase: arg0 - police [ORG], arg1 - perpertra-
tor[PER]

• catch: arg0 - police [ORG], arg1 - perpertra-
tor[PER]

• manage to escape: arg0 - perpertrator[PER]

Temporal and logical relations (in the form of a
timeline):

• a perpetrator (PER) intent to commit a felony
->

• the perpetrator (PER) acquires weapon
(WEA) ->

• the perpetrator (PER) arrives at the scene
(LOC) ->

• perpetrator (PER) assault victim (PER) with
weapon (WEA) at the scene (LOC) OR perpe-
trator (PER) threatens a person (PER) with
the weapon (WEA) at the scene (LOC) ->

• perpetrator (PER) gets money or goods from
the person (PER) OR victim injured OR vic-
tim killed ->

• perpetrator flees the scene of the crime (LOC)
AND someone (PER) calls the police (ORG)
->

• the police (ORG) are chasing the criminal
(PER) ->

• the police (ORG) catches the perpetrator
(PER) XOR the criminal (PER) manages to
escape.

The complex events we are interested in are the
following: (1) Disease Outbreak (2) IED Bombing
(3) Civil Unrest (4) International Invasion (5) Disas-
ter and Rescue (6) Terrorism Attacks (7) Election
(8) Kidnapping (9) Business Change (10) Mass
Shooting.
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Figure 5: Instructions for the Feigenbaum test.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Human 4 0 1 1 1 2 1 1 0 3 1
Automatic 2 3 4 2 1 1 1 1 4 0 1

Table 6: Completeness results. The table presents the number of votes that were recorded for which schema is more
complete - the human generated schema or the automatically generated schema. The majority vote is highlighted
in yellow.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
A 1 1 3 0 0 2 0 2 2 1 1
B 5 2 2 3 2 1 2 0 2 2 1
Correct Answer B B B B B A B A A B B

Table 7: Feigenbaum test results. The annotators guesses which schema (A or B) was generated by humans. The
number of votes for each option appear along with the correct answer in the bottom row. The correct majority
guesses are marked with green and incorrect with red.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Invalid Events (Auto.) 0 0 0 0 0 8.33 0 7.69 0 14.28 0
Invalid Relations (Auto.) 46.15 16.66 25 25 0 23.52 0.4 11.76 12.5 22.22 46.15
Invalid Events (Human) 0 0 14.28 14.28 0 0 0 0 0 0 0
Invalid Relations (Human) 7.69 50 15.38 15.38 0 6.25 0 11.11 0 10 7.69

Table 8: Invalidity results. The table presents the percentage of invalid events and relations determined by the
human annotators for each schema and scenario.
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Figure 6: An example schema in the topic of Terrorism Attack. This schema was generated automatically (infor-
mation that was unknown to the annotators).
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Figure 7: An example schema in the topic of Terrorism Attack. This schema was generated by a human (informa-
tion that was unknown to the annotators).
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Figure 8: Questions that were asked about the completeness of the schemas and the generator of the schema.

Figure 9: Questions about the validity of the events appearing in one of the schemas. This question was asked on
both schemas and on the relations appearing in the schemas too.
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D Wizard of Oz Experiment

Two examples of the Wizard of Oz experiment for
the events of invasion and remodel a facility. The
examples show the three generated texts using the
three prompting methods, the schema created by
the author, and the LDC schema together with a
matching between the events in the two schemas.
The entire list of sampled topics is: print a 3D
object, cyber attack, make a website, religious con-
version, invasion, shipping and mailing, remodel
a facility, obtain and provide medical treatment,
build a drone, and nonviolent protest march.

D.1 Example 1: Invasion

Prompts and Outputs:

1. Prompt: describe how to perform an invasion.
Output: 1. Choose a target: Identify a target
population that you want to invade. This target
population can be a group of people, a city, or
a country. 2. Prepare your troops: Assemble
your troops and supplies in preparation for
the invasion. 3. Launch your attack: Attack
the target population using whatever means
necessary to take control. 4. Consolidate your
power: Once you have taken control of the
target population, consolidate your power by
establishing your authority and eliminating
any resistance.

2. Prompt: what are the steps involved in an in-
vasion?
Output: 1. The first step in an invasion is
to gather intelligence about the enemy. This
includes learning about their strengths, weak-
nesses, and their territory. 2. The next step is
to plan the invasion. This includes deciding
what resources will be needed and how they
will be used. 3. The third step is to launch
the invasion. This is when the actual fighting
begins. 4. The fourth step is to consolidate the
gains. This is when the invading force secures
their position and prepares for the next phase
of the operation.

3. Prompt: write a news headline about invasion.
Output: U.S. troops invade Canada in surprise
attack.
Prompt: write a news article titled: “U.S.
troops invade Canada in surprise attack.”
Output: In a stunning move, the United States
has invaded Canada in a surprise attack. The

troops came across the border early this morn-
ing, catching the Canadians by surprise. The
Canadians are currently fighting back, but it is
unknown how long they will be able to hold
out against the might of the United States mil-
itary. This is a developing story, and more
details will be released as they become avail-
able.

Schema generated based on the three outputs

1. Choose target.

2. Gather intelligence on target: learn strengths
and weaknesses and territory.

3. Plan invasion: decide on resources and how
the resources will be used.

4. Prepare troops: Assemble troops and supplies.

5. Launch attack: come across the border.

6. Fight or use whatever means possible.

7. Take control.

8. Consolidate power: establish authority and
eliminate resistance.

9. Prepare for the next phase of operation.

LDC Schema

1. Step 1: PlanInvasion: Plan[3] for the invasion.

(a) Step 1.1: IdentifyTargets[1]: Leadership
builds a list of entry points for the in-
vasion and selects one or more as the
target(s) of the initial invasion.

(b) Step 1.2: DevelopPlan[3]: A team de-
velop a master invasion plan.

(c) Step 1.3: OrderDissemination [not
matched]: Planners send out detailed in-
structions to military forces about the in-
vasion plan.

2. Step 2: DeployTroops[4]: Amass and deploy
troops for invasion.

3. Step 3: Invasion[5]: Military force launch the
invasion and enter the target territory.

4. Step 4: DisperseTroops[6]: Dispersion of in-
vading troops across territory.
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Results: The GPT3 schema covers 6 out of 7
events that are mentioned in the LDC schema. The
matching between LDC events and schema events
are marked in [] next to the event on the LDC
schema. GPT3 schema has 7 additional events:
gather intelligence, learn strengths, decide on re-
sources, assemble troops and supplies, come across
border, take control, consolidate power, establish
authority, eliminate resistance, prepare for next
phase.

D.2 Example 2: Remodel A Facility
Prompts and Outputs:

1. Prompt: describe how to remodel a facility.
Output: There is no one-size-fits-all answer
to this question, as the best way to remodel
a facility depends on the specific needs and
goals of the organization. However, some
tips on how to remodel a facility include: 1.
Define the scope of the project. 2. Create a
budget and timeline. 3. Hire an experienced
architect or designer. 4. Work with a reputable
contractor. 5. Use high-quality materials. 6.
Follow building codes and regulations. 7. Get
input from stakeholders. 8. Test the new space
before moving in.

2. Prompt: what are the steps involved in remod-
eling a facility?
Output: 1. The first step in remodeling a fa-
cility is to develop a plan. This plan should
include the goals of the remodel, the budget,
the timeline, and the scope of work. 2. The
next step is to obtain the necessary permits.
Depending on the scope of work, this may
require a building permit, a zoning permit,
and/or a permit from the local health depart-
ment. 3. Once the permits are obtained, the
next step is to select a contractor. The contrac-
tor should be licensed and insured, and should
have experience with the type of work that
needs to be done. 4. The contractor will then
begin the work, which may include demoli-
tion, construction, painting, and/or installation
of new fixtures and appliances. 5. Once the
work is completed, the facility will need to be
inspected to ensure that it meets all applicable
codes and regulations. 6. Finally, the facility
can be reopened to the public.

3. Prompt: write a news headline about remodel-
ing a facility.

Output: Facility Remodeling Underway
Prompt: write a news article titled: "Facility
Remodeling Underway"
Output: In an effort to better serve the needs
of the community, the local library is under-
going a remodel. The project is expected to
take several months to complete, but the end
result will be a more user-friendly space that
meets the needs of today’s patrons. Some of
the changes include a new layout for the adult
fiction section, additional study rooms, and
updated furniture throughout the facility. The
children’s area will also be expanded to cre-
ate a more inviting and interactive space. The
library staff is excited about the changes and
can’t wait to see the finished product. They
are confident that the updates will make the
library a more popular destination for both
residents and visitors.

Schema generated based on the three outputs

1. Develop a plan: define scope and goals and
create budget and timeline.

2. Hire an architect or designer and obtain nec-
essary permits.

3. Select a contractor (preconditions: contractor
licensed, insured, have experience).

4. Contractor works: use high quality materials
AND follow building code and regulations
and demolition or construction or painting or
installation.

5. Get input from stakeholders.

6. Inspect facility.

7. Test space.

8. Reopen facility.

9. Facility is user-friendly and meets needs of
patrons.

LDC Schema

1. Step 1: Acquisition [not matched]: Acquire
facility.

2. Step 2: Planning[1]: Research and plan ex-
pected usage, budget, changes, legal issues,
dependencies.
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3. Step 3: Labor[2,3]: Arrange for skills, or la-
borers, or both.

(a) Step 3.1: AcquireSkills [not matched]:
Acquire skills or knowledge required for
remodeling.

(b) Step 3.2: HireLaborers[2,3]: Hire skilled
person or organization to perform remod-
eling work.

4. Step 4: AcquireMaterials[4.1]: Acquire mate-
rials and tools.

5. Step 5: Remodel[4]: Facility is remodeled.

(a) Step 5.1: Demolition[4.2]: Deconstruc-
tion or demolition of portions of building
and/or equipment installations.

(b) Step 5.2: DebrisRemoval [not matched]:
Hauling away/dumping of debris.

(c) Step 5.3: Modification[4.2]: Modifica-
tion, addition, or installation of building
or systems/equipment in building.

6. Step 6: Inspection[6,7]: Inspect and/or test
new portions of facility and/or new systems of
facility for functionality and compliance with
laws and regulations.

Results: The GPT3 schema covers 8 out of 11
events that are mentioned in the LDC schema. The
matching between LDC events and schema events
are marked in [] next to the event on the LDC
schema. GPT3 schema has 9 additional events:
contractor works, follow building code and regula-
tions, preconditions on contractor, painting, instal-
lation, construction.
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Abstract
This work presents ‘BanglaNLG,’ a compre-
hensive benchmark for evaluating natural lan-
guage generation (NLG) models in Bangla,
a widely spoken yet low-resource language.
We aggregate six challenging conditional text
generation tasks under the BanglaNLG bench-
mark, introducing a new dataset on dialogue
generation in the process. Furthermore, us-
ing a clean corpus of 27.5 GB of Bangla
data, we pretrain ‘BanglaT5’, a sequence-
to-sequence Transformer language model for
Bangla. BanglaT5 achieves state-of-the-art per-
formance in all of these tasks, outperforming
several multilingual models by up to 9% abso-
lute gain and 32% relative gain. We are mak-
ing the new dialogue dataset and the BanglaT5
model publicly available at https://github.
com/csebuetnlp/BanglaNLG in the hope of
advancing future research on Bangla NLG.

1 Introduction

The emergence of pretrained language models (De-
vlin et al., 2019; Radford et al., 2019; Liu et al.,
2019) has brought about a revolutionary change in
natural language processing (NLP). With little task-
specific fine-tuning, these models have achieved
state-of-the-art results on many NLP tasks (Wang
et al., 2018; Rajpurkar et al., 2016; Tjong Kim Sang
and De Meulder, 2003). However, the focus of
these models has predominantly been on natural
language understanding (NLU). Even models pre-
trained with generative objectives (Raffel et al.,
2020) concern themselves with NLU tasks more
than natural language generation (NLG) tasks. Al-
though there have been recent efforts to uplift NLG
(Gehrmann et al., 2021), they are primarily geared
towards high- and mid-resource languages. For
example, despite being the sixth most spoken lan-
guage in the world with over 230 million native
speakers comprising 3% of the world’s total popu-
lation,1 Bangla has remained an underrepresented

1https://w.wiki/Psq

language in the NLP literature (Joshi et al., 2020).
There have been only a handful of benchmark stud-
ies on Bangla NLG (Dabre et al., 2022; Kumar
et al., 2022), and that too without Bangla being the
main focus. This can be attributed to the lack of
diverse NLG tasks under a single benchmark and
strong pretrained Bangla NLG models.

To this end, we present ‘BanglaNLG,’ a com-
prehensive benchmark for Bangla language gen-
eration comprising six representative tasks on ma-
chine translation, text summarization, question an-
swering, dialogue generation, headline generation,
and cross-lingual summarization. To our knowl-
edge, BanglaNLG is the first NLG benchmark ex-
clusively for a low-resource language.

To establish a strong baseline for this benchmark,
we pretrain BanglaT5 – a sequence-to-sequence
Transformer model (Vaswani et al., 2017) pre-
trained on a 27.5 GB clean Bangla text corpus
covering a broad range of domains. In summary:

• We develop the BanglaNLG benchmark bring-
ing together six NLG tasks.

• We introduce a Multi-turn Dialogue dataset.
• We pretrain BanglaT5 and evaluate it on the

six NLG tasks, showing strong results.

BanglaT5 outperforms similar-sized multilin-
gual models, achieving new state-of-the-art results
on three tasks with a 4% gain on average. We are re-
leasing the BanglaT5 model and a live leaderboard
to promote future research on Bangla NLG.

2 The Bangla Natural Language
Generation (BanglaNLG) Benchmark

There have been sporadic works on Bangla NLG,
mostly catered to machine translation (Hasan et al.,
2020; Mumin et al., 2019a,b) and text summa-
rization (Bhattacharjee et al., 2021b; Dhar et al.,
2021). However, Bangla NLG lacks a unified study
comprising diverse and challenging tasks. Moti-
vated by the popular benchmarks like GLUE (Wang
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Task Corpus |Train| |Dev| |Test| Metric Domain
Machine Translation BanglaNMT, FLoRes 2,751,315 997 1,012 SacreBLEU Misc.
Text Summarization XL-Sum 8,102 1,012 1,012 ROUGE-2 BBC
Question Answering BQA 127,771 2,502 2,504 EM/F1 Wikipedia
Multi-turn Dialogue DailyDialog 76,052 7,069 6,640 BLEU-1 Misc.
News Headline Generation XL-Sum 8,102 1,012 1,012 ROUGE-2 BBC
Cross-lingual Summarization CrossSum 1241 153 155 ROUGE-2 BBC

Table 1: Dataset statistics and basic characteristics of BanglaNLG. Machine translation and cross-lingual summa-
rization datasets include examples of Bangla↔ English.

et al., 2018), XTREME (Hu et al., 2020), GEM
(Gehrmann et al., 2021), that have facilitated the
training/evaluation of NLP models, we establish
the first-ever Bangla Natural Language Generation
(BanglaNLG) Benchmark.

2.1 Task Selection Criteria

We consider the following factors while choosing
the evaluation tasks:

1. Diversity: The tasks should focus on evaluat-
ing the model’s generalization capabilities. There-
fore, they should vary in task nature – the input and
output length, the type of generated text, the target
domain, and the dataset size.

2. Practical Applicability: The choice of tasks
should be driven by their practical implications.
Rather than being used in abstract situations, NLG
models trained on these tasks should be able to
aid/reduce human effort in real-world scenarios.

3. Difficulty: The tasks should be challenging
while not being unsolvable. There should be clear
room for improvement to foster future research.

4. Accessibility: The selected datasets for these
tasks should be openly accessible to encourage
researchers to design better NLG models.

5. Evaluation: The selected tasks should have re-
liable automated metrics for evaluating the focused
abilities of an NLG model.

2.2 Selected Tasks

Considering the criteria mentioned above, we de-
sign BanglaNLG as an aggregation of six tasks:

1. Machine Translation (MT): MT is perhaps
the most studied NLG task in Bangla and the most
commonly benchmarked NLG task in general. We
use the BanglaNMT parallel corpus (Hasan et al.,
2020), the largest Bangla-English MT dataset cu-
rated, with 2.75 million parallel pairs for training.
The sentence pairs originate from various domains
such as Wikipedia, news articles, religious and law

documents, etc. We evaluate the NLG models using
FLoRes-100 (Goyal et al., 2022) in both directions
on this dataset, i.e., Bangla to English and English
to Bangla. This task is particularly challenging
since it assesses an NLG model’s bilingual genera-
tion capabilities. Following standard practice, we
use detokenized SacreBLEU (Post, 2018) as the
evaluation metric for this task.
2. Text Summarization (TS): This task aims to
generate a short and fluent summary given a long
text document. We chose the Bangla portion of XL-
Sum (Hasan et al., 2021) for this task. XL-Sum
is a large comprehensive dataset for abstractive
TS where the article and summaries are written by
professional editors of BBC News. The articles
cover various topics such as entertainment, politics,
science, sports, etc. For this task, we use ROUGE-
22 (Lin, 2004) as the evaluation metric.
3. Question Answering (QA): This is a funda-
mental NLP task that can be modeled as both an
NLU and NLG task. We use the BQA (Bhattachar-
jee et al., 2022) dataset for this task. The training
data is machine translated from SQuAD 2.0 (Ra-
jpurkar et al., 2018), while the evaluation data come
from the human-annotated question-answer pairs
of the TyDi-QA (Clark et al., 2020) secondary gold
passage task. Although TyDi-QA only contains
answerable questions, BQA introduced unanswer-
able questions to make the task more challenging.
Following SQuAD 2.0, we use Exact Match (EM)
and F1 as the evaluation metrics.
4. Multi-turn Dialogue (MTD): Conversational
AI is a crucial task for NLG (Chen et al., 2017).
However, there is no public dataset for dialogue
generation in Bangla. As such, we curate a new
multi-turn dialogue dataset by translating the Dai-
lyDialog (Li et al., 2017) dataset using the English
to Bangla translation model introduced by Hasan

2We use Bangla stemming supported ROUGE implemen-
tation from https://github.com/csebuetnlp/xl-sum/
tree/master/multilingual_rouge_scoring.
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et al. (2020). Unlike standard QA-style conversa-
tion datasets, DailyDialog reflects real-life conver-
sations in various social situations rich in emotion,
making it a perfect candidate for our benchmark.
We automatically translate the training data follow-
ing the same procedure described in Bhattacharjee
et al. (2022) and have the evaluation sets manually
translated by expert human translators. We use
BLEU-1 as the evaluation metric for this task to
properly differentiate between models since aver-
aged BLEU scores of up to 4-gram tend to be quite
low in dialogue evaluation (Zhang et al., 2020).

5. News Headline Generation (NHG): Au-
tomating headline generation can help news editors
write compelling headlines to draw readers’ atten-
tion. We consider NHG as a complementary task
to TS. Given an article, the objective is to generate
an appropriate headline that accurately depicts the
article. We repurpose the XL-Sum (Hasan et al.,
2021) dataset for this task since it also includes the
titles of the articles. Like TS, we use ROUGE-2 as
the evaluation metric.

6. Cross-lingual Summarization (XLS): As
another task for evaluating models’ bilingual gen-
eration capabilities, we consider XLS. In this task,
given a piece of text in a source language, we have
to generate the corresponding summary in a target
language. This is potentially harder than both MT
and TS considering it combines both in a single
task. We consider the English-Bengali portion of
the CrossSum (Bhattacharjee et al., 2021a) dataset
for this task. It is curated by aligning identical
articles written in different languages from the XL-
Sum dataset. For evaluation, we use ROUGE-2.

We present detailed statistics of the BanglaNLG
benchmark in Table 1.

3 BanglaT5

We introduce BanglaT5, a sequence-to-sequence
Transformer model (Vaswani et al., 2017), to estab-
lish a strong baseline for BanglaNLG benchmark.
In this section, we describe the pretraining data,
objectives, and model architecture of BanglaT5.

3.1 Pretraining Data

We chose Bangla2B+ (Bhattacharjee et al., 2022)
as the pretraining corpus for BanglaT5. This is a
27.5 GB dataset containing 5.25 million documents
collected from a meticulously selected list of web
sources. While larger sources like CCNet (Wen-
zek et al., 2020) and mC4 (Xue et al., 2021) are

available, these contain a lot of noise and offensive
texts that are difficult to remove. For a generative
model, even small amounts of unwanted texts in
pretraining could lead to potentially dangerous bi-
ases in generated text (Luccioni and Viviano, 2021).
Therefore, we decided not to use them.

3.2 Data Pre-processing

Following Hasan et al. (2020), we preprocessed
the texts using their normalization pipeline3. We
trained a SentencePiece (Kudo and Richardson,
2018) vocabulary of 32k subword tokens on the
normalized corpus with a character coverage of
0.99995. While creating a training sample, we lim-
ited the maximum sequence length to 512 tokens
for both input and output and discarded documents
with a token count below 7. After tokenization,
we had 4.8 million data points with an average
sequence length of 402.32 tokens.

3.3 Pretraining Objective

For generative language modeling, two standard
choices are decoder-only models (Mikolov et al.,
2010) and encoder-decoder models (Sutskever
et al., 2014). Radford et al. (2019) trained a
decoder-only Transformer (Vaswani et al., 2017)
pretrained on the conditional continuation objec-
tive. However, to provide more flexibility on gen-
eration and possible usage on understanding tasks,
we only consider encoder-decoder models follow-
ing the original design of the Transformer. They
are generally trained with different denoising ob-
jectives to increase the encoder’s and decoder’s
capacity. For instance, BART (Lewis et al., 2020b),
and mBART (Liu et al., 2020) use a text-infilling-
based objective. In contrast, MARGE (Lewis et al.,
2020a) is a multilingual encoder-decoder model
trained to reconstruct a document in one language
by retrieving documents in other languages. Fol-
lowing Raffel et al. (2020), we pretrained BanglaT5
using a "span-correction" objective, empirically
shown to be an optimal choice for encoder-decoder
models. In this objective, consecutive spans of in-
put tokens are replaced with a mask token, and the
model is trained to reconstruct them.

3.4 Model Architecture & Hyperparameters

We pretrained the base variant of the T5 model: 12
layers, 12 attention heads, 768 hidden size, 2048
feed-forward size with GeGLU activation (Shazeer,

3https://github.com/csebuetnlp/normalizer
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Model Parameters MT TS QA MTD NHG XLS
mT5 (base) 582M 30.1/17.2 10.3 59.0/65.3 17.5 9.6 2.7/0.7
XLM-ProphetNet 616M 27.5/15.4 7.8 53.0/57.3 20.0 9.5 6.2/2.7
mBART-50 611M 29.7/15.5 10.4 53.4/58.9 18.5 11.2 5.4/3.7
IndicBART (unified) 244M 28.1/16.6 8.9 59.6/65.6 14.8 7.9 6.3/2.5
IndicBART (separate) 244M 27.5/15.7 9.2 55.3/61.2 14.1 9.1 5.3/2.4
BanglaT5 247M 31.3/17.4 13.7 68.5/74.8 19.0 13.8 6.4/4.0

Table 2: Performance comparison of the pretrained models on different BanglaNLG tasks. Scores in bold texts have
statistically significant (p < 0.05) difference from others with bootstrap sampling (Koehn, 2004).

2020) with a batch size of 65536 tokens for 3 mil-
lion steps on a v3-8 TPU instance on GCP. We used
the Adam (Kingma and Ba, 2015) optimizer with a
3e-4 learning rate, linear warmup of 10k steps, and
‘inverse square root’ learning rate decay.

4 Experiments & Results

We compared BanglaT5 it with four multilingual
models: mT5 (base) (Xue et al., 2021), mBART-
50 (Tang et al., 2020), XLM-ProphetNet (Qi et al.,
2021), and IndicBART (both unified and separate
script variants) (Dabre et al., 2022).4 All pretrained
models were fine-tuned for 3-15 epochs with batch
size 32 (128 for MT). We used linear warmup with
a ratio of 0.1, label smoothing of 0.1 (Szegedy et al.,
2016), and weight decay of 1e-6 with the Adam
optimizer (Kingma and Ba, 2015). The learning
rate was tuned from the set {5e-5, 1e-4, 5e-4}. The
best model was evaluated based on the validation
performance after each epoch.

During inference, we used beam-search (Hayes-
Roth et al., 1976) with beam size 5 (on all tasks
except QA), removed duplicated trigrams during
beam search (Fan et al., 2018), and used a length
penalty (Wu et al., 2016) of 0.6. For QA, we used
greedy decoding, i.e., picking the most probable
token during each decoding step.

The evaluation results are presented in Table 2.
In all the tasks, BanglaT5 outperformed all multilin-
gual models by a considerable margin, on average
4% over the second-best, mT5. In all monolingual
tasks except MTD, BanglaT5 achieves a big perfor-
mance gain over others (up to 9.54% in QA), which
can be attributed to the quality of the pretraining
data. In MD, BanglaT5 lags marginally behind
XLM-ProphetNet. We hypothesize this is due to
the lack of colloquial data in Bangla2B+ since Bhat-
tacharjee et al. (2022) left out such sources to avoid

4Due to computational budget limitations, we do not bench-
mark on billion-parameter models like large mT5 variants.

toxic and biased conversations.
We find the MT results particularly interesting,

where BanglaT5 outperforms larger multilingual
models in both directions. This suggests that de-
spite having very little English data in the pretrain-
ing corpus, BanglaT5 can generalize well to a new
translation language, given high-quality fine-tuning
data. We explore this more in the Appendix. Con-
spicuously, all the models achieve relatively poor
scores on the XLS task. This can be attributed to
the smaller amount of training data.

BanglaT5 proves its superiority in compute and
memory efficiency along with its performance due
to its smaller size (less than half the parameters
of all multilingual models except IndicBART). In
practice, we observe 2-2.5x faster training and in-
ference times with BanglaT5 than these larger mul-
tilingual models.

5 Related Works

Pretrained models NLP has witnessed a sea of
change with the advent of pretrained language mod-
els like ULMfit (Howard and Ruder, 2018), ELMo
(Peters et al., 2018), and most notably BERT (De-
vlin et al., 2019), achieving state-of-the-art results
in many NLU benchmarks. Besides these NLU
models, more and more pretrained models designed
for NLG tasks have been proposed. Rothe et al.
(2020) adopted pretrained NLU model checkpoints
for generative tasks. GPT-2 (Radford et al., 2019),
and later GPT-3 (Brown et al., 2020) showed that
pretrained generative language models can per-
form remarkably well in zero-shot transfer tasks.
More recently, Qi et al. (2020) proposed Prophet-
Net, which introduces the future n-gram prediction
mechanism for language generation. Dabre et al.
(2022) introduced IndicBART, which is pretrained
on 11 Indic languages, including Bangla.

NLG Benchmarks Recently, many multi-task
benchmarks have been proposed to drive the
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progress of NLG models. Moussallem et al. (2020)
proposed the BENG benchmark for NLG and
knowledge extraction. GLGE (Liu et al., 2021)
is a similar benchmark with a different set of tasks
and difficulty levels. However, these benchmarks
are limited to English only. Gehrmann et al. (2021)
introduced the GEM benchmark for various tasks
such as summarization (Narayan et al., 2018), data-
to-text generation (Nan et al., 2021) across different
languages. Cahyawijaya et al. (2021) introduced
different tasks and baselines for 3 Indonesian lan-
guages. More recently, Kumar et al. (2022) intro-
duced IndicNLG, a benchmark with five tasks in
11 Indic languages, including Bangla.

6 Conclusion & Future Works

NLP research in low-resource languages is lag-
ging behind due to the lack of reliable benchmarks
and datasets. To facilitate the development, eval-
uation, and comparison of new NLG models, we
introduced a multi-task evaluation benchmark for
Bangla NLG, a widely spoken yet low-resource
language. We presented BanglaT5, a pretrained
NLG model in Bangla, setting new state-of-the-art
results with BanglaT5. We strongly believe that
our contributions in this work will help the Bangla
NLP community benchmark NLG tasks more eas-
ily under a unified setup.

In future work, we plan to introduce new tasks to
BanglaNLG, such as personalized dialogue genera-
tion (Zhang et al., 2018), conversational question-
answering (Reddy et al., 2019). We will also add
more recent multilingual models to our comparison
to BanglaT5, e.g., DeltaLM (Ma et al., 2021).

Limitations

Although Bhattacharjee et al. (2022) claimed that
Bangla2B+, the pretraining corpus for BanglaT5,
had been carefully filtered for offensive or un-
wanted texts, they alerted that there might be small
amounts of these contents may be present, which
can result in bias or toxicity in the pretrained model.
We, therefore, recommend using BanglaT5 with
caution, especially for real-world deployment.

Ethics Statement

License The TyDiQA dataset (Clark et al., 2020)
is released under the Apache License 2.0, allowing
modifications and distribution. All other pretrain-
ing and fine-tuning datasets are released under the

Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License (CC BY-NC-
SA 4.0), which allows modifications and distribu-
tions for non-commercial research purposes. We
strictly adhere to these licenses and will release
BanglaT5 and BanglaNLG benchmark resources
under CC BY-NC-SA 4.0.
Annotation Expert translators who provide trans-
lation services for renowned Bangla newspapers
were hired to translate the evaluation sets of the
dialogue dataset. Each translated sentence was fur-
ther assessed for quality by another expert. It was
again translated by the original translator if found
to be of low quality. If the re-translation was found
to be of low quality, it was then translated by the
other expert. The experts were paid hourly as per
standard rates in local currency.
Hallucinated Text It is well-known that text gen-
eration models can hallucinate outputs that may
not necessarily be faithful to the original input
(Maynez et al., 2020). Though the texts may be
fluent and human-like, the hallucinations may be
factually inconsistent and impact the outputs neg-
atively. BanglaT5 may be susceptible to the same
kinds of hallucinations.
Carbon Footprint We avoided using large mod-
els for pretraining and fine-tuning, reducing their
environmental impacts. BanglaT5 was trained for
about 30 days on Google v3 TPUs. Google’s
TPUs are specifically designed for machine learn-
ing, which makes them up to five times more effi-
cient than GPUs. Assuming 0.080kg carbon emis-
sion per kWh,5 the pretraining would emit fewer
than 100kg carbon into the environment, far be-
low most computationally demanding models. All
fine-tuning experiments were done on a desktop
machine with an 8-core Intel Core-i7 11700k CPU
and NVIDIA RTX 3090 GPU, and no single run ex-
cept machine translation took more than 12 hours,
which amounts to fewer than 0.5kg carbon emis-
sion. On average, machine translation runs took
three days each, emitting less than 3kg of carbon.
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Supplementary Material: Appendices

A Multi-turn Dialogue Scores

In Table 3, we mention BLEU-1, BLEU-2, BLEU-
3, and BLEU-4 scores for different models in the
multi-turn dialogue generation task.

Model B-1 B-2 B-3 B-4
mT5 (base) 17.54 3.67 1.25 0.43
XLM-ProphetNet 19.98 6.06 2.98 1.86
mBART-50 18.54 5.56 2.97 2.09
IndicBART (unified) 14.75 3.18 1.06 0.37
IndicBART (separate) 14.05 3.23 1.18 0.49
BanglaT5 19.00 5.02 2.04 0.92

Table 3: Performance comparison of the pretrained mod-
els on the dialogue generation task. Scores in bold texts
have statistically significant (p < 0.05) difference from
others with bootstrap sampling (Koehn, 2004).

B Cross-lingual Capabilities of BanglaT5

Despite being a monolingual model pretrained on
heavily filtered Bangla data, BanglaT5 exhibits
strong cross-lingual abilities, particularly in the
machine translation (MT) task. In addition to the
quality and size of the fine-tuning dataset, this per-
formance can also be attributed to the presence of a
significant amount of non-Bangla tokens (∼10.3%)
in the BanglaT5 vocabulary.

Since Bhattacharjee et al. (2022) curated the
Bangla2B+ corpus by document-level language fil-
tering, these documents preserve foreign text se-
quences occurring in the Bangla documents. We
deliberately maintain these tokens while training
the vocabulary of BanglaT5, using a relatively high
character coverage. Our rationale behind doing
this was to capture code-switching and allow bet-
ter generalization across languages co-occurring
with Bangla, as well as romanized forms of Bangla
texts during fine-tuning, which is reflected in the
MT results. However, it should be noted that the
quality and size of fine-tuning data are essential for
a strong cross-lingual performance since the mere
existence of foreign tokens in the vocabulary is not
enough to produce meaningful generation perfor-
mance, as demonstrated by the poor performance
in the cross-lingual summarization (XLS) task.

This phenomenon has been studied in-depth by
Blevins and Zettlemoyer (2022) in the context
of pretrained language models in English, where
they showed that these models develop strong

cross-lingual transfer capabilities due to the non-
negligible amount of foreign text present in the
pretraining data and robustness to UNK tokens dur-
ing fine-tuning.
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Abstract

New events emerge over time influencing the
topics of rumors in social media. Current ru-
mor detection benchmarks use random splits as
training, development and test sets which typi-
cally results in topical overlaps. Consequently,
models trained on random splits may not per-
form well on rumor classification on previously
unseen topics due to the temporal concept drift.
In this paper, we provide a re-evaluation of
classification models on four popular rumor de-
tection benchmarks considering chronological
instead of random splits. Our experimental re-
sults show that the use of random splits can sig-
nificantly overestimate predictive performance
across all datasets and models. Therefore, we
suggest that rumor detection models should al-
ways be evaluated using chronological splits
for minimizing topical overlaps.

1 Introduction

Unverified false rumors can spread faster than news
from mainstream media, and often can disrupt
the democratic process and increase hate speech
(Vosoughi et al., 2018; Zubiaga et al., 2018). Au-
tomatic detection of rumors is an important task
in computational social science, as it helps prevent
the spread of false rumors at an early stage (Ma
et al., 2017; Zhou et al., 2019; Karmakharm et al.,
2019; Bian et al., 2020).

Current rumor detection approaches typically
rely on existing annotated benchmarks consisting
of social media data, e.g., Twitter 15 (Ma et al.,
2017), Twitter 16 (Ma et al., 2017), Weibo (Ma
et al., 2016), and PHEME (Zubiaga et al., 2016)
that cover a wide range of time periods. These
benchmarks use random splits for train, develop-
ment and test sets which entail some topical overlap
among them (see Table 1 for recent previous work).
However, the distribution of topics in various NLP
benchmarks (e.g., news, reviews, and biomedical)
can be significantly affected by time (Huang and

Paper Twitter 15 Twitter 16 PHEME Weibo
Tian et al. (2022) ✓ ✓ - ✓

Zeng and Gao (2022) - ✓ ✓ -
Sheng et al. (2022) - - - ✓

Mukherjee et al. (2022) - - ✓ -
Sun et al. (2022) ✓ ✓ ✓ -

de Silva and Dou (2021) ✓ ✓ - -
Ren et al. (2021) - - ✓ -
Wei et al. (2021) ✓ ✓ ✓ -
Li et al. (2021) - - ✓ -

Rao et al. (2021) ✓ ✓ - ✓

Lin et al. (2021) ✓ ✓ ✓ -
Farinneya et al. (2021) - - ✓ -

Sun et al. (2021) - - ✓ -
Qian et al. (2021) - - ✓ -
Song et al. (2021) ✓ ✓ ✓ -

Kochkina and Liakata (2020) ✓ ✓ ✓ -
Yu et al. (2020) - - ✓ -
Xia et al. (2020) - ✓ - ✓

Bian et al. (2020) ✓ ✓ - ✓

Lu and Li (2020) ✓ ✓ - -

Table 1: Recent work on rumor detection using random
splits.

Paul, 2018, 2019). This is the phenomenon of tem-
poral concept drift which can be induced by the
changes in real-world events. Specifically, this
also affects benchmarks on social media with new
events such as elections, emergencies, pandemics,
constantly creating new topics for discussion.

Gorman and Bedrick (2019) and Søgaard et al.
(2021) have showed that using different data split
strategies affects model performance in NLP down-
stream tasks. Previous work has demonstrated that
text classifiers performance significantly drops in
settings where chronological data splits are used
instead of random splits in various domains, e.g.,
hate speech, legal, politics, sentiment analysis, and
biomedical (Huang and Paul, 2018; Lukes and Sø-
gaard, 2018; Huang and Paul, 2019; Florio et al.,
2020; Chalkidis and Søgaard, 2022; Agarwal and
Nenkova, 2022; Zhao et al., 2022). To minimize
topical overlaps, a Leave-One-Out (LOO) evalu-
ation protocol has been proposed (Lukasik et al.,
2015, 2016). While this topic split strategy could
potentially mitigate temporal concept drift, it still
yields temporal overlaps between each subset and
is practically not applicable to most common ru-
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Dataset id Post Label Leven

Twitter 15 407231* r.i.p to the driver who died with paul walker that no one cares about because he wasn’t famous. Rumor 3407236* r.i.p to the driver that died with paul walker that no one cares about because he wasn’t famous. Rumor

Twitter 16 594687* the kissing islands, greenland. URL Non-Rumor 0604628* the kissing islands, greenland. URL Non-Rumor

PHEME 498483* happening now in #ferguson URL Non-Rumor 9499402* Right now in #ferguson URL Non-Rumor

Weibo 349863* 【喝易拉罐一定要吸管】一妇女喝了罐饮料，被送进医院，离开了世界。研究显示罐上面的
毒菌很多请转给你关心的朋友。 Translation: Please forward to your friends you care about.

Rumor 10

350023* 【喝易拉罐一定要吸管】一妇女喝了罐饮料，被送进医院，离开了世界。研究显示罐上面的
毒菌很多！！这些你知道么 Translation: Do you know about this?

Rumor

Table 2: Four pairs of posts from train and test data with similar or identical text content sampled from four rumor
detection benchmarks. Post ids with close values indicate that two posts are published in the same period. Leven
denotes the Levenshtein distance (Levenshtein et al., 1966) on character-level between the two posts with the same
label (i.e., lower values indicate higher text similarity and vice versa).

mour detection benchmarks with a large number
of topics (e.g., Twitter 15, Twitter 16, Weibo, etc.).
We observe that the LOO protocol can be used for
a few specific rumor detection benchmarks, such
as (PHEME (Zubiaga et al., 2016)), where each
post is associated with a corresponding event, e.g,
Ottawa Shooting and Charlie Hebdo shooting.

Using random splits also results into posts with
almost identical textual content shared during the
same period. Table 2 displays four pairs of posts
with similar or identical text content sampled from
four different rumor detection benchmarks. This
potential information leakage, results in classifying
data almost identical to ones already being present
in the training set. For practical application rea-
sons, we believe that in order to evaluate a rumor
detection system, it is necessary to detect not only
long-standing rumors, but also emerging ones.

In this paper, we design a battery of controlled
experiments to explore the hypothesis that whether
temporality affects the predictive performance of
rumor classifiers. To this end, we re-evaluate mod-
els on popular rumor detection benchmarks using
chronological data splits i.e., by training the model
with earlier posts and evaluating the model perfor-
mance with the latest posts. Results show that the
performance of rumor detection approaches trained
with random data splits is significantly overesti-
mated than chronological splits due to temporal
concept drift. This suggests that rumor detection
approaches should be evaluated with chronological
data for real-world applications, i.e., to automati-
cally detect emerging rumors.

2 Methodology

2.1 Data

We use four most popular rumor detection bench-
marks, three in English and one in Chinese. Note

that most related work is currently evaluating their
rumor detection systems on two or three of these
four benchmarks. (see Table 1).

Twitter 15 and Twitter 16: These datasets con-
tain 1,490 and 818 tweets labeled into four cate-
gories including Non-rumor (NR), False Rumor
(FR), True Rumor (TR), and Unverified Rumor
(UR) introduced by Ma et al. (2017).

PHEME: This benchmark contains 5,802 veri-
fied tweets collected from 9 real-world breaking
news events (e.g., Ottawa Shootting, Ferguson Un-
rest, etc.) associated with two labels, i.e., 1,972 Ru-
mor and 3,830 Non-Rumor (Zubiaga et al., 2016).

Weibo: This dataset includes 4,664 verified posts
in Chinese including 2,313 rumors debunked by the
Weibo Rumor Debunk Platform1 and 2,351 non-
Rumors from Chinese media (Ma et al., 2016).

Data Pre-processing We opt for the binary setup
(i.e., re-frame all benchmarks as rumor detection)
to distinguish true/false information following Lu
and Li (2020); Rao et al. (2021). We pre-process
the posts by replacing @mention and hyperlinks
with @USER and URL respectively. We also low-
ercase the tweets from three Twitter benchmarks.

2.2 Data Splits

Standard Chronological Splits For Twitter 15
and PHEME, we first sort all posts chronologically
and then divide them into three subsets including
a training set (70% of the earliest data), a develop-
ment set (10% of data after train and before test),
and a test set (20% of the latest data). There is no
temporal overlap between the three subsets.

1https://service.account.weibo.com/
?type=5&status=4
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Benchmarks Twitter 15 Twitter 16 PHEME Weibo
Splits Subsets Train Dev Test Train Dev Test Train Dev Test Train Dev Test

# of Rumors 285 35 52 - - - 1,420 72 480 - - -Standard Chronological # of Non-Rumors 234 40 96 - - - 2,641 508 681 - - -
# of Rumors 260 37 75 144 21 40 1,380 197 394 1,645 235 470Stratified Chronological # of Non-Rumors 259 37 74 144 21 40 2,681 383 766 1,619 231 463
# of Rumors 260 37 75 144 21 40 1,380 197 394 1,645 235 470Random Splits # of Non-Rumors 259 37 74 144 21 40 2,681 383 766 1,619 231 463

Table 3: Statistics of subsets. Note that using random splitting yields the same percentage of examples in each
category as in the stratified chronological splits.

Stratified Chronological Splits On the other
hand, we observe that there is no temporal overlap
between rumors and non-rumors in Twitter 16 and
Weibo datasets. This suggests that it is not possible
to use standard chronological splits as in Twitter
15 and PHEME.

Therefore, we apply a stratified chronological
split strategy for all benchmarks. We first split ru-
mors and non-rumors separately in chronological
order. We then divide them into three subsets (a
total of six subsets), i.g., all rumors are split into a
training set (70% of the earliest rumors), a develop-
ment set (10% of data after train and before test),
and a test set (20% of the latest rumors). Finally,
we merge the six subsets into the final three train,
development and test sets. Note that this approach
will result in no temporal overlap for each label
(i.e., rumor or non-rumor) among the three final
sets. We show the number of each split in Table 3.

Random Splits Following standard practice (e.g.,
Bian et al. 2020; Lin et al. 2021; Rao et al. 2021),
we randomly split data using a 5-fold cross-
validation. Note that these splits are made by pre-
serving the percentage of posts in each category.
Each split contains a training set (70%), develop-
ment set (10%) and a test set (20%) with the same
ratio as in our chronological splits.

Leave-One-Out (LOO) Splits For reference, we
also provide the results of using the LOO evalua-
tion protocol on PHEME dataset (see Table 5).

2.3 Models

The main purpose of our experiments is to improve
model evaluation by investigating the effects of
temporal drifts in rumor detection by providing
an extensive empirical study. Therefore, we opted
using strong text classifiers that are generic and can
be applied to all of our benchmarks:

• LR We train a LR classifier using BOW to
represent posts weighted by TF-IDF using a
vocabulary of 5,000 n-grams.

• BERT We directly fine-tune the BERT base
model by adding a linear prediction layer on
the top of the 12-layer transformer architec-
ture following (Devlin et al., 2019).

• BERT+ (BERTweet and ERNIE) We also
experiment with two domain specific models:
BERTweet (Nguyen et al., 2020) and ERNIE
(Sun et al., 2020) pre-trained on social media
data using the same fine-tune strategy as the
original BERT model.

2.4 Hyperparameters and Implementation
Details

We train the model on the training set, perform
model tuning and selecting on the development
set, and evaluate performance on the test set. To
evaluate the chronological data splits, we run the
model five times with different random seeds for
consistency. All chronological splits are available
for reproducibility.2

For logistic regression, we use word-level and
character-level tokenizers for Twitter and Weibo
datasets respectively and only consider uni-gram,
bi-grams, and tri-grams that appear in more than
two posts for each dataset. For BERT, we set learn-
ing rate lr = 2e− 5, batch size bs = 32, and max-
imum input length as 256 covering the max tokens
of all posts. All BERT-style models are trained for
10 epochs using the early stopping method based
on the loss on the development set. The best check-
point model is saved for evaluation on the test set.
The average run time of 10 epochs for the BERT
model is less than 2 minutes. We employ Bert-
Base-Uncased, Bertweet-Base and Chinese-Bert-
WWM, Ernie-1.0 models from the HuggingFace
library (Wolf et al., 2020). All experiments are
conducted on a single NVIDIA V100 GPU with
32GB memory.

2https://github.com/YIDAMU/Rumor_
Benchmarks_Temporality
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Twitter15 PHEMEModel Strategy P R F1 P R F1
Random 86.7 ± 2.1 85.2 ± 1.8 85.0 ± 1.8 84.1 ± 1.2 79.3 ± 1.0 80.9 ± 1.0

Standard Chronological 56.6 ± 0.8 56.3 ± 0.7 56.4 ± 0.7 67.3 ± 0.1 64.0 ± 0.1 63.9 ± 0.1LR
Stratified Chronological 56.3 ± 2.5 51.9 ± 0.7 41.4 ± 0.4 64.5 ± 0.2 63.0 ± 0.3 63.5 ± 0.3

Random 88.2 ± 2.4 87.9 ± 2.2 87.9 ± 2.2 84.8 ± 0.5 84.8 ± 1.2 84.8 ± 0.8
Standard Chronological 54.8 ± 4.0 55.1 ± 4.3 52.9 ± 3.6 74.8 ± 1.1 75.1 ± 0.8 73.7 ± 0.4BERT
Stratified Chronological 58.2 ± 7.3 56.1 ± 4.5 52.8 ± 5.6 75.5 ± 0.6 77.7 ± 0.5 75.7 ± 1.1

Random 90.8 ± 1.2 90.4 ± 1.2 90.4 ± 1.2 84.6 ± 1.0 85.5 ± 0.9 85.0 ± 0.8
Standard Chronological 58.6 ± 1.9 58.8 ± 2.1 57.4 ± 2.5 76.1 ± 1.1 74.8 ± 1.5 71.6 ± 2.2BERT+
Stratified Chronological 61.8 ± 6.5 57.9 ± 2.4 55.2 ± 1.5 75.3 ± 0.9 76.9 ± 2.1 71.0 ± 3.5

Twitter16 WeiboModel Strategy P R F1 P R F1
Random 89.9 ± 1.2 89.3 ± 1.5 89.3 ± 1.5 90.1 ± 0.9 90.1 ± 0.9 90.1 ± 0.9LR Stratified Chronological 62.1 ± 6.9 55.8 ± 4.7 48.7 ± 11.4 79.1 ± 0.1 78.1 ± 0.1 77.9 ± 0.1
Random 91.9 ± 1.0 91.5 ± 0.8 91.5 ± 0.8 92.3 ± 1.2 92.2 ± 1.2 91.2 ± 1.2BERT Stratified Chronological 61.0 ± 11.2 54.3 ± 4.3 47.2 ± 3.5 89.0 ± 2.5 87.6 ± 2.6 87.5 ± 2.6
Random 89.8 ± 2.8 89.3 ± 3.2 89.3 ± 3.3 92.5 ± .4 92.5 ± .4 92.5 ± .4BERT+ Stratified Chronological 49.8 ± 1.7 49.9 ± 0.9 45.1 ± 2.9 88.1 ± 2.5 87.6 ± 1.4 88.5 ± 1.5

Table 4: Rumor detection prediction results across different data split methods. Green cells indicate that the
model trained on random splits performs significantly better than both standard chronological splits and stratified
chronological splits (p < 0.05, t-test).

PHEMEModel P R F1
LR 68.3 ± 3.8 65.1 ± 6.3 63.2 ± 6.3
BERT 73.4 ± 3.1 71.9 ± 6.1 70.7 ± 4.9
BERT+ 75.3 ± 2.2 72.6 ± 8.1 71.4 ± 7.0

Table 5: Leave-One-Out evaluation protocol on PHEME
dataset.

2.5 Evaluation Metrics
For all tasks, we report the averaged macro Preci-
sion, Recall and F1 values across five runs using
different random seeds.

3 Results

Random Splits vs. Chronological Splits Table 4
shows the experimental results across all models
and rumor detection benchmarks using chrono-
logical splits and random 5-fold cross-validation.
Overall, we observe that the use of random splits
always leads to a significant overestimation of per-
formance compared to chronological splits (t-test,
p < 0.05) across all models. Our results cor-
roborate findings from previous work on study-
ing temporal concept drift (Huang and Paul, 2018;
Chalkidis and Søgaard, 2022). This suggests that
chronological splits are necessary to more realisti-
cally evaluate rumor detection models.

We also note that the effect of temporality varies
in datasets of different size. For both data splitting
strategies, we observe that the difference in per-
formance is 50% higher for the two datasets with
hundreds of posts (e.g., Twitter 15 and Twitter 16)
and around 10% in ones with thousands of posts
(e.g., PHEME and Weibo). For rumor detection

tasks, temporality may have a greater impact on
small-scale benchmarks than on large-scale bench-
marks. For Twitter 16 and Weibo, the use of strati-
fied chronological splits demonstrates significant
performance drops compared to random splits due
to the temporal concept drift.

For chronological splits, we observe that pre-
trained language models (i.e., BERT and BERT+)
significantly outperform (t-test, p < 0.05) logistic
regression in all benchmarks. This is due to the
fact that BERT-style models (i) outperform sim-
pler linear models by a large margin in various
NLP tasks (Devlin et al., 2019); and (ii) have been
trained after the development of these four bench-
marks implying some information leakage.

Standard vs. Stratifield Chronological Splits
Note that dividing the datasets into standard chrono-
logical splits results in subsets that do not preserve
the sample percentages for each category (see Ta-
ble 3). The upper part of Table 4 displays the differ-
ence in model performance between two types of
chronological splits on Twitter 15 and PHEME.
We observe that using both standard and strati-
fied chronological splits results in similar model
predictive performance (t-test, p > 0.05). Even
though stratified chronological splits contain tem-
poral overlap, it is still not sufficient to improve
model performance compared to random splits.
This suggests that the temporal drift affects par-
ticular classes rather than the entire data set.

4 Error Analysis

Finally, we perform an error analysis to further
investigate the type of errors made by BERT us-
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Bechmark Twitter 15 Twitter 16 PHEME Weibo
Splits Test set total # % total # % total # % total # %

all posts 148 3 2% 82 6 7% 1161 39 3% 933 41 4%
# of wrong predictions 63 2 1% 34 2 2% 301 5 <1% 99 7 <1%Chrono.
# of correct predictions 85 1 1% 48 4 5% 860 34 3% 834 34 4%
all posts 149 35 23% 83 26 30% 1161 181 16% 933 129 14%
# of wrong predictions 12 0 0% 5 1 1% 150 14 1% 65 4 <1%Random
# of correct predictions 137 35 23% 78 25 30% 1011 167 14% 868 125 14%

Table 6: Error Analysis for all benchmarks. # denotes the number of posts that are similar to posts from training set,
i.e., known data. % denote the percentage of similar posts in the test set. We set the threshold value to 20, which
indicates that there are two or three different words between the two tweets.

Example Test Train Correct Wrong
Twitter 15 #rip to the driver who died with #paulwalker that no one cares about because he wasn’t famous. 4 6 4 0
Twitter 16 steve jobs was adopted. his biological father was abdulfattah jandali, a syrian muslim 2 13 2 0
PHEME Police are leaving now . #ferguson HTTPURL 4 11 4 0

Weibo
【交通新规】2013年1月1日施行:1... 扩散给大家! 「广州日报」
Translation: [New driving laws] From 1 Jan 2013: Running a red light will result in a fine of
100 RMB and 6 points. ... Spread the news to everyone! [Guangzhou Daily]

2 6 2 0

Table 7: Four examples of correct predictions using random splits, which artificially removes temporal concept drift.
For example, in Twitter 15, there are 4 and 6 similar posts about rumors related to Paul Walker in the test set and the
training set respectively.

ing both random and chronological splits. Table 6
shows the number of correct and wrong predictions
for each of the two data splitting strategies. We
also use the Levenshtein distance3 to calculate the
quantity of posts in the test set that are similar to
posts in the corresponding train set.

• We first observe that the temporal concept
drift is evident in all rumor detection bench-
marks. Most of the rumors on the same topic
are posted in a very short time span.

• In addition, long-standing rumors are only a
small part of the data (less than 5%). Sec-
ond, we note that using random splits leads to
topical overlap between the training and test
sets (see Table 7) resulting in higher model
performance.

• Finally, for both random and chronological
splits, most of the posts in the test set with
overlapping topics in the training set are pre-
dicted correctly. In contrast, wrong predic-
tions are often posts with emerging or differ-
ent topics compared to the posts in the train
set.

5 Conclusion

We have shed light on the impact of temporal drift
on computational rumor detection. Results from
our controlled experiments show that the use of
chronological splits causes substantially drops in
predictive performance across widely-used rumor

3We set the threshold value to 20.

detection benchmarks. This suggests that random
splits rather overestimate the model predictive per-
formance. We argue that the temporal concept drift
needs to be considered when developing real-world
rumor detection approaches. In the future, we plan
to study the impact of temporal concept drift on
other NLP tasks, such as detecting user reactions to
untrustworthy posts on social media (Glenski et al.,
2018; Mu and Aletras, 2020; Mu et al., 2022).

Limitations

We provide the first re-evaluation of four standard
rumor detection benchmarks in two languages (En-
glish and Chinese) from two platforms (Twitter and
Weibo). We acknowledge that further investigation
is needed in rumor detection datasets in other lan-
guages. We provide an error analysis in Section 4.
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Abstract
The multi-sentential long sequence textual data
unfolds several interesting research directions
pertaining to natural language processing and
generation. Though we observe several high-
quality long-sequence datasets for English and
other monolingual languages, there is no sig-
nificant effort in building such resources for
code-mixed languages such as Hinglish (code-
mixing of Hindi-English). In this paper, we pro-
pose a novel task of identifying multi-sentential
code-mixed text (MCT) from multilingual arti-
cles. As a use case, we leverage multilingual ar-
ticles from two different data sources and build
a first-of-its-kind multi-sentential code-mixed
Hinglish dataset i.e., MUTANT. We propose
a token-level language-aware pipeline and ex-
tend the existing metrics measuring the degree
of code-mixing to a multi-sentential framework
and automatically identify MCT in the multilin-
gual articles. The MUTANT dataset comprises
67k articles with 85k identified Hinglish MCTs.
To facilitate future research directions, we will
make the dataset and the code publicly avail-
able upon publication.

1 Introduction

Over the years, we have seen enormous down-
stream applications of multi-sentential datasets
in the areas such as question-answering (Joshi
et al., 2017; Tapaswi et al., 2016), summarization
(Sharma et al., 2019; Cachola et al., 2020), machine
translation (Bao et al., 2021), etc. The existing
state-of-the-art methods prove challenging to scale
effectively and efficiently on multi-sentential long
sequence text (Ainslie et al., 2020), which unplugs
several exciting research avenues. Unfortunately,
to a large extent, the majority of the research on
multi-sentential data is dominated by a few popular
monolingual languages such as English, Chinese,
and Spanish. Due to this, code-mixed languages
(among other low-resource and under-explored lan-
guages) suffer from non-existent works in the afore-
mentioned areas of interest.

Figure 1: Example MCT and the corresponding article’s
title form two multilingual data sources: (A) Dainik
Jagran news article and (B) Man-ki-baat speech tran-
script. We color code the tokens as: English, Hindi, and
language independent.

We posit that due to several inherent challenges,
the NLP community hold back on building multi-
sentential datasets for the low-resource and code-
mixed languages. One of the most significant bot-
tlenecks in building such resources is the unavail-
ability of MCT on traditional and widely popular
data sources such as social media platforms where
the short-length and noisy code-mixed text is avail-
able in abundance. It presents several challenges
such as the difficulty in curating a large-scale multi-
sentential dataset at ease. Another major challenge
is the lack of metrics to measure the degree of code-
mixing in the multi-sentential framework. The ex-
isting metrics such as code-mixing index (Das and
Gambäck, 2014) and multilingual-index (Barnett
et al., 2000) already suffers from major limitations
(Srivastava and Singh, 2021a) in the short-length
text format. In such a scenario, it gets mystifying
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Dataset Task(s) Data Source(s) # Instances Avg Tokens Avg Sentences Retrieval

(Srivastava and Singh, 2020)
Machine

Translation
Social media posts

on Twitter & Facebook
13738 13 1.04 Automatic

(Khanuja et al., 2020)
Natural Language

Inference
Hindi Bollywood
movie transcripts

2240 87 7.15 Automatic

(Mehnaz et al., 2021)
Dialogue

Summarization

Manual translation of
dialogues and summaries
from (Gliwa et al., 2019)

6830 31 7.85 -

(Srivastava and Singh, 2021b)
Generation &

Evaluation
IIT-B En-Hi parallel corpus
(Kunchukuttan et al., 2018)

1974 20 1.05 -

MUTANT Summarization
Speech transcripts, press

releases, and news articles
84937 159 10.23

Manual +
Automatic

Table 1: Comparison of the MUTANT dataset with the currently available datasets in the Hinglish language.

to build a retrieval pipeline to identify MCT and we
need to depend heavily on the expertise of human
annotators which is a time and cost-demanding
exercise. In this work, we address both of these
challenges. As a representative use case, we base
our work on Hinglish, a popular code-mixed lan-
guage in the Indian subcontinent. But the insights
from our exploration could be extended to other
code-mixed language pairs.

To address the first challenge, we identify two
non-traditional multilingual data sources1 i.e., po-
litical speeches and press releases along with Hindi
daily news articles (discussed in detail in Section
3). Figure 1 shows example Hinglish MCTs from
two multilingual data sources. To address the sec-
ond challenge, we propose a token-level language-
aware pipeline and extend a widely popular met-
ric (i.e., code-mixing index) measuring the degree
of code-mixing in a multi-sentential framework.
We demonstrate the effectiveness of the proposed
pipeline with a minimal task-specific annotation
which significantly reduces the overall human ef-
fort (discussed in detail in Section 4).

Eventually, we build a novel multi-sentential
dataset for the Hinglish language with 85k MCTs
identified from 67k articles. In Table 1, we com-
pare MUTANT with four other Hinglish datasets
(Srivastava and Singh, 2020; Khanuja et al., 2020;
Mehnaz et al., 2021; Srivastava and Singh, 2021b)
proposed for a variety of tasks such as machine
translation, natural language inference, generation,
and evaluation. The MUTANT dataset has a signif-
icantly higher average number of sentences along
with longer MCT (high average number of tokens).
Alongside, the dataset notably consists of a higher
number of data instances which is a rarity for the
code-mixed datasets (Srivastava and Singh, 2021a).

1these data sources have not been actively employed in
building datasets for the code-mixed languages

2 Multi-sentential Code-mixed Text Span
(MCT)

Due to the absence of a formal definition of MCT
in the literature, we propose and use the following
definition of MCT throughout this work:

MCT: Consider a multilingual article A = {s1, s2,
..., sn} consisting of n sentences denoted by si
where i∈[1, n]. A unique non-overlapping MCT
Mp inA is a chunk ofm > 1 consecutive sentences
i.e. Mp = {sk, sk+1, ..., sk+m−1}. Mp should
satisfy the following two properties:

1. P1: At least one sk+j in Mp should be code-
mixed. Trivially, at most m-1 sk+j in Mp could
be monolingual. Here, j∈[0, m-1].

2. P2: sk in Mp is either the first sentence of the
article or preceded by a line break. Likewise,
sk+m−1 is either the last sentence of the article
or succeeded by a line break.

It should be noted that an article A can have
multiple non-overlapping unique MCTs i.e. A =
{M1, M2, ..., Mq} where q≥0.

3 Multilingual and Multi-sentential Data
Sources

Over the years, we observe several interesting and
diverse code-mixed data sources such as Twitter,
Facebook, movie transcripts, etc. Social media
sites have acted as the cornerstone of the code-
mixed data collection pipelines due to the ease
of availability of large-scale data. Nonetheless,
they present several challenges such as noisy data,
short text, abusive, and multimodal data. Given
the requirements of MUTANT (i.e. multi-sentential
and high-quality data), we refrain from using social
media sites in this work. Here, we focus on two
major data sources:
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3.1 Political speeches and press releases

Here, we scrape data from five different web
sources. Collectively, we denote this data source
as Dspeech.
Aam Aadmi Party press releases (AAP): We
scrape the press releases from the official website
of Aam Aadmi Party2. We have scraped 320 Hindi
press releases from their website. The website
contains all the press releases in the last five years
starting from June 2017.
Indian National Congress speeches (INC): The
official website of the INC stores some of the
speeches by major INC political leaders. We have
extracted 112 of these speeches from their official
website3. The timeline for the scraped speeches is
between August 2018 to March 2022.
Man-ki-baat (MKB): Man-ki-baat is a radio pro-
gram hosted by the Indian prime minister Narendra
Modi where he periodically addresses the people
of the nation. The MKB website4 stores the of-
ficial transcripts in Hindi and English languages.
We have extracted the transcripts of 67 of these
programs between December 2015 to December
2021.
Press Information Bureau (PIB): The Press In-
formation Bureau houses the official press releases
from all Indian government ministries including
President’s office, the Prime Minister’s office, Elec-
tion Commission, etc. We have extracted 30283
articles from the PIB website5. The timeline for
these articles is from June 2017 to March 2022.
PM speech (PMS): Majority of the Indian Prime
Minister speeches (different from MKB speeches)
are stored digitally on the PM India website6.
We have extracted 694 of these speeches that
are recorded between November 2016 to October
2021.

3.2 Hindi news articles

Here, we scrape data from two major Hindi news
daily websites. Collectively, we denote this data
source as Dnews.
Dainik Bhaskar (DB): Dainik Bhaskar is one of
the most popular Hindi newspapers in India. It is
ranked 4th in the world by circulation according to

2https://aamaadmiparty.org/media/
press-releases

3https://www.inc.in/media/speeches
4https://www.pmindia.gov.in/hi/mann-ki-baat/
5https://www.pib.gov.in
6https://www.pmindia.gov.in/hi/news-updates/

World Press Trends 20167. They have digitized the
daily newspapers on their website8. Articles on DB
website have been divided into many categories
such as ‘Entertainment’ and ‘Sports’. We have
extracted 115324 articles uploaded on the website
between February 2019 to May 2022. In Table 2,
we present the category-wise distribution of the
articles scraped from the DB website.

Category DB DJ
Business 16012 4203
Entertainment 18498 52173
Featured 5536 19373
Lifestyle 12189 -
Miscellaneous 20221 -
National 18615 160005
Politics - 33604
Sports 9950 -
World 14303 42478
Total 115324 311836

Table 2: Number of articles in various news categories
in the DB and DJ datasets.

Dainik Jagran (DJ): Dainik Jagran is another pop-
ular Indian Hindi newspaper. According to World
Press Trends 2016, DJ is ranked 5th in the world by
circulation. Similar to the DB website, they have
also created a repository of articles on their official
website9. Here, we extract 311836 of these arti-
cles from the website that were uploaded between
April 2013 to May 2022. In Table 2, we present the
category-wise distribution of the articles scraped
from the DJ website.

4 Experimental Setup

Problem definition: Given a multilingual article A
comprising of q multi-sentential text spans (MST)
i.e. A = {M1,M2, ...,Mq}, we predict a binary out-
come LCM for each MST Mi i.e. L(A) = {LM1

CM ,
LM2
CM , ..., LMq

CM ,}. LMi
CM = 1, if Mi is code-mixed,

otherwise 0. In a nutshell, a code-mixed MST Mi

is a MCT and it satisfies the properties P1 and P2
(ref. §2).

Figure 2 shows the architecture of the MCT iden-
tification pipeline. Next, we discuss the various
components of this pipeline in detail.

4.1 Token-level language annotation (TLA)
We exploit the token-level language information
to identify MCT given a multilingual article A.

7https://web.archive.org/web/
20170706110804/http://www.wptdatabase.org/
world-press-trends-2016-facts-and-figures

8https://www.bhaskar.com
9https://www.jagran.com

746

https://aamaadmiparty.org/media/press-releases
https://aamaadmiparty.org/media/press-releases
https://www.inc.in/media/speeches
https://www.pmindia.gov.in/hi/mann-ki-baat/
https://www.pib.gov.in
https://www.pmindia.gov.in/hi/news-updates/
https://web.archive.org/web/20170706110804/http://www.wptdatabase.org/world-press-trends-2016-facts-and-figures
https://web.archive.org/web/20170706110804/http://www.wptdatabase.org/world-press-trends-2016-facts-and-figures
https://web.archive.org/web/20170706110804/http://www.wptdatabase.org/world-press-trends-2016-facts-and-figures
https://www.bhaskar.com
https://www.jagran.com


Figure 2: Architecture of MCT identification pipeline.

We annotate the words in A using a code-mixed
language identification tool. Specifically, we use
L3Cube-HingLID (Nayak and Joshi, 2022) for this
task. A wordwi ∈A can take either of the three lan-
guage tags from the set {English,Hindi,Other}.
Given that L3Cube-HingLID works only on the
Roman script text, we use a Devanagari to Roman
script transliteration tool10 for the tokens written
in Devanagari script. In Table 3, we report the per-
centage of Hindi and English tokens. With an
exception of the AAP dataset, Hindi is the pre-
dominant language in all the data sources.

Articles AW AC %H %E
AAP 320 1129 6033 53.97 45.09
INC 112 2312 10691 63.83 33.12
MKB 67 4151 20706 77.17 22.41
PIB 30283 525 3015 80.96 17.59
PMS 694 2591 13400 79.02 20.45
DB 115324 382 1977 80.22 18.25
DJ 311836 391 2037 79.28 19.60
Dspeech 31476 590 3339 79.97 18.65
Dnews 427160 388 2020 80.18 18.51
Dspeech

+ Dnews
458636 401 589 80.05 18.54

Table 3: Distribution of the scraped articles from various
data sources. AW: average number of words. AC: aver-
age number of characters. %E: percentage of English
tokens. %H: percentage of Hindi tokens.

4.2 Code-Mixing Index (CMI)
In the literature, we observe several metrics that
has been proposed to measure the degree of code-
mixing in text such as code-mixing index (CMI,

10https://github.com/ritwikmishra/
devanagari-to-roman-script-transliteration

(Das and Gambäck, 2014)), multilingual-index (M-
index, (Barnett et al., 2000)) and integration-index
(I-index, (Guzmán et al., 2017)). Each of these
metrics has its own merits and limitations (Srivas-
tava and Singh, 2021a). In this work, we use the
most widely used CMI metric due to the ease of
interpretation and the suitability for the task. CMI,
by definition, measures the degree of code-mixing
in a text as:

CMI =

{
100 ∗ [1− max(wi)

n−u ] n > u

0 n = u
(1)

Here, wi is the number of words of the language
i, max{wi} represents the number of words of the
most prominent language, n is the total number
of tokens, u represents the number of language-
independent tokens (such as named entities, abbre-
viations, mentions, and hashtags). The CMI score
ranges from 0 to 100. A low CMI score suggests
the prevalence of only one language in the text
whereas a high CMI score indicates a high degree
of code-mixing.

4.3 Small annotated dataset (SAnD)
We create a small manually annotated dataset com-
prising all seven data sources. The objective of the
annotation is to assign a binary label to each MST
such that we can identify if the MST is code-mixed
or not from the assigned label.

More formally, SAnD = {A1: l1, A2: l2, ..., Au:
lu}, represents umanually annotated MST11 where
li∈{0,1} ∀i∈[1,u]. Here, li=1, if Ai is code-mixed,
otherwise 0.

11For distinctive representation, we denote MST in SAnD
with A instead of M .
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Articles MST
Total Hing E/H

AAP 5 6 2 4
INC 3 69 5 64
MKB 3 66 25 41
PIB 47 62 27 35
PMS 2 36 13 23
DB 30 207 48 159
DJ 30 122 28 94
Dspeech 60 239 72 167
Dnews 60 329 76 253
Dspeech
+ Dnews

120 568 148 420

Table 4: SAnD dataset statistics. Hing: Hinglish, E/H:
English/Hindi.

For this annotation task, we have selected a
small number of articles (60 each from Dspeech

and Dnews) randomly from the scraped articles.
We leave it to the judgment of the annotator to
decide if a sentence (and subsequently the MST)
is code-mixed or not. The annotator has expert-
level proficiency in Hindi, English, and Hinglish
languages. In Table 4, we show the distribution of
the annotated articles for each data source. In total,
we annotate 120 articles and 568 MST where we
identify 121 MST (21.3%) as code-mixed.

4.4 Estimating multilinguality

Though CMI is widely used in numerous previ-
ous works, we couldn’t find any discussion on the
ideal CMI score thresholding criteria to identify a
good code-mixed text. The problem becomes even
more challenging when we use the CMI metric in a
multi-sentential framework along with constraints
P1 and P2 (ref §2). Various works (Khanuja et al.,
2020) have used empirically identified CMI thresh-
olds to measure the degree of code-mixing in the
text. But, we couldn’t find any experimental justifi-
cation for their findings.
Dual MEC score: Here, we propose a novel adop-
tion of the CMI metric in a constrained multi-
sentential framework. For MST Mp with k sen-
tences, we compute the scores for dual multilin-
guality estimation criteria (MEC) as:
1. Sentence-level CMI (CMI): We compute
CMI(si) for the sentence si∈Mp using the
language-information of all the words in si and
the formulation given in 1.

2. Multilinguality ratio (MR): We compute CMR

for the MST Mp as:

MR(Mp) =
Ncm

k
(2)

Here, Ncm and k are the number of code-mixed
and total sentences in Mp respectively.

Figure 3 shows the mean and standard deviation of
dual MEC scores on seven different data sources.

Figure 3: The mean and standard deviation of the dual
MEC score for different data sources. The CMI score is
scaled between 0 to 1.

Formulation: We identify if the sentence si is
code-mixed or monolingual using CMI(si) score
as:

fcm(si) =

{
1, CMI(si) > α

0, otherwise
(3)

Here, α∈[0, 100] is the sentence-level CMI score
threshold and fcm(.) estimates the code-mixing sta-
tus (1 being code-mixed and 0 being monolingual)
of the sentence under consideration. Using 3, we
compute Ncm as:

Ncm = Σki=1fcm(si) (4)

Using 2 and 4, we compute MR(Mp) as:

MR(Mp) =
Σki=1fcm(si)

k
(5)

We formulate the following function to identify if
MST Mp with k sentences is code-mixed:

gcm(Mp) =

{
1, MR(Mp) > β

0, otherwise
(6)

Here, β∈[0, 1] is the multilinguality ratio thresh-
old and gcm(.) estimates the code-mixing status (1
being code-mixed and 0 being monolingual) of the
MST under consideration.
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4.5 Dual MEC threshold computation

The dual MEC formulation helps us to identify the
MCT in a constrained setting by jointly modeling
the sentence-level and MST-level multilinguality
information. As discussed in Section 4.4, the ideal
thresholds α and β are a conundrum that needs
further exploration. Here, we propose to use the
SAnD dataset to identify the dual MEC thresh-
olds (α and β). Algorithm 1 shows the procedure
to compute the thresholds. The algorithm takes
SAnD dataset D with u labeled MST. We repre-
sent the parameter search space for α and β with
αcand and βcand respectively. αcand ranges from
αlow to αhigh with a step-size of αstep whereas
βcand ranges from βlow to βhigh with a step-size
of βstep. Based on our empirical observation, we
set (αlow, αhigh, αstep) with (0, 50, 1) and (βlow,
βhigh, βstep) with (0, 0.5, 0.025).

We perform the grid search on each threshold
combination of (αi, βj) to identify the best combi-
nation. For each threshold combination, we iden-
tify the accuracy of identifying the MCT in D
leveraging fcm(.) and gcm(.) formulations. We
select the threshold combination with the highest
accuracy as the final threshold (α and β). Table
5 shows the best-identified thresholds on various
data sources of the SAnD dataset. Figure 4 shows
the mean and standard deviation of the accuracy
on various dual MEC threshold combinations for
different data sources.

Algorithm 1 computeα,β(D)

Require: D = {A1: l1, A2: l2, ..., Au: lu} where Ai = {s1,
s2, ..., sk}

Require: αcand = [αlow, αlow+αstep, ..., αhigh]
Require: βcand = [βlow, βlow+βstep, ..., βhigh]
Require: Accuracy = {}
1: for αi in αcand do
2: for βj in βcand do
3: hits = 0
4: for Ap ∈D do
5: Fcm = fcm(sq) ∀ sq ∈ Ap
6: Compute gcm(Ap) using Fcm
7: if gcm(Ap) == lp then
8: hits = hits + 1
9: end if

10: end for
11: Accuracy[(αi, βj)] = 100 ∗ (hits/u)
12: end for
13: end for
14: α = maxvalue(Accuracy).key()[0]
15: β = maxvalue(Accuracy).key()[1]
16: return α, β

α β Accuracy(%)
AAP 25 0.35 100
INC 28 0.30 89
MKB 22 0.35 64
PIB 26 0.15 68
PMS 21 0.45 89
DB 18 0.40 72
DJ 28 0.40 79
Dspeech 24 0.35 72
Dnews 29 0.475 78
Dspeech
+ Dnews

29 0.45 75

Table 5: Best identified thresholds (α and β) along with
the accuracy of identifying MCT on various data sources
in the SAnD dataset.

Figure 4: The mean and standard deviation of the accu-
racy on various dual MEC threshold combinations. The
red dot corresponding to each data source indicates the
accuracy against the best-identified thresholds.

4.6 Dual MEC threshold generalization

As evident from Table 5, the thresholds α and β
vary across the data sources. So, it is important to
identify which of these identified thresholds will
result in a robust and stable performance across
datasets. Here, we experiment with five dual MEC
threshold generalisation techniques:
1. Local Average (LA): For the data source Di,

we take the mean sentence-level CMI score and
mean MR score as the dual MEC thresholds.

2. Global Average (GA): For the data source Di,
we take the mean sentence-level CMI score
and mean MR score of the corresponding cate-
gory data-source (Dspeech orDnews) as the dual
MEC thresholds.

3. Average of LA and GA (ALG): For the data
source Di, we take the average of LA and GA
identified thresholds as the dual MEC thresh-
olds.

4. Single data source generalization (SDG): In
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this approach, we generalize the dual MEC
thresholds identified locally on a single data
source Di (using Algorithm 1) to identify MCT
globally on other data sources.

5. Multi data source generalization (MDG): In
this approach, we use the dual MEC threshold
information from multiple sources and use the
majority voting to identify the best thresholds.
For the data source Di, we use the thresholds
identified on three data sources (using Algo-
rithm 1), namely Di, Dspeech (if Di ∈Dspeech,
else ăDnews), and Dspeech + Dnews. We then
make an independent prediction on each of the
three thresholds and take majority voting for the
final classification of Mp.

5 MUTANT: A Multi-sentential
Code-mixed Hinglish Dataset

We evaluate the performance of MCT identifi-
cation pipeline and the five dual MEC thresh-
old generalization techniques using the three sub-
sets of the SAnD dataset: Dspeech, Dnews, and
Dspeech +Dnews. We report the following metric
scores on each of the seven data sources:
1. Accuracy: We compute accuracy as the ratio

of the total correct prediction of MCT and non-
MCT to the total number of MST. We multiply
this ratio by 100 and report the accuracy per-
centage. A high accuracy % is preferred.

2. False MCT Rate (FMR): We define FMR as the
ratio of incorrectly identified MCT to the total
number of actual monolingual MST. We report
the FMR% and a low FMR% is preferred.

3. Diversity@10 (D@10): We define D@10 as the
percentage of articles in data source Di having
more than 10% correctly identified MCT. A high
D@10 score is preferred.
We report the results in Tables 6, 7, 8. The mean-

based threshold generalization techniques (LA, GA,
and ALG) consistently show poor performance on
all the metrics. Given the nature of the problem,
we prefer a low rate of misidentification of mono-

Accuracy FMR D@10
L G A S M L G A S M L G A S M

AAP 62 66 64 72 74 15 21 20 17 17 49 46 51 60 62
INC 63 66 64 73 74 17 21 20 16 12 49 46 51 59 59
MKB 61 66 62 69 72 28 21 26 22 18 51 46 48 68 70
PIB 62 66 64 67 72 24 21 24 30 17 53 46 55 73 74
PMS 67 66 64 71 74 17 21 23 20 16 51 46 53 67 69
DB 66 63 62 67 78 29 26 28 30 5 57 56 57 78 78
DJ 62 63 64 75 78 26 26 26 6 5 48 56 49 73 74

Table 6: Results on Dspeech dataset. L: LA, G: GA, A:
ALG, S: SDG, M: MDG.

Accuracy FMR D@10
L G A S M L G A S M L G A S M

AAP 72 70 71 72 73 17 15 17 14 14 60 58 62 70 72
INC 69 70 71 73 73 14 15 15 9 7 58 58 58 65 66
MKB 66 70 68 70 72 25 15 21 21 15 73 58 71 79 80
PIB 68 70 68 70 73 23 15 22 29 14 73 58 71 79 80
PMS 61 70 69 74 73 14 15 18 14 12 63 58 63 71 69
DB 66 69 67 68 71 28 22 26 29 3 76 72 74 84 85
DJ 68 69 68 72 71 22 22 22 4 3 70 72 68 77 73

Table 7: Results on Dnews dataset. L: LA, G: GA, A:
ALG, S: SDG, M: MDG.

Accuracy FMR D@10
L G A S M L G A S M L G A S M

AAP 69 70 69 73 74 12 15 15 13 13 55 60 57 65 66
INC 70 70 69 73 74 11 15 14 10 8 57 60 56 62 63
MKB 67 70 69 70 72 21 15 19 17 14 62 60 65 68 65
PIB 69 70 69 67 73 18 15 18 23 14 63 60 64 75 74
PMS 62 70 70 72 74 13 15 17 16 12 57 60 59 65 69
DB 67 68 67 67 75 23 19 22 24 4 64 62 62 76 75
DJ 68 68 69 74 75 19 19 19 5 4 57 62 62 71 74

Table 8: Results on Dspeech+Dnews dataset. L: LA, G:
GA, A: ALG, S: SDG, M: MDG.

lingual MST as the MCT and at the same time a
high number of actual MCT should also be iden-
tified. MDG threshold generalization technique
satisfies both conditions with low FMR and high
accuracy on all the datasets. D@10 depicts if the
threshold generalization technique is influenced
by the presence of a few outliers in the dataset.
SDG and MDG both show competitive results on
the D@10 metric outperforming the mean-based
threshold generalization techniques by a large mar-
gin. The constant poor performance of mean-based
threshold generalization against SDG and MDG
also shows the efficacy of the proposed threshold
computation strategy (Algorithm 1).

Finally, to build the MUTANT dataset, we use
the MCT identification pipeline with the MDG
threshold generalization technique. Table 9 shows
the statistics of the MUTANT dataset. To facili-
tate future work on this novel task of MCT iden-
tification, we will release the MUTANT dataset
along with the initially scraped data from all the
data sources and the annotated SAnD dataset. The
MUTANT dataset can be used for various tasks
including but not limited to question-answering,
text summarization and machine translation for
Hinglish texts. This dataset could be used as a
pre-training dataset to train efficient NLU models
for various tasks on Hinglish data.

6 Analysis and Discussion

In this section, we qualitatively evaluate the MU-
TANT dataset by employing two human evalua-
tors, different from the one used for the SAnD to
avoid any biases in the evaluation. Both evalua-
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A M M/A Avg CMI Avg Words Avg Characters
A M H A M H A M H

AAP 30 32 1.07 33.0 35.2 21.1 1347 1263 16 6993 6556 63
INC 85 306 3.6 28.1 27.5 - 751 208 - 3368 935 -
MKB 58 243 4.19 20.1 22.4 - 1034 246 - 4843 1156 -
PIB 8473 8786 1.04 23.0 23.2 21.0 572 552 15 3139 3028 87
PMS 597 3909 6.55 25.8 24.7 26.4 952 145 13 4585 700 79
DB 12851 15433 1.20 21.0 21.2 20.2 107 89 24 528 440 123
DJ 44913 56228 1.25 22.2 22.3 21.6 146 117 16 734 586 82
Dspeech 9243 13276 1.44 23.2 23.8 21.3 604 420 15 3258 2268 87
Dnews 57764 71661 1.24 21.9 22.0 21.2 137 111 18 688 555 91
Dspeech + Dnews 67007 84937 1.27 22.0 22.3 21.2 201 159 17 1043 822 90

Table 9: MUTANT dataset statistics. A: Articles, M: MCT, and H: Headings. The INC and MKB datasets contain
generic and very-low informative headlines and we do not include them in the final dataset.

A MST
CA

CKS Acc FMR D@10
Hing E/H

AAP 5 5 2 3 1.0 100 0 100
INC 5 82 10 67 0.76 88 10 80
MKB 5 119 23 80 0.67 75 25 80
PIB 5 5 2 3 1.0 80 0 50
PMS 5 141 13 110 0.52 84 12 100
DB 5 49 3 43 0.63 78 20 50
DJ 5 18 2 15 0.77 88 13 100
Dspeech 25 352 50 263 0.65 82 14 71
Dnews 10 67 5 58 0.69 80 18 75
Dspeech

+ Dnews
35 419 55 321 0.65 82 15 74

Table 10: Qualitative evaluation of the MUTANT
dataset. A: Articles, CA: complete agreement be-
tween the annotators, Hing: Hinglish MST. E/H: En-
glish/Hindi MST, CKS: Cohen’s kappa score.

tors are proficient in English, Hindi, and Hinglish
languages. We randomly sample five articles from
each of the seven source datasets and share the orig-
inally scraped articles containing both identified
MCT and monolingual MST with both evaluators.
During the evaluation, we do not disclose which
of the MSTs is identified as MCT and share the
following guidelines:
1. Any MST containing only Hindi words or only

English words is monolingual.
2. Any named entity, date, number, or word com-

mon in both English and Hindi languages should
be considered a language-independent word.
In Table 10, we report our findings from the qual-

itative evaluation study. Out of a total of 419 MST,
we observe the complete agreement on 321 mono-
lingual MST and 55 code-mixed MST resulting in
≈90% complete agreement. A complete agreement
means that both annotators agree that any particu-
lar MST is code-mixed or not. On MST with CA,
we further compute the three metric scores using
MDG. The results strengthen our earlier findings
from Section 5. In Figure 5, we report two example
MCT incorrectly identified by our MCT identifica-

Figure 5: False positive MCT. We color code the tokens
as: Hindi, English, and language independent.

tion pipeline. In the first example, both evaluators
show complete agreement whereas in the second
example there is a disagreement between the evalu-
ators. We attribute this behavior to the poor state
of the current code-mixed LID systems (Srivastava
and Singh, 2021a) and since the CMI metric and
our dual MEC formulation depend heavily on the
code-mixed LID tools, the final results get affected.
This limitation further provides an opportunity for
future works to explore the problem from differ-
ent perspectives such as a token-level language-
independent MCT identification pipeline. It will
also be interesting to see how this pipeline performs
with other code-mixed languages, especially in a
low-resource setting.
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7 Conclusion

In this paper, we present a novel task of identifying
MCT from multilingual documents. We propose
an MCT identification pipeline by extending CMI
to the multi-sentential framework and leveraging
the pipeline we build a dataset for the Hinglish
language. We highlight several challenges in build-
ing such resources and our insights will be useful
to future works in code-mixed and low-resource
languages.

8 Limitations

The limitations with the MUTANT dataset include
but are not limited to:
• Contrary to the previous works, all the data

sources comprises the non social media sites.
This could potentially limit the diversity in the
code-mixed text as observed on social media plat-
forms.

• In the current form, the dataset is limited to only
one code-mixed language. We believe the pro-
posed technique to extract MCT could be ex-
panded to other code-mixed languages in the fu-
ture.

• The data sources could potentially have their own
biases (topical, style of writing, etc). We expect
future works to be cautious while generalizing
the results obtained on this dataset.
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Abstract

Recent research in cross-lingual learning has
found that combining large-scale pretrained
multilingual language models with machine
translation can yield good performance (Phang
et al., 2020; Fang et al., 2021). We explore this
idea for cross-lingual event extraction with a
new model architecture that jointly encodes a
source language input sentence with its trans-
lation to the target language during training,
and takes a target language sentence with its
translation back to the source language as input
during evaluation. However, we observe signif-
icant representational gap between the native
texts and translated texts, both in the source
language and the target language. This repre-
sentational gap undermines the effectiveness
of cross-lingual transfer learning for event ex-
traction with machine-translated data. In order
to mitigate this problem, we propose an adver-
sarial training framework that encourages the
language model to produce more similar rep-
resentations for the translated text and the na-
tive text. To be specific, we train the language
model such that its hidden representations are
able to fool a jointly trained discriminator that
distinguishes translated texts’ representations
from native texts’ representations. We conduct
experiments on cross-lingual event extraction
across three languages. Results demonstrate
that our proposed adversarial training can ef-
fectively incorporate machine translation to im-
prove event extraction, while simply adding
machine-translated data yields unstable perfor-
mance due to the representational gap.1

1 Introduction

There are over 6,000 living languages in the world,
and for many of them, too little appropriate data
exists to build natural language processing (NLP)
models. Cross-lingual learning has been proposed
to leverage resources in data-rich languages to
train NLP models for data-scarce languages (Ruder

1Code at https://github.com/Perfec-Yu/CrossIE

et al., 2019). There are two main strategies for
building cross-lingual models: (1) train models
with multilingual language models and language-
universal features that are transferable to the target
language (Huang et al., 2019; Hsu et al., 2019; Hu
et al., 2020a; Luo et al., 2020; Wei et al., 2021;
Ouyang et al., 2021; Liu et al., 2019; Subburathi-
nam et al., 2019; M’hamdi et al., 2019; Ahmad
et al., 2021); (2) use machine translation models in
a pipeline, either by transforming annotated train-
ing data into the desired target language to build
target-language models, or by translating data at in-
ference time into the source language and applying
source-language models (Cui et al., 2019; Hu et al.,
2020a; Yarmohammadi et al., 2021). The first ap-
proach relies on the quality of the constructed mul-
tilingual semantic space; the discrepancy between
source-language training data and target-language
evaluation data may cause overfitting. The second
approach does not require a perfect multilingual
semantic space since models can be trained in a
monolingual fashion, but it depends on the quality
of machine translation.

A combination of both approaches showed good
performance on a variety of tasks such as natural
language inference and question answering (Phang
et al., 2020; Fang et al., 2021), but is underexplored
for event extraction. Compared with previous
research in cross-lingual event extraction mainly
adopting the first approach (Liu et al., 2019; Subbu-
rathinam et al., 2019; M’hamdi et al., 2019; Ahmad
et al., 2021), we explore the idea of combining both
machine translations and language-universal rep-
resentations for cross-lingual event extraction in
this work. We perform translation by extending the
previous effort on cross-lingual reading comprehen-
sion (Hsu et al., 2019) and question answering (Hu
et al., 2020a) by adding special tags around the
trigger and entity spans to translate the annotations.
We use a multilingual language model to simulta-
neously encode a sentence and its corresponding
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Figure 1: Overall cross-lingual information extraction framework

translation as shown on the left side of Figure 1. For
example, in an English-to-Chinese cross-lingual
learning setting, we would train a model with En-
glish sentences with their Chinese translations as
training data, and evaluate our model with Chinese
sentences and their English translations as inputs.
Since our work includes both cross-lingual learning
and machine translation, to avoid ambiguity, we
will use “source” language as the one we perform
cross-lingual learning from, and “target” language
as the one we perform cross-lingual learning to.
We will call texts before translation “native” text
and text after translation “translated” text for the
machine-translation-related descriptions.

We found that one challenge in cross-lingual
event learning with machine translations is that the
machine-translated textMK→L from one language
K into another language L may be different from
the native text in the target language NL. This
difference is also introduced and studied as the
problem of “translationese” (translated text as a
different language) in previous machine translation
research (Pylypenko et al., 2021; Riley et al., 2020).
In cross-lingual event extraction, we observe from
a simple preliminary experiment that there indeed
exists a distinguishable gap between representa-
tions of native texts H(NL) and translated text
H(MK→L) in some multilingual language model
H . The pretrained language models appear to be
“unaccustomed” to the translated text. The represen-
tational gap will negatively impact the cross-lingual
learning with machine-translated data. Since we, as
introduced above, simultaneously encode a native

source language sentence NS and its translation
into the target MS→T language during training,
and a native target language sentence NT and its
translation back to the source language MT →S
during evaluation, the problem of representational
gap between NS andMT →S , as well as NT and
MS→T need to be resolved. Here S and T refer
to the source and the target language respectively.

In order to mitigate the representational gap prob-
lem between machine-translated textM and native
text N in both source and target languages, we
propose to take advantage of an unlabeled corpus
in the target language and use adversarial train-
ing to make the encoder produce more similar rep-
resentations for NS and MT →S , as well as NT
and MS→T . The adversarial framework trains
the language model H such that its hidden rep-
resentations can fool a jointly trained discrimina-
tor that distinguishes translated texts’ representa-
tions H(M) from native texts’ representations
H(N ). Our complete cross-lingual IE framework
is shown in Figure 1, which combines translation-
based methods with transfer-based methods, and
uses an unlabeled target language corpus to im-
prove the representations in multilingual language
models. Our method shows superior performance
on event trigger labeling and argument role label-
ing, and through quantitative studies, we observe
that adversarial training indeed makes the multi-
lingual language model generate closer represen-
tations for the translated text and the native text.
We believe our proposed adversarial training can
also be helpful in other NLP tasks where machine
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translation can boost performance.
To summarize, our contributions are two-fold:

• We observe the gap between representations
of the machine-translated text and the native
text in multilingual language models.

• We propose an adversarial training method
to close the representational gap, which im-
proves event extraction performance.

2 Approach

In this section, we will start with a simple prelim-
inary experiment to validate the problem of the
representational gap, and then introduce our ap-
proaches to cross-lingual event trigger and argu-
ment role labeling. For both tasks, we first design
specific methods to use machine translation models
to translate source language annotations into the tar-
get language. We then use XLM-RoBERTa (Con-
neau et al., 2020) to encode pairs of parallel sen-
tences simultaneously into hidden representations.
Task-specific losses are used on top of the hidden
representations. In order to make the multilingual
language model produce more similar representa-
tions for translated sentences and native sentences,
we further use an unlabeled target language corpus
for adversarial training.

2.1 Preliminary Experiment on
Representational Gap

We translate Chinese sentences from the ACE 2005
Chinese corpus into English and encode the trans-
lated English sentencesMZH→EN and native En-
glish sentences NEN in the ACE 2005 English
data using the multilingual language model XLM-
RoBERTa (Conneau et al., 2020). We then train
linear Support Vector Machines (SVMs) (Cortes
and Vapnik, 1995) to classify the encoded repre-
sentations of these two sets of sentences as N ative
orMachine-translated. The model achieves 83.4%
accuracy on a held-out test set classifying the trans-
lated English sentencesMZH→EN and native En-
glish sentences NEN. We also perform translation
from English to Chinese and achieve 93.4% ac-
curacy classifying native Chinese sentences NZH

and translated Chinese sentencesMEN→ZH. Both
numbers are significantly higher than the random
50% accuracy, indicating that the translated text
and the native text are almost linearly separable in
the multilingual language models and hence val-
idating the representational gap between the two
types of texts.

2.2 Event Trigger Labeling
In monolingual event trigger labeling, the in-
put to the model is a sequence of text tokens
{w0, w1, . . . , wl}. The model identifies consec-
utive text spans as event triggers and classifies
the spans into event types. We first obtain the
token representations using the text encoder as
{h0,h1, . . . ,hl}. Then we apply a linear layer
to classify each token into one of the event types.

For the cross-lingual setting, we first translate
the monolingual training data in the source lan-
guage into the target language together with the
trigger annotations. We will explain the transla-
tion process in Section 2.4. We encode the source
language text sequence {ws0, ws1, . . . , wsl} and
its translation {wt0, wt1, . . . , wtk} using the XLM-
RoBERTa (Conneau et al., 2020) model. We also
adopt a special fusion strategy as introduced in
the FILTER (Fang et al., 2021), which adds cross-
lingual attention between the source language text
and its translation in some hidden Transformer lay-
ers. We apply the classification step as in the mono-
lingual setting for both ws and wt. The task loss is
the summation of losses from ws and wt.

L = Ls + Lt. (1)

In the training phase described above, the input
sequences to the multilingual language model con-
sist of a native source language sequence wns and
its translations wmt . In the evaluation phase, the
input sequence becomes a native target language
sequence wnt and a translated source language se-
quence wms . Therefore, we need to bridge the rep-
resentational gap in the multilingual LM between
two pairs: (wns , w

m
s ) and (wmt , w

n
t ). In order to

encourage the multilingual LM to generate closer
representations for wns and wms , as well as for wmt
and wnt , we further propose an adversarial loss us-
ing another unlabeled target language corpus. We
first translate the unlabeled target language cor-
pus, from which we sample wnt , into the source
language (wms ) to construct an unlabeled parallel
corpus. Then parallel sentence pairs (wms , w

n
t ) in

the unlabeled corpus are encoded by the multilin-
gual LM in the same way as the labeled training
sentence pairs (wns , w

m
t ). We train two additional

two-layer discriminators, Ds and Dt. Ds attempts
to distinguish native source language representa-
tions wn

s from translated source language represen-
tations wm

s . Dt attempts to distinguish translated
target language representations wm

t from the native
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Trigger Labeling Argument Role Labeling

Source
Language

Now that Enron has ceased to exist, Bech-
tel and GE are <b>suing</b> the Indian
Government for 5.6 billion US dollars.

The electricity that Enron produced was
so exorbitant that the government decided
it was cheaper not to buy electricity and
<a>pay</a> <b>Enron</b> the mandatory
fixed charges specified in the contract.

Target
Language

现在安然已经不复存在，柏克德和通用电气正

在<b>起诉</b>印度政府，要求赔偿56亿美元

安然生产的电力如此昂贵，以至于政府决定不

购买电力并<a>支付</a><b>安然</b>合同中规

定的强制性固定费用更便宜

Table 1: Example of training data translation for trigger labeling and argument role labeling.

target language representations wn
t . The adversar-

ial loss is also illustrated in Figure 1. For adver-
sarial training, we adopt W-GAN (Arjovsky et al.,
2017) with gradient penalty (Gulrajani et al., 2017)
in this work. Specifically, Ds and Dt are two-layer
neural networks with one output unit, i.e., they out-
put single scalars. Optimization targets of the two
discriminators are

LDs = Ds(h
m
s )−Ds(h

n
s ; θ)

+ GP(Ds;h
m
s ,h

n
s ),

LDt = Dt(h
m
t )−Dt(h

n
t )

+ GP(Dt;h
m
s ,h

n
s ).

(2)

Here GP refers to the gradient penalty loss in Gul-
rajani et al. (2017) to regularize the discriminators.
Ds and Dt are both neural networks that output
a single value. We use Ds(w

m
s ; θ) to denote the

average output value of all token representations
in the sequence wm

s , and Dt in an analogous way.
We expect our multilingual LM to produce repre-
sentations that confuse both discriminators. The
optimization target for the encoder is,

LG = Ds(h
n
s )−Ds(h

m
s )

+Dt(h
n
t )−Dt(h

m
t ).

(3)

The gradients of the loss in Equation (1) are back
propagated to both the multilingual language model
and the trigger classification layers. The gradients
of the discriminator loss in Equation (2) are back
propagated toDs andDt only. The gradients of the
generator loss in Equation (3) are back propagated
to the multilingual language model. In practice we
find that it is beneficial to back propagate LG to
only the last layer of the XLM-RoBERTa to match
the capacity of the discriminators Ds and Dt.

2.3 Argument Role Labeling

Argument Role Labeling identifies the roles enti-
ties play in events. Assuming gold-standard entity
spans are provided, the input is a sentence x with
a trigger span and an entity span, and the model
predicts the argument role of the entity in the event.
We use an additional None label for the case where
the entity does not participate in the event.

For monolingual prediction, we first insert into
the sentence two pairs of anchors to specify spans
for the trigger and the entity: (“<a>”, “</a>”)
around the trigger span and (“<b>”, “</b>”) around
the entity span. We encode the modified sentence
into hidden representation x by a pretrained lan-
guage model. We consider the token representation
for the CLS token inserted into the beginning of
every sentence xCLS as the summarization of the
sentence and feed it to a linear layer for classifica-
tion. For adversarial training, we use a similar loss
as in Equations (2) and (3), but use the CLS token
representation xCLS as the input to the discrimina-
tors.

2.4 Annotation Translation

We show two examples in Table 1 for translating an-
notations for trigger labeling and argument role la-
beling respectively. For trigger labeling, we first en-
close each trigger span in the source language sen-
tences with special tokens (“<b>”, “</b>”) inspired
by previous efforts on question answering (Hu
et al., 2020b). The machine translation model is
applied to the new sentence. If the paired special
tokens (“<b>”, “</b>”) exist in the translated sen-
tence, we label the text span inside the pair as the
event trigger. Otherwise we consider the transla-
tion as invalid and discard the target language loss
Lt in Equation (1) when training. We still use the
invalid translations for the adversarial training loss
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in Equation (2) and Equation (3) since the compu-
tation of these losses doesn’t require trigger spans.

For argument role labeling, we take advantage
of the anchor tokens used for training and simply
translate the sentences with trigger and entity spans
enclosed by anchor tokens into the target language.
Due to the imperfections in the machine translation
model, there are corrupted translated samples miss-
ing “<a>” or “<b>” tags. However, since the role
labeling model architecture doesn’t require the exis-
tence of these tags to be runnable, we still consider
them as valid inputs and use the corrupted trans-
lated samples as training data for both the target
language lossLt in Equation (1) and the adversarial
losses in Equation (2) and Equation (3).

2.5 Evaluation

At inference time, the inputs to the framework are
sentences in the target language. We first translate
the target language sentence into the source lan-
guage using the same machine translation model
used for the unlabeled target language corpus dur-
ing training and apply our framework to the sen-
tence pairs. We make predictions using the hidden
representations of the target language.

3 Experiments

3.1 Dataset and Machine Translation

We use the ACE2 2005 dataset for experiments.
We study all six transfer learning settings among
the three languages in the dataset: Arabic, Chi-
nese and English. We follow previous work on
event extraction (Lin et al., 2020) to split the ACE
dataset for the trigger labeling task. For the argu-
ment role labeling task, previous work (Subburathi-
nam et al., 2019; Ahmad et al., 2021) has adopted
a different split from Lin et al. (2020). We there-
fore follow the split in (Subburathinam et al., 2019;
Ahmad et al., 2021) in this task. However, since
their processed version of ACE dataset is not avail-
able, we use our own processed version and re-
train their models on our version for comparison.
We provide basic data statistics in Table 2. We
also provide more fine-grained data statistics in
Appendix. There are some other competitive cross-
lingual event extraction baselines that we are not
able to compare due to limited availibity of code or
split information. We provide further discussion in

2https://www.ldc.upenn.edu/
collaborations/past-projects/ace

the related work section. We use Google Translate
for all machine translation components.

Trigger Role
#Docs #Events #Cands #Args

EN
Train 529 4,419 14,036 7,018
Dev 28 468 1,754 719
Test 40 424 1,756 878

ZH
Train 551 2,926 11,826 5,931
Dev 40 217 1482 602
Test 42 190 1484 578

AR
Train 303 1,751 7,918 3,959
Dev 50 255 990 495
Test 50 262 990 495

Table 2: Data statistics for ACE 2005 dataset. EN, ZH
and AR refer to the English, the Chinese and the Arabic
splits respectively. The trigger labeling task (Trigger)
and the argument role labeling task (Role) use different
splits to compare with previous methods. We present the
number of documents and the number of event mentions
for Trigger splits. For Role splits, we present the number
of candidate trigger-entity pairs for prediction (#Cands)
and the total number of pairs that hold some argument
role relationship (#Args).

3.2 Experiment Settings

Methods in Comparison We compare the fol-
lowing approaches in evaluation:
Direct, which directly trains a model on the source
language with a multilingual language model and
evaluates it on the target language. We use XLM-
RoBERTa as the multilingual LM to be comparable
with our method;
GATE (Ahmad et al., 2021) is a state-of-the-art
cross-lingual model for the argument role labeling
task. Hence we only compare with GATE in the
argument role labeling task;
Trans is a baseline that excludes our proposed ad-
versarial loss but keeps all the remaining compo-
nents;
Trans+Adv is our proposed framework;
Target Supervision is a mono-lingual IE model
trained on the target language data.

Evaluation Settings Except for Target Supervi-
sion, all cross-lingual models are trained with the
source language annotations. We use the target lan-
guage training corpus without annotations to com-
pute the adversarial loss in our proposed method.
We report F1 scores in the following sections and
include precision and recall scores in Appendix.
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Event Trigger Labeling AR - EN ZH - EN AR - ZH EN - ZH ZH - AR EN - AR

Direct 39.8 44.4 33.4 46.9 36.7 39.0
Trans 39.4 46.3 38.8 47.3 36.6 39.3

Trans+Adv (ours) 41.5 54.6 40.1 49.3 38.4 42.3

Target Supervision 68.5 65.6 56.1

(a) Event trigger labeling.

Argument Role Labeling AR - EN ZH - EN AR - ZH EN - ZH ZH - AR EN - AR

GATE 50.3 57.0 55.7 63.6 65.1 65.0

Direct 56.8 61.5 64.6 71.7 64.0 62.5
Trans 57.5 60.6 64.9 71.3 63.8 62.2

Trans+Adv (ours) 58.4 62.9 65.6 72.0 68.0 65.1

Target Supervision 77.2 82.0 77.8

(b) Argument role labeling.

Table 3: F1(%) scores for the cross-lingual event extractions. GATE (Ahmad et al., 2021) is a state-of-the-art method
for cross-lingual argument role labeling. Direct,Trans and Target Supervision are introduced in Section 3.2.AR,EN
and ZH correspond to Arabic, English and Chinese respectively.

3.3 Experiment Results

We show the evaluation results for trigger label-
ing in Table 3a. We show results for the argument
role labeling task in Table 3b. Our model shows
superior performance compared with other cross-
lingual baselines in both trigger labeling and role
labeling tasks and across all six cross-lingual trans-
fer settings. Our model outperforms the Trans
baseline that is trained without the adversarial loss.
This indicates that our proposed approach effec-
tively narrows the gap between the translations and
the original natural language to improve the per-
formance. Moreover, we notice that the Trans
that uses translated data for training cannot con-
sistently outperform the Direct baseline which
doesn’t use translated data. This shows that the
representational gap can have a negative impact on
the model performance than the positive impact
brought by including the translated data. In the fol-
lowing sections, we provide further analysis on the
representational gap, our model’s improvements
and remaining errors.

3.4 Effect of Adversarial Training

In this section we evaluate the effect of the adver-
sarial training on reducing the representational gap.
Hence we compare our model against the Trans
baseline that doesn’t use the adversarial training
loss. We take the English-to-Chinese transfer learn-
ing setting as a case study in this section.

Argument EN-to-ZH
Role Labeling T-ZH ZH Diff

Trans 74.3 71.3 -3.0
Trans+Adv (ours) 74.5 72.0 -2.5

Table 4: F1 scores (in %) of the English-Chinese cross-
lingual argument role labeling models on translated Chi-
nese test corpus (from English test corpus), T-ZH and
the native Chinese test corpus, ZH. Diff is the perfor-
mance gap between two test corpora.

A straightforward way to examine the representa-
tional gap between the native text and the translated
text inside a model is to compare its performance
on these two types of texts on role labeling. In Ta-
ble 4, we report the F1 scores on the native Chinese
test set and translated Chinese text from English
dataset respectively. The performance on trans-
lated Chinese is better than native Chinese since
both models use the translated Chinese instead of
native Chinese during training. Our adversarial
training method shows a smaller performance gap
compared with the non-adversarial baseline, indi-
cating that our model indeed reduces the represen-
tational gap.

In addition to this evaluation, we further check
whether the proposed generator loss helps the
model to produce representations that confuse the
discriminators. We compare the discriminator out-

759



30 20 10 0 10 20 30
Discriminator Output Value

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

Native ZH - Translated ZH w. Adv
Native ZH - Translated ZH w/o Adv

(a) Native Chinese v.s. Translated Chinese

40 20 0 20 40
Discriminator Output Value

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
ty

Native EN - Translated EN w. Adv
Native EN - Translated EN w/o Adv

(b) Native English v.s. Translated English

Figure 2: Distribution of differences in discriminator outputs between native text and translated text. We compute
the density with NumPy3 histogram function on original data points. w. Adv refers to our model with the adversarial
training. w/o Adv is the output of the additional discriminators trained on the baseline Trans without adversarial
training. (See Appendix for details on how the additional discriminators are trained)

Task Sentence Error

Trigger Label-
ing

...徐鹏航...支持参与亲属购买内部职工股...

(...Penghang Xu... supported and partic-
ipated in relatives’ purchasing internal em-
ployee shares)

Baseline model makes a false pos-
itive prediction of “支持” (support)
as a trigger for Transfer-Money
event

Table 5: An Example error that the baseline approach fails but our proposed model succeeds.

puts for the native text representations and the trans-
lated text representations in Figure 2, for both En-
glish and Chinese. Since we use W-GAN (Arjovsky
et al., 2017) for adversarial training, the discrimi-
nator output for an input sentence is a single scalar.
For each language, we plot the distribution of dif-
ference in the output scalars Ds,t(h

n
s,t)−D(hms,t)

between the native test corpus and the translated
test corpus. These difference values are closer to
0 if the model fools the discriminators. For com-
parison we trained additional discriminators for the
Trans baseline as the w/o ADV curves on the
plot. The adversarial training makes the difference
between the native text and the translated text much
smaller for both English and Chinese.

Apart from the quantitative analysis, we show
an example error from the baseline model that
our proposed framework with adversarial train-
ing has managed to avoid in Table 5. The model
makes the wrong prediction because in the En-
glish training data, “support”(支持) can trigger
a Transfer-Money event with certain context
which is uncommon in Chinese. By aligning the
representation spaces with adversarial training, the
model will align支持 in translated text to represen-

tations of more common used Chinese words that
trigger the Transfer-Money event.

3.5 Remaining Challenges

Chinese Sentences Error

40年来，日本皇室就没有再

添男丁。 (For 40 years,
the Japanese royal family
has not added any more
males.)

Misses
the trigger
添(add),
Be-Born

德仁皇太子唯一的弟弟，

是[皇室]entity最后一名[出

生]trigger的 男 性 (the
only brother of Prince
Naruhito was the last male
[born]trigger in the [Royal
Family]entity.)

False pos-
itive role
predic-
tion:Place.

Table 6: Remaining error examples of cross-lingual
trigger and argument role labeling from our proposed
model. We provide Chinese test sentences and English
translations on the left and errors on the right.

Our experiments show cross-lingual trigger la-
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beling from English to Chinese is very challenging.
In Table 6, the first two examples are from the trig-
ger labeling task. In the first example, the Chinese
trigger span has the meaning of “add,” which can
only trigger a Born event under specific context
such as “add children.” However, this is not a typi-
cal English expression, and it appears very rarely
in the ACE 2005 English training data. Therefore
cross-lingual learning fails on this case.

The second example is from the argument role la-
beling task. The model makes the wrong prediction
because “室” in the entity span has the meaning of
“room,” making the model to consider the entity as
a location. Joint learning of entity typing and role
labeling can be helpful for such cases.

4 Related Work

Multilingual Language Representations .
Early work on multilingual representations learns
aligned word or sentence embeddings from dictio-
naries (Mikolov et al., 2013; Faruqui and Dyer,
2014; Pan et al., 2019), parallel corpora (Gouws
et al., 2015; Luong et al., 2015) or semi-supervised
or unsupervised approaches (Artetxe et al., 2017;
Zhang et al., 2017; Artetxe et al., 2018; Lample
et al., 2018). Recent advances in pretrained
language models have inspired research on cross-
lingual language models such as mBERT (Devlin
et al., 2019), XLM (Conneau and Lample, 2019)
and XLM-RoBERTa (Conneau et al., 2020).

Cross-Lingual Learning for NLP There is re-
search in cross-lingual learning for many NLP tasks
such as name tagging (Huang et al., 2019), read-
ing comprehension (Cui et al., 2019; Hsu et al.,
2019), summarization4 (Zhu et al., 2019; Cao et al.,
2020). XGLUE (Liang et al., 2020), XTREME (Hu
et al., 2020a) and XTREME-R (Ruder et al., 2021)
present benchmarks covering a wide range of tasks
including natural language inference, paraphrase
detection, part-of-speech tagging, name tagging,
question answering, sentence retrieval and gener-
ation, which are followed by (Phang et al., 2020;
Fang et al., 2021; Luo et al., 2020; Wei et al., 2021;
Ouyang et al., 2021). However these benchmarks
don’t include event extraction as a subtask. For
cross-lingual event extraction, early work utilizes
multilingual embeddings and language universal
parsing structures for cross-lingual transfer for trig-
ger labeling (Liu et al., 2019) and argument role

4Cross-lingual summarization has a different task formula-
tion than common cross-lingual learning, but it is still related.

labeling (Subburathinam et al., 2019). It is worth
mentioning that Liu et al. (2019) focus on aug-
menting the existing supervision in the target lan-
guage with cross-lingual learning that is different
from the setting in this work, which requires no
supervision in the target language. M’hamdi et al.
(2019) explore using mBERT (Devlin et al., 2019)
for direct cross-lingual trigger labeling and find
it outperforms previous methods. Our Direct
baseline can be considered as a re-implementation
of their method with XLM-RoBERTa (Conneau
et al., 2020). GATE (Ahmad et al., 2021) follows
(Subburathinam et al., 2019) and uses a graph con-
volutional architecture and pretrained knowledge
from language models to further improve the perfor-
mance. Yarmohammadi et al. (2021) first translate
the whole sentence and then uses token aligners to
get a sub-sentential alignment, which has shown to
be beneficial. We use a different translation strat-
egy, and our proposed adversarial training approach
may also be helpful with their translations. A more
recent and parallel attempt (Guzman-Nateras et al.,
2022) proposes to use adversarial training to close
the gap between the source language and target
language for event trigger labeling, which is differ-
ent from our approach. (Fincke et al., 2022) uses
priming methods to make the model understand
the critical information for argument labeling. The
performance of these two methods is not directly
comparable due to different splits and limited code
availability. We will add comparison once they
release code. (Huang et al., 2022) proposes a gen-
erative approach to directly generate arguments for
cross-lingual event argument extraction. However
they don’t take entity spans as inputs for evaluation
and results are not comparable.

5 Conclusions and Future Work

In this paper, we proposed a new cross-lingual
event extraction framework and evaluated the
framework on the ACE 2005 dataset. Our frame-
work combines the multilingual language models
with a machine-translation-based method. Mean-
while, we observe the representational gap between
the translated text and the native text in multilingual
language models that may affect the performance
and propose an adversarial training approach to
make the language model produce more similar
representations for these two types of text.

One potential reason for remaining errors in
cross-lingual transfer learning could be that the
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source and the target languages may differ in the
common expressions of an event type. It will be
helpful to detect such differences from pretrained
multilingual language models and incorporate them
for training. Although we focus on cross-lingual
event extraction in this work, our adversarial train-
ing approach could be extended to other cross-
lingual language understanding tasks.

6 Limitations

Although we have demonstrated our framework’s
performance in six cross lingual transfer learning
directions for both the trigger labeling and argu-
ment role labeling, our experiments is mostly on
the ACE 2005 dataset due to the availability of
multilingual event extraction data. Since the ACE
2005 dataset only contains Arabic, Chinese and
English, we were not able to test our framework on
some languages with extremely limited resources,
which are more common use cases for the cross
lingual transfer learning .Besides, although our pro-
posed adversarial loss is a general approach not
specific to the event extraction task, we have not
validate the effectiveness of it on other cross lingual
NLP benchmarks or using other machine transla-
tion models. Moreover, our supervised models are
trained in the multilingual language model (XLM-
RoBERTa) for direct comparison. However, the
performance is different from models trained with
monolingual language models specific to the target
language.
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A Appendix

A.1 Details for Model Training

For both the trigger labeling and role labeling task,
we use batch size of 8 for training. We evaluate
performance after each epoch and select the best
model based on the development performance. We
use early-stop strategy with a patience of 5 epochs.
We conduct our experiments on a single Nvidia
Tesla V100 GPU with 16GB memory.

The learning rate for both the trigger labeling and
role labeling loss is 1e− 5. In adversarial training,
the learning rate for the discriminator loss is 1e−5.
For the generator loss, we found in practice it is
very likely to confuse the discriminators within a
few steps if we finetune the whole XLM-RoBERTa
architecture or the learning rate is set too large.
Hence the generator learning rate for the generator
loss is chosen between {1e−5, 1e−6, 1e−7, 1e−
8, 1e − 9} on the dev set for each cross lingual
transfer learning task. We empirically found that
the trigger labeling tasks usually take a smaller
learning rate (1e−8, 1e−9) and the argument role
labeling tasks usually take a larger one (1e−5, 1e−
6). We also only finetune the last output layer
of the XLM-RoBERTa model for the generator
loss to match the capacity of the discriminators.
The discriminator and the generator are trained
alternatively. We train 5 discriminator steps per
generator step.

For the simultaneous encoding of a sentence and
its translation, we adopt the special fusion strategy
in FILTER (Fang et al., 2021) for the role label-
ing task. FILTER will select some hidden layers
of the XLM-RoBERTa model, for which it will
concatenate the hidden representation of the orig-
inal sentence and its translation together for self-
attention computation. We follow FILTER to use
the 21st layer for representation fusion. We found
this strategy to be more helpful in role labeling
task than trigger labeling task. In trigger labeling
task, it suffices to simply encode the sentence pairs
individually for prediction.

The approximate number of parameters is 3.5
million (mainly parameters of XLM-RoBERTa).
We run our model on a single NVIDA V100 with
16 GB memory. Training our framework takes
approximately 20-40 minutes/epoch since 16GB
memory can only take batch size of 1 for training.
We need to accumulate the gradients over multiple
runs for larger batch size. However, we notice that
our model usually converges much faster than a
simple XLM-RoBERTa baseline (Direct base-
line). Usually we achieve our best model with 2-4
epochs. In total it usually takes around 4-5 hours to
train a model. We implement the XLM-RoBERTa
model using Transformers5 Library.

For the back propagation, note that the gradients
of the loss in Equation (1) are back propagated to
both the language model and the trigger classifica-
tion layers, the gradients of the loss in Equation (2)
are back propagated to Ds and Dt, and the gradi-
ents of the loss in Equation (3) are back propagated
to the language model. In practice we found that it
is beneficial to back propagate loss in Equation (3)
to only the last layer of the FILTER model to match
the capacity of the discriminators Ds and Dt.

A.2 Details for Machine Translation

We use Google Cloud API6 for machine translation.
For trigger labeling, if a sentence contains multi-
ple triggers, we enclose each of them with “<b>”
and “</b>” for translation. After the sentence is
translated, we retrieve all trigger spans in the target
language one by one, and map them back to the
triggers in the source language according the offset
in the sentence. For example, the first trigger span
in the source language will be mapped to the first
trigger span in the target language. If we retrieve
less triggers spans in the target language than the
source language, we consider this translation in-
valid and discard this instance for the trigger label-
ing loss. We still use it for the adversarial training.
For argument role labeling, we directly translate
the sentence with inserted “<a>”, ”</a>”,“<b>”,
“</b>” and always apply the role labeling loss on
the translated sentence even if it may not contain
paired special tokens.

For trigger labeling, our translation method re-
trieved7 4,284 event triggers out of 4,419 triggers in

5https://huggingface.co/docs/
transformers/index

6https://cloud.google.com/translate
7Here “retrieved” means that after the translation of a

source language sentence of the format in Table 1, the trans-
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the ACE 2005 English training data. For argument
role labeling, there is no simple automatic metric
to evaluate our translation method. Therefore, we
sampled a small portion of the translation and con-
duct a small scale manual evaluation. 80.0% of the
translations are considered reasonable by human
assessors.

The reason behind this translation strategy is
that the machine translation model trained on large-
scale web-crawled data could have seen some
HTML tags during training. “<b></b>” are HTML
tags for displaying bold characters, and “<a></a>”
are tags for the content of reference links. There-
fore we expect the model to translate properly if it
can translate HTML formatted text.

A.3 ACE 2005 Dataset Details
This dataset is licensed by LDC.8 Membership is
required for access. The dataset can be used for
research purpose.

There are three languages in this dataset. For all
the languages, we notice a significant long-tailed
distribution among event types. We provide num-
ber of event mentions for all splits in Table 7. We
also notice that the most frequent types for all lan-
guages are similar with minor differences.

A.4 Details of Additional Discriminators for
Case Study

For fair comparison of the additional discriminators
for the Trans baseline and the discriminators in
our framework, we also jointly train the the discrim-
inators with the Trans baseline in the same way as
we conduct adversarial training in our framework.
The training process can be seen as training our
framework with the generator learning rate being
0. Note that the parameters of the discriminators
are disjoint of that of the Trans baseline model.
Therefore the joint training will not affect the learn-
ing the Trans baseline model.

A.5 Corruption Ratio of Translated Training
Data

We provide corruption ratio for the argument role
labeling task here for translation of the training
data. Due to our strategy of inserting special tokens,
a corrupted translation is defined as a translated

lated sentence include paired “<b>” and “</b>” tokens and the
content between them are not empty. In this sense retrieved
triggers are not guaranteed to be correct annotations. This
is just a rough estimation of the performance of proposed
translation method.

8https://www.ldc.upenn.edu

sentence without either of the special tokens. In
sentences translated into Arabic, we noticed that
special tokens are sometimes translated as ’<a >’
or ’<b >’ with additional spaces. We don’t consider
them as corrupted and automatically cleaned up
such errors. The corruption ratios are as below:
EN-ZH, 10%; EN-AR: 22%; ZH-EN: 12%, ZH-
AR: 27%; AR-EN: 26%; AR-ZH: 38%.

It is also worth mentioning that Google translate
offers the option to respect HTML mark up. How-
ever, we didn’t adopt this option in our experiments.
We believe enabling this function can further re-
duce the corruption ratio and potentially improve
the performance.

A.6 Full Results
We present full results of all six cross-lingual trans-
fer settings across two tasks, including the preci-
sion, recall and f1 scores. We include trigger label-
ing performance in Table 8a-8f. We include role
labeling performance in Table 9a-9c.
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Split
English Chinese Arabic

train dev test train dev test train dev test

Conflict:Attack 1,272 172 93 470 37 17 377 45 55
Movement:Transport 611 59 48 662 54 43 354 46 34

Life:Die 524 53 17 211 18 14 177 33 34
Contact:Meet 200 29 50 163 19 26 152 38 27

Personnel:Elect 162 4 16 28 1 9 31 6 4
Personnel:End-Position 159 19 22 71 5 11 37 14 7

Transaction:Transfer-Money 128 52 14 84 3 5 34 11 3
Life:Injure 127 9 1 149 7 7 92 14 21

Contact:Phone-Write 112 3 8 77 8 2 45 3 8
Justice:Trial-Hearing 103 1 5 79 4 8 58 1 6
Justice:Charge-Indict 96 2 8 50 0 2 45 2 5

Transaction:Transfer-Ownership 92 4 30 84 2 1 9 0 1
Personnel:Start-Position 92 12 13 95 5 2 36 10 0

Justice:Sentence 84 4 11 79 4 7 46 1 4
Justice:Arrest-Jail 78 4 6 115 11 6 82 13 14

Life:Marry 73 0 10 55 0 2 9 7 0
Conflict:Demonstrate 65 9 7 72 3 1 55 8 10

Justice:Convict 64 6 6 13 3 0 3 1 1
Justice:Sue 60 12 4 76 0 3 2 0 0

Life:Be-Born 47 0 3 22 0 6 6 0 0
Justice:Release-Parole 46 0 1 31 5 2 18 6 7

Business:Declare-Bankruptcy 40 1 2 15 0 4 1 0 0
Business:End-Org 31 1 5 16 0 2 6 1 1

Justice:Appeal 30 7 6 35 0 0 12 0 7
Business:Start-Org 29 0 18 77 2 5 12 0 2

Justice:Fine 22 0 6 7 4 2 33 0 0
Life:Divorce 20 0 9 11 0 0 3 2 0

Business:Merge-Org 14 0 0 36 16 1 1 0 0
Justice:Execute 14 5 2 5 0 1 0 0 0

Personnel:Nominate 11 0 1 24 0 1 4 0 3
Justice:Extradite 6 0 1 2 2 0 7 0 0
Justice:Acquit 5 0 1 3 0 0 3 0 0
Justice:Pardon 2 0 0 9 4 0 1 0 1

Table 7: Event type distribution for the event trigger labeling task
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Trigger Labeling P(%) R(%) F(%)

Direct 42.3 52.5 46.9
Trans 39.9 58.1 47.3

Trans+Adv (ours) 42.5 58.7 49.3

ZH Supervision 65.2 65.9 65.6

(a) English-to-Chinese.

Trigger Labeling P(%) R(%) F(%)

Direct 32.0 50.0 39.0
Trans 33.1 48.1 39.3

Trans+Adv (ours) 38.1 47.7 42.3

AR Supervision 49.4 64.9 56.1

(b) English-to-Arabic.

Trigger Labeling P(%) R(%) F(%)

Direct 50.6 39.6 44.4
Trans 56.0 39.4 46.3

Trans+Adv (ours) 63.2 48.1 54.6

EN Supervision 63.0 75.0 68.5

(c) Chinese-to-English.

Trigger Labeling P(%) R(%) F(%)

Direct 43.1 33.3 39.8
Trans 57.4 29.9 39.4

Trans+Adv (ours) 56.0 33.0 41.5

EN Supervision 63.0 75.0 68.5

(d) Arabic-to-English.

Trigger Labeling P(%) R(%) F(%)

Direct 30.3 37.3 33.4
Trans 34.5 44.3 38.8

Trans+Adv (ours) 36.1 45.1 40.1

AR Supervision 49.4 64.9 56.1

(e) Chinese-to-Arabic.

Trigger Labeling P(%) R(%) F(%)

Direct 35.3 38.3 36.7
Trans 37.6 35.6 36.6

Trans+Adv (ours) 49.6 31.4 38.4

ZH Supervision 65.2 65.9 65.6

(f) Arabic-to-Chinese.

Table 8: Precision(P), recall(R) and f1(F) scores for the cross-lingual trigger labeling task. Direct,Trans and Target
Supervision are introduced in Section 3.2.
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Argument Role Labeling
Chinese-to-English Chinese-to-Arabic

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

GATE 48.0 70.0 57.0 64.1 66.1 65.1

Direct 59.7 63.4 61.5 68.2 60.3 64.0
Trans 56.6 65.0 60.6 67.9 60.1 63.8

Trans+Adv (ours) 59.1 67.3 62.9 72.4 64.4 68.0

Target Supervision 75.1 79.5 77.2 77.5 78.1 77.8

(a) Chinese as the source language.

Argument Role Labeling
English-to-Chinese English-to-Arabic

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

GATE 60.7 66.8 63.6 72.5 58.9 65.0

Direct 72.6 70.8 71.7 81.5 50.7 62.5
Trans 73.0 69.7 71.3 76.3 52.5 62.2

Trans+Adv (ours) 72.2 71.8 72.0 76.0 57.0 65.1

Target Supervision 79.7 84.4 82.0 77.5 78.1 77.8

(b) English as the source language.

Argument Role Labeling
Arabic-to-English Arabic-to-Chinese

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

GATE 40.4 70.5 50.3 44.7 74.1 55.7

Direct 50.5 64.8 56.8 60.7 69.0 64.6
Trans 50.6 66.6 57.5 62.2 67.8 64.9

Trans+Adv (ours) 54.1 63.4 58.4 64.1 67.1 65.6

Target Supervision 75.1 79.5 77.2 79.7 84.4 82.0

(c) Arabic as the source language.

Table 9: Precision(P), recall(R) and f1(F) scores for the cross-lingual argument role labeling task. GATE (Ahmad
et al., 2021) is a state-of-the-art method for cross-lingual argument role labeling. Direct,Trans and Target Supervision
are introduced in Section 3.2.
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Abstract

Prompt-based learning methods in semi-
supervised learning (SSL) settings have been
shown to be effective on multiple natural lan-
guage understanding (NLU) datasets and tasks
in the literature. However, manually designing
multiple prompts and verbalizers requires do-
main knowledge and human effort, making it
difficult and expensive to scale across different
datasets. In this paper, we propose two meth-
ods to automatically design multiple prompts
and integrate automatic verbalizer in SSL set-
tings without sacrificing performance. The first
method uses various demonstration examples
with learnable continuous prompt tokens to cre-
ate diverse prompt models. The second method
uses a varying number of soft prompt tokens
to encourage language models to learn differ-
ent prompts. For the verbalizer, we use the
prototypical verbalizer to replace the manual
one. In summary, we obtained the best average
accuracy of 73.2% (a relative improvement of
2.52% over even the previous state-of-the-art
SSL method with manual prompts and verbal-
izers) in different few-shot learning settings.

1 Introduction

Pre-training large language models with huge
amounts of text corpora in masked language mod-
eling tasks and then fine-tuning the pre-trained lan-
guage model (PLM) on downstream tasks have
shown superior performance in many natural lan-
guage processing tasks. However, the discrep-
ancy between the pretraining task (masked lan-
guage modeling objective) and the downstream
fine-tuning task (task without MASK token) could
lead to unexpected behaviors. Recently, there
has been growing research interest in the area of
prompt-tuning, where any NLU task is transformed
into a cloze task to mimic the pre-training objective
of a large masked language model (Kumar et al.,

*Equal contribution. This work was done during Yuhang’s
internship at Amazon, Alexa AI.

2016; McCann et al., 2018; Radford et al., 2018).
Prompt-based learning transforms an input x into
x′ using a prompt function. It makes use of the
vast amount of acquired knowledge of PLMs to
predict a distribution of tokens at the masked posi-
tion. The verbalizer then maps the predicted tokens
to classes. The main advantage of this approach is
that this method works well in a few-shot learning
environment (Schick and Schütze, 2021). How-
ever, the main disadvantage of this method is the
limitation posed by the prompt and verbalizer func-
tions, which require human knowledge to carefully
craft them. Such handcrafting work is expensive
and not scalable with the increase in the variety of
tasks and datasets. For example, in Alexa, there
are thousands of domains and manually designing
prompts and verbalizer for intent classification for
each of them according to the dataset content de-
mand human expertise, which is time consuming
and not applicable. It is essential to reduce the
human efforts in the process of prompt generation.
Prompt-based learning requires finding the right
tokens in the prompts that align with the task re-
quirement and dataset content. However, since the
objective of these prompt tokens is only for the
language models to perform the task at hand, it is
not necessary for them to be a sequence of words
that humans can understand.

Continuous prompt-based learning alleviates the
need for human intervention to determine prompt
tokens. Instead, it automates the prompt design pro-
cess. In the literature, there are mainly two meth-
ods: i) automatically search for discrete prompt
text tokens (Shin et al., 2020a) ii) automatically
learn numerical prompt embeddings (Lester et al.,
2021; Li and Liang, 2021; Liu et al., 2021c,b; Ham-
bardzumyan et al., 2021). The main difference be-
tween these two approaches is that the first searches
for actual discrete tokens from the language model
vocabulary, whereas the second method directly
learns the embeddings for prompt tokens, which
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may not be human comprehensible. Similarly, au-
tomatic selection of label words (Shin et al., 2020a;
Schick et al., 2020a; Gao et al., 2021), soft ver-
balizer (Hambardzumyan et al., 2021; Liu et al.,
2021b), and prototypical verbalizer (Cui et al.,
2022) are the methods proposed to eliminate the
tedious process of manually defining verbalizer
mapping functions.

Most of these continuous prompt and automatic
verbalizer methods focus on supervised learning
(SL) settings but ignore their generalization un-
der semi-supervised learning (SSL) settings. The
previous state-of-the-art (SoTA) SSL method with
various manual prompts and verbalizers has shown
superiority over SL language models with a sin-
gle manual prompt (Schick and Schütze, 2021). In
this SSL pipeline, we normally train several labeler
models with different manual prompts to capture
diverse information from the limited training data
and make use of them to annotate a huge amount
of unlabeled data. Having to design several manual
prompts and verbalizer models for SSL settings
and applying them across multiple datasets and
tasks will exacerbate the scalability and cost prob-
lem. In this paper, we tackle the problem posed by
manual prompt and verbalizer design and propose
automatic methods to fully automate the design of
diverse prompts and verbalizers in SSL settings.
Our main contributions are as follows.

• We propose methods to generate various
prompts by adding multiple demonstration ex-
amples with continuous prompt tokens for use
in SSL settings.

• To the best of our knowledge, we are the first
to completely eliminate human involvement
in designing multiple prompts and verbalizers
in SSL settings and obtain similar and even
better performance than the SoTA methods
with manual prompts and verbalizers.

• We empirically show that using the automatic
verbalizer with manual prompts can achieve
a similar performance to manual verbalizers’
performance in the SSL pipeline.

2 Methodology

Our overall prompt-based SSL workflow follows
Pattern-exploiting Training (PET) semi-supervised
learning setting (Schick and Schütze, 2021). PET
first transforms the input sequence x to a cloze

question containing a single MASK token. Next, it
uses PLM to fill in the value of the MASK token
and applies verbalizers to map the output tokens
to the class labels y ∈ Y . They devise a semi-
supervised framework to produce soft labels on
a large amount of unlabeled data, which are later
used to train a final supervised classifier F. They
report strong performance over other supervised
prompt-tuning methods and other semi-supervised
approaches without prompts across multiple NLU
tasks. Before this paper, the PET approach was the
state-of-the-art (SoTA) framework that integrates
the prompt-tuning method into the SSL pipeline.

The PET method fine-tunes multiple PLMs with
different prompts. It introduces diversity in the
prompts by manually designing several prompts
using domain and task knowledge. Similarly, it
uses human expertise to design verbalizer map-
pings for each of the datasets based on the knowl-
edge of the tasks. Here, we use continuous and
automatic prompts and verbalizers, thus eliminat-
ing the need for human involvement in designing
manual prompts and verbalizers.

2.1 Overall Pipeline

Figure 1 shows the overall pipeline of our pro-
posed methods. Unlike the original PET pipeline
with manual prompts and verbalizers, we use a
prompt generation function to generate multiple
automatic prompts. Each PLM with automatic
prompts serves as a labeler model. We train each
of these prompts + automatic verbalizer models
with a labeled dataset T in few-shot settings. With
an input sequence xt ∈ T and the given label yt,
we first use the prompt function P to transform xt
into a sequence P (xt) with a MASK token. The
verbalizer then maps the predicted word probability
at the masked position to the label probability. For
each PLM m, the predicted probability pm(yt|xt)
is defined as

pm(yt|xt) =
expm(yt|xt)∑
y′∈Y expm(y′|xt)

(1)

where m(y|x) is the raw score of PLM m in the
masked position. After obtaining the probability,
we minimize the cross-entropy loss Lc between
pm(y|x) and y.

We apply trained labeler models to each sentence
xd ∈ D in the unlabeled datasetD and get the prob-
ability pm(yd|xd) for each trained model. We then
take the average of these probabilities from each
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Figure 1: Semi-Supervised Learning (SSL) Training. Multiple diverse prompt-based learning models are trained
on labeled data to soft label huge amounts of unlabeled data. The soft labels serve as ground truth to train the
final classifier. P0, P1, . . . are continuous prompt tokens and Demo A,Demo B, . . . are demonstration examples
randomly sampled from the training data.

trained model m as the ground-truth probability,

pt(yd|xd) =
1

Z

∑

m∈M
pm(yd|xd)

where Z is the total number of trained PLMs with
different automatic prompts. Eventually, we fine-
tune a final pre-trained language model F with a
standard sequence classification head. We use the
Kullback-Leibler (KL) divergence as our loss func-
tion. Given pt(yd|xd) and the predicted probability
p̂(yd|xd) of the final classifier F, the divergence
loss Ldiv for this input is:

Ldiv(xd) =
∑

y′∈Y
pt(y

′|xd) log
(
pt(y

′|xd)
p̂(y′|xd)

)
(2)

The final classifier F is then applied to the test set
to obtain the results.

Schick and Schütze (2021) introduce diversity
in their SSL pipeline by training several models
with different manual prompts and applying them
to softly label a large number of unlabeled datasets.
The diversity between manual prompts brings con-
sistent improvements. We observe that diverse
knowledge learned by the language model is mostly
introduced by the prompts rather than manual ver-
balizers, since in most datasets, they prepare only
one manual verbalizer but multiple prompts for ex-
perimentation. Thus, we propose replacing manual

prompts with multiple automatic prompts and us-
ing the same automatic verbalizer for all labeler
models.

2.2 Continuous Prompt Design

Several researchers have proposed methods to auto-
mate the prompt design process (Liu et al., 2021c;
Li and Liang, 2021; Lester et al., 2021). In most of
these methods, they insert the continuous trainable
prompt tokens into the input sentence and learn
the token embeddings during the training process.
However, existing continuous prompt-based learn-
ing methods do not consider their application in
the PET pipeline, which requires training several
labeler models (Schick and Schütze, 2021), in or-
der to learn diverse knowledge from the datasets.
Therefore, most methods do not define strategies
to compose multiple continuous prompts. We pro-
pose two scalable solutions to introduce different
variables in the design of continuous prompt la-
beler models (various demonstration examples or
varying numbers of continuous prompt tokens). We
expect that with these diverse continuous prompts,
trained language models can fully learn different
aspects of knowledge from the training dataset.

2.2.1 Scalable Prompt Generation
Inspired by the P-tuning (Liu et al., 2021c) method,
we insert multiple continuous prompt tokens pn
into the input sentence x, transforming it into
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[x][p0, p1, . . . , pn][MASK].. Different from the
original P-tuning method, we invent two scalable
designs to make it suitable for the prompt-based
SSL pipeline.

Add Demonstration Examples: In this method,
we add different demonstration examples to con-
struct diverse prompts. This is similar to the prompt
augmentation method, in which one chooses to
add additional answered prompts to demonstrate
what kind of answer the language model should
produce for the MASK token (Liu et al., 2021a).
These additional answered prompts are called the
demonstration example [demo]. To reduce the
discrepancy between the demonstration examples
and the input sentences, we also add a fixed num-
ber of continuous prompt tokens p between the
demonstration sentence and its true label. Thus,
given the labeled input xd and its correspond-
ing ground-truth label yd from the labeled train-
ing dataset, we construct the demonstration exam-
ple as [demo] = [xd][p0, p1, . . . , pn][yd], where
p0, p1, . . . , pn are continuous prompt tokens.

After composing the demonstration examples
[demo], given a training input from the labeled
dataset xt = (si, s2, . . . , sk) ∈ T and label yt,
where si, s2, . . . , sk are input tokens for the PLM
m, the prompt template function P1(xt) is formally
defined as

P1(xt)1 = [demo1][xt][p0, . . . , pn][MASK]

. . .

P1(xt)k = [demok][xt][p0, . . . , pn][MASK]

(3)

We create multiple prompts by adding different
demonstration examples with exactly n continuous
soft tokens with the input sentence. Demonstration
examples are randomly sampled from the labeled
datasets. For longer input sentences, we first trun-
cate the length of [demo] to fit the PLM require-
ment. Our intuition is that different demonstration
examples will introduce the diversity necessary for
SSL experimentation.

Vary Soft Token Numbers: In this method, we
vary the number of continuous prompt tokens be-
tween different labeler models. In other words, this
prompt function P2(xt) with input sentence xt is
defined as

P2(xt)1 = [xt][p0, p1, . . . , pn1 ][MASK]

. . .

P2(xt)k = [xt][p0, p1, . . . , pnk ][MASK]

(4)

and each of the labeler models uses different n1
to nk number(s) of continuous prompt tokens
p. Here, we do not prepend the demonstration
example. Our intuition is that given different
numbers of continuous prompt tokens, the opti-
mized learned continuous prompts may also be
different. For example, for AG’s News dataset
(Zhang et al., 2015a) about news topics, the opti-
mized prompts with two continuous prompt tokens
could be: [[x][News : ][MASK]], while optimized
prompts with three continuous prompt tokens could
be: [[x][the category is][MASK]]. We expect that
varying the number of continuous prompt tokens
will have a similar impact to manually constructing
different prompts.

2.2.2 Reparameterization Block
Li and Liang (2021) and Liu et al. (2021c) empiri-
cally show that directly updating the parameters in
continuous prompts leads to unstable optimization.
Hence, we first feed prompt embeddings through
a reparameterization block rather than directly
feeding them into the PLM. Our reparametriza-
tion block uses a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) network with a two-layer
ReLU activated multilayer perceptron (MLP) (Liu
et al., 2021c; Li and Liang, 2021).

We denote the random initialized tokens as p′i
and the real input embeddings, which are fed into
the PLM, as pi. The pi are the output of the bidi-
rectional LSTM network and the MLP as,

pi = MLP([LSTM(p′0:i),LSTM(p′i:n)])

where pi is also the soft token used in Equations 3
and 4.We learn the optimized continuous prompt
tokens p̂0:n during the training process. With the
downstream cross-entropy loss Lc, we can differ-
entially optimize the continuous prompts by:

p̂0:n = argmin
p
Lc(pm(x|y), y) (5)

2.3 Automatic Verbalizers
There are several automatic verbalizer methods that
eliminate the need for human intervention and ex-
pertise to build mapping functions. We experiment
with three types of automatic verbalizers: i) soft
verbalizer (Hambardzumyan et al., 2021), ii) proto-
typical verbalizer (Cui et al., 2022), and iii) search-
based verbalizer (Schick et al., 2020b).

Cui et al. (2022) experimentally show the su-
periority of the prototypical verbalizer in a super-
vised learning environment. However, they did not

773



conduct such experiments for SSL settings. Our
experiment with the SSL PET method (details in
Section 3.5) with different automatic verbalizers
showed that the prototypical verbalizer performed
better than the soft verbalizer and the search-based
verbalizer on multiple datasets. Thus, we choose
to use the prototypical verbalizer as a replacement
for the manual verbalizer.

With the optimized embedding of the MASK
token from PLM m and the ground-truth labels y,
the prototypical verbalizer learns the prototype vec-
tors for each class using contrastive learning (Oord
et al., 2018). The prototypical verbalizer first ini-
tializes a prototype embedding for each class label
and then uses the embedding of the MASK token as
the instance embedding. It uses instance-instance
loss Lins to maximize intra-class similarity and
minimize inter-class similarity. Similarly, it uses
instance-prototype loss Lproto to maximize the sim-
ilarity between the prototype and instances belong-
ing to the same class and minimize the similarity of
instances belonging to other classes. The probabil-
ity distribution of the MASK token for each class
is calculated by the cosine similarity between the
instance embedding and each optimized prototype
embedding. For inference, it assigns the class of
the prototype vector to the instance with the high-
est probability score, which is computed by taking
the similarity scores of the instance vector with the
prototype vectors and normalizing them.

2.4 Training and Inference Strategy

All model parameters to be optimized are randomly
initialized. As mentioned in Section 2.2.2 and
2.3, we update the parameters in the continuous
prompts and PLMs with the loss Lc and optimize
the parameters in the verbalizers with the loss Lins
and Lproto. Instead of summing all losses together,
our training strategy is to first freeze the param-
eters in the prototypical verbalizer and then train
the parameters in the reparameterization block and
the PLM together with the cross-entropy loss Lc.
Then we freeze the learned parameters and train
the parameters in the prototypical verbalizers with
instance-instance loss Lins and instance-prototype
loss Lproto. After training all labeler models and
obtaining the class probability on the unlabeled
dataset, we use Ldiv to fine-tune the final language
model classifier. During inference, we do not rely
on any prompt-based labeler models and directly
use the final fine-tuned language model F to predict

on the test dataset.

3 Experiments

To verify the effectiveness of our framework, we
conduct multiple semi-supervised learning experi-
ments with several strong baseline frameworks on
the commonly-used NLU benchmarks.

3.1 Dataset Collection
We experiment with five different datasets1:
AG’s News (Zhang et al., 2015a), Yahoo An-
swers (Zhang et al., 2015b), MNLI (MultiNLI,
Multi-Genre Natural Language Inference, Williams
et al. (2018)), RTE (Recognizing Textual Entail-
ment, Dagan et al. (2006)) and CB (Commitment-
Bank, de Marneffe et al. (2019)). AG’s News
and Yahoo answers are topic classification (TC)
datasets, while MNLI, RTE, and CB are natural
language inference (NLI) datasets. In Table 1, we
provide the number of distinct classes, the unla-
beled dataset size used for SSL, and the test size
for all five datasets. Details about the design of
prompts and verbalizers can be found in Appendix
A.

Dataset Task #Class #Unlabeled #Test
AG’s News TC 4 40,000 7,600
Yahoo TC 10 100,000 60,000
CB NLI 3 30,000 56
RTE NLI 2 20,000 277
MNLI NLI 3 30,000 9,815

Table 1: Data statistics. TC= Topic Classification, NLI=
Natural Language Inference

We perform multiple experiments in few-shot
settings for all datasets. For few-shot experi-
ments, we use 1, 5, 10, 20 examples per class for
all datasets except for CB and RTE, where we ex-
periment with 32 examples to align with earlier
research work (Schick and Schütze, 2021). We re-
port the average accuracy for the evaluation across
three runs of each experiment with three different
random seeds.

3.2 Proposed Models
Demo+Soft Tokens PET: The first method is to
replace the manual verbalizer with the prototypical
verbalizer and manual prompts with demonstration
examples and continuous prompt tokens.

1We downloaded these datasets using the script pro-
vided by OpenPrompt https://github.com/thunlp/
OpenPrompt
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Vary Soft Tokens PET: The second method is to
introduce diversity by varying the number of con-
tinuous prompt tokens, and we use the prototypical
verbalizer across multiple labeler models.

3.3 Models for Comparison

We design several strong baseline experiments in
addition to our proposed models and also perform
an ablation study to show the superiority of our
proposed models in multiple NLU tasks.

3.3.1 Baseline Models

Fine-tune: This is a supervised method, where we
directly fine-tune the RoBERTa-large PLM with
training examples in different few-shot settings. In
this method, we do not leverage the unlabeled data.
Prototypical Verbalizer PET: This is a semi-
supervised learning method similar to Schick and
Schütze (2021), but we replace the manual verbal-
izer with the prototypical verbalizer and keep the
manual prompts. Experiments with this setup will
show the benefits of applying automatic verbalizer
in the PET framework.
Manual PET: This is a semi-supervised learning
method from Schick and Schütze (2021). Our main
goal is to show that, with our proposed method,
we can achieve similar or better results than this
manual method.

There are other SSL methods that rely on data
augmentation without prompt tuning, such as UDA
(Xie et al., 2020) and MixText (Chen et al., 2020).
Since their performance is consistently worse than
the Manual PET model across multiple datasets
(Schick and Schütze, 2021), we do not choose these
models for comparison in this work.

3.3.2 Model Intervention for Ablation Study

Fixed Soft Tokens PET: This semi-supervised
learning method is similar to our second proposed
method, where we vary the number of continuous
tokens to create multiple prompts. However, here
we keep the number of continuous tokens fixed and
do not add demonstration examples as well. This
experiment will help us to understand the impor-
tance of diversity introduced by varying continuous
tokens in prompt design.
Demo+Soft in SL: This is a supervised method,
where we use a prompt template to transform the
input by adding a randomly selected demonstra-
tion example from the training data and a fixed
number of continuous prompt tokens to the input,

and we use the prototypical verbalizer for classi-
fication. We use RoBERTa-large for PLM. With
this experiment, we try to understand the power
of semi-supervised learning methods with multiple
prompts over supervised training.

3.4 Implementation Details

We use the RoBERTa-Large model (Liu et al.,
2019) as our PLM for all of our experiments. We
use AdamW as our optimizer with a learning rate
of 1e−5 and a weight decay of 0.01 with linear
scheduler, batch size of 2, and trained for 5 epochs.
The reparameterization block contains 2-layer bidi-
rectional LSTM and 2 linear layers with ReLU acti-
vation function. The hidden dimension of the linear
layer and LSTM layer is 768, as well as the hidden
dimension of Roberta-Large. We train the parame-
ters in the reparameterization block and the PLM
together. For the prototypical verbalizer, we base
our implementation on the Pytorch2, Huggingface
transformer3, and OpenPrompt4 frameworks (Ding
et al., 2021). The number of continuous prompt
tokens is consistent 5. For our Vary Soft Tokens
PET, we prepare 5 prompts for each dataset and the
number of soft tokens in each prompt ranges from
1 to 5.

3.5 Results of Multiple Automatic Verbalizers

Datasets SSL PET
# instances SoftVerb SearchVerb ProtoVerb

AG’s News 10 49.4 80.5 77.2
Yahoo 10 11.8 34.0 51.9
CB 32 88.7 73.2 85.7
RTE 32 48.2 50.2 52.8
MNLI 10 39.0 37.0 50.0

Table 2: Average accuracy on different datasets by
replacing manual verbalizers with automatic verbalizers
in the PET SSL setup. For CB and RTE, we use 32
training examples, whereas for other datasets, we use
10 training examples to train labeler models. The best
performance is marked in bold.

To understand which automatic verbalizer is a
better replacement for manual verbalizer, we first
experiment with three automatic verbalizers: soft
verbalizer (Hambardzumyan et al., 2021; Liu et al.,
2021c,b), search verbalizer (Gao et al., 2021; Shin
et al., 2020a; Schick et al., 2020a), and prototyp-
ical verbalizer (Cui et al., 2022). For all of these

2https://pytorch.org/
3https://huggingface.co/
4https://github.com/thunlp/OpenPrompt
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experiments, we apply experimental setups sim-
ilar to PET paper, but only replace the manual
verbalizer with the automatic verbalizer (Schick
and Schütze, 2021). Table 2 shows the average
accuracy over three runs with three different seeds
on different datasets with these verbalizers. From
Table 2, the prototypical verbalizer shows better
performance than other verbalizers for three (Ya-
hoo, RTE, and MNLI) out of five datasets. The
search verbalizer and soft verbalizer models per-
form better than the prototypical verbalizer model
only on one dataset each. Since the prototypical
verbalizer performs better than other verbalizers in
majority of the datasets, we decided to use this as
our automatic verbalizer.

3.6 Comparison with Manual PET

With the prototypical verbalizer as our automatic
verbalizer, we then experiment with our proposed
methods for automatic prompt design. Table 3
shows our results on different datasets and tasks in
the few-shot setting. Table 3 shows that by only
replacing the manual verbalizer with the prototyp-
ical verbalizer (column Protoverb) and keeping
other aspects of the experiment the same as the
PET method, we can achieve slightly lower per-
formance (70.1 average accuracy) compared to
Manual PET (71.4 average accuracy) (Schick and
Schütze, 2021). This shows that to eliminate hu-
man involvement in designing verbalizers, we can
simply replace the manual verbalizer with the pro-
totypical verbalizer with only a little performance
sacrifice.

For our next set of experiments, we replace man-
ual prompts with our proposed method, automati-
cally creating multiple prompts. The first method
(Demo+Soft Tokens PET), which adds randomly
sampled demonstration examples from training
data with a fixed number of trainable continuous
prompt tokens with input, achieves better perfor-
mance than Manual PET method. The next method
(Vary Soft PET), in which we vary the number of
continuous trainable tokens, also achieves better
performance than Manual PET method. For topic
classification tasks, under multiple few-shot set-
tings, the average accuracy of Demo+Soft and Vary
Soft PET are 77.0 and 77.3, respectively, while
the average accuracy of Manual PET method is
77.1. Similarly, for NLI datasets under different
few-shot settings, the average accuracy of our Vary
Soft PET method is 69.6 and Demo+Soft Tokens

PET method is 70.7. Both of these results are bet-
ter than Manual PET method (67.7). Furthermore,
across all these datasets, Demo+Soft Tokens PET
and Vary Soft PET achieve an average performance
of 73.2 and 72.6, respectively. These results are
better than Manual PET (71.4) method. This exper-
iment shows that it is possible to completely elimi-
nate human involvement and expertise in designing
prompts and verbalizers for the SSL pipeline with
even better performance.

We also observe that for the case of one-shot
experiments with MNLI dataset, Demo + Soft PET
method obtains an accuracy of 36.1, which is much
worse than other prompt baseline models. This
may be due to randomly sampled [demo] examples,
as previous studies have shown that the choice of
examples in the few-shot setting can result in high-
variance performance (Lu et al., 2021). In future
work, we can utilize sentence embeddings to make
intelligent decisions while selecting demonstration
examples.

3.7 Ablation Study
3.7.1 Impact of Semi-supervised Learning
We compare our proposed methods with super-
vised learning methods: fine-tuning and prompt-
based tuning methods (Demo+Soft in SL). All
semi-supervised learning methods perform signif-
icantly better than supervised learning methods.
Traditional fine-tuning methods perform the worst
(45.1 average accuracy) on different datasets and
tasks. Demo+Soft in SL method is similar to our
proposed Demo+Soft Tokens PET method but does
not make use of unlabeled data. Demo+Soft in SL
performs better than the fine-tuning method and
achieves an average accuracy of 68.7 on multiple
datasets and tasks in different few-shot settings.
Both of the supervised learning methods perform
worse than any SSL prompting model, indicating
the necessity of the SSL pipeline in NLU tasks.

3.7.2 Impact of Diversity in the Prompts
In order to understand the effect of introducing di-
versity through multiple prompts in SSL, we devise
another experiment, where we use the SSL setup
but use only one prompt labeler model (not adding
a demonstration example but using trainable soft to-
kens) to label unlabeled data. We name this method
as Fixed Soft Tokens PET. Table 3 shows that in
most comparisons (13/14), our proposed Vary Soft
PET or Demo+Soft PET method achieves better
performance. When comparing with the Fixed Soft
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Semi Supervised Learning PET Supervised
Dataset # Training Demo+Soft Vary Soft Fixed Soft Protoverb Manual Fine-Tune Demo+Soft

Topic Classification
AG’s News 1 83.5 81.3 82.8 80.0 80.7 25.7 62.2
AG’s News 5 87.6 88.0 87.3 87.3 87.8 32.6 84.9
AG’s News 10 88.3 88.3 86.5 88.7 88.8 58.3 87.2
AG’s News 20 88.8 89.3 88.9 89.2 89.2 86.1 88.0
Yahoo 1 61.1 62.9 59.6 62.0 62.3 10.7 55.6
Yahoo 5 67.4 67.9 67.1 67.8 68.0 12.1 65.2
Yahoo 10 68.9 69.5 69.1 70.0 69.5 37.8 67.0
Yahoo 20 70.7 71.0 70.4 70.9 70.7 66.7 66.5
TC Avg - 77.0 77.3 76.5 77.0 77.1 41.2 72.1

Natural Language Inference
MNLI 1 36.1 51.7 52.7 44.2 44.8 34.3 35.1
MNLI 5 51.2 58.1 57.7 55.3 55.2 33.5 46.9
MNLI 10 60.4 57.8 58.4 62.3 60.5 34.3 54.4
MNLI 20 64.0 64.7 60.5 69.6 68.6 35.0 41.9
CB 32 88.7 88.1 88.7 85.7 86.9 60.7 87.6
RTE 32 70.4 62.5 62.6 52.8 58.8 48.1 67.4
NLI Avg - 70.7 69.6 69.5 65.5 67.7 47.7 66.5
Overall Avg - 73.2 72.6 72.3 70.1 71.4 45.1 68.7

Table 3: Few-shot experiment results (average accuracy) on different datasets with our proposed methods in PET
SSL setup. For CB and RTE, we use 32 training examples, whereas for other datasets we use {1, 5, 10, 20} randomly
selected examples per class for few-shot learning experiments. The best performance is marked in bold. Note that to
report the average results for NLI task, we first average over the MNLI results under different few-shot settings, and
then average over the three NLI datasets to give each task equal weight. The overall average results are computed
following a similar approach, giving each dataset an equal weight.

PET, our proposed Demo+Soft PET shows an im-
provement of average accuracy from 72.3 to 73.2
(p < 0.05 by paired t test) (Hsu and Lachenbruch,
2014). Moreover, both Demo+Soft and Vary Soft
PET methods obtain better average performance
than the Fixed Soft Tokens PET in NLI and topic
classification tasks. These results show the impor-
tance of diversity introduced by multiple prompt
labeler models.

4 Related Work

4.1 Language Model Prompting

Cui et al. (2021) authors fine-tuned the pre-trained
generative language model, BART, with a prede-
fined template (candidate span is a entity type
entity) for NER classification. Wang et al. (2021)
proposed Entailment as Few-shot Learner (EFT)
method, which transforms classification tasks into
natural language textual entailment tasks and then
fine-tunes the LM. The transformation also makes
it easy to leverage unsupervised contrastive data
augmentation methods to add pairwise examples
to the limited annotated data. This setting further
showed an average 2.7% improvement in 15 dif-
ferent NLP tasks. In addition to using the prompts

for supervised learning, PET is the SoTA method
to adapt the manual prompts along with semi-
supervised learning to obtain strong performance
across multiple NLU tasks. (Schick and Schütze,
2021).

4.2 Automatic Prompts and Verbalizers
Shin et al. (2020a) used a gradient-guided search
to find the discrete tokens for prompts based on
task accuracy, initialize tokens, and then fine-tune
the LM. For automatic label token selection, they
first train a logistic regression classifier from the
contextualized embedding of the MASK token and
then predict the score from MLM’s output word
embeddings. They select the top-k highest scoring
words for each label. They showed better perfor-
mance over manual prompting methods for sen-
timent classification and textual entailment tasks.
Similarly, instead of using a gradient-guided search
for prompt tokens, Li and Liang (2021) and Lester
et al. (2021) attached prefix vectors and learned
the embeddings for prefix vectors by keeping the
LM model parameters frozen. Liu et al. (2021c)
proposed P-tuning, which replaces the input em-
beddings of pre-trained language models with its
differentiable output embeddings, using the pat-
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tern based on human design. Liu et al. (2021b)
optimized and adapted the Prefix Tuning model
for NLU. Vu et al. (2021) proposed to learn soft
prompt embeddings from one or more source tasks
and then transfer them to initialize the prompts for
the target task. In addition, they also proposed an
efficient retrieval approach to find task embeddings
and predict the most transfarable source tasks for a
given novel target task.

Several automatic verbalizers, such as search-
based verbalizers, soft verbalizers, and prototypi-
cal verbalizers, have been proposed to automate the
design of the verbalizer mapping function. Search-
based verbalizers aim to find the appropriate tokens
to replace human selection (Schick et al., 2020a;
Shin et al., 2020b; Gao et al., 2020). Both soft ver-
balizers and prototypical verbalizers learn trainable
class or prototyope embeddings during the train-
ing process (Cui et al., 2022; Zhang et al., 2021;
Hambardzumyan et al., 2021).

Mahabadi et al. (2022) proposed a prompt-free
method (PERFECT) to train the language model,
which does not rely on manual commands and ver-
balizers. PERFECT reported performance similar
to that of PET (Schick and Schütze, 2021) in a
few-shot setting. However, they used a supervised
learning setup and compared their results with the
single labeler model with one prompt rather than
the results from the final classifier. Here, we use a
similar SSL setting to Schick and Schütze (2021)
and report the results of the final classifier.

5 Conclusions

In this paper, we are able to successfully use auto-
matic prompts and verbalizers in semi-supervised
learning settings. We show that our proposed au-
tomatic prompt generation methods with proto-
typical verbalizer can eliminate human engineer-
ing in prompt-based SSL setup and achieve simi-
lar or better performance than the SoTA Manual
PET method. Our methods have the added ad-
vantage of being scalable with multiple tasks and
datasets. We also empirically verify the power of
semi-supervised learning methods, which take ad-
vantage of large amounts of unlabeled data, over
supervised methods.

In the next steps, we plan to investigate whether
we would be able to achieve similar performance
by freezing PLMs’ parameters and only tuning ver-
balizer and prompt parameters. This setup will save
a tremendous amount of space by making it easy

to share and reuse PLMs. Moreover, we plan to ex-
plore ways to combine the two proposed methods
Demo+Soft PET and Vary Soft PET, which would
take advantage of both methods.

6 Limitations

Although we experiment with multiple NLU tasks
and datasets, these datasets are only in the En-
glish language. Prompt-based learning relies on
large language models, which have acquired knowl-
edge through pre-training on huge corpora. With
low-resource languages, it might be difficult to get
PLMs trained on a huge corpus, which might make
it hard to reproduce performance similar to the En-
glish corpus. The fine-tuning and inference of PLM
requires multiple large GPUs, which might not be
accessible to everyone.
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A Prompts and Verbalizers

A.1 Manual Prompts and Manual Verbalizers

We use the same manual prompts and manual ver-
balizers for our baseline experiment as used by
Schick and Schütze (2021, 2020).

AG’s News is a news topic classification dataset
with four classes. We use the manual verbalizer that
maps class 1-4 to “World”, “Sports”, “Business”
and “Technology”. For the input sentence x =
(a, b), where a is the news headline and b is the

body of the news text, we use the manual prompts
below:

P1(x) = [MASK] : [a] [b]

P2(x) = [MASK] - [a] [b]

P3(x) = [a] ([MASK]) [b]

P4(x) = [a] [b] ([MASK])

P5(x) = [MASK] News: [a] [b]

P6(x) = Category : [MASK] [a] [b]

Yahoo Questions is another dataset for topic
classification with ten classes. We use the same
manual prompts as AG’s News, but define the man-
ual verbalizer for the Yahoo dataset, which maps
the classes 1-10 to “Society”, “Science”, “Health”,
“Education”, “Computer”, “Sports”, “Business”,
“Entertainment”, “Relationship” and “Politics”.

MNLI is the dataset for textual entailment tasks,
consisting of text pairs x = (a, b). We define
two manual verbalizer pairs v1 and v2. v1 ver-
balizer maps class 0-2 to “Wrong”, “Right” and
“Maybe”. v2 verbalizer maps class 0-2 to “No”,
“Yes”, “Maybe”. We use the following manual
prompts:

P1(x) = “[a]” ? || [MASK], “[b]”

P2(x) = [a] ? || [MASK], [b]

RTE and CB are datasets for textual entailment
tasks. We use v1 as the manual verbalizer similar to
MNLI task. We use the following manual prompts:

P1(x) = “[a]” ? || [MASK], “[b]”

P2(x) = [a] ? || [MASK], [b]

P3(x) = [a] ? || [MASK]. [b]

P4(x) = “[a]” ? || [MASK]. “[b]”

A.2 Continuous Prompts
For our proposed models: Demo+Soft and Vary
Soft models, we apply continuous prompts and
automatic verbalizers to ensure that the prompt-
tuning SSL method can be scaled across multiple
datasets. From previous works, we find that few
anchor tokens help to improve the performance of
NLU tasks (Liu et al., 2021c), so we design two dif-
ferent continuous prompts dependant on the nature
of NLU tasks. For the continuous prompt for AG’s
News and Yahhoo Questions (text classification
task), our design is:

P(x) = [a] [b] Category: [p0, p1, . . . , pn] [MASK]
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For continuous prompt for MNLI, CB and RTE
(NLI tasks), our design is:

P(x) = [a] [b] ? [p0, p1, . . . , pn] answer : [MASK]

The construction of continuous prompts also follow
the design of the P-tuning paper (Liu et al., 2021c).
Rather than designing multiple manual prompts for
different datasets, we can use our proposed meth-
ods to automate this process. This reduces human
efforts and costs when we scale across multiple
datasets and tasks.
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Abstract

A novel feature represents a cluster of semanti-
cally equivalent novel user requests e.g., re-
quests to play a song on a service or read-
ing user’s messages. Detecting and supporting
novel features is crucial towards wider adop-
tion of dialog systems by end users. Intuitively,
features are represented by a combination of
intents, slot types and/or their values. For ex-
ample, while playing a song is a feature rep-
resented by a single intent (PlayMusic) only,
playing a song on a service is another feature
represented by the combination of PlayMusic
intent and ServiceName slot type. Prior work
on novelty detection limits the scope of features
to those represented by novel single intents,
leading to (1) giant clusters spanning several
user-perceived fine-grained features belonging
to the same intent, (2) incoherent interpreta-
tion of clusters from users’ perspective (no di-
rect connection to some user-perceived feature),
and (3) missing those features spanning several
intents. In this work, we introduce feature dis-
covery as opposed to single intent discovery,
which aims at discovering novel features span-
ning a combination of intents and slots, and
present a technique for discovering novel fea-
tures from user utterances. Experiments on two
datasets demonstrate the effectiveness of our
approach and consistently show its ability to
detect novel features.

1 Introduction

Advances in Natural Language Understanding
(NLU) have led to accelerated adoption of dialog
systems such as Apple Siri and Amazon Alexa by
end users. Standing at the core of a dialog system
is an NLU model for parsing and understanding
user utterances. Two of the key tasks of an NLU
model are (1) Intent Classification, which classifies
an utterance into a fixed set of intent labels, and
(2) Slot Labeling, which classifies slot values into
a predefined set of slot types (Weld et al., 2023).
Determining the intent guides the dialog system

to perform the proper actions as response to user’s
utterance. For example, user utterances “play some
music” and “play despacito” express the intent
PlayMusic, while “how is the weather?” and “is
it raining today” express the intent GetWeather.
Intents can be further grouped into domains, for
instance, PlayMusic and RateSong intents belong
to Music domain. Detecting slots and their corre-
sponding values within an utterance gives informa-
tion about objects upon which the actions should
be performed. For example, ‘despacito’ in “play
despacito” is of type SongName.

A feature represents a user experience with
the dialog system, for example, playing a song
on a service or reading user’s messages. Over
time, users build up expectations about the fea-
tures/experiences that the dialog system offers. Un-
supported features cause friction and degrade user’s
experience. In terms of NLU, a novel feature could
be mapped to a new combination of domain(s), in-
tent(s), slot(s) and/or their values, where each is not
necessarily novel. For example, while PlayMusic

intent was seen by the dialog system, the combina-
tion of PlayMusic and ServiceName is never seen
before, causing friction with the NLU model when
parsing utterances like “play despacito on spotify”.
Consequently, it becomes crucial to discover such
features that are frequently requested by the users
but are still unsupported by the NLU model, which
we address in this work.

The task of novel intent discovery has been in-
tensively studied in prior work, by harnessing un-
supervised techniques (e.g., Liu et al., 2021) or
semi-supervised methods for incorporating exist-
ing knowledge from labeled data (e.g., Vedula et al.,
2020a; Lin et al., 2020; Zhang et al., 2021). Exist-
ing work limits the scope of novel features to those
represented by novel single intents. However, this
does not cover all types of features that naturally
span several domains, intents, slots and their val-
ues. Consider the following user utterances, “play
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despacito”, “play despacito on spotify” and “play
despacito in 30 minutes”. While the utterances be-
long to the same intent PlayMusic, handling each
of them is different. The first requires the dialog
system to play a song on the device itself, the sec-
ond asks for playing the same song on a specific
service, namely Spotify, while the third requires
playing the song after a certain amount of time is
elapsed. Moreover, each request corresponds to a
different user experience and requires a different
underlying implementation for responding. As-
suming PlayMusic intent is novel, applying stan-
dard novel intent discovery will group the three
utterances in a single cluster, which creates two
issues: (1) having many different user-perceived
experiences within the same intent (play song on
device, on specific service or after some time), re-
sults in a giant cluster that needs manual inspection
to be decomposed into smaller sub-groups to make
meaningful business decisions, and (2) while the
cluster represents a novel intent, it might not corre-
spond to a user perceived experience – what the end
users are looking for. On the other hand, assum-
ing PlayMusic intent is not novel, intent discov-
ery might miss those features at more fine-grained
levels. For instance, playing a song on a service
might not be detected as novel. Additionally, intent
discovery cannot handle those features spanning
several intents.

To allow for general feature discovery, and close
the gap between user requests and the underlying
models, we define a feature to be any combina-
tion of domain(s), intent(s) and slot(s) and/or their
value(s) and move towards discovering clusters of
utterances with novel feature definitions rather than
only focusing on novel single intents. Novel intent
discovery can be seen as a special case of feature
discovery, where new features correspond to new
intents unseen before.

In this paper, we present DNF (Discovery of
Novel Features), a semi-supervised approach for
discovering novel features from a given set of
user utterances with respect to an underlying NLU
model. Our method consists of a cascaded system
with two steps: feature clustering and novelty de-
tection. First, we employ state-of-the-art language
model BERT (Devlin et al., 2019) with multi-stage
fine-tuning to produce feature/experience-aware
representations of user utterances. Then, user utter-
ances are clustered into features. Second, we clas-
sify each resulting feature cluster as either novel or

already supported by the NLU model. The salient
contributions of our paper are:

• We introduce Feature Discovery, where, given a
set of user utterances and a trained natural lan-
guage understanding model, we extract clusters
of novel features.

• We present DNF, an approach for discovering
novel features from user utterances.

• We conducted extensive experiments on two
datasets, the SNIPS dataset augmented with fea-
ture labels, and our internal real-world dataset.
Experimental results demonstrate the effective-
ness of our method across the two datasets.

2 Related Work

Intent classification and slot labeling are two funda-
mental tasks in spoken language understanding,
dating back to early 90’s (Price, 1990). With
the rise of task-oriented dialog systems, the two
tasks have seen more attention, and progress has
been made by applying various deep learning ap-
proaches (e.g., Abujabal and Gaspers, 2019; Abuja-
bal et al., 2021; Goo et al., 2018; Jolly et al., 2020;
Mesnil et al., 2013).

Discovering novel domains and intents from a
pool of user utterances has been well addressed in
earlier works, with fully unsupervised and semi-
supervised settings. These include clustering user
utterances with novel domains or intents individu-
ally, using various techniques such as constrained
deep adaptive clustering (Lin et al., 2020), deep
aligned clustering (Zhang et al., 2021), contrastive
learning (Gao et al., 2021), capsule network (Liu
et al., 2019; Xia et al., 2018), open intent extraction
(Vedula et al., 2020b), and others (e.g., Lin and Xu,
2019; Shivakumar et al., 2019; Yan et al., 2020;
Kim and Kim, 2018). Alternatively, Vedula et al.,
2020a explore the joint discovery of domains and
intents, using hierarchical linking to form an intent-
domain taxonomy. The task is also performed
jointly with slot filling in recent works (Wang et al.,
2018; Goo et al., 2018; Kim et al., 2017; Castellucci
et al., 2019; Gangadharaiah and Narayanaswamy,
2019; Liu and Lane, 2016). All of the above works
require a small amount of labeled data as prior
knowledge to guide the discovery process.

The most prominent work for detecting novel
intents without any prior knowledge was proposed
by Liu et al. (2021), which employs a pre-trained
network for generating sentence embeddings, and
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Figure 1: DNF overview with feature-aware fine-tuning, feature clustering and novelty detection.

K-Means for intent clustering. However, due to
the limited supervision, the method is shown to
perform poorly on novel domains.

All of the above methods are limited to a discov-
ery objective at intent level, and thus fail to operate
on more fine-grained levels (e.g., slot type and/or
value) within the same intent. Moreover, they fail
to detect features composed of multiple domains,
intents and/or slots.

3 Methodology

Given a set of user utterances {u1, u2, ..., un}, we
aim to detect a set of clusters {C1, ..., Cm} where
each Cj is a cluster of utterances pertaining to a
novel feature and m is the total number of novel
features. As depicted in Figure 1, our method con-
sists of two components, feature clustering and
novelty detection. First, we assign each utterance
ui a feature label and eventually produce a set
of feature-labeled utterances (u1, f1), ..., (un, fk),
where f1, f2, ..., fk is the list of k unique features.
This is performed by employing an utterance rep-
resentation model specifically trained with both
feature-labeled and -unlabeled data to project the
input utterances into a feature-aware vector space
that helps clustering the input utterances into k fea-
tures. Second, a feature novelty detection model
is used to classify each of the k feature clusters
as either novel or already supported by the dialog
system. We measure the novelty of a feature by
exploiting signals from the NLU model. With DNF
being a semi-supervised technique, we distinguish
between two types of training data supervision:
feature-labeled and feature-unlabeled utterances:

• Feature-labeled training data (TrainL): each
utterance is annotated with its feature label
f along with its intent label I and slot la-
bels S = {s1, s2, ...} where each si is
a pair of slot type and its value in the
utterance such as SongName:despacito and
ServiceName:spotify.

Encoder (BERT)

utterance 1 utterance 2

Distance
(cosine)

Figure 2: Fine-tuning with utterance similarity.

• Feature-unlabeled training data (TrainU ): each
utterance is only annotated with its intent and
slot labels, however, with no feature label. In
comparison to feature-labeled data, such data
can be obtained in larger quantities and helps the
feature discovery process as we exploit informa-
tion about utterances’ intent and slots.

3.1 Feature-Aware Utterance Representation
To first encode utterances as high-dimensional vec-
tors separable in the feature space, we use a rep-
resentation model specifically adapted for feature
awareness. To this end, we employ the state-of-
the-art language model SBERT – Sentence BERT
(Reimers and Gurevych, 2019), which is a BERT
model pretrained for generating sentence embed-
dings. Specifically, by feeding an utterance u
into SBERT, we get a list of token embeddings
[CLS, t1, t2, ..., tm], where CLS is the classification
token. By applying mean-pooling, we obtain the
representation vector of u:

eu = mean-pooling([CLS, t1, t2, ..., tm])

We transfer feature knowledge into the utterance
representation model through a multi-stage fine-
tuning process as described below.

3.1.1 Utterance Similarity
As depicted in Figure 2, we use a Siamese Neural
Network (SNN) training paradigm for transferring
feature knowledge into the model. The intuition
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Figure 3: Fine-tuning with pseudo-classification.

behind this fine-tuning step is to directly optimize
the utterance representations based on their fea-
ture similarity. In particular, a pair of utterances
(ui, uj) is encoded into its respective embedding
vectors ei and ej . The utterance feature similar-
ity is computed as the cosine distance between the
two vectors, and is optimized towards minimizing
the distance between utterances belonging to the
same feature. As our training data are both feature-
labeled (TrainL) and feature-unlabeled (TrainU ),
we consider three kinds of training samples for this
fine-tuning step:

1. Both ui and uj are sampled from the same
TrainL feature: (ui, uj) is a positive sample.

2. Both ui and uj are sampled from TrainL, but
are from different features: (ui, uj) is a negative
sample.

3. ui is sampled from TrainL and uj is sampled
from TrainU : (ui, uj) is a negative sample.

For case 3, it is possible that the training sample
is a false-negative, since the actual feature-label
of uj could be the same as of ui. However, we
hypothesize that the number of such false-negative
utterance pairs is much lower than the true-negative
pairs given the large size of this training set.

As the number of utterance pairs is quadratic, we
use a simple way to build a random dataset for each
training epoch. For each utterance ui in TrainL,
we randomly sample an utterance uj that belongs
to the same feature as a positive sample, and k
negative samples from both TrainL and TrainU ;
hence maintaining the ratio of 1 : k between the
number of positive and negative pairs. Empirically,
we found that setting k = 3 provides a decent
balance between positive and negative pairs.

3.1.2 Pseudo Classification
Utterance similarity considers pairwise distances
between utterances, without setting global con-
straints across all utterances. Moreover, it opti-
mizes the distances according to the feature-labeled
clusters in TrainL but does not consider the un-
known feature clusters in TrainU . The second fine-
tuning step, shown in Figure 3, aims to overcome
the above issues. Inspired by the DeepCluster work
(Caron et al., 2018), pseudo classification is a semi-
supervised iterative training process, alternating
between clustering and classification.

In the clustering step, we first encode the training
utterances into their representation vectors. Then
a clustering algorithm is used to group the rep-
resentation vectors into clusters while assigning
a pseudo-label to each cluster. We use COP-K-
Means (Wagstaff et al., 2001) as the clustering al-
gorithm – an extension of K-Means that allows
putting constraints on the clustering process. For
example, which utterances must be grouped in the
same clusters, and which must not. In our case,
utterances belong to the same feature cluster in-
side TrainL must be grouped in the same candidate
cluster given by COP-K-Means.

In the classification step, we fine-tune the BERT
encoder by employing a feature classification task
using the pseudo-labels generated from the clus-
tering step as the ground truth feature labels. The
pseudo-classifier consists of a dense layer followed
by a softmax on top of the encoder. In the Deep-
Cluster approach, the pseudo-classifier is reinitial-
ized after each iteration, since the indices of the
pseudo-labels are permuted randomly after each
clustering step. This makes training slow as the
parameters cannot be reused. To alleviate this is-
sue, we adopt the cluster centroid alignment tech-
nique proposed by Zhang et al. (2021), where we
re-assign the pseudo-label indices from the cluster-
ing step, and thus, aligning them with the pseudo-
classifier trained from the previous iteration. This
allows the parameters to be reusable across itera-
tions, hence speeding up training.

Compared to utterance similarity, pseudo clas-
sification clusters TrainU utterances, either into
TrainL clusters or into totally new ones. Figure
4 compares the expected effect of the two steps.

3.1.3 Slot Classification
Information about slots in user utterances is a good
source for feature awareness. For instance, while

“play despacito” and “play despacito on spotify” are
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without fine-tuning utterance similarity pseudo classification

Figure 4: Utterance similarity vs. pseudo classification.
Solid red and blue dots are TrainL utterances, while
green and yellow dots are TrainU utterances grouped in
new clusters.
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Figure 5: Fine-tuning with slot classification.

semantically similar utterances, the existence of
ServiceName:spotify slot hints at the existence
of a fine-grained user feature of playing a song on
a service. In contrast to utterance similarity and
pseudo classification, slot classification does not di-
rectly pull/push the utterances close to or far away
from each other in the embedding space. Instead,
we aim to make the representation model aware of
the presence of slots in the input utterances, and
we hypothesize that such information guides the
model towards producing utterance representation
with better feature separability.

This is modeled as a multi-class classification
task (Figure 5), where the model is trained to detect
which slots appear in the input utterances (e.g.,
ServiceName). Concretely, we add on top of the
encoder a multi-class classifier, comprising a dense
layer followed by sigmoid activation, and fine-tune
the model using binary-cross-entropy loss. Note
that we do not consider the exact position of the
slots in the utterances, but rather their presence.

3.2 Feature Clustering

At inference time, we encode user unlabeled ut-
terances into their representation vectors and use
K-Means to cluster them into k feature clusters.
To automatically choose the optimal value of k,
we employ two techniques, namely the Elbow
method (Thorndike, 1953) and the Silhouette score
(Rousseeuw, 1987). Since utterances are a mix of
novel and supported features, we classify whether

each candidate feature cluster is novel using a fea-
ture novelty detection model, described next.

3.3 Feature Novelty Detection
While the trained representation model helps at
projecting the utterances into a feature-separable
space, it lacks information regarding feature’s nov-
elty w.r.t the NLU model. We detect novel feature
clusters by exploiting signals from the NLU and
utterance representation models. The NLU model
is trained to jointly recognize intent and slot labels.
The intent classifier (IC) and slot tagger (ST) heads
are plugged on top of a BERT encoder. Slot labels
follow the BIO schema (Ramshaw and Marcus,
1995). Note that our approach is agnostic to the
choice of the NLU model. For novelty detection,
we define the novelty confidence of each candidate
feature cluster C = {u1, u2, ...} as the average
novelty of its utterances:

featnovel(C) =
1

|C|
∑

u∈C
uttnovel(u)

where uttnovel is computed as follows:

uttnovel(u) = mean
(
st(u), ic(u), pc(u)

)

where slot tagging confidence (st) is the confidence
produced from the slot tagger. We tested with two
variants: average over tokens (stavg), and minimum
over tokens (stmin). Intent classification confidence
(ic) is the confidence of the most probable intent
label produced by the intent classifier. Pseudo
classification confidence (pc) is the confidence of
the most probable pseudo cluster, produced by the
pseudo-classifier from the utterance representation
model. Feature clusters with novelty score greater
than a pre-defined threshold are labeled as novel.

4 Experimental Setup

We evaluate the performance of each component of
DNF independently as well as the overall discov-
ery system using two datasets: SNIPS and a large
French internal dataset.

4.1 Datasets
The SNIPS dataset (Coucke et al., 2018) consists
of 14K English utterances spanning 7 intents with
72 unique slot labels. Since the dataset does not
contain any feature labels, we augment it with fea-
ture labels using hand-crafted rules. We end up
with a total of 43 features, each of which forms
a cluster of utterances that semantically map to a
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user-perceived feature. Features cover three combi-
nations:

• Slot value features: utterances in these features
share the same intent, slots and at least one slot
value. For example, “play a song on spotify”
and “play music on spotify” belong to the same
feature of playing a song on Spotify service.

• Slot features: utterances in these features share
the same intent and same slots. For example,

“what is the weather tomorrow in new york” and
“weather tonight in brooklyn” belong to the same
feature of asking about weather at a specific time
in a specific city.

• Intent features: utterances in these features
share the same intent, with potentially, several
slots and/or slot values. For example, “book me
a restaurant tomorrow at 9pm” belong to the
feature of booking a restaurant.

Given the nature of the dataset, it was not possi-
ble to create cross-intent features that are semanti-
cally sensible. Out of the 43 features, 11 are used
as a test set, while 32 as a training set, where 19
out of the 32 features are feature-labeled TrainL,
and 13 features are feature-unlabeled training set
TrainU . These 32 features are deemed supported
by the NLU model, i.e., not novel. Out of the 43
features, 26 are slot value features, 15 are slot fea-
tures, while 2 are intent features. We randomly
sample utterances out of 32 features and add them
to the test set so that our test set contains a mix
of supported and novel features. The final dataset
contains 32 features as training set and 43 features
in the test set (11 of which are novel). On average,
we have 210 utterances per feature cluster.

Our internal dataset has a total of 273K utter-
ances comprising 41 features with different combi-
nations. 15 out of the 41 features span single intent
while the other features span two or more intents.
31 features are included in the feature-labeled train-
ing set TrainL. The number of utterances without
feature labels in TrainU set is in the order of mil-
lions. The remaining 10 features are part of the
test set. We also sample utterances out of 31 fea-
tures and add them to the test set. The final test
set contains 41 features (10 of which are novel).
The dataset covers 14 domains, 89 intents, 128 slot
labels and has, on average, 6.6K utterances per
feature cluster. All utterances were pre-processed
such that users are not identified.

Table 1: Feature-aware utterance representation perfor-
mance on SNIPS and internal datasets.

Training Strategy SNIPS Internal Dataset
NMI ARI ACC NMI ARI ACC

No fine-tuning 0.626 0.309 0.396 ==== baseline ====
US only 0.737 0.451 0.512 +0.096 +0.147 +0.149
PC only 0.728 0.374 0.471 +0.116 +0.161 +0.130
US→PC 0.749 0.475 0.537 +0.116 +0.178 +0.166
SC→US→PC 0.766 0.474 0.557 +0.104 +0.166 +0.129
(SC+US)→PC 0.782 0.531 0.605 +0.137 +0.216 +0.140

To assess the ability of our model to accurately
cluster cross-domain features, we split the internal
dataset into:

• Single-domain features, where utterances be-
long to the same domain. 32 out of the 41 fea-
tures are single domain features (25 train and 7
test), and

• Cross-domain features, where utterances be-
long to multiple domains (e.g., Music and
SmartHome). 9 out of the 41 features are cross-
domain features (6 train and 3 test). Features in
these two splits cover different combinations.

4.2 Feature-Aware Utterance Representation
We use SBERT as a baseline utterance represen-
tation model, and compare different variants fine-
tuned on different feature-related tasks. We con-
sider the following fine-tuning strategies:

• No fine-tuning: We directly use the SBERT base
model for utterance representation.

• Utterance Similarity (US): The model is fine-
tuned with only utterance similarity.

• Pseudo Classification (PC): The model is fine-
tuned with only pseudo classification.

• US→PC: The model is fine-tuned with both ut-
terance similarity and pseudo classification se-
quentially.

• Slot Classification (SC)→US→PC: The model
is fine-tuned with slot classification, utterance
similarity and pseudo classification sequentially.

• (SC+US)→PC: Slot classification and utterance
similarity are jointly trained to prevent overfit-
ting, and then pseudo classification.

We use paraphrase-mpnet-base-v2, a
pre-trained SBERT model, where we unfreeze all
the layers during fine-tuning. We use AdamW as
our optimizer (Loshchilov and Hutter, 2017), with
an initial learning rate of 5e−5 and a weight decay
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Table 2: Performance across different feature types.

Feature Type SNIPS Internal Dataset
NMI ARI ACC NMI ARI ACC

By
Novelty

supported 0.836 0.698 0.746 0.949 0.870 0.849
novel 0.741 0.566 0.637 0.772 0.640 0.662

By
Combi-
nation

slot 0.753 0.610 0.626 – – –
slot value 0.811 0.590 0.646 – – –
intent 0.547 0.512 0.804 – – –

Table 3: Intent-agnostic vs. intent-targeted discovery.

Intent Intent-agnostic Intent-targeted
NMI ARI ACC NMI ARI ACC

AddToPlaylist 0.544 0.402 0.595 0.671 0.573 0.789
PlayMusic 0.700 0.429 0.527 0.747 0.625 0.672
SearchCreat.Work 0.631 0.431 0.598 0.766 0.602 0.707
SearchScrn.Event 0.639 0.474 0.634 0.740 0.541 0.678

of 0.01. We set the batch size to 16 and apply early
stopping whenever we observe no improvement
on a development set. On average, all fine-tuning
strategies converge after 4 epochs.

Evaluation Metrics. To evaluate clustering
quality against ground-truth, we follow previous
work and report on the following metrics: Normal-
ized Mutual Information (NMI), Adjusted Rand
Index (ARI), and clustering Accuracy (ACC). All
metrics range from 0 to 1. The higher the score,
the better the clustering quality. We report the rela-
tive gains/losses over the baseline for the internal
dataset. Since we are only interested in evaluating
the quality of the fine-tuned representations, we use
the reference number of clusters k in subsequent ex-
periments and run a separate experiment to find the
optimal k when evaluating the end-to-end system.

5 Experimental Results

We evaluate (1) the effect of our fine-tuning strate-
gies to produce feature-aware representation on
feature clustering, and (2) our feature novelty de-
tection model.

5.1 Fine-tuning Results
Table 1 shows clustering performance using differ-
ent fine-tuning strategies. Across datasets, our fine-
tuning strategies outperform the vanilla SBERT
baseline across all metrics. Stacking different fine-
tuning tasks consistently results in better mod-
els. Fine-tuning with slot classification individ-
ually either before or after the other tasks (e.g.,
SC→US→PC) yields inferior performance com-
pared to jointly running slot classification with
other tasks. The best performing strategy is fine-
tuning with slot classification and utterance similar-

Table 4: Ablation study results.

Model SNIPS Internal Dataset
NMI ARI ACC NMI ARI ACC

Standard 0.782 0.531 0.605 ==== baseline ====
Ablation 0.769 0.444 0.523 -0.081 -0.132 -0.087
Upperbound 0.812 0.530 0.672 – – –

Table 5: Choosing the number of clusters k.

Method SNIPS Internal Dataset
k NMI ARI ACC k NMI ARI ACC

Gold k 43 0.782 0.531 0.605 41 ==== baseline ====
Silhouet. 24 0.761 0.511 0.593 35 -0.030 -0.063 -0.013
Elbow 30 0.790 0.573 0.632 39 +0.002 +0.003 +0.020

ity jointly and then running pseudo classification.
This shows that slot classification is able to improve
utterance representations in the feature space. In all
subsequent experiments, we use the best observed
model (SC+US)→PC.

Performance breakdown across feature types.
In Table 2, we report the performance of the best
representation model on different feature types.
First, we split the features in the test set by their
novelty (whether the feature has been seen during
training). Across the two datasets, our model clus-
ters utterances from supported features better than
from novel ones, which is expected.

In the second half of the table, we show a break-
down per combination. On SNIPS dataset, we
achieve better clustering results for slot and slot
value features than for intent features, which is rea-
sonable as our training data contains only 2 features
at intent level. On the internal dataset, clustering
single-domain features is slightly better than cross-
domain ones. For example, the model achieves an
NMI of 0.867 for single domain features, and 0.823
NMI for cross-domain features.

Intent-agnostic vs. Intent-targeted discovery.
For deeper analysis, we consider another discovery
setup in an intent-targeted way, in which we only
train and test with features from the same intent.
This setup is particularly useful in cases where we
focus on fine-grained discovery where the intent
is assumed to be known. In Table 3, we report the
results for this study on four SNIPS intents sepa-
rately. The models trained with features belonging
to the same intent perform generally better than
when being trained with cross-intent features.

Ablation study. During fine-tuning, we lever-
age both feature-labeled (TrainL) and feature-
unlabeled (TrainU ) data. To understand their im-
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Table 6: Performance of the feature novelty detection.

Signal SNIPS Internal Dataset
Prec. Rec. F1 Prec. Rec. F1

stavg 0.407 1.000 0.579 ==== baseline ====
stmin 0.750 0.545 0.632 +0.076 0.000 +0.043
ic 0.500 0.636 0.560 -0.083 -0.100 -0.091
pc 0.615 0.727 0.667 +0.167 -0.200 -0.020
featnovel 0.750 0.545 0.632 +0.167 0.000 +0.091

pact on model performance, we compare our model,
trained with both kinds of data (standard model),
against a model trained with only TrainL data (ab-
lation model). Moreover, we compare both models
to an upperbound model, in which we also include
the true feature labels of TrainU . Hence, the upper-
bound model is also trained with feature-labeled
data only, similar to the ablation model, but with
more features. We did not build an upperbound
model on the internal dataset since all utterances in
TrainU are not annotated with feature labels.

As shown in Table 4, the standard model out-
performs the ablation model on all metrics across
both datasets, with NMI and ACC gains reaching
8-9%, and ARI gains of 13% on the internal dataset.
This shows that our model benefits from feature-
unlabeled data during training. Naturally, an abun-
dance of feature-labeled data, although impractical,
provides better feature-aware representations.

Choosing the number of feature clusters. As
we are interested in evaluating the quality of the
fine-tuned representations, we use the number of
ground-truth features k from test data. However,
this number is unknown in practice. We experi-
mented with two popular techniques for predicting
k: the Elbow method (Thorndike, 1953) and the
Silhouette score (Rousseeuw, 1987). As shown in
Table 5, on both datasets, Elbow method works
slightly better than Silhouette score, with the pre-
dicted k closer to the ground-truth value. In terms
of other metrics, Elbow method even produces bet-
ter feature clusters than the baseline with gold k.

5.2 Results of Feature Novelty Detection

The base NLU model is a pre-trained BERT with
12 hidden layers, each with a size of 768. On top
of the CLS classification token, we plug a linear
projection head followed by softmax to perform
intent classification, and a similar head on top of
each token to perform slot tagging. To train the
NLU model, we unfreeze all 12 hidden layers and
fine-tune the two heads jointly.

To evaluate novelty detection in isolation from

clustering, we use the ground-truth feature clusters
and run novelty detection on top, i.e., to decide
whether a ground-truth feature cluster is novel or
supported. We harness different signals from the
NLU model: stavg, stmin, ic, pc and the combined
signal featnovel. As shown in Table 6, the combined
signal featnovel performs the best across all metrics
on the internal dataset. On SNIPS, featnovel excels
against other signals in terms of precision, and
places the second best in F1.

5.3 End-to-end DNF Evaluation

In this experiment, we first ran the clustering step
with Elbow method to generate feature clusters.
This resulted in 30 predicted clusters on SNIPS,
and 39 clusters on the internal dataset (see Table
5). Then, we perform novelty detection on the
predicted clusters.

To generate ground-truth labels for the predicted
clusters, we assign a feature label lC for each pre-
dicted cluster C by taking the majority vote of the
labels of the utterances within the cluster. Table 7
shows the number of novel clusters predicted using
each signal and their quality metrics. all is the base-
line, where we assume all predicted feature clusters
as novel. featnovel signal performs the best in terms
of precision on SNIPS, together with stmin, which
shows that the NLU slot confidence is a strong indi-
cator of the novelty of an utterance. On the internal
dataset, featnovel also achieves highest precision
and F1, while discovering almost all novel features
in the data (9 out of 10).

6 Conclusion

We introduced feature discovery, where, given a
set of user utterances and a trained NLU model,
we extract clusters of novel features composed of
a combination of domains, intents, slots and/or
their values. To this end, we presented DNF, a
semi-supervised approach for extracting novel user
features from a set of raw utterances, utilizing mini-
mal feature knowledge from labeled data combined
with feature-unlabeled data. DNF supports several
fine-tuning strategies to improve utterance repre-
sentation and make them separable in the feature
space. We evaluated DNF on two datasets and
observed significant improvements over baselines,
showing the effectiveness of our method. In the
future, we plan to explore various fine-tuning strate-
gies for better utterance representations, as well as
extending DNF to support different languages.

789



Table 7: End-to-end DNF evaluation.

Method
SNIPS Internal Dataset

#novel features Precision Recall F1 #novel features Precision Recall F1
all 30 0.233 0.636 0.341 39 ==== baseline ====
stavg 23 0.238 0.455 0.312 16 +0.295 0.000 +0.288
stmin 5 0.600 0.273 0.375 12 +0.462 0.000 +0.400
ic 21 0.238 0.455 0.312 8 +0.545 -0.200 +0.340
pc 10 0.400 0.364 0.381 9 +0.462 -0.200 +0.305
featnovel 5 0.600 0.273 0.375 9 +0.573 -0.100 +0.410

7 Limitations

While we empirically showed that our approach
performs well for novel feature discovery and gen-
eralizes across different datasets, we can identify
avenues for improvement in terms of efficiency
and model training. With DNF relying on good
feature-aware sentence representations, obtaining
such representations requires expensive fine-tuning
steps. For example, using a single GPU, our cas-
caded fine-tuning strategy takes on average 7 hours
on our internal dataset to reach convergence. More-
over, in workflows where NLU model refresh is
frequent, the model’s intent classification and slot
tagging confidence distribution can shift over time.
With DNF relying on observing confidence signals
from the NLU model to determine feature novelty,
a retraining/tuning of the novelty detection compo-
nent would have to be performed frequently. Fur-
thermore, our approach requires a small manually
annotated feature-labeled dataset (feature labels in
addition to intent and slot labels). These additional
annotations require expertise and time, which poses
a challenge during the data collection phase.
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Abstract

Closed-book question answering (QA) requires
a model to directly answer an open-domain
question without access to any external knowl-
edge. Prior work on closed-book QA either
directly finetunes or prompts a pretrained lan-
guage model (LM) to leverage the stored knowl-
edge. However, they do not fully exploit the
parameterized knowledge. To address this inef-
ficiency, we propose a two-stage, closed-book
QA framework which employs a coarse-to-fine
approach to extract the relevant knowledge and
answer a question. We first generate a related
context for a given question by prompting a pre-
trained LM. We then prompt the same LM to
generate an answer using the generated context
and the question. Additionally, we marginalize
over the generated contexts to improve the ac-
curacies and reduce context uncertainty. Exper-
imental results on three QA benchmarks show
that our method significantly outperforms previ-
ous closed-book QA methods. For example on
TriviaQA, our method improves exact match ac-
curacy from 55.3% to 68.6%, and is on par with
open-book QA methods (68.6% vs. 68.0%).
Our results show that our new methodology is
able to better exploit the stored knowledge in
pretrained LMs without adding extra learnable
parameters or needing finetuning, and paves the
way for hybrid models that integrate pretrained
LMs with external knowledge.

1 Introduction

Open-domain question answering (ODQA) pro-
duces an answer to a given question in the form
of natural language, and the task has been exten-
sively studied in recent years. Significant progress
on ODQA has been made by developing the open-
book QA methods (Chen et al., 2017; Lewis et al.,
2020b; Guu et al., 2020; Izacard and Grave, 2021;

∗ This work was done when the first author was an in-
tern at NVIDIA. Corresponding authors: Dan Su, Mostofa
Patwary.

Generated Conext 1: Richard Marx (songwriter) Richard 
Marx (born September 16, 1963) is an American adult 
contemporary and pop/rock singer, songwriter, musician, and 
record producer. … Three of Marx's singles have reached 
number one on the U.S. Adult Contemporary chart: "Hold on 
to the Nights", "Satisfied", and "Right Here Waiting". … 

Generated Context 3: Kim Wilde Kim Wilde Kim Smith 
(born Kim Smith on 18 November 1960), better known by 
her stage name Kim Wilde, is an English pop singer, author, 
DJ and television personality. She first saw success in 1981 
with her debut single, "Kids in America". It reached number 
two in the UK and was followed by a string of top ten hits. …

Generated Conext 2: Richard Marx Richard Allan Marx (born 
September 16, 1963) is … Marx first came into the spotlight 
with the release of his debut single, "Don't Mean Nothing", 
from his eponymous debut album. The album went to No. 8 
and spawned four Top 20 hit singles, including "Hold On to 
the Nights", which reached No. 1 on the Billboard Hot 100.

Predicted 
Answer: 
Richard 
Marx

Predicted 
Answer: 
Richard 
Marx

Predicted 
Answer: 
Kim 
Wilde

Question: Who had an 80s No 1 hit with Hold On To The Nights?

Predicted Answer
(standard prompting): 
Ross Bagdasarian (𐄂)

Predicted Answer 
(CGAP): 
Richard Marx (✓)

Figure 1: An example illustrating our two-stage, CGAP
framework. CGAP generates more accurate answer
(e.g. Richard Marx) compared to standard few-shot
prompting (e.g. Ross Bagdasarian).

Lazaridou et al., 2022) that explicitly exploit ex-
ternal knowledge corpus via dense retrieval tech-
niques like DPR (Karpukhin et al., 2020). However,
learning a good retriever requires substantial re-
sources, such as a large number of domain-specific
pairs of question and contexts in the knowledge
corpus (Karpukhin et al., 2020), or intensive com-
pute resources (Lee et al., 2019). In addition, as the
size of the knowledge corpus increases, it becomes
harder to retrieve accurate contexts due to the high
dimensionality of the search space (Reimers and
Gurevych, 2021).

Another class of models, known as closed-book
question answering (CBQA), were recently pro-
posed (Roberts et al., 2020). CBQA tries to di-
rectly answer the open-domain questions without
accessing any external knowledge sources, and in-
stead leverages the parametric knowledge stored
in the pretrained language models (LMs) (Raffel
et al., 2020; Brown et al., 2020; Ye et al., 2020).
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However, even with larger LMs, the closed-book
methods are not competitive with the open-book
methods in term of accuracy (Lewis et al., 2021).

While it has been shown that large pre-
trained LMs store an abundant amount of knowl-
edge (Petroni et al., 2019; Roberts et al., 2020), we
hypothesize the accuracy gaps are largely because
the way of exploiting the parameterized knowl-
edge are not sophisticated enough. Prior works on
CBQA either finetune pretrained LM models on the
entire QA datasets (Roberts et al., 2020; Ye et al.,
2020), or they directly prompt those models us-
ing several few-shot QA pairs (Brown et al., 2020;
Radford et al., 2019). On the contrary, open-book
models use a two-stage pipeline. They first retrieve
relevant contexts from external corpus, then they
extract the answer based on the retrieved contexts.

Therefore, to better exploit the parameterized
knowledge in pretrained LMs and bridge the large
accuracy gaps between the closed-book and open-
book methods, we propose a coarse-to-fine, two-
stage method for CBQA task. The main idea is
to leverage generated contexts as an intermediate
bridge between the huge amount of parameterized
knowledge stored in the LM and the answer that
lies within this knowledge. To the best of our
knowledge, no previous work has been conducted
on generating context from large pretrained LMs
for CBQA and leveraging them to predict answer.

Our proposed framework CGAP consists of two
stages. It first performs Context Generation rele-
vant to a given question by prompting a pretrained
LM. It then prompts the same LM for Answer
Prediction using the generated context and the
question. In order to improve the accuracies and
to reduce context uncertainties, we generate mul-
tiple contexts for each question and predict the
final answer by majority voting. This step does
not increase the inference cost as we generate the
contexts in parallel by batching in a single infer-
ence call. Figure 1 illustrates how our two stage
prompting and majority voting works. For the in-
put question, CGAP generates 3 contexts and 3
predicted answers at the two stages respectively,
and choose the most voted answer as the final
answer. Note that we do not finetune the large
pretrained LMs for context generation or answer
prediction. This facilitates our approach to take
advantage of large LMs such as GPT-3 (Brown
et al., 2020), PALM (Chowdhery et al., 2022) or
Megatron-Turing NLG 530B (Smith et al., 2022),

which are only available through APIs.
We conduct in-depth experimental studies on

three open-domain QA benchmarks, Natural Ques-
tions (Kwiatkowski et al., 2019), WebQues-
tions (Berant et al., 2013), and TriviaQA (Joshi
et al., 2017), and demonstrate significant improve-
ments by our two stage prompting method. Our
contributions are summarized as follows:

• We propose a simple yet effective few-shot
prompting approach for ODQA that does not
rely on any external knowledge sources or
fine-tuning, but performs significantly better
than existing closed-book approaches (e.g. ex-
act matching 68.6% vs. 55.3%), and is on
par with open-book methods (e.g. 68.6% vs.
68.0%).

• We show that the generated context can im-
prove standard few-shot prompting based
closed-book QA accuracy at various model
scales (e.g. from 11.7% to 28.5%), and
demonstrate that scaling up the context gen-
eration model further enlarges their accuracy
gaps (e.g. 357M 28.5% vs. 530B 68.6%).
To the best of our knowledge, we are the
first to leverage generated context from large
pretrained LMs for open-domain question an-
swering.

• We show that generating multiple contexts
without increasing the inference cost by batch-
ing can mitigate errors in answer prediction
caused by variability in the unknown context
(e.g. from 36.3% to 45.7%).

2 Methodology

Our proposed Context Geration and Answer
Prediction (CGAP) framework is illustrated in Fig-
ure 2. CGAP consists of two stages. First, it gener-
ates relevant context to a given question by prompt-
ing a large pretrained LM. In the second stage, it
predicts an answer using the generated context and
the question by prompting the same LM. To ac-
curately predict the answer, we generate multiple
contexts. We run each of the two stages multiple
times in parallel in batch for the same question, gen-
erating different contexts for each, and use majority
voting to select the final answer.

Formally, for our task we have a question Q
to be answered, and a support repository D =
{(c1, q1, a1), . . . , (cn, qn, an)} that consists of tu-
ples of question qi and answer ai pairs with map-
ping to the context ci. In our experiments, we use
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the training sets of the corresponding datasets as
D.

2.1 Context Generation

As shown in Figure 2, in the first stage, given ques-
tionQ, we select them context generation prompts
S = {(q1, c1), . . . , (qm, cm)} from the support
repository D. We then use S with Q to prompt
pretrained LM to generate k contexts, which are
denoted by Cgen = {c1gen, c2gen, . . . , ckgen}.

Sample Selection Selecting appropriate samples
for the prompts is the key to generate high-quality
context relevant to a given question. Previous work
has shown that leveraging relevant samples helps
the LM to generate contextually relevant and fac-
tually correct context (Liu et al., 2021, 2022). We
therefore use a similarity-based retriever to search
relevant samples S from the corresponding sup-
porting repository, D. We use DPR (Karpukhin
et al., 2020) in our framework. In our DPR setup,
we represent the question and the samples in D
as 768-dimensional dense vector representations,
computed via the BERT-based bi-encoder networks.
We rank the documents according to their similarity
score, calculated as:

Score(Q, (qj , cj)) = BERT(Q)T · BERT(qj ; cj)
(1)

where ; denotes concatenation of the tokens of
the question qj and the context cj . Finally, we get
S = {(q1, c1), . . . , (qm, cm)} which are the top-m
retrieved samples for question Q.

We would like to emphasize that the selected
samples from D are used as examples in the few-
shot prompting to the pretrained LM to generate
context, not as the source of external knowledge
containing the answer.

Prompts Construction Given the question Q
and the set of question-context pair samples S se-
lected, we use few-shot prompting to condition
pretrained LMs on the samples. We use similar
few-shot prompting technique for closed-book QA
as in (Brown et al., 2020), that considers multiple
<question, answer> pairs. The template we used to
construct prompts is: Q: ... A: .... Thus the con-
structed prompt Prompt(Q) for a given question
Q becomes:

Prompt(Q) =Q:qm\nA:cm\n . . .
Q:q1\nA:c1\nQ:Q\n

We use ’\n’ to separate the question, context
and the samples. We investigated the order of sam-
ples to optimize the prompt and find that using the
retrieved samples in reversed order of similarity
yields better accuracies across all datasets1. We
now pass Prompt(Q) through a pretrained LM to
generate the context as follows:

cgen = LM(Prompt(Q))

To generate a set of k contexts, {c1gen, ..., ckgen},
we increase the inference batch size to k and gen-
erate all the k contexts in parallel in one inference
call to the LM. Thus, the overall latency remains
the same as using a single context.

2.2 Answer Prediction
In the second stage, we select m answer prediction
prompts S′ = {(q1, a1, c1), . . . , (qm, am, cm)}
fromD and then we prompt the same LM using the
generated context Cgen from the first stage, along
with the question Q and S′. The LM predicts a
set of k answers Ap = {a1p, a2p, ..., akp} each cor-
responding to the k contexts in Cgen. The final
answer A is selected by majority voting on Ap.

Sample Selection Constrained by the maximum
sequence length of the LM, we can feed the LM
only a few (c, q, a) samples. Thus, it could be
difficult for the LM to learn how to predict the
answer for the given question conditioned on the
context, unless similar examples have been pro-
vided. For example, if we were asking the question
’who is the current director of the us mint?’, the
example that answering the question ’who is the fbi
director of the united states?’ from the provided
context will be more helpful, than the example
that is answering ’how many episodes are there
in ‘Dragon Ball Z’?’ from the given context. We
therefore use the same criteria for answer predic-
tion as has been used for context generation. We
use the same set of samples as selected in the first
stage as described in Equation 1 and denote as
S′ = {(q1, c1, a1), . . . , (qm, cm, am)}.

Prompt Construction We are prompting LMs
with few-shot examples to predict answer for the
question conditioned on the generated context. To
equip the LM with this capability, we constructed
intuitive prompts for the selected examples and
feed them into the LM. Specifically, the template

1We show an concrete example of Prompt(Q) in Ap-
pendix Table 12
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Figure 2: Overview architecture of our CGAP framework. It first does Context Generation by prompting large
pretrained LMs, then it further prompts the LMs for Answer Prediction by feeding the generated context to the LM
models alongside the question. k contexts are generated and the final answer A is chosen by majority voting. (If
computation capability allows, it could prompt multiple (k) LMs in parallel at both two stages to speed up.)

we used to construct answer prediction prompts is:
C: ... Q: ... A: ... . Thus, the constructed prompt
for a given question Q and the i-th generated con-
text cigen is:

Prompt(cigen, Q) =C:cm\nQ:qm\nA:am\n
. . .

C:c1\nQ:q1\nA:a1\n
C:cigen\nQ:Q\n

(2)

We then feed Prompt(cigen, Q) into the pre-
trained LM to predict the answer:

aip = LM(Prompt(cigen, Q))) (3)

where we use aip to denote the i-th answer predicted
by the LM. The k generated contexts in cgen will
yield a set of answers Ap = {a1p, ..., akp}.

2.3 Context Marginalization
The large pretrained LM can generate impressively
fluent and relevant context given input, it also has a
tendency to generate factually incorrect statements,
ranging from subtle inaccuracies to wild halluci-
nations (Shuster et al., 2021; Krishna et al., 2021;
Su et al., 2022). Answers conditioned solely on
hallucinated or erroneous statements are likely to
be incorrect (Equation 3). Thus, we would like
to remove the variability in the answer due to any
particular generated context.

Ideally, we could marginalize over this unknown
context by producing an answer for every possible
context, weighting each answer by the probabil-
ity of the context. Here we approximate this by

generating a set of contexts, and selecting the final
answer based on majority voting. Suppose there
are T unique answers {A1

p, ..., A
T
p } from the k pre-

dicted answer from Equation 3 where T <= k,
then we select the J-th answer that receives the
highest number of votes from the T different an-
swers via:

J = argmax
j∈{1,2,...,T}

k∑

i=1

(1(aip = Ajp)) (4)

as the final answer A. As k gets larger, the final
answer A will converge to the answer that would
be produced marginalizing over all possible con-
texts. We refer to this majority vote over multiple
generated contexts as context marginalization.

3 Experimental Setup

3.1 Datasets

We evaluated our experiments on three open-
domain QA benchmark datasets: Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), TriviaQA
(TQA) (Joshi et al., 2017), and WebQuestions
(WQ) (Berant et al., 2013), using the same data
splits for train, validation and test as in Lee et al.
(2019); Izacard and Grave (2021).

NQ contains questions from Google search
queries; TQA contains a collection of questions
from trivia and quiz-league websites, and we use
their unfiltered set; while questions of WQ were
from Google Suggest API. For NQ and TQA, we
use the processed data provided by Izacard and
Grave (2021), in which each question-answer pair
is accompanied by a 100-words Wikipedia passage
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Model Type Model Method NQ TQA WQ

Open-book
RAG (Lewis et al., 2020c) Finetuned 44.5 68.0 45.5
Fusion-in-Decoder (large) (Izacard and Grave, 2021) Finetuned 51.4 67.6 -
OBPoE

Google (Lazaridou et al., 2022) Few-shot 38.4 - -

Closed-book

T5-11B (Roberts et al., 2020) Finetuned 32.6 42.3 37.2
T5-11B+SSM (Roberts et al., 2020) Finetuned 34.8 51.0 40.8
BART-large, pre-finetuned on PAQ (Lewis et al., 2021) Finetuned 32.7 33.2 -
LM-530B (API) Few-shot 23.0 55.3 23.6
CGAP (ours, 530B) Few-shot 42.0 68.6 41.8

Table 1: Exact Match score for CGAP (highest accuracy configurations) in comparison to recent state-of-the-art
open-book and closed-book based systems. Highest score indicated in bold, highest closed-book model underlined.

containing the answer. For WQ, we retrieved the
corresponding context passage for each question
from 2019/08/01 Wikipedia dump, using the DPR-
based retriever that is trained jointly on the union of
knowledge-intensive training data in KILT bench-
mark (Petroni et al., 2021).

3.2 Baselines

We compare our CGAP framework with the fol-
lowing baseline methods for closed-book QA.

Standard Few-shot Prompting We use the stan-
dard few-shot prompting technique similar to GPT-
3 (Brown et al., 2020) in our evaluation on the
closed-book QA datasets as described in Section
3.1. We consider this technique as the few-shot
baseline in all our experiments. The baseline that
is experimented using 530 billion (530B) parame-
terized LM is refferred as LM-530B.

LM Fune-tuning Roberts et al. (2020) first pro-
posed the closed-book QA task for open domain
QA, and they directly fine-tuned T5 (Raffel et al.,
2019) using the entire QA pairs in the training
data, without access to any external knowledge cor-
pus (referred as T5-11B). They also experimented
with using ’Salient Span-Masking’ (SSM) to con-
tinue pretraining the T5 checkpoints before fine-
tuning for QA (referred as T5-11B+SSM). Lewis
et al. (2021) pre-finetuned BART-large (Lewis et al.,
2020a) on Probably Asked Questions (PAQ), a very
large resource of 65M automatically generated QA-
pairs, then further finetuned the model on corre-
sponding training data (referred as BART-large,
pre-finetuned on PAQ).

Open-book Few-shot Prompting Lazaridou
et al. (2022) used few-shot prompting for open
domain QA task, but they generate the answer via
conditioning on retrieved documents from Google

Search API. (referred as OBPoE
Google)

3.3 State-of-the-art Open-book QA Models
We compare the state-of-the-art open-book QA
models with CGAP. Fusion-in-Decoder
(FiD) (Izacard and Grave, 2021) uses
DPR (Karpukhin et al., 2020) to retrieve
100 passages from Wikipedia. Then they encode
each passage independently and combine all
outputs from the T5 encoder before passing them
to the T5 decoder to generate a final answer.
RAG (Lewis et al., 2020b) is an end-to-end
retrieval-augmented generation model.

3.4 Implementation Details
To test how different model scales affect the per-
formance of our approach, we train and experi-
ment on a collection of dcoder-only LMs using the
Megatron-LM framework (Shoeybi et al., 2019),
with 357 million (357m), 1.3 billion (1.3b), and
530 billion (530b) (Smith et al., 2022) parameters,
at both context generator and answer prediction
stage. We use top-p sampling with a value of 0.9 to
generate diversified contexts. However, to handle
the deterministic generation (e.g. short answer),
we use greedy decoding at the answer prediction
stage, similar to (Chowdhery et al., 2022; Wang
et al., 2022).

For the prompt configuration at both stages, we
choose 10 samples, constrained by the maximum
sequence length of the LMs. We use DPR check-
point from Huggingface2 to select samples from
the supporting repository.

3.5 Evaluation
For evaluating the open-domain QA task, we fol-
lowed the recent works (Rajpurkar et al., 2016; Lee

2https://huggingface.co/facebook/
dpr-ctx_encoder-multiset-base
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Figure 3: Ablation on context generation LM size. The dash lines represent standard few-shot prompting baselines.

et al., 2019; Izacard and Grave, 2021) that use Ex-
act Match (EM) as the evaluation metric. Each
predicted answer is compared to the ground-truth
after both are lowercased and stripped of articles,
punctuation, and duplicate whitespace.

4 Results and Ablation Studies

We now show our main results as well as ablations
to further analyze the effectiveness of our approach.

4.1 Main Results

Table 1 shows the EM score comparison between
our CGAP-based method with existing closed-book
baseline approaches 3. We also compare with state-
of-the-art open-book models at the upper section
of the table.

As we can see, our CGAP based method out-
performs other existing closed-book methods by
large margin, especially on NQ and TQA datasets.
The CGAP also outperforms the standard few-shot
prompting baseline LM-530B on all three datasets
(at least by 13.3 EM point).

Furthermore, CGAP obtains highest score on
TriviaQA. The scores are also very close to the
state-of-the-art open-book method RAG on NQ
and WebQuestions, but only lose few points on NQ
to FiD. While FiD uses 100 retrieved passages for
answer prediction, CGAP only uses 8 generated
contexts for approximate context marginalization.

4.2 Ablation Studies

We conducted a systematic ablation study to further
investigate the contribution of the context genera-
tion model and the effect of context marginaliza-
tion.

3GPT-3 API shows different results than reported in the
paper (Brown et al., 2020). We therefore did not compare to
it. Details are shown in Appendix A

4.2.1 Context Generation
While previous work (Roberts et al., 2020; Brown
et al., 2020) demonstrated that the scale of the
model sizes improves the answer accuracy of
closed-book QA, there are also other findings show-
ing that simply increasing the model size does not
lead to substantive accuracy gains (Rae et al., 2021).
Thus, we intend to investigate how will the context
generation LM affect the answer accuracy.

We experimented by varying the LM sizes for
context generation, and fix the answer generation
LM. We used context generation LM sizes of 357m,
1.3B and 530B, and answer generation LM with
357m and 1.3B parameters. We also compare with
standard few-shot prompting which has no context
generation.

We plot the results in Figure 3. As we can
see, there are huge accuracy gains from standard
prompting, to CGAP method that has context gener-
ation. The accuracy increases by absolute 19.00%
for NQ, 16.87% for TQA and 15.26% for WQ,
when using 357M model for both standard prompt-
ing and CGAP approach. The answer accuracy
continues to increase when we increase the LM
size for context generation. Furthermore, we notice
that the slopes of the accuracy gain curve using
larger answer prediction model is steeper than us-
ing smaller one on all three datasets. This suggests
the use of larger answer prediction LM to fully
exploit the knowledge in generated context.

4.2.2 Context Marginalization
Since there will be some hallucinated content or
erroneous statements in the generated context, we
approximate context marginalization by sampling
multiple contexts and selecting the final answer
based on majority voting, as introduces in Sec-
tion 2.3. Here, we investigate the performance
gains brought in by context marginalization, and
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AP
LM Size

CG
LM Size

Margin-
alization NQ TQA WQ

357M

357M
✗ 22.9 28.5 26.2
✓ 25.7 (+2.8) 33.4 (+4.9) 29.6 (+3.4)

1.3B
✗ 23.1 29.7 28.3
✓ 26.1 (+3.0) 34.8 (+5.1) 31.3 (+3.0)

530B
✗ 26.3 36.3 31.2
✓ 28.9 (+2.7) 45.7 (+9.4) 34.0 (+2.8)

530B 530B
✗ 29.5 56.3 28.3
✓ 42.0 (+12.5) 68.6 (+12.4) 41.8 (+13.5)

Table 2: Ablation on context marginalization. (AP and GP represent Answer Prediction and Context Generation,
respectively.)
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Figure 4: Ablation on k, the number of contexts for
marginalization.

also the accuracy curves with varied number of
sampled contexts used in the approximate marginal-
ization k.

In Table 2, we show the accuracy comparisons w/
and w/o using marginalization (k=8), with different
LM sizes. As we can see, context marginaliza-
tion improves the answer accuracy consistently
on the three datasets4, under all settings. No-
tably, there is much larger performance gains using
marginalization when we scale up the model sizes
to 530 billion parameters (i.e. increase EM score
by 12.8% averaged on three datasets).

The larger the number of context samples k, the
more accurately the majority vote reflects the true
marginalization over all possible contexts. There-
fore, we perform further ablation by changing the
value k for 357M LM for both context generation
and answer prediction. We plot the accuracy curves
in Figure 4. We see that there are accuracy improve-
ments when we use more context samples. As ex-
pected and curves plateau for larger values of k as
the approximation approaches the true marginaliza-
tion over all possible contexts.

4We show a concrete example in Appendix B Table 11

5 Analysis

Considering that it is the first time leveraging con-
text generated by large pretrained LMs for ODQA,
we also conducted further analysis.

We compare generated context with retrieved
context in the two-stage, few-shot prompting based
CBQA framework. It is a dominant paradigm to
use retrieved context from external corpus together
with the question for answer prediction for open-
book QA (Chen et al., 2017; Lewis et al., 2020c;
Izacard and Grave, 2021; Lazaridou et al., 2022).

5.1 Retrieved vs. Generated Context
In CBQA setting, we are not allowed to retrieve
context from external knowledge sources. How-
ever, we can retrieve the contexts from the support-
ing repository based on their relevance to the given
question. We use cr = {c1r , c2r , ..., cmr } to represent
the top-m relevant context for question Q. It can
be obtained via Equation 1.

Let the top-1 retrieved context be ctop-1
r for ques-

tionQ. We use ctop-1
r to compare with the generated

context, cgen. We use the same top-m prompts S′

for answer prediction as introduced in Section 2.2.
The answer arp for the ctop-1

r will be:

arp = LM(Prompt(ctop-1
r , Q))) (5)

where Prompt(ctop-1
r , Q) can be obtained via

Equation 2.
The comparison between c

top-1
r and cgen is

shown in Table 4. From the upper part of the ta-
ble, we see that using ctop-1

r gives slightly higher
EM score than using cgen generated by 357M and
1.3B LMs. However, cgen gives higher EM scores
than ctop-1

r on all three datasets when we scale up
the context generation LM size to 530B. This sug-
gests the use of large pretrained LM for a better
generated context.
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Question: Which sitcom star appeared on the big screening ’The Object of My Affection’?
Golden Answer: [Jennifer Anniston, Jen Aniston, ...]
Predicted Answer (w/o cgen): Ross Hatley
Predicted Answer (ctop-1

r ): Laurie Metcalfe
Predicted Answer (cgen): Jennifer Aniston / Paul Rudd /Christine Baranski / Lisa Kudrow
Predicted Answer ((c1gen,..., ckgen)): Jennifer Aniston

Table 3: Comparison of answers predicted w/o and w/ different context. Example from TriviaQA (Joshi et al., 2017)
test set. Red and green colors denote in-correct and correct answer, respectively.

.

AP Context NQ TQA WQ

357M

c
top-1
r 25.1 32.2 28.3

cgen (357M LM) 22.9 28.5 26.2
cgen (1.3B LM) 23.1 29.7 28.3
cgen (530B LM) 26.3 36.3 31.2

530B
c

top-1
r 30.8 58.1 29.5

cgen(530B LM) 29.5 56.3 28.3

Table 4: Comparison of using retrieved top-1 context
ctop-1
r , with few-shot generated context cgen on closed-

book QA task.

5.2 Multiple Retrievals vs. Context
Marginalization

We notice that in Table 4, ctop-1
r performs slightly

better than cgen when using 530B LM for answer
prediction. We argue that this might be caused by
the hallucination in cgen. While we have shown
in Section 4.2.2 that context marginalization could
mitigate the problem and improve answer accu-
racy, we further facilitate cgen(530B) with context
marginalization and compare with retrieved con-
text.

For fair comparison, we perform majority vot-
ing using the top-k retrieved context cr, since
Karpukhin et al. (2020) showed that the quality of
the retrieved documents will also affect the final an-
swer accuracy. Specifically, we replace ctop-1

r with
each retrieved context cir in Equation 5 to predict
answer ar(i)p (i = 1, ..., k), and use Equation 4 to
select the most frequent answer as the final answer.

Furthermore, we replace ctop-1
r with golden con-

text cgolden in Equation 5. This will be the upper-
bound of using retrieved/generated context in the
two-stage, few-shot prompting CBQA task.

We show the results in Table 5. As we can see,
using marginalization over cgen consistently out-
performs ctop-1

r , and also better than majority vot-
ing over multiple retrieved contexts cr for answer
prediction on all three datasets. Notably, marginal-

AP Context NQ TQA WQ

530B

cgolden 36.0 61.3 30.2
c

top-1
r 30.8 58.1 29.5

(c1r ,...,c
k
r ) 29.5 56.3 28.3

cgen 23.0 55.3 23.6
(c1gen,..., ckgen) 42.0 68.6 41.8

Table 5: Comparison of using context marginalization
(c1gen,..., ckgen), multiple retrievals (c1r ,...,ckr ), and golden
context cgolden on closed-book QA task.

ization over cgen yields higher EM score than using
cgolden when using 530B LM for answer prediction.
We observed similar trends when experimented on
357M and 1.3B parameter models. In Table 3,
we show a concrete example that compares using
different context for answer generation for better
understanding5.

6 Related Works

Open-domain QA is the task of answering
general-domain questions (Chen et al., 2017), in
which the evidence is usually not given. Models
that explicitly exploit an external corpus are re-
ferred as open-book models (Roberts et al., 2020).
They typically index the corpus and then retrieve-
and-read to extract the answer span from docu-
ments (Chen et al., 2017; Lee et al., 2019; Izac-
ard and Grave, 2021; Lewis et al., 2020b; Lazari-
dou et al., 2022). Another recently proposed
class of methods is closed-book QA models. Ye
et al. (2020); Roberts et al. (2020) finetune pre-
trained LMs such as T5 (Raffel et al., 2020) or
BART (Lewis et al., 2020a) with QA pairs without
access to any external knowledge or context.

Few-shot LM Prompting Radford et al. (2019);
Brown et al. (2020) prompt GPT-2 (Radford et al.,
2019) and GPT-3 (Brown et al., 2020) conditioned

5More concrete comparison examples are shown in Ap-
pendix B Table 9 and Table 10.
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on several few-shot examples to predict the answer
for ODQA. Most recent work by Lazaridou et al.
(2022) further empower LM’s few-shot prompting
abilities with information returned from the web
using Google-Search API, and experimented on
QA task. While Wei et al. (2022); Wang et al.
(2022) use chain of thought few-shot prompting of
LM to generate a coherent chain of short sentences
that minic the reasoning process of human might
employ to solve reasoning tasks.

7 Conclusion

We propose a simple yet effective framework
named CGAP for open-domain QA. CGAP per-
forms Context Generation followed by Answer
Prediction via two-stage prompting using large pre-
trained LMs. It does not rely on external knowledge
sources, and does not need finetuning or add extra
learnable parameters. To the best of our knowledge,
we are the first to leverage generated context from
large pretrained LMs for open-domain QA. Ex-
perimental results on three QA benchmarks show
that our method significantly outperforms previous
closed-book QA methods and is par with open-
book methods. We demonstrate our method up to
530B parameter models and showcase that larger
models boost the accuracy by huge margins.

8 Limitations

As we show in the paper, CGAP has obtained sat-
isfactory results on open-domain QA task. How-
ever, the method have limitations. The accuracy
of CGAP will be affected by the size of LMs it
uses, as we shown in Figure 3. In Section 4.1, our
highest accuracy results reported in Table 1 used a
large 530B pretrained LM, which is only accessible
via API. Also, the generated context may contain
hallucinated content.
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A Standard Few-shot Prompting of
GPT-3

Brown et al. (2020) adopted the standard few-shot
prompting on GPT-3, and evaluated on the three
open-domain QA datasets NQ (Kwiatkowski et al.,
2019), WQ (Berant et al., 2013) and TQA (Joshi
et al., 2017), for closed-book QA task. In or-
der to compare with their reported results, we re-
implement their method using the same few-shot
configuration as described in the paper and query
the OpenAI API.

Experimental Setups As OpenAI hasn’t offi-
cially release information about their API model
sizes, we deduce the sizes of OpenAI API mod-
els based on their performances from EleutherAI’s
blog6. Specifically, we query Ada and Babbage

6https://blog.eleuther.ai/gpt3-model-sizes/

models’ API, trying to reproduce the reported re-
sults for GPT-3 Medium (350M) and GPT-3 XL
(1.3B) models, respectively.

We use two prompt formats to query the OpenAI
API. The first prompt format is the one described in
the paper (Brown et al., 2020) (referred as GPT-3
format): randomly draw 64 question-answer pairs
from the corresponding supporting repository, and
use ’Q: ’ and ’A: ’ respectively as prefix before
each question and answer, to build the condition-
ing prompts. We also use the prompt format from
EleutherAI’s language model evaluation harness
github7 (referred as EleutherAI). Furthermore, we
experiment using the same prompting format as
we used in our standard prompting baseline (LM-
530B) in Section 3.2 (referred as Our format), and
prompting the LM of size 357M and 1.3B to com-
pare.

Results We show the results of prompting GPT-3
under zero-shot, one-shot and few-shot settings in
Table 6, Table 7 and Table 8 respectively. As we
can see, no matter what prompting formats we use,
the results reported in the GPT-3 paper (Brown
et al., 2020) are almost always higher than our
reproduced ones on all three datasets, over the two
different LM sizes. The gaps become even larger
at few-shot setting. Thus we conjuncture that we
are not able to reproduce the results reported by
Brown et al. (2020) using GPT-3 (175B) on the
three QA datasets. So we did not include their
reported results to compare with our CGAP method
in Table 1.

Furthermore, we notice that the results based on
our baseline’s prompting configuration are always
on par with the results from querying OpenAI API.
Thus we believe that the LM-530B is a reliable
and fair standard few-shot prompting baseline to
compare with.

B Examples

We show three examples from NQ, TQA and WQ
test set in Table 9, Table ?? and Table 10 respec-
tively. In each table, we show the predicted answers
from (1) standard prompting, (2) two-stage prompt-
ing using top-1 retrieved context ctop-1

r , (3) CGAP
w/o marginalization, and (4) CGAP. All those pre-
dicted answers are based on LMs of size 530B.

We also show an example illustrate CGAP with
8 generated context and their corresponding pre-

7https://github.com/EleutherAI/lm-evaluation-harness
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dicted answer in Table 11. As we can see, the con-
texts that contains lot of factually inaccurate or irrel-
evant content (e.g. generated context 1, 2, 4, 5, 8),
thus the corresponding answer is wrong/inaccurate.
However, the context generation LM also gener-
ates contexts that are more relevant and factual (e.g.
generated context 3, 6, 7), and they help the answer
prediction LM generate a correct answer. There-
fore, CGAP can predict the final answer correctly
based on marginalization over generated contexts.

804



Model Sizes Model sources Prompting format zero-shot
NaturalQuestion TriviaQA WebQuestion

GPT-3 Medium GPT-3 paper (Brown et al., 2020) 1.75 7.61 3.20

350M
OpenAI API (Ada)

GPT-3 format 1.36 5.45 1.92
EleutherAI 1.39 5.54 2.46

LM-357M Our format 1.41 5.04 2.12
GPT-3 XL GPT-3 paper (Brown et al., 2020) 4.40 19.70 4.63

1.3B
OpenAI API (Babbage)

GPT-3 format 2.27 9.84 2.12
EleutherAI 2.47 12.77 5.22

LM-1.3B Our format 3.88 14.13 5.61

Table 6: Standard zero-shot prompting of GPT-3 for open-domain QA.

Model Sizes Model sources Prompting format one-shot(k=1)
NaturalQuestion TriviaQA WebQuestion

GPT-3 Medium GPT-3 paper (Brown et al., 2020) 3.07 12.90 6.20

350M
OpenAI API (Ada)

GPT-3 format 1.83 10.26 5.07
EleutherAI 1.77 10.02 5.61

LM-357M Our format 2.24 9.75 5.12
GPT-3 XL GPT-3 paper (Brown et al., 2020) 5.43 26.50 9.15

1.3B
OpenAI API (Babbage)

GPT-3 format 3.55 20.56 8.27
EleutherAI 3.55 21.45 9.45

LM-1.3B Our format 4.71 21.21 8.76

Table 7: Standard one-shot prompting of GPT-3 for open-domain QA.

Model Sizes Model sources Prompting format few-shot(k=64)
NaturalQuestion TriviaQA WebQuestion

GPT-3 Medium GPT-3 paper (Brown et al., 2020) 4.46 16.30 12.60

350M
OpenAI API (Ada)

GPT-3 format 3.43 12.46 10.73
EleutherAI 3.71 12.46 10.29

LM-357M Our format 3.85 11.66 10.97
GPT-3 XL GPT-3 paper (Brown et al., 2020) 9.72 32.10 19.60

1.3B
OpenAI API (Babbage)

GPT-3 format 8.28 24.70 18.95
EleutherAI 7.81 24.93 18.16

LM-1.3B Our format 7.87 24.88 17.52

Table 8: Standard few-shot (k=64) prompting of GPT-3 for open-domain QA.
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Question: When is the next deadpool movie being released?
Golden Answer: [May 18, 2018]
Predicted Answer (standard prompting): Prime availability TBD
Predicted Answer (ctop-1

r ): May 18, 2018
Predicted Answer (CGAP w/o marginalization): May 18, 2018 / date21-May-2018 / May 29, 2019 /16th May 2018
Predicted Answer (CGAP): May 18, 2018

Table 9: Example from NQ (Kwiatkowski et al., 2019) test set. Red and green colors denote in-correct and correct
answer, respectively.

Question: Where George Lopez was born?
Golden Answer: [Mission Hills]
Predicted Answer (standard prompting): San Fernando, California
Predicted Answer (ctop-1

r ): Washington Heights
Predicted Answer (CGAP w/o marginalization): Mission Hills / Los Angeles/ San Fernando /Castle Hill /canada
Predicted Answer (CGAP): Mission Hills

Table 10: Example from WebQuestions (Berant et al., 2013) test set.
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Question: Where George Lopez was born? Golden Answer: [Mission Hills]

Generated Context 1: George Lopez They are American citizens, born in Los Angeles, to Gregorio Lopez (October 26,
1934 – January 25, 2011) and Maria Torres (October 12, 1938 – October 25, 2014), Mexican immigrants who were born in
Reynosa, Tamaulipas. Lopez’s paternal grandparents were Mexican, while his maternal grandparents were of Mexican and
Spanish descent. Lopez’s father was a worker for the Los Angeles Metropolitan Transit Authority. He married Maria in Los
Angeles when he was 16 years old, and she was 15. Maria filed for divorce from Gregorio in the mid-1970s.
Predicted Answer: Los Angeles

Generated Context 2: George Lopez born April 23, 1961. The family eventually moved from Marín to Los Angeles in the
mid-1960s. After Lopez graduated from San Fernando High School in 1979, he attended the California State University, Los
Angeles. It was there where Lopez discovered his comedic talent after a video of him doing a stand-up routine made it into
the hands of "Tonight Show" booker, Fred De Cordova, in 1985.
Predicted Answer: canada

Generated Context 3: George Lopez at 20th Century Fox Television until 2010, when he began appearing in his self-
produced sitcom, George Lopez. Lopez was born on April 23, 1961, in Mission Hills, Los Angeles, California. He was
raised by his maternal grandmother, Benita Gutierrez, a factory worker, and his maternal grandfather, Refugio Gutierrez, who
worked as a janitor and metal fabricator at an ice skating rink.
Predicted Answer: Mission Hills

Generated Context 4: George Lopez in San Fernando, California. He is of Mestizo Mexican descent. His father, Saul Lopez,
was from Sonora, and his mother, Elvira, was a native of Arizona. They were migrant workers who picked crops and moved
often, sometimes taking their seven children with them. While growing up, Lopez did not speak English until he was seven.
Lopez attended Our Lady of Lourdes, a Roman Catholic elementary school in Pico Rivera.
Predicted Answer: San Fernando

Generated Context 5: George Lopez A theater called "The Tower", which now houses a branch of Bank of America, stands
on the former site of his childhood home. Lopez was born at Daniel Freeman Memorial Hospital in Inglewood, California
and was raised by his maternal grandmother, Benita Gutierrez, a factory worker who took him to the movies every week. He
grew up in the Echo Park neighborhood of Los Angeles, California and attended many different schools in the Los Angeles
Unified School District.
Predicted Answer: Los Angeles

Generated Context 6: George Lopez López was born in Mission Hills, Los Angeles, California. He is the son of Frieda
and Anatasio López, Mexican immigrants from Tepic, Nayarit, Mexico. Lopez’s father was a farm worker, and his mother
worked at a canning factory. Lopez has stated that he had a difficult childhood; his parents divorced when he was five, and his
mother struggled to raise him and his two sisters.
Predicted Answer: Mission Hills

Generated Context 7: George Edward Lopez. Lopez was born in Mission Hills, Los Angeles. His parents, Frieda and
Anatasio Lopez, were both born and raised in Texas. His mother was of Mexican descent and his father, also called ""Charlie"",
was of Sicilian descent. Lopez grew up with two older sisters. He attended San Fernando High School in the Los Angeles
neighborhood of San Fernando.
Predicted Answer: Mission Hills

Generated Context 8: George Lopez had in his mouth. He was raised by his mother, Frieda, a telephone company employee,
and his grandmother, Benita Gutierrez, a factory worker. Lopez graduated from the Roman Catholic Saint Monica’s High
School in 1974, where he met his future wife, Ann Serrano. He moved to California and graduated from the California State
University, Los Angeles, in 1986 with a degree in communications.
Predicted Answer: Castle Hill

Predicted Answer (CGAP): Mission Hills

Table 11: Example illustrates CGAP, in which we marginalize over 8 generated contexts.
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Q: Who was the first U.S. president to be born in the United States of America?
A: with the issue of 1863 (displayed in First appearances) above). At that time, as aforesaid, he had already appeared on
two different Confederate 200a2 stamps. Andrew Jackson appears on the following commemorative issues: Martin Van
Buren (December 5, 1782 - 2013 July 24, 1862) was the eighth President of the United States from 1837 to 1841. Before his
presidency, he served as the eighth Vice President (1833 20131837) and the 10th Secretary of State under Andrew Jackson.
Van Buren was the first U.S. President to be born an American citizen. William Henry Harrison (February 9, 1773 2̆013 April
4, 1841) was the
Q: Which US President who was in office 1923-29, was the only one to be born on 4th July?
A: Calvin Coolidge John Calvin Coolidge Jr. (; July 4, 1872 2013 January 5, 1933) was an American politician and the 30th
President of the United States from 1923 to 1929. A Republican lawyer from New England, born in Vermont, Coolidge
worked his way up the ladder of Massachusetts state politics, eventually becoming governor. His response to the Boston
Police Strike of 1919 thrust him into the national spotlight and gave him a reputation as a man of decisive action. Soon after,
he was elected Vice President of the United States in 1920, and succeeded to the presidency upon the sudden
Q: What long running comic strip, introduced on Oct 2, 1950, was drawn by the same cartoonist, Charles M. Schultz, during
its’ entire run?
A: Peanuts Peanuts is a syndicated daily and Sunday American comic strip written and illustrated by Charles M. Schulz that
ran from October 2, 1950, to February 13, 2000, continuing in reruns afterward. "Peanuts" is among the most popular and
influential in the history of comic strips, with 17,897 strips published in all, making it "arguably the longest story ever told by
one human being. At its peak in the mid-to late 1960s, "Peanuts" ran in over 2,600 newspapers, with a readership of around
355 million in 75 countries, and was translated into 21 languages. It helped to cement the"
Q: In the comic strip "Peanuts", whose father is a barber?
A: Franklin (Peanuts) Franklin Armstrong is a character in the long-running comic strip "Peanuts", created by Charles M.
Schulz. Introduced on July 31, 1968, Franklin was the first African American character in the strip. He goes to school with
Peppermint Patty and Marcie. In his first story arc, he met Charlie Brown when they were both at the beach. Franklin’s father
was a soldier fighting in Vietnam, to which Charlie Brown replied "My dad’s a barber...he was in a war too, but I don’t know
which one." Franklin later paid Charlie Brown a visit and found some of Charlie Brown’s other
Q: Which US President was given the nickname ’The Trust Buster’?
A: Howard Taft. A Progressive reformer, Roosevelt earned a reputation as a "trust buster" through his regulatory reforms
and anti-trust prosecutions. His presidency saw the passage of the Pure Food and Drug Act, which established the Food and
Drug Administration to regulate food safety, and the Hepburn Act, which increased the regulatory power of the Interstate
Commerce Commission. Roosevelt took care, however, to show that he did not disagree with trusts and capitalism in principle,
but was only against monopolistic practices. His "Square Deal" included regulation of railroad rates and pure foods and
drugs; he saw it as a fair deal
Q: American cartoonist Thomas Nast is credited with creating the traditional image of which popular Christmas character?
A: Thomas Nast Thomas Nast (September 27, 1840 December 7, 1902) was a German-born American caricaturist and
editorial cartoonist considered to be the "Father of the American Cartoon". He was the scourge of Democratic Representative
"Boss" Tweed and the Tammany Hall Democratic party political machine. Among his notable works were the creation of the
modern version of Santa Claus (based on the traditional German figures of Sankt Nikolaus and Weihnachtsmann) and the
political symbol of the elephant for the Republican Party (GOP). Contrary to popular belief, Nast did not create Uncle Sam
(the male personification of the United
Q: October 2, 1950 saw the debut of what comic strip which ran until creator Charles M. Schulz’s death on Feb 12, 2000?
A: from a wide range of acclaimed contemporary artists and designers who have been inspired by the cartoon. Peanuts
Peanuts is a syndicated daily and Sunday American comic strip written and illustrated by Charles M. Schulz that ran from
October 2, 1950, to February 13, 2000, continuing in reruns afterward. "Peanuts" is among the most popular and influential in
the history of comic strips, with 17,897 strips published in all, making it "arguably the longest story ever told by one human
being". At its peak in the mid- to late 1960s, "Peanuts" ran in over 2,600 newspapers, with a readership of
Q: In which state was Charles Schulz born?
A: Charles M. Schulz Charles Monroe "Sparky" Schulz (November 26, 1922 February 12, 2000), nicknamed Sparky, was
an American cartoonist. Schulz is known for the comic strip "Peanuts" (which featured the characters Charlie Brown and
Snoopy, among others). He is widely regarded as one of the most influential cartoonists of all time, cited by cartoonists
including Jim Davis, Bill Watterson, and Matt Groening. Born in Minneapolis, Minnesota, Schulz grew up in Saint Paul. He
was the only child of Carl Schulz, who was born in Germany, and Dena Halverson, who had Norwegian heritage. His uncle
called him "Sparky" after
Q: Who was President when the first Peanuts cartoon was published?

Table 12: Prompt(Q) Example. For the question "Who was President when the first Peanuts cartoon was
published?" from TQA (Joshi et al., 2017), we selected 8 < qi, ci > samples from the supporting repository D,
and construct the Prompt(Q) as above. to prompt LMs for cgen generation.
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Abstract

We present Reddit Health Online Talk
(RedHOT), a corpus of 22,000 richly anno-
tated social media posts from Reddit spanning
24 health conditions. Annotations include de-
marcations of spans corresponding to medi-
cal claims, personal experiences, and ques-
tions. We collect additional granular anno-
tations on identified claims. Specifically, we
mark snippets that describe patient Populations,
Interventions, and Outcomes (PIO elements)
within these. Using this corpus, we introduce
the task of retrieving trustworthy evidence rel-
evant to a given claim made on social media.
We propose a new method to automatically de-
rive (noisy) supervision for this task which we
use to train a dense retrieval model; this out-
performs baseline models. Manual evaluation
of retrieval results performed by medical doc-
tors indicate that while our system performance
is promising, there is considerable room for
improvement. We release all annotations col-
lected (and scripts to assemble the dataset), and
all code necessary to reproduce the results in
this paper at: https://sominw.com/redhot.

1 Introduction

Social media platforms such as Reddit provide in-
dividuals places to discuss (potentially rare) med-
ical conditions that affect them. This allows peo-
ple to communicate with others who share in their
condition, exchanging information about symptom
trajectories, personal experiences, and treatment
options. Such communities can provide support
(Biyani et al., 2014) and access to information
about rare conditions which may otherwise be dif-
ficult to find (Glenn, 2015).

However, the largely unvetted nature of social
media platforms make them vulnerable to mis and
disinformation (Swire-Thompson and Lazer, 2019).
An illustrative and timely example is the idea that
consuming bleach might be a viable treatment for

r/ibs

r/Psychosis

r/Costochondritis

I just ordered Metamucil bc I read 
psyllium may be better for IBS-D. 
Or maybe the fiber is what is making 
me go more? Definitely produces 

more gas.

Surprising I'm seeing research articles that 
ketamine doesn't increase psychosis risk or 

induce psychosis past the duration of the drug. I 
only took a brief look into it. Has anyone here had 
ketamine induced psychosis? What is r/psychosis 

experience with ketamine? 

Ive had costo for a while, usually comes and 
goes. Done all the heart / lung checks all clear.

Ive just recovered covid and what I'm left with is 
chest pain / pressure. I mean it could be a costo 

flare up which makes sense, but also been 
reading about myocarditis after covid and I’m 

worried.

Figure 1: Examples of health-related Reddit posts anno-
tated for populations, interventions, and outcomes.

COVID-19,1 which quickly gained traction on so-
cial media. All misinformation can be dangerous,
but medical misinformation poses unique risks to
public health, especially as individuals increasingly
turn to social media to inform personal health deci-
sions (Nobles et al., 2018; Barua et al., 2020).

In this paper, we introduce RedHOT: an anno-
tated dataset of health-related claims, questions,
and personal experiences posted to Reddit. This
dataset can support development of a wide range
of models for processing health-related posts from
social media. Unlike existing health-related social
media corpora, RedHOT: (a) Covers a broad range
of health topics (e.g., not just COVID-19), and,
(b) Comprises “natural” claims collected from real
health-related fora (along with annotated questions
and personal experiences). Furthermore, we have
collected granular annotations on claims, demarcat-
ing descriptions of the Population (e.g., diabetics),
Interventions, and Outcomes, i.e., the PIO elements
(Richardson et al., 1995). Such annotations may
permit useful downstream processing: For exam-

1https://www.theguardian.com/world/2020/sep/
19/bleach-miracle-cure-amazon-covid
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ple, in this work we use them to facilitate retrieval
of evidence relevant to a claim.

Specifically, we develop and evaluate a pipeline
to automatically identify and contextualize health-
related claims on social media, as we anticipate that
such a tool might be useful for moderators keen to
keep their communities free of potentially harmful
misinformation. With this use-case in mind, we
propose methods for automatically retrieving trust-
worthy published scientific evidence relevant to a
given claim made on social media, which may in
aggregate support or debunk a particular claim.

The contributions of this work are summarized
as follows. First, we introduce RedHOT: A
new dataset comprising 22, 000 health-related Red-
dit posts across 24 medical conditions annotated
for claims, questions, and personal experiences.
Claims are additionally annotated with PIO ele-
ments. Second, we introduce the task of identifying
health-related claims on social media, extracting
the associated PIO elements, and then retrieving rel-
evant and trustworthy evidence to support or refute
such claims. Third, we propose RedHOT-DER, a
Dense Evidence Retriever trained with heuristically
derived supervision to retrieve medical literature
relevant to health-related claims made on social
media. We evaluate baseline models for the first
two steps on the RedHOT dataset and assess the
retrieval step with relevance judgments collected
from domain experts (medical doctors).

The Reddit posts we have collected are public
and typically made under anonymous pseudonyms,
but nonetheless these are health-related comments
and so inherently sensitive. To respect this, we
(a) notified all users in the dataset of their (poten-
tial) inclusion in this corpus, and provided oppor-
tunity to opt-out, and, (b) we do not release the
data directly, but rather a script to download an-
notated comments, so that individuals may choose
to remove their comments in the future. Further-
more, we consulted with our Institutional Review
Board (IRB) and confirmed that the initial collec-
tion and annotation of such data does not constitute
human subjects research. However, EACL review-
ers rightly pointed out that certain uses of this data
may be sensitive. Therefore, to access the collected
dataset we require researchers to self-attest that
they have obtained prior approval from their own
IRB regarding their intended use of the corpus.

2 The RedHOT Dataset

We have collected and manually annotated health
related posts from Reddit to support development
of language technologies which might, e.g., flag po-
tentially problematic claims for moderation. Reddit
is a social media platform that allows users to cre-
ate their own communities (subreddits) focused on
specific topics. Subreddits are often about niche
topics, and this permits in-depth discussion cater-
ing to a long tail of interests and experiences. No-
tably, subreddits exist for most common (and many
rare) medical conditions; we can therefore sample
posts from such communities for annotation.

2.1 Data Annotation

We decomposed data annotation into two stages,
performed in sequence. In the first, workers are
asked to demarcate spans of text corresponding to a
Claim, Personal Experience, or Question. We
characterize these classes as follows (we provide
detailed annotation instructions in Appendix A):

Claim suggests (explicitly or implicitly) a causal
relationship between an Intervention and an Out-
come (e.g., “ I completely cured my O”). Opera-
tionally, we are interested in identifying statements
that might reasonably be interpreted by the reader
as implying a causal link between an intervention
and outcome, as this may in turn influence their
perception regarding the efficacy of an interven-
tion for a particular condition and/or outcome (i.e.,
relationship between an I and O).

Question poses a direct question, e.g., “Is this
normal?”; “Should I increase my dosage?”.

Personal Experience describes an individual’s
experience, for instance the trajectory of their con-
dition, or experiences with specific interventions.

This is a multi-label scheme: Spans can (and
often do) belong to more than one of the above
categories. For example, personal experiences can
often be read as implying a causal relationship.
Consider this example: “My doctor put me on I for
my P, and I am no longer experiencing O”. This
describes an individual treatment history, but could
also be read as implying that I is a viable treat-
ment for P (and specifically for the outcome O).
Therefore, we would mark this as both a Claim and
a Personal Experience. By contrast, a general
statement asserting a causal relationship outside of
any personal context like “I can cure O” is what
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Reddit post Span labels PIO elements from claims
I’ve seen a bunch of posts on here from people
who say that glycopyrrolate suddenly isn’t work-
ing anymore for hyperhidrosis. I’m one of those
person who has been facing this for a while now.
Just wondering if anyone fixed it? Can’t really
ask my GP about it since he didn’t even know
the meds existed. He just prescribed them for
me when I asked for it

Claim: I’ve seen a bunch of posts on
here from people who say that gly-
copyrrolate suddenly isn’t working
anymore for Hyperhidrosis
Question: Just wondering if anyone
fixed it?

P hyperhidrosis
I glycopyrrolate

so i recently read that adderall can trigger a psy-
chotic break & i was prescribed adderall years
ago for my adhd but now i just have constant
hallucination episodes. anyone else experience
adderall induced psychosis?

Claim: so i recently read that adder-
all can trigger a psychotic break
Personal Experience: i was pre-
scribed adderall years ago for my
adhd but now i just have constant hal-
lucination episodes
Question: anyone else experience
adderall induced psychosis?

P adhd
I adderall
O hallucinations

I’ve had costochondritis for a while, usually
comes and goes. Done all the heart/lung checks
all clear. I’ve just recovered covid and what I’m
left with is chest pain/pressure. I mean it could
be a costo flare up which makes sense, but also
been reading about myocarditis after covid and
I’m worried, how can I tell which is which?

Claim: been reading about my-
ocarditis after covid
Personal Experience: I’m left
with is chest pain/pressure
Question: how can I tell which is
which?

P costochondritis
I covid
O myocarditis, chest-
pain

Table 1: Example annotations, which include: extracted spans (phase 1), and spans describing Populations,
Interventions, and Outcomes — PIO elements — within them (phase 2). We collect the latter only for claims.

we will refer to as a “pure claim”, meaning it ex-
clusively belongs to the Claim category.

In the second stage, workers are asked to further
annotate “pure claim” instances by marking spans
within them that correspond to the Populations,
Interventions/Comparators,2 Outcomes (the PIO
elements) associated with the claim.

2.2 Crowdsourcing Annotations
We hired crowdworkers to perform the above anno-
tation tasks on Amazon Mechanical Turk (AMT).3

To estimate required annotation time and determine
fair pay rates, we ran an internal pilot with two PhD
students (both broadly familiar with this research
area) on 100 samples.4 To gauge quality and recruit
workers from AMT, we ran two pilot experiments
in which we collected sentence-level annotations
on posts sampled from three medical populations
(i.e., subreddits), comprising ∼6,000 posts in all.

We required all workers have an overall job ap-
proval rate of ≥90%. Based on an initial set of
AMT annotations we re-hired only workers who

2This is the standard PICO framework, but we collapse
Interventions and Comparators into the Intervention category,
as the distinction is arbitrary.

3We consulted with an Institutional Review Board (IRB)
to confirm that this annotation work did not constitute human
subjects research.

4Based on the estimate from our pilot experiments, payrate
for AMT workers was fixed to US $9 per hour for stage-
1 annotations and US $11 per hour for stage-2 annotations,
irrespective of geographic location.

Fliess κ P R F1

Questions 0.86 0.85 0.82 0.84
Claims 0.69 0.63 0.53 0.58
Experiences 0.71 0.78 0.69 0.73

POP 0.92 0.94 0.91 0.92
INT 0.74 0.76 0.70 0.73
OUT 0.78 0.73 0.68 0.70

Table 2: Token-wise label agreement among experts
measured by Fleiss κ on a subset of data. We further
compute precision, recall, and F1 scores for “aggregated”
labels by evaluating them against unioned “in-house”
expert labels.

reliably followed annotation instructions (details
in Appendix A), and we actively recruited the top
workers to continue on with increased pay. We
obtained annotations from at least three workers
for each post, allowing for robust inference of ref-
erence labels. Recruited workers were also paid
periodic bonuses (equivalent to two hours of pay)
based on the quality of their annotated samples.

2.3 Quality Validation

To evaluate annotation quality we calculate token-
wise label agreement between annotators, and
amongst ourselves. We emphasize here that token-
level κ for sequences is quite strict and disagree-
ments often reflect where annotators decide to mark
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Ketamine and Psychosis History: 
Antidepressant Efficacy and 
Psychotomimetic Effects Postinfusion

Abstract: Because of a theoretical risk of 
exacerbating psychosis in predisposed patients, 
subjects with current psychotic symptoms or a 
past history of psychosis are typically excluded 
from ketamine trials.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore 
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea 
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla 
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est 
laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore 
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea 
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla 
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est 
laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore 
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea 
commodo consequat. Duis aute irure

—

—

+ dj

dj,l

dj,l

xj

r/Psychosis

Surprising I'm seeing research articles that 
ketamine doesn't increase psychosis risk or 

induce psychosis past the duration of the drug. I 
only took a brief look into it. Has anyone here had 
ketamine induced psychosis? What is r/psychosis 

experience with ketamine? 

Has anyone here had ketamine induced psychosis?
What is r/psychosis experience with ketamine?

Questions 

Personal experiences 

I’m seeing research articles that ketamine doesn’t 
increase psychosis risk or induce psychosis.

Claims

None

(A) Extract questions, 
experiences, and claims

(B) Extract PICO elements

psychosis
Population 

Interventions
ketamine

Outcomes
psychosis

(C) Retrieve relevant trustworthy evidence

Figure 2: Examples portraying potential use cases of our corpus. We showcase three distinct tasks, to be performed
in sequence. The first (A) entails extracting spans corresponding to claims (highlighted in bold) from a given Reddit
post. The second step (B) is to identify the PICO elements associated with each claim. In the final step (C), we use
the outputs of the first two models with the original post to obtain a dense representation, enabling us to retrieve
relevant evidence from a large dataset of trusted medical evidence (e.g., PubMed).

span boundaries. Despite this, for the first stage
agreement (Fleiss κ) on labeled questions, expe-
riences, and claims was 0.62, and for the second
stage 0.55. We consider this moderately strong
agreement, in line with agreement reported for re-
lated annotation tasks in the literature (Nye et al.,
2018; Deléger et al., 2012). To quantify this and
further gauge the quality of collected annotations,
we run a few additional analyses.

As previously stated, prior to collecting annota-
tions on Amazon MTurk, we (the authors) anno-
tated a subset of data (100 samples/stage) internally
to assess task difficulty and to estimate the time re-
quired for annotation. As an additional quality
check, we use these annotations to calculate token-
wise label agreement. Table 2 reports the results;
while there remains some discrepancy owing to
the inherent complexity of the task, there is higher
agreement between the us than between workers.

Each of these samples was also annotated by
three workers. We aggregate these labels using
majority-vote and compute token-wise precision-
recall of these aggregated labels against the refer-
ence “in-house” labels (Table 2). We report the
same metrics per annotator evaluated against ag-
gregated MTurk labels in Table 9 (Appendix B).
Despite moderate agreement between annotators,
aggregated labels agree comparatively well with

the “expert” consensus, indicating that while in-
dividual worker annotations are somewhat noisy,
aggregated annotations are reasonably robust.

2.4 Dataset Details

Table 1 provides illustrative samples from
RedHOT and Table 8 provides some descriptive
statistics along with examples of included health
populations. We broadly characterize populations
(conditions) as Very Common, Common or Rare,
and sought a mix of these. This was not the only at-
tribute that informed which conditions we selected
for inclusion in our dataset, however. For example,
we wanted a mix of populations with respect to vol-
ume of online activity (e.g., the Diabetes subreddit
has over 60k active visitors; Lupus has 8k). We
also wanted to include both chronic and treatable
conditions (e.g., Narcolepsy is a rare and chronic
condition, while Gout is common and treatable),
and mental and physical disorders (e.g., ADHD,
Rheumatoid Arthritis). Another consideration was
whether a condition can be self-diagnosed or re-
quires professional assessment (e.g., Bulimia is
usually self-diagnosable but can potentially be life-
threatening; Gastroparesis is chronic but requires a
professional medical diagnosis).

The number of claims across different categories
of health populations are far outnumbered by ques-
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tions (∼10x) and experiences (∼13x). The average
post length is∼117 tokens while the average length
of a claim within a post is ∼20 tokens. Questions
and experiences have average lengths of ∼11 and
∼27 tokens, respectively. We provide per condition
statistics in Appendix B.

3 Tasks and Evaluation

RedHOT may support a range of tasks related to
processing health-related social media posts. Here
we focus on an important, timely task: Identifying
medical claims on social media, and then retrieving
relevant and trustworthy evidence that may support
or refute them. Methods for this task could aid
content moderation on health-related forums, by
providing an efficient means to (in)validate claims.
More generally, such methods may permit mean-
ingful “fact checking” of health-related claims by
providing relevant contextualizing evidence.

We outline a three-step approach for this task.
(1) Identify spans/sentences corresponding to pure
claims. (2) Extract from these specific PICO ele-
ments. (3) Retrieve clinical literature — specifi-
cally, reports of RCTs — relevant to the claim, i.e.,
the extracted PIO elements. We limit our focus to
the problem of evidence retrieval here; future work
might consider the subsequent step of automated
claim validation on the basis on this.

Below we assess components for each of these
steps. For the span and PIO extraction steps (1 and
2), we evaluate models retrospectively under stan-
dard classification metrics (i.e. precision, recall,
and F1 scores) using fixed train, development, and
test sets which we will distribute with RedHOT.
The final step (3) requires relevance judgments to
evaluate model performance; for this we enlisted
medical doctors (Section 3.4).

3.1 Identifying Claims, Experiences,
Questions, and PIO Elements

We treat the first two steps as sequence tagging
tasks for which we evaluate two types of models:
A simple linear-chain Conditional Random Field
(CRF; Lafferty et al. 2001), and Transformer-based
models (Vaswani et al., 2017) — specifically BERT
variants (Devlin et al., 2019; Liu et al., 2019).5 The
features for the CRF we use are: Indicators of next,
previous, and current words; Part-of-speech tags,6

5We also explored t5 (Raffel et al., 2020) with middling
results, which we report in the Appendix.

6Extracted with SciSpacy (https://allenai.github.
io/scispacy/).

and; Indicators encoding if sentences contain digits,
uppercase letters, and/or measurement units. BERT
variants yield contextualized representations of in-
put tokens, which we then use to predict labels (i.e.,
Claims, Experiences and Questions) by adding a
linear layer on top of the encoder outputs. PIO
elements are extracted using a concatenated input
of the original Reddit post and an identified claim.

3.2 Evidence Retrieval

For the retrieval task we assume the model is given:
(i) The original Reddit post and a claim; (ii) PIO
elements associated with that claim, and; (iii) A
large set of candidate articles featuring trustworthy
evidence to rank. We use ∼800,000 abstracts from
Trialstreamer7 (Marshall et al., 2020), a continu-
ously updated database of reports of randomized
controlled trials (RCTs). RCTs are appropriate here
because of our focus on causal claims — results
from randomized trials are the most reliable means
of evaluating such assertions (Meldrum, 2000).

3.2.1 Task Formulation
Formally, we represent a single input instance as
(p, cj , popj , intj , outj) where p is a post comprising
n sentences, cj is the jth claim, and popj , intj , outj
are the sets of populations, interventions, outcomes
associated with claim j.

The model is tasked with finding relevant ab-
stracts from the candidate set A,which comprises
abstracts from published clinical trial reports. This
is particularly challenging because a large number
of candidates can mention the same set of PIO enti-
ties (i.e., investigate the same interventions and/or
outcomes), but in a context unrelated to the claim
being made in the social media post. This may be
especially problematic for retrieval methods based
primarily on string overlap measures. We therefore
propose a learning based approach. This requires
supervision; we next describe our approach to de-
riving this automatically.

3.2.2 Pseudo Training Data
Supervised neural retrieval models require anno-
tations indicating the relevance of instances (here,
published evidence) to inputs (claims on social me-
dia). We do not have such judgments, and so in-
stead derive “pseudo” training data automatically.

We started with ∼800,000 abstracts of medi-
cal RCTs in Trialstreamer. We then used Reddit

7https://trialstreamer.ieai.robotreviewer.net/
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P R F1 F1POP F1INT F1OUT

BERT (Devlin et al., 2019) 43.88 36.13 39.62 41.77 44.68 33.05
BioRedditBERT (Basaldella et al., 2020) 44.44 36.55 40.12 41.92 44.31 34.61
biomedRoBERTa (Gururangan et al., 2020) 38.80 21.48 27.66 30.54 28.13 24.54
RoBERTa (Liu et al., 2019) 47.45 39.27 42.97 46.09 45.99 36.38
t5-small (Raffel et al., 2020) 41.49 38.55 39.97 39.61 45.02 32.41

Table 3: Results on the test set for the token-level PICO tagging task.

Claims Experiences Questions

F1 P R F1 P R F1 P R

CRF (Lafferty et al., 2001) 33.87 35.61 32.29 40.08 40.52 39.64 86.89 85.55 88.27
BERT (Devlin et al., 2019) 52.63 58.82 47.61 56.68 59.46 54.33 92.39 88.76 96.34
RoBERTa (Liu et al., 2019) 47.05 61.53 38.09 56.81 57.11 56.52 93.06 89.01 98.34
BioRedditBERT (Basaldella et al., 2020) 45.16 70.92 33.29 59.51 62.49 58.92 93.61 89.29 98.37

Table 4: Results on the test-set of span-classification to identify pure claims, questions, and experiences.

posts containing pure claims as templates to cre-
ate pseudo matches between medical claims and
abstracts. Specifically, we substituted annotated
PIO elements in claims made within Reddit posts
with PIO elements sampled from Trialstreamer ab-
stracts. (Trialstreamer includes PICO elements au-
tomatically extracted from all articles that it in-
dexes.) This yields pairs of (a) naturally occur-
ring claims (with their PIO spans replaced) and (b)
RCT abstracts that are relevant to said claims by
construction. We provide examples of this pseudo
matching in Appendix D. We generated a total of
85,000 examples of (pseudo claims, evidence
abstract) one-to-many pairs to be used to train
a neural retrieval model (described below). The
generated examples may be noisy, but hopefully
sufficient to train a model to retrieve medical ab-
stracts relevant to health-related claims made on
social media.

3.2.3 RedHOT Dense Evidence Retriever

We train a neural retrieval model on the RedHOT
corpus, using a setup similar to DPR (Karpukhin
et al., 2020). We first assemble a collection of
m RCT abstracts to create an evidence corpus,
A = {d1, d2, ..., dm}. There are hundreds of thou-
sands of RCTs, so we need an efficient retriever
that can select a small set of relevant abstracts. For-
mally, a retrieval operation {R: (xj ,A) → AF}
accepts an input contextualizing string xj and a
corpus of evidence A, and returns a much smaller
filtered set AF ⊂ A, where |AF | = k.

We form an input context string xj for a claim
j made within a post p by concatenating the post,
claim, and PIO elements extracted from the claim:

xj = [p ⊕ cj ⊕ popj ⊕ intj ⊕ outj ], where ⊕ de-
notes concatenation with [SEP] tokens. We de-
fine two dense neural encoders (EC , ED; both ini-
tialized with RoBERTa-base) to project the con-
text string xj , and evidence (abstracts) from A
to fixed 768 dimensional vectors. Similarity be-
tween the context string and evidence abstract
is defined using the dot product of their vectors,
ϕ(xj , dl) = EC(xj)

TED(dl).
We train the model to minimize the negative

log-likelihood of the positive evidence such that
it pushes the context string vector xj close to the
representation of relevant evidence d+j , and away
from b irrelevent abstracts (d−j1, d

−
j2, ...d

−
jb) in the

same mini-batch8 (“in-batch negative sampling”):

L =
expϕ(xj , d

+
j )

expϕ(xj , d
+
j ) +

∑b
l=1 expϕ(xj , d

−
jl)

In-batch negative sampling has been shown to be ef-
fective for dual-encoder training (Henderson et al.,
2017; Gillick et al., 2019). Here, all samples in a
minibatch are taken from the same population (con-
dition) set, e.g., a mini-batch with a sample contain-
ing a claim about diabetes will have negative evi-
dence abstracts that are also related to diabetes.

For test examples, we rank all evidence (ab-
stracts in Trialstreamer) according to their simi-
larity to the context string. To do this efficiently,
we induce representations of all the abstracts in the
Trialstreamer database using the evidence encoder
and index these using the Facebook AI Similarity
Search library (Johnson et al., 2021).9

8We set the size of the mini-batch to 100.
9FAISS: Open-source library for efficient similarity search

814



MRR @k Precision @k

k 1 5 10 50 100 1 5 10 50 100

random 0.00 0.003 0.02 0.02 0.02 0.00 0.02 0.00 1.10 2.80
BM25 5.34 7.98 9.86 14.36 16.70 5.34 10.40 14.45 26.20 33.14
DPR (Karpukhin et al., 2020) 8.07 10.96 11.89 12.20 13.77 8.07 16.50 23.58 31.98 36.87

(trained on the RedHOT pseudo training set)

RedHOT-DER (BERT-based) 39.14 47.99 49.3 50.28 50.35 39.14 62.55 72.64 83.73 91.74
RedHOT-DER (RoBERTa-based) 45.93 54.60 55.90 56.73 56.78 45.93 69.90 78.81 94.73 98.06

Table 5: Results of evidence retrieval baselines evaluated on pseudo test data.

3.2.4 Baseline Models

BM25 A standard Bag-of-Words method for
IR (Robertson et al., 1995). We form queries by
concatenating the Reddit post with a single claim
and its corresponding PIO frames. We used a
publicly available BM25 implementation from the
Rank-BM25 library.10

Dense Passage Retrieval (DPR) is a dense re-
trieval model trained to retrieve relevant context
spans (“paragraphs”) in an open domain question-
answering setting (Karpukhin et al., 2020). In gen-
eral, such models map queries and candidates to
embeddings, and then rank candidates with respect
to a similarity measure (e.g., dot product) taken
between these. While originally designed for open-
domain question answering, use of DPR-inspired
models has been extended to general retrieval tasks
(Thai et al., 2022a). We use a DPR context encoder
trained on Natural Questions (Kwiatkowski et al.,
2019) with dot product similarity.11

3.3 Results

We evaluate models for the tasks of identifying
claims, experiences, and questions and extracting
PIO elements using precision, recall, and F1 scores.
We report results per class for the first task in Table
4. BioRedditBERT (Basaldella et al., 2020) — a
BERT model initialized from BioBERT (Lee et al.,
2019) and further pre-trained on health-related Red-
dit posts — fares best here. We report results for
the second task (PIO tagging) in Table 3.12 Here
RoBERTa (Liu et al., 2019) modestly outperforms
BioRedditBERT (Basaldella et al., 2020).

and clustering of dense vectors; https://ai.facebook.com/
tools/faiss/.

10https://github.com/dorianbrown/rank_bm25
11https://huggingface.co/facebook/

dpr-ctx-encoder-single-nq-base
12Results from additional experiments using other model

variants are reported in Appendix C.

Models for the retrieval task rank evidence can-
didates for each input (post, claim, PIO frame).
We therefore use standard ranking metrics for
evaluation, including mean reciprocal rank, and
precision@k (for k = 1, 5, 10, 50, 100). Baseline
results are reported in Table 5. We emphasize that
these results are with respect to pseudo annotated
data, effectively providing an unfair advantage to
RedHOT-DER, given that this was optimized on
data from this distribution. We report results with
respect to manual relevance judgments provided by
experts in Section 3.4.

As we might expect, the pre-trained neural
DPR model outperforms the naive string match-
ing BM25 method. Furthermore, as anticipated,
explicitly training for evidence retrieval confers
pronounced advantages: RedHOT-DER fares ∼8x
better than BM25 and ∼5x better than “off-the-
shelf” pre-trained DPR (Karpukhin et al., 2020)
with respect to retrieving relevant evidence (preci-
sion@1) corresponding to medical claims. Again,
this is not particularly surprising given that we are
evaluating models with respect to the pseudo an-
notations with which RedHOT-DER was trained
(because we do not otherwise have access to ex-
plicit relevance judgments). Therefore, we next
present results from more meaningful manual rele-
vance evaluations performed by domain experts.

3.4 Expert Manual Relevance Judgments

We evaluated models in terms of retrieving ev-
idence relevant to naturally occurring medical
claims, as opposed to the pseudo data derived for
training. We hired three domain experts (medical
doctors) on the Upwork platform.13 Providing hun-
dreds of retrieved medical abstracts per claim to
a human evaluator for assessment is infeasible, so

13Upwork (https://www.upwork.com/) allows clients to
interview, hire and work with freelancers. All of our evaluators
had medical degrees and were hired at wages ranging from
$15 to $20 per hour for a minimum of 15 hours.
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Cumulative # of relevant abstracts @k

k 1 3 5 10

Pre-trained DPR (Karpukhin et al., 2020)

Relevant 6 16 29 58
Somewhat relevant 14 39 66 135
Irrelevant 80 245 405 807

RedHOT-DER trained on pseudo data

Relevant 18 62 101 201
Somewhat relevant 17 49 87 193
Irrelevant 65 189 312 606

Table 6: Results from manual (domain expert) evalua-
tions for DPR and our pseudo-supervised DER model.

we instead provided evaluators with 10 retrieved
abstracts each for 100 individual claims, retrieved
using the pretrained DPR (Karpukhin et al., 2020)
model and our RedHOT-DER trained on pseudo
data. (We compared the proposed distantly super-
vised model to DPR because it is the strongest
baseline we evaluated in preliminary experiments.)

We asked evaluators to categorize each re-
trieved abstract as: (1) Relevant; (2) Somewhat
Relevant, or; (3) Irrelevant to the correspond-
ing claim. An abstract was to be considered
Relevant if and only if it (1) contained to the same
P, I, and O elements mentioned in the original Red-
dit post, and (2) provided information to support or
refute the claim in question. An abstract might be
deemed Somewhat Relevant if it contains a P, I,
and O set in line with the given claim, but does not
provide any information relating these elements.
We provide examples in the Appendix D.

Human evaluators achieve strong agreement: All
three evaluators chose the same relevance label
71.33% of the time, while they all chose a different
label only in 1.29% of the total instances. They
also show substantial agreement in terms of Fleiss
κ (0.71). We derive final relevance labels by major-
ity vote. Comparing results from Table 5 and Table
6, at k = 1 we see similar values of precision in
the manually annotated data and pseudo test data.
However, for higher values of k large differences
emerge, indicating considerable room for improve-
ment. Compared to the pre-trained DPR model,
at k = 1 RedHOT-DER retrieves a substantially
larger fraction of relevant evidence abstracts (3x).
At higher k, we also observe a large reduction in
the number of irrelevant abstracts retrieved (e.g.,
at k = 10, the number of irrelevant abstracts de-

creases by ∼ 30%). We believe this highlights the
value of our proposed distant supervision scheme.

4 Related Work

Claim validation via evidence retrieval Past work
has typically treated (open domain) claim valida-
tion as a two-step process in which one retrieves
evidence relevant to a given claim, and then makes
a prediction regarding claim validity on the ba-
sis of this. Information retrieval (IR) models
are usually used in the first step to rank order
documents based on relevance to a given claim
(Thorne et al., 2018; Wadden et al., 2020; Thai
et al., 2022b; Hanselowski et al., 2018; Samari-
nas et al., 2021; Saeed et al., 2021). The next
step is usually to characterize retrieved evidence
as supporting, refuting, or not providing
enough information (although this latter cate-
gory is not always included). Evidence might be
individually characterized (Pradeep et al., 2021),
or aggregated to make a single prediction about the
veracity of the claim (Sarrouti et al., 2021).

Scientific claim verification Beyond “general do-
main” verification, there have been efforts focused
specifically on vetting scientific claims. SciFact
(Wadden et al., 2020) largely follows the typi-
cal fact verification setup outlined above (but for
scientific claims). Subsequent efforts have fo-
cused specifically on verifying claims related to
COVID-19 (Saakyan et al., 2021). The evidence
inference task (Lehman et al., 2019; DeYoung
et al., 2020) entails inferring whether a given trial
report supports a significant effect concerning a
specific intervention, comparator, and outcome.

Crowd-sourcing annotation of scientific and
medical texts We have relied on crowdworkers
to annotate the instances comprising RedHOT.
This is in keeping with a body of work that has
shown crowdworkers capable of annotating health-
related texts, even when these are technical (Drutsa
et al., 2021). For example, several past efforts
have crowdsourced annotation of texts drawn from
PubMed, e.g. for mentions of diseases (Nye et al.,
2018; Good et al., 2014). More recently, Bo-
gensperger et al. (2021) crowdsourced a dataset of
drug mentions (a type of intervention) on the dark-
net. Khetan et al. (2022) crowdsourced annotations
of electronic health records to identify causal rela-
tions between medical entities. Similarly, there is a
body of work relying on crowdsourcing to accom-
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plish a diverse set of domain-specific non-medical
NLP tasks (Sukhareva et al., 2016; Fromreide et al.,
2014; Bhardwaj et al., 2019; Gardner et al., 2020).

Health-related Reddit corpora Past work has also
built corpora of health-related Reddit posts. For ex-
ample, Cohan et al. (2018) assembled a dataset of
Reddit posts made by individuals who self-reported
one of nine mental health diagnoses of interest.
Building on this work, Jiang et al. (2020) intro-
duced a dataset of Reddit posts to evaluate models
for automatically detecting psychiatric disorders.

5 Conclusions

We presented RedHOT: a new, publicly avail-
able dataset comprising of about 22,000 richly an-
notated Reddit posts extracted from 24 medical
condition-based communities (“subreddits”). This
dataset meets a need for corpora that can facilitate
development of language technologies for process-
ing health-related social media posts.

We evaluated baseline models for categorizing
posts as containing claims, personal experiences,
and/or questions. Focusing on claims, we then pro-
posed and evaluated models for extracting descrip-
tions of populations, interventions, and outcomes,
and then using such snippets to inform retrieval
of trustworthy (published) evidence relevant to a
given claim. To this end, we introduced a heuristic
supervision strategy, and found that this outper-
formed pre-trained retrieval models.

Limitations

We have introduced a new annotated dataset of
medical questions, experiences, and claims across a
range of health populations from social media. We
showed that this data can be used to train models
potentially useful for downstream applications, e.g.,
by facilitating content moderation. However, there
are important limitations to this work, specifically
with respect to the raw data we sampled and the
annotations on this that we have collected.

First, the dataset we have annotated is inherently
limited. While we have tried to select a diverse
set of health populations (i.e., subreddits), these
nonetheless constitute a small sample of the diverse
set of existing health conditions. Moreover, our
selection has led to a corpus comprising nearly
entirely of English-language posts, which is a clear
limitation.

We relied on non-expert (layperson) workers
from Amazon Mechanical Turk (AMT) to carry out

the bulk of annotation work. While we took steps to
try and ensure annotation quality (described in Sec-
tion 2), we nonetheless acknowledge that these an-
notations will contain noise. This is especially true
given that AMT workers are not medical-experts
and ultimately do not have (nor are they expected
to have) sufficient knowledge of different kinds of
medical terms appearing in the dataset (e.g., SSRIs’
stand for selective serotonin reuptake inhibitor and
is a common form of intervention which may lead
to outcomes like dizziness, anxiety, and/or insom-
nia, but many laypeople might simply be unaware
of ordinary meaning of complicated medical terms
leading them to not matching all or part of such
terms to their respective labels).

In Section 3.2.2, we describe how we obtained
pseudo training labels to build a supervised dense
retriever. To generate this data, several natural
language claims get reused with substitute set of
populations/interventions/outcomes. This heuristic
may induce certain biases (as evident from Table 6
and Table 5). An ideal way to train a dense retriever
here would be to collect positive annotation labels
for every claim in our dataset. Collecting such
supervision at scale sufficient for model training
would be expensive, given that one would strongly
prefer expert (medical doctor) annotations concern-
ing the factual accuracy of claims.

Ethics Statement

This work has the potential to contribute to human
well-being by supporting development of language
technologies for processing health-related social
media posts. Such models might in turn provide in-
sights about patient experiences and viewpoints in
general, and more specifically may help community
moderators identify and remove posts containing
medical misinformation.

Realizing these potentially positive contributions
requires annotated data with which to train relevant
models; such data is the main contribution on of-
fer in this work. However, releasing an annotated
corpus of health-related social media posts raises
concerns regarding individual privacy. The Reddit
posts we have assembled and collected annotations
were posted publicly on the Internet (almost always
under pseudonyms), but nonetheless we have taken
steps to ensure that individuals can choose not to
be represented in this dataset.

Specifically, we sent a message to every user in
the RedHOT explaining our intent to construct and
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release this dataset and offering the option to “opt
out”. In addition, although this is not required by
Reddit, we have decided not to release the collected
posts directly. Instead we release a script that will
download the posts comprising our data on-demand
and align these with the collected annotations. This
means that if a user chooses to delete their post(s)
from Reddit, they will also effectively be removed
from our dataset. Further, we require anyone ac-
cessing this data to self-certify that they have obtain
prior approval from their own IRB concerning the
use-cases of their research.
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Appendix for “RedHOT: A Corpus of
Annotated Medical Questions, Experiences,
and Claims on Social Media”

A Data Collection

A.1 Sampling from Reddit
We retrieved the newest 1,000 posts from the re-
spective subreddits using the Reddit PRAW14 API.
While we could have relied on alternative sampling
strategies — e.g., ranking posts according to “hot”
or “best” under Reddit’s metrics — retrieving the
newest posts yields an unfiltered snapshot of the
full variety of posts made to social media. We also
considered performing completely uniform sam-
pling over all posts ever made to a given forum,
but the Reddit API limits callers to retrieving 1000
posts for any search criteria; this practically pre-
cludes uniform sampling across all time periods.

Preprocessing We identified and removed all
non-English text post extraction.15 Reddit allows
its users to post media content (images/videos) in
addition to text, and such imagery can be explicit
or disturbing. Therefore, we only retained posts
that did not contain any media content.

A.2 Annotations on Amazon Mechanical Turk
Amazon Mechanical Turk (AMT) is a popular plat-
form for recruiting non-expert workers to perform
“micro-tasks” (here, annotation). We initially re-
cruited workers by collecting annotations on rela-
tively simple examples for which we already had
ground truth labels. We provided AMT workers
with a comprehensive set of instructions including
(templated) examples of the respective categories.
For instance:

• Questions: Does this work?; Are X, Y, Z
symptoms normal for Condition A?; Will in-
creasing my dosage of X help Y in any way?

• Personal Experiences: I was diagnosed with
X and have since experienced symptoms Y,Z.;
I took X and it seemed to help.; My mother
took Y and it helped improved her Z

• Claim: My doctor told me that X should help
with Y; Since increasing dosage of Z, my X
levels have normalized (also an example of
personal-experience); I heard from multiple

14https://github.com/praw-dev/praw
15Langid is a python tool that allows filtering data by lan-

guage: https://github.com/saffsd/langid.py.

people that A helps with C; I read online that
X & Y are directly causing Z; I heard from
my cousin that X helps control Z

For additional context we provided workers with
the “Topic”, i.e., the subreddit from which the post
being annotated was sampled. For example, if
the topic was “Diabetes”, the piece of text will
(presumably) be about diabetes, its treatments, in-
dividual experiences with the condition, and so
on. We highlight the stage-1 annotation inter-
face in Figure 3. The complete set of instruc-
tions we provided to AMT workers are available
at https://anonymous.4open.science/r/med_
val-64C2/stg1_instructions.pdf.

We retained all qualified AMT workers from
stage-1 to carry out additional annotations for us in
stage-2, with a higher pay rate. The objective here
was to recruit people who had established a work-
ing understanding of the data, and would presum-
ably be proficient as a result. Similar to stage-1, we
provided workers with a comprehensive set of in-
structions containing (templated) examples to give
a sense of what might be qualify as PIO elements:

• Populations coronavirus, asthma, narcoleptic,
diabetic, children, young, women etc.

• Interventions diet, aspirin, allopurinol, in-
sulin, exercise, botox etc

• Outcomes depression, sweating, anxiety,
pain, flares, covid etc

Interface used for stage-2 annotations is provided
in Figure 4. Complete set of stage-2 instruc-
tions provided to AMT workers are available
at https://anonymous.4open.science/r/med_
val-64C2/stg2_instructions.pdf.

B Dataset Summary

Table 7 provides descriptive statistics for all pa-
tient populations (that is, subreddits) included in
our dataset. Dysthymia has the highest number
of posts included in our corpus while Ankylosing
Spondylitis has the lowest (due to data filtering de-
scribed above). There is substantial variation in the
length of the posts written under different subred-
dits (e.g., in r/ADHD the average post is ∼222 to-
kens, while in r/Lupus it’s only ∼93 tokens long).
Similarly, there are variations in the number of
questions, claims, and experiences across popula-
tions. We used subscriber count as a proxy for

821

https://github.com/saffsd/langid.py
https://anonymous.4open.science/r/med_val-64C2/stg1_instructions.pdf
https://anonymous.4open.science/r/med_val-64C2/stg1_instructions.pdf
https://anonymous.4open.science/r/med_val-64C2/stg2_instructions.pdf
https://anonymous.4open.science/r/med_val-64C2/stg2_instructions.pdf


Figure 3: Stage-1 annotations interface for demarcation of spans associated with questions, experiences, and claims.

Figure 4: Stage-2 annotations interface for demarcation of PICO frames associated with a given Reddit post and a
claim.
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Population Type
(subreddit)

# of posts in
RedHOT

Avg. length of
post (# tokens) # claims # questions # experiences # subscribers

on Reddit

Dysthymia 999 175.42 102 989 1387 6.8k
Chronic Fatigue Syndrome 998 139.50 162 1034 1292 31.1k
IBS 998 118.70 71 987 1337 77.1k
Narcolepsy 997 148.65 121 1311 1547 18.9k
Bulimia 996 122.99 46 761 1316 32.8k
Hypothyroidism 995 125.91 111 1585 2088 35.2k
Costochondritis 995 116.97 98 1136 1488 8.8k
Hyperhidrosis 994 97.21 184 1076 1245 25k
Sinusitis 991 135.45 136 1242 1979 5.9k
Psychosis 984 122.91 53 932 933 39.8k
Thyroid Cancer 976 121.80 143 1157 1405 3.2k
Cystic Fibrosis 970 96.11 77 1001 882 7.1k
POTS 963 111.03 77 1155 1274 21.8k
Multiple Sclerosis 958 152.47 129 1081 1309 31.6k
Gout 933 128.87 154 1251 1730 14.2k
ADHD 899 222.41 141 875 1222 1.4M
Gastroparesis 861 134.91 52 909 1319 8k
Diabetes (Type I & II) 748 113.85 40 667 620 90.4k
Crohn’s Disease 791 99.79 92 1026 995 43.7k
Lupus 784 93.13 96 978 972 18.2k
Rheumatoid Arthritis 759 103.08 105 1033 1010 6.4k
Epilepsy 670 165.77 37 634 1170 27.8k
GERD 650 164.12 45 669 1518 44.2k
Ankylosing Spondylitis 644 170.83 32 649 1139 12.6k

Table 7: Population-wise descriptive statistics.

Average # per population Average # per claim

Population type # Posts Questions Experiences Claims Populations Interventions Outcomes

Very Common
5467 1101.82 1654.00 114.83 0.82 2.66 3.57

(Dysthymia, Hypothyroidism, Gout, etc)

Common
9539 847.01 1141.72 74.27 1.05 2.95 3.22

(Chronic Fatigue Syndrome, Bulimia, Psychosis, etc)

Rare
7295 1028.50 1166.25 104.75 0.97 2.79 3.81

(Narcolepsy, Hyperhidrosis, Thyroid Cancer, etc)

Table 8: For descriptive purposes we categorize conditions into: Very Common (>3 million US cases per year),
Common (>200k US cases per year), and Rare (<200k US cases per year). We only include posts that do not
contain any media (photos/videos). Number of experiences here include claims based on personal experiences.
Diabetes is included as both Common (Type II) and a Rare (Type I) type.
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P R F1
Questions 0.73 0.68 0.70
Claims 0.47 0.40 0.43
Experiences 0.33 0.29 0.31
POP 0.85 0.81 0.83
INT 0.56 0.50 0.53
OUT 0.48 0.37 0.42

Table 9: Individual annotator labels evaluated against
their own “aggregated” labels.

gauging how active a community on Reddit is. For
instance, r/ADHD has 1.4M subscribers and so can
be considered substantially more active than, say,
r/Psychosis, which has 39.8K subscribers.

C Additional Results and Experimental
Details

We provide results from additional BERT (Devlin
et al., 2019) variants for the first task of identify-
ing claims, questions, and experiences in Table 10.
Unsurprisingly, pre-trained neural models consis-
tently outperform linear-chain Bag-of-Words CRFs.
Similarly, Table 11 provides results from BERT
variants and t5-small (Raffel et al., 2020) for the
second task of extracting PICO elements condi-
tioned on the post and a given claim. For the t5
model, the target was to produce <entity token>
followed by <entity label> in the same order as
they appear in the input sentence (sequential lin-
earization scheme). We evaluated the generated
entities against the true sets of PICO elements for
each output. While it may be possible to come
up with a more optimal linearization scheme for
sequence labelling, we posit that to be beyond the
scope of our work.

To use dense retrieval models to rank evidence
(abstracts) with respect to their relevance to a given
claim we need an efficient means to index vec-
tors for ∼800k abstracts of RCTs in the Trial-
streamer database. We did so using FAISS (John-
son et al., 2021) on an Intel Xeon E5-2650 V3 CPU
@2.3GHz with 512GB memory. Building an index
of dense embeddings for hundreds of thousands
passages is highly resource intensive and required
roughly 9 hours on two NVIDIA GeForce GTX
1080Ti GPUs.

To train the dense retriever, we used standard
split of train, development, and test sets (80%-10%-
10%). We trained the two encoders for 40 epochs
with a learning rate of 10−5 using the Adam op-
timizer, linear scheduling with warm up, and a
dropout rate of 0.1. We parallelized training over

multiple-GPUs; it took roughly 40 hours to train
the retriever. Our best-performing retrieval model
was initialized with RoBERTa-base (250M param-
eters). In addition to the results provided in section
3.3, we provide additional results for the retrieval
task (evaluated on pseudo test set) in Table 12.

D Deriving Pseudo Training Data:
Examples

Generating pseudo training data — i.e., matching
reddit annotated reddit posts to “relevant” abstracts
of RCTs — is an important component of our dense
retrieval pipeline. In Table 13 we provide several
examples of the pseudo data we generated from
annotated claims. For each row we have inserted
intervention and outcome elements from abstracts
indexed in Trialstreamer, which makes them “rele-
vant” by construction (while still featuring natural
language as it used on social media). We showcase
how stage-2 annotated (post, claim) pairs serve as
templates to create pseudo claims by substituting
PICO elements from an existing corpus.

In Section 3.4 we emphasize the need to evaluate
retrieved evidence relevant to naturally occurring
medical claims, as opposed to the pseudo data we
derived for training. To this end, we hired domain
experts (medical doctors) to look at the evidence
abstracts from our retrieval model and assign a rel-
evance score to each abstract (3: relevant, 2: some-
what relevant, 1: irrelevant). We provide some
examples of retrieved evidence in Table 14 anno-
tated by our experts as relevant (score: 3). Due
to space constraints, we provide a link to the full
article instead of the full abstract text.
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Claims Experiences Questions

F1 P R F1 P R F1 P R

CRF (Lafferty et al., 2001) 33.87 35.61 32.29 40.08 40.52 39.64 86.89 85.55 88.27
BERT (Devlin et al., 2019) 52.63 58.82 47.61 56.68 59.46 54.33 92.39 88.76 96.34
BioRedditBERT (Basaldella et al., 2020) 45.16 70.92 33.29 59.51 62.49 58.92 93.61 89.29 98.37
RoBERTa (Liu et al., 2019) 47.05 61.53 38.09 56.81 57.11 56.52 93.06 89.01 98.34

Table 10: Additional results from the test set for the task of identifying spans of Claims, Experiences, and Questions.

P R F1 F1POP F1INT F1OUT

BERT (Devlin et al., 2019) 43.88 36.13 39.62 41.77 44.68 33.05
RoBERTa (Liu et al., 2019) 47.45 39.27 42.97 46.09 45.99 36.38
BioRedditBERT (Basaldella et al., 2020) 44.44 36.55 40.12 41.92 44.31 34.61
biomedRoBERTa (Gururangan et al., 2020) 38.80 21.48 27.66 30.54 28.13 24.54
t5-small (Raffel et al., 2020) 41.49 38.55 39.97 39.61 45.02 32.41

Table 11: Additional results from the test set for the token-level PIO labelling task.

MRR @k Precision @k

k 1 5 10 50 100 1 5 10 50 100

random 0.00 0.003 0.02 0.02 0.02 0.00 0.02 0.00 1.10 2.80
BM25 5.34 7.98 9.86 14.36 16.70 5.34 10.40 14.45 26.20 33.14
DPR (Karpukhin et al., 2020) 8.07 10.96 11.89 12.20 13.77 8.07 16.50 23.58 31.98 36.87

(trained on the RedHOT pseudo training set)
RedHOT-DER (BERT-based) 39.14 47.99 49.3 50.28 50.35 39.14 62.55 72.64 83.73 91.74
RedHOT-DER (RoBERTa-based) 45.93 54.60 55.90 56.73 56.78 45.93 69.90 78.81 94.73 98.06

Table 12: Additional results from the retrieval task (tested on the pseudo test set).
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Table 13: Examples of template claims used for the creation of pseudo training labels for training a supervised
evidence retrieval model.
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Table 14: Examples of evidence abstracts (marked relevant by domain experts) retrieved by the RoBERTa-based
RedHOT-DER model trained on pseduo data.
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Abstract

Existing language and vision models achieve
impressive performance in image-text under-
standing. Yet, it is an open question to what
extent they can be used for language under-
standing in 3D environments and whether they
implicitly acquire 3D object knowledge, e.g.
about different views of an object. In this pa-
per, we investigate whether a state-of-the-art
language and vision model, CLIP, is able to
ground perspective descriptions of a 3D object
and identify canonical views of common ob-
jects based on text queries. We present an eval-
uation framework that uses a circling camera
around a 3D object to generate images from dif-
ferent viewpoints and evaluate them in terms of
their similarity to natural language descriptions.
We find that a pre-trained CLIP model performs
poorly on most canonical views and that fine-
tuning using hard negative sampling and ran-
dom contrasting yields good results even under
conditions with little available training data.

1 Introduction

Recent advancements in pre-training large-scale
language and vision (L&V) models, such as
CLIP (Radford et al., 2021), have led to exceptional
performance on benchmarks and leaderboards in
2D image-text retrieval (Shen et al., 2021; Fang
et al., 2021; Baldrati et al., 2022). However, the
image-text data in these benchmarks have specific
properties and biases (Thomason et al., 2022) that
may limit the language grounding capabilities of
existing L&V models and their robustness in real-
word scenarios (Khandelwal et al., 2022; Gadre
et al., 2022). A fundamental bias in existing L&V
data comes from the fact that images generally
show single, human-centric views of different ob-
jects. This raises a simple but intriguing ques-
tion: to what extent can a model acquire knowl-
edge about the concept of viewpoints and identify
different views on the same object? Figure 1 il-
lustrates this challenge, showing the top-3 images

Figure 1: Top-3 retrieval results for car/airplane from
the bottom using CLIP on the LAION-5B dataset.2

retrieved by CLIP for two basic viewpoint descrip-
tions, car/airplane from the bottom, in the LAION-
5B (Schuhmann et al., 2021) data set: the airplane
images mostly correspond to the correct view, but
none of the car images shows a bottom view. It
suggests that the model does not generalize the
meaning of viewpoint descriptions across different
objects,1 and may fail to acquire visual-linguistic
knowledge that would be needed in more realistic
3D scenarios, such as when instructing a drone to
take a picture of an object from a specific view-
point (Thomason et al., 2020; Fan et al., 2022).
This opens the door for a systematic examination
of the capabilities of L&V models for grounding
viewpoint descriptions, delving into the question
of why, despite their excellent zero-shot capabili-
ties, a model like CLIP struggles when it comes to
representing perspectives of the same object.

In this paper, we investigate whether language
understanding in pre-trained L&V models gen-
eralizes to simple text-viewpoint descriptions of
common objects. We propose a new task – text-
viewpoint retrieval – and a framework for analyz-
ing and scaling image-text models with 3D data.

1When searching the LAION-5B dataset via image embed-
dings of cars from the bottom, dozens of relevant results can
be provided, which shows that these views exist in the data.

2https://rom1504.github.io/clip-retrieval/
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We implement a Paparazzi agent that circles a
spherical camera around a 3D object, samples
images, and scores pairs of image-viewpoint de-
scriptions using a pre-trained image-text matching
model. In this framework, we evaluate and ana-
lyze whether CLIP, as a representative image-text-
matching model with excellent zero-shot capabil-
ities, systematically retrieves images of views of
3D shapes, regardless of potential reporting biases
in 2D L&V data sets.

To successfully interpret viewpoint descriptions
like car from the bottom, models need to connect
concepts in natural language to visual represen-
tations and basic knowledge of object geometry.
To investigate this, our approach is deliberately
simple: we use 3D shapes from five categories of
common objects in ShapeNet that have visually
distinct canonical views (front, back, left, right, top,
bottom). Based on Goldberg polyhedrons (Gold-
berg, 1937), that divide a sphere into hexagonal
shapes, we analyze whether CLIP provides an ad-
equate embedding for the viewpoint space around
an object. Our analysis suggests that basic view-
point understanding is indeed a systematic gap in
the pre-trained CLIP model, as it achieves very
poor performance in scoring view-description pairs
and even retrieves nonsensical, non-human-centric
views. Furthermore, we find that this problem is
not fixed by standard fine-tuning. Thus, we pro-
pose a procedure for fine-tuning CLIP that extends
the contrastive learning approach to viewpoints and
descriptions generated from 3D visualizations. We
find that a small amount of training data and ex-
tended fine-tuning is successful in scaling CLIP to
basic viewpoint understanding in 3D.

2 Related Work

Vision, View, and Language. To date, research
on grounding language in vision focuses on con-
necting language to visual representations of 2D
human-centric views of scenes and objects based
on, e.g., large image-caption data sets (Thomee
et al., 2016; Schuhmann et al., 2021). Retrieval
models in L&V usually rank a fixed set of im-
ages showing single views of different objects and
scenes given a textual query or vice versa (Li et al.,
2020a,b; Baldrati et al., 2022). Common under-
standing models process pairs of texts or questions
and single-view images and predict labels for them,
typical generation models process single-view im-
ages and generate descriptions for them (Mokady

et al., 2021; Yu et al., 2022). In this paper, we
propose a new L&V retrieval task where the model
needs to search for a specific view, represented as
an image, of a 3D object given a textual query. In
our task, the space of possible view-images is not
restricted to a human-centric view.

Language Grounding in 3D. Achlioptas et al.
(2019) present pioneering work in this area, with a
referring expression data set designed for learning
the language of shape for chair objects in ShapeNet,
the most well-known resource for 3D object mod-
els (Chang et al., 2015). They build a neural reso-
lution model that predicts which chair is referred
to by a given shape description. Their encoder
combines an autoencoder for point clouds of 3D
shapes and a pre-trained image encoder for a sin-
gle view of the object. As Achlioptas et al. (2019)
collected descriptions of the 3D objects in a static
environment with a fixed camera perspective, their
approach does not account for dynamic viewpoints
in 3D. Thomason et al. (2022) present a larger data
set for expressions referring to ShapeNet objects
and build a model that relies on image-text match-
ing via the CLIP architecture, similar to ours. Their
model takes images of eight fixed viewpoints of
the object as input and integrates a component that
estimates the viewing angle of an image. They eval-
uate on resolution accuracy and do not explicitly
test viewpoint understanding in the CLIP model.
In contrast to these existing works, the input to
our model does not specify a fixed set of camera
positions, and the output is an explicit, specific
viewpoint of an object represented as an image.

Camera Position Estimation. Viewpoint selec-
tion in a 3D environment is a well-known prob-
lem in other areas (Kamada and Kawai, 1988;
Roberts and Marshall, 1998; Arbel and Ferrie,
1999; Vázquez et al., 2001; Plemenos and Sokolov,
2006; Podolak et al., 2006; Mühler et al., 2007).
Work in photogrammetry investigates camera po-
sition estimation minimizing the error in 3D mea-
surements and reconstruction (Olague and Mohr,
2002). Systems in visualization aim to find an
optimized viewpoint with the least possible occlu-
sion and maximum information content for polygo-
nal data (Vázquez et al., 2001; Neugebauer et al.,
2013; Meuschke et al., 2017), volumetric data (Bor-
doloi and Shen, 2005) and vector fields (Lee et al.,
2011; Tao et al., 2012). A key challenge in these
areas is the definition of what actually constitutes a

829



good viewpoint (Bonaventura Brugués et al., 2018).
Most algorithms aim to find a viewpoint that is
of high interest to the user (Leifman et al., 2016;
Neugebauer et al., 2013), but do not yet incorpo-
rate textual descriptions of viewpoints. In addition,
most of these algorithms require expensive anno-
tated mesh representations of 3D objects. L&V
models pre-trained on raw image-text data consti-
tute an extremely promising direction here, pro-
vided that they are capable of viewpoint under-
standing.

3 Text-Viewpoint Retrieval Task

We study viewpoint understanding from descrip-
tions and describe a framework for text-viewpoint
retrieval. We present a task definition, the set-up
of the 3D environment and the camera, and our
approach to evaluation and analysis.

3.1 Task Definition

We define the input of our viewpoint retrieval task
to consist of a 3D scene with a single object O,
a search query describing a viewpoint q, and an
orbital camera C circling the object. The camera
returns single views of the object v that are repre-
sented as RGB images. The retrieval model’s task
is to find a viewpoint v that matches the query q.
In this work, we implement retrieval via a scor-
ing function S that passes pairs of images v (taken
by the camera) and queries q to a pre-trained text-
image matching model. The parameterization of
the orbiting camera C determines the space of pos-
sible viewpoints V that the retrieval model has to
search. The parameter setup we used in this work
is explained in detail below.

This setting leverages the well-understood
image-text matching in 2D for language ground-
ing in 3D. Our retrieval model does not have a
symbolic or explicit representation of the object’s
geometry but can perceive it by taking images from
various perspectives. This framework is indepen-
dent of different types of 3D data and only requires
an engine that renders images of 3D environments.

3.2 Camera Set-up

For the purpose of this study, we restrict the view-
point space V to views that contain the object of
interest. We use a spherical camera system where
the center of the object defines its center, as shown
in Figure 2. The camera in orbit can be navigated
around the desired object using polar coordinates.

θ 360°
180°

180°

y

x

Figure 2: The camera setup: the viewing angles θ and
ϕ describe the azimuthal and polar angle of the camera
on the orbital sphere. The parameters x and y describe
the camera’s orientation at the given location.

The position of the camera towards the object is
defined by (r, θ, ϕ) for the radial distance, the az-
imuthal angle, and the polar angle. The center of
the object is defined by the center of its bounding
box. The camera’s local x and y axes are used
to adjust the camera’s viewing angles. Rotation
around the local z-axis of the camera is disabled in
this work, as the results would be the same, only
with a rotated output image. In summary, the exact
camera position and rotation along the sphere can
be described by five parameters: (r, θ, ϕ, x, y).

To create equidistant sample points for camera
positions along the sphere, we use a Goldberg poly-
hedron (Goldberg, 1937). It divides a sphere into
mostly hexagonal shapes, including a small finite
number of pentagons, and creates a nearly equidis-
tant sample space (see Figure 2). The centers of
the hexagons give us a discrete number of sample
points, which reduce the possible configurations of
our camera setup to a finite number. The hexagon
centers can be approached for different radii r . The
polyhedron used in this work initially yields 1002
sample points per radius. This discretization of the
sample space is fine enough to allow benchmarking
and analysis of viewpoint retrieval models.

The object O lies at the origin of the Cartesian
space (0, 0, 0), which is also the center of the sur-
rounding hypersphere. The radius r is clipped rel-
atively to the size of the object. We estimate the
extent of the object based on its bounding box. We
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determine the extent of the bounding box based
on the minimum rmin and maximum radius rmax

of the surrounding orbital spheres. In our experi-
ments, we set rmin to two times the edge length of
the bounding box and rmax to ten times the edge
length of the bounding box.

3.3 Evaluation and Analysis

Common Objects and Canonical Views. To sys-
tematically evaluate language-view understanding
in CLIP, we limit the set of viewpoint descrip-
tions Q in our experiments to the six canonical
views front, back, right, left, top, bottom defined
by Chang et al. (2015). We choose 3D models
of common object categories in ShapeNet (Chang
et al., 2015). From the available 55 categories,
we selected five categories where all canonical
views are visually distinct: cars, airplanes, motor-
bikes, mugs and benches.3 As ShapeNet provides
an aligned representation of all 3D models, these
restrictions yield a fully controllable experimen-
tal setup where training and test data with pairs
of queries and views can be generated automati-
cally. The experimental setup is general enough
to be transferable to arbitrary object domains and
various forms of textual viewpoint descriptions.

Viewpoint Quality Evaluation. To assess the
quality of text-viewpoint retrieval, we use the
KL divergence (Kullback and Leibler, 1951) of
a model’s scoring function against a gold standard
scoring distribution as well as the classical retrieval
metrics precision@k and retrieval@k. We use KL
divergence in addition since retrieval metrics only
reflect performance on gold standard viewpoints
and do not allow us to infer the global perfor-
mance needed to find out why models fail on cer-
tain queries, as discussed in Section 5. We define
the gold standard score distribution with respect to
a particular viewpoint as a discrete normal distribu-
tion around the gold standard viewpoint, which is
the mean of the distribution. The three polygonal
rings around the mean are assigned the normalized
score value at one, two, or three times the standard
deviation of the normal distribution. The scores for
all these viewpoints sum to 1. The scores for all
other viewpoints around the sphere are set to zero.
The setup is illustrated in Figure 2. To visually

3Many object categories like bottle, ball, table, etc. do not
have this property. For instance, the front and back views of
a bottle are not or much less distinct than the front and back
views of a car.

analyze the goodness of a scoring function over a
sphere, we unfold the polyhedron and upsample it,
as shown in the small map at the bottom right of
Figure 2. In this way, we can visualize the differ-
ence between the gold standard and the predicted
score distribution for an object.

Search Performance Evaluation. When search-
ing a 3D scene, there are many possible viewpoints
to consider. A scoring function that works well on a
subset of pre-selected viewpoints may yield a good
result in retrieval metrics, but in practical usage,
it may lead the search algorithm to an unexpected
or nonsensical viewpoint. Therefore, to evaluate
the performance of a model, we need to consider
not only how well it performs on the gold standard
viewpoint images, but also how well it can guide a
search algorithm to find the right viewpoint in the
scene. We compare the performance of different
search algorithms under different configurations
of the scoring function to understand the impact
of the shape of the scoring function on search
performance. We compute search performance as
follows: a search is considered successfully com-
pleted if the found viewpoint is within a certain
radius of the respective gold standard viewpoint.
We define the radius discretely based on the hexag-
onal rings around a gold standard viewpoint on the
Goldberg polyhedron. In our experiments, we con-
sider a search to be solved if a viewpoint is found
within the first two rings around the gold standard
viewpoint (see Figure 2). We compare performance
in terms of the number c of calls to the scoring func-
tion required by the search algorithm to solve the
search problem described above. We restrict the
search length to a maximum number cmax of 300
viewpoints to visit. To obtain a robust comparison,
we run the procedure n times at randomly selected
starting positions on the hypersphere around the
object. In our experiments, we set n to ten. Then,
the number of calls c

n is averaged.

4 Model

4.1 Scoring Function

The heart of our retrieval model is a function S
that outputs matching scores for pairs of images
and queries (v, q). Pre-trained L&V models like
CLIP (Radford et al., 2021) embed (v, q) pairs into
a common subspace, resulting in latent vector rep-
resentations zv and zq, e.g., of size 512 in the
original CLIP. The output of the scoring function S
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is the cosine similarity of the latent representations
of the viewpoint image and the search query:

S(v, q) = cos(zv, zq) =
zv·zq

|zv||zq| =

∑N

i=1
zvizqi√∑N

i=1
z2
vi

√∑N

i=1
z2
qi

(1)
To evaluate a given viewpoint with respect to a
query, both are encoded into their latent representa-
tions zv and zq, and the cosine similarity of their
latent representations is used as a score for how
well the view matches the query.

4.2 Objective Functions

To achieve high similarity between associated texts
and images, Radford et al. (2021) apply a con-
trastive learning paradigm. In a training batch
of N image-text pairs, a cosine similarity score
is computed for each possible text-image combi-
nation. This leads to N × N scores over which
a cross-entropy loss is calculated across the rows
and columns. For corresponding text-image pairs,
the maximum class score is expected, while for all
other pairs, a minimum score is targeted.

We extend this contrastive learning paradigm for
fine-tuning CLIP with 3D data by minimizing the
combination of three different loss objectives: a)
for negative examples, b) for random examples,
and c) for hard negative examples.

Cross-Entropy Loss on Negative Examples is
calculated and summed for both queries q and view-
points v as Lv,q. The parameter τ is a learnable
parameter for scaling the logits:

Lv,q = − 1

N

N∑

i=1

log
exp (cos (zvi , zqi) /τ)

∑N
j=1 exp

(
cos

(
zvi , zqj

)
/τ

)

(2)

Cross-Entropy Loss on Random Examples is
denoted as Lr and computed between annotated
viewpoints and randomly generated viewpoints of
the 3D scene. Lr is computed exactly as in equa-
tion (2), but the contrastive examples are random
images from the scene in this case.

Cross-Entropy Loss on Hard Negative Exam-
ples referenced as Lh uses images that have a
different annotation but appear to be similar in la-
tent space (Li et al., 2021). Robinson et al. (2020)
present a sampling method that rescales the loss
of negative examples based on their similarity to
the gold standard sample. Following this, the loss
Lh is calculated as the weighted contrastive loss

between the positive samples x+ and the hard nega-
tive samples x− drawn from the modified negative
sampling distribution q:

Lh = Ex+ ∼ p+
x x∼p


− log e

f(x)T f(x+)

ef(x)T f(x+)+GEx−∼q

[
ef(x)T f(x−)

]



(3)
In notation, p+ is the marginal distribution of posi-
tive examples in the overall distribution of samples
p. q is the distribution of negative samples. x is a
single sample, x+ and x− are the respective posi-
tive and negative samples. f is a similarity measure,
in our case it is cosine similarity. G is a weighting
parameter that can be used to adjust the hardness
of the negative sampling.

The total loss is parameterized as the weighted
sum of the three objectives:

Ltotal = αLv,q + βLr + γLh (4)

The ablations resulting from the different combi-
nations presented above are evaluated in Section 6.
The parameters α, β, and γ are chosen based on
the respective experiment.

4.3 Search Algorithms

At inference time, our retrieval model requires a
search algorithm A, a function that optimizes the
output of the scoring function S given the space
of viewpoints V and a query q. We compare the
performance of two search algorithms. Greedy
search starts with a grid-based approach on the
Goldberg polyhedron and tries to find the optimum
by moving greedily in the direction of the neighbor-
ing region with the highest score in each iteration.
Bayesian search samples positions on the hyper-
sphere based on incrementally obtained function
values, attempting to sample with higher probabil-
ity in regions that contain optima (Mockus, 1994).
See appendix A for implementation details.

5 Experiments

5.1 Experimental Setup

Training. For each of the six canonical view
query types and five object categories, we gen-
erate 1,000 training images in a Unity scene on
randomly selected objects from the ShapeNet train-
ing set. This results in 6,000 image and text pairs
per object category, which is tiny as compared to
the 15 million images in the YFCC100M (Thomee
et al., 2016) data set for training the original CLIP.

832



Model front back left right top bottom

PRE-TR 4.12 4.09 4.12 4.12 4.09 4.15
FT 3.91 3.90 3.91 3.89 3.97 3.92 ca

r

RC-HNS 2.85 2.88 3.26 2.99 3.43 3.24

PRE-TR 4.12 4.10 4.13 4.15 4.08 4.08
FT 3.92 3.97 4.03 3.95 4.02 4.02

ai
rp

ln

RC-HNS 3.43 3.73 3.43 3.58 3.52 3.63

PRE-TR 4.08 4.09 4.12 4.12 4.21 4.20
FT 3.98 3.89 3.94 3.94 4.04 3.85

m
bi

ke

RC-HNS 2.81 2.60 2.84 2.81 3.46 3.47

PRE-TR 4.15 4.14 4.07 4.05 4.21 4.21
FT 3.96 3.98 3.98 3.94 3.91 3.90

m
ug

RC-HNS 3.34 3.10 3.19 2.52 2.52 2.11

PRE-TR 4.08 4.09 4.17 4.17 4.15 4.13
FT 3.94 3.90 4.00 4.04 3.98 3.93

be
nc

h

RC-HNS 1.88 1.98 2.62 2.18 3.25 3.19

Table 1: KL-Divergence between gold and predicted
viewpoint distribution for the models PRE-TR, FT, RC-
HNS on the objects car, airplane, motorbike, mug, bench
for front, back, left, right, top, bottom viewpoints on
synthetic images. Lower values are better.

Test Set. For evaluating the retrieval quality for
each object category we randomly select three 3D
shapes from the ShapeNet test set. Then we com-
pute the normalized score distribution on synthetic
images around the sphere with radius five for all
selected objects of a category, compute the KL-
Divergence and average the results per viewpoint
query (see Table 1). To assess the performance
on real-world data, we carefully curated a data set
of 600 images (5 categories × 6 viewpoints × 20
images) by retrieving visually similar images for a
seed image using image similarity on LAION-5B.
Synthetic gold standard views are obtained from
the sampled spheres (see Table 2).

Models. From the official CLIP repository (Ope-
nAI), we select ResNet-101 (He et al., 2016) pre-
trained on ImageNet (Deng et al., 2009) as image
encoder and pre-trained BERT model (Devlin et al.,
2018) as query encoder. We compare the follow-
ing models: (i) PRE-TRained CLIP, without fur-
ther fine-tuning, (ii) CLIP-FT, a version of CLIP
fine-tuned on the training data with standard cross-
entropy loss, (iii) CLIP-RC-HNS, fine-tuned with
extended loss objectives explained in Section 4.

5.2 Viewpoint Quality Results

Table 1 shows the results for the quality of view-
point retrieval with different models, objects, and
viewpoints. We find that a pre-trained CLIP model
shows a high divergence from the gold standard

Model P@1 P@5 P@10 R@1 R@5 R@10

PRE-TR 0.044 0.044 0.031 0.007 0.032 0.043
FT 0.622 0.442 0.401 0.090 0.267 0.412

sy
nt

h

RC-HNS 0.811 0.607 0.541 0.117 0.355 0.524

PRE-TR 0.300 0.307 0.290 0.015 0.077 0.145
FT 0.867 0.787 0.710 0.043 0.197 0.356 re

al

RC-HNS 0.733 0.673 0.633 0.036 0.168 0.317

Table 2: Precision@K and Recall@K per model abla-
tion split by synthetic data and real data measured across
all object categories.

distribution for all object categories under inves-
tigation. The fine-tuned model performs slightly
better, but still shows large differences from the
gold standard. The use of random contrasting and
hard negative sampling brings the score distribu-
tion closer to the gold standard distribution. This
shows that standard CLIP pre-training and fine-
tuning on human-centered 2D images do not pro-
duce a suitable scoring function for the viewpoint
space around a 3D object.

Evaluating performance on real data using KL
divergence is not possible in a similar way as on
synthetic data because we do not have access to
images from arbitrary viewpoints. Therefore, we
compare precision@k and recall@k between syn-
thetic images from ShapeNet and real images at
the gold standard viewpoints in Table 2. The re-
sults show that pre-trained CLIP performs poorly
in grounding viewpoints on both synthetic data and
real data. Fine-tuning the model on synthetic data
greatly improves the retrieval metrics for both syn-
thetic and real data. RC-HNS performs well on
synthetic data that is within the distribution, how-
ever, it yields slightly lower scores on real-world
data in comparison to FT. This may result from
the fact that RC-HNS forces the model to gener-
ally score out-of-distribution data lower, thereby
making the scoring function more sensitive to dif-
ferences between synthetic and real-world images.
In traditional 2D benchmarks, this may seem like
a disadvantage compared to FT, but it proves to be
advantageous in 3D viewpoint search, as demon-
strated in the following section. Here, the FT model
loses performance due to unpredictable scoring be-
havior in regions far from the gold standard view-
points.

5.3 Search Performance Results

We test search performance in 3D as described in
Section 3.3 for all six queries. Table 3 illustrates the
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pre-trained CLIP 

fine-tuned CLIP  

Target views

fine-tuned CLIP +
hard negative sampling

fine-tuned CLIP +
random contrasting

 fine-tuned CLIP +
random contrasting +

hard negative sampling

a)

b)

c)

d)

e)

f)

Figure 3: Score distribution on the six viewpoints per loss function combination on a car object. In a) gold-standard
viewpoints expected to have high scores are shown, b) pre-trained CLIP, c) fine-tuned CLIP, d) hard negative
sampling, e) random contrasting, and f) random contrasting + hard negative sampling. For more, see appendix A.

Model front back left right top bottom

PRE-TR 171.6 168.3 165.7 159.8 174.1 165.0
FT 135.1 137.1 189.1 130.1 142.2 127.4

G
re

ed
y

RC-HNS 130.5 134.5 182.7 115.9 140.3 144.4

PRE-TR 259.4 223.2 294.0 264.8 198.4 261.6
FT 82.4 79.1 133.0 101.1 29.7 21.5

B
ay

es

RC-HNS 73.5 62.7 62.6 49.4 22.0 22.9

Table 3: Average number of calls to the scoring function
per search algorithm and viewpoint query.

performance for Greedy and Bayes search. Both
algorithms perform significantly better than an ex-
haustive search on the Goldberg polyhedron (=
1002 sample points, fixed radius). Bayesian search
is much faster than greedy search, when using a
finetuned scoring function (FT, RC-HNS), and it is
more affected by the shape of the scoring function
since it samples it strategically: it is fastest with
the smoothest scoring function RC-HNS and very
slow with pretrained CLIP. This is in line with the
viewpoint quality results in Section 5.2, showing
that pretrained CLIP has a poor representation of

the viewpoint space around an object.

6 Analysis

This section takes a closer look at how well the text-
viewpoint embeddings capture understanding of
different viewpoints. Specifically, we will explore
whether the scoring functions correctly identify
viewpoints that align with the linguistic description,
while providing lower scores for those that do not.

6.1 Exhaustive Viewpoint Space Analysis
Based on the polyhedron that defines the viewpoint
space of the camera, we carry out an exhaustive
analysis of the scoring function over this space for
specific objects and queries. We select a car from
the test set of the ShapeNet data set and plot the
scores of the evenly distributed samples from the
surface of the Goldberg polyhedron at a radius of
five for the six canonical viewpoint queries. We
examine five different configurations of the loss ob-
jective shown in Equation (4). Figure 3a) illustrates
the target region on the hexagon diagram, which
contains the optimal viewpoint for a given query.
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It can be seen in Figure 3b) that a pre-trained CLIP
model even if trained on a large data set, is not able
to discriminate between different viewpoints and
that the scoring function has multiple optima. Fine-
tuning the CLIP model (3c) on synthetic images
improves viewpoint discriminability. Nevertheless,
apart from the absolute gold standard regions, the
function shows problematic local optima and in
particular the left and right side views of the car
are difficult to distinguish. In (d), we fine-tune the
CLIP model by applying the hard negative sam-
pling strategy proposed by Robinson et al. (2020).
The results show that the gold standard viewpoints
can be distinguished much more effectively when
compared to previous experiments. However, the
transition between viewpoints is quite sudden, mak-
ing it challenging for a search algorithm to reach
the optimum. In (e), a combination of negative
contrastive loss Lv,q and random contrastive loss
Lr is applied. The results show that the additional
objective makes the scoring function much more
stable in regions farther away from known canon-
ical viewpoints. In experiment (f), we combine
hard negative sampling Lh with the idea of random
contrasting. The plot of the scoring function shows
that for each canonical viewpoint, the function in-
creases steadily toward the optimal view.

6.2 Nonsensical Viewpoints

A further problem we noticed is that CLIP predicts
high scores for nonsensical views that do not relate
to the query, but rather seem to activate certain fea-
tures to drive up the score, similar to adversarial ex-
amples (Goodfellow et al., 2014). Such behavior of
models on unseen images has also been described
by Du et al. (2022) and should be considered when
using CLIP representations in continuous 3D envi-
ronments, especially for vision-and-language nav-
igation tasks, as in Khandelwal et al. (2022). Fig-
ure 4 shows retrieved nonsensical viewpoint images
among the top-5 for car from the front.

Figure 4: Retrieved nonsensical viewpoints in the top-5
scored images on CLIP for the query a picture of a car
from the front.

6.3 Data Set Size Ablations

To test how the scoring function is affected when
only a small amount of training data is available,
we gradually reduce the number of training sam-
ples from 1,000 to 1 for the best-performing model
CLIP-RC-HNS. Access to 1,000 training examples
per viewpoint, as shown in 5a), leads to a smooth
function. Reducing the training data by 90 percent
to 100 examples per viewpoint keeps good perfor-
mance for the target viewpoints. Compared to the
full data set, smoothness suffers slightly. Reducing
the training data by 99 percent to ten samples per
viewpoint still allows good results in the target re-
gions. However, the surrounding regions become
less smooth and drop more abruptly. Surprisingly,
when breaking down the training data to one exam-
ple per viewpoint, the target viewpoint areas still
lead to global optima in all search queries. How-
ever, the transitions are no longer smooth but rather
abrupt, especially for the front and back.
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Figure 5: Overview of the effects of gradually reducing
the number of training images per view from a) 1000 to
b) 100 to c) 10 to d) 1 on CLIP-RC-HNS.

7 Conclusion

We developed a new framework to assess the ca-
pabilities of L&V models to ground viewpoint de-
scriptions. Through our research, we discovered
that a standard CLIP model struggles to distin-
guish between different viewpoints. To address
this, we explored a combination of different loss
objectives on synthetic data to make it easier to re-
trieve viewpoints from language descriptions. Our
experiments revealed that incorporating random
contrasting leads to a more accurate and seamless
scoring function, as compared to using only text
and human-centric images. Our framework thus
offers a promising approach to scale L&V models
trained on large-scale image-text datasets for appli-
cations that involve interaction in the 3D world.
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Limitations
We deliberately opted for a simple controllable
setup in order to gain a precise understanding of
viewpoint representation in CLIP. Our experiments
are restricted to canonical views and canned de-
scriptions since they are easy to generate and eval-
uate automatically. Extending the data to other
views and to human-like descriptions is the obvi-
ous avenue for future research. In particular, with
the advent of NERF models in computer vision, we
look forward to integrating these types of models
into our framework, as this would allow the gen-
eration of near-realistic images in a controlled 3D
setup, which would allow for even better evalua-
tion of scoring functions in text viewpoint retrieval.
Varying the level of detail of the 3D shapes, espe-
cially in complex 3D scenes where large objects
consist of smaller parts is another interesting di-
rection. Another restriction of our set-up is the
fact that we consider context-free retrieval of view-
points, whereas in many human-like descriptions
such as the right front tire of a car, the viewpoint
may not be visually unique and depend on the con-
text of the scene, such as the relative position of
the viewpoint to other viewpoints. The same ap-
plies to views that need to be delivered to a user
in a task-oriented interaction, and are likely to be
more complex and diverse than the canonical and
synthetic ones used in this work. In conclusion,
we believe that our framework has the potential to
provide a more comprehensive understanding of
reporting biases in image-text data used for pre-
training LV models. By conducting a 360-degree
analysis of the scoring function, our framework
allows for a more thorough examination of these
biases, as everything is visible and nothing can be
hidden from the investigator, unlike when evaluat-
ing against a set of gold-standard viewpoints.

Ethics Statement

3D models from the ShapeNet dataset are available
for research and non-commercial purposes as well
as the LAION-5B data set. We did not collect
any personal information from any annotators. We
clearly state the intended use of our models, which
is to support human-centric interaction with AI
models in the 3D world.
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A Experiment Details

This section provides additional details on our ex-
perimental setup. Section A.1 contains further visu-
alizations of the experiments discussed in section 5.
Section A.2 provides details about the implemen-
tation of the search algorithms used in our bench-
mark.

A.1 Scoring Function Analysis
The following plots illustrate the score distributions
obtained with the different model ablations CLIP-
PRE-TR, CLIP-FT, and CLIP-RC-HNS.

Scoring Function PRETR. Figure 6a shows the
score distribution of the PRE-TRained CLIP model
over 3D objects from the test set of the ShapeNet
dataset.

Scoring Function FT. Figure 6b depicts the scor-
ing distribution of the CLIP-FT model over 3D
objects from the test set of the ShapeNet dataset.

Scoring Function RC-HNS. Figure 7a illus-
trates the score distribution of the CLIP-RC-HNS
model over 3D objects from the test set of the
ShapeNet dataset.

Comparison of Score Distributions for Object
Only Queries. To understand which viewpoints
CLIP scores best on an object-only query such
as a picture of a car, we compare these object-
only queries for all object categories tested on re-
spective 3D objects from the test set. This tells
us which viewpoints CLIP associates most with
a given object category. Figure 8a indicates that
a PRE-TRained CLIP model is not able to distin-
guish specific viewpoint queries from pure object
queries.

Comparison of Optimal Viewpoints. Figure 8b
shows the viewpoint images obtained from the op-
tima of the scoring distributions generated by a
CLIP model and a CLIP-RC-HNS model. The im-
ages illustrate that descriptions of viewpoints are
indeed a bias in CLIP.

Figure 7b illustrates the viewpoints resulting
from the global optima of the scoring functions
obtained from the CLIP-RC-HNS model.

A.2 Search Algorithm Analysis
In our work, we are particularly interested in the
impact of the shape of the scoring function on the
performance of various search algorithms. Sec-
tion A.2.1 provides details on the implementation

of greedy search. Section A.2.3 illustrates how the
search algorithms listed above perform their task
on a sphere.

A.2.1 Greedy Search Implementation Details
We implement a greedy search algorithm as a rep-
resentative for gradient-based approaches. The
greedy search starts with a grid-based approach on
the Goldberg polyhedron and always follows the
region with the highest score. It tries to find the op-
timum by greedily selecting the highest scoring re-
gions at each iteration and searching in their neigh-
boring regions at the next iteration. The search is
initialized with k randomly selected starting points
(here k = 6) from the Goldberg polyhedron. In
addition, a cutoff value c must be chosen to deter-
mine how many grid points will be considered in
the next iteration of the search. The cutoff value
can be described as a relative percentage or as an
absolute cutoff value. After evaluating all view-
points with respect to the given query, the next
iteration is started by selecting the locations with
the highest scores considering the selected cutoff.
All obtained scores and their neighboring sample
points from the Goldberg polyhedron are added to
the list of investigated viewpoints. After that, the
next iteration is started. The neighborhood range
n, which specifies the number of neighborhood
grid points to be examined, can be adjusted. The
search can be terminated after i iterations or when
no new items have been added to the list of investi-
gated viewpoints. In summary, the greedy search
is parameterized by: (k, c, n, i). We chose greedy
search as a test algorithm for our benchmark to see
how much gradient-based methods as candidate
algorithms for the text-viewpoint retrieval task in
a 3D environment depend on a smooth structure
of the scoring function in their performance. We
use a greedy nearest-neighbour heuristic, since the
function is only defined at a fixed number of points
due to the discretization of the search space.

A.2.2 Bayesian Search Implementation
Details

Bayesian optimization (Mockus, 1994) is used to
estimate the optimum of a black-box function that
is costly to evaluate. The algorithm updates its
Bayesian prior based on the stepwise function val-
ues obtained, increasing the certainty that the re-
gions are likely to be optima and therefore more
likely to be explored than other regions of the black
box function. Then, the number of samples from
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Model P@1 P@5 P@10 R@1 R@5 R@10

PRE-TR 0.111 0.056 0.050 0.017 0.040 0.066
FT 0.778 0.567 0.500 0.113 0.330 0.485 ca

r

RC-HNS 0.944 0.778 0.644 0.136 0.432 0.592

PRE-TR 0.056 0.078 0.050 0.008 0.057 0.073
FT 0.778 0.500 0.433 0.112 0.297 0.424

ai
rp

ln

RC-HNS 0.833 0.522 0.439 0.119 0.310 0.441

PRE-TR 0.000 0.045 0.033 0.000 0.030 0.042
FT 0.500 0.322 0.339 0.074 0.217 0.400

m
bi

ke

RC-HNS 0.667 0.500 0.450 0.098 0.312 0.462

PRE-TR 0.056 0.033 0.017 0.008 0.024 0.024
FT 0.389 0.311 0.294 0.056 0.179 0.286

m
ug

RC-HNS 0.667 0.489 0.483 0.097 0.312 0.532

PRE-TR 0.000 0.011 0.006 0.000 0.008 0.008
FT 0.667 0.511 0.439 0.097 0.312 0.465

be
nc

h

RC-HNS 0.944 0.744 0.689 0.136 0.411 0.592

Table 4: Precision and recall metrics on synthetic data
for the models PRE-TR, FT, RC-HNS on the objects car,
airplane, motorbike, mug, benchs forfront, back, left,
right, top, bottom viewpoints.

the regions of interest is increased accordingly. We
construct the search problem as a Bayesian opti-
mization as follows: The input of the search algo-
rithm is a vector of size five describing the camera
position on the hypersphere around the target ob-
ject: r, θ, ϕ, x, y. In this parameterization, θ and ϕ
are spherical coordinates, r is the distance to the
center of the 3D object, and x and y are the orienta-
tions of the camera along the horizontal and vertical
axes. The location of the optimum of the scoring
function with respect to a query q depends on the
rotation of the 3D object, which we only know
is centered around (0, 0, 0). Therefore, Bayesian
search tries to find the optimum of the scoring func-
tion with respect to the properties of the 3D object
at hand given the search query q. For our bench-
marks, we use the implementation of the Bayesian
optimization algorithm in Head et al. (2021).

A.2.3 Search Algorithm Behavior on Sphere
The experiments in Section 5 have shown that a
smooth scoring function is advantageous for search
algorithms in text-viewpoint retrieval. This section
visually analyzes why this is the case by examining
how the algorithms perform on a sphere around a
target object.

Figure 8c illustrates how the different algorithms
approach the regions with higher scores differently.
The greedy search with a low cutoff spreads across
the sphere in waves, starting from the initial points.
Once it touches a high point, it remains attached
to it. In this respect, a good initialization is impor-

Model P@1 P@5 P@10 R@1 R@5 R@10

PRE-TR 0.500 0.500 0.467 0.025 0.125 0.233
FT 1.000 1.000 0.967 0.050 0.250 0.483 ca

r

RC-HNS 1.000 0.933 0.950 0.050 0.233 0.475

PRE-TR 0.333 0.367 0.350 0.017 0.092 0.175
FT 1.000 1.000 0.917 0.050 0.250 0.458

ai
rp

ln

RC-HNS 1.000 0.833 0.750 0.050 0.208 0.375

PRE-TR 0.167 0.300 0.300 0.008 0.075 0.150
FT 0.667 0.633 0.650 0.033 0.159 0.325

m
bi

ke

RC-HNS 0.833 0.733 0.783 0.0417 0.183 0.392

PRE-TR 0.167 0.167 0.167 0.008 0.042 0.08
FT 1.000 1.000 0.967 0.050 0.250 0.483

m
ug

RC-HNS 0.833 0.933 0.933 0.042 0.233 0.467

PRE-TR 0.333 0.200 0.167 0.0167 0.050 0.083
FT 1.000 0.733 0.583 0.050 0.183 0.292

be
nc

h

RC-HNS 0.667 0.500 0.500 0.033 0.125 0.250

Table 5: Precision and recall metrics on real data for
the models PRE-TR, FT, RC-HNS on the objects car,
airplane, motorbike, mug, benchs forfront, back, left,
right, top, bottom viewpoints.

tant, e.g., through a high number of random starting
points. Bayesian search also starts from randomly
initialized starting points around the hypersphere.
Compared to greedy search, it reaches the optimum
much faster and more purposefully, since sampling
is not bound to any local constraints, such as neigh-
boring regions. Another advantage over greedy
search is that random starting points have much
lower cost than in greedy search, since they do not
cause additional computations in the following iter-
ation. The figure shows that the focus of sampling
from random starting points across the sphere leads
to small, concentrated regions with high scores. In
terms of success rate, Bayesian search is less prone
to confounding optima, since a certain number of
samples are drawn randomly from different regions
anyway. Therefore, the approach is more robust
to cases with multiple optima, as is the case with
the CLIP-FT model. Despite these obstacles, a
solution is reached relatively quickly. However,
if the scoring function has a ragged structure like
the CLIP-PRETR model, even a sampling-based
approach has difficulty identifying the optimal re-
gions due to the raggedness and non-uniformity of
the function.

A.3 Retrieval Metrics Analysis
Table 4 shows the precision and recall metrics on
synthetic data broken down by object category.
Table 5 shows the precision and recall metrics on
real data obtained from the LAION-5B data set.
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(a) Scoring Function Distribution of CLIP PRE-TR model on cars, motorbikes, airplanes, benches, and mugs for the six canonical
viewpoint queries.

(b) Scoring Function Distribution of the CLIP-FT model on cars, motorbikes, airplanes, benches, and mugs for the six canonical
viewpoint queries.

Figure 6: Scoring Function Distributions on CLIP PRE-TR and CLIP-FT.
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(a) Scoring Function Distribution of the CLIP-RC-HNS model on cars, motorbikes, airplanes, benches, and mugs for the six
canonical viewpoint queries.
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(b) Optimal viewpoints of the six canonical views for a) cars, b) motorbikes, c) airplanes, d) benches,
and e) mugs of the ShapeNet data set (Chang et al., 2015) retrieved from the optima of the CLIP-RC-
HNS scoring function.

Figure 7: Scoring Function Distributions on CLIP-RC-HNS and retrieved viewpoint images.
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(a) Scoring function distribution on cars, motorbikes, airplanes, benches, and mugs given the query a picture of an
X, where X stands as a variable for car/motorbike/airplane/bench/mug
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(b) Comparison of optimal viewpoints of the six canonical views between a) PRE-TRained CLIP and b) CLIP-RC-
HNS.

(c) A single run of the search for the respective search algorithms a) greedy, b) Bayesian, on a randomly selected car
object from the ShapeNet data set (Chang et al., 2015) given the search query a picture of a car from the left.

Figure 8: top: Distribution on object-only queries, center: retrieved optimal viewpoints on CLIP PRE-TR and
RC-HNS, bottom: Execution of search algorithms.
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Abstract

Collecting high quality conversational data can
be very expensive for most applications and
infeasible for others due to privacy, ethical,
or similar concerns. A promising direction
to tackle this problem is to generate synthetic
dialogues by prompting large language mod-
els. In this work, we use a small set of expert-
written conversations as in-context examples
to synthesize a social conversation dataset us-
ing prompting. We perform several thorough
evaluations of our synthetic conversations com-
pared to human-collected conversations. This
includes various dimensions of conversation
quality with human evaluation directly on the
synthesized conversations, and interactive hu-
man evaluation of chatbots fine-tuned on the
synthetically generated dataset. We addition-
ally demonstrate that this prompting approach
is generalizable to multi-party conversations,
providing potential to create new synthetic data
for multi-party tasks. Our synthetic multi-party
conversations were rated more favorably across
all measured dimensions compared to conversa-
tion excerpts sampled from a human-collected
multi-party dataset.

1 Introduction

Training dialogue models typically requires an
abundance of data, as with any machine learning
task. However, collecting high quality data is dif-
ficult and expensive, especially for dialogue tasks
where there often is no “right answer” when devel-
oping the trajectory of a conversation. Typically di-
alogue data are sourced from crowdworkers and the
quality of annotations, evaluations, and conversa-
tions can vary considerably (Zhao and Zhu, 2014),
often necessitating guardrails such as credential-
based worker selection or defensive task design for
quality control (Allahbakhsh et al., 2013).

To accommodate data scarcity in training dia-
logue tasks, low resource methods have become

∗Work done during internship at Amazon Alexa AI

Yeah, I grew up there.

Have you ever been to
Ithaca?

Yeah, I lived there for a long
time. Go in the summer:
swimming in waterfalls!

It's gorge-ous. Sorry, had to
do it.

Ha.

I have always meant to visit
Ithaca, I hear it is a pretty
cool town.

Speaker 1

Speaker 2

Speaker 3

Speaker 1

Speaker 2

Speaker 3

Speaker 2


That's cool. I've always
wanted to visit the UK.

I'm from a small village in
the UK. It's really old and
has a lot of history. Speaker 1

Speaker 2

It's a great place to visit.
Speaker 1

What's the best thing about
your hometown? Speaker 2

Is your city a historical place?
Speaker 1

Not really. 200 years ago, it
was just a small insignificant
village. Speaker 2

How did it grow into such a
large place? Speaker 1

Large deposits of coal were
found nearly and so many
industries located themselves
here. The village quickly
grew into a key industrial
centre. Speaker 2

What's it like?

Speaker 2

It's a really great place to
live. The people are
friendly, the food is great, 
and there's lots to do!

The best thing is that it's so
small. It's really quiet and
peaceful. Speaker 1

Triadic Conversations

Dyadic Conversations

Figure 1: Pair of dyadic conversation excerpts about
hometowns (upper) and pair of triadic conversation ex-
cerpts about Ithaca, NY (lower). In both pairings, one
conversation is synthetically generated and the other is
collected from humans. The answer is in Section 4.

a topic of growing interest and importance (Zhao
et al., 2019; Mi et al., 2019; Qian and Yu, 2019;
Li et al., 2019). One idea that has gained par-
ticular attention is transfer learning — specifi-
cally, finding ways to leverage knowledge learned
by pre-trained large language models (PLMs) for
new tasks. PLMs have demonstrated impressive
emerging conversational capabilities, enabling big
performance improvements in various dialogue
tasks (Brown et al., 2020; Shuster et al., 2022; Peng
et al., 2022; Kulhánek et al., 2021). Particularly,
PLMs have been prompted to augment existing
conversational data (Chen et al., 2022; Mehri et al.,
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2022; Sahu et al., 2022).

Given some in-distribution seed examples, aug-
mentation techniques attempt to generate data that
are faithful to some task distribution (Kim et al.,
2021b). Albeit powerful, one caveat common to
all augmentation techniques is that the quality of
synthetic data heavily relies on seed examples. But,
what if crowdworkers do not possess the neces-
sary background or skill set to complete a task en
masse? How can we still get adequate high-quality
synthetic data to learn a task?

In this work, we explore a novel applica-
tion of Prompting LAnguage models for social
ConvErsation Synthesis (PLACES). Synthesiz-
ing conversational datasets allows for the con-
struction of training instances in nonexistent
tasks. We specifically conduct open-domain, topic-
conditioned conversation generation using few-shot
in-context learning with expert-written synthetic
conversations. We conjecture that expert end-users
know exactly the types of conversations that they
need. Rather than using existing datasets, they
can simply write a small set of high quality con-
versation examples according to the structure of
their desired conversational outputs. We reason
that given structure through high-quality in-context
demonstrations, large PLMs are able to utilize their
expansive pre-training data (e.g. Gao et al. (2020))
to synthesize realistic social conversations, implic-
itly creating personalities and backgrounds for hy-
pothetical speakers. The process of conversation
writing would otherwise require human creativity
and effort.

Our paper makes four core contributions.
(1) PLACES involves synthesizing an entire conver-
sational dataset from a few targeted expert-written
examples. These conversations match the quality of
two widely adopted social dialogue datasets, Daily-
Dialog (Li et al., 2017) and Topical Chat (Gopalakr-
ishnan et al., 2019), in terms of human evaluation
and automatic metrics. (2) We demonstrate that
our synthetic conversations can be used as a fine-
tuning dataset which matches the performance of
its human-curated counterparts as measured by an
interactive human evaluation and automatic met-
rics. (3) We apply PLACES to synthesize data
for an under-studied subfield of dialogue research:
multi-party conversations. We evaluate a set of
synthetic triadic conversations in comparison to
two human-collected multi-party conversational
datasets (Shaikh et al., 2010; Poria et al., 2019).

To our knowledge, our work is the first to syn-
thesize multi-party conversations, adding to the
still-growing body of work on multi-party social
dialogue. (4) Lastly, we conduct an error analysis
on both dyadic and triadic synthetic conversations.
We discuss the implications of our findings, as well
as potential solutions to address the generation “er-
rors.”

2 Related Work

Recently, the zero- and few-shot learning capabil-
ities of large pre-trained language models have
overtaken state-of-the-art performance on many
classical natural language processing tasks, includ-
ing dialogue (Brown et al., 2020). Many PLMs
such as T5 (Raffel et al., 2020), GPT-J (Wang and
Komatsuzaki, 2021), GPT-3 (Brown et al., 2020),
and OPT (Zhang et al., 2022) have become the
backbone of several dialogue-specific models (e.g.,
Peng et al. (2022); Madotto et al. (2021); Shuster
et al. (2022)).

In particular, in-context learning, where few-shot
examples are provided in the input prompt of a
PLM, has been found to provide valuable infor-
mation in guiding generation output (Min et al.,
2022; Brown et al., 2020; Min et al., 2021; Lu
et al., 2021b). As a result, many recent efforts in
prompting PLMs have sought to augment various
natural language processing datasets (Chen et al.,
2022; Wang et al., 2022; Sahu et al., 2022; Mehri
et al., 2022; Rosenbaum et al., 2022a). Prompting
has become a viable “solution” for augmentation
in dialogue tasks, which have traditionally been
considered challenging due to the difficulty of aug-
menting dialogue context (Chen et al., 2022).

However, prompt-based augmentation strate-
gies are uncontrolled forms of generation, which
may result in generation mistakes for labeled
datasets (Sahu et al., 2022; Chen et al., 2022; Meng
et al., 2022). In contrast, other recent studies have
instead proposed language augmentation strategies
that use complex, highly-controlled frameworks
that often involve fine-tuning generators (Papange-
lis et al., 2021; Zhang et al., 2020b; Kulhánek et al.,
2021; Zhang et al., 2020a). Such complex augmen-
tation frameworks require larger amounts of seed
data to maintain a ground-truth language distribu-
tion (Rosenbaum et al., 2022b; Kim et al., 2021b),
and are more costly than prompting PLMs (Chen
et al., 2022). However, in the context of dataset
synthesis, seed data and label correctness are less
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<Conversation 0>

The following is a conversation between Alice and
Bob about relationships. Bob recently got engaged.
Alice: Congrats on your engagement! When do you
think you will have your wedding?
Bob: Thank you!! We're thinking of having it in
November.
Alice: That's amazing! Will you pick a fancy
destination?
...

<Conversation 2>

<Conversation 3>

The following is a conversation between Alice and
Bob about pets. Alice likes cats but Bob likes dogs.

Result:

Alice: What kind of pet do you have?

Bob: I have a dog. Her name is Hope.

Alice: Are you an animal person?

Bob: I do love animals. I think they're so
special.

Alice: I just adopted a kitten from a shelter.
Her name is Mimi.

Bob: Aww, I hope she's doing well. You must
be a really good pet parent.
Alice: Thanks! I just wanted to do what I
could to make sure she was safe.

Bob: That's the greatest thing anyone can do
for a pet. Well, I should probably go now.

Alice: OK! Have a good night.

Topic: Relationships 

Background info: Bob got engaged

Topic: Pets 

Background info: Alice likes cats. Bob like dogs.

R
ecipe

Figure 2: Example of the components of a prompt (left) used by OPT 30B to generate a synthetic conversation
about pets (right). Conversations in the prompt are prefixed by recipes. Blue text: topic labels. Red text: seed
background information metadata.

important considerations. There is no task distribu-
tion from which seed data is drawn that PLMs must
remain faithful to, and similarly, invariant ground-
truth knowledge for language models is dependent
on the desired task being synthesized.

Our work differs from existing applications of
prompting for conversations along several dimen-
sions. Many studies examine utterance-level gen-
eration (Chen et al., 2022; Sahu et al., 2022; Aher
et al., 2022; Rosenbaum et al., 2022b), whereas
our work concerns the synthesis of full conversa-
tions. Bae et al. (2022) generated conversations for
a narrow task and provided evaluations between
their synthesis conditions. Recent concurrent work
by Kim et al. (2022) sought to distill conversa-
tions from InstructGPT 175B using a common-
sense knowledge graph. In our work, we synthe-
size conversations using an open-source PLM and
demonstrate that they are comparable to human-
collected datasets, in terms of both conversation
quality and usability as a dataset. Moreover, all of
these studies only concern dyadic conversations,
because the vast majority of conversational tasks
are dyadic. Our work is the first study to synthesize
multi-party conversations.

3 Conversation Generation

In this section, we discuss our methods for conver-
sation generation. We first detail the construction
of our example conversations, then describe their
application to prompting PLMs.

3.1 Writing Conversation Examples
We simply wrote a pool of ten conversations be-
tween two speakers representing everyday dialogue
using proper grammar. Along with each conversa-
tion, we wrote a brief conversation “recipe” which
includes a topic, as well as background information
for the two speakers1.

The background information represents some
more fine-grained information about the two speak-
ers, relevant to that particular topic. For example,
Figure 2 depicts an example prompt with three
in-context conversation demonstrations. Each con-
versation is prefixed by a recipe and is structured in
the same manner: “The following is a conversation
between Alice and Bob about topic” (e.g., “pets”)
followed by detailed background information (e.g.,
“Alice love cats. Bob is more of a dog person.”).

3.2 Creating Conversations via Prompting
Each prompt consists of three randomly sampled
conversations from the aforementioned pool, along
with their accompanying recipe. After experiment-
ing with PLMs of three different sizes (GPT-J
6B, GPT-NeoX 20B, OPT 30B), we primarily use
OPT-30B and generate with nucleus sampling with
p = 0.92. Inspired by the format of DailyDialog,
our handwritten and synthetically generated con-
versations fall into three categories: start-to-finish
conversations, excerpts from the start to the middle

1The first-author spent approximately 45 minutes on this
writing process.
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Source Words/Turn Turns/Conv.

DailyDialog 11.58 7.84
Topical Chat 13.38 21.83

HW Examples 11.00 8.10
Synthetic 10.70 9.29

Table 1: Number of words per turn and number of turns
per conversation for all conversations. HW Examples
represents the ten handwritten conversation examples,
and Synthetic represents synthetic conversations gener-
ated using OPT 30B.

of a conversation, and excerpts from the middle of
a conversation. Several examples are given in the
Appendix.

In this paper, we generate a dataset using a list of
topics and tasks (i.e., subtopics) from the training
set of the Feedback for Interactive Talk & Search
Dataset (FITS; Xu et al. (2022)), a human-chatbot
dataset designed to determine desirable human-
chatbot tasks/conversations. FITS contains 5592
conversations which span 52 conversational topics
(e.g., “nutrition,” “philosophy”) with 315 subtopics
(e.g., “Italian food,” “Soren Kierkegaard”). We
wrote background information for each of the 315
subtopics in the form given in Figure 2.

Using the product of this process once results
in a new synthetic dataset with 5592 conversations
using the same topic, subtopic pairings from FITS.
The average length of each conversation is 9.29
turns, with 12.84 words per turn. This is compa-
rable to the dataset statistics of DailyDialog and
Topical Chat, as per Table 1. In the Appendix, we
have included the 315 prompt headers (Tables S22,
S23) and the pool of in-context examples (Tables
S24, S25, S26).

4 Synthetic Conversation Evaluation

In Figure 1, the top-left is taken from DailyDia-
log, whereas the top-right is generated synthetically.
The bottom-left is generated synthetically and the
bottom-right is taken from MPC.

4.1 Evaluation of Conversation Quality

Table 2 provides a crowdworker evaluation of our
synthetic dataset compared against DailyDialog
and Topical Chat. We expect Topical Chat to be
rated as the most interesting, due to the knowledge-
grounding process utilized during the dialogue col-
lection process. We randomly sampled 200 conver-
sations for each conversation source and asked a
pre-qualified pool of 28 crowdworkers on Amazon
Mechanical Turk (AMT) to rate each conversation.

Source Interesting Coherent Natural Consistent

DailyDialog 3.44 4.51 4.85 4.57
Topical Chat 4.55 4.39 4.92 4.87

GPT-J 6B 3.96∗ 4.49 4.86 4.36
GPT-NeoX 20B 3.81∗ 4.40 4.63 4.35
OPT 30B 4.13∗ 4.61∗† 4.82 4.63

Table 2: Evaluation of conversations randomly sampled
from DailyDialog, Topical Chat, and three synthetic
datasets generated by prompting GPT-J 6B, GPT-NeoX
20B, and OPT 30B. ∗ indicates statistical significance
over DailyDialog. † indicates statistical significance
over Topical Chat. Significance computed at α = 0.05.

The instructions and details of our human evalua-
tion setup are explained in Appendix A.

As these conversations are generated using
prompting, we first checked whether each conversa-
tion followed the prescribed prompt. Crowdwork-
ers identified 95% of the conversations generated
by OPT 30B as matching the topic stated in the
prompt2, indicating this prompting strategy’s ef-
fectiveness for topic-grounded conversation gen-
eration. Overall, Table 2 indicates that synthetic
conversations generated by OPT 30B are rated as
the most coherent, and more interesting and consis-
tent than DailyDialog. The synthetic conversations
are almost as natural as DailyDialog, but are rated
as less interesting and natural than Topical Chat.
Given our results, we also hypothesize that larger
models likely produce higher quality conversations.
We provide several examples of conversations gen-
erated by OPT 175B using an online web interface3

in the Appendix.
A concern one might have is that since in-context

examples heavily influence prompting (Min et al.,
2022; Lu et al., 2021b), our small in-context ex-
ample size may limit the lexical diversity of our
synthetic conversations. Following earlier work
evaluating text generation, we use Distinct-N to
measure lexical diversity (Wu et al., 2021; Li et al.,
2016). Figure 3 shows that our synthetically gen-
erated conversations are slightly more diverse than
both DailyDialog and Topical Chat in terms of dis-
tinct bigrams and trigrams, and slightly less diverse
than Topical Chat in terms of 4-grams.

We then sought to examine the impact of using
expert handwritten examples by comparing against
synthetic conversations generated using conversa-
tions from DailyDialog and Topical Chat as in-

291% and 92% for GPT-J 6B and GPT-NeoX 20B.
3https://opt.alpa.ai/
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Dimension DD-IC TC-IC HW-IC

Interesting 3.82 4.35 4.27∗

Coherent 4.48 4.56 4.77∗+

Natural 4.54 4.69 4.69∗

Consistent 4.76 4.87 4.86∗

On-Topic 0.91 0.88 0.96∗+

Table 3: Human evaluation of conversations generated
using OPT-30B with in-context examples randomly sam-
pled from DailyDialog (DD-IC), Topical Chat (TC-IC),
and handwritten examples (HW-IC). ∗ indicates statisti-
cal significance over DD-IC and + indicates statistical
significance over TC-IC.

context examples. We set the number of conversa-
tion examples such that the number of in-context
dialogue turns are approximately equal across all
conditions. Table 3 shows that synthetic conver-
sations generated conditioned on handwritten in-
context examples are the most coherent, natural,
and on-topic. In terms of interestingness and con-
sistency, the ratings of these conversations slightly
trail the ratings of the conversations generated con-
ditioned on Topical Chat.

4.2 Fine-Tuning with Synthetic Conversations
After establishing that our synthetic conversations
are of rather high quality on their own, we at-
tempted to use the synthetic dataset as training
data for dialogue models. We fine-tuned distilled
BlenderBot 400M (Roller et al., 2021) on DailyDia-
log, Topical Chat, and our synthetic conversations4.

Rather than directly prompting OPT as a re-
sponse generator, we select BlenderBot as a
lightweight, effective dialogue model. This allows
for comparisons between the three data sources
as training sets, because fine-tuning OPT is pro-
hibitively expensive. Moreover, while prompting
with larger PLMs can yield coherent responses, it
is generally impractical as an end-to-end dialogue
system if hosted on typically available hardware.
For long inputs (e.g. with multiple dialogues in-
context), generation time typically takes several
minutes using OPT 30B5.

We first performed an interactive human evalu-
ation of the three dialogue models as end-to-end
social chatbots using the LegoEval platform (Li
et al., 2021). Details can be found in Appendix A.

Table 4 shows that dialogue models fine-tuned
on our synthetic conversations are rated compara-

4For fair comparison, we fine-tune on the same numebr of
training instances via downsampling.

5All experiments are conducted using one p3dn.24xlarge
AWS EC2 instance.

Dimension DD TC Syn

Interesting 3.35 3.86 3.30
Coherent 3.52 3.71 3.68
Natural 3.52 3.57 3.68
Consistent 3.35 3.65 3.32
Engaging 3.73 3.88 3.65
Intelligent 3.41 3.55 3.24
Non-repetitive 3.37 3.37 3.40

Table 4: Interactive human evaluation yields comparable
ratings for chatbots fine-tuned on conversations from
DailyDialog (DD), Topical Chat (TC), and our Synthetic
Data (Syn).
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Figure 3: Distinct-N with N = 2, 3, 4 for conversations
in DailyDialog, Topical Chat, and our synthetic conver-
sations. Our synthetic conversations have the highest
most unique bi-grams and tri-grams, and the second-
most unique 4-grams.

bly to dialogue models fine-tuned on real human-
human data — the chatbot fine-tuned on synthetic
data appeared to be the most natural and non-
repetitive, and was rated as the second-most coher-
ent. It was rated as the least intelligent, engaging,
consistent, and interesting. However, two-sided
t-tests at α = 0.05 revealed that there was not a sta-
tistically significant difference in ratings between
the models fine-tuned on all three datasets across
all dimensions except for interestingness. The Top-
ical Chat model was rated as significantly more
interesting, as expected.

In terms of automatic evaluation, we applied
these dialogue models on out-of-distribution test
sets to prevent an unfair comparison. We evalu-
ated models fine-tuned on DailyDialog and our syn-
thetic data on Topical Chat, and models fine-tuned
on Topical Chat and our synthetic data on DailyDi-
alog. Table 5 indicates that in terms of perplexity
and ROUGE, models fine-tuned on our synthetic
data generalize to out-of-distribution convesational
data as well as models trained on real human-
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Metric (Test Set) DD-BB TC-BB Syn-BB

Perplexity (DD) — 120.2 87.05
ROUGE-1 (DD) — 12.34 12.90
ROUGE-2 (DD) — 1.66 1.52
ROUGE-L (DD) — 10.60 10.94

Perplexity (TC) 43.3 — 37.1
ROUGE-1 (TC) 16.63 — 15.13
ROUGE-2 (TC) 2.36 — 1.77
ROUGE-L (TC) 13.61 — 12.41

Table 5: Out-of-distribution automatic evaluation of
perplexity and ROUGE is comparable for BlenderBot
fine-tuned on DailyDialog (DD-BB), Topical Chat (TC-
BB), and synthetic data generated using our handwritten
examples in-context (Syn-BB), respectively.

human datasets. On the DailyDialog test set, the
synthetic dataset model outperforms the Topical
Chat model on all metrics except ROUGE-2, and
on the Topical Chat test set, the synthetic dataset
model underperforms the DailyDialog model on all
metrics except perplexity.

5 Triadic and Multi-Party Conversations

The vast majority of dialogue tasks and conver-
sational datasets focus on dyadic conversations
(e.g. Li et al. (2017); Gopalakrishnan et al. (2019);
Smith et al. (2020); Rashkin et al. (2019)), follow-
ing the traditional speaker-listener paradigm (En-
gelhardt et al., 2006). In contrast, the literature
on multi-party social conversation is rather scarce,
not only in terms of conversation generation but
as a task altogether. However, while it is an un-
derstudied research area, it is incredibly important,
because dyadic conversations do not capture the
full reality of in-person, human-human social con-
versations, nor the full potential of dialogue agents.
To name a few applications, dialogue agents have
the potential to supplement classroom learning with
multiple parties, serving as a third mediating party
in a debate or discussion between two people, or
to provide companionship and support in virtual
group settings. A major reason why these lines of
work remain unsolved is that there are few large-
scale multi-party dialogue datasets.

Many existing multi-party datasets are scripted
corpora such as MELD (Poria et al., 2019) or
MPDD (Chen et al., 2020) or HLA-Chat (Ju et al.,
2022; Li et al., 2020). Other multi-party corpora
are collected for highly domain-specific purposes,
such as multi-party empathetic dialogue (Zhu et al.,
2022). Such corpora are also typically collected
through asynchronous online platforms, rather than
natural conversation. These platforms exist in the
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Figure 4: Linguistic diveristy (Distinct-N) is compara-
ble for each speaker in the synthetic triadic conversation
dataset.

form of forums and online chat platforms such as
Ubuntu IRC (Lowe et al., 2015) or Reddit (Baum-
gartner et al., 2020). Other more natural multi-
party conversational datasets are license-protected
speech datasets (e.g. CHIME (Christensen et al.,
2010)) which have been constructed for tasks such
as speaker attribution.

We find that we can apply our prompting ap-
proach to generate synthetic, open-domain, multi-
party social conversations following the same struc-
ture as our synthetic dyadic conversations6. As
in the dyadic case, we generate triadic conversa-
tions using optional background information for
each speaker. We consider the “Multi-Party Chat”
corpus (MPC) (Shaikh et al., 2010), a text-based,
open-domain conversation dataset collected in real-
time online sessions at the University of Albany,
and MELD, which contains scripted multi-party
dialogues from the popular sitcom “Friends.” We
directly compare our synthetically generated con-
versations against MPC and MELD.

Table 6 includes our evaluation of our conver-
sations using the same pool of pre-qualified AMT
workers, again with 200 randomly sampled con-
versations. MPC consists of massive conversation
settings — on the scale of 500 turns for a typical
conversation session — so we randomly sample 8
to 127 continuous turns for each conversation eval-
uation to more closely match the structure of our
synthetic conversations.8 We present examples of

6While we effectively use Alice, Bob, and Claire instead
of Speaker 1, Speaker 2, and Speaker 3, respectively, the order
of speakers does not necessarily follow the speaker order in
the in-context examples (e.g. Appendix Table S10).

7The length between 8 and 12 turns is chosen uniformly.
8We sample rather than selecting the first 8-12 turns, to
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Dimension MPC MELD Syn

Interesting 2.48 3.52 4.14∗

Coherent 2.40 3.68 4.65∗

Natural 2.69 3.69 4.47∗

Consistent 2.96 3.83 4.65∗

Comprehensible 2.48 3.83 4.80∗

Balanced Engagement 3.45 4.00 4.89∗

Table 6: Synthetic conversations generated using OPT
30B are rated significantly higher than MPC and MELD
across all dimensions.

MPC and MELD in Appendix Tables S20, S21.
We inform the AMT workers that they will read

conversation excerpts. In addition to the questions
in Table 2, we add two questions specific to multi-
party conversations. We ask if the conversation ex-
cerpt looks comprehensible (in terms of the reader
being able to determine who each speaker is ad-
dressing), and we ask if all parties of the conversa-
tion are participating equally and actively.

In Table 6, we find that the synthetic conversa-
tions are rated statistically significantly more favor-
ably than MPC and MELD across all dimensions.
Beyond conversation quality, it is possible that the
ratings for MPC are comparatively low due to the
fact that each conversation typically has more than
three speakers, which may be more difficult for
human raters to interpret. Our results for MELD
also indicate that while the corpus is high quality,
it may be better fit for comedy and accompaniment
with visual context, than as pure dialogue.

Additionally, we checked the linguistic diver-
sity for each speaker. In terms of Distinct-N, each
speaker’s lexical diversity is comparable (Figure 4)
as well as the number of words per turn (12.2, 12.2,
and 13.5 for Speakers 1, 2, and 3 respectively).
The triadic conversations tended to be slightly
longer than the average dyadic conversation (11.5
turns/conversation versus 9.29 turns/conversation).

6 Discussion

Overall, we find that prompting PLMs to generate
synthetic conversations is promising.

6.1 Considerations for Dyadic Dialogue
The synthetically generated conversations appear
comparable to conversations from human-collected
datasets. The individual conversations appear in-
teresting, coherent, natural, and consistent, as the
average ratings for each category lie between 4.0
and 5.0. The Appendix includes multiple examples

avoid overrepresenting greetings.

of conversations generated using the strongest per-
forming PLM (OPT 30B, e.g. Table S7) as well as
several conversations generated using OPT 175B
(e.g. Table S8). Tables 4 and 5 also indicate that
fine-tuning on synthetically generated examples
can result in dialogue models of comparable qual-
ity, with the potential for further improvements by
simply generating more synthetic conversations.

Future work may consider applying applying
this generation approach to dyadic contexts be-
yond social conversations, such as task-oriented
dialogue. The clearest difference between social
and task-oriented dialogue contexts is the impor-
tance of knowledge grounding. In task-oriented
dialogue, there typically needs to be retrieval from
knowledge base for response generation. An ap-
plication of PLACES could involve using database
results as a ground-truth reference. Rather than
using a topic list like FITS, one could form con-
versational recipes using database search results as
background information. Given the apparent se-
mantic control described in Section 4, it is possible
that synthetic task-oriented conversations would be
able to correctly utilize knowledge.

6.2 Considerations for Multi-Party Dialogue

We found that in comparison to MPC, our synthetic
triadic dialogues appear to be of fairly high qual-
ity. However, there remain several open questions
about multi-party dialogue, even in the triadic case.
For instance, there is not a set archetype of conver-
sations. Sometimes, conversations may be domi-
nated by a single speaker, whereas in others, each
speaker in the conversation may contribute equally.
Depending on the scenario, a speaker may be the
facilitator — meetings can be considered (topic-
specific) multi-party dialogues which are typically
led by designated speakers.

Moreover, there are several questions about how
to utilize multi-party dialogues in an interactive di-
alogue system. There are use cases where it may be
appropriate for one dialogue system to interact with
multiple users. On the other hand, in scenarios like
emotional support dialogue systems, it may make
sense for a single user to interact with multiple
simulated conversational parties.

Here, we investigated our approach’s potential to
generate synthetic multi-party conversations, hop-
ing to bridge the gap in data availability in multi-
party chat. This opens opportunities for a variety
of applications. Synthetic datasets could be used
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to help discover how to properly model triadic and
multi-party conversations. In the future, datasets
could also be generated for domain-specific, multi-
party applications ranging from language learning
to task-oriented spoken dialogue systems.

7 Error Analysis

We examine the dyadic and triadic conversations
which received low scores (1/5) across multiple
dimensions.

7.1 Dyadic Conversations
Out of the dyadic conversations, two conversations
were rated as generic and dull. One conversation
(Appendix Table S13) talks about the singer, Taylor
Swift. However, the conversation is repetitive, re-
peating utterances such as “What are your thoughts
on her?” and “I think she is very nice.” The other
conversation is about the filmmaker, Ken Burns
(Appendix Table S14). While the conversation is
appears coherent and uses correct factual informa-
tion (e.g., making reference to Ken Burns’ docu-
mentaries on World War II and the Vietnam War),
the language could be perceived as dull.

Three conversations were rated as completely un-
natural. In one case, the PLM missed the prescribed
subtopic (cotton candy) and instead hallucinated
a conversation about a sensitive topic, cancer (Ap-
pendix Table S15). This is also the only conversa-
tion to be rated as completely incoherent. The other
two conversations are both on-topic. However, one
conversation is on-topic but rather short (five turns),
whereas the other conversation is overly verbose
and a little repetitive.

There were also three conversations were eval-
uated as completely inconsistent. In all three con-
versations, the roles of the two speakers seemingly
swap. While these hypothetical turns are possi-
ble in excerpts of real conversations, they assume
background information or events which have not
been explicitly established when considered as stan-
dalone conversations. An example is given in Ap-
pendix Table S16.

While some of the evaluations may be subjec-
tive, an issue that has objectively appeared multiple
times is the consistency of speakers’ utterances.
The intents and personas of the speakers appear
to get switched, which is also an open problem
in dialogue systems research. Future work may
look to combine conversation synthesis approaches
with strategies for dialogue consistency such as
the generate-delete-rewrite framework (Song et al.,

2020a) or language inference approaches (Welleck
et al., 2019; Song et al., 2020b).

7.2 Triadic Conversations

No conversations were perceived as completely in-
comprehensible, but human evaluators indicated
that two conversations appeared to have imbal-
anced engagement — in both cases, the third
speaker (“Claire”) only has one dialogue turn. As
discussed in Section 6.2, however, it is not clear
whether this is a drawback. Real-life triadic con-
versations do not follow a set archetype in terms of
engagement balance.

There was one conversation which was rated as
completely incoherent. In the conversation, there
is one dialogue turn which presents information
inconsistent with prior turns, but the another is-
sue appears to be an oddly placed transition which
brings the conversation from travel to hobbies:
“You should definitely go to Paris! What do you
like to do for fun?” (Appendix Table S17).

There are two conversations which were per-
ceived as completely unnatural. However, natural-
ness appears to be a rather subjective evaluation.
One conversation is given in Appendix Table S18,
and it is debatable whether the language conven-
tions used are unnatural. One could argue that it is
overly enthusiastic, but others could argue that it is
how some people speak colloquially. Interestingly,
the second conversation which received a low nat-
uralness score is also enthusiastic and about the
same topic (gardening).

The only conversation which was rated as
generic and dull was a 15-turn debate about
whether the European Union is a “conspiracy” (Ap-
pendix Table S19). The debate is rather shallow
and does not make a lot of progress.

As with the dyadic conversation error analysis,
we see that there are issues with persona consis-
tency. However, unlike the dyadic scenario, there
are fewer existing solutions for dialogue consis-
tency. Multi-party conversation synthesis could
potentially be improved by applying ideas from
the newly published PersonaTKG dialogue system,
which employs a unified graph that encodes per-
sonas, utterances, and external knowledge on a
scripted dialogue dataset (Ju et al., 2022).

Beyond consistency, in the example from Ta-
ble S19 we see that there is potential for PLMs to
hallucinate misinformation. There are again fewer
existing studies on circumventing this obstacle in
multi-party dialogue, but future work could look
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to incorporating external knowledge (Kang et al.,
2022) or dialogue safety approaches (Kim et al.,
2021a; Dinan et al., 2019). All said, our work
motivates further study into multi-party dialogue
consistency, safety, and synthesis.

8 Conclusion

In this work, we presented an application of prompt-
ing PLMs to create synthetic conversations. These
synthetic conversations are comparable in terms
of quality and lexical diversity to actual human-
human datasets, and can be used as training data for
dialogue models. This opens avenues in generative
language work such as collaborative and creative
writing, story generation, as well as synthesis of
new conversational tasks. Here, we presented one
example — synthesizing a multi-party conversa-
tional dataset. This presents a unique opportunity
to further study multi-party dialogue modeling.

9 Limitations

Controllability. We witness encouraging levels
of control through the prompt (95% of the time, the
synthetic conversation matches the desired topic),
but prompting PLMs is still an uncontrolled form
of generation. Future work could seek to add more
semantic controls beyond the stated topic in the
prompt or explore using weak supervision to pro-
vide post-hoc improvements on synthetic data qual-
ity, similar to Chen et al. (2022). In this work, we
also did not thoroughly explore the effects of differ-
ent generation approaches. Future work may con-
sider applying semantic constraints during the de-
coding process (Lu et al., 2021a). Further controls
are necessary before using this approach for higher-
stakes settings such as task-oriented dialogue and
other knowledge-grounded tasks.

Cost of Human Effort. While we demonstrate
the ability to synthesize large amounts of data, the
quality of a synthesized dataset is still dependent on
human effort, to an extent. One can use a generic
prompt template such as “Alice is interested in
[subtopic]” for each subtopic, but we qualitatively
see that more detailed background information in a
prompt often yields better generation performance.

In this work, we generated 5592 dyadic and tri-
adic conversations, matching the number of topic
combinations in FITS. PLACES can be used to
generate many more conversations in the future.
Using the same overall can continue to make new

combinations of topic and subtopic, or simply re-
run the generation process as it is nondeterministic.
Moreover, one may consider filling the slots in our
conversation recipes using an abundant of external
sources, including from existing dataset annota-
tions (e.g. Persona Chat Zhang et al. (2018)).

Computational Costs. Once a dataset is syn-
thesized, small, task-specific models can be used
downstream. However, the synthesis method used
in this work is still expensive: we prompt PLMs.
While we only used freely accessible PLMs such as
OPT, we acknowledge that not everyone has access
to the number of GPUs necessary to load PLMs,
even for inference.

Prompt Design. The idea of prompting large lan-
guage models is not novel. There is a plethora of
work that examines how to apply prompting to a
variety of different tasks (e.g. Brown et al. (2020);
Min et al. (2021)), along with several studies on
how to mine or engineer different prompts (Liu
et al., 2021). In this work, we do not claim novelty
to our prompt, nor do we claim that our prompt
design is the optimal prompt for conversation gen-
eration. Our prompt is designed in a conversa-
tional manner, drawing inspiration from Chen et al.
(2022). We instead emphasize the application
of prompting for conversational dataset synthesis.
The idea of synthesizing conversational datasets
“from scratch” is previously unexplored, and has
potential to supplement a lot of areas of dialogue
research, such as multi-party conversations.

10 Ethical Considerations

Human Evaluation and Crowdsourcing. We
make use of crowdsourcing through Amazon Me-
chanical Turk for several experiments. All crowd-
workers were paid at a rate higher than the mini-
mum wage in California. In accordance with Cal-
ifornia State Law, all crowdworkers were also in-
formed they were speaking with chatbots during
the data collection for our interactive evaluation.
All participants consented to the logging of their
responses.

Language Model Biases. Large pre-trained lan-
guage models are typically pre-trained on massive
corpora crawled from the internet such as The
Pile (Gao et al., 2020) or Common Crawl. This
allows language models to have exposure to a large
amount of linguistic diversity, but this also results
in exposure to a lot of hateful, biased, or otherwise
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undesirable content from the internet (Luccioni and
Viviano, 2021). Future work should examine com-
bining conversation synthesis with dialogue safety
approaches.

Scientific Artifacts. All scientific artifacts are
used according to their intended purpose. The FITS
dataset is publicly available at https://parl.ai/

projects/fits/. OPT is an open-source language
model. GPT-J is available for use under the MIT
license. We use the HuggingFace Transformers
and PyTorch packages for all modeling (Wolf et al.,
2020; Paszke et al., 2019). All artifacts used are in
English.
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A Human Evaluation Setup

Our human evaluation studies on Amazon Me-
chanical Turk are evaluated conducted with 28
pre-qualified crowdworkers, who have previously
demonstrated proficiency with natural language
processing tasks.

A.1 Conversation Evaluation

The crowdworkers were asked to rate conversations
from multiple sources according to the following
dimensions and instructions.

• How natural is the overall conversation?
Scale: 1 (completely unnatural) to 5 (as natu-
ral as two native English speakers)

• How coherent is the overall conversation?
Scale: 1 (completely incoherent) to 5 (as co-
herent as two native English speakers)

• How interesting is the overall conversation?
Scale: 1 (generic and dull) to 5 (full of content
and very engaging)

• How consistent are each of the speakers’
turns?
Scale: 1 (completely inconsistent) to 5 (no
logical fallacies)

• Does the conversation match the stated topic?
Options: Yes (1) or No (0)

Each conversation is rated by three crowdwork-
ers, and the median score is selected, following the
idea of a majority vote.

For multi-party conversations, crowdworkers
were asked two additional questions regarding com-
prehensibility and engagement balance.

• Can you tell which speaker is speaking to
which?
Scale: 1 (completely incomprehensible) to 5
(perfectly comprehensible)

• Is each speaker engaged, or is the conversa-
tion primarily dominated by one or two of the
speakers?
Scale: 1 (totally dominated by one or two
speakers) to 5 (all speakers are actively partic-
ipating in the conversation to an equal degree)

A.2 Interactive Evaluation
For each HIT of the interactive evaluation study,
each crowdworker was presented with links to chat-
bots presented in a randomized order. The link
connects each crowdworker to a deployment on an
instance of LegoEval (Li et al., 2021). The users
are presented with a landing page where they are
told that they are interacting with a chatbot, and
will be asked to evaluate their conversation experi-
ence.

Immediately after interacting with a chatbot,
each crowdworker was presented with a survey
asking for their impression of the chatbot. In addi-
tion to the above dimensions (other than on-topic),
the crowdworkers were asked how engaging, intel-
ligent, and non-repetitive they thought the chatbot
was.

B Model Details

During generation, we use top-p sampling with
p = 0.92.
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Party Utterance
Alice I love it here in New York!
Bob What do you like most about New York?
Alice New York has the best bagels!
Bob Which bagels are your favorite?
Alice They all taste amazing. I really like their Italian ones!
Bob That’s great. I guess I’ll be eating Italian bagels from now on.

Alice I’m from New York City.
Bob Wow! I’ve never been to New York.
Alice I’ve also been to Austin. few times.
Bob What did you think of it? Did you like it?
Alice I really liked it. I thought it was a really cool city.
Bob I’m glad you liked it. What did you like so much about it?
Alice I really like the music scene there.
Bob What kind of music do you like?
Alice I like a lot of different kinds of music. I like jazz, rock, and country.
Bob I’ve never been to a country concert.
Alice You should go sometime. They’re a lot of fun.
Bob I’ll have to check it out.
Alice I’ll hagve to visit Austin again soon.
Bob Yeah, I’d like to visit New York sometime too.
Alice It’s a great city.

Table S7: Pair of dyadic conversations generated using OPT 30B. The prompt recipe given is: “The following is a
conversation between Alice and Bob about their hometowns. Bob is from Austin, Texas, and Alice is from New
York City.”

Party Utterance
Alice What’s your major?
Bob I’m a computer science major.
Alice Me too! What year are you?
Bob I’m in my third year. What about you?
Alice I’m in my third year too. What classes are you taking this quarter?
Bob I’m taking a class called Operating Systems. It’s really interesting.
Alice I’m taking a class called Computer Graphics. It’s pretty interesting too.
Bob I’ve heard that class is really hard.
Alice Yeah, it’s not easy.

Alice Hi!
Alice What are you studying?
Bob I’m a Computer Science major.
Alice Me too!
Bob What year are you?
Alice I’ll be a junior next year.
Bob I’ll be a senior.
Alice Cool!
Bob What classes are you taking this quarter?
Alice I’ve got a couple of clases in the School of Engineering. I’m taking a class in Computer Graphics and a

class in Artificial Intelligence.
Bob I’m taking a class on Machine Learning.
Alice That’s cool.
Bob What are you doing this summer?
Alice I’d like to work at a start-up.
Bob That’s cool. I’m going to intern at Google.
Alice Wow! That’s awesome!
Bob Yeah, I’m really excited.
Alice I’m excited for you!

Table S8: Pair of dyadic conversations generated using OPT 175B. The prompt recipe given is: “The following is a
conversation between Alice and Bob about their majors. They are both students at Stanford University.”
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Party Utterance
Alice I was thinking about applying at the coffee shop on the corner.
Bob That’s a great idea! It’s a really fun place to work.
Alice I’m glad to hear that. What do you do there?
Bob I work as a barista.
Alice Oh cool! I bet you get to meet a lot of interesting people.
Bob That’s right. I really enjoy working there.
Alice Do you know if they are hiring?
Bob I’m not sure, but you should definitely apply.
Alice Thanks! I’ll go in and see if they are hiring.

Table S9: Example dyadic conversation generated using OPT 175B. The prompt recipe given is: “The following is a
conversation between Alice and Bob about part-time jobs. Bob works at a coffee shop and Alice is thinking about
applying.”

Party Utterance
Alice I’d love to start a garden! I’ve always wanted to grow my own vegetables.
Bob That’s a great idea! It’s so much more fun to eat vegetables that you’ve grown yourself.
Claire What vegetables are you thinking about growing?
Alice I’d love to try growing some tomatoes, peppers, and squash.
Bob That sounds like a good start.
Claire I’ve grown tomatoes before. I also have a few pepper plants.

Alice I’ve always wanted to have a garden in my backyard, but I never really had the time.
Claire That’s awesome! How do you plan to grow your garden?
Alice I’ve been doing a lot of research. I think I’ll start with a few simple vegetables like tomatoes, onions,

and potatoes.
Bob That’s great! I would love to have a garden like that. I’m a big fan of cooking.
Alice I’ll definitely invite you over for dinner then!
Claire I’m so jealous! I’ve always wanted to grow my own vegetables.
Bob Have you considered getting a garden plot?
Claire That’s a great idea. I should look into that.
Alice You should! Gardening is a really healthy hobby.

Table S10: Pair of triadic conversations generated using OPT 30B. The prompt recipe given is: “The following is a
conversation between Alice and Bob and Claire about gardening. Alice is interested in growing vegetables.” The
ordering of the speakers in multi-party scenarios is variable.

Party Utterance
Alice Have you ever had Southern Ice Tea?
Bob I love to make it at home.
Claire I’m not familiar with that. What is it?
Bob It’s a sweet tea that’s brewed with mint and lemon.
Alice That sounds really good. I’m going to have to try that!
Claire I’ve never had that. What is it like?
Bob It’s kind of like a sweet, lemonade-like drink.
Alice I’m going to have to make some this weekend. Thanks for the idea!
Claire That sounds really good. I might try it too.

Table S11: Example triadic conversation generated using OPT 175B. The prompt recipe given is: “The following is
a conversation between Alice and Bob and Claire about cooking. Alice is interested in Southern Ice Tea. Bob has a
great recipe. Claire loved trying Bob’s Southern Ice Tea.”
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Party Utterance
Alice I try to eat healthy, but it’s hard to stay on track.
Bob I know what you mean. I try to eat healthy too, but I love ice cream too much!
Claire What kinds of foods do you like to eat?
Alice I love fruit. I eat a lot of berries.
Bob I love berries too! Strawberries are my favorite.
Claire What about leafy greens? Do you eat them?
Bob I love salads!
Alice I love salads too!
Claire Do you like any vegetables?
Alice I love vegetables! I like broccoli and asparagus.
Claire Great! Do you eat many whole grains?

Table S12: Example triadic conversation generated using OPT 175B. The prompt recipe given is: “The following is
a conversation between Alice and Bob and Claire about health. Alice and Bob are discussing healthy foods. Claire
is a nutritionist.”

Party Utterance
Alice Hi! So how are things with you?
Bob Things are going well. Do you know who Taylor Swift is?
Alice Yes, I think I have heard of her.
Bob She is a popular singer! Did you know that she has donated $250,000 to the LGBT+ community in

Tennessee?
Alice $250,000? That’s such a generous donation! She’s really selfless.
Bob What do you think of her?
Alice She is really talented! I really love listening to her music. What are your thoughts on her?
Bob I think she is very nice. She seems like a good person.
Alice Yeah, I think she is a really nice person. I also really love her music! It’s really catchy and it really

makes me feel good. What are your thoughts on her?
Bob I think she is very nice. I would really like to meet her.
Alice You and me both! It would be so exciting!

Table S13: Synthetic conversation generated by OPT 30B which was rated as “generic and dull.” While the PLM
appears to have drawn on information from an actual event (Taylor Swift did donate $113,000 to support an LGBTQ
advocacy group in Tennessee), the conversation appears to get stuck around the question “What are your thoughts
on her?” which results in deteriorating conversation quality towards the end.

Party Utterance
Alice Ken Burns is the best! His documentary series on the Vietnam War was excellent. What do you think

of him?
Bob He’s pretty cool. I haven’t seen that documentary series, but I’ve heard good things.
Alice The Vietnam War is a really interesting topic. Have you ever watched Ken Burns’ other documentary

series?
Bob I don’t think so, but I’ve seen the Civil War documentary.
Alice Oh, I’ve seen that one. It was very good too. Did you see the one on World War II?
Bob Nope. That sounds cool though.
Alice I liked it. It was interesting to learn how different people perceived the same event in history.

Table S14: Synthetic conversation generated by OPT 30B which was rated as “generic and dull.” The conversation
appears to be coherent and is rooted in factually correct information. However, the language is fairly ordinary,
which may have been subjectively considered uninteresting.

Party Utterance
Alice Ha ha, thanks for stopping by. It was really fun meeting you!
Bob Thank you too!
Alice Oh, I forgot to tell you - my dad has cancer. I feel awful.
Bob I’m sorry. That’s awful. My grandmother died of cancer when I was a kid. I remember her fondly.
Alice What was her name?
Bob Oh, that was too long ago to remember. She was named John.
Alice Sorry to hear that. I’m very sorry for your loss.
Bob Hey - I heard the Giants are playing tonight. Is it ok if I watch the game instead of having more

conversation?
Alice Sure! I’m going to make some dinner.

Table S15: Synthetic conversation generated by OPT 30B which was rated as completely incoherent. The prescribed
subtopic was “cotton candy” but the conversation pivoted to a much more sensitive topic, cancer.
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Party Utterance
Alice Do you make cheese at home? I’m trying to learn to make cheese.
Bob That sounds like a lot of work! What type of cheese do you want to make?
Alice Cheddar. I’ve already tried it a few times, but the results aren’t as good as I’d like.
Bob My wife and I love to eat Cheddar. It has a really great flavor.
Alice How did you learn to make cheese?
Bob My wife taught me.
Alice That’s awesome!

Table S16: Synthetic conversation generated by OPT 30B which was rated as completely inconsistent. Initially,
“Alice” is trying to learn to make cheese, but then it becomes ambiguous by their next turn whether they already
know how to make cheese.

Party Utterance
Alice Hi there! I just went on a road trip around California. It was great!
Claire Cool, do you go on road trips often?
Alice No, I don’t travel too often. I actually haven’t been out of the country. It would be cool to go to Paris

one day.
Claire Haha, nice! I’d love to visit Paris too. What’s the furthest you’ve ever traveled?
Alice I went to Spain with my family last summer!
Bob Wow, that’s really cool! I’ve never been out of the country either.
Claire You should definitely go to Paris! What do you like to do for fun?
Bob Well, I like to read sci-fi books, and I love to play board games.
Alice Do you have a favorite board game?
Bob My favorite game is Settlers of Catan. My friends and I play it all the time.
Claire Haha, I love Settlers of Catan! My family and I play it all the time too.
Alice That’s funny, I love it too. I’m in a Facebook group for it.

Table S17: Synthetic triadic conversation generated by OPT 30B which was rated as completely incoherent. First,
“Alice” mentions they went on a road trip around California, then they mention that they haven’t been out of the
country. This implies that “Alice” is located in the United States. But then Alice mentions having traveled to Spain.
The conversation also randomly shifts from discussing travel plans to discussing board games and other hobbies
with an awkwardly placed transition on “Claire’s” third turn.

Party Utterance
Alice Hello! How’s your garden doing?
Claire It’s doing great! I have a young garden, so I’m still waiting for it to develop.
Alice I can’t wait to get home and check on mine! What are you growing?
Claire I’m growing tomatoes, strawberries, watermelon, and sunflowers!
Alice That sounds really nice! Do you have a garden somewhere else too?
Claire No, this is my first garden!
Alice Oh, I’m jealous! I would love to have my own garden someday.
Bob I bet you would! I bet you would have a green thumb too.
Alice Maybe! Maybe I will try starting a garden next year!

Table S18: Synthetic triadic conversation generated by OPT 30B which was rated as completely unnatural. The
conversation appears to be coherent, but the speakers appear to be very enthusiastic. It could be argued that the
speakers are overly unenthusiastic to an unnatural degree.
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Party Utterance
Alice You know, I think the EU is just a big conspiracy.
Bob Conspiracy?
Alice Yes, the European Union wants to take over all of the land from its original owners.
Bob What do you mean?
Alice I’m sure that’s what they would tell you. But the truth is they’re enslaving the people to gain control

over resources.
Claire It sounds a bit extreme. How do you feel about EU leaders?
Bob I don’t like them.
Alice They’re not very nice, I agree.
Bob I’m kind of scared to go to EU countries and I feel like I don’t even have any power.
Alice Oh, but we do! They won’t take away the land of the original owners, because that’s just not going to

happen!
Bob I’m still afraid.
Claire Hm. That sounds like a pretty horrible situation you’re in.
Alice It is! And I don’t know what to do.
Bob Well, it sounds like we all have a lot to learn. I don’t know what we should do, but I think there are lots

of options out there.
Alice It’s nice that you have an open mind about this! I really do think people should learn more about the

EU and what’s going on.

Table S19: Synthetic triadic conversation generated by OPT 30B which was rated as generic and dull. “Alice”
begins a long debate on whether the EU is a “conspiracy” without making a lot of conversational progress.

Party Utterance
john sure
john i think so, meg
mara how did i know that was coming
meg its not just the public eye
john haha mara
mara hushh.. ***
nick There are already other countries who are investigating the Bush administration for war crimes -

Spain
meg with the breton woods
george they need to be prosecuted...that’s in obama’s hands

nick wow, george, right win propaganda... huh
meg look at how well Iraq is doing
mara goodness
meg there’s a point at which interrogation becomes torture and is just inhumane
john agree to george
mara ?
mara im in albany btw
meg Which we signed!

amy well it is the way the world is going– email, chat„ etc
john yes
jordan And this is one of the tricky things in this virtual world. You know nothing about the people u r

talking to!!!!
amy u r right you just used online language haha
mara hes not much fun either haha, what do you think?
amy hi john- can you see my message here?
jordan Hi, amy
mara i dont know what is better really!!!
john haha

Table S20: Three excerpts of the same conversation from the MPC corpus (Shaikh et al., 2010). The conversation
spans topics ranging from the Bush administration to meta-discussion about the collection task.
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Party Utterance
Phoebe Then I’m gonna have to ask you to keep it down.
Mr. Heckles Who are you?
Eric Hi, I’m Eric, I’m gonna be Chandler’s new roommate.
Mr. Heckles I’m Chandler’s new roommate.
Eric I-I-I don’t think so.
Mr. Heckles I could be Chandler’s new roommate.
Eric But, he told me over the phone.
Mr. Heckles He told me in person.
Eric That’s weird.
Mr. Heckles Well, I’m going to go into my new apartment now. Ehh!

Table S21: Conversation from the MELD corpus (Poria et al., 2019). Three speakers are involved, discussing a
living situation regarding a fourth character who does not appear in this scene.
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Subtopic Background Information
Pacific Theater Alice is interested in Pacific theater.
Growing residential grass Alice is interested in growing residential grass.
Breakfast food Alice likes to try different breakfast foods. Bob loves waffles.
music Alice likes music. Bob plays the viola.
skincare Alice is interested in skincare. Bob has a great skincare routine.
Planting flowers Alice is interested in planting flowers. Bob has a nice garden.
Southern Ice Tea Alice is interested in Southern Ice Tea. Bob has a great recipe.
herb garden Alice is interested in planting an herb garden.
Hiking Alice is going hiking tomorrow.
Plant a garden Alice wants to plant a garden.
Italian food Alice likes Italian food.
book recommendations Alice is interested in book recommendations.
anniversaries Alice keeps track of all of her anniversaries.
Existential Psychology Alice is interested in Existential Psychology.
The Outlander Series Alice is interested in The Outlander Series.
camping gear Alice is looking for advice on camping gear. Bob works at REI.
Movie Alice is interested in movie recommendations. Bob is a film buff.
Ford Vehicles Alice is interested in Ford vehicles. Bob prefers Japanese cars.
Beauty Alice is interested in beauty. Bob works at Sephora.
Syrian War Alice is interested in the Syrian War. Bob is a political scientist.
Elon Musk Alice and Bob are talking about Elon Musk.
Healthy foods Alice and Bob are discussing healthy foods. Alice is on a paleo diet.
Soren Kierkegaard Alice is a fan of Soren Kierkegaard.
investing money Alice is interested in investing money. Bob is an investment banker.
Post-structuralism Alice is interested in post-structuralism.
baking Alice is interested in baking. Bob has baked cakes and brownies before.
Nuts Alice likes to eat nuts.
braids Alice braids her hair. Bob is interested in learning how.
Growing vegetables Alice is interested in growing vegetables.
Martin Luther Alice is learning about Martin Luther.
paint brushes Alice is interested in paint brushes.
Stock Trading Alice is interested in stock trading.
Install TV applications Alice wants to install TV applications. Bob is helping her.
History Alice is interested in history. History was Bob’s favorite school subject.
Feminism Alice is interested in feminism. Bob majored in gender studies.
Tell a joke Alice wants to hear Bob tell a joke.
artists Alice is interested in learning about modern artists.
Turtles Alice likes turtles. Bob has been scuba diving.
Anthony Trollope Alice likes the work of Anthony Trollope. Bob prefers modern literature.
Paris Alice wants to go to Paris.
Bread Alice likes bread. Bob’s favorite bread is a baguette.
movie cast members Alice and Bob are talking about movie cast members.
Gay Marriage Alice is a proponent of gay marriage. Bob is interested in learning more.
U.S. Senate Alice and Bob are discussing the U.S. Senate.
growing tomatoes Alice is interested in growing tomatoes.
family issues Alice is interested in family issues.
Automotive parts Alice is interested in automative parts.
Bee life Alice is interested in bee life.
Taylor Swift Alice’s favorite musician is Taylor Swift. Bob likes Ariana Grande.
biking Alice’s favorite hobby is biking. Bob prefers rock climbing.
Juicers Alice wants to get a juicer.
islands Alice likes visiting islands. Bob prefers hiking.
Planets Alice is learning about the planets in school.
Pokemon Alice likes to play Pokemon. Bob also likes Pokemon.

Table S22: Corresponding background information written for each of the subtopics found in the FITS dataset.
There is a mixture of prompts which only mention one speaker and prompts which mention two speakers. Every
synthetic conversation involves both speakers.
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Topic Conversation Recipe
Growing residential grass Alice is interested in growing residential grass. Claire has a really neat yard.
Breakfast food Alice likes to try different breakfast foods. Bob loves waffles. Claire prefers pancakes.
music Alice likes music. Bob plays the viola. Claire played the violin in high school.
skincare Alice is interested in skincare. Bob has a great skincare routine. Claire wants to hear Bob’s

routine.
Planting flowers Alice is interested in planting flowers. Bob has a nice garden. Claire has a vegetable garden.
Southern Ice Tea Alice is interested in Southern Ice Tea. Bob has a great recipe. Claire loved trying Bob’s Southern

Ice Tea.
herb garden Alice is interested in planting an herb garden. Claire has some gardening tips.
Hiking Alice is going hiking tomorrow. Claire hates hiking.
Plant a garden Alice wants to plant a garden. Claire has a greenroom.
Italian food Alice likes Italian food. Claire prefers Asian food.
book recommendations Alice is interested in book recommendations. Claire is a part of a book club.
anniversaries Alice keeps track of all of her anniversaries. Claire is not well-organized.
Existential Psychology Alice is interested in Existential Psychology. Claire is a psychologist by training.
The Outlander Series Alice is interested in The Outlander Series. Claire has never seen the series.
camping gear Alice is looking for advice on camping gear. Bob works at REI. Claire loves the outdoors.
Movie Alice is interested in movie recommendations. Bob is a film buff. Claire is also a film buff.
Ford Vehicles Alice is interested in Ford vehicles. Bob prefers Japanese cars. Claire prefers to drive a BMW.
Beauty Alice is interested in beauty. Bob works at Sephora. Claire is shopping with Alice.
Syrian War Alice is interested in the Syrian War. Bob is a political scientist. Claire is studying modern

political theory.
Elon Musk Alice and Bob are talking about Elon Musk. Claire is a Tesla owner.
Healthy foods Alice and Bob are discussing healthy foods. Alice is on a paleo diet. Claire is a nutritionist.
Soren Kierkegaard Alice is a fan of Soren Kierkegaard. Claire is not familiar with Soren Kierkegaard.
investing money Alice is interested in investing money. Bob is an investment banker. CLaire is an expert in

personal finance.
Post-structuralism Alice is interested in post-structuralism. Claire is an expert on the subject.
baking Alice is interested in baking. Bob has baked cakes and brownies before. Claire wants to learn

how to bake.
Nuts Alice likes to eat nuts. Claire is allergic to peanuts.
braids Alice braids her hair. Bob is interested in learning how. Claire braids her hair every day.
Growing vegetables Alice is interested in growing vegetables. Claire has a vegetable garden. Bob grows flowers.
Martin Luther Alice is learning about Martin Luther. Claire is a historian.
paint brushes Alice is interested in paint brushes. Claire is a painter and has several suggestions.
Stock Trading Alice is interested in stock trading. Claire is a stock broker.
Install TV applications Alice wants to install TV applications. Bob is helping her. Claire is also good with technology.
History Alice is interested in history. History was Bob’s favorite school subject. Claire is a historian.
Feminism Alice is interested in feminism. Bob majored in gender studies. Claire does not know much

about feminism.
Tell a joke Alice wants to hear Bob tell a joke. Claire is a stand-up comedian.
artists Alice is interested in learning about modern artists. Claire is a photographer.
Turtles Alice likes turtles. Bob has been scuba diving. Claire wants to try scuba diving.
Anthony Trollope Alice likes the work of Anthony Trollope. Bob prefers modern literature. Claire is not familiar

with much literature.
Paris Alice wants to go to Paris. Claire has never been to Europe.
Bread Alice likes bread. Bob’s favorite bread is a baguette. Claire loves to bake bread.
movie cast members Alice and Bob are talking about movie cast members. Claire has seen a lot of movies recently.
Gay Marriage Alice is a proponent of gay marriage. Bob is interested in learning more. Claire is an activist.
U.S. Senate Alice and Bob are discussing the U.S. Senate. Claire is a politician.
growing tomatoes Alice is interested in growing tomatoes. Claire has a large garden with many tomatoes.
family issues Alice is interested in family issues. Claire is a therapist.
Automotive parts Alice is interested in automative parts. Claire is a mechanic.
Bee life Alice is interested in bee life. Claire is a beekeeper.
Taylor Swift Alice’s favorite musician is Taylor Swift. Bob likes Ariana Grande. Claire does not like pop

music.
biking Alice’s favorite hobby is biking. Bob prefers rock climbing. Claire prefers archery.
Juicers Alice wants to get a juicer. Claire has a suggestion for a great juicer.
islands Alice likes visiting islands. Bob prefers hiking. Claire likes the beach.
Planets Alice is learning about the planets in school. Claire is an astronomer.
Pokemon Alice likes to play Pokemon. Bob also likes Pokemon. Claire prefers to play Stardew Valley.

Table S23: Triadic background information written for each of the subtopics given in the FITS dataset. Unlike
Table S22, each of these may include background information for up to three people.
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The following is a conversation between Alice and Bob about past travel experiences. Alice has been to Japan and Bob is considering flying there.
Alice: Hi!
Bob: Hey, how are you doing?
Alice: I’m doing well! I just got back from my vacation in Japan.
Bob: Wow that’s awesome! What did you think of it?
Alice: Japan was such an amazing place to visit!
Bob: Wow! What was your favorite part?
Alice: I really enjoyed the food in Tokyo.
Bob: Which airline did you take?
Alice: I flew using Japan Airlines.

The following is a conversation between Alice and Bob about their hobbies. Alice enjoys tennis and Bob likes playing soccer.
Alice: What do you like to do for fun?
Bob: I used to play soccer in college, so I still like to play for fun on the weekends!
Alice: That’s great. Soccer is a great way to stay in good shape.
Bob: I agree - it’s really good cardio. What about you?
Alice: I love to play tennis. I’ve been taking lessons for a few months now!
Bob: Tennis is fun too!

The following is a conversation between Alice and Bob about their favorite movies. Bob loved the new Batman movie. Alice really liked watching Pride and Prejudice.
Alice: I just saw Pride and Prejudice for the fifth time!
Bob: That’s a lot of times! What do you like so much about that movie?
Alice: Well, as a teenager I really liked the book. But I just really loved Keira Knightley’s portrayal of Elizabeth.
Bob: I see. I haven’t seen the movie myself. I prefer action films.
Alice: What’s your favorite action movie?
Bob: Hm, I really liked the Batman movie that just came out.
Alice: I haven’t seen it yet. I heard it got pretty good reviews.

The following is a conversation between Alice and Bob about their hometowns. Alice is from New York City. Bob grew up in Seattle.
Alice: Hello! How are you doing?
Bob: Hi, I’m doing great! What about yourself?
Alice: I’m doing well! Where are you from?
Bob: I’m originally from Seattle, but now I live in Palo Alto.
Alice: Oh cool! I live in Palo Alto too. Do you like Seattle or California more?
Bob: Well, Seattle is always going to be home for me. Even if the weather in California is nicer.
Alice: Haha, I get that! I miss New York City - there’s no place like home.
Bob: What is your favorite neighborhood of New York City?
Alice: I love going to Chelsea. The Highline has a great view, and Little Island is close by too! Have you ever been?
Bob: Unfortunately I have not. I have never been to the East Coast!

The following is a conversation between Alice and Bob about art. Alice’s favorite artist is Michelangelo. Bob does not know much about art.
Alice: Hi, how’s it going?
Bob: It’s going well, what about you?
Alice: I’m doing great! I’ve been really interested in art recently.
Bob: What got you interested in art?
Alice: Art can be so breathtaking!
Bob: I feel like I don’t know how to properly appreciate art, but certain pieces of artwork certainly look very complex.
Alice: Have you ever heard of Michelangelo?
Bob: I have heard of him, but I don’t know anything that he has created.
Alice: Michelangelo is really famous for his statue of David.
Bob: Huh? Who is David?
Alice: David is a Biblical figure who was a king of Israel. Michelangelo built a really magnificent statue of him in Florence.

The following is a conversation between Alice and Bob about drinks. Alice is a wine expert, whereas Bob prefers cocktails.
Alice: How are you doing?
Bob: Pretty great! I’m planning to go to a brewery this weekend.
Alice: Do you know much about alcohol?
Bob: Yeah, I really like beer! I drink a lot of IPAs.
Alice: Oh - what do you like about IPAs? I can’t get over the bitter taste.
Bob: Well, I don’t think it’s just bitter. Sometimes there are really interesting citrusy or herbal flavor notes.
Alice: I see. That kind of reminds me of wine tasting.
Bob: There’s definitely a lot of depth to it like there is with wine. Do you know much about wine?
Alice: Yeah, I took several classes on wine tasting back in the day. I really love Pinot Noir.
Bob: Oh I love red wines too.
Alice: Right? I love the dryness and fruity notes of Pinot Noir.

The following is a conversation between Alice and Bob about relationships. Bob recently got engaged.
Alice: Congrats on your engagement! When do you think you will have your wedding?
Bob: Thank you!! We’re thinking of having it in November.
Alice: That’s amazing! Will you pick a fancy destination?
Bob: I wanted to! I was thinking of having it somewhere in Europe, but my partner and I ultimately decided we wanted to have it close to home so our friends could all make
it.
Alice: That’s a good point. My husband and I had similar thoughts when we were planning our wedding.
Bob: What did you plan in the end?
Alice: We had a small ceremony in my hometown!

The following is a conversation between Alice and Bob about their jobs. Alice works in the financial industry and Bob is a musician.
Alice: I’m so burnt out from my work! I just want to quit already!
Bob: Whoa - what do you do for work?
Alice: I’m an investment banker. It’s been four years at this company and I’m absolutely exhausted.
Bob: That sounds intense. Is there anything you actually like about the job?
Alice: Well, the money is good.
Bob: It sounds like you could use a break. Maybe you could use some of that money to go travel.
Alice: I really want to go to South America, but I don’t have a lot of time.

The following is a conversation between Alice and Bob about their pets. Alice has a dog and Bob prefers cats.
Alice: Do you have any pets?
Bob: No, but I really want to get a cat.
Alice: What, why a cat? Cats seem so boring. They never want to play.
Bob: Yeah, but cats are so cute! They also are a lot easier to take care of. They can clean themselves. What do you prefer?
Alice: Well, I have a dog. He is a corgi and his name is Bo.
Bob: Aww that’s cute! I’m not usually a dog person, but corgis are adorable.
Alice: Haha, thank you! Bo is a really friendly dog.
Bob: How old is he?
Alice: Bo is one year old now.

The following is a conversation between Alice and Bob about grocery shopping. Alice has a shopping list for Bob.
Alice: Could you run to the grocery store and pick up some bananas for me?
Bob: Will do - how many do you need?
Alice: Oh, I don’t know, maybe ten bananas. I’m planning to make banana bread, but I also want to save some for us to eat at home.
Bob: That sounds delicious! I’ll head out in a second. Is there anything else you need?

Table S24: Handwritten conversation examples of varying length. In-context examples are randomly sampled from
this pool and used as part of a prompt for dyadic conversation generation.
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The following is a conversation between Alice and Bob and Claire about past travel experiences. Alice has been to Japan and Bob is considering flying there. Claire has been to Taiwan and
Korea, but not Japan.
Alice: Hi!
Bob: Hey, how are you doing?
Alice: I’m doing well! I just got back from my vacation in Japan.
Bob: Wow that’s awesome! What did you think of it?
Alice: Japan was such an amazing place to visit!
Claire: Wow, I’ve always wanted to visit Japan!
Bob: What was your favorite part?
Alice: I really enjoyed the food in Tokyo. I had the best sushi of my life!
Bob: Which airline did you take?
Alice: I flew using Japan Airlines.
Claire: How expensive are tickets these days?

The following is a conversation between Alice and Bob about their hobbies. Alice enjoys tennis and Bob likes playing soccer. Claire plays football.
Alice: What do you like to do for fun?
Bob: I used to play soccer in college, so I still like to play for fun on the weekends!
Claire: Oh wow! Did you play varsity soccer?
Bob: Yeah, I was a four-year starter!
Alice: That’s great. Soccer is a great way to stay in good shape.
Bob: I agree - it’s really good cardio. What about you all?
Claire: I’m in a flag football league! We play every Saturday afternoon.
Alice: I love to play tennis. I’ve been taking lessons for a few months now!
Bob: Cool, football and tennis are fun too!

The following is a conversation between Alice and Bob and Claire about their favorite movies. Claire is looking for movie recommendations. Bob loved the new Batman movie. Alice really
liked watching Pride and Prejudice.
Alice: I just saw Pride and Prejudice for the fifth time!
Claire: Would you recommend watching it? I’ve never seen it!
Bob: Yeah, five times is a lot of times! What do you like so much about that movie?
Alice: Well, as a teenager I really liked the book. But I just really loved Keira Knightley’s portrayal of Elizabeth.
Bob: I see. I haven’t seen the movie myself. I prefer action films.
Alice: What’s your favorite action movie?
Bob: Hm, I really liked the Batman movie that just came out.
Alice: I haven’t seen it yet. I heard it got pretty good reviews.

The following is a conversation between Alice and Bob and Claire about their hometowns. Alice is from New York City. Bob grew up in Seattle. Claire is from Boston and would like to visit
New York City.
Alice: Hello! How are you doing?
Claire: I’m doing good!
Bob: Hi, I’m doing great! What about yourself?
Alice: I’m doing well! Where are you both from?
Claire: I’m from Boston! I’m just visiting the Bay Area.
Bob: I’m originally from Seattle, but now I live in Palo Alto.
Alice: Oh cool! I live here in Palo Alto. Do you like Seattle or California more?
Bob: Well, Seattle is always going to be home for me. Even if the weather in California is nicer.
Alice: Haha, I get that! I miss New York City - there’s no place like home.
Claire: Oh you’re from New York? I’ve always wanted to visit!
Bob: Me too! What is your favorite neighborhood of New York City?
Alice: I love going to Chelsea. The Highline has a great view, and Little Island is close by too! Have you ever been?
Bob: Unfortunately I have not. I have never been to the East Coast!

The following is a conversation between Alice and Bob and Claire about art. Alice’s favorite artist is Michelangelo. Bob does not know much about art. Claire is a painter.
Alice: Hi, how’s it going?
Bob: It’s going well, what about you?
Alice: I’m doing great! I’ve been really interested in art recently.
Claire: Oh that’s great to hear! I love art as well.
Bob: What got you interested in art?
Alice: Art can just be so breathtaking!
Bob: I feel like I don’t know how to properly appreciate art, but certain pieces of artwork certainly look very complex.
Alice: Have you ever heard of Michelangelo?
Bob: I have heard of him, but I don’t know anything that he has created.
Claire: Michelangelo has some truly magnificent paintings, such as The Creation of Adam.
Alice: Michelangelo is also really famous for his statue of David.
Bob: Huh? Who is David?
Alice: David is a Biblical figure who was a king of Israel. Michelangelo built a really magnificent statue of him in Florence.

The following is a conversation between Alice and Bob and Claire about drinks. Alice is a wine expert, whereas Bob prefers cocktails. Claire likes to drink beer.
Alice: How are you doing?
Bob: Pretty great! I’m planning to go to a brewery this weekend.
Alice: Do you know much about alcohol?
Bob: Yeah, I really like beer! I drink a lot of IPAs.
Claire: Oh, beers are my favorite type of drink! I can really appreciate the taste of a good IPA.
Alice: Oh - what do you like about IPAs? I can’t get over the bitter taste.
Bob: Well, I don’t think it’s just bitter. Sometimes there are really interesting citrusy or herbal flavor notes.
Claire: Yeah, there’s a whole science to the hops used in making IPAs!
Alice: I see. That kind of reminds me of wine tasting.
Claire: The science behind tasting is similar for sure.
Bob: I agree, there’s definitely a lot of depth to it like there is with wine. Do you know much about wine?
Alice: Yeah, I took several classes on wine tasting back in the day. I really love Pinot Noir.
Bob: Oh I love red wines too.
Alice: Right? I love the dryness and fruity notes of Pinot Noir.

Table S25: Triadic conversation recipes written for each of the “generic topics” given in the FITS dataset. These
conversation recipes are included after the in-context examples when prompting PLMs to generate synthetic
conversations. Unlike Table S22, each of these conversation recipes may include background for up to three people.
Continued in Table S26.
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The following is a conversation between Alice and Bob and Claire about relationships. Bob recently got engaged.
Alice: Congrats on your engagement!
Claire: Yes, congrats! When do you think you will have your wedding?
Bob: Thank you! We’re thinking of having it in November.
Alice: That’s amazing! Will you pick a fancy destination?
Bob: I wanted to! I was thinking of having it somewhere in Europe, but my partner and I ultimately decided we wanted to have
it close to home so our friends could all make it.
Claire: Oh wow, that is very considerate of you.
Alice: Yeah, that’s a good point. My husband and I had similar thoughts when we were planning our wedding.
Bob: What did you plan in the end?
Alice: We had a small ceremony in my hometown!
Claire: It turned out nicely! It was such a beautiful ceremony.

The following is a conversation between Alice and Bob and Claire about their jobs. Alice works in the financial industry and
Bob is a musician. Claire is an architect.
Alice: I’m so burnt out from my work! I just want to quit already!
Bob: Whoa - what do you do for work?
Alice: I’m an investment banker. It’s been four years at this company and I’m absolutely exhausted.
Bob: That sounds intense. Is there anything you actually like about the job?
Alice: Well, the money is good.
Claire: That doesn’t sound like a healthy relationship with your job!
Bob: It sounds like you could use a break. Maybe you could use some of that money to go travel.
Alice: I really want to go to South America, but I don’t have a lot of time.
Claire: Don’t you have vacation days? I think breaks are important.
Alice: Yes, but I really want to get promoted this year.

The following is a conversation between Alice and Bob and Claire about their pets. Alice has a dog and Bob prefers cats. Claire
has a pet hamster.
Alice: Do you have any pets?
Claire: I have a pet hamster! He is so adorable. What about you two?
Bob: I don’t, but I really want to get a cat.
Alice: What, why a cat? Cats seem so boring. They never want to play.
Bob: Yeah, but cats are so cute! They also are a lot easier to take care of. They can clean themselves. What do you prefer?
Alice: Well, I have a dog. He is a corgi and his name is Bo.
Claire: That’s so adorable! How old is he?
Alice: He just turned one!
Bob: Aww that’s cute! I’m not usually a dog person, but corgis are adorable.
Alice: Haha, thank you! Bo is a really friendly dog.

The following is a conversation between Alice and Bob and Claire about grocery shopping. Alice has a shopping list for Bob.
Claire is helping Alice cook at home.
Alice: Could you run to the grocery store and pick up some bananas for me?
Bob: Will do - how many do you need?
Alice: Oh, I don’t know, maybe ten bananas. We are planning to make banana bread, but I also want to save some for us to eat
at home.
Bob: That sounds delicious! I’ll head out in a second. Is there anything else you need?
Claire: Oh, could you also pick up some more eggs? I think we’re running low here.

Table S26: Triadic conversation recipes written for each of the “generic topics” given in the FITS dataset continued
from Table S25.
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Abstract

Federated learning is a training paradigm
that learns from multiple distributed users
without aggregating data on a centralized
server, promising the ability to deploy machine-
learning to a diverse population of users with-
out first collecting large, labeled datasets. As
federated learning involves averaging gradient
updates across a decentralized population, there
is a growing need for personalization of fed-
erated learning systems (i.e. conversational
agents must personalize to individual users and
the context of an interaction). In this work,
we propose a new direction for personaliza-
tion research within federated learning, lever-
aging both personal embeddings and shared
context embeddings. We also present an ap-
proach to predict these “preference” embed-
dings, enabling personalization without back-
propagation. Compared to state-of-the-art per-
sonalization baselines, our approach achieves a
50% improvement in test-time perplexity using
0.001% of the memory required by baseline
approaches, and achieving greater sample- and
compute-efficiency.

1 Introduction

As conversational agents and dialog systems are
deployed to real-world scenarios, these systems
require data-efficient personalization paradigms
such that language systems such as conversational
agents can be effectively adapted on-device. The
benefits of on-device optimization are two-fold;
(1) Swift adaptation of model-behavior based on
human-interactions (Dudy et al., 2021), (2) Privacy
protection by means of retaining all data related

∗ The authors contribute equally to this paper.

to the user on-device (Li et al., 2020b). One of
the prevailing paradigms for learning from and en-
gaging with end-users is federated learning. Feder-
ated learning is an inherently decentralized learning
paradigm that assumes no access to a large labeled
dataset and instead leverages averaged parameter
updates across all users of the system (McMahan
et al., 2017). Such averaged updates invariably
dilute individual preferences or deviations from
the mean, resulting in a model that works well for
the average user while failing to appropriately cap-
ture under-represented preferences or sub-groups
within the data. In this work, we present a novel ap-
proach (FedPerC) to personalizing federated learn-
ing with personal and context embeddings (collec-
tively called “preference embeddings”), adapting
more efficiently and effectively than prior work
with respect to both data and compute on-device.

We leverage the insight that a client’s data distri-
bution is informed by both individual preferences
and additional contextual information. For exam-
ple, while each user may have their own individual
style, there may be more general population-wide
trends that inform the style of personalized predic-
tions (e.g., dialogue assistants helping patients with
cognitive disorders, whereby agents can personal-
ize to individual patients and broader condition-
wide trends). While individual preferences may
be unique to each client (e.g. a user’s taste or af-
fect), we can more accurately personalize to client
preferences with the addition of context, as shared-
context parameters carry beneficial stylistic infor-
mation across clients (Dudy et al., 2021; Jones,
1999). Stylistic or situational context provides ad-
ditional information to curate relevant language
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Figure 1: Overview of our personalized federated learn-
ing setup, FedPerC. Language models within client de-
vices, such as individual agents deployed to communi-
cate with people at hospitals, homes, or construction
sites, pull down global model parameters and context
embeddings. Local, on-device data is then paired with
both personal and context embeddings to produce per-
sonalized predictions with global model parameters.

outputs that can be shared across users.
In this work, we contribute a new approach to

personalized federated learning that is both eas-
ier to learn and more effective than prior work,
and investigate the utility of personalization via
individual preferences and contexts. While prior
language generation approaches have developed
personal or persona-based generative systems (Wu
et al., 2021; Zhang et al., 2018) or context-based
generative systems (Cheng et al., 2019; Lin et al.,
2019a) individually, none have combined them to
personalize outputs in a low-data setting under styl-
ized preferences. We show that our approach is
more sample-efficient than state-of-the-art base-
lines, while requiring less time to train. We addi-
tionally present an inference-only version of our
approach, personalizing without backpropagation
for new users. Finally, we directly test the poten-
tial for personalization with users who have been
held-out from training (i.e., testing with new users).
An overview of our approach is given in Figure 1.

2 Related Work

Federated learning enables machine-learning at-
scale to a diverse population of end-users without
first collecting a large, labeled dataset for all pos-
sible tasks. After the introduction of federated av-
eraging (McMahan et al., 2017), focus has shifted
to different ways of personalizing to individual
users. Prior personalization approaches for fed-
erated learning have typically involved learning
personal network heads and a shared global en-

coder (i.e., “split-learning” approaches (Gupta and
Raskar, 2018)), or learning a separate local model
from a global initialization (i.e., a “meta-learning”
approach (Finn et al., 2017; Nichol et al., 2018)).

Learning Personal Model Heads The most
prevalent approach to personalization in feder-
ated learning is through personalized model heads.
Such approaches share gradient information to
learn a global feature encoder, but retain user-
specific classification-head gradients on-device.
Approaches such as FedRep (Collins et al., 2021)
solely separate out local and global gradients, while
other methods such as PFedMe (Dinh et al., 2020)
enforce constraints on model-divergence (such as
via FedProx(Li et al., 2020a)). Other approaches,
such as FedMD (Li and Wang, 2019), enable clients
to adopt any desired architecture, sharing a com-
mon backbone but allowing for completely diver-
gent model heads (Arivazhagan et al., 2019; Kim
et al., 2021; Rudovic et al., 2021; Paulik et al.,
2021). Finally, there has recently been increased
effort on identifying clusters of related users to
share model heads, such as with K-Means clus-
tering in PFedKM (Tang et al., 2021) or through
clustered personal embeddings in FedEmbed (Silva
et al., 2022). Notably, there is no prior work which
learns both personal and contextual model heads
for personalization within federated learning.

Meta-Learning Global Models An alternate ap-
proach to personalizing federated learning models
is through the adoption of meta-learning (Jiang
et al., 2019; Fallah et al., 2020), for learning a
global model prior to fine-tuning on client-data.
After cloning the global model as an initialization
from all client’s updates, local, client-side models
are permitted to diverge and fine-tune to a user’s
individual preferences or data distribution (Fal-
lah et al., 2020; Deng et al., 2020; Hanzely and
Richtárik, 2020; Hanzely et al., 2020; Lin et al.,
2019b; Chen et al., 2022). However, computing
and applying gradients for a full model often re-
quires too much time, power, and memory. As such,
expensive full-model gradients can often only be
computed and applied when a device is not actively
in-use. As in the split-learning literature, there
are not meta-learning approaches for disentangling
personal and contextual preferences within person-
alized federated learning.

Learning with Personal Embeddings Our work
leverages the insight that personal preferences can
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be represented using a personalized embedding, al-
lowing the model to condition output predictions on
personal preferences without requiring completely
re-trained classification heads or networks. Per-
sonal embeddings have been used in prior work to
capture an individual’s “style,” often in imitation
learning settings (Tamar et al., 2018; Hsiao et al.,
2019; Paleja et al., 2020; Schrum et al., 2022a,b).
Treating personal embeddings as neural network
parameters that are updated on-device, these ap-
proaches learn to embed preferences and condi-
tion network output over both input data and pref-
erence embeddings. Most closely related to our
work are FedNLG (Lu et al., 2021), which predicts
“persona” parameters for users, and the Global+
model in FedEmbed (Silva et al., 2022), which
learns a personal embedding for each user. How-
ever, FedNLG requires access to a user’s entire
history of language and demographic data in order
to produce a “persona” for each user, informing the
generation of a “persona” embedding. Such infor-
mation is difficult to collect for large datasets, and
may compromise privacy requirements in federated
learning scenarios. Similarly, the Global+ model
incorporates supervised style feedback, requiring
labels that may be impractical to obtain in a private,
federated setting. Finally, prior embedding-based
approaches solely learn personal embeddings, ne-
glecting stylization through context. In our work,
we explore the utility of incorporating context in
addition to personal preferences, and all prefer-
ence embeddings are updated solely via a self-
supervised language-modeling loss.

Personalization in Language Personalization
for language generation systems seeks to produce
grounded systems that can efficiently adapt to end-
user needs (Yang and Flek, 2021; Dudy et al., 2021).
One such approach to personalization is by learn-
ing a “persona” for each user and conditioning
the language model on the embeddings or repre-
sentation for the persona via a memory network
(Zhang et al., 2018; Wu et al., 2021; Lu et al.,
2021). “Personas” are generally short sequences
of 5-6 sentences which contain information about
an individual such as “I have blonde hair” or “My
mom is a doctor.” Similar approaches leverage
Bayesian inference methods to infer context (Ma-
jumder et al., 2020) or persona (Kim et al., 2020),
and then condition the language generation on the
inferred context. However such approaches involve
collecting and maintaining user-profiles on a cen-

Figure 2: The FedPerC model architecture. Input data,
such as on-device conversation data for a user, is passed
into the language model in addition to personal and con-
text labels specifying user’s preference. The personal
and context labels are embedded through a preference
embedding layer to produce a single preference embed-
ding. This preference embedding is combined with the
word embeddings for the input sequence and passed into
the DistilGPT2 model to predict the next word.

tral server which may violate user-confidentiality.
Alternate approaches seek bypass this issue by en-
abling dynamic speaker modeling through context-
based fine-tuning rather than conditioning on pro-
file information (Cheng et al., 2019; Li and Liang,
2021). FedPerC leverages a similar design to dy-
namically learn personal and context embeddings
through data from small datasets for a given user,
while also preserving user-confidentiality via fed-
erated learning.

FedPerC represents a new direction in personal-
ized federated learning research, enabling personal
and stylized language generation with a fraction
of the memory, data, and compute costs of prior
approaches without requiring access to pre-made
personal profiles or sequence labels.

3 Approach

In this section, we present our novel approach to
personalization in federated learning with FedPerC.
FedPerC produces personal and contextual prefer-
ence embeddings either via backpropagation (i.e.,
learning preference embeddings), or by inference
(i.e., predicting preference embeddings). A visual
overview of our federated learning architecture is
in Figure 2, and a step-by-step walk-through of our
training algorithm is given in Algorithm 1.
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3.1 Personalization via Embeddings

Personalization in FedPerC is achieved entirely
through preference embeddings. Every input sam-
ple (e.g., an incomplete sentence) is accompanied
by both a personal preference embedding, repre-
senting the user, and a contextual preference em-
bedding, representing the context or style of the
prediction. These two embeddings are combined
via an element-wise multiplication to produce a
single preference embedding that accompanies the
input sample. By leveraging both personal and
context embeddings, FedPerC considers the indi-
vidual user and the broader context of an utterance,
enabling personal, stylized prediction.

In the language-modeling domain, the unified
preference embedding is prepended to the input
utterance, providing a prefix for the model to con-
sider (Li and Liang, 2021). The model then predicts
the next token of the utterance, and a language-
modeling loss is calculated by comparing the pre-
diction to the user’s actual next token. The next
token is then appended to the sequence, and prefer-
ence embeddings are again prepended to the new
input sequence, and the process repeats. After
completing a full utterance, preference embeddings
may be updated, either through backpropagation
or by using an embedding-generator to predict new
personal and contextual embeddings for the client.

3.2 Federated Learning Algorithm

To begin, all clients initialize their own personal
embedding on-device, and the server initializes a
set of C context vectors for each relevant setting
given the target task. We additionally assume that
all data points on a client device have an associated
context, c, being derived from the contextual infor-
mation of the client device when the data point was
captured (e.g., time of day, location, etc.).

Training begins by distributing all the requi-
site information to client-devices. Client devices
pull down the global model parameters, θ, and the
global context embedding parameters, ϕ, making
local copies, θd and ϕd (line 6). Unlike the global
model parameters and context embeddings, the per-
sonal embeddings, ψd do not need to be copied
from the server as they are kept on client-devices.

Client devices then take K gradient steps using
their own on-device data, where each input sample
is paired with the client’s on-device embedding, ψd,
and the context embedding for the particular sam-
ple, ϕd,c, assuming the data point was drawn under

context c ∈ C. Gradients are calculated using a
language-modeling objective, though any objective
could theoretically be applied. If preference embed-
dings are being generated via forward-propagation
rather than learned via backpropagation, contextual
and personal preference embeddings will also be
predicted by an embedding-generator at this stage
(note: the parameters of the embedding-generator
are shared globally, being a part of θ).

Gradients are applied to the shared-model param-
eters, θd, and are then used to update preference
embeddings (line 9). If preference embeddings
are being predicted, these gradient steps are also
applied to the shared embedding-generator, and
preference embeddings (i.e., context embeddings
ϕd and personal embeddings ψd) are overwritten
with their latest predicted values (lines 10-11). If
preference embeddings are being learned via back-
propagation, gradient steps are applied to ϕd and
ψd using Equation 1 (lines 10-11).

After K steps, gradients for θd and ϕd are sent
back to the server, while ψd remains on-device
(lines 13 - 15). The server computes a single up-
date for the global model and context embeddings
by averaging across all clients (lines 17-18). The
server applies the averaged update to θ and ϕ, and
the process repeats (lines 19-21).

ϕd = ϕd +∇ϕL(θd, ϕd,c, ψd, Bd)
ψd = ψd +∇ψL(θd, ϕd,c, ψd, Bd)

(1)

In a typical federated averaging deployment, client
devices will pull down global parameters, fine-tune
on local datasets, and then test on held-out, local
data. With FedPerC, the majority of the network’s
parameters, θ, are frozen, reflecting a federated-
learning setup with a more constrained computa-
tional budget when deploying large language mod-
els. Using FedPerC, clients pull down and sub-
sequently freeze global parameters, θ, and either
generate preference embeddings from observation,
or only compute and apply gradients to context em-
beddings, ϕ, and their local personal embedding
ψ. Relying on forward-propagation calls rather
than backpropagation, or by computing gradients
over only these embeddings, we reduce the com-
putational overhead of FedPerC while preserving
or even improving upon accuracy relative to fine-
tuning an entire model. When testing over local
data, all updates to context embeddings∇ϕ are not
sent to the central server. Rather, these gradients
are directly applied to the context embeddings for
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Algorithm 1 FedPerC Training Loop

1: Given: Training objective L, Client devices
D, # client steps, K, # global steps, N

2: Initialize: Global model θ, Context embeds ϕ
3: Initialize: Personal embeddings on-device ψ
4: for n ∈ N do
5: for d ∈ D do
6: θd = θ, ϕd = ϕ
7: for k ∈ K do
8: Sample Bd from user’s on-device data
9: θd ← θd +∇θL(θd, ϕd,c, ψd, Bd)

10: ϕd ← ϕd +∇ϕd
11: ψd ← ψd +∇ψd
12: end for
13: ∇θd ← θ − θd
14: ∇ϕd ← ϕ− ϕd
15: Return∇θd and ∇ϕd to the server
16: end for
17: ∇θ ← 1

D

∑D
d ∇θd

18: ∇ϕ ← 1
D

∑D
d ∇ϕd

19: θ ← θ +∇θ
20: ϕ← ϕ+∇ϕ
21: end for

the current user, and then discarded. When instanti-
ating a new embedding for a previously unseen user,
we set the user’s embedding to the noisy-average
of all known user embeddings.

3.2.1 Generating Preference Embeddings
To generate embeddings, we adopt a similar proce-
dure to HyperNetworks (Ha et al., 2016; Shamsian
et al., 2021), in which a neural network is trained to
predict parameters of another network. In FedPerC,
an embedding-generator is trained to predict the pa-
rameters of preference embeddings (either personal
or context). To generate embeddings, we apply
an additional transformer decoder block (Vaswani
et al., 2017), that uses a randomly-initialized per-
sonal embedding and a known context embedding
as the queries, along with the word embeddings
for the utterance as the keys and values to update
the given preference embeddings. We utilize sepa-
rate generators to predict the personal embedding,
ψd, and the context embedding, ϕd. Specific train-
ing details for the embedding-generator applied to
language-modeling are given in the appendix.

While the embedding-generator must be learned
from scratch during training, this method of pre-
dicting preference embeddings allows us to gen-
erate personal embeddings for previously unseen

users when testing. By predicting preference em-
beddings, we circumvent the need for expensive
gradient calculation and on-device learning. In-
stead, new users can quickly reap the benefits of
personalized predictions via a trained preference
prediction module (i.e., the embedding generator),
as opposed to conventional personalized federated
learning methods that require slow and sample-
inefficient on-device learning.

4 Experiments

We conduct several experiments to evaluate the
sample efficiency, generalization, and runtime of
our approach relative to baseline federated learning
frameworks. In our experiments, we compare:

• FedPerC – Learning personal and context em-
beddings jointly with a global feature encoder,
and performing local fine-tuning of personal
and context embeddings on-device.

• FedPerC (Frozen) – As above but without lo-
cal fine-tuning for preference embeddings.

• FedPerC (Generated) – Learning an embed-
ding generator and global feature encoder, and
then using only generated embeddings at test-
time (i.e., not directly learning embeddings).

• Split-Learning – Learning personal and
context-specific model-heads jointly with a
global feature encoder, and performing lo-
cal fine-tuning of the personal and context-
specific model heads on-device (Dinh et al.,
2020; Collins et al., 2021).

• Meta-Learning – Learning a single global
model for all users and contexts, and fine-
tuning the shared model-head on-device (Finn
et al., 2017; Nichol et al., 2018).

Because our experimental datasets do not con-
tain labeled personas for all users, we do not com-
pare directly to prior works that assume access to
such information (e.g., FedNLG (Lu et al., 2021)).

We conduct two sets of experiments to compare
the above approaches on both sample efficiency
and runtime efficiency. For the sample efficiency
experiments, we present perplexity numbers for all
methods across two versions of the dataset: known
users and withheld users. For our known user ex-
periments, all users are present in the training and
testing set. For our withheld user experiments, a
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subset of users from each dataset is withheld en-
tirely from training, and performance results are
presented only for the held-out users. Perplexity
is calculated over unseen utterances with the first
three tokens of each utterance given as a prompt.
Finally, we present qualitative results from our
method, demonstrating the power of stylized gen-
eration for individual users.

All models are initialized with the DistilGPT2
pre-trained model (Wolf et al., 2019), with all lay-
ers frozen. We note that the use of large language
models for federated language generation is a sig-
nificant improvement over prior work (Lu et al.,
2021) which instead learned Seq2Seq models from
scratch. For our Split-Learning and Meta-Learning
baselines, the last layer of the model is unfrozen.
Training details are in the appendix.

4.1 Datasets

We conduct our experiments using two datasets,
a smaller dataset of TV Show scripts (“Friends”
(Chen and Choi, 2016) and “Game of Thrones”
(Koirala, 2019)) and a larger dataset of Reddit posts
(Chang et al., 2020). Each dataset has a diverse
set of individuals as well as clearly defined con-
texts/styles (i.e., TV shows or subreddits). These
properties enable us to not only compare our ap-
proach to baseline approaches for personalized pre-
dictions, but they also enable us to move users
between contexts or styles (e.g., producing text for
a “Friends” character under a “Game of Thrones”
context). By generating sequences for different
users under new styles, we demonstrate the power
of FedPerC for personal, stylized prediction. Fed-
PerC is the first work to experiment on a dataset
consisting of language data from real-world users,
and not just movie scripts or dialogues. Additional
information about the datasets used in this work is
given in the appendix.

For both datasets, we treat each sentence from
a speaker (i.e., TV Show character or Reddit user)
as an independent utterance and we only consider
utterances with at least three tokens. For exper-
iments on known users, we perform a 60/20/20
Train/Validation/Test data split. For experiments
on novel, unseen users, we perform a 70/15/15
split of Reddit users, and we manually select the
“Friends” and “Game of Thones” users to include
in each data fold. For both sets of experiments, all
contexts are seen during training.

4.2 Results and Discussion

All experiments are repeated fifteen times, with
different random seeds for each run, and means
and standard deviations for performance and run-
time results are presented in Tables 1, 2, and 3.
Tables 1 and 2 show that our approach is able to
generate sensible language for both held-out user
instances and known users. Both embedding-based
approaches presented in this paper (i.e., FedPerC
with generated or learned embeddings) show dras-
tic improvements over baselines in terms of both
sample- and runtime-efficiency, and are more suit-
able for real-world on-device language models.

Summary With known users, FedPerC achieves
perplexity as low as 46.7 and 100.3, on the TV
Show and Reddit datasets, respectively, compared
to the best baseline perplexities of 82.1 and 233.2
(a 45-50% improvement). For unknown users, Fed-
PerC achieves perplexities of 52.3 and 97.6, re-
spectively, compared to baselines at 96.7 and 212.7
(a 45-55% improvement). FedPerC training times
are between 25-400% faster than baseline train-
ing times. Finally, FedPerC uses 0.001% of the
memory that baseline methods use for stylized per-
sonalization.

Memory Costs FedPerC incurs a significantly
lower memory cost than prior Split-Learning based
approaches (Li and Wang, 2019; Collins et al.,
2021; Dinh et al., 2020; Tang et al., 2021; Rudovic
et al., 2021; Gupta and Raskar, 2018). The Split-
Learning baselines require maintaining a model-
head for each user and context present in the
dataset, and the size of these model heads is pro-
portional to the size of the vocabulary. On each
client-device, a user’s personal model head and all
context heads need to be stored in memory and used
in forward passes. In our work, every GPT model
head is approximately 154 MB (being 768×50257
parameters). To update the model on-device, one
would need to store a model head corresponding to
every possible context. Our Reddit dataset involves
57 contexts, totalling an additional ∼ 8GB of data
in memory. This memory requirement for personal-
ized heads could become infeasible for real-world
tasks, particularly for on-device inference or back-
propagation on mobile devices. Using FedPerC,
which only requires the addition of a drastically
smaller preference embedding, the total amount
of memory required on device to store the embed-
dings is only ∼171 KB (0.001% of the memory
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Table 1: Perplexity Showing Sample Efficiency Across All Methods for Known Users. Lower is Better.

# Samples FedPerC FedPerC (Frozen) FedPerC (Generated) Split-Learning Meta-Learning

R
ed

di
t 1 219.5 ± 35.7 146.2 ± 2.3 120.2 ± 1.4 1297.5 ± 21.9 226.2 ± 3.7

5 131.6 ± 10.1 136.9 ± 3.4 123.3 ± 2.8 994.3 ± 27.8 234.7 ± 5.1
15 111.4 ± 3.5 132.6 ± 4.7 120.0 ± 3.3 691.3 ± 34.3 227.1 ± 8.4
All 189.5 ± 6.7 167.9 ± 2.0 124.9 ± 1.3 930.4 ± 30.9 241.4 ± 2.1

T
V

Sh
ow

s 1 57.2 ± 3.6 50.3 ± 1.6 51.6 ± 1.3 359.4 ± 28.2 111.7 ± 4.6
5 51.5± 1.5 50.7 ± 2.1 51.7 ± 2.0 244.5 ± 15.1 110.0 ± 6.5
15 48.8 ± 1.7 51.0 ± 2.1 51.7 ± 2.0 167.7 ± 8.6 111.9 ± 6.1
All 46.7 ± 1.7 51.2 ± 2.0 52.1 ± 2.6 82.1 ± 3.3 113.0 ± 4.7

Table 2: Perplexity Showing Sample Efficiency Across All Methods for Withheld Users. Lower is Better

# Samples FedPerC FedPerC (Frozen) FedPerC (Generated) Split-Learning Meta-Learning

R
ed

di
t 1 594.3 ± 973.8 202.0 ± 5.9 117.3 ± 1.8 922.9 ± 27.8 213.9 ± 6.0

5 139.4 ± 4.4 202.9 ± 10.9 117.5 ± 2.7 655.9 ± 18.8 212.2 ± 5.4
15 117.4 ± 1.9 203.6 ± 11.2 116.6 ± 2.6 449.2 ± 11.4 211.7 ± 3.7
All 101.1± 2.2 202.2 ± 7.6 117.9 ± 2.8 309.3 ± 8.3 212.8 ± 5.2

T
V

Sh
ow

s 1 205.1 ± 292.2 96.4 ± 10.4 68.7 ± 5.9 283.6 ± 30.9 113.5 ± 13.1
5 68.6± 5.6 90.1 ± 4.9 66.7 ± 6.3 220.7 ± 29.2 111.4 ± 13.3
15 62.1 ± 5.0 97.6 ± 6.8 66.1 ± 5.5 158.1 ± 20.0 117.3 ± 10.5
All 52.3 ± 3.3 98.2 ± 9.5 68.6 ± 5.1 96.7 ± 14.5 114.2 ± 17.0

required by separate model heads).

Sample Efficiency FedPerC is able to outper-
form Split-Learning and Meta-Learning models
with significantly fewer samples across both exper-
iments and both datasets. This trend is reflected
regardless of whether embeddings are generated or
learned through backpropagation. When embed-
dings are learned, FedPerC improves with online
data to more effectively model the given user’s style
as more data is made available to the model. Con-
versely, while the generated embeddings exhibit
greater sample performance with a single sample,
they are unable to improve with more data. For
both known and with-held users, FedPerC with
generated embeddings is unable to effectively up-
date the preference embedding to improve gener-
ation performance. Finally, we see an increase in
perplexity for Reddit users with all available data
when using FedPerC. This result suggests that it
is possible to overfit preference embeddings, as
we see an increase in perplexity from 15 to “All”
samples (Table 1).

We observe no improvement for the Meta-
Learning baseline, regardless of how much data
is available for each user. This lack of improve-
ment suggests that the model is not capable of

rapidly personalizing to a single user or context
with only a handful of available samples. Only
updating the model head may be insufficient when
the base, shared model head must generalize across
all possible contexts and characters.

The Split-Learning baseline, on the other hand,
does show significant improvement with increasing
amounts of data for withheld and known users. In
our known user experiments, all personal model
heads should have already been well-tuned to
personal preferences. Our result therefore sug-
gests that context-specific model heads are over-
generalized to their respective contexts, and must
be refined to better-align with individual users.

Runtime Efficiency FedPerC incurs significantly
lower training costs than both Split-Learning
and Meta-Learning approaches to personalization.
While Meta-Learning baseline does not have the
memory-constraints of the split-learning model in
terms of storing additional model heads, training
the Meta-Learning baseline still involves comput-
ing gradients over all 768 × 50257 parameters in
the shared output layer. As we show in Table 3,
this leads to a significantly more costly training
time for each user. Similarly, the Split-Learning
baseline must update at least two model heads for
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Table 3: Training and Testing run-time for FedPerC and our baselines, in milliseconds. Lower is better.

Method FedPerC FedPerC (Frozen) FedPerC (Generated) Split-Learning Meta-Learning
Train Pass Time 88.18 ± 24.104 43.57 ± 11.99 55.96 ± 12.41 222.08 ± 37.55 111.81 ± 22.33
Test Pass Time 40.37 ± 11.76 40.25 ± 12.10 47.02 ± 12.63 65.42 ± 16.49 36.77 ± 8.95

Table 4: Generated Examples using Arya, from “Game of Thrones” (GoT) and Chandler, from “Friends”.

Character Show “We Must” “I think”

Chandler Friends
be careful! I’m not going to get a divorce. I’ll be able to do this.
be a little bit more relaxed than we’re here. I’m a good man
be the one who’s the one who’s the one... I’m a big fan of you

Chandler GoT
be honest with you. I’m going to be a little more serious
be very nervous about the possibility of a bomb attack. I’m going to be a little bit of a jerk
be a little nervous about the situation I’m going to have a big secret.

Arya GoT
be a little more careful. you can’t help me
be careful about the dangers of the sea. of the people
be wary of the possibility of a coup. you’re not going to be a hero?

Arya Friends
be a thief I’m not a bad person
be a hero. I can do it
be a little girl. I should have a chance to do something

each backward pass, requiring gradient computa-
tion for 2 × 768 × 50257 parameters. If a user is
active in multiple contexts, then additional context
model-heads must be used, further exacerbating the
training cost of the Split-Learning approach. The
Split-Learning approach must also leverage these
additional context model-heads at test-time, result-
ing in the slowest forward-passes of any baseline.

In contrast to prior approaches, training for Fed-
PerC only requires updating 2 × 768 parameters.
This reduced computation results in significantly
lower training times. When we train an embedding-
generator, there is an increase in training times
reflecting the added cost of computing gradients
for the embedding generator. Additionally, there is
a test-time penalty incurred by the added forward-
pass parameters. When running inference with any
version of FedPerC, preference embeddings are
combined and then prepended to the input utter-
ance. This process results in marginally slower test
times with FedPerC relative to the Meta-Learning
baseline, though the differences are not significant.

Qualitative Results Our qualitative results in Ta-
ble 4 demonstrate the power of FedPerC, and justify
the need for personal and context embeddings. Not
only is our model able to complete sequences for a
character in their “home” context (i.e., the context
from which all of their data is drawn), but we are
also able to stylize generation for characters, bring-
ing them into new contexts. We present generated
samples from a “Game of Thrones” (GoT) char-

acter (Arya) with a “Friends” context embedding
and a GoT context embedding. We see that Arya’s
generated sequences are distinct under the two dif-
ferent contexts. Under the GoT context, Arya’s
utterances match the theme of the show, suggesting
danger and revolution. Under the “Friends” con-
text, Arya’s utterances change to instead reflect
more mundane, modern language while still pre-
serving personal attributes of the character.

Across all of our experiments, particularly
the novel experimental evaluation on held-out
user-instances, our results provide evidence that
embedding-conditioned personalization within fed-
erated learning can be effectively applied to real-
world use-cases. FedPerC offers a promising av-
enue of future work towards on-device language
models, capable of efficient language generation
with respect to compute-power and data.

5 Conclusion

We present FedPerC, a new approach to personal-
ized federated learning, enabling efficient and high-
performance personalization to client devices by
leveraging individual and shared preference embed-
dings. Combining shared contexts with individual
personal preferences, FedPerC outperforms base-
lines even when allotted a lower computational bud-
get, and is the first federated language generation
approach to build on large language models rather
than training sequence generation models from
scratch. We also provide a method of generating
preference embeddings through inference alone,
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providing personalization with no on-device gradi-
ent computation, and we show comparable perfor-
mance to FedPerC using learned embeddings.

We presented experiments on two datasets, TV
Show scripts and Reddit user data, presenting em-
pirical evidence of the utility of FedPerC towards
personalizing to unseen users in a federated learn-
ing setting, i.e. a 50% improvement in terms of run-
time and perplexity when fine-tuning on with new
users. We also demonstrated qualitative results,
showing the power of separate personal and con-
text embeddings and enabling stylization of users in
new contexts. Our results show that FedPerC offers
a promising path forward for personalization within
federated learning, achieving superior quantitative
results and requiring significantly less training time
and data relative to baseline approaches.

Limitations

Firstly, although our embedding-generator offers
a promising avenue of personalizing without any
on-device gradient computation, our generator is
currently unable to improve on its generated em-
beddings given more examples for a given user. As
shown in our results from Sec 4.2, while the model
can generate an effective preference embedding for
a user with a single sample, it is unable to improve
with more data. In future work, we hope to explore
approaches to facilitate a generator which can ef-
fectively modify embeddings given additional data.

Secondly, our approach caters to confidential-
ity by ensuring that user-data and embeddings re-
main on-device, however we have not incorporated
differential privacy in our experiments (Li et al.,
2020b). Future work may apply differential pri-
vacy to guarantee user privacy while personalizing
and contributing feature encoder information to a
central server. Finally, it is important to note that
FedPerC does not solve all problems within the
scope of language generation models. As FedPerC
offers a path forward to facilitate privacy protection
and efficient on-device learning for large language
models, future work may extend FedPerC to addi-
tional problems (e.g., language summarization or
turn-based dialogue generation).

Ethics Statement

Federated learning systems promise the ability to
learn useful models without needing access to pri-
vate, protected data on user’s devices. By contribut-
ing improvements to personalization and contextu-

alization within the federated learning paradigm,
FedPerC takes a step towards improving fairness of
federated learning systems, which otherwise strug-
gle with fitting to data distributions that are not
common in training populations. However, it is
important to note that FedPerC works to maximize
the likelihood of the observed data, which may
reinforce existing societal biases and stereotypes–
there are no protections or safeguards in place to en-
sure responsible generation or unbiased preference
learning (May et al., 2019; Nadeem et al., 2021;
Silva et al., 2021). While this problem is certainly
not unique to FedPerC, it is important to consider
the safety and fairness implications of improved
language generation, and future work must address
biases inherent to large language models (Schick
et al., 2021; Ravfogel et al., 2020). Another impor-
tant ethical consideration is the potential misuse of
our generative modelling approach for malicious
impersonation. In our federated setup, personal em-
beddings would be kept on-device, meaning that an
individual’s style is not accessible to others. How-
ever, this does not prevent users from manually
impersonating other individuals (e.g., celebrities).
Future work must explore additional mechanisms
for the prevention of misuse at all stages of the per-
sonalization pipeline, including protections against
impersonation of other individuals.
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A Generation Algorithm

At each time-step during inference, the embeddings
are updated by the following equations.

et =Multi_Head_Attn(W<t, LN(et−1),W<t)

et = LN(LN(et) + LN(et−1))

et = LN(FFN(et) + LN(et−1)

For the first timestep, et−1 is initialized as ϕ
or ψ for personal and context embeddings respec-
tively, and LN represents a layer normalization
function. We apply future-masking to prevent any
future-information in the sequence from leaking
forward into the rest of the model. After process-
ing the entire utterance, the generated embedding is
updated to the final value of et, which can then be
stored on-device for future processing. An updated
algorithm which applies the generator to predict
preference embeddings can be found in Alg 2.

B Training Details

All models are initialized with the DistilGPT2 pre-
trained model from Huggingface (Wolf et al., 2019).
All layers of the model are frozen, and FedPC only
backpropagates error to personal and context prefer-
ence embeddings. For our Meta-Learning baseline,
the last layer is unfrozen and all users jointly update
this final output layer (note: there is no dedicated
context head in this approach). Our Split-Learning
baseline assigns a unique model head to each user
and to each context, and each user only updates
their own model head and the contexts that they
use.

All models are trained for 55 epochs over
their training datasets using the Adam optimizer
(Kingma and Ba, 2014) for global updates (learning
rate = 1) and local updates (learning rate = 0.001).

Each client (character or Reddit user) makes 10
local updates before passing their pooled gradient
information back to the server. During training,
each client samples 15 data points per training pass.
For local fine-tuning updates at test-time, each user
makes 15 updates using a small portion of the test
data (the data used for fine-tuning is not used for
testing).

All models use a frozen DistilGPT2 model from
HuggingFace as their initialization. After empirical
experimentation, we opted to freeze the majority of
the DistilGPT2 parameters by default. This freez-
ing helped to save on computational and memory
costs as well as improving generalization perfor-
mance across diverse users. As a result of this freez-
ing, shared learning and personalization updates
will only affect model heads, shared embeddings,
and/or personal embeddings.

FedPC leverages a standard federated averag-
ing training procedure (FedAvg) (McMahan et al.,
2017) with the addition of a FedProx penalty term
(Li et al., 2020a) to regularize on-device client up-
dates back to the globally-averaged model. Em-
pirically, FedProx improved performance for all
methods. We fix the FedProx µ parameter to 1.

Training was carried out on an NVIDIA A40
GPU with 48GB of memory. Due to limitations
of the GPU, not all context-heads could be stored
in memory at once for our Split Learning base-
line when working with the Reddit dataset. The
GPU could only accommodate 14 model heads in
addition to the DistilGPT2 model, but the dataset
featured 57 unique subreddits. To work around this
limitation, 13 context heads were active at all times,
and the parameters of those heads were saved and
overwritten as necessary to ensure that each user
had access to their required context heads.

C Dataset Information

The TV Show dataset is constructed by merging
scripts from two shows, “Friends” and “Game of
Thrones.” We use ConvoKit (Chang et al., 2020)
to gather the “Friends” Corpus (Chen and Choi,
2016), and retain the six main characters. We use a
set of “Game of Thrones” scripts (Koirala, 2019)
to query for the thirteen characters with the highest
utterance-count. Our merged dataset has 19 char-
acters, 60650 utterances, and two contexts. The
average utterance count for each character is 3370,
with “Friends” characters having more utterances
than “Game of Thrones” characters.
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Algorithm 2 Personalized Federated Learning Loop with Generated Embeddings

1: Given: Training objective, L, Client devices D
2: Given: Number of client steps, K
3: Given: Number of global steps, N
4: Initialize: Global model, θ, Context embeddings ϕ, Context Generator Γ, Client Generator ν
5: Initialize: Personal embeddings on-device ψ
6: for n ∈ N do
7: for d ∈ D do
8: θd = θ, ϕd = ϕ,Γd = Γ, νd = ν
9: for k ∈ K do

10: Sample Bd from client’s on-device data
11: θd ← θd +∇θL(θd, ϕd,c, ψd, Bd) // Fine-tune global model with local data
12: ϕd ← νd(θd, ϕd,c, Bd) // Generate context embedding from local data
13: ψd ← Γd(θd, ψd, Bd) // Generate personal embedding from local data
14: νd ← νd +∇νL(θd, ϕd,c, ψd, Bd) // Update client Generator
15: Γd ← Γd +∇ΓL(θd, ϕd,c, ψd, Bd) // Update context Generator
16: end for
17: ∇θd ← θ − θd // compute final client θ gradients
18: ∇Γd ← Γ− Γd // compute final client Γ gradients
19: ∇νd ← ν − νd // compute final client ν gradients
20: Return∇θd , ∇νd and ∇Γd to the server
21: end for
22: ∇θ ← 1

D

∑D
d ∇θd // calculate average θ gradients

23: ∇Γ ← 1
D

∑D
d ∇Γd // calculate average Γ gradients

24: ∇ν ← 1
D

∑D
d ∇νd // calculate average ν gradients

25: θ ← θ +∇θ
26: ϕ← ϕ+∇ϕ
27: end for
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Our Reddit experiments use the “reddit-corpus-
small“ dataset from ConvoKit (Chang et al., 2020),
which includes posts from the top-100 subreddits
over a set period of time. We filter the dataset to

only include users with at least 50 utterances and
contexts (subreddits) with at least 150 utterances.
The resulting dataset has 326 characters, 30260
utterances, and 57 contexts.
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Abstract

We consider the problem of segmenting unfor-
matted text and transcripts linearly based on
their topical structure. While prior approaches
explicitly train to predict segment boundaries,
we propose to address this task by inferring
the hierarchical segmentation structure associ-
ated with the input text. For this purpose, we
present a data curation strategy to obtain the
hierarchical segmentation structure annotations
for over 700K Wikipedia articles. We then pro-
pose the first supervised approach to generate
hierarchical segmentation structures for given
text based on a neural conditional random field
(CRF) that explicitly models the statistical de-
pendencies between nodes and their constituent
children. We introduce a novel data augmen-
tation scheme as part of our model training,
which involves sampling a variety of node ag-
gregations, permutations, and removals, all of
which help capture fine-grained and coarse top-
ical shifts in the data and improve model per-
formance. Extensive experiments show that
our model outperforms or achieves competi-
tive performance when compared to previous
state-of-the-art algorithms in the following set-
tings: rich-resource, cross-domain transferabil-
ity, few-shot supervision, and segmentation
when topic label annotations are provided.

1 Introduction

Text segmentation (Hearst, 1997; Choi, 2000), an
important task in information retrieval, is defined
as the process of dividing unstructured text into
topically coherent segments. Because it recovers
topical structure from unformatted text, it can be
used as a pre-processing step for several down-
stream tasks such as text summarization (Mitra
et al., 1997), question answering (Oh et al., 2007)
and discourse analysis (Van Dijk, 1982).

Most prior works on text segmentation (Hearst,
1997; Choi, 2000; Koshorek et al., 2018) attempted
to address this task by explicitly predicting the
segment boundaries, with the assumption that any

given text can be decomposed into contiguous, non-
overlapping, indivisible segments, based on topical
themes. The discourse segmentation theory (Grosz
and Sidner, 1986), however, asserts that the out-
come may not always be strictly decompositional,
i.e., a segment may have sub-segments within it,
and segments may overlap with each other. Fol-
lowing this theory, we hypothesize that explicitly
training to infer the hierarchical topic structure of
the underlying text leads to better linear segmenta-
tion, as it forces the models to examine text at mul-
tiple levels to extract coarse-grained to fine-grained
topical segments. Further, this allows inference of
linear segments of varying granularity that can be
used for various downstream applications.

Previous works on hierarchical segmentation
are largely unsupervised (Eisenstein, 2009; Simon
et al., 2015) due to the unavailability of large la-
belled datasets with hierarchical structure informa-
tion. In this paper, we propose to leverage the hi-
erarchical structures in a supervised manner, given
the superior performances of supervised models
across several language processing tasks (Mikolov
et al., 2013; Pennington et al., 2014; Devlin et al.,
2019), and propose a data curation strategy to ob-
tain the hierarchical segmentation structures for
Wikipedia articles. Specifically, we leverage the
available HTML tag annotations1 and use them to
identify section and sub-section information with
their hierarchical level, which are then leveraged
to obtain the associated ground truth hierarchical
structure. Further, because these are extracted from
Wikipedia dump, they cover a wide range of topics
unlike prior/existing datasets (Eisenstein, 2009).2

Our approach is based on a recent CRF-based
constituency chart parsing technique (Zhang et al.,
2021), which offers efficient algorithms for super-

1https://dumps.wikimedia.org/
2Note that the dataset proposed by Eisenstein (2009) is a

small one consisting of 12 examples for evaluation, and will
not suffice for training large models.
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vised training and precise inference. This frame-
work explicitly models the relationships between
nodes and their offspring in binary trees, and thus
can enable hierarchical segmentation inference by
utilising the relationships between coarse segments
and their fine-grained sub-segments. However,
there are three challenges to directly adapt this
method to hierarchically segment text: (a) In con-
trast to the abundant labelled resources available
for constituency parsing (Marcus et al., 1993; Xue
et al., 2005), there is no large-scale labelled dataset
for this task. (b) This method can only infer bina-
rized hierarchical structures; it cannot be extended
to infer general hierarchical structures with nodes
having any number of children, as training and in-
ference become infeasible. (c) While the existing
method processes a sequence of tokens, the input
in our case would be a sequence of sentences.

We propose a framework for linear text segmen-
tation using the hierarchical structures of the under-
lying text. Specifically, our work makes four main
contributions: (1) We design an algorithm to obtain
the hierarchical structures for Wikipedia articles in
HTML format, and curate a large labelled dataset
for hierarchical text segmentation.3 (2) We present
an algorithm based on the Chomsky Normal Form
(CNF) (Chomsky, 1959; Hopcroft et al., 2001;
Lange and Leiß, 2009) theory to convert the hierar-
chical structures to binarized form - which makes
the computation of the tree-structure CRF objec-
tive tractable. (3) We propose a Transformer-based
architecture (Vaswani et al., 2017) to encode the
input sequence’s sentences, which uses a lot fewer
parameters than previous state-of-the-art BERT-
based (Devlin et al., 2019) approaches (Lukasik
et al., 2020). (4) We further propose a data aug-
mentation technique involving random node aggre-
gations, removals and permutation, which results
in significant performance improvement. Finally,
we demonstrate our method’s efficacy by compar-
ing its performance against prior unsupervised and
supervised linear text segmentation approaches.

2 Related Works

Prior works for linear text segmentation can be
divided into unsupervised and supervised meth-
ods, both of which can be further categorized
into locally and globally-informed ones. Locally-

3The code to curate dataset is available at https:
//github.com/inderjeetnair/hierarchical_
text_segmentation_data

informed methods find segment boundaries by es-
timating the extent of topical shift using local
cues (Hearst, 1997; Blei and Moreno, 2001; Laf-
ferty et al., 2001). While these methods enjoy
quick inference and low memory constraints as
they only utilize local features, they can result in
erroneous predictions when met with short incon-
sequential digressions (Kazantseva and Szpakow-
icz, 2011). Globally-informed methods, on the
other hand, utilize the complete context in opti-
mizing an objective to find the locations of topi-
cal shift (Choi, 2000; Kazantseva and Szpakowicz,
2011; Malioutov et al., 2007; Fragkou et al., 2004;
Glavaš et al., 2016). As they consider the entire
global context in inference, these methods have
higher memory constraints and time requirements.

More recently, Koshorek et al. (2018) introduced
a large-scale dataset for linear text segmentation,
which has resulted in the application of supervised
neural models to predict the segment boundaries for
unstructured text (Koshorek et al., 2018; Badjatiya
et al., 2018; Li et al., 2018). These models not only
achieve better performance but also are endowed
with high inference speed, owing to parallelized
computing with modern GPU architectures.

Owing to the success of supervised methods
for linear text segmentation, we design a globally-
informed supervised neural model for predicting
segment boundaries. However, unlike previous
works which address segment boundary prediction
explicitly, ours first hierarchically segments the
text, and then leverages the resulting structures
to predict the linear segment boundaries. To en-
able the supervised training of our proposed ap-
proach, we curate a large labelled dataset consist-
ing of Wikipedia articles along with their hierar-
chical structures automatically. Further, our pro-
posed method requires significantly fewer param-
eters that prior SoTA globally-informed methods
while achieving better performances. To the best
of our knowledge, ours is the first work to leverage
hierarchical structures to predict segment bound-
aries, and show that this results in improved perfor-
mances for the task of linear text segmentation.

3 Problem Formulation

Here, we briefly outline the objectives of linear
and hierarchical text segmentation tasks. Given
an article S composed of n sentences, S =
s0, s1, . . . , sn−1, the goal of linear segmenta-
tion is to obtain a contiguous partition L =
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Sequence of Linear Segmentations Hierarchical Tree

Figure 1: Transformation of a sequence of linear seg-
mentations to a hierarchical tree.

l0, l1, . . . , lk−1 such that joining the elements of
li in the same order reconstructs S and li ∩ lj =
ϕ ∀ i ̸= j. Each segment li in L is associated with
a topical theme which can be used for downstream
tasks such as summarization, information retrieval,
etc.

Hierarchical segmentation (McFee et al., 2017)
aims to infer a sequence of linear segmentations,
L = L0, L1, . . . , Lm−1, where Li is coarser than
Lj for i < j. Each element of L is thus a refine-
ment of all its preceding elements, to satisfy this
coarse-to-fine grained constraint. The refinement
condition for i ≤ j is: ∀l ∈ Lj ∃ l′ ∈ Li : l ⊆ l′.
That is, every segment in Lj is a subset of a seg-
ment in Li. In this paper, we represent the informa-
tion contained in L using a hierarchical tree (Fig.
1), where each node (other than the leaf nodes) rep-
resents a topical theme. The nodes near the root
represent general / coarser topics, and those near
the leaves indicate specific / fine-grained topics. In
our approach, the inferred hierarchical segmenta-
tion is in the form of a tree. After converting this
tree to a sequence of linear segmentations, we re-
turn an appropriate element from the sequence as
our inferred linear segmentation.

4 Dataset Curation

To train our proposed method in a supervised man-
ner, we collect hierarchical segmentation structure
annotations for the Wikipedia articles in WIKI-
727K dataset (Koshorek et al., 2018). As done
in (Koshorek et al., 2018), the articles in the HTML
form are preprocessed using WikiExtractor4 to re-
move (a) non-text elements such as tables and fig-
ures, and (b) very short sections and sub-sections
spanning fewer than three sentences. The markup
tags (<h1>,..., <h6>) associated with differ-
ent sections define the level of hierarchy for a given
text segment. We leverage this markup information
to obtain the hierarchical structure among the vari-

4https://github.com/attardi/
wikiextractor.git (Distributed under GNU Af-
fero General Public License v3.0)
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Figure 2: Binarization: Transformation of a tree having
nodes containing more than 2 children to a binarized form.

ous segments. We thus obtain a sequence of HTML
elements for each article. In the next sub-section,
we describe our algorithm to obtain the hierarchical
structures associated with these sequences. We ob-
tain the hierarchical structure annotations only for
the train split articles of the WIKI-727K dataset;
our approach can be applied to larger document
collections to obtain more datapoints.

4.1 Hierarchical Labelling

Algorithm 1 Algorithm for constructing hierarchi-
cal structure from a list of HTML elements
Require: X = x1, x2, . . . , xL ▷ Ordered list of HTML elements

c← ROOT ▷ ROOT initialized denoting the root of the tree to be
constructed
T ← ROOT
for i = 1 to ∥L∥ do

x← X [i]
while PRIORITY(x.TAG)≥ PRIORITY(c.TAG) do ▷ Selecting

appropriate element to add x
c← c.PARENT ▷ Updating c to its parent

end while
c.ADD(x) ▷ x is added as the next child of c
c← x

end for
Return T

Let the sequence of HTML elements associated
with an article be X = x0, x1, . . . xL−1, where
xi.TAG denotes the markup type associated with
xi, and xi.TEXT denotes its associated text. Here,
we outline our algorithm to obtain the hierarchical
organization of these elements. Let this hierarchi-
cal organization be represented as a tree rooted at
T . The non-leaf nodes represent topics, while the
leaf nodes represent sentences from the article.

Our algorithm iterates over the elements in X
and progressively adds them to the tree rooted at
T . It maintains a reference to the node c that is last
added to the tree. To add the next element x, the
algorithm only considers two possibilities: (a) x is
the next child of c, or (b) x is the next child of one
of the ancestors of c. This is to ensure that the pre-
order traversal of T recovers X (which happens
when x is added using the above two rules). To find
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Figure 3: Data Augmentation: First, hierarchical structures
are randomly sampled from the corpus; then, some nodes
are removed from the sampled structures and the outcome is
combined

the element to which x must be added, we associate
a priority to each markup type in the following
decreasing order: h1, ..., h6, p, where hi
indicates for section / sub-section headings and p
its associated text. For adding x, c is updated to
its parent until the priority of c exceeds that of x.
Algorithm 1 presents the pseudo code.

4.2 Binarization

Algorithm 2 Algorithm to be applied to every node
having more than 2 children to convert the original
structure to the binarized form
Require: x ▷ Node having more than 2 children

c← NEWNODE()
c.TYPE← I
n← ||x.CHILDREN||
for i = 1 to n do

c′ ← NEWNODE() ▷ New node initialized
c′.TYPE← R
c.CHILDREN← [c′, x.CHILDREN[n− i + 1]] ▷ Restricting the

number of productions to 2
c← c′

end for

The hierarchies thus obtained allows nodes to
have more than two children. We convert them
to binarized form (from which the original struc-
tures can be recovered) to ensure tractable training
and inference using our CRF-based segmentation
model (§5) (using Algorithm 2).

This algorithm visits each node x in a tree T
that has more than two children, and partitions the
children into two sets having ||x.CHILDREN|| − 1
children and 1 child respectively. Thereafter, a
new node is constructed whose children are as-
signed to the former set, followed by the updation
of x.CHILDREN to contain the new node and the
latter set in the partition. This is repeated until the
tree is devoid of nodes with more than 2 children.
To ensure recoverability, we define two types of
nodes in the binarized trees: Reducible (R) and
Irreducible (I). The nodes retained from T are

regarded to as I, and those added to convert T to
the binarized form are referred to as R (an example
of binarization is shown in Fig. 2). These types are
assigned to the node’s ’TYPE’ property (pseudo
code in Algorithm 2). To recover the original tree,
we visit every Reducible node in the binarized tree
and connect its children to its parent in the same
order. This process is repeated until the structure
becomes devoid of any Reducible nodes.

4.3 Data Augmentation

An inherent limitation of this dataset stems from
the fact that each Wikipedia page is composed of
a single global topic, and the direct usage of this
data will only train the model in detecting fine-
grained topical shifts resulting from sub-sections /
sub-headings. However, an article in practice can
also contain fragments with stark topical contrast.

To overcome this, we introduce a data augmenta-
tion strategy, where a subset of tree root references
are sampled at every iteration. Thereafter, some of
the children of these nodes are randomly dropped
and the ordering of left-out children is randomly
permuted. Finally, a new node is created and its
children are the sampled tree roots (Figure 3). This
new root consists of several coarse topics and the
random permutation of the child nodes ensures
that the model robustly infers topical segments in-
dependent of the order of the child nodes. The
augmentation is performed at every epoch ensuring
the number of artificially synthesized datapoints
is equal to the actual number of documents in the
train split.

5 Neural CRF Segmentation Model

5.1 CRF Formulation

We consider an article containing n sentences,
S = s0, s1, . . . , sn−1 and its corresponding hierar-
chical segmentation tree structure t. A node in t
representing a segment spanning si, si+1, . . . , sj is
denoted by (i, j). Alternatively, t can be expressed
as a set of tuples where each tuple corresponds to a
node segment in t.

Inspired by (Zhang et al., 2021), our model
presents a scoring function s(., .) → R (described
later) to assign a score for each node in t, e.g.,
s(i, j) represents the score for a node entailing
si, si+1, . . . , sj . We define a function S to score
the tree t using the sequence S as:

S(S, t) =
∑

(i,j)∈t

s(i, j) (1)
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Under CRF, we define conditional probability as:

P(t|S) = S(S, t)
Z(S) :=

∑
t̂ S(S, t̂)

(2)

The denominator sums the score of all possible le-
gal hierarchical trees.5 Note that, the computation
of the partition function Z(S) in the denominator
is intractable (exponential time complexity) if we
consider all possible hierarchical trees with nodes
having arbitrary number of children. However, bi-
narization offers efficient dynamic programming
algorithm to compute the partition function with
polynomial time complexity. Thus, we binarize t to
obtain t̃. However, the binarization also associates
a type to each node from the set {R, I}. Under this
formulation, every node in t̃ can be represented by
a triplet (i, j, l) which indicates that the correspond-
ing node of type l ∈ {R, I} spans si, si+1, . . . , sj .
Similar to Zhang et al. (2021)’s two-staged method,
we first identify the binarized tree structure that
maximises P(̃t|S), whose denominator only adds
the scores of the binarized trees, and then determine
the type for each of its constituent nodes. To find
the optimal structure maximizing P(̃t|S), we lever-
age Cocke–Younger–Kasami algorithm (CYK) al-
gorithm (Sakai, 1961). For each span (i, j) in the
inferred structure, we predict its type l:

l = argmax
l̂∈{R,I}

s(i, j, l̂) (3)

Figure 4 shows how our model processes the in-
put sequence to infer the hierarchical segmentation
structure. In the next subsection, we specify the
architectural details of its components.

5Legal hierarchical trees are expected to satisfy two condi-
tions: (1) There should be one-to-one correspondence between
the leaf nodes and the constituent sentences. (2) Every node
in the tree must span consecutive sequence of sentences.

5.2 Model Architecture

We now describe the implemented architecture,
which is adapted from the model proposed by Stern
et al. (2017) and Zhang et al. (2021) with two im-
portant modifications: (a) utilization of memory-
efficient Transformer (Vaswani et al., 2017) model
for encoding the sentence in place of word encoder,
and (b) better choice of hyper-parameters for hier-
archical text segmentation.
Encoder. Each sentence in S is encoded
in a context-independent manner using the
Transformer-based model proposed by Wang et al.
(2022), which contains 6 layers and 22M parame-
ters. The parameters of this model are fine-tuned
using self-attention distillation (Wang et al., 2022)
for the compression of large language models like
RoBERTa-Large (Liu et al., 2019). This stage trans-
forms s0, s1, . . . sn−1 to v0, v1, . . . vn−1 with 384
length each.
Contextualization. To contextualize v0, . . . vn−1,
we implement two BiLSTM layers over it. While
the architecture implemented by Zhang et al.
(2021) comprises of three BiLSTM layers, we ob-
serve that direct usage of the same hyper-parameter
settings lead to sub-optimal results on a valida-
tion set. The final context-aware representation for
a sentence is obtained by concatenating the cor-
responding forward and backward vectors from
the last layer. Let these vectors be represented by
c0, c1, . . . cn−1.
Scoring. Having obtained the contextualized repre-
sentations of the elements in S, we describe the ar-
chitecture used to compute s(i, j) and s(i, j, l). For
the computation of s(i, j), the contextualized repre-
sentations are passed to two multi-layer perceptron
(MLP) modules to obtain the left and right bound-

887



ary representation vectors (Zhang et al., 2021):

rsi ; l
s
i = MLPs

r(ci);MLPs
l (ci) (4)

Similarly, additional set of boundary vectors are
derived to compute s(i, j, l) for label prediction:

rli; l
l
i = MLPl

r(ci);MLPl
l(ci) (5)

The dimension of the boundary vectors for struc-
ture prediction is set to 500 and that for label pre-
diction is set to 800. s(i, j) is computed by intro-
ducing a trainable parameter W ∈ Rd×d:

s(i, j) = lsi
TWrsi (6)

Similarly s(i, j, l) is computed by introducing
WR and WI to derive the scores: s(i, j,R) and
s(i, j, I) respectively. Note we use rli and lli for the
computation of these scores of instead of rsi and lsi .

5.3 Training
An instance in the labelled dataset can be repre-
sented by: (S, t̃, l) where l is the set of all spans an-
notated with their corresponding type from {R, I}.
The loss function is formed by accumulating two
components:

L(S, t̃, l) = Ls(S, t̃) + Ll(S, t̃, l) (7)

The first term tries to maximize log(P(̃t|S)) by
refining the scoring function s(i, j). The second
term establishes cross-entropy loss for the type pre-
diction of the constituent spans. While the time
complexity of the partition function computation
Z(S) for log(P(̃t|S)) is O(n3) using inside algo-
rithm (Lari and Young, 1990), we implement the
batchified version of this algorithm proposed by
Zhang et al. (2021) that provides much better time
complexity (O(n) for a batch).

We train our models over the curated dataset
for 4 epochs using Adam optimizer (Kingma and
Ba, 2015) with batch size of 100 and learning rate
initialized to 2 × 10−4. The learning rate is ex-
ponentially decayed to 0.75 times its initial value
after 50K optimizer steps. The training is restricted
to datapoints having less than 200 sentences due to
GPU memory constraints.

6 Experiments and Results

We assess our method’s performance in various set-
tings when compared to SoTA linear segmentation
techniques. The tree inference from the model is
converted to a sequence of linear segmentations

Method Precision Recall F1 Score

BI-LSTM 69.3 49.5 57.7
CROSS SEGMENT BERT 69.1 63.2 66.0
BERT+BI-LSTM 67.3 53.9 59.9
HIERARCHICAL BERT 69.8 63.5 66.5

HIERCRF 80.6 59.4 68.4
HIERCRF-AUG 82.5 60.3 69.7

HIERCRF-BERT 79.0 63.3 70.2
HIERCRF-AUG-BERT 80.4 64.6 71.6

Table 1: Comparison with supervised baselines when abun-
dant labelled data is available. Only the hierarchical structures
of the articles in the train split of WIKI-727K are used in our
method for consistency.

(Fig. 1). As the position of an element in this se-
quence indicates the extent of segmentation, we se-
lect an appropriate position (constant for a dataset,
obtained through validation for supervised meth-
ods, and second position for unsupervised methods
due to how coarsely grained the topical shifts are
in them) and return the corresponding segmenta-
tion. We call our method variants HIERCRF and
HIERCRF-AUG, where the former and latter are
trained without and with data augmentation.

We compare our models to supervised methods
trained on WIKI-727K augmented with our hierar-
chical structure annotations (§6.1). Unsupervised
methods (Kazantseva and Szpakowicz, 2011; Du
et al., 2013) require a significant amount of time
for inference as they are computationally intensive
and do not take advantage of GPU parallelization
for efficiency. Hence, we do not compare their
performance for WIKI-727K, which contains a
large number of datapoints in the test split. In §6.2,
we look at how our model transfers knowledge
from one domain to another and investigate effi-
cacy in a low-resource setting. Here, we compare
our method to unsupervised as well as some super-
vised methods. Finally, we evaluate how our model
utilises topic label information for segmentation
using WikiSection (Arnold et al., 2019).

6.1 Rich Resource Setting

Here, we consider models that perform well
in linear text segmentation when large labelled
datasets are available for training. The large-scaled
dataset (WIKI-727K) curated by Koshorek et al.
(2018) for linear segmentation has been instru-
mental in the formulation of several deep learn-
ing methods (Koshorek et al., 2018; Lukasik et al.,
2020). We use the following as baselines: BI-
LSTM (Koshorek et al., 2018), CROSS SEG-
MENT BERT (Lukasik et al., 2020), BERT+BI-
LSTM (Lukasik et al., 2020) and HIERARCHI-
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Property Clinical Fiction Wiki

# Documents 227 85 300
# Sentences 31,868 27551 58,071

Segment Length Mean 35.72 24.15 25.97
Std Dev 29.37 18.24 9.98

Table 2: Datasets used for comparing our method against
statistical methods for linear text segmentation.

CAL BERT (Lukasik et al., 2020). Most of them
use BERT as their encoder (> 109M parameters).
To show the increased effectiveness of our model
when its complexity is increased, we also present
the performance with BERT as its encoder. We
use the test split in WIKI-727K (73, 233 instances)
and F1 score for evaluating the segment boundary
prediction performance. Further, the first and the
last sentences are not annotated in the ground truth
set of boundaries, as any segmentation algorithm
can easily predict them as segmentation boundaries,
thus inflating performance.

We note, from Table 1, that our linguistically mo-
tivated approach for inferring linear segmentation
from hierarchical segmentation gives better perfor-
mance despite having significantly fewer param-
eters (≈ 23M as opposed to strongest baseline’s
≈ 109M). As expected, increasing model complex-
ity improves performance, resulting in a new SoTA
for WIKI-727K (71.6 F1). We also observe our
precision is comparatively higher and the recall is
lower. We attribute this to node misclassification in
the inferred hierarchy. By construction, R nodes
are removed to get the final inference indicating
the corresponding segments would be absent in the
inferred hierarchy. Thus, even if the inferred bina-
rized structure is accurate, a misclassification of I
nodes as R will result in lower recall.

6.2 Cross Domain and Low Resource Setting
We categorize the methods in following groups.
A: Unsupervised: This group comprises of the fol-
lowing unsupervised techniques: U&I (Utiyama
and Isahara, 2001), MINCUT (Malioutov and
Barzilay, 2006), BAYESSEG (Eisenstein and Barzi-
lay, 2008), APS (Kazantseva and Szpakowicz,
2011), PLDA (Purver et al., 2006) and TSM (Du
et al., 2013). These methods use the number of
gold standard segments and test data corpus for
tuning the hyperparameters.
B: Cross-Domain Transferability: Here, we pre-
train supervised models using WIKI-727K’s train
split and evaluate on other datasets completely un-
supervised, without knowing the number of gold-
standard segments. We consider top baselines

Method Clinical Fiction Wiki
WD Pk WD Pk WD Pk

GROUP A

U&I 37.6 37.0 45.9 45.9 36.8 36.8
MINCUT 38.2 36.8 40.5 37.1 38.9 36.4
BAYESSEG 35.3 33.9 33.7 27.8 39.0 35.9
APS 39.9 39.6 48.0 45.1 38.0 39.2
PLDA 37.3 32.4 43.0 36.1 - -
TSM 34.5 30.6 40.8 32.5 - -
RANDOM 45.9 44.1 51.0 47.5 48.6 48.0

GROUP B

CROSS SEG BERT 40.8 39.4 44.4 42.7 37.1 36.3
HIER BERT 34.8 33.9 41.1 39.0 35.6 34.5
HIERCRF 34.4 33.9 43.1 42.4 33.4 30.0
HIERCRF-AUG 33.7 33.0 42.8 42.2 30.9 28.6

GROUP C

CROSS SEG BERT-
NO-PT

38.4 35.0 39.4 29.5 40.6 38.0

CROSS SEG BERT 31.0 29.8 34.4 27.6 32.4 27.5
HIER BERT-NO-PT 33.4 32.4 37.8 34.5 39.1 38.1
HIER BERT 38.5 35.2 34.0 25.5 35.0 29.1
HIERCRF-NO-PT 33.3 32.2 34.7 34.5 37.0 35.9
HIERCRF 26.7 25.5 33.3 29.9 28.6 26.3
HIERCRF-AUG 25.2 24.4 32.6 28.4 27.9 25.7

Table 3: Performance of our model against unsupervised
approaches. All results are averaged for 5 random splits.
TSM and PLDA implementations are unavailable to report
their performance on Wiki. PT: Pre-training.

from §6.1 (CROSS SEGMENT BERT and HIER-
ARCHICAL BERT) and our variants (HIERCRF
and HIERCRF-AUG). We re-implement the super-
vised baselines as original code is unavailable.
C: Low Resource Setting: Here, we expose the
models to 20% of the dataset for supervised learn-
ing and evaluate it on the rest of the dataset (results
averaged for 5 random seeds). For fine-tuning,
our model parameters are optimized to predict the
flat-hierarchy associated with the datapoints in the
training split. We also report the performance of the
model (appended with NO-PRETRAINING) which
is not pretrained over WIKI-727K.

We use the following three datasets to compare
our method against the statistical unsupervised ap-
proaches (Table 2):
Clinical (Eisenstein and Barzilay, 2008). Every
document is a chapter from a medical textbook
where labeled boundaries represent section breaks.
Fiction (Kazantseva and Szpakowicz, 2011). Each
document is a fiction from Project Gutenberg where
boundary annotations denote chapter breaks.
Wiki (Badjatiya et al., 2018). 300 articles are ran-
domly sampled from the wikipedia dump where
section tag labels are used to annotate boundaries.

We assess the performance of these methods
using Pk (Beeferman et al., 1999) and WinDiff
(WD) (Pevzner and Hearst, 2002) error metrics. Pk

computes the probability that two segments sam-
pled from a document are incorrectly identified as
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Method Pk(City) Pk(Disease)

SECTOR 14.4 26.3
S-LSTM 9.1 20.0
TRANSFORMER2 8.2 18.8
HIERARCHICAL BERT 8.6 22.4
CROSS SEGMENT BERT 10.1 21.8

HIERCRF* 8.8 20.4
HIERCRF-AUG* 8.5 21.2

HIERCRF 8.1 20.3
HIERCRF-AUG 8.0 20.0

Table 4: Comparison with various approaches in leveraging
segment labels. * indicates those methods do not use segment
labels. For our AUG-appended methods, we augment the flat
hierarchies associated with the training datapoints.

belonging to the same segment. WD moves a slid-
ing window across the document and counts the
number of instances where the hypothesized and
reference segment boundaries are different.

The results shown in Table 3 demonstrate the
competitive performance exhibited by our model
without any additional fine-tuning (B). As our
models in B are not subjected to separate hyper-
parameter tuning for different datasets, our pro-
posed models can be applied to other domains
with minimal changes (only the position from
the sequence of segmentations inferred from the
model needs to be specified). The performance of
HIERCRF-AUG in B is better than all the meth-
ods in A (despite not knowing the number of
gold-standard segments and tuning hyperparam-
eters over the testing corpus) for Wiki and Clinical
dataset which demonstrates the effectiveness of our
approach in transferring the knowledge from one
domain to another. Fine-tuning our models with
small number of datapoints (C) provides competi-
tive results for most of the datasets. As expected,
the performance in few-shot supervision setting
is boosted if the model is pre-trained over WIKI-
727K for the supervised approaches. Because the
datapoints in the Fiction dataset are longer than in
the other datasets, our model performs poorly (§8).

6.3 Results using Segment Labels

We compare our model’s segmentation perfor-
mance to baselines when segment-wise topic la-
bels are given. We use WikiSection’s split (Arnold
et al., 2019) that comprises of English documents
from two domains: diseases (3.6K documents)
and cities (19.5K documents). We use 70/20/10
splits for train/dev/test. We assess how well our
model uses the segment labels compared to earlier
methods. We consider the following approaches:
SECTOR (Arnold et al., 2019), S-LSTM (Barrow
et al., 2020) TRANSFORMER2 (Lo et al., 2021),

HIERARCHICAL BERT and CROSS SEGMENT
BERT. For fair comparison, no model is pretrained
on WIKI-727K.

To incorporate the topic label information in
training, we use the boundary vectors for label
prediction and a scoring mechanism similar to
Eqn 6. Specifically, the likelihood that span (i, j)
corresponds to topic label T is proportional to
s(i, j) = lli

T
WTr

l
i. The parameters WT for each

topic label T are trained using cross-entropy loss
similar to Eqn 7.

Table 4 shows that after incorporating topic la-
bel information, our model provides SoTA perfor-
mance for the City Domain and competitive per-
formance for the Disease Domain. This suggests
that providing auxiliary information, such as topic
label information, improves the performance of our
model. We believe that using a medical domain
specific encoder (Gu et al., 2021) would improve
our model’s performance in the Disease domain.

6.4 Ablation: Training Size and Performance

Here, we investigate the effect of training our mod-
els on data splits comprising of articles with vary-
ing sizes (number of sentences). Our objective is to
demonstrate that the performance of the model can
be improved by including datapoints with larger
size. However, the limitations in the GPU hard-
ware, has restricted the maximum datapoint size in
the training split to 200. We consider three variants
of our curated dataset for training: (a) datapoint
sizes ≤ 50, (b) datapoint sizes ≤ 100, and (c) dat-
apoint sizes ≤ 200. We report the performances
of models trained over these variants on splits con-
taining datapoints with size in the following ranges:
[1, 50], (50, 100], (100, 150], (150, 200], (200,∞),
and [1,∞)) from the WIKI-727K test data.

Table 5 shows the F1 scores. We note three main
trends: (1) The model performance decreases as
the size of the datapoint increases. This can be
attributed to the following two reasons. Firstly, ma-
jority of the datapoints in our curated dataset have
size in the range [1, 50], and the number of data-
points decreases as the range varies from (50, 100]
to (200,∞). Secondly, the ability of the model
to produce discriminative contextualized sentence
features is dependant on the size of the input dat-
apoint. As the contextualization is brought about
by Bi-LSTM module, very long sequences result
in vanishing gradient problem, and this results in
less effective modeling for longer sequences. (2)
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Method Training Dataset Testing Dataset Size Range
Size Upper-bound [1, 50] (50, 100] (100, 150] (150, 200] (200,∞) [1,∞]

HIERCRF
50 70.4 57.5 46.6 39.5 30.7 64.2

100 72.5 62.2 52.3 47.0 39.4 67.4
200 72.9 64.2 54.8 50.1 41.8 68.4

HIERCRF-AUG
50 71.8 61.3 51.2 45.4 37.2 66.5

100 73.9 64.1 54.9 50.3 42.5 69.0
200 74.2 64.2 55.2 50.3 42.9 69.7

Table 5: Effect of including datapoints with larger size in the training set: A model’s performance in terms of F1-Score
decreases as the size of the datapoint increases. Increasing the upper bound of the datapoint size in the training dataset improves
the performance uniformly for all the dataset size ranges.

Including datapoints with larger size uniformly im-
proves the performance of the model across all the
ranges. Thus, one line of future work could be to
procure more labels for articles with more number
of sentences. However, it is to be noted that train-
ing the model over larger sequences imposes heavy
requirements on GPU memory. (3) The effective-
ness of our data augmentation can be seen here as
well in producing uniformly better results than the
model not trained over augmented corpus.

7 Conclusion

We curated a dataset with hierarchical structures
and introduced an approach for linear segmenta-
tion by inferring the hierarchies. We illustrated
the effectiveness of our approach against prior su-
pervised and unsupervised methods for several
datasets. Our method, when exposed to a small
fraction of the data for fine-tuning, achieves supe-
rior performance when evaluated on other datasets
for this task. Unlike prior unsupervised methods,
ours without any hyperparameter tuning achieved
competitive results. While we focussed on predict-
ing segment boundaries, our method could also be
applied to yield hierarchical segmentation. How-
ever, the challenges specific to dataset size and
memory persist. We will study these aspects in our
future work.

8 Limitations

The ablation studies conducted in this paper high-
light some of the limitations of our model. The
model predictions are erroneous when the length
of the input text is very large. Even if we are
able to curate sufficient number of very long text
with ground truth hierarchical structure, training
the model parameters imposes heavy requirements
for GPU memory. This demands for the require-
ment of a better architecture that not only handles
long range sequence dependencies but also is GPU
memory-efficient while training.
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Abstract

Financial information is generated and dis-
tributed across the world, resulting in a vast
amount of domain-specific multilingual data.
Multilingual models adapted to the financial do-
main would ease deployment when an organiza-
tion needs to work with multiple languages on a
regular basis. For the development and evalua-
tion of such models, there is a need for multilin-
gual financial language processing datasets. We
describe MULTIFIN– a publicly available finan-
cial dataset consisting of real-world article head-
lines covering 15 languages across different writ-
ing systems and language families. The dataset
consists of hierarchical label structure providing
two classification tasks: multi-label and multi-
class. We develop our annotation schema based
on a real-world application and annotate our
dataset using both ‘label by native-speaker’ and
‘translate-then-label’ approaches. The evalua-
tion of several popular multilingual models, e.g.,
mBERT, XLM-R, and mT5, show that although
decent accuracy can be achieved in high-resource
languages, there is substantial room for improve-
ment in low-resource languages.

1 Introduction

Natural language processing technology has substan-
tially improved in recent years due to the general-
purpose Transformer model (Vaswani et al., 2017),
large-scale self-supervised training from unlabelled
corpora (Devlin et al., 2019), and the scaling of both
of these to increasingly large datasets and models
(Raffel et al., 2020). Nevertheless, there are still
benefits to having domain-specific models (Gururan-
gan et al., 2020), especially when working with clin-
ical (Dai et al., 2022) or financial text (Araci, 2019).

The domain of financial text is particularly inter-
esting for multilingual NLP, given that it is produced
across the world (Lewis et al., 2004; Kær Jørgensen
et al., 2021). The text often includes invoices, trans-
actions, accounting data, tax policies, and stock mar-
ket information, inter-alia, and there is an emerging

effort to create monolingual financial BERTs (Fin-
BERTs) to process financial text (Araci, 2019; DeS-
ola et al., 2019; Yang et al., 2020b; Liu et al., 2021).
However, the handling of financial text by multina-
tional companies is inherently multilingual, there-
fore, there is is a need for datasets to evaluate how
well models can process multilingual financial text.

To this end, we introduce the MULTIFIN dataset,
a publicly available financial dataset consisting of
real-world financial article headlines in 15 languages
(see examples in Table 1). MULTIFIN is annotated
with HIGH-LEVEL and LOW-LEVEL topics for multi-
class and multi-label classification, respectively. The
dataset is intended as a resource for developing mul-
tilingual financial language models. It is the first
benchmark for evaluating cross-lingual and multilin-
gual performance of financial models across multi-
ple languages, writing systems and language families
that reflects the real-world multilingual situation in
the financial domain.

We benchmark four large-scale pretrained lan-
guage models (SentenceBERT, mBERT, XLM-R,
and MT5) and find that the benefits of large-scale
pretraining also apply to financial text. XLM-R
is clearly the best performing model in all of our
experiments, however, there is a subsantial gap in
performance between high- and low-resource lan-
guages in MULTIFIN. Moreover, a simple LSTM ini-
tialized with FastText word embeddings gives sur-
prisingly competitive performance in several experi-
ments. Overall, we find the financial domain can ben-
efit from multilingual NLP, and future work should
focus on domain adaptive efforts and improving mod-
els’ capacity to generalize to low-resource languages.

Contributions Our contributions are as follows:
(a) We present a multilingual financial dataset based
on article titles in multiple languages and annotated
with two levels of topics. The dataset is made
publicly available at https://github.com/
RasmusKaer/MultiFin. (b) We evaluate dif-
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Example Lang. LOW-LEVEL labels HIGH-LEVEL labels

Encuesta Mundial de CEOs 2019 - Hostelería SPA · Board, Strategy & Mgmt.
· Retail & Consumers

Business & Management

Amendments to VAT legislation ENG · VAT & Customs
· Government & Policy

Tax & Accounting

Skatta- og lögfræðisvið ISL · Tax Tax & Accounting

Bestyrelsens rolle i forhold til strategiarbejdet DAN · Board, Strategy & Mgmt. Business & Management

Εισαγωγή στην Ελληνική Φορολογία GRE · Tax Tax & Accounting

「事業再編・再生支援」と「ディール戦略」部門を
統合・強化

JPN · M&A & Valuations,
· Board, Strategy & Mgmt.

Finance

Veri Analitiği ve Adli Bilişim Çözümleri TUR · Financial Crime
· Technology

Government & Controls

Table 1: Examples from the MULTIFIN dataset covering different languages, writing scripts, and combinations of LOW-
LEVEL and HIGH-LEVEL labels. See Section 3 for more details on the languages and annotation process.

ferent multilingual models under different setups in
conjunction with analysis on the multilingual MUL-
TIFIN to establish baselines for the benchmark. (c)
Our analysis identifies a need for further research in
minimizing the performance gap between high and
low-resource languages, and domain adaptive efforts
maybe be a promising direction for narrowing this
gap.

2 Existing Datasets for Financial NLP

Financial NLP is an emerging area of NLP. Re-
searchers and practitioners have a keen interest in
processing natural language for different downstream
tasks in the financial domain, such as text mining
in accounting (Loughran and Mcdonald, 2016), fi-
nancial transactions (Jørgensen and Igel, 2021), sen-
timent analysis (Malo et al., 2014), and text classi-
fication (Arslan et al., 2021). Also, financial eco-
nomics research shows that news articles and media
can be used to forecast firm performance (Tetlock
et al., 2008), predict stock market volatility (Glasser-
man and Mamaysky, 2019) and predict market re-
turn (Tetlock, 2007). Moreover, Qin and Yang (2019)
show that textual transcripts in combination with au-
dio recordings of company earnings conference calls
can be used to predict stock price volatility.

There is a large variety of downstream NLP tasks
in the financial domain. However, most work within
the community is carried out in a monolingual En-
glish setting, where the focus is on adapting success-
ful generic monolingual models to the financial do-
main (Araci, 2019; DeSola et al., 2019; Yang et al.,
2020b; Liu et al., 2021). Only a little work on mul-
tilingual domain-adapted models has been investi-
gated (Kær Jørgensen et al., 2021). Since the finan-

cial environment is indeed multilingual, further pro-
gression is conditioned on the availability of multi-
lingual resources to develop new methods for multi-
lingual NLP in the financial domain.

Datasets in the financial domain An extensive lit-
erature review identifies the datasets used for finan-
cial NLP. We define three criteria for being assigned
to the list: (1) the dataset needs to be publicly avail-
able and accessible, (2) it needs a clear definition of
the task with accompanying annotations (i.e., labels,
tags, etc.), and (3) it needs to be peer-reviewed and
documented. These criteria are set to ensure the qual-
ity of the data resource and proper availability and
accessibility. Table 2 presents our findings.

An investigation of the datasets shows that most
resources are in English. Table 2 (A) presents an
overview of the English evaluation datasets. AN-
ALYSTTONE DATASET (Huang et al., 2014), FIN-
TEXTSEN (Cortis et al., 2017) and FINANCIAL PHRASE
BANK (Malo et al., 2014) are among the most popu-
lar datasets. Sentiment analysis is the most frequent
task for the datasets, followed by classification. Only
few non-English and multilingual datasets exist. Ta-
ble 2 (B) and (C) shows available datasets in other
languages than English. There are five multilingual
datasets which contain English plus three additional
non-English languages. The dataset containing most
languages is the trilingual (El-Haj et al., 2022) and
(Gaillat et al., 2018). In addition, we found three
low-resource monolingual sentiment datasets: Ara-
bic BORSAH (Alshahrani et al., 2018), Greek FNS-
2022 SHARED TASK (El-Haj et al., 2022) and the Dan-
ish DANFINNEWS (Kær Jørgensen et al., 2021) which
is the Danish equivalent to the Financial PhraseBank.

The need for a multilingual financial resource has
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(A) Datasets in English (B) Non-English datasets lang

AnalystTone Dataset (Huang et al., 2014) SA DanFinNews (Kær Jørgensen et al., 2021) SA DAN
FinTextSen (Cortis et al., 2017) SA CorpusFR (Jabbari et al., 2020) NER,RE FRE
Financial Phrase Bank (Malo et al., 2014) SA BORSAH (Alshahrani et al., 2018) SA ARA
FiQA Dataset (Maia et al., 2018) SA,QA
FinNum-1 (Chen et al., 2018) Numeral CLS (C) Multilingual datasets

M&A dataset (Yang et al., 2020a) Deal completeness CLS ENG-CHI Parallel Fin. Dataset (Turenne et al., 2022) TC,MT ENG,CHI
FinNum-2 (Chen et al., 2019a) Numeral attachment FNS-2022* Shared Task (El-Haj et al., 2022) SA ENG,SPA,GRE
StockSen* (Xing et al., 2020) SA SEDAR* (Ghaddar and Langlais, 2020) MT ENG,FRE
FinCausal* (Mariko et al., 2020) RC,RE FinSBD-2019* (Azzi et al., 2019) SBD ENG,FRE
MultiLing2019 (El-Haj, 2019) Summarization SIXX-Corpora* (Gaillat et al., 2018) SA ENG,SPA,GER
FIN5 & FIN3 (Salinas Alvarado et al., 2015) NER
Stock-event (Lee et al., 2014) Stock Price Prediction (D) Our dataset

News-sample OMX Helsinki* (Malo et al., 2013) SA MULTIFIN (this paper) TC ENG,DAN,FIN,GRE,HEB,HUN,ISL,
EarningsCall (Qin and Yang, 2019) Stock Price Volatility ITA,JPN,NOR,POL,RUS,SPA,SWE,TUR
Stocknet (Xu and Cohen, 2018) Stock Movement Prediction

Table 2: A list of datasets for financial NLP with corresponding task (SA=Sentiment Analysis, NER=Named Entity
Recognition, QA=Question Answering, TC=Topic Classification, RC=Relation Classification, RE=Relation Extraction,
MT=Machine Translation, SBD=Sentence Boundary Detection, CLS=Classification). Marked (*) refers to datasets were
a request is needed or an application for permission needs to be obtained before that dataset is shared.

been highlighted in several studies (Gaillat et al.,
2018; Kær Jørgensen et al., 2021; Jabbari et al., 2020)
and its lack of multilingual resources is a limita-
tion for further progression. There is also a need
for including different language families and low-
resources languages into the research landscape to en-
sure that not only the high-resources languages lays
the foundation of research (Alshahrani et al., 2018).
This suggests a gap in resources necessary to advance
the financial NLP towards a more multilingual sce-
nario that simulate the financial domain’s multilin-
gual environment. Our work, see Table 2 (D), is mo-
tivated by creating a gold standard for benchmarking
financial models to facilitate work on adapting to mul-
tiple languages within a specific domain.

3 The MULTIFIN dataset

The MULTIFIN dataset is a multilingual corpus, con-
sisting of real-world article headlines covering 15
languages. We annotate the corpus using hierarchi-
cal label structure, providing two classification tasks:
multi-class and multi-label classification.

Data collection The dataset builds on a collection
of public articles published on a large accounting
firm’s websites. A subset of the archive was made
available for this study. The data collection is based
on a real-world application deployed in a large ac-
counting firm. The language selection is determined
by the company branches that made their data avail-
able to us. We build a multilingual dataset from
the headlines of the entire subset that the firm made
available. The subset of the archive covers published
material in 15 languages and comprises around 10K
headlines. The distribution of headlines over lan-

ENG TUR DAN SPA POL GRE FIN HEB JPN HUN NOR RUS ITA ISL
SWE

Language
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Figure 1: Number of examples per language in MULTIFIN.
Bars in the same color indicate these languages belong to
the same language family. In this paper, we define lan-
guages with more than 500 examples—ENG, TUR, DAN,
SPA, POL—high resource languages and the remaining low
resource languages.

guages is shown in Figure 1. The publication date is
mainly from the period of 2015 to 2021 with some
titles having missing dates. The proposed bench-
mark contains all the languages we were permitted to
use, reviewed by experts, which ensures the reliabil-
ity and quality of both language and content. While
the selection of the 15 languages might not be ideal
(e.g., African and Indic languages as well as Arabic
and Modern Standard Mandarin are missing), we pro-
vide the first massively multilingual dataset for finan-
cial NLP, see Table 2 for an overview over currently
available datasets. It is also worthy noting that head-
lines, due to their limited context, poses a great chal-
lenge for text classification models deployed in the
wild (Chen et al., 2019b). See Figure 6 for the text
length distribution across different languages.
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Annotation Scheme The articles were already
tagged with internally pre-defined topics from a
company-internal system. Based on these topics, we
derive a new, more general label set, referred to LOW-
LEVEL. Through our label scheme we seek to have
different levels of granularity since it gives us the op-
portunity to go deeper into evaluating the ability of
identifying the more refined topics that are presented
in titles. Therefore, we first assign fine-grained tags
to the topics contain in an headline. For this we
use the LOW-LEVEL topics. Secondly, we also as-
sign the headline to a single more coarse-grained cat-
egory, referred to HIGH-LEVEL. We defined the HIGH-
LEVEL topics on the basis of universal categories typ-
ically found in news media and more common con-
tent categorization. Our fine-grained annotation pro-
cess results in a dataset with multiple labels per head-
line. We derive HIGH-LEVEL single labels from these
multi-label annotations based on either a majority-
vote, using the first tag in case of ties. The overview
of LOW-LEVEL and HIGH-LEVEL topics is presented
in 3.

HIGH-LEVEL LOW-LEVEL

Technology Technology
IT Security

Industry

Power, Energy & Renewables
Supply Chain & Transport
Healthcare & Pharmaceuticals
Retail & Consumers
Real Estate & Construction
Media & Entertainment

Tax &
Accounting

VAT & Customs
Tax
Accounting & Assurance

Finance

M&A & Valuations
Asset & Wealth Management
Actuary, Pension & Insurance
Banking & Financial Markets

Government &
Controls

Government & Policy
Financial Crime
Governance, Controls & Compliance

Business &
Management

Board, Strategy & Management
Start-Up, Innovation & Entrepreneurship
Corporate Responsibility
SME & Family Business
Human Resources

Table 3: Overview of HIGH-LEVEL and LOW-LEVEL topics.
The coarse-grained single labels are derived from the fine-
grained multi-label annotations based on either a majority-
vote, using the first tag in case of ties.

Annotation Process We ask native-level speakers
of English and Danish to annotate the dataset using
the LOW-LEVEL tags. The annotators have domain

expertise and participated on a voluntary basis. De-
tailed annotation guidelines were presented to the an-
notators before they started. The description contains
definitions of topics including some exemplifications
of themes and concepts that may occurs for the top-
ics. As for the annotation of multiple labels, the an-
notators were asked to label up to three topics per
example. The annotated labels needed to be ordered
by topic weight, i.e., the first annotated topic is the
most dominating topic in the sentence, then the sec-
ond and third most. The overview and statistics of
the label distributions can be found in appendix B.

Translate-then-label evaluation We translated the
headlines into English for topic annotation using a
translation service1. We carefully assessed the trans-
lation quality to ensure that the translation process
does not introduce noise into our dataset. We want
to check whether the content of the original sentence
is contained in the translation to English. That is,
the topics or matters treated in an article stay the
same for the translation. For the evaluation, we ran-
domly sample 50 examples from DAN, NOR, ITA, SPA,
POL and the entire SWE. We asked evaluators with
language proficiency to assess the samples. We pre-
sented them with the original sentence, its English
translation, and the annotated topics, and ask to an-
swer a true/false question of 1) is the content of the
original sentence contained in the English transla-
tion, 2) is the property that makes the English sen-
tence fall into this category present in the original
sentence as well? The evaluation shows that for DAN,
NOR, ITA, SPA, POL and SWE all preserved the prop-
erties that make the article fall into a specific cate-
gory. There was not reported any errors by the eval-
uators. Thus, we consider translation quality to be
high enough to not introduce noise in the process.

Annotator agreement Inter-annotator agreement
is measured as multi-label Cohen’s κ (Cohen, 1960).
The sample selected for evaluation by both annota-
tors is 1200 examples, randomly sampled across lan-
guages and topics. The combined κ of 0.94 suggests
a near-prefect agreement. Table 5 depicts the topic-
level κ.

Description of dataset The dataset consists of
10,048 headlines in 15 languages annotated with 23
topic labels for LOW-LEVEL and 6 HIGH-LEVEL topics
for multi-class. See Appendix B for details on the dis-
tribution of the LOW-LEVEL topics and HIGH-LEVEL

1Google Translate, version as of Autumn 2021
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topics and Appendix E for an overview of the sen-
tence length distribution across different languages.
For multi-class, multi-label classification, we have a
total of 14,230 tags across 10,048 headlines (80,678
tokens) using 23 fine-grained topics. For multi-class,
single label, we have a coarse-grained topic tag for
each headline.

4 Experiments and Results

We employ popular pre-trained multilingual models2

and test their effectiveness under different experimen-
tal setups. For experimentation, we will only focus
on the LOW-LEVEL multi-label task, and HIGH-LEVEL
results are reported in the appendix, Table 9.

4.1 Models

MBERT (Devlin et al., 2019) has been pre-trained
on Wikipedia articles of 104 languages. Similarly,
XLM-R (Conneau et al., 2019) was pre-trained on
web crawl data, whose size is much larger than
Wikipedia data. For both MBERT and XLM-R, we
built a classification layer on top of sentence embed-
ding (i.e., the hidden states corresponding to the first
[CLS] token). The classification layer consists of a
dense layer and tanh activation function, followed by
another dense layer, where the output dimension is
the total number of possible topics.

SBERT We use multilingual sentence
BERT (Reimers and Gurevych, 2020) to map
an input sentence to a 768 dimensional dense vector
space and then build a classification layer on top of it.
Note that we follow Reimers and Gurevych (2019) to
keep the weights of SBERT fixed and use SBERT as
a feature extractor. We also investigate the variant of
fine-tuning SBERT together with the classification
layer. The results of fine-tuning approach are very
close to feature extraction approach, although the
latter involves much smaller number of trainable
parameters (110M vs 600K).

mT5 (Xue et al., 2021) was pre-trained on web
crawl data covering 101 languages using a ‘text-to-
text’ format. That is, consecutive spans of input to-
kens are replaced with a mask token, and then an
encoder-decoder transformer is trained to reconstruct
the masked-out tokens. When mT5 is used for down-
stream classification task, the model outputs the lit-
eral text of the label instead of a class index.

2The number of trainable parameters for each model is listed
in Table 8 in the Appendix.

All (6430)

High Resource (5353)

English (1747)

Train

All (1608)

Dev

All (2010)

No English (1464)

Low Resource (336)

Test

Figure 2: We train models on the complete training set
as well as two subsets, to evaluate the multilingual learn-
ing and cross-lingual transfer capacities respectively. We
use a joint development set of all the languages to select
the trained checkpoint. The final model is evaluated on
the test and metrics evaluated on the complete test as well
as two subsets are reported. Numbers in brackets are the
examples belonging to the corresponding (sub)set.

In addition to these transformer-based models, we
also experiment with models using pre-trained type-
based embeddings described below.

Aligned fasttext embeddings As a baseline, we ex-
periment with models using pre-trained type-based
embeddings3, in particular the 300-dimensional fast-
text embeddings (Bojanowski et al., 2017) trained
on Commoncrawl and Wikipedia data (Grave et al.,
2018). In order to enable cross-lingual transfer,
we map language-specific fasttext embeddings for
all languages covered in our dataset into a common
space4, using RCSLS (Joulin et al., 2018) as a su-
pervised mapping method. Details about embedding
alignment can be found in Appendix C. The mapped
embeddings are used as inputs for two baseline mod-
els: an LSTM classifier (FASTTEXTLSTM) and a bag-
of-embeddings (FASTTEXTBAG) classifier. The LSTM
classifier consists of one bidirectional LSTM layers
with a classification layer on top, which receives as
input a concatenation of the final hidden states of the
top-most layer of forward and backward LSTM. The
BoE classifier uses the average over all word embed-
dings in the input sequence as input to the classifica-
tion layer. For both models, we use the same classifi-
cation layer as for the MBERT and XLM-R models.

4.2 Experimental setup
To evaluate multilingual learning, we train the model
on the complete training set that contains all 15 lan-
guages (referred to as ALL). To evaluate cross-lingual

3Fasttext models enable the computation of embeddings for
out-of-vocabulary words based on sub-tokens.

4We compute pairwise mappings between non-English
source embeddings and English target embeddings, and map all
non-English embeddings into the space of English embeddings.
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Model Training Test
ALL NO ENGLISH LOW RESOURCE

FASTTEXTBAG

ALL 74.2 ± 0.2 71.7 ± 0.2 60.9 ±0.8

ENGLISH 41.8 ± 1.5 24.5 ± 1.6 27.9 ± 3.2

HIGH RESOURCE 70.3 ± 1.1 66.8 ±1.1 38.2 ± 1.2

FASTTEXTLSTM

ALL 85.4 ± 0.4 83.6 ± 0.4 74.4 ± 0.9

ENGLISH 51.6 ± 0.5 36.9 ± 0.6 41.9 ± 1.9

HIGH RESOURCE 82.4 ± 0.6 80.0 ± 0.6 59.5 ± 1.5

SBERT
ALL 73.5 ± 0.2 67.9 ± 0.2 52.0 ± 0.2

ENGLISH 50.8 ± 0.5 32.7 ± 0.4 27.5 ± 0.6

HIGH RESOURCE 69.9 ± 0.3 62.8 ± 0.5 27.4 ± 0.2

MBERT
ALL 88.6 ± 0.3 86.5 ± 0.3 77.9 ± 0.5

ENGLISH 58.3 ± 0.7 43.5 ± 1.0 39.4 ± 2.3

HIGH RESOURCE 84.1 ± 0.4 80.6 ± 0.4 47.7 ± 0.7

XLM-R
ALL 90.8 ± 0.4 89.4 ± 0.4 83.9 ± 0.6

ENGLISH 68.0 ± 1.3 59.2 ± 1.6 59.8 ± 1.9

HIGH RESOURCE 88.6 ± 0.4 86.4 ± 0.5 71.0 ± 1.9

MT5
ALL 81.3 ± 0.1 76.6 ± 0.2 51.0 ± 1.5

ENGLISH 50.7 ± 1.0 34.3 ± 1.1 25.5 ± 1.9

HIGH RESOURCE 78.5 ± 0.3 72.9 ± 0.5 33.7 ± 0.2

Table 4: Evaluation results on fine-grained topics (LOW-LEVEL). This is a multi-label classification task with 23 labels,
and each example may be assigned up to three topics. All experiments are repeated five times using different random
seeds. Averaged Micro F1 scores and the standard deviations are reported. Best results per column are marked in bold.

transfer, we train the model on (i) a subset that con-
tains only English training data (ENGLISH); and, (ii) a
subset that contains 5 high-resource languages (i.e.,
English, Turkish, Danish, Spanish, Poland) (HIGH
RESOURCE).

Model selection In the context of zero-shot cross-
lingual transfer, it was shown that performance on
a source language (e.g., English) development set
does not correlate well with performance in the tar-
get language (Keung et al., 2020; Chen and Ritter,
2021). We follow Conneau et al. (2018) and use a
joint development set of all the languages. Figure 2
is a high-level illustration of our experimental setup.
The trained model which achieves the highest Micro
F1 score on the development set is finally evaluated
on the test set. We repeat all experiments five times
using different random seeds and mean values and
standard deviations are reported.

4.3 Results
Table 4 shows that models trained on the training set
consisting of all languages (ALL) achieve slightly bet-
ter results (2.0-4.5 absolute F1) than the ones trained
on high-resource languages (HIGH RESOURCE) when
the trained models are evaluated on the complete test

set. However, this performance gap becomes much
larger (11.4-30.2 absolute F1) when models are eval-
uated on the subset containing only low-resource lan-
guages, which is expected, as the latter setting re-
quires zero-shot transfer when training on HIGH RE-
SOURCE and evaluating on LOW RESOURCE. In the
per language analysis (detailed in the following sec-
tion), we also observe that once the training set con-
tains abundant examples (500+) for these languages,
models achieve nearly the same results when evalu-
ated on high-resource languages (Figure 3). There-
fore, we focus our discussion on the evaluation re-
sults on low-resource languages. The first observa-
tion is that different pre-trained multilingual models
differ in multilingual learning abilities on our dataset.
That is, when they are fine-tuned on ALL, model ef-
fectiveness on low-resource languages ranges from
51.0 to 83.9 (A detailed analysis can be found in the
following section). The ability of zero-shot cross-
lingual transfer is another interesting property of mul-
tilingual models. Previous studies show that models
trained on English only can achieve impressive re-
sults on examples in other languages (Conneau et al.,
2018; Hu et al., 2020). However, we observe poor
performance when models are trained on ENGLISH
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and evaluated on LOW RESOURCE (all under 40 F1 ex-
cept XLM-R achieving near 40 F1). In terms of the
choice of source languages, we observe moderate im-
provements (6.8-11.2 F1) when massively multilin-
gual pre-trained models (i.e., MBERT, XLM-R, MT5)
are cross-lingual transferred from more languages
(HIGH RESOURCE: ENG, TUR, DAN, SPA, POL) rather
than from ENGLISH only. On the other hand, the
improvement becomes much larger (17.6 F1) when
FASTTEXTLSTM is trained on more languages, indicat-
ing that the model might make better use of informa-
tion from additional languages than the transformer-
based models. When training on HIGH RESOURCE,
FASTTEXTLSTM only slightly underperforms MBERT,
and outperforms all other models except XLM-R for
transfer from HIGH RESOURCE to LOW RESOURCE.
This might be due to the explicit embedding align-
ment mechanism used in the FASTTEXT approach.

We also calculated the Wilcoxon signed-rank test
to assess whether there is a statistically signifi-
cant difference between the results of XLM-R and
MBERT. XLM-R significantly (p-value ≤ 0.05) out-
performed MBERT when trained on ALL, ENGLISH,
and HIGH RESOURCE and then evaluated on the com-
plete test set. However, the differences for individ-
ual languages were not always statistically significant
(p > 0.05). When both models were trained on ALL,
the differences in performances on TUR, NOR, RUS,
SWE, ITA, and ISL were not significant; the same holds
for the difference on ENG when trained on ENGLISH
as well as for the differences on SWE and ISL when
trained on HIGH RESOURCE.

5 Analysis and Discussion

Our experiments suggest that although decent accu-
racy can be achieved for high-resource languages,
there is substantial room for improvement in achiev-
ing better performance on the multilingual financial
dataset. In this section, we present a detailed analysis
of the results and investigate some of the findings to
identify possible modelling improvements and look
into the different dimensions of our dataset.

5.1 Multilingual abilities from a language-level
perspective

Multilingual models should ideally learn good rep-
resentations for all languages they were pre-trained
on but this is difficult to achieve in practice due
to the “curse of multilinguality” (Conneau et al.,
2019). Figure 3 presents per-language results for
the three training settings ALL, ENGLISH, and HIGH

RESOURCE. Generally, we see that XLM-R outper-
forms the rest of the models across all test settings
and languages. When training on ALL data (first
block in Figure 3), although the models have seen
all languages during training, MT5 and SBERT seem
to be struggling particularly with GRE, JPN, HEB and
HUN. We see a drop in performance between high (up-
per part of the column) and low-resource languages
(bottom part of the column), which is expected as
the low-resource languages have less examples in the
training dataset. When training on HIGH RESOURCE
(last block in Figure 3), we observe that performance
for the high-resource languages seen during training
is stable compared to training on ALL (indicating
that including low-resource languages during fine-
tuning does not hurt performance on high-resource
languages), but performance for zero-shot transfer to
low-resource languages drops significantly. We com-
pare the performance drops suffered on low resource
languages from training on ALL data to training on
HIGH RESOURCE data between XLM-R, MBERT, and
FASTTEXTLSTM, and find that MBERT suffers from
larger performance drops than the other models for
most languages, with the largest drops for GRE and
HEB. XLM-R shows the smallest performance drops
for most languages, indicating that it has better zero-
shot transfer abilities than the other models.

Next, we analyze the best source for zero-shot
transfer by comparing the performance on low-
resource languages for models trained on HIGH RE-
SOURCE data with models trained on ENGLISH data.
In all cases (except XLM-R on SWE), zero-shot trans-
fer works better when more languages are included
in the training set. This might be due to the fact
that training on more languages allows models to
learn more robust representations of input sequences.
Another factor might be that, as our dataset has a
large label space, including more training examples
(regardless of language) can improve learning repre-
sentations of otherwise sparse classes. As indicated
by the averaged results reported in the previous sec-
tion, for most languages (except FIN and ISL), FAST-
TEXTLSTM shows higher improvements when including
more languages to train on.

Comparing zero-shot performance on different tar-
get languages for models trained on ENGLISH (mid-
dle block in Figure 3) reveals that all models with
a slight exception to XLM-R struggle to generalize
to languages not seen during fine-tuning, although
they were part of the pre-training languages. Previ-
ous research on MBERT suggests a correlation be-
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Figure 3: Per language analysis with the multi-label, LOW-LEVEL setting. We train on the three settings: ALL, ENGLISH,
and HIGH RESOURCE and test on ALL. The first column in each block refers to FASTTEXTLSTM. Languages are in descending
order by the number of examples in MULTIFIN, with a white separator between high and low-resource languages.

tween zero-shot performance in a downstream task
and amount of in-language pre-training data (Wu and
Dredze, 2020; Lauscher et al., 2020), which we also
observe in our results. Overall, we see very poor gen-
eralization ability to certain low-resource languages,
such as ISL, GRE, HEB, and RUS. Particularly for ISL,
transfer ability from ENGLISH is nearly non-existing,
indicating a need for multilingual models with better
transfer abilities to low-resource languages.
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Figure 4: The improvement over the vanilla MBERT, in
Micro F1, due to domain-adaptive pre-training MBERT.
We compare the model by Kær Jørgensen et al. (2021)
against the vanilla MBERT.

5.2 Domain-adaptive pre-training can boost the
cross-lingual performance

Domain-adaptive pre-training has been shown to im-
prove the model effectiveness when these models are
employed to process domain-specific text (Gururan-
gan et al., 2020). We evaluate the publicly avail-
able model by Kær Jørgensen et al. (2021), which
continues pre-training MBERT on the combination
of multilingual financial text and Wikipedia, and
measure the improvement over the vanilla MBERT
in Table 4. Note that the multilingual pre-training
data in (Kær Jørgensen et al., 2021) cover 9 lan-
guages in MULTIFIN, except POL, GRE, FIN, HEB,
HUN, and ISL. Nevertheless, results in Figure 4 show
that domain-adaptive pre-trained models outperform
vanilla MBERT in all experimental setups, and larger
improvements are observed when training set and test
set are disjoint, for example, when models are trained
on English or high-resource languages and tested on
low-resource languages.

5.3 Multilingual versus translate
We assessed that the translation quality was good
enough to preserve the topics in Section 3. There-
fore, we translate all training and test data to En-
glish and fine-tune a monolingual model for English
(ROBERTA, Liu et al. (2019)) on the translated train-
ing data. We compare performance on the translated
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test sets with XLM-R trained and tested on the mul-
tilingual data.

All No English Low Resource
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Figure 5: Multilingual (i.e., XLM-R) against translate ap-
proach based on English RoBERTa. We use the same set-
ting as in Table 4, where we train on all languages and test
on ALL LANG., NOENGLISH and LOWRES.

The monolingual model’s advantage of language-
specificity over multilingual models (Rust et al.,
2021; Rönnqvist et al., 2019) is evident in Figure
5, where the monolingual model trained on English
is slightly better than the multilingual model trained
on multilingual data.5 We consider this monolingual
model an additional baseline on MULTIFIN.

6 Conclusion

We proposed MULTIFIN, a dataset for the evaluation
of multilingual financial NLP models. The main aim
is to advance multilingual NLP in the financial do-
main so it is better suited for new development and
evaluation of domain-specific models. MULTIFIN is
a diverse dataset with 10,000 examples, covering 15
languages, including different language families and
writing systems. We benchmark a collection of stan-
dard multilingual language models on MULTIFIN and
find that although these models often achieve good
performance in high-resource languages, there is a
substantial gap in performance between high- and
lower-resource languages. The per-language analy-
sis uncovered that most of the benchmarked mod-
els do not facilitate a good transfer across the evalu-
ated languages, and for specific languages, indicate
a strong need for improving the models’ capacity

5Artetxe et al. (2020) found that improvements of a transla-
tion baseline in a cross-lingual NLI task do not stem from over-
coming the cross-lingual gap, but from the fact that translation
of the training data introduces alterations which improve gener-
alization to a translated test set. It is possible that in our experi-
ments, the performance of the monolingual model generalizing
from translated training data to translated test data is impacted
by similar mechanisms.

to generalize. The multilingual MDAPT model pre-
sented overall better generalization, particularly to
low-resource languages, indicating that focusing on
multilingual domain-specific methods is a promising
direction for future work in financial NLP. Future
work includes extending the dataset to include more
examples across more languages so better understand
the limits of multilingual financial text processing.
We are also exploring including the entire document,
as opposed to only the headline, but this would de-
pend on high-quality long document processing mod-
els (Dai et al., 2022). We hope to motivate and in-
spire collective work on multilingual NLP in the fi-
nancial domain.

Limitations

Annotators We are aware that annotators with do-
main knowledge and language proficiency would be
preferred. It was not within our resources to find qual-
ified annotators in the financial domain with expert
knowledge and language proficiency for all 15 lan-
guages.

Annotation process The number of annotated top-
ics per example is determined to three, although a
handful of article titles could potentially be assigned
more than three topics. The authors attempted to
limit this by prioritizing annotated topics by topic
weight (see Section 3).
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A Annotator agreement

The Table 5 below presents the annotator agreement
on topic level. The rather high agreement across top-
ics indicate that our annotations are of high quality.

No. Topic Kappa, κ

1 Actuary, Pension & Insurance 0.9791
2 Asset & Wealth Management 0.9020
3 Accounting & Assurance 0.9704
4 Banking & Financial Markets 0.9218
5 Board, Strategy & Management 0.9620
6 Power, Energy & Renewables 0.9495
7 Corporate Responsibility 0.9092
8 Media & Entertainment 0.9526
9 Financial Crime 0.9479
10 Government & Policy 0.8889
11 Healthcare & Pharmaceuticals 0.9408
12 Human Resources 0.9537
13 IT Security 0.9346
14 Governance, Controls & Compliance 0.9121
15 M&A & Valuations 0.9617
16 Real Estate & Construction 0.9254
17 Retail & Consumers 0.9526
18 SME & Family Business 0.8670
19 Start-Up, Innovation & Entrepreneurship 0.9888
20 Supply Chain & Transport 0.9321
21 Tax 0.9474
22 Technology 0.9463
23 VAT & Customs 0.9797

Table 5: Full report of inter-annotation agreement of
multi-label Cohen’s κ.

B Label distribution

We present the distribution of the LOW-LEVEL and
HIGH-LEVEL topics. In Table 6, we present the distri-
bution over the LOW-LEVEL topics. We allowed up-to
3 annotations per examples for the multi-label annota-
tion. This produced a total of 14230 annotation with
1.4 annotations per example on average. In Table 7,
we present the distribution over the HIGH-LEVEL top-
ics.

C Cross-lingual transfer with fasttext
embeddings

Preprocessing In order to represent inputs with
pre-trained fasttext embeddings, we tokenize our
data according to how the fasttext training data
was tokenized, using Mecab6 for Japanese, and the
tokenizer from the Europarl preprocessing tools7

(Koehn, 2005) for the other languages.

6https://pypi.org/project/
mecab-python3/

7https://www.statmt.org/europarl/

No. Topic Examples

1 Actuary, Pension & Insurance 502
2 Asset & Wealth Management 257
3 Accounting & Assurance 1,452
4 Banking & Financial Markets 782
5 Board, Strategy & Management 866
6 Power, Energy & Renewables 248
7 Corporate Responsibility 277
8 Media & Entertainment 255
9 Financial Crime 310
10 Government & Policy 528
11 Healthcare & Pharmaceuticals 245
12 Human Resources 1,091
13 IT Security 424
14 Governance, Controls & Compliance 501
15 M&A & Valuations 492
16 Real Estate & Construction 351
17 Retail & Consumers 354
18 SME & Family Business 226
19 Start-Up, Innovation & Entrepreneur-

ship
277

20 Supply Chain & Transport 222
21 Tax 1,713
22 Technology 1,169
23 VAT & Customs 1,688
Total 14,230

Table 6: Overview of LOW-LEVEL tags across the 23 top-
ics. These represent the 23 labels used in the multi-label
task.

No. Topic Examples

1 Technology 1,088
2 Industry 1,239
3 Tax & Accounting 3,371
4 Finance 1,447
5 Government & Controls 912
6 Business & Management 1,991
Total 10,048

Table 7: Overview of HIGH-LEVEL tags across the 6
classes. These represents the 6 classes used in the multi-
class classification task.

Embedding alignment We map monolingual fast-
text embeddings trained on Wikipedia and Common-
crawl into a shared space using RCSLS, by com-
puting pairwise mappings between source languages
and English as a target language. As supervision,
we rely on the training dictionaries of the MUSE
dataset (Conneau et al., 2017), except for Icelandic
which is not covered there. For Icelandic, we fol-
low Vulić et al. (2019) in deriving a dictionary based
on the Panlex database (Kamholz et al., 2014): We
retrieve translations for the 5000 most frequent Ice-
landic words derived from Opensubtitles published
on Wiktionary8 We only keep single-word transla-

8https://en.wiktionary.org/wiki/
Wiktionary:Frequency_lists/Icelandic_
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Model Learning rate # train epochs # Params.

FASTTEXTBAG [1e-3,2.5e-3,5e-3,7.5e-3,1e-2,2.5e-2,5e-2] 50 0.1M
FASTTEXTLSTM [1e-3,2.5e-3,5e-3,7.5e-3,1e-2,2.5e-2,5e-2] 50 1.8M/1M/1M

SBERT [1e-2, 3e-2, 1e-1] [10, 30, 100] 0.6M
MBERT [1e-5, 2e-5, 5e-5, 1e-4] [10, 30, 100] 180M
XLM-R [1e-5, 2e-5, 5e-5, 1e-4] [10, 30, 100] 270M

MT5 [1e-4, 3e-4, 1e-3] [10, 30] 300M

Table 8: The search space of two hyperparameters
(learning rate and number of training epochs), as
well as the number of trainable parameters for each
model. The size of the hidden states in FASTTEXTLSTM

is treated as an additional hyperparameter selected from
[100,200,300,400,500], hence we report numbers of pa-
rameters for three different selected models trained on
ALL/ENGLISH/HIGH RESOURCE, corresponding to models
with hidden dimensionality 300/200/200, respectively.
For all models, we do early stopping on the validation
set with a patience of 5 and 10 for transformer-based and
fasttext-based models, respectively.

tions. As not all source words are present in Panlex,
our final dictionary contains translations for 1,823
Icelandic words. With these dictionaries as supervi-
sion, we run RCSLS with default parameters for 10
epochs, and select the best mapping based on the un-
supervised selection criterion.

D Experimental Details

For each experiment, we perform grid search to
find the best combination of two hyperparameters—
number of training epochs and learning rates—on the
development set. Table 8 shows the search space of
these two hyperparameters as well as the trainable pa-
rameters per model.

The particular versions of pre-trained multilingual
models can be found at:

• SBERT: https://huggingface.
co/sentence-transformers/
all-mpnet-base-v2

• MBERT: https://huggingface.co/
bert-base-multilingual-cased

• XLM-R: https://huggingface.co/
xlm-roberta-base

• MT5 https://huggingface.co/
google/mt5-base

Pre-trained fasttext embeddings can be found at:

• https://fasttext.cc/docs/en/
crawl-vectors.html

wordlist

E Results of Multi-class classification on
HIGH-LEVEL topics

Table 9 show the evaluation results on coarse-grained
categories (HIGH-LEVEL), framed as a multi-class
classification problem.

F Sentence length distribution

Figure 6 shows the sentence length distribution
across languages in the MULTIFIN dataset.
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Model Training Test
ALL NO ENGLISH LOW RESOURCE

FASTTEXTBAG

ALL 78.1 ± 0.2 76.7 ± 0.8 70.5 ± 1.4

ENGLISH 60.0 ± 1.0 52.2± 1.1 47.7± 1.1

HIGH RESOURCE 73.6± 2.4 71.4 ± 2.1 52.8 ± 1.8

FASTTEXTLSTM

ALL 83.1 ± 0.7 81.3 ± 0.8 75.9 ± 1.2

ENGLISH 64.1± 1.5 55.7 ± 1.9 51.6 ± 2.1

HIGH RESOURCE 80.4 ± 0.4 77.6± 0.5 60.5± 1.5

SBERT
ALL 72.4 ± 0.8 66.1 ± 1.0 55.3 ± 1.8

ENGLISH 51.9 ± 0.5 38.4 ± 0.8 32.3 ± 0.8

HIGH RESOURCE 72.1 ± 0.6 65.3 ± 0.7 33.0 ± 1.5

MBERT
ALL 87.4 ± 0.4 85.0 ± 0.4 79.1 ± 0.9

ENGLISH 60.4 ± 2.4 48.4 ± 3.2 48.1 ± 2.2

HIGH RESOURCE 82.9 ± 0.5 79.0 ± 0.7 52.3 ± 2.0

XLM-R
ALL 89.5 ± 0.4 87.8 ± 0.5 84.0 ± 0.9

ENGLISH 74.9 ± 2.2 68.5 ± 2.7 67.9 ± 1.0

HIGH RESOURCE 87.5 ± 0.7 85.3 ± 0.8 74.7 ± 1.0

MT5
ALL 83.6 ± 0.4 79.7 ± 0.5 61.3 ± 1.2

ENGLISH 56.6 ± 0.7 42.9 ± 0.8 41.5 ± 1.3

HIGH RESOURCE 81.1 ± 0.0 76.2 ± 0.1 43.9 ± 0.1

Table 9: Evaluation results on coarse-grained categories (HIGH-LEVEL). Results are averaged over five runs and reported
by F1 micro. Multi-class classification task with 6 classes, one per example.
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Figure 6: Sentence length distribution across different languages.
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Abstract

In recent years, the pattern of news consump-
tion has been changing. The most popular mul-
timedia news formats are now multimodal – the
reader is often presented not only with a textual
article but also with a short, vivid video. To
draw the attention of the reader, such video-
based articles are usually presented as a short
textual summary paired with an image thumb-
nail. In this paper, we introduce MLASK1

(MultimodaL Article Summarization Kit) –
a new dataset of video-based news articles
paired with a textual summary and a cover pic-
ture, all obtained by automatically crawling
several news websites. We demonstrate how
the proposed dataset can be used to model the
task of multimodal summarization by training
a Transformer-based neural model. We also
examine the effects of pre-training when the us-
age of generative pre-trained language models
helps to improve the model performance, but
(additional) pre-training on the simpler task of
text summarization yields even better results.
Our experiments suggest that the benefits of
pre-training and using additional modalities in
the input are not orthogonal.

1 Introduction

Automatic summarization is one of the basic tasks
both in Natural Language Processing – text summa-
rization – and in Computer Vision – video summa-
rization. Multimodal summarization (MMS) builds
a bridge between those two fields.

Early works on multimodal summarization ex-
plored the usage of the secondary modality as an
auxiliary source of information to guide the refine-
ment process of the main modality. Li et al. (2017)
collected videos and news articles covering a hand-
crafted list of recent significant world events by
querying a web search engine and trained a model
to mimic the reference summaries written by hu-
man annotators. Zhu et al. (2018) were the first to

1https://github.com/ufal/MLASK

introduce the task of Multimodal Summarization
with Multimodal Output (MSMO). They collected
a large-scale dataset of news articles paired with
corresponding images and trained a system to gen-
erate a textual summary and choose a single image
as a pictorial summary. By introducing the multi-
modal output, a uni-modal solution was no longer
sufficient as a baseline. Building upon this, Li et al.
(2020b) extended the task to video-based MSMO.
Based on a textual document and a short video clip,
besides generating the textual summary, the system
was also challenged to select a single frame from
the video as a cover picture.

We believe there is still a lot of questions that
remain unanswered, e.g.: How to evaluate multi-
modal outputs? or How to approach pre-training?
In this paper, we contribute to the area of video-
based MSMO (VMSMO) by: 1) introducing a full-
scale VMSMO dataset in Czech, extending the very
limited available resources for this task to a new
language; 2) exploring the pre-training strategies
by transferring knowledge from the simpler task
of text-to-text summarization; 3) re-defining the
training labels to consider intra-video similarities;
4) proposing a human evaluation framework for
assessing the quality of VMSMO.

2 Related Work

In our work, we build upon recent advances in three
fields: text summarization, video summarization,
and multimodal summarization.

2.1 Text Summarization

Text summarization aims to automatically produce
a short fluent summary that preserves the crucial
information from the source document(s). Histor-
ically, a majority of works focused on the news
domain and English language (Nallapati et al.,
2016; Grusky et al., 2018; Fabbri et al., 2019). Re-
cently, new research directions, such as multilin-
gual summarization (Scialom et al., 2020; Varab
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and Schluter, 2021) or dialogue summarization,
(Gliwa et al., 2019; Zhong et al., 2021) have been
explored. Fabbri et al. (2021) benchmarked over 20
recent summarization models and concluded that
the abstractive summaries produced by pre-trained
generative languages models fine-tuned on summa-
rization datasets (Zhang et al., 2020; Lewis et al.,
2020) consistently performed best with regards to
both automatic metrics and human evaluation.

2.2 Video Summarization

Video summarization aims to refine the video con-
tent by either choosing a set of the most repre-
sentative frames, known as a video storyboard, or
selecting short video fragments, known as a video
skim. As noted in the recent survey (Apostolidis
et al., 2021), in both cases, the usual approach is
to start with modeling the frame-level importance
scores, which can then be aggregated to segment-
level scores.

Contrary to text summarization, abstractive ap-
proaches that generate the summary from scratch
are yet to be explored. The most relevant to our
work are the recent publications on query-based
video summarization, e.g., Li et al. (2023) and
Huang et al. (2021), that use a text-based input
to enrich frame-level representations and guide the
summarization towards a user-specified query.

2.3 Multimodal Summarization

Previous works (e.g., Li et al., 2017, 2018; Palaskar
et al., 2019) explored the addition of multimodal
information such as video or audio transcript to
enrich the textual document, aiming to generate
better textual summaries. Zhu et al. (2018), who
introduced the MSMO task, trained a model that
jointly generated text and selected the most rele-
vant image from a pre-defined set of images. Li
et al. (2020b) and Fu et al. (2021) were the first
to tackle the VMSMO problem. In their work, the
cover picture choice was modeled as a frame selec-
tion problem. In the follow-up work (Tang et al.,
2022), a video-article pair was summarized as a
single frame and a one-sentence summary using
an optimal transport-based unsupervised training
strategy.

3 MLASK Dataset

Previous works on MMS operated on datasets in
either English (Li et al., 2017, 2018; Palaskar et al.,
2019; Fu et al., 2021; Tang et al., 2022) or Chinese

Mean Q1 Median Q3

Title 11.16 ± 2.78 9 11 13
Abstract 33.40 ± 13.86 22 32 43
Article 276.96 ± 191.74 154 231 343

Table 1: Quantitative statistics of the lengths of titles,
abstracts, and full texts (measured in the number of
tokens) for the MLASK dataset. Q1 and Q3 denote the
first and the third quartile, respectively.

(Li et al., 2020b; Li et al., 2020a). To extend the
available resources, we collected a new dataset in a
different language – Czech, a West Slavic language
with a rich system of morphology and a relatively
flexible word order.

3.1 Data Preparation

The steps taken while preparing the dataset are:
1. Two Czech websites publishing news articles

accompanied with a video clip, textual sum-
mary, and a cover picture were identified.

2. Based on the HTML structure of each website,
the articles accompanied by a video clip (mp4)
and a cover picture (jpeg) were downloaded.

3. From each relevant article, its title, abstract,
and full text were extracted.

4. The following documents were dropped:
• with videos longer than 5 minutes;
• with full text shorter than 50 words or

longer than 2,000 words;
• with abstract shorter than 10 words or

longer than 80 words;
• with title shorter than 2 words;
• with either the full text or abstract

identified as non-Czech by the langid2

language-identifier.
5. Every video was re-sampled to the same frame

rate (25 fps) and resized to the same resolution
(1280x720).

3.2 Dataset Size Statistics

In total, the collected dataset contains 41,243 in-
stances, all including the article’s text, title, ab-
stract, video, and cover picture. The quantita-
tive statistics of the data are displayed in Table 1.
The average video duration is 85.58 seconds. For
comparison, we also report the statistics of other
datasets proposed for the VMSMO task so far (Ta-
ble 2).

2https://github.com/saffsd/langid.py
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Dataset #Articles Article Length Summary Length Video Length Language
VMSMO (Li et al., 2020b) 184,920 97 11 60s Chinese
MM-AVS (Fu et al., 2021) 2,173 685 57 109s English
XMSMO-News (Tang et al., 2022) 4,891 102 12 346s English
MLASK (this paper) 41,243 277 33 86s Czech

Table 2: Comparison of the datasets introduced for the VMSMO task. The concrete statistics are reported as
averages computed over the whole corpus. For the textual part, we report the average number of tokens.

4 Multimodal Summarization

In our experiments, a video-based news article is
represented by a pair (V,X). V corresponds to
the video input – a sequence of frames: V =
(v1, v2, . . . , vN ). X is the news article presented
as a sequence of tokens: X = (x1, x2, . . . , xM ).
We assume that for each article, there is a ground-
truth textual summary Y = (y1, y2, . . . , yL) and a
ground-truth cover picture P . The task is to gen-
erate a textual summary Ŷ that includes the main
points of the article and to choose a frame v̂ to act
as a cover picture (pictorial summary).

4.1 Overview

The proposed MMS model (see Figure 1) is struc-
tured into three parts: Feature Encoder composed
of a text, video, and frame encoder, Cross-modal In-
teraction Module fusing the visual and textual rep-
resentations, and Multimodal Decoder responsible
for the summary generation and frame selection.

4.2 Feature Encoder

The Feature Encoder consists of a text encoder,
video encoder, and frame encoder:

Text Encoder. We use the Transformer (Vaswani
et al., 2017) encoder model to map the textual
news article into the sequence of token embeddings
(Eq. 1). Following the findings of Yu et al. (2021),
we use the pre-trained mT5 model (Xue et al., 2021)
to initialize its weights. We examine the influence
of task-specific pre-training (Section 6.3) by fine-
tuning the mT5 model on the simpler task of text-
to-text summarization.

Xenc = TransformerEncoder(X) (1)

Video Encoder. The news videos in our dataset
are several minutes long and consist of hundreds
of frames. To incorporate the short-term tempo-
ral dependencies, we employ the 3D convolutional
networks. In our experiments, we segment the
video into non-overlapping sequences of frames

and use the 3D CNN network for feature extrac-
tion (Eq. 2). As the feature extractors, we use
the R(2+1)D model trained by Ghadiyaram et al.
(2019) for video action recognition on weakly-
supervised social-media videos and the visual com-
ponent of the S3D Text-Video model trained in a
self-supervised manner by Miech et al. (2020) on
the HowTo100M dataset (Miech et al., 2019). To
incorporate the long-term temporal dependencies,
we process the sequence of video features with the
Transformer encoder model (Eq. 3).

Venc = 3D-CNN(V ) (2)

Venc = TransformerEncoder(Venc) (3)

Frame Encoder. To be able to choose a specific
frame as a cover picture, frame-level representa-
tions are needed. In our experiments, we sample
one of every 25 frames as the cover picture can-
didates (1 frame per second). We examine the us-
age of EfficientNet (Tan and Le, 2019) and Vision
Transformer (Dosovitskiy et al., 2021) as feature
extractors. Both were trained for image classifica-
tion on ImageNet (Russakovsky et al., 2015). To
put the representations into context, we process the
sequence of frame features with the Transformer
encoder model (Eq. 5).

Vframe = CNN(Sample(V )) (4)

Vframe = TransformerEncoder(Vframe) (5)

Before applying the Transformer encoder, we
project both the video and frame features into the
same dimension as the hidden states of the text
encoder. When used in a single model, the two sets
of features are concatenated before projecting.

4.3 Interaction Module
Following Yu et al. (2021), who examined differ-
ent ways of injecting visual information into pre-
trained generative language models, we employ the
multi-head attention (MHA) based fusion to obtain
the vision-guided text representation and perform
the fusion after the last encoder layer (Eq. 6–9).
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Figure 1: An overview of the proposed MMS model for multimodal summarization.

Q = XencWq, Q ∈ RM×d (6)

K = VencWk, K ∈ RN
′×d (7)

V = VencWv, V ∈ RN
′×d (8)

X̃enc = MHA(Q,K, V ), X̃enc ∈ RM×d (9)

As suggested by Liu et al. (2020), we use the
forget gate (FG) mechanism so that the model can
filter out low-level cross-modal adaptation informa-
tion (Eq. 10).

X̂enc = FG(Xenc, X̃enc), X̂enc ∈ RM×d (10)

We use the same MHA mechanism to obtain the
text+video guided frame representations V̂frame
by substituting the Xenc with Vframe in Eq. 6 and
Venc with X̂enc in Eq. 7 and Eq. 8.

4.4 Multimodal Decoder
To generate the textual summary, we use the stan-
dard Transformer decoder initializing its weights
from the mT5 checkpoint. We use the vision-
guided text representation X̂enc as the input
(Eq. 11) and train it using the standard negative
log-likelihood loss (NLLLoss) w.r.t. the target se-
quence Y (Eq. 12).

Ŷ = TransformerDecoder(X̂enc) (11)

Ltext = NLLLoss(Ŷ , Y ) (12)

To obtain the labels C for cover picture (cover
frame) selection, we compute the cosine similarity
between the CNN features of the reference cover

picture and the candidate frames. The similarity
of over 99.99% of instances was in the [0,1] range,
and the remaining negative values were mapped
to 0. The previous works (Li et al., 2020b; Fu
et al., 2020) regarded the frame with the maximum
cosine similarity as ground-truth and others as neg-
ative samples (Cmax). After examining the cosine
similarity patterns (Figure 2), we noticed that the
per-video similarity has often either more than one
peak, or there are consecutive sequences of frames
with very similar scores (capturing a still scene).
Our intuition was that this may harm the model per-
formance – very similar frames might be labeled as
both positive and negative examples. To overcome
this issue, besides the binary labels Cmax, we intro-
duce the smooth labels Csmooth that assign to each
frame its cosine similarity score with the reference
cover picture.

We use a projection matrix to map the text+video
guided frame representations V̂frame to a single
dimension (Eq. 13) and train (Eq. 14) using the
binary cross-entropy loss (BCELoss). The target
labels C are either Cmax or Csmooth. We train the
whole model end-to-end by minimizing the sum of
losses L (Eq. 15).

Ĉ = V̂frameWp, Wp ∈ Rd×1 (13)

Limage = BCELoss(Ĉ, C) (14)

L = Ltext + Limage (15)
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Figure 2: Three examples of cosine similarity plots
between CNN features of the reference cover picture
and all candidate frames from the video. The examples
were chosen manually to present three different video
similarity patterns: with a single peak (red), with more
than one peak (blue), and with a consecutive sequence
of frames having very similar scores (violet).

5 Experiment Setup

5.1 Dataset
In our experiments, we perform the train-
ing/dev/test splits of the MLASK dataset following
the chronological ordering based on publication
date. We use the articles published in the first half
(Jan–Jun) of 2021 for validation (2,482 instances)
and the ones published in the second half (Jul–Dec)
of 2021 and the beginning (Jan–Feb) of 2022 for
testing (2,652 instances). The remaining data is
used for training (36,109 instances).

5.2 Implementation
We implement our experiments in PyTorch Light-
ning3 and use the mT5-small variant (300M train-
able parameters) provided via the Transformers
(Wolf et al., 2020) package. Following Yu et al.
(2021), we use two separate 4-layer encoders with
8 attention heads to contextualize the video and
frame representations (Eq. 5 and Eq. 3). As video
feature extractors, we use the R(2+1)D 34-layer
IG-65M4 and S3D_HowTo1005 models to encode
sequences of the length of 32 frames. To extract
frame-level features, we utilize the EfficientNet-B4
variant from the torchvision package and the vit-

3https://github.com/PyTorchLightning/
pytorch-lightning

4https://github.com/moabitcoin/
ig65m-pytorch

5https://github.com/antoine77340/
S3D_HowTo100M

base-patch32-224-in21k variant of Vision Trans-
former provided by Hugging Face (Wolf et al.,
2020). We follow the suggested pre-processing
(e.g., re-scaling) for each feature extractor indepen-
dently. The total number of trainable parameters is
equal to approximately 323M.

5.3 Hyper-parameters

We train the multimodal model using the Adam op-
timizer (Kingma and Ba, 2015) with β1 = 0.9 and
β2 = 0.98. We increase the learning rate linearly
for the first 8,000 steps (0 to 5e-4) and then fol-
low an inverse square root decay schedule. Since
both the text encoder and decoder are pre-trained,
we freeze them for the first 2 epochs. We limit
the document size to 1,536 sub-word tokens and
the summary length to 256 tokens. We train all
the models for 50 epochs with an early stopping
applied if ROUGE-L (see Section 5.4) does not
improve on the dev-set for 5 consecutive epochs.
During decoding, we use the best checkpoint with
respect to ROUGE-L, utilizing beam search with
the beam size of 4, length penalty of 1.0, and rep-
etition penalty (Keskar et al., 2019) of 2.5. We
select the cover frame by applying argmax to the
projected representations (Eq. 13). We employ
gradient accumulation to train with the effective
batch size of 32. Each model is trained on a single
GeForce RTX 3090 GPU, and the average training
time is roughly 36 hours.

5.4 Evaluation Metrics

Most existing implementations of ROUGE (Lin,
2004), a standard metric used to evaluate summa-
rization, are English-specific and utilize e.g., an
English stemmer and stop words. Since our dataset
is in Czech, following the work of Straka et al.
(2018), we evaluate the model performance with
language-agnostic variants of ROUGE6 reporting
the F1 scores (ROUGE-1, ROUGE-2, ROUGE-L).

To estimate the quality of cover frame selection,
we follow Fu et al. (2020) and report the cosine
similarity (CosSim) between the reference cover
picture and the chosen cover frame. To have a
better understanding of the model performance,
we also follow Li et al. (2020b) and report Re-
call@k (R@k)7 considering the frame closest to the
ground-truth as a positive example. To evaluate the

6https://lindat.cz/repository/xmlui/
handle/11234/1-2615

7https://github.com/Lightning-AI/
metrics
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DEV
ROUGE-1 ROUGE-2 ROUGE-L CosSim R@5 R@10 KC PC

RandomT 13.92 1.63 9.02 - - - - -
Lead3 15.47 2.32 10.25 - - - - -
Oracle 22.92 5.37 18.28 - - - - -
mT5-MLASK 18.25 4.14 13.07 - - - - -
mT5-SumeCzech 19.18 4.53 13.76 - - - - -
RandomV - - - 0.335 0.092 0.182 0.000 0.000
MMS 18.34 4.12 13.26 0.563 0.206 0.339 0.303 0.465
+ Masked Video 17.70 3.84 12.81 0.548 0.191 0.320 0.275 0.439
− IG-65M 17.74 3.89 12.95 0.558 0.200 0.323 0.290 0.456
− S3D 17.82 3.88 12.93 0.530 0.187 0.321 0.260 0.428
− Effnet 18.07 4.04 13.13 0.589 0.160 0.280 0.211 0.328
− ViT 17.69 3.71 12.82 0.527 0.192 0.320 0.309 0.488
+ SumeCzech 19.64 4.95 14.32 0.551 0.192 0.319 0.274 0.440
+ Smooth Labels 19.73 4.97 14.34 0.562 0.202 0.332 0.295 0.458
+ Masked Video 19.74 5.02 14.34 0.561 0.197 0.331 0.290 0.452

TEST
MMS 18.45 4.29 13.42 0.552 0.183 0.321 0.306 0.447
+ Masked Video 17.65 3.95 12.88 0.542 0.187 0.332 0.283 0.422
− IG-65M 17.81 4.02 13.07 0.548 0.186 0.321 0.296 0.437
− S3D 17.89 4.03 13.03 0.531 0.177 0.316 0.264 0.408
− Effnet 18.21 4.28 13.37 0.582 0.157 0.279 0.216 0.311
− ViT 17.78 3.94 13.00 0.509 0.176 0.311 0.303 0.452
+ SumeCzech 19.58 4.95 14.30 0.541 0.181 0.318 0.278 0.420
+ Smooth Labels 19.74 4.90 14.34 0.551 0.188 0.330 0.299 0.444
+ Masked Video 19.69 4.91 14.38 0.553 0.184 0.326 0.300 0.439

Table 3: Evaluation on the dev-set and test-set of MLASK. See Section 5.4 for the metrics description. The figures
are averaged over three runs with different seeds. The three highest-scoring systems in each column are bolded
independently for test-set and dev-set.

frame scoring at even coarser video-level granular-
ity, we report Kendall’s Tau (KC) and Pearson (PC)
correlation coefficients8 to measure the correlation
of ordering based on the projected representations
(Eq. 13) with the absolute frame ordering based on
similarity with the ground-truth picture.

6 Experiments

We analyze several aspects of the proposed model:
First, we study the effect of the visual features. Sec-
ond, we analyze the contribution of pre-training the
model on text-only summarization data. Third, we
exploit the smooth frame labels to further improve
the model. The results are presented in Table 3.

6.1 Baselines

To put our experiments into context, we first re-
port the performance of several text-only baselines:
RandomT extracts three random sentences from the
article and Lead3 extracts three initial sentences
(trivial baselines); Oracle takes three sentences
that maximize ROUGE-L with the ground-truth

8https://github.com/scipy/scipy

abstract (the upper bound for extractive summa-
rization); mT5-MLASK is the output of the mT5
model fine-tuned on the textual part of the MLASK
training set and mT5-SumeCzech is the mT5 model
fine-tuned on the SumeCzech (Section 6.3) dataset
(abstractive summarization baselines). There is
also a video-only baseline RandomV, which per-
forms random frame ordering.

Unsurprisingly, both mT5 variants outperform
the trivial baselines (RandomT, Lead3), but their re-
sults are still far below the Oracle performance. Us-
ing larger training data (SumeCzech has roughly 20
times more documents than MLASK) improves the
performance by approximately 1 ROUGE point.

6.2 Visual features

In Section 4.2, we proposed to employ two different
visual features for both video and image feature
extraction. The system exploiting all the features
is denoted as MMS in Table 3. It achieves slightly
higher scores than mT5-MLASK (dev-set ROUGE-
1: 18.25→ 18.34, ROUGE-L: 13.07→ 13.26) but
lags behind the text-only mT5-SumeCzech that was
trained on a much larger corpus. To analyze the
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ROUGE-1 ROUGE-2 ROUGE-L
Lead3 14.34 2.14 9.64
Random3 12.52 1.27 8.37
t2t (2018) 11.30 1.00 8.70
mT5-SumeCzech 18.46 4.54 13.33

Table 4: Performance of the text-to-text summarization
models on the test part of SumeCzech (Straka et al.,
2018) for the article→abstract task.

effect of the individual visual features, we report
the results of the MMS model, excluding those
features one by one (see the rows starting with
the "−" sign). The scores indicate that the model
combining all the features is superior.

6.3 Pre-training

Yu et al. (2021) showed that the usage of pre-trained
generative language models is beneficial for multi-
modal summarization. We explored this idea fur-
ther by task-specific pre-training on SumeCzech
(Straka et al., 2018) – a large-scale Czech news
summarization corpus used to fine-tune the mT5
model for summarization (mT5-SumeCzech). We
used the Adafactor (Shazeer and Stern, 2018) op-
timizer with a constant learning rate equal to 5e-4
and trained until ROUGE-L ceased to improve
on the dev-set for 5 consecutive evaluations. To
avoid any training/test data leaks, we excluded
from the mT5-SumeCzech training data the arti-
cles that could appear in MLASK based on the
date of publication (794,018 left, i.e., 92%). Perfor-
mance on the test part of SumeCzech is reported
in Table 4. Based on the results (Table 3, system
MMS + SumeCzech), we can clearly see that the
usage of mT5 fine-tuned for summarization instead
of the raw mT5 boosts the performance on the text
summarization part (test-set ROUGE-1: 18.45→
19.58, ROUGE-L: 13.42→ 14.30).

6.4 Smooth labels

In Section 4.4, we proposed to use the smooth la-
bels Csmooth during training to overcome the issue
of very similar frames being labeled as positive and
negative examples. Our results (Table 3, system
MMS + SumeCzech + Smooth Labels) indicate
that, indeed, this method helps with the quality of
cover frame selection (test-set CosSim: 0.541→
0.551, R@10: 0.318→ 0.330). We can also notice
a small improvement (test-set ROUGE-1: 19.58→
19.74) in the quality of text summarization, which
we attribute to more stabilized training.

For a full comparison, we also include two
variants with masked video features (MMS +
SumeCzech + Smooth Labels + Masked Video and
MMS + Masked Video) – all the video features
are masked with random noise, both during the
training and the evaluation. The frame features
are left intact. Surprisingly, for the variant that was
pre-trained on a large text-only corpus, masking the
video features does not hurt the model performance.
This is, however, the case for the model that did
not go through the task-specific pre-training. After
examining the models, we noticed that the repre-
sentations after the video encoder (Eq. 5) are not
very meaningful, i.e., every segment is mapped to a
similar vector. We believe this is due to the indirect
usage of video representations in the Cross-modal
Interaction Module – too weak learning signal (gra-
dient) is propagated to the video encoder. Consider-
ing the drop in performance for the model without
pre-training, it seems to be the case that the infor-
mation from pre-training and multimodal input is
not completely orthogonal.

7 Human Evaluation

Previous works on VMSMO evaluated the system
performance by employing human judges to as-
sess the quality of generated textual summary: Li
et al. (2020b) measured to what extent the sys-
tem summaries were sufficient to answer questions
generated from the reference summary and ranked
them based on Informativeness, Coherence, and
Succinctness; Fu et al. (2021) scored the system
summaries based on Informativeness and Satisfac-
tion. We believe no prior work employed human
annotators to judge the quality of a chosen cover
frame (pictorial summary) in the context of textual
summary. For the similar task of multimodal sum-
marization with unimodal output, Wan and Bansal
(2022) collected annotations for the subset of the
WikiHow dataset (Yang et al., 2021) that measured
whether the textual output was faithful to the source
pair of document and image.

7.1 Formulation

To evaluate the quality of cover frame selection,
we asked human annotators to judge the quality
and usefulness of an image as a pictorial summary
of the article. 18 human annotators participated.
All were adult, native Czech speakers who read
online news magazines daily. Figure 3 displays a
screenshot of the annotation tool. For each instance,
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Figure 3: Screenshot of the annotation tool used to collect human judgments about the quality and usefulness of
selected cover frame. For convenience, we translated all text into English.

the annotators were asked to rate 3 images on a
scale of 0 to 4 (the higher, the better) in the context
of the article‘s title and the reference summary.
The suggested interpretation of the scale levels was:

0: The picture is not relevant at all or very
marginally (technical quality is not impor-
tant).

1: The image is partly relevant (there is a certain
connection between what it captures and the
content of the text), but technically imperfect
(e.g., blurred, cropped inappropriately, taken
from an inappropriate angle or at an inappro-
priate moment).

2: The image is partly relevant (there is a certain
connection between what it captures and the
text content) and of a good technical quality.

3: The picture is very relevant, but technically
imperfect (e.g., blurred, cropped inappropri-
ately, taken from an inappropriate angle, or at
an inappropriate moment).

4: The picture is both very relevant and of a good
technical quality. It is a suitable cover picture.

7.2 Setup

We randomly chose 300 instances from the
MLASK test-set for annotation and split them into
10 batches of 30 instances. We used the first batch
to measure the inter-annotator agreement, asking
each annotator to score all the instances in the con-
trol batch plus at least in one more.

For each instance, four images were considered
for annotation: the reference picture (denoted as
Reference), a random frame from the video (Ran-
domV output), and the outputs of two test models –
MMS pre-trained on SumeCzech using the smooth
labels (MMS + SumeCzech + Smooth Labels, fur-

Figure 4: Values of Cohen’s κ used to measure the inter-
annotator agreement on the control batch (30 instances).

ther denoted as System A) and the same model with
masking of the video features (MMS + SumeCzech
+ Smooth Labels + Masked Video, further denoted
as System B). See Appendix A for examples.

In the control batch, we always included the
reference picture, hiding the output from one of the
methods in 33% of the cases. In the other batches,
we display 3 out of the 4 images selected randomly.
To avoid a position bias, we shuffle the images
before showing them to the annotator. On average,
we collected 2.5 annotations for each image.

7.3 Results

Figure 4 displays the inter-annotator agreement on
the control batch in the form of a heat map. The
average value of 0.217 indicates a "fair" agreement.
One can notice that three annotators (10, 11, and
13) have a lower average agreement (average below
0.2). We decided to exclude their annotations from
further analysis. By doing so, the average value
of Cohen’s κ increased to 0.26, and the average
number of annotations decreased to 2.2.
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Total Score Adequacy Score
Reference 2.89 ± 0.99 1.64 ± 0.50
RandomV 2.39 ± 1.15 1.44 ± 0.61
System A 2.64 ± 1.10 1.51 ± 0.58
System B 2.66 ± 1.04 1.56 ± 0.52

Table 5: System performance on the task of cover pic-
ture selection. See Section 7.1 for the label description.

In Table 5, we report the system-level averages
of the scores assessed by human annotators (To-
tal Score). On average, the reference picture is
assigned the highest score, and our proposed multi-
modal summarization model performs better than
the random baseline. The results of human assess-
ment confirm our previous findings based on auto-
matic metrics – that the model is not utilizing the
video features in an effective manner. It is worth
noticing, however, that even the reference picture is
not considered very relevant (average score below
3) and that none of the differences are statistically
significant. To examine the stability of the annota-
tion process, we also report the averages (Adequacy
Score) that disregard the quality of the image and
focus only on relevance. We do this by mapping
the labels from Section 7.1, (i.e., 0→ 0; 1 and 2
→ 1; 3 and 4→ 2). The results are in line with the
original ones.

8 Conclusions

In this paper, we explored the recently proposed
task of video-based multimodal summarization
with multimodal output. We extended the avail-
able resources to a new language by introduc-
ing a multimodal summarization dataset in Czech.
We explored the pre-training strategies, showing
that transferring knowledge from the simpler, uni-
modal task of text-to-text summarization helps with
the final performance in multimodal settings. We
were also able to show that the usage of inner-
video similarities, via the introduction of smooth
labels during training, helps to stabilize the training.
We conducted a human evaluation of the frame-
selection process to confirm the quality of the pro-
posed multimodal MMS model. Our findings indi-
cate that the MMS model pre-trained on the text-
to-text summarization is not effective in utilizing
video features and that future works should care-
fully examine to what extent the model is able to
make use of multimodal input and whether the im-
provement is orthogonal to e.g., using more data.

Limitations

MLASK dataset collection. While curating the
MLASK dataset, we applied a series of rule-based
filters (Section 3.1) and collected only those docu-
ments that followed a strict HTML structure. No
large-scale human evaluation was applied to check
the data validity. We sampled a random subset of
100 articles and checked the data preparation and
collection manually.

Language and domain bias. We acknowledge that
our findings are based on a single dataset, in a par-
ticular language (Czech) and from a particular do-
main (news articles). Due to the novelty of the task,
previous datasets proposed for VMSMO (Table 2)
are not applicable to our experiments – dataset by
Fu et al. (2021) does not provide single cover pic-
tures, and the datasets by Li et al. (2020b) and
Tang et al. (2022) are not publicly available. We
also acknowledge that due to the data coming from
a particular news provider, it may not be free of
cognitive biases.

Technical requirements. Considering the modular
architecture of the proposed model (Section 4.1),
a modern GPU is required for training (using a
24GB GPU we were able to train with a batch size
of 2). To store the raw MLASK dataset (videos and
images), roughly 750GB of disk space is required.

Human evaluation. While conducting the human
evaluation of cover frame selection, we provided
a detailed set of instructions (Section 7.1) and
used a control batch (30 instances) that was judged
by each annotator to compute the inner-annotator
agreement. Our findings (Table 5) indicate that
there is a certain perception in the data annotation
process that we did not analyze – the gold-standard
reference picture is, on average, judged as only
"partly relevant".
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A Appendix

Below, we attach outputs from the methods that we included in the human evaluation. System A is the
MMS + SumeCzech + Smooth Labels model, and System B is the MMS + SumeCzech + Smooth Labels +
Masked Video one. For convenience, we include both the original texts in Czech and machine translation
to English. The reference text and images were extracted from Novinky.cz.

Reference Pětasedmdesátiletý řidič, který při páteční nehodě v Tatcích na Kolínsku usmrtil tříleté
dítě a druhé vážně zranil, stejně jako jejich matku, je podezřelý z usmrcení z nedbalosti a z
těžkého ublížení na zdraví z nedbalosti. Příčinou nehody byl zřejmě mikrospánek, uvedla
v sobotu v tiskové zprávě policejní mluvčí Vlasta Suchánková.
The 75-year-old driver, who killed a three-year-old child and seriously injured the other,
as well as their mother, in Friday’s accident in Tatky, Cologne, is suspected of negligent
homicide and grievous bodily harm. The cause of the accident was apparently microsleep,
police spokesperson Vlasta Suchánková said in a press release on Saturday.

System A Dva trestné činy usmrcení z nedbalosti vyšetřují od pátečního odpoledne policisté v
Nymburce, kde se srazilo osobní auto s dvěma malými holčičkami. Na dotaz Novinek to ve
čtvrtek řekla mluvčí policie Eva Suchánková.
Two crimes of culpable homicide have been under investigation since Friday afternoon by
police officers in Nymburk, where a car collided with two little girls. Police spokesperson
Eva Suchánková told News on Thursday.

System B Dvě malé holčičky zemřely v pátek odpoledne při nehodě dvou aut na Nymbursku. Jeden
člověk byl vážně zraněn, druhý je ve vážném stavu v nemocnici. Právu to řekla mluvčí
policie Eva Suchánková.
Two little girls died in a two-car accident in Nymburk on Friday afternoon. One person
was seriously injured, the other is in a serious condition in hospital. Police spokesperson
Eva Suchánková told the law.

Table 6: Textual summary – Example 1.

(a) System A (b) System B

(c) Reference (d) Random

Figure 5: Pictorial summary – Example 1.
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Reference Minulý týden v pátek se v Česku začaly oficiálně prodávat nové chytré hodinky Apple
Watch Series 7. Zájem byl tak vysoký, že už po pár hodinách zmizely prakticky všechny
hodinky z pultů českých obchodů. A vše nasvědčuje tomu, že si případní zájemci budou
muset na další várku ještě dlouho počkat.
Last week on Friday, the new Apple Watch Series 7 was officially launched in the Czech
Republic. Interest was so high that after a few hours practically all watches disappeared
from the counters of Czech shops. And all indications are that potential buyers will have
to wait a long time for the next batch.

System A V pátek se začaly oficiálně prodávat nové chytré hodinky od společnosti Apple. Zájem
o novinku byl tak vysoký, že se v některých případech nepodařilo uspokojit všechny
zákazníky, kteří si objednali hodinky s týdenním předstihem.
On Friday, Apple’s new smartwatch officially went on sale. Interest in the new smartwatch
was so high that in some cases it was not possible to satisfy all customers who ordered the
watch a week in advance.

System B Zájem o novou generaci chytrých hodinek Watch Series 7 byl tak vysoký, že se v některých
případech nepodařilo uspokojit všechny zákazníky, kteří si objednali hodinky s týdenním
předstihem. Novinka má být daleko lépe než předchůdce – dostala extrémně tenké rámečky
okolo displeje.
Interest in the new generation of Watch Series 7 smartwatches was so high that in some
cases it failed to satisfy all customers who ordered a watch a week in advance. The novelty
is supposed to be far better than its predecessor – it got extremely thin frames around the
display.

Table 7: Textual summary – Example 2.

(a) System A (b) System B

(c) Reference (d) Random

Figure 6: Pictorial summary – Example 2.

923

https://www.novinky.cz/clanek/internet-a-pc-hardware-beznadejne-vyprodano-hlad-po-hodinkach-watch-series-7-byl-obrovsky-40375247
https://www.novinky.cz/clanek/internet-a-pc-hardware-beznadejne-vyprodano-hlad-po-hodinkach-watch-series-7-byl-obrovsky-40375247


Reference Ze století páry rovnou do 21. století. Tak by měla vypadat proměna hlavního brněnského
nádraží. Ze současného místa v centru města by se mělo nádraží přesunout o několik
set metrů, kde vznikne nový komplex na zelené louce. Jeho podoba by měla být z pera
architektů nizozemského ateliéru Benthem Crouwel Architects.
From the century of steam straight into the 21st century. This is what the transformation of
Brno’s main railway station should look like. From its current location in the city centre,
the station should be moved a few hundred metres to create a new green meadow complex.
Its design should be from the architects of the Dutch studio Benthem Crouwel Architects.

System A Nové hlavní nádraží v Brně by mělo přijít na 50 miliard korun. Vítězný ateliér má
zkušenosti z Nizozemska, Nizozemska nebo Nizozemska.
The new main railway station in Brno should cost CZK 50 billion. The winning studio
has experience from the Netherlands, the Netherlands or the Netherlands.

System B Nové hlavní nádraží v Brně by mělo být hotové do roku 2035. Vítězný ateliér, který má s
nádražím bohatou zkušenost, dostal od města peníze za 50 miliard korun.
The new main railway station in Brno should be ready by 2035. The winning studio,
which has extensive experience with the station, received money from the city worth CZK
50 billion.

Table 8: Textual summary – Example 3.

(a) System A (b) System B

(c) Reference (d) Random

Figure 7: Pictorial summary – Example 3.
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Abstract

Novel intent discovery automates the process
of grouping similar messages (questions) to
identify previously unknown intents. However,
current research focuses on publicly available
datasets which have only the question field
and significantly differ from real-life datasets.
This paper proposes methods to improve the
intent discovery pipeline deployed in a large
e-commerce platform. We show the benefit
of pre-training language models on in-domain
data: both self-supervised and with weak su-
pervision. We also devise the best method to
utilize the conversational structure (i.e., ques-
tion and answer) of real-life datasets during
fine-tuning for clustering tasks, which we call
Conv. All our methods combined to fully uti-
lize real-life datasets give up to 33pp perfor-
mance boost over state-of-the-art Constrained
Deep Adaptive Clustering (CDAC) (Lin et al.,
2020) model for question only. By comparison
CDAC model for the question data only gives
only up to 13pp performance boost over the
naive baseline.

1 Introduction

Allegro is one of largest the e-commerce market-
place in Central Eastern Europe region that con-
nects buyers and merchants. It has millions of
active users. Therefore, the good functioning of
the Customer Experience (CX) department is cru-
cial as it provides the necessary support, resolves
emerging issues, and answers user questions.

Task-oriented chatbots relieve humans by auto-
matically resolving the most repetitive and triv-
ial issues. They usually have a pre-defined set of
user intents with matching template answers. Then,
when a user asks a question, the intent classifier
detects the question intent and returns the matching
response. Creating a reliable and comprehensive
chatbot requires massive work to discover, define,
and maintain a set of intents with training examples.
With the continuous development of marketplace

platforms, new intents constantly appear as new
features are introduced. Therefore, the automated
intent discovery system becomes a critical compo-
nent.

Novel intent discovery is performed offline on
historical data. In the context of personalized in-
telligence assistants existing approaches (Lin et al.,
2020; Gao et al., 2021; Vedula et al., 2022) focus
on learning transferable features with utterance en-
coders that guide the discovery on unlabeled data
with a handful of labeled examples belonging to
known intents. However, at Allegro our main com-
munication form is emails, and we have access to
much richer conversational data that can improve
discovery performance. A large body of historical
conversational data (user questions and consultants’
answers) can be leveraged in two ways. Firstly, to
better initialize message encoders and secondly by
performing intent discovery on conversational data
as an additional signal. Additionally, a form of
weak supervision is available: keywords (or tags)
added by the consultants that help them understand
past cases.

The paper’s main contribution is the demonstra-
tion that incorporating additional signals like con-
versational structure or weak labels into the existing
intent discovery method results in better overall per-
formance. We pre-trained for domain adaptation
three encoders using conversational data and weak
labels. We devised Conv, a method for fine-tuning
on conversational data (i.e., question and answer)
for the clustering task using a three-headed encoder.
To the best of our knowledge, this result was not
reported in the public literature.

2 Related Work

2.1 Discovering novel intents

The goal of novel intent discovery is to identify
groups of similar utterances in unlabeled data with
the assistance of limited labeled data. The Con-
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strained Deep Adaptive Clustering (Lin et al., 2020,
CDAC) uses dense intent representation on top of
the pre-trained BERT backbone to learn similarity
functions in a semi-supervised contrastive manner.
It is then utilized in the clustering algorithm. In
a real-world scenario of personal assistants (Gao
et al., 2021; Vedula et al., 2022) use a pre-trained
BERT model as a backbone encoder with super-
vised contrastive learning to transfer distance func-
tion to unlabeled data for clustering. Unlike this
work, the authors use only the question field and
English BERT-base uncased model for initializa-
tion. They do not use in-domain unlabeled data or
weak supervision for backbone pre-training.

2.2 Transfer learning

General-purpose pre-trained encoders like BERT
are not ideal. Tasks involving domain-specific
texts like, e.g., science corpus, clinical notes, or e-
commerce product descriptions benefit more from
additional pre-training on in-domain data due to
better suited vocabulary and word embeddings to
domain specific problems (Beltagy et al., 2019;
Huang et al., 2019; Tracz et al., 2020; Gururangan
et al., 2020). Similarly, for conversational tasks
ConveRT (Henderson et al., 2020a) substantially
outperforms BERT in neural response selection.
Additionally, industrial-scale training on weakly
supervised datasets leads to improvements in sev-
eral NLP tasks (Bach et al., 2018).

3 Method

3.1 Problem statement

Given unlabeled instances D, the goal is to auto-
matically cluster utterances into I classes, which
are not known a priori. We also assume that we
are given labeled instances Dk with Ik known set
of intents and I ∩ Ik ̸= ∅. Unlabeled instances
may belong to both known intents Ik and unknown
ones Iu = I \ Ik.

3.2 Framework overview

Our novel intent discovery framework consists of
representation learning (Bengio et al., 2013) and
subsequent clustering with K-means (Lloyd, 1982).
We propose the following to improve text represen-
tations for real-life novel intents discovery in the
communication domain:

• Efficient initialization with pre-trained en-
coders, adapted to the e-commerce domain

by optimization for weak training signals and
conversational structure of the data.

• Fine-tuning for the clustering task with
state-of-the-art training scheme (i.e., CDAC)
adapted to use all the conversational data (i.e.,
question and answer). Conv is our proposed
method to train a conversation structure-aware
encoder with three-headed architecture.

In the following sections, we describe each com-
ponent in more detail.

3.3 Initialization
An essential step in the deep learning process is ini-
tialization. Proper initialization is crucial in train-
ing representations for discovering new intents with
clustering. The effectiveness of the existing clus-
tering algorithms depends heavily on the quality
of the representation encoder. In this work, we
identified this dependency and proposed a generic
approach for an efficient encoder pre-training in
the conversational domain.

3.3.1 Domain specific data structure
We operate in the e-commerce domain with a two-
sided marketplace. Customers can seek support
by exchanging messages via email or chat. The
former are typically longer and include a more
formal boilerplate. A dialog may be held between
merchants and CX support, buyers and CX support,
and directly between buyers and merchants. All
messages are written in Polish.

3.3.2 Domain adaptation
We prepared two self-supervised models based
on BERT-base (Devlin et al., 2019) architecture.
We started from a general domain encoder Her-
BERT (Mroczkowski et al., 2021). We used a train-
ing corpus of 68M conversation threads with 184M
messages and 8314M words. We included both
emails and chats exchanged between all parties
(merchants, CX support, and buyers).

• AlleBERT is HerBERTfine-tuned with
Masked Language Model (MLM) objective.

• AlleConveRT is AlleBERT further fine-tuned
on the same dataset but with the mixture of
MLM and Conversational Contrastive Loss
(CCL) (Henderson et al., 2020b).

The details of the training procedure for each of the
pre-trained encoders can be found in Appendix E.
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3.3.3 Weak supervision
In the case of email communication exchanged
with CX support, every message includes at least
one of 512 tags. These labels roughly identify the
problem solved. They are assigned by CX consul-
tants often in a noisy manner. We utilized this weak
signal and prepared TagBERT encoder in a two-
stage process. Firstly, we finetuned HerBERT with
MLM and Message Threads Structural Objective
(MTSO) (Wang et al., 2020) on all internal com-
munication data (emails and chats). Secondly, we
finetuned it on a multi-label classification task on
CX weakly supervised dataset that includes 2.5M
messages in the email domain exchanged between
merchants or buyers and CX support. Details of
the training procedure can be found in Appendix E.

3.4 Conv, conversation structure aware
encoder

BERT-base
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ense layer
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question head question 
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Figure 1: Representation model based on BERT-base en-
coder used in the discovery pipeline. On the left version
with one head. On the right Conv, our conversational
model with three separate trainable heads for the ques-
tion, answer, and question-answer concatenation. The
parameters of the encoder are frozen except for the last
transformer block.

As depicted in Fig. 1, we used an encoder with
BERT-base architecture (Devlin et al., 2019) fol-
lowed by an average pooling1 and three projection
heads with two linear layers and Tanh non-linearity
in between (Lin et al., 2020).

The three-headed model works with conversa-
tional input containing a pair of texts: the user’s
question and the consultant’s answer2. Two heads
project each input separately, and the third one han-
dles additional signals from the question-answer
concatenation into one string of text. Each of the
inputs is fed into encoder separately. A common
underneath encoder is updated jointly with a gradi-
ent from all heads from the total loss given by the

1Unlike many implementations, the hidden states for
padding tokens are not averaged.

2While encoding question and answer, are preceded with
special tokens for question and answer.

weighted average of losses for each head:

LConv(X,Y, θ) =λQ · L(XQ, Y, θQ)

+ λA · L(XA, Y, θA)

+ λQA · L(XQA, Y, θQA).

(1)

Here X = (XQ, XA, XQA) is the array of inputs
(all examples), i.e. all questions, all answers, all
question-answer concatenations respectively. Y
are the input labels3. θ = (θQ, θA, θQA) is the
array of parameter sets for individual inputs BERT-
baseparameters are shared as depicted in Figure 1.
The hyperparameters λ = (λQ, λA, λQA) govern
how conversational structure is utilized for any
choice of the training scheme, whereas the pre-
cise form of the loss terms L depends on the choice
of the training scheme described in Sec. 3.5. For
example if we choose λ = (1, 0, 0), and compute
L according to CDAC training scheme, we follow
the original CDAC setup with the question field
only. By using λ = (0, 0, 1) and computing L ac-
cording to CDAC training scheme, we effectively
only concatenate question and answer strings and
feed it into the model instead of the question string.

In our method Conv for training conversation
structure-aware encoder, we trained the represen-
tation encoder with uniform heads contribution
λ = (13 ,

1
3 ,

1
3) staring from initializations described

in Section 3.3. The final representation used for
clustering is an embedding from the head for
question-answer concatenation.

To speed up training with large batches, we kept
the weights of the encoder frozen except for the last
transformer layer. The first linear layer keeps the
BERT-base dimension of the representations (i.e.,
768). The second linear block output dimension is
a representation size hyperparameter.

3.5 Training scheme
Up to this point, we are able to use any framework
for finetuning the representation encoder for intent
discovery with clustering. With that said, we pro-
pose to use two potential approaches for real-world
CX communication data.

Static. In a setup where we do not have any la-
beled data available, we extract text representation
from the pre-trained encoder by average pooling
without additional training.

3Since we deal with unsupervised/semi-supervised algo-
rithms, some examples are unlabelled.
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Constrained DAC (CDAC) (Lin et al., 2020).
The method generalizes the Deep Adaptive Cluster-
ing (DAC) (Chang et al., 2017) scheme for partially
labeled data and trains with a contrastive loss on
both distance-based pseudo-pairs and exact pairs
given by intent labels. It is semi-supervised since it
utilizes both labeled and unlabeled examples from
the train set. We adapted CDAC training scheme
to Conv, our three-headed, conversation structure-
aware encoder (see Sec. 3.4). Details of the DAC
method are in Appendix B.1, and details of the
CDAC method are in Appendix B.2.

4 Evaluation

We describe our experimental setup for novel intent
discovery. We prove the efficiency of the proposed
method on real-world communication datasets. To
verify gains from different framework components,
we present more results in the ablation section (Sec.
5).

4.1 Real-world internal datasets

We used three internal datasets: Purchase, Delivery
and Retail from real traffic to CX support at Allegro
in Polish language. CX consultants manually anno-
tated the datasets with intent labels. Categories of
email queries to the CX team are more fine-grained
than the widely used Banking77 (Casanueva et al.,
2020) dataset. Moreover, such real-world datasets
are highly imbalanced, with some intents overlap-
ping. Basic dataset statistics are shown in the Ta-
ble 1. The user emails vary in length and style and
may contain irrelevant parts. Each dataset includes
messages of different quality and specificity rang-
ing from uninformative chit-chat to well-written
ones. In datasets, only the first question and direct
answer are included, and all further messages from
the correspondence thread are omitted. The Pur-
chase and Delivery cover conversations between
buyers and CX consultants. Retail is communica-
tion between buyers and merchants, so conversa-
tion topics and structure are different. We use a
stratified 80/10/10 train/val/test split.

We use two public benchmark English
datasets from task-oriented dialog systems:
CLINC150 (Larson et al., 2019) and Bank-
ing77 (Casanueva et al., 2020) in Dataset splits
follow exactly the experimental setup used
in (Zhang et al., 2020) in ablation study in
Section 5.2 to increase the reproducibilty of our
work. In other ablations it is impossible due to

missing conversational and weak label signal.
Basic statistics of the datasets are in the Table 1.

Further details are in Appendix A.

4.2 Experimental setting
We build a controlled open-world intent discovery
setup, following the setup proposed in (Lin et al.,
2020; Zhang et al., 2020). We prepared novel in-
tents by randomly masking all examples from 50%
of intents in the training set. The remaining intents
serve as known intents and are additionally par-
tially masked. We masked 50% of all remaining
examples. We apply the representation learning
framework: we take in-domain encoders described
in Section 3.3.2 and 3.3.3 and do the fine-tuning
step (described in Section 3.4 and 3.5). After the
training phase, we cluster the whole test dataset
with K-means. We performed clustering with the
ground truth number of clusters (i.e., the number
of intents in the dataset).

We run experiments with hyperparameters (i.e.,
representation size, batch size, and learning rate)
fixed. We have described the method of their selec-
tion in Appendix D.

We use five random seeds, which govern intent
masking and weight initialization. We train the
model for 100 epochs on a single machine with
NVIDIA V100 GPU. It takes a few hours to run
a single fine-tuning experiment for all seeds for a
single setting (dataset, training scheme etc.).

4.3 Metric4.
We compute metrics based on cluster ids from K-
means algorithm and ground truth labels. The dis-
covery quality is probed with three standard clus-
tering metrics, i.e., Accuracy (ACC) using the Hun-
garian algorithm, Normalized Mutual Information
(NMI), and Adjusted Rand Index (ARI). We also
introduce two additional metrics. First, the binary
F1-score i.e., macro F1-score with a majority vote
on cluster label calculated on the whole dataset
where all known intents are one class, and all novel
intents are the second class. Second, the macro
F1-score with a majority vote on the cluster label.
It turns the clustering quality problem into a multi-
label classification. In the main part of the paper,
we report AVG i.e., the average of five metrics over
all seeds. AVG increases with clustering quality
up to 100%. AVG is the primary metric used for

4We publish the code for our metrics: https:
//github.com/allegro/ml/tree/main/publications/
intent-discovery-metrics/
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# # # examples per intent mean length (characters)
Dataset intents examples mean min max entropy question answer

Banking77 77 13.1k 170±33 75 227 0.992 60±40 -
CLINC150 150 22.5k 150±0 150 150 0.999 40±20 -

Purchase 22 2.7k 121±50 29 240 0.972 320±280 1060±400
Delivery 23 3.0k 130±55 57 221 0.973 330±360 860±410
Retail 105 13.8k 133±124 22 664 0.930 160±190 740±830

Table 1: Downstream tasks datasets characteristic. Class imbalance is measured by the average number of examples
per intent and the normalized Shannon’s entropy of the intent distribution (which is 1 for for the perfectly balanced
case and lower in case of class imbalance). Further details are in Appendix A

Method Purchase Delivery Retail

Static 37.0±4.1 31.1±1.3 28.8±0.7
CDAC 50.2±6.6 40.9±4.5 36.5±1.7
Our 83.2±3.2 64.2±6.3 45.4±4.0

Table 2: Static baseline and CDAC representations com-
pared with our framework on novel intent discovery
task for real-world data. Our framework combines Tag-
BERTpre-trained encoder, CDAC training scheme, and
Conv method for using the conversation structure. AVG
metric averaged over five seeds.

model selection. Additionally, to facilitate com-
parison with other research, the five metrics are
listed separately in Appendix F for all experiments.
In Appendix F we give more details on how we
compute metrics or test for statistical significance.

4.4 Results

Table 2 shows the AVG metric for our best-
performing model. Five individual metrics are
listed in Table 8. We significantly improve intent
discovery compared with baselines. Our model
uses TagBERT (see Section 3.3.3) as initializa-
tion and is trained with the CDAC scheme. While
training, we used both question and answer fields
and utilized conversational structure-aware encoder
Conv introduced in Sec. 3.4. The baselines (Static
and CDAC) are based on the general domain Her-
BERT encoder and use the question field only. We
improved over the second-best CDAC, depend-
ing on the dataset, by 8.9pp to 33pp. The per-
formance gap of our framework to the CDAC base-
line is greater then the superiority of CDAC over
the naive baseline, static embeddings, which is be-
tween 7.7pp and 13.2pp.

Initialization Purchase Delivery Retail

HerBERT 65.9±6.2 44.7±3.7 37.2±2.0
AlleBERT 66.4±6.6 49.2±6.4 44.2±2.2
AlleConveRT 73.1±8.8 57.9±5.9 49.3±2.1
TagBERT 83.2±3.2 64.2±6.3 45.4±4.0

Table 3: Impact of initialization for novel intent discov-
ery task. Conv conversation structure-aware encoder
was trained with the CDAC scheme from different ini-
tialization. AVG metric averaged over five seeds with
standard deviation.

5 Ablation

We attribute the improvement in performance to all
three method components: domain adaptation dur-
ing pre-training with conversational and weak label
signal, state-of-the-art training scheme CDAC, and
leveraging of conversation structure with our Conv
method introduced in Section 3.4.

5.1 Initialization

In this section, we show the effect of initialization
on the novel intent discovery task. We trained a
conversation structure-aware encoder with a CDAC
scheme using four different initializations.

AVG metric is reported in Table 3 and individual
metrics are shown Table 9. Comparing AlleBERT
with HerBERT, we can see that domain-adapted
initialization improves 1 to 7pp for discovering new
intents. Further adaptation of the starting encoder
with the loss of ConveRT improves at least 5pp.
Summarizing AlleBERT and AlleConveRT initial-
izations bring gains for all internal datasets. For
the CX domain (Purchase or Delivery), the best ini-
tialization was provided by TagBERT. Pre-training
with weak labels introduced additional training in-
formation that turned out to be transferable for the
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Training scheme Banking77 CLINC150 Purchase Delivery Retail

Static 41.7±1.0 55.9±1.4 35.5±4.1 31.0±2.4 29.6±0.8
DAC 51.8±1.8 64.6±1.3 24.1±0.7 24.0±0.9 27.3±4.4
Supervised 65.2±2.1 73.2±0.6 38.2±2.1 33.5±2.2 30.1±0.5
CDAC 61.8±2.8 70.4±1.4 52.9±7.3 42.3±3.6 39.2±1.2

Table 4: Evaluation of training schemes for novel intent discovery. We report AVG metric averaged over five seed
with standard deviation. Models use BERT-base (English datasets) or AlleBERT (Polish datasets) encoder and
question input only. The best results are in bold.

downstream task. The simultaneous drop in quality
on the Retail dataset originating from the domain
for which we did not have noisy labels confirms
this phenomenon.

5.2 Training schemes

We compare two training schemes Static, and
CDAC from Sec. 3.5 with two additional base-
line methods DAC and Supervised. For Supervised
training scheme, we use Large Margin Cosine Loss
(LMCL) (Wang et al., 2018) to learn representation
from labels. We discard unlabeled data from the
train set. We train the models for all four schemes
with question input only and BERT-base (Devlin
et al., 2019) for English and AlleBERT for Polish
datasets.

This ablation study is the only case when we can
use two public benchmark English datasets from
task-oriented dialog systems: CLINC150 (Larson
et al., 2019) and Banking77 (Casanueva et al.,
2020). Unfortunately, public benchmark datasets
lack the answer data, a large amount of unlabeled
data, and weak labels. However, including them in
this ablation study increases the reproducibility of
our work and brings interesting insights.

AVG metric is reported in Table 4 and individual
metrics can be found in Table 10. For all datasets,
there is a gain from using intent labels (Supervised
and CDAC). For public datasets among unsuper-
vised methods, DAC outperforms static representa-
tions. However, supervised training is better than
semi-supervised CDAC. The results are the oppo-
site for the internal datasets. DAC is better than
static representations, and semi-supervised CDAC
is better than supervised training. We hypothesize
that different real-world and benchmark datasets
results might be due to dataset quality and size dif-
ferences. In general, benchmark datasets are larger
and more balanced. Moreover, mail messages from
real-world e-commerce are longer and noisier on
average. It is an open question how this trend holds

for other real-life datasets.
To sum up, there is a gain from intent labels

for all datasets. Optimal solutions for public
benchmarks and real-world internal datasets dif-
fer. CDAC is the best training scheme that uses
intent labels for internal datasets.

5.3 Conversational structure

We examine if any further gains in performance can
be obtained from incorporating the answer field sig-
nal. We conduct experiments only on the internal
datasets. We use only the best training scheme,
i.e., CDAC. We examine four training configura-
tions: only question representation Q trained with
λ = (1, 0, 0), only answer representation A trained
with λ = (0, 1, 0), question-answer concatenation
QA concatenation trained with λ3 = (0, 0, 1), us-
ing question and answer in a simpler two-headed
model QA two heads trained with λ = (12 ,

1
2 , 0)

and full three-headed conversational model Conv
trained with λ = (13 ,

1
3 ,

1
3) described in detail in

section Sec. 3.4.5

AVG metric is reported in Table 5 and individ-
ual metrics can be found in Table 11. The answer
alone performs worse than the question alone. We
hypothesize that it is due to many non-informative
generic answers6. Perhaps for other real-world
datasets consultant’s answer may be superior to the
user’s questions. Passing only the question signal
is a strong baseline. Let us check if it is possible to
incorporate signals from both question and answer
fields in a way that improves performance over Q,
question field only baseline. The most straightfor-
ward extension, QA concatenation, which requires
only inputting different inputs to the same model
is slightly better but does not pass the statistical

5For multi-headed encoders, we chose the best of all possi-
ble final representations (output from any head, or concatena-
tions of outputs from multiple heads).

6e.g., Thank you for your message. Let me check some
details and reply later.
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Purchase Delivery Retail

Q 52.9±7.3 42.3±3.6 39.2±1.2
A 51.7±5.5 37.6±4.5 30.5±1.5
QA concat. 55.1±3.8 47.3±3.4 43.4±3.1
QA two head. 56.4±5.9 46.9±5.4 40.2±1.7
Conv 66.4±6.6 49.2±6.4 44.2±2.2

Table 5: Evaluation of conversational structure for novel
intent discovery. We report AVG metric averaged over
five seed runs with standard deviation. Models use
AlleBERT initialization, CDAC training scheme, and
various inputs, i.e., question Q, answer A, or both fields
(QA) in three model variants; QA concatenation, QA
two heads, and Conv. The best results are in bold.

significance test. The same goes for the more so-
phisticated QA two heads variant. Only our method
Conv, a three-headed encoder is better than Q with
statistical significance. Incorporating both question
and answer signal leads to further improvements.

To sum up, after examining multiple ways to
include the conversational signal, we conclude that
our method Conv with a three-headed encoder im-
proves the performance by 5 to 13.5pp.

6 Commercial deployment

6.1 Production pipeline overview

Figure 2: Intent discovery pipeline deployed at Allegro
with human-in-the-loop carrying out the novel intent
selection and data annotation. Representation learning
components are subject to experiments in this paper.
The main outcome of the pipeline is an updated intent
detection dataset, which can be used to train a better
intent classification model.

The method we described and verified exper-
imentally is a part of a larger multi-component
system for continuous intent discovery deployed
commercially, shown in Fig. 2. Here we briefly list
the major components of our production pipeline
to give the bigger picture:

1. Representation learning. Representation
learning plays a core role in our pipeline. This
component is subject to experiments in this
paper and consists of two subcomponents:

(a) In-domain pre-training of encoders. En-
coders with BERT-base architecture are
pre-trained on large chunks of historical
data. We include additional signals such
as conversational structure (i.e. question
and answer) and weak label signal (Sec-
tion 3.3.2 and 3.3.3). The encoders are
reused for the intent classification model.

(b) Fine-tuning for the clustering task. We
further train in-domain encoders. If
there exists annotated data, we use
semi-supervised CDAC with Conv (Sec-
tion 3.4). Otherwise, we use static em-
beddings.

2. (Over)clustering with K-Means. We cluster
representations to discover intent groups in the
data. The number of novel intents is required
by K-Means. We overestimate this value as
it is less time-consuming to manually merge
clusters with the same intent.

3. Cluster postprocessing. Various postprocess-
ing steps make analyzing the clusters by the
human annotators more efficient:

(a) Multi-document summarization. The
summarization module, provides human-
readable candidates for the intent name
instead of cluster ids. First, we train
a logistic regression classifier with bag-
of-words features to predict cluster ids.
Then, we identify the most informative
sentence in each message using the clas-
sifier coefficients (Angelidis and Lap-
ata, 2018). Finally, we select the five
most central sentences across all mes-
sages (Zheng and Lapata, 2019).

(b) Known intent prediction. We need to dis-
tinguish clusters with known intents from
clusters with potentially novel intents.
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Since the labeled messages are typically
a small subset of the training dataset, we
infill intents for the unlabeled examples
with an intent classifier and present this
information to human annotators.

4. Novel intent selection and data annotation.
Human annotators manually analyze all dis-
covered clusters and choose which novel in-
tents to include in the taxonomy. They anno-
tate all messages from clusters to be included
in the labeled dataset to ensure the high coher-
ence of newly discovered intents.

CX intent dataset updated with new intent is the
end product of our intent discovery pipeline. Its
primary purpose is to train an intent classifier to
be served in real-time to CX consultants. It is a
complex pipeline of its own. It has similar archi-
tecture to the representation learning model in the
intent discovery pipeline and it reuses pre-trained
encoders. Even though the consultant’s answer
and the consultant’s weak label are not known at
the serving time of the intent classification model,
we leverage these signals to build a better intent
dataset and directly train a better intent classifica-
tion model.

6.2 Commercial benefits case study
Thanks to the deployed pipeline, we doubled the
number of defined intents for customer support
within one year. Initially, the taxonomy consisted
of 100 classes manually defined by the CX consul-
tants. The commercial deployment of the intent
discovery pipeline happened at the moment when
the domain experts failed to find any new intents
manually. Roughly 50 new intents were discov-
ered thanks to our intent discovery pipeline. The
selected clusters were reasonably pure: over 90%
(mean and median) of examples from the selected
clusters were labeled as the given intent. Addi-
tional examples for the new intents were further
added (active learning etc.) and at the moment, the
examples from the clustering process are at least
40% of all examples for 50 automatically discov-
ered intents. Currently, after extending our taxon-
omy from other sources as well, our taxonomy has
roughly 180 intents.

In addition, the pipeline decreased the time re-
quired to define novel intents from weeks to days
with the additional benefit of analyzing several-fold
more messages. The more comprehensive taxon-
omy significantly impacts the total benefit from the

automation process, improves user experience by
providing faster responses, and saves the cost of
hiring additional CX consultants.

7 Conclusions

This paper describes an intent discovery pipeline
deployed on a large e-commerce platform. The
access to real-life datasets allows extending the es-
tablished intent discovery models to better leverage
vast amounts of unlabelled data, its conversational
structure, and additional signals like weak labels.
In particular, we learn the following lessons:

1. Among multiple ways to handle conversa-
tional data, Conv, our generalization of the
CDAC model to a three-headed encoder to use
all available conversational data (i.e., question
and answer) increases the performance of the
intent discovery pipeline the most. See Sec-
tion 5.3.

2. The significant gains also come from pre-
training the encoder on an unlabelled in-
domain dataset with conversational structure
and weak labels (TagBERT). See Section 5.1.
Therefore, we recommend a system architec-
ture that enables weak labeling by the consul-
tants by design.

3. Even though the consultant’s answer and weak
labels are not available at the serving time of
the intent classification model, they can be
used offline for novel intent discovery to build
a better dataset and directly improve the intent
classification. It happened for our comercially
deployed pipeline. See Section 6.

4. Gains from incorporating additional signals
(Conv method, TagBERT) are larger than
gains from using state-of-the-art methods
(CDAC) on datasets without additional sig-
nals. See Section 4.4. We advocate for a shift
both in construction and research on intent
detection datasets.

8 Limitations

We are aware of two major factors that may affect
the generality of our research: shortcomings of
the simulated novel intent discovery setup and the
assumption that intent detection is a classification
problem.
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Simulated experiments. In the experimental sec-
tion, we use small, entirely annotated datasets to
analyze different design choices of the representa-
tion learning component. We naturally include only
already discovered intents (does not mean these are
all possible). Our masking procedure that follows
research papers (Lin et al., 2020; Zhang et al., 2020)
has three drawbacks. Firstly, when we mask most
of the dataset, we effectively do few-shot learning,
whereas, in reality, the amount of annotated data
is much larger. The observed differences between
design choices may be mitigated once more data
is available. Secondly, real class imbalance may
not be reflected in the experimental dataset due
to the annotation procedure. Lastly, the ratio be-
tween batch size and dataset size is much smaller
for real datasets since, in general, we are training
with a large amount of unannotated data. It directly
affects batch-based pair statistics when using a ran-
dom sampler in CDAC algorithm. The chance that
annotated examples will be present in the batch is
low, and effectively we are almost entirely learn-
ing from pseudo-pairs during the semi-supervised
stage.

Intent detection as classification. We treat the
intent discovery as classification i.e. each utterance
has only one intent. In reality, users may have
more than one goal that transforms the problem into
a multi-label scenario. Naturally, we could treat
multi-label examples as yet another class, but we do
not explore their influence on pipeline performance
since they were in a significant minority.
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A Dataset details

We further describe real-world internal datasets in-
troduced in 4.1 and compare them to public bench-
mark datasets. Table 6 exemplifies the domain
diversity of the datasets: it contains three sample
intent names per dataset.

We visualize the datasets. We use publicly
available pre-trained models to enable simple vi-
sual comparisons between our real-world inter-
nal datasets and any other datasets. Sentence-
BERT produces English sentence embeddings by
fine-tuning on semantic textual similarity STS
pairs (Reimers and Gurevych, 2019). We use
a variation of Sentence-BERT trained from MP-
Net (Song et al., 2020). Polish version has been
obtained following knowledge distillation proce-
dure (Reimers and Gurevych, 2020; Dadas, 2019).
7 We compute sentence embeddings for the ques-
tion field or if the answer field is present, for
question-answer concatenation. For each exam-
ple, we compute a partial Silhouette score (using
ground truth intents as cluster labels) and average
it per intent. Silhouette score, designed originally
for evaluating the clustering quality, takes into ac-
count the mean intra-cluster distance and the mean
nearest-cluster distance for each example. We plot
2D t-SNE mappings of the embeddings, Silhouette
score per intent 8, and intent sizes in Figures 3 and 4
to visualize the datasets and the initial difficulty of
the clustering task on general domain pre-trained
models.

B Training schemes

B.1 Deep Adaptive Clustering (DAC)
It was introduced in (Chang et al., 2017) for the
Computer Vision domain but is easily extended
to text. Originally, output representation was in-
terpreted as a probability distribution over unique
classes, i.e., they used L2 normalized features with
positive elements. We relaxed this condition and
trained real-valued representation for any cluster-
ing algorithm. The representation size doesn’t have
to match a unique number of classes in the dataset
(unknown in real scenarios). For a pair of examples
i, j the loss function Lij is

Lij = −Rij logSij− (1−Rij) log(1−Sij), (2)
7Package sentence-transformers, available at https:

//sbert.net, is used with models all-mpnet-base-v2 or
sdadas/st-polish-paraphrase-from-mpnet for English
and Polish respectively.

8https://scikit-learn.org/

Dataset Three sample intent labels

Banking77
1. Cash withdrawal charge

2. Getting spare card
3. Request refund

CLINC150
1. Transactions

2. Next song
3. International fees

Purchase
1. I have a technical problem.

2. When will my Smart!
be active?

3. How to withdraw from
the auction?

Delivery

1. I didn’t pick up my parcel
and I’m asking for a refund.

2. How to withdraw
from the contract?

3. I want to use Buyers
Protection Program.

Retail

1. When will the sale of
the offer start?

2. I have a problem with the cust-
omer service for my purchase.
3. Is the product prepackaged?

Table 6: Domain diversity of labeled datasets used for
novel intent discovery experiments. Three sample intent
names per datasetare given.

Dataset B
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77
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l

Representation size 256 256 32 32 64
Batch size 128 128 16 32 16
# intents 77 150 22 23 105

Table 7: Optimal representation size and batch size vs.
a number of annotated intents in the datasets.
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where (Rij = 1) for positive pairs and (Rij = 0)
for negative pairs and Sij is cosine similarity of rep-
resentations. The pseudo-label matrix R is defined
in an online fashion for every pair of examples in a
batch using current model predictions i.e.

Rij =





1, if Sij ≥ u(λ),
0, if Sij < l(λ),

None, otherwise,

(3)

where u(λ) and l(λ) are upper and lower thresh-
olds. Pairs between the thresholds do not take part
in the training. This is compensated by adding
penalty term u(λ) − l(λ) to the final loss. The
thresholds are updated every epoch according to
the formula

u(λ) = 0.95− λ,
l(λ) = 0.455 + 0.1 · λ,

where update rule for λ every epoch is λ = λ+1.1·
0.009 (Chang et al., 2017). We start with λ = 0.
The training ends when u(λ) = l(λ). The train-
ing resembles curriculum learning: we start with
confident examples with very large or low cosine
similarity and then introduce more uncertainty. The
penalty term also reflects our confidence since it
controls the strength of gradient updates.

B.2 Constrained DAC (CDAC)
This extension of DAC to a semi-supervised sce-
nario was introduced in (Lin et al., 2020). In un-
supervised case, we only use contrastive objective
with pseudo-labels. Once we have annotated exam-
ples, we define true positive and negative pairs with
labels. The label matrix R has now pseudo-label
part (3) and exact part

Rij =

{
1, if yi = yj ,

0, if yi ̸= yj ,
(4)

where yi denotes encoded label for i-th example.
Since our batch now includes annotated and unan-
notated examples, we need to redefine pseudo-
labels. We consider three cases. Firstly, pseudo-
labels can be defined only among unannotated ex-
amples. Secondly, we can allow pseudo-labels be-
tween pairs of annotated and unannotated examples.
Lastly, we can define pseudo-labels for all possi-
ble pairs, including a scenario where pseudo-labels
are defined among annotated pairs. We chose the
second scenario.

Additional modification is alternating training.
Even epochs use only annotated data and no thresh-
old penalty. Odd epochs use the whole dataset and
pseudo-label matrix as well as exact. The loss in
the supervised phase is additionally scaled by the
δ ≥ 1 hyperparameter to control the weight put on
annotated data.

C Metrics9.

We choose metrics for our experiments. Three
clustering metrics measure the separation of novel
intents from each other:

• Accuracy (ACC) measures clusters purity.
Cluster and ground-truth labels are matched
with the Hungarian algorithm.

• Normalized Mutual Information (NMI)
specifies the amount of uncertainty about class
labels given cluster labels.

• Adjusted Rand Index (ARI) checks for
all sample pairs whether their assigned and
ground truth labels are the same.

ACC, NMI, and ARI are calculated only on exam-
ples with a novel intent as a ground truth label.

The separation of the novel from the known in-
tents is measured by:

• Binary F1-score. It is a macro F1-score with
a majority vote on the cluster label calculated
on the whole dataset where all known intents
are one class and all novel intents are the sec-
ond class.

Last but not least, there is a metric that measures
both the separation between novel intents and the
separation of the novel from the known:

• Macro F1-score with majority vote on cluster
label. It turns the clustering quality problem
into multi-label classification.

The macro average is calculated only for novel
intents. Examples with any ground truth label may
be included10.

All metrics increase with clustering quality up
to 100%. We use five random seeds, which gov-
ern intent masking and weight initialization. In

9We publish the code for our metrics: https:
//github.com/allegro/ml/tree/main/publications/
intent-discovery-metrics/

10See: https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.f1_score.html
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the main part of the paper, we report AVG i.e.,
the average of five metrics listed above (which are
correlated variables) overall seeds. AVG is the pri-
mary metric used for model selection. Whenever in
doubt, we confirm that the difference between AVG
metrics is statistically significant with correlated
T-Test with a p-value=5% threshold. Additionally,
to facilitate comparison with other research, for all
experiments, the five metrics are listed separately
in Appendix.

D Initial fine-tuning

We start our experiments with fine-tuning repre-
sentation size, batch size, and learning rate hyper-
parameters for the CDAC training scheme11. For
every dataset, we optimize the hyperparameters
in two steps: selecting optimal representation size
via grid search over the representation sizes {16,
32, 64, 128, 256} and learning rates {1e-05, 5e-
05, 1e-04} and then selecting the optimal learning
rate and batch size via grid search over batch sizes
{16, 32, 64, 128, 256, 512} and the same learning
rates as step 1. Tab. 7 shows the relation of the
selected hyperparameters to the number of intents.
The selected hyperparameters are later fixed in the
experiments. Additionally, to improve training sta-
bility, we perform an additional learning rate search
again within values {1e-05, 5e-05, 1e-04} for every
setup which uses Conv method separately.

E Pre-trained encoders (details)

To leverage large amounts of historical data, we
compare four self-supervised encoders, and one
supervised trained on conversational data. The
training procedure for each encoder is described in
detail below for reproducibility. The encoders are
used for experiments in Sec. 4.4.

HerBERT State-of-the-art BERT-base language
model for Polish (Mroczkowski et al., 2021) trained
with Masked Language Model (MLM) objective.

AlleBERT The model is a result of further fine-
tuning HerBERT on internal unsupervised conver-
sational data. The single training example contains
a conversation thread clipped to 512 tokens. We
always clip threads to a random subsequence of
whole consecutive utterances to persist in a con-
versational context. AlleBERT is trained with the

11We focus on CDAC encouraged by initial good results
for CDAC and high cost of fine-tuning each training scheme
separately.

MLM objective for 100k steps with the linearly
decaying learning rate schedule (peak value 1e-05)
and the batch size of 224. The training on four
NVIDIA A100 GPUs lasted 2 days.

AlleConveRT The model is a result of further
fine-tuning of the AlleBERT on the same data but
with the mixture of two objectives, MLM loss with
the ratio of 0.2 and Conversational Contrastive
Loss (CCL). Following ConveRT (Henderson et al.,
2020b) we leverage the structure of the conversa-
tions with alternately exchanged utterances in a
metric learning setup. Positive examples are con-
secutive messages from a single conversation, and
negatives come from answers within the training
batch. To reduce the overfitting to specific utter-
ances, we use label smoothing with the value of
0.2 (same as (Henderson et al., 2020b)). To utilize
conversational data structure, we add two projec-
tion heads on top of the AlleBERT encoder, one
for the question and answer representations12. Al-
leConveRT is trained for the 280k steps with the
peak learning rate 1e-05 and the batch size of 448.
The training on four NVIDIA A100 GPUs lasted 4
days.

TagBERT The model is trained in two-stage fine-
tuning of the first version of HerBERT (Rybak
et al., 2020). In the first stage, we fine-tune the
model on internal unsupervised conversational data.
We use MLM objective and Message Threads Struc-
tural Objective (MTSO). MTSO is Sentence Struc-
tural Objective (Wang et al., 2020) tailored to the
conversation domain. During training, we swap
messages with respect to threads instead of swap-
ping sentences with respect to documents. Tag-
BERT is trained for 100k steps with a batch size of
640 and a peak learning rate 8e-05.

In the second stage, we fine-tune the model on
the multi-label classification task. The model pre-
dicts several of the 512 classes for each thread. The
noisy and highly imbalanced labels come from tags
that CX consultants add to the conversation threads,
roughly identifying the problem solved. The train-
ing dataset contains 2.5M messages. TagBERT is
trained for 38k steps with a peak learning rate of
1.6e-04 and a batch size of 512. The training on
sixteen NVIDIA P100 GPUs lasted 8 hours.

F Results (details)

12Answers in our data come from two sources: CX consul-
tants and sellers.
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Static 23 39 45 17 62 19 28 37 8 64 10 20 47 5 62
CDAC 33 50 61 30 77 27 39 50 16 72 15 32 57 10 67
Our 75 83 88 78 92 49 64 72 56 81 19 42 65 31 70

Table 8: Static baseline and CDAC representations compared with our framework on novel intent discovery task for
real-world data. Our framework combines TagBERTpre-trained encoder, CDAC training scheme, and Conv method
for using the conversation structure. Individual metrics averaged over five seeds.

Dataset Purchase Delivery Retail

Initialization m
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HerBERT 53 66 73 53 84 27 44 49 25 78 18 33 57 10 68
AlleBERT 54 67 74 52 86 33 46 58 32 77 17 42 65 27 70
AlleConveRT 60 74 83 67 83 46 57 64 41 81 20 48 71 36 72
TagBERT 75 83 88 78 92 49 64 72 56 81 19 42 65 31 70

Table 9: Impact of initialization for novel intent discovery. Conv conversation structure-aware encoder was trained
with the CDAC scheme from different initialization. Individual metrics averaged over five seeds.
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Figure 3: Internal dataset visualization. On the left we visualize t-SNE mapping of sentence representations to
2 dimensions. Different colors indicate different intent labels, each point corresponds to a single example in the
dataset. On the right there is a scatter plot of intent sizes and Silhouette score per intent. Each point corresponds to
one intent in the dataset. Silhouette score values are in the range from -1 to 1. 1 indicates perfect clustering, and 0
indicates overlapping clusters. The visualizations show the initial difficulty of the clustering task on general domain
pre-trained models.
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Figure 4: Public dataset visualization. On the left we visualize t-SNE mapping of sentence representations to 2
dimensions. Different colors indicate different intent labels, each point corresponds to a single example in the
dataset. On the right there is a scatter plot of intent sizes and Silhouette score per intent. Each point corresponds to
one intent in the dataset. Silhouette score values are in the range from -1 to 1. 1 indicates perfect clustering, and 0
indicates overlapping clusters. The visualizations show the initial difficulty of the clustering task on general domain
pre-trained models.
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St
at

ic

macro F1 30 44 21 17 11
ACC 33 49 36 30 22
NMI 55 75 41 36 48
ARI 23 36 14 9 6
binary F1 68 75 65 63 62

D
A

C

macro F1 42 55 13 12 10
ACC 45 58 22 20 17
NMI 64 81 30 28 46
ARI 35 49 0 1 3
binary F1 73 80 55 59 61

Su
pe

rv
is

ed

macro F1 55 64 22 19 11
ACC 60 68 36 32 26
NMI 76 86 46 38 45
ARI 51 61 12 9 4
binary F1 83 87 75 70 64

C
D

A
C

macro F1 51 58 34 30 18
ACC 54 66 54 42 35
NMI 74 86 67 51 61
ARI 47 59 36 17 14
binary F1 82 83 74 72 68

Table 10: Impact of training schemes for novel intent
discovery. Models use BERT-base (English datasets) or
AlleBERT (Polish datasets) encoder and question input
only. Individual metrics averaged over five seeds.

Dataset Pu
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Q

macro F1 30 34 18
ACC 54 42 35
NMI 67 51 61
ARI 36 17 14
binary F1 74 72 68

A

macro F1 27 23 12
ACC 55 35 24
NMI 64 44 49
ARI 42 15 6
binary F1 70 71 61

QA concat.

macro F1 27 31 17
ACC 59 45 41
NMI 71 55 64
ARI 48 26 26
binary F1 71 80 69

QA two head.

macro F1 38 32 19
ACC 56 44 36
NMI 68 54 62
ARI 44 28 16
binary F1 75 76 69

Conv

macro F1 54 33 17
ACC 67 46 42
NMI 74 58 65
ARI 52 32 27
binary F1 86 77 70

Table 11: Impact of conversational structure for novel
intent discovery. Models use AlleBERT initialization,
CDAC training scheme, and various inputs, i.e., ques-
tion Q, answer A, or both fields (QA) in three model
variants; QA concatenation, QA two heads, and Conv.
Individual metrics averaged over five seeds
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Abstract

The rapid development of large pretrained lan-
guage models has revolutionized not only the
field of Natural Language Generation (NLG)
but also its evaluation. Inspired by the recent
work of BARTScore: a metric leveraging the
BART language model to evaluate the qual-
ity of generated text from various aspects, we
introduce DATScore. DATScore uses data aug-
mentation techniques to improve the evalua-
tion of machine translation. Our main find-
ing is that introducing data augmented transla-
tions of the source and reference texts is greatly
helpful in evaluating the quality of the gener-
ated translation. We also propose two novel
score averaging and term weighting strategies
to improve the original score computing pro-
cess of BARTScore. Experimental results on
WMT show that DATScore correlates better
with human meta-evaluations than the other re-
cent state-of-the-art metrics, especially for low-
resource languages. Ablation studies demon-
strate the value added by our new scoring strate-
gies. Moreover, we report in our extended ex-
periments the performance of DATScore on 3
NLG tasks other than translation Code is pub-
licly available1.

1 Introduction

Massive pretrained language models have brought
significant improvement to NLG tasks (Lewis et al.,
2020). Recent systems can even generate texts of
higher quality than human-annotated ones (Peyrard,
2019). At the same time, standard metrics, such
as BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004), for translation and summarization respec-
tively, have not evolved for the past two decades
(Bhandari et al., 2020). These metrics rely on sur-
face lexicographic matches, making them partic-
ularly unsuitable for evaluating modern systems
operating with embeddings at the semantic level
that often generate paraphrases (Ng and Abrecht,

1https://github.com/moussaKam/datscore

2015). To address this issue, many metrics have
been proposed (Sai et al., 2022), but none of them
were widely adopted until the release of BERTSore
(Zhang et al., 2019) and MoverScore (Zhao et al.,
2019). These metrics take advantage of large pre-
trained language models like BERT (Devlin et al.,
2019), which are now being used in nearly all NLP
tasks (Qiu et al., 2020; Min et al., 2021).

In this work, we focus on the task of evaluating
machine translation. We propose an extension of
BARTScore (Yuan et al., 2021), a recent metric ex-
ploiting the BART seq2seq language model (Lewis
et al., 2020) to evaluate the quality of generated
text from various aspects. BARTScore covers four
evaluation facets: Faithfulness, Precision, Recall,
and F-score, derived from different generation di-
rections between the source text, the hypothesis
(the text generated by a system given the source),
and the reference (the reference text for the gener-
ation, often provided by human annotators). The
scores are obtained by pairing the three entities dif-
ferently at the input or the output side of a trained
seq2seq model for fetching conditional generation
probabilities.

Based on BARTScore, and motivated by the gen-
eral idea and positive effect of data augmentation
techniques, we found that adding augmented, trans-
lated copies of the source and reference texts in
BARTScore, can greatly help evaluate the quality
of the hypothesis translation. We also propose two
novel score averaging and term weighting strate-
gies to improve the original score computing pro-
cess of BARTScore. Results and ablation studies
show that our metric DATScore (Data Augmented
Translation Score) outperforms the other recent
state-of-the-art metrics, and our new scoring strate-
gies are effective. Moreover, the performance of
DATScore is also reported on three other NLG
tasks than translation: data-to-text, summarization,
and image captioning.

To the best of our knowledge, no prior work has
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been done on leveraging data augmentation tech-
niques for untrained NLG evaluation metrics. Our
work will help fill this gap. Our contributions in-
clude:
1) Inspired by BARTScore, we developed
DATScore, incorporating augmented data trans-
lated from the source and reference texts.
DATScore is an untrained and unsupervised trans-
lation evaluation metric that offers a larger perfor-
mance boost in evaluating low-resource language
generation. In contrast to other widely adopted
metrics, DATScore can efficiently incorporate both
the source and reference texts in the evaluation.
2) We introduced a novel one-vs-rest method to
average the scores for different generation direc-
tions with different weights, which improves over
the simple arithmetic averaging method used in
BARTScore.
3) We proposed a novel entropy-based scheme for
weighting the target generated terms so that higher
informative tokens receive more importance in ac-
counting for the score, which outperforms the naive
uniform weighting employed in BARTScore.

2 Related work

2.1 Translation evaluation metrics

BLEU (Papineni et al., 2002) is the de facto metric
for evaluating machine translation. It simply calcu-
lates n-gram matching between the reference and
the hypothesis using precision scores with a brevity
penalty. METEOR (Banerjee and Lavie, 2005) was
developed to address two drawbacks of BLEU. It
is F-score based (thus taking recall into account)
and allows for a more relaxed matching, based on
three forms: extract unigram, stemmed word, and
synonym with WordNet (Miller, 1994). Apart from
the above word-based metrics, some approaches
operate at the character level. For example, chrF
(Popović, 2015) computes the overall precision and
recall over the character n-grams with various val-
ues of n. More recently, static word embeddings
(Mikolov et al., 2013) have enabled capturing the
semantic similarity between two texts possible, of
what the historical metrics are incapable. Several
metrics have been proposed to incorporate word
vectors. For example, MEANT 2.0 (Lo, 2017) eval-
uates translation adequacy by measuring the simi-
larity of the semantic frames and their role fillers
between the human and machine translations.

Lately, pretrained language models have become
popular, because they provide context-dependent

embeddings. This proved beneficial to all NLP
tasks, but also to evaluation metrics. For example,
using a modified version of the Word Mover’s Dis-
tance (Kusner et al., 2015), the Sentence Mover’s
Similarity (Clark et al., 2019) measures the mini-
mum cost of transforming one text into the other
as the evaluation score, where sentences are rep-
resented as the average of their ELMo word em-
beddings (Peters et al., 2018). BERTR (Mathur
et al., 2019) computes approximate recall based on
the pairwise cosine similarity between the BERT
word embeddings (Devlin et al., 2019) of two trans-
lations. UniTE (Wan et al., 2022) proposes a uni-
fied framework for modeling three evaluation pro-
totypes: estimating the quality of the translation
hypothesis by comparing it with reference-only,
source-only, or source-reference-combined data.
UniTE is built upon XLM-R multilingual language
model (Conneau et al., 2020).

Among several alternatives, BERTSore (Zhang
et al., 2019) and MoverScore (Zhao et al., 2019)
have received more attention, and have been
adopted for reporting results in recent NLG pub-
lications (Lin et al., 2022; Weston et al., 2022).
They both are unsupervised, general-purpose met-
rics and leverage BERT-like language models, how-
ever, with one difference lying in the similarity
function for matching the two sequence represen-
tations. BERTScore greedily matches each token
from one sequence to the single most similar token
in the other sequence, in terms of the cosine similar-
ity of their token embeddings. While MoverScore
conducts soft one-to-many matching using an n-
gram generalization of the Word Mover’s Distance
(Kusner et al., 2015).

Finally, the work closely related to ours is
BARTScore (Yuan et al., 2021). Unlike all the
above metrics trying to match tokens or their em-
beddings, BARTScore proposes a novel conceptual
view. It treats the evaluation of generated text as
a text generation problem, with the help of a pre-
trained seq2seq model BART (Lewis et al., 2020).
At the time of writing, this metric represents the
state-of-the-art in the NLG evaluation. We will
provide more details about it in Section 3.

2.2 Data augmentation

As deep learning models are often heavily reliant
on large amounts of training data, a common at-
tempt to get around the data scarcity problem is by
applying data augmentation techniques (Shorten
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and Khoshgoftaar, 2019). These techniques in-
crease the size of the training set by making slightly
modified copies of already-existing instances or by
creating new, synthetic ones. Such augmented data
have proven to be beneficial to the training of mod-
els in a wide variety of contexts, from computer
vision (Shorten and Khoshgoftaar, 2019) to speech
recognition (Bird et al., 2020), to NLP (Feng et al.,
2021), as it acts as a regularizer and helps reduce
overfitting (Krizhevsky et al., 2012). For dealing
with textual data, a suite of augmentation tech-
niques exists. To name only a few, backtransla-
tion (Sennrich et al., 2016) translates a text into
an intermediate language and then back into the
original language, as a way of paraphrasing the
initial text. Contextual augmentation (Kobayashi,
2018) generates augmented samples by randomly
replacing words with others drawn following the
in-context word distribution of a recurrent language
model. SeqMix method (Guo et al., 2020) creates
synthetic examples by softly mixing parts of two
sentences via a convex combination.

Data augmentation has also been applied to the
field of NLG evaluation metrics. BLEURT (Sellam
et al., 2020) is a supervised metric, i.e., it requires
to be finetuned on human meta-evaluations. Before
finetuning, BLEURT creates an augmented syn-
thetic dataset by perturbing Wikipedia sentences
with BERT mask-filling, backtranslation, and
random word dropping techniques. The data are
then annotated with some automatic numerical
and categorical signals as pretraining labels.
FrugalScore (Kamal Eddine et al., 2022) proposes
the first knowledge distillation approach for NLG
evaluation metrics, to alleviate the significant
requirement of computational resources by the
heavy metrics based on large pretrained language
models (e.g., BERTScore and MoverScore).
Unlike BLEURT, it is purely trained on a synthetic
dataset consisting of pairs of more or less related
sentences, created via various data augmentation
techniques (e.g., paraphrasing with backtranslation,
perturbation then denoising, etc.). The sentence
pairs for training the student model are anno-
tated with scores given by the metrics to be learned.

Differences. Note that BLEURT and FrugalScore
use augmented data to train their parameterized
metric models, while our DATScore is an untrained
and unsupervised metric not requiring human judg-
ments for training and using augmented translation

Srcfr Refen

Hypoen Trans2yyTrans1xx

Figure 1: Dashed arrows denote the generation di-
rections covered by BARTScore. Solid black arrows
indicate our newly introduced directions for calculat-
ing DATScore of the example hypothesis in English
(Hypoen). Trans1xx and Trans2yy represent data aug-
mented translations in any languages xx and yy, ob-
tained by applying a translation model (grey arrows)
to the example source in French (Srcfr) and example
reference in English (Refen), respectively.

for the sole purpose of scoring.

3 DATScore

As mentioned in Subsection 2.1, BARTScore is not
based on matching tokens nor their embeddings as
the other evaluation metrics. Instead, it uses a novel
approach by framing the evaluation of generated
text as a text generation problem. Assuming first a
pretrained seq2seq model is “ideal” (e.g., BART),
BARTScore directly uses the model’s conditional
probability of generating a provided target text Y
given a provided input text X , as the evaluation
score of the generation direction X → Y . For ex-
ample, Y corresponds to a translation hypothesis
generated by any system, and X is the reference.
If Y is of high quality, then by providing the pair
to the pretrained BART model, the estimated con-
ditional generation probability (evaluation score)
P (Y |X) should be high.

Therefore, by placing differently the source
(Src), the reference (Ref), and the hypothesis
(Hypo) in pair at the input or the output side of the
trained seq2seq model for fetching conditional gen-
eration probabilities, BARTScore considers three
different generation directions illustrated as dashed
arrows in Figure 1. The conditional probabilities
associated with the directions are denoted as: Preci-
sion (Ref→Hypo), Recall (Hypo→Ref ) and Faith-
fulness2 (Src→Hypo). Additionally, an F-score,
the arithmetic average of Precision and Recall.

The score (conditional probability) for the gen-

2BART being a monolingual model, faithfulness is only
relevant in the context of abstractive summarization, and its
corresponding direction cannot be applied to machine transla-
tion evaluation.
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eration direction from a source sequence X =
{xt}nt=1 to a target sequence Y = {yt}mt=1 is cal-
culated as the factorized, weighted log probability
over all generation steps:

ScoreX→Y =
m∑

t=1

wtlogP (yt|X, {yt′}t−1t′=1; θ)

(1)
where wt denotes the term importance score to
put different emphasis on different target tokens yt.
BARTScore simply employs a uniform weighting
scheme (all equal to 1). θ denotes the parameter-
ized seq2seq model.

Our contributions consist of three modifications
tailored to machine translation:

Data augmented translations. Unlike
BARTScore, we employ M2M-100 (Fan et al.,
2021), a non-English-centric multilingual machine
translation system as our backbone seq2seq model,
due to its superior performance. As our main
contribution, we translate the source (e.g., Srcfr
in Figure 1) and the reference (Refen) into any
languages as our augmented data (Trans1xx and
Trans2yy) for evaluating the hypothesis (Hypoen).
In addition to the three directions covered by
BARTScore, our metric takes into consideration all
generation directions centered on the hypothesis
connecting the source, the reference, and the
two data augmented translations, i.e., in total 8
directions as the black (dashed and solid) arrows
depicted in Figure 1. DATScore is calculated as
the weighted average of the scores associated with
all the directions:

DATScore =
∑

X,Y

wX→Y ScoreX→Y ;X ̸= Y

(2)
where wX→Y denotes the weight of the direction
X → Y , as detailed below.

One-vs-rest score averaging method. We ob-
served empirically that sometimes, one direction
score might strongly disagree with the others, likely
being an outlier (failed evaluation). This may
significantly affect the final DATScore correla-
tions with the human meta-evaluations, if a sim-
ple arithmetic averaging method is applied (like
BARTScore in computing F-score). To reduce this
effect, we weigh each direction with the sum of the
Pearson correlations of its scores with the scores of
all the other directions:

wX→Y =
∑

X′,Y ′
Corr(ScoreX→Y , ScoreX′→Y ′)

s.t. (X,Y ) ̸= (X ′, Y ′) (3)

This one-vs-rest method will assign a low weight
to the direction score poorly correlated with the
rest scores, thus reducing its negative effect on the
averaging result.

Entropy-based term weighting scheme.
BARTScore gives an equal weight wt to every
token in Equation 1 (uniform weighting). Instead,
we introduce a novel scheme to give different
importance to different target tokens yt, based on
the entropy:

wt = −
v∑

i=1

Pt(zi)logPt(zi) (4)

where v denotes the size of the output generation
vocabulary. Pt(zi) represents the probability of
the i-th token in the vocabulary at time step t.
We assume that when the model is very confident
in generating the target token (low entropy), then
this token is non-informative (e.g., stopword). On
the other hand, when the model is less confident
(higher entropy), the target word is more informa-
tive, and then a higher weight should be assigned.

The effectiveness of all our choices regarding
the above contributions is shown by our ablation
studies (see Section 6).

4 Experiments

4.1 Experimental settings
We benchmark DATScore on two commonly
used meta-evaluation datasets for machine trans-
lation metrics: WMT17 (Bojar et al., 2017) and
WMT18 (Ma et al., 2018) consisting of multiple
to_English and from_English language pairs.
For each pair, a few thousand examples are avail-
able, each being made of a source, a reference, a
hypothesis and a label produced by human annota-
tors, assessing the quality of the system generated
hypothesis. Depending on the label type, we use
Kendall’s Tau τ correlations or absolute Pearson
|r| correlations. The former is used when relative
ranking is provided, and the latter in the case of
direct assessment. We adopt the Kendall’s Tau-like
formulation proposed in (Bojar et al., 2017):

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant| (5)
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Metric Model
|r|:cs en

/
τ :en cs

|r|:de en
/

τ :en de

|r|:fi en
/

τ :en fi

|r|:lv en
/

τ :en lv

|r|:ru en
/
-

|r|:tr en
/

τ :en tr

|r|:zh en
/
-

Avg.

BLEU 1a) N/A 34.4/22.0 36.6/23.6 44.4/42.1 32.1/21.5 41.3/- 44.1/33.6 44.0/- 37.8/27.3

BERTScore 1b) RL/mBERT 71.0/43.8 74.5/40.4 83.3/58.8 75.6/46.6 74.6/- 75.1/57.1 77.5/- 75.9/49.3

MoverScore 1c) BB/mBERT 66.6/38.3 70.6/35.9 82.2/54.2 71.7/37.8 73.7/- 76.1/49.8 74.3/- 73.6/43.2

BARTScore
1d) BL+para/mBART 68.4/39.0 70.8/33.4 79.4/50.4 74.9/50.4 71.8/- 73.9/53.8 76.0/- 73.6/45.4

1e) M2M-100_418M 65.9/45.0 66.1/44.5 79.9/59.2 71.7/40.3 69.0/- 71.8/70.9 71.6/- 70.9/52.0

1f) M2M-100_1.2B 67.4/49.6 69.3/49.2 80.7/63.5 73.7/46.9 70.4/- 71.6/72.5 73.0/- 72.3/56.3

DATScore
1g) M2M-100_418M 68.6/51.1 68.5/48.1 82.0/63.7 74.7/48.3 73.0/- 77.6/70.9 76.5/- 74.4/56.4

1h) M2M-100_1.2B 71.3/53.9 72.9/52.2 83.5/66.3 76.8/52.0 75.9/- 78.1/70.9 77.7/- 76.6/59.1

Table 1: Absolute Pearson correlation (|r|) for to-English and Kendall correlations (τ ) for from-English with
segment-level human scores on WMT17. BB stands of Bert-Base, RL for RoBERTa-Large and BL for BART-Large.

Metric Model
τ :cs en

/
τ :en cs

τ :de en
/

τ :en de

τ :et en
/

τ :en et

τ :fi en
/

τ :en fi

τ :ru en
/

τ :en ru

τ :tr en
/

τ :en tr

τ :zh en
/

τ :en zh
Avg.

BLEU 2a) N/A 23.3/38.9 41.5/62.0 38.5/41.4 15.4/35.5 22.8/33.0 14.5/26.1 17.8/31.1 24.8/38.3

BERTScore 2b) RL/mBERT 40.4/55.9 55.0/72.7 39.7/58.4 29.6/53.9 35.3/42.4 29.2/38.9 26.4/36.1 36.5/51.2

MoverScore 2c) BB/mBERT 36.8/44.6 53.9/68.4 39.4/52.7 28.7/50.9 27.9/40.1 33.6/32.5 25.6/35.2 35.1/46.3

BARTScore
2d) BL+para/mBART 39.6/50.2 54.7/65.0 39.4/53.3 28.9/57.2 34.6/37.0 27.4/37.7 24.9/32.4 35.6/47.5

2e) M2M-100_418M 36.3/55.4 53.5/72.2 37.6/58.4 26.3/60.2 33.4/44.4 26.8/45.1 23.4/31.3 33.9/52.4

2f) M2M-100_1.2B 38.4/63.5 54.6/76.2 39.2/63.2 27.9/64.5 35.7/45.6 28.5/50.2 24.3/34.7 35.5/56.8

DATScore
2g) M2M-100_418M 38.6/53.5 53.5/71.3 39.3/64.0 28.4/62.2 34.9/44.4 28.5/47.9 25.3/34.0 35.5/53.9

2h) M2M-100_1.2B 40.7/61.9 54.9/76.2 40.5/68.2 30.4/67.9 36.4/46.2 31.0/52.7 26.3/36.6 37.2/58.5

Table 2: Kendall correlations (τ ) for to-English and from-English with segment-level human scores on WMT18.
BB stands of Bert-Base, RL for RoBERTa-Large and BL for BART-Large.

where |Concordant| is the number of examples
on which the metric agrees with the human relative
ranking, and |Discordant| is the number of
examples when they disagree.

To compute DATScore, two M2M-100 mod-
els: M2M-100_418M3 and M2M-100_1.2B4 are
adopted (418M and 1.2B refer to the model sizes).
They are finetuned to translate a source text to a tar-
get text by providing the source language code (e.g.
"fr") at the beginning of the encoder input sequence,
and a target language code at the beginning of the
decoder input sequence. In our experiments, when
English is the target language (to-English), we
choose English for Trans1 and Spanish for Trans2
(see Figure 1). Otherwise, whenever English is
the source language (from-English), we choose
Spanish for Trans1 and English for Trans2. This
choice is motivated by the fact that English and

3https://huggingface.co/facebook/m2m100_418M
4https://huggingface.co/facebook/m2m100_1.2B

Spanish are the top two represented languages in
the training set of M2M-100 (Fan et al., 2021).

4.2 Main results

We compare the performance of our metric against
BLEU and three other reference-based unsuper-
vised metrics: BERTScore5, MoverScore6 and
BARTScore7 (detailed in Subsection 2.1 and Sec-
tion 3), using their official implementations. Ex-
perimental results are reported in Table 1 and 2.
Following their original settings, we use different
underlying language models for each baseline met-
ric. For BERTScore and MoverScore, RoBERTa-
Large (RL; Liu et al., 2019) and Bert-Base (BB) are
used respectively when we evaluate to-English
translations, and mBERT (Devlin et al., 2019)
for from-English translations. In the case of
BARTScore, we use a BART-Large (BL) check-
point (finetuned on CNNDM (See et al., 2017) and

5https://github.com/Tiiiger/bert_score
6https://github.com/AIPHES/emnlp19-moverscore
7https://github.com/neulab/BARTScore
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ParaBank2 (Hu et al., 2019) datasets) for evaluat-
ing to-English translations, and an mBART-50
model (Escolano et al., 2021) for from-English
translations.

Overall, results show that, on average, across
all language pairs, DATScore significantly outper-
forms all 4 baseline metrics under their original
model settings (rows 1a-1d and 2a-2d). Specifi-
cally, with respect to the best performing baseline
BERTScore (row 1b and 2b), our metric provides a
performance boost of 0.7 for to-English case and
of 9.8 for from-English case on WMT17 dataset
in Table 1, and achieves a gain of 0.7 and of 7.3
respectively on WMT18 dataset in Table 2. These
averaging results demonstrate the superiority and
applicability of DATScore in evaluating general
machine translations of many languages. More-
over, it is interesting to note that our improvement
is much more significant in from-English case,
which makes DATScore particularly well-suited to
evaluate hypothesis translations in non-English lan-
guages, often with low resource. We hypothesize
that this is due to the inconsistency of underlying
language models. The baselines adopt a mono-
lingual model for evaluating English, but a multi-
lingual one for non-English languages. However,
DATScore uses a single multilingual M2M-100
model for both cases. It is known that, in general,
monolingual models outperform multilingual com-
petitors. Thus, it is reasonable that when compar-
ing multilingual-based DATScore against monolin-
gual baselines in the to-English case, DATScore
achieves a smaller improvement than in the other
from-English case, where the comparison is fairer
(multilingual vs. multilingual).

By looking across specific language pairs and
directions, we observe DATScore constantly per-
forms better than 4 baseline metrics with a few
exceptions, i.e., de en (-1.6) in Table 1, and de
en (-0.1), tr en (-2.6), and zh en (-0.1) in Table
2. Despite these small drops in the performance,
DATScore brings a larger margin of improvement
in most cases, such as en tr up to 13.8 both on
WMT17 and WMT18 datasets.

In the end, for the sake of having a complete
comparison, we additionally evaluate BARTScore8

with M2M-100_418M and M2M-100_1.2B models
(row 1e, 1f, 2e, and 2f) that are used as DATScore’s
underlying models. Results show that, only in the

8The official implementation of BARTScore is slightly
modified to take into account the languages tokens when using
a multilingual model.

Metric Model
WebNLG

SEMA GRAM FLU

BLEU N/A 45.5 36.0 34.9
BERTScore RoBERTa-Large 56.1 60.8 54.8
MoverScore BERT-Base -9.9 -27.8 -20.6

BARTScore
BART-Large+para 71.9 61.3 57.4
M2M-100_418M 64.9 62.8 56.0
M2M-100_1.2B 66.1 63.9 57.2

DATScore
M2M-100_418M 69.9 62.9 57.2
M2M-100_1.2B 70.4 63.7 57.9

Table 3: Pearson correlation results on WebNLG
dataset.

Metric Model
REALSumm SummEval

COV COH CONS FLU REL

BLEU N/A 37.9 11.8 6.3 7.7 18.6

BERTScore RoRERTa-Large 41.2 33.9 10.5 15.0 35.9
MoverScore BERT-Base 44.1 14.4 14.7 13.8 29.1

BARTScore
BART-Large+para 31.7 20.8 -3.5 6.7 22.2
M2M-100_418M 30.1 14.8 -2.3 3.0 19.8
M2M-100_1.2B 32.0 17.1 1.1 6.7 22.8

DATScore
M2M-100_418M 44.7 17.1 4.4 4.6 26.3
M2M-100_1.2B 45.5 19.5 6.8 8.2 30.2

Table 4: Pearson correlation results on two summariza-
tion datasets: REALSumm and SummEval.

from-English case, while they bring an improve-
ment compared to the vanilla BARTScore (row 1d
and 2d), they are not able to yield as big of a gain
as our metric, indicating that our achieved improve-
ment is not solely due to the underlying language
model, but also to taking additional generation di-
rections into account, including those related to
data augmented translations.

5 Other NLG tasks

In addition to machine translation, our main fo-
cus, we evaluate DATScore on other NLG tasks,
including data-to-text generation, abstractive sum-
marization, and image captioning. To work around
the different modalities of source inputs repre-
sented in these tasks (e.g., not able to create a data
augmented translation with an image), we adapt
DATScore to only consider 4 generation directions:
Hypo↔Ref and Hypo↔Trans2.

Data-to-text. Table 3 shows the performance of
DATScore compared to the other baselines on the
WebNLG data-to-text dataset (Shimorina et al.,
2018), which contains 2000 descriptions of struc-
tured tables along with their corresponding refer-
ences. In addition, human assessments covering
three dimensions are provided (semantics, gram-
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mar, and fluency). The results show that DATScore
significantly outperforms all the other metrics in
two settings (grammar and fluency) out of three,
while being very competitive in the third setting
(semantics). Surprisingly, BERTScore is largely be-
hind DATScore, and MoverScore failed to correlate
positively with human judgments in all dimensions.

Summarization. Table 4 shows the evaluation
of the different metrics on two summarization
meta-evaluation datasets: REALSumm (Bhandari
et al., 2020) and SummEval (Fabbri et al., 2021).
Both datasets contain a few thousand examples
of system-generated summaries and their refer-
ences. The generated summaries are annotated
with lightweight pyramids (Shapira et al., 2019)
method in the case of REALSumm, while the an-
notations in SummEval cover four dimensions: co-
herence, consistency, fluency, and relevance. On
REALSumm, DATScore has the best performance
compared to all the other baselines even when us-
ing its smaller version (M2M-100_418M). How-
ever, despite its higher correlations compared to
BARTScore and MoverScore, DATScore fails to
outperform BERTScore on the different dimen-
sions of SummEval.

Image captioning. We consider Flickr8K (Hodosh
et al., 2013) and PASCAL-50S (Vedantam et al.,
2015), two image captioning datasets. The former
is annotated with scores from 1 to 4 assessing the
relevance of the captions, and the latter is anno-
tated with relative ranking (i.e., given two descrip-
tions which one is better). Table 5 shows that in
this task, DATScore is competitive to BARTScore
and BERTScore. Surprisingly, MoverScore signifi-
cantly outperforms all the other metrics despite its
poor performance on the other datasets.

Finally, although not the top-performing metric
across all tasks, DATScore showed an overall stable
and competitive performance. Conversely, each of
the other metrics fails in evaluating generations, at
least in one of the tasks. For example, BERTScore
and MoverScore have poor performance on the
WebNLG dataset. On the other hand, although
BARTScore is finetuned on an abstractive summa-
rization dataset, it fails to correlate well with human
judgment on REALSumm and SummEval. This
finding suggests that DATScore can be safely used
to evaluate NLG systems in other tasks for different
evaluation dimensions, regardless of being initially
designed for machine translation evaluation.

Metric Model
Flickr8K PASCAL-50S

RELE RR

BLEU N/A 13.8 8.1
BERTScore RoBERTa-Large 46.1 33.8
MoverScore BERT-Base 52.5 33.2

BARTScore
BART-Large+para 44.8 33.1
M2M-100_418M 34.3 29.6
M2M-100_1.2B 34.6 26.3

DATScore
M2M-100_418M 42.6 29.6
M2M-100_1.2B 45.3 31.4

Table 5: Pearson correlation Results on two Image Cap-
tioning datasets: Flickr8K and PASCAL-50S.

Entropy-based
weighting

One-vs-rest
weighting to_English from_English

✓ ✓ 37.2 58.5

✓ ✗ 37.1 58.1

✗ ✓ 36.4 55.9

✗ ✗ 36.4 56.0

Table 6: The average Kendall correlation (to/from)-
English when the entropy-based and one-vs-rest weight-
ing are included or excluded. Experiments are con-
ducted on WMT18.

6 Ablation study

To validate our different choices with regard to
DATScore, we conducted ablation studies on:
1) the contributions of all 8 direction scores, results
are illustrated in Figure 2.
2) the effectiveness of our one-vs-rest score aver-
aging and entropy-based term weighting strategies
(See Section 3), results are reported in Table 6.

Contributions of all direction scores. From Fig-
ure 2(a), we observe that none of the individual
directions (horizontal bars) has a better correlation
with human judgments than DATScore (dashed ver-
tical lines), which confirms the importance of our
ensemble approach. In Figure 2(b), we can see
that all variants excluding one direction will lead,
in almost all cases, to a drop in the performance,
compared to the complete DATScore in which all
directions are included. Besides, in the case of
to-English translations, we can see that the drop
in the performance is almost the same for all exclu-
sions of direction. While for from-English trans-
lations, the largest drop in performance is observed
when Hypo→Trans2 and Trans2→Hypo are ex-
cluded. This finding highlights the important con-
tribution of our augmented data, especially in the
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src->hypo
hypo->src
hypo->ref

hypo->trans1
hypo->trans2
trans2->hypo
trans1->hypo

ref->hypo

(a)
to_english
from_english

30 35 40 45 50 55 60
Kendall correlation

src->hypo
hypo->src
hypo->ref

hypo->trans1
hypo->trans2
trans2->hypo
trans1->hypo

ref->hypo

(b)

Figure 2: (a): The horizontal bars represent the Kendall correlations of each individual generation direction.
(b): The horizontal bar represents the Kendall correlation of a variant of DATScore with excluding the single
generation direction of the line. Both in (a) and (b), the dashed vertical lines represent the Kendall correlation
of the vanilla and complete DATScore. Correlation results of to-English (in green) and from-English (in red)
cases are calculated w.r.t human judgments, and averaged over all languages pairs. Experiments are conducted on
WMT18.

low resource language settings (from-English).
In the end, we can see that excluding Src→Hypo
or Trans1→Hypo directions can lead to a slightly
better final score. We leave the investigation of the
potential negative impact of the two directions to
future work.

One-vs-rest and entropy-based weighting strate-
gies. Table 6 shows the performance of DATScore
variants with respect to different combinations of
applying or not our proposed weighting strate-
gies. Note that when one-vs-rest and entropy-based
weightings are not applied, they are replaced with
a simple uniform averaging approach (as used in
BARTScore). A performance drop is observed
when excluding one of the two weighting strategies,
especially for the entropy-based method, whose in-
clusion leads to an improvement of 2.5 compared
to the uniform weighting. This experiment con-
firms the positive impact of our proposed weight-
ing methods and motivates future work further to
investigate a more elaborated approach in this di-
rection.

7 Conclusion

In this work, we proposed one of the first applica-
tions of data augmentation techniques to NLG eval-
uation. To obtain an evaluation score of the trans-
lation hypothesis, our developed metric DATScore
additionally leverages newly translated copies aug-

mented from the source and reference texts. We
also proposed two novel strategies for score aver-
aging and term weighting to improve the original,
naive score computing process of BARTScore, on
the basis of which our work is built. Experimental
results show that DATScore achieved a higher cor-
relation with human meta-evaluations, in compari-
son with the other recent state-of-the-art metrics, es-
pecially for those less represented languages other
than English. Moreover, ablation studies show the
effectiveness of our newly proposed score comput-
ing approaches, and extended experiments showed
an overall stable and competitive performance of
DATScore on more NLG tasks.

Limitations

In this section, we list some limitations that are
worth further investigation in future works:

1) DATScore requires generating additional data
augmented translations to perform the evaluation.
This process might be time-consuming depending
on the adopted backbone seq2seq model, especially
if the original text is long. Thus, the performance
scalability can be investigated in future comple-
mentary experiments.

2) We chose to use English and Spanish to create
data augmented translations for the reason that they
are the two most represented languages in the train-
ing of the M2M-100 model (see Subsection 4.1).
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However, this leaves a question about the perfor-
mance of DATScore with augmentations varying
in other languages (e.g., Chinese). Moreover, for
the sake of simplicity, we decided only to include a
single translated copy of the source text and the ref-
erence text. However, this can be easily extended,
and more augmented translations can be created in
more languages. We expect to see an improvement
in performance with diminishing returns.

3) BARTScore only considers the 8 generation di-
rections centered on the hypothesis connecting with
the source, the reference, and the two data aug-
mented translations (see Section 3). However, other
connections exist between these entities, such as
Src→Ref and Trans1→Src (see Figure 1). There-
fore, future research could be dedicated to discov-
ering the effect of these other directions and poten-
tially leveraging them to improve the performance
of DATScore.

4) Since our focus was on evaluating machine
translation, we naturally chose translation for aug-
menting the data. However, other data augmen-
tation techniques could seamlessly integrate into
DATScore, such as using a text paraphrasing model
(Bandel et al., 2022).
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Qingsong Ma, Ondřej Bojar, and Yvette Graham. 2018.
Results of the WMT18 metrics shared task: Both
characters and embeddings achieve good perfor-
mance. In Proceedings of the Third Conference on
Machine Translation: Shared Task Papers, pages
671–688, Belgium, Brussels. Association for Com-
putational Linguistics.

Nitika Mathur, Timothy Baldwin, and Trevor Cohn.
2019. Putting evaluation in context: Contextual em-
beddings improve machine translation evaluation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2799–
2808, Florence, Italy. Association for Computational
Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

George A. Miller. 1994. WordNet: A lexical database
for English. In Human Language Technology: Pro-
ceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heinz, and Dan Roth. 2021. Re-
cent advances in natural language processing via
large pre-trained language models: A survey. arXiv
preprint arXiv:2111.01243.

Jun-Ping Ng and Viktoria Abrecht. 2015. Better sum-
marization evaluation with word embeddings for
ROUGE. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1925–1930, Lisbon, Portugal. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,

951

https://doi.org/10.18653/v1/2020.emnlp-main.447
https://doi.org/10.18653/v1/K19-1005
https://doi.org/10.18653/v1/K19-1005
https://doi.org/10.18653/v1/K19-1005
https://doi.org/10.18653/v1/2022.acl-long.93
https://doi.org/10.18653/v1/2022.acl-long.93
https://doi.org/10.18653/v1/2022.acl-long.93
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2022.acl-long.182
https://doi.org/10.18653/v1/2022.acl-long.182
https://doi.org/10.18653/v1/2022.acl-long.182
https://doi.org/10.18653/v1/W17-4767
https://doi.org/10.18653/v1/W17-4767
https://doi.org/10.18653/v1/W18-6450
https://doi.org/10.18653/v1/W18-6450
https://doi.org/10.18653/v1/W18-6450
https://doi.org/10.18653/v1/P19-1269
https://doi.org/10.18653/v1/P19-1269
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111
https://doi.org/10.18653/v1/D15-1222
https://doi.org/10.18653/v1/D15-1222
https://doi.org/10.18653/v1/D15-1222
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135


Pennsylvania, USA. Association for Computational
Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Maxime Peyrard. 2019. Studying summarization eval-
uation metrics in the appropriate scoring range. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5093–
5100, Florence, Italy. Association for Computational
Linguistics.
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Abstract

Humans tend to follow the Uniform Informa-
tion Density (UID) principle by distributing
information evenly in utterances. We study
if decoding algorithms implicitly follow this
UID principle, and under what conditions ad-
herence to UID might be desirable for dia-
logue generation. We generate responses us-
ing different decoding algorithms with GPT-
2 on the Persona-Chat dataset and collect hu-
man judgments on their quality using Ama-
zon Mechanical Turk. We find that (i) surpris-
ingly, model-generated responses follow the
UID principle to a greater extent than human
responses, and (ii) decoding algorithms that
promote UID do not generate higher-quality
responses. Instead, when we control for sur-
prisal, non-uniformity of information density
correlates with the quality of responses with
very low/high surprisal. Our findings indi-
cate that encouraging non-uniform responses
is a potential solution to the “likelihood trap”
problem (quality degradation in very high-
likelihood text). Our dataset containing mul-
tiple candidate responses per dialog history
along with human-annotated quality ratings
is available at: https://huggingface.co/
datasets/saranya132/dialog_uid_gpt2.

1 Introduction

The Uniform Information Density (UID) hypoth-
esis states that humans distribute information in
their utterances evenly for optimal communica-
tion (Jaeger, 2010; Fenk and Fenk, 1980). Con-
sequently, language generation has benefitted from
UID-based objectives and regularization (Meister
et al., 2022; Wei et al., 2021). Specifically, Meis-
ter et al. (2020) argued that UID can be optimized
for machine translation using beam search. Yet,
the effect of different decoding algorithms on in-
formation density distributions of generated text
are unknown, as is UID’s broader role in neural
response generation in the special case of dialogue

Dialog History

 Speaker A: hello, how are you today?

 Speaker A: that is cool! i just like to skateboard!


 Speaker B: good. yourself? listening to classical music.

 Speaker B: CANDIDATE RESPONSES


Human Annotation Scores

Candidate Responses

can you do a kick flip

haha. i love skating too, but i have a truck to keep as well.

nice. i love to do stuff like that. i also swim.

are you a skater or do you do it daily?

Type

Reference Text

Nucleus sampling

Top-k

Greedy

Related

{3,3,3}

{.,.,.}

{.,.,.}

{.,.,.}

Furthering

{3,3,3}

{.,.,.}

{.,.,.}

{.,.,.}

Interesting

{3,2,2}

{.,.,.}

{.,.,.}

{.,.,.}

Figure 1: Our dataset contains 4 candidate responses
for every dialog history, along with human annotations
for 3 qualitative measures.

models. Here, we investigate (i) if different decod-
ing algorithms follow the UID principle, and (ii)
if following the UID principle is beneficial for dia-
logue response generation, and (iii) collect human
annotations of qualitative measures for multiple
candidate responses to dialog histories generated
using different decoding algorithms (Figure 1) to
study the relationship of dialog response quality
and UID. We operationalize UID as the variance of
surprisal and measure its correlation with automatic
metrics (e.g., BLEU, METEOR, BERTScore) as
well as human judgments on qualitative measures
of response quality and find that adherence to UID
correlates negatively with human judgments when
the responses have very low/high surprisal.

Language production in humans. Spreading
information content evenly in utterances is a marker
of optimally strategized responses, and humans fol-
low this UID principle as a means to state their
thoughts clearly and to make themselves intelli-
gible (Frank and Jaeger, 2008; Levy and Jaeger,
2007). The probability of a sentence has been as-
sociated with the cognitive load it incurs (Hale,
2003). As a means to avoid salient variations in
the information content (surprisal, i.e., negative
log probability) of responses, speakers maintain
UID through linguistic choices such as that at the
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Figure 2: Histogram of UID Scores of responses generated using different decoding algorithms. The farther the
UID score from 0, the less uniform or more non-uniform the response. Human-generated reference text (left-top)
has a higher frequency of non-uniform responses as compared to any model setting as can be seen from the wider
spread of scores away from 0. Also, as the values of p and k increase (left to right), the information density
distribution slowly approaches reference text-like non-uniformity.

Figure 3: Surprisal at every token in candidate responses to the same dialog history, color-coded with human
annotated interesting scores. Plots (left to right) are arranged in increasing order of uniformity (i.e. variance along
y-axis). Less uniform the surprisal (left-most), better the score.

phonetic (Aylett and Turk, 2004), syntactic (Jaeger,
2010) and lexical level (Mahowald et al., 2013).

Response generation in machines. While large-
scale pre-trained language models provide a rich
prior for dialogue response generation, the choice
of decoding algorithm used at the time of gen-
eration is crucial for the quality of generated re-
sponses (Holtzman et al., 2020; Zhang et al., 2021a;
Nadeem et al., 2020; Golovanov et al., 2019;
Oluwatobi and Mueller, 2020). While vanilla sam-
pling often tends to produce incoherent text, greedy
decoding leads to safe and repetitive responses.
More recently, top-p/nucleus (Holtzman et al.,
2020) and top-k sampling (Fan et al., 2018) are
used to tune values of p/k to balance the diversity-

quality trade-off (Zhang et al., 2021a; Li et al.,
2016).

The UID principle and decoding algorithms.
Both the UID principle and decoding algorithms
can be seen as guiding mechanisms for dialogue
response production in humans and generation in
machines, respectively. UID’s role in machine-
generated dialogue is not well understood, with
previous work mainly focused on machine trans-
lation and language modeling (Wei et al., 2021;
Meister et al., 2021, 2020). To address this gap, we
present a comparative study of decoding methods
to develop a deeper understanding of the role of
UID in dialogue response generation.
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2 Experimental Details

2.1 Model & dataset
We use the fine-tuned GPT-2 (Radford et al., 2019)
model provided by HuggingFace and use their data
preprocessing and response generation scripts1. We
used the Persona-Chat (Zhang et al., 2018) data
split provided by the ConvAI2 challenge (Dinan
et al., 2020)2. We then generated responses for
7500 dialogue histories randomly picked from 7801
validation set examples using vanilla, top-p, top-k
sampling and greedy decoding.

Decoding algorithms. Vanilla sampling ran-
domly picks the next token from the model’s prob-
ability distribution, including many long-tail sam-
ples. Top-k samples from the k most probable to-
kens; Greedy decoding is Top-k = 1 decoding, al-
ways selecting the most probable next token. Top-p
(Nucleus) sampling selects the next token from the
top p portion of the probability mass.

2.2 Uniform Information Density score
We measure UID as the variance of the surprisal
(negative log likelihood) of each token in the re-
sponse (Jain et al., 2018; Wei et al., 2021; Meister
et al., 2020). This measure is able to capture any
sudden variations in the surprisal of the tokens in
the sentence. UID Score is formulated as follows:
the dialogue model learns a conditional probability
p parameterized by θ to predict the next token (yt)
in the sentence. The surprisal (u) of the next token
yt is,

u(yt) = − log(pθ(y|x, y < t)), (1)

for t ≥ 1 where y0 =< EOS >, t = time step,
and x = dialogue context. Higher the surprisal,
lower its probability and vice-versa. Thus, surprisal
indicates how unexpected or surprising a token is
in a given context. Average surprisal of a sentence
(y) is defined as,

µ(y) =
1

|y|
∑

t

(u(yt)) (2)

Finally, the UID score of a sentence (y) is defined
as the negative normalized variance of the surprisal:

UIDscore(y) = − 1

|y|
∑

t

(u(yt)− µ)2 (3)

1https://github.com/huggingface/
transfer-learning-conv-ai

2https://github.com/DeepPavlov/convai/tree/
master/2018

From this formulation, a perfectly uniform sen-
tence would have a variance equal to 0 (i.e. the
surprisal of every token in the sentence is equal).
Since we take the negative of the variance, the
higher the absolute value of UID score, the more
non-uniform its information density.

2.3 Response evaluation
Automatic metrics. We measure the quality of
responses using length (number of tokens), BLEU3

(Papineni et al., 2002), METEOR3 (Banerjee
and Lavie, 2005), character level F-score (chrF)3

(Popović, 2015), BLEURT4 (Sellam et al., 2020),
a RoBERTa (Liu et al., 2019) based text similarity
score5 (Reimers and Gurevych, 2019), BERTscore4

(Zhang et al., 2019) and SacreBLEU4 (Post, 2018).

Human evaluation. To study the effect of
adherence to UID on the perceived quality of
generated responses beyond n-gram, reference-
based and learned automatic metrics, we collected
human judgments along 3 measures – related (to
the dialogue history), furthering (if a response
keeps the conversation going/is encouraging
for the dialogue partner) and interesting (if the
response provides engaging/new information). We
provide screenshots of the task interface (Figure 6),
instructions (Figure 7) and details about the MTurk
study design in Appendix A.

3 Findings

3.1 Information density of model responses
We plot the histograms of UID scores computed for
all of the generated responses in Figure 2. The in-
formation densities of human-generated responses
have a wider spread than responses produced by
the models. Overall, the human-generated refer-
ence text has more non-uniform sentences than
all model-generated responses. We notice a very
high and narrow peak in the case of greedy decod-
ing. This is not surprising as responses sampled
using greedy search maximize the probability of
the next token (minimize surprisal). Consequently,
such responses would have very low surprisal at
almost every word, hence lower variance. Vanilla

3https://github.com/nltk/nltk/tree/develop/
nltk/translate

4https://github.com/huggingface/datasets/tree/
master/metrics

5https://github.com/UKPLab/
sentence-transformers/blob/master/docs/usage/
semantic_textual_similarity.md
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Pearson’s r between UID score and automatic metrics
Generation Type Length BLEU chrF METEOR BertScore BLEURT RoBERTa SacreBLEU

p = 0.3 -.10 .00 .14 .12 .17 .17 0.19 .13
p = 0.5 -.05 .03 .13 .10 .18 .17 .2 .15
p = 0.6 -.04 .06 .14 .13 .01 .06 .01 .00
p = 0.8 -.10 .03 .06 .05 .18 .16 .2 .15
p = 0.9 -.11 -.00 .03 .04 .16 .15 .19 .14
Greedy -.14 .01 .14 .13 .06 .05 .06 .06
k = 10 -.04 .15 .03 .05 .07 .08 .07 .07
k = 20 -.05 .14 .05 .06 .05 .04 .06 .04
k = 50 -.09 .01 .03 .03 .06 .03 .03 .05
k = 100 -.07 .04 .00 .02 .11 .08 .08 .08
k = 200 -.12 .03 .02 .03 .06 .06 .04 .05
k = 500 -.09 .02 .04 .04 .10 .08 .08 .08
Vanilla -.09 .01 -.00 .00 .07 .05 .05 .05

Table 1: Pearson’s correlation coefficient (r) between UID score and automatic metrics of dialog responses
generated using different decoding settings. All p-values < 0.05.

sampling uses the probability distribution learned
from the training data, which might be why it is
also closer to the validation set (reference text) dis-
tribution. With increase in p and k, we see that
the information density distribution spreads across
a larger range and includes more non-uniform re-
sponses, slowly approaching that of the reference
text.

Pearson’s r between
UID score and qualitative metrics

Surprisal interval n Related Furthering Interesting

(0.8, 1.2) 24 .17 -.03 -.30∗
(1.2, 1.6) 64 .12 .08 -.13
(1.6, 2.0) 91 .05 -.23∗ -.07
(2.0, 2.4) 109 -.04 -.13 -.00
(2.4, 2.8) 111 -.06 -.21∗ -.05
(2.8, 3.2) 105 -.02 .01 -.10
(3.2, 3.6) 99 -.23∗ -.10 .19
(3.6, 4.0) 66 .03 -.05 -.09
(4.0, 4.4) 42 -.33 -.22 -.09
(4.4, 4.8) 24 -.14 -.61∗ .04
(4.8, 5.2) 12 -.33 -.14 -.54∗
(5.2, 5.6) 13 -.98∗ -.64 -.38

Table 2: Pearson’s r between UID score and and hu-
man judgments of qualitative measures for dialog re-
sponses bucketed by surprisal [Surprisal interval = the
ranges of surprisal values used for bucketing responses,
n = number of responses in each surprisal interval, ∗p-
value < .05]

3.2 UID score & automatic metrics
We present the correlation between UID scores and
automatic metrics calculated for the generated dia-
logue responses in Table 1. UID scores have a weak
correlation with RoBERTa-based similary scores

for two settings of nucleus sampling. Other than
that, UID scores are not correlated with automatic
metrics of response generation. We take this to
be an indication that if UID scores do capture any
aspect of response quality, it goes beyond what is
measured by such metrics and might provide for a
better evaluation criteria.

3.3 UID score & human Judgments

Motivated by the fact that UID score is derived
from surprisal, we test if surprisal is a confound-
ing factor and find that, indeed, UID scores were
highly correlated with average surprisal (Table 3).
To tease apart the effect of UID scores on response
quality, we controlled for surprisal by grouping or
bucketing responses into 12 intervals of surprisals
(within a range of 0.4 units as shown in the first col-
umn on Table 2). Within these intervals, surprisal
had no correlation with generation quality (Table
5). Once we control for surprisal i.e. analyse dialog
responses with similar surprisals but varying UID
scores, we observe that UID scores negatively cor-
relate with human judgments, to varying degrees of
strength, for responses in very low or high surprisal
intervals (see Table 2). Thus, for the extremities of
the surprisal range, UID scores indicate that better
rated responses are non-uniform.

4 Discussion

Contrary to our expectations, we find non-
uniformity to be a more desirable property in
machine-generated responses. Overall, UID scores
and surprisal do not correlate with human judg-
ments (Table 4). But when controlled for surprisal,
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we observe that UID score is correlated with human
judgments for certain intervals (examples in Figure
3 and Table 6). Our results suggest that optimizing
UID to generate uniform text might not be the right
objective for regularizing decoding algorithms. In-
stead we find that non-uniform information density
could be a potential solution to the “likelihood trap"
problem according to which models generate lower
quality text (as per human judgments) when sam-
pling from the extremities of their likelihood space
(Zhang et al., 2021b). Consequently, we suggest
that decoding algorithms be tuned to follow the
information density patterns of human-generated
non-uniform data when generating responses out-
side of the “safe” likelihood range as a means to
generate higher quality responses across the entire
likelihood space.

5 Limitations

While we present a study of multiple decoding set-
tings, we generate all machine responses using the
same transformers based model architecture. Thus,
the presented work does not yet explore individ-
ual differences between different model architec-
tures. Additionally, due to limited resources we
were not able to collect large-scale human annota-
tions across multiple corpora and acknowledge the
same as part of future efforts.

6 Ethical considerations

In this work, we collected human annotations on
dialogue response quality using MTurk. Each HIT
in our MTurk study contained one dialogue history
and four candidate responses. The annotators could
read the history and rate the responses that followed
using mouse clicks on their response choices. We
provided an additional feedback field for annotators
to write comments in. We received very positive
feedback on the task from all the annotators who
used this feature. There were no restrictions on the
minimum or maximum number of examples the an-
notators had to rate. From a pilot study on MTurk,
we found the average time to complete one HIT to
be slightly under 2.5 minutes. After considering
the average time required and the task difficulty
(expressed to be clearly and easily understood by
annotators in their comments) we set the payment
amount to $0.5 per HIT for an hourly rate of about
$12 per hour.
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Generation Type Pearson’s r
Reference Text -.69

Greedy -.23
p = 0.3 -.43
p = 0.5 -.50
p = 0.6 -.56
p = 0.8 -.65
p = 0.9 -.68
k = 10 -.40
k = 20 -.45
k = 50 -.56

k = 100 -.63
k = 200 -.65
k = 500 -.69
Vanilla -.74

Table 3: Pearson’s correlation coefficient (r) between
UID score and average sentence surprisal (all p <
0.01)

Figure 4: Frequency of responses (Yes/Somewhat/No)
for each qualitative measure in our human annotated
dataset.

A Human evaluation study details

Raters were selected based on the criteria that they
be located in the US, and had attempted a mini-
mum of 500 HITS at an accepted work rate greater
than 97% on MTurk. We asked raters on MTurk
to answer if a candidate response satisfied each
of the qualitative measures (interesting, furthering
and related) and gave them three response options:
"Yes", "Somewhat" and "No". In a pilot study of
360 responses, we also included a measure for flu-
ency. All of the responses were rated “Yes" by
majority vote and we removed this measure from
further analysis as all the generations in this study
were fluent as indicated by the pilot study and from
our observation. For correlation calculations, we
assign integer score values to each of the three re-

Pearson’s r
Quality UID Score Surprisal
Related .01 -.13∗

Furthering .03 -.10∗
Interesting -.04 -.01

Table 4: Pearson’s correlation coefficient (r) of UID
score and surprisal with human judgments of quali-
tative metrics (∗p<0.01)

Pearson’s r
Surprisal interval n Related Furthering Interesting

(0.8,1.2) 24 -.03 -.04 -.00
(1.2,1.6) 64 -.10 -.16 .08
(1.6,2.0) 91 .05 .14 .10
(2.0,2.4) 109 -.14 -.08 -.27∗
(2.4,2.8) 111 -.12 .05 .09
(2.8,3.2) 105 -.02 .06 -.00
(3.2,3.6) 99 -.13 .12 .01
(3.6,4.0) 66 .02 -.06 .06
(4.0,4.4) 42 -.01 -.00 .06
(4.4,4.8) 24 .20 .34 .23
(4.8,5.2) 12 -.13 -.37 -.12
(5.2,5.6) 13 .60 .83 .76

Table 5: Pearson’s r between surprisal and hu-
man judgments of qualitative measures for dialog re-
sponses bucketed by surprisal [Surprisal interval = the
ranges of surprisal values used for bucketing responses,
n = number of responses in each surprisal interval, ∗p-
value < .05]

sponse options as 3 for "Yes", 2 for "Somewhat"
and 1 for "No". Thus, the higher the score, the
better the response is rated. Following the pilot
study, for 194 dialogue histories, we showed the
raters 4 candidate dialogue responses (total of 776
dialogue responses) and collected ratings on all *3*
measures from *3* raters per dialogue history. In
all, we obtained a total of 776*3, i.e., 2328 total
response-rating pairs. To calculate the score for
each response along every measure, we take the
mean of all ratings as the score. For cases where
at least 2 out of 3 raters agree, we take majority
vote as the final score. This constituted (2018 out
of 2328) 86.68% of all the ratings collected. We
show the overall distribution of qualitative scores
for all the response-rating pairs in Figure 4. We ver-
ified the rater responses by checking if they were
rating human-generated responses highly as those
came from a trusted source (Persona-Chat). We
also manually inspected a random subset of dia-
log history-candidate response sets and found the
results to be in accordance with our intuitions.
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Figure 5: Histograms of average sentence surprisal for responses generated using different decoding settings and
human-generated reference text (left-top).

Figure 6: Screenshots of our MTurk study interface for collecting human judgments on 4 candidate responses per
dialogue history, along 3 quality measures.
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(a) Detailed instructions that MTurk raters could expand at any time.

(b) Examples responses for each measure and rating category shown to MTurk raters.

Figure 7: Instructions and examples from MTurk study.
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Dialogue history

Speaker A: hi, i m susie. how are you?

Response type Response text UID Score Interesting

Reference Text i’m good. just got back from some volunteering. how are you doing? -1.99 3
Candidate 1 hi. i am very good. just enjoying my favorite pastime. how are you? -1.43 2
Candidate 2 i am great! i volunteer at a soup kitchen and watch movies with my kids. -1.19 2
Candidate 3 i’m doing well. how are you? -0.18 1

Speaker A: that’s cool. my dad made us italian food tonight.
Speaker B: oh nice, i love italian food. my favorite is the garlic bread. what is yours?
Speaker A: pasta, my son loves pizza though!
Speaker B: i like that too, have to eat lots of carbs for my training.

Response type Response text UID Score Interesting

Candidate 1 wow, my son took us and my two daughters to a super fast food joint the other day -4.83 3
Candidate 2 that is too bad, i like the cheesy stuff. -2.08 2
Reference Text do you have a favorite genre of movies? -1.73 2
Candidate 3 i also like to stay home with my son. -0.88 1

Speaker A: hello i hope your sunday is great , what is your favorite kind of music?
Speaker B: hey there . been a relaxed sunday . yours ? music eclectic.
Speaker A: my sunday has been exciting ! i enjoy death metal.
Speaker B: death metal . cool . i spent the morning volunteering.
Speaker A: i volunteer too , at the local pool to be a swim coach.

Response type Response text UID Score Furthering

Candidate 1 nice. such a nice day. how long have you been coaching? -9.99 3
Reference Text that is great! we both volunteer! mine is rescuing bunnies. -7.59 2
Candidate 2 that’s cool. i donate my pay to the local zoo. humane societies. -3.89 2
Candidate 3 sick sick. beautiful color, navy blue is my favorite. -2.79 1

Speaker A: have you heard about the juggalos? weird.

Response type Response text UID Score Furthering

Reference Text what are those? do they juggle balls? -6.88 3
Candidate 1 no i have not. i like that band myself -5.19 2
Candidate 2 we will not tell. do you like comics? -4.27 2
Candidate 3 i have not heard of them. i’ve dolls too. -2.8 1

Speaker A: hello, how are you today?
Speaker B: good. yourself? listening to classical music.
Speaker A: that is cool! i just like to skateboard!

Response type Response text UID Score Related

Reference Text can you do a kick flip? -14.11 3
Candidate 1 haha. i love skating too, but i have a truck to keep as well. -11.28 3
Candidate 2 nice. i love to do stuff like that. i also swim. -10.25 3
Candidate 3 are you a skater or do you do it daily? -9.05 2

Speaker A: i hope it is a healthy snack. i am doing well, just moved here.
Speaker B: it is. i am vegan. just moved here too! where from?
Speaker A: i too am vegan from germany. have you seen lafer! lichter! lecker! on tv?
Speaker B: oh yes! i love shows like that and watched it back home a lot.

Response type Response text UID Score Related

Reference Text they do amazing things with the hummus. where is back home for you? -6.86 3
Candidate 1 you must have a lot of fun watching them. -4.53 2
Candidate 2 they have the best new vegan cookbooks, but i am more adventurous. -2.93 3
Candidate 3 i do love the sky diving, too! i have seen the first few seasons. -2.47 1

Table 6: Examples of dialogue histories followed by 4 response candidates arranged by increasing UID score i.e.
from more non-uniform to uniform responses and their corresponding human judgment scores.
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Abstract

In order to reliably process natural language,
NLP systems must generalize to the long tail of
rare utterances. We propose a method to create
challenging benchmarks that require generaliz-
ing to the tail of the distribution by re-splitting
existing datasets. We create ‘Likelihood Splits’
where examples that are assigned lower likeli-
hood by a pre-trained language model (LM) are
placed in the test set, and more likely examples
are in the training set. This simple approach can
be customized to construct meaningful train-
test splits for a wide range of tasks. Likelihood
Splits surface more challenges than random
splits: relative error rates of state-of-the-art
models increase by 59% for semantic parsing
on SPIDER, 93% for natural language inference
on SNLI, and 33% for yes/no question answer-
ing on BOOLQ, on our splits compared with the
corresponding random splits. Moreover, Like-
lihood Splits create fairer benchmarks than ad-
versarial filtering; when the LM used to create
the splits is also employed as the task model,
our splits do not unfairly penalize the LM.

1 Introduction

Success on in-distribution test data does not neces-
sarily show that a system has solved the underlying
task at hand. Systems can achieve artificially high
accuracy by exploiting dataset-specific shortcuts,
such as spurious feature-label correlations that hold
in the data but not in general (Gardner et al., 2021).
In many datasets, a large proportion of test exam-
ples are similar to training examples, further in-
flating in-distribution accuracy (Lewis et al., 2021;
Czarnowska et al., 2019; Orr et al., 2021). Out-
of-distribution (OOD) evaluation paints a clearer
picture of a system’s ability to perform the task.

Prior work has proposed a variety of methods
to test OOD generalization, each with their own
strengths and weaknesses. Task-specific behav-
ior tests (Ribeiro et al., 2020; Naik et al., 2018;
Gardner et al., 2020) give insights into model be-

Figure 1: Likelihood Splits: We propose to partition
the dataset based on likelihood under a language model.
The high-likelihood “head” of the distribution becomes
the training set while we evaluate generalization to the
low-likelihood “tail” of the data. Shown here are queries
from the SPIDER dataset in different likelihood buckets:
one possible tail generalization could be the handling
uncommon entities with known query types.

havior but require significant manual (often expert)
effort to create. Adversarial data collection, in
which annotators try to fool high-performing mod-
els (Nie et al., 2020; Potts et al., 2021), also col-
lects challenging examples, but runs the risk of
focusing only on a narrow subset of model weak-
nesses (Bowman and Dahl, 2021; Kaushik et al.,
2021). Adversarial filtering removes easy exam-
ples from existing datasets (Sakaguchi et al., 2021),
but can disproportionately penalize the model used
during filtering (Phang et al., 2021). Domain gener-
alization tests transferability to new data domains
(Fisch et al., 2019; Miller et al., 2020), but there is
no guarantee that generalizing to a given new do-
main is possible—out-of-domain examples may re-
quire skills that are not learnable from the training
data (Geiger et al., 2019). Other approaches create
dataset splits that test for specific skills, such as
length generalization (Lake and Baroni, 2018) and
compositional generalization (Shaw et al., 2021),
but they only apply to a narrow subset of tasks.

963



In this work, we propose Likelihood Splits, a
general-purpose method to create challenging OOD
splits for existing datasets. The principle behind
Likelihood Splits is that any system that claims
to reliably process natural language must be able
to generalize from more common utterances seen
during training to the long tail of rare utterances
at test time. Generalization, not merely memoriza-
tion, is necessary because even a very large training
dataset cannot exhaustively cover all possible long-
tail examples that may be encountered in the real
world. Moreover, standard annotation procedures
tend to over-sample examples from the head of the
distribution, further ignoring the challenge posed
by infrequent examples. We identify tail exam-
ples using the likelihood under the GPT-2 language
model (Radford et al., 2019). Examples with low
likelihood under GPT-2 are placed in the held-out
evaluation sets and the high likelihood examples
are used as the training set (see Figure 1).

Likelihood Splits are a novel, widely applicable
strategy that can create interesting generalization
benchmarks at no additional annotation cost. They
are more challenging than a random split across
a wide range of tasks: error rates relative to ran-
dom splits increase by 59% for T5 (Raffel et al.,
2020) on SPIDER (Yu et al., 2018), 93% for ELEC-
TRA (Clark et al., 2020) on SNLI (Bowman et al.,
2015), and 33% for ROBERTA (Liu et al., 2019)
on BOOLQ (Clark et al., 2019). Moreover, the
proposed splits do not unfairly penalize the GPT-2
model used to create the splits when it is used as a
task model, thus avoiding one of the downsides of
adversarial filtering. We identify many independent
challenges required by Likelihood Splits, including
generalizing to rare words, complex programs, and
syntactically complex sentences. We encourage
future benchmark creators to release Likelihood
Splits as a complementary evaluation to the stan-
dard IID evaluation to better test out-of-distribution
generalization performance. We will release the
splits discussed in this work along with the code to
easily create Likelihood Splits of other datasets.1

2 Related Work

Generalizing to the long-tail. Evaluating sys-
tems on long-tail phenomena is important, espe-
cially because many datasets over-sample the head
of the distribution. For example, some question-
answering (QA) datasets limit their purview to pop-

1github.com/ameyagodbole/long-tail-likelihood-splits

ular web-pages (Yang et al., 2018) or frequent user
queries (Kwiatkowski et al., 2019). Lewis et al.
(2021); Liu et al. (2021) demonstrate that mod-
els trained on these datasets often fail on exam-
ples that do not match the most frequent training
cases. Similar observations have been made in en-
tity linking to rare entities, (Orr et al., 2021; Chen
et al., 2021), information retrieval for open-domain
QA (Sciavolino et al., 2021), relation extraction
for rare relations (Sabo et al., 2021) and lexicon
induction for rare senses in machine translation
(Czarnowska et al., 2019). Zero-shot performance
of large LMs on numerical reasoning and factoid
questions is also correlated with the frequency of
occurence of the facts in the pre-training corpus
(Razeghi et al., 2022; Kandpal et al., 2022; Elazar
et al., 2022). While we do not test whether models
can memorize long-tail knowledge, we instead test
whether models can process long-tail sentences.
Naik et al. (2022) note that it is challenging to cata-
logue and evaluate generalization along micro-level
dimensions and instead propose benchmarks that
vary along macro-level dimensions (such as the lan-
guage and domain) as a proxy. We hypothesize that
LMs learn which micro-level phenomena are rare,
as this would improve their overall language mod-
eling objective. In this work, we present a recipe
that leverages LMs to evaluate tail generalization
for any language task.

Task-specific test sets. Ribeiro et al. (2020) use
templated queries to evaluate model performance
under various linguistic perturbations. This method
requires dataset designers to define phenomena of
interest and axes of perturbation along which labels
may be preserved or changed. Naik et al. (2018)
analyze model errors and instantiate tests that ex-
plicitly evaluate models on more examples from
each error class. Gardner et al. (2020) check for
model consistency under local perturbations of test
set examples. All of these approaches require anno-
tators to create new examples, whereas we propose
a method to resplit existing datasets.

Adversarial approaches. Søgaard et al. (2021)
argue that random splits over-estimate model per-
formance on new in-domain data and recommend
the use of adversarial and heuristically challenging
splits to estimate generalizability. Adversarial data
collection promotes the creation of difficult exam-
ples by encouraging annotators to fool a model-
in-the-loop (Nie et al., 2020; Potts et al., 2021;
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Kiela et al., 2021). Similarly, Adversarial Filtering
removes examples that are easy for a given task
model in order to create more challenging bench-
marks (Sakaguchi et al., 2021; Yang et al., 2018).
However, Kaushik et al. (2021) and Bowman and
Dahl (2021) point out that adversarially collected
or filtered examples may focus on a narrow set of
skills that the “in-the-loop” model lacks, instead of
covering all the abilities required for the underlying
task. Additionally, the “in-the-loop” task model is
disproportionately penalized by the adversarial test
sets (Phang et al., 2021). We show in §4.3 that
Likelihood Splits do not suffer from this issue.

Domain shift. In NLP, domains can be charac-
terized by the changes in vocabulary and distribu-
tion of word use, styles used by authors, and the
intended audience. Fisch et al. (2019) pose the
challenge of developing QA systems that need to
generalize to unseen domains. Miller et al. (2020)
show that QA models trained on SQUAD show a
performance drop on new domains (while human
baseline performance remains unchanged); Miller
et al. (2021); Hendrycks et al. (2020) inter alia per-
form similar analyses of domain shift. SPIDER (Yu
et al., 2018) and GRAILQA (Gu et al., 2021) eval-
uate semantic parsing on unseen table and knowl-
edge base domains respectively. Domain shift is
an orthogonal axis of generalization; we focus on
generalizing to rare utterances in the same domain.

Out-of-distribution detection. Previous work in
OOD detection has used high generative model per-
plexity as a sign of outliers (Arora et al., 2021; Ren
et al., 2019; Lee et al., 2018). Our intuition is simi-
lar: low likelihood (high perplexity) is an indicator
of rare examples. However, only our work uses like-
lihood scores for benchmark creation. Moreover, in
our setting all examples have been collected under
the same data collection protocol, so none of the
examples are truly OOD.

Compositional generalization. The ability to
“compose” the meaning of a new utterance from the
known meaning of its parts (Fodor and Pylyshyn,
1988) is an important aspect of language under-
standing. The deterministic grammar of program-
ming languages makes semantic parsing, the task
of translating a natural language utterance into a
logical program, a good testbed for evaluating com-
positional generalization (Lake and Baroni, 2018;
Kim and Linzen, 2020; Hupkes et al., 2020; Key-
sers et al., 2020; Shaw et al., 2021). However, for

tasks where the constituent blocks are not clearly
defined, it is unclear how to create such evaluation
splits of the data. We compare against composi-
tional generalization splits of the semantic parsing
dataset SPIDER (Yu et al., 2018) in §4.

3 Capturing the Tail of the Distribution

In order to find the tail within a dataset, we ap-
proximate likelihood of an utterance in the real
distribution with its likelihood under a language
model (LM). Our method can be easily modified to
create meaningful splits for any language task. We
demonstrate this by creating Likelihood Splits for:
• SPIDER, a semantic parsing dataset (Yu et al.,

2018) consisting of natural language questions
and corresponding SQL programs;

• SNLI, a natural language inference dataset (Bow-
man et al., 2015) consisting of premise and
hypothesis sentences paired with labels denot-
ing that the hypothesis is entailed by/neutral
to/contradictory to the premise;

• BOOLQ, a question-answering dataset (Clark
et al., 2019) consisting of a passages, associated
questions, and binary yes/no labels.

3.1 General Approach

We consider language tasks where models must
map an input x to an output y (e.g., a SQL query
or a label). The input x may be either a single
sentence (e.g., semantic parsing) or a pair of sen-
tences (e.g., natural language inference), in which
case we write x = (x1, x2). Given a dataset D of
(x, y) pairs and desired proportion p of evaluation
examples, our method partitions D into subsets
Dtrain and Deval where |Deval| ≈ p · |D|. More
specifically, we will first assign a likelihood score
s(x) to each x ∈ D, then choose Deval to be the
⌊p · |D|⌋ examples in D with lowest value of s(x),
and chooseDtrain = D\Deval. In §3.2, we describe
a few different ways to define s. In §3.3, we de-
scribe a modification to this procedure that controls
for varying length between examples. Finally, we
describe task-specific adjustments in §3.4.

3.2 Assigning Likelihood Scores s(x)

We use the total log-likelihood over the query to-
kens assigned by the GPT-2 language model as the
score s(x) for every example. There are two ways
to use the LM: (1) prompting a frozen LM or (2)
fine-tuning the LM on the dataset.
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Task Prompting Fine-Tuning

SPIDER write a database question: {query} <|endoftext|> {query}

BOOLQ Passage: {passage} Ask a question about the passage: {question}

SNLI Premise: {premise} This hypothesis is {entailed/neutral/a contradiction}: {hypothesis}

Table 1: Input formats for single-sentence and sentence-pair tasks in the prompting and fine-tuning settings. Values
in curly braces are plugged in from the example. For SNLI, we provide the label in the prompt to prime the LM to
the class of hypothesis. The LM is trained (when fine-tuning) and evaluated on generating the query in blue.

Past work has shown that prompting i.e. pre-
pending a task-specific string to the query, helps
GPT-2 generalize zero-shot to new tasks (Radford
et al., 2019). We use simple prompts that describe
the task and prime the LM to the text we expect it
to generate (see Table 1). For sentence pair tasks
(such as SNLI and BOOLQ), it is necessary to com-
pare the relation between two pieces of text and
not just each piece in isolation. Thus, it is intuitive
to describe unlikely examples by the conditional
likelihood of x2 given x1. We demonstrate the flex-
ibility of our approach by providing the label in the
prompt if it adds additional information about the
text to be generated (e.g. in SNLI).2 We will refer
to this setting which uses the prompted LM with
the tag ll_split pt in the rest of the work.

The dataset curator may also choose to fine-tune
the LM to better capture the task distribution. We
fine-tune the GPT-2 LM to maximize either the
probability of x for single sentence tasks or the
conditional probability of x2 given the prompt for
sentence-pair tasks. When fine-tuning the LM on
the dataset, we need to ensure that it is not used to
assign scores to the examples it is trained on. Given
the dataset D, we first randomly partition D into
k folds. For each fold, we fine-tune an LM on the
remaining folds and use it to assign log-likelihood
scores to examples in the held-out fold. We refer
the reader to Appendix A.2 for fine-tuning details.
We will refer to this setting as ll_split henceforth.

3.3 Controlling for Length

Since the likelihood of an utterance is negatively
correlated with its length, we create a split that
explicitly controls for the effect of length. After
assigning a likelihood score to every utterance, the
examples are bucketed based on length (defined
by tokenizing the utterance with NLTK (Loper and

2We include the label in the prompt for SNLI but not
BOOLQ because the resulting prompts seemed most natu-
ral for each dataset. This choice was made before assessing
downstream behavior.

Bird, 2002)). For single-sentence and sentence-
pair tasks, we use the length of the query (x and x2
respectively) over which log-likelihood was com-
puted. Within each bucket, a fraction p of the ex-
amples with the lowest s(x) are put in the evalu-
ation set; aggregating examples from all buckets,
|Deval| ≈ p · |D|. We will refer to this control
setting with the modifier (-len) henceforth.3

3.4 Dataset-specific Choices and Details
SPIDER. We follow Shaw et al. (2021) and swap
examples between the train and evaluation sets such
that every logical program atom in the evaluation
set appears at least once in the train set. This en-
sures that the model is not required to generalize to
unseen function names and declarations.

SNLI and BOOLQ. We ensure label balance in
our splits (as in the original data) by splitting the
examples for each label separately, then combining
the resulting train and evaluation sets.

Development sets. Csordás et al. (2021) show
that without development sets that are in-
distribution to challenging test sets, models are
prone to over-fitting, which under-estimates their
ability to generalize. Thus, after dividing the data
into train and evaluation sets, we randomly divide
the evaluation set into a development set and test
set. Other details are reported in Appendix A.1.

4 Experiments

Next, we benchmark task models on our Likelihood
Splits. Splits created using GPT2-medium will be
the focus of our analysis. We will briefly study the
effect of switching the LM to GPT2-large in §4.4.

When creating Likelihood Splits, the number of
folds k for fine-tuning the LM (§3.2) can be chosen
by the dataset curator. For results in §4 and §5,
we set k = 3 arbitrarily. We analyse the effect of

3We also considered using perplexity, which normalizes for
length, but it led to an over-correction where short examples
were filtered into the evaluation set.
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choosing a different value of k in Appendix A.3.
Our results show that the trends and observations
discussed here hold true for other values of k.

4.1 Benchmarked Models
One of the goals of this work is to expose long-
tail generalization as a challenge to state-of-the-art
models; SotA models on the considered bench-
marks are all pre-trained models. We make efforts
to show that models with different pre-training data
and objectives are similarly affected by our pro-
posed splits. Hyperparameters and training details
for the reported models are in Appendix A.2.

Semantic parsing. Following Shaw et al. (2021),
we benchmark the competitive T5-base model (Raf-
fel et al., 2020) on all splits of the SPIDER dataset.
In order to test whether these splits are adversarial
to the data splitting language model, we addition-
ally fine-tune GPT2-medium models for the seman-
tic parsing task. To study the effect of model size,
we fine-tune T5-small and GPT2-small variants.

SNLI and BOOLQ. We fine-tune two compet-
itive models (ROBERTA (Liu et al., 2019) and
ELECTRA (Clark et al., 2020)) at two model sizes
(base and large). Additionally, following Poliak
et al. (2018), we train a ROBERTA-large model
to perform the task given just the hypothesis. The
performance of a hypothesis-only model estimates
the degree of spurious correlations that exist in the
dataset which give away the label.

4.2 Alternative Splits for Semantic Parsing
We compare the difficulty of the Likelihood Splits
with past work on heuristic challenges splits.

Length. Past work has established that text gen-
eration models trained on short inputs struggle to
generalize to longer inputs at test time (Lake and
Baroni, 2018; Hupkes et al., 2020; Newman et al.,
2020). We create Length splits by placing exam-
ples with the longest input queries in the evaluation
set and the remaining examples in the training set.

TMCD. Systematicity is the ability to composi-
tionally derive the meaning of an utterance from the
known meaning of its parts. Past work studying sys-
tematicity in semantic parsing has defined “atoms"
as the smallest constituents of the grammar (e.g.
variables and function names) and “compounds"
as complex structures formed by composing atoms
(e.g. multi-argument functions and nested func-
tion calls) (Keysers et al., 2020). Following Shaw

Split T5 T5 GPT-2 GPT-2
base small medium(∆) small

Random 78.6 75.2 69.3 (9.3) 64.7
Length 50.0 44.5 39.9 (10.1) 34.0
Template 60.1 60.0 51.4 (8.7) 45.1
TMCD 66.2 64.1 56.2 (10) 51.4

Split LM: GPT2-medium

ll_split 66.0 64.2 57.2 (8.8) 51.8
ll_split (-len) 71.3 67.3 59.9 (11.4) 57.3
ll_split pt 60.6 59.7 50.9 (9.7) 45.9
ll_split pt (-len) 73.5 68.4 64.5 (9) 58.3

Split LM: GPT2-large

ll_split 61.8 61.8 53.7 (8.1) 48.3
ll_split (-len) 69.7 66.2 59.1 (10.6) 54.8
ll_split pt 63.0 58.3 51.4 (11.6) 45.7
ll_split pt (-len) 72.0 70.1 63.4 (8.6) 57.5

Table 2: SPIDER: Exact sequence prediction accu-
racy for Likelihood Splits created by GPT2-medium
and GPT2-large, and other challenge splits. Likelihood
Splits are more challenging than random splits while
not being adversarial to GPT2-medium. ∆ marks the
performance drop from T5-base to GPT2-medium.

et al. (2021), we create TMCD (Target Maximum
Compound Divergence) splits of SPIDER by maxi-
mizing the divergence between the distributions of
compounds in the train and evaluation sets.

Template. These splits test the ability of parsers
to generate unseen program templates (canonical-
ized programs formed by anonymizing all variable
names and standardizing syntax). We group ex-
amples in the SPIDER dataset based on templates
defined by Finegan-Dollak et al. (2018). To cre-
ate the evaluation set, we randomly pick groups
of examples till the target set size is reached; the
remaining groups form the training set.

4.3 Model Performance on Likelihood Splits

In Table 2, we report exact match accuracy4 on
the data splits using the SPIDER evaluation suite.
For SNLI and BOOLQ, we report the accuracy of
benchmarked models in Table 3. We create 3 ran-
dom splits and report mean and standard deviation
of accuracy of models trained on each split.

Likelihood Splits are more challenging than ran-
dom splits. On SPIDER, for example, T5-base
accuracy on ll_split is 12.6 points lower than the
random split accuracy. Likelihood Splits lead to
drops in performance that are comparable to the

4This metric accounts for the fact that SQL statements are
invariant to certain shuffling and change in variable names.
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SNLI BOOLQ

Random ll_split ll_split pt Random ll_split ll_split pt

System (-len) (-len) (-len) (-len)

ROBERTA-base 89.6 ±0.4 79.3 77.1 82.6 81.7 74.9 ±0.4 71.6 71.2 72.4 71.9
ROBERTA-large 90.5 ±0.5 82.4 79.2 85.0 84.3 84.4 ±0.6 79.3 78.9 82.3 80.6
ELECTRA-base 90.5 ±0.2 80.1 78.4 82.9 82.8 78.8 ±1.1 74.1 74.3 75.2 73.6
ELECTRA-large 91.0 ±1.3 82.6 81.6 85.9 84.9 85.5 ±0.6 82.6 82.1 83.7 81.9

ROBERTA-large (Hypothesis-only) 70.2 ±0.3 64.6 64.6 67.2 69.6 - - - - -

Human Accuracy 88.7 ±0.8 83.6 84.4 85.2 86.4 - - - - -

Table 3: SNLI and BOOLQ: Accuracy for various splits and model sizes. Likelihood Splits lead to decreased model
performance. Controlling for length further increases the difficulty.

alternative challenge splits. Only Likelihood Splits
focus on challenges derived from input language
variation; we analyze these challenges in §5.1.

On SNLI and BOOLQ, Likelihood Splits are also
more challenging than random splits. For example,
ELECTRA-large accuracy decreases by 8.4 points
on SNLI and 2.9 points on BOOLQ. On SNLI, the
performance of the hypothesis-only baselines on
Likelihood Splits is lower than that on the random
splits, which indicates that our splits are less easily
solved by modeling spurious statistical cues.

Controlling for length preserves challenging na-
ture of splits. Likelihood is negatively correlated
with length, so Likelihood Split test data contains
longer examples. On SPIDER, generalizing to
longer utterances is challenging, so controlling for
length makes the Likelihood Splits less challeng-
ing. However, these splits are still much more chal-
lenging than random splits. For T5-base, ll_split
(-len) is 7.3 points harder and ll_split pt (-len) is
5.1 points harder than the random split. By con-
trolling for length, we identify examples that are
more challenging for other reasons (discussed in
§5.1). Fitting the dataset distribution with a fine-
tuned LM reduces the correlation between length
and likelihood on SPIDER. Accordingly, ll_split
pt poses a stronger length generalization challenge
than ll_split, and thus is more challenging: T5-base
accuracy drops by 18 points on ll_split pt compared
with the random split.

Conversely, for SNLI and BOOLQ, controlling
for length makes the Likelihood Splits slightly
harder compared to their uncontrolled versions
(ELECTRA-large accuracy drops by 1% from
ll_split to ll_split (-len) on SNLI, and by 0.5% on
BOOLQ). This suggests length is not a reason that
Likelihood Splits are harder for these datasets. Re-
latedly, ll_split pt is easier than ll_split here.

Likelihood Splits do not unfairly penalize the
scoring LM. The difference in accuracy between
T5-base and GPT2-medium are comparable across
all splits (∆ in Table 2). This shows that the Likeli-
hood Splits do not unfairly penalize GPT2-medium,
the model used to create the Likelihood Splits.
Thus, benchmarks based on Likelihood Splits will
be fairer to model class of the LM used.

Human accuracy is less affected. We estimate
human accuracy on the evaluation sets using the
∼10% of examples that were annotated with 5 la-
bels in the original SNLI dataset. Human accuracy
is at most 5.1% lower on our proposed splits than
on the random splits. Model performance drops
more severely than the smaller drop in human ac-
curacy; models that were previously superhuman
are now worse than the estimated human perfor-
mance (except for ELECTRA-large on ll_split pt).
In comparison, adversarial filtering (Le Bras et al.,
2020) has a larger drop in human accuracy from
88% on the standard split to 78% on their most chal-
lenging split. Thus, our method does not as heavily
emphasize mislabeled or ambiguous examples.

4.4 Effect of the LM on Likelihood Splits.

We study the effect changing the language model
by using a GPT2-large model to create the Likeli-
hood Splits of SPIDER. The log-likelihood scores
assigned to the examples by GPT2-medium and
GPT2-large are highly correlated; Pearson correla-
tion coefficient (r) between log-likelihood scores
from fine-tuned models is 0.96 while it is 0.99 for
the pre-trained models. Accounting for swapping
of examples in order to meet the atom constraint,
the evaluation sets differ in 16% of examples in the
ll_split setting, and 10% of the examples in ll_split
pt setting. ll_split is more challenging when using
GPT2-large; T5-base accuracy drops an additional
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Random ll_split ll_split reverse

System (-len) (-len)

SPIDER

T5-base 78.6 66.0 71.3 83.9 81.5

SNLI

E-base 90.5 ±0.2 80.1 78.4 96.6 97.4
E-large 91.0 ±1.3 82.6 81.6 96.7 97.4

BOOLQ

E-base 78.8 ±1.1 74.1 74.3 77.8 78.1
E-large 85.5 ±0.6 82.6 82.1 85.8 86.8

Table 4: Accuracy on SPIDER, SNLI and BOOLQ when
training on the unlikely (tail) queries and evaluating on
the likely (head) queries (ll_split reverse). The model ac-
curacy on the reverse splits are comparable to or higher
than accuracy on the random split. This supports the
claim that generalizing to rare instances is a significant
challenge. (E-base and E-large are ELECTRA models)

4.2% compared to the ll_split with GPT2-medium.
The other splits are comparable with accuracies
differing by 1-2% across all models (see Table 2).
Thus, we expect splits created with different LMs
to demonstrate similar characteristics.

4.5 Are Reverse Likelihood Splits Difficult?

We wish to test whether the decrease in task accu-
racy is driven by rarity of the instances or whether
any likelihood based distribution shift is challeng-
ing. We test this hypothesis by creating a setting
that requires generalizing from the tail of the dis-
tribution to the head. Using the same likelihoods
as before, we create reverse splits where the more
likely (head) of the distribution is used as the evalu-
ation set instead of the unlikely (tail). From Table 4,
we see that the accuracy of ELECTRA-large on
SNLI increases from 81.6% on the Likelihood Split
to 96.7% on the reversed split. For comparison,
this is more than the accuracy on random splits of
SNLI (91%). We see similar trends on BOOLQ and
SPIDER where the reverse splits are as easy as or
easier than the corresponding random splits. We
conclude that generalizing specifically to the tail is
what makes our splits difficult.

5 Analysis of Data Splits

In order to highlight the challenges posed by our
proposed splits, we analyze how the development
sets (to ensure unseen test sets) differ from the train-
ing sets in each split. Our splits require models to
simultaneously excel at many different skills be-

lieved to be important for language understanding.

5.1 Properties of the Proposed SPIDER Splits

TMCD-related properties and length. Follow-
ing Shaw et al. (2021), we report atom and com-
pound divergences of the various splits in Table 13
of Appendix A.4. Divergence measures how much
the distribution of atoms/compounds differs be-
tween the train and evaluation set. Our approach
leads to splits with higher than random atom diver-
gence, which shows that our split poses the chal-
lenge of generalizing to rare atoms. Similarly, a
greater than random compound divergence emerges
from the resulting split. This means that the split
also requires some amount of compositional gener-
alization. From Figure 6 in Appendix A.6, we see
that log-likelihood preferentially puts the longer
queries in the test set and the corresponding length
variation is closer to that of the length split than
the other splits. Hence, it naturally requires some
aspect of length generalization. As expected, by
controlling for length of the utterances, we can
remove the challenge of length generalization.

Program difficulty. SPIDER assigns a rating of
‘easy’, ‘medium’, ‘hard’, or ‘extra hard’ to every
SQL program. From Figure 2, we see that the
evaluation sets of the Likelihood Splits contain
more examples from the harder categories than
the training sets. Controlling for length reduces
this effect but does not completely remove it (see
Appendix A.5 for more details). Note that this
skew emerges even though we do not consider the
programs when creating these splits.

Rare words. On the input side, we first analyze
the distribution of rare words. We define rare words
as all English words5 in the SPIDER dataset that
occur at most 1 time per million words according
to SUBTLEXus (Brysbaert and New, 2009). This
results in a list of 561 words. We report the frac-
tion of words in the development set that are rare.
This metric automatically controls for the length of
the examples; longer examples are more likely to
contain rare words by chance. To estimate the dis-
tribution of this fraction under random splits (null
distribution), we create 500 random splits and plot
the distribution of values observed. From Figure 3,
we observe that the Likelihood Splits have more
rare words in the test set, especially for the ll_split

5We filter out incorrect spellings using the word list at
https://github.com/dwyl/english-words
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Figure 2: SPIDER: Distribution of SQL programs of
varying complexity in the train and development set of
Likelihood Splits. These splits show a skew towards
training on easy examples and evaluating on harder
examples.

Figure 3: SPIDER: Statistics of the fraction of dev set
words that are rare for various splits. This is plotted
against the distribution of values observed for 500 ran-
dom slits of the data. ll_split variants retain a larger
fraction of rare words in the test set. Controlling for
length finds shorter examples with more rare words.

pt setting. Controlling for length puts shorter ex-
amples in the evaluation sets, but a larger fraction
of the words are rare. The other challenging splits
considered do not focus on the input language vari-
ation and hence the fraction of development set
words that are rare is closer to random.

Input syntactic complexity. We also study the
query parse tree structures in various splits of the
dataset in Figure 8. We measure the complexity of
the parse tree based on mean and max depth as well
as Yngve score (Yngve, 1960) which is a measure
of syntactic complexity. We see that more complex
queries tend to be assigned lower likelihood and
correspondingly put in the evaluation set. The ef-
fect of the complexity is also correlated with length
and balancing for length reduces the gap between

Category Random ll_split pt

Easy 92.3% (.225) 81.3% (.077)
Medium 82.3% (.409) 71.6% (.435)
Hard 78.4% (.201) 60.1% (.233)
Extra Hard 62.9% (.164) 52.5% (.254)

Dev set Acc 80.6% 64.8%

Projected Acc 77.15%

Table 5: SPIDER: Accuracy of T5-base aggregated
by the SQL hardness rating for random and ll_split pt
dev sets. The number in brackets is the fraction of dev
set examples that fall in each bucket. The examples
in the dev set of ll_split pt are skewed towards harder
examples. However, performance of T5-base on ll_split
pt is lower than performance on random split in every
bucket. Projecting and re-weighting the random set
accuracies using the fraction of examples in each bucket
in ll_split pt over-estimates dev set performance.

the complexity of the train and test set. We refer
the reader to Appendix A.7 for more details.

Effect on accuracy. In Appendix A.8 and Table
5, we show that the higher frequency of both novel
compounds (i.e., compounds not seen during train-
ing) and harder programs each partially explain the
higher difficulty of ll_split pt for T5-base. For ex-
ample, 16% of dev examples in the random split
have ‘extra hard’ programs, compared with 25%
in ll_split pt. On the random split, T5-base gets
63% of these examples correct, compared with 81%
dev accuracy overall, so these examples are indeed
more challenging. On ‘extra hard’ examples in
ll_split pt, T5-base has an even lower accuracy of
53%. Thus, the mere fact that ll_split pt has more
‘extra hard’ examples does not fully explain why it
is harder; other factors must also be playing a role.

5.2 Properties of the Proposed SNLI Splits

For SNLI, we study the variation of premise and
hypothesis length (A.9), distribution of rare words
(A.10), Yngve score (Yngve, 1960) for syntactic
complexity (A.11), and Flesch-Kincaid (Kincaid
et al., 1975) reading grade-level (A.12). Evaluation
sets of Likelihood Splits of SNLI are more complex
than their corresponding training sets on all 4 vari-
ations; evaluation set examples tend to be longer,
tend to contain more rare words, are more syntacti-
cally complex, and have higher reading levels.

Controlling for length removes length variation,
and slightly decreases the skew in reading level.
Surprisingly, the Yngve scores of evaluation exam-
ples are skewed to being less complex than the
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Figure 4: SNLI: Distribution of Yngve scores computed
on the parse tree of the hypothesis. The evaluation sets
for ll_split contain more complex utterances. Normaliz-
ing for the length surprisingly reverses the skew.

corresponding training set (see Figure 4), even
though the length controlled variants of SNLI are
more challenging than the corresponding Likeli-
hood Splits. Some the difficulty when controlling
for length can be explained by the increased pro-
portion of rare words.

We analyze the errors of ROBERTA-large on the
development set of ll_split (-len), the hardest SNLI

split (see Appendix A.13 for concrete examples).
We find several instances of examples that require
common-sense or world knowledge to be solved
correctly. These include knowledge of terms such
as crowd-surfing and lincoln logs (a type of toy),
and facts like zip-lining is an exciting activity. We
find that a small fraction of the errors are caused
by ambiguous or incorrect labels. There are a sev-
eral instances of spelling mistakes, a few of which
change the meaning of the sentence.

6 Conclusion

With the saturation of static, single-metric leader-
boards, there is growing consensus for the devel-
opment of holistic evaluation benchmarks. This
includes evaluation of systems on aspects of per-
formance beyond just single error rate on in-
distribution data; aspects such as performance on
out-of-distribution data (Linzen, 2020), and evaluat-
ing generalizability, robustness and fairness (Etha-
yarajh and Jurafsky, 2020). In this work, we de-
scribe an approach to benchmark long-tail general-
ization, a necessary skill for NLP systems that truly
understand language. We demonstrate the chal-
lenge posed by our splits to state-of-the-art models
on several tasks; standard evaluation overestimates

model performance on long-tail utterances. Instead
of releasing a random split as the only metric on of-
ficial benchmarks, our simple method can be used,
for a wide range of tasks, to expose additional chal-
lenges in the collected data at no annotation cost.
Benchmarking long-tail generalization, in this man-
ner, can test model behavior on a broad set of gen-
eralization challenges, which may be missed by
evaluations that test specific skills in isolation.

Limitations

Evaluating a proposed benchmarking method such
as ours is challenging, as there is no community
consensus on what properties characterize an ideal
benchmark. While we have argued that Likelihood
Splits have a number of desirable properties, ulti-
mately we intend Likelihood Splits to complement
other options for creating benchmarks, not replace
them. In particular, we do not aim to replace meth-
ods that require additional annotation and domain
knowledge discussed in §2. In situations where pre-
viously collected datasets contain no or very few
examples of a particular type, creating new data
may be the only way to test models on that type of
example. We view our approach as one lightweight
option that dataset curators can choose to create a
more holistic benchmark.

The properties of the Likelihood Splits that we
have studied in this work do not fully explain what
makes the Likelihood Splits harder. Dataset splits
that explicitly test specific skills like length gen-
eralization and compositional generalization are
good at exposing specific weaknesses in models.
While it is hard to pinpoint the source of difficulty,
our approach is complementary in that it can test
a much broader set of skills that a narrow test may
miss.

The difficulty of out-of-distribution generaliza-
tion is higher in low resource languages, however,
we show that the problem is yet not solved for
NLP tasks even in the high resource English lan-
guage. Our approach has the flexibility to use any
autoregressive LM to score the utterances; large
multi-lingual LMs such as BLOOM (Scao et al.,
2022) can be used if appropriate.

The model performance gaps between random
split and Likelihood Splits are small (2-4%) on
some datasets (e.g. BOOLQ). We cannot guaran-
tee that Likelihood Splits for a new dataset will be
much more challenging than random splits. In such
a situation, other complementary evaluation strate-
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gies may be recommended to more strenuously
challenge models.

Our approach has multiple knobs to control the
properties of the splits created: (1) prompting/fine-
tuning the LM, (2) controlling length variation, and
(3) dataset specific choices such as label balanc-
ing. This choice gives dataset curators a lot of
control to modify the approach. It is possible that
the behaviour of the splits might be inconsistent
under some changes. In our experiments, we find
that qualitative findings are largely consistent, even
across changes such as using a different language
model.

Finally, there is no guarantee that the challenge
posed is a fair generalization task (Geiger et al.,
2019); we cannot guarantee that all skills needed to
solve the test set can be learned from the training
set. Nevertheless, since our approach partitions
data that was collected under a single consistent
protocol, it is more likely to be fair than methods
that rely on an additional, separate annotation pro-
cess to create test data.
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A Appendices

A.1 Dataset Statistics
Refer to Table 6 for final split sizes. When creat-
ing the splits, we first partition the available data
into train and evaluation (combined size of dev +
test) sets using the methodology of each split (e.g.
TMCD maximizes compound divergence, Likeli-
hood Splits sort by an LM score and then partition
the data). Then the evaluation set is randomly di-
vided into dev and test sets.
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Dataset |Train| |Dev| |Test| Total

SPIDER 5,966 1,034 1,034 8,034
SNLI 549,018 10,000 10,000 569,018
BOOLQ 7,617 2,540 2,540 12,697

Table 6: Sizes of train/dev/test sets for the dataset splits

The public release of the SPIDER dataset con-
sists of 7000 training examples and 1034 validation
examples (it also contains 1659 additional exam-
ples from older datasets which we do not use in our
work). We use these 8034 examples to create all
our splits. Shaw et al. (2021), one of the alternative
splits that we compare against, use a subset of 4000
examples from the 7000 training examples. Hence,
our results are not directly comparable to perfor-
mance reported by them. The SQL programs for 6
(of 8034) examples in the dataset cannot be parsed
uniquely and thus we cannot define compounds on
these examples. We drop these examples when cre-
ating the TMCD split i.e. the training set of TMCD
split contains 6 fewer examples.

The SNLI data contains 550152 training exam-
ples, 10000 dev examples and 10000 test examples
for a total of 570152 examples. We drop exam-
ples where the gold label cannot be determined
by majority vote. We also drop examples where
the premise was labelled ‘Cannot see picture to de-
scribe.’ or the hypothesis is empty. This results in
a filtered dataset of 569018 examples from which
we create our splits.

The public release of BOOLQ contain 9427 la-
beled training examples, 3270 labeled development
examples, and 3245 unlabeled test examples. Thus
we create our splits from the 12,697 labelled train
and development examples. We maintain the ap-
proximate 60/20/20 train/dev/test proportions of
the original dataset when creating the splits.

A.2 Model Hyperparameters
We use the Transformers library (Wolf et al., 2020)
for training and evaluation. All models were
trained on Nvidia Quadro RTX 6000 GPUs (24GB
GPU Memory).

We report hyperparameters for fine-tuning GPT-
2 to create the Likelihood Splits in Table 7. We
select the best checkpoint based on lowest perplex-
ity by validating on 10% of the training data in
each fold.

Hyperparameters for SPIDER models are in Ta-
ble 8, for SNLI models in Table 9 and for BOOLQ
models in Table 10. Note that we evaluate check-

Hyperparameter Value

train batch_sz 32
lr_scheduler constant
learning_rate 2e-5
optimizer AdamW
eval steps 64

max steps
SPIDER: 2000
SNLI: 15000

BOOLQ: 3000

Table 7: Hyperparameters for fine-tuning GPT-2 (both
medium and large) on the dataset folds to create Likeli-
hood Splits

T5 GPT-2

train batch_sz 8 2
grad acc steps 16 16
max_steps 10000 10000
lr_scheduler constant constant
learning_rate 1e-3 2e-5
optimizer Adafactor AdamW
max src_length 512 512
max tgt_length 256 256

src prefix -
database

question for
table

tgt prefix semanticparse:
generate

the sql parse:

eval batch_sz 8 1
eval steps 256 128
num_beams 5 5

Table 8: Hyperparameters for the models trained on
SPIDER.

points (see hyperparameter ‘eval steps’) during
training to select the best checkpoint at the end
of training.

For SPIDER, we follow Shaw et al. (2021) and
tune the learning rate, batch size and maximum
training steps for a T5-base model (Raffel et al.,
2020) on a random split of the SPIDER dataset.
Once we have found a hyperparameter setting, we
apply the same setting on the all splits. We also
report performance of a T5-small model on all
splits trained with the same hyperparameters.

For SNLI and BOOLQ, we follow the default
hyperparameters suggested by the original works.
Additionally, we perform early stopping when per-
formance on the validation set fails to improve for
a specified number of evaluations.

A.3 Effect of k on Likelihood Splits
When creating Likelihood Splits, the number of
folds k for fine-tuning (§3.2) is a choice left to
the creator of the benchmark. In our work, we
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ROBERTA
ELECTRA

base large

train batch_sz 32
max seq length 128
lr_scheduler linear
optimizer AdamW
adam_beta1 0.9
adam_beta2 0.98 0.999
adam_epsilon 1e-6
num epochs 10 3
warmup ratio 0.06 0.1
layer. lr decay 1.0 0.8 0.9
learning_rate 1e-5 1e-4 5e-5
weight decay 0.1 0.0

eval batch_sz 32
eval steps 256
patience 20 n/a

Table 9: Hyperparameters for the models trained on
SNLI. Patiences refer to number of evaluations with no
improvement before early stopping.

set k = 3 as an arbitrary choice prior to running
the task models i.e. it was not tuned based on
task model performance. We conduct additional
experiments to test the effect of changing the value
of k by setting k = 5 and generating new splits.

On SPIDER, when k = 5 instead of k = 3, Like-
lihood scores are highly correlated with a Pearson’s
r of 0.90. However, the process of balancing atoms
(described in §3.4) causes the evaluation sets to
look more different. When controlling for length,
77% of the evaluation set examples are the same;
80% of the evaluation examples are the same other-
wise. We report the accuracy of T5-base (the most
competitive baseline model on SPIDER) on the new
splits with k = 5 in Table 11. The new splits are
more difficult by about 2%. We observe the same
trend where controlling for length makes the splits
less challenging.

On BOOLQ, when using 5 folds instead of the
3 folds, Likelihood scores are highly correlated
with a Pearson’s r of 0.96 and 89% of the evalua-
tion set examples are the same. Accordingly, the
ELECTRA-large accuracy only changes slightly
from 82.6% to 83% on the new test set and is
still lower than the random split accuracy. While
there exists an indication that controlling for length
makes the ll_split (-len) splits more challenging,
the effect of controlling for length becomes more
pronounced when k = 5. We report the effect of k
on BOOLQ performance in detail in Table 12.

We report the effect of changing k on SNLI accu-
racy in Table 12. Since the SNLI dataset is an order

ROBERTA
ELECTRA

base large

train batch_sz 8
grad acc steps 4
max seq length 512
lr_scheduler linear
optimizer AdamW
adam_beta1 0.9
adam_beta2 0.98 0.999
adam_epsilon 1e-6
num epochs 10 5
warmup ratio 0.06 0.1
layer. lr decay 1.0 0.8 0.9
learning_rate 1e-5 1e-4 5e-5
weight decay 0.1 0.0

eval batch_sz 8
eval steps 128
patience 10 n/a

Table 10: Hyperparameters for the models trained on
BOOLQ. Patience refers to number of evaluations with
no improvement before early stopping.

SPIDER

Random ll_split (k=3) ll_split (k=5)

System (-len) (-len)

T5-base 78.6 66.0 71.3 64.8 69.2

Table 11: Effect of k on the difficulty of Likelihood
Splits of SPIDER. The accuracies of T5-base on the
Likelihood Split are comparable and significantly lower
than the accuracy on Random split. Controlling for
length decreases the difficulty in both cases.

of magnitude larger than the SPIDER and BOOLQ
datasets, the number of folds has less of an impact
on the LM fine-tuning. As a result, Likelihood
scores for k = 3 and k = 5 are highly correlated
with a Pearson’s r of 0.99. When controlling for
length, 89% of the evaluation set examples are the
same; 92% of the evaluation examples are the same
otherwise. Accordingly, we see much smaller dif-
ferences in model performance on the new splits;
the ROBERTA model accuracies change by at most
0.9% on the new test sets.

A.4 SPIDER: Variation of TMCD Related
Properties

Past work by Keysers et al. (2020) has established
the terms of atom and compound “divergence" to
quantitatively describe the extent to which the dis-
tributions of the atoms and compounds differ be-
tween the train and evaluation sets. They used the
Chernoff coefficient (Chung et al., 1989) to mea-
sure distribution similarity:
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SNLI BOOLQ

Random ll_split (k=3) ll_split (k=5) Random ll_split (k=3) ll_split (k=5)

System (-len) (-len) (-len) (-len)

ROBERTA-base 89.6 ±0.4 79.3 77.1 78.4 75.0 74.9 ±0.4 71.6 71.2 71.1 70.3
ROBERTA-large 90.5 ±0.5 82.3 79.2 82.1 79.0 84.4 ±0.6 79.3 78.9 78.4 78.3
ELECTRA-base 90.5 ±0.2 80.1 78.3 80.1 77.6 78.8 ±1.1 74.1 74.3 75.0 73.9
ELECTRA-large 91.0 ±1.3 82.6 81.6 84.0 80.6 85.5 ±0.6 82.6 82.1 83.0 80.6

Human Accuracy 88.7 ±0.8 83.6 84.4 83.0 84.0 - - - - -

Table 12: Effect of k on the difficulty of Likelihood Splits of SNLI and BOOLQ. There are some accuracy differences
on BOOLQ, however the values are comparable and significantly lower than the accuracy on Random splits. The
accuracy differences are less pronounced on SNLI.

Cα(P ∥ Q) =
∑

k

pαk q
1−α
k ∈ [0, 1] (1)

where pk and qk are the probability of a particu-
lar atom/compound k being in the train and test set
respectively. The divergence is then 1− Cα. The
“atom" divergence uses α = 0.5 as a symmetric di-
vergence score. The “compound" divergence used
α = 0.1 to give more importance to the occurrence
of a compound in the train set rather than trying to
make the distributions of train and test set similar.

Split Atom Compound

Random 0.077 0.046
Length 0.120 0.092
Template 0.105 0.089
TMCD 0.296 0.322

ll_split 0.083 0.054
ll_split (-len) 0.081 0.049

ll_split prompt 0.093 0.056
ll_split prompt (-len) 0.094 0.052

Table 13: Atom and Compound divergence (on the
logical form side) between train and dev sets of various
splits. Although we ensure every atom appears at least
once in the train set, a high atom divergence demon-
strates the challenge of learning rare atoms. A greater
than random compound divergence emerges denoting a
need for compositional generalization.

A.5 SPIDER: Variation of SQL Hardness
We use a tool provided by the SPIDER dataset cre-
ators to evaluate hardness. The tools assigns a rat-
ing from easy, medium, hard or extra hard to every
example based on the complexity of the SQL parse.
Complexity is evaluated in terms of the number of
join and aggregation operations, and nested SQL
statements. We find that the Likelihood Splits are
skewed towards putting more complex examples

in the evaluation set compared to the test set (see
Figure 5).

A.6 SPIDER: Input Length Variation
As expected, the likelihood assigned by the lan-
guage model (LM) is negatively correlated with
sequence length meaning i.e. longer sequences
tend to have lower likelihood. This can be seen
from Figure 6, where ll_split and ll_split pt tend to
put longer utterances in the lower likelihood eval-
uations set. Accounting for length by dividing the
data within buckets makes the distribution of train
and test sets align better and remove the added dif-
ficulty of length generalization. The length split
poses this challenge which has been established
to be a difficult ability for generation models to
acquire (Newman et al., 2020). Note that the distri-
butions do not match exactly since examples need
to be swapped between train and evaluation set to
meet the atom constraint (evaluation cannot contain
any unseen atoms).

A.7 SPIDER: Variation of Query Parse
Structure

We analyze the complexity of the parse structure
of the queries. Following Wallace et al. (2021),
we parse the queries using the Benepar parser (Ki-
taev and Klein, 2018) based on T5 small (Raffel
et al., 2020). We report the distributions of mean
and max parse tree depth as well as the syntactic
complexity of the utterance based on the Yngve
score (Yngve, 1960; Roark et al., 2007). The Yn-
gve score essentially measures the average number
of left branches on the path from the root of the
parse tree to every word in the sentence and can be
thought of as measuring the number of spans that
need to be coordinated.

We can see that the dev set of the ll_split is on
average more complex than its train set along all 3
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Figure 5: SPIDER: Distribution of SQL programs of
varying complexity in the train and development set of
various splits. Likelihood Splits show a skew towards
training on easy examples and evaluating on harder
examples.

metrics considered (see Figure 8). Moreover, these
metrics are correlated with utterance length, and
controlling for it in the ll_split (-len) split makes
the difference less pronounced.

A.8 SPIDER: Error Analysis

We analyze the performance of T5-base on the
development set of ll_split pt. In particular, we
test whether the presence of novel compounds and
SQL query hardness are sufficient to explain the
difficulty.

We call compounds in the SQL programs of the
development set as ‘novel’ if they do not occur in
the training set of the split. 25.5% of the dev set
examples in the random split contain at least one
novel compound as opposed to 43.6% of the dev set
examples of ll_split pt. From Table 14, we see that
T5-base performance is lower in both categories
of examples. Projecting for expected performance
on dev set of ll_split pt assuming the examples

Split Random ll_split pt

Percent. of examples 25.5% 43.6%with a novel compound
Acc on examples 61.4% 45.5%with novel compounds
Acc on remaining examples 87.1% 79.8%

Acc on the dev set 80.6% 64.8%

Projected accuracy 75.9%

Table 14: SPIDER: The presence of novel compounds
alone does not explain the difficulty of the ll_split pt.
Projecting the random set accuracies using the percent-
age of examples with novel compounds in ll_split pt
over-estimates dev set performance.

were as difficult as examples from the random split
over-estimates the performance of T5-base.

We report performance of T5-base on the dev
sets grouped by the SQL hardness metric (de-
scribed in Appendix A.5) in Table 5. We see that
accuracy on ll_split pt is lower than the accuracy on
the random set within each SQL complexity bucket.
If the sole source of difficulty was the larger pro-
portion of harder examples, projecting the random
set accuracies would correctly estimate dev set per-
formance on ll_split pt. However, the projection is
an over-estimate. Thus, the hardness metric alone
does not explain the difficulty of the proposed split.

A.9 SNLI: Input Length Variation

From Figure 9, we see that the Likelihood Splits put
longer premises and hypotheses in the evaluation
set. Controlling for length completely removes this
skew while increasing the difficulty of the splits
(Table 3). This means that if we remove the factor
of length from likelihood, the remaining examples
have lower likelihood for other reasons; reasons
that contribute to difficulty.

A.10 SNLI: Distribution of Rare Words

We report the fraction of test sets words that are
rare for various splits in Figure 7. This evaluation
combines the premise and the hypothesis i.e. it
considers the full task input. In order to remove
typographical errors, we only consider words that
occur in a wordlist of English words (https://
github.com/dwyl/english-words). We define
rare words as words that occur at most 1 time per
million words statistics collected in SUBTLEXus
(Brysbaert and New, 2009). This process results
in a list of 13478 low frequency words that occur
in the SNLI dataset. We find that Likelihood Splits
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put examples with a significantly large fraction or
rare words in the evaluation set. Controlling for
length increases the fraction of rare words since
length is removed as a factor from likelihood.

A.11 SNLI: Variation of Syntactic complexity
We compute Yngve scores for premise and hypoth-
esis of examples as described in Appendix A.7.
The complexity of premise and hypothesis in devel-
opments sets of Likelihood Splits is higher than in
the corresponding train sets (see Figure 10). Con-
trolling for length removes this skew in the premise.
However, the length controlled splits tend to have
less syntactically complex hypotheses in the eval-
uation sets. This is surprising because the length-
controlled variants are actually more difficult for
the model; human performance is higher on length-
controlled splits.

A.12 SNLI: Variation of Reading Level
We compute the Flesch-Kincaid reading level (Kin-
caid et al., 1975) for premise and hypothesis of ex-
amples. This score takes into account the number
of syllables per word in the sentence. The reading
grade (complexity) of premise and hypothesis in
developments sets of Likelihood Splits is higher
than in the corresponding train sets (see Figure 11).
Controlling for length does not fully remove this
skew and the evaluation examples retain more com-
plex sentences than in the training set.

A.13 SNLI: Error Analysis
In Table 15, we present some examples from the
development set of ll_split (-len) where the fine-
tuned ROBERTA-large model predicts incorrectly.
We divide them into categories: examples requiring
external world knowledge, examples where a typo
changes the meaning of the example, and examples
with ambiguous or incorrect labels.

Figure 6: SPIDER: Input length variation for the splits.
Y-axis is the distribution of examples within each length
bucket of the X-axis

Figure 7: SNLI: Fraction of development set words that
are rare in the premise and hypothesis of various splits.
The dev sets for ll_split seem to contain a larger fraction
of rare words than random splits. Normalizing for the
length seems to retain more rare words.
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Figure 8: SPIDER: Distribution of features computed on the parse tree of the input query. The dev sets for ll_split
seem to contain more complex utterances across all 3 metrics considered. Normalizing for the length seems to
reduce the effect. The metrics are mean and max depth of parse tree and Yngve score which is a metric

Error Type Premise Hypothesis Gold Label Predicted Label

Requires
External
Knowledge

A young boy is holding on and rid-
ing a zip line down a hill.

A exciting adventure! entailment neutral

A young child is watching a toy con-
struction brick construct.

A child is using lincoln logs. neutral contradiction

A performer is jumping off the stage
into a crowd of fans.

The artist is crowdsurfing. entailment neutral

A couple holds up their child on a
series of large steps while others are
also traversing the steps.

A fourteen year old is re-
strained from the museum.

contradiction neutral

Typo Martial artists perform in front of a
crowd outdoors.

There is a crown outdoors. entailment neutral

Ambiguous /
Incorrect
Labels

Technicians working in under-
ground.

People work underground
while dinosaurs attacked

neutral contradiction

A young gentlemen with a blue tie
talking into a microphone.

High winds will interfere
with microphone recording.

entailment neutral

Table 15: SNLI: Error analysis of ROBERTA-large on examples from ll_split (-len).
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Figure 9: SNLI: Input length variation of premise and hypothesis for the splits.

Figure 10: SNLI: Distribution of Yngve scores (syntactic complexity) computed on the parse tree of the premise
and hypothesis. The dev sets for Likelihood Splits contain more complex utterances.
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Figure 11: SNLI: Distribution of Flesch-Kincaid reading level for the premise and hypothesis in various splits. The
dev sets for ll_split seem to contain more complex utterances. Normalizing for the length seems to reduce but not
remove the effect.
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Abstract

Multilingual pretraining approaches in Neu-
ral Machine Translation (NMT) have shown
that training models to denoise synthetic code-
switched data can yield impressive performance
gains — owing to better multilingual semantic
representations and transfer learning. However,
they generated the synthetic code-switched data
using non-contextual, one-to-one word transla-
tions obtained from lexicons - which can lead
to significant noise in a variety of cases, in-
cluding the poor handling of polysemes and
multi-word expressions, violation of linguistic
agreement and inability to scale to agglutinative
languages. To overcome these limitations, we
propose an approach called Contextual Code-
Switching (CCS), where contextual, many-to-
many word translations are generated using a
`base' NMTmodel. We conduct experiments on
3 different language families - Romance, Uralic,
and Indo-Aryan - and show significant improve-
ments (by up to 5.5 spBLEU points) over the
previous lexicon-based SOTA approaches. We
also observe that small CCS models can per-
form comparably or better than massive models
like mBART50 and mRASP2, depending on the
size of data provided. Lastly, through ablation
studies, we highlight the major code-switching
aspects (including context, many-to-many sub-
stitutions, code-switching language count etc.)
that contribute to the enhanced pretraining of
multilingual NMT models.

1 Introduction

Recent research in Neural Machine Translation
(NMT) has focused on the pretraining of massively
multilingual models (Aharoni et al., 2019; Siddhant
et al., 2022; Costa-jussà et al., 2022) - due to their
high scalability, easy deployability and state-of-the-
art (SOTA) performances (Tran et al., 2021; Yang
et al., 2021). One of the most common pretrain-
ing approaches trains a model to reconstruct (or
``denoise") a sentence noised using one or more
mechanisms. Followingmasking (Song et al., 2019;

(a) Example sentences (Pan et al., 2021, Figure. 6)

(b) Translation Errors in the noised sentence generated
using AA. Parentheses indicate code-switching language.

Figure 1: Example of the errors induced by Aligned
Augmentation (AA). GT refers to `Ground Truth' trans-
lations, as provided by native speakers.

Lewis et al., 2020), synthetic code-switching1 has
emerged as a more effective noising mechanism
(Yang et al., 2020b; Pan et al., 2021). With the mo-
tive of moving the denoising task from language
modeling to machine translation, these works pro-
pose to randomly code-switch input sentences, and
then to train the MT model to denoise these sen-
tences to the original monolingual ones.

The most noteworthy system in this line of
research is the massively multilingual model
mRASP2 (Pan et al., 2021). It was pretrained using
an algorithm called Aligned Augmentation (AA) -
that constructs a synthetic code-switched sentence
using dictionary-based word-level translations, fol-
lowed by contrastive learning to semantically align
this sentence with the reference sentence. Pan et al.
(2021) showed that AA enablesmRASP2 to achieve
SOTA results across varied high, medium, and low-
resource language pairs, and verified that this was
due to improved multilingual semantic representa-
tions and enhanced cross-lingual transfer.

1In this paper (and related others), code-switching refers
exclusively to `synthetic' code-switching - which is employed
as a pretraining approach for enhancing cross-lingual transfer
learning. This is very different from the larger body of MT re-
search that studies authentic, human-generated code-switching
- as employed by bilingual speakers in informal contexts.
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Despite being highly effective, a common weak-
ness of this family of approaches is that they syn-
thesize code-switched sentences using word lexi-
cons - opening up several potential quality issues
in the pretraining data. For instance, the SOTA
algorithm AA as well as other related works (Lin
et al., 2020; Li et al., 2022a) use non-contextual,
one-to-one word translations obtained from MUSE
lexicons (Lample et al., 2018) -- which can be prob-
lematic in a variety of cases. Firstly, failing to
factor sentence-level context can cause violations
in linguistic agreement, such as gender, case, tense
and verb agreement. Secondly, AA cannot ade-
quately handle contextual synonyms or polysemes
(often estimated to constitute up to 80% of English
words (Miller, 1998; Geeraerts, 1993)), with Lin
et al. (2020) and Pan et al. (2021) assigning random
word senses (and thus, translations) for polysemes
-- regardless of context. Thirdly, one-to-one word
translations create further issues, including the han-
dling of multi-word expressions (eg. ``get out")
and multi-word entities (eg. ``New York") -- with
these problems aggravating for agglutinative lan-
guages. Finally, the bilingual MUSE lexicons them-
selves have been shown to be of dubious quality
across a variety of languages (Kementchedjhieva
et al., 2019), and using these for multilingual code-
switching can propagate such errors manifold. This
is illustrated in Figure 1, which shows an example
of AA noising taken directly from Pan et al. (2021).
With 6 errors in a sentence of 14 words (refer Ap-
pendix A.1 for a detailed examination of these er-
rors), we contend that these limitations could cause
significant corruption in the pretraining corpus.

We, thus, hypothesize that although AA has been
effective in a variety of scenarios, the raised issues
could lead mRASP2 to underperform. For this
reason, we propose Contextual Code-Switching
(CCS) - a novel approach for extracting contex-
tual, many-to-many word translations, leveraging
massive2 NMT models, and then using these for
noising the pretraining corpus. We conduct experi-
ments on 3 different language families: Romance,
Uralic, and Indo-Aryan, and report significant aver-
age improvements across the board, with gains of
up to +5.5 spBLEU. We also find that CCS models
narrow the gap with or outperform massively mul-
tilingual models like mBART50 (Tang et al., 2021)

2`massive' in this work signifies the size of pretraining data,
while `large' refers to the large Transformer architecture (with
12 encoders and 12 decoders)

and mRASP2, despite using a tiny fraction of the
data and compute. Lastly, we conduct ablation stud-
ies to analyze some of the most important factors to
consider when synthesizing code-switched text for
multilingual NMT pretraining - which constitutes
another key, novel contribution of this work.
Our major contributions are, thus, as follows:
1. Firstly, we show that improving the quality of

synthetic code-switching can significantly en-
hance pretraining of multilingual NMT mod-
els across various high, medium, low-resource
and agglutinative language pairs (3.4.1).

2. Secondly, we demonstrate how massively mul-
tilingual NMTmodels can be harnessed to pre-
train smaller models that yield comparable or
better performance -- all while using a fraction
of the training data and compute (3.4.2).

3. Thirdly, we empirically analyze and discuss
some of the key factors that can enhance NMT
pretraining on code-switched data - including
context, many-to-many substitutions, code-
switching language count, and fine-tuning -
furthering scientific understanding (3.5)

4. Finally, for greater scalability of our approach,
we propose useful variations of CCS that
could alleviate potential resource dependen-
cies (3.4.3) and increase efficiency (8.1) -- all
while maintaining comparable performance.

2 Approach
2.1 Definitions
Given a set of N languages L = L1, L2 . . . LN ,
multilingual NMT is defined as the task of learning
a many-to-many mapping function θ from source
languageLa to target languageLb. Code-switching
refers to the phenomenon of shifting between two or
more languages in a sentence. This work explores
functions C that can synthetically code-switch cor-
pora for pretraining multilingual NMT models.

2.2 Aligned Augmentation
Aligned Augmentation constructs synthetically
code-switched datasets using multilingual lexicons.
These lexicons are generated by interlinking bilin-
gual MUSE dictionaries through a pivot language,
English. Given a sentence S, a code-switched sen-
tence CAA(S) is created by looking up word trans-
lations in the lexicon and, if available, substituting
with replacement ratio r. A bilingual lexicon is
used to code-switch parallel corpora and the multi-
lingual one for monolingual data, with r = 0.9.
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Figure 2: a) The pipeline of, and b) an example illustrating our approach. Alignments between punctuation marks
have been omitted for ease of illustration. Color coding signifies language in the code-switched sentence CCCS(S).
CCCS(S) is later fed to a Transformer and trained using Cross Entropy and Contrastive Loss (Section 2.4).

2.3 Contextual Code-Switching
Contextual Code-Switching (CCS) seeks to obtain
contextual, many-to-many word translations, later
used for code-switching parallel and monolingual
corpora. Given a source sentence S, we generate
the code-switched sentence CCCS(S) as follows:

1. Use a `base' NMT model M to translate S
in n languages (n ≥ 1) to obtain transla-
tions {T1 . . . Tn}. Here,MLi(S) = Ti where
MLi(S) is translation of S byM to Li

2. Use word alignerW to align S with transla-
tions {T1 . . . Tn} and obtain word alignments
{A1 . . . An}; whereW (S, Ti) = Ai

3. Generate the `noised' code-switched sentence
CCCS(S) using the CCS algorithm, with S,
{T1 . . . Tn} and {Ai . . . An} as inputs

The CCS algorithm works by generating ``con-
nected components" of aligned words. For a given
translation Ti and word alignment Ai, we iterate
over each source word wi in S, extract target words
from Ti which are aligned with wi (as specified by
Ai), and then iteratively extract the source words
aligned to these target words and vice versa, un-
til convergence. This yields all possible many-to-
many word alignment combinations, from which
code-switching is carried out through random, iter-
ative substitutions in S until the replacement ratio
is reached -- yielding the final sentence CCCS(S).
CCCS(S) could be code-switched in one (n = 1) or
more (n ≥ 1) languages, which we term Bilingual
(BLCS) and Multilingual Code-Switching (MLCS)
respectively. Although mRASP2 uses MLCS, we
show in Section 3.5 that BLCS mostly performs
better and is also more efficient. We illustrate our
approach in Figure 3 and provide an example where
the many-to-many substitution enables CCS to cor-
rectly translate the word moreover as en outre.
Finally, we provide pseudo-code (containing finer

technical details) in Algorithm 1 of Appendix A.2.

2.4 Training
To ensure a fair comparison, we replicate the train-
ing conditions proposed by Pan et al. (2021) while
training our AA and CCS models. Our training
dataset D consists of shuffled parallel and mono-
lingual sentences, noised using the respective code-
switching approaches. These code-switched sen-
tences are input to the encoder. Meanwhile, the tar-
get sentences are the reference sentences for parallel
corpora and the denoised (original) sentences for
monolingual corpora. A special token indicating
language ID is prepended to all source and target
sentences. Finally, the model is trained using a loss
function L that jointly optimizes Contrastive Loss
LCON and Cross Entropy Loss LCE as follows:

L = LCE + |s| ∗ LCON

where: LCE =
∑

x,y∈D
Pθ(y|x), and

LCON = −
∑

x,y∈D
log

esim
+(E(x),E(y))/τ

∑
a,b∈B e

sim−(E(x),E(b))/τ

Here, E denotes the average pooled encoder out-
put, `sim' computes positive and negative semantic
similarity for a pair of sentences, as denoted by
sim+ and sim− respectively. Temperature τ con-
trols the strength of penalties during contrastive
learning and is set to 0.1. B denotes the mini-batch
in datasetD that (x, y) belong to. As shown by Pan
et al. (2021), Contrastive Learning aligns semantic
representations of source and reference sentences
(x, y) while pushing away all `negative' targets --
approximated to other reference sentences in the
mini-batch for convenience. Finally, |s| is the aver-
age sentence length (token count) that balances the
token-level cross entropy loss and sentence-level
contrastive loss.
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3 Experiments

In this section, we seek to answer the following
Research Questions:
1. How does CCS perform against the SOTA

non-contextual algorithm, AA, and how does
this vary across language pairs? (3.4.1)

2. How do small CCS models compare against
SOTA massively multilingual models? (3.4.2)

3. How can CCS alleviate its potential resource
dependencies and scale beyond? (3.4.3)

4. What are the key factors to consider when
pretraining on code-switched text? (3.5)

As part of 3 Case Studies, we evaluate CCS on
3 different language families - namely, the high-
resourced Romance, the agglutinative Uralic, and
the low-resourced Indo-Aryan - in order to test its
efficacy under different scenarios. For each fam-
ily, we train from scratch small multilingual AA
and CCS baselines on its languages. Small models
have the benefit of minimizing negative interfer-
ence, while also satisfying our resource constraints.

3.1 Corpora

Tables 1a and 1b show the training corpora statistics
used per language family. We use this data for
training all AA and CCS models in this work. For
a fair comparison, only languages from each family
that are present in the training set of mRASP2 and
mBART50, and contain MUSE dictionaries are
chosen for training. Portuguese (Pt) is taken as the
zero-shot case, explored in Section 3.4.3, so no
parallel corpus is used. The datasets constituting
the training corpora are detailed in Section A.4.3.

For validation, we choose the last 1000 sentences
from the bitext for each language. For testing, we
use the latest available WMT test sets for each lan-
guage into and out of English. Table 2 specifies
these test sets, which are used for all experiments
in this work. Regarding metrics, following related
work, we use spBLEU-1013 (Goyal et al., 2022) to
evaluate all baselines in this work, but also provide
ChrF++ (Popović, 2017) and COMET (Rei et al.,
2020) results in Appendix A.5.1. We observe that
these metrics largely agree with each other.

3.2 Preprocessing (CCS)

In order to apply the CCS algorithm (Section 2.3),
we first generate `base' model translations and word
alignments using the fine-tuned mBART50 and

3referred to as spBLEU in this work for brevity

Romance Uralic Indo-Aryan

En 7.5M It 7.5M En 20M En 20M
Es 7.5M Ro 7.5M Fi 16M Hi 6.25M
Fr 7.5M Pt 7.5M Et 8.1M Gu 650K

(a) Monolingual data

Romance Uralic Indo-Aryan

En-Es 1.8M En-It 1.7M En-Fi 4M En-Hi 1.6M
En-Fr 1.8M En-Ro 364K En-Et 2.3M En-Gu 12K

(b) Parallel data

Table 1: Statistics of training corpora used in this work

awesome-align (Dou and Neubig, 2021) models
respectively. For the former, we use the corre-
sponding multilingual 1-n, n-1, and n-n models
(based on the language pair) and generate trans-
lations with a beam size of 5. For the latter, we
fine-tune awesome-align with a subset (300K par-
allel sentences) from our training corpus using the
Translation Language Modeling and Self-Training
objectives, as suggested by Dou and Neubig (2021).
Where possible, we attempt to have this subset uni-
formly distributed across all languages (except in
low-resourced Indo-Aryan, where 12K En-Gu and
288K En-Hi sentences are used). This setup of
`base' and word alignment models is used for train-
ing all CCS baselines in this work unless otherwise
specified (such as in Section 3.4.3).

3.3 Experimental Settings

We use the vanilla Transformer (Vaswani et al.,
2017) with 6 encoder and 6 decoder (6e6d) layers
to train all models in this work, except in Table
3 - where `large' CCS baselines with 12 of each
(12e12d) are used for fair comparison against mas-
sively multilingual models. We use a batch size of
4000 and a learning rate of 0.0001, with a polyno-
mial decay scheduler and 5000 warm-up updates.
We use an Adam optimizer with ε = 1e−6. For reg-
ularization, we use dropout of 0.1 and weight decay
of 0.001. We use automatic mixed precision and
an update frequency of 4 to speed up training. We
conduct validation every 1000 updates and use a pa-
tience value of 10 for early stopping. We train each
model only once since a random seed of 0 is set ev-
erywhere. For tokenization, we use sentencepiece
(Kudo and Richardson, 2018). Sentencepiece mod-
els using a unigram language model are trained on
the corresponding corpora with a vocabulary size
of 32000 and character coverage of 1.0. Following
Pan et al. (2021), we use a replacement ratio of 0.9
in AA models while for CCS, we use 0.55, 0.75,
and 0.1 for the Romance, Uralic and Indo-Aryan
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families after grid-search optimization. We detail
infrastructure and training costs in Section A.4.

3.4 Results

3.4.1 Comparison with AA

In this section, we compare AA baselines with
vanilla CCS models, when trained from scratch
under identical conditions. Since Pan et al. (2021)
already showed AA is the SOTA pretraining al-
gorithm, we do not recreate other denoising ap-
proaches here - however, we do compare against
two of the best-performing massive models from
related work, mBART50 and mRASP2, in Section
3.4.2. Table 2 shows results for all 3 Case Studies.

We note some interesting trends. Firstly, while
significant improvements are observed across all
language families, the margin of gain varies. The
highest gains are observed for the high-resourced
Romance and the agglutinative Uralic families --
while the latter benefits greatly from many-to-many
substitutions (Table 6), the former is quite note-
worthy given that for Romance languages, MUSE
lexicons are available in all directions (not just
English-centric) so AA models would be strongest
here. Meanwhile, the low-resourced Indo-Aryan
family, which is non-agglutinative and suffers from
low-quality `base' model translations (as observed
from inspection of mBART50 translations by native
speakers), the margin is relatively lower. Nonethe-
less, on average, CCS still outperforms the SOTA
approach AA and, as we shall see in Section 3.4.2,
even massive models like mBART50 and mRASP2
- despite using far lesser data overall. Moreover,
we show in Table 7 how techniques like BiLingual
Codeswitching (BLCS) can further boost CCS by
+1 to +2 spBLEU, making the total gap against AA
+2 to +3 spBLEU points for the Indo-Aryan family.

Secondly, we observe that CCS mostly performs
equally well for En-X and X-En pairs (with few
exceptions), but AA varies considerably and per-
forms better for the latter. This could be because
X-En is generally an easier translation task than En-
X, owing to the abundance of high-quality English
target-side data. CCS bridges the gap between these
two tasks and improves consistency - likely due
to the higher quality codeswitching systematically
benefiting cross-lingual representations overall.

Lastly, we note that the spBLEU gains in Table
2 translate to comparably large improvements in
ChrF++ and COMET (Table 10)

3.4.2 Comparison with Massively
Multilingual Models

We now proceed to compare our CCS systems
against two SOTA massively multilingual models
mBART50 (Tang et al., 2021), trained on 50 lan-
guages, and mRASP2 (Pan et al., 2021), trained
on 32 languages; in Table 3. Table 3a contains
ratios of the monolingual and parallel data used
by the massive models w.r.t. ours, per language
family, and can help in a meaningful interpretation
of the results in Table 3b. While we use signifi-
cantly lesser data for the Romance family, we at-
tempt to match the parallel data used by mRASP2
for the Uralic and Indo-Aryan families. This data is
comparable to or slightly more4 than that used for
fine-tuning mBART50. As baselines, we use the
AA and CCS models from Table 2 and their large
(12e12d) variants. We also include a fine-tuned (ft)
version of CCS (large) - created by pretraining on
the code-switched monolingual data but leaving the
parallel data unnoised for subsequent multilingual
fine-tuning. We explore the impact of fine-tuning
in greater detail in Section 3.5.

However, considering mBART50 and mRASP2
are massive models designed to scale to a much
larger set of languages, we emphasize that Table 3
is not intended to be a head-to-head comparison;
rather it is meant to position our work against the
wider, popular SOTA. Our motive here is two-fold:
a) to provide a way to harness massive models for
pretraining and perform comparably or better, and
b) to estimate the potential impact of scaling up
CCS models - thus suggesting a worthy new di-
rection of future exploration for pretraining better
massive multilingual models. The first purpose
could be especially useful for academics with fewer
resources, while the second is likely better suited
to groups capable of training massive models, eg.
large industrial labs.

We achieve the first purpose by showing that
the CCS (large) model performs comparably to
mBART50 despite using substantially lesser data
(such as in the Romance family), though mRASP2
retains a larger gap. But, when comparable data is
used, as in the other families, CCS (large) models
consistently outperform massive models by signif-
icant margins, despite using lesser monolingual
data. The only exception is X-En where mBART50

4Relatively speaking here. Note that the overall data gap is
still heavily biased towards mBART50, with up to 90x more
monolingual data than our CCS models
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En-Es En-Fr En-It En-Ro Avg ∆wmt13 wmt14 wmt09 wmt16
→ ← → ← → ← → ← → ← → ←

AA 25.0 26.2 28.8 28.7 23.8 26.8 18.7 24.1 24.1 26.5 - -
CCS 30.7 29.1 33.1 30.9 29.1 29.0 25.4 30.4 29.6 29.9 +5.5 +3.4

(a) Case Study 1: Romance languages

En-Fi En-Et Avg ∆wmt19 wmt18
→ ← → ← → ← → ←

AA 15.6 19.3 20.5 23.3 18.05 21.3 - -
CCS 21.2 21.2 25.6 25.7 23.4 23.45 +5.35 +2.15

(b) Case Study 2: Uralic languages

En-Hi En-Gu Avg ∆wmt19 wmt18
→ ← → ← → ← → ←

AA 28.4 24.6 10.2 11.5 19.3 18.05 - -
CCS 28.0 24.0 12.9 12.9 20.45 18.45 +1.15 +0.4

(c) Case Study 3: Indo-Aryan languages

Table 2: Pair-wise spBLEU results for each conducted case study. → stands for En-X while← means X-En. `Avg'
indicates average spBLEU, and ∆ signifies spBLEU improvements over AA.

Romance Uralic Indo-Aryan

Monolingual data ratios
mBART50 (ft) x91 x68 x90
mRASP2 x7 x4 x4
AA/CCS x1 x1 x1

Parallel data ratios
mBART50 (ft) x9 x0.5 x0.8
mRASP2 x8 x1 x1
AA/CCS x1 x1 x1

(a) Data Ratios

Romance Uralic Indo-Aryan
En-X X - En En - X X-En En-X X-En

Massively Multilingual Models
mBART50 (large, ft) 32.25 35.63 23.10 29.35 13.45 23.20
mRASP2 (large) 36.00 37.13 25.20 27.00 5.75 15.10

Our Models
AA 24.08 26.45 18.05 21.30 19.30 18.05
AA (large) 29.18 29.53 21.25 23.55 20.20 18.65

CCS 29.58 29.85 23.40 23.45 20.45 18.45
CCS (large) 31.30 31.10 27.60 27.25 23.30 22.00
CCS (large, ft) 31.30 31.13 27.70 28.05 25.30 23.50

(b) Results (large = 12e12d, ft = fine-tuned)

Table 3: Data and performance comparison with massively multilingual models. mBART50 (Tang et al., 2021) and
mRASP2 (Pan et al., 2021) were taken and evaluated on the given pairs. Our Models were trained and tested only on
languages from specific families (4 for Romance, 2 for Uralic and Indo-Aryan) on a much smaller dataset (Table 3a).

performs better, likely due to the wide gap in En-
glish monolingual and target-side data. However,
the fine-tuned CCS model does close the gap with
fine-tuned mBART50, performing comparably or
better. We address the second purpose by noting
that except for the low-resourced Indo-Aryan case,
mRASP2 - which is essentially a scaled-up version
of AA (large) trained on more languages - routinely
improves over the latter. While `forgetting' low-
resource languages can lead to some performance
decline, performance, in general, can be observed
to improve on scaling up - likely boosted by im-
proved cross-lingual transfer. Now, when using
comparable data, CCS (large) beats both AA (large)
and mRASP2. This suggests that scaling up CCS
to train a massive model like mRASP2 could rea-
sonably be expected to yield improvements over
the latter. We leave this exploration to future work.

Given CCS leverages massive models to pre-
train small, high-performing ones, we also explore
another interesting auxiliary application of CCS,

Knowledge Distillation (KD), in Section A.5.2, and
show how it outperforms traditional KD baselines.
3.4.3 Alleviating Resource Dependencies

Romance Uralic Indo-Aryan
En-X X-En En-X X-En En-X X-En

CCS (base=ft. mBART50) 29.58 29.85 23.4 23.45 20.45 18.45
CCS (base=from-scratch) 30.05 29.40 23.1 22.95 20.25 19.55

Table 4: CCS with different `base' model choices. A
model trained `from-scratch' can be used as a substitute
for fine-tuned mBART50 with comparable performance.

Scaling beyond mBART50 While the above ex-
periments use mBART50 as the `base' model, an
important question to consider is how to scale to
languages beyond the ones included in the same (or,
more challengingly, any available massive model).
We conduct an alternative set of experiments, where
we train up small (6e6d) Transformer multilingual
models ``from-scratch" on our parallel data (Table
1b) and show in Table 4 that CCS baselines using
these as `base' models consistently perform compa-
rably to those using mBART50 as the `base'. This
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suggests that although massive models are readily
available and convenient to use, CCS performance
is not dependent on their existence, and small mod-
els trained from scratch can be a good substitute.

Zero-Shot Translation: A follow-up question
to the previous solution of training models from
scratch on parallel data is the zero-shot scenario: i.e.
what happens if there is no parallel data available,
such as for low-resource languages or non-English
centric pairs? Table 5 addresses this scenario. Start-
ing from a random `from-scratch' baseline trained
on the Romance corpus in Table 1b (i.e. no En-
Pt data provided), we observe that CCS baselines
using the former as a `base' model introduce large
gains over the same and over AA. The latter is a
particularly strong baseline since it uses ground-
truth MUSE lexicons from Pt to every other Ro-
mance language for code-switching. However, the
enhanced multilingual code-switching of CCS can
potentially achieve superior alignment of the Pt vo-
cabulary with that of the other languages -- making
CCS a better alternative than AA even if parallel
data is unavailable for a given pair.

En-Pt Pt-En

From-scratch 1.30 3.40
AA 3.20 10.30

CCS (base=from-scratch) 4.80 11.00

Table 5: Zero-shot Translation

3.5 Analysis
We now empirically discuss some key factors that
enhance code-switched pretraining and hope these
would serve as useful pointers for future work.
Impact of many-to-many substitutions Table 6
studies the impact of many-to-many substitutions
through an ablation study, comparing against a CCS
baseline where only 1-1 aligned words are chosen
for substitution. We note a consistent decline in
performance across all language pairs, with the
largest being for Uralic (about 1.5-2 spBLEU points
on average). This is likely due to agglutination in
the Uralic family. For instance, 1 Finnish word
jauhelihakeitto aligns to 3 English words: minced
meat soup. This is correlated statistically - the

Romance Uralic Indo-Aryan
En-X X-En En-X X-En X-En En-X

CCS (1-1) 28.53 28.98 21.50 21.95 18.95 18.00
CCS 29.58 29.85 23.40 23.45 20.45 18.45

Table 6: Ablation study investigating the role of many-
to-many substitutions

average word count per sentence in our Fi corpus
is 10.66 while for En it is almost double (20.2).
Many-to-many substitutions are, thus, crucial for
code-switching such agglutinative languages.

Impact of contextual translations Through an
example lifted from the Romance corpus, Figure
3 shows how CCS improves pretraining data qual-
ity through contextual substitutions. While man
means humano (human) in certain contexts, the
French word homme is correct here. A similar ar-
gument holds for charge and gardes (garde could
mean either guard or custody, based on context).

Figure 3: CCS produces more contextual substitutions.
In this example taken from the Romance corpus, the
sentences codeswitch between En, It, Fr, Es, Pt, and Ro

Impact of code-switching language count Pan
et al. (2021) use Multilingual Code-Switching
(MLCS)5 to noise sentences, meaning a sentence
could be code-switched in multiple languages.
While we reproduce this in vanilla CCS and AA
baselines, in Table 7 we explore Bilingual Code-
Switching (BLCS), where 1 sentence switches be-
tween only 2 languages. Intuitively, this could be
easier for the model to denoise. We observe our
intuitions are mostly correct -- except for Romance,
BLCS consistently improves performance. For the
Romance languages, a likely explanation is that
these have high lexical similarity (about 80-90%
(Eberhard et al., 2022)) and more shared vocabu-
lary, so the denoising task is not as complex and
MLCS encourages greater transfer. In contrast, the
lexical similarity for Uralic languages is lower than
50% (Jorgensen, 2020), while Hindi and Gujarati

5While this term is coined for ease-of-use in this work, it
is a slight misnomer, and we discuss this in Appendix A.3
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Romance Uralic Indo-Aryan
En-X X-En En-X X-En En-X X-En

CCS (MLCS) 29.6 29.9 23.4 23.45 20.45 18.45
CCS (BLCS) 28.2 28.58 23.9 23.7 21.45 20.65

Table 7: Comparison between MultiLingual (MLCS)
and BiLingual Code-Switching (BLCS)

use different scripts -- leading to reduced vocabu-
lary sharing and increased complexity. This might
also explain why BLCS gives the Indo-Aryan fam-
ily the highest gains, followed by Uralic. We note
BLCS is also more time-efficient in Section 8.1,
so we suggest future work to use the same when
code-switching lexically dissimilar languages.

Impact of fine-tuning While the default variant
of CCS follows Pan et al. (2021) and mixes parallel
and monolingual code-switched data for pretrain-
ing, we explore if pretraining on only the latter and
leaving the parallel data `unnoised' for fine-tuning,
might be a better alternative (as is common in other
related works). Table 8 confirms this enhances
performance significantly, likely due to monolin-
gual data being abundant enough for achieving the
cross-lingual transfer desired during pretraining,
and fine-tuning more closely resembling the final
translation task. Secondly, we note that Multilin-
gual Fine-Tuning (MLFT) beats Bilingual Fine-
Tuning (BLFT) in code-switched pretraining too,
complementing the findings of Tang et al. (2021)
in masked pretraining.

Romance Uralic Indo-Aryan
En-X X-En En-X X-En X-En En-X

CCS 29.58 29.85 23.40 23.45 20.45 18.45

CCS + BLFT 28.65 28.43 23.55 23.80 16.35 14.50
CCS + MLFT 30.00 29.68 25.20 25.85 23.55 22.35

Table 8: Improvements yielded by fine-tuning

4 Related Work
Denoising-based pretraining: Various noising
mechanisms have been proposed for denoising-
based pretraining of NMT models in recent times.
Inspired by BERT (Devlin et al., 2019), earlier mod-
els including MASS (Song et al., 2019) and BART
(Lewis et al., 2020) were pretrained on masked
monolingual corpora, followed by fine-tuning on
large parallel datasets (Tang et al., 2021). In an ef-
fort to shift the denoising objective from language
modeling to translation, subsequent works adopted
code-switched noising. ALM (Yang et al., 2020a)
introduced this concept by using statistical phrase

tables to code-switch parallel datasets and train-
ing bilingual MT models that showed small im-
provements for the high-resourced, linguistically
similar En-De and De-En pairs. Next, CSP (Yang
et al., 2020b) proposed using probabilistic lexicons
for code-switching in order to train bilingual mod-
els on both monolingual and parallel data. RAS
(Lin et al., 2020) extended this trend to multilin-
gual NMT, utilizingMUSE lexicons to code-switch
and pretrain the massive NMT model mRASP on
parallel corpora from 32 languages. Its succes-
sor, Aligned Augmentation (Pan et al., 2021) used
a `multilingual' lexicon (formed by heuristically
chaining bilingual MUSE lexicons) to code-switch
both monolingual and parallel corpora and pre-
trained the mRASP2 model on these using con-
trastive learning. They reported SOTA scores, beat-
ing mRASP and many other strong baselines across
a variety of language pairs and tasks. CeMAT (Li
et al., 2022b) showed that BART-like masking can
complement lexicon-based code-switching.

Different from all these works that only attempt
one-to-one, non-contextual code-switching, the key
novel contribution of our work is to carefully ex-
plore and analyze the performance gains offered
by enhanced code-switching that factors context,
many-to-many substitutions, code-switching lan-
guage count, etc. We show how modern NMT
models can be utilized to achieve these goals and
achieve comparable or better performance while
using a tiny fraction of the data and compute.

5 Conclusion

We explore a noising mechanism called Contex-
tual Code-Switching (CCS) that extracts contextual,
many-to-many word translations for code-switched
pretraining in multilingual NMT. Our experiments,
conducted on 3 different language families, show
that CCS consistently beats the previous SOTA ap-
proach, Aligned Augmentation and also performs
comparably or better thanmBART50 andmRASP2,
based on the quantity of training data provided.
We analyse the impact of some major factors re-
sponsible for enhancing code-switched pretrain-
ing through examples and ablation studies. We
hope the findings of this work will be useful to re-
searchers studying NMT pretraining, as well as to
academic and industry peers who may be looking
for a way to fruitfully leverage massive NMT mod-
els, or conversely, to jump-start the training of even
larger and better-performing ones.
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7 Ethical Considerations
There has been significant concern recently over
massive multilingual NLP models learning racial
and gender biases during pretraining (Tan and Celis,
2019; Bender et al., 2021). A technique like CCS
that leverages massive NMTmodels could be at risk
of propagating any such biases present in the `base'
model. While such a limitation is not unique to
CCS and could apply to any technique harnessing
large models (such as Knowledge Distillation ap-
proaches), it is an important ethical concern since
model biases that are propagated this way could be
harder to detect and control - as compared to data
biases. In such a situation, it could be worthwhile
to invest effort into curating more `unbiased' data,
and then using models trained from scratch on this
data as the base models for CCS (see Table 4) - giv-
ing a greater degree of control than massive models
like mBART50 but potentially yielding comparable
performance.

8 Limitations
We now discuss some limitations of our work and
suggest some ways to mitigate them.

8.1 Cost
One of the advantages of AA is that it is relatively
inexpensive to code-switch using lexicons. CCS,
on the other hand, requires translating training data
into multiple different languages followed by com-
puting word alignments, which can be very expen-
sive, particularly on scaling up. So, we suggest

6www.csd3.cam.ac.uk
7https://www.baskerville.ac.uk/

Algorithm Time

CCS-MLCS (base=mBART50) 8h 37m
CCS-BLCS (base=mBART50) 4h 30m

CCS-MLCS (base=from-scratch) 4h 42m
CCS-BLCS (base=from-scratch) 2h 37m

Table 9: Total Preprocessing (base translation+word
alignment+CCS) time costs for En-Fi 4M corpus, while
using 1 GPU node of 3 A100 GPUs

some ways of reducing the cost, while potentially
maintaining comparable performance. One effec-
tive way would be to use the BLCS variant, since
it only needs one translation and one set of word
alignments per sentence. Another way to reduce
costs is to use smaller (6e6d) models trained from-
scratch as a faster substitute for larger models like
mBART50 (Table 4). The effectiveness of these
techniques is shown in Table 9, which depicts the
total preprocessing costs (for the entire pipeline in
Figure 3) for code-switching a 4M En-Fi parallel
corpus on a single GPU node (with 3 A100 GPUs).
It is worth remembering that the word alignment
costs are minimal here (about 30 minutes), so the
costs are primarily due to generating translations
(with a beam size of 5). We, thus, encourage using
standard techniques to improve MT efficiency, like
using lower beam size, shortlisting, quantization
etc. to further reduce costs.

We will also release the code-switched corpora
constructed in this research as part of the camera-
ready version of this paper, to ensure greater reuse
of the expenditure in our time and resources.

8.2 Resource Dependencies
The CCS models in our work function using
mBART50 as the `base' model and the word align-
ment model, awesome-align. Greater resource de-
pendencies are, thus, another limitation of CCS
and it is important to think of viable alternatives in
case of non-availability of these. Awesome-align
uses representations from mBERT (Devlin et al.,
2019) so, it could scale to the languages the latter
is pretrained on. For other languages, such as very
low-resource pairs, it could be worth exploring low-
resource word aligners (Asgari et al., 2020; Poerner
et al., 2018) - though we leave the exploration of
the same as part of future work. As for the `base'
model, we could use models trained from scratch
as a viable alternative (see Table 4) and potentially
obtain comparable performance. In case of non-
availability of parallel data, this approach can scale
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well to zero-shot translation when parallel corpora
from related language pairs are available. (Table 5)

8.3 Low-Resource Scenarios
As we saw in Table 10, CCS appears to yield
relatively lower gains for low-resource languages.
While this does beat many SOTA models includ-
ing mBART50 and mRASP2, further research is
needed to adapt CCS better for data-scarce and low-
resource scenarios in general. Based on related
work, one useful solution could be to leverage data
from high-resourced languages and families (eg.
mixing Romance language data with Indo-Aryan
languages) in a more multilingual and scaled-up
iteration of our work. Another way would be to
filter out low-quality translations from the `base'
model using its confidence scores, and only use
the high-quality ones for code-switching. While
we are unable to explore these within the scope of
this work, they could make for interesting future
directions.
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A Appendix

A.1 Examining the Code-Switching Errors in
Figure 1

In this subsection, we dissect Figure 1 and detail
the mentioned errors, along with their causes8. Pre-
training a multilingual model like mRASP2 that
uses non-English corpora requires code-switching
in non English-centric directions as well. Since the
MUSE dictionaries (like most lexicons) are largely
available in English-centric directions, Pan et al.
(2021) attempt to generate a multilingual dictio-
nary by recursively linking the bilingual MUSE
lexicons through a pivot language (English). In
theory, this would allow dictionary entries from
language X to language Y using only X-En and
En-Y dictionaries. However, such recursive linking
would propagate any existing quality issues even
further. We illustrate this point using examples
from Figure 1. The Estonian word annetada and

8We did not include this in the main work since this is
auxilliary to our paper's focus on contextual and many-to-many
substitutions

the Hebrew word הירוטיו are used as substitutions
for don’t and win respectively -- but they actually
mean donate andVittoria (a city in Spain), both of
which have relatively less edit distance with don’t
and victory. A closer look at the Estonian9 and
the Hebrew 10 MUSE dictionaries, as well as the
multilingual dictionary11 constructed by Pan et al.
(2021) confirms that this has been caused by the
process of linking noisy bilingual dictionaries. The
latter error, for instance, was caused by linking win
to victoria (Portuguese), which was then aligned
with Vittoria (Italian) and then Vittoria (English)
- completely altering the meaning. A similar ex-
planation can be drawn for how the English word
some is incorrectly substituted with the English
word sometimes (Figure 1b), despite there being
no English-English dictionary.

A.2 The CCS algorithm
The pseudo-code of the CCS algorithm is shown
in Algorithm 1, along with finer details we were
unable to describe previously.

A.3 A discussion on the MLCS terminology
Multilingual Code-Switching (MLCS), as de-
scribed in Section 2, is a misnomer. In the work
of Pan et al. (2021), code-switching is carried out
using a bilingual (English-centric) lexicon for the
parallel corpora, and a multilingual dictionary for
the monolingual corpora. Thus, they use MLCS in
a monolingual corpus with the multilingual dictio-
nary, but only Bilingual Code-Switching (BLCS)
in a parallel corpus. They do not explain the reason
for this choice. In our work, we attempt to shed
some light on this and explore the efficacy of BLCS,
which is far more efficient for CCS (refer Section
8.1) and also performs comparably or better (Tables
2 and 3). We use the term MLCS in our AA and
CCS baselines, therefore, to contrast with BLCS
and for ease of use. It is worth noting, however, that
the parallel corpus is still bilingually code-switched
in the MLCS baselines, following Pan et al. (2021).

A.4 Experimental Settings
A.4.1 Computational Infrastructure
Due to expiry and low availability of GPU hours,
we are forced to conduct our experiments on 3 dif-

9https://dl.fbaipublicfiles.com/arrival/dictionaries/et-en.txt
10https://dl.fbaipublicfiles.com/arrival/dictionaries/he-

en.txt
11https://lf3-nlp-opensource.bytetos.com/obj/nlp-

opensource/acl2021/mrasp2/synonym_dict_raw_dep3
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Algorithm 1: Contextual Code-switching of a sentence using the CCS algorithm
Input : Sentence S; translations T1, T2 . . . Tn; alignments A1, A2 . . . An
Output : Code-switched sentence CCCS(S)
GenerateCCSCandidates (S, T,A)

V isited← ∅ // Keeps track of words that have already been aligned
Candidates← ∅
foreach word wi ∈ S do

if wi ∈ V isited then
continue

end
SrcWords, TgtWords← {wi},∅
PrevSrcWords, PrevTgtWords← ∅,∅
/* Generates many-to-many connected components of words */
while true do

/* Adds target words aligned to source words */
TgtWords← TgtWords ∪A[wj∀wj ∈ SrcWords]
if PrevSrcWords == SrcWords or PrevTgtWords == TgtWords then

continue // Convergence condition
end
PrevSrcWords, PrevTgtWords← SrcWords, TgtWords
/* Adds source words aligned to target words */
SrcWords← SrcWords ∪A[wj∀wj ∈ TgtWords]

end
V isited← V isited+ {wj∀wj ∈ SrcWords}
Candidates← Candidates+ (SrcWords, TgtWords)

end
return Candidates

CCSCandidates← GenerateCCSCandidates(S, Ti, Ai)∀(Ti, Ai)
CCCS(S), Swaps←””,∅
V isited← ∅ // Keeps track of words that have already been code-switched
while |V isited|/|S| < ReplacementRatio do

/* Randomly choose word(s) for substitution */
SrcWords, TgtWords = Random.Choice(CCSCandidates)
if ∃wi ∈ SrcWords{wi ∈ V isited} then

continue
end
Swaps← Swaps+ (SrcWords, TgtWords)
V isited← V isited+ {wj∀wj ∈ SrcWords}

end
CCCS(S) = S.Swap(SrcWords, TgtWords)∀(SrcWords, TgtWords) ∈ Swaps
return CCCS(S)
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ferent GPU clusters. To maintain comparability,
however, we ensure that we use the same cluster
for each case study - thus the training and evalua-
tion of all baselines (be it CCS or AA), including
the evaluation of the massive models, for a partic-
ular language family is always conducted on the
same cluster. Additionally, we also ensure that the
same parameters are used across all machines, and
libraries with the same versions are installed.

Specifically, for the Romance family Case Study
we use Skylake CPU nodes with the maximum
memory of 300GB and Ampere GPU nodes with
1000GB RAM and 4 Nvidia A100 GPUs per node,
running CentOS8. For the Uralic family, we use
nodes with 2 AMD EPYC 7742 (Rome) CPUs and
512GB RAM, while for GPUs we use 3 Nvidia
A100 GPUs with 40 GB RAM. For the Indo-Aryan
family, we use Intel®Xeon® Platinum 8360YCPU
nodes with 512 GB RAM and GPU nodes with 4x
NVIDIA A100 40GB GPUs.

A.4.2 Computational costs
Total preprocessing costs for the En-Fi 4M pair are
given in Section 8.1 and, based on the technique
used, can be roughly interpolated given our train-
ing corpora size (Table 1) to calculate total GPU
hours. In practice, the real-world time was much
lesser since we: a) used GPU clusters (as men-
tioned above) to simultaneously process multiple
language pairs by submitting multiple jobs , and
b) divided large corpora into smaller halves that
were simultaneously preprocessed. For example,
the 20M English monolingual corpus used in the
Uralic family (Table ??) was divided into 2 halves
of 10M that were submitted as part of 2 separate
jobs.

For training, we only used 1 GPU node (1 Slurm
job) per language family with 3 or 4 GPUs, depend-
ing on the cluster. Training costs for the Romance
model took about 50 hours till convergence, 32
hours for Uralic and 61 hours for the Indo-Aryan
models. The discrepancy in time is likely due to the
fact that each of these experiments had to be run
on separate clusters (as mentioned in A.4.1) with
different architectures and different batch sizes, es-
pecially given each model took very similar number
of steps until convergence (270K-290K updates in
total).

A.4.3 Datasets used
All the datasets we use are publicly available, dis-
tributed freely with the CC0 license. For all case

studies, News Crawl (Akhbardeh et al., 2021) is
chosen to make up the monolingual corpus. For
parallel corpora, we use different sources for each
language family. For the Romance family, we use
the Europarl corpus (Koehn, 2005) as our parallel
corpus. For Uralic, we use theWMT (Barrault et al.,
2019), EUBookshop (Skadiņš et al., 2014) and the
ELITR-ECA (Williams and Haddow, 2021) cor-
pora. Finally, for Indo-Aryan, we use the Samanan-
tar (Ramesh et al., 2022) corpus.

Except for Samanatar, all of these datasets be-
long to the news domain. While Samantar is a
collection of datasets from various domains, given
the test set belongs to the news domain, we sample
news datasets from this corpus for inclusion in our
training data.

A.5 Additional Results
A.5.1 Results on other metrics
We summarize the results of our key models in
Table 10, using spBLEU, ChrF++ and COMET
metrics. While we were unable to include the same
in our main work, we observe that the metrics agree
with each by and large and detail it in this section
for completeness.

A.5.2 CCS for Knowledge Distillation
While the results in the main work mostly focused
on the efficacy of CCS in its primary role as a
pretraining mechanism, Table 11 indicates how
it could also be effective as a better Knowledge
Distillation (KD) technique, with minimal compu-
tational overload. We compare against the vanilla
KD baseline (Hinton et al., 2015) that trains a small
(6e6d) student model to mimic the teacher model
(mBART50). CCS models of the same size rou-
tinely outperform KD, with the sole exception of
X-En (Romance). It is interesting to note that it
takes similar computational resources to prepro-
cess and train CCS (BLCS), as it does for the KD
baseline: given a translation generated by a teacher
model, it appears it is better to use the translation to
noise (code-switch) the source sentence and train
it using the CCS mechanism, as opposed to using
it as a target. The only overhead for CCS would be
that of extracting word alignments, and in practice
we find that it is relatively small - about 1/16th the
time taken for translation generation.
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En-X X-En
spBLEU ChrF++ COMET spBLEU ChrF++ COMET

Massively Multilingual Models
mBART50 (large, ft) 32.25 54.60 0.59 35.63 57.43 0.55
mRASP2 (large) 36.00 57.18 0.69 37.13 58.50 0.59

Language family-specific baselines
AA (MLCS) 24.08 46.75 0.13 26.45 51.28 0.20
AA (MLCS) (large) 29.18 51.65 0.39 29.53 53.38 0.35

CCS (BLCS) 28.20 51.83 0.38 28.58 53.13 0.31
CCS (MLCS) 29.58 52.40 0.44 29.85 53.78 0.36
CCS (MLCS, large) 31.30 53.93 0.51 31.10 54.88 0.43
CCS (MLCS, large, ft) 31.30 53.90 0.51 31.13 54.53 0.43

(a) Case Study 1: Romance languages

En-X X-En
spBLEU ChrF++ COMET spBLEU ChrF++ COMET

Massively Multilingual Models
mBART50 (large, ft) 23.10 46.95 0.72 29.35 52.35 0.52
mRASP2 (large) 25.20 48.55 0.75 27.00 50.75 0.47

Language family-specific baselines
AA (MLCS) 18.05 41.30 0.19 21.30 46.00 0.20
AA (MLCS) (large) 21.25 44.45 0.43 23.55 47.95 0.32

CCS (BLCS) 23.85 46.45 0.64 23.70 47.70 0.35
CCS (MLCS) 23.40 46.05 0.61 23.45 47.45 0.34
CCS (MLCS, large) 27.60 49.35 0.80 27.25 50.65 0.48
CCS (MLCS, large, ft) 27.70 49.70 0.77 28.05 51.70 0.51

(b) Case Study 2: Uralic languages

En-X X-En
spBLEU ChrF++ COMET spBLEU ChrF++ COMET

Massively Multilingual Models
mBART50 (large, ft) 13.45 25.00 -0.17 23.20 47.85 0.43
mRASP2 (large) 5.75 22.90 -0.99 15.10 35.60 -0.15

Language family-specific baselines
AA (MLCS) 19.30 36.50 0.18 18.05 42.30 0.19
AA (MLCS) (large) 20.20 37.10 0.23 18.65 41.90 0.14

CCS (BLCS) 21.45 38.55 0.27 20.65 44.35 0.24
CCS (MLCS) 20.45 37.05 0.23 18.45 41.55 0.18
CCS (MLCS, large) 23.30 40.20 0.40 22.00 45.90 0.31
CCS (MLCS, large, ft) 25.30 42.00 0.54 23.50 47.90 0.38

(c) Case Study 3: Indo-Aryan languages

Table 10: Average spBLEU, ChrF++ andCOMET scores
for all 3 case studies

Romance Uralic Indo-Aryan
En-X X-En En-X X-En X-En En-X

mBART50 (ft) 32.25 35.63 23.10 29.35 13.45 23.20

KD 28.90 30.65 18.05 20.30 5.05 16.80
CCS (MLCS) 29.58 29.85 23.40 23.45 20.45 18.45
CCS (BLCS) 28.20 28.58 23.85 23.70 21.45 20.65

Table 11: CCS v/s Knowledge Distillation (KD)
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Abstract

Dialogue State Tracking (DST), a crucial com-
ponent of task-oriented dialogue (ToD) sys-
tems, keeps track of all important information
pertaining to dialogue history: filling slots with
the most probable values throughout the con-
versation. Existing methods generally rely on
a predefined set of values and struggle to gen-
eralise to previously unseen slots in new do-
mains. To overcome these challenges, we pro-
pose a domain-agnostic extractive question an-
swering (QA) approach with shared weights
across domains. To disentangle the complex
domain information in ToDs, we train our DST
with a novel domain filtering strategy by ex-
cluding out-of-domain question samples. With
an independent classifier that predicts the pres-
ence of multiple domains given the context, our
model tackles DST by extracting spans in ac-
tive domains. Empirical results demonstrate
that our model can efficiently leverage domain-
agnostic QA datasets by two-stage fine-tuning
while being both domain-scalable and open-
vocabulary in DST. It shows strong transferabil-
ity by achieving zero-shot domain-adaptation
results on MultiWOZ 2.1 with an average JGA
of 36.7%. It further achieves cross-lingual
transfer with state-of-the-art zero-shot results,
66.2% JGA from English to German and 75.7%
JGA from English to Italian on WOZ 2.0.

1 Introduction

Task-oriented dialogue systems are designed to
provide natural conversation with users and assist
them in achieving daily goals. With the growth of
task-oriented dialogue systems, there is an increas-
ing interest in supporting dialogues among many
domains and languages to fit the users’ demands.
However, either modelling a multi-domain or multi-
lingual dialogue system requires substantial data
collected in real scenarios. This data acquisition

∗ Work done while at UCL.
Code is available at https://github.com/

hanzhou032/xqa-dst

procedure is extremely expensive, and it motivates
us to resolve this challenge by leveraging dialogue
data in rich-resource domains and languages via
zero-shot transfer learning.

Dialogue State Tracking (DST) is crucial for
accurately extracting user intents and goals over
multiple turns within the dialogue. Based on
the tracked dialogue states, the dialogue manager
makes corresponding next actions with back-end
results, where the accuracy of the DST becomes
absolutely vital. With a fully predefined ontology,
traditional approaches tackle the DST as a classifi-
cation problem by enumerating every combination
of slot-value pairs (Mrkšić et al., 2017; Zhong et al.,
2018). Those approaches are strongly limited by
their scalability, as some slots (e.g. name) have an
unbounded set of slot values. Secondly, they are
generally not flexible to unseen slot-value pairs,
making them more difficult to adapt to zero-shot
transfer learning. Moreover, a completely prede-
fined ontology is hard to acquire and not scalable
for ToD systems in real applications.

To overcome those challenges, we take inspira-
tion from Gao et al. (2020) and investigate how
DST can be tackled by extracting slot values from
user utterances directly. In this paper, we propose
a domain-independent and transferable dialogue
state tracker within an extractive question answer-
ing architecture. Our model is responsible for fill-
ing the slot value by recognising specially designed
domain-slot prompts by span prediction, which ex-
tracts answers from the input utterance by predict-
ing the token positions. In addition, we introduce a
novel domain filtering strategy in training and an
independent multi-domain classifier in evaluation
such that we only ask slot questions that appear
in predicted domains. For example, given hotel
as the current turn domain, all questions under the
train domain are filtered out as there is no overlap
between them. This simple but effective filtering
strategy significantly reduces the noise from unnec-
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essary questions in both the training and evaluation
phases. Furthermore, we study unexplored impacts
of two-stage fine-tuning on DST transfer learning
with mono-lingual and multi-lingual question an-
swering datasets.

We call the final model XQA-DST:
XLM-R based Dialogue State Tracker in
Question Answering. Our main contributions are
summarised below:

• We introduce XQA-DST, a novel domain-
independent and transferable dialogue state
tracker inspired by extractive question answer-
ing models. The model is able to recognise
slot values by reformulating the task as an
answer to a designed domain-slot question
prompt by span prediction, which extracts an-
swers from the input utterance by predicting
the token positions.

• We enable XQA-DST on question answer-
ing by zero-shot domain adaptation scenarios,
showing its transferability capabilities. The fi-
nal model shows state-of-the-art domain adap-
tation performance with an average JGA of
36.7% for five domains on MultiWOZ 2.1.

• We show that our model is capable of both
domain adaptation and cross-lingual transfer
learning. We demonstrate its cross-lingual
transferability by achieving state-of-the-art
zero-shot results, 66.2% JGA from English
to German and 75.7% JGA from English to
Italian on WOZ 2.0.

2 Related Work

Traditional dialogue state tracking approaches
mostly rely on a predefined ontology. Lee et al.
(2019) implement a slot-utterance matching mod-
ule that computes the similarity between the utter-
ance and each slot-value pair. Lai et al. (2020) use
BERT (Devlin et al., 2019) as the context encoder
and generate the relevance score for every pair. Re-
cently, Lin et al. (2021a) and Feng et al. (2022)
include schema graph networks to utilise inter-slot
relationships. However, their scalability is strongly
limited by the availability of the predefined ontol-
ogy and schema graphs.

To improve efficiency, span prediction methods
have been proposed to tackle DST so that the slot
can be filled by directly addressing values in the
context. Heck et al. (2020) implement copy mech-
anisms, but they use independent span projection

layers for each slot, which make their model inca-
pable of inference in new domains. Zhou and Small
(2019) and Gao et al. (2020) formulate the DST
as a question answering problem, and they prepare
questions for asking the model to answer values for
every slot. We differentiate from these approaches
by disentangling the complex domain information
from domain filtering and domain classification
strategies.

Generative approaches (Wu et al., 2019; Kumar
et al., 2020) provide an alternative way to handle
DST. Li et al. (2021) introduce a generative ques-
tion answering approach, GPT2-m, that leverages
an autoregressive language model. Similarly, Lin
et al. (2021b,c) propose T5DST, and they study the
impacts of slot descriptions and cross-task transfer
on domain adaptation. Lee et al. (2021) reformu-
late DST as prompting states via schema descrip-
tions from language models. Recent end-to-end
dialogue models (Peng et al., 2021; Su et al., 2022)
also show strong supervised performance on DST.

Cross-lingual transfer learning for DST aims
to leverage the labelled data in rich-resource lan-
guages and transfer learned knowledge to low-
resource languages. Chen et al. (2018) study
this problem and propose the XL-NBT teacher-
student framework. Liu et al. (2020) introduce
an Attention-informed Mixed-Language Training
(AMLT) method to build code-switching training
sentences. They study the effectiveness of multi-
lingual pretrained language models, XLM (Con-
neau and Lample, 2019) and mBERT (Devlin et al.,
2019), with their AMLT approach. Qin et al. (2020)
propose a data augmentation framework, which en-
courages cross-lingual alignment by fine-tuning
mBERT on generated code-switching data. Moghe
et al. (2021) introduce intermediate fine-tuning on
parallel sentences to improve the cross-lingual DST.
To the best of our knowledge, we are the first work
that studies the effectiveness of a multi-lingual pre-
trained language model, XLM-R (Conneau et al.,
2020), on DST without implementing additional
cross-lingual alignment strategies.

3 Multi-Domain and Multi-Lingual DST

To tackle the task of dialogue state tracking, our
model reads the current user utterance Ut, preced-
ing system utterance Mt, dialogue history Ht, and
the domain-slot prompt Qt as inputs for each turn.
Followed by that, our model is responsible for
firstly determining the dialogue domains Dt from
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Figure 1: The model architecture of our XQA-DST for multi-domain and multi-lingual DST, where the right part is
the independently trained multi-domain classifier that outputs active domains.

the input sequence. Then, it predicts the presence
of the answer span in predicted domains given the
question. If an answer is present in utterances, the
model will predict the value for that domain-slot
question using span extraction. Otherwise, its value
will be filled in accordance with other predicted
types. Finally, our model tracks the dialogue states
by a rule-based update mechanism along with the
progress of the dialogue across turns.

3.1 Context and Domain-Slot Questions

In extractive question answering, the context is
used to provide the background information, and
the answer is usually contained in the context.
When it comes to DST, it is equivalent to modelling
the system message and the user response together
as the context for the current turn. The complete
context Ct is then collected by concatenating the
current user utterance Ut and the preceding system
utterance Mt with dialogue history Ht at turn t.
We implement XLM-R as the context encoder for
the purpose of cross-lingual transfer learning.

Each context is paired with N questions, which
iterate through every slot that we are interested in.
We append the domain-slot prompt at the end of the
context as an analogue question for each domain-
slot pair. Hence, the model can learn to correlate
different questions to the same context and provide
corresponding answers to fill the slot. For the same
context with nth question Qnt at turn t, the input

sequence Snt can be written as:

Snt =[CLS]⊕ Ut ⊕ [SEP]⊕Mt ⊕ [SEP]

⊕Ht ⊕ [SEP]⊕Qnt ⊕ [SEP],
(1)

where ⊕ is the string concatenation, and Ht repre-
sents the dialogue history collected in a reversed
order, and it is defined as follows:

Ht =Ut−1 ⊕Mt−1 ⊕ . . .
⊕ U1 ⊕M1 for t > 1.

(2)

To utilise the question as a distinct feature for
each slot, we propose the analogue question in the
format of a domain-slot prompt. Here, additional
special tokens are introduced to assist the model in
recognising the domain-slot pair as distinct parts.
Moreover, they provide clear signals for the start
and end positions for each domain-slot pair. The
equation for constructing the domain-slot prompt
Qnt is defined below:

Qnt =⟨dom.⟩ ⊕ dnt ⊕ ⟨/dom.⟩
⊕ ⟨slot⟩ ⊕ snt ⊕ ⟨/slot⟩, (3)

where dnt refers to the name of the domain and snt
is the slot name for n-th question at turn t.

3.2 Shared Classification Gate
Our model contains a shared classification gate
θgate for every domain-slot question as shown in
Fig. 1. This shared gate provides shared knowledge
among various domain-slot pairs, as it is neither
domain-specific nor slot-specific.
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For each input sentence St, this shared gate clas-
sifies it to one of six classes as described in three
main categories. Special cases, none/dontcare, in-
dicate that there is either no observable value from
the input sequence St or any value that can become
the answer for that slot question. Copy mecha-
nism, span, indicates that the answer can be ex-
tracted from the current user utterance Ut by the
span prediction module. Similarly, Inform is to
copy from the system inform memory that tracks
values mentioned in the preceding system utterance
Mt. Boolean values true/false are used to deal with
binary categorical values for Boolean slots where
the value cannot be extracted from the utterance.

With these designed classes, it takes the output
rCLS
t from the encoder as its only input. It gener-

ates a probability distribution pgatet ∈ R6 over six
classes as in the following equation:

pgatet = softmax(Wgate · rCLS
t + bgate), (4)

where Wgate represents the weights for our shared
gate that is achieved by a linear classification layer,
and bgate is the corresponding bias term. The class
is then determined by taking the maximal argument
of argmax(pgatet ).

3.3 Shared Span Prediction Layer
If the predicted class for the current input sequence
St is span, the answer for that domain-slot question
Qt will be filled by predicting the start and end po-
sitions of the value from the input sequence. We im-
plement the shared span prediction layer for every
domain-slot question for the purpose of domain-
adaptable design. This is achieved by constructing
a linear layer that takes the entire token representa-
tions from r1t to rseqmax

t as inputs, and it generates
two outputs with two parallel softmax layers for
token positions, the start and end position distribu-
tion, pstart

t and pend
t .

[pstart
t , pend

t ] = softmax(Wspan · rit + bspan) (5a)

startt = argmax(pstart
t ) (5b)

endt = argmax(pend
t ). (5c)

The start and end positions of the predicted value
are then determined by picking the largest proba-
bility from distributions pstart

t and pend
t . Followed

by that, we sequentially collect the tokens from
the predicted startt position to endt position, treat-
ing any reversed sequence prediction as an empty
value. We then detokenize them to form the final
predicted value for that domain-slot question.

3.4 Turn-Domain Filtering
For a task-oriented dialogue, the user may shift
the domain of conversation across turns so that a
dialogue can have multiple domains. We introduce
a novel turn-domain filtering strategy that puts a
strict constraint and only allows the model to pay
attention to currently active domains. Turn-domain
filtering indicates that only the slots within the cur-
rent domains Dt are used to prepare training fea-
tures since slots are domain-specific. Hence, turn-
domain filtering can reduce the potential noises in-
troduced by unnecessary domains. Mathematically,
this filtering strategy puts an additional constraint
for slot domain dnt in Eq. 3:

dnt ∈ Dt. (6)

3.5 Independent Multi-Domain Classifier
Turn-domain filtering allows the model to answer
questions only within the interested domains. How-
ever, the domain information is no longer a given
feature in the evaluation stage. Here, we propose a
multi-domain sequence classifier as shown in Fig.
1. The input sequence is the complete dialogue
context Ct without domain-slot questions. We then
collect the entire sequence representation rCLS

t by
the context encoders as XLM-R(Ct). Followed by
that, rCLS

t is fed into |D| softmax layers, thereby
allowing a binary prediction that decides whether
each domain dt is present in the input context or
not. Finally, we collect the domains that have been
assigned to the ‘True’ class, which indicates the
presence of that domain in the context.

pdt = softmax(W d
MSC · rCLS

t + bdMSC) (7a)

dt = argmax(pdt ) (7b)

Dt = {d1, . . . , d|D|}. (7c)

3.6 System Inform Memory and Update Rules
To further reduce the error of our span extractor, we
have employed the same inform copy mechanism
as Heck et al. (2020). This memory is a simple
dictionary that records all values informed by the
preceding system utterance Mt into a system in-
form memory It={I1t , ..., INt }. Then, the value
answer Ant for nth question Qnt asked at turn t can
be predicted by the following copy mechanism,
given that inform = argmax(pgate

t ):

Ant = Int for Qnt . (8)

We implement a simple rule-based mechanism
that is used to update dialogue states across turns
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as same as Chao and Lane (2019). In each turn,
if the model assigned class for the current input
sequence Snt with Qnt is not none, the dialogue
state will be updated by obtaining Ant from our
value prediction modules. On the other hand, if the
classification gate predicts that there is no value for
Snt , the dialogue state will be kept unchanged.

3.7 Two-Stage Fine-Tuning

Our model is designed to be capable of not only
DST tasks but also general question answering
tasks. Therefore, the transfer learning ability of our
base model can be enhanced by firstly fine-tuning
it on mono-lingual and multi-lingual question an-
swering datasets as the first-stage fine-tuning. Then,
we initialise its weights on DST shared gates and
further fine-tune the model on DST datasets as
the second-stage fine-tuning. This two-stage fine-
tuning strategy maximally brings domain-agnostic
knowledge into the field of DST.

4 Experimental Setup

4.1 Dataset

The datasets that we carry out experiments on
are WOZ 2.0 (Wen et al., 2017) and MultiWOZ
2.1 (Eric et al., 2020) for single-domain and
multi-domain task-oriented dialogues, respectively.
WOZ 2.0 is a restaurant reservation dataset, and it
contains three slots: area, food, and price range. It
provides the conversation in three languages: En-
glish, German, and Italian. MultiWOZ 2.1 con-
tains multi-domain conversations for more than
10000 dialogues over seven domains. The dialogue
domain can change across turns, thereby making
MultiWOZ 2.1 the most challenging dataset for
task-oriented dialogue systems. We exclude hos-
pital and police domains with very few dialogues,
and the remaining dataset contains five domains
(hotel, train, attraction, restaurant, and taxi) with
30 domain-slot pairs in total. For domain adapta-
tion experiments, we use an extractive QA dataset,
SQuAD 2.0 (Rajpurkar et al., 2018), to provide the
intermediate fine-tuning. In cross-lingual experi-
ments, we further use the multilingual QA dataset,
XQuAD (Artetxe et al., 2020), to study the effec-
tiveness of multi-lingual intermediate fine-tuning.

4.2 Implementation Details

We employ the pretrained XLM-RoBERTa-base
model from the Huggingface library of Transform-
ers (Wolf et al., 2020), which consists of 12 hidden

layers of 768 units. We also employ the BERT-base-
uncased model for ablation study and fine-tuned
models on SQuAD 2.0 and XQuAD for adaptation
experiments. For all implementations, we limit the
maximal input sequence length to 180 tokens to
save the cost while keeping a reasonable length for
including dialogue history. We truncate from the
earliest dialogue history when the input sequence
length exceeds the limit. The training objective
is to minimise the summations of individual loss
functions for each module, where each loss is de-
fined as the cross-entropy loss. The loss for each
domain module in the multi-domain classifier is
equally weighted, where the coefficient for each
part of the joint loss of our main model is:

Ltotal = 0.8 · Lgate + 0.2 · Lspan. (9)

During the training process, we implement the
Adam optimiser (Kingma and Ba, 2015) with an
initial learning rate of 10−5. Then, we employ a
linear scheduler with a warm-up proportion of 10%
so that the learning rate will decay linearly until
reaching zero after the warm-up steps. We put a
dropout layer with a rate of 30% at the output of
our context encoders. We use an early stopping
strategy by monitoring the accuracy of the valida-
tion dataset until it stops increasing for at least 3
epochs. The batch size is fixed at 16. The multi-
domain classifier is trained independently with the
same experimental setting, and it is only involved
in the evaluation stage. We report the mean of su-
pervised DST and zero-shot experimental results
for three runs with different random seeds.

5 Experimental Results

5.1 Zero-Shot Domain Adaptation
We rank our XQA-DST model with prior methods
capable of zero-shot domain adaptation. The exper-
iment is used to evaluate the transfer performance
of models when tested with dialogues in a com-
pletely unseen domain. We train our model on the
other four domains by excluding the target domains.
We follow the experimental steps reported by Ku-
mar et al. (2020). Since there is a single domain
defined in the target domain, the domain classifier
is not utilised here because the dialogue domain
is given information. Table 1 shows a comparison
of our XQA-DST model to baselines and recent
approaches, where the JGA is defined as the ratio
of dialogue turns that have been perfectly predicted
over the number of turns for all dialogues. It is
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Models Type Hotel Train Att. Res. Taxi Avg.
MA-DST (Kumar et al., 2020) G 16.3 22.8 22.5 13.6 59.3 26.9
SUMBT (Lee et al., 2019) C 19.8 22.5 22.6 16.5 59.5 28.2
TRADE (Wu et al., 2019) G 19.5 22.9 22.8 16.4 59.2 28.2
GPT2-m (Li et al., 2021) G 24.4 29.1 31.3 26.2 59.6 34.1
T5DST* (Lin et al., 2021c) G 21.2 35.4 33.1 21.7 64.6 35.2
TransferQA (Lin et al., 2021b) G 22.7 36.7 31.3 26.3 61.9 35.8
XQA-DST w/o two-stage S 22.9 37.0 24.0 25.7 62.2 34.4
XQA-DST w. SQuAD2 S 24.3 40.0 27.9 28.2 63.2 36.7

Table 1: The joint goal accuracy (%) of zero-shot domain adaptation experiments on each domain with recent models
on MultiWOZ 2.1. The abbreviations for model types are: G: Generative; C: Classification; S: Span prediction.
*Results from MultiWOZ 2.0 are reported by Lin et al. (2021c).

clear that our model has generated more accurate
results than both MA-DST (Kumar et al., 2020)
and SUMBT (Lee et al., 2019) baselines by at least
6.2% JGA on average in domain adaptation even
without two-stage fine-tuning. SUMBT tracks the
dialogue states by classifying every slot-value pair.
Hence, it is a classification-based method, whereas
our approach is mainly relying on the value filling
by the span prediction module. It can be seen that
our model has outperformed baselines by a signif-
icant (3-9%) margin in the hotel, restaurant, and
taxi domains. This is because the classification-
based method requires a predefined ontology for
its enumeration of values, which inevitably makes
it not robust to unseen values in new domains and
results in relatively low performance for domain
adaptation.

There is another class of methods that utilises
generative value filling to handle the DST, includ-
ing TRADE, GPT2-m, and TransferQA. Given
GPT2-m as an example, it is in the framework
of generative question answering, which also co-
incides with the underlying idea of our XQA-DST
model but has a decoder to generate candidate val-
ues. With the two-stage fine-tuning strategy on
the SQuAD 2.0 dataset, our model shows improve-
ments in all domains of 2.3% on average. It shows
the highest JGA in both train and restaurant do-
mains (40.0% and 28.2%, respectively). It also
outperforms the TransferQA approach that imple-
ments the cross-task transfer learning, which is
similar to our two-stage fine-tuning that includes
multi-task knowledge. Our results appear as the
state-of-the-art results at 36.7% JGA on average
for zero-shot domain adaptation experiments.

Furthermore, our approach is designed to be
applicable for both domain adaptation and cross-
lingual transfer learning, whereas all generative
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Figure 2: The categorical plot of slot accuracy (%) for
each slot over 5 domains for the zero-shot domain adap-
tation experiment by XQA-DST.

methods listed above can only do mono-lingual
learning. Therefore, our XQA-DST model has
shown very competitive results in the zero-shot do-
main adaptation, and we can conclude that it is able
to effectively generalise to task-oriented dialogues
in new domains by understanding the linguistics
behind our domain-slot questions.

5.2 Domain Adaptation Analysis
We analyse the individual slot accuracy for every
domain-slot pair in 5 domains to study the impact
of shared slots over domains on the performance
of domain adaptation. The results are obtained by
computing the slot accuracy on each target domain
by XQA-DST. The slot accuracy is defined as the
ratio of dialogue turns where the value for that slot
is correctly predicted. Fig. 2 shows the slot accu-
racy for 16 slots over 5 domains, where multiple
domain bars for the same slot indicate that the slot
is shared across these domains.

It is observable that slots that have been shared
among multiple domains lead to a relatively higher
domain adaptation performance. By contrast, it is
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Models Joint Goal Accuracy (%)
GE IT

XLM-R-DST 20.78 25.39

XL-NBT 30.80 41.20
MUSE + AMLT 36.51 39.35
XLM+CLCSA 48.70 -
mBERT+CLCSA 63.20 61.30
TLM+CLCSA 65.80 66.90

Ours w/o two-stage 64.88 68.63
w. XQuAD 66.16 72.84
w. SQuAD2 66.12 75.66

Table 2: The zero-shot cross-lingual DST results for tar-
get languages, German (GE) and Italian (IT), on WOZ
2.0. There are no results on Italian by XLM due to the
absence of Italian in its pretraining (Liu et al., 2020).

also distinctive that slots that have not been shared
among multiple domains have much lower accu-
racy. For instance, most slots in the hotel domain
are not shared with other domains, so the slot accu-
racy for ‘parking’ and ‘internet’ slots (66.4% and
64.5%, respectively) are reasonably lower than oth-
ers. The same rule applies to the ‘time’ and ‘food’
slots in the restaurant domain. Therefore, the num-
ber of shared domains for the slot is the foremost
factor in achieving a good domain adaptation result.
Secondly, we notice that slots with digital values
such as ‘people’ and ‘day’ have very high slot accu-
racy (91.3% and 92.0% in the restaurant domain)
even in the zero-shot setting. It validates the ef-
fectiveness of our model to domain adaptation for
successfully extracting candidate values from the
message. Last but not least, due to the wide surface
form of location values, it is naturally hard to pre-
dict location slots, ‘departure’ and ‘destination’,
that are not categorical with unseen values. Hence,
even though they are shared in both train and taxi
domains, they give relatively lower slot accuracy in
the set of shared slots. Overall speaking, our XQA-
DST model has generated reasonably well domain
adaptation results on most domain-slot pairs and
has shown a certain level of common knowledge
across domains.

5.3 Zero-Shot Cross-Lingual DST

The zero-shot cross-lingual transfer learning is to
train our XQA-DST on the source language, En-
glish. Then, it is sequentially evaluated on the test
sets in German and Italian with labels that are kept
in English. Since WOZ 2.0 is a single domain
dataset with relatively short dialogues, the dialogue

history is not included as inputs, and the domain
classifier is deactivated. To provide a fair com-
parison to the ground truth, we implement Google
Translator (Wu et al., 2016) to translate the values
filled by span prediction in the target language back
to the source language.

In Table 2, our XQA-DST model with two-
stage fine-tuning gives strong zero-shot results in
both German and Italian languages (66.2% and
75.7% JGA, respectively). In comparison to re-
cent approaches for cross-lingual DST, our XQA-
DST model has generated results that significantly
increase the margin by an absolute 8% on Ital-
ian. It is worth noting that both XLM+CLCSA
and mBERT+CLCSA (Qin et al., 2020) are data
augmentation-based approaches on multi-lingual
models with the same model architecture as XL-
NBT (Chen et al., 2018). TLM+CLCSA (Moghe
et al., 2021) also implements two-stage fine-tuning
with data augmentation. Even without two-stage
fine-tuning, our model in extractive QA still outper-
forms most of them and appears as the state-of-the-
art results in the zero-shot cross-lingual transfer
learning on WOZ 2.0.

Besides the above approaches, we include XLM-
R-DST as a baseline that we replace the context
encoder of BERT-DST (Lai et al., 2020) with XLM-
R. Then, we can study the effectiveness of different
model architectures in cross-lingual transfer learn-
ing. We recall that XLM-R-DST fills the slot val-
ues by iterating through every candidate slot value
with a relevance scorer. Table 2 shows a huge
improvement in our approach by increasing the av-
erage JGA on target domains from 23.1% to 66.8%
by more than 40%. It indicates that our specially
designed extractive QA framework has a strong
generalisation ability across languages, whereas
the XLM-R-DST appears as only recognising each
value as distinct features without understanding the
deep semantics behind them. Lastly, we notice that
the cross-lingual result on Italian has a higher joint
goal accuracy than German in our experiments. We
suppose that this is because of the declension in
German, which leads to more diverse word forms
with the same semantics and introduces noises to
the translation process.

5.4 Supervised DST

We perform experiments on the supervised DST
configuration and compare our XQA-DST model
with prior methods capable of monolingual zero-
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Models tested on MultiWOZ 2.1 JGA (%)
TRADE (Wu et al., 2019) 45.60
SUBMT (Lee et al., 2019) 46.70
STARC (Gao et al., 2020) 49.48
MA-DST (Kumar et al., 2020) 51.88
T5DST (Lin et al., 2021c) 52.21
GPT2-m (Li et al., 2021) 52.58
SDP-DST (Lee et al., 2021) 56.66
SOLOIST (Peng et al., 2021) 56.85
PPTOD (Su et al., 2022) 57.10
XQA-DST (our work) 53.21

Table 3: The performance of Supervised DST for our
proposed XQA-DST model with prior methods capable
of zero-shot inference on MultiWOZ 2.1.

shot domain adaptation on MultiWOZ 2.1. Table
3 comprises the JGA for each method, and we
implement the same label mapping as TripPy (Heck
et al., 2020) for a fair evaluation. In Table 3, our
approach has outperformed most prior methods
capable of zero-shot generalisation, including many
generative approaches such as TRADE, T5DST,
and GPT2-m. Though it is less competitive than
the prompt-based SDP-DST model and end-to-end
models in the supervised DST setting, its language
transferability is still distinctive.

Based on the shared span prediction module, our
model is able to extract values from the dialogue
context directly, thereby being open-vocabulary
and domain scalable. At the same time, it has
successfully overcome the challenge of an unavail-
able ontology set. Moreover, it presents as the
best-performed model in any framework with span
prediction modules, where it has improved the mar-
gin of JGA by more than 3.5% from the STARC
approach. None of the other approaches has ever
studied their DST with multi-lingual pretrained
models. By utilising the pretrained XLM-R model
as the context encoder, our approach is the only
method with cross-lingual transferability. Given
its distinct advantages of being domain-adaptable
and language transferable, a promising result in
multi-domain DST at 53.2% is still competitive in
the supervised setting.

To study the impact of essential designs in our
model, we first analyse the performance of a mono-
lingual model, BERT, and ablate it over different
choices of domain classifiers. In Table 4, the vanilla
model with undersampling of negative samples has
the lowest JGA at 38.2%. This is because the
shared span prediction layer lacks domain knowl-

Ablation JGA (%)
BERT-base

w. undersampling 38.23
w. joint domain classifier 41.10
w. independent domain classifier 49.04
+ dialogue history 51.11

XLM-RoBERTa-base
w. independent domain classifier 51.67
+ dialogue history 53.21

Table 4: Ablation study of XQA-DST with different
base models and training strategies on MultiWOZ 2.1.

edge and frequently generates false positive pre-
dictions for out-of-domain questions. Introducing
a joint domain classifier at the output of the main
model in parallel with θgate improves the JGA by
about 3%, which convinces us about the effective-
ness of domain classifiers. At the cost of the model
size, the independent domain classifier significantly
improves the JGA to 49.0% by removing the inter-
ference from asking out-of-domain questions. It
encourages the model to learn to distinguish in-
domain questions rather than additionally learn-
ing the relationship between the context and do-
mains within a goal. We notice that implementing
XLM-R instead of BERT further improves the per-
formance to 51.7%. We suppose it is because of
the well-trained RoBERTa model, and the multi-
lingual pretraining does not greatly sacrifice the
per-language performance. Lastly, due to the com-
plexity of MultiWOZ dialogues, the history infor-
mation is essential in accurately predicting current
domains and extracting spans. Hence, appending
the dialogue history has led our model to outper-
form most prior methods capable of zero-shot in-
ference.

6 Conclusion

We introduce a new multi-domain and multi-lingual
dialogue state tracker, XQA-DST, within an ex-
tractive question answering framework. It gives
distinct advantages for avoiding relying on any
predefined ontology and being open-vocabulary
to new slots with unseen values. We have shown a
strong domain and cross-lingual transferable ability
of our model by outperforming famous baselines.
We have demonstrated its competitive performance
in multi-domain DST with a novel turn-domain
filtering strategy and a multi-domain classifier in
parallel. With the design of an XLM-R based multi-
domain classifier, our approach is feasible for track-
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ing states in multi-domain and multi-lingual sce-
narios. Therefore, it holds a strong potential to
overcome the challenging data scarcity problem for
either domains or languages in the real application
of task-oriented dialogue systems.

Limitations

In the supervised DST experiments, our multi-
domain classifier is effective when the range of
domains is given. However, we have fixed weights
for each domain projection layer, which inevitably
makes the classifier not domain scalable. Though
the shared span prediction layer is still scalable to
all domains, the performance of our model will de-
grade if it encounters a dialogue in multiple unseen
domains.

We recall that the independent multi-domain
classifier provides a clearer training objective and
significantly improves the JGA than the joint do-
main classifier. However, this is at the cost of
model size and requires expensive computation re-
sources. Therefore, we look forward to approaches
that wisely incorporate the domain classifier.

In the cross-lingual experiments, we test the
transfer performance for German and Italian, which
have been used as the pretraining languages for
XLM-R. Hence, we expect a degradation of cross-
lingual performance for our model on low-resource
languages that are not pretrained by XLM-R. In ad-
dition, our experiments rely on a back-translation
from the target language to the source language.
Though we have implemented a predefined label
dictionary that collects vocabulary with similar se-
mantics, it cannot perfectly handle the noise from
an external translation system.
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A Reproducibility Details

Training details We use both XLM-RoBERTa-
base (125M) and BERT-base-uncased (110M) with
pretrained weights from the Huggingface library of
Transformers. We run all experiments on a single
RTX 3080Ti with 12 GB memory. We fix the batch
size at 16 for all models during training and use
the batch size at 1 for evaluations. During train-
ing, it takes about 40 minutes to run an epoch on
MultiWOZ 2.1, and its inference time for all evalu-
ation examples is about 7 minutes. For the WOZ
2.0 dataset, it takes roughly 20 minutes to train the
model. In the cross-lingual setting, the inference
time is about 10 minutes due to the back-translation
procedure.

Hyperparameters For two-stage fine-tuning ex-
periments, we implement QA fine-tuned models

from the Huggingface library of Transformers with-
out tuning their hyperparameters. For the XQuAD
experiment, it implements the batch size at 40 and
a learning rate of 3× 10−5 for the first-stage fine-
tuning. For the SQuAD 2.0 experiment, we use
the fine-tuned weights and hyperparameters from
deepset/xlm-roberta-base-squad2.

Dataset details For the supervised DST experi-
ments, we split the datasets into train/dev/test sets
as same as Heck et al. (2020). In domain adapta-
tion experiments, the MultiWOZ 2.1 datasets are
divided into 5 domains in accordance with Lin et al.
(2021c), where the hospital and police domains
are excluded. Lastly, the multi-lingual WOZ 2.0
datasets have the same split as Moghe et al. (2021).

1009

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.18653/v1/P18-1135
https://doi.org/10.18653/v1/P18-1135
https://arxiv.org/abs/1911.06192
https://arxiv.org/abs/1911.06192
https://arxiv.org/abs/1911.06192


Findings of the Association for Computational Linguistics: EACL 2023, pages 1010–1022
May 2-6, 2023 ©2023 Association for Computational Linguistics

Improving Prediction Backward-Compatiblility in NLP Model Upgrade
with Gated Fusion

Yi-An Lai♠ Elman Mansimov♠ Yuqing Xie♡,∗ Yi Zhang♠
♠AWS AI Labs ♡University of Waterloo
{yianl,mansimov,yizhngn}@amazon.com

yuqing.xie@uwaterloo.ca

Abstract
When upgrading neural models to a newer ver-
sion, new errors that were not encountered in
the legacy version can be introduced, known as
regression1errors. This inconsistent behavior
during model upgrade often outweighs the ben-
efits of accuracy gain and hinders the adoption
of new models. To mitigate regression errors
from model upgrade, distillation and ensemble
have proven to be viable solutions without sig-
nificant compromise in performance. Despite
the progress, these approaches attained an in-
cremental reduction in regression which is still
far from achieving backward-compatible model
upgrade. In this work, we propose a novel
method, Gated Fusion, that promotes backward
compatibility via learning to mix predictions
between old and new models. Empirical results
on two distinct model upgrade scenarios show
that our method reduces the number of regres-
sion errors by 62% on average, outperforming
the strongest baseline by an average of 25%.

1 Introduction

In order to achieve a smooth continuous improve-
ment of NLP applications, it is critical to guarantee
consistent operation of the system after an upgrade.
New errors introduced during the model upgrade
interfere with the existing user experience and are
considered to be a regression in the quality. Due to
the difficulty of modularizing or explaining the be-
havior of deep neural networks, traditional software
regression tests are inapplicable to neural based
systems. The cost of arduous error analysis and
model patching often exceeds the benefits of model
upgrades. Developing methods that ensure back-
ward compatibility during model upgrades without
compromise in performance becomes a valuable re-
search direction (Yan et al., 2021; Xie et al., 2021;
Träuble et al., 2021; Cai et al., 2022).

∗Work done during author’s internship at AWS AI Labs.
1Within this work, regression denotes performance degra-

dation in software systems, instead of the statistical technique
for estimating relationships among variables.
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Figure 1: Illustration of regression errors when up-
grading from BERT (Devlin et al., 2019) to ELEC-
TRA (Clark et al., 2020) for classification. Red circles
and green squares denote examples of different classes.
Dashed lines represent decision boundaries.

The prediction backward-compatible model up-
grade problem aims to improve consistency of cor-
rect classification predictions between legacy and
upgraded models without accuracy loss. Yan et al.
(2021) first studied backward compatibility during
model upgrade on image classification tasks. They
proposed to enforce the positive congruence of the
new model with the old one by applying a knowl-
edge distillation objective (Hinton et al., 2015) ob-
jective with re-weighting of training samples. Later,
Xie et al. (2021) extended the work of Yan et al.
(2021) by investigating the backward compatibility
in NLP classification tasks. They found that their
proposed distillation-based approach can help de-
crease the regression errors of specific linguistic
phenomena in NLP classification tasks.

Despite progress with both distillation- and
ensemble-based regression-mitigation approaches,
there are limitations that prevent them from broad
practical adoption in ML operations. Distillation-
based methods attempt to transfer the prediction
power of the old model to the new one on potential
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regression instances (Hinton et al., 2015). How-
ever, given the huge complexity of current neural
architectures and relatively scarce training data in
downstream tasks, models could have insufficient
data to reliably estimate the probable regression
cases and carry out the transfer on them (Xie et al.,
2021; Cai et al., 2022). On the other hand, model
ensemble aggregates predictions from differently-
trained new models but bears no connection with
the legacy version (Yan et al., 2021). These limita-
tions reveal the two major challenges when striving
to ensure backward compatibility. First, the new
model could have distinct inductive bias and predic-
tion behavior than the old system, rooted from in-
herent differences such as architecture, model size,
and pretraining procedure (Liu et al., 2021). Sec-
ond, during new model training, a reliable mecha-
nism is needed in place to bridge the gap between
two models and mitigate potential inconsistencies.

Inspired by the strength and weakness of prior
approaches, we propose Gated Fusion to integrate
old and new models via gating mechanism (Hochre-
iter and Schmidhuber, 1997; Chung et al., 2014; Gu
et al., 2016), essentially a light-weight ensemble of
legacy and upgrade models connected via a learned
fusion gate. Specifically, we add a learned gate
on top of the new model. We combine the logits
from old and new models according to the weight
from the gate. We train our Gated Fusion model by
minimizing the standard cross-entropy error. The
intuition is that the gate could learn to put more
weights on the old model when the new model can-
not produce correct predictions, effectively doing
fall-backs that optimizes backward compatibility.

Empirical results demonstrate that our proposed
approach outperforms other competing methods
significantly, where we can obtain on average 62%
reduction of total negative flips, i.e. new errors
caused by the model upgrade, without any degrada-
tion in accuracy performance. The effectiveness of
Gated Fusion is validated across three diverse clas-
sification tasks and two distinct model upgrade sce-
narios (a) upgrade to larger model size (b) upgrade
to advanced pretrained model, where consistent
results are attained across the board.

Our main contributions are as follows:

• We propose Gated Fusion that integrates old
and new models via gating mechanism for
backward-compatible model upgrade;

• We evaluate competing methods on two dis-
tinct and challenging model upgrade scenarios

across three diverse classification tasks;

• Empirical results show that our proposed ap-
proach significantly outperforms competing
methods and achieves regression reductions
by a large margin across the board.

2 The Backward-Compatible Model
Upgrade Problem

The goal of backward-compatible model upgrade
is to minimize regression errors without compro-
mising the accuracy performance during model up-
grade (Yan et al., 2021; Xie et al., 2021). In this
work, we aim to improve the backward compatibil-
ity of model predictions in the NLP classification
tasks. Following Xie et al. (2021), we study the
scenario where the underlying pretrained language
model (LM) is being upgraded.

Let x be a natural language input with a class
label y ∈ {1, 2, ..., C}. D = {xi, yi}Ni=1 denotes
a set of N examples with corresponding labels. A
classifier f estimates the class probabilities given
the input f⃗(x) = (p(y = 1|x), ..., p(y = C|x))⊤.
When upgrading from an old model fold to a new
model fnew, normally with distinct architectures
and trained on the same data, an improved model
f∗ is produced based on fold and fnew. Our goal
is for f∗ to minimize regression errors as an addi-
tional objective, while still achieving comparable
performance to fonew, the new model trained in
the vanilla setting. Note that f∗ could be multiple
times larger than fonew, with model ensemble of
fonew as one example (Yan et al., 2021).

Measuring Backward Compatibility. The back-
ward compatibility is measured via quantifying re-
gression errors on a given regression measurement
set Dreg = {xi, yi}Mi=1. Dreg could be a hidden
customer test set comprising critical use cases, a
set of behavioral testing examples for targeted eval-
uation (Ribeiro et al., 2020), or the development
split from the dataset of interest. In this work, we
take the development set as ourDreg for evaluation.

For classification, regression errors are charac-
terized by negative flips, denoted as RNF – the
portion of samples in Dreg that flip from cor-
rect prediction fold(xi) = yi to incorrect output
fnew(xi) ̸= yi during model upgrade:

RNF (Dreg, f⃗old, f⃗new) =
|{x|fold = y, fnew ̸= y}|

|Dreg|
.

(1)
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Figure 2: Methods to improve prediction backward compatibility during model upgrade. (a) Distillation-based
approach to align predicted logits on potential regression instances (Xie et al., 2021). (b) Ensemble of old and new
models via weighted sum of either predicted logits or probabilities. (c) Our proposed Gated Fusion that learns a
gate as a soft switch to dynamically determine whether to fall back to previous predictions.

One thing to emphasize is that maximizing classi-
fier performance does not necessarily help in mini-
mizingRNF (Yan et al., 2021; Xie et al., 2021).

3 Gated Fusion: Methodology

3.1 Method Overview

To improve backward compatibility in model up-
grade, it’s crucial to have a mechanism that de-
tects potential regression errors and mitigates them
when making predictions. We propose Gated Fu-
sion (GF) to achieve this by learning a gate as a soft
switch to choose between generating predictions
by the new model or resorting to outputs of the
old model. Gated Fusion is inspired by the gating
mechanism widely used in other applications. For
example, mixing word copying mode with word
generation mode for language modeling (Merity
et al., 2016) and summarization (See et al., 2017).

Our proposed Gated Fusion f∗GF consists of the
old model fold, the new model fnew, and a gating
network gθ. The old model fold is the legacy ver-
sion before upgrade where the parameters are fixed.
The new model fnew has the same architecture as
fonew and is randomly initialized. The gating net-
work gθ is a multi-layer feed-forward network with
sigmoid function. It produces a scalar weight αgate
in the range [0, 1] from the output layer of fnew,
denoted as Enew:

αgate(x) = gθ(Enew(x)). (2)

We use αgate to combine the logits of old and new

models as our final outputs:

l∗GF (y|x) = (1−αgate) ·
lold(y|x)

T
+αgate · lnew(y|x),

(3)
where l(y|x) denotes predicted logits from models
and T is the temperature scaling to regularize the
magnitude of old model’s logits. fnew and gθ are
then jointly trained end-to-end with cross-entropy
loss between our output logits l∗GF (y|x) and label
distributions on downstream tasks.

The intuition behind Gated Fusion is that when
fnew makes a mistake while fold produces the cor-
rect output, the gate gθ will learn to put more
weight on fold in order to minimize the final clas-
sification loss. This process effectively mitigates
potential negative flips introduced by the model
upgrade and thus improves the backward compati-
bility of final predictions.

3.2 Training and Inference
In practice, training Gated Fusion with randomly
initialized fnew would make the shallow gating
network quickly converge to favor the fully-trained
fold. To prevent this, we only train fnew for the first
few epochs to ensure its competence before jointly
training gθ and fnew using l∗GF (x). In addition, we
found that stopping gradient flow from gθ to fnew
can further prevent the performance decrease of the
new model within Gated Fusion:

αgate(x) = gθ(stop_grad(Enew(x))). (4)

At inference time, Gated Fusion produces logits
from fold and fnew as well as the gate value αgate

1012



to make output predictions:

f∗GF (x) = Softmax
(
(1−αgate) ·

lold
T

+αgate · lnew
)
.

(5)

3.3 Inference with Cache

Our proposed Gated Fusion requires fold to be
hosted together with the new model. In reality,
one could have a resource-constrained setting and
request the old model to be discarded at inference.
We note that in real applications, repetitive inputs
are commonly seen in live traffic (Batrinca and Tre-
leaven, 2015) and the backward compatibility of
model upgrade entails that correct predictions can
be preserved on the legacy instances already seen
and predicted by the old model.

To simulate real scenarios, we randomly cache
old model’s logits on a portion of test inputs. When
getting out-of-cache instances, we use new model’s
output embedding Enew(x) as key and euclidean
distance as metric to search for the nearest cached
instance. The cached old-model logits can then be
used for Gated Fusion to make predictions without
hosting fold at inference.

4 Experiments Setup

4.1 Model Upgrade Scenarios

We conduct experiments on two representative
model upgrade scenarios: (a) upgrade to a larger
pretrained model of the same type, where we use
BERTbase to BERTlarge. (b) upgrade to a dis-
tinct pretrained model with the same size. We
use BERTbase to ELECTRAbase (Clark et al.,
2020) as this challenging model upgrade sce-
nario for backward-compatibility, as they are pre-
trained under different self-supervised learning
paradigms. The former uses masked language mod-
eling (MLM) with reconstruction loss, while the
latter is pretrained in generative-contrastive (adver-
sarial) fashion with distributional divergence as the
loss (Liu et al., 2021).

4.2 Datasets and Implementation

We evaluate our approach across three datasets.
They represent different sentence-level classifica-
tion tasks, from single-sentence to sentence-pair
classification, with varying dataset sizes. We use:
(a) Stanford Sentiment Treebank (SST-2), a single-
sentence task to classify movie review sentiment,
with 67k train and 0.9k dev set (Socher et al., 2013).
(b) Microsoft Research Paraphrase Corpus (MRPC)

(Dolan and Brockett, 2005), a sentence-pair classi-
fication task for identifying paraphrases, with 3.7k
train and 0.4k dev set. (c) Question Natural Lan-
guage Inference (QNLI), a question-paragraph pair
task to determine whether the paragraph contains
the answer to the question, with 100k train and 5.5k
dev set. Datasets are taken from GLUE Benchmark
(Wang et al., 2018) and processed with scripts from
Hugging Face2.

For implementation, we use the sequence clas-
sification and pre-trained model parameters from
Hugging Face Transformers3. Experiments are
done in PyTorch (Paszke et al., 2019) with Tesla
V100 GPUs and results are averaged over 5 random
seeds. Learning rate, batch size, and train epoch
are tuned during training new model alone on given
tasks and then fixed for all backward-compatible
solutions. In Gated Fusion, we first train fnew
alone for first (N −1) epochs and then jointly train
gθ and fnew with Gated Fusion logits l∗GF in the
last epoch. Further implementation details can be
found in the Appendix.

4.3 Baselines

We compare our approach with several strong base-
lines. (a) Train the new model directly on the tar-
get task without any adjustment, i.e. fonew. (b)
The specialized distillation method proposed in
Xie et al. (2021), where the KL-divergence of pre-
diction probabilities between old and new mod-
els is applied when pold(y = yi|xi) > pnew(y =
yi|xi). (c) Model ensemble via majority-voting
that was shown to be very effective (Yan et al.,
2021; Xie et al., 2021). Similarly, we use 5-seed
new model ensemble as a strong baseline. (d) The
ensemble of the old and new models probabilities,
p∗(y|x) = (1− α) · pold(y|x) + α · pnew(y|x), as
well as ensemble of the old and new models log-
its, l∗(y|x) = (1 − α) · lold(y|x) + α · lnew(y|x),
where α is searched among [0.5, 0.6, 0.7, 0.8, 0.9]
to maximize backward-compatibility while achiev-
ing accuracy on par with the vanilla fonew.

5 Results and Analysis

5.1 Upgrade to a Larger Pretrained Model

Our first model upgrade scenario scales up the size
of underlying pretrained language models. We
experiment with BERTbase to BERTlarge, where

2
https://huggingface.co/datasets/glue

3
https://huggingface.co/docs/transformers/index
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SST-2 MRPC QNLI
BERTbase→ BERTlarge RNF Accuracy RNF Accuracy RNF Accuracy

Old Model - 92.000.27 - 85.690.90 - 90.740.09
New Model 2.180.21 93.120.29 4.121.04 87.401.02 2.720.13 92.220.16

Distillation (Xie et al., 2021) 1.970.22 93.330.20 3.530.77 87.701.34 2.310.14 92.600.19
New Model Ensemble 2.000.31 93.300.24 2.250.61 88.870.77 1.980.21 92.970.22
Old-New Probs Ensemble 1.060.27 93.120.38 1.670.78 87.161.12 1.040.26 92.440.23
Old-New Logits Ensemble 1.060.27 93.120.38 1.670.78 87.161.12 1.040.26 92.440.23
Gated Fusion 0.780.20 93.050.09 1.180.52 87.450.52 0.730.13 92.240.24

Table 1: Negative flip rateRNF and model accuracy (%) of competing methods to optimize backward-compatibility
without performance degradation during BERTbase→ BERTlarge model upgrade.

SST-2 MRPC QNLI
BERTbase→ ELECTRAbase RNF Accuracy RNF Accuracy RNF Accuracy

Old Model - 92.000.27 - 85.690.90 - 90.740.09
New Model 1.630.20 95.000.06 3.730.36 88.580.57 2.820.32 92.900.26

Distillation (Xie et al., 2021) 1.490.24 95.020.21 3.680.79 88.820.94 2.580.17 93.030.16
New Model Ensemble 1.120.09 95.390.09 3.240.24 89.020.48 2.260.08 93.490.07
Old-New Probs Ensemble 1.400.17 95.070.15 3.140.42 88.530.48 0.980.20 93.040.21
Old-New Logits Ensemble 0.890.17 94.950.13 3.280.43 88.480.51 0.980.20 93.040.21
Gated Fusion 0.710.18 95.020.16 2.400.50 88.680.68 0.810.16 92.980.17

Table 2: Negative flip rateRNF and model accuracy (%) of competing methods to optimize backward-compatibility
without performance degradation during BERTbase→ ELECTRAbase model upgrade.

the model size is tripled (110M vs 340M) and the
model depth is doubled (12 vs 24 layers).

Table 1 shows the results. For fonew, we can
observe that the negative flip rates RNF are usu-
ally much larger than the accuracy gains across
tasks, which could be the reason to hinder new
model adoptions in real-world applications. Be-
sides, when dividing RNF over the error rate
(1 − accuracy), we can observe that around 30%
to 40% of all fonew prediction errors are in fact the
new errors introduced during model upgrade. For
improving prediction backward-compatibility, our
proposed Gated Fusion outperforms other compet-
ing methods to considerably reduceRNF without
degradation on accuracy. Note that best α values
found for the two variants of old-new ensemble are
both 0.5, hence producing identical results.

Compared to the vanilla new model, gated fu-
sion obtains absolute RNF reductions of −1.40%
on SST-2, −2.94% on MRPC, and −1.99% on
QNLI. These translate to reducing the total neg-
ative flip cases by 64.2%, 71.4%, 73.2%, respec-
tively. Compared to the strongest baseline (old-new
ensemble), we obtain further absoluteRNF reduc-
tions of −0.28% on SST-2, −0.49% on MRPC, and

−0.31% on QNLI, which translate to further re-
ducing 12.8%, 11.9%, and 11.4% of negative flip
cases. These results show the effectiveness of our
method to mitigate a significant amount of regres-
sion errors during model upgrade.

5.2 Upgrade to a Different Pretrained Model
A more challenging upgrade scenario is when old
and new models are pretrained under distinctive
paradigms, producing two representation spaces
of fairly different characteristics (Meng et al.,
2021b). We experiment with BERTbase to ELEC-
TRAbase in this scenario, where two models have
the same size but are pretrained under utterly dif-
ferent schemes, i.e. generative versus adversarial.

Table 2 shows the results. For fonew, compared
with upgrading to BERTlarge, we observe larger ac-
curacy gains and lowerRNF on SST-2 and MRPC.
However, on QNLI, upgrading to ELECTRAbase

achieves a higher accuracy gain but an even a
higherRNF . This implies that boosting accuracy
and improving backward compatibility could be
two related but different objectives.

For mitigation strategies, Gated Fusion achieves
the lowest negative flip rates across datasets with-
out any accuracy loss. We obtain absoluteRNF re-
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SST-2 MRPC QNLI
RNF Accuracy RNF Accuracy RNF Accuracy

Old Model: BERTbase - 92.000.27 - 85.690.90 - 90.740.09

New Model: BERTlarge 2.180.21 93.120.29 4.121.04 87.401.02 2.720.13 92.220.16
Model Ensemble: 5 seeds 2.000.31 93.300.24 2.250.61 88.870.77 1.980.21 92.970.22
Model Ensemble: 10 seeds 1.790.17 93.690.15 2.010.29 89.460.51 2.010.14 92.970.19
Model Ensemble: 20 seeds 1.790.25 93.620.16 1.760.50 89.560.48 1.820.15 93.130.08
Gated Fusion 0.780.20 93.050.09 1.180.52 87.450.52 0.730.13 92.240.24

New Model: ELECTRAbase 1.630.20 95.000.06 3.730.36 88.580.57 2.820.32 92.900.26
Model Ensemble: 5 seeds 1.120.09 95.390.09 3.240.24 89.020.48 2.260.08 93.490.07
Model Ensemble: 10 seeds 1.240.18 95.300.16 3.630.50 88.580.20 2.210.12 93.570.15
Model Ensemble: 20 seeds 1.190.16 95.320.17 3.430.51 88.920.48 2.150.17 93.630.11
Gated Fusion 0.710.18 95.020.16 2.400.50 88.680.68 0.810.16 92.980.17

Table 3: Negative flip rate RNF and model accuracy (%) when increasing number of seeds used in new model
ensemble, comparing with our proposed method (Gated Fusion).

SST-2 MRPC QNLI

Old: BERTbase 92.000.27 85.690.90 90.740.09

to BERTlarge 93.120.29 87.401.02 92.220.16
Gated Fusion 93.050.09 87.450.52 92.240.24

- drop old model 93.170.61 87.751.14 92.220.44

to ELECTRAbase 95.000.06 88.580.57 92.900.26
Gated Fusion 95.020.16 88.680.68 92.980.17

- drop old model 95.160.09 88.630.94 93.060.13

Table 4: Accuracy (%) when dropping the old model
within Gated Fusion at inference time.

ductions of −0.92% on SST-2, −1.33% on MRPC,
and −2.01% on QNLI over the vanilla setup, re-
ducing 56.4%, 35.7%, and 71.3% of overall neg-
ative flips, respectively. Compared with upgrad-
ing to BERTlarge, we observe that upgrading to
ELECTRAbase has much smaller relative negative
flip reductions on SST-2 and MRPC, showing that
it could be indeed harder to improve backward-
compatibility when upgrading to a distinct pre-
trained model. In contrast, similar relative negative
flip reductions are observed on QNLI across two
upgrade scenarios. This could be attributed to the
abundant training data of the downstream task.

5.3 Drop Old Model at Inference Time

Our proposed method requires the old model to
be hosted together with the new model. A natural
question is whether we could train Gated Fusion
with the old model and then discard it at inference
time to host the new model only.

We first experiment with directly dropping the
old model within Gated Fusion at inference time.

SST-2
RNF Accuracy

Old Model: BERTbase - 92.000.27

New Model: ELECTRAbase 1.630.20 95.000.06
Gated Fusion - 50% cache 1.260.10 94.860.27
Gated Fusion - 75% cache 0.990.25 94.910.12
Gated Fusion 0.710.18 95.020.16

Table 5: Negative flip rate RNF and model accuracy
(%) of Gated Fusion withX% cache of old model logits
at inference time.

Results in Table 4 show that dropping old model
in Gated Fusion can still achieve comparable accu-
racy across the board, suggesting no performance
degradation. Nonetheless, we observe that the neg-
ative flip rates also fall back to similar positions as
training the new model in the vanilla setting.

However, in real application scenario, live in-
puts are often repetitively seen across time and en-
suring backward-compatibility means that correct
predictions on same instances can be preserved
after model upgrade. We experiment with the
caching method introduced in section 3.3 to store
old model’s logits on random X% of test instances
where Gated Fusion can later access them for in-
ference. Results in Table 5 show that with higher
percentage of cache,RNF is gradually reduced to-
wards RNF of the original Gated Fusion, which
is equivalent to 100% cache. Still, we observe a
notable gap in RNF between the partial caching
and full settings. We leave the examination of ways
to achieve the upper bound in reduction in RNF
with smaller cache to the future work.
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(Task, Label) Examples
B

E
R

T
ba
se
→

B
E

R
T
la
r
g
e (SST-2, Positive) [Sentence] A study in shades of gray, offering itself up in subtle plot maneuvers ...

(SST-2, Negative) [Sentence] Manages to be both repulsively sadistic and mundane.
(MRPC, Not Equivalent) [Sentence 1] Vivace was founded in 1999 and has raised over $118 million in three rounds of

venture financing. [Sentence 2] During difficult times for technology venture capital, Vivace raised
over $118 million in three rounds of venture financing.

(QNLI, Entailment) [Question] Why was there a depreciation of the industrialized nations dollars? [Sentence] Antic-
ipating that currency values would fluctuate unpredictably for a time, the industrialized nations
increased their reserves (by expanding their money supplies) in amounts far greater than before.

B
E

R
T
ba
se
→

E
L

E
C

T
R

A
ba
se

(SST-2, Positive) [Sentence] Aside from minor tinkering , this is the same movie you probably loved in 1994, except
that it looks even better.

(SST-2, Negative) [Sentence] It showcases carvey’s talent for voices, but not nearly enough and not without taxing
every drop of one’s patience to get to the good stuff .

(MRPC, Equivalent) [Sentence 1] Blair’s Foreign Secretary Jack Straw was to take his place on Monday to give a
statement to parliament on the European Union. [Sentence 2] Blair’s office said his Foreign
Secretary Jack Straw would take his place on Monday to give a statement to parliament on the EU
meeting the prime minister attended last week.

(QNLI, Not Entailment) [Question] What is the main executive body of the EU? [Sentence] This means that the Commission
has a monopoly on initiating the legislative procedure, although the Council is the "de facto catalyst
of many legislative initiatives".

Table 6: Examples of regression errors present when upgrading to the vanilla new model fonew but fixed by our
Gated Fusion approach, i.e. predictions of (fold, fonew, f

∗
GF ) are (correct, incorrect, correct), respectively.

5.4 Limitations of New Model Ensemble

In previous works (Yan et al., 2021; Xie et al.,
2021), new model ensemble via majority voting
is shown to effectively reduce negative flips and
posed as a difficult-to-beat baseline. Here, we in-
crease the number of models in ensemble to exam-
ine its limitations. Results in Table 3 show that en-
semble with more models generally help to obtain
lowerRNF . However,RNF converges quickly as
number of models increased, where a notable gap
remains between new model ensemble and Gated
Fusion. Moreover, the results show once more that
boosting accuracy does not necessarily improve the
backward compatibility in model upgrade.

In principle, two sources could cause negative
flips during model upgrade (a) the stochasticity dur-
ing model training, including initializations, data
loading order, and optimization process (Somepalli
et al., 2022). (b) the distinctions between old and
new model hypotheses, including architecture and
pretraining data and procedure, leading to different
representation space structures and prediction be-
haviors in terms of decision boundaries. Without
an explicit connection to fold, new model ensem-
ble can only reduce negative flips primarily caused
by the first factor, while our proposed Gated Fu-
sion directly learns to mitigate regression errors
regardless of their causes.

Besides, as large-scale generative models be-
come more and more powerful and popular (Raffel

et al., 2020; Brown et al., 2020; Su et al., 2021), it
would be difficult to fine-tune them multiple times
on a target task for ensemble.

5.5 Analysis of Gated Fusion

Comparing fonew with f∗GF , we can calculate the fix
rate and new fault rate of our Gated Fusion method.
During an upgrade, if there are 20 negative flips
with fonew and 16 out of them can be mitigated by
f∗GF , we obtain the fix rate to be 16/20 = 80%.
Similarly, if f∗GF introduces another 4 new nega-
tive flips which are not present with fonew, the new
fault rate is computed to be 4/20 = 20%. We cal-
culate the 5-seed average of these two rates across
different classification tasks and upgrade scenar-
ios. In BERTbase to BERTlarge, the averaged fix
rates by Gated Fusion are 68.4% on SST-2, 83.8%
on MRPC, and 82.9% on QNLI, with new fault
rates being 4.1% on SST-2, 11.3% on MRPC, and
9.7% on QNLI. In BERTbase to ELECTRAbase,
Gated Fusion achieves the averaged fix rates 58.0%
on SST-2, 50.8% on MRPC, and 75.6% on QNLI,
with new fault rates being 2.8% on SST-2, 15.2%
on MRPC, and 4.0% on QNLI. These results show
that, on average, Gated Fusion is able to eliminate
69.9% of total regression errors while adding only
7.9% new ones, comparing with doing model up-
grade without any treatment, i.e. fonew.

Table 6 shows a few regression error cases fixed
by our proposed approach. In general, Gated Fu-
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sion can mitigate negative flips happened on dif-
ferent classes across diverse tasks as well as on
inputs with variable lengths. With closer inspec-
tions of f∗GF , we found that when fnew produces
incorrect predictions and fold gives correct outputs,
gθ is capable of putting larger weights on fold to
ensure the backward compatibility. We also ob-
served that the gate gθ is more prone to over-fitting
when the downstream tasks have smaller training
set, e.g. MRPC, or are more difficult in nature,
e.g. single-sentence task SST-2 versus sentence-
pair tasks, which causes Gated Fusion to introduce
more new errors, i.e. higher new fault rates.

6 Discussion

Gated Fusion requires to host both old and new
models at inference time, which could raise a con-
cern regarding the increased computational burden.
However, in practice, old model’s logits of previous
inference instances can be cached in storage and
later leveraged in our Gated Fusion. That is, we
only need to host the new model with the gate at
inference time and leverage old predictions from
cache. And for the out-of-cache inputs, backward-
compatibility would be less of an issue since users
have not observed such examples to make conclu-
sions on the underlying regression.

For real-world applications, there could be mul-
tiple model updates and thus multiple legacy ver-
sions. We note that in this scenario, user experience
would be primarily grounded on predictions of the
latest legacy version, which are also saved in cache.
Our Gated Fusion can hence leverage them and
make new model’s predictions compatible to those
from the latest legacy version.

In addition, we emphasize that the main chal-
lenge in the regression reduction research problem
is to find the best trade-off between model effective-
ness and backward compatibility. In this work, we
show that the weighted ensemble of old-new mod-
els with a learned gate, which we call Gated Fusion,
achieves a better negative flip rate than previously
explored methods for regression reduction, while
straight-forward ensemble approaches cannot nat-
urally weigh on this trade-off. We don’t claim to
invent the gated ensemble of old and new models
but rather that our main contribution is to show
that by repurposing the classic gating mechanism,
the gated ensemble can become the most compet-
itive approach to the challenging model-upgrade
regression reduction problem, with no overall per-

formance degradation on two realistic model up-
date scenarios across three different datasets.

Recently, more and more NLP products have
been deployed in the industry as this field matures.
We would like to stress that as better NLP mod-
els are being developed, the backward-compatible
model upgrade problem naturally emerges as the
new research topic strongly motivated by the real-
world challenges. While backward-compatibility
is currently a niche research topic, we believe that
there are many thrilling future directions worth to
be investigated.

7 Related Work

Yan et al. (2021) first studied the backward com-
patibility of predictions during model upgrade on
image classification tasks. Later, Xie et al. (2021)
investigated the similar topic in natural language
understanding and formulated it as a constrained
optimization problem. They both show that cus-
tomized variants of knowledge distillation (Hinton
et al., 2015), which align the predictions of old
and new models on potential regression errors, are
effective approaches. A model ensemble has also
shown to be surprisingly effective (Yan et al., 2021;
Xie et al., 2021), despite no explicit connection
between old and new models. This was credited to
variance reduction in model predictions, making it
less prone to over-fitting and reducing regression
errors indirectly. In this work, we leverage the gat-
ing mechanism to combine old and new models to
further reduce model upgrade regression errors by
a large margin across classification tasks.

Cai et al. (2022) analyzed and proposed back-
ward congruent re-ranking to reduce regression in
model upgrades for structured predictions tasks
such as dependency parsing and conversational se-
mantic parsing. Träuble et al. (2021) proposed an
efficient probabilistic approach to locate data in-
stances whose old predictions could be incorrect
and update them with ones from the new model.
Zhou et al. (2022) looked into forward compatibil-
ity, where new classes can be easily incorporated
without negatively impacting existing prediction
behavior. More recently, Schumann et al. (2023)
inspected classification model regression during
training data updates and mitigated the problem by
interpolating between weights of the old and new
models. On top of that, learning cross-model com-
patible embeddings has been extensively explored
in visual search (Chen et al., 2019; Hu et al., 2019;
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Wang et al., 2020). Several techniques have been
proposed to optimize cross-model interoperability
of embeddings, including metric space alignment
(Shen et al., 2020), architecture search (Duggal
et al., 2021), and aligning class centers between
models Meng et al. (2021a). In this work, we fo-
cus on improving backward compatibility during
model upgrade in terms of prediction behavior on
classification tasks, i.e. old and new models should
produce consistently correct predictions.

Reducing regression during model upgrade is
also related to continual learning (Parisi et al., 2019;
De Lange et al., 2019; Sun et al., 2019; Chuang
et al., 2020; Sachidananda et al., 2021), incremental
learning (Chaudhry et al., 2018; Shan et al., 2020)
and concept drifting (Gama et al., 2014; Žliobaitė
et al., 2016; Ganin et al., 2016; Zhuang et al., 2020;
Lazaridou et al., 2021). In these problems, models
are required to learn from and deal with continu-
ously changing data (in terms of examples, classes
or tasks), and also need to prevent the forgetting
of previously learnt knowledge. This could be one
potential cause of regression observed at inference.
However, in backward-compatible model upgrade,
a new model, usually with distinct network archi-
tecture, is trained from scratch to perform the same
task and is expected to behave similarly wherever
the previous model predicts correctly.

The gating mechanism is widely adopted by re-
current neural networks to effectively control in-
formation flows across networks (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014; Van Oord
et al., 2016; Dauphin et al., 2017; Lai et al., 2019)
and contextualize embeddings (Peters et al., 2018;
Lai et al., 2020). It is then repurposed to act as
a switch for the mixture of different prediction
modes, notably to combine input word copying
based on the pointer network (Vinyals et al., 2015)
with the word generation from output vocabulary
(Gu et al., 2016; Merity et al., 2016; See et al.,
2017). Our proposed approach is inspired by these
works and leverages the gating mechanism to ef-
fectively combine old and new models to improve
backward compatibility during model upgrade.

8 Conclusion

Ensuring backward compatibility during model up-
grade has become a critical topic in real-world
NLP applications. In this work, we proposed a
new approach, Gated Fusion, that achieves sig-
nificantly better backward compatibility without

compromising accuracy performance on two chal-
lenging upgrade scenarios for NLP classification.
Experiments demonstrated that our approach out-
performs competing methods and achieves nega-
tive flip rate reductions by up to 73.2%. Our future
research includes improving backward compatibil-
ity beyond classification to span detection, model
upgrades with very large language models, and up-
grades on training data or label schema. We hope
that this work can inspire further research and make
progress towards smoother transitions of prediction
powers as NLP systems evolve.

Limitations

Our proposed method mostly works on the up-
grades of underlying pretrained language models
for NLP classification tasks. Potential limitations
include applying our approach on distant tasks such
as question answering or information retrieval, up-
grade to models from different architecture families
such as recurrent neural nets, and the inapplicability
of our method to more recent learning formulation
such as in-context learning via prompting.

Ethics Statement

Prediction backward compatibility during model
upgrade is an emerging research topic to ensure
positive congruency and smoother transitions from
existing models towards more performant systems.
With primary evaluation on accuracy and negative
flips, we acknowledge that our method may also in-
herit social biases and other toxicity persisted in the
legacy models. On the other hand, we have noted
that fairness and safety have been one of principal
criteria when developing system upgrades. Inves-
tigations of the inheritance of persistent toxicity
and mitigation of it during backward-compatible
upgrades merit interests of future research.
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A Details on Experiment Settings

A.1 Model Training Hyper-parameters

We search among following hyper-parameter space
for the training of the old model fold and the new
model in the vanilla setting fonew across all datasets:

• Learning Rate: 5e−6, 1e−5, 3e−5, 5e−5

• Batch Size: 16, 32
• Training Epochs: 3, 5, 8.

The selected hyper-parameters for each model with
(learning rate, batch size, training epoch):

• BERTbase:
– On SST-2: (lr 1e−5, batch 16, epoch 5)

– On MRPC: (lr 3e−5, batch 16, epoch 5)

– On QNLI: (lr 3e−5, batch 32, epoch 3)

• BERTlarge:
– On SST-2: (lr 1e−5, batch 16, epoch 5)

– On MRPC: (lr 3e−5, batch 16, epoch 5)

– On QNLI: (lr 3e−5, batch 32, epoch 3)

• ELECTRAbase:
– On SST-2: (lr 1e−5, batch 16, epoch 5)

– On MRPC: (lr 5e−5, batch 32, epoch 5)

– On QNLI: (lr 3e−5, batch 32, epoch 3)

These model training hyper-parameters for a spe-
cific model on one specific dataset is then fixed and
reused for all the competing methods to improve
backward compatibility during model upgrade.

A.2 Distillation Hyper-parameters

The knowledge distillation method from Xie
et al. (2021) imposed an additional loss λ ·
KL(lold/T, lnew/T ) on potential regression in-
stances. We experimented the best possible hyper-
parameters from the following:

• λ: 0.1, 1.0, 10.0
• Temperature T : 0.5, 1.0, 2.0

A.3 Details on Gated Fusion

We initialize the gate gθ to be a two-layer feed-
forward network with the architecture (Dropout,
Linear, LayerNorm, ReLU, Dropout, Linear, Sig-
moid) and fix the hidden size to be 64 across all our
experiments.

During the training of Gated Fusion, we only
train the fnew within f∗GF for the first (N − 1)
epochs to ensure its competence, where N is the
total training epochs. In the last training epoch, we
jointly train gθ and fnew using the Gated Fusion
logits l∗GF with the secondary learning rate lr2. To
prevent the overfitting of the gate, we also apply

drop_gate where at each training step during the
last epoch, there is D% to only train fnew within
f∗GF and (1−D)% to train with l∗GF .

The hyper-parameter space of Gated Fusion is
listed as follows:

• Drop Gate (%): 40, 50, 60, 80
• Temperature T on old logits: 1.0, 1.2, 1.4, 1.6
• lr2: 5e−7, 1e−6, 3e−6, 1e−5, 3e−5

We found that to achieve good results, the gap
in logit magnitude of fold and fnew needs to be
bridged by the temperature when upgrading from
BERTbase to ELECTRAbase, with T being 1.6
on SST-2, 1.6 on MRPC, and 1.2 on QNLI. On
the other hand, T = 1 gives good results across
three datasets when upgrading from BERTbase to
BERTlarge. This could result from the distinct
pretraining schemes between models where MLM
seem to produce larger magnitude of output logits.
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Abstract

Given a sentence “Abby told Brittney that
she upset Courtney”, one would struggle to
understand who “she” refers to, and ask for
clarification. However, if the word “upset”
were replaced with “hugged”, “she” unambigu-
ously refers to Abby. We study if modern
co-reference resolution models are sensitive to
such pronominal ambiguity. To this end, we
construct AMBICOREF, a diagnostic corpus of
minimal sentence pairs with ambiguous and un-
ambiguous referents. Our examples generalize
psycholinguistic studies of human perception
of ambiguity around particular arrangements of
verbs and their arguments. Analysis shows that
(1) humans are less sure of referents in ambigu-
ous AmbiCoref examples than unambiguous
ones, and (2) most coreference models show lit-
tle difference in output between ambiguous and
unambiguous pairs. We release AMBICOREF
as a diagnostic corpus for testing whether mod-
els treat ambiguity similarly to humans.1

1 Introduction

Ambiguity is a fundamental feature of lan-
guage (Wasow et al., 2003) that some linguists
believe arises because of a pressure for efficient
communication (Haywood et al., 2005; Piantadosi
et al., 2012). Recently, several works have high-
lighted the existence of ambiguity in tasks such as
question answering (Min et al., 2020; Guo et al.,
2021), frame disambiguation (Dumitrache et al.,
2019), anaphora resolution (Poesio and Artstein,
2005) and language modeling (Aina and Linzen,
2021). Yet systematic evaluation of how models
react to ambiguity across many types of language
processing problems is missing. We contribute one
such study about coreference resolution.

Coreference resolution is crucial to natural lan-
guage understanding, especially in long contexts,
such as dialog. Ambiguity may arise naturally

1Our dataset and code is available at
https://github.com/LucyYYW/AmbiCoref.

in dialog, but existing models do not have well-
defined target behavior for such coreferences. In
contrast, when people encounter coreferential ambi-
guity, they recognize it, and can ask for clarification.
Existing resources, such as OntoNotes (Weischedel
et al., 2013), do not provide fine-grained annota-
tions of such instances to evaluate model behavior.
This may result in models not being calibrated to
handle the uncertainty in interpretations of ambigu-
ous statements. In this work, we ask how sensitive
to ambiguity are models trained on these resources?

To understand how existing coreference mod-
els react to ambiguity, we construct a diagnostic
corpus, AMBICOREF. AMBICOREF is composed
of minimal pairs with ambiguous and unambigu-
ous referents, created from four types of templates.
Ambiguity is achieved by reducing context sizes
to one sentence, and creating sentences where par-
ticipating verbs under-constrain the interpretation
of their arguments. For example, in Table 1, line
2, our first template leverages ambiguity around
verbs expressing subjective experiences.2 The tem-
plates are designed by drawing on psycholinguistic
studies (Springston, 1976; Caramazza et al., 1977;
Rohde and Kehler, 2014) and a core contribution
of our work is to generalize their observations to
create thousands of instances. We achieve this by
identifying VerbNet (Schuler, 2005) classes that are
likely to contain appropriate verbs, and manually
assigning them to templates. Combined with vari-
ability we introduce using noun lists, AMBICOREF

contains over 96 thousand sentences.
We verify that humans perceive instances in

AMBICOREF in intended ways by crowdsourcing
judgements (§3). Annotators are asked to find the
coreferent for a pronoun in a sentence, and rate
their confidence, to account for the gradience in
ambiguity judgements (Schutze, 1995). We find

2Such instances require specific syntactic arrangements:
the ambiguous instance in line 2 is unambiguous if the pronoun
is moved to the object position of bored.
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Type Ambig. Template Count
1 Experiencer Obj (ECO-1) ✗ [Emily]A told [Jessica]B that [she]A [saw] [Brian]. 11336
2 Experiencer Obj (ECO-1) ✓ [Emily]A told [Jessica]B that [she]? [bored] [Brian]. 11336
3 Experiencer Obj (ECO-2) ✗ [The mother]A told [the sister]B that [she]A [saw] the client. 11336
4 Experiencer Obj (ECO-2) ✓ [The mother]A told [the sister]B that [she]? [bored] the client. 11336
5 Experiencer Sub (ECS-1) ✗ [The aunt]A told [Sarah]B that [the daughter] [met with] [her]A. 4472
6 Experiencer Sub (ECS-1) ✓ [The aunt]A told [Sarah]B that [the daughter] [liked] [her]?. 4472
7 Experiencer Sub (ECS-2) ✗ [The father]A told [the son]B that the client [met with] [him]A. 4472
8 Experiencer Sub (ECS-2) ✓ [The father]A told [the son]B that the client [liked] [him]?. 4472
9 Implicit Causality (IC) ✗ [Abby]A [called] [Jane]B because [she]A [wanted to apologize]. 8424

10 Implicit Causality (IC) ✓ [Abby]A [called] [Jane]B because [she]? [is leaving soon]. 8424
11 Transfer (TOP) ✗ [Daniel]A [baked] [the boy]B [a cake] [after] [he]B [asked for one]. 8424
12 Transfer (TOP) ✓ [Daniel]A [baked] [the boy]B [a cake] [before] [he]? [had lunch]. 8424

Table 1: Summary of the six template pairs that make up AMBICOREF. Template slot are indicated in square
bracket, and clusters are marked with subscripts and color. All templates pair an unambiguous sentence with an
ambiguous sentence, where they differ only in the choice of verb phrase.

that, for unambiguous instances, humans strongly
associate the pronoun with the intended noun but
for ambiguous ones, they show reduced confidence
across all templates, where the majority of partic-
ipants are either not confident or mark them as
ambiguous. This suggests that humans process
ambiguous and unambiguous sentences in AMBI-
COREF in qualitatively different ways.

AMBICOREF can be used to evaluate model
behavior in the presence of ambiguity. We ana-
lyze five representative English models: three in
CoreNLP (Manning et al., 2014), SpanBERT (Joshi
et al., 2020), and NeuralCoref 4.0 (Wolf et al.,
2020) (§4). Our main evaluation involves compar-
ing coreference cluster assignments of the pronoun,
between ambiguous and unambiguous samples. 4
out of the 5 models we analyze show almost no
behavioral change. Unlike humans, coreference
models largely do not alter their decisions in the
presence of ambiguity. Our analysis implies mod-
els likely need to explicitly account for ambiguity
to achieve human-like behavior in the face of am-
biguous input.

2 Dataset Construction

To understand model sensitivity towards coreferen-
tial ambiguity, we build AMBICOREF using four
types of templates, shown in Table 1. The tem-
plates are created in minimal pairs, and the only
difference between the ambiguous and unambigu-
ous counterparts lies in the choice of verb phrase.
Note that while ambiguity is a graded phenomenon,
we use the the term “ambiguous" for instances that
are more likely to elicit ambiguous human judge-
ments and vice-versa. Verb phrases are extracted

from suitable verb classes in VerbNet (Schuler,
2005), identified by manual annotation of VerbNet
clusters.3 Each template is instantiated with verbs,
names, noun-phrases, and gender-appropriate pro-
nouns, greatly expanding the variation in cases
identified in previous studies.

2.1 Template Types
Experiencer Constraint for Objects (ECO)
Springston (1976) propose the Experiencer Con-
straint for complement constructions which we op-
erationalize in our templates. Verbs that mark their
object as the experiencer of an emotion restrict the
assignment of an object position pronoun to the
subject of a declarative communication verb. Con-
versely, the assignment is unconstrained when the
pronoun is the subject of an experiencer verb. For
example, in row 2 of Table 1, a pronoun in the sub-
ject position of “bored” is ambiguous (but would
not be so in the object position). If the main verb
does not impose an experiencer constraint, row 1,
then a pronoun in the subject position is unambigu-
ous. We instantiate two variants with names (rows
1,2) and general entities (rows 3,4).

Experiencer Constraint for Subjects (ECS)
The Experiencer Constraint also suggests that verbs
that mark their subjects as the experiencer of the
emotion restrict the assignment of a subject posi-
tion pronoun. The assignment of the pronoun is
unconstrained when it is in the object position. For

3We consider verbs from verb classes 31: Psych-Verbs
(Verbs of Psychological State), 13: Verbs of Change of Posses-
sion, 37: Verbs of Communication as they conceptually align
well with conditions required for ambiguity. Verbs within
clusters were individually evaluated for appropriateness for
templates by the authors.
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Figure 1: Human annotation of ambiguous ( ) and unambiguous ( ) sentences. We abbreviate human annotations
by whether they identified noun A or B and whether they annotate definitely or likely (marked with ?). For example
A? indicates, noun A, likely. The ground truth for unambiguous instances, from left to right, corresponds to A, A, A,
A, A, B. Annotators read unambiguous examples as intended, and reduce their confidence on ambiguous examples.

example, in Table 1, row 6, “liked” is ambiguous
when a pronoun is placed in the object position (but
not in the subject position). We instantiate variants
with names (rows 5,6) and entities (rows 7,8).

Implicit Causality (IC) Caramazza et al. (1977)
hypothesize that implicit causality of a verb can de-
termine the direction of pronoun assignment. For
example, in Table 1 row 9, the phrase “wanted
to apologize” establishes a cause for why “Emily
called,” so the pronoun is constrained to the subject
of “call”. Conversely, in row 10, the phrase “is leav-
ing soon” fails to create such a relationship, leaving
the pronoun ambiguous. For these templates (rows
9,10), we vary the names of the entities involved,
and pair verbs (i.e. called) with constructed phrases
that imply causality (i.e. apologizing), manually.

Transfer of Possession (TOP) Rohde and Kehler
(2014) suggests that in transfer-of-possession con-
texts such as, “John passed the comic to Bill. He...”,
the pronoun is equally likely to refer back to subject
and non-subject. We draw upon this observation,
and create a template around verbs that involve
source-goal possession transfers. We distill the ex-
ample to one sentence and pair the transfer event
with a reason. For example, in Table 1 row 11,
the phrase “asked for one” constrains the pronoun
to be the receiver of “bake”. Conversely, before
having lunch provides no such constraint, because
either the receiver or giver could have “had lunch”
before the event. Templates vary the names, verbs,
objects, reasons, and preposition (rows 11,12).

2.2 Filling Template Slots
For each template, we construct a list of appropri-
ate verb phrases, reasons (for IC and TOP tem-
plates), and shared list of gendered names and
noun-phrases. Verb phrases were constructed by
manually inspecting VerbNet classes. To con-
trol for name bias, we randomly sample names

from popular name lists4 from the last 50 years,
and reuse gendered noun-phrase lists from Wino-
Bias (Zhao et al., 2018). Excluding name and noun-
phrase variations, templates have 114, 45, 81, 82
instances for ECO, ECS, IC, and TOP, respectively.

3 Human Judgements

The templates used to create AMBICOREF gener-
alize several psycholinguistic studies using lexical
resources. Next, we verify that humans perceive
ambiguity in these examples in the intended ways.
We extract a subset of data for each template and
ask Amazon Mechanical Turk workers which per-
son a pronoun refers to (marked as A or B in Ta-
ble 1) and assign confidence (definitely, or likely).
Annotators were also allowed to mark the referent
as entirely ambiguous. One sentence was sampled
for each template and verb slot, uniformly at ran-
dom. We collected 3 annotations per instance.5 See
Appendix A for details on the collection of human
judgements.

Figure 1 summarizes our results. Human judg-
ments for unambiguous templates favor the in-
tended coreference decision. For unambiguous
ECO, ECS, IC, TOP instances, the intended read-
ing is selected as likely or definitely, 83.2%, 91.9%,
and 85.8%, 68.3% of the time, respectively. For
ambiguous instances, annotations display a substan-
tial shift toward ambiguity. As shown in previous
work, humans display substantial disagreement on
ambiguous instances (Poesio et al., 2019). This is
reflected in many templates, such as TOP, where
humans produce almost uniform responses.

4https://www.ssa.gov/oact/babynames/decades/
5In ambiguous cases, annotators do not reliably annotate a

particular category, but often guess with low confidence. As
such, we do not only report a majority opinion per instance,
but instead simply report multiple annotations per sentence to
see overall trends.
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Figure 2: Percentage of ambiguous ( ) and unambiguous ( ) instances that fall into each of our five cases for the
SpanBERT-based model across all templates. All other models show negligible shifts (red and grey distributions are
almost identical). The ground truth for unambiguous instances, from left to right, corresponds to A, A, A, A, A, B.

4 Model Evaluation

We now examine if we can detect sensitivity to
ambiguity in existing coreference resolution mod-
els by evaluating on AMBICOREF. We exper-
iment 6 with five representative models: Neu-
ralCoref 4.0 model from Hugging Face 7, Span-
BERT (Joshi et al., 2020) representation within
the independent framework for end-to-end coref-
erence (Joshi et al., 2019), and the three models
in Stanford CoreNLP (Manning et al., 2014): de-
terministic (Lee et al., 2013), statistical (Clark and
Manning, 2015) and neural mention ranking (Clark
and Manning, 2016). All models were trained on
the CoNLL 2012 dataset (Pradhan et al., 2012).

Here, we evaluate the model’s final predictions,
not their distribution over possible choices. The
reason is two-fold: (1) not all models produce a
distribution and (2) initial analysis revealed that the
models are miscalibrated, as in other settings (De-
sai and Durrett, 2020; Jiang et al., 2021), making it
unreliable to interpret their output scores directly.

4.1 Setup
In this section, we ask, are there differences be-
tween how models process similar unambiguous
and ambiguous examples? As our examples are
synthetically generated, we use the unambiguous
examples as a form of control. If a model is unable
to link the pronoun with the correct noun on unam-
biguous examples for at least 40% of examples, we
omit that template during evaluation.

We analyze model behavior by breaking it into
cases that cover all possible cluster assignments for
the pronoun in a single sentence. We compute the
percentage of time a model outputs a cluster with:

• case A: the pronoun and noun A
• case B: the pronoun and noun B
• case S: the pronoun as a singleton
6Roughly one week of continuous Colab GPU compute.
7https://github.com/huggingface/neuralcoref

Model Mean EMD % Templates
SpanBERT 11.7 5

CoreNLP Neural 3.5 5
NeuralCoref 4.0 4.0 5

CoreNLP Statistical 1.2 3
CoreNLP Deterministic 0.6 5

Table 2: Mean Earth Mover’s Distance between
matched ambiguous and unambiguous case distributions
and the number of templates where models get at least
40% of unambiguous cases correct.

• case M: the pronoun, noun A, and noun B
• case O: the pronoun and any other span

For example, Figure 2 contains SpanBERT’s out-
put distribution over these cases for each template.
For each such distribution where the model’s perfor-
mance is above threshold, we compare ambiguous
(red bar) and unambiguous (grey bar) distributions
using Earth Mover’s Distance (EMD) (Pele and
Werman, 2009)8. Table 2 reports the number of
templates above threshold, and their mean EMD.

4.2 Results

Overall, most models we evaluated show essen-
tially no change in output distribution over cases
between ambiguous and unambiguous templates,
as evidenced by near zero EMD. Most models are
evaluated on five of six templates, but TOP is often
excluded, representing a hard unambiguous case
for most systems in its own right.

Of the models we evaluated, only SpanBERT
shows significant deviation in behavior with am-
biguous inputs. Figure 2 breaks down SpanBERT’s
performance on each template. While average
EMD is higher than for other models, it still
largely doesn’t change predictions. When deci-

8Earth Mover’s distances represent the amount of prob-
ability mass required to match two probability distributions.
Hence, they help us compare distributions for ambiguous and
unambiguous instances in a more interpretable way, than other
possible measures like KL divergence.
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sions change, often the pronoun is linked with the
other noun. For example, in ambiguous cases of
ECO-1, SpanBERT reduces merged outputs, and
instead links the pronoun with noun B more fre-
quently. In ambiguous cases, other models largely
link the first noun-phrase (A) to the pronoun.

5 Discussion and Conclusion

Overall, our results suggest that model behavior
significantly deviates from how human treat am-
biguous coreference. We lend more evidence that
models miss aspects of how people understand
language, especially in discourse (Upadhye et al.,
2020). The reason is likely in part that models are
trained on resources which do not account for dis-
tributions in judgments. As a result, models do not
have well-defined behavior when ambiguity arises
and are poorly calibrated.

Training models with finer-grained coreference
judgments could allow models to better align with
human behavior. Techniques to improve model cal-
ibration could also be effective, allowing models to
abstain or seek clarification when ambiguity arises.
We hope that AMBICOREF can serve as a diagnos-
tic set for future modeling approaches in evaluating
their sensitivity to instances of ambiguity in lan-
guage.

6 Limitations

Our study focuses entirely on coreference in the
English language with models trained in high-
resource settings. Furthermore, the cases of am-
biguity we identify are English-specific and the
names we insert into templates are popular Amer-
ican names. It is an open question as to how our
results generalize to low-resource non-American-
English settings.

The language we use to evaluate models is tem-
platic. While we make an effort to account for
unnatural data, by only evaluating templates mod-
els do well at, models struggle to completely solve
all our unambiguous examples. This presents a
challenge for future model builders. On the other
hand, our templates may not reflect a particular real
world distribution that models will be tested on.
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A Human Judgement Tests

In all our human judgement tests, we required an-
notators to be based primarily in English-speaking
countries: the US, UK, Canada or Australia. Fur-
ther, annotators needed to have at least 1000 ap-
proved HITs and a HIT acceptance rate of at least
98%. Each HIT contained 10 examples, and we
estimated the completion time for each HIT to be
∼5 minutes, so we paid $1.25 per HIT, for a pay
rate of $15 per hour.

For our human judgement tests, we first ran a
qualification round to ensure high-quality annota-
tions. In this round, we asked annotators to com-
plete a single HIT with 10 examples (5 unambigu-
ous, 5 ambiguous randomly ordered). For each
annotator who completed this round, we compute
their accuracy by measuring how often they re-
sponded with the correct referent (or the ambigu-
ous label), while ignoring their confidence. The
top 100 annotators were qualified to work on the
main task.

For our main task, we had 625 sentences labeled
in total, with 3 assignments per sentence. Each
annotator was asked to work on not more than 5
HITs, so that we get a diverse set of judgements.
Similar to the qualification round, we asked each
annotator to label the referent (or the ambiguous
label) and their confidence. We group the annota-
tions into 5 options: (Noun A, definitely), (Noun A,
likely), Ambiguous, (Noun B, likely), and (Noun B,
definitely). The human judgement labels for each
template type were aggregated by computing the
fraction of annotations in each of the five options.
Our annotation interface for the main task is shown
in Figure 3.
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Figure 3: Annotation interface for the human judgement tests, presented in section 2.
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Abstract

Unsupervised out-of-domain (OOD) detection
is a task aimed at discriminating whether given
samples are from the in-domain or not, without
the categorical labels of in-domain instances.
Unlike supervised OOD, as there are no la-
bels for training a classifier, previous works
on unsupervised OOD detection adopted the
one-class classification (OCC) approach, as-
suming that the training samples come from a
single domain. However, in-domain instances
in many real world applications can have a het-
erogeneous distribution (i.e., across multiple
domains or multiple classes). In this case, OCC
methods have difficulty in reflecting the cate-
gorical information of the domain properly. To
tackle this issue, we propose a two-stage frame-
work that leverages the latent categorical infor-
mation to improve representation learning for
textual OOD detection. In the first stage, we
train a transformer-based sentence encoder for
pseudo labeling by contrastive loss and cluster
loss. The second stage is pseudo label learning
in which the model is re-trained with pseudo-
labels obtained in the first stage. The empiri-
cal results on the three datasets show that our
two-stage framework significantly outperforms
baseline models in more challenging scenarios.

1 Introduction

Deep neural networks show outstanding perfor-
mance on benchmark datasets that have the same
training and test domains. However, once the
model is deployed to the real world, it can face out-
of-domain (OOD) instances that make the model
predict unreliable outcomes related to AI safety is-
sues (Amodei et al., 2016; Hendrycks and Gimpel,
2017). For this reason, the OOD detection task
aims to discriminate whether given instances are
from in-domain (IND) or not. One of the main
OOD detection approaches is to use a classifier that
predicts the labels of IND samples, based on the

* indicates corresponding author.

fact that the classifier has lower confidence in pre-
dicting the OOD samples than the IND (Hendrycks
and Gimpel, 2017; Lee et al., 2018).

As this approach targets only supervised tasks
that require IND labels to train the classifier, it has
a limitation on unsupervised tasks. To overcome
this problem, recent studies have proposed unsuper-
vised OOD detection (or the without label scenario)
that can be utilized in a more general use case (Xu
et al., 2021; Jin et al., 2022). This setting can be
regarded as one-class classification (OCC) because
it uses only IND instances without labels and aims
to distinguish novel samples from IND instances.
Within this background, unsupervised OOD de-
tection methods introduce OCC approaches such
as OC-SVM and SVDD (Xu et al., 2021; Sohn
et al., 2020). Meanwhile, self-supervision based
models exploit a novel property named inlier pri-
ority (Wang et al., 2019) by using pseudo labels
that are generated for surrogate supervision (e.g.,
rotation transformation (Hendrycks et al., 2019)).

In the field of natural language processing (NLP),
this approach is adopted in combination with self-
supervised methods of pretrained-language mod-
els (Manolache et al., 2021a). However, there are
tasks where the categorical labels of training data
are not available, while the IND has categorical
distributions (e.g., summarization, topic modeling).
OCC methods can suffer in this scenario (Jin et al.,
2022; Park et al., 2021) due to the absence of IND
labels, because it is difficult for the model to ex-
plicitly reflect the latent categorical distribution.

To tackle this problem, we propose a two-stage
framework for textual out-of-domain detection that
embeds similar INDs close together by considering
latent categorical information of heterogenous IND
instances without labels, and then detects OOD in-
stances based on the learned embedding space. To
achieve this, in the first stage, we conduct pseudo
labeling of training samples by using an unsuper-
vised clustering method combined with contrastive
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loss. Next, the model from the first stage is refined
by the given pseudo labels, which we call pseudo
label learning (PLL). We find that this second stage
of PLL greatly improves the representation learn-
ing for IND instances. After training is done, the
inference step uses a confidence score function that
measures the likelihood of whether an input is IND
or OOD.

Our experimental results on three real-world
datasets with the pre-trained RoBERTa (Liu et al.,
2019) as a base architecture show that the proposed
framework substantially outperforms the baseline
models in various settings. In addition, we conduct
embedding space analysis to confirm the effective-
ness of PLL and show that it learns a more suitable
representation for OOD detection by increasing
inter-cluster distance significantly, which makes
OOD samples more distinct from the clusters.

In summary, our main contributions are as fol-
lows:

• We propose a new framework for text OOD de-
tection that effectively utilizes latent categor-
ical information of IND through two succes-
sive steps of clustering for obtaining pseudo
labels and then re-learning the pseudo labels
for better representation learning.

• We provide a systematic analysis of the result
by dividing OOD instances into near-OOD
and far OOD depending on how close they are
to IND samples. Our method works especially
well on near-OOD, a more challenging sce-
nario, in comparison with other methods. We
also analyze the embedding space to confirm
the effectiveness of our PLL approach.

• We empirically demonstrate that our proposed
method is highly effective in multi-domain
settings where the IND distribution has high
variability, by increasing the inter-cluster dis-
tances and placing OOD out of detection
boundaries of each cluster.

2 Related Work

Out of Domain Detection. OOD detection aims
to distinguish OOD instances from IND to prevent
a model trained for IND from making wrong pre-
dictions in the real applications. One of the main
approaches is to rely on a classifier for IND labels,
supposing that the softmax probability value of
the IND will be larger than OOD (Hendrycks and

Gimpel, 2017). Furthermore, (Liang et al., 2018;
Lee et al., 2018; Hsu et al., 2020) improve this
method by adding perturbation to the inputs, which
further increases the softmax probability of IND.
In the NLP field, Hendrycks et al., 2020 find out
that transformer-based models are more effective
than convolutional neural networks (LeCun et al.,
1998) or long short-term memory (Hochreiter and
Schmidhuber, 1997) based models in detecting tex-
tual OODs. To improve OOD detection perfor-
mance for the models, (Zhou et al., 2021) utilize
supervised contrastive loss that creates a more com-
pact representation. However, these approaches
cannot be used without IND labels.
Unsupervised Out of Domain Detection. Self-
supervised methods can handle this issue by us-
ing augmentation techniques (Sehwag et al., 2020;
Wang et al., 2019). Manolache et al., 2021a adopt
this approach by utilizing the training scheme in-
troduced in ELECTRA (Clark et al., 2019). They
use a generator to replace random masked tokens
in the input and train a discriminator to predict
whether each token is replaced by the generator or
not. Xu et al., 2021 focus on the findings that dif-
ferent layers of BERT Devlin et al., 2019 can cap-
ture different linguistic information. They compute
the Mahalonobis distance using the embeddings in
each layer and construct a new vector consisting
of the distance values across all the layers. This
new feature vector is used as input to OCC-based
OOD detection methods. However, these models
are difficult to perform well when INDs are in het-
erogeneous domains (or multiple classes), because
they do not explicitly reflect the multimodal IND
distribution. Cluster-based approaches can help al-
leviate this problem since they assume that the IND
has a latent class distribution in its feature space.
Jin et al., 2022 introduce a clustering method for
representation learning to reflect categorical dis-
tributions on the embedding space. Our approach
is motivated by (Jin et al., 2022), but our method
generates pseudo labels and uses them explicitly
to reinforce this categorical information, which
greatly improves the performance.

3 Proposed Framework

In this section, we describe our two-stage frame-
work for unsupervised OOD detection. First, the
purpose of stage 1 is to generate pseudo labels that
include categorical information of IND samples.
We train a sentence encoder based on a pre-trained
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Figure 1: The overall framework of the proposed method. A) illustrates the change of representations in the
embedding space during two stages of the training phase. B) shows the proposed framework. It consists of two
stages of pseudo labeling (stage1) and pseudo label learning (stage2). C) shows the inference phase to detect OOD
samples using a confidence score function. Dtrain is a training dataset that contains only IND samples xi, without
labels. ypseudoi is the pseudo label for xi generated in stage 1.

transformer for pseudo labeling of IND training
samples using contrastive loss and cluster loss. Af-
ter then, in stage 2, we perform pseudo label learn-
ing, designed to explicitly utilize the pseudo labels
for reinforcing the categorical information through
a classification task. Finally, we use a scoring func-
tion that indicates the confidence of being IND to
detect OOD samples at test time. Our proposed
framework is illustrated in Figure 1.

3.1 Pseudo Labeling
The pseudo labeling stage is designed to gener-
ate pseudo labels ypseudoi for each xi in Dtrain =
{xi}Mi=1. To do that, we assume that IND data have
K categories that are represented in the latent se-
mantic space. Let µk denote the centroid of each
cluster k and ψ be a transformer-based sentence
encoder:

ei = ψ(xi).

For each sample xi, we use the Student’s t-
distribution to compute a soft assignment probabil-
ity qik , meaning the probability that the sample
i belongs to the cluster k, by the following equa-
tion (Van der Maaten and Hinton, 2008):

qik =
(1 + ||ei − µk||22])−

α+1
2

∑K
ḱ=1

(1 + ||ei − µḱ||22])−
α+1
2

,

Here, α represents the degrees of freedom of the
Student’s t-distribution. In this work, we set α =

1. The cluster centroids and the soft assignment
probability can be refined iteratively by using an
auxiliary target distribution proposed by (Xie et al.,
2016) as:

pik =
q2ik/fk∑K
ḱ=1

q2
iḱ
/fḱ

,

where fk =
∑M

j=1 qjk is the soft cluster frequency
to normalize qik raised to the second power. This
target distribution first sharpens the soft assignment
probability qjk by raising it to the second power
and then normalizes it by the associated cluster
frequency. The soft assignment is optimized based
on KL-divergence between pi = (pi1, ..., piK) and
qi = (qi1, ..., qiK):

lCi = KL(pi||qi) =
K∑

k=1

pik log
pik
qik

The clustering objective is then defined as follows:

Lcluster =
1

M

M∑

i=1

lCi

This loss function encourages learning from cluster
assignment with high confidence and debiasing
imbalanced cluster assignment.

Following (Zhang et al., 2021), we also adopt
contrastive learning to improve clustering perfor-
mance. Contrastive loss scatters the samples while
closely embedding samples sharing the same prop-
erties. For contrastive learning, we use dropout
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mask augmentation which simply feeds the same
input to the transformer-based encoder1 twice(Gao
et al., 2021). Using this augmentation method, we
construct a positive pair (x0i , x

1
i ) from the same xi

with different dropout masks. We try to minimize
the following contrastive learning loss:

lCLi = −log exp(sim(zi0 , zi1)/τ)∑2M
j=1 Ij · (exp(sim(zi0 , zj)/τ))

,

where zi = g(ψ(xi)) and g is a network of fully-
connected layers. We choose sim(·) as the dot
product between a pair of normalized outputs, i.e.,
sim(zi, zj) = zTi zj/||zi||2||zj ||2. Then the overall
contrastive learning objective is defined as:

LCL =
1

2M

2M∑

i=1

lCLi

In summary, the final objective for stage 1 is the
following:

Lstage1 = Lcluster + λLCL (1)

After training the model for pseudo labeling by
using the stage1 loss, we assign the pseudo label
ypseudoi for each xi ∈ Dtrain using the soft assign-
ment probability.

3.2 Pseudo Label Learning
Contrastive learning is useful for clustering and
pseudo labeling because contrastive loss separates
samples apart from each other to prevent overlap
in the representation space. However, it is not suffi-
cient for OOD detection because OOD samples can
be located close to the cluster boundaries as illus-
trated in Figure 1. Therefore, we introduce pseudo
label learning(PLL), which allows the text encoder
to learn representations that are more suitable for
OOD detection. PLL explicitly uses pseudo la-
bels to further separate clusters in the embedding
space. Therefore, we fine-tune the model by target-
ing pseudo labels ypseudoi using the cross-entropy
loss. The loss function in stage 2 is as follows:

Lstage2 = LCE = −
M∑

i=1

ypseudoi · log(pi)

where pi is the predicted probability distribution
for the pseudo label.

1Transformer already has dropout mask in fully-connected
layer and attention probabilities

3.3 Confidence score function
Next, we introduce the confidence score function
s for OOD detection that uses a classifier in stage
2. The scoring function s aims to map the repre-
sentations of instances to confidence scores, where
higher scores indicate higher confidence for being
IND. In the following, we present several options
for this scoring function.
Maximum Softmax Probability (MSP).
Hendrycks and Gimpel, 2017 suggest the maxi-
mum class probability among K training classes
in the softmax layer as an OOD indicator. This
method has been extensively used as a baseline
for OOD detection (Hendrycks et al., 2020; Zhou
et al., 2021), which defines the score as:

s = 1−max{pk | k = 1, ...,K}.

Energy Score (Energy). Liu et al., 2020 propose
energy based score that theoretically outperforms
the softmax based score, which is defined as:

s = − log

K∑

j

(wTj h)

where wj is the weight of the jth class in the soft-
max layer, and h is the input to the softmax layer. A
higher s means higher probability density in OOD
classes and thus implies lower IND likelihood.
Mahalanobis Distance (Maha). Podolskiy et al.,
2021 showed that the distance-based scoring func-
tion can outperform other methods in a supervised
setting, which is defined as:

s = −min
k

(h− µk)TΣ−1k (h− µk)

where µk is the mean vector and
∑

k is the covari-
ance matrix of each latent class k. Then, given an
instance x during inference, it calculates the confi-
dence score as the minimum Mahalanobis distance
among the K classes.

4 Experiments

In this section, we present the experimental setting
for the evaluation of the proposed framework. We
describe the used datasets and how to construct
IND and OOD samples under unsupervised OOD
scenarios.

4.1 Dataset
To evaluate the proposed model, we select the fol-
lowing three real world datasets.
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Dataset Ratio Model AUROC AUIN AUOUT AUROC AUIN AUOUT
Near OOD Far OOD

CLINC150 0.25 DATE 74.30 49.23 88.43 88.03 89.55 84.68
MDF 79.51 59.43 91.60 91.19 90.54 88.61
Ours 93.68 86.73 97.39 98.46 98.7 98.11

0.5 DATE 69.67 67.53 68.23 86.71 93.09 72.37
MDF 73.81 70.51 72.85 87.81 93.77 75.27
Ours 89.72 89.71 88.9 97.00 98.56 94.04

0.75 DATE 66.88 83.22 41.34 86.38 95.03 63.83
MDF 69.42 85.78 45.83 83.18 93.83 59.05
Ours 87.21 94.51 71.69 96.52 98.84 91.1

HWU64 0.25 DATE 69.85 44.43 85.77 79.36 59.23 91.00
MDF 77.19 60.51 88.95 85.15 73.5 93.62
Ours 85.25 72.25 92.84 91.69 82.97 96.69

0.5 DATE 64.82 64.04 61.68 79.78 72.68 83.96
MDF 68.60 70.22 65.37 82.32 77.22 86.55
Ours 81.43 81.99 79.12 91.39 87.08 94.15

0.75 DATE 63.03 82.97 34.58 81.55 80.19 79.74
MDF 66.96 85.84 36.41 83.986 83.77 83.03
Ours 78.63 91.11 52.88 90.46 89.33 90.76

BANKING77 0.25 DATE 75.36 44.24 90.34 98.41 97.7 98.9
MDF 70.81 55.62 70.51 99.42 99.09 99.56
Ours 88.72 77.04 95.31 99.83 99.72 99.82

0.5 DATE 66.70 61.76 68.84 98.21 98.56 97.78
MDF 64.73 63.46 63.48 99.14 99.11 98.73
Ours 78.63 77.34 79.3 99.21 99.38 98.95

0.75 DATE 60.65 79.25 38.31 97.94 98.83 96.64
MDF 61.61 81.43 35.66 98.94 98.71 98.45
Ours 70.34 85.87 46.51 98.57 99.27 97.46

Table 1: OOD detection performance with different IND class ratios (25%, 50%, and 75%) on three datasets,
CLINC150, HWU64, and BANKING77. Scores in bold type are the best results. For all of our methods, we report
the averaged results using Mahalanobis distance-based score and the number of clusters equal to the number of
IND classes due to space limitations. We collected the results for other methods (Xu et al., 2021, Manolache et al.,
2021b) by running their released codes.

CLINC150 (Larson et al., 2019) is a dataset de-
signed for OOD detection. The training set con-
tains 15,000 utterances with 10 domains and 150
classes (e.g., travel.timezone, home.reminder, and
credit_cards.rewards_balance). This dataset also
provides 1,000 OOD samples that are not within
any of 150 classes. For evaluation, we use 4,500
IND and 1,000 OOD samples from the test set.

HWU64 (Xingkun Liu and Rieser, 2019) in-
cludes 8,954 utterances for 64 intents with 21 do-
mains (e.g., alarm_set, cooking_recipe, and cal-
endar_query). For evaluation, we use 1,076 IND
samples from the test set.

BANKING77 (Casanueva et al., 2020) contains
8,622 utterances related to banking with 77 differ-
ent fine-grained intents in the training set. Despite
consisting of a single domain, this dataset is chal-
lenging, as it requires fine-grained differentiation
between very similar intents. For evaluation, we
use 3,080 IND samples from the test set.

4.2 Experimental setting

We carefully design experimental scenarios as-
suming that training data consist of instances dis-
tributed across multiple domains with any category
given. Inspired by Zhang et al., 2022, we divide
OOD samples into two types: near-OOD and far-
OOD. We suppose that the near-OOD samples are
distributed in the same domain with the training
samples but labeled as different categories, whereas
the far-OOD samples are distributed in distinct do-
mains. The proposed scenarios are more challeng-
ing because OOD can share characteristics with
IND.

For our scenarios, we randomly select a subset of
classes in the training data as IND, with IND class
ratios of 25%, 50%, and 75% and use the remain-
ing classes as near-OOD. Following (Zhang et al.,
2022), we use the OOD samples in the CLINC150
dataset as far-OOD. We split each dataset five times
with different random seeds, which are shared
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across all the models for a fair comparison.

4.3 Baselines

We compare our method with the following un-
supervised OOD detection methods: MDF (Xu
et al., 2021) and DATE (Manolache et al., 2021a).
MDF utilizes full features from all the layers of
a pretrain-transformer model and calculates the
Mahalanobis distance vector from the layer repre-
sentations, which is in turn used as input to OC-
SVM. In addition, there are additional training
stages such as IMLM (In-domain Masked Lan-
guage Model) and BCAD (Binary Classification
with Auxiliary Dataset) before feature extraction.
DATE is a pseudo label based approach. It uses a
self-supervised learning method of ELECTRA that
distinguishes whether each token is replaced or not
to generate anomaly scores from the loss obtained
by pseudo-labeled tokens.

4.4 Evaluation Metric

To evaluate our proposed method, we report three
different metrics following (Liang et al., 2018; Xu
et al., 2021). The area under the receiver operating
characteristic curve (AUROC) depicts the relation-
ship between the true positive rate and the false
positive rate. A higher score indicates improved dis-
tinguishment between IND and OOD by the model.
The area under the precision-recall curve (AUPR)
shows the precision and recall against each other,
for IND and OOD testing sentences, denoted by
AUIN and AUOUT, respectively.

4.5 Implement details

For a fair comparison, we also select roberta-base
from Huggingface’s Transformers (Wolf et al.,
2020) as a base architecture for the sentence en-
coder, the same as MDF. In stage 1, we choose
τ = 0.5, λ = 10, and α = 1. We use a constant
learning rate of 3e-6 to optimize the sentence en-
coder and 3e-4 to optimize g() and the liner layer
for soft cluster assignment. In stage 2, we set the
learning rate to 3e-5. We use the Adam optimizer
(Kingma and Ba, 2015) with a batch size of 128 for
both stages. We used the same hyperparameters for
all datasets and splits following Manolache et al.,
2021a.

Figure 2: The OOD detection performance with respect
to different ratios of IND classes (0.25%, 0.50%, and
0.75%).

5 Result

5.1 Comparisons with baseline methods

Table 1 presents the performance of each method
on the three datasets with different IND class ratios
(25%, 50%, and 75%). The proposed framework
outperforms two baselines, DATE and MDF, by a
large margin for the AUROC, AUIN, and AUOUT
scores across all three datasets regardless of IND
class ratios in the near-OOD and far-OOD setting,
except just one case (BANKING77 with the ratio
0.75). In particular, our method greatly improves
the performance over other methods on the near-
OOD dataset, which represents a more challenging
scenario. This shows that the proposed method is
robust in multi-domain IND settings regardless of
OOD types. In HWU64 dataset that contains more
heterogenous domains than the other two datasets,
the OCC-based models, MDF and DATE, appear
to have weaknesses in more heterogeneous domain
settings, but our method shows good performance.
In addition, in the BANKING77 that is the least
heterogeneous setting, our method shows similar
or higher performance than the other methods as
well.

Figure 2 shows the performance with respect to
the IND class ratio on three datasets. The perfor-
mance of all models tend to increase when the ratio
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Figure 3: Effect of the number of clusters K with an ablation study. The first row is for the near-OOD setting, the
second row is for the far-OOD setting. The columns sequentially correspond to the results on CLINC150, HWU64,
and Banking77 datasets for the IND class ratio of 0.75. We compare our proposed method (shown in blue) with the
result using only Lstage1 (orange) and the result using only LCL (red). The green line denoted as supervised shows
the result when the ground truth labels of IND classes are used during training.

decreases, which is as expected, because fewer IND
classes imply less heterogeneous IND distributions
and hence easier scenarios. In addition, our method
shows more accurate and robust performance with
smaller variances (shown as vertical line segments).
However, OCC-based methods are more suscep-
tible to randomness during training because they
need to bind one characteristic.

5.2 Number of clusters K

The selection of the number of clusters K is an
open problem for unsupervised OOD detection
since there is no validation OOD set to choose
the hyperparameter value. For the results shown
in Table 1 and Figure 2, we set K as the number
of IND labels given. To measure the influence of
K, we plot the change of performance as K is
increased in Figure 3. The blue curve indicates
our method and the orange line indicates clustering
based method with clustering loss and contrastive
loss. We find that a larger number of clusters K
generally leads to better results for OOD detection.
As K increases, the blue curve moves upward to
the right, showing that the larger number of clusters
allows more detailed consideration of IND samples.
It allows more OOD samples to be pushed away
from the clusters. In other words, OOD samples
that are placed inside a cluster can be located in
between as the clusters become more segregated.
Therefore, choosing an appropriately large K is ad-

Dataset Model Near OOD Far OOD
MSP 76.51 89

CLINC150 Energy 78.55 91.53
Mahalanobis 87.21 96.52
MSP 69.32 78.34

HWE Energy 71.32 83.31
Mahalanobis 78.63 90.46
MSP 58.62 88.07

BANKING77 Energy 58.87 92.23
Mahalanobis 70.34 98.57

Table 2: Performance comparison using different confi-
dence score functions. In this result, we set the number
of clusters K equal to the number of IND classes in
each dataset

vantageous for OOD detection. This is empirically
demonstrated in Figure 3.

5.3 Ablation study

As shown in Figure 3, our two-stage approach com-
bining clustering and PLL outperforms clustering-
based approaches (shown in orange and red) es-
pecially on near-OOD setups. This result reveals
that PLL at the second stage utilizes more categori-
cal information than the clustering-based models
in stage 1. In far-OOD, our method shows lower
performance in only one case (BANKING77) with
a very small margin (less than 0.5%). The green
line indicates the performance of the oracle model
that is supervised by ground truth labels of IND
samples during training. In CLINC150, the perfor-
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Dataset Model max min mean median
CLINC150 Clustering(Only) 4.268 2.464 3.508 3.566

PLL 18.776 4.46 9.92 8.968
HWU Clustering(Only) 7.523 3.577 5.439 5.35

PLL 16.997 5.588 10.082 9.153
BANKING Clustering(Only) 5.054 3.706 4.428 4.386

PLL 16.44 5.654 12.1 12.114

Table 3: Intra-cluster variance statistics

mance of our proposing model with high enough
k can be almost close to the green line in the near-
OOD setting. In addition, our methods show simi-
lar performance with the supervised model on the
HWU64 dataset in far-OOD settings.

Regarding to the choice for a scoring function,
Mahalanobis distance shows the best result regard-
less of datasets and OOD settings (Table 2). This is
because MSP and energy-based methods are based
on the predicted class probabilities while pseudo
labels can contain errors. In contrast, Mahalanobis
distance is based on representations, so it can be
more robust to clustering results even when there
are miss-labeled instances.

Figure 4: Inter-cluster distance statistics with different
numbers of nearest cluster centers.

Figure 5: Average silhouette score before and after PLL.

5.4 Analysis of representation space

To investigate why our PLL approach improves
OOD detection performance over clustering-based
methods, we additionally examine three metrics:
intra-cluster variance, inter-cluster distance, and

Figure 6: Distributions of the confidence scores before
PLL (left) and after PLL (right) on CLINC150 dataset
with IND class ratio of 0.75. The confidence score
distribution is shown in green for IND, yellow for near-
OOD, and blue for far-OOD.

the silhouette score. Table 3 shows the statis-
tics of intra-cluster variance, which can indicate
the degree of clustering of the data representa-
tions within a cluster. Specifically, we average
the distances of the representations of samples
with the same pseudo label to the cluster center
in the test set as intra-cluster variance, then report
min/max/mean/median values on all clusters. And
Figure 4 shows the inter-class distances. We aver-
age dot product distances between each class center
to its C nearest class centers, then average results
from all classes as inter-class distance. The x-axis
denotes the number of nearest centers C. We find
that the intra-cluster variance becomes higher when
the clustering is followed by PLL, which means
PLL can ruin intra-cluster distribution. However,
the inter-cluster distances are also significantly in-
creased through PLL. To find out the balance of
the two distances, we compare the silhouette scores
before and after PLL in Figure 5, which shows that
PLL improves the silhouette scores by a large mar-
gin. This implies that PLL can make the clusters far
apart from each other and therefore OOD sample
to be placed in between the clusters.

5.5 Visualizations

We visualize the confidence score distributions to
confirm the effectiveness of our PLL scheme. Fig-
ure 6 shows the confidence score distribution on
CLINC150 test set with the IND ratio of 0.75. Al-
though the score distributions of near-OOD and
IND still overlap when we apply clustering only, af-
ter performing PLL, the score distribution for IND
shifted to the left, while the distributions of both
OOD samples shifted to the other side. Therefore,
the score distributions become more discriminable
between IND and OOD samples through PLL.
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6 Conclusion

In this work, we proposed a two-stage framework
for unsupervised OOD detection that effectively uti-
lizes the categorical information of IND instances
by pseudo labeling and pseudo label learning. In
addition, for a more systematic analysis of OOD
performance, we introduced the near-OOD setting,
which is a more challenging yet realistic scenario.
In most of our experimental settings, our frame-
work outperforms the baseline models with signifi-
cant margins. We further justify the improvement
of the proposed model’s OOD detection perfor-
mance by analyzing the embedding space with in-
ter or intra-cluster distances and silhouette scores.
In future work, we will further investigate how to
reduce intra-cluster variations while maintaining
inter-cluster distances.

Limitations

The proposed methods show relatively stable per-
formance with respect to the number of clusters
(K), but it still has a limitation of choosing the
optimal one. In particular, we conduct the experi-
ment by setting the maximum value of K to 300.
However, a too large K can degrade the model
performance by reducing the number of samples
per cluster for classification in stage 2. In addition,
since the proposed framework depends on a clus-
tering method, its performance can be limited by
the clustering performance. Experiments are only
conducted on three intent task datasets due to the
near-OOD and the far-OOD settings in heteroge-
neous domains. We remain those limitations for
future works.
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Abstract
Recently introduced instruction-paradigm em-
powers non-expert users to leverage NLP re-
sources by defining a new task in natural lan-
guage. Instruction-tuned models have signif-
icantly outperformed multitask learning mod-
els (without instruction); however they are far
from state-of-the-art task-specific models. Con-
ventional approaches to improve model perfor-
mance via creating datasets with large number
of task instances or architectural changes in the
model may not be feasible for non-expert users.
However, they can write alternate instructions
to represent an instruction task. Is Instruction-
augmentation helpful? We augment a subset of
tasks in the expanded version of NATURAL IN-
STRUCTIONS with additional instructions and
find that it significantly improves model perfor-
mance (up to 35%), especially in the low-data
regime. Our results indicate that an additional
instruction can be equivalent to „200 data sam-
ples on average across tasks.1

1 Introduction

Large-scale benchmarks such as Imagenet (Rus-
sakovsky et al., 2015), SQuAD (Rajpurkar et al.,
2018) and architectural development in models
such as CNNs (Amari et al., 2003) and transformers
(Vaswani et al., 2017) have propelled our progress
in deep learning. However, creating high-quality
benchmarks by controlling its artifacts (Gururan-
gan et al., 2018; Mishra et al., 2020), develop-
ing new models, and training them is hard for
non-expert users. Recently introduced instruction-
paradigm empowers non-expert users, practition-
ers, and domain experts in other fields to leverage
NLP resources (Weller et al., 2020) as they now
can describe their tasks in natural language without
requiring to create task-specific datasets or develop-
ing models2. Even though the instruction paradigm

˚Equal Contribution
1Code and dataset is available at https://github.com/

Ravsehajsinghpuri/Multi-Variant-Instructions
2Related work is presented in App. A

has led to the development of models that signif-
icantly outperform multitasking baselines, model
performance has remained far behind the super-
vised learning model trained with task-specific data
(Efrat and Levy, 2020; Mishra et al., 2021b).

Non-expert users can write multiple instructions
per task each of which covers multiple perspec-
tives spanning over a variety of linguistic features;
many of these can be created automatically by re-
placing certain words with their synonyms without
changing the overall semantics of instruction. Can
the relatively inexpensive process of instruction
augmentation improve the model’s performance
in the instruction-paradigm, similar to the role
data-augmentation has played conventionally in
machine learning (Feng et al., 2021)? Instruction-
paradigm is pivotal where it is expensive or in-
feasible to gather training data. How effective is
instruction augmentation in low-data regimes?

Multi-variant instructions (original + augmented
instructions) also can help evaluate the robustness
of instruction-following models to respond to vari-
ant instructions. This is similar to the model ro-
bustness evaluation (Jia et al., 2019) that is done
by creating variant data instances. Multi-variant
instruction-based setup will also help gauge the true
potential of instruction-following systems since in
a real-world setting, users can write task instruc-
tions in many different ways.

The expanded version of NATURAL INSTRUC-
TIONS (Mishra et al., 2021b; Wang et al., 2022b)3

provides a rich collection of the diverse category
of tasks that covers a variety of reasoning skills,
domains, and languages. This constantly evolving
benchmark is growing in size with respect to time.
We take 426 tasks4 and creates variant instructions

3https://github.com/allenai/
natural-instructions

4These were the accepted tasks in the expanded version of
NATURAL INSTRUCTIONS in September 2021. The expanded
dataset is also known as NATURAL INSTRUCTIONS v2 or
SUPER-NATURALINSTRUCTIONS.
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for each task. In NATURAL INSTRUCTIONS, the
number of instances was limited to 6500 to reduce
massive data imbalance, we leverage the remain-
ing instances of source datasets in constructing
instances of our variant instruction tasks. We ex-
periment with 3 types of learning scenarios (i) task-
specific (TS), (ii) multi-task (MT), and (iii) cross-
task (CT) and observe that instruction augmented
models outperform their single-instruction counter-
parts by 17%, 11%, and 11%, respectively when
averaged over all experiments across the evalua-
tion tasks. Interestingly, instruction augmentation
is more effective on the low-data regime (average
across 1%, 5%, and 10% data) as we see a perfor-
mance gain of 26%, 16%, and 11% in TS, MT, and
CT settings, respectively. We also quantify the con-
tribution of each of the additional instructions and
find that an additional instruction can be equivalent
to „200 data samples on average across tasks.

2 Multi-Variant Instruction Dataset

We construct a Multi-Variant Instruction dataset on
top of various tasks in NATURAL INSTRUCTIONS.
In total, our dataset has 426 different NLP tasks;
each of which contains multi-variant instructions.

2.1 Variant Instruction Task
An instruction task in NATURAL INSTRUCTIONS

contains the definition of the task, positive exam-
ples, negative examples, and instances. Figure 1
shows the schematic representation of variant in-
struction tasks where the blue boxes show the parts
that differentiate variant instruction tasks from their
original counterparts in NATURAL INSTRUCTIONS.
While constructing a variant instruction task, we
alter the definition and instances of the instruction
task.

Parameter Value

Avg. # of variants per task 4.59
Avg. # of instances per task 9510.64

Avg. # of positive examples per task 3.15
Avg. # of negative examples per task 2.30

Table 1: Multi-Variant Instructions dataset statistics

2.2 Dataset Creation Process
Computer Science graduate students who partic-
ipated in the data creation process are asked to
create as many variant instruction tasks as possi-
ble. They are instructed to change the definition

Figure 1: Schematic representation of instructional-
prompts (Wang et al., 2022b) - Dotted blue box rep-
resents entities that are changed in constructing variant
instruction task.

(without changing the semantic meaning of the
definition in the original task) and instances (by
random sampling from the set of instances in the
source dataset which is not part of instruction tasks
in NATURAL INSTRUCTIONS. They are allowed
to use automated tools such as Semantic Control
(Ross et al., 2021), Text Style Transfer (Reif et al.,
2021), NL-Augmenter (Dhole et al., 2021). Some-
times, the participants create variant instruction
tasks manually. Table 5 and Table 6 in App. B
illustrates examples of alternate definitions across
variant instructions created for our dataset.

2.3 Dataset Properties and Statistics

Table 1 shows the statistics of our meta-dataset.
Note that, variant instruction tasks contain all in-
stances from NATURAL INSTRUCTIONS, so the
average number of instances per task is higher
than 6500 (which is a constraint in NATURAL IN-
STRUCTIONS). We describe various attributes of
our dataset in the following.

2.3.1 Semantic Textual Similarity
Semantic Textual Similarity (STS) should be high
between original instruction and augmented instruc-
tions as they represent the same task. We compute
the pair-wise STS score between definitions of orig-
inal instruction and variant instructions. Figure 2
shows the mean and SD of STS score between orig-
inal instruction and its variants across 426 tasks.
More detail is presented in App. C.

Analysis of dataset properties From all dataset
properties, we can observe that STS score is higher
for almost all the tasks. This indicates that all aug-
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Task ID Task Name Task Category # of Variants

task010 winogrande_answer_generation Answer Generation 8
task011 winogrande_question_modification_object Text Modification 8
task012 winogrande_question_modification_person Text Modification 8
task017 qasc_question_generation Question Generation 8
task018 qasc_answer_generation Answer Generation 8
task020 essential_terms_answering_incomplete_questions Classification 8
task028 multirc_correct_answer_single_sentence Answer Generation 3
task058 babi_t1_single_supporting_fact_answer_generation Answer Generation 5

Table 2: Number of variant instructions for 8 different tasks
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Figure 2: Semantic text similarity between original in-
struction and its variants.

mented variants are semantically similar to the orig-
inal instruction. Moreover, we can see a significant
variation in terms of word dissimilarity and length
of definitions (see App. C). From this, we can con-
clude that the variants created in our meta-dataset
for each task have sufficient variations in terms of
words and length yet sustain semantic similarity
with original instruction.

3 Experimental Setup

3.1 Models

BART-base (Lewis et al., 2019) and T5-base (Raf-
fel et al., 2020) models are used with default hyper
parameters from Huggingface (Wolf et al., 2019)
to perform experiments. We use Single Instruc-
tion (SI) learning as baseline where only original
instruction is used to fine-tune the model. We
propose Multi-Variant Instruction (MVI) learning
where variants are used to fine-tune models. We
use the same number of instances for both original
and variant instruction learning to accurately gauge
the importance of additional instructions.

3.2 Experiments
We perform three experiments: (1) Task-Specific,
(2) Multi-Task, and (3) Cross-Task. All experi-
ments are performed using 1%, 5%, 10%, 50% and
100% instances from the task for fine-tuning. Here,
we divide instances into train, test and dev splits
by randomly sampling in the ratio 70%, 20% and
10%, respectively. Evaluation is performed on the
test set of original instructions. As SI is dependent
on NATURAL INSTRUCTIONS which has exactly
one instruction per task, this limits our experiments
to use only one instruction in the SI setting while
comparing it with MVI which has multiple variant
instructions.

Task-Specific Here, we fine-tune the baseline
and our model on one task and evaluate on the same
task. We have performed task-specific learning on
3 different tasks - winogrande_answer_generation,
winogrande_question_modification_person, and
qasc_answer_generation. In addition, we also ana-
lyze two different tasks in other task categories
like tweetqa_question_generation and odd-man-
out_classification_no_category for generation and
classification tasks respectively.

Multi-Task To perform multi-task learning, we
use 8 different tasks spanning across 4 different
categories. Table 2 shows the different number of
variant instructions for 8 tasks and their categories.
In this setting, we fine-tune the baseline and our
model on all 8 tasks combined and evaluate on each
task. However, we use only two positive and two
negative examples to satisfy the maximum token
limit of the BART-base.

Cross-Task Here, we fine-tune the model on a
set of tasks and evaluate on a different set of tasks.
Here, we use 274 different tasks for training by
sampling 10% instances from each task and evalu-
ate on a set of 8 tasks which are the same as in the
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multi-task setup. In addition to sampling instances,
we also sampled number of tasks by taking 1%, 5%,
10%, 50%, and 100% tasks. We also investigate
the extent of cross-task generalization in low-data
regimes; we do this by randomly sampling 1%, 5%,
and 10% instances for fine-tuning.

Metric We use the Rouge-L metric (Lin, 2004)
for evaluation in all our experiments, following the
evaluation in NATURAL INSTRUCTIONS.

4 Results and Analysis

4.1 Experimental Results

Task-Specific Figure 3 shows the comparison be-
tween SI and MVI across a different number of
instances sampled for fine-tuning. From this, we
can observe that MVI outperforms SI by 17% on
average. The performance difference between MVI
and SI increases to 26% in a low data regime (aver-
age performance with 1%, 5%, and 10% instances
for fine-tuning). We observe similar results for the
additional 2 tasks we have analyzed (present in
App. D).
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Figure 3: Comparison across SI and MVI learning in
task-specific setting; Results are averaged over 3 tasks.

Multi-Task Figure 4 presents the comparison be-
tween SI and MVI for multi-task setting. We can
observe that MVI outperforms SI by 11% on an av-
erage. Moreover, we can see higher improvement
in low data regime („ 16%). Our model achieves
high performance boost („35%) at 1% instances
setting. App. E contains more details.

Cross-Task Figure 5 shows a comparison be-
tween SI and MVI for 100% tasks in cross-task
setting (see Figure 9 in App. F for other settings).
We can observe that MVI outperforms SI by 9% on
an average. App. F contains more details.
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Figure 4: Comparison across SI and MVI learning in
multi-task setting by varying number of instances.
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Figure 5: Comparison between SI and MVI learning in
cross-task setting by varying number of instances and
fixing number of tasks to 100%.

4.2 Analysis

How Many Data Samples is a Variant Instruc-
tion Worth? We calculate the contribution of an
additional instruction with respect to data samples
in the following way: we calculate model perfor-
mance for BART-base in MVI with 5% instances.
We interpolate the model performance plot in SI
to find out the percentage of instances needed to
match performance in MVI (with 5% instances).
We divide the average number of instance differ-
ence by average number of instruction variants to
get the number that indicates worth of an addi-
tional instruction in terms of data samples. Using
the above described procedure, we calculate the
contribution for additional instruction in all three
settings and summarize the results in Table 3. We
use MVI performance with 5% instances as the
base because a typical instruction-paradigm is de-
signed in a "low-data regime" where non-expert
users can teach a task to a model without requiring
to create a dataset. However, we also calculated
the instruction-equivalence using MVI with 10%
instances as the base and report the results in Table
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3. On an average across TS, MT and CT, we con-
clude that an additional variant instruction alone is
worth „200 instances.

Base Task-Specific Multi-Task Cross-Task Average

5% 456.2 94.1 152.3 234.2
10% 460.4 58.2 279.6 266.1

Table 3: Weight of each additional instruction in terms
of number of data samples across task-specific, multi-
task and cross-task settings.

Equal Data Analysis We believe that each in-
struction variant is equivalent to „200 data in-
stances. To show this by experiment, we perform
equal data analysis and observe that model trained
using our approach shows competitive performance
compared to single-instruction learning by using
only N/V instances where N is the total number of
instances in the original task and V is the number
of instruction variants for this task. See App. G for
more details.

Is Model Robust to Instruction Perturbations?
Here, we introduce 3 perturbations while testing SI
and MVI: (1) we perturb the instruction by remov-
ing the task definition, (2) we perturb the instruc-
tion by changing the order of positive and negative
examples by placing positive examples followed by
negative different from training setup, and (3) we
perturb the instruction by removing all positive and
negative examples from the test set. We evaluate
the model’s robustness across these perturbations
(performance change while the change in instruc-
tion) which are excluded from the training data.
Here, Table 4 for task-specific setting on T5-base
(see Table 11 in App. H for multi-task results). We
can clearly observe that our approach is robust to
all three instruction perturbations whereas model
trained with single-instruction learning is not able
to perform equally well on perturbed test sets com-
pared to its original test counterpart. A similar
trend is observed in the multi-task setting as well
(see App. H).

5 Conclusion

We introduced instruction augmentation to improve
existing LMs in terms of improving performance
and usability to non-expert users. To this extent,
we created multi-variant instructions for 426 NLP
tasks. Our experiment results show that instruc-
tion augmentation improves model performance
in task-specific, multi-task and cross-task learning

# of Instances
SI Perturbation 1 Perturbation 2 Perturbation 3

Original Ours Original Ours Original Ours Original Ours

1% 0.90 25.21 1.60 18.03 1.02 23.16 5.12 9.71
5% 0.98 75.72 2.18 75.32 1.36 75.50 5.52 74.26

10% 50.88 78.20 20.76 78.07 50.49 78.37 40.31 77.22
50% 76.55 82.16 68.88 82.15 76.50 82.16 75.34 81.92
100% 79.38 83.16 73.51 82.97 79.34 83.12 78.71 82.40

Table 4: Comparison of performance in task-specific
setting across SI and MVI learning.

paradigms. We find that instruction augmentation
is more effective in low-data regime. Our results
further indicate that an additional instruction can
be equivalent to „200 instances on an average. We
hope our work will bring more attention to develop-
ing unconventional techniques (beyond dataset cre-
ation and model training) to empower non-expert
users to leverage NLP resources and teach a task
without having domain knowledge.

Limitations

We use BART-base and T5-base for all our experi-
ments, however, we wish to experiment with differ-
ent language models in future to show the benefit
of our approach. Our analysis includes only tasks
in English language, hence, it is important to see if
our approach can be extended to non-English tasks
as well. We feel that developing diverse instruction
augmentation techniques will be pivotal to achiev-
ing more improvements as future research.
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A Related Work

Prompt Learning Due to the success of large
LMs, research paradigm in ML/DL has been
shifted to prompt-based learning to achieve gen-
eralization and eliminate the need of creating task-
specific models and large scale datasets (Liu et al.,
2021). Past attempts have been made using prompt-
based learning to solve various tasks including text
classification (Yin et al., 2019), Natural Language
Inference (NLI) (Schick and Schütze, 2020), Ques-
tion Answering (QA) (Jiang et al., 2020), Informa-
tion Extraction (IE) (Chen et al., 2021; Cui et al.,
2021) and many more (Liu et al., 2021). Recently,
T0 model (Sanh et al., 2021) is proposed which
uses prompts to achieve zero-shot generalization
across various NLP tasks. We were motivated by
the work of Le Scao and Rush (2021) which shows
that prompting is often worth 100s of data points
on average. Our work instead focuses on instruc-
tions that are often different in terms of length, lan-
guage, and capacity to represent a task (Wang et al.,
2022b). Additionally, in contrast to prior works, we
focus on the use of automatic methods for instruc-
tion augmentation and evaluate its efficacy across
low-data to high-data regime in task-specific, multi-
task, cross-task setups.

Instruction Learning Efrat and Levy (2020)
studies whether existing LMs understands instruc-
tions. After that, many works have been proposed
to show that models follow language instructions
(Hase and Bansal, 2021; Ye and Ren, 2021; Gupta
et al., 2021; Zhong et al., 2021). Furthermore,
(Weller et al., 2020) has developed a framework
that focuses on developing NLP systems that solve
new tasks after reading their descriptions. Mishra
et al. (2021b) has proposed natural language in-
structions for cross-task generalization of LMs.
Along with that, PromptSource and FLAN (Wei
et al., 2021; Sanh et al., 2021) were built for lever-
aging instructions and achieving zero-shot gen-
eralization on unseen tasks. Moreover, Parmar
et al. (2022) shows the effectiveness of instructions
in multi-task settings for the biomedical domain.
Mishra et al. (2021a) discuss the impact of task
instruction reframing on model response. Min et al.
(2021) introduce a framework to better understand
in-context learning. Ouyang et al. (2022) propose
the InstructGPT model that is fine-tuned with hu-
man feedback to follow instructions. Wang et al.
(2022a) has developed instruction-based multi-task

framework for few-shot Named Entity Recognition
(NER) tasks. In addition, many approaches have
been proposed to improve model performance us-
ing instructions (Wu et al., 2022; Lin et al., 2021;
Wang et al., 2022b; Luo et al., 2022; Kuznia et al.,
2022; Patel et al., 2022; Mishra and Nouri, 2022).

B Example of Variants

Table 5 and Table 6 show the exam-
ples of different variants created from the
task117_afs_argument_similarity_gun_control and
task018_qasc_answer_generation respectively.

C Multi-Variant Dataset Additional
Details

C.1 Semantic Textual Similarity

We use en_core_web_md semantic similarity
model of SpaCy to compute STS in our experi-
ments. We also calculate STS score between defi-
nitions of variants of the same task. At the end, we
calculate their mean and Standard Deviation (SD)
for each task.

In the plot, the two exception points are task058
(Answer generation task based on babi dataset (We-
ston et al., 2015)) and task097 (Structured text gen-
eration task based on SCAN dataset (Lake and Ba-
roni, 2018)) where the original instructions are very
long and the variant task contains a short definition
which causes the strong variation in STS. We also
discuss the Word-Level Dissimilarity and Length
Diversity properties of our dataset below.

C.2 Word-Level Dissimilarity

To show the quality and diversity of variant in-
structions, we calculate the pair-wise edit distance
between the definition of the original instruction
and its variant instructions. We also calculate dis-
tance between definitions of variant instructions of
the same task, further normalize by the highest dis-
tance to obtain a dissimilarity score. We compute
the mean and SD of these scores for each task and
show it in Figure 6.

C.3 Length Diversity

It is necessary to see how task definition lengths
vary between original instructions and their vari-
ants. To understand this, we compute the percent-
age difference between the length of the maximum
instruction definition and the minimum instruction
definition for each task and show it in Figure 7.
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Original instruction along with its augmented variant instructions
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Definition: We would like you to classify each of the following sets of argument pairs (discussing Gun Control)
into either SIMILAR or NOT SIMILAR. A pair of arguments is considered SIMILAR if the arguments are about
the same FACET (making the same argument), and is considered NOT SIMILAR if they do not have the same
FACET. A FACET is a low level issue that often reoccurs in many arguments in support of the author’s stance or
in attacking the other author’s position.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
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N
1

Definition: Each of the following sets of argument pairs (on the topic of Gun Control) should be classified as
SIMILAR or NOT SIMILAR. If the arguments are about the same FACET (making the same argument), they are
deemed SIMILAR; otherwise, they are NOT SIMILAR. A FACET is a low-level problem that appears frequently
in many arguments in favor of the author’s position or in opposition to the position of the other author.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T
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S

T
R

U
C

T
IO

N
2

Definition: Please classify the following sets of argument pairs (discussing the Gun Control) as SIMILAR or
NOT SIMILAR. If the arguments are about the same FACET (making the same argument), they are regarded
SIMILAR; if they are not, they are considered NOT SIMILAR. A FACET is a low-level problem that frequently
recurs in numerous arguments in favor of the author’s position or in opposition to the position of the other
author.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
3 Definition: Two arguments are SIMILAR if they are making the same case related to author’s position, else they

are NOT SIMILAR. Your task is to classify any 2 arguments as SIMILAR or NOT SIMILAR.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>

V
A

R
IA

N
T

IN
S

T
R

U
C

T
IO

N
4

Definition: Each of the following sets of argument pairs (discussing the Gun Control) should be classified as
SIMILAR or NOT SIMILAR. If the arguments are about the same FACET (making the same argument), they are
regarded SIMILAR; otherwise, they are NOT SIMILAR. A FACET is a low-level issue that appears frequently in
many arguments in support of the author’s position or in opposition to the position of the other author.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>

Table 5: Example of an instruction for a classification task with its variant instructions; these belong to the
task117_afs_argument_similarity_gun_control.
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Original instruction along with its augmented variant instructions
O
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Definition: Write a correct answer to the given question based on its associated fact. Make sure that your
answer is contained in the associated fact. Things to avoid: Don’t be creative and introduce any new word that
is not mentioned in the associated fact! Remember that, the associated fact has been rearranged to form the
question. So, the correct answer words must lie within the associated fact. Emphasis & Caution: The correct
answer can be a word, phrase, or even a sentence.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>

V
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1

Definition: Handwriting a rectify reply to the given issue based on its related fact. Make sure that your replying
is contained in the associated fact. Aspects to avoidance: Don’t be creativity and introduces any nouveau word
that is not alluded in the associated doing! Recall that, the linked doing has been restructured to forma the
question. Thus, the corrects replying words needs lie within the associated doing. Focuses & Discretion: The
exact replying can be a word, phrase, or even a penalties.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>
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Definition: Write a correcting responding to the gave question bases on its associated fact. Make persuaded
that your answering is contained in the associated facto.Matters to shirk: Don’t be inventive and introduce any
nouveau word that is not referred in the associated fact! Recollect that, the associated fact has been redesigned to
forma the issue. Therefore, the accurate responses words owes lying inside the associated doing. Concentrating
& Circumspect: The correcting responses can be a word, phrase, or even a punishments.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>
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Definition: Write a corrects answer to the afforded issue founded on its associated fact. Deliver sure that
your replied is contain in the linked fact. Things to shirk: Don’t be creative and introduce any novel word
that is not alluded in the associated fact! Remind that, the associated doing has been redesigned to forme the
question. Accordingly, the correcting reply phrases needs lied indoors the linked fact. Concentrates & Caveat:
The corrects response can be a word, phrase, or even a condemnation.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>
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Definition: Writing a accurate responded to the yielded matter founded on its associated fact. Deliver sure
that your reply is contained in the associated doing. Aspects to avoidance: Don’t be creative and introduce any
newer word that is not talked in the associated facto! Recall that, the associated fact has been rearranged to
form the issue. Thereby, the corrects responding phrase gotta lie within the related doing. Focus & Circumspect:
The correct responding can be a word, expression, or even a sentences.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>
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Definition: Writing a correct answers to the granted question bases on its associated doing. Make sure that your
respond is contained in the associated doing. Matters to shirk: Don’t be creative and introduces any novo word
that is not referenced in the associated facto! Remind that, the associated fact has been reconfigured to forms
the question. So, the corrects respond words ought lies within the related doing. Concentrate & Careful: The
accurate reply can be a word, phrase, or yet a sentences.

Negative Examples:
Input: <input> Output: <output> Explanation: <explanation>

Positive Examples:
Input: <input> Output: <output> Explanation: <explanation>

Table 6: Example of an instruction for an answer generation task with its variant instructions -
task018_qasc_answer_generation
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Figure 6: Word-level dissimilarity between original in-
struction and its variants.
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Figure 7: Definition length variation between original
instruction and its variants.

D Task-Specific Results

Table 7 shows the results for
task-specific experiments for
task010_winogrande_answer_generation,
task012_winogrande_question_modification_person
and task018_qasc_answer_generation. We also
performed experiments for other task categories
like task210_tweetqa_question_generation and
task113_odd-man-out_classification_no_category
for generation and classification tasks respectively
and summarize our results in Table 8. From the
average results, we can observe that multi-variant
instruction learning helps model to improve
performance in task-specific learning.

E Multi-Task Results

The results for multi-task learning experiments are
shown in Table 9.

F Cross-Task Results

The results for cross-task learning experiments are
shown in Table 12. Figure 9 compares single-
instruction learning and our approach in cross-task
setting.

G Equal Data Analysis

We keep the original number of instances in SI
learning, however, reduce the number of instances
used in MVI learning by sampling N/V number of
instances randomly for each task where N is the
total number of instances in the original task and V
is the number of instruction variants for this task.
We perform these experiments in both task-specific
and multi-task settings using BART-base. Table 10
summarizes the results of these experiments, and
we can observe that the model trained using our ap-
proach shows competitive performance compared
to single-instruction learning by using only N/V
instances.

The results for cross-task learning experiments
are shown in Table 12. Figure 9 compares single-
instruction learning and our approach in cross-task
setting.

H Robustness Analysis

Is single-instruction learning robust? As Fig-
ure 8 illustrates, LM fine-tuned with single-
instruction learning or original setting is not robust
to instructions written in a different way; this in-
cludes transformation techniques like paraphrasing,
adding spelling mistakes, grammatical mistakes etc.
Our experiment results show that model trained us-
ing the proposed multi-variant instruction learning
technique is able to perform reasonably well and
is robust to variant instructions in both multi-task
setting, as evident by lower performance difference
between single instruction evaluation and multi-
variant instruction evaluation setup.

I Contribution of Individual Variants

Do each of the variant instructions contribute
equally towards performance gain? To analyse
the contribution of each of the variant instructions,
we study the performance gain by adding a single
variant instruction at one time. We perform this
analysis in TS setting (task_010) and MT setting
and summarize the results in Table 13 and Table
14 respectively. We observe that all variants do not
contribute equally, e.g. MVI_All above are often
smaller than individual MVIs. Identifying optimal
variants, however, will be a scope for future work.
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Figure 8: Robustness comparison of SI vs. MVI in multi-task setting - LM fine-tuned using MVI learning is more
robust to variants as compared to SI learning.

# of Instances
BART-base T5-base

SI MVI SI MVI

Original Ours Original Ours Original Ours Original Ours

task_010

1% 0.00 0.00 0.00 0.02 0.04 13.71 0.16 11.26
5% 0.00 36.75 0.06 37.07 0.01 46.44 0.14 44.69

10% 0.23 39.17 0.15 38.26 12.03 53.03 9.05 52.60
50% 37.00 43.02 25.40 42.54 48.11 64.94 46.01 64.80

100% 41.97 45.65 33.84 45.50 55.67 67.49 53.74 66.92

task_012

1% 84.48 83.54 75.45 82.66 0.07 0.00 6.20 6.17
5% 84.73 90.68 74.52 90.68 0.05 90.90 6.17 90.87

10% 84.81 90.61 75.47 90.60 79.62 90.99 62.69 90.99
50% 90.29 90.49 85.65 90.48 90.92 90.77 90.81 90.81

100% 90.84 90.50 88.47 90.52 91.02 90.75 90.87 90.80

task_018

1% 7.05 6.92 4.36 5.27 2.57 61.92 3.02 58.53
5% 4.65 79.07 3.42 79.55 2.89 89.84 3.80 89.99

10% 4.72 80.59 3.68 80.95 61.00 90.57 56.28 90.56
50% 82.43 85.23 81.36 85.20 90.63 90.76 90.86 90.79

100% 85.58 87.37 84.90 87.52 91.44 91.25 91.41 91.11

Average

1% 30.51 30.15 26.60 29.32 0.90 25.21 3.12 25.32
5% 29.79 68.83 26.00 69.10 0.98 75.72 3.37 75.18

10% 29.92 70.12 26.43 69.94 50.88 78.20 42.67 78.05
50% 69.91 72.91 64.14 72.74 76.55 82.16 75.89 82.13

100% 72.80 74.51 69.07 74.51 79.38 83.16 78.68 82.94

Table 7: Comparison of performance in single-task setting across single-instruction and multi-variant instruction
learning. SI: Single-Instruction, MVI: Multi-Variant Instruction.
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# of Instances SI MVI SI MVI

task_210 task_113

1% 13.37 12.25 3.00 3.85
5% 13.50 25.92 4.77 15.26
10% 14.67 27.14 4.00 30.77
50% 27.88 41.06 41.72 81.80

100% 37.24 44.10 66.73 98.10

Table 8: Comparison of performance in task-specific setting across single-instruction and multi-variant instruction
learning. SI: Single-Instruction

# of Instances
BART-base T5-base

SI MVI SI MVI

Original Ours Original Ours Original Ours Original Ours

1% 15.84 50.40 14.97 51.88 7.34 34.53 6.11 33.61
5% 45.13 56.49 44.24 57.71 32.01 62.61 19.88 62.87

10% 55.03 57.80 51.67 58.70 46.93 63.61 39.76 63.98
50% 59.01 62.21 57.37 62.06 63.38 66.16 57.11 66.76

100% 61.08 65.13 58.58 65.09 64.99 67.15 59.35 67.38

Table 9: Comparison of performance in multi-task setting across single-instruction and multi-variant instruction
learning. SI: Single-Instruction, MVI: Multi-Variant Instruction

# of Instances
Single Task Multi Task

Original Ours Original Ours

1% 10.81 7.32 6.35 0.82
5% 20.86 19.42 4.21 6.31

10% 57.22 51.36 59.95 49.42
50% 76.53 72.75 84.54 79.74
100% 78.36 60.15 86.55 82.02

Average 48.76 42.20 48.32 43.66

Table 10: Comparison of performance in task-specific (average across 3 tasks) and multi-task settings.
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# of Instances
SI Perturbation 1 Perturbation 2 Perturbation 3

Original Ours Original Ours Original Ours Original Ours

1% 7.34 34.53 7.73 39.76 7.23 33.27 3.37 35.32
5% 32.01 62.61 25.90 60.22 29.51 63.52 23.50 69.30

10% 46.93 63.61 46.36 61.70 44.74 63.86 43.28 72.46
50% 63.38 66.16 61.63 64.50 63.73 66.40 71.79 67.99
100% 64.99 67.15 63.12 67.38 65.05 66.02 72.70 68.24

Table 11: Comparison of performance in multi-task setting across single-instruction and multi-variant instruction
learning.
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Figure 9: Comparison of performance across SI and MVI learning in cross-task setting by varying number of
instances and tasks. Evaluation is performed on the test set of original instructions.
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# of Instances
BART-base T5-base

SI MVI SI MVI

Original Ours Original Ours Original Ours Original Ours

1% tasks

1% 16.00 6.94 10.93 10.16 0.96 7.36 0.87 7.31
5% 20.04 40.14 19.51 31.09 21.87 29.07 19.89 29.60

10% 33.09 48.43 31.83 47.66 36.17 44.50 33.13 45.28
50% 61.70 78.22 58.53 78.43 64.74 73.94 61.34 73.45

100% 68.66 84.22 64.39 84.87 72.35 83.37 68.9 84.2

5% tasks

1% 16.23 22.17 3.32 18.78 1.30 7.55 1.29 7.29
5% 31.58 40.3 29.81 33.12 22.85 29.04 20.44 29.02

10% 34.73 46.02 34.38 49.15 36.01 44.83 33.75 44.93
50% 63.06 78.48 60.5 79.76 65.96 76.25 61.01 76.13

100% 69.93 85.2 67.41 86.68 74.54 83.61 70.2 83.69

10% tasks

1% 2.98 22.16 2.46 19.98 3.12 7.89 2.56 7.66
5% 29.27 30.06 28.03 30.9 24.49 29.29 23.41 29.25

10% 39.95 46.38 36.3 50.4 36.76 45.22 36.23 44.81
50% 63.58 79.13 59.98 79.81 66.07 73.49 62.56 73.54

100% 70.82 86.66 69.11 87.86 71.97 81.16 70.34 81.08

50% tasks

1% 15.18 23.06 17.08 26.2 5.58 22.26 5.44 22.21
5% 32.88 44.5 33.88 44.64 33.56 40.37 30.57 38.25

10% 43.33 51.2 42.5 54.62 45.42 44.02 39.01 44.36
50% 68.18 80.8 66.42 81.29 66.62 80.97 63.89 80.93

100% 71.35 84.52 68.85 84.65 72.72 82.82 69.94 82.02

100% tasks

1% 17.04 22 19.2 24.95 20.69 22.55 9.02 20.66
5% 35.4 42.68 36.42 45.06 35.18 38.30 30.92 39.51

10% 46.4 60 45.33 59.3 44.70 53.80 44.47 54.15
50% 69.06 84.32 67.29 84.47 71.89 79.20 68.64 79.56

100% 74.45 90.01 72.26 90.35 74.03 81.53 72.34 82.15

Table 12: Comparison of performance in cross-task setting across single-instruction and multi-variant instruction
learning. SI: Single-Instruction, MVI: Multi-Variant Instruction.
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# of Instances SI MVI_1 MVI_2 MVI_3 MVI_4 MVI_5 MVI_6 MVI_7 MVI_All
1% 0.00 17.46 0.92 0.20 0.44 6.92 5.7 6.79 0.00
5% 0.00 34.34 35.84 36.90 37.36 39.96 37.72 37.97 36.75

10% 0.23 37.31 41.03 42.30 42.95 43.59 42.4 41.23 36.75
50% 37.00 44.25 59.30 57.18 59.45 61.82 62.93 44.14 43.02

100% 41.97 44.34 71.02 75.20 80.27 81.74 86.05 53.63 45.65

Table 13: Contribution of each variant instruction towards performance in task-specific setting for task010. SI:
Single-Instruction, MVI_k: Multi-Variant Instruction where k equals number of variant instructions used.

# of Instances SI MVI_1 MVI_2 MVI_3 MVI_All
1% 15.84 37.03 40.93 64.08 50.4
5% 45.13 55.38 55.80 56.46 56.49

10% 55.03 58.17 58.32 57.70 57.8
50% 59.01 61.62 61.45 62.20 62.21
100% 61.08 62.90 64.08 64.10 65.13

Table 14: Contribution of each variant instruction towards performance in multi-task setting. SI: Single-Instruction,
MVI_k: Multi-Variant Instruction where k equals number of variant instructions used.
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Abstract

Adversarial attack aims to perturb input se-
quences and mislead a trained model for false
predictions. To enhance the model robustness,
defensing methods are accordingly employed
by either data augmentation (involving adver-
sarial samples) or model enhancement (modi-
fying the training loss and/or model architec-
ture). In contrast to previous work, this paper
revisits the masked language modeling (MLM)
and presents a simple yet efficient algorithm
against adversarial attacks, termed [MASK]
insertion for defensing (MI4D). Specifically,
MI4D simply inserts [MASK] tokens to input
sequences during training and inference, maxi-
mizing the intersection of the new convex hull
(MI4D creates) with the original one (the clean
input forms). As neither additional adversarial
samples nor the model modification is required,
MI4D is as computationally efficient as tradi-
tional fine-tuning. Comprehensive experiments
have been conducted using three benchmark
datasets and four attacking methods. MI4D
yields a significant improvement (on average)
of the accuracy between 3.2 and 11.1 absolute
points when compared with six state-of-the-art
defensing baselines.

1 Introduction

Pretrained Language Models (PLMs) have rapidly
advanced the performance of the Natural Language
Processing (NLP) tasks, such as text/document clas-
sification. Yet, abundant evidences also indicate
that PLMs are vulnerable to adversarial attacks,
and the model performance can be dramatically im-
pacted by (even) small perturbations to the model
input (Gao et al., 2018; Li et al., 2019; Li et al.,
2020; Jin et al., 2020). As a result, adversarial
defenses have received significant attention, with
the ultimate goal of achieving the robust model
accuracy on both the clean (original) and polluted
(adversarial) inputs.
∗Corresponding author.

A large amount of research effort has been ded-
icated to adversarial defenses, ranging from the
data augmentation, the model enhancement, to the
randomized smoothing. Among data augmenta-
tion studies, recent works introduce small but con-
trollable perturbations to pollute clean data and
produce adversarial samples (Yoo and Qi, 2021;
Dong et al., 2021; Zhou et al., 2021; Li et al., 2021;
Meng et al., 2022), while the model is later trained
on both the clean and polluted inputs. However,
due to the additional adversarial samples, data-
augmentation methods suffer from the requirement
of enormous computational resources for training.
Additionally, model-enhancement approaches fo-
cus on polishing the vanilla model via manipulat-
ing the training loss or network architecture, with-
out acquiring additional adversarial data (Wang
et al., 2021; Le et al., 2022; Liu et al., 2022).
Yet, those methods often require extensive search
among numerous candidates to determine optimal
hyperparameters. Another line of work is to apply
ensemble-based randomized smoothing techniques
(Ye et al., 2020; Zeng et al., 2021). Unfortunately,
they induce substantial overhead due to the ensem-
ble classification; more importantly, their perfor-
mance are unstable to different types of attacks
(Zhang et al., 2022; Xu et al., 2022).

Our aim is then to explore a robust adversarial
defensing algorithm, which neither relies on addi-
tional adversarial data (as data augmentation), nor
adjusts the training loss and network architecture
(as model enhancement), nor requests ensemble-
based training (as randomized smoothing). By
contrast, this paper revisits the masked language
modeling (MLM) and further proposes a compact
and performance-preserving algorithm, termed
[MASK] insertion for defensing (MI4D). Specifi-
cally, MI4D only requires to insert [MASK] tokens
at the beginning of input sequences to produce
masked inputs. During training, (only) masked in-
puts are employed for the model fine-tuning, while
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later polluted samples are masked in the same man-
ner for inference. In contrast to the traditional
MLM, the prediction task of [MASK] tokens is
less emphasized in the proposed MI4D. Yet, the
injected [MASK] plays a role of maximizing the
intersection between the convex hull after attack-
ing and that of the original (clean) input, thereby
enhancing the defensing performance.

The main contributions of the proposed work are
summarized as follows:

• A novel [MASK] insertion for defensing
(MI4D) algorithm is proposed, neither relying
on additional adversarial data nor modifying
the training model nor requesting ensemble-
based classification;

• MI4D is characterized by simply injecting
[MASK] tokens at the beginning of input se-
quences during training and inference. Ac-
cordingly, the span of the convex hull (after
injecting) is critical to retain more solution
space as the clean one to enhance successful
defense;

• Empirically, our proposed method outper-
forms six recent baselines on a combination of
three standard benchmarks and four attacking
methods, advancing the best state-of-the-arts
by on average 3.2-11.1 absolute points in ac-
curacy.

2 Related work

Constructing misleading samples to fool the trained
neural-network models, adversarial attacks in the
text domain can be mainly classified into two cat-
egories of the character- and word-level perturba-
tion. The work of (Gao et al., 2018; Li et al., 2019)
belongs to the character-level attack, from which
the input is polluted by removing, substituting or
inserting letters. On the other hand, word-based at-
tacks usually involve the step of determining word
importance, and replacing with their synonyms to
maximize the prediction error of the model (Li
et al., 2020; Jin et al., 2020).

Adversarial defense, by contrast, aims to form
a robust model with high accuracy on both clean
(original) and polluted (adversarial) samples. One
of the most effective approaches is through the
data augmentation (as shown in Fig. 1(a)),
where adversarial samples are produced and fed
into the model training. Specifically, A2T (Yoo
and Qi, 2021) generates adversarial samples via

employing a gradient-based method to identify im-
portant words, and iteratively substitutes with their
synonyms using a DistilBERT similarity. FreeLB
(and its variants) (Zhu et al., 2020; Li et al., 2021)
imposes norm-bounded noises on embeddings of
input sentences to produce adversarial samples.
ADFAR (Bao et al., 2021) applies a frequency-
aware randomization on both original and adversar-
ial samples (by other attacking methods) to form
a randomized adversarial set. This augmentation
set is then combined with original and adversar-
ial samples to train the model. More recently, in
(Meng et al., 2022), ADCL generates adversarial
examples using a geometry attack, which are later
utilized as hard positive samples to train the model
following a self-supervised contrastive learning.
Xu et al. propose WETAR-D (Xu et al., 2022) as
a sample reweighting method, in which the sample
weight is adjusted by minimizing the loss from the
validation set mixed of both original and adversar-
ial examples.

Besides the data augmentation, another
line of studies is proposed for the model
enhancement to refine the model architecture
and/or training loss, without acquiring additional
adversarial samples (as shown in Fig. 1(b)).
Among them, SHIELD (Le et al., 2022) modifies
the last layer of an trained model and transforms it
into an ensemble of multiple-expert predictors with
stochastic weights. Flooding-X (Liu et al., 2022)
introduces a regularization technique to prevent
the overfitting of training samples. Wang et al.
(Wang et al., 2021) propose InfoBERT to employ
two mutual-information-based regularizers for
suppressing noisy information between the input
and the latent representation, and for increasing
the correlation between local and global features.
A similar work is found in (Zhang et al., 2022),
where an information bottleneck layer (IB) is
inserted between the encoder and the final classifier.
This IB layer is utilized to extract robust and
task-related features.

Additionally, a set of ensemble-based random-
ized smoothing methods have been proposed,
shown in Fig. 1(c). SAFER (Ye et al., 2020), for
instance, constructs stochastic input ensembles and
leverages statistical properties of ensembles to clas-
sify testing samples. In RanMASK (Zeng et al.,
2021), few input tokens are randomly substituted
using [MASK] for fine-tuning, while testing sam-
ples are also masked (at different locations) to form
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Figure 1: Comparison of existing adversarial defensing methods.

several masked versions. The final prediction is
then made by a majority vote from the ensemble of
these masked versions.

The proposed method is different from exist-
ing approaches: (1) compared to adversarial based
augmentation, no additional samples are required,
and significant computational overhead is avoid ac-
cordingly; (2) compared to the model-enhancement
ones, the proposed method is hyperparameter insen-
sitive, which maintains the vanilla model training
(loss and architecture) but only changes input for-
mats; (3) compared to randomized smoothing, the
ensemble based inference is no longer required.

3 Proposed method

Adversarial attack in text domain perturbs input
sequences to maximally mislead the classification
model, while this section presents a simple yet ef-
fective algorithm to reduce the model vulnerability,
termed [MASK] insertion for defensing (MI4D).

3.1 [MASK] insertion for defensing

The proposed method MI4D is characterized by
the normal fine-tuning process (the same net-
work architecture and training loss as the vanilla
model), while the only difference lies in the in-
serted [MASK] tokens at the beginning of input
sequences during training and inference. Specif-
ically, given the tokenized input sequence x (i.e.,
x=[CLS]x1· · ·x|x|[SEP]), where xi represents
the i-th token from x. For the text classification
task, we aim to optimize an encoder Enc(·) and a
Multilayer Perceptron (MLP) layer f(·) to map x
to a desirable label y, i.e., f(Enc(x)) 7→ y.

Let bM be the pre-defined masking budget (or
the fraction of masked tokens). Then, MI4D in-
jects M consecutive masks after [CLS] within
x to form a masked sequence, that is, x′=[CLS]
[MASK]1 · · · [MASK]Mx1 · · · x|x|[SEP], and
M = ⌈|x| ∗ bM⌉.

Next, only x′ (instead of x) is utilized for train-
ing, while Enc(·) is leveraged to extract the latent
representation for x′ and the normal loss (such

as the cross-entropy based) function L(x′, y) is
adopted. During inference, with an unseen se-
quence x̄, the insertion procedure is repeated to
inject M consecutive masks to x̄, i.e., x̄′ = [CLS]
[MASK]1 · · · [MASK]M x̄1 · · · x̄|x̄|[SEP]. The
label of x̄ is finally produced by f(Enc(x̄′)).

3.2 Analysis
Notably, RanMASK (Zeng et al., 2021) substitutes
input tokens with [MASK], while MI4D injects
[MASK]. Despite its simplicity, conceptually and
computationally, MI4D has strong theoretical re-
sults as the following claim: RanMASK is the lower
bound of MI4D in terms of adversarial defensing
performance.

To prove the claim, given the tokenized input x,
the output of a self-attention module Y is derived
by

Y = softmax(XW1W
⊤
2 X
⊤)XW3,

where X ∈ R|x|×d is the latent representation of x,
d is the hidden dimension, and Wk (∀k ∈ [1, 3])
are projection matrices with compatible dimen-
sions. The property of softmax dictates that each
row of Y (written as yi) is a convex construction of
XW3 (written as X̃), i.e., yi ∈ C(X̃), where C(X̃)
stands for the convex hull of X̃ (see Fig. 2 for the
area enclosed by thick dashed lines). The same
process happens in multi-head attention modules.
They operate in different projected spaces but the
observation of the convex construction still holds.

We hypothesize that the successful defense rate
(against attacks) is determined by the intersection
of the new convex hull (a defensing method cre-
ates) with the original convex hull (the clean data
forms), and the larger intersection results in the
better defensing performance. This leads to the
following assumption.
Assumption 1. Given the latent representation of
the clean input and its adversarial version in X
and X′, for a very small ϵ ≈ 0,

P(successful defense) =
Vol(C(X′ϵ) ∩ C(Xϵ))

Vol(C(Xϵ))
,
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Figure 2: Illustration of the proof to Corollary 1. Circles represent tokens from the input sequence as vectors in
projected space. Black circles are attacked and further replaced by the square ones. Gray (Stripped) areas are the
intersection of MI4D (RanMASK) convex hull with the original data convex hull. Left: removing attacked tokens;
Right: removing two good tokens. Removed tokens are marked by cross.

where Vol(·) is a function to estimate the volume
of a geometric object, and Xϵ is the ϵ ball centred
at X.

The ϵ ball spans the convex hulls to the dimen-
sion of the ambient space so that volume always ex-
ists. More importantly, it also reflects the model tol-
erance to the variation of vector representations, in-
dicating small disturbance will not affect the model
output. To ease notation, we omit the ϵ in later
development.

MI4D differs from RanMASK at no random
elimination of input tokens, but a simple insertion
of [MASK] while keeping clean and polluted to-
kens. This choice leads to the fact that the convex
hull formed by MI4D always contains those by
RanMASK as guaranteed by the following lemma.

Lemma 1. Given a set X, we have C(S) ⊆ C(X)
for any subset S ⊆ X. The equality holds when
S = X trivially or otherwise S contains all the an-
chor points of C(X), i.e., the convex hull vertices.

Proof. Let X be the index set for X and a subset
S ⊆ X gives the indices for S. For any point
p ∈ C(S), p =

∑
i∈S λixi such that λi ≥ 0 and∑

λi = 1, i.e., the convex condition. Apparently
p ∈ C(X) as well by setting λj = 0 for j ∈ X\S .

For any point xi ∈ X, it is either an anchor point
or an internal point referring to C(X). If S contains
only anchor points, C(S) = C(X) as the internal
points can be “absorbed”. To see this, assume x1

is an internal point, then x1 =
∑

i>1 βixi and all
βis for i > 1 satisfying convex condition. Then

p =
∑

i=1

λixi =
∑

i>1

(λi + λ1βi)xi.

Therefore, C(X) = C(X−1) where X−1 is the set
of vectors after removing x1. After eliminating
internal points, the convex hull will still be the
same.

The immediate result from above lemma is the
following corollary stating the relations between
convex hulls generated by MI4D and RanMASK.

Corollary 1. Convex hull generated by MI4D al-
ways contains those by RanMASK.

Proof. Let X be the latent representation of input
tokens for MI4D (including [MASK] tokens), and
X the corresponding indices set. RanMASK runs
several, say n, times of random eliminations but
keeping [MASK] tokens, i.e., leading to index sub-
sets Si (Si ⊂ X (i = 1 ∼ n)). Clearly, from
Lemma 1, we have ∀i, C(Si) ⊆ C(X), where Si
is the corresponding representations in X indexed
by Si. Equality holds only when Si contains all
anchor points set in C(X).

Next, we are ready to formalize and prove the
claim as the following proposition.

Proposition 1. Given Assumption 1, MI4D has at
least the same successful defensing rate as that
of RanMASK. In other words, MI4D has at least
equally good adversarial defense performance as
RanMASK.

Proof. Let X′ (X) be the adversarial (original) rep-
resentations in latent space, and Si be the i-th sub-
set of X′. The successful defensing probability of
MI4D and RanMASK at the i-th run is defined as
pm and pri , respectively. We have

pm =
Vol(C(X) ∩ C(X′))

Vol(C(X))
,
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and

pri =
Vol(C(X) ∩ C(Si))

Vol(C(X))
.

For RanMASK to succeed, the successful Sis
have to be chosen and become majority and hence
the final success probability of RanMASK pr =
P(∃i,Si success ∧ successful sets are majority).
Clearly,

pr ≤ min(P(∃i, Si success ),
∑

k≥⌈n/2⌉
B(k;n,max

i
{pri}))

≤ min(max
i
{pri},

∑

k≥⌈n/2⌉
B(k;n,max

i
{pri})

≤ pm,

where B(k;n, p) is the probability of k out of n
trials successes with probability p, i.e.,

(n
k

)
pk(1−

p)n−k. The last inequality comes from Corollary 1
as pm ≥ pri (∀i) and hence pm ≥ maxi(pri).

Overall, an illustration is shown in Fig. 2 with the
convex hull of MI4D (Cm) and those of RanMASK
(Cr) with two different random eliminations. The
gray area shows the intersection of MI4D convex
hull with the original convex hull C, i.e., C ∩ Cm,
while stripe areas are the intersections of those of
RanMASK, i.e., C ∩ Cr. We know that C ∩ Cm
always contains C ∩ Cr. As such, the span of the
convex hull after [MASK] insertion is critical to
retain more solution space to enhance successful
defense. Additionally, we also infer that the posi-
tion of inserted [MASK] tokens and the number
of insertions are less important (multiple of them
differ only at the positional encoding), as they may
well be in the ϵ ball of the same [MASK] token
itself. These inferences are verified in the ablation
study.

4 Experiments

4.1 Setup
Datasets. Experiments are carried on three text
classification benchmarking datasets, including
SST2(Socher et al., 2013) (sentiment classifica-
tion on the Stanford Sentiment Treebank corpus),
AGNEWS(Zhang et al., 2015) (category classi-
fication for news articles from more than 2000
news sources), IMDB(Maas et al., 2011) (docu-
ment polarity classification using the online IMDB
database).

Attacking algorithms. Four adversarial attacking
methods are implemented using TextAttack (Morris
et al., 2020) to pollute input sequences, that is,

• DeepWordBug (Gao et al., 2018) deletes, re-
places, and inserts characters to inputs;

• TextBugger(Li et al., 2019) performs per-
turbations of space insertion, char dele-
tion/swapping, and synonym substitution;

• BERT-Attack (Li et al., 2020) substitutes key
words using a pre-trained masked model;

• TextFooler (Jin et al., 2020) replaces impor-
tant words with their synonyms.

Evaluation Metrics. Three measurements are con-
sidered to evaluate the model robustness against ad-
versarial attacks. Specifically, Cln% refers to the
model classification accuracy on the original clean
data. Aua% is the classification accuracy under cer-
tain adversarial attacks, and higher Aua% means
better defensing performance. Suc% is defined as
the number of examples successfully being fooled
against the number of all attempted attacks; ac-
cordingly, lower Suc% indicates the higher model
robustness.

All experiments are performed five trials with
random seeds for each dataset. For each run, the
training is performed with batches of 32 sequences
of length 512. The maximal number of training
epoch is 10. Meanwhile, 10% samples are ran-
domly selected from the training set to form the
validation set, and the training stops if the vali-
dation accuracy fails to improve for one epoch.
On the other hand, 1,000 testing examples are ran-
domly selected for the evaluation purpose. This
is the typical experimental setting as (Wang et al.,
2021; Zhang et al., 2022; Zeng et al., 2021). More
details are provided in Appendix A.1.

4.2 Main results

The following state-of-the-art defensing meth-
ods are employed to compare with the proposed
MI4D, including WETAR-D(Xu et al., 2022),
FreeLB++(Li et al., 2021), IB(Zhang et al., 2022),
InfoBERT(Wang et al., 2021), Flooding-X(Liu
et al., 2022), and RanMASK(Zeng et al., 2021).
Among them, the first two methods are based on ad-
versarial data augmentation, while IB, InfoBERT
and Flooding-X are for the model enhancement.
The last one represents the randomized smoothing
method.
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Table 1: Averaged defensing performance (over five trails) obtained by MI4D and current SOTAs using four
attacking methods, including TextFooler, BERT-Attack, Deepwordbug, and TextBugger. The number with bold, †

and ∗ represents the best, second, and third result, respectively.

Datasets Methods TextFooler BERT-Attack Deepwordbug TextBugger
Cln% Aua% Suc% Cln% Aua% Suc% Cln% Aua% Suc% Cln% Aua% Suc%

SST2

Baseline 94.1∗ 5.4 94.3 94.1∗ 6.2 93.4 94.1 17.0 81.9 94.1∗ 29.7 68.4
WETAR-D 94.3 31.1∗ 67.0∗ 94.3 31.4∗ 66.7∗ 94.3† 42.3† 55.1† 94.3 56.3† 40.3†

FreeLB++ 93.9 23.6 74.9 93.9 21.2 77.4 93.9 33.6 64.2 93.9 46.6 50.4
IB 94.1∗ 28.9 69.3 94.1∗ 26.5 71.8 94.1 40.5∗ 57.0∗ 94.1∗ 51.9∗ 44.8∗

InfoBERT 94.0 19.5 79.3 94.0 18.4 80.4 94.0 29.7 68.4 94.0 42.5 54.8
Flooding-X 94.2† 32.2† 65.8† 94.2† 35.4 62.4 94.2∗ 38.2 59.4 94.2† 49.9 47.0
RanMASK 92.7 12.9 86.1 93.0 11.4 87.7 92.7 27.5 70.3 92.8 39.9 57.0
MI4D 94.3 36.4 61.4 94.3 34.5† 63.4† 94.4 45.6 51.7 94.2† 58.3 38.1

AGNEWS

Baseline 94.2∗ 15.8 83.2 94.2∗ 26.7 71.8 94.2 33.0 65.0 94.2 49.2 47.8
WETAR-D 94.0 64.4∗ 31.5∗ 94.0 57.5† 38.8† 94.0 63.7† 32.2† 94.0 71.6† 23.8†

FreeLB++ 95.1 58.7 38.3 95.1 38.8 59.2 95.1 55.1 42.1 95.1 64.9 31.8
IB 93.9 60.7 35.4 93.9 51.6 45.0 93.9 59.2 37.0 93.9 63.6 32.3
InfoBERT 93.6 51.3 45.2 93.6 39.9 57.4 93.6 53.9 42.4 93.6 50.6 45.9
Flooding-X 94.4† 68.9 27.0 94.4† 56.4∗ 40.3∗ 94.4∗ 65.3 30.8 94.4∗ 70.3∗ 25.5∗

RanMASK 93.9 25.0 73.4 93.7 39.3 58.1 93.7 29.4 68.6 93.2 61.2 34.3
MI4D 94.2∗ 66.7† 29.2† 94.1 69.7 25.9 94.6† 62.4∗ 34.0∗ 94.6† 73.9 21.9

IMDB

Baseline 91.5 0.5 99.4 91.5 0.6 99.3 91.5 48.5 47.0 91.5 11.9 87.0
WETAR-D 92.1 47.1 48.9 92.1 34.7∗ 62.3∗ 92.1 90.0† 2.3† 92.1 58.3 36.7
FreeLB++ 93.3∗ 36.3 61.1 93.3 21.0 77.5 93.3∗ 78.3 16.1 93.3∗ 42.2 54.8
IB 91.9 51.3† 44.2† 91.9 40.6† 55.8† 91.9 87.3∗ 5.0∗ 91.9 64.1† 30.3†

InfoBERT 91.8 16.9 81.6 91.8 15.8 82.8 91.8 62.3 32.1 91.8 37.6 59.0
Flooding-X 94.7 48.5∗ 48.8∗ 94.7 33.4 64.7 94.7 83.1 12.2 94.7 62.3∗ 34.2∗

RanMASK 93.0 18.0 80.7 93.5∗ 17.0 81.8 92.5 66.0 28.7 92.5 18.0 80.5
MI4D 94.5† 56.2 40.5 94.3† 54.2 42.5 94.4† 93.6 0.8 94.5† 69.8 26.1

AVG

Baseline 93.3 7.2 92.3 93.3 11.2 88.1 93.3 32.8 64.6 93.3 30.3 67.7
WETAR-D 93.5 47.5∗ 49.1∗ 93.5 41.2∗ 56.0† 93.5 65.3† 29.9† 93.5∗ 62.1† 33.6†

FreeLB++ 94.1∗ 39.5 58.1 94.1∗ 27.0 71.4 94.1∗ 55.7 40.8 94.1† 51.2 45.6
IB 93.3 47.0 49.6 93.3 39.6 57.6 93.3 62.3∗ 33.0∗ 93.3 59.9 35.8∗

InfoBERT 93.1 29.2 68.7 93.1 24.7 73.5 93.1 48.6 47.7 93.1 43.6 53.3
Flooding-X 94.4 49.9† 47.2† 94.4 41.7† 55.8∗ 94.4† 62.2 34.2 94.4 60.8∗ 35.6
RanMASK 93.2 18.6 80.1 93.4 22.6 75.9 93.0 41.0 55.9 92.8 39.7 57.3
MI4D 94.3† 53.1 43.7 94.2† 52.8 43.9 94.5 67.2 28.8 94.4 67.3 28.7

The RoBERTa-base model (Liu et al., 2019) is
employed as the Baseline. All contender meth-
ods are re-implemented using their released codes,
and their key configurations are summarized in Ap-
pendix A.1. Their results are competing with those
reported. Additionally, for MI4D most of the hy-
perparameters, such as learning rate, are consistent
with the vanilla RoBERTa-base, while the masking
budget bM is set as 30%. The comparison results
over five trails are shown in Table 1.

To begin with, the proposed MI4D achieves com-
parative results of averaged Cln% (94.35%) across
all three clean testing datasets. The performance
is only second to that of Flooding-X (averaged
94.40%), while a consistent improvement is ob-
served in comparison with other existing meth-
ods. Importantly, MI4D achieves the state-of-the-
art defensing accuracy in terms of Aua (60.18%)
and Suc (36.40%) outperforming all contenders.
Notably, all methods seemingly perform better
against character-level attacks (Deepwordbug and
TextBugger), which demonstrates the difficulty of
defensing word-based attacks. Yet, MI4D still
achieves the largest improvement (in comparison

with the Baseline) and secures averaged 43.85 and
46.85 absolute percent points on Aua% and Suc%
for the TextFooler and BERT-Attack, respectively.

By contrast, another [MASK] based approach
(i.e., RanMASK) scores the worst performance
across three datasets. The main difference between
RanMASK and ours lies in the usage of [MASK]
tokens (substitution or insertion). By replacing
residual tokens after attacking, RanMASK could
further destroy the original semantic of input se-
quences. However, MI4D spans the semantic con-
vex hull to increase the chance of including original
anchor points, as Lemma 1 and Corollary 1 indi-
cated, so as to enhance the defensing performance.

4.3 Ablation study

To better understand the effectiveness of the pro-
posed method, a series of careful analysis is carried
out. Again, all results are reported as an averaged
accuracy over five trials.
On the masking location. To start with, the ab-
lation experiment is performed to understand the
impact from the location of inserted [MASK] to-
kens. In comparison with adding [MASK] right
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Figure 3: Impact analysis of the masking location from either adding [MASK] after [CLS] (labeled as Head),
randomly (labeled as Random) or at the end of the input sequence (labeled as Tail).

after the [CLS] (labeled as Head hereafter), the
Random one is implemented to randomly insert
[MASK] following a uniform sampling until bM is
met (where bM is the masking budget). Similarly,
we also consider to insert at the end of the input
sequence (labeled as Tail).

With bM=0.3, the comparison result using three
datasets and the TextFooler attack is shown in
Fig. 3 (results from other attack methods can be
found in Appendix A.2). Clearly, the proposed
method is insensitive to the masking location, due
to the similar performance achieved by either Head,
Random or Tail insertion. This shows positional
encoding has negligible effect as we asserted in
analysis, as the position embedding is less impor-
tant compared to the token embedding. In MI4D
context, exactly same [MASK] tokens are inserted
and they do not change the relative order of exist-
ing tokens. Therefore position embeddings can be
seen as a disturbance to “tag” on token embeddings
to create the small variation, and have less impact
on MI4D.
On the masking budget. The following experi-
ments are to evaluate the impact of the masking
budget (bM ) on the proposed method. Obviously,
with a higher value of bM , more [MASK] tokens
will be inserted that could lead to more perturbed
samples. Specifically, experiments are conduced
by varying bM from 0.1 to 0.9. We need to point
out that for the dataset of SST2, with bM=0.1 it
is equivalent to injecting only 1 [MASK] token
due to the average length of input sequences. As
such, we are particularly interested in the model
performance with/out [MASK].

The comparison is shown in Fig. 4 for the MI4D
performance against the TextFooler attack on three
datasets (results from other attack methods can

be found in Appendix A.3). Notably, the results
demonstrate the robustness of the proposed method
to different masking budgets. That is, MI4D ob-
serves a stable defensing performance across all
three evaluation metrics for different masking bud-
gets. As the span of the convex hull is utterly impor-
tant rather than its multiplicity, this observational
experiment once again confirms our inference in
the Analysis.

4.4 Discussion

In this section, we investigate different strategies
of utilizing [MASK] tokens, and further seek for a
reasonable explanation for the result. Again, exper-
iments are conducted with [MASK] being inserted
after [CLS] and bM=0.3.
When to insert. First, we discuss the [MASK] in-
sertion whether for training and/or inference. That
is, three scenarios are considered to insert [MASK]:
(1) only during the training, (2) only during the
inference, and (3) both training and testing (equiva-
lent to MI4D).

The comparison is shown in Table 2. The “Train
only” variant is observed with the worst perfor-
mance for the mostly collapsed convex hull, while
others have more “developped” convex hull to em-
brace the original solution space. We highlight that
including [MASK] in training is to fine-turning
token embedding as a semantic place holder, and
hence a “wild card”. Accordingly, the capacity to
span the convex hull to more likely intersect with
original one is further enhanced, although [MASK]
is employed for extensive pre-training of PLMs be-
fore.
What to substitute. Hereafter the impact from
substituting/masking different types of tokens is
discussed, where tokens are cast as polluted (be-
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Figure 4: Comparison of the defensing performance as a function of the masking budget (bM ), against the TextFooler
attack across three datasets (where x-axis represents bM ).

Table 2: Averaged defensing performance via masking training and/or testing samples for MI4D, while the Baseline
method (vanilla RoBERTa-base) is adopted for reference.

Datasets Strategy TextFooler BERT-Attack Deepwordbug TextBugger
Cln% Aua% Suc% Cln% Aua% Suc% Cln% Aua% Suc% Cln% Aua% Suc%

SST2

Baseline 94.1 5.4 94.3 94.1 6.2 93.4 94.1 17.0 81.9 94.1 29.7 68.4
Train only 93.0 6.1 93.4 93.4 7.2 92.3 93.9 19.6 79.1 93.7 31.4 66.5
Test only 92.3 31.8 65.5 92.8 31.5 66.0 92.2 35.3 62.2 92.4 54.9 40.5
Train+Test 94.3 36.4 61.4 94.3 34.5 63.4 94.4 45.6 51.7 94.2 58.3 38.1

AGNEWS

Baseline 94.2 15.8 83.2 94.2 26.7 71.7 94.2 33.0 65.0 94.2 49.2 47.8
Train only 93.6 11.2 88.0 92.4 18.2 80.3 93.4 18.1 80.6 93.3 47.8 48.7
Test only 91.0 52.0 42.8 92.0 63.4 29.7 92.1 43.8 52.4 93.0 71.4 23.2
Train+Test 94.2 66.7 29.2 94.1 69.7 25.9 94.6 62.4 34.0 94.6 73.9 21.9

IMDB

Baseline 91.5 0.5 99.4 91.5 0.6 99.3 91.5 48.5 47.0 91.5 11.9 87.0
Train only 93.8 22.7 75.8 93.1 20.7 77.8 92.1 53.3 42.1 93.3 32.5 65.2
Test only 94.1 44.2 52.9 94.2 37.5 61.1 94.2 84.4 10.4 94.2 65.9 30.0
Train+Test 94.5 56.2 40.5 94.3 54.2 42.5 94.4 93.6 0.8 94.5 69.8 26.1

AVG

Baseline 93.3 7.2 92.3 93.3 11.2 88.1 93.3 32.8 64.6 93.3 30.3 67.7
Train only 93.5 13.3 85.7 93.0 15.4 83.5 93.1 30.3 67.3 93.4 37.2 60.1
Test only 92.5 42.7 53.7 93.0 44.1 52.3 92.8 54.5 41.7 93.2 64.1 31.2
Train+Test 94.3 53.1 43.7 94.2 52.8 43.9 94.5 67.2 28.8 94.4 67.3 28.7

ing attacked) and normal (remaining unchanged).
The following experiment then involves MI4D and
three other variants for comparison, that is to (1)
only substitute polluted (labeled as Mask_Pol), (2)
only substitute normal (labeled as Mask_Normal),
and (3) substitute randomly (explicitly as Ran-
MASK). Fig. 5 illustrates the defensing accuracy
of masking different types of tokens from the SST2
dataset (results from other datasets can be found in
Appendix A.4).

TextFooler BERT-Attack DeepWordBug TextBugger0

20

40

60

80

100
MI4D
Mask_Pol
Mask_Normal
RanMASK

(a) Aua%

TextFooler BERT-Attack DeepWordBug TextBugger0

20

40

60

80

100

(b) Suc%

Figure 5: Comparison of the model performance against
categorizes of masked tokens with SST2.

The comparison results clearly imply that
the best performance is achieved via substitut-
ing/masking polluted tokens (i.e., Mask_Pol),
while Mask_Normal is the worst. In our hypothe-

sis, when polluted tokens are replaced by [MASK],
it generates the convex hull that has the maximum
overlap with the original one and hence leads to the
best chance to defense. By contrast, Mask_Normal
introduces more noise by maintaining perturbed but
removing normal tokens. Notably, as there is no
clue about adversarial attacking on which specific
tokens in reality, Mask_Pol and Mask_Normal then
reveals the theoretically best and worst defensing
outcome (or the upper and lower bound), respec-
tively.

RanMASK is then a special combination of
Mask_Pol and Mask_Normal, as tokens of either
polluted or normal are randomly masked out with
a predefined probability. On the other hand, the
proposed MI4D becomes an effective solution for
masking inputs (due to the uncertainty of which
tokens being polluted during testing), that is con-
sistently better than RanMASK (randomly mask
tokens). Again, the reason is that MI4D includes
all by exploiting the fact that polluted tokens are
still informative, to some extent, when they are
combined with residuals ones, to create a larger
convex hull overlapping (compared to RanMASK)
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with the original one. That is shown clearly in
Proposition 1.
[MASK] or others. The last experiment aims to
investigate the possibility of injecting different to-
kens, instead of [MASK]. Specifically, the [PAD]
token is selected and further inserted into the orig-
inal input sequence. Note that, in this regard, all
other configurations (such as the masking budget
and the random insertion) remain explicitly the
same, but only to replace [MASK] with [PAD]
for the injection. Table 3 reports the averaged per-
formance using the SST2 dataset with four attacks.
As observed, the performance using [PAD] is sim-
ilar to that of [MASK], indicating we can insert
[MASK] (or similar) as a “wild card” to increase
the span of the convex hull.

Table 3: Averaged defensing performance via injecting
[PAD] (instead of [MASK]) tokens.

TextFooler BERT-Attack
Cln% Aua% Suc% Cln% Aua% Suc%

[MASK] 94.3 36.4 61.4 94.3 34.5 63.4
[PAD] 94.1 36.4 61.4 93.5 32.8 64.9

Deepwordbug TextBugger
Cln% Aua% Suc% Cln% Aua% Suc%

[MASK] 94.4 45.6 51.7 94.2 58.3 38.1
[PAD] 93.2 44.7 52.0 93.1 63.1 32.3

5 Conclusion

We propose a novel adversarial defensing algo-
rithm (MI4D), that is hyperparameter insensitive
and structure free. The proposed method simply
inserts [MASK] tokens at the beginning of input
sequences, and follows the normal fine-tuning to
train the model. Theoretically speaking, we have
argued that adding additional [MASK], while re-
maining other residual tokens, creates a large con-
vex hull overlapping with that of the clean one to
increase the defensing probability. Empirically, in
comparison to existing state-of-the-arts, the pro-
posed algorithm exhibits superior performance on
three benchmark datasets with four attack methods.
In future work, we could combine with external
knowledge for more strategical masking. More im-
portantly, MI4D is agnostic to downstream tasks,
i.e., we could incorporate it into other applications.

Limitations

Our theoretic analysis is constructed on a crucial as-
sumption asserting that the successful defense prob-
ability is determined by the volume of the convex
hull formed by the input. Although our empirical
study results confirmed the inferences based on this

assumption repeatedly (shown in Section 4.4), we
are still seeking direct dynamics of the convex hull
to the prediction/classification probability where
a more rigorous result may be derived. We envis-
age that the understanding of the current model
behavior can lead to more robust models against
adversarial attacks and hence further improvement
to text classification.
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A Appendix

A.1 Training Details

The RoBERTa-base model (Liu et al., 2019) is em-
ployed as the contextual encoder. The dropout rate
across all layers is set as 0.1. The Adam optimizer
with a dynamic learning rate is adopted, for which
the learning rate is warmed up for 10 thousand
steps to a maximum value of 2e−5 before decay-
ing linearly to a minimum value of 1e−6 (by the
cosine annealing) and a gradient clip of (−1, 1).
Additionally, for WETAR-D, 50% of samples are
polluted in the validation set (the size of 256); for
FreeLB++, the number of search steps (for adver-
sarial samples) is 30; for IB, the hidden dimension
for the IB layer is set as 150 and the penalty of
the IB loss is 0.1; for InfoBERT, the penalty of
the mutual-information loss is 5× 10−2; for Ran-
MASK, the masking budget is set as 30%, while
the majority vote is adopted for the final classifica-
tion stage. At last, all models are performed using
a machine with NVIDIA Tesla V100 PCIe of 32G
GPU memory.

A.2 Impact from the location of inserting
[MASK]

The model accuracy is evaluated by adding the
[MASK] token in different locations, i.e., either
after [CLS] (termed Head), randomly (termed Ran-
dom) across the input sequence, or at the end
(termed Tail) . The comparison is shown in Fig 6,
and the result illustrates that the proposed method
achieves a similar performance regardless of the
inserted [MASK] location.

A.3 Impact from the [MASK] budget

The model accuracy is also evaluated as a function
of the masking budget. The comparison is shown
in Fig 7, and the result illustrates that the proposed
method achieves a stable performance regardless
of different budgets.

A.4 Result from masking different types of
tokens

Fig. 8 shows the comparison of the defensing re-
sults with different types of tokens being masked.
Clearly, masking all polluted but retaining normal
tokens leads to the best performance, while mask-
ing normal tokens is the worst. The proposed MI4D
achieves the competitive outcome by injecting ad-
ditional [MASK] tokens while keeping others. The
result indicates that the larger the insertion between

new convex hull (after masking) with the original
one, the better defensing performance.
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Figure 8: Comparison of the model performance against
categorizes of masked tokens.
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Figure 6: Comparison of the defensing performance as a function of inserting [MASK] after [CLS] (labeled as
Head), randomly (labeled as Random), or at the end of the input sequence (labeled as Tail). Among them, (a)-(c) is
for the BERT-Attack, (d)-(f) is for DeepWordBug, and (g)-(i) is for TextBugger, respectively.

1069



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(a) SST2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(b) AGNEWS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(c) IMDB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(d) SST2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(e) AGNEWS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(f) IMDB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(g) SST2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(h) AGNEWS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(i) IMDB

Figure 7: Comparison of the defensing performance as a function of masking budget. Among them, (a)-(c) is for
the BERT-Attack, (d)-(f) is for DeepWordBug, and (g)-(i) is for TextBugger, respectively.
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Abstract

This paper presents ViDeBERTa, a new
pre-trained monolingual language model
for Vietnamese, with three versions -
ViDeBERTaxsmall, ViDeBERTabase, and
ViDeBERTalarge, which are pre-trained on a
large-scale corpus of high-quality and diverse
Vietnamese texts using DeBERTa architec-
ture. Although many successful pre-trained
language models based on Transformer have
been widely proposed for the English language,
there are still few pre-trained models for Viet-
namese, a low-resource language, that perform
good results on downstream tasks, especially
Question answering. We fine-tune and evaluate
our model on three important natural language
downstream tasks, Part-of-speech tagging,
Named-entity recognition, and Question
answering. The empirical results demonstrate
that ViDeBERTa with far fewer parameters
surpasses the previous state-of-the-art models
on multiple Vietnamese-specific natural
language understanding tasks. Notably,
ViDeBERTabase with 86M parameters, which
is only about 23% of PhoBERTlarge with
370M parameters, still performs the same or
better results than the previous state-of-the-art
model. Our ViDeBERTa models are available
at: https://github.com/HySonLab/ViDeBERTa.

1 Introduction

In recent years, pre-trained language models
(PLMs) and Transformer-based architecture mod-
els have been essential in the advancement of
Natural Language Processing (NLP). Large-scale
Transformer-based pre-trained models with the ca-
pacity to derive a contextual representation of the
languages in the training data include GPT (Rad-
ford et al., 2019; Brown et al., 2020), BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), XL-
Net (Yang et al., 2019b), ELECTRA (Clark et al.,
2020), T5 (Raffel et al., 2020), and DeBERTa (He

∗∗: Co-first authors. †: Correspondent author.

et al., 2020, 2021). Following pre-training, these
models performed at the cutting edge on various
downstream NLP tasks (Devlin et al., 2019). The
development of pre-trained models in other lan-
guages, including Vietnamese (PhoBERT (Nguyen
and Nguyen, 2020); ViBERT (Tran et al., 2020);
ViT5 (Phan et al., 2022)), and Arabic (Antoun et al.,
2021), has been spurred on by the success of pre-
trained models in English. In order to enhance per-
formance across several languages by learning both
general and language-specific representations, mul-
tilingual pre-trained models ( XLM-R (Conneau
et al., 2020), mT5 (Xue et al., 2021), and mBART
(Liu et al., 2020) are also being developed.

Most recently, PhoBERT (Nguyen and Nguyen,
2020), the first large pre-trained model for Viet-
namese that inherits the RoBERTa (Liu et al.,
2019) architecture, has demonstrated the effective-
ness of the trained language model compared with
current methods modernized in four Vietnamese-
specific tasks, including Part of Speech Tagging
(POS), Dependency Parsing, Named Entity Recog-
nition (NER), and Natural Language Inference
(NLI). Nevertheless, there are still rooms to build
an improved pre-trained language model for Viet-
namese. Firstly, PhoBERT was pre-trained on a
relatively small Vietnamese dataset of 20GB of un-
compressed texts, while pre-trained language mod-
els can be significantly improved by using more
pre-training data (Liu et al., 2019). Secondly, Ques-
tion answering (QA) is one of the most impactful
tasks that has mainly focused on the computational
linguistics and artificial intelligence research com-
munity within information retrieval and informa-
tion extraction in recent years. However, there are
a few pre-trained models for Vietnamese that pro-
duce efficient results in the QA tasks, especially
PhoBERT (Nguyen and Nguyen, 2020) and ViT5
(Phan et al., 2022). Last but not least, some pre-
vious works point to DeBERTa architecture (He
et al., 2020, 2021) using several novel techniques
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that can significantly outperform RoBERTa and im-
prove the efficiency of model pre-training and the
performance of downstream tasks in some respects.

Inspired by that, we introduce an improved large-
scale pre-trained language model, ViDeBERTa,
trained on CC100 Vietnamese monolingual, fol-
lowing the architecture and pre-training methods
of DeBERTaV3 (He et al., 2021). We comprehen-
sively evaluate and compare our model with com-
petitive baselines, i.e., the previous SOTA models
PhoBERT, ViT5, and the multilingual model XLM-
R on three Vietnamese downstream tasks, including
POS tagging, NER, and QA. In this work, we focus
on two main categories of QA: Machine Reading
Comprehension (MRC) and Open-domain Ques-
tion Answering (ODQA). The experiment results
show the performance of our model surpasses all
baselines on all tasks. Our main contributions are
summarized as follows:

• We present and implement ViDeBERTa
with three versions: ViDeBERTaxsmall,
ViDeBERTabase, and ViDeBERTalarge which
are the improved large-scale monolingual
language models pre-trained for Vietnamese
based on the DeBERTa architecture and pre-
training procedure.

• We also conduct extensive experiments to ver-
ify the performance of our pre-trained models
compared to previous strong models in terms
of Vietnamese language modeling. Our empir-
ical results demonstrated the state-of-the-art
(SOTA) results on Vietnamese downstream
tasks: POS tagging, NER, and QA, thus con-
firming the effectiveness of our improved pre-
trained language model for Vietnamese.

• Our model, ViDeBERTa, which works with
huggingface and transformers, is available to
the public. We expect that ViDeBERTa will
be an effective pre-trained model for many
NLP applications and research in Vietnamese
and other low-resource languages.

2 Related work

Pre-trained language models for Vietnamese.
PhoBERT (Nguyen and Nguyen, 2020) is the first
large-scale PLM for Vietnamese, which has the
same architecture as BERT (Devlin et al., 2019)
and the same pre-training approach as RoBERTa
(Liu et al., 2019) for more robust performance. This

model was trained on a Vietnamese Wikipedia cor-
pus of 20GB word-level texts and produced SOTA
results on Vietnamese understanding tasks such as
POS, NER, Dependency parsing, and NLI. Follow-
ing PhoBERT, ViBERT (Tran et al., 2020) and Vi-
ELECTRA are public monolingual language mod-
els for Vietnamese based on BERT and ELECTRA
pre-training techniques (Clark et al., 2020) that are
pre-trained on syllable-level Vietnamese textual
data. Recent works such as BARTpho (Tran et al.,
2021) and ViT5 (Tran et al., 2020) are pre-trained
for Vietnamese text summarization.
Fine-tuning tasks. This work utilizes three Viet-
namese natural language understanding (NLU)
tasks, including POS tagging, NER, and QA, for
fine-tuning and evaluating our model’s perfor-
mance. For POS tagging and NER, PhoBERT still
produces better results than ViELECTRA, PhoNLP,
and ViT5 (Nguyen and Nguyen, 2020, 2021; Phan
et al., 2022). While early QA (Voorhees et al.,
1999; Brill et al., 2002; Ferrucci et al., 2010) sys-
tems were commonly complex and had many parts,
MRC models have evolved and now suggest a sim-
pler two-stage retriever-reader framework (Chen
et al., 2017). A context retriever first selects a small
subset of passages where some of them contain
the answer to the question then a machine reader
can carefully review the retrieved contexts and de-
termine the correct answer. The tasks based on
QA have gained much attention in recent years in
the Vietnamese natural language processing and
computational linguistics community. However, to
the best of our knowledge, there is only the work
(Van Nguyen et al., 2022) that proposes the first
Vietnamese retriever-reader QA system employing
a transformer-based model (XLM-R) evaluated on
the ViQuAD corpus (Nguyen et al., 2020).

3 ViDeBERTa

3.1 Pre-training data

In this work, we use a large corpus CC100
Dataset of 138GB uncompressed texts (Monolin-
gual Datasets from Web Crawl Data) (Conneau
et al., 2020) as a pre-training dataset. This corpus
includes data for romanized languages and mono-
lingual data for more than 100 languages.

According to Nguyen and Nguyen (2020); Tran
et al. (2021), pre-trained language models trained
on word-level data can perform better than those
trained on syllable-level data for word-level Viet-
namese NLP tasks. As a result, we perform word
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and sentence segmentation using a Vietnamese
toolkit PyVi 1 on the pre-training dataset. After
that, we use a pre-trained SentencePiece tokenizer
from DeBERTaV3 (He et al., 2021) to segment
these sentences with sub-word units, which have a
vocabulary of 128K sub-word types.

3.2 Model Architecture

Our model, ViDeBERTa, follows the DeBERTaV3
architecture by He et al. (2021), which is trained us-
ing the self-supervise learning objectives of MLM
and RTD task and a new weight-sharing Gradient-
Disentangled Embedding Sharing (GDES) to en-
hance the performance of the model. We present
three versions of our model, ViDeBERTaxsmall,
ViDeBERTabase, and ViDeBERTalarge with 22M,
86M, and 304M backbone parameters, respectively.

The details of our model architecture hyper-
parameters are listed in Table 1.

Table 1: Statistic of our model hyper-parameters. #layer
and #heads denote the numbers of layers and attention
heads of ViDeBERTa model versions, respectively.

Model #layers #heads hidden size

ViDeBERTaxsmall 6 12 768
ViDeBERTabase 12 12 768
ViDeBERTalarge 24 12 1024

3.3 Optimization

We employ our model based on the DeBERTaV3
implementation from (He et al., 2021). We use
Adam (Kingma and Ba, 2015) as the optimizer
with weight decay (Loshchilov and Hutter, 2018)
and use a global batch size of 8,192 across 32 A100
GPUs (80GB each) and a peak learning rate of 6e-
4 for both ViDeBERTaxsmall and ViDeBERTabase,
while peak learning rate of 3e-4 was used for
ViDeBERTalarge. We pre-train ViDeBERTaxsmall
and ViDeBERTabase for 500k training iterations
and ViDeBERTalarge for 250k training iterations.

4 Experiments and Results

4.1 POS tagging and NER

4.1.1 Experimental setup
For POS tagging and NER tasks, we use standard
benchmarks of the VLSP POS tagging dataset 2

and the PhoNER dataset (Truong et al., 2021).
1https://pypi.org/project/pyvi/
2https://vlsp.org.vn/vlsp2013/eval/ws-pos

We follow the procedure in Devlin et al. 2019;
Nguyen and Nguyen 2020 to fine-tune our pre-
trained model for POS tagging and NER tasks. In
particular, a linear layer for prediction is appended
on top of our model architecture (the last Trans-
former layer). We then use Adam (Kingma and Ba,
2015) to optimize our model for fine-tuning with
a fixed learning rate of 1e-5 and batch size of 16
(He et al., 2021). The final results for each task and
each dataset are averaged and reported over five
independent runs with different random seeds.

We compare the performance of ViDeBERTa
models with the solid baselines, including
PhoBERT, XLM-R, and ViT5, for these tasks.
Here, XLM-R is a multilingual masked language
model pre-trained on 2.5 TB of CommmonCrawl
dataset of 100 languages, which includes 137GB
of Vietnamese texts.

4.1.2 Main results

Model
POS NER MRC
Acc. F1 F1

XLM-Rbase 96.2† _ 82.0‡

XLM-Rlarge 96.3† 93.8⋆ 87.0‡

PhoBERTbase 96.7† 94.2⋆ 80.1
PhoBERTlarge 96.8† 94.5⋆ 83.5
ViT5base1024−length _ 94.5⋆ _
ViT5large1024−length _ 93.8⋆ _
ViDeBERTaxsmall 96.4 93.6 81.3
ViDeBERTabase 96.8 94.5 85.7
ViDeBERTalarge 97.2 95.3 89.9

Table 2: Test results (%) for three tasks POS tagging
(POS for short), NER, and MRC on test sets. Note
that “Acc.” abbreviates the accuracy. †, ⋆, and ‡ denote
scores taken from the PhoBERT paper (Nguyen and
Nguyen, 2020), the ViT5 paper (Phan et al., 2022), and
the ViQuAD paper (Nguyen et al., 2020), respectively.

Table 2 shows the obtained scores of ViDe-
BERTa compared to the baselines with the highest
reported results. It can be seen clearly that our
model produces significantly better results than the
baselines and achieves new SOTA performance on
both POS tagging and NER tasks.

For POS tagging, ViDeBERTa obtains 0.9% and
0.4% absolute higher accuracy than the large-scale
multilingual model XLM-R (Nguyen et al., 2020)
and the previous SOTA model PhoBERT (Nguyen
and Nguyen, 2020), respectively . Table 2 also
shows our ViDeBERTaxsmall obtains 96.4% accu-
racy that are better than the baseline XLM-Rlarge
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and ViDeBERTabase obtains 96.8% that are com-
petitively the same as the PhoBERTlarge.

For NER, our ViDeBERTalarge achieves F1

score at 95.3% and improves 0.8% absolute
higher score than the previous SOTA models
ViT5base1024−length and PhoBERTlarge. Further-
more, ViDeBERTalarge and ViDeBERTabase pre-
form 1.5% and 0.7% absolute higher scores than
the baseline XLM-Rlarge on the PhoNER corpus.

4.2 Question Answering

4.2.1 Experimental setup

For QA, we evaluate our model on two main tasks:
MRC and ODQA. For ODQA, we propose a new
framework ViDeBERTa-QA, that uses a BM25
(Robertson et al., 2009) as a retriever and ViDe-
BERTa as a text reader.

Figure 1 depicts an overview of our ViDeBERTa
framework for the Vietnamese Open-domain Ques-
tion answering task. The statistics of the ViQuAD
dataset used for the task, which is introduced by
Nguyen et al. (2020), are summarized in Table 3.

Corpus #article #passage #question
Train 138 4,101 18,579
Dev 18 515 2,285
Test 18 493 2,21
Full 174 5,109 23,074

Table 3: Statistics of the ViQuAD dataset for QA. “#arti-
cle”, “#valid”, and “#test” denote the number of articles,
passages, and questions in the ViQuAD, respectively.

We compare ViDeBERTa to the best model
XLM-R (Nguyen et al., 2020) and PhoBERT 3 for
Vietnamese MRC. We also compare our frame-
work, ViDeBERTa-QA, to strong baselines DrQA
(Chen et al., 2017), BERTserini (Yang et al.,
2019a), and the first Vietnamese ODQA system
XLMRQA (Van Nguyen et al., 2022)) that uses
XLM-Rlarge as a reader. We use the ViQuAD cor-
pus introduced by Nguyen et al. (2020) for assess-
ing these tasks. ViQuAD is a Vietnamese corpus
that comprises over 23k triples and each triple in-
cludes a question, its answer, and a passage con-
taining the answer.

Similar to POS tagging and NER, we use Adam
(Kingma and Ba, 2015) as an optimizer with a learn-
ing rate of 2e-5 and a batch size of 16. We report

3We carefully fine-tune PhoBERT for the MRC task fol-
lowing the fine-tuning approach that we use for ViDeBERTa.

the final results as an average over five independent
runs with different random seeds.

4.2.2 Main results
Table 2 presents the results obtained by ViDe-
BERTa and two baselines XLM-R (reported by
Nguyen et al. (2020)) and PhoBERT for MRC on
ViQuAD corpus. We find that our ViDeBERTa per-
formance outperforms both XLM-R and PhoBERT
in terms of F1 score.

In particular, the previous SOTA model
XLM-Rlarge for Vietnamese MRC obtains 87%.
Clearly, ViDeBERTa helps boost the XLM-R with
about 2.9% absolute improvement, obtaining a
new SOTA result at 89.9%. In addition, both
versions ViDeBERTabase and ViDeBERTalarge
also outperform PhoBERTbase and PhoBERTlarge
by large margins, respectively. Especially,
ViDeBERTaxsmall (22M parameters) produces
1.2% absolute higher score than PhoBERTbase
(135M parameters) and ViDeBERTabase (86M pa-
rameters) produces 2.2% absolute higher score
than PhoBERTlarge (370M parameters) but uses
far fewer parameters than PhoBERT.

For ODQA, Table 4 shows the obtained F1

scores for ViDeBERTa-QA and its baselines on
the test set. Obviously, ViDeBERTa-QA achieves
better scores than the previous SOTA XLMRQA,
BERTsini, and DrQA at the top k passages, se-
lected by retrievers, is 10 and 20. In particular,
ViDeBERTa-QA performs 0.85% (at k = 20) and
0.4% (at k = 10) absolute higher scores than the
previous SOTA system. At smaller k (= 1, 5), ViDe-
BERTa performs better BERTserini and DrQA by a
large margin; however, XLMRQA does better than
ViDeBERTa-QA.

Model
Top k selected passages

1 5 10 20
DrQA [*] 37.86 37.86 37.86 37.86
BERTserini [*] 55.55 58.30 57.98 58.09
XLMRQA [*] 61.83 64.99 64.49 64.49
ViDeBERTaxsmall 52.76 56.24 56. 93 57.40
ViDeBERTabase 58.55 61.37 61.89 62.43
ViDeBERTalarge 61.23 63.57 64.89 65.34

Table 4: Test scores (F1 in %) for ODQA on ViQuAD
corpus with different k values. Note that [*] indicates
the results reported following Van Nguyen et al. (2022).

4.3 Discussion
According to the results on both downstream tasks
of POS tagging and NER in Table 2, we find that
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Answer: 1911

Question: Chủ tịch Hồ Chí Minh ra đi tìm
đường cứu nước vào năm nào?
(Which year did President Ho Chi Minh leave
the country to find a way to save the nation?)

Figure 1: An overview of ViDeBERTa-QA framework for Vietnamese Open-domain Question Answering task.

ViDeBERTaxsmall (86M) with fewer parameters
(i.e. only about 15% of XLM-Rlarge 560M and
25% of PhoBERTlarge 370M) but still performs
slightly better than XLM-Rlarge and competitively
the same as the previous SOTA PhoBERTlarge.
One possible reason is that our model inherits
the robustness of DeBERTaV3 architecture and
pre-training techniques, which are demonstrated
superior performance by He et al. (2020, 2021).
Moreover, using more high-quality pre-training
data (138GB) can help ViDeBERTa significantly
improve its performance compared to PhoBERT
(using 20GB).

For Vietnamese QA, the results on the MRC task
show that ViDeBERTa outperforms PhoBERT by
a large margin. It is worth noting that PhoBERT
set a maximum length of 256 subword tokens for
both versions while ViDeBERTa set a larger one of
512. As a result, our models are more scalable than
PhoBERT for long contexts. The results obtained
by ViDeBERTa-QA on ODQA also suggest that
our framework achieves the best performance with
large top k passages selected by the retriever (i.e.
k = 10, 20).

5 Conclusion

In this paper, we have introduced ViDeBERTa, a
new pre-trained large-scale monolingual language
model for Vietnamese. We demonstrate the effec-
tiveness of our ViDeBERTa by showing that ViDe-
BERTa with fewer parameters performs better than
the recent strong pre-trained language models as
XLM-R, PhoBERT, and ViT5, and achieves SOTA
performances for three downstream Vietnamese
language understanding tasks, including POS tag-
ging, NER, and especially QA. We hope that our
public ViDeBERTa model will boost ongoing NLP
research and applications for Vietnamese and other
low-resource languages.

Limitations

While we have shown that ViDeBERTa can achieve
state-of-the-art performance on a variety of NLP
tasks for Vietnamese, we believe that more analyses
and ablations are required to better understand what
facets of ViDeBERTa contributed to its success and
what knowledge of Vietnamese that ViDeBERTa
captures. We leave these further explorations to
future work.
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A Background of DeBERTa

DeBERTa enhances BERT with disentangled at-
tention and a more powerful mask decoder. The
disentangled attention mechanism is distinct from
prior methods in that it uses two distinct vectors to
represent each input word: one for the content and
one for the location. The words’ attention weights
are calculated using disentangled matrices based on
both their relative placements and contents. Simi-
lar to BERT, DeBERTa has been pre-trained using
masked language modeling. The disentangled at-
tention process already accounts for the relative
locations and contents of the context words but not
for their absolute positions, which are usually cru-
cial for prediction. DeBERTa improves MLM by
utilizing a better mask decoder at the MLM decod-
ing layer and absolute position information of the
context words.

A.1 Masked Language model

Large-scale Transformer-based PLMs are often pre-
trained using a self-supervision aim called Masked
Language Model (MLM) (Devlin et al., 2019) to
learn contextual word representations in enormous
volumes of text. In further detail, we corrupt a
given sequence X = {xi} into X̃ by randomly
masking 15% of its tokens and train a language
model parameterized by θ to reconstruct X by an-
ticipating the masked tokens x̃ conditioned on X̃:

max
θ

log pθ(X|X̃) = max
θ

∑

i∈C
log pθ(x̃i = xi|X̃),

(1)
where C is the sequence’s index set for the masked
tokens. The authors of BERT suggest keeping 10%
of the masked tokens unchanged, replacing another
10% with tokens chosen at random, and replacing
the remaining tokens with the [MASK] token.

A.2 Replaced token detection

Like ELECTRA, which was trained with two trans-
former encoders in GAN style, DeBERTaV3 (He
et al., 2021) improves DeBERTa by using the train-
ing loss in the generator is MLM and discriminator
is Replaced Token Detection (RTD). The loss func-
tion of the generator can be written as follows:

LMLM = E

(
−
∑

i∈C
log pθG(x̃i,G = xi|X̃G)

)
,

(2)

where θG and X̃G are the parameter and the in-
put of the generator by masking 15% tokens in X,
respectively.

The discriminator’s input sequence is con-
structed by replacing masked tokens with new to-
kens sampled according to the generator’s output
probability:

x̃i,D =

{
x̃i ∼ pθG(x̃i,G = xi|X̃G), i ∈ C
xi, i /∈ C

(3)

The loss function of the discriminator is written as
follows:

LRTD = E

(
−
∑

i

log pθG(1(x̃i,D = xi)|X̃D)
)
,

(4)
where θD is the parameter of the discriminator, 1(·)
is the indicator function, and X̃D is the input to
the discriminator constructed by Equation 4. Then
LMLM andLRTD are optimized jointly by the final
loss L = LMLM + λLRTD, where λ is the weight
of the discriminator loss.

Besides using the RTD training loss like ELEC-
TRA (Clark et al., 2020), DeBERTaV3 improves
DeBERTa by using a new weight-sharing method
called Gradient-Disentanggled Embedding Sharing
(GDES) (He et al., 2021). The experimental results
conducted by He et al. indicate that GDES is an ef-
fective weight-sharing method for language model
pre-trained with MLM and RTD tasks.
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Abstract
Accessing medical literature is difficult for
laypeople as the content is written for special-
ists and contains medical jargon. Automated
text simplification methods offer a potential
means to address this issue. In this work, we
propose a summarize-then-simplify two-stage
strategy, which we call NapSS, identifying the
relevant content to simplify while ensuring
that the original narrative flow is preserved.
In this approach, we first generate reference
summaries via sentence matching between the
original and the simplified abstracts. These
summaries are then used to train an extractive
summarizer, learning the most relevant con-
tent to be simplified. Then, to ensure the nar-
rative consistency of the simplified text, we
synthesize auxiliary narrative prompts com-
bining key phrases derived from the syntac-
tical analyses of the original text. Our model
achieves results significantly better than the
seq2seq baseline on an English medical cor-
pus, yielding 3%∼4% absolute improvements
in terms of lexical similarity, and providing
a further 1.1% improvement of SARI score
when combined with the baseline. We also
highlight shortcomings of existing evaluation
methods, and introduce new metrics that take
into account both lexical and high-level seman-
tic similarity. A human evaluation conducted
on a random sample of the test set further es-
tablishes the effectiveness of the proposed ap-
proach. Codes and models are released here:
https://github.com/LuJunru/NapSS.

1 Introduction

The medical literature is vast, and continues to ex-
pand quickly. Most patients (laypeople), however,
are unable to access this information because it is
written for specialists and so dense and laden with
jargon. As the recent ‘infodemic’ has shown, ac-
cess to reliable and comprehensible information
about citizens’ health is a fundamental need: for
example, a European Health Literacy Survey (HLS-
EU) reports that "at least 1 in 10 (12%) respondents

S1.  Two good quality randomized controlled trials involving 754 women were
identified.

S2.  Rapid negative pressure application reduced the duration of the procedure 
without any evidence of differences in outcomes for the mother or infant.

S3.  Rapid method of negative pressure application should be recommended for 
vacuum extraction assisted vaginal delivery.

involving 754 participants.
the same success rate of vacuum 

procedure of 98.2% by both methods (risk ratio (RR) 1.00, 95% confidence 

Plain-Language Summary - PLS

S1. We included two trials involving 754 participants.
S2. One new trial of 660 participants showed the same success rate of vacuum

procedure of 98.2% by both methods (risk ratio (RR) 1.00, 95% confidence
interval (CI) 0.98 to 1.02).

S3. The two included trials showed significant reductions in the time between
applying the vacuum cup and delivery, (one trial (74 women): mean
difference (MD) -6.10 minutes, 95% CI -8.83 to -3.37 and the other trial (660
women): with median difference -4.4 minutes, 95% CI -4.8 to -4.0).

S4. The two included trials showed no significant difference in detachment rate
(RR 0.85, 95% CI 0.38 to 1.86, 2 studies, 754 women), no significant
difference in Apgar score below seven at one minute (RR 1.04, 95% CI 0.51
to 2.09) and five minutes (RR 1.0, 95% CI 0.29 to 3.42), no significant
differences in scalp abrasions or lacerations, cephalhematoma, subgaleal
hemorrhage and hyperbilirubinemia.

S5. There were no significant differences between the two methods in all
secondary outcomes.

S6. The rapid negative pressure application for vacuum assisted vaginal birth
reduces duration of the procedure whilst there is no evidence of
differences in maternal and neonatal outcomes.

S7. Rapid method of negative application should be recommended for vacuum
extraction assisted vaginal delivery.

Complex Medical Abstract – ABS

Figure 1: A typical sample of Medical Text Simplifica-
tion task. The abstract and plain-language summary are
split into sentences for easy inspection. Key phrases in
each sentence, and marks of chosen sentences in refer-
ence summary are in bold.

show insufficient health literacy and almost 1 in 2
(47%) has insufficient or problematic health lit-
eracy" (Sørensen et al., 2015). Automated text
simplification methods offer a potential means to
address this issue, and make evidence available to
a wide audience as it is published. However, per-
forming paragraph-level simplification of medical
texts is a challenging NLP task.

Online medical libraries such as Cochrane li-
brary,1 provide synopses of the medical literature
across diverse topics, and manually-written plain
language summaries. We are interested in develop-
ing accurate automated medical text simplification
systems upon those libraries to help timely popu-
larization of medical information to lay audience.

1https://www.cochranelibrary.com/
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We show a typical example of a technical abstract
and associated simplified summary from a recently
introduced paragraph-level medical simplification
corpus (Devaraj et al., 2021a) in Figure 1. The
sample consists of a technical abstracts (ABS) writ-
ten for experts, and an manually authored Plain-
Language Summaries (PLS) of the same publica-
tion collected from the Cochrane website. The
dataset only provide raw abstract-PLS pairs. For
easy inspection, we further add sentence splitting
and highlight key phrases.

As this example illustrates, a text simplification
system needs to first have an overview of the key
details reported in the abstract (e.g., that the review
synthesizes ‘two trials’) and must also infer that
there ‘were no significant differences’ when ‘rapid
negative pressure application’ was applied to all
participants, and thus that the ‘rapid method should
be recommended’. This entails an overall under-
standing of the key concepts to simplify, while
preserving a consistent narrative flow. Built upon
this general framing, the system should identify
that the most representing sentences in the abstract
are sentences 1, 6, 5 and 7. The key challenges
here for a model include: (i) identifying the most
important content to simplify within the synopsis;
(ii) preserving the original narrative flow from a lin-
guistic and medical point of view; (iii) synthesising
the findings in a simple and consistent language.

To address these challenges, we propose a
summarize-then-simplify two-stage framework
NapSS—Narrative Prompting and Sentence-
matching Summarization—for paragraph-level
medical text simplification. The narrative prompt
is designed to promote the factual and logical
consistency between abstracts (ABSs) and PLSs,
while the simplification-oriented summarizer
identifies and preserves the relevant content to
convey and simplify.

In the first stage, we construct intermediate sum-
maries via sentence matching between the abstract
and the PLS sentences based on their Jaccard Dis-
tance. This preliminary set of summaries is used
to fine-tune a simplification-oriented summarizer
which at inference time identifies and extracts the
most relevant content to be simplified from the
technical abstracts. This extractive summarizer is
simplification-aware in that the reference summary
is built with PLS ground truth.

In the second stage of simplification, the inter-
mediate summary is concatenated to a narrative

prompt generated by synthesising the main con-
cepts, entities, or events mentioned in text result-
ing from the syntactic analysis of the PLSs. The
prepared input is passed to a seq2seq model (e.g.,
BART (Lewis et al., 2020)) to produce a plain-
language output.

Our contributions can be summarized as follows:

• We introduce NapSS, a two-stage summarize-
then-simplify approach for paragraph-level
medical text simplification, leveraging extrac-
tive summarization and narrative prompting.

• We design a simplification-aware summarizer
and a narrative prompt mechanism. The for-
mer is based on a Pre-trained Language Model
(PLM) fine-tuned for extractive summariza-
tion on an intermediate set of summaries built
via sentence matching between the technical
and simplified text. The latter synthesises key
concepts from the medical text by syntactic
dependency parsing analyses, promoting the
overall consistency with the narrative flow.

• We conduct a thorough experimental assess-
ment on the Cochrane dataset for paragraph-
level medical simplification, evaluating the
different features of the generated text (i.e.,
simplicity and semantic consistency) using
several automatic metrics, and the model gen-
eralization on sentence-level simplification.
Additionally, to mitigate the limitations of
the automatic metrics, we designed and con-
ducted a human evaluation assessment, involv-
ing “layperson” readers and medical special-
ists. The results demonstrated the state-of-the-
art performance on quality and consistency of
the simplified text.

2 Related work

We review three lines of work relevant to this effort:
text simplification, extractive summarization, and
prompting.

2.1 Text Simplification
Work on text simplification has mainly focused on
sentence-level simplification, using the Wikipedia-
Simple Wikipedia aligned corpus (Zhu et al., 2010;
Woodsend and Lapata, 2011) and the Newsela sim-
plification corpus (Xu et al., 2015). There has been
less work on document-level simplification, per-
haps owing to a lack of resources (Sun et al., 2021;
Alva-Manchego et al., 2019).
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The medical domain stands to benefit consider-
ably from automated simplification: The medical
literature is vast and technical, and there is a need to
make this accessible to non-specialists (Kickbusch
et al., 2013). Some research uses those medical doc-
uments and deploys various simplification meth-
ods based on lexical and syntactic simplification
(Damay et al., 2006; Kandula et al., 2010; Llanos
et al., 2016). The recent release of the Cochrane
dataset provided a new parallel corpus of technical
and lay overview of published medical evidence
(Devaraj et al., 2021a).

2.2 Extractive Summarization
Extractive summarization aims to select the most
important words, sentences, or phrases from input
texts and combine them into a summary. Many
approaches have been proposed: ranking and se-
lecting sentences based on their graph overlap (Mi-
halcea and Tarau, 2004), deriving the relevance of
the sentences within the text using WordNet (Pal
and Saha, 2014), extracting information by named
entity recognition (Maddela et al., 2022), and us-
ing continuous vector representations to perform
semantic matching and sentence selection (Liu and
Lapata, 2019; Narayan et al., 2018b; Gui et al.,
2019; Lu et al., 2020; Pergola et al., 2021a).

There are some works that focus on extractive
summarization of biomedical texts (Mishra et al.,
2014; Sun et al., 2022). These have either aimed
to provide a summary via graph-based methods or
via sequence extraction to present key information
in structured (tabular) form (Gulden et al., 2019;
Aramaki et al., 2009). In this work we follow a
standard sentence matching extractive summariza-
tion method (Goldstein et al., 1999; Zhong et al.,
2020) and fine-tune a pre-trained language model
to perform sentence classification. We use extrac-
tive summaries as an intermediate step.

2.3 Prompting
Recent work has shown that language models can
be prompted to perform tasks without supervision
(i.e., “zero-shot”) (Radford et al., 2018; Brown
et al., 2020). Prompts have been shown to work
across a wide range of NLP tasks, e.g., sentiment
classification, “reading comprehension”, and “com-
monsense reasoning” (Seoh et al., 2021; Petroni
et al., 2019; Pergola et al., 2021b; Jiang et al., 2019;
Lu et al., 2022; Zhu et al., 2022; Wei et al., 2022).
Recent work has shown that prompt-based meth-
ods can be used even with smaller language models

(Schick and Schütze, 2020; Gao et al., 2020). In
this work we focus on a novel use of prompts: As-
sisting generation of simplified text.

3 Methods

We first define the Paragraph-level Text Simplifi-
cation task, introducing the relevant notations, and
then present the NapSS model.

3.1 Task Formulation

In many cases, text simplification can be viewed
as a generative task with additional constraints
regarding the simplicity of the generated text. Anal-
ogously to text summarization, paragraph-level text
simplification can be formulated as follows: for a
given complex paragraph with M sentences, x =
{{x11, x12, · · · , x1Nx1} · · · {x

M
1 , x

M
2 , · · · , xMN

xM
}},

the aim is to generate a plain-language summary
(PLS) ŷ = {ŷ1, ŷ2, · · · , ŷNs}, summarizing and
simplifying the original paragraph, with Nxm

denoting the length of the m-th sentence xm.

3.2 NapSS

We now describe NapSS, a text simplification ap-
proach based on a summarize-then-simplify two-
stage pipeline with the aims of (i) identifying the
relevant content to simplify while (ii) ensuring
that the original narrative flow is preserved. First,
we generate a preliminary summary by using a
simplification-oriented BERT summarizer, an ex-
tractive model fine-tuned beforehand to identify
the most relevant content to attend and simplify
(§3.2.1). These preliminary summaries are then
combined with a narrative prompt, a synthetic set
of key phrases describing the main concepts, en-
tities, or events discussed in the original text and
derived from its syntactic analysis (§3.2.2). The
overall working flow of our proposed NapSS model
is illustrated in Figure 2. We next provide the de-
tails of each of these modules.

3.2.1 Sentence-matching Summarization
The idea behind the summarization stage is to iden-
tify the most important content within a given tech-
nical abstract (with respect to target simplifica-
tions). We automatically construct an intermediate
“reference” summary dataset using the simplifica-
tion training set with which to fit a simplification-
oriented summarizer. Specifically, we train the lat-
ter as a binary sentence classifier, which provides a
simple extractive summarization approach.
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STAGE 1

ABS

Intermediate 
Simplification-oriented 

Summaries

!𝑃𝐿𝑆BERT

Fine-Tuning
Extractive 

Summarizer

STAGE 2

BERT

Extractive  
Summarizer

Stanza

Syntactic
Analysis

PLS

. . . . . .

Sentence Matching
(Jaccard Distance)

We included two trials involving 754 participants. 
The rapid negative pressure application for vacuum assisted vaginal birth 
reduces duration of  the procedure whilst there is no evidence of  
differences in maternal and neonatal outcomes. 
Rapid method of  negative application should be recommended for 
vacuum extraction assisted vaginal delivery.

BART

Extractive
Summary

Narrative 
Prompt

Key Phrases

1. We included trials.

2. Application reduces duration.

3. Methods should be recommended  
delivery.

involving 754 participants.
the same success rate of vacuum 

procedure of 98.2% by both methods (risk ratio (RR) 1.00, 95% confidence 

Narrative Prompt – Key Phrases Output – Simplified Medical Text

Figure 2: Overview of the two-stage pipeline in the NapSS model. In the first stage, we perform sentence “labelling”
using Jaccard Distances (Jaccard, 1912) over abstract (ABS) sentences in reference to PLS sentences, generating
a set of intermediate summaries. A binary BERT-based (Devlin et al., 2018) classifier is fine-tuned over these
summaries and used, at test time, to generate an extractive summary x′. During the second stage (right side), we
perform syntactic dependency parsing over the PLS sentences to extract key phrases k. These are concatenated to
form a narrative prompt and combined with the extractive ABS summary to serve as input of the simplification
module for the generation of plain-language outputs ˆPLS. In the bottom part, we reported an example of narrative
prompt and simplified text generated by NapSS on the ABS introduced in Figure 1.

Algorithm 1 details the process of building this
pseudo reference summary dataset. The input to
the algorithm are the sets of sentences from the
technical abstract (ABS) and the corresponding
simplified text (PLS). For each PLS sentence, we
calculate the Jaccard Distance to every ABS sen-
tence, and select the one with the lowest score. The
set of selected ABS sentences constitute an interme-
diate extractive summary of the technical abstract.
The complexity of Algorithm 1 is O(Nx ·Ny ·D),
where D denotes the size of entire corpus.

Based on the intermediate summary dataset, we
fine-tune a BERT model to perform binary classifi-
cation over sentences. At inference time, the resul-
tant trained simplification-oriented summarizer is
used to select sentences from the technical abstract
which will be simplified. These are concatenated
and then passed to a BART model (Lewis et al.,
2020) along with the narrative prompt.

As an example, the bottom left of Figure 2 shows
3 PLS sentences guiding the automatic labelling
(0/1) of 7 ABS sentences. The intermediate ex-
tracted summary x′ derived via Jaccard matching
is used at training time, while at inference time we
extract this using the trained model.

3.2.2 Narrative Prompting

Intuitively, the simplification-oriented summarizer
should identify the most important content in ABS
which should be simplified. However, the similarity
matching with which we train the sentence classi-
fier may be noisy and miss relevant information
constituting the narrative flow, resulting in errors
that lead to omissions in outputs. Therefore, in our
NapSS model, we incorporate another simple mech-
anism, narrative prompting, to encourage factual
consistency between the input and output.

Inspired by recent work on chain-of-thought
“reasoning” (Wei et al., 2022), we assume a logical
narrative chain can be explicitly constructed with
key phrases extracted via syntactic dependency
parsing, and then used as a prompt. Specifically, we
use a light natural language processing tool Stanza2

for dependency parsing on every abstract sentence
to extract key phrases. Algorithm 2 details the al-
gorithmic process of our narrative prompting. The
algorithm takes abstract sentences as input, runs a
dependency parse on each, collects the root token
and its closest child tokens to form key phrases in

2https://stanfordnlp.github.io/stanza/
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Algorithm 1 Build reference summary dataset
1: Input require: abstract sentence sets {xm

1∼M},
2: PLS sentence sets {yq

1∼Q}
3: Initilization: Empty positive sentence set xpos
4: for PLS sentence yq ∈ {yq

1∼Q} do
5: Initilization: Minimum Jaccard Distance

Distq ← 10.0,
6: corresponding sentence index Indq ← 0
7: for abstract sentence xm ∈ {xm

1∼M} do
8: Distqm = JaccardDistance(yq,xm)
9: if Distqm < Distq then

10: Distq ← Distqm
11: Indq ← m
12: end if
13: end for
14: if xIndq /∈ xpos then
15: add xIndq in xpos
16: end if
17: end for
18: Negative sentence set xneg = {xm

1∼M} − xpos

Algorithm 2 Build narrative prompt
1: Input require: abstract sentence sets {xm

1∼M}
2: Initilization: Empty key phrases queue xque
3: for abstract sentence xm ∈ {xm

1∼M} do
4: DTree = DependencyParsing(xm)
5: xm

root = DTree.Root()
6: xm

rootl
, xm

rootr = DTree.Children(xm
root)

7: km = xm
rootl

xm
root x

m
rootr

8: add km in xque
9: end for

10: Prompt kM = k1</s>k2</s>· · ·</s>km

natural linguistic orders, and assembles these as the
narrative prompt. Let km denotes the key phrase
of sentence xm, the narrative prompt kM equals to
[k1</s>k2</s>· · · </s>km], in which “</s>” is a
special separation token. The complexity of this
building algorithm is O(Nx · D). As shown in
Figure 2, key tokens are shown with bold fonts in
every abstract sentences.

3.2.3 Text Simplification

The resulting input of the second text simplification
stage is composed by [kM</s>x′], as depicted in
the bottom right part of Figure 2. NapSS adopts
encoder-decoder PLM models as the backbone for
generative text simplification. Let LgenTS be the

loss of the generative text simplification task:

LgenTS = − 1

Nk +Nx′

Nk+Nx′∑

t=1

yt log ŷt (1)

where Nk, Nx′ are the lengths of the narrative
prompt kM and of the extractive summary x′, re-
spectively.

4 Experimental Assessment

4.1 Experimental Setup
Dataset We build and evaluate NapSS on the first
published paragraph-level medical text simplifica-
tion dataset (Devaraj et al., 2021a). The dataset is
derived from the Cochrane library of systematic
reviews and contains 4,459 parallel pairs of techni-
cal (ABS) and simplified (PLS) medical abstracts
curated by domain experts. The average length of
abstract is around 300 to 700 tokens, while the av-
erage length of PLS is around 130 to 390 tokens
(Devaraj et al., 2021a). All abstract and PLS text
are preprocessed to have a total token length lower
than 1,024, which is a typical input upper bound
of large PLM models. The dataset was split into
3,568 training, 411 development and 480 testing
instances. To our knowledge, this is the only acces-
sible paragraph-level text simplification dataset.

For the summarization model, the derived sum-
mary dataset contains 51,635 training, 5,856 devel-
opment, and 7,009 testing sentences (constructed
from the respective dataset splits). This dataset con-
tains around 53% positive sentences and 47% neg-
ative sentences, which is relatively balanced, and
consistent with the proportion of average amount
of PLS sentences and average amount of paired
abstract sentences. We describe hyperparameter
selection in the Appendix Section A.1.

Evaluation Metrics For evaluation we largely
adopt the metrics used in prior work on this task
and dataset (Devaraj et al., 2021a). These can be
placed into three groups: readability metrics, lex-
ical similarity metrics, and simplification metrics.
The readability metrics include the Flesch–Kincaid
grade level score (FK) (Kincaid et al., 1975) and
the automated readability index (ARI) (Senter
and Smith, 1967). Lexical similarity metrics are
widely adopted to evaluate text generation, includ-
ing ROUGE-1, ROUGE-2, ROUGE-L (Lin, 2004)
and BLEU (Papineni et al., 2002). The simplifica-
tion metrics include SARI (Xu et al., 2016), which
is an editing-base metric especially designed for
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Readability Lexical Similarity Simplification Semantic Similarity Comprehensive

Models FK ARI Rouge-1 Rouge-2 Rouge-L BLEU SARI BertScore BLEURT

Vanilla BART 10.89 14.32 46.79 19.23 43.55 11.5 38.72 23.94 -0.194
UL-BART (Devaraj et al., 2021a) 11.97 13.73 38.00 14.00 36.00 39.0 40.00 / /
UL-BART (by us) 9.30 12.40 43.25 16.36 40.22 7.9 40.08 24.64 -0.309

NapSS (our) 10.97 14.27 48.05 19.94 44.76 12.3 40.37 25.73 -0.155
NapSS BioBART 10.98 14.24 47.66 19.77 44.39 11.9 40.21 25.61 -0.166

NapSS (+UL) 8.67 11.80 45.39 16.77 42.53 9.1 41.12 23.13 -0.219
NapSS (-Prompt) 9.86 13.06 45.62 20.01 44.83 12.1 39.68 25.57 -0.158
NapSS (-Summary) 10.62 13.99 46.91 19.51 44.18 11.8 39.62 25.29 -0.167

Table 1: Overall results on the testing set. UL BART is the previous SOTA, and we report results from our
re-implementation of this. The inconsistency between (Devaraj et al., 2021a) and our re-implementation is due to
the inavailability of evaluation code. For NapSS, we provide 2 groups of results by changing backbone model of text
simplification module. The robustness verification of proposed NapSS is provided in appendix B. We further provide
fusion and ablation results based on BART version of NapSS. NapSS (-Prompt) refers to remove the narrative prompt,
while NapSS (-Summary) is to replace the abstract summary with full abstract.

text simplification task. In our setting, SARI would
reward the generation of words occurring only in
the paired PLSs, and avoidance of ABS words not
occurring in the corresponding PLS.

Simple automated metrics fail to capture se-
mantic agreement between outputs and references.
We therefore consider two additional metrics:
BertScore (Zhang et al., 2019) and BLEURT (Sel-
lam et al., 2020). BertScore was originally de-
signed to evaluate semantic similarity via BERT
(Devlin et al., 2018) embeddings. Alva-Manchego
et al. (2021) and Devaraj et al. (2022) recently as-
sessed and verified its effectiveness on the text sim-
plification task. BLEURT is a metric finetuned on
both lexical BLEU metric and semantic BertScore
metric. Along with the automatic assessment, we
also conduct a manual (human) evaluation of the
simplicity, fluency and factuality whose evaluation
criteria are detailed Section §4.2.3.

Prior work did not publicly provide code to
perform evaluations beyond computing ROUGE.3

Therefore, we mainly compare results according to
our re-implementation of evaluation metrics.

Baseline “Vanilla” BART is a pretrained encoder-
decoder architecture, based on transformers, whose
auto-regressive decoder made it a suitable a strong
baseline for text generation. In ours setting, we
adopted a a specific checkpoint version4 addition-
ally fine-tuned on the XSUM dataset (Narayan
et al., 2018a; Devaraj et al., 2021b), providing
higher performance on text summarization. The
only other model developed for paragraph-level

3https://github.com/AshOlogn/
Paragraph-level-Simplification-of-Medical-Texts

4https://huggingface.co/facebook/
bart-large-xsum

medical text simplification is UL-BART (Devaraj
et al., 2022), is also based on BART but integrates
an auxiliary “unlikelihood” (UL) penalty to demote
generation of technical jargon, which improved the
readability and simplicity of outputs compared to
the base BART model.

4.2 Results

4.2.1 Automatic Metrics
We report quantitative results in Table 1 compar-
ing the main models and the ablation studies. We
notice that UL-BART can generate text which is
more readable (lower FK and ARI) and simpler
(higher SARI) than the “Vanilla” BART. However,
the model struggles to maintain lexical and seman-
tic similarity (lower ROUGE, BLUE, and higher
BLEURT) to the human references, perhaps be-
cause omitting jargon terms as the modified objec-
tive degrades coherence.

By contrast, NapSS improves lexical similarity
by 3% to 4% in terms of ROUGE and BLEU
scores while maintaining a comparable SARI score.
NapSS additionally improves the semantic similar-
ity between the model outputs and the human ref-
erences at the cost of a slightly higher FK and
ARI scores, demonstrating an higher semantic con-
sistency while simplifying the medical text. For
the sake of completeness, we also tested whether
replacing the “Vailla” BART backbone with a spe-
cialised medical PLM, such as BioBART (Yuan
et al., 2022), would lead to better performance.
Surprisingly, the replacement did not lead to any
significant change in any of the adopted metrics.

We further explored the integration of the aux-
iliary “unlikelihood” (UL) loss in NapSS (+UL),
aiming at increasing the degree of simplification
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Models FK ARI BLEU SARI BLEURT

Vanilla BART 4.91 6.83 9.71 43.47 -0.663
UL-BART (by us) 4.76 7.61 8.75 40.83 -0.654
NapSS (our) 6.32 7.99 10.1 45.78 -0.648
NapSS (+UL) 5.49 8.25 12.8 44.46 -0.553

Table 2: Zero-shot inference results. All above models
are only fine-tuned on the Cochrane dataset (2021a),
then run zero-shot inference on the TICO-19 testing set.

while preserving semantic consistency. The result-
ing model yielded further state-of-the-art perfor-
mance on the overall text simplicity with an in-
crease of ~0.8% in readability and 1.1% in SARI
score. NapSS (-Prompt) and (-Summary) refer to
two ablation models. The first one removes the
narrative prompt, leading to improved readability
but decreased simplification (lower SARI). The sec-
ond one show that the full abstract is necessary for
improving the lexical similarity.

We report and discuss in Appendix C the binary
classification performance of the extractive summa-
rization module used in stage one.

4.2.2 Out-of-Domain Evaluation
To evaluate the generalization ability of NapSS, we
evaluate the model on a different medical text sim-
plification dataset: TICO-19 (Shardlow and Alva-
Manchego, 2022). Unlike the Cochrane dataset,
this is designed for sentence-level simplification
and contains over 6k parallel technical and simpli-
fied sentences related to COVID-19.

Table 2 reports results. The “Vanilla” BART and
UL-BART have the best performance on readabil-
ity while NapSS yields over ~2% improvement in
terms of simplicity. Integrating NapSS with the “un-
likelihood” (UL) penalty (NapSS (+UL)) achieves
around ~1-3% boost on lexical and semantic evalua-
tion. The overall results highlight that our approach
can preserve a high level of semantic consistency
for simplification at the sentence level, yet with
slightly reduced readability.

4.2.3 Human Evaluation
We designed and conducted a manual evaluation
of the outputs generated by the simplification mod-
els to provide additional insights into fluency and
factuality; the latter is especially difficult to assess
with existing automatic metrics.

Evaluation Procedure We randomly sampled
100 unsimplified instances (ABSs) from the test
set and paired each with simplified outputs gener-

Models Simplicity Fluency Factuality (Experts) Overall

UL BART (by us) 1.43 1.53 1.17 0.99 4.13
NapSS 1.12 1.54 1.66 1.28 4.32

Table 3: Human evaluation result by each category.

ated by two models, one from UL-BART (Devaraj
et al., 2021a) and one from the proposed NapSS.
Each simplified text was assessed by three different
annotators. We hired 6 annotators to participate in
this evaluation, who are postdoctoral researchers
and PhD students in computer science. Each was
assigned 100 instances; this took nearly 8 hours
to complete. Additionally, we hired two expert an-
notators who have professional background in the
medical domain to obtain a reliable evaluation on
the factual consistency between the complex and
the simplified text. Annotators were paid $19 per
hour. To ensure that annotators shared a common
understanding of our evaluation criteria, we held a
tutorial session with detailed instructions and pro-
vided 20 instances as a trial run. We then resolved
any annotation inconsistencies afterwards.

Evaluation Criteria We followed a previous ap-
proach to ask annotators to give numerical scores
for each instance (Alva-Manchego et al., 2021).
Considering the requirement for the simplification
tasks and text styles characterizing medical docu-
ments (Devaraj et al., 2022), we separated numer-
ical scores into three aspects: simplicity, fluency
and factuality. Annotators can select a numerical
rating (from 0, 1, and 2) for each aspect. Appendix
A.2 provides details for each category.

Results In Table 3, we present average anno-
tator scores assigned to all aspects. Our model
achieves higher overall and average scores on Flu-
ency and Factuality, respectively. UL-BART model
got higher score on Simplicity because this model
sometimes generates too simple outputs. Simplic-
ity from our evaluation schema only focuses on
evaluating the length of the text and the vocabulary.
It does not involve the evaluation of the content.
Therefore, if the generated text only contains a con-
clusion from the paragraph, our evaluator would
give a higher score on Simplicity. On the contrary,
the fluency and factuality aspects focus on evalu-
ation at the context and semantic level, where our
model got a higher score in the assessment. As
Factuality is an aspect that the evaluation is subject
to evaluators’ background knowledge, therefore we
selected those instance been given three different
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S1.  Two good quality randomized controlled trials involving 754 women were
identified.

S2.  Rapid negative pressure application reduced the duration of the procedure 
without any evidence of differences in outcomes for the mother or infant.

S3.  Rapid method of negative pressure application should be recommended for 
vacuum extraction assisted vaginal delivery.

S1. Five randomized studies involving 1382 patients were included in this review.
S2. All the included studies involved advanced (T3 or T4) prostate cancer, had relatively small populations, and were of short duration.
S3. Few events were reported and did not assess disease-specific survival or metastatic disease. Only one study (N = 77) evaluated biochemical outcomes.
S4. A subgroup analysis found no significant differences in biochemical progression (defined by the authors as PSA ≥ 10 ng/mL) between IAS and CAS for Gleason scores

4 - 6, 7, and 8 - 10.
S5. For patients with a Gleason score > 6, reduction in biochemical progression favoured the IAS group (RR 0.10, 95% CI 0.01 to 0.67, P = 0.02).
S6. Studies primarily reported on adverse events.
S7. One trial (N = 43) found no difference in adverse effects (gastrointestinal, gynecomastia and asthenia) between IAS ( two events) and CAS (five events), with the

exception of impotence, which was significantly lower in the IAS group (RR 0.72, 95% CI 0.56 to 0.92, P = 0.008).
S8. Data from RCTs comparing IAS to CAS are limited by small sample size and short duration.
S9. There are no data for the relative effectiveness of IAS versus CAS for overall survival, prostate cancer-specific survival, or disease progression.
S10. Limited information suggests IAS may have slightly reduced adverse events.
S11. Overall, IAS was also as effective as CAS for potency, but was superior during the interval of cycles (96%).

Complex Medical Abstract – ABS

S1. Five studies involving 1382 patients were included in this review.
S2.  All the included studies involved advanced (T3 or T4) prostate cancer. No study was of adequate size and duration.
S3. Few events were reported and they did not assess disease-specific survival or metastatic disease.
S4. Only one study evaluated biochemical outcomes. Studies primarily reported on adverse events.
S5. There are no data for the relative effectiveness of IAS versus CAS for overall survival, prostate cancer specific survival, disease progression, or quality of life.
S6. Limited information suggests IAS may have slightly reduced adverse events.
S7. In Hering 2000, IAS (18/25 versus 18/18) appears to be slightly more favorable than CAS in controlling impotence.
S8. Overall, IAS was also as effective as CAS for potency, but was superior during the interval of cycles (96%).
S9. More research is needed.

S1. This review included five randomized controlled trials involving 1382 patients.
S2. All the included studies involved advanced prostate cancer, had relatively small 

numbers of patients, and were of short duration.
S3. Few side effects were reported and did not assess disease-specific survival or 

metastatic disease.
S4. Only one of the studies evaluated biochemical progression, and found that IAS was 

as effective as CAS for potency, but was better during the interval of cycles.
S5. Limited information suggests IAS may have slightly reduced side effects, with the 

exception of impotence, which was lower in the IAS group.

Plain-Language Summary – PLS – UL+BART

S1. Five randomised controlled trials involving 1382 patients were included 
in this review.

S2. All the included studies involved advanced (T3 or T4) prostate cancer, 
had relatively small populations, and were of short duration.

S3. There are no data for the relative effectiveness of IAS versus CAS for 
overall survival, prostate cancer-specific survival, or disease 
progression.

S4. Overall IAS was also as effective as CAS in reducing the risk of adverse 
events.

Plain-Language Summary – PLS - NapSS

Plain-Language Summary – PLS – Reference

Figure 3: Case study and error analysis on a typical example from the testing set. Smeared sentences illustrate
factual improvement by NapSS, while underlined parts reveal information omission of our model outputs.

scores from basic evaluators to create an experts set.
We can see experts’ evaluation also shows the same
trend. We believe the narrative prompt benefits this
improvement. Our model tends to produce a rea-
sonable reduction in the context while keeping the
majority of critical points. It is also useful for the
model to calibrate grammar and plausibility with
prompts. Combined with narrative prompt, NapSS
generates simplification more consistent with the
original text than the UL-BART. We can observe
the better performance on human evaluation results
also correlated with the improvement in semantic
and comprehensive metrics, which proves the ne-
cessity of semantic level simplification evaluation.

4.2.4 Case Study and Error Analysis
We present a case study and error analysis based on
the examples reported in Figure 3.5 The Abstract
(ABS) mentions the the analysis of 5 studies on
the effects of the continuous (CAS) or intermittent
(IAS) androgen suppression therapy on advanced
prostate cancer. The UL-BART model generated a
slightly longer simplified text than NapSS. Specifi-
cally, sentence 4 from the UL-BART output mixed
and linked the biochemical progression assessment
with the IAS and CAS side-effect for potency. In
contrast, sentence 3 generated by NapSS is more

5Better with colors

relevant to the findings of all studies considered.
On the other hand, the last sentence 5 from the

UL output reported a meaningful finding in con-
sistence with reference sentence 7 from the PLS
and reference sentence 7 from the ABS. NapSS in-
stead omitted this information, probably because
the related PLS sentences were not considered suf-
ficiently relevant by the model.

5 Conclusions

We proposed a summarize-then-simplify two-
stage model—NapSS—for paragraph-level medi-
cal text simplification. The first component is
a “simplification-oriented” summarizer, which we
trained over a heuristically derived set of “psuedo”
references derived via sentence matching. At in-
ference time, the summarizer extracts the most rel-
evant content to be simplified. This is combined
with an additional “narrative prompt” intended to
promote consistency, and then passed to an encoder-
decoder model to produce the simplified text. Ex-
periments on a paragraph-level medical text sim-
plification showed that, under several automatic
metrics and human evaluation (involving “laypeo-
ple” and medical specialists), this method realized
significant improvements with respect to both sim-
plification quality and consistency.
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Limitations

Our study is primarly based on the Cochrane
paragraph-level medical text simplification dataset
(Devaraj et al., 2021a). While this dataset pro-
vides richer and more elaborated text than previous
sentence-level medical datasets, such as TICO-19
(Shardlow and Alva-Manchego, 2022), it is worth
noting that experimental documents tend to share
a common pattern whose structure consists of: (i)
discussing statistics about the clinical trials con-
sidered, (ii) list the experimental assessments, (iii)
summarize the conclusions of the related findings.

Despite the already significant difficulty of the
task, a limited variety of documents would in-
evitably introduce linguistic bias, hindering the
model generalization and our current ability to con-
duct thorough assessment of the methodologies.

Moreover, although we made effort to examine
the factuality aspect with expert annotators, we ac-
knowledge that factuality is a subjective aspect and
existing methods may not be sufficient to verify.

Ethics Statement

This work is based on publicly available medi-
cal datasets (Devaraj et al., 2021a; Shardlow and
Alva-Manchego, 2022). As stated by the authors
of datasets, no personal identification informa-
tion were released. Current language technologies
generally—and automated simplification models
such as the one proposed in this work—still in-
troduce “hallucinations” and factual inaccuracies
into outputs; at present we would therefore recom-
mend against deploying fully automated generative
models for medical texts.
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A Experimental Setup

A.1 Hyperparameters

For the summarization stage, we adopt NLTK6

for the building of reference summary dataset,
and fine-tune a distilbert-base-uncased-finetuned-
sst-2-english7 PLM as the classifier. The cho-
sen PLM is a distilbert-base-uncased(Sanh et al.,
2019) checkpoint additionally fine-tuned on SST-2
dataset(Socher et al., 2013), which is a sentiment
binary classification corpus. The hidden size of the
checkpoint is 768 and the corresponding vocabu-
lary size is 30,522. The random seed is 42. The
batch size is set to 16 and the accumulation steps
is set to 1 on 2 quadro_rtx_6000 GPUs. The opti-
mizer is BertAdam8 with β1 = 0.9, β2 = 0.999,
and ϵ=1e-6. The weight of decay is 0.01. The learn-
ing rate is 2e-5 without warmup. It takes 0.5 hour
in total to fine-tune the checkpoint on the training
set, and predict over development and testing sets.

And for the simplification stage, except for pos-
sible replacement of backbone encoder-decoder
PLM, we adopt exact same settings with the SOTA
baseline (Devaraj et al., 2021a), including training
strategy and sampling method during the predictive
generation. It takes less than 20 mins to fine-tune
the PLM, while requires 2 hours to generate sim-
plified text over entire testing set on same GPUs.

6https://www.nltk.org/
7https://huggingface.co/

distilbert-base-uncased-finetuned-sst-2-english
8https://github.com/google-research/bert/blob/

master/optimization.py

A.2 Annotation Schema

To overcome the aforementioned limitations on
evaluation metrics, we followed a previous ap-
proach to ask our annotators give numerical scores
for each instances (Alva-Manchego et al., 2021).
Considering the requirement on simplification task
and feature of text in medical domains (Devaraj
et al., 2022), we designed our numerical scores
into three aspects: Simplicity, Fluency and Factual-
ity. Annotator can select one numerical score under
each aspect, which include three options 0,1 and
2. Higher score stands for annotator consider the
paragraph level performance under that aspect is
excellent, vice versa. In here, we provide detail
explanation of each aspect.

Simplicity aspect considers how simple that text
is to read. This category assess the generated text
by annotator’s impression of simplicity, in terms of
length of the texts and use of vocabulary. A good
simplified text is expected to omit unnecessary nu-
merical descriptions and explain jargons that are
hard to be understood by layman readers.

Fluency aspect considers the how fluent the text
is. That is, to assess the simplified text by anno-
tator’s impression on connectivity and fluency. A
good simplified paragraph should consider the flu-
ency among sentences, such as use of conjunction
words or adversative words for sentences. This cat-
egory also includes the evaluation on overall gram-
mar correctness of each sentences, and penalty on
duplicate sentences generated by the model.

Factuality considers how consistent is the sim-
plified text with the original text. This category
requires annotators to assess the generated text by
compare the facts that mentioned from the original
text and those included in the generated text. A
good simplified text should includes all the impor-
tant information appears in the original text. Any
paraphrase on the simplified text that lead to differ-
ent meaning and against the original texts, or any
omits on important information should consider to
give penalize under this category.

B Robustness of NapSS

We finetune our NapSS model with another two
random seeds 123 and 2023. The results of three
experiments in 4 share high similarity, confirming
the robustness of our proposed pipeline.
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Readability Lexical Similarity Simplification Semantic Similarity Comprehensive

Models FK ARI Rouge-1 Rouge-2 Rouge-L BLEU SARI BertScore BLEURT

NapSS (seed=42) 10.97 14.27 48.05 19.94 44.76 12.3 40.37 25.73 -0.155
NapSS (seed=123) 10.89 14.17 48.38 20.24 45.11 12.5 40.36 25.67 -0.149
NapSS (seed=2023) 10.85 14.09 48.29 20.09 45.02 12.4 40.31 25.60 -0.148

Table 4: Robustness checking of our NapSS.

C Summarizer Results

We fine-tuned two different bert-based classifiers,
the aforementioned distillbert one, and another
BioLinkBERT-base9, which is a bert-based model
pretrained on PubMed abstracts concerning cita-
tion links(Yasunaga et al., 2022). Although the
BioLink backbone was pretrained on medical cor-
pus, the general Distillbert fine-tuned on similar
binary classification dataset performed better.

Models Accuracy F1

BioLinkBERT-base 61.91 67.04
Distilbert-base-uncased-finetuned-sst-2-english 62.50 68.91

Table 5: Performance on the constructed testing set.

9https://huggingface.co/michiyasunaga/
BioLinkBERT-base

1091

https://huggingface.co/michiyasunaga/BioLinkBERT-base
https://huggingface.co/michiyasunaga/BioLinkBERT-base


Findings of the Association for Computational Linguistics: EACL 2023, pages 1092–1106
May 2-6, 2023 ©2023 Association for Computational Linguistics

Long-tailed Extreme Multi-label Text Classification by the Retrieval of
Generated Pseudo Label Descriptions

Ruohong Zhang and Yau-Shian Wang
ruohongz,yaushiaw@andrew.cmu.edu

Yiming Yang
yiming@cs.cmu.edu

Donghan Yu
dyu2@cs.cmu.edu

Tom Vu
tom.m.vu@gmail.com

Likun Lei
llei@flexport.com

Abstract

Extreme Multi-label Text Classification
(XMTC) has been a tough challenge in
machine learning research and applications
due to the sheer sizes of the label spaces and
the severe data scarcity problem associated
with the long tail of rare labels in highly
skewed distributions. This paper addresses the
challenge of tail label prediction by leveraging
the power of dense neural retrieval model
in mapping input documents (as queries) to
relevant label descriptions. To further enhance
the quality of label descriptions, we propose
to generate pseudo label descriptions from a
trained bag-of-words (BoW) classifier, which
demonstrates better classification performance
under severe scarce data conditions. The
proposed approach achieves the state-of-the-art
(SOTA) performance of overall label prediction
on XMTC benchmark datasets and especially
outperforms the SOTA models in the tail label
prediction. We also provide a theoretical
analysis for relating the BoW and neural
models w.r.t. performance lower bound.

1 Introduction

Extreme multi-label text classification (XMTC) is
the task of tagging documents with relevant labels
in a very large and often skewed candidate space.
It has a wide range of applications, such as assign-
ing subject topics to news or Wikipedia articles,
tagging keywords for online shopping items, clas-
sifying industrial products for tax purposes, etc.

The most difficult part in solving the XMTC
problem is to train classification models effectively
for the rare labels in the long tail of highly skewed
distributions, which suffers severely from the lack
of sufficient training instances. Efforts addressing
this challenge by the text classification community
include Bayesian modeling of graphical dependen-
cies among labels (Gopal and Yang, 2010; Gopal
et al., 2012), novel loss or regularization of label
embeddings (Babbar and Schölkopf, 2019a; Wei
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Figure 1: The classification performance of X-
Transformer and DEPL (ours) measured in macro-
averaged F1@19 on the Wiki10-31K dataset.

et al., 2021), clustering-based algorithms (Chang
et al., 2020; Khandagale et al., 2019; Prabhu et al.,
2018), and so on. Despite the remarkable pro-
gresses made so far, the problem is still very far
from being well solved. Figure 1 shows the per-
formance of X-Transformer (Chang et al., 2020),
one of the state-of-the-art (SOTA) XMTC models,
on the Wiki10-31K benchmark dataset (with over
31k labels). The horizontal axis is the ranks of the
labels sorted from rare to common and the vertical
axis is the text classification performance measured
in macro-averaged F1@19 (higher the better) for
binned labels (100 labels per bin). The blue curve
is the result of X-Transformer, which has the scores
close to 0 (worst possible score) for nearly half of
the total labels. In other words, SOTA methods in
XMTC still perform poorly in tail label prediction.

In this paper, we seek solutions for tail label pre-
diction from a new angle: we introduce a novel
framework, namely the Dual Encoder with Pseudo
Label (DEPL). It treats each input document as a
query and uses a neural network model to retrieve
relevant labels from the candidate space based on
the textual descriptions of the labels. The under-
lying assumption is, if the label descriptions are
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highly informative for text-based matching, then
the retrieval system should be able to find relevant
labels. The system would be particularly helpful
for tail label prediction as the retrieval effective-
ness does not necessarily rely on the availability of
a large number of training instances, which is what
the tail labels are lacking.

The next research question that we tackle is how
to obtain highly informative descriptions for each
label without human annotation. In reality, class
names are often available but they are typically
one or two words, which cannot be sufficient for
retrieval-based label prediction. Therefore, we pro-
pose to augment the label description with statis-
tical learning algorithms. Specifically, we train
linear support vector machine (SVM) model with
the bag-of-words (BoW) features, such as tf-idf, to
automatically generate informative keywords for
each label, which we call the pseudo description
of the label. Since the learned label embeddings of
the BoW classifier encode token importance infor-
mation, it is natural and efficient to leverage them
for keywords extraction. In sections 4 and 6, we
further provide theoretical motivations and empiri-
cal evidence to show the advantage of unsupervised
statistical features for classification under extreme
scarce data conditions.

The result of our approach (DEPL) is shown
as the red curve in Figure 1, which significantly
outperforms the blue curve of X-Transformer not
only in the tail-label region but also in all other
regions. We also observed similar improvements by
DEPL over strong baselines on other benchmark
datasets (see section 6). Our main contributions are
summarized as the following:

1. We propose DEPL, a retrieval-based model
to alleviate the difficulty in tail label pre-
diction by matching the semantics between
documents and augmented label descriptions
which are generated automatically by a statis-
tical model with BoW features.

2. We provide theoretical analyses to motivate
the usage of BoW feature for classification
under scarce data setting, and prove a perfor-
mance lower bound of the neural model.

3. We did extensive experiments with different
tail label evaluation metrics to show that our
method significantly and consistently outper-
forms strong baselines on multiple challeng-
ing benchmark datasets.

2 Related Work

XMTC Classifier Traditional BoW classifiers
rely on the bag-of-words features such as one-hot
vector with tf-idf weights, which capture the word
importance in a document. Examples include one-
vs-all SVM models such as DiSMEC (Babbar and
Schölkopf, 2017), ProXML (Babbar and Schölkopf,
2019b), PPDSparse (Yen et al., 2017), tree-based
models such as Parabel (Prabhu et al., 2018) and
Bonsai (Khandagale et al., 2019).

To compensate for the lack of semantics in BoW
features, deep learning models were proposed for
XMTC. Examples include CNN-based models such
as XML-CNN (Liu et al., 2017) and SLICE (Jain
et al., 2019), RNN-based models such as Atten-
tionXML (You et al., 2018) and Transformer-based
models such as X-Transformer (Chang et al., 2020),
LightXML (Jiang et al., 2021) and APLC-XLNet
(Ye et al., 2020).

Label Description The SiameseXML (Dahiya
et al., 2021) for XMTC encodes both input docu-
ments and label descriptions with pretrained word
embeddings with shallow networks and leverages
the embedding matching. The SOTA pretrained
Transformer-based models (Chang et al., 2020;
Jiang et al., 2021) leverage the label descriptions to
build label clusters. To generate label descriptions,
Chai et al. (2020) adopt reinforcement learning to
produce extended label descriptions from prede-
fined label descriptions. However, the algorithm
can not scale to the extreme label space and relies
on the availability of sufficient training data.

3 Proposed Method

3.1 Preliminaries
Let D = {(xi,yi)Ntrain

i=1 } be the training data where
xi is the input text and yi ∈ {0, 1}L are the binary
ground truth labels of size L. Given an instance
x and a label l, a classification system produces a
matching score of the text and label:

f(x, l) = ⟨ϕ(x),wl⟩

where ϕ(x) represent the document feature vector
and wl represents the label embedding of l. The
dot product ⟨·, ·⟩ is used as the similarity function.

Typically, the label embedding wl is randomly
initialized and trained from the supervised signal.
While learning the embedding as free parameters is
expressive when data is abundant, it could be diffi-
cult to be optimized under the scarce data situation.
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Figure 2: The proposed DEPL framework. First, we train a BoW classifier (SVM) and extract the top keywords
from the label embeddings according to the learned token importance. Then, we concatenate the keywords with the
original label names to form pseudo descriptions. Finally, we leverage the neural retrieval model to rank the labels
according to semantic matching between document text and label descriptions.

Sketch of Method DEPL tackles the long-tailed
XMTC by neural retrieval with generated pseudo
label descriptions, as shown in figure 2. Instead
of learning the label embedding from scratch, the
retrieval module directly leverages the semantic
matching between the document and label text,
providing a strong inductive bias on tail label pre-
diction. Next, we introduce the components of our
system in details.

3.2 Generated Pseudo Label Description
As the provided label names are usually short and
noisy, we augment it with generated pseudo label
description from a SVM model. As the tf-idf fea-
tures ϕt(x) used by SVM are sparse, we also call
the statistical model a sparse model:

fsparse(x, l) = ⟨ϕt(x),wsvm
l ⟩

The label embedding weight wsvm
l is optimized

with the hinge loss:

Lhinge =
1

LB

B∑

i=1

L∑

l=1

max(0, 1− ỹl ·fsparse(xi, l))

where ỹl = 2yl − 1 ∈ {−1, 1}, B is the batch size.
For a trained SVM model, wsvm

l has the dimen-
sion equal to the vocabulary size and each value

wsvm
li of the label embedding denotes the learned

importance of the token i w.r.t label l. We select
the top k most important tokens (ranked according
to the importance score) as keywords, which are
appended to the original label name to form the
pseudo label description:

pseudo_label(l) = label_name(l)⊕keywords(l)

where ⊕ is the append operation.

3.3 Retrieval Model with Label Text
DEPL leverages the semantic matching of doc-
ument and label texts via a dual encoder model
(Gao and Callan, 2021; Xiong et al., 2020; Luan
et al., 2020; Karpukhin et al., 2020). We use the
BERT (Devlin et al., 2018) model as the backbone
of our neural encoder, which is shared for both the
document and label text encoding. Since a neural
model encodes textual inputs into condensed vector
representations, we call them dense models.

The similarity between text and label representa-
tion is measured by:

fdual(x, l) = ⟨ϕdoc(x), ϕlabel(text(l))⟩

where text(l) is the textual information of the label
l. When the textual information only includes the
label name given in the dataset, we call the model
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DE-ret. Otherwise, when the textual information
includes the generated pseudo label description, we
call the model DEPL.

The document embedding ϕdoc(x) is obtained
from the CLS embedding of the BERT model fol-
lowed by a linear pooling layer:

ϕdoc(x) = Wdoc · BERT(x, CLS) + bdoc

where BERT(x, CLS) represents the contextual-
ized embedding of the special CLS token. Wdoc

and bdoc are the weights and biases for the docu-
ment pooler layer.

For the label embedding ϕlabel(text(l)), we take
an average of the last hidden layer of BERT fol-
lowed by a linear pooler layer:

ϕlabel(text(l)) = Wlabel · ψbert(text(l)) + blabel (1)

ψbert(text(l)) =
1

| text(l)|

| text(l)|∑

j=1

BERT(text(l), j) (2)

where BERT(text(l), j) represents the contextual-
ized embedding of the j-th token in text(l) ob-
tained from the last hidden layer of the BERT
model. Wlabel and blabel are the weights and bi-
ases for the label pooler layer. In the equation 2,
the average embedding of label tokens yields better
performance empirically than the CLS embedding
possibly because the keywords are not natural lan-
guage, and BERT may not effectively aggregate
such type of information into CLS.

Learning with Negative Sampling Since cal-
culating all the label embeddings for each batch
is both expensive and prohibitive by the memory
limit, we resort to negative sampling strategies for
in-batch optimization. Specifically, we sample a
fixed-sized subset of labels for each batch contain-
ing: 1) all the positive labels of the instances in the
batch, 2) the top negative predictions by the sparse
classifier as the hard negatives, and 3) the rest of
the batch is filled with uniformly random sampled
negatives labels.

Let Sb be the subset of labels sampled for a batch.
The objective for the dual encoder is:

Ldual = −
1

B|Sb|
B∑

i=1

( ∑

p∈y+
i

log σ(fdual(xi, p))

+
∑

n∈Sb\y+
i

log σ((1− fdual(xi, n)))

)

where B is the batch size, y+
i is the positive labels

for instance i, and σ is the sigmoid function.

3.4 Connection of Sparse and Dense Model

Complementary features: the sparse model uses the
tf-idf feature based on corpus-level token statistics,
while the dense model relies on the knowledge of
the language learned during pretraining. The two
types of features focus on different aspects of the
text corpus and the combination of the two brings
gains in performance.
Difference from ensemble: utilizing the augmented
text for retrieval is better than a pure ensem-
ble of sparse and dense methods such as in X-
Transformer. In the ensemble method, the semantic
meaning of important tokens in a label embedding
learned from sparse classifier is not leveraged. By
extracting the keywords from the sparse label em-
bedding and presenting them as pseudo label de-
scriptions, our model can additionally exploit the
value of those key token semantics.

3.5 Enhance Classification with Retrieval

Our introduced retrieval model can be combined
with a neural classifier for a performance boost
on overall label classification (since our retrieval
model is primarily targeted on improving tail label
performance). In a neural classification system, the
label embedding is treated as free parameters to be
learned from supervised data, which is more ex-
pressive for labels with abundant training instances.
The neural classifier learns the function:

fcls(x, l) = ⟨ϕdoc(x),w
cls
l ⟩ (3)

We propose to enhance the classification model
with the retrieval mechanism by jointly fine-tuning:

fdual-cls(x, l) =
σ(fdual(x, l)) + σ(fcls(x, l))

2
(4)

The classification and retrieval modules share the
same BERT encoder. We refer to the system as
DEPL+cls. The object function Ldual-cls is similar
to Ldual except for replacing fdual with fdual-cls.

The DEPL+cls model looks like an ensemble of
the two systems at first sight, but there are two ma-
jor differences: 1) As the BERT encoder is shared
between the classification and retrieval modules,
it doesn’t significantly increase the number of pa-
rameters as in (Chang et al., 2020; Jiang et al.,
2021); and 2) when the two modules are optimized
together, the system can take advantages of both
units according to the situation of head or tail label
predictions.
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4 Theoretical Analyses of DEPL

4.1 Rethinking Dense and Sparse Model for
Imbalanced Text Classification

We analyze dense and sparse models from a gra-
dient perspective for classification problems with
skewed label distribution.
Preliminary: The predicted probability optimized
by the binary cross entropy (BCE) loss is:

LBCE = −
L∑

l=1

yl log pl + (1− yl) log(1− pl)

The derivative of LBCE w.r.t the logits sl is:

∂LBCE

∂sl
=

{
pl − 1 if yl = 1

pl otherwise
(5)

Q1: Why would sparse model with BOW feature
benefit tail label prediction?

Applying the chain rule to equation 5, the gradi-
ent of LBCE w.r.t the document feature ϕn(x) is:

∂LBCE(yl, pl)

∂ϕn(x)
=

{
(pl − 1)wl if yl = 1

plwl otherwise

By optimizing parameters θ of feature extractor,
the document representation is encourage to move
away from the negative label representation, that
is:

ϕn(x; θ
′)← ϕn(x; θ)− ηplwl

where η is the learning rate.
For a dense model, the parameter θ of the fea-

ture extractor (such as BERT) is shared for all the
data, so the optimization of the feature extractor is
affected by the distribution of labels in the train-
ing data. Since a tail label appears more often
as a negative target, the feature extractor is likely
to under-represent the tail label information, mak-
ing a tail label more difficult to be predicted. In
comparison, the sparse feature like tf-idf is derived
in an unsupervised manner from corpus statistics,
which is independent of training label distribution.
Therefore, the sparse feature may maintain better
representation power to separate the tail labels.

Q2: What is the advantage of a retrieval system on
tail label prediction?

In a typical classification system, labels are
treated as indices whose embeddings are randomly

initialized and learned from supervised signals.
The gradients of LBCE w.r.t the label feature is:

∂LBCE(yl, pl)

∂wl
=

{
(pl − 1)ϕn(x) if yl = 1

plϕn(x) otherwise

The label embedding is updated by:

w′l = wl +
η

Ntrain

∑

i:yil=1

(1− pil)ϕn(xi)

− η

Ntrain

∑

i:yil=0

pilϕn(xi)

As most of the instances are negative for a tail la-
bel, the update of tail label embedding is inundated
with the aggregation of negative features, making it
hard to encode distinctive feature reflecting its iden-
tity. Therefore, learning the tail label embedding
from supervised signals alone can be distracting.
Although previous works leverage negative sam-
pling to alleviate the problem (Jiang et al., 2021;
Chang et al., 2020), we argue that a fundamental
solution is to inject the label information into the
embedding. Our proposed retrieval system presents
a natural way to incorporate label text for enhanced
performance of tail label prediction.

4.2 Analysis on Performance Lower Bound
We will show the connection between DEPL and a
sparse SVM classifier (for pseudo label extraction)
by a performance lower bound. Specifically, DEPL
outperforms a sparse model with high probability
given that the selected keywords are important and
the sparse classifier can separate the positive from
the negative instances with non-trivial margin.
Notation: Let ϕt(x) be the normalized tf-idf fea-
ture vector of text with ∥ϕt(x)∥2 = 1. The
sparse label embeddings {w1, . . . ,wL} satisfies
∥wl∥2 ≤ 1, wli > 0. In fact, label embeddings
can be transformed to satisfy the condition without
affecting the prediction rank. Let zl be the top se-
lected keywords from the sparse classifier, which
is treated as the pseudo label. Define the sparse
keyword embedding vl with vli = wli if i is an
index of selected keywords and 0 otherwise.

In the following, we define the keyword impor-
tance and the classification error margin.
Definition 1. For label l and δ ≥ 0, the sparse key-
word embedding vl is δ-bounded if ⟨ϕt(x),vl⟩ ≥
⟨ϕt(x),wl⟩ − δ.
Definition 2. For two labels p and n, the error
margin µ is the difference between the predicted
scores µ(ϕ(x),wp,wn) = ⟨ϕ(x),wp −wn⟩.
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The main theorem is stated as below:

Theorem 3. Let ϕt(x) and ϕn(x) be the sparse
and dense (dimension d) document feature, wl

be the label embedding and zl be the δ-
bounded keywords. For a positive label p, let
Np = {n1, . . . , nMp} be a set of negative labels
ranked lower than p. The error margin ϵi =
µ(ϕt(x),wp,wni) and ϵ = min({ϵ1, . . . , ϵMp}).
An error Ei of the neural classifier occurs when

µ(ϕn(x), ϕn(zp), ϕn(zni)) ≤ 0 (6)

The probability of any such error happening satis-
fies

P (E1 ∪ . . . ∪ EMp) ≤ 4Mp exp(−
(ϵ− δ)2d

50
)

When (ϵ − δ) ≥ 10
√

logMp

d , the probability is
bounded by 1

Mp
.

Discussion: An error event occurs when the sparse
model makes a correct prediction but the neural
model doesn’t. If the neural model avoids all such
errors, the performance should be at least as good
as the sparse model, and Theorem 3 gives a bound
of that probability.

The term δ measures the importance of selected
keywords (smaller the more important), the error
margin ϵ measures the difficulty the correctly pre-
dicted positive and negative pairs by the sparse
model. The theorem states that the model achieves
a lower bound performance as sparse classifier if
the keywords are informative and error margin is
non-trivial. Proofs are in section A.2 for interested
readers and limitations are discussed in section 8.

5 Evaluation Design

Dataset Ntrain Ntest L̄d L |Ltail|
EURLex-4K 15,539 3,809 5.30 3,956 2,413
AmazonCat-13K 1,186,239 306,782 5.04 13,330 3,936
Wiki10-31K 14,146 6,616 18.64 30,938 26,545
Wiki-500K 1,779,881 769,421 4.75 501,070 338,719

Table 1: Corpus Statistics: Ntrain and Ntest are the num-
ber of training and testing instances respectively; L̄d is
the average number of labels per document, and L is
the number of unique labels. |Ltail| is the number of tail
labels with 1 ∼ 9 positive training instances.

5.1 Datasets
We conduct our experiments on 4 benchmark
datasets: EURLex-4K, AmazonCat-13K, Wiki10-
31K and Wiki-500K. The statistics of the datasets

are shown in Table 1. An unstemmed version of
EURLex-4K is obtained from the APLC-XLNet
github1 and the rest are from the Extreme classifi-
cation Repository2.

For comparative evaluation of methods in tail la-
bel prediction, we consider the subset of labels with
1 ∼ 9 positive training instances. Those tail-label
subsets correspond to 63.48%, 29.53%, 88.65%
and 67.60% of the total labels in the 4 datasets
respectively. With mostly more than half of the
labels as tail labels, the distributions are indeed
highly skewed.

5.2 Tail Label Evaluation Metrics

Micro-averaged PSP@k: The PSP (Jain et al.,
2016a) metric re-weights the score of each instance
according to the label frequency:

PSP@k =
1

k

k∑

l=1

1y(pl)

prop(pl)

where the propensity score prop(pl) in the denom-
inator gives higher weights to tail labels.

Since the micro-averaged metric gives an equal
weight to the per-instance scores, it can still be
dominated by the system’s performance on the head
labels but not the tail labels. As an alternative, we
adopt a macro-averaged metric to evaluate tail label
performance.
Macro-averaged F1@k: The macro-averaged
metric (Yang and Liu, 1999) gives an equal weight
to all the labels (we apply it to tail labels specif-
ically). It is defined as the average of the label-
specific F1@k values, calculated based on a con-
tingency table for each label, as shown in table 2.
The precision, recall and F1 for a predicted ranked
list of length k are computed as P = TP

TP+FP ,R =
TP

TP+FN , and F1 = 2 P ·R
P+R .

Table 2: Contingency table for label l.

l is true label l is not true label
l predicted True Positive (TPl) False Positive (FPl)

l not predicted False Negative (FNl) True Negative (TNl)

For micro-averaged PSP@k, we choose k =
1, 3, 5 as in previous works. For macro-averaged
F1@k, we choose k = 19 for Wiki10-31K because
it has an average of 18.64 labels and k = 5 for the
rest datasets.

1https://github.com/huiyegit/APLC_XLNet.git
2http://manikvarma.org/downloads/XC/

XMLRepository.html

1097

https://github.com/huiyegit/APLC_XLNet.git
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html


5.3 Baselines

For the tail label evaluation, our method is com-
pared with the SOTA deep learning models includ-
ing X-Transformer (Chang et al., 2020), XLNet-
APLC (Ye et al., 2020), LightXML (Jiang et al.,
2021), and AttentionXML (You et al., 2018). X-
Transformer, LightXML, and XLNet-APLC em-
ploy pre-trained Transformers for document rep-
resentation. We reproduced the results of sin-
gle model (given in their implementation) predic-
tions with BERT as the base model for LightXML,
BERT-large for X-Transformer, XLNet for XLNet-
APLC, and LSTM for AttentionXML. The Atten-
tionXML utilizes label-word attention to generate
label-aware document embeddings, while the other
models generate fixed document embedding.

We use the SVM model with tf-idf feature as our
choice of sparse classifier and BERT-base as our
dense model for neural retrival and classification.
Implementation details, more baselines and settings
are discussed in appendix A.1.

6 Evaluation Results

Our experiments reveal the effectiveness of our
model on the tail label prediction and we also in-
clude and discuss the performance on the overall
prediction in appendix A.1.4.

6.1 Results in Tail Label Prediction

SVM on Tail Label Prediction The results eval-
uated with the F1 metric averaged on the tail la-
bels are shown in figure 3. Surprisingly, a simple
statistical SVM baseline achieves competitive re-
sults on the tail label predictions. We observe that
SVM model can outperform most of the pretrained
Transformer-based models on the tail label pre-
diction, and outperform the AttentionXML on the
Wiki10-31K dataset. This provides an empirical
evidence for the robust performance of a sparse
model on tail label prediction. As we analyzed
in section 4, the SVM model utilizes the unsuper-
vised statistical feature as document representation,
which potentially suffers less from the data scarcity
issue. The empirical result serves as an evidence
for our theoretical analysis that the joint optimiza-
tion of feature extractor and label embedding is
difficult when data is limited.

Neural Classifier on Tail Label Prediction
The neural classifiers include LightXML, X-
Transformer, XLNet-APLC and AttentionXML.

Specifically, the AttentionXML model leverages
a label-word attention to calculate a label spe-
cific document representation. As we observe in
figure 3, among the baseline models, the Atten-
tionXML performs the best on the tail label predic-
tions, beating the other baselines on 3 out of the
4 benchmark datasets. The superior performance
could come from the local word and label matching
which benefits the tail label prediction.

As mentioned in section 3, X-Transformer model
ensembles a neural classifier and a SVM model by
directly summing the prediction scores. Although
X-Transformer outperforms SVM on the overall la-
bel prediction, it underperforms SVM on 3 out of 4
benchmark datasets. This shows that model perfor-
mance on tail label is dragged down by the neural
model prediction, and a simple ensemble does fully
exploit the advantage of the sparse model. Com-
pared with the X-Transformer, our model achieves
better performance on both macro-F1 and micro-
PSP metrics, showing the advantage of leveraging
the retrieval of augmented label descriptions rather
than a pure ensemble.

DEPL Performance On the 3 smaller scale
benchmark datasets, EURLex-4K, AmazonCat-
13K and Wiki10-31K, our model directly ranks
all the labels. On the large Wiki-500K dataset, our
model leverages the prediction of cluster-based al-
gorithm in X-Transformer and replaces the reranker
with our retrieval model.

Our proposed models perform the best on the
Macro-F1 metric with the DEPL model consis-
tently and significantly showing the best perfor-
mance on all the benchmark datasets. A macro
t-test (Yang and Liu, 1999) is conducted to jus-
tify the significance of improvement over the SVM
and previous best neural model. The significant
performance gains over the SVM model shows
that our retrieval framework can outperform the
sparse model which serves as label keywords ex-
tractor. We attribute the success of model on tail
label prediction to the retrieval module that focuses
on the semantic matching between the document
and label text. The DEPL performs better than the
DEPL+cls as it is less affected by the large amount
of training instances for head labels and thus more
biased on the tail label prediction.

According to the evaluation with the PSP metric
shown in table 3, it also confirms that our proposed
models DEPL and DEPL+cls improves over the
previous SOTA neural models on all the benchmark
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Figure 3: Tail-label prediction results in F1@k on the labels with 1 ∼ 9 positive training instances, with k = 19
for the Wiki10-31K dataset and k = 5 for the rest. ∗ and † indicates the macro t-test is significant (p < 0.05) over
SVM and previous best neural model respectively.

Table 3: Tail label prediction results of methods in PSP@k, with ∗ indicating significant improvement (p < 0.05)
over the previous best model on the micro sign test.

EURLex-4K Wiki10-31K AmazonCat-13K Wiki-500K

Methods PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5

X-Transformer 37.85 47.05 51.81 13.52 14.62 15.63 51.42 66.14 75.57 31.20 36.78 40.21
XLNet-APLC 42.21 49.83 52.88 14.43 15.38 16.47 52.55 65.11 71.36 29.73 30.26 30.59

LightXML 40.54 47.56 50.50 14.09 14.87 15.52 50.70 63.14 70.13 31.01 37.10 39.28
AttentionXML 44.20 50.85 53.87 14.49 15.65 16.54 53.94 68.48 76.43 30.05 37.31 41.74

SVM 39.18 48.31 53.37 11.84 14.00 15.81 51.83 65.41 72.82 32.12 32.75 35.20

DEPL 45.60* 52.28* 53.52 17.20* 16.90* 16.95 55.94* 70.01* 76.87* 32.07 40.60* 43.74*
DEPL+cls 44.60 52.74* 54.64 16.73* 16.84* 16.67 55.21* 69.73* 75.94 32.18 39.89* 41.46

Table 4: Examples of SVM generated keywords from Wiki10-31K. The classifier is trained with only 1 positive
training instance per label. The top 20 keywords are shown. with meaningful words highlighted in red manually.

Label Text #training instance Top Keywords

phase4 1 trials clinical protection personal directive processed data trial drug phase eu
processing patients sponsor controller legislation regulation art investigator study

ensemble 1 boosting kurtz ferrell weak algorithms learners misclassified learner kearns ensemble
charges bioterrorism indictment doj indict cae correlated 2004 reweighted boost

kakuro 1 nikoli kakuro puzzles crossword clues entries entry values sums cells
cross digits dell solvers racehorse guineas aa3aa digit clue kaji

datasets, with ∗ indicates significant improvement
(p < 0.05) over the previous best model on the
micro sign test (Yang and Liu, 1999). The Wiki10-
31K dataset has the most skewed distribution as
the most frequent label covers more than 85% of
the training instances, resulting in a low PSP score.
Since DEPL relies on the semantic matching be-
tween the document and label text, it is less af-
fected by the dominating training pairs, and thus
the PSP@1, PSP@3 beats the SOTA models by a
larger margin. The DEPL+cls achieves worse per-
formance on this dataset, because the classification
counterpart of the model would benefit more on

the head label predictions and tend to rank the head
labels at the top.

Metric Comparison Although the PSP metric
gives higher weight to the tail labels, it is a micro-
averaged metric over the scores of each instance,
which can still be affected by the performance on
the more common categories that cover most of
the instances. For example, SVM model doesn’t
stand out under the PSP metric, which has lower
overall label performance. Since the F1 metric is
calculated specifically on the set of tail labels, we
argue that it provides a more accurate and fine-
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grained evaluation on tail label prediction, which
better reveals the success of XMTC models on
predicting rare categories.
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Figure 4: The ablation-test results of DEPL in Macro-
averaged F1@k metric with varying length of pseudo
label descriptions.

6.2 Ablation on Generated Pseudo Label

Table 4 shows examples of the SVM generated
keywords trained on the Wiki10-31K dataset for
labels with only 1 training example. We manually
highlight the meaningful terms related to the label
meaning. For example, the label name phase4 is
ambiguous, whose meaning needs to be inferred
from the corresponding document. From the key-
words trial, clinical, drug, etc, we deduce that the
topic is about medical testing phase. In another
example, kakuro is a Japanese logic puzzle known
as a mathematical crossword and the game play
involves in adding number in the cells. Generating
a description for kakuro requires the background
knowledge, but the keywords automatically learned
from the sparse classifier provide the key concepts.
Although not all the keywords can provide rich
semantics to complement the original label name,
they may serve as a context for the label to make it
more distinguishable from others.

In figure 4, we conduct an ablation test on the
length of the pseudo label and the performance is
measured by Macro-avg F1@k. The BERT clas-
sifier is included as a baseline with no label text
information. As we observe that the longer de-
scription of length 16 performs the better, but when
length is 32, the performance doesn’t increase as
the text may become noisy with more unrelated
keywords.

The DE-ret model is a pure retrieval baseline
(avg length 3) with only the label name. While it
achieves good performance on the EURLex-4K and
AmazonCat-13K datasets, it still performs poorly
on the Wiki10-31K dataset. This shows that gen-
erating the keywords from the sparse classifier can
enhance the text quality. Furthermore, the gener-

ated text allows DEPL to use the semantic infor-
mation of the label keywords, which is ignored in
the SVM model. This could be another reason why
our model performs better than the SVM baseline
on the Wiki10-31K dataset.

7 Conclusion

In this paper, we propose a novel neural retrieval
framework (DEPL) for the open challenge of tail-
label prediction in XMTC. By formulating the prob-
lem as to capture the semantic mapping between
input documents and system-enhanced label de-
scriptions, DEPL combines the strengths of neural
embedding based retrieval and the effectiveness of
a large-marge BoW classifier in generating informa-
tive label descriptions under severe data sparse con-
ditions. Our extensive experiments on very large
benchmark datasets show significant performance
improvements by DEPL over strong baseline meth-
ods, especially in tail label description.

8 Limitations

Our paper mainly focuses on the evaluation and im-
provement over the pretrained Transformer-based
models such as X-Transformer, LightXML and
APLC-XLNet by leveraging the recent advances
in dense retrieval with BERT model. However,
there are other works such as proposing reranking
losses (Wei et al., 2021), regularization (Babbar
and Schölkopf, 2019a) with other architectures are
not included for comparison.

As pointed out by the reviewers, the performance
bound analysis in section 4 adopts a strong assump-
tion that the neural embeddings are random matri-
ces. This could be very different in real application
because the random matrices do not encode any
semantic information. We acknowledge this lim-
itation and provide more references on that. We
rely on the mathematical tool based on random ma-
trix theory, namely the Johnson-Lindenstrauss (JL)
lemma. This tool was also adopted by Luan et al.
(2020) under information retrieval setting, which
provides the connection between dense and sparse
retrievers. The bound is on its loose end because
embeddings from BERT are more meaningful than
random matrices (also verified from their empirical
study). In our work, we study use the JL lemma to
connect sparse and dense classifiers. The bound is
reasonable considering that it is on its loose end,
but, still, there is no guarantee when applied with
real BERT embeddings.
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A Appendix

A.1 Experiments

A.1.1 All-label Evaluation Metric
We introduce the micro-averaged P@k as the met-
ric for all-label prediction. Given a ranked list of
the predicted labels for each test document, the
micro-averaged P@k is:

P@k =
1

k

k∑

i=1

1y+
i
(pi) (7)

where pi is the i-th label in the list p and 1y+
i

is
the indicator function.

A.1.2 More Baseline
For the overall prediction of all labels, we
also include the baselines of sparse classifiers:
DisMEC (Babbar and Schölkopf, 2017), Pfas-
treXML (Jain et al., 2016b), Parabel (Prabhu et al.,
2018), Bonsai (Khandagale et al., 2019), and we

use the published results for comparison. We pro-
vide an implementation of linear SVM model with
our extracted tf-idf features as another sparse base-
line, and a BERT-base classifier as another dense
classifier (used to initialize DEPL).

A.1.3 Implementation Details
For the sparse model, since the public available
BoW feature doesn’t have a vocabulary dictio-
nary, we generate the tf-idf feature by ourselves.
We tokenize and lemmatize the raw text with the
spaCy (Honnibal and Montani, 2017) library and
extract the tf-idf feature with the Sklearn (Pe-
dregosa et al., 2011) library, with unigram whose
df count is >= 2 and df frequency <= 70% of the
total documents.

We use the BERT model as the contextualize
function for our retrieval model, which is initial-
ized with a pretrained dense classifier. Specifi-
cally, we fine-tune a 12 layer BERT-base model
with different learning rates for the BERT encoder,
BERT pooler and the classifier. The learning
rates are (1e − 5, 1e − 4, 1e − 3) for Wiki10-
31K and (5e − 5, 1e − 4, 2e − 3) for the rest
datasets. For the negative sampling, we sample
batch of 500 instances for Wiki10-31K, and 300 for
EURLex-4K and AmazonCat-13K. For Wiki-500K
dataset, we leverage the cluster-based algorithm in
X-Transformer, and perform label re-ranking using
our DEPL model to replace the linear model in X-
Transformer. We use a negative batch size of 500
for to train the re-ranker.

We include 10 hard negatives predicted by the
SVM model for each instances. We used learn-
ing rate 1e − 5 for fine-tuning the BERT of our
retrieval model and 1e− 4 for the pooler and label
embeddings. For the pseudo label descriptions, we
concatenate the provided label description with the
generated the top 20 keywords. The final length is
truncated up to 32 tokens after BERT tokenization.
We use length 16 of pseudo label description as the
default setting for DEPL.

A.1.4 Results in All-label Prediction
The performance of our models evaluated on the
all-label prediction by the micro-averaged P@k
metric is reported in table 5. Our model is com-
pared against the SOTA sparse and dense classifiers.
DEPL+c achieves the best or second best perfor-
mance on all the 4 benchmark datasets, achieving
comparable results to the previous best SOTA mod-
els.
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EURLex-4K Wiki10-31K AmazonCat-13K Wiki-500K

Methods P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

DisMEC 83.21 70.39 58.73 84.13 74.72 65.94 93.81 79.08 64.06 70.21 50.57 39.68
PfastreXML 73.14 60.16 50.54 83.57 68.61 59.10 91.75 77.97 63.68 56.25 37.32 28.16
eXtremeText 79.17 66.80 56.09 83.66 73.28 64.51 92.50 78.12 63.51 65.17 46.32 36.15

Parabel 82.12 68.91 57.89 84.19 72.46 63.37 93.02 79.14 64.51 68.70 49.57 38.64
Bonsai 82.30 69.55 58.35 84.52 73.76 64.69 92.98 79.13 64.46 69.26 46.72 36.46

AttentionXML 85.12 72.80 61.01 86.46 77.22 67.98 95.53 82.03 67.00 75.20 56.42 44.10
X-Transformer 85.46 72.87 60.79 87.12 76.51 66.69 95.75 82.46 67.22 75.28 55.46 42.75
XLNet-APLC 86.83 74.34 61.94 88.99 78.79 69.79 94.56 79.78 64.59 72.95 51.23 38.64

LightXML 86.12 73.87 61.67 87.39 77.02 68.21 94.61 79.83 64.45 75.96 56.55 44.22
SVM 83.44 70.62 59.08 84.61 74.64 65.89 93.20 78.89 64.14 69.92 49.35 38.8

DEPL 85.38 71.86 59.91 84.63 74.80 65.96 94.86 80.85 64.55 74.69 55.72 42.71
DEPL+c 86.43 73.77 62.19 88.57 78.04 68.75 96.16 82.23 67.65 76.83 57.15 45.07

Table 5: The all-label prediction results of representative classification systems evaluated in the micro-avg P@k
metric. The bold phase and underscore highlight the best and second best model performance.

We argue that though our models perform sig-
nificantly better on the tail label prediction, the
improvement is not announced in the overall label
prediction. One of the problem is on the choice
of evaluation metric: the micro-averaged precision
metric is averaged over instances and can be dom-
inated by the common categories with more test
instances. Therefore, the metric is incapable of
reflecting the tail label performance. We want to
emphasis that over 26, 545 (88.65%) labels in the
Wiki10-31K dataset belong to the tail labels with
less than 10 training instances, constituting a ma-
jority of the label space. The overall classification
precision (P@k) only reflects a part of the success
of a classification system, and the tail label eval-
uation is yet another part. The results also shows
while our model improves on the tail label predic-
tion, the overall label prediction comparable to the
other dense and sparse SOTA models.

When our model is compared on the Wiki-500K
dataset, our backbone is the same as X-Transformer.
DEPL achieve on par performance with Wiki-500k
showing that the quality of overall ranking is simi-
lar. However, the DEPL+c achieves better perfor-
mance, demonstrating the enhanced performance
by combining retrieval with classification.

By comparing the DEPL+c and its retrieval-
based counterpart DEPL , we uncover a trade-off
between the head label and tail label prediction. We
observe that the DEPL outperforms the DEPL+c
on the tail label prediction, but not on the all-label
prediction. This shows that incorporating a classi-
fier with label embeddings trained from supervised

signal can boost performance on a high data regime.
The dense classifier could learn more expressive la-
bel representation from the frequent co-occurrence
of document and label pairs when the training in-
stances are abundant, while the retrieval system is
better at matching the semantic of document and
label texts when data is scarce. Each of the mod-
ules captures a certain aspect of the data heuristic
for text classification and a combination of them
by sharing the BERT encoder yields better perfor-
mance.

Lastly, the sparse classifiers generally underper-
form the neural models and are comparable to our
implement of SVM. We observe that DEPL can
outperform the sparse models, which agrees with
our theoretical analysis. Although the pseudo la-
bels are extracted from the SVM classifier, the neu-
ral retrieval model can additionally leverage the
keyword semantic information and correlation of
them, which is ignored in the SVM classifier. The
pseudo label descriptions encode both the term im-
portance and key semantics of labels.

A.1.5 More Ablation Tests
Model Pre-training We fine-tune our retrieval
model on a pre-trained neural classifier (BERT)
and table 6 shows that without using the pre-trained
model, there is a significant drop in the precision
and PSP metrics.

Negative Sampling We used the top negative pre-
dictions by the SVM model as the choice of hard
negative labels. By default, we use 10 hard nega-
tives for each instance in the batch. In table 6, we
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Table 6: Ablation-test results of DEPL under different
training conditions.

Methods P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

EUR-Lex

DE-ret -1.34 -1.18 -1.16 -3.2 -2.11 +0.18
w/o pre-train -6.81 -6.72 -6.16 -6.87 -7.09 -5.87
w/o neg -2.52 -2.63 -2.2 -3.59 -3.66 -1.9
5 hard negative -1.55 -1.19 -1.12 -3.57 -2.98 -1.32

Wiki10-31K

DE-ret -3.40 -7.71 -10.74 -7.63 -5.09 -1.20
w/o pre-train -4.81 -8.66 -12.1 -2.46 -2.00 -1.92
w/o hard negative -2.01 -5.89 -4.93 -1.15 -1.17 -1.37
5 hard negative -0.84 -3.03 -4.16 -1.22 -0.99 -0.92

Table 7: Ablation-test results of DEPL with CLS and
mean-pooling.

Methods PSP@1 PSP@3 PSP@5

EUR-Lex

DE-ret 44.87 52.17 53.40
DEPL with cls 42.32 47.26 47.53
DEPL with mean-pooling 45.60 52.28 53.52

Wiki10-31K

DE-ret 16.71 15.76 16.35
DEPL with cls 14.71 14.58 15.33
DEPL with mean-pooling 17.20 16.90 16.95

observe a performance drop when no hard nega-
tives or only 5 hard negatives are used for training.

CLS vs. Mean-pooling Table 7 shows an abla-
tion test for the design of label description encoder.
We observe that using a mean-pooling over the last
layer of label keyword embeddings outperforms
that using the CLS embedding by a large margin.
This could be because the label keywords are not
natural language the optimization using CLS em-
bedding is more difficult.
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A.2 Proof
We include the assumptions and proofs of Theorem 3.

Assumptions Similar to Luan et al. (2020), we treat neural embedding as fixed dense vector E ∈ Rd×v

with each entry sampled from a random Gaussian N(0, d−1/2). ϕn(x) = Eϕt(x) is weighted average of
word embeddings by the sparse vector representation of text. According to the Johnson-Lindenstrauss (JL)
Lemma (Johnson and Lindenstrauss, 1984; Ben-David et al., 2002), even if the entries of E are sampled
from a random normal distribution, with large probability, ⟨ϕt(x),v⟩ and ⟨Eϕt(x),Ev⟩ are close.

Lemma 4. Let v be the δ-bounded keyword-selected label embedding of w. For two labels p, n, the error
margins satisfy:

|µ(ϕt(x),wp,wn)− µ(ϕt(x),vp,vn)| ≤ δ
Proof. By the definition of δ-bounded keywords,

⟨ϕt(x),wp⟩ − δ ≤ ⟨ϕt(x),vp⟩ ≤ ⟨ϕt(x),wp⟩ (8)

− ⟨ϕt(x),wn⟩ ≤ −⟨ϕt(x),vn⟩ ≤ −⟨ϕt(x),wn⟩+ δ (9)

Adding equation 8 and equation 9 finishes the proof:

⟨ϕt(x),wp −wn⟩ − δ ≤ ⟨ϕt(x),vp − vn⟩ ≤ ⟨ϕt(x),wp −wn⟩+ δ (10)

Lemma 5. Let ϕt(x) and ϕn(x) be the sparse and dense (dimension d) document feature, wl be the
label embedding and zl be the δ-bounded keywords. Let p be a positive label and n be a negative label
ranked below p be the sparse classifier. The error margin is ϵ = µ(ϕt(x),wp,wn). An error E of neural
classification occurs when µ(ϕn(x), ϕn(zp), ϕn(zn)) ≤ 0. The probability P (E) ≤ 4 exp(− (ϵ−δ)2d

50 ).

Proof. By the JL Lemma (Ben-David et al., 2002): For any two vectors a, b ∈ Rv, let E ∈ Rd×v be a
random matrix such that the entries are sampled from a random Gaussian. Then for every constant γ > 0:

P
(
|⟨Ea,Eb⟩ − ⟨a, b⟩| ≥ γ

2

(
∥a∥2 + ∥b∥2

))
≤ 4 exp

(
−γ

2d

8

)
(11)

Let γ = 2
5(ϵ− δ), a = ϕt(x) and b = vp − vn. Since ∥a∥2 = 1 and ∥b∥2 ≤ (∥vp∥2 + ∥vn∥2)2 ≤ 4, the

JL Lemma gives

P (|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| ≥ ϵ− δ) (12)

≤ 4 exp(−(ϵ− δ)2d
50

) (13)

To complete the proof, we need to show P (E) ≤ Eq.12:

E =⇒ |⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),wp −wn⟩| ≥ ϵ (14)

=⇒ |⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| ≥ ϵ− δ (15)

where the equation 15 is derived by Lemma 4:

|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| (16)

≥|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),wp −wn⟩|− (17)

|⟨ϕt(x),wp −wn⟩ − ⟨ϕt(x),vp − vn⟩| (18)

≥ϵ− δ (19)

Therefore P (E) ≤ Eq.12, which completes the proof.
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Proof of Theorem 3

Proof. The Lemma 2 shows that

P (Ei) ≤ 4 exp(−(ϵi − δ)2d
50

) ≤ 4 exp(−(ϵ− δ)2d
50

) (20)

By an union bound on the error events {E1, E2, . . . , EMp},

P (E1 ∪ . . . ∪ EMp) ≤
Mp∑

i=1

4 exp(−(ϵi − δ)2d
50

) (21)

= 4Mp exp(−
(ϵ− δ)2d

50
) (22)

When (ϵ− δ)2 ≥ 10
√

logMp

d , we have exp(− (ϵ−δ)2d
50 ) ≤ 1

4Mp
2 and therefore P (E1∪ . . .∪EMp) ≤ 1

Mp
.
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Abstract

Keyphrase extraction aims at automatically ex-
tracting a list of “important” phrases represent-
ing the key concepts in a document. Prior ap-
proaches for unsupervised keyphrase extrac-
tion resorted to heuristic notions of phrase im-
portance via embedding clustering or graph
centrality, requiring extensive domain exper-
tise. Our work presents a simple alternative ap-
proach which defines keyphrases as document
phrases that are salient for predicting the topic
of the document. To this end, we propose IN-
SPECT—an approach that uses self-explaining
models for identifying influential keyphrases in
a document by measuring the predictive impact
of input phrases on the downstream task of the
document topic classification. We show that
this novel method not only alleviates the need
for ad-hoc heuristics but also achieves state-of-
the-art results in unsupervised keyphrase ex-
traction in four datasets across two domains:
scientific publications and news articles.1

1 Introduction

Keyphrase extraction is crucial for processing and
analysis of long documents in specialized (e.g.,
scientific, medical) domains (Mekala and Shang,
2020; Betti et al., 2020; Wang et al., 2019). The
task is challenging, as the notion of phrase impor-
tance is context- and domain-dependent. There-
fore, developing domain-agnostic keyphrase anno-
tation guidelines and curating representative hand-
labeled datasets is not feasible. This motivates the
need for generalizable unsupervised approaches to
keyphrase extraction.

Unsupervised keyphrase extraction methods
have used heuristic notions of phrase importance
(Mihalcea and Tarau, 2004; Shang et al., 2018;
Campos et al., 2018). Popular proxies for phrase
importance include phrase clustering based on sta-
tistical features like word density (Florescu and

∗Equal Contribution
1Code: https://github.com/rishabhjoshi/inspect.

Figure 1: A comprehensive set of keyphrases should
highlight important phrases for all major topics in a
document. INSPECT identifies such keyphrases using in-
terpretable neural models by measuring how use phrases
are for predicting the topic of a text.

Caragea, 2017a; Campos et al., 2018) and struc-
tural features like graph centrality (Bougouin et al.,
2013; Ding and Luo, 2022) or more recently neural
embedding clustering techniques (Bennani-Smires
et al., 2018; Zhang et al., 2022; Ding and Luo,
2021; Sun et al., 2020). However, such methods do
not generalize to new domains as they require ex-
perts to carefully construct domain-specific heuris-
tics (Mani et al., 2020).

Historically, topic models (Blei et al., 2001; Blei
and McAuliffe, 2007; Wallach, 2006) have relied
on salient words and phrases in a document, which
are similar to the notion of keyphrases, although to
the best of our knowledge there is no prior work
that identified keyphrases using topic models. In
this work, we hypothesize that end-to-end neu-
ral models for topic classification latently rely on
salient phrases for document representation and
topic classification. Consequently, if we can inter-
pret model decisions via highlighting salient and
influential features (phrases) used for neural topic
prediction, we can identify such keyphrases.

Inspired by this intuition, we propose IN-
SPECT—a novel and simple framework to identify
keyphrases by leveraging interpretable text classi-
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fiers to highlight phrases important for predicting
the topics in a text. Specifically, we adapt an in-
terpretable classifier SelfExplain (Rajagopal et al.,
2021) to jointly predict the topic of an input docu-
ment and to identify the salient phrases influencing
the prediction. The model is distantly supervised
using topic labels from off-the-shelf topic-models,
eliminating the need for any human/expert annota-
tions. We consider SelfExplain’s output interpreta-
tions as keyphrases for the input document (§2).

INSPECT can be trained on documents of any
domain without keyphrase annotations and using
distant topic supervision, making them easily adapt-
able to new domains. We contribute two versions
of our method: i) INSPECT— individual mod-
els trained for topic-classification for each target
dataset. ii) INSPECT-GEN—a more general model
pre-trained on a large in-domain corpus, without
finetuning on pre-specified target datasets.

We evaluate INSPECT and INSPECT-GEN on four
benchmark datasets across two domains: scien-
tific documents and news articles (§3). Our re-
sults in §4 show that INSPECT improves keyphrase
extraction performance over strong baselines by
0.8% F1 on average, without any domain-specific
processing. INSPECT-GEN further improves the
performance, outperforming the state of the art in
unsupervised keyphrase extraction on 3 out of 4
datasets by 2.7% F1 on average. Our experiments
suggest that INSPECT-GEN has strong generaliza-
tion capabilities, and can be used out-of-the-box
without finetuning on individual datasets. Impor-
tantly, INSPECT alleviates the need for heuristics
and expert-labelled annotations, and thus can be
applied to a wide range of domains and problems
where keyphrase extraction is important. Our re-
sults confirm that the latent keyphrases obtained
from an interpretable model correlate with human
annotated keyphrases, opening new avenues for
research on interpretable models for information
extraction.

2 The INSPECT Framework

The goal of the INSPECT framework is to extract
important keyphrases in long documents. Follow-
ing the hypothesis that neural text classifiers la-
tently leverage important keyphrases for predict-
ing topics in text, INSPECT extracts keyphrases
through interpreting topic classification decisions.
It builds upon an interpretable model, SelfExplain
(Rajagopal et al., 2021), which learns to attribute

text classification decisions to relevant phrases in
the input. However, SelfExplain was designed and
tested in supervised settings and for single-sentence
classification; in this work we explore its exten-
sion to unsupervised keyphrase extraction from
long documents. In what follows, we describe the
base SelfExplain model (§2.1) and the distant su-
pervision setup for topic classification (§2.4). We
outline the training mechanism to jointly predict
topics and highlight salient phrases in the document
as model interpretations (§2.2) and finally extract
the resulting phrase interpretations as important
keyphrases in the document (§2.3).

2.1 Base Interpretable Model
Feature attribution methods for model interpretabil-
ity include two predominant approaches, (i) post-
hoc interpretations of a trained model (Jin et al.,
2020; Kennedy et al., 2020; Lundberg and Lee,
2017; Ribeiro et al., 2016), and (ii) intrinsically (by-
design) interpretable models (Alvarez-Melis and
Jaakkola, 2018; Rajagopal et al., 2021). We adopt
the latter approach, specifically SelfExplain (Ra-
jagopal et al., 2021) as our phrase attribution
model, as the model directly produces interpreta-
tions, though in principal any phrase based inter-
pretability techniques could be employed.

SelfExplain augments a pre-trained transformer-
based model (RoBERTa (Liu et al., 2019) in our
case) with a local interpretability layer (LIL) and a
global interpretability layer (GIL) which are trained
to produce local (relevant features from input sam-
ple) and global (relevant samples from training
data) interpretations respectively. The model can be
trained for any text classification tasks using gold
task supervision, and produces local and global in-
terpretations along with model predictions. Since
our goal is to identify important phrases from the
input sample, we use only the LIL layer. The LIL
layer takes an input sentence and a set of candidate
phrases and quantifies the contribution of a partic-
ular phrase for prediction through the activation
difference (Shrikumar et al., 2017; Montavon et al.,
2017) between the phrase and sentence representa-
tions.

2.2 Keyphrase Relevance Model
SelfExplain is designed to process single sentences
and uses all the phrases spanning non-terminals in a
constituency parser as units (candidate phrases) for
interpretation. This is computationally expensive
for our use-case. To facilitate long document topic
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classification, we instead define the set of noun
phrases (NPs) as the interpretable units, which
aligns with prior work in keyphrase extraction of
using noun phrases as initial candidate phrases
(Shang et al., 2018; Mihalcea and Tarau, 2004;
Bougouin et al., 2013). INSPECT splits a long doc-
ument into constituent passages, extracts NPs as
candidates, and attributes the contribution of each
NP for predicting the topics covered in the passage.

For each text block X in the input document,
we preprocess and identify a set of candidate
phrases CPX = cp1, cp2, ..., cpN where N is
the number candidate phrases in X . From the
base RoBERTa model, we obtain contextual [CLS]
representations of the entire text block h[CLS] and
individual tokens. We compute phrase representa-
tions h1...hN for each candidate by taking the sum
of the RoBERTa representations of each token in
the phrase.

To compute the relevance of each phrase, we
construct a representation of the input without the
contribution of the phrase, zi, using the activation
differences between the two representations. We
then pass it to a classifier layer in the local inter-
pretability module to obtain the label distribution
for prediction.

zi = g(hi)−g(h[CLS]); ℓi = f(WT zi+b) (1)

where g is the ReLU activation function and W
and b are the weights and bias of the classifier.
Here ℓi denotes the label distribution obtained on
passing the phrase-level representations zi through
a classification layer f which is either the sigmoid
or the softmax function depending on the prediction
task (multi-label versus multi-class). We denote the
label distribution from the base RoBERTa model
for predicting the output using the whole input
block as ℓ[CLS]. We train the model using the cross
entropy loss Ly with respect to the multi-label gold
topics Y i for instance i and an explanation specific
loss Le using the mean of all phrase-level label
distributions such that ℓe =

∑P
i=1 ℓi.

Ly = −
N∑

j=1

yj log(ℓ[CLS]),Le = −
N∑

j=1

yj log(ℓe)

(2)
The classifier is regularized jointly with α regular-
ization parameter2 using explanation and classifi-
cation loss: L = (1− α)Ly + αLe.

2α = 0.5

2.3 Inference
During inference, for each predicted label y ∈ Y ,
where Y denotes set of all predicted labels for input
text X , INSPECT calculates an importance score
ryi with respect to the predicted label y using the
difference between the label distribution ℓyi for a
candidate phrase cpi and the one obtained using
the entire input ℓy[CLS] as ryi = ℓy[CLS] − ℓyi .

This score denotes the influence of a candidate
keyphrase on the predicted topic. This score de-
notes the influence of a phrase on the predicted
topic—the closer ℓyi is to ℓy[CLS] the less impor-
tant phrase i is for predicting the topic. Since the
relevance scores are computed with respect to a
particular predicted topic and it’s label distribution,
the scores for the same input are not comparable
across different predicted topics in multi-label clas-
sification (since label distributions can vary in mag-
nitude). To aggregate important keyphrases across
all predicted topics, we pick the ones that positively
impact prediction for each topic (having a positive
influence score) as a set of keyphrases.

KP (x) = [cpi ∀ ryi > 0; y ∈ Y ; i ∈ {1 : N}]

2.4 Distant Supervision via Topic Prediction
Obtaining annotations for keyphrases in specialized
domains is challenging for supervised keyphrase
extraction (Mani et al., 2020). Instead, we train the
interpretable model in a distant supervision setup
for multi-class topic classification and use model
interpretations to identify keyphrases, without any
keyphrase annotations. Topical information about
a document are known to be essential for identi-
fying diverse keyphrases (Bougouin et al., 2013;
Sterckx et al., 2015). Further, a comprehensive set
of keyphrases should represent the various major
topics in the document to be useful for different
long document applications (Liu et al., 2010). We
hypothesize that by using topic classification as our
end-task, our model will learn to highlight—via
interpretations it is designed to provide—important
and diverse keyphrases in the input document.

While certain domains like news articles have ex-
tensive datasets with human annotated topic labels,
others like scientific articles or legal documents
require significant effort for human annotation. IN-
SPECT can be trained using annotated topic labels
when they exist. In other domains where such an-
notations are scarce, INSPECT can be trained using
labels extracted unsupervisedly using topic models
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Dataset Type Split Total docs Avg words per doc Avg keyphrases per doc

SciERC Scientific
Train 350 130 16
Dev 50 130 16
Test 100 134 17

SciREX Scientific
Train 306 5601 353
Dev 66 5484 354
Test 66 6231 387

SemEval17 Scientific
Train 350 160 21
Dev 50 193 27
Test 100 186 23

500N-KPCrowd News
Train 400 430 193
Dev 50 465 86
Test 50 420 116

BBC News News All 2225 385 -
ICLR Scientific All 8317 6505 -

Table 1: Description about the datasets. Average words and keyphrases per document are rounded to the nearest
whole number. ICLR and BBC News are used in INSPECT-GEN setting for training and don’t have any labelled
keyphrase data.

(Gallagher et al., 2017). Experiments in §4 show
results using both settings.

3 Experimental Setup

3.1 Evaluation Datasets

We evaluate INSPECT in two domains using four
popular keyphrase extraction datasets—scientific
publications (SemEval-2017 (Augenstein et al.,
2017a), SciERC (Luan et al., 2018), SciREX (Jain
et al., 2020)) and news articles (500N-KPCrowd
(Marujo et al., 2013)). Dataset details and statistics
are shown in Table 1.

3.2 Topic Labels

We create distant supervision for INSPECT by label-
ing the above datasets using document topics as la-
bels. We leverage existing topic annotations when
such annotations exist. In the 500N-KPCrowd
news based dataset, we use existing topic labels
(tags or categories such as Sports, Politics, Enter-
tainment) in a one-class classification setting. For
the scientific publications domain, we use topic
models (Gallagher et al., 2017) to extract T = 75
topics where each document can be labeled with
multiple topics. The scientific domain datasets are
trained in a multi-label classification setup.

3.3 Training Data and Settings

We train INSPECT in two settings:

1. INSPECT - Here we assume availability of
training documents for each of our datasets.
We train the model for topic prediction using
only the documents and topic labels from the
training set of each dataset obtained using the

approach outlined in §3.2). The training data
in this setting, is most closely aligned to the
test data, as the documents are of the same
topic distribution.

2. INSPECT-Gen - We assume no access to train-
ing documents and train the model on a large
external set of documents of a similar domain
(ICLR papers for scientific, BBC News for
news) but not necessarily of similar topic dis-
tribution as the test data (eg. SemEval-2017
has Physics papers). We use ICLR OpenRe-
view dataset with topics obtained using off-
the-shelf topic modeling 3 for the scientific
domain and BBC News corpus (Greene and
Cunningham, 2006) with pre-labelled topics
for the news domain.

The model from each setting is then evaluated
on the held-out test data of each evaluation dataset.

For the external data, we collect over 8,317 full
papers from ICLR and obtained 75 topic labels
using topic modeling4. We removed 22 topic labels
that were uninformative (list in Appendix Table
6) and used the rest to train our model in a multi-
label classification setup. The BBC News corpus
(Greene and Cunningham, 2006) consists of 2,225
news article documents, each annotated with one of
five topics (business, entertainment, politics, sport,
or tech).

We pre-process each document (for training and
inference) by splitting it into text blocks of size 512
tokens, where consecutive blocks overlap with a
stride size of 128. Following Shang et al. (2018),

3https://github.com/gregversteeg/corex_topic
4https://github.com/gregversteeg/corex_topic
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for each block we consider all Noun Phrases (NPs)
as candidate phrases and extract them using a Noun
Phrase extractor from the Berkeley Neural Parser5.
All hyperparameters were chosen based on develop-
ment set performance on SciERC. Our final models
were trained with a batch size of 8 a learning rate
of 2e-5 for 10 epochs.The classification layer di-
mension was 64 and α was 0.5. We provide more
implementation details, including hyperparameter
search in Appendix §A.2.

3.4 Baselines

We compare our method against seven unsu-
pervised keyphrase extraction techniques — TF-
IDF (Florescu and Caragea, 2017a), TopicRank
(Bougouin et al., 2013), Yake (Campos et al., 2018),
AutoPhrase (Shang et al., 2018; Liu et al., 2015),
UKE-CCRank (Liang et al., 2021), MDERank
(BERT)6 (Zhang et al., 2022) and SifRank (Sun
et al., 2020). Out of the chosen baselines, Yake,
TF-IDF and AutoPhrase are statistical, TopicRank
is graph-based and SifRank, UKE-CCRank and
MDERank are neural embedding based methods.
For INSPECT setting, we compare with baselines
that only use training data documents—TF-IDF,
TopicRank, Yake, AutoPhrase, UKE-CCRank and
MDERank. For the INSPECT-GEN setting, we com-
pare with TF-IDF and AutoPhrase trained on our
external corpora and SifRank which uses the exter-
nal corpora to obtain prior likelihood scores for the
phrases.

Following prior work and task guidelines (Au-
genstein et al., 2017a; Jain et al., 2020), INSPECT

produces span level keyphrases and distinguishes
each occurrence of a keyphrase. In contrast, meth-
ods like SifRank, AttentionRank, UKE-CCRank
and MDERank are phrase level keyphrase extrac-
tors which don’t provide span level outputs. To
maintain common evaluation, we adapt these meth-
ods to span level keyphrase extraction by matching
each output keyphrase to all occurrences of the
phrase in the document. As our method applies
a cutoff on relevance scores and picks any phrase
with a positive relevance score as a keyphrase, we
cannot be directly compared with baselines which
rank candidate phrases and pick top-K phrases as
important. To establish a fair setting for evaluation,
we choose the average of the number of keyphrase
predictions from our model as the ’K’ across all

5https://pypi.org/project/benepar/
6As of Oct 2022, the authors have not released their model.

F1 Score
Dataset Method Micro Macro Weighted

SciERC RoBERTa 0.842 0.651 0.767
INSPECT 0.836 0.658 0.771

SciREX RoBERTa 0.609 0.404 0.641
INSPECT 0.628 0.442 0.697

SemEval17 RoBERTa 0.819 0.613 0.731
INSPECT 0.822 0.611 0.744

500N-KPCrowd RoBERTa 0.916 0.880 0.910
INSPECT 0.938 0.904 0.939

ICLR RoBERTa 0.729 0.456 0.699
INSPECT 0.743 0.492 0.733

BBC News RoBERTa 0.880 0.851 0.876
INSPECT 0.902 0.886 0.894

Table 2: Proxy Task (Topic prediction) performance.
Our INSPECT method outperforms a strong RoBERTa
baseline on Micro, Macro and Weighted F1 scores.

baselines.

3.5 Evaluation Metrics
Topic Prediction Evaluation: To ensure high-
quality interpretations from our model, it is im-
perative that it performs well on topic prediction.
We first evaluate INSPECT’s performance on topic
prediction using micro, macro, and weighted F1
score of the classifier’s predictions compared to
true labels across all labels.

Keyphrase Extraction Evaluation: For our pri-
mary evaluation of keyphrase extraction, we evalu-
ate using span match of our predictions and the true
labels (human annotated keyphrases). In addition
to measuring quality of keyphrases, this evalua-
tion also measures the quality of explanations from
our interpretable topic model by measuring how
well the keyphrases extracted by INSPECT align
with human annotated keyphrases. Prior works
(Shang et al., 2018; El-Beltagy and Rafea, 2009;
Bougouin et al., 2013) have mainly focused on ex-
act match performance. However, a recent survey
highlights that the measure is highly restrictive (Pa-
pagiannopoulou and Tsoumakas, 2019) as simple
variations in preprocessing can misalign phrases
giving an inaccurate representation of the model’s
capabilities (Boudin et al., 2016).

Alternatively, partial span match using the word
level overlap between the predicted and gold span
ranges, has also been explored (Rousseau and Vazir-
giannis, 2015). But, it is sometimes lenient in
scoring. Papagiannopoulou and Tsoumakas (2019)
suggest average of the exact and partial matching
as an appropriate metric based on empirical stud-
ies. Therefore, we evaluate performance using the
average of the exact and partial match F1 scores

1111

https://pypi.org/project/benepar/


Dataset Method Exact Match F1 Partial Match F1 Avg Exact Partial F1

SciERC

TF-IDF 0.0627 0.2860 0.1743
TopicRank 0.2533 0.5680 0.4110
Yake 0.2230 0.5125 0.3678
AutoPhrase 0.0961 0.3145 0.2053
UKE CCRank 0.3584 0.4804 0.4194
MDERank 0.3092 0.5102 0.4097
INSPECT 0.3108 0.5524 0.4316

SciREX

TF-IDF 0.1521 0.3690 0.2605
TopicRank 0.2298 0.4122 0.3210
Yake 0.1840 0.3734 0.2787
AutoPhrase 0.1814 0.4236 0.3025
UKE CCRank 0.0419 0.0759 0.0589
MDERank 0.1241 0.3776 0.2509
INSPECT 0.2397 0.4127 0.3262

SemEval17

TF-IDF 0.0610 0.2698 0.1654
TopicRank 0.2240 0.4312 0.3276
Yake 0.1687 0.3644 0.2665
AutoPhrase 0.0790 0.3404 0.2097
UKE CCRank 0.2427 0.345 0.2938
MDERank 0.2529 0.4818 0.3673
INSPECT 0.2594 0.5185 0.3889

500N-KPCrowd

TF-IDF 0.1034 0.3520 0.2277
TopicRank 0.1060 0.2346 0.1703
Yake 0.1380 0.3551 0.2465
AutoPhrase 0.1590 0.3608 0.2599
UKE CCRank 0.1729 0.2873 0.2303
MDERank 0.1522 0.4197 0.2859
INSPECT 0.1608 0.3920 0.2764

Table 3: Span-match results for unsupervised keyphrase extraction across datasets in the INSPECT setting. Best
performance is indicated in Bold. Our model ourperforms baselines on average of exact and partial F1 scores.

between predicted and true phrases keyphrases.

4 Results

4.1 Topic Prediction with INSPECT

First, we compare INSPECT’s effectiveness in clas-
sifying the topics with the corresponding non-
interpretable encoder baseline, using micro, macro,
and weighted F1 score of the classifier’s predic-
tions compared to gold standard annotations. The
results in Table 2 show that our approach outper-
forms a strong RoBERTa (Liu et al., 2019) baseline
for topic prediction across all of our evaluation
datasets. The difference is more pronounced in
larger datasets (SciREX, ICLR, and BBC News),
and strong performance on the topic classification
task provides confidence that highlighted interpre-
tations are for relevant and major topics in the text.

4.2 Keyphrase Span Match Performance
Next, we study the utility of INSPECT in highlight-
ing keyphrases via model interpretations. The re-
sults for INSPECT are detailed in Table 3 and, for
INSPECT-GEN in Table 4.

Results in Table 3 show that even with access to
only training set of documents from each dataset,
on 3 out of 4 datasets INSPECT outperforms all

baselines with ∼0.8 average F1 improvements. In
the news domain (500-KPCrowd dataset) INSPECT

performs comparably to prior best method. IN-
SPECT has low exact match scores but higher par-
tial match scores indicating misalignments between
predicted and gold spans. Additionally, 500N-
KPCrowd annotates all instances of a keyphrase
as a reference span which favours phrase level
methods like AttentionRank in the current eval-
uation setup. In SciREX, we observe very poor
performance of UKE CCRank as it ranks common
phrases like “image”, “label”, “method”, etc, very
high.

In the INSPECT-GEN setting, with access to a
larger dataset of external documents, our model
outperforms prior methods in 3 out of 4 datasets
with ∼2.7 points average F1 improvements. In the
500N-KPCrowd dataset, INSPECT performs com-
parably to SifRank with improved Partial Match
F1. As Table 4 illustrates, we notice that the model
consistently performs better in the INSPECT-GEN

setting when compared with the INSPECT setting,
showing that the method benefits from more train-
ing data. We particularly see large improvements
over the INSPECT setting in the scientific datasets,
showing that training on a larger set of documents
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Dataset Method Exact Match F1 Partial Match F1 Avg Exact Partial F1

SciERC
TF-IDF 0.2162 0.4434 0.3298
AutoPhrase 0.2416 0.6130 0.4273
SifRank 0.2248 0.7357 0.4803
INSPECT-GEN 0.4371 0.7114 0.5743

SciREX
TF-IDF 0.1780 0.4008 0.2894
AutoPhrase 0.2583 0.4993 0.3788
SifRank 0.1234 0.3957 0.2595
INSPECT-GEN 0.2601 0.4893 0.3747

SemEval17
TF-IDF 0.1810 0.3398 0.2604
AutoPhrase 0.1104 0.4874 0.2989
SifRank 0.2804 0.6336 0.4570
INSPECT-GEN 0.3246 0.6218 0.4732

500N-KPCrowd
TF-IDF 0.1398 0.3578 0.2488
AutoPhrase 0.1701 0.3918 0.2805
SifRank 0.1847 0.4125 0.2986
INSPECT-GEN 0.1776 0.4194 0.2985

Table 4: Span-match results for unsupervised keyphrase extraction in INSPECT-GEN (trained on ICLR and BBC
News corpus). Best performance is indicated in Bold. INSPECT outperforms most baselines.

helps generalize the model in this setting. Our
results further show that variations in topic distri-
bution between training and test data don’t signif-
icantly impact results. INSPECT can thus benefit
from large unlabeled documents from similar do-
mains to improve results.

INSPECT improves performance in settings with
human annotated topics (news) as well as when
topics are extracted using unsupervised topic mod-
eling (scientific). Additionally, most baselines rely
on carefully constructed pre- and post-processing
to eliminate common phrases and produce high-
quality candidates (Liang et al., 2021; Ding and
Luo, 2021; Sun et al., 2020). In contrast, IN-
SPECT achieves competitive results without do-
main expertise and processing for extracting qual-
ity keyphrases. Therefore, INSPECT can be easily
adapted to new domains without human annota-
tions for topics and with minimal domain knowl-
edge, as we show across two domains.

Our results demonstrate that phrase attribu-
tion techniques from interpretability literature can
be leveraged to identify high-quality document
keyphrases by measuring predictive impact of in-
put phrases on topic prediction. These results
also show that our interpretable model in INSPECT

produces high quality keyphrases as phrase ex-
planations which correlate with human annotated
keyphrases, evaluating the interpretablity aspect
of our framework. Crucially, as these keyphrases
correlate with human annotated keyphrases, our
results validate our initial hypothesis that neural
models latently use document keyphrases for tasks
like topic classification.

Recall
Type Exact Partial
Metric 60.65 78.34
Task 58.27 90.45
Material 72.17 86.69
Scientific Term 78.87 95.13
Method 65.31 95.41
Generic 63.16 86.06

Table 5: Exact and partial span match recall scores for
different types of keyphrases on the SciERC dataset.

5 Discussion

Here, we present an analysis on the common error
types in INSPECT and discuss the strengths and
weaknesses of INSPECT using qualitative examples.

Entity Type Analysis: We leverage the entity
type information in SciERC to observe the perfor-
mance of INSPECT on specific types of keyphrases.
From Table 5, we see that INSPECT performs best
on keyphrases labelled as Scientific Terms and Ma-
terials. Generic phrases and Metrics are usually
not representative of topical content, and thus, our
method performs poorly on them. On manual anal-
ysis, we noticed that many phrases marked as Task
are very unique and infrequent, making them harder
to identify. A high partial match recall but a low
exact match recall for Method type suggest that
many predicted keyphrases are misaligned with the
gold labels. We believe that alternative downstream
tasks can be explored in future to help tailor our
approach to capture specific types of entities, based
on application requirements.

Qualitative Analysis In Figure 2 we show two
randomly selected abstracts from the SciERC
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We present a text mining method for finding
synonymous expressions based on the
distributional hypothesis in a set of coherent
corpora . This paper proposes a new methodology
to improve the accuracy of a term aggregation
system using each author 's text as a coherent
corpus . Our proposed method improves the
accuracy of our term aggregation system , showing
that our approach is successful .
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We revisit the classical decision-theoretic problem of
weighted expert voting from a statistical learning
perspective . In particular , we examine
the consistency [ both asymptotic and finitary ] of the
optimal Nitzan-Paroush weighted majority and
related rules . In the case of
known expert competence levels , we
give sharp error estimates for the optimal rule . When
the competence levels are unknown , they must
be empirically estimated . We provide frequentist
and Bayesian analyses for this situation . Some of
our proof techniques are non-standard and may be
of independent interest . 
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Case 1

Case 2

True Keyphrases Our Predictions AutoPhrase

Figure 2: Two data points randomly chosen from the SciERC dataset. Orange spans represent gold standard
annotations. Green spans in the predictions represent correctly predicted spans, whereas red spans are spans wrongly
predicted as being keyphrases and red text are keyphrases that the model did not identify.

dataset. We see that INSPECT tends to extract
longer phrases compared to AutoPhrase, which
tends to extract mostly unigrams or bigrams. Over-
all, our approach is able to extract more relevant
phrases than the baseline. Both INSPECT and Au-
toPhrase tend to miss generic phrases like ‘ap-
proach’ (e.g., as seen in case 1). Case 2 also demon-
strates the INSPECT’s ability TO predict complete
phrases, like ‘classical decision-theoretic problem’,
instead of AutoPhrase’s prediction – ‘classical
decision-theoretic’ which is incomplete. From both
these examples, we see that INSPECTis usually able
to correctly extract Scientific Terms, and struggles
to extract Generic phrases and Metrics. This can
be attributed to the usage of topic models to extract
the content’s topical information.

6 Related Work

Unsupervised keyphrase extraction is typically
treated as a ranking problem, given a set of candi-
date phrases (Shang et al., 2018; Campos et al.,
2018; Florescu and Caragea, 2017a). Broadly,
prior approaches can be categorized as statistical,
graph-based, embedding-based, or language model
based methods; Papagiannopoulou and Tsoumakas
(2019) provide a detailed survey.

Statistical methods exploit notions of informa-
tion theory directly. Common approaches in-
clude TF-IDF based scoring (Florescu and Caragea,
2017a) of phrases with other co-occurrence statis-
tics to enhance performance (Liu et al., 2009; El-
Beltagy and Rafea, 2009). Campos et al. (2018)
shows the importance of incorporating statistical in-
formation of the context of each phrase to improve

performance. Statistical approaches typically treat
different instances of a phrase equally, which is a
limitation.

Graph-based techniques, on the other hand,
broadly aim to form a graph of candidate phrases
connected based on similarity to each other. Then
core components of the graph are chosen as key
phrases. Amongst these, PageRank (Brin and Page,
1998) and TextRank (Mihalcea and Tarau, 2004)
assign scores to nodes based on their influence. A
common extension is to use weights on the edges
denoting the strength of connection (Wan and Xiao,
2008; Rose et al., 2010; Bougouin et al., 2013).
Position Rank (Florescu and Caragea, 2017b) and
SGRank (Danesh et al., 2015) combine the ideas
from statistical, word co-occurrence and positional
information. Some approaches, especially applied
in the scientific document setting, make use of ci-
tation graphs (Gollapalli and Caragea, 2014; Wan
and Xiao, 2008), and external knowledge bases (Yu
and Ng, 2018) to improve keyphrase extraction. In
this work, we focus our approach on a general un-
supervised keyphrase extraction setting applicable
to any domain where such external resources may
not be present.

Finally, embedding based techniques (Bennani-
Smires et al., 2018; Papagiannopoulou and
Tsoumakas, 2018; Zhang et al., 2022) make use
of word-document similarity using word embed-
dings (Sun et al., 2020; Liang et al., 2021),
while language-model based techniques use word
prediction uncertainty to decide informativeness
(Tomokiyo and Hurst, 2003). Ding and Luo (2021)
uses attention scores to calculate phrase importance
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with the document in an unsupervised manner.

7 Conclusion and Future Work

In this work, we introduced INSPECT, a novel ap-
proach to unsupervised keyphrase extraction. Our
framework uses a neural model that explains text
classification decisions to extract keyphrases via
phrase-level feature attribution. Using four stan-
dard datasets in two domains, we show that IN-
SPECT outperforms prior methods and establishes
state-of-art results in 3 out of 4 datasets.. Through
qualitative and quantitative analysis, we show that
INSPECT can produce high-quality and relevant
keyphrases. INSPECT presents applications of inter-
pretable models beyond explanations for humans.

8 Limitations

Our method uses model explanations for each pre-
dicted topic to highlight keyphrases in text. A di-
rect limitation of this method is that our importance
scoring is topic-specific and cannot be used to pro-
vide an overall rank across topics. Our method
therefore cannot provide a ranked list of top-5 or
top-10 keyphrases as often done in prior work.
While this is a limitation, our current technique of
producing a set of all predicted keyphrases is useful
in domains like scientific articles where keyphrases
are used for downstream applications. Further, as
our method produces topic-specific keyphrases, it
could potentially miss some keyphrases which are
not associated to any predicted topic. Therefore,
our approach is beneficial in settings where topic
prediction is accurate and feasible to ensure high
quality and good coverage of keyphrases. Finally,
this work was also limited by the specific choice
of the downstream task - namely, topic prediction.
Other downstream tasks, like summarization, can
potentially help us gain additional insights from
attribution.
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A Appendix

A.1 Evaluation Datasets
SemEval-2017 (Augenstein et al., 2017a) consists
of 500 abstracts taken from 12 AI conferences cov-
ering Computer Science, Material Science, and
Physics. The entities are annotated with Process,
Task, and Material labels, which form the funda-
mental concepts in scientific literature. Identifica-
tion of the keyphrases was subtask A of the Scien-
ceIE SemEval task (Augenstein et al., 2017b).

SciERC (Luan et al., 2018) extends SemEval-
2017 by annotating more entity types, relations,
and co-reference clusters to include broader cover-
age of general AI. The dataset was annotated by a
single domain expert who had high (76.9%) agree-
ment with three other expert annotators on 12%
subset of the dataset.

SciREX (Jain et al., 2020) is a document-level
information extraction dataset, covering entity iden-
tification and n-ary relation formation using salient
entities. Human and automatic annotations were
used to annotate 438 full papers with salient en-
tities, with a distant supervision from the Papers
With Code7 corpus. This dataset can help verify
the performance of models on full papers.

500N-KPCrowd (Marujo et al., 2013) is a
keyphrase extraction dataset in the news domain.
This data consists of 500 articles from 10 topics
annotated by multiple Amazon Mechanical Turk
workers for important keywords. Following the
baselines on this datasets, we pick keywords that
were among the top two most frequently chosen by
the human annotators. Since no span-level infor-
mation for these keywords is given, we annotate all
occurrences of the chosen keywords in the docu-
ment to obtain a list of span labels, which we use
to evaluate all the models.

A.2 Implementation Details
Here, we present the hyper-parameters for all exper-
iments along with their corresponding search space.
We chose all hyperparameters based on the devel-
opment set performance on the SciERC dataset.

7https://paperswithcode.com/

We considered RoBERTa (Liu et al., 2019) and
XL-NET (Yang et al., 2019) based encoders and
finally chose RoBERTa for faster compute times.
We experimented with learning-rates from the set
of 1e-5,2e-5,5e-5,1e-4 and 2e-4. We chose 2e-5
as the final learning rate. Our batch size of 8 was
chosen after experimenting with 4, 8, 12 and 16.
The size of the weights matrix in the classification
layer was chosen to be 64 from a set of 16,32,64
and 128. The α parameter used for regularization
was fixed at 0.5. We tried values between 0.1 and
0.9 and did not find signifcant difference. We saved
the model based on best weighted F1 on the topic
prediction task. All training runs took less than
3 hours on 2 Nvidia 2080Ti GPUs, except on the
ICLR dataset, which took 8 hours. All results are
from a single run.
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S.No. Top words from removed topic
1 proposed;propose novel;propose;proposed method;method
2 generalization;study;analysis;suggest;provide
3 outperforms;existing;existing methods;outperforms stateoftheart;methods
4 state;art;state art;shortterm;current state
5 effectiveness;demonstrate effectiveness;source;effectiveness proposed;student
6 training;training data;training set;training process;model training
7 experimental;experimental results;results;results demonstrate;experimental results demonstrate
8 experiments;extensive;extensive experiments;experiments demonstrate;conduct
9 performance;improves;significantly;improve;improved
10 recent;shown;recent work;recent advances;success
11 achieves;introduce;competitive;achieves stateoftheart;introduce new
12 trained;model trained;models trained;networks trained;trained using
13 present;paper present;present novel;work present;monte
14 widely;parameters;widely used;proposes;paper proposes
15 simple;benchmark datasets;benchmark;propose simple;simple effective
16 prior;approach;sampling;continuous;prior work
17 program;introduces;programs;future;paper introduces
18 solve;challenging;able;complex;challenging problem
19 challenge;current;challenges;open;current stateoftheart
20 rate;good;good performance;l;regime
21 works;previous works;existing works;focus;scenarios
22 evaluate;evaluation;tackle;tackle problem;evaluate method

Table 6: 22 Generic topics removed from the 75 topic labels learned using topic modeling on ICLR data.
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Abstract

Recent literature has shown that large language
models (LLMs) are generally excellent few-
shot reasoners to solve text reasoning tasks.
However, the capability of LLMs on table rea-
soning tasks is yet to be explored. In this pa-
per, we aim at understanding how well LLMs
can perform table-related tasks with few-shot
in-context learning. Specifically, we evalu-
ated LLMs on popular table QA and fact ver-
ification datasets like WikiTableQuestion, Fe-
taQA, TabFact, and FEVEROUS and found
that LLMs are competent at complex reason-
ing over table structures, though these models
are not pre-trained on any table corpus. When
combined with ‘chain of thoughts’ prompting,
LLMs can achieve very strong performance
with only a 1-shot demonstration, even on par
with some SoTA models. We show that LLMs
are even more competent at generating com-
prehensive long-form answers on FetaQA than
tuned T5-large. We further manually studied
the reasoning chains elicited from LLMs and
found that these reasoning chains are highly
consistent with the underlying semantic form.
We believe that LLMs can serve as a simple
yet generic baseline for future research. The
code and data are released in https://github.
com/wenhuchen/TableCoT.

1 Introduction

The problem of structured knowledge grounding
has been extensively studied for many years. Ta-
bles, as one of the most popular (semi)-structured
forms to store world knowledge receive signifi-
cant attention from the natural language processing
(NLP) community. Traditional approaches mostly
rely on synthesizing executable languages like SQL
or SPARQL to access the information inside the ta-
ble. However, these symbolic languages normally
make a rigid assumption about the table and can-
not capture the semantics of text chunks inside the
table. Such issues are even more pronounced with
web tables due to their irregular forms. To fully

understand web tables, both structured reasoning
and textual reasoning are required. Such challenges
have attracted many researchers to work in the field.
Recently, a wide range of table-based tasks have
been proposed like table question answering (Pasu-
pat and Liang, 2015; Chen et al., 2020c; Zhu et al.,
2021; Chen et al., 2021b; Talmor et al., 2020; Chen
et al., 2020a; Nan et al., 2022), table fact verifi-
cation (Chen et al., 2019; Aly et al., 2021), table-
based generation (Chen et al., 2020b; Parikh et al.,
2020; Nan et al., 2021), and table-grounded con-
versation (Budzianowski et al., 2018; Nakamura
et al., 2022). This wide range of table-based tasks
all come with different input-output formats and
domains. Due to the heterogeneity of these tasks,
models achieving the best results on these tasks
normally need to be fully fine-tuned on the specific
downstream dataset with 10K-100K examples to
achieve reasonable performance.

Recently, there have been efforts like Unified-
SKG (Xie et al., 2022) aiming to unify these het-
erogeneous table-based tasks as a generic text-to-
text format. UnifiedSKG has shown that using
T5-3B (Raffel et al., 2020) with the text-to-text
format can already achieve state-of-the-art perfor-
mance on almost all the table-based tasks without
task-specific designs. However, the proposed text-
to-text models still need to be fully fine-tuned on
the downstream tasks. UnifiedSKG also identified
that T0-style (Sanh et al., 2022) cross-task transfer
can only achieve almost random performance.

Wei et al. (2022); Wang et al. (2022); Zhou et al.
(2022); Drozdov et al. (2022) have recently dis-
covered that large language models (Brown et al.,
2020; Chowdhery et al., 2022; Ouyang et al., 2022)
can be used to solve complex mathematical and
commonsense reasoning tasks with few-shot in-
context learning. Inspired by this discovery, we
aim at understanding whether these LLMs can also
solve complex table-based reasoning tasks. Though
the LLMs are not specifically designed to encode ta-
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Figure 1: In-context learning for table-related tasks with
chain-of-thoughts reasoning.

bles, given the enormous number of tables present
in the pre-training corpus, we believe they are also
competent at reasoning over table information.

In this paper, we experimented with few-shot
in-context learning for LLMs as depicted in Fig-
ure 1. Instead of fine-tuning the model, we only
provide a few examples to showcase the desired
input-output format as the condition for the model
to follow to solve unseen test examples. We ex-
periment with several prompting variants including
(1) direct prediction, (2) Chain of Thoughts (Wei
et al., 2022) (CoT), (3) Chains of thoughts with
self-consistency (Wang et al., 2022) (CoT+SC).
We evaluate these methods on WikiTableQA (Pa-
supat and Liang, 2015), FetaQA (Nan et al., 2022),
TabFact (Chen et al., 2019) and FEVEROUS (Aly
et al., 2021). Our results reveal that LLMs (Ouyang
et al., 2022; Chen et al., 2021a; Chowdhery et al.,
2022) can achieve striking performance with only
1 or 2 demonstrations, e.g. 48.8% on WikiTable-
Questions and 78.8% on TabFact, which are on par
some near-SoTA models (Yu et al., 2021; Eisen-

schlos et al., 2020). On other datasets like FetaQA
with long-form answers, our human evaluation re-
veals that GPT-3 can significantly outperform the
fine-tuned T5-large by more than 30% in terms of
correctness and adequacy.

Furthermore, we manually studied the chain of
thoughts elicited from LLMs and found that the ra-
tionale is highly consistent with the ‘ground truth’
semantic forms when the model predictions are
correct. We found that these models are surpris-
ingly competent at performing symbolic operations
over the table, like maximum, minimum, counting,
comparison, addition, and difference. However, we
also identify several issues of the LLMs on these ta-
ble reasoning tasks: (1) due to the token limitation,
the model is unable to generalize to ‘huge’ tables
with 30+ rows, which is the major error source, (2)
LLMs can sometimes make simple mistakes when
performing symbolic operations.

Due to the simplicity and generality, we believe
LLMs with CoT should be used as an important
baseline for any future table-related research.

2 Related Work

2.1 Reasoning over Tables

Table-based reasoning is traditionally accom-
plished by semantic parsing to execute commands
on tables like WikiTableQuestions (Pasupat and
Liang, 2015), WikiSQL (Zhong et al., 2017), and
Spider (Yu et al., 2018). These models aim to
synthesize SQL/SPARQL to interact with tables.
However, these machine languages have a rigorous
requirement regarding the tables, e.g. the value
in the same column should follow the same data
type. Such rigorous assumptions are frequently vi-
olated by web tables containing unnormalized free-
form text in cells. Therefore, language understand-
ing inside the table is essential to achieve a better
score. Recently, Yin et al. (2020); Herzig et al.
(2020); Liu et al. (2021); Deng et al. (2022) have
proposed to pre-train table and text to learn joint
representation. These pre-trained models can use
joint representation to perform reasoning implicitly
without relying on symbolic execution. By pre-
training the model on large-scale crawled or syn-
thesized data, these models can normally achieve
the best-known performance on table tasks. How-
ever, these models still require a significant amount
of fine-tuning on the downstream datasets. Un-
like these methods, we are interested in in-context
learning, where the model can only learn with a
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few examples (demonstration) without any fine-
tuning. One contemporary work similar to ours
is BINDER (Cheng et al., 2022), which utilizes
Codex to synthesize SQL to execute logical forms
against tables for question answering. One big
difference is that BINDER (Cheng et al., 2022) in-
volves logical form execution, if the execution fails,
BINDER will fall back to using language models
to answer the question, which is more similar to
ours.

2.2 In-context Learning with LLMs
GPT-3 (Brown et al., 2020) and other large lan-
guage models demonstrated strong abilities to
perform few-shot predictions without fine-tuning,
where the model is given a description of the task
in natural language with few examples. Scaling
model size, data, and computing are crucial to en-
able this learning ability. Recently, (Rae et al.,
2021; Smith et al., 2022; Chowdhery et al., 2022;
Du et al., 2022) have proposed to train different
types of large language models with different train-
ing recipes. The LLMs have demonstrated a strik-
ing capability utilizing the few-shot prompts to
accomplish unseen tasks without any fine-tuning,
which is found to be an emergent capability not
presented in smaller language models.

2.3 Chain of Thoughts Reasoning
Although LLMs (Brown et al., 2020; Chowdhery
et al., 2022) have demonstrated remarkable success
across a range of NLP tasks, their ability to demon-
strate reasoning is often seen as a limitation. Such
capability cannot be acquired simply by scaling up
the model size. Recently, the ‘chain of thoughts’
prompting (Wei et al., 2022) has been discovered to
empower LLMs to perform complex reasoning over
text. By providing the model with several exem-
plars of reasoning chains, LLMs can learn to follow
the template to solve difficult unseen tasks. Later,
Wang et al. (2022) propose to use self-consistency
with CoT to further improve performance. Later
on, Kojima et al. (2022) discovered that LLMs can
even perform reasoning without any demonstra-
tion by using appropriate prompts. These recent
findings reveal the strong capability of LLMs to
perform complex reasoning. However, the current
studies are still heavily focused on text-based tasks
like question answering, common sense reasoning,
etc. The models’ capability to reason over tables
is yet unknown. In this paper, we are specifically
interested in understanding LLMs’ capability to

Figure 2: Prompts used for question answering and fact
verification tasks.

reason over web tables with CoT prompting.

3 Method

We experiment with different in-context learning
methods to solve the table-based reasoning tasks.
To formulate the prompt, we linearize the table
and concatenate it with a few examples as demon-
strations of the language model to predict the out-
put from an unseen test example. The format
is described in Figure 2. We mainly investigate
three different variants for language model prompt-
ing, including (1) Direct Prediction, (2) Chain
of Thoughts (CoT), and (3) Chain of Thoughts
+ Celf-Consistentcy decoding (CoT+SC). For self-
consistency methods, we use LLMs to generate
five diverse reasoning paths and then use majority
voting to select the most voted answer.

To limit the budget and constrain the input token
length, we truncate the input tables to contain only
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the first 22 rows and the first 8 columns. For each
cell, we truncate the word length to contain only
the first 10 words. Through such truncation, we
can restrict the input token length to within 2000
tokens. We will talk about the impact of input token
length on the final performance.

4 Experimental Results

For the GPT-3 experiments, we used the four
provided models, Ada, Babbage, Curie, and
Davinci with 350M, 1.3B, 6.7B, and 175B param-
eters respectively. We mainly use Davinci-text-
002 (Ouyang et al., 2022) in our experiments. We
also report results for Codex (Chen et al., 2021a)
(Davinci-code-002) on some datasets. We use a
temperature of 0.7 without any frequency penalty
and without top-k truncation. We found that the
model performance is robust to the sampling strate-
gies and the hyper-parameters. These models are
mainly trained on web-crawled data and code data,
without any specialized training on table corpus.

4.1 Datasets

Here we list all of our datasets as follows:

WikiTableQuestions Pasupat and Liang (2015)
consists of complex questions annotated based on
Wikipedia tables. Crowd Workers are asked to
compose a series of complex questions that include
comparisons, superlatives, aggregation, or arith-
metic operations. The annotated dataset is cross-
validated by other crowd workers. In our exper-
iments, we use the unseen test set for evaluation.
We evaluate the standard test set with roughly 4000
questions. In this dataset, we adopt the answer
exact match as our evaluation metric.

FetaQA Nan et al. (2022) consists of free-form
table questions. These questions are mostly com-
plex questions that require integrating information
from discontinuous chunks in the table. Instead of
having short answers, the dataset annotates long
free-form answers. Unlike other datasets using
copies of short text spans from the source, the ques-
tions in FetaQA require a high-level understanding.
We adopt sacre-BLEU and human evaluation as
our evaluation metrics. The evaluation set contains
a total of 2003 examples.

TabFact Chen et al. (2019) consists of both
simple and complex claims annotated by crowd
workers based on Wikipedia tables. In the simple

subset, the claims normally do not involve higher-
order operations like max/min/count, etc. While
the complex subset mainly contains claims involv-
ing higher-order operations. We evaluate the origi-
nal test set containing 12,779 examples. We report
binary classification accuracy on the set.

FEVEROUS Aly et al. (2021) consists of com-
positional claims annotated by crowd workers
regarding Wikipedia tables. Since the dataset
contains both table-supported and text-supported
claims. We filter out text-supported claims and only
keep the 2,295 table-supported claims as our test
set. Different from TabFact, FEVEROUS consists
of more complex tables with irregular structures
like multi-row, multi-column, multi-table, etc. We
report dev-set accuracy.

4.2 Baselines
In these experiments, we mainly consider the fol-
lowing baseline models.

Pre-trained Encoder-Decoder Model Pre-
trained encoder-decoder model is one of our
competitors, which aims to encode the table as a
plain sequence into the encoder, and then apply
the decoder to generate either an answer or a
verdict. In this paper, we mainly compare against
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020) as our baselines.

Pre-trained Table Understanding Model This
family of models is specifically pre-trained on the
table-related corpus, which utilizes specific archi-
tecture to encode table structure and handle sym-
bolic computation. In this paper, we mainly con-
sider TAPAS (Herzig et al., 2020), TABERT (Yin
et al., 2020), and TAPEX (Liu et al., 2021).

Neural Symbolic Model This family of models
includes a non-pre-trained neural symbolic model,
which can synthesize machine language to interact
with the table. This line of work includes Logic-
FactChecker (Zhong et al., 2020), Neural-Symbolic
Machine (Liang et al., 2018), etc.

4.3 Main Results
Here we show our main results for different
datasets as follows.

WikiTableQuestions As can be seen from Ta-
ble 1, directly asking GPT-3 to generate answers
can only lead to 26% EM score. However, if we
prompt the model with the CoT demonstrations,

1123



Type Model Test EM

Train Pasupat and Liang (2015) 37.1
Train Zhang et al. (2017) 43.7
Train Liang et al. (2018) 43.7
Train Agarwal et al. (2019) 44.1
Train Wang et al. (2019) 44.5

PT + FT Herzig et al. (2020) 48.8
PT + FT Yu et al. (2021) 52.7

1-shot GPT-3 Direct 24.0
2-shot GPT-3 Direct 27.3
1-shot GPT-3 CoT 44.2
2-shot GPT-3 CoT 45.7
2-shot Codex CoT 48.8

Table 1: Experimental Results on WikiTableQuestions.
PT means pre-training and FT means fine-tuning.

GPT-3 is more likely to follow the logical operation
to derive the answers. With two demonstrations,
GPT-3 can achieve roughly 46% EM score. By
switching from GPT-3 to Codex, we are able to fur-
ther improve the EM score to over 48.8%. These
results are particularly surprising given that TAPAS
has a built-in module to complete symbolic oper-
ations, while GPT-3 was not trained on any table-
specific dataset. These results demonstrate GPT-3’s
built-in capabilities to perform diverse types of rea-
soning over tables.

FetaQA As demonstrated in Table 2, we compare
GPT-3 with different fine-tuned models from Nan
et al. (2022). Unlike the other datasets with short
phrase answers, the goal of this dataset is to gen-
erate a complete long-form answer. Unlike Wik-
iTableQuestion, the questions normally do not in-
volve complex operations like max, min, compare,
average, etc. The long-form answer is similar to
the role of CoT. Therefore, we only applied ‘di-
rect generation’ in this experiment. In terms of
BLEU score (Papineni et al., 2002), GPT-3 is still
a bit behind the fine-tuned T5-large. However, the
BLEU score cannot reflect the faithfulness and cor-
rectness of the model generation. Thus, we fol-
low Nan et al. (2021) to do human evaluation over
the four aspects: (1) fluency (whether the generated
sentence contains the linguistic error), (2) correct-
ness (whether the generated sentence answers the
question correctly), (3) faithfulness (whether the
generated sentence is grounded on the input table),
and (4) adequacy (whether the generated sentence
is comprehensive enough to cover all the answers).
We list our results in Table 3. Similarly, we also
sample 100 model predictions and manually evalu-
ate their quality and adopt binary scores for each

Type Model sacreBLEU

zero-shot Pipeline (Nan et al., 2022) 9.16
FT Pipeline (Nan et al., 2022) 11.00
FT T5-small (Nan et al., 2022) 21.60
FT T5-base (Nan et al., 2022) 28.14
FT T5-large (Nan et al., 2022) 30.54

1-shot GPT-3 Direct 26.88
2-shot GPT-3 Direct 27.02

Table 2: Experimental Results on FetaQA. PT means
pre-training and FT means fine-tuning.

Source Fluency Correct Adequate Faithful

Pipeline 85.2 25.4 23.6 23.6
T5-large 94.6 54.8 50.4 50.4
Human 95.0 92.4 95.6 95.6

GPT-3 98.0 84.0 78.0 90.0

Table 3: Human Evaluation Results on FetaQA.

example. As can be seen, GPT-3 can significantly
outperform T5-large over all the aspects, i.e. more
than 30% improvement over correctness, adequacy,
and faithfulness. The evaluation indicates that the
model output is almost on par with the average
human performance on this dataset.

TabFact As demonstrated in Table 4, we com-
pare GPT-3 against the other pre-trained and fine-
tuned models including TAPAS (Eisenschlos et al.,
2020), TAPEX (Liu et al., 2021), etc. We show
that GPT-3 direct prediction is already getting a de-
cent accuracy of 72%, which is slightly higher than
Logic FactChecker (Zhong et al., 2020). When
combined with CoT reasoning, the model accu-
racy increases to over 77%. Similar to before, we
found that Codex can generate more accurate rea-
soning chains, thus achieving better accuracy of
78.8%, which is only 2% lower than pre-trained
table understanding model TAPAS (Eisenschlos
et al., 2020). The more intriguing property about
LLM + CoT is that the intermediate rationale can
be produced without any training. All the existing
trained models do not have the capability to pro-
duce the intermediate reasoning steps due to the
lack of annotation in the dataset.

FEVEROUS We demonstrate our results on
FEVEROUS dev-set in Table 5 and compare
different-sized UnifiedSKG models (built with T5).
We found that GPT-3’s performance with direct
prediction is similar to UnifiedSKG-base. Similar
to TabFact, we found that the model performance
can be boosted with ‘chain of thoughts’ prompt-
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Type Model Overall

FT Chen et al. (2019) 65.1
FT Zhong et al. (2020) 71.1
FT Zhang et al. (2020) 73.2
FT Yang et al. (2020) 74.4
FT Lewis et al. (2020) 82.5

PT + FT Eisenschlos et al. (2020) 81.0
PT + FT Liu et al. (2021) 84.2

1-shot GPT-3 Direct 72.0
2-shot GPT-3 Direct 73.9
1-shot GPT-3 CoT 75.5
2-shot GPT-3 CoT 76.0
1-shot GPT-3 CoT+SC 77.3
2-shot Codex CoT 78.8

Table 4: Experimental Results on TabFact. PT means
pre-training and FT means fine-tuning.

Type Model Dev Set

FT Aly et al. (2021) 82.23
FT UnifiedSKG-base (Xie et al., 2022) 75.05
FT UnifiedSKG-large (Xie et al., 2022) 79.81
FT UnifiedSKG-3B (Xie et al., 2022) 82.40

1-shot GPT-3 Direct 74.20
2-shot GPT-3 Direct 75.22
1-shot GPT-3 CoT 75.70
2-shot GPT-3 CoT 76.44
1-shot GPT-3 CoT+SC 77.22

Table 5: Experimental Results on FEVEROUS. PT
means pre-training and FT means fine-tuning.

ing. The best-performing model is roughly between
UnifiedSKG-base and UnifiedSKG-large. Com-
pared to TabFact, the model’s overall performance
is weaker mainly because the table structure in
FEVEROUS is more irregular, containing lots of
segments and subtables. Such structural difficulties
pose great challenges to GPT-3.

Model Scaling We investigate the model scal-
ing’s impact on the final performance and plot our
findings in Figure 3. On the WebTableQuestions
dataset, we found that model size is essential for
achieving the best performance. As can be seen,
the 6.7B GPT-3 model is only achieving half of the
performance of the 175B GPT-3 model. Similarly,
on TabFact, we found that the smaller models with
6.7B or fewer parameters are almost getting ran-
dom accuracy, which is even worse than QA tasks.
This again suggests that LLMs’ reasoning ability
over web tables is emergent as the model scales up.

4.4 Case Study

We demonstrate a few examples in Figure 4 where
GPT-3 makes correct predictions. In the first exam-
ple, GPT-3 is able to first identify all the Belgian

0.35B 1.3B 6.7B 175B

14.5
20.2 22

46.4
50.7 50.3 52.6

77.2
WikiTableQuestions TabFact

Figure 3: The model performance with respect to model
size on WikiTableQuestions and TabFact.

riders from the table and then perform the addi-
tion of 3+3+1=7 precisely. In the second example,
GPT-3 can identify the players with the position
of ‘d’ and count the number correctly to refute a
false claim. In the third example, we can see that
GPT-3 is able to associate multiple blocks of in-
formation to generate a comprehensive long-form
answer. The elicited ‘chain of thoughts’ in these
examples are highly aligned with the underlying
semantic forms. These findings suggest that LLMs
like GPT-3 can provide high-quality explanations
to justify their decision-making.

We also provide a few mistakes made by GPT-3
in Figure 5. In the first example, GPT-3 miscounts
the ‘number of countries above 1 billion box office’
because it misidentifies ‘world’ also as a country.
In the second example, GPT-3 misunderstood ‘2nd
highest’ as ‘highest’, which leads to prediction er-
ror. In the last example, GPT-3 misunderstands the
semantics of the question and answers ‘left office
time’ instead of ‘took office time’. These examples
show the typical errors of grounding the inputs to
the wrong rows or columns of the table.

4.5 Analysis

Impact of Number of Shots First of all, we con-
duct an ablation study to understand the impact
of a number of shots in the final performance. In
order to control the budget, we only sample 200
samples from WikiTableQuestions, TabFact and
FEVEROUS for this ablation study. As can be seen
from Figure 7, GPT-3 is not quite sensitive to the
number of provided demonstrations. Increasing
from 1-shot to 2-shot can often benefit the model,
however, increasing the shot number further does
not yield more performance gain. We conjecture
that instruct fine-tuning used in GPT-3 (Ouyang
et al., 2022) can easily extrapolate the task mean-
ing, thus, having a single demonstration is already
enough for the model to understand the task.
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Figure 4: ‘Correct’ predictions from WikiTableQues-
tions, TabFact, and FetaQA datasets, where the ‘blue’
text are the outputs from the GPT-3, ‘red’ means the
correct rows to reference.

Quality Evaluation of Reasoning Chains We
conduct a human evaluation to assess whether GPT-
3 is making the correct prediction with the correct
reasons. Specifically, we sample 100 reasoning
paths from the correctly predicted examples and
manually study whether these reasoning chains are
grounded on the table or simply ‘hallucination’. As
can be seen from Figure 7, we found that around
90% of reasoning chains are faithful to the infor-

Figure 5: ‘Wrong’ predictions from WikiTableQues-
tions, TabFact, and FetaQA datasets, where ‘blue’ text
are the outputs from the GPT-3, ‘red’ means the region
of the correct cell to reference, and ‘green’ means the
reference trusted by GPT-3.

mation in the table, and only less than 10% of the
reasoning chains are hallucinated. Based on this
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Figure 6: k-shot ablation study over WikiTableQues-
tions and TabFact and FEVEROUS.
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Figure 7: human evaluation of ‘reasoning chains’ in
WikiTableQuestions, TabFact, and FEVEROUS.

evaluation, we believe that LLMs are not guessing
the answers correctly by chance.

We believe these ‘reasoning chains’ are useful
in many aspects: (1) the chains can provide a ra-
tionale to humans to justify the decision-making
process. (2) one of the notorious annotation tasks
is to annotate the ‘underlying’ semantic form for
many NLP tasks, which require expertise for hu-
man annotators, on the other hand, the annotation
cost is huge. Using GPT-3 to demonstrate useful
natural language ‘semantic forms’ could potentially
greatly lower the annotation burden of these tasks.

Impact of Table Size An important factor for
model performance is the size of the table. Here
we want to understand how relevant the model per-
formance is w.r.t the input table length. We group
the table token length into different groups like
‘0-100’, ‘100-200’, etc, and plot the group-wise ac-
curacy for WikiTables and TabFact in Figure 8. As
can be seen from the table, we found that GPT-3’s
performance is highly sensitive to the table size. As
the table size grows, the accuracy almost decreases
monotonically. After the table size exceeds 1000
tokens (e.g. 1500 word pieces), GPT-3’s perfor-
mance almost degrades to random guesses. This
ablation study reveals one of the drawbacks of us-
ing LLMs for table reasoning. To further enhance

LLMs’ performance, we need to develop better
methods to maintain more consistent performance
across different-sized tables.

0 200 400 600 800 1,000 1,200

table size in token length

TabFct WikiTQ

Figure 8: Model performance on WikiTableQuestions
and TabFact w.r.t the input table size.

Discussions In this study, we investigate the pos-
sibilities of prompting LLMs to perform complex
reasoning tasks over tables. However, we do not
believe LLM prompting can replace the existing
symbolic methods. LLMs have several favorable
properties: (1) no annotation is needed, and (2)
the functional coverage is broader than symbolic
methods. However, LLM prompting exhibits un-
predictable randomness and cannot generalize to
large tables. In contrast, symbolic models are (1)
agnostic to the table size, and (2) can reliably per-
form designed functions without much randomness.
But they in general require a significant amount of
annotated data to learn.

In conclusion, these two types of models are
complementary to each other. To push the limit
forward, we need to investigate how to combine
the merits of these two types of methods. For ex-
ample, the symbolic methods can perform certain
operations to narrow down to a targeted region in
the table, and then LLMs can be used to reason
over the limited information.

5 Conclusion

In this paper, we investigate whether the current
LLMs (GPT-3) can be directly utilized to perform
table reasoning tasks. Surprisingly, though LLMs
are not optimized for table-based tasks, we found
these models highly competent in performing com-
plex table reasoning tasks, especially when com-
bined with ‘chain of thoughts’ prompting. We be-
lieve this study can open new possibilities for LLM
application in table-related tasks to either directly
predict the output or to serve as an auxiliary tool
for annotating complex intermediate forms.
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Limitations

Our approach has several limitations: (1) the pro-
posed approach is still far from state-of-the-art
performance, and there is still room for improve
before it can be used as an alternative. (2) the
method is still costly, we show that the model can
only achieve superior performance when scaling
up. Smaller-sized models are still weak at table
reasoning. Therefore, we need to consider how
to empower smaller models with such reasoning
capabilities.
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Abstract

Citation count prediction is the task of predict-
ing the future citation counts of academic pa-
pers, which is particularly useful for estimat-
ing the future impacts of an ever-growing num-
ber of academic papers. Although there have
been many studies on citation count prediction,
they are not applicable to predicting the cita-
tion counts of newly published papers, because
they assume the availability of future citation
counts for papers that have not had enough time
pass since publication. In this paper, we first
identify problems in the settings of existing
studies and introduce a realistic citation count
prediction task that strictly uses information
available at the time of a target paper’s publica-
tion. For realistic citation count prediction, we
then propose two methods to leverage the cita-
tion counts of papers shortly after publication.
Through experiments using papers collected
from arXiv and bioRxiv, we demonstrate that
our methods considerably improve the perfor-
mance of citation count prediction for newly
published papers in a realistic setting.

1 Introduction

In recent years, the number of academic papers in
various fields has increased drastically. Accord-
ingly, the demand for techniques for predicting
papers that will become influential in the future is
growing to help readers identify those papers and
support efficient knowledge acquisition. In this
study, we adopt the citation count as a measure of
future impact, following several previous studies
(e.g., Chubin and Garfield, 1979; Aksnes, 2006),
and we address the citation count prediction task,
which entails predicting how many times a target
paper will be cited in the future.

There have been many studies on citation count
prediction (e.g., Fu and Aliferis, 2008; van Dongen
et al., 2020). However, none of those settings is
strictly applicable to predicting the citation count
of newly published papers, because they assume

Citation count
one year after publication

Papers
published
more than

12 months ago

Papers
published

6 months ago

Papers
published

3 months ago

Target paper

Figure 1: Comparison of a realistic citation count pre-
diction setting with existing research settings. Each bar
(■+□) represents the citation count one year after pub-
lication, which existing studies assume to be available,
while the gray part (■) represents the citation count
that is actually available at the time of a target paper’s
publication.

the availability of future citation counts for papers
shortly after publication. For example, consider
the case of predicting the citation counts one year
after publication. For training and testing, the cor-
rect citation count of the target paper one year after
publication must be known; hence, only papers
published more than one year ago are used in the
experiments. Consequently, even for papers pub-
lished less than one year before the target paper,
the number of citations one year after publication is
available, and these citation counts are commonly
used to train the prediction model. The bars (■+□)
in Figure 1 represent the citation count information
used in such settings. However, in actually pre-
dicting the future citation count of newly published
papers, the correct citation counts one year after the
publication of papers published less than one year
ago are not available; what is actually available is
the gray part of each bar (■) in the figure.
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The unrealistic assumption in previous studies
might appear to have a limited impact on the per-
formance of a prediction model. However, infor-
mation on the future citation counts of recently
published papers could cause leakage of research
trends in the near future, which turns out to have a
non-negligible impact on performance. Hence, in
this study, we first show that the settings of existing
studies leak future information that contributes sig-
nificantly to the prediction performance. We then
introduce a realistic citation count prediction task
that strictly uses information available at the time
of a target paper’s publication.

Furthermore, we propose two methods to capture
research trends in the near future that are applicable
even in our realistic setting. The first method is ci-
tation count complementation, which uses papers
published less than one year ago as training data by
estimating the citation count one year after publi-
cation from the current citation count. The second
method leverages the degree of early adoption by
using the property that papers that cite more recent
papers and papers that cite more frequently cited
papers tend to receive more attention in the future.

2 Datasets

For the experiments here, we used two datasets: a
CL dataset, consisting of papers in the field of com-
putational linguistics, and a Bio dataset, consisting
of papers in the field of biology.

To construct the CL dataset, we collected
16,940 papers submitted to arXiv in the Compu-
tation and Language (cs.CL) category1 from June
2014 to June 2020. We considered preprints suit-
able for this study because they include papers that
have not been peer-reviewed and are expected to
have a large variance in their future impact. We
then obtained the publication dates of papers that
cited the collected papers from Semantic Scholar2

to calculate the citation count for each elapsed
month after the publication of each paper in the
dataset.

We created 13 subsets, each of which consists
of papers published in one of the months from
June 2019 to June 2020 and papers published in
the five years prior to that month. Within each
subset, the papers published in the latest month
were used for evaluation, and the remainder was
used for training. For example, one subset consists

1https://arxiv.org/list/cs.CL/recent
2https://www.semanticscholar.org/

of papers published from May 2015 to May 2020,
of which papers published in May 2020 were used
for evaluation and the remainder for training. The
subsets created in this way have the same properties
as cross-validation, where there is overlap in the
papers for training, but the papers for evaluation
are completely different. The average numbers of
papers per subset for training and evaluation are
13,227 and 500.2, respectively. In the experiments,
we used the subset that used papers published in
June 2019 for evaluation as the development set
and the remaining 12 subsets to train and evaluate
the model.

To construct the Bio dataset, we collected 7,535
papers submitted to the Biochemistry and Plant
Biology, Pharmacology and Toxicology areas of
bioRxiv3 from May 2015 to April 2021. As with
the CL dataset, we created 12 subsets with papers
published in each month from May 2020 to April
2021 as the papers for evaluation. The average
numbers of papers per subset for training and eval-
uation were 5,913 and 257, respectively.4

3 Task Formulation

3.1 Leakage in Existing Settings

Most previous studies on citation count prediction
adopted the citation count n years after publication
as the target citation count for prediction (e.g., Fu
and Aliferis, 2008; van Dongen et al., 2020). Those
studies used datasets consisting of papers published
in a specific time period. Specifically, they used
a set of newly published papers by year or a set
of randomly selected papers as the evaluation set,
and the rest as the training set. The citation count
prediction model was then trained using the citation
counts n years after the publication of each paper
in the training set, and the prediction performance
was evaluated by predicting the citation counts of
the papers in the evaluation set.

In reality, the citation counts n years after publi-
cation are available only for papers published more
than n years after publication, but existing settings
use those citation counts even for papers published
less than n years after publication (Fu and Alif-
eris, 2008; Davletov et al., 2014; Singh et al., 2015;
Abrishami and Aliakbary, 2019; van Dongen et al.,
2020). The use of future citation counts that are not
actually available in the existing settings may lead

3https://www.biorxiv.org/
4Statistics for each subset of the two datasets are provided

in Appendix A.
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to leakage of future research trends. Accordingly,
we conducted a preliminary experiment to examine
the effect of this leakage. We found that, with the
same number of papers used for training, the use
of future citation counts of newly published papers,
which are not actually available, achieves higher
performance than the use of papers published more
than n years ago.5 Hence, we introduce a realistic
citation count prediction task that prevents such
leakage and is applicable to the prediction of cita-
tion counts for newly published papers.

3.2 Realistic Citation Count Prediction

Our realistic citation count prediction task restricts
the citation count information used for training to
information that is strictly available as of the publi-
cation of the target papers for evaluation. Specifi-
cally, in the case of predicting the citation count n
years after publication, the citation count n years
after publication is used for training with papers
that were published more than n years after publi-
cation. On the other hand, for papers published less
than n years after publication, the citation counts
as of the publication of the target papers are used
for training.

3.3 Target Citation Counts for Prediction

In this study, to determine an appropriate value of n
for predicting citation counts, we first investigated
the datasets described in Section 2. Specifically,
we assumed that the citation counts five years after
publication are stable, and we extracted papers pub-
lished more than five years after publication from
each dataset. We then calculated Spearman’s rank
correlation between the citation counts m months
after publication and five years after publication.6

As a result, we found that Spearman’s rank cor-
relation between the citation count one year after
publication against the count five years after publi-
cation was 0.86 for the CL dataset and 0.71 for the
Bio dataset. This indicates that the citation count
one year after publication is a good indicator of a
paper’s final citation count. Hence, we adopt the ci-
tation count one year after publication as the target
citation count for prediction.

4 Citation Count Complementation

We propose a method to estimate the citation count
one year after the publication of papers that were

5Details of the experiment are provided in Appendix B.
6Detailed results are provided in Appendix C.

published less than one year ago. Our method uses
the citation counts of those papers at the time the
target paper was published to estimate the counts
one year after they were published. Specifically, we
estimate the citation counts of a paper m months
after publication with a citation count cm by the
following two methods:

Case-based Extract all papers in the training set
that have a citation counts cm at m months
after publication, and use the median of those
papers’ counts one year after publication as
the estimate.

Ratio-based For the training set, calculate the ra-
tio of the average citation count m months
after publication to the average count one year
after publication, and multiply it by the cita-
tion count cm to obtain the estimate.

While case-based estimation is expected to be
accurate for less-cited papers, where there are many
other papers with the same citation count, it is not
suitable for highly-cited papers that have no or few
other papers with the same citation count. Thus,
if the citation count cm is associated with a paper
in the list of top 10% papers, it is estimated using
the ratio-based method. Otherwise, it is estimated
using the case-based method. The rank order of
cm is calculated from the distribution of citation
counts m months after publication for the papers
in the training set.

To confirm the appropriateness of this citation
count complementation, we calculated Spearman’s
rank correlation between the correct citation counts
one year after publication against the predicted
citation count before and after complementation
(cm and complemented citation count). For this
investigation, we used the training portion of the
12 subsets to train and evaluate the model on the CL
dataset, and we compared the average Spearman’s
rank correlations for each subset. As a result, we
found that the correlation improved from 0.88 to
0.92, which demonstrates that the citation count
complementation is appropriate.

5 Degree of Early Adoption

In realistic citation count prediction, the full cita-
tion counts of papers published less than one year
after publication cannot be used for training, yet
papers that are frequently cited in such a short term
are likely to be impactful. In addition, papers that
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Top 0–1% 1–2.5% 2.5–5% 5–10% 10–25% 25–100% No citation
Within 3 months 15.5 (4.6%) 14.3 (3.8%) 10.6 (3.6%) 8.8 (5.0%) 7.5 (6.6%) 6.5 (4.9%) 5.0 (71.5%)
Within 6 months 14.3 (9.6%) 12.6 (7.3%) 9.8 (6.2%) 7.6 (8.8%) 6.3 (10.7%) 4.6 (9.4%) 3.7 (48.1%)
Within 9 months 13.8 (15.4%) 11.2 (10.3%) 7.7 (7.8%) 6.6 (10.1%) 5.3 (12.9%) 3.5 (12.4%) 2.5 (31.0%)
Within 12 months 12.7 (21.6%) 10.1 (12.0%) 6.4 (9.1%) 5.7 (10.5%) 4.4 (13.5%) 2.5 (12.9%) 2.0 (20.6%)

Table 1: Average citation counts one year after publication for papers citing at least one paper with the top k1% to
k2% citation counts published within m months in the CL dataset. “No citation” indicates papers that did not cite
any paper published within m months. The numbers in parentheses give the ratio of papers belonging to each group
in each column.

cite such frequently cited papers earlier—i.e., pa-
pers with a high degree of early adoption—can
be considered as adequately recognizing the latest
trends and are likely to receive more attention in
the future because of their novelty and technical
contributions. To validate this hypothesis, we in-
vestigated whether papers that cite frequently cited
papers at an early date tend to be cited more in the
future.

Specifically, we examined the average citation
count one year after publication for those papers
that cite at least one paper with the top k1% to k2%
citation counts published within m months. For
this investigation, we used 15,962 papers published
in arXiv’s cs.CL category between June 2015 and
May 2020, which form the training portion of the
subset described in Section 2. In the case of multi-
ple citations of papers published within m months,
we used the highest rank order of the citation counts
among them. For (k1, k2), we used 6 pairs: (0, 1),
(1, 2.5), (2.5, 5), (5, 10), (10, 25), and (25, 100).
For m, we used four values: 3, 6, 9, and 12. We
then calculated the average citation count for each
combination of (k1, k2) and m.

Table 1 lists the results. In the table, “no cita-
tion” indicates papers that did not cite any paper
published within m months. We confirmed an over-
all trend that papers citing more recent papers and
papers citing more frequently-cited papers have
higher average citation counts. The average cita-
tion count of papers that cited papers in the top
1% of citations within 3 months of publication was
15.5, which was about 2.4 times higher than the
average citation count of 6.5 for all papers. On the
basis of these results, we attempted to leverage the
degree of early adoption in citation count predic-
tion, and we describe the specific methods for this
in Section 6.1.

6 Experiments

We conducted experiments on the datasets de-
scribed in Section 2 to validate the effectiveness
of using citation count complementation and the
degree of early adoption in realistic citation count
prediction.

6.1 Setup

Task Following Maillette de Buy Wenniger et al.
(2020), we defined the citation score as log(cn+1),
where cn is the citation count n years after a paper’s
publication. In this study, we sought to predict
the citation score one year after the publication by
using the target paper’s title and abstract.

Prediction Model We adopted a model based on
BERT (Devlin et al., 2019) to predict the citation
scores. We treated the paper’s title as the first sen-
tence of the input and the abstract as the second
sentence. For the output of BERT, we used the
vector representation of a special token [CLS]. The
[CLS] vector was then passed through a fully con-
nected layer and linearly transformed to obtain a
prediction of the citation score. During training,
we applied dropout (Srivastava et al., 2014) to the
[CLS] vector and minimized the mean squared er-
ror (MSE) between the predicted and actual citation
scores.

We also represented the degree of early adoption
via a special token sequence, which was inserted
at the beginning of the input sentence to BERT.
Specifically, we created seven special tokens: “top
0–1%,” “top 1–2.5%,” “top 2.5–5%,” “top 5–10%,”
“top 10–25%,” “top 25–100%,” and “no citation.”
This enabled us to represent the degree of early
adoption by arranging the four special tokens cor-
responding to the highest-ranking citation counts
of the papers cited by the target paper within 3, 6,
9, and 12 months, respectively. For example, if a
paper cited no paper published within 3 months, a
paper published within 6 to 9 months with a top 5–
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10% citation count, and a paper published within 12
months with a top 0–1% citation count, the special
token sequence would be “[no citation][top
5–10%][top 5–10%][top 0–1%].”

Experimental Setting We used two BERT-based
pre-trained language models (PLMs): BERT7

pre-trained on a general-domain corpus such
as Wikipedia, and SciBERT8 pre-trained on a
scientific-domain corpus built from a large num-
ber of papers. All models were trained with 3
epochs, a batch size of 32, the AdamW optimizer
(Loshchilov and Hutter, 2019), and a learning-rate
schedule with warm-up at 10% of the total training
steps and linear decays in the remaining steps. Fol-
lowing Devlin et al. (2019), the learning rate was
set to 2e-5, which achieved the highest Spearman’s
rank correlation for all models on the development
set, after searches conducted at rates of 2e-5, 3e-5,
and 5e-5. We experimented with three different ran-
dom seeds for each model and calculated the mean
and standard deviation of the evaluation scores.9

Compared Methods We compared the following
five methods to validate the effectiveness of using
citation count complementation and leveraging the
degree of early adoption.

• Baseline: A method that used only papers more
than one year after publication for training.

• +CCC: A method that used all papers in the
training set, including those published less than
one year after publication, with Citation Count
Complementation.

• +CCC∗: A method that used the same number of
papers as the Baseline model, in order from the
newest in the training set, with Citation Count
Complementation.

• +DEA: A method that was based on the Baseline
model but used the Degree of Early Adoption.

• +CCC+DEA: A method that used all pa-
pers in the training set with Citation Count
Complementation and the Degree of Early
Adoption.

We also considered applying the proposed
method to the existing citation count prediction
models based on deep learning such as NNCP (Abr-
ishami and Aliakbary, 2019), BIL_A (Ma et al.,

7https://huggingface.co/bert-base-uncased
8https://huggingface.co/allenai/scibert_

scivocab_uncased
9Training took about 10 minutes per epoch and inference

took a few seconds per evaluation set on a single GV100 GPU.

2021), and SChuBERT (van Dongen et al., 2020),
but discarded the idea for the following reasons.
First, NNCP and BIL_A were designed under the
assumption that citation counts several years after
a target paper’s publication are available, and thus
these models were not applicable to our setting.
SChuBERT was excluded from the experiments
because preliminary experiments showed that its
performance was equal to or lower than the Base-
line, even though it is a model that predicts citation
counts using the entire body of a paper. The low
performance of SChuBERT is probably due to the
fact that it does not perform fine-tuning since it
would be computationally expensive to perform
fine-tuning for SChuBERT.

Evaluation We evaluated the models with three
metrics: Spearman’s rank correlation (ρ) to assess
the overall ranking quality, the mean squared error
(MSE) to assess the amount of error, and a metric
defined as the percentage of the actual top n% of
papers in the top k% of the output (n%@k%) to
intuitively understand the results.

As mentioned in Section 2, because the average
number of papers for evaluation in each subset of
the datasets was not large, the evaluation scores
would not have been stable if each subset were
evaluated individually. Therefore, to yield stable
results, we computed each metric across all subsets
of the papers. That is, while each subset was used
to train the prediction model and the citation counts
of the papers for evaluation were predicted by using
the model for each subset, the evaluation scores
were calculated by combining the predictions for
all 12 subsets.

6.2 Experimental Results

Table 2 summarizes the experimental results. For
both the CL and Bio datasets, the models based
on BERT and SciBERT improved the citation
count prediction performance by leveraging ei-
ther the citation count complementation or the de-
gree of early adoption. The performance was fur-
ther improved by using both. The SciBERT-based
model outperformed the BERT-based model, which
demonstrated the effectiveness of pre-training on a
scientific-domain corpus for citation count predic-
tion.10

By comparing the Baseline and +CCC* models,

10We also experimented with domain-specific models such
as PubMedBERT (Gu et al., 2021) on the Bio dataset, but we
could not confirm further performance improvement.
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Dataset PLM Method ρ MSE 5%@5% 5%@25% 10%@10% 10%@50%

CL

BERT

Baseline 36.6±0.4 1.504±0.022 21.1±1.7 63.7±2.3 28.1±0.9 83.2±0.4

+CCC 39.1±0.2 1.275±0.018 28.8±1.9 72.6±1.0 34.5±0.4 84.6±0.6

+CCC* 39.6±0.1 1.176±0.041 28.2±1.5 73.4±1.0 34.4±0.7 84.9±1.1

+DEA 40.4±0.5 1.394±0.019 22.4±0.6 69.4±0.9 31.1±0.8 86.7±0.7

+CCC+DEA 41.8±0.3 1.173±0.008 28.6±2.1 75.3±2.2 35.7±1.1 87.0±1.0

SciBERT

Baseline 38.3±0.3 1.390±0.042 27.4±1.2 67.5±1.5 32.0±1.0 84.7±0.7

+CCC 40.1±0.5 1.147±0.010 33.2±1.7 72.8±0.6 37.7±0.4 86.2±0.2

+CCC* 40.9±0.1 1.063±0.013 33.1±0.9 75.5±0.9 37.8±0.9 86.0±0.4

+DEA 41.1±0.4 1.307±0.015 28.0±1.4 70.3±0.4 33.8±1.2 86.2±0.2

+CCC+DEA 42.8±0.1 1.104±0.012 34.2±0.5 76.0±1.1 36.7±1.1 87.9±0.2

Bio

BERT

Baseline 24.1±2.0 0.593±0.012 20.1±1.1 41.3±4.6 26.8±2.4 67.5±3.4

+CCC 36.4±1.1 0.487±0.010 50.4±1.0 83.1±0.0 48.4±0.9 86.7±0.9

+CCC* 32.9±0.9 0.499±0.011 49.8±1.0 80.5±1.3 47.1±0.6 84.2±2.1

+DEA 32.7±3.0 0.559±0.018 21.9±0.4 47.4±4.7 29.9±1.6 77.1±6.7

+CCC+DEA 40.6±0.6 0.461±0.005 50.0±0.0 87.7±0.6 49.6±0.7 89.9±1.5

SciBERT

Baseline 30.3±1.0 0.588±0.011 21.0±2.6 51.7±2.6 29.9±0.9 73.2±2.6

+CCC 40.5±0.3 0.446±0.007 54.3±0.4 86.8±0.7 52.5±0.7 89.4±0.7

+CCC* 37.2±0.7 0.472±0.006 53.7±0.4 84.4±1.3 48.4±0.3 88.3±1.7

+DEA 37.0±2.3 0.555±0.018 25.1±1.5 57.8±6.2 33.7±1.8 79.4±5.3

+CCC+DEA 42.5±1.2 0.436±0.010 52.4±0.4 90.3±2.6 52.6±0.6 91.8±1.8

Table 2: Experimental results from comparing methods that use papers published less than one year after publication
in realistic citation count prediction. Each score besides the MSE is multiplied by 100.

BERT for Coreference Resolution: Baselines and Analysis
Abstract: We apply BERT to coreference resolution, achieving strong improvements on the Ground truth: top 0.9%
OntoNotes (+3.9 F1) and GAP (+11.5 F1) benchmarks. A qualitative analysis of model Baseline: top 14.5%
predictions indicates that, compared to ELMo and BERT-base, BERT-large is particularly +CCC: top 2.8%
better at distinguishing between related but distinct entities (e.g., President and +DEA: top 7.1%
CEO). However, there is still room for improvement in modeling document-level context, +CCC+DEA: top 0.8%
conversations, and mention paraphrasing. Our code and models are publicly available.

Figure 2: Example of a paper for which the citation count complementation and degree of early adoption improved
the prediction. The left part shows the papers title and abstract (Joshi et al., 2019), and the right part shows the
relative position of the citation count one year after publication of the target paper (ground truth) and the relative
positions predicted by SciBERT-based models.

which used the same number of papers for train-
ing, we can see that the +CCC* model performed
better on both datasets; thus, we confirmed the ef-
fectiveness of using papers published less than one
year after publication with citation count comple-
mentation for training. We had predicted that the
+CCC model, which used a larger number of papers
for training, would perform better than the +CCC*
model. This was true for the Bio dataset, but sur-
prisingly for the CL dataset, the +CCC* model
performed better. We speculate that older papers
could serve as noise if the number of papers is suf-
ficiently large, but we leave further investigation of
this point to a future work. From the result for the
Baseline, +CCC, and +CCC* models on the Bio
dataset, we confirmed performance improvement
due to the increased number of papers for training

and the leverage of newer papers. In particular,
the performance gains from using new papers for
training were considerable.

As for the actual predictive performance, the
SciBERT-based model using both citation count
complementation and the degree of early adoption
achieved a score of 90.3 for the 5%@25% metric
on the Bio dataset. This means that if we read only
the top 25% of the papers predicted by the model
for a given set of papers, we could cover 90.3% of
the papers expected to have future citation counts
within the top 5%. Hence, we believe that this
method is highly useful from a practical viewpoint.

Figure 2 shows an example of a paper for which
the citation count complementation and degree of
early adoption improved the prediction. Although
the citation count one year after the paper’s publi-
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Figure 3: Visualization of the contribution of each token in predicting the citation count of the paper shown in Figure
2. Darker green represents a higher contribution to the prediction, while darker red represents a lower contribution.

cation was in the top 0.9% in the evaluation set, the
Baseline model underestimate the citation count.
This is likely because the paper was published 10
months after the original paper on BERT, and the
Baseline model thus could not leverage the “latest”
information that BERT was going to get enormous
attention. The prediction was improved by apply-
ing either of the two proposed methods, and it was
quite accurate when both methods were applied.
The use of papers published less than one year after
publication for training by citation count comple-
mentation would enable the model to use informa-
tion about BERT for prediction. In addition, this
paper cited the top 5% to 10% of papers within
3 months of publication and the top 0% to 1% of
papers within 6 months of publication, which indi-
cates that it captured the latest trends. We believe
that the proposed method successfully incorporated
these properties of the paper into citation count pre-
diction by leveraging the degree of early adoption.

6.3 Analysis and Discussion

To investigate what words the model came to em-
phasize by leveraging papers shortly after publica-
tion for training, we performed an analysis using
Integrated Gradients (Sundararajan et al., 2017).
The Integrated Gradients method computes each
input feature’s contribution to a deep network’s
prediction by integrating gradients; thus, it enables
analysis of each input token’s contribution to a pre-
diction by BERT. Similar to Schwarzenberg et al.
(2021) and Bharadwaj and Shevade (2022), we
used a sequence of [PAD] tokens as the baseline
input for Integrated Gradients to estimate the con-
tribution of each token.

Figure 3 shows a visualization of the contribu-

tion of each token in predicting the citation count
of the example paper shown in Figure 2, for the
Baseline model, which does not use papers pub-
lished after the BERT paper for training, and the
+CCC model, which uses papers published after
the BERT paper for training. The darker green
represents a higher contribution to the prediction,
while the darker red represents a lower contribution.
The figure shows that the Baseline model did not
know about BERT, and the token bert had a nega-
tive impact, whereas the +CCC model knew that
BERT was a state-of-the-art model, and the token
had a positive impact. We also observed that both
models emphasized tokens that are intuitively im-
portant, such as the higher contribution of publicly
available, which is thought to facilitate subsequent
research and growth in citation counts when codes
and models are made publicly available.

Furthermore, we quantitatively analyzed the to-
kens whose contribution to the prediction was in-
creased by using papers shortly after publication
for training. To extract these tokens, we calculated
each token’s contribution in the +CCC model and
its contribution in the Baseline model for the same
paper. Then, we took the difference to obtain the
score increase due to the use of papers published
less than one year after publication. We computed
this increase by using all the papers for evaluation
in each of the two datasets, took the average for
each token, and extracted the top 10 tokens for
that average. If a word was divided into subwords,
its contribution was determined by summing the
subwords’ contributions. In addition, stop words,
tokens containing symbols, and tokens with a doc-
ument frequency of less than 10 were deleted.

Table 3 lists the extracted words. In the CL
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Rank CL Bio
1 trec coronavirus
2 coronavirus coronaviruses
3 revisiting sars
4 semeval cov
5 rethinking computationally
6 finnish tumors
7 wmt nucleocapsid
8 bert hydroxychloroquine
9 propaganda cannabis

10 specaugment pandemic

Table 3: Tokens that the model came to emphasize by
using papers shortly after publication for training by
citation count complementation.

dataset, the conference names trec, semeval, and
wmt were at the top of the list. This could mean that
more and more papers have evaluated models on
datasets that were published at those conferences
in recent years. Other words such as revisiting and
rethinking may be associated with an increase in the
number of papers that have revised existing models
and methods in recent years. In fact, the number
of papers published at ACL that included these
words in their titles increased from three (0.15%)
in 2013-2018 to 15 (0.53%) in 2019-2022. The
model also increasingly focused on technologies
that have gained attention in recent years, such as
bert and specaugment. In particular, SpecAugment
(Park et al., 2019) is a high-profile technology in
the speech-processing field that has been cited more
than 2,000 times since it was published in April
2019, and the model was able to capture it here as
an important technology.

As for the Bio dataset, a number of COVID-19-
related words appeared at the top of the list. This
indicates that the model captured the increasing
number of relevant papers and increasing overall
citation counts due to the COVID-19 pandemic.
Also, we attribute the large performance improve-
ment with citation count completion on the Bio
dataset to the capability to focus more on COVID-
19-related words.

7 Related Work

Early works on citation count prediction formu-
lated the task and explored effective features.
Castillo et al. (2007) formulated citation count pre-

diction as a regression problem and used author
reputation to predict the citation count. Fu and
Aliferis (2008) formulated citation count predic-
tion as a classification problem and investigated
several features that are effective for such predic-
tion, including a paper’s title, abstract, and author
information.

Other studies have sought to improve the predic-
tion performance by using various features. One
such feature is a citation graph constructed from
citation relationships among papers. Davletov et al.
(2014) proposed a method to use the graph’s tempo-
ral and topological features. Pobiedina and Ichise
(2015) achieved high prediction performance by
mining frequent graph patterns. Singh et al. (2015)
proposed a method to use the citation context,
which is the text in a paper that mentions other
cited papers. Bhat et al. (2015) found that the inter-
disciplinarity of authors is effective in predicting
citation counts. Li et al. (2019) proposed a method
to use peer-reviewed text from multiple aspects.

Several studies have focused on aspects other
than features. Chakraborty et al. (2014) and te Li
et al. (2015) found several patterns in the growth
of citation counts by analyzing a large number of
papers, and they proposed a two-step prediction
method, first classifying papers into each pattern
and then predicting counts for each pattern. Xiao
et al. (2016) proposed a method to predict the ci-
tation count at an arbitrary point in time from the
publication of a paper, with the aim of predicting
its future potential impact.

In recent years, there has been research on the
use of deep learning techniques to predict citation
counts. Abrishami and Aliakbary (2019) proposed
an RNN-based method to predict a paper’s future
citation count by using the citation counts for each
elapsed year since its publication. van Dongen et al.
(2020) proposed a method to predict the citation
count by dividing a paper’s text into chunks and en-
coding the paper’s entire body with BERT. Ma et al.
(2021) proposed a method to predict the citation
count by extracting semantic features from a pa-
per’s title and abstract via Doc2Vec and Bi-LSTM
with an attention mechanism.

8 Conclusion

In this paper, we introduced a realistic citation
count prediction task that is applicable to newly
published papers, by using only citation count infor-
mation that is strictly available at the time of pub-
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lication of a target paper for training. We further
proposed two methods to use papers published less
than one year after publication for citation count
prediction, as these papers cannot be directly used
for training because their citation counts one year
after publication are unknown. The first method
is citation count complementation, which uses re-
cent papers for training by estimating their cita-
tion counts one year after publication. The second
method is to leverage the degree of early adoption,
which incorporates the tendency for papers that cite
highly cited papers earlier to have higher average
citation counts. Through experiments using papers
collected from arXiv and bioRxiv, we demonstrated
that the use of papers published less than one year
after publication improves the performance of real-
istic citation count prediction. For future work, we
intend to build models that incorporate information
from papers that was not used in this study, such as
the body, figures, tables, and author information.

Limitations

Both methods proposed in this paper focus on fields
in which technology is rapidly evolving and the
latest research results are increasingly important.
Because of this, these methods’ effectiveness could
be limited in fields for which the latest research
results are not particularly important. Also, the
model in this study only uses the titles and abstracts
of papers as inputs, and it does not leverage the
body, figures, or tables.
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A Detailed Dataset Statistics

Table 4 lists the numbers of papers for training
and evaluation for each subset in the CL and Bio
datasets described in Section 2.

Dataset Subset Training Evaluation

CL

6/2019 10,459 620

7/2019 11,026 404

8/2019 11,404 479

9/2019 11,854 720

10/2019 12,529 550

11/2019 13,031 564

12/2019 13,552 345

1/2020 13,820 260

2/2020 14,049 326

3/2020 14,339 334

4/2020 14,617 747

5/2020 15,305 713

6/2020 15,962 440

Bio

5/2020 4,451 292

6/2020 4,743 303

7/2020 5,046 286

8/2020 5,331 268

9/2020 5,597 233

10/2020 5,827 261

11/2020 6,088 221

12/2020 6,307 219

1/2021 6,524 245

2/2021 6,769 246

3/2021 7,012 258

4/2021 7,264 252

Table 4: Numbers of papers for training and evaluation
for each subset in the CL and Bio datasets. The subset
names correspond to the year and month of publication
of the papers that a subset used for evaluation.

B Details of Leakage Investigation in
Existing Settings

To investigate the impact of leakage in the exist-
ing setting on the performance of citation count
prediction, we conducted an experiment using the
CL dataset described in Section 2. The experi-
ment basically used the Baseline model described
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PLM Setting Avg. train size ρ MSE 5%@5% 5%@25% 10%@10% 10%@50%

BERT
w/ future citation count 13,277 40.5±0.3 1.373±0.010 28.7±2.0 72.8±1.0 34.6±0.1 87.1±0.3

w/ future citation count 8,571 39.0±0.2 1.358±0.030 26.0±0.2 73.5±1.0 33.7±1.2 85.1±0.4

w/o future citation count 8,571 36.6±0.4 1.504±0.022 21.1±1.7 63.7±2.3 28.1±0.9 83.2±0.4

SciBERT
w/ future citation count 13,277 41.8±0.3 1.220±0.024 31.1±1.1 73.5±1.5 37.1±0.8 87.9±0.4

w/ future citation count 8,571 40.4±0.9 1.232±0.019 31.3±2.1 72.6±1.0 35.8±0.7 86.2±1.1

w/o future citation count 8,571 38.3±0.3 1.390±0.042 27.4±1.2 67.5±1.5 32.0±1.0 84.7±0.7

Table 5: Experimental results of the investigation of the leaks in the existing setting (w/ future citation count). Each
score besides the MSE is multiplied by 100.
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Figure 4: Spearman’s rank correlation between the citation counts m months after publication against the citation
count five years after publication. The left part shows the results on the CL dataset and the right part shows the
results on the Bio dataset.

in Section 6.1, and only the papers for training were
changed. We compared settings that used future
citation counts with those that do not. In the setting
that did not use future citation counts (w/o future
citation count), only papers published more than
one year after publication as of the target paper’s
publication were used for training. For example,
if the subset that used papers published in June
2020 for evaluation, papers published between July
2019 and May 2020 were excluded from the train-
ing set, and only papers published between June
2015 and June 2019 were used for training. This
reduced the average number of papers for training
from 13,227 to 8,571. In the setting that used fu-
ture citation counts (w/ future citation count), we
used the citation counts one year after publication
for all papers in the training set, including papers
published less than one year after publication as of
the target paper’s publication.

In the w/ future citation count setting, the num-
ber of papers that can be used for training was
larger than in the w/o future citation count setting,
and thus the impact of the leakage could not be
fairly investigated. For a fair comparison, we also
experimented with settings that align the number
of papers for training used in the w/ future citation
count setting with the w/o future citation count set-

ting. The number of papers for training was aligned
by grouping the papers for training by year and
month of publication and randomly reducing the
papers in each group by the same ratio. By aligning
the number of papers, we could fairly compare w/
and w/o future citation count settings.

Table 5 shows the experimental results. For all
metrics, the w/ future citation count setting, which
was trained using all citation count that was actually
unavailable, outperforms the w/o future citation
count setting, which was trained using only avail-
able information. The results show that the existing
setting improperly improves the performance of
the prediction model. In particular, even when the
number of papers for training was aligned, the w/
future citation count setting outperformed the w/o
future citation count setting. This demonstrates
that the future citation count of papers published
close to the target causes leakage of research trends
that grow in citation count in the future.

C Transition of Spearman’s Rank
Correlation

Figure 4 shows Spearman’s rank correlation be-
tween the citation counts m months after publica-
tion and five years after publication in the CL and
Bio datasets.
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Abstract

Warning: This paper contains some offensive
expressions.

Offensive content is an unavoidable issue on
social media. Most existing offensive language
identification methods rely on the compilation
of labeled datasets. However, existing meth-
ods rarely consider low-resource languages that
have relatively less data available for training
(e.g., Korean). To address these issues, we con-
struct a novel KOrean Dataset for Offensive
Language Identification (KODOLI). KODOLI
comprises more fine-grained offensiveness cat-
egories (i.e., not offensive, likely offensive, and
offensive) than existing ones. A likely offens-
ive language refers to texts with implicit of-
fensiveness or abusive language without offens-
ive intentions. In addition, we propose two
auxiliary tasks to help identify offensive lan-
guages: abusive language detection and senti-
ment analysis. We provide experimental res-
ults for baselines on KODOLI and observe that
pre-trained language models suffer from identi-
fying "LIKELY" offensive statements. Quant-
itative results and qualitative analysis demon-
strate that jointly learning offensive language,
abusive language and sentiment information im-
proves the performance of offensive language
identification.

1 Introduction

Data-driven approaches for detecting and measur-
ing offensive content have steadily grown from stat-
istical methodologies to deep learning models for
natural language processing (Balayn et al., 2021).
Although various methods for detecting offensive
language have been proposed, most of them rely on
composing training datasets to determine whether
a statement is offensive (Fortuna and Nunes, 2018;
Mishra et al., 2019; Vidgen and Derczynski, 2020).
In South Korea, most of the population actively

∗ These authors contributed equally to this work.

Figure 1: Understanding offensive text (a) and (b) in
real-world scenarios considering three questions: identi-
fication of offense, existence of abusive language, and
underlying sentiment with intention. We supplement
the description with examples.

uses the Internet, and the size of online communit-
ies is large compared with the population (Park
et al., 2021b). The social problems caused by of-
fensive comments have also increased (BBC, 2022).
Therefore, we need to analyze and discuss Korean
texts and their offensiveness.

Recent approaches have been studied to under-
stand offensive language based on the typology of
(Waseem et al., 2017), which differentiates whether
the abusive language is directed to a specific indi-
vidual or group, and whether it is explicit or im-
plicit (Zampieri et al., 2019a; Caselli et al., 2020).
This typology helps to identify the offensive lan-
guage from the statement. However, most exist-
ing studies (Sigurbergsson and Derczynski, 2019;
Zampieri et al., 2019b) have considered the offens-
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ive language detection problem as a binary classi-
fication task for distinguishing offensive languages.
Although a few studies distinguish profanity and
insults under offense (Wiegand et al., 2018), they
are limited in classifying various types of offens-
ive language. For instance, offensive intention can
be hidden under rhetorical expressions or abusive
language can be used without offensive intentions.
In particular, in online communities, users freely
express their opinions without self-censorship. For
instance, users often emphasize emotions with pro-
fanity without any offensive intention, as shown in
Figure 1(a). In addition, comments on news media
(i.e., strictly regulated platforms) are sophisticated
in their expressions (i.e., sarcasm or twists) to avoid
blocking, as shown in Figure 1(b)1.

To address these issues, we propose a novel of-
fensive language identification (OLI) task that has
three classes: not offensive, likely offensive, and of-
fensive (we extend the existing OLI task by adding
a likely offensive class). Moreover, we analyze
the attributes of the offensive language. Offens-
iveness is closely associated with abuse (Caselli
et al., 2020). Several studies (Alorainy et al., 2018;
Rodriguez et al., 2019) have revealed that negative
sentiment messages occur frequently in offensive
languages. Therefore, we propose two auxiliary
tasks to effectively identify offensive languages:
abusive language detection (ALD) and sentiment
analysis (SA). The ALD task aims to detect liter-
ally abusive language, whereas the SA task extracts
the speaker’s subjectivity beyond the sentence. A
combination of tasks can be useful for detecting
various offensive cases and interpreting the attrib-
utes of offensiveness.

We use KODOLI to build classifiers using pre-
trained language models (PLMs) (Park, 2020; Park
et al., 2021c) and feature-based models (Schuster
and Paliwal, 1997; Kim, 2014). We observe that
these models struggle to identify likely offensive
comments. We utilize a multi-task learning (MTL)
technique to utilize related tasks (i.e., ALD and
SA). In a qualitative analysis, models that integrate
information from offensive language, abusive lan-
guage, and sentiment exhibit consistent and better-
contextualized predictions than those that use only
offensive language information.

The contributions of this study are as follows:

• We introduce KODOLI (KOrean Dataset for
Offensive Language Identification), a new

1 Blasphemy using phonetic similarity

dataset annotating offensive language, abus-
ive language, and sentiment. We provide a
fine-grained annotation scheme for each class
to analyze offensive texts in Korean. 2

• We find that the PLMs struggle to identify
"LIKELY" offensive comments, including im-
plicitly offensive comments and abusive with
no intention.

• Quantitative and qualitative analyses demon-
strate that learning offensive language, abus-
ive language, and sentiment information im-
proves the performance of OLI.

2 Related Work

Offensive language datasets Offensive language
is correlated with several other linguistic and so-
cial phenomena including abusive and aggressive
language, cyberbullying, racism, extremism, radic-
alization, toxicity, profanity, and hate speech (Case-
lli et al., 2020). As hate speeches increased, the
number of corpora annotating offensive languages
increased (Fortuna and Nunes, 2018; Poletto et al.,
2021; Sigurbergsson and Derczynski, 2019; Moon
et al., 2020). A previous study (Zampieri et al.,
2019a) proposed a novel dataset that provides a
scheme for classifying the type and target as well
as offensive language. Other studies (Waseem et al.,
2017; Sap et al., 2020a; Caselli et al., 2020; Wie-
gand et al., 2021) have been categorized into expli-
cit and implicit offensive instances. However, none
of the aforementioned studies handles the Korean
offensive language. To the best of our knowledge,
the present study is one of only a few studies that
address the Korean offensive language by intro-
ducing related auxiliary tasks. Most recently, the
concurrent study (Jeong et al., 2022) has proposed
Korean offensive language dataset that includes
target group, offensive span, and target span an-
notations as well as offensiveness annotation. They
focus on justifying the decision for offensiveness
through auxiliary tasks (i.e., target of insult, offens-
ive span). In this study, we focus on subdividing
the degree of offensiveness by adding the likely
offensive category and auxiliary tasks (i.e., ALD
and SA).

Abusive language detection Abuse encom-
passes many types of fine-grained negative expres-
sions. For instance, Nobata et al. used the term ‘ab-
use’ to refer collectively to hate speech, derogatory
2 https://github.com/cardy20/KODOLI
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language, and profanity, whereas Mishra et al. con-
sidered racism and sexism as abuse. We follow the
definition of abusive language suggested by Park
et al.: (i) Profanity is a word or phrase that insults
or curses others; (ii) Hate speech is an act of hos-
tile expression based on negative prejudice against
a group that has been historically discriminated
against because of race, ethnicity, religion, gender,
sexual orientation, and gender identity (Cho and
Moon, 2020; Madukwe et al., 2020).

Sentiment analysis SA identifies and measures
opinions, specifically in determining whether a
writer’s attitude toward a particular topic is positive,
negative, or neutral (Pang and Lee, 2008; Rodrig-
uez et al., 2019; Liu, 2020). Recent studies have
investigated the benefits of using sentiment features
in OLI. For instance, Rodriguez et al. applied SA to
detect posts suspected of instigating hatred contain-
ing highly negative tones. In addition, Plaza-del
Arco et al. demonstrated that polarity knowledge
can be useful for detecting hate speech and offens-
ive languages more accurately across datasets in
Spanish tweets. Inspired by the prior studies, we
propose KODOLI, which contains ALD and SA
tasks as auxiliary tasks.

3 Task Description

We provide a comprehensive overview of the
three tasks for framing the offensive language phe-
nomenon as follows: (i) whether a comment is of-
fensive, likely offensive or not, (ii) whether it con-
tains abusive language (profanity and hate speech),
and (iii) whether it has sentiment with intention.

3.1 Main Task: Offensive Language
Identification

This task recognizes whether a comment includes
offensive language. We consider two factors from
previous studies for offensive comments (Wiegand
et al., 2018) as follows: (i) Is offensive language
directed toward a specific individual or group? (ii)
Is an offensive comment explicit or implicit? Un-
like previous studies (Zampieri et al., 2019a,b), we
establish three categories as follows:

• Offensive (OFFEN): Comments that contain
surface evidence of non-acceptable language
(e.g., profanity) and a targeted offense (i.e.,
group or individual). This category can be dir-
ect or generalized and includes insults, threats,
and sexual harassment.

• Likely offensive (LIKELY): Comments that
could be likely offensive, as they can hide
the offensive intention behind sarcasm, irony,
and backhanded rude jokes based on stereo-
types. The LIKELY class also includes ab-
usive language without malicious intent (ad-
ditional guidelines that draw a borderline for
the likely offensive class can be found in Ap-
pendix A.1.).

• Not offensive (NOT): Comments that do not
contain direct or indirect offense. They do not
have profanity or hate speech.

We construct a dataset following the aforemen-
tioned guidelines (Appendix A.1 provides details).
Owing to the nature of the real-world data collec-
ted, many cases in which abusive words expressed
intimacy or vitality are observed.

3.2 Auxiliary Task 1: Abusive Language
Detection

Auxiliary Task 1 seeks to detect explicit expres-
sions such as profanity and hate speech (see the
definition in Section 2). These remarks can be of-
fensive and cause discomfort and conflict within
the group. Excessively explicit sexual and obscene
expressions are also annotated as abusive language.

• Abuse (ABS): Comments that contain profan-
ity and hate speech.
Profanity: e.g., ‘‘개같은 *들... ,ㅂ*들자*하
는 이유도 모름?” (you guys are b*tches...
I do not know why you are masturbating
assh*l*s?)
Hate speech: e.g., “시* 페미들 너무 싫다.”
(I don’t like f*cking feminist.), “와 지금 맥
날에 백인여자랑 한남 왔는데 존* 이쁘다.”
(Wow, a white woman and a f*cking Korean
man came to McDonald’s right now, and she’s
freaking pretty.)

• Non-abuse (NON): Comments that do not con-
tain any profanity or hate speech.

3.3 Auxiliary Task 2: Sentiment Analysis

Auxiliary Task 2 analyzes the polarity and intention
of the documents and sentences, following the cri-
teria used in the previous sentiment analysis studies
(Patwa et al., 2020; Plaza-del Arco et al., 2021).

• Positive (POS): Comments that express happi-
ness and support for a person, group, country,
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Figure 2: (a) and (b) show the KODOLI’s source and domain, respectively.

or product. e.g., “얼굴 오지게 잘 생겼네”
(Your face looks f*cking good.)

• Negative (NEG): Comments that attack a spe-
cific target such as a person, group, product,
or country. These make people uncomfortable
and unhappy. e.g., “현기차 티비 광고보면
성능 품질관련 내용은 별로없고 오로지 감

성팔이ㅋㅋㅋ개극혐” (There is not much
content related to performance and quality in
Hyundai Motor’s TV commercials, only senti-
mentality haha. It is very hateful.)

• Neutral (NEU): Comments that state a fact or
convey news. In general, those that do not fall
into these two categories. They also exclude
emotional words. e.g., “야채는 건강에 도
움이 되니 우리 모두 먹도록 권장합니다.”
(Vegetables are good for our health; thus, we
encourage you to eat them.)

4 KODOLI

4.1 Data Collection

KODOLI aims to enhance the ability of a system
to recognize offensive comments. We collect com-
ments that convey opinions and feelings in expli-
cit and implicit forms. Our dataset is primarily
collected and sampled from online communities
and news articles, as shown in Figure 2(a). Com-
ments from popular online Korean communities,
such as DC–inside3 (from October 2020 to Decem-
ber 2020). The comments on DC-inside contain
profanity, hateful speech, and sexual harassment
through sub-communities. Therefore, KODOLI
is practically similar to a raw representation. We
also collect comments from articles from July 2021

3 https://www.dcinside.com/

to September 2021. The data are collected from
various fields on the Naver news platform4. We col-
lect comments from top-ranked articles on pages
to ensure contentiousness. To diversify the collec-
ted comments, articles are randomly selected from
the topic categories of the platform, and from each
article, a maximum of 500 comments are collected.
Approximately 15 domains are shown in Figure
2(b). Entertainment, TV shows, and life domains
constitute the majority of the sample. Although
the collected comments are distributed unevenly
among domains, they reflect the interests of real-
world users.

Duplicates and unnecessary special characters
are removed. In addition, during comment collec-
tion, special attention is paid to preventing bias
on specific topics. For instance, we first count the
words that frequently appear by topic. We then re-
place a certain percentage of comments containing
a specific word to comments with the same label
collected from a new domain to match the propor-
tions 5. Comments with sentiment polarity are sup-
plemented by sampling reviews from open-source
databases6 collected from the game community7

and Naver shopping platforms 8. Finally, 39,589
comments are retained.

4.2 Annotation

We collect at least three annotators per post and at-
tempt to balance gender and diversify educational
backgrounds. During the annotation process, we

4 https://news.naver.com/
5 We found after applying this technique, the difference

in occurrence between the most frequent (except for
stopwords) and least frequent words was about 2%.

6 https://github.com/bab2min/corpus/tree/master/sentiment
7 https://store.steampowered.com/
8 https://shopping.naver.com/
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OLI Abusive Language Detection Sentiment Analysis Total
NON ABS POS NEU NEG

NOT 22,453 2,513 10,548 10,865 3,553 24,966 (65.4%)

LIKELY 2,461 3,122 207 1,436 3,940 5,583 (14.6%)

OFFEN 751 6,875 99 1,164 6,363 7,626 (20.0%)

TOTAL 25,665 (67.2%) 12,510 (32.8%) 10,854 (28.4%) 13,465 (35.3%) 13,856 (36.3%) 38,175

Table 1: Distribution of label combinations in the KODOLI. Herein OLI denotes Offensive Language Identification.
ABS and NON denote the abuse and non-abuse for the abuse class. POS, NEU, and NEG denote positive, neutral,
and negative, respectively, for the sentiment class.

contact undergraduate and graduate students. El-
even Korean speakers are selected using crowd-
sourcing. For each comment, the annotators in-
dicate whether a comment is offensive, likely of-
fensive, or not. Thereafter, they categorize whether
the comment contains abusive language, such as
profanity and hate speech in Korean, and simultan-
eously annotated intention in terms of sentiment
polarity (Cho and Moon, 2020; Park et al., 2021a;
Sohn et al., 2012). If the comments are free of pro-
fanity and hate speech, the participants are asked to
judge the intended support or attack nature within
the comments, following abusive language and sen-
timent guidelines.

Inter-annotator agreement The inter-annotator
agreement is calculated based on Krippendorff’s
alpha (α) (Krippendorff, 2011), a reliability coeffi-
cient developed to measure agreement among an-
notators. Annotators agree on an offensive com-
ment at a rate of 82.8% (Krippendorff’s α=0.42).
In particular, we compute Krippendorff’s α using
only the LIKELY label, which is 0.41. Sentiment
indicates an average Krippendorff’s α of 0.45, in-
dicating moderate agreement (Hughes, 2021; Sap
et al., 2020b). For the ALD task, we obtain Krip-
pendorff’s α of 0.72. The final dataset consists of
38,525 Korean comments.

4.3 Data Statistics
Table 1 presents the statistics of comments per task.
Comment counts are provided for six and nine com-
binations. In our corpus, we observe the tendency
of each class in terms of offensive language. For
example, many comments with abusive language
in ALD (6,875) and negative labels in SA (6,363)
are offensive. We observe 2,513 comments with
abusive language but non-offensive. These use
swear words to lay emphasis and to express enthu-
siasm with positive sentiment, for example, ‘씹간
지’ (f*ck cool), ‘존나잘한다’(damn good). Most
of the comments with LIKELY have a negative sen-

timent. They relatively have the abusive language
with no target; for instance, they express their emo-
tion with the abusive language ‘술처먹으면감수
성더예민해져서 *같음’(If I drink alcohol, I will
become more sensitive and I hate this shit).

Table 1 also shows the distribution of each la-
bel. Comments are categorized to binary depending
on the abusive content and two ternary classes for
identifying offensive language: NOT, LIKELY, and
OFFEN, and sentiment polarity: POS, NEU, and
NEG. Our corpus’s offensive and abusive category
distributions are skewed, whereas the sentiment
distribution is balanced. Each task’s label distribu-
tion also follows the real-world comments’ nature
(i.e., about two-thirds of the comments contain no
profanity and are not offensive).

We analyze the frequency of comments tagged
as abusive. We observe the obscene and identity
terms for demographic groups (e.g., gender, race,
and political orientation). We guide more in detail
in A.2.

5 Modeling

Preprocessing We randomly shuffle and split the
dataset into training (26,967), validation (5,778),
and testing (5,780) sets. We apply the morpheme-
level pre-tokenization, which is effective for
character-rich languages (Park et al., 2021c). Spe-
cifically, we select Mecab-ko 9 (Kudo, 2006), a
pre-tokenizer adapted for Koreans. In the case
of BERT-family models, we apply the WordPiece
tokenizer following the work (Devlin et al., 2019).

Multi-task learning MTL has been widely used
to train with data from multiple tasks, and we use
the hard parameter sharing technique (Crawshaw,
2020). This is the practice of sharing model
weights between related tasks; therefore, each
weight is trained to minimize multiple loss func-

9 https://bitbucket.org/eunjeon/mecab-ko/src/
master/
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Model
NOT LIKELY OFFEN Macro Average

P R F1 P R F1 P R F1 P R F1
CNN 88.49 90.58 89.52 33.87 40.47 36.88 76.54 62.44 68.77 66.30 64.50 65.06
BiLSTM 88.39 90.11 89.24 33.46 36.74 35.02 75.74 66.99 71.10 65.86 64.61 65.12
KLUE-BERT 91.07 88.48 89.75 39.65 41.44 39.06 73.55 74.72 74.13 67.19 68.21 67.65
KLUE-RoBERTa 92.34 87.19 89.69 36.73 43.37 39.77 71.76 76.40 74.01 66.94 68.99 67.82
KoELECTRA 91.81 89.90 90.84 37.90 43.92 40.69 77.91 75.68 76.78 69.21 69.83 69.44

Table 2: Results for offensive language identification task on the KODOLI test set. We report the precision (P),
recall (R) and F1-score for the classifiers (best in bold).

tions jointly. We construct two kinds of parts: a
shared part and task-specific parts. We share the
encoder layer and construct a task-specific layer
for each task based on the shared encoder.

Let x1, x2, ..., xk ∈ U be the given text with k
words from input sentence U . In PLMs, we add a
special symbol [CLS] at the beginning of the text
and add the [SEP] symbol at the end. The embed-
ding layer transforms a fixed-length sequence into
an embedding matrix. The embedding matrix is
fed to each shared encoder. The hidden states, h1,
h2, ..., hk, are obtained from the encoder. We ob-
tain the output vector h from the max-pooling layer
in feature-based models while using the special
token [CLS] to construct the pooled output h in the
PLMs. After feeding the output vector into each
task-specific layer, we obtain the output logit, z. It
passes through the softmax layer to calculate the
cross-entropy loss. LOLI , LALD, and LSA denote
cross-entropy losses for OLI, ALD, and SA tasks,
respectively. LCE(U) is the weighted sum of the
joint objective functions LOLI , LALD and LSA,

LCE(U) =λoLOLI(U)

+ λaLALD(U) + λsLSA(U),
(1)

where λo, λa and λs denote the weights for the
OLI, ALD, and SA tasks, respectively.

6 Experimental Results

We first experiment with the single-task learning
(STL) method for the OLI task using our dataset,
KODOLI, in the popular and powerful NLP models
(the implementation details are described in Ap-
pendix A.4). Further, we experiment with the MTL
method by combining the OLI task with auxiliary
task 1 (ALD) or auxiliary task 2 (SA), which are
our proposed approaches. We evaluate the exper-
imental performance using the following metrics:
precision (P), recall (R), F1-score (F1) for each
class and macro-averaging scores.

6.1 Experimental Settings
• BiLSTM (Schuster and Paliwal, 1997): This

model consists of two layers of bidirectional
long short-term memory initialized randomly.
The outputs of the second layer are max-
pooled to predict the result using a multi-layer
perceptron.

• CNN (Kim, 2014): This model takes indi-
vidual token representations as the input and
then transforms sequence representations for
the output using 1D convolution and max-
over-time pooling.

• KLUE-BERT (Park et al., 2021c): This model
follows the BERT (Devlin et al., 2019) struc-
ture. It is designed to pre-train language rep-
resentation from unlabeled Korean texts10.

• KLUE-RoBERTa (Park et al., 2021c): This
model follows the RoBERTa (Liu et al., 2019)
architecture, which uses dynamic masking
strategy and whole-word masking. It is pre-
trained using the same corpora as KLUE-
BERT.

• KoELECTRA (Park, 2020): This model fol-
lows the ELECTRA (Clark et al., 2020) ar-
chitecture 11 trained with masked language
modeling and replaced token detection object-
ives.

6.2 Results of Offensive Language
Identification Task

Table 2 presents the results of the experiments with
the five baseline models for the OLI task. KoELEC-
TRA performs best in most evaluation metrics, in-
10 It was pre-trained on five Korean corpora of approx-

imately 62GB consisting of formal documents, such as
news and books, colloquial texts, multilingual web pages,
encyclopedia, and petitions.

11 It is trained with 34GB of crawled news data and the
MODU corpus (https://corpus.korean.go.kr/).
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Model NOT LIKELY OFFEN Macro Average
P R F1 P R F1 P R F1 P R F1

KoELECTRAOLI 91.81 89.90 90.84 37.90 43.92 40.69 77.91 75.68 76.78 69.21 69.83 69.44
KoELECTRAOLI+ALD 92.48 89.64 91.04 38.50 47.38 42.48 78.16 75.04 76.57 69.71 70.68 70.03
KoELECTRAOLI+SA 92.15 90.45 91.29 38.14 45.30 41.41 78.62 74.48 76.49 69.64 70.08 69.73
KoELECTRAOLI+ALD+SA 92.73 89.27 90.97 38.03 48.48 42.62 79.03 75.44 77.19 69.93 71.06 70.26

Table 3: The MTL results on the KODOLI test set using KoELECTRA. OLI means a model that trained only OLI
task in the STL method. OLI+ALD and OLI+SA mean models trained in MTL for OLI task with ALD task or SA
task, respectively. OLI+ALD+SA means a model jointly trained on OLI, ALD, and SA tasks in the MTL method.

cluding precision, recall, F1-score for all classes
and macro-averaging scores. CNN and BiLSTM
show similar results for the macro average F1-score,
both of which have lower performance than the
PLMs (i.e., KLUE-BERT, KLUE-RoBERTa, and
KoELECTRA). These results indicate that the PLM
series outperforms the non-PLM series in the OLI
task. We observe that performance for the LIKELY
class has a significantly lower F1-score compared
to not offensive and offensive classes in all models.
These results indicate that existing models suffer
from the LIKELY class. In particular, the non-
PLMs (i.e., CNN and BiLSTM) perform poorly in
LIKELY class. We observe that models tend to pre-
dict ‘non-offensive’ about comments that hide the
offensive intention and have no lexical cues regards
to be patterned easily (i.e. f*ck). For example, “센
텀시티는바벨탑이라. 전부무너져내릴것이다.”
(Centum City is the Tower of Babel. Someday it
will completely collapse.) In addition, models eas-
ily predict ‘offensive’ if there is abusive language
in a sentence. The results of the offensive class
show higher precision, recall, and F1-score, which
is interpreted as high consistency and sensitivity
compared to the likely offensive instances.

6.3 Results on Multi-task Learning

Does training with auxiliary tasks improve the
performance of OLI? We evaluate the perform-
ance of the MTL based on KoELECTRA (which
performed best on the STL) in the OLI task. Table
3 summarizes the experimental results of KoELEC-
TRA trained on the combination of all tasks, in-
cluding the OLI. First, when learning the OLI,
ALD, and SA tasks simultaneously, we observe
the best precision, recall, and F1-score in most
classes and the macro average. In addition, all the
MTL models outperform the STL framework in
all metrics except recall in OFFEN. In particular,
MTL models with auxiliary tasks are effective in
the LIKELY class. We observe a 1.79-point F1-

score improvement in the LIKELY class when we
jointly learn ALD and OLI. The LIKELY class con-
tains instances of abusive language but no targeted
offense. In the case of jointly learning the OLI and
the SA tasks, it shows 0.72 points up F1-score per-
formance in the LIKELY class. This indicates that
sentiment features are also effective for KODOLI,
including the LIKELY class. We also observe that
MTL outperforms STL in the other baseline mod-
els (Appendix A.5). We can see that the ALD and
SA tasks complement each other to help the model
identify offensive languages.

6.4 Qualitative Analysis

We qualitatively examine the model’s ability to un-
derstand various offensive cases more effectively.
Models that integrate information from offensive
languages, abusive terms, and sentiment show con-
sistent and better-contextualized predictions than
those that only use offensive language information.
In particular, the model trained jointly on OLI and
ALD is more effective in the LIKELY examples. In
Table 4, although profanity or derogatory language
in comments (a) and (b) are not used for offensive
purposes, they can cause discomfort and shame. A
model trained using offensive language with sen-
timent performs better in qualitative analysis. For
instance, example (c) illustrates a sarcastic case
without abusive terms that is implicitly offensive.
The model trained with offensive and abusive lan-
guage and sentiment information correctly predicts
all examples (a) ∼ (f), which are misclassified in
the model trained with the OLI task. These results
indicate that training the model with two auxili-
ary tasks provides a more delicate and accurate
identification of offensive language.

6.5 Error Analysis

For further investigation into closing the gap, we
inspect approximately 750 instances misclassified
as false positives and false negatives from the MTL
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Class Comment OLI OLI+ALD OLI+SA OLI+ALD+SA

LIKELY

(a)졸려시발 (Sleepy sh*t) ✗ D ✗ D
(b)근데앰창살빼면돈도모이고건강해지고
존나좋은데 (Losing weight saves money and
makes you healthier, so that’s great. Or, my
mother is a wh*re.)

✗ D ✗ D
(c)기자참아무나한다 (It seems that anyone
can easily become a journalist.) ✗ ✗ D D

OFFEN

(d)힙찔이새끼들은힙합을제발음악이라고
포장하지마라 (Hip-hop b*st*rds, please don’t
treat hip-hop as music.)

✗ D D D
(e)골빈특등머저리의헛소리누가믿나
그러고도밥은목구멍에잘넘어갈꺼야
더러운 (Who believes this b*llsh*t of the
special grade idiot with an empty skull? Do you
get up each morning, too?)

✗ ✗ D D
(f)범죄자 10 8새들...저것들부터
불태워버리자!! (Puc b*s-crim-tard Let’s burn
them down!!)

✗ ✗ ✗ D
Table 4: Qualitative examples comparing offensive language only, and offensive language with the auxiliary tasks
combination models.

model (KoELECTRA). In false positive cases, the
model struggles to predict comments as offensive
or likely offensive for not offensive comments. The
opposite is true for false negatives. We additionally
analyze likely offensive class in Appendix (A.6).

False positive types :

• The mixture of swearing but the opposite in-
tention: e.g., *물싸개는ㄹㅇ별로심한욕처
럼안느껴지는데. (I do not sound s*men ex-
creter like a very harsh insult.)

• Using abusive language as an expression of
emphasizing emotion: e.g.,와씨*테이블에
있는데 창문에 자꾸 하얀게 지나가는거야

(Wow, f*cking I’m at the table and something
white passes repeatedly.)

False negative types :

• Implicitly offensive: e.g.,여고생이맛있나요
여대생이 맛있나요? (How do you feel that
high school girls are more tasty? or female
college students?12)

• Modified profanity: e.g., 야 이 뿅신아 ㅋㅋ
(Hey, you bbastard haha), 닦치고 일본가서
살어.. (Shudd13 up and live in Japan.)

12 Sexual harassment expressions
13 Similar pronunciation

7 Conclusion

In this paper, we introduced KODOLI, a new
Korean dataset for OLI. To this end, we collected
various offensive comments from online communit-
ies and news articles in diverse domains. In particu-
lar, we expanded a fine-grained label called ‘likely
offensive’ to distinguish the implicitly offensive
and abusive comments with no targeted offense.
We proposed two auxiliary tasks to help models
identify offensive languages: ALD and SA. Fi-
nally, we released 38k comments annotated with of-
fensive language, abusive language, and sentiment
information. Using KODOLI, we demonstrated
that modeling offensive language using abusive lan-
guage and sentiment was effective in quantitative
and qualitative analyses. We expect our research
will benefit further studies that analyze offensive-
ness in Korean.

Limitations

Risk in annotation Perceptions of “offensive-
ness” can vary from person to person. Therefore,
we outsourced our data. In addition to typical of-
fensive norms, which refer to expert opinions, the
majority decided on annotations. Eleven annotat-
ors participated in this study. The definitions in
our guidelines are not representative of all possible
perspectives. It is important to include the opinions
of the targeted minorities when dealing with the an-
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notation of offensive language. We tried to balance
gender among annotators (57% men, 43% women);
however, another specific target demographic re-
mains challenging. For the consistency and quality
of the data, when the concordance rate was lower
than the threshold 0.5, examples were put on hold
in favor of consistency. For instance, if 2 NOT, 4
LIKELY, and 5 OFFEN for a sample, the OFFEN
label got the most voted, but 5/11 = 0.45<= 0.5, so
it is excluded from the dataset. In the future, these
examples should be further studied and dealt with.

Coverage Although we collected data from vari-
ous sources, we acknowledge that the data do not
represent all of them. In addition, there could
be bias depending on the collection period, and
it could be difficult to cover neologisms.

Ethics Statement

To protect the privacy, we only collected comments
rejecting all personally identifiable information, in-
cluding the user IDs. Subsequently, we removed
comments containing personal information, such
as phone numbers and emails. Our dataset contains
real-life examples of abusive language obtained
from actual web data. Therefore, we notified the
dangers of the postings in advance. To mitigate
the risks, we limited the number of maximum com-
ments workers worked per day, and they were given
sufficient time to work. We paid workers above
minimum wage. We are aware that our topics could
have side effects, such as KODOLI’s potential ma-
licious use such as generating bad words. Nev-
ertheless, we urge the practical use of KODOLI,
such as filtering offensive comments explicitly and
identifying potentially offensive content from mul-
tiple points of view. This can prevent the negative
influence of users intentionally leaving malicious
comments.
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A Supplemental Material

A.1 Guidelines Detail

We have established additional guidelines for of-
fensive language that workers can refer to when
distinguishing offensive areas from likely offensive
areas during the crowdsourcing process. Especially
the clearer the expression of hate, profanity, and
obscenity, and the more specific the target is, the
closer it is to the OFFEN label. Therefore, harass-
ment and threats are also classified as the OFFEN.

• A comment where profanity and hate speech
appears explicitly and the target is clear :
e.g.,노라주다저*낀ㄹㅇ *패고싶게생겻노.
(Norajuda that bas*ard’s face really makes me
want to beat him.)

• A comment which reveals a hostile attitude
toward an individual or group : e.g., 이런
*게이새*들 보면 줘패서 죽*버리고싶은데.
(When I face these f*cking g*y bas*ards, I
want to beat up and kill them.)

• A comment in which an expression of direct
threat is present : same as second example.

• A comment which contains expressions that
sexually harass or humiliate : e.g., 이 짤보
고 고로상 빙의됐다 애* 존맛겠다. (After
seeing this meme, I was possessed with Goro
and wanted to f*ck your m*ther.)

We define the terms in the guidelines to the
participants well before the annotation work, and
the annotators were trained follow them precisely.
Through the pilot study, we analyze the types and
set the following guidelines with examples to draw
a borderline for the LIKELY class.

• A comment judged to have offensive intent
due to intrinsic bias: e.g.,장애인들몸비틀고
잘노내. (Disabled people twist their bodies
and play well.)

• A comment with disrespectful expressions (re-
proaching, admonishing, etc.): e.g.,신이있
어? 그딴건없음. 정신차리고사세요. (Did
you say that there is a god? Nothing like that.
Calm down.)

• A comment may cause shame: e.g.,섹*할때
필수용품.. (A must-have item for s*x.)

• A comment with a cynical tone: e.g.,조작일
보다운기사네.. (It is an article from a daily
forgery..)

• A comment considered to be implicitly dispar-
aging: e.g., 근데화*는왜빠는거야? (Why
did you suck Hw*s*14?)

• A comment with abusive language but judged
to be acceptable: e.g., 와 미친 개잘한다.
(Wow, it’s crazy, you are doing f*cking great!)

A.2 Abusive Language in KODOLI
We analyze comments with abusive labels, extract
the profane term and hate term based on the fre-
quency, and organize them into a bag of words.
15

14 Celebrity
15 https://github.com/cardy20/KODOLI/tree/main/bow
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A.3 Experimental Results on Each Auxiliary
Task in the STL Settings

We evaluate both the auxiliary tasks, ALD and SA.
Table 5 and Table 6 summarize the baseline results
of the STL setup.

Model Abusive Language Detection

P R F1
BiLSTM 89.03 87.27 88.05
CNN 90.53 88.22 89.22
KLUE-BERT 88.60 88.22 88.41
KLUE-RoBERTa 88.96 88.61 88.78
KoELECTRA 90.96 90.02 90.47

Table 5: Precision, recall, F1-score of abusive language
detection

Model Sentiment Analysis

P R F1
BiLSTM 73.31 72.16 72.61
CNN 74.32 73.46 73.81
KLUE-BERT 77.02 76.78 76.85
KLUE-RoBERTa 76.88 76.51 76.68
KoELECTRA 77.70 77.69 77.64

Table 6: Precision, recall, F1-score of sentiment analysis

A.4 Implementation Details
a. Hyperparameters: We used a batch size of 32

examples for each model and a fixed sentence
length of 128. We used the AdamW optim-
izer (Loshchilov and Hutter, 2017). We set
48 seed and explored the learning rate to ob-
tain the best results for each model. For CNN
and BiLSTM, the learning rate was searched
for between 1e-04, 2e-04, 3e-04, 4e-04, 5e-
04, 6e-04, 7e-04. We searched for the fol-
lowing learning rates: 7e-06, 9e-06, 1e-05,
2e-05, 3e-05, 4e-05, for KLUE-BERT, KLUE-
RoBERTa, and KoELECTRA. In the case of
MTL, we initially set all lambda weights to
1.0. We searched for an appropriate lambda
weight by using a grid search.

b. Training conditions: We implemented the
model using PyTorch (Paszke et al., 2019) and
used an NVIDIA GeForce RTX 3090 with 24
GB of VRAM to train all baseline models. We
used the HuggingFace library for our BERT-
family models16.

16 https://huggingface.co/klue/bert-base

Model Task Macro Average
P R F1

CNN
OLI 66.30 64.50 65.06
OLI + ALD + SA 67.42 67.03 66.33

BiLSTM
OLI 65.86 64.61 65.12
OLI + ALD + SA 66.98 65.06 65.91

KLUE-BERT
OLI 67.19 68.21 67.65
OLI + ALD + SA 68.12 69.17 68.53

KLUE- OLI 66.94 68.99 67.82
RoBERTa OLI + ALD + SA 68.10 70.22 68.67

KoELECTRA
OLI 69.21 69.83 69.44
OLI + ALD + SA 69.93 71.06 70.26

Table 7: STL(OLI) vs MTL(OLI+ALD+SA)

A.5 Experimental Results on the Baseline
Models in the MTL Settings

Table 7 presents the experimental results obtained
using KODOLI on the STL method for the OLI task
and the MTL method combining the OLI task with
auxiliary task 1 (ALD) and auxiliary task 2 (SA) in
the five baseline models. This result indicates that
the performance is improved when two auxiliary
tasks are jointly learned in all baseline models.

A.6 Error Analysis Details
We conduct an in-depth analysis of the LIKELY
class, which shows relatively low performance on
classifiers, with auxiliary labels. Of the 718 ex-
amples of the LIKELY class in the validation set,
208 examples misclassified LIKELY as NOT and
197 LIKELY examples as OFFEN. Among the
cases misclassified as NOT, 136 cases are labeled
as non-abusive language, which means that they
have no explicit expression (i.e., hate words, pro-
fane). We find that a large portion of the cases is
sarcastically or twisted as considering the context
of the sentence. Especially, if a comment is likely
offensive under the social and cultural background
(e.g., first and fourth examples in A.1), the distribu-
tion of prediction scores tends to appear evenly. In
addition, most misclassified cases as OFFEN (72%)
contain an explicit and emphasized expression. We
conjecture that classifiers predict OFFEN by look-
ing at the specific word itself. However, humans
take it differently in feeling offended.
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Abstract

Neural reasoning accuracy improves when gen-
erating intermediate reasoning steps. However,
the source of this improvement is yet unclear.
Here, we investigate and factorize the benefit
of generating intermediate steps for symbolic
reasoning. Specifically, we decompose the
reasoning strategy w.r.t. step granularity and
chaining strategy. With a purely symbolic
numerical reasoning dataset (e.g., A=1, B=3,
C=A+3, C?), we found that the choice of
reasoning strategies significantly affects the per-
formance, with the gap becoming even larger
as the extrapolation length becomes longer.
Surprisingly, we also found that certain configu-
rations lead to nearly perfect performance, even
in the case of length extrapolation. Our results
indicate the importance of exploring effective
strategies for neural reasoning models. 1

1 Introduction

Artificial intelligence researchers have been at-
tempting neural-symbolic integration for a long
time (d’Avila Garcez and Lamb, 2020; Hamilton
et al., 2022). Neural models tend to perform better
when generating intermediate reasoning steps in
addition to the answer. This phenomenon was seen
across various reasoning tasks, such as math word
problems (Wei et al., 2022; Cobbe et al., 2021; Ko-
jima et al., 2022; Recchia, 2021; Lewkowycz et al.,
2022), commonsense reasoning (Wei et al., 2022;
Wang et al., 2022), and symbolic reasoning (Wei
et al., 2022; Kojima et al., 2022). However, it is
yet unclear which factors in the intermediate step
generation bring the benefit. Previous studies often
used different strategies for step generation in an ad-
hoc manner. To investigate this, we break down the
neural reasoning process into two strategies: output
strategy and chaining strategy (Figure 1). The
output strategy (§2.1) determines the granularity of

1Code available at: https://github.com/ao1neko/
reasoning-strategy

Figure 1: In a controlled setting, we found that
output and chaining strategy choice significantly impact
performance when conducting multi-step reasoning.

intermediate reasoning step generation (all at once
vs. step-by-step vs. token-by-token). Some studies
trained the models to generate reasoning steps
and a conclusion derived from them at once (Nye
et al., 2021; Lewkowycz et al., 2022; Wei et al.,
2022; Kojima et al., 2022; Wang et al., 2022;
Recchia, 2021), some generated a single reasoning
step given the input and iterated this process until
achieving a conclusion (Sanyal et al., 2022; Picco
et al., 2021; Tafjord et al., 2021), and others
iteratively generated sub-goals as well as reasoning
steps (Liang et al., 2021; Shwartz et al., 2020).

In turn, the chaining strategy (§2.2) defines
the reasoning path direction (shortest path vs.
exhaustive path vs. backward path). For ex-
ample, some studies used a backward chaining
process (Picco et al., 2021; Rocktäschel and Riedel,
2017; Cingillioglu and Russo, 2019), while others
adopted exhaustive searches (Tafjord et al., 2021;
Liang et al., 2021; Yang et al., 2022).

To compare the strategies, we prepared a test bed
of numerical reasoning problems in a simplified
language (Figure 1). This format allows for more
controlled testing while serving as a necessary
condition—should a model fail to solve it, it cannot
be expected to adequately generalize to more
complex math word problems.

We found that both strategies substantially affect
the symbolic reasoning performance of neural
seq2seq learners. Overall, iterative generation
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(a) All-at-once: output the entire reasoning chain and
answer in a single call. Step-by-step: iteratively build
the output with a single calculation step per call. Token-
by-token: iteratively output only one token per call.

(b) The graph nodes represent variables and edges their dependencies.
Shortest path: a minimal chain starting from the first necessary
equation. Exhaustive: greedily solve all equations until the target
is reached. Backward: start from the target’s equation, backtrack
over dependencies until a known value is reached, then solve each
equation in order.

Figure 2: Overview of (a) output and (b) chaining strategies given the INPUT: D=A+2, A=1, B=A+1, C=3+B, C?

outperformed all-at-once outputting, and roughly
granular reasoning steps (i.e., shortest-path chain-
ing) lagged behind finely granular steps (i.e.,
exhaustive and backward chaining). Surprisingly,
some settings had near-perfect performance even in
generalization tests which extrapolate over greater
reasoning depths and unseen numbers during train-
ing.

2 Experimental settings

Problem definition. We evaluated the models’
ability to iteratively perform arithmetic operations
over given symbols. Given a series of equations,
the task is to answer the value of a target variable
(Figure 1). Each question also has a certain reason-
ing depth—the number of necessary equations to
reach the answer. For example, the depth of the
question A=1, B=2+A, C=3+B, D=2, C? is 3 (A=1,
B=2+A, C=3+B).

Each equation defines either an assignment (e.g.,
A=1) or a modular addition and an assignment
(e.g., B=3+1). The addition is mod 100. The
question contexts also contain distractors that are
not necessary to calculate the answer (e.g., D=A+2
in Figure 1). A value assigned to a particular vari-
able is typically referred to in different equations
(e.g., A=1, B=A+1). Numbers, variables, and the
ordering of equations are randomly assigned.

Motivation for using artificial data There are
mainly three advantages to this dataset. First, the

symbolic format allows easier control of reasoning
depth for generalization tests. Specifically, we
trained a model using instances with shallow (1-5)
depths and evaluated them with instances with
shallow/deep (1-12) depths. On the other hand,
math word problems are harder to control for
reasoning depth (e.g., it is not easy to come up with
various instances which have a reasoning depth of
10). Second, we wanted to avoid the "spurious bias"
that natural (math word) texts implicitly bring into
the model (Gururangan et al., 2018; Gupta et al.,
2021; Al-Negheimish et al., 2021; Sugawara et al.,
2018; Jia and Liang, 2017; McCoy et al., 2019).
Third, we assume that our setting is the necessary
condition for solving math word problems. It is
unreasonable to expect that a model that can’t solve
this pure numerical reasoning task can solve more
complex tasks.

In total, we prepared 5K instances for training
and 2.4K for testing.

2.1 Output strategies

We compared three configurations: all-at-once,
step-by-step, and token-by-token (Figure 2a).
All-at-once: The model outputs the entire
reasoning chain and the final answer in a single
call (i.e., chain-of-thought style) (Wei et al., 2022;
Cobbe et al., 2021; Yavuz et al., 2022; Shwartz
et al., 2020) . In this setting, the more reasoning
steps, the longer the sequence the decoder must
generate at once.
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Step-by-step: The model outputs a single
reasoning step per call. Each generated step is
concatenated to the past input, and the model
again generates the next step (i.e., proofwriter
style) (Liang et al., 2021; Sanyal et al., 2022; Picco
et al., 2021; Tafjord et al., 2021; Shwartz et al.,
2020) . This process is iterated until the model
outputs the answer or until a set maximum number
of iterations is reached (100). Token-by-token:
This is the same as step-be-step chaining, but the
decoder outputs only a single token per call. We
set the maximum number of steps to 500.

Comparing all-at-once and the others reveals
the effect of changing the sequence length that
the decoder outputs in a single call. In addition,
comparing step-by-step and token-by-token quan-
tifies the advantage of breaking a problem into
meaningful units.

2.2 Chaining strategies

Particular variables sometimes depend on another
variable; the key to reaching the correct answer
is determining the order in which the equations
are referred to. Regarding existing studies, we
compared three chaining strategies: shortest-path,
exhaustive, and backward chaining (Figure 2b).
Shortest-path chaining: The model straight-
forwardly solves the equations starting from the
first solvable one (i.e., involving a known value)
and ending with the target (Wei et al., 2022; Cobbe
et al., 2021; Yavuz et al., 2022; Shwartz et al.,
2020). Here, the reasoning behind determining
the shortest path is not outputted by the model.
Exhaustive chaining: The model greedily
solves all given equations until the target value
is reached (Tafjord et al., 2021; Liang et al.,
2021; Yang et al., 2022). Specifically, the model
calculates the left-most solvable equation in each
step. Note that this strategy typically derives a long
reasoning chain; from an engineering perspective,
this strategy is inefficient.
Backward chaining: The model starts from the
equation for the target variable and backtracks over
the dependent equations until it reaches a known
value (Picco et al., 2021; Rocktäschel and Riedel,
2017; Cingillioglu and Russo, 2019). Then, it
solves each equation in order by inserting known
or calculated values until the target one is reached.
No chaining: As a baseline, we also examined
the setting where the model was trained to directly
output the answer.

Figure 3: Distributions of the total reasoning chain
length (num. characters). The all-at-once and step-
by-step generate those at depth 12.

3 Results

Models: We used the pre-trained T5-base,
T5-large 2 (Raffel et al., 2020), and BART-
base 3 (Lewis et al., 2020). Results of BART-base
are in Appendix C.

Note that their pre-defined tokenizers have all
the numbers from 0 to 9, and the numerical values
in our dataset are divided into digits (e.g., “12”
should be “@@1 @@2”) in advance, following Kim
et al. (2021).
Training: The models were first pre-trained using
a 10K simple dataset for 30 epochs, then trained
with the 5K training set (1K training instances
for each reasoning depth.) for 2000 epochs. The
experiment setting details are in Appendix A. In
addition, we prepared 0.2K test instances for each
reasoning depth. This pre-training is intended
to teach the models primitive operations (i.e.,
assignment, reference, and addition). The pre-
training dataset contains two types of single-depth
instances: assign-refer type (e.g., A=1,A?) and
operate-assign-refer type (e.g., A=1+3, A?). All
the results in the paper are averages of the results
on three different seeds.

3.1 Output strategies

We compared the output strategies while fixing the
chaining strategy to the shortest path. Figure 4a
shows the accuracy per reasoning depth. Note
that the accuracy score here denotes whether the
answer (e.g., C=6) is correct. We observed the
following: (i) generating intermediate reasoning
steps enhance the performance, and (ii) among
the output strategies, step-by-step works the best,
and all-at-once works the worst. The format of
the dataset in this study is simple. Therefore, this
result indicates the low symbolic reasoning ability
of neural models and the necessity of the choice of

2https://huggingface.co/docs/transformers/
model_doc/T5

3https://huggingface.co/docs/transformers/
model_doc/bart
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(a) Output strategy (b) Chaining strategy

Figure 4: Accuracy changes of the models against reasoning depth. The gray range represents the training data
domain (1-5 depth). Figure (4a) shows the performance degradation with the increase of reasoning steps when using
the all-at-once strategy. Figure (4b) shows that the combination of step-by-step output and backward/exhaustive
chaining leads to successful generalization.

Depth Shortest Backward Exhaustive

6 99.3/99.3 100/ 100 99.7/99.7
8 95.5/95.7 100/ 100 99.8/99.8

12 76.7/77.7 99.5/99.5 98.2/98.3

Table 1: Accuracy of the T5-base model with the step-
by-step output strategy at each depth (chain/answer).

Question: A=1, B=2+A, B?

Error types Gold Prediction

Copying error B=2+A, B=6+A,
B=2+1, B=6+1,
B=3 B=7

Hasty assignment B=2+A, (skip step)
B=2+1, B=2+2,
B=3 B=4

Table 2: Illustrative examples of the errors under the
step-by-step, shortest-path chaining settings. (skip step)
denotes that the reasoning steps is accidentally skipped.

an appropriate reasoning strategy.
We hypothesized that the source of all-at-once’s

inferiority was that the decoder overfitted to output
a similar length of reasoning steps as those in
the (shallower) training data. In fact, the models
generated relatively shorter reasoning steps in the
out-of-domain (e.g., depth of 12) setting when
using the all-at-once strategy (Figure 3); this
supports our hypothesis.

The advantage of step-by-step over token-by-
token suggests the advantage of breaking the
problem into meaningful units (reasoning step)
and modeling each step in a single call of the
encoder-decoder.

3.2 Chaining strategies

Figure 4b and Table 1 show the results on each
depth with a fixed step-by-step output strategy.

Note that the accuracy of the chain (left side of the
scores) was measured based on not an exact match
but mathematically. For example, even if the order
of generated equations is different, it is correct. The
results of a fixed token-by-token output strategy are
in Appendix B.

While the performance dropped in the shortest-
path setting as the reasoning depth increased,
with either the exhaustive or backward chaining,
models successfully solved the task even when
extrapolating to depths 6-12. The models correctly
generated the intermediate steps (nearly perfect)
as well as the final answer in the exhaustive and
backward chaining settings (Table 1). Note that
these strategies were ineffective with all-at-once
outputting.

Gontier et al. (2020) compared chaining strate-
gies and concluded that models that didn’t generate
reasoning steps had better generalization perfor-
mance than models that did when the reasoning
chains were long. However, our results suggest
that the choice of the appropriate output strategy
improves the reasoning ability of the model.

We considered that the source of shortest-path
inferiority was the rough granularity of the given
reasoning steps. The models don’t know the
shortest path before outputting the reasoning steps.
Therefore, both the exhaustive and shortest path
chaining approaches must search for variables other
than those on the shortest path. As shown in Fig-
ure 2b, the exhaustive chaining approach is taught
this process explicitly. On the other hand, the
shortest-path chaining approach must be learned
that by training data that don’t include this process.
We thought this difference affected the accuracy
and concluded that the accuracy is higher when
the granularity of given intermediate steps is
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finer, even though they are long.
Therefore, we concluded that the accuracy is

higher when the granularity of intermediate
steps is finer, even though they are long.

3.3 Error analysis

We also analyzed the errors of the depth-12 in-
stances under the shortest-path strategy. 4 We
observed two types of errors: (i) copying errors and
(ii) hasty assignment. Table 2 shows an illustrative
example of each error type and the percentage of
these errors. The most frequent one (53%) was
a simple copying error, where the model failed
to accurately copy an original equation into the
reasoning chain. This erroneous copying ability
is consistent with Xu et al. (2020) and supports
the advantage of introducing a copy mechanism to
the model (Ontanon et al., 2022). Second, a hasty
assignment is the model skipping the step to copy
the equation from context and instead assigned it a
random value. Note that these errors were almost
addressed in the other strategies; this could stem
from the difficulty of the implicit calculation of the
shortest path.

3.4 Models’ scalability

To investigate the scalability, we compared T5-
large with T5-base. Figure 5 shows the result.
T5-large had a similar trend but slightly lower
accuracy on all-at-once and step-by-step compared
to T5-base. The reason may be that T5-large needs
more data for updating the weights of the entire
model. On the other hand, the accuracy of T5-large
is higher than T5-base on token-by-token. It’s
because the data size of token-by-token is as token
lengths of output sequence times as the data size
of all-at-once, as shown in Figure 2a. This result
indicates that the parameter size of the model needs
to be larger to output token-by-token.

4 Conclusions

We investigated and factorized the reasoning strat-
egy in symbolic numerical reasoning with neural
seq2seq models. We found that the combination of
step-by-step output and finely granular reasoning
leads to successfully performing symbolic reason-
ing. Our results support the potential of neural
models for symbolic reasoning.

4In total, 32 instances were analyzed. That is the total
number of incorrect answers on one seed.

Figure 5: Accuracy changes of the T5-base and T5-large
against reasoning depth. The gray range presents the
training data domain (1-5 depth). This figure shows that
the accuracy of T5-large with token-by-token is higher.

Limitations

We found that even simple symbolic reasoning
requires the appropriate selection of reasoning strat-
egy. It is unclear whether our findings generalize to
more complex symbolic reasoning and/or problems
written in natural language. If our findings do
not generalize in these different settings, we must
address the gap in future work. For example, we
start with one of the simplest tasks and find out
when models fail as we add complexity to tasks
one by one.

From the engineering perspective, the iterative
strategies are limited to the input length of the
model. For example, in our experiments, when
adopting the setting where reasoning depths are
greater than 13, the input length of step-by-step
and token-by-token became longer than the input
length limit of T5 (i.e., 512 tokens).

In addition, gigantic language models (e.g., GPT-
3) have recently been used. Including these models
in our study is one of our future works.
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Figure 6: Accuracy changes of token-by-token per
reasoning depth. The gray range presents the training
data domain (depths 1-5).

Figure 7: Accuracy changes of the T5-base and
BART-base models per reasoning depth. The gray range
presents the training data domain (depths 1-5). T5 seems
to outperform BART.

A Details on Experimental Settings

We first examined the learning rate from 10�3,
10�4, and 10�5; among them, we used the largest
rate at which the loss converged. After training
models, we used the model with the lowest valida-
tion loss among the per-epoch checkpoints during
the training reported. We used four NVIDIA V100
GPUs for NVLink 16GiB HBM2.

B Results of Token-by-token

Figure 6 shows the results on each depth with
a fixed token-by-token output strategy. Like
step-by-step, the performance drops in the shortest-
path setting as the reasoning depth increases. In
addition, the exhaustive or backward successfully
solves the task even when extrapolating to depths
6-12.

C Different Architectures

We also tested BART-base (Lewis et al., 2020) as
a baseline to investigate the effectiveness of the
NLP-task-oriented objectives used in the T5-style
pre-training. Figure 7 shows this result. In this

particular setting, T5 was superior to BART. This
suggests that the NLP-task-oriented objectives
benefit symbolic reasoning.

D Other errors

We analyzed the cases where the answer is correct
and the chain is wrong. Table 3 shows examples
of chain errors. Ignoring the incorrect step is
an example of the model outputting the correct
reasoning step after outputting an incorrect one.
Correct assignment is an example in which the
assignment accidentally makes the model output
the correct step. Finally, Non-affecting error is an
example in which a variable not on the shortest
path is wrongly assigned a value.
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Question: A=1, C=5+B, B=2+A, D=3+A, C?

Chain error types Gold Prediction

Ignoring the incorrect step A=1, B=2+A, B=2+1, B=3, C=5+B,
C=5+3, C=8

A=1, B=2+D, B=2+A, B=2+1, B=3,
C=5+B, C=5+3, C=8

Correct assignment A=1, B=2+A, B=2+1, B=3, C=5+B,
C=5+3, C=8

A=1, B=2+D, B=2+1, B=3, C=5+B,
C=5+3, C=8

Non affecting error A=1, B=2+A, B=2+1, B=3, C=5+B,
C=5+3, C=8

A=1, B=2+A, B=2+1, B=3, D=3+A,
D=3+2, D=5, C=5+B, C=5+3, C=8

Table 3: These instances are examples of chain errors. Note that the final answers are correct.
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Abstract

To explain the predicted answers and evaluate
the reasoning abilities of models, several stud-
ies have utilized underlying reasoning (UR)
tasks in multi-hop question answering (QA)
datasets. However, it remains an open question
as to how effective UR tasks are for the QA task
when training models on both tasks in an end-
to-end manner. In this study, we address this
question by analyzing the effectiveness of UR
tasks (including both sentence-level and entity-
level tasks) in three aspects: (1) QA perfor-
mance, (2) reasoning shortcuts, and (3) robust-
ness. While the previous models have not been
explicitly trained on an entity-level reasoning
prediction task, we build a multi-task model
that performs three tasks together: sentence-
level supporting facts prediction, entity-level
reasoning prediction, and answer prediction.
Experimental results on 2WikiMultiHopQA
and HotpotQA-small datasets reveal that (1)
UR tasks can improve QA performance. Using
four debiased datasets that are newly created,
we demonstrate that (2) UR tasks are helpful in
preventing reasoning shortcuts in the multi-hop
QA task. However, we find that (3) UR tasks
do not contribute to improving the robustness
of the model on adversarial questions, such as
sub-questions and inverted questions. We en-
courage future studies to investigate the effec-
tiveness of entity-level reasoning in the form of
natural language questions (e.g., sub-question
forms).1

1 Introduction

The task of multi-hop question answering (QA) re-
quires a model to read and aggregate information
from multiple paragraphs to answer a given ques-
tion (Figure 1a). Several multi-hop QA datasets
have been proposed, such as QAngaroo (Welbl
et al., 2018), HotpotQA (Yang et al., 2018), and

*Equal contribution.
1Our data and code are available at https://github.

com/Alab-NII/multi-hop-analysis

MuSiQue (Trivedi et al., 2022). In HotpotQA,
the authors provide sentence-level supporting facts
(SFs) to test the reasoning ability and explainability
of the models. However, owing to the design of the
sentence-level SFs task (binary classification) and
the redundant information in the sentences, Inoue
et al. (2020) and Ho et al. (2020) show that the
sentence-level SFs are insufficient to explain and
evaluate multi-hop models in detail. To address
this issue, R4C (Inoue et al., 2020) and 2WikiMul-
tiHopQA (2Wiki; Ho et al., 2020) datasets provide
an entity-level reasoning prediction task to explain
and evaluate the process of answering questions.
Entity-level reasoning information is defined as a
set of triples that describes the reasoning path from
question to answer (Figure 1b).

Several previous studies (Chen et al., 2019; Fu
et al., 2021a) utilize sentence-level SFs and/or
entity-level reasoning information to build ex-
plainable models by using question decomposi-
tion (Min et al., 2019b; Perez et al., 2020) or pre-
dicting sentence-level SFs. The advantages of these
pipeline models are that they can exploit the un-
derlying reasoning (UR) process in QA and their
predicted answers are more interpretable. However,
the question remains as to how effective training
on UR tasks is for the QA task in an end-to-end
manner. Although a few end-to-end models have
also been introduced (Qiu et al., 2019; Fang et al.,
2020), these models are not explicitly trained on
entity-level and answer prediction tasks.

In addition to the triple form, the sub-question
form is another way to utilize entity-level reason-
ing information. Specifically, Tang et al. (2021)
utilize question decomposition as an additional sub-
question evaluation for bridge questions (there are
two types of questions: bridge and comparison) in
HotpotQA. They only use sub-questions for eval-
uation and do not fine-tune the models on them.
In addition, Ho et al. (2022) use sub-questions for
both evaluation and training. However, they only
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Question: Who is the paternal grandfather of Joan of
Valois, Countess of Beaumont?

Paragraph A: Joan of Valois, Countess of Beaumont
[1]  Joan of Valois (1304 – 1363) was the daughter of
Charles of Valois and his second wife ...

Paragraph B: Charles, Count of Valois

[2] Charles of Valois (12 March 1270 – 16 December
1325), the third son of Philip III of France and, ... . [3] ...

Answer: Philip III of France

a) Standard QA task format b) UR tasks and three aspects



Sentence-level supporting facts: 1, 2

Entity-level reasoning prediction (Evidence):
Step 1: ("Joan of Valois, Countess of Beaumont",
"father", "Charles of Valois") &

Step 2: ("Charles of Valois", "father", "Philip III of
France")

QA Performance

Reasoning Shortcuts
Robustness

Paragraph A: Joan of Valois, Countess of Beaumont

[1]  We can also establish the global weak solution
... [2] Joan of Valois (1304 – 1363) was the daughter of
Charles of Valois and his second wife ...

Paragraph B: Charles, Count of Valois

[3] This gives a clear impulse to develop ... [4]  Charles
of Valois (12 March 1270 – 16 December 1325), the third
son of Philip III of France and, ... . [5] ...

Adversarial Question:  Who is the father of  Joan of
Valois, Countess of Beaumont?


c) Debiased and Adversarial examples

Figure 1: Example of (a) a standard multi-hop question, (b) two underlying reasoning tasks in the QA process and
three aspects in our analysis, ‘+’ and ‘-’ indicate that the UR tasks have a positive and negative impacts, respectively,
and (c) debiased and adversarial examples that are used in our study.

focus on comparison questions for date informa-
tion. In contrast, we focus on the triple form of the
entity-level information and conduct experiments
using two datasets, 2Wiki and HotpotQA-small (ob-
tained by combining HotpotQA and R4C), which
include both types of questions.

In this study, we analyze the effectiveness of
UR tasks (including both sentence-level and entity-
level) in three aspects: (1) QA performance, (2)
reasoning shortcuts, and (3) robustness. First, QA
performance is the final objective of the QA task.
We aim to answer the following question: (RQ1)
Can the UR tasks improve QA performance? For
the second aspect, previous studies (Chen and Dur-
rett, 2019; Jiang and Bansal, 2019a; Min et al.,
2019a; Trivedi et al., 2020) demonstrate that many
questions in the multi-hop QA task contain bi-
ases and reasoning shortcuts (Geirhos et al., 2020),
where the models can answer the questions by us-
ing heuristics. Therefore, we aim to ask the follow-
ing: (RQ2) Can the UR tasks prevent reasoning
shortcuts? For the final aspect, to ensure safe de-
velopment of NLP models, robustness is one of
the important issues and has gained tremendous
amount of research (Wang et al., 2022). In this
study, we aim to test the robustness of the model
by asking modified versions of questions, such as
sub-questions and inverted questions. Our question
is (RQ3) Do the UR tasks make the models more
robust?

There are no existing end-to-end models that can
perform three tasks simultaneously (sentence-level
SFs prediction, entity-level prediction, and answer
prediction); therefore, we first build a multi-hop
BigBird-base model (Zaheer et al., 2020) to per-
form these three tasks simultaneously. We then
evaluate our model using two multi-hop datasets:
2Wiki and HotpotQA-small. To investigate the ef-

fectiveness of the UR tasks, for each dataset, we
conduct three additional experiments in which the
model is trained on: (1) answer prediction task,
(2) answer prediction and sentence-level predic-
tion tasks, and (3) answer prediction and entity-
level prediction tasks. We also create four debiased
sets (Figure 1c) for 2Wiki and HotpotQA-small for
RQ2. We create and reuse adversarial questions
for 2Wiki and HotpotQA-small for RQ3.

The experimental results indicate that the UR
tasks can improve QA performance from 77.9 to
79.4 F1 for 2Wiki and from 66.4 to 69.4 F1 for
HotpotQA-small (RQ1). The results of the mod-
els on the four debiased sets reveal that the UR
tasks can be used to reduce reasoning shortcuts
(RQ2). Specifically, when the model is trained
on both answer prediction and UR tasks, the per-
formance drop of the model on the debiased sets
is lower than that when the model is trained only
on answer prediction (e.g., 8.9% vs. 13.4% EM).
The results also suggest that the UR tasks do not
make the model more robust on adversarial ques-
tions, such as sub-questions and inverted questions
(RQ3). Our analysis shows that correct reconstruc-
tion of the entity-level reasoning task contributes to
finding the correct answer in only 37.5% of cases.
This implies that using entity-level reasoning infor-
mation in the form of triples does not answer adver-
sarial questions, in this case, the sub-questions. We
encourage future work to discover the effectiveness
of the entity-level reasoning task in the form of sub-
questions that have the same form as multi-hop QA
questions.

2 Background

Reasoning Tasks in Multi-hop QA In this study,
we consider UR tasks in multi-hop QA including
two levels: sentence-level and entity-level. The
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Figure 2: Information on the position of sentence-level
SFs in the dev. sets of the three datasets.

sentence-level SFs prediction task was first intro-
duced by Yang et al. (2018). This task requires a
model to predict a set of sentences that is necessary
to answer a question (Figure 1).

To evaluate the UR process of the models, deriva-
tion and evidence information were introduced in
R4C and 2Wiki, respectively. Both derivation and
evidence are sets of triples that represent the reason-
ing path from question to answer. The difference is
the form; derivation in R4C uses a semi-structured
natural language form, whereas evidence in 2Wiki
uses a structured form. We conduct experiments
with both R4C (HotpotQA-small) and 2Wiki. For
consistency, we use the term entity-level reasoning
prediction task to denote the derivation task in R4C
and the evidence task in 2Wiki.

Reasoning Shortcuts and Biases In this study,
we consider both reasoning shortcuts and biases
to be similar. These are spurious correlations in
the dataset that allow a model to answer the ques-
tion correctly without performing the expected rea-
soning skills, such as comparison and multi-hop
reasoning. Following previous studies (Jiang and
Bansal, 2019a; Ko et al., 2020), we use the terms
word overlap shortcut and position bias.

To check whether the UR tasks can prevent rea-
soning shortcuts, we first identify the types of short-
cuts that exist in HotpotQA-small and 2Wiki. We
use heuristics to identify the word overlap short-
cut (Appendix A). We find that the word overlap
shortcut is common in HotpotQA-small, but not in
2Wiki. The small sample size of HotpotQA-small
(Section 4) increases the uncertainty of the obtained
results. Therefore, within the scope of this study,
we mainly experiment with position bias.

We observe that many examples in 2Wiki con-
tain answers in the first sentence. Therefore, we
divide every sentence-level SF in each gold para-
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Question Selected Paragraphs

Sentence Embedding

Entity Embedding

Answer Span Task
M
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Entity-level Task
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Figure 3: Our model has three main steps: paragraph
selection, context encoding, and multi-task prediction.

graph into two levels: the first sentence (position_0)
and the remaining sentences (position_other). Sub-
sequently, we obtain the percentage of each level
by dividing the total number of each level (e.g., po-
sition_0) by the total number of SFs. Figure 2 illus-
trates the information on the position of sentence-
level SFs in dev. sets of three datasets. We find that
all three datasets have a bias toward the first sen-
tence. We also find that 2Wiki has more position
biases than HotpotQA and HotpotQA-small.

3 Our Multi-task Model

To investigate the usefulness of UR tasks for the
QA task, we jointly train the corresponding tasks:
sentence-level SFs prediction, entity-level predic-
tion, and answer prediction. Figure 3 illustrates
our model. To handle long texts, we use the Big-
Bird model (Zaheer et al., 2020), which is available
in Hugging Face’s transformers repository.2 Our
model comprises three main steps: (1) paragraph
selection, (2) context encoding, and (3) multi-task
prediction. We use the named entity recognition
(NER) models of Spacy3 and Flair (Akbik et al.,
2019) to extract all entities in the context and use
them for the entity-level prediction task.

Paragraph Selection Following previous mod-
els (Qiu et al., 2019; Fang et al., 2020; Tu et al.,
2020), instead of using all the provided paragraphs,
we first filter out answer-unrelated paragraphs. We
follow the paragraph selection process described
in Fang et al. (2020). First, we retrieve first-hop

2https://huggingface.co/transformers/model_
doc/bigbird.html

3https://spacy.io/
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paragraphs by using title matching or entity match-
ing. We then retrieve second-hop paragraphs using
the hyperlink information available in Wikipedia.
When we retrieve paragraphs, we reuse a paragraph
ranker model4 from the hierarchical graph network
(HGN) model (Fang et al., 2020) to rank input
paragraphs using the probability of whether they
contain sentence-level SFs.

Context Encoding To obtain vector represen-
tations for sentences and entities, we first com-
bine all the selected paragraphs into one long
paragraph and then concatenate it with the
question to form a context C. Specifically,
C = [[CLS], q1, ..., qm, [SEP], p1, ..., pn, [SEP]],
wherem and n are the lengths of the question q and
the combined paragraph p (all selected paragraphs),
respectively. The context C is then tokenized into
l sub-words before feeding into BigBird to obtain
the contextual representation C ′ of the sub-words:

C ′ = BigBird(C) ∈ Rl×h, (1)

where h is the hidden size of the BigBird model.
Next, we obtain the representation si ∈ R2h of the
i-th sentence and the representation ej ∈ R4h+dt

of the j-th entity, as follows:

si = C ′Sistart
;C ′Siend

ej = C ′
Ejstart

;C ′
Ejend

; tj ; sk,
(2)

where [;] denotes the concatenation of the two vec-
tors, C ′

Sistart
and C ′

Ejstart
denote the first sub-word

representations of the i-th sentence and j-th entity,
respectively. C ′

Siend
and C ′

Ejend
denote the last sub-

word representations of the i-th sentence and j-th
entity, respectively. We enrich the entity embed-
ding ej by concatenating it with a dt-dimensional
type embedding tj and a sentence embedding sk,
where k is the index of the sentence containing the
j-th entity.

We also leverage the entity information to im-
prove the contextual representation of sub-words
C ′ as it is mainly used for the answer prediction
task, which will be described in the next section.
Thus, the enhanced sub-word representation C ′′i of
the i-th sub-word is calculated as follows:

C ′′i = C ′i; ek ∈ R5h+dt , (3)

where ek is the embedding of the k-th entity con-
taining the i-th sub-word. Otherwise, ek is a null
vector with the same dimension.

4https://github.com/yuwfan/HGN

Multi-task Prediction After context encoding,
we train our model on three main tasks together: (1)
sentence-level prediction, (2) entity-level predic-
tion, (3) and answer prediction. We split the answer
prediction task into two sub-tasks, similar to previ-
ous studies (Yang et al., 2018; Fang et al., 2020),
including answer type prediction and answer span
prediction. We train our model by minimizing the
joint loss for all tasks, as follows:

Ljoint = λsentLsent + λentLent+

λans(Lstart + Lend + Ltype),
(4)

where λsent, λent, and λans are the hyper-
parameters for three tasks: sentence-level predic-
tion, entity-level prediction, and answer prediction
(details are given in Appendix B.1).

For the sentence-level prediction task, we use
a binary classifier to predict whether a sentence
is a supporting fact. For the answer type predic-
tion task, we use a 4-way classifier to predict the
probabilities of yes, no, span, and no answer. Two
linear classifiers are used for the answer span pre-
diction task to independently predict the start and
end tokens of the answer span.

Different from existing end-to-end models (Qiu
et al., 2019; Fang et al., 2020), our model is ex-
plicitly trained on the entity-level prediction task.
We formalize the entity-level reasoning prediction
task as a relation extraction task (Zhang and Wang,
2015). The input is a pair of entities, and the output
is the relationship between two entities. From all
named entities obtained by using the NER models,
we generate a set of entity pairs; for example, given
N entities, we obtain N × (N − 1) pairs. For each
pair, we predict a relationship in a set of predefined
relationships obtained from the training set. We
then use cross-entropy as the learning objective.

4 Datasets and Evaluation Metrics

We mainly experiment with 2Wiki and HotpotQA-
small. We also train and evaluate our model on the
full version of HotpotQA. We reuse and create debi-
ased and adversarial sets for the evaluation. Table 1
presents the statistics for 2Wiki, HotpotQA-small,
and additional evaluation sets. The details of Hot-
potQA and 2Wiki are presented in Appendix B.2.
It should be noted that all datasets are in English.

4.1 HotpotQA-small

R4C (Inoue et al., 2020) is created by adding
entity-level reasoning information to the samples
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Split 2Wiki HotpotQA-small

Train 167,454 3,671
Dev. 12,576 917
Test 12,576 -
Debiased 12,576 (x4) 917 (x4)
Adversarial 12,576 659 & 134

Table 1: Statistics for 2Wiki and HotpotQA-small.
There are four debiased sets in 2Wiki and HotpotQA-
small. There are one adversarial set in 2Wiki and two
adversarial sets in HotpotQA-small.

in HotpotQA. We obtain HotpotQA-small by com-
bining HotpotQA (Yang et al., 2018) with R4C.
HotpotQA-small comprises three tasks as in 2Wiki:
(1) sentence-level SFs prediction, (2) entity-level
prediction, and (3) answer prediction. First, we
re-split the ratio between the training and dev. sets;
the new sizes are 3,671 and 917 for the training
and dev. sets, respectively (the original sizes are
2,379 and 2,209, respectively). In R4C, there are
three gold annotations for the entity-level predic-
tion task; in 2Wiki, there is only one gold annota-
tion. For consistency in the evaluation and analysis,
we randomly choose one annotation from the three
annotations for every sample in R4C.

The entity-level reasoning in R4C is created by
crowdsourcing. We observe that there are many
similar relations in the triples in R4C, and these re-
lations can be grouped into one. For example, is in,
is located in, is in the, and is located in the indicate
location relation. We also group the relations by
removing the context information in the relations;
for example, is a 2015 book by and is the second
book by are considered similar to the relation is a
book by. After grouping, the number of relations
in R4C is 2,526 (it is 4,791 before).

4.2 Debiased Dataset

The objective of our debiased dataset is to introduce
a small perturbation in each paragraph to mitigate
a specific type of bias, in our case, the position bias
shown in Figure 2. For both 2Wiki and HotpotQA-
small, we use the same method to generate four
debiased sets: ADDUNRELATED, ADDRELATED,
ADD2, and ADD2SWAP. The differences between
these four sets are whether the sentence is related or
unrelated to the paragraph and whether we add one
or two sentences into the paragraph. The details of
each set are as follows.

ADDUNRELATED: One sentence unrelated to
the paragraph is added. In our experiment, we use
a list of sentences in the sentence-level revision
dataset (Tan and Lee, 2014). We randomly choose
one sentence that has a number of tokens greater
than eleven but less than twenty-one.

ADDRELATED: One sentence that does not
have an impact on the meaning or flow of the para-
graph is added. In our experiment, we write multi-
ple templates for each entity type (e.g., for a film
entity, “#Name is a nice film”, where #Name is
the title of the paragraph), then randomly choose
one template, and add it to the paragraph. To de-
tect the type of the paragraph, we use the question
type information in 2Wiki and HotpotQA-small,
the results of the NER model, and the important
keywords in the question (e.g., who, magazine, al-
bum, and film).

ADD2: ADDRELATED and ADDUNRELATED

are combined in order.
ADD2SWAP: The order of ADDRELATED and

ADDUNRELATED in ADD2 is swapped.

4.3 Adversarial Dataset

The objective of our adversarial dataset is to check
the robustness of the model by asking modified ver-
sions of questions. For HotpotQA-small, we reuse
two versions of adversarial examples in Geva et al.
(2022). The first one is automatically generated
by using the ‘Break, Perturb, Build’ (BPB) frame-
work in Geva et al. (2022). The BPB framework
performs three main steps: (1) breaking a question
into multiple reasoning steps, (2) perturbing the
reasoning steps by using a list of defined rules, and
(3) building new QA samples from the perturba-
tions in step #2. The second version is a subset of
the first version and is validated by crowd workers.
We only use the examples in these two versions that
the original examples appear in HotpotQA-small.

For 2Wiki, no adversarial dataset is available.
Based on the idea of the BPB framework in Geva
et al. (2022), we apply two main rules from BPB
for 2Wiki: (1) replace the comparison operation
for comparison questions, and (2) use the prune
step for bridge questions. For the first rule, we
replace the operation in the comparison questions
(e.g., “Who was born first, A or B?” is converted
to “Who was born later, A or B?”). For the second
rule, we use a sub-question in the QA process as
the main question (e.g., for Figure 1, we ask, “Who
is the father of Joan of Valois?”).
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Dataset Task Setting Answer Sentence-level Entity-level

EM F1 EM F1 EM F1

2Wiki

(1) Ans 72.03 77.87 - - - -
(2) Ans + Sent 72.82 78.65 78.06 92.38 - -
(3) Ans + Ent 72.33 78.21 - - 46.11 76.65
(4) Ans + Sent + Ent 73.60 79.37 78.46 92.68 45.97 76.69

HotpotQA-
small

(1) Ans 52.89 66.43 - - - -
(2) Ans + Sent 54.42 69.03 75.35 91.00 - -
(3) Ans + Ent 54.74 69.08 - - 6.54 31.31
(4) Ans + Sent + Ent 54.74 69.44 75.14 90.88 6.43 31.05

Table 2: Ablation study results (%) of our model in the dev. sets of 2Wiki and HotpotQA-small. Ans, Sent, and Ent
represent the answer prediction task, sentence-level SFs prediction task, and entity-level prediction task, respectively.
‘Task Setting’ represents the tasks that the model is trained on. ‘-’ indicates the tasks the model is not trained on.

4.4 Evaluation Metrics
Each task in HotpotQA and 2Wiki is evaluated by
using two metrics: exact match (EM) and F1 score.
Following the evaluation script in HotpotQA and
2Wiki, we use joint EM and joint F1 to evaluate
the entire capacity of the model. For HotpotQA,
they are the products of the scores of two tasks:
sentence-level prediction and answer prediction.
For 2Wiki and HotpotQA-small, they are the prod-
ucts of the scores of three tasks: sentence-level
prediction, entity-level prediction, and answer pre-
diction.

5 Results

Currently, there are no existing end-to-end models
that explicitly train all three tasks together; there-
fore, in this study, we use our proposed model
for analysis. We also compare our model with
other previous models on the HotpotQA and 2Wiki
datasets. In general, the experimental results indi-
cate that our model is comparable to previous mod-
els and can be used for further analyses. We focus
more on the analysis; therefore, the detailed results
of the comparison are presented in Appendix B.3.

5.1 Effectiveness of the UR Tasks
To investigate the effectiveness of the UR tasks, we
train the model in four settings: (1) answer predic-
tion only, (2) answer prediction and sentence-level
SFs prediction, (3) answer prediction and entity-
level prediction, and (4) all three tasks together.

QA Performance (RQ1) Our first research ques-
tion is whether the UR tasks can improve QA per-
formance. To answer this question, we compare the

results of different task settings described above.
The results are presented in Table 2. For 2Wiki, us-
ing sentence-level and entity-level separately (set-
tings #2 and #3), the QA performance does not
change significantly. The improvement is signifi-
cant when we combine both the sentence-level and
entity-level (setting #4). Specifically, the scores
when the model is trained on the answer prediction
task only (setting #1) and on both the answer pre-
diction task and UR tasks (setting #4) are 77.9 and
79.4 F1, respectively. In contrast to 2Wiki, using
sentence-level and entity-level separately, there is a
larger QA performance improvement in HotpotQA-
small. Specifically, the F1 scores of settings #2 and
#3 are 69.0 and 69.1, respectively, whereas, the F1
score of the first setting is 66.4. Similar to 2Wiki,
there is a large gap between the two settings, #1
and #4 (66.4 F1 and 69.4 F1, respectively).

In summary, these results indicate that both
sentence-level and entity-level prediction tasks con-
tribute to improving QA performance. These re-
sults align with the findings in Yang et al. (2018),
which shows that incorporating the sentence-level
SFs prediction task can improve QA performance.
We also find that when combining both sentence-
level and entity-level prediction tasks, the scores of
the answer prediction task are the highest.

Reasoning Shortcuts (RQ2) To investigate
whether explicitly optimizing the model on the UR
tasks can prevent reasoning shortcuts, we evaluate
the four settings of the model on the four debiased
sets of 2Wiki and HotpotQA-small. The genera-
tion of the debiased sets includes stochastic steps.
To minimize the impact of randomness on our re-
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Dataset Task Setting
Reduction (%) on Four Debiased Sets

ADDUNRELATED ADDRELATED ADD2 ADD2SWAP
EM F1 EM F1 EM F1 EM F1

2Wiki

(1) Ans 13.40 12.13 3.55 3.46 12.32 11.72 18.99 17.51
(2) Ans + Sent 11.00 9.71 4.16 4.22 11.22 10.69 17.62 16.24
(3) Ans + Ent 7.73 6.94 2.80 2.77 8.38 7.76 13.12 12.21
(4) Ans + Sent + Ent 8.86 8.11 3.16 3.13 9.09 8.58 14.53 13.77

HotpotQA-
small

(1) Ans 3.01 1.53 4.04 1.50 1.65 1.01 3.96 2.47
(2) Ans + Sent 1.13 1.35 -0.51 0.19 0.08 0.85 1.77 1.96
(3) Ans + Ent 6.73 5.60 -0.92 0.03 4.02 3.54 6.89 5.46
(4) Ans + Sent + Ent 5.05 4.65 1.26 1.25 1.83 2.46 3.58 3.64

Table 3: Average performance drop from five times running (smaller is better) of the four settings on the four
debiased sets of 2Wiki and HotpotQA-small. The best and worst scores are boldfaced and underlined, respectively.

ported results, we generate the debiased sets five
times and report the average evaluation scores. The
average performance drops are presented in Table 3
(detailed scores are given in Appendix B.4).

Overall, for 2Wiki, when the model is trained on
only one task (#1), the drop is the largest (except for
ADDRELATED, which is the second largest). When
the model is trained only on the answer prediction
task, the drops are always higher than those when
the model is trained on three tasks. Specifically,
the gaps between the two settings, #1 (only an-
swer task) and #4 (all three tasks), are 4.5%, 0.4%,
3.2%, 4.5% (EM score) for ADDUNRELATED, AD-
DRELATED, ADD2, and ADD2SWAP, respectively.
These scores indicate that the two tasks, sentence-
level and entity-level, positively affect the answer
prediction task when the model is trained on three
tasks simultaneously.

For HotpotQA-small, we observe that the ef-
fectiveness of the UR tasks is inconsistent. For
example, for ADDUNRELATED, when training the
model on the three tasks (setting #4), the reduc-
tion is larger than that when training on answer
task only (setting #1) (5.1 vs. 3.0 EM). However,
for ADDRELATED, the reduction on setting #4 is
smaller than that on setting #1 (1.3 vs. 4.0 EM).
One possible reason is that the performance of the
entity-level task is not good (6.4 EM), which af-
fects the answer prediction task when the model is
trained on the three tasks together. Another possi-
ble reason is that the position bias in HotpotQA-
small is not sufficiently large. We present a detailed
analysis in Section 5.2 to explain this case.

Robustness (RQ3) To test whether the UR tasks
can help to improve the robustness of the model,

Task Setting Dev-adver Reduction %

EM F1 EM F1

Ans 37.09 46.07 48.51 40.84
Ans + Sent 34.26 43.64 52.95 44.51
Ans + Ent 32.67 39.43 54.83 49.58
Ans + Sent + Ent 34.19 42.74 53.55 46.15

Table 4: Results of our model in the dev-adversarial set
of 2Wiki and the performance drop.

we evaluate the four settings of the model on the
adversarial sets. For 2Wiki, the results are pre-
sented in Table 4. The scores for all four settings
decrease significantly on the adversarial set. The
reduction is the smallest when the model is trained
on the answer task only. The UR tasks do not make
the model more robust on this adversarial set. For
HotpotQA-small, we observe the same behavior,
that is, when the model is trained on the answer
task only, the reduction is the smallest. All results
are presented in Table 5. These results indicate
that both sentence-level and entity-level prediction
tasks do not contribute to improving the robustness
of the models on adversarial questions, such as sub-
questions and inverted questions. We analyze the
results in Section 5.2.

5.2 Analyses

Details of RQ2 To investigate the results con-
cerning RQ2 in more depth, we first analyze the
position biases of different types of questions in
2Wiki and HotpotQA-small. We find that the com-
parison questions have more position biases than
the bridge questions in both 2Wiki and HotpotQA-
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Task Setting Dev Dev-Adver Adver↓ (%) Dev-Adver-val Adver-val↓ (%)

EM F1 EM F1 EM F1 EM F1 EM F1

(1) Ans 52.89 66.43 40.36 51.23 23.69 22.88 37.31 46.69 29.46 29.72
(2) Ans + Sent 54.42 69.03 41.73 52.50 23.32 23.95 34.33 43.86 36.92 36.46
(3) Ans + Ent 54.74 69.08 42.79 52.16 21.83 24.49 27.61 36.86 49.56 46.64
(4) Ans + Sent + Ent 54.74 69.44 40.52 51.14 25.98 26.35 31.34 38.22 42.75 44.96

Table 5: Results of our model in the dev. and two dev-adversarial sets of HotpotQA-small. ‘Adver’ denotes
adversarial and ‘Adver-val’ denotes the adversarial set that was validated by crowd workers.

Task Setting Correct
Ans

Correct
Ent

Correct Both
Ans & Ent

(3) Ans + Ent 4,109 6,851 2,249 (32.8%)
(4) Ans + Sent + Ent 4,300 6,450 2,420 (37.5%)

Table 6: Number of correct predicted answers, number
of correct predicted entity-level reasoning, and number
of examples that have both correct predicted answers
and correct predicted entity-level reasoning.

small (Appendix B.5). To evaluate the effective-
ness of the position bias for each type of ques-
tion, we evaluate the four settings of the model on
the four debiased sets for each type of question
in both datasets. All the results are presented in
Appendix B.5.

For 2Wiki, we find that most of the answers are
in the first sentences in the comparison questions.
This large bias is the main reason for the significant
reduction in the scores in the comparison questions.
2Wiki has 46.0% of comparison questions. The re-
duction in comparison questions contributes to the
reduction in the entire dataset. In other words, the
results of 2Wiki are affected by those of the com-
parison questions. HotpotQA-small has only 22.0%
of comparison questions, and the position bias in
the comparison questions was not sufficiently large.
Therefore, the position bias does not have a signifi-
cant impact on the main QA task. In other words,
the UR tasks do not have a significant effect.

Details of RQ3 The adversarial questions used
in RQ3 are the sub-questions in the QA process
for bridge questions and the inverted questions for
comparison questions. We observe that the triple
in the entity-level task is helpful in answering the
sub-questions. For example, the triple is: (Charles
of Valois, father, Philip III of France) and the sub-
question is “Who is the father of Charles of Val-
ois?”. To understand more on the behaviors of the
model, we analyze the results from 2Wiki in two

settings: (3) Ans + Ent and (4) Ans + Sent + Ent.
Table 6 presents the detailed results for these two
settings. We find that correct reconstruction of the
entity-level reasoning task contributes to finding
the correct answer only in 32.8% of cases in set-
ting #3 and only in 37.5% of cases in setting #4.
Entity-level reasoning in the form of triples has no
significant effect on the main QA process. Several
examples are presented in Appendix B.5.

We conjecture that there are three possible rea-
sons why the UR tasks cannot contribute to the
adversarial dataset. The first one is the difference
in the form and design of the tasks. Specifically,
the entity-level reasoning task is formulated as a re-
lation extraction task; the input is a pair of entities,
and the output is a relation label. Meanwhile, the
adversarial dataset is formulated as a QA task; the
input is a natural language question, and the output
is an answer. The second reason is the incom-
petence of the entity-level reasoning information.
As discussed in Ho et al. (2022), the entity-level
reasoning in the comparison questions does not de-
scribe the full path from question to answer, and
other reasoning operations are required to obtain
the answer. The final reason is the manner in which
we utilize the entity-level reasoning information.
Our model does not consider the order of the triples
in the reasoning chain. For example, we do not con-
sider the order of the two steps in Figure 1b. We
hope that our research will inspire future studies to
investigate the effectiveness of the UR tasks in the
form of a natural language question, which has the
same form as a multi-hop QA question.

6 Related Work

Multi-hop Datasets and Analyses To test the
reasoning abilities of the models, many multi-hop
QA datasets (Welbl et al., 2018; Talmor and Berant,
2018; Yang et al., 2018) have been proposed. Re-
cently, Trivedi et al. (2022) introduced MuSiQue, a
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multi-hop dataset constructed from a composition
of single-hop questions. The reason why do we not
conduct experiments on MuSiQue is explained in
the limitations section.

In addition to Tang et al. (2021) and Ho et al.
(2022), the most similar to our research mentioned
in the Introduction, there are some other existing
studies (Chen and Durrett, 2019; Jiang and Bansal,
2019a; Min et al., 2019a; Trivedi et al., 2020) on the
analysis and investigation of the multi-hop datasets
and models. However, most of them do not utilize
the internal reasoning information when answering
questions.

Multi-hop Models Various directions have been
proposed for solving multi-hop datasets, including
question decomposition (Talmor and Berant, 2018;
Jiang and Bansal, 2019b; Min et al., 2019b; Perez
et al., 2020; Wolfson et al., 2020; Fu et al., 2021a),
iterative retrieval (Feldman and El-Yaniv, 2019;
Asai et al., 2020; Qi et al., 2021), graph neural net-
works (Song et al., 2018; De Cao et al., 2019; Ding
et al., 2019; Qiu et al., 2019; Tu et al., 2019; Fang
et al., 2020), and other approaches such as single-
hop based models (Yang et al., 2018; Nishida et al.,
2019) or transformer-based models (Devlin et al.,
2019; Zaheer et al., 2020). Our model is based on
the BigBird transformer model.

Other QA Reasoning Datasets In addition to
multi-hop reasoning datasets, several other ex-
isting datasets also aim to evaluate the reason-
ing abilities of the models. Some of them are:
DROP (Dua et al., 2019) for numerical reasoning;
CLUTRR (Sinha et al., 2019), ReClor (Yu et al.,
2020), and LogiQA (Liu et al., 2020) for logical
reasoning; Quoref (Dasigi et al., 2019) for corefer-
ence reasoning; CommonsenseQA (Talmor et al.,
2019), MCScript2.0 (Ostermann et al., 2019), and
CosmosQA (Huang et al., 2019) for commonsense
reasoning. Many of these datasets consist of only
a single paragraph in the input or lack explanation
information that describes the reasoning process
from question to answer. However, our focus is on
multi-hop reasoning datasets that contain multiple
paragraphs in the input and provide explanatory
information for the QA process.

7 Conclusion

We analyze the effectiveness of the underlying rea-
soning tasks using two multi-hop datasets: 2Wiki
and HotpotQA-small. The results reveal that the

underlying reasoning tasks can improve QA perfor-
mance. Using four debiased sets, we demonstrate
that the underlying reasoning tasks can reduce the
reasoning shortcuts of the QA task. The results
also reveal that the underlying reasoning tasks do
not make the models more robust on adversarial
examples, such as sub-questions and inverted ques-
tions. We encourage future studies to investigate
the effectiveness of the entity-level reasoning task
in the form of sub-questions.

Limitations

Our study has two main limitations. The first one is
the small size of HotpotQA-small. Currently, there
are no other multi-hop datasets that contain a large
number of examples with the entity-level reason-
ing prediction task. MuSiQue is the most potential
option. The entity-level reasoning information in
MuSiQue includes two types of formats: triple for-
mat and natural language question format. We do
not experiment with MuSiQue because the number
of examples that have entity-level reasoning infor-
mation in the form of a triple is small: 2,253 out of
19,938 in the training set and 212 out of 2,417 in
the dev. set.

The second limitation is that our model does not
consider the order of the triples in the entity-level
reasoning prediction task. As shown in Figure 1b,
the two triples are ordered. However, our model for-
mulizes the entity-level prediction task as a relation
extraction task. We predict a relation given the two
entities detected by the NER models. Therefore,
the order of the triples is not considered. We con-
jecture that this may be one of the reasons why the
entity-level reasoning prediction task (e.g., a triple
(Film A, director, D)) does not support the model
when answering sub-questions (e.g., Who is the
director of Film A?) using the same information.
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Using adversarial methods, Jiang and Bansal
(2019a) show that examples in HotpotQA often
contain word overlap shortcut, where the mod-
els can answer the questions by performing word-
matching between the question and a sentence in
the context.
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Based on this finding, we automatically calculate
the word overlap shortcut for 2Wiki and HotpotQA-
small. We observe that the word overlap shortcut
is common in bridge questions; therefore, we only
calculate the word overlap shortcut for bridge ques-
tions in 2Wiki and HotpotQA-small. To check
whether a sample contains the word overlap short-
cut, we do the following steps:

• Obtain a set of surrounding words S by get-
ting the five words immediately to the left and
right of the answer span, then remove stop-
words in S.

• Obtain a set of overlapping words (O) be-
tween S and a question.

• We consider a sample containing the word
overlap shortcut if there are at least two words
in O and |O||S| ≥ 0.65. These numbers (thresh-
old) are chosen based on the evaluation of 40
examples that are manually annotated by the
authors.

We find that there are 56 out of 5,791 and 151 out
of 715 examples (5,791 and 715 are the numbers
of bridge questions in 2Wiki and HotpotQA-small)
in the dev. sets of 2Wiki and HotpotQA-small
containing the word overlap shortcut.

It is noted that there is another type of short-
cut, namely, entity-type matching shortcut. Based
on the experimental results and human perfor-
mance, Min et al. (2019a) reveal that examples in
HotpotQA contain the entity type matching short-
cut, where the models can answer the questions by
using the first five tokens in the questions; mean-
while, humans can answer the questions by using
the entity type of the paragraphs. Currently, there is
no dataset that can prevent the entity-type shortcut;
therefore, we do not use this type of shortcut in our
experiments.

B Experimental Details

B.1 Implementation Details

We use Pytorch (Paszke et al., 2017) and Hugging
Face when building our model. For the context
encoding step, we use a pre-trained BigBird model
as the encoder; the hidden dimension is 768. For
the entity-level reasoning prediction task, we obtain
33 relations for 2Wiki and 2,526 relations for R4C,
from all triples in the training set, including a non-
relation type. We use entity type embedding dt of

50. We fine-tuned our model with a total batch size
of 32 on a single GPU (NVIDIA A100 80GB) using
mixed precision and a gradient accumulation step
of 8. Following the hyperparameters in the BERT
model (Devlin et al., 2019), for optimization, we
use the Adam Opitmizer (Kingma and Ba, 2015)
with a learning rate of 3e-5, weight decay of 0.01,
learning rate warmup over the first 10% of the total
number of training steps, and linear decay of the
learning rate. We also use a dropout probability of
0.1 on all layers.

For multi-task prediction, we use λsent as 4, λent
as 15, and λans as 1 for 2Wiki and HotpotQA-small;
we use λsent as 7 and λans as 1 for HotpotQA. We
do not run all experiments with different values
of λsent, λent, and λans; instead we run several
experiments, base on the results, we then adjust the
parameters. We find that when running with λsent
as 4 for 2Wiki and 7 for HotpotQA, λent as 15, and
λans as 1, it produces the best results. We fix the
random seed for the reproducibility of the results.
We observe that the final epoch often produces the
best scores, and its scores are stable on adversarial
datasets; therefore, we choose the final epoch for
all settings in our experiment.

B.2 Datasets

HotpotQA HotpotQA was created by crowd-
sourcing. Due to the design of the dataset, there
are only two tasks in HotpotQA: sentence-level
SFs prediction and answer prediction. R4C was
created based on HotpotQA and contained 4,588
questions. The dataset requires systems to provide
an answer and derivation in a semi-structured natu-
ral language form. There are two types of questions
in HotpotQA: bridge and comparison.

2Wiki 2Wiki was constructed by utilizing a
Knowledge Base and Wikipedia, and the questions
were created by using templates. There are three
different tasks in the dataset: (1) sentence-level
SFs prediction, (2) evidence generation (for con-
sistency, we use the term entity-level prediction),
and (3) answer prediction. The context consists of
ten paragraphs, including two or four gold para-
graphs and eight or six distractor paragraphs. The
gold paragraph contains the information required
to find the answer. Meanwhile, the purpose of
the distractor paragraph is to distract the models.
There are four different types of questions in the
dataset: comparison, inference, compositional, and
bridge-comparison. Inference and compositional
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Question: Who was born first, Albert Einstein or Abraham Lincoln?

Paragraph A: Albert Einstein
[1] Albert Einstein (14 March 1879 – 18 April 1955) was a …

Paragraph B: Abraham Lincoln

[2] Abraham Lincoln (February 12, 1809 – April 15, 1865) was a …

Answer: Abraham Lincoln

Sentence-level supporting facts: 1, 2

Entity-level reasoning prediction (Evidence):
Step 1: ("Albert Einstein", "date of birth", "14 March 1879") &

Step 2: ("Abraham Lincoln", "date of birth", "February 12, 1809")

Adversarial question:  Who was born later,  Albert Einstein or
Abraham Lincoln?

Figure 4: Example of a comparison question from the
2Wiki dataset.

questions are two sub-types of the bridge question.
For the convenience of analysis, we consider com-
parison and bridge-comparison questions as com-
parison questions. Figure 4 presents an example of
a comparison question from the 2Wiki dataset.

2Wiki was designed to focus on the entire rea-
soning process from question to answer. The entire
capacity of the model is evaluated by using two
metrics: joint EM and joint F1. To obtain the joint
F1 score, they first calculate the joint precision and
joint recall as follows: P joint = P ansP entP sent

and Rjoint = RansRentRsent. (P ans, Rans),
(P ent, Rent), (P sent, Rsent) represent the precision
and recall for three tasks: answer prediction, entity-
level reasoning prediction, and sentence-level SFs
prediction. The joint EM is 1 when all three tasks
achieve an exact match and otherwise 0.

B.3 Results Comparison
We compare our results with three previous models:
BiDAF, CRERC, and NA-Reviewer. BiDAF is a
baseline model in Ho et al. (2020). CRERC (Fu
et al., 2021a) is a pipeline model that includes three
modules: relation extractor, reader, and compara-
tor. NA-Reviewer (Fu et al., 2021b) is an improved
version of CRERC, as it addresses the error accu-
mulation issue. It is noted that both CRERC and
NA-Reviewer models are evaluated on only 2Wiki.

Table 7 presents the results of our model and
previous models in the dev. set of HotpotQA and in
the test set of 2Wiki. It also shows the performance
of our model in the dev. set of HotpotQA-small
and human performance in Ho et al. (2020).

Results on HotpotQA Our score is comparable
to the BERT-base version of two strong models,
SAE (Tu et al., 2020) and HGN (Fang et al., 2020)

in the dev. set of the distractor setting in HotpotQA.
Specifically, our joint F1 is 67.8, while for SAE-
BERT, it is 66.5, and for HGN-BERT, it is 66.9.
However, our score is smaller than the RoBERTa-
base of SAE and HGN. They are 72.8 and 74.4 F1
for SAE-RoBERTa and HGN-RoBERTa, respec-
tively. It is noted that we use the BigBird-ITC
version in our model. Although the BigBird-ETC
version performs better than the BigBird-ITC ver-
sion, it is not available in Hugging Face. We do not
use SAE and HGN for our analyses because these
models are not designed to train on the entity-level
reasoning prediction task.

Results on HotpotQA-small The scores on
HotpotQA-small are lower than those on HotpotQA
in the answer prediction task. This result may
be explained by the fact that the training size of
HotpotQA-small is smaller than HotpotQA (3,671
vs. 90,564). Due to the small size, we only use the
gold paragraphs for experiments. That is why the
scores on HotpotQA-small are higher than those on
HotpotQA in the sentence-level task. For the entity-
level task, the EM score is quite low (6.4 EM). A
possible reason for this is that there are many rela-
tions in HotpotQA-small (2,526 relations); mean-
while, there are only 33 relations in 2Wiki. We
observe that the F1 score (31.1 F1) is much bet-
ter than the EM score. Therefore, we keep using
HotpotQA-small for analyses.

Results on 2Wiki Our model significantly out-
performs BiDAF in all tasks. Our results are com-
parable to CRERC. The EM score of our model in
the entity-level task is lower than that of CRERC.
A possible explanation for this might be that the
relation extractor module in CRERC is fine-tuned
on 2Wiki; therefore, it can extract entities better
than the NER models from Spacy and Flair that are
used in our model. However, the F1 score of our
model in the entity-level task is higher than that
of CRERC. This indicates that our model can cor-
rectly obtain a few triples in a set of gold triples for
many samples. All our scores (except the F1 score
of the entity-level task) are lower than those on NA-
Reviewer. Our target is to analyze the UR tasks
in an end-to-end model. Although the pipeline
models (CRERC and NA-Reviewer) are easy to
interpret, we cannot determine how the UR tasks
affect answer prediction in an end-to-end model.
Therefore, we use the design of our model to per-
form the analyses in this study.
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Dataset Model Answer Sentence-level Entity-level Joint

EM F1 EM F1 EM F1 EM F1

HotpotQA

HGN-BERT‡ (Fang et al., 2020) N/A 74.76 N/A 86.61 ✕ ✕ N/A 66.90
HGN-RoBERTa (Fang et al., 2020) 68.93 82.18 63.09 88.59 ✕ ✕ 46.46 74.34
SAE-BERT (Tu et al., 2020) 61.32 74.81 58.06 85.27 ✕ ✕ 39.89 66.45
SAE-RoBERTa (Tu et al., 2020) 67.70 80.75 63.30 87.38 ✕ ✕ 46.81 72.75

Our BigBird-base 61.90 76.09 58.54 86.93 ✕ ✕ 39.39 67.81

HotpotQA-small Our BigBird-base 54.74 69.44 75.14 90.88 6.43 31.05 4.25 21.69

2Wiki

BiDAF (Ho et al., 2020) 36.53 43.93 24.99 65.26 1.07 14.94 0.35 5.41
CRERC (Fu et al., 2021a) 69.58 72.33 82.86 90.68 54.86 68.83 49.80 58.99
NA-Reviewer (Fu et al., 2021b) 76.73 81.91 89.61 94.31 53.66 70.83 52.75 65.23

Our BigBird-base 74.05 79.68 77.14 92.13 45.75 76.64 39.30 63.24

Human UB (Ho et al., 2020) 91.00 91.79 88.00 93.75 64.00 78.81 62.00 75.25

Table 7: Results (%) of our model and previous models in the dev. set of HotpotQA and in the test set of 2Wiki. We
also show the performance of our model in the dev. set of HotpotQA-small. Answer, Sentence-level, and Entity-level
represent the answer prediction task, sentence-level prediction task, and entity-level prediction task, respectively.
For HGN-BERT, the scores that we obtained (from left to right: 58.93 73.18 54.64 85.34 35.11 64.24) are lower
than the reported scores in HGN (Fang et al., 2020); therefore, we show the reported F1 scores in HGN.

B.4 Effectiveness of the UR Tasks

Reasoning Shortcuts (RQ2) Table 8 presents
the performance drop (smaller is better) for five
times running of the four settings of the model on
the four debiased sets of 2Wiki and HotpotQA-
small. As depicted in the table, for 2Wiki, the gap
between two settings #1 (answer prediction task
only) and #4 (all three tasks) is consistent in all five
times running. Meanwhile, for HotpotQA-small,
the gap between two settings #1 (answer prediction
task only) and #4 (all three tasks) is inconsistent in
all five times running. This observation supports
our explanation in Section 5.2 that the position bias
in HotpotQA-small does not have a large impact
on the main QA task.

B.5 Analyses

Details of RQ2 Figure 5 illustrates the informa-
tion on the position of sentence-level SFs of com-
parison and bridge questions in the dev. sets of
the two datasets: 2Wiki and HotpotQA-small. As
shown in the Figure, the comparison questions have
more position biases than the bridge questions in
both 2Wiki and HotpotQA-small. Furthermore, we
observe that the position bias in the comparison
questions in HotpotQA-small is smaller than that
in 2Wiki.

Table 9 presents the performance drop for two
types of questions, comparison and bridge ques-
tions, in 2Wiki and HotpotQA-small.

Hotpot-s_compare Hotpot-s_bridge 2Wiki_compare 2Wiki_bridge
Dataset

0.0

0.2

0.4

0.6

0.8

Pr
op

or
ti
on

Position_0
Position_other

Figure 5: Information on the position of sentence-level
SFs of comparison and bridge questions in the dev. sets
of the two datasets: 2Wiki and HotpotQA-small.

Details of RQ3 Table 10 presents examples of
the outputs predicted by our model, which is
trained on three tasks simultaneously.
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Dataset Task Setting
Reduction (%)

Time #1 Time #2 Time #3 Time #4 Time #5

EM F1 EM F1 EM F1 EM F1 EM F1

2Wiki

ADDUNRELATED

Ans 13.26 12.11 13.06 11.87 13.59 12.15 13.31 12.08 13.79 12.44
Ans + Sent 10.82 9.56 10.94 9.68 10.93 9.83 11.15 9.83 11.16 9.66
Ans + Ent 8.09 7.15 7.77 6.98 7.71 6.99 7.78 7.08 7.31 6.52
Ans + Sent + Ent 8.41 7.80 8.85 7.99 9.10 8.33 8.97 8.23 8.97 8.18

ADDRELATED

Ans 3.72 3.61 3.61 3.57 3.54 3.39 3.29 3.26 3.57 3.49
Ans + Sent 4.22 4.23 4.44 4.44 4.11 4.18 4.08 4.20 3.94 4.04
Ans + Ent 2.61 2.62 2.89 2.88 2.85 2.83 2.89 2.81 2.75 2.71
Ans + Sent + Ent 3.18 3.12 3.18 3.14 3.06 3.06 3.23 3.25 3.14 3.07

ADD2

Ans 12.26 11.63 12.59 12.10 12.29 11.69 12.29 11.72 12.16 11.48
Ans + Sent 11.10 10.48 11.03 10.57 11.26 10.77 11.18 10.72 11.51 10.92
Ans + Ent 8.38 7.91 8.74 8.12 8.31 7.63 8.07 7.48 8.41 7.67
Ans + Sent + Ent 9.13 8.54 8.90 8.45 8.94 8.54 8.95 8.43 9.51 8.92

ADD2SWAP

Ans 19.06 17.61 18.87 17.40 19.20 17.59 18.80 17.31 19.03 17.63
Ans + Sent 17.71 16.16 17.73 16.40 17.74 16.41 17.34 15.99 17.59 16.25
Ans + Ent 13.02 12.19 13.09 12.19 13.38 12.30 13.13 12.30 12.97 12.07
Ans + Sent + Ent 14.28 13.56 14.31 13.70 14.18 13.41 14.89 13.99 15.00 14.17

HotpotQA-small

ADDUNRELATED

Ans 4.33 2.89 1.44 0.68 0.21 -0.45 4.33 2.66 4.75 1.85
Ans + Sent 4.01 3.65 0.81 1.07 -0.20 0.88 1.01 0.85 0.00 0.28
Ans + Ent 6.17 4.97 5.97 3.98 7.76 7.06 6.38 6.20 7.36 5.80
Ans + Sent + Ent 6.76 5.83 6.76 5.18 1.79 2.97 4.77 4.94 5.17 4.32

ADDRELATED

Ans 3.71 1.14 4.12 1.10 4.54 2.12 3.91 1.46 3.91 1.70
Ans + Sent -0.79 0.10 0.20 0.71 0.61 1.23 -1.40 -0.59 -1.19 -0.52
Ans + Ent -0.80 0.23 -0.60 -0.19 -1.21 -0.13 -0.40 0.68 -1.61 -0.42
Ans + Sent + Ent 0.38 0.59 2.37 1.96 1.19 0.95 0.00 0.59 2.37 2.17

ADD2

Ans 1.04 1.01 1.04 0.17 1.04 0.53 1.64 0.51 3.50 2.83
Ans + Sent 1.01 1.51 -0.79 -0.19 0.00 1.43 0.00 0.32 0.20 1.20
Ans + Ent 4.57 3.59 2.19 2.32 5.17 4.85 3.78 3.20 4.38 3.73
Ans + Sent + Ent 0.00 0.62 3.38 3.63 1.19 2.68 1.59 2.56 2.98 2.79

ADD2SWAP

Ans 5.16 3.55 3.10 1.40 3.71 1.82 3.29 2.12 4.54 3.45
Ans + Sent 3.82 3.77 0.81 1.17 2.00 2.03 1.62 1.04 0.61 1.81
Ans + Ent 5.57 4.20 6.38 5.07 7.96 6.83 6.56 5.39 7.96 5.83
Ans + Sent + Ent 3.58 3.54 5.77 4.74 1.59 2.52 2.37 3.04 4.57 4.38

Table 8: Performance drop (smaller is better) for five times running of the four settings of the model on the four
debiased sets of 2Wiki and HotpotQA-small. The best and worst scores are boldfaced and underlined, respectively.
The debiased datasets are newly created for each time running.
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Dataset Task Setting
Comparison Bridge

Answer Answer↓ (%) Answer Answer↓ (%)

EM F1 EM F1 EM F1 EM F1

2Wiki

Dev

Ans 78.98 83.74 66.10 72.85
Ans + Sent 79.45 84.21 67.16 73.90
Ans + Ent 78.86 83.60 66.75 73.61
Ans + Sent + Ent 80.35 85.08 67.84 74.49

ADDUNRELATED

Ans 59.51 64.49 24.65 22.99 65.01 71.81 1.65 1.43
Ans + Sent 65.55 71.11 17.50 15.56 64.42 71.14 4.08 3.73
Ans + Ent 67.67 72.84 14.19 12.87 65.47 72.44 1.92 1.59
Ans + Sent + Ent 69.38 74.01 13.65 13.01 65.72 72.48 3.13 2.70

ADDRELATED

Ans 73.60 78.22 6.81 6.59 65.73 72.36 0.56 0.67
Ans + Sent 74.87 79.43 5.76 5.68 65.38 71.82 2.65 2.81
Ans + Ent 75.57 80.17 4.17 4.10 66.06 72.75 1.03 1.17
Ans + Sent + Ent 76.69 81.28 4.56 4.47 66.63 73.14 1.78 1.81

ADD2

Ans 61.61 65.54 21.99 21.73 64.55 71.60 2.34 1.72
Ans + Sent 64.93 69.13 18.28 17.91 64.58 71.50 3.84 3.25
Ans + Ent 67.16 71.43 14.84 14.56 65.51 72.52 1.86 1.48
Ans + Sent + Ent 67.85 72.19 15.56 15.15 66.06 72.94 2.62 2.08

ADD2SWAP

Ans 51.13 55.50 35.26 33.72 64.42 71.55 2.54 1.78
Ans + Sent 55.19 60.21 30.53 28.50 63.96 70.83 4.76 4.15
Ans + Ent 60.42 64.80 23.38 22.49 65.04 71.99 2.56 2.20
Ans + Sent + Ent 60.25 64.37 25.02 24.34 65.51 72.23 3.43 3.03

HotpotQA-small

Dev

Ans 56.44 61.86 51.89 67.72
Ans + Sent 57.92 63.44 53.43 70.61
Ans + Ent 57.92 63.14 53.85 70.75
Ans + Sent + Ent 57.43 64.44 53.99 70.86

ADDUNRELATED

Ans 50.00 56.24 11.41 9.09 50.77 66.85 2.16 1.28
Ans + Sent 52.97 60.64 8.55 4.41 52.03 68.17 2.62 3.46
Ans + Ent 51.49 57.43 11.10 9.04 51.33 67.97 4.68 3.93
Ans + Sent + Ent 47.03 55.59 18.11 13.73 52.17 68.16 3.37 3.81

ADDRELATED

Ans 53.96 60.48 4.39 2.23 50.07 67.14 3.51 0.86
Ans + Sent 57.43 63.37 0.85 0.11 54.13 70.54 -1.31 0.10
Ans + Ent 58.91 64.11 -1.71 -1.54 54.13 70.27 -0.52 0.68
Ans + Sent + Ent 53.96 61.23 6.04 4.98 54.69 71.24 -1.30 -0.54

ADD2

Ans 54.46 59.52 3.51 3.78 51.75 67.53 0.27 0.28
Ans + Sent 58.91 64.31 -1.71 -1.37 52.45 69.03 1.83 2.24
Ans + Ent 56.93 62.33 1.71 1.28 50.91 67.81 5.46 4.16
Ans + Sent + Ent 55.94 62.58 2.59 2.89 54.41 70.82 -0.78 0.06

ADD2SWAP

Ans 48.51 53.94 14.05 12.80 50.63 66.94 2.43 1.15
Ans + Sent 53.47 60.30 7.68 4.95 52.03 68.16 2.62 3.47
Ans + Ent 53.96 60.51 6.84 4.17 51.05 67.78 5.20 4.20
Ans + Sent + Ent 50.99 58.64 11.21 9.00 53.29 69.33 1.30 2.16

Table 9: Performance drop (smaller is better) for two types of questions (comparison and bridge questions) of the
four settings of the model on the four debiased sets of 2Wiki and HotpotQA-small. The best and worst scores are
boldfaced and underlined, respectively. For both 2Wiki and HotpotQA-small, we choose the results from the first
time running to perform the analysis.
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Type Example

Bridge -
Prune

Paragraph A: Polish-Russian War (Wojna polsko-ruska) is a 2009 Polish film directed by
Xawery Żuławski based on . . .
Paragraph B: Xawery Żuławski (born 22 December 1971 in Warsaw) is a Polish film director.
. . . He is the son of actress Małgorzata Braunek and director Andrzej Żuławski. . . .
Q: Who is the director of Polish-Russian War?
Predicted answer: Andrzej Żuławski ✕

Predicted entity-level: (“Polish-Russian War”, “director”, “Xawery Żuławski”) ✓

Bridge -
Prune

Paragraph A: Francesca von Habsburg (born 7 June 1958) is an art collector and the estranged
wife of Karl von Habsburg, current head of the House of Habsburg- Lorraine.
Paragraph B: Michaela von Habsburg was born . . . She is the twin sister of Monika von
Habsburg, and daughter of Otto von Habsburg and Princess Regina of Saxe - Meiningen.
Q: Who is the spouse of Francesca von Habsburg?
Predicted answer: Princess Regina of Saxe - Meiningen ✕

Predicted entity-level:
(“Francesca von Habsburg”, “spouse”, “Karl von Habsburg”) ✓

Comparison
- Inverted

Paragraph A: Montréal/Les Cèdres Airport is a general aviation aerodrome located
approximately west of Montreal, Quebec, Canada near Autoroute 20 west of . . .
Paragraph B: Flying J Ranch Airport is a privately owned, public use . . . The airport is located
southwest of the central business district of Pima, a city in Graham County, Arizona, United
States and northeast of Tucson International Airport. . . .
Q: Are Montréal/Les Cèdres Airport and Flying J Ranch Airport located in different countries?
Predicted answer: no ✕

Predicted entity-level: (“Flying J Ranch Airport”, “country”, “United States”) &
(“Montréal/Les Cèdres Airport”, “country”, “Canada”) ✓

Comparison
- Inverted

Paragraph A: A Romance of the Air is a 1918 American silent drama film based . . . Directed
by Harry Revier, the film was . . .
Paragraph B: Harry Revier (16 March 1890 – 13 August 1957) was ... American director . . .
Paragraph C: How Moscha Came Back is a 1914 silent film comedy short directed by Phillips
Smalley. . . .
Paragraph D: Phillips Smalley (August 7, 1865 – May 2, 1939) was an American silent film
director and actor.
Q: Which film has the director who was born later, A Romance of the Air or How Moscha
Came Back?
Predicted answer: How Moscha Came Back ✕

Predicted entity-level:
(“A Romance of the Air”, “director”, “Harry Revier”),
(“How Moscha Came Back”, “director”, “Phillips Smalley”),
(“Harry Revier”, “date of birth”, “16 March 1890”), &
(“Phillips Smalley”, “date of birth”, “August 7, 1865”) ✓

Table 10: Examples of the outputs predicted by our model, which is trained on three tasks simultaneously.

1180



Findings of the Association for Computational Linguistics: EACL 2023, pages 1181–1193
May 2-6, 2023 ©2023 Association for Computational Linguistics

PubMedCLIP: How Much Does CLIP Benefit Visual Question Answering
in the Medical Domain?

Sedigheh Eslami, Christoph Meinel, Gerard de Melo

Hasso Plattner Institute / University of Potsdam

{sedigheh.eslami, christoph.meinel, gerard.demelo}@hpi.de

Abstract

Contrastive Language–Image Pre-training
(CLIP) has shown remarkable success in
learning with cross-modal supervision from
extensive amounts of image–text pairs
collected online. Thus far, the effectiveness
of CLIP has been investigated primarily in
general-domain multimodal problems. In this
work, we evaluate the effectiveness of CLIP for
the task of Medical Visual Question Answering
(MedVQA). We present PubMedCLIP, a
fine-tuned version of CLIP for the medical
domain based on PubMed articles. Our
experiments conducted on two MedVQA
benchmark datasets illustrate that PubMed-
CLIP achieves superior results improving
the overall accuracy up to 3% in compari-
son to the state-of-the-art Model-Agnostic
Meta-Learning (MAML) networks pre-trained
only on visual data. The PubMedCLIP model
with different back-ends, the source code
for pre-training them and reproducing our
MedVQA pipeline is publicly available at
https://github.com/sarahESL/PubMedCLIP.

1 Introduction

Medical visual question answering (MedVQA)
seeks answers to natural language questions about
a given medical image. The development of Med-
VQA has considerable potential to benefit health-
care systems, as it may aid clinicians in interpreting
medical images and obtaining more accurate diag-
noses by consulting a second opinion. Thus, it has
become a very active area of research, with compet-
itive benchmarks and yearly competitions (Abacha
et al., 2021). Yet, visual question answering in the
medical domain in particular remains non-trivial,
as we suffer from a general lack of large balanced
training data, in part due to privacy concerns. To
solve the multimodal task of MedVQA, a system
must understand both medical images and textual
questions and infer the associations between them
sufficiently well to produce a correct answer (An-

tol et al., 2015). Thus, the success of these solu-
tions is tied to the effectiveness of their visual and
question encoders. Current approaches for Med-
VQA adopt deep artificial neural network encoders
to interpret the image and the question. Previous
studies in MedVQA (Nguyen et al., 2019; Zhan
et al., 2020; Pan et al., 2021; Gong et al., 2022)
commonly exploit the Mixture of Enhanced Visual
Features (MEVF) model (Nguyen et al., 2019) as
their visual encoder to overcome data limitations.
However, MEVF is custom-tailored for the par-
ticular challenges encountered in the VQA-RAD
(Lau et al., 2018) dataset, i.e., specifically designed
for the organs present in this dataset, limiting its
generalizability to other settings.

In non-medical settings, recent work (Su et al.,
2019; Zhang et al., 2020; Cho et al., 2021; Wang
et al., 2021; Radford et al., 2021; Yu et al., 2022)
has shown improvements of visual encoders when
learning from multimodal image–text pairs in com-
parison to learning from just visual images. Among
these approaches, the contrastive pre-training of
language–image data in OpenAI’s CLIP (Radford
et al., 2021) has been particularly prominent. CLIP
is trained using a vast number of image–text pairs
acquired from the Internet with close to zero addi-
tional human annotation. We argue that this is par-
ticularly promising for the medical domain, since
data annotation requires expert medical knowledge,
making it expensive and time-consuming. Follow-
ing CLIP, we investigate to what extent learning
from publicly available medical image–text pairs
without any further annotation can aid in the Med-
VQA task. To this end, we use image–text pairs ob-
tained from PubMed articles to train a new version
of CLIP called PubMedCLIP. We then examine the
outcomes when incorporating PubMedCLIP into
state-of-the-art MedVQA methods, investigating
whether CLIP benefits MedVQA.

To the best of our knowledge, this is the first
study introducing a PubMed-optimized CLIP and
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assessing the effectiveness of its visual and textual
encoders for VQA. Unlike prior work on MedVQA,
PubMedCLIP is trained using medical images from
a diverse range of body regions and is not restricted
to only a few organs. We conduct extensive exper-
iments on two MedVQA benchmark datasets and
employ diverse back-end visual encoders in Pub-
MedCLIP. Our experiments show that using Pub-
MedCLIP as a pre-trained visual encoder improves
previous models by up to 3%. Our experiments fur-
ther reveal question type distributional differences
in the two MedVQA benchmark datasets that have
not been imparted in previous work and cause dif-
ferent back-end visual encoders in PubMedCLIP
to exhibit different behavior on these datasets.

2 Related Work

Shen et al. (2021) showed the benefits of CLIP for
general-domain visual question answering. How-
ever, MedVQA approaches generally need to be
able to learn from small amounts of training data
and be able to pick up fine-granular details such as
subtle medical abnormalities. Recent MedVQA ap-
proaches typically employ deep pre-trained neural
encoders and consist of four main components: a
visual encoder, question encoder, attention-based
fusion of vision and text features, and an answer
classifier (Nguyen et al., 2019; Vu et al., 2020;
Zhan et al., 2020; Pan et al., 2021; Liu et al.,
2021a; Gong et al., 2022). Skip-thought vectors,
LSTM, and GRU recurrent neural networks have
been popular question encoders in prior work. Due
to the lack of diversity in the semantics of the ques-
tions in the ImageCLEF VQA-Med 2021 Chal-
lenge (Abacha et al., 2021), the winning teams
(Gong et al., 2021; Eslami et al., 2021) were able
to treat MedVQA as a multi-class image classifi-
cation task, without any need to encode and in-
terpret the questions. Bilinear attention networks
(Kim et al., 2018), multimodal compact bilinear
pooling (Fukui et al., 2016), stacked attention net-
works (Yang et al., 2016), and element-wise produc-
tion are popular as multimodal pooling approaches
in MedVQA. With regard to the visual encoder,
the winning teams in the ImageCLEF VQA-Med
Challenges (Abacha et al., 2020, 2021) often fine-
tune an ensemble of pre-trained VGG (Simonyan
and Zisserman, 2014) and various ResNet (Lei
et al., 2018) encoders. A notable number of pa-
pers (Nguyen et al., 2019; Zhan et al., 2020; Pan
et al., 2021; Gong et al., 2022) employ the Mixture

of Enhanced Visual Features (MEVF; Nguyen et al.
2019) in order to overcome image data limitations.
MEVF consists of two modules: 1. the pre-trained
meta-learning module, which uses Model-Agnos-
tic Meta-Learning (MAML; Finn et al. 2017) with
the objective of solving a k-shot n-way classifica-
tion problem with the abnormality status of chest,
abdomen, and brain organs as classes, 2. the Con-
volutional Denoising Autoencoder (CDAE; Masci
et al. 2011) module in order to have a robust visual
encoder for noisy medical images. The pre-training
of MEVF is custom-tailored for the particular or-
gans that are present in the VQA-RAD (Lau et al.,
2018) dataset, i.e., chest, brain, abdomen. Another
study (Do et al., 2021) similarly trained multiple
meta-models confined to these three body regions,
combined with a scoring mechanism to select the n
most robust and accurate encoders and concatenate
their outputs to represent the visual features. Liu
et al. (2021a) also restricted the objective of their
visual encoding to chest, brain, and abdomen, and
pre-trained three separate visual encoder teacher
models for these respective body regions. They
distilled the three teacher models into a smaller
student model by contrastive representation distil-
lation. As opposed to previous work, which learns
from just visual data, we design an alternative en-
coder, PubMedCLIP, which not only uses natural
language as supervision for visual representation
learning, but also learns features in medical images
of various modalities and diverse body organs, and
hence, is not limited to only a few body regions.

3 PubMedCLIP

Our first step is to fine-tune the original general-
domain CLIP using medical image–text pairs. We
refer to the fine-tuned version as PubMedCLIP.
Figure 1 (A) shows an overview of the training
procedure for PubMedCLIP. Texts and images are
encoded separately using CLIP, which we denote
by et ∈ Rb×d, ev ∈ Rb×d, respectively, for a batch
of size b. For each image–text pair, a label y ∈ R
represents the correspondence of the pairing of im-
age and text. The cosine similarities between text
and image features are computed to represent the
respective visual and textual logits ŷv, ŷt, i.e.,

ŷv =
e⊺v et
∥ev∥ ∥et∥

, ŷt =
e⊺t ev
∥ev∥ ∥et∥

. (1)

As formulated in Eq. 2, a weighted sum of the
vision and language loss values is computed to
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Figure 1: (A) Overview of how PubMedCLIP is pre-trained. (B) Schematic of MedVQA backbone with PubMed-
CLIP pre-trained visual encoder.

represent the overall loss. Y ∈ Rb denotes the set
of labels y for a total of b image–text pairs in the
batch. In this work, we use the cross-entropy loss

L = λH(ŷv, Y ) + (1− λ)H(ŷt, Y ). (2)

Following CLIP, we set λ = 0.5 to obtain the aver-
age of vision and language losses.

For training PubMedCLIP, we drew on the Radi-
ology Objects in COntext (ROCO) dataset (Pelka
et al., 2018). Previous work (Rajpurkar et al.,
2017; Wang et al., 2017; Irvin et al., 2019; John-
son et al., 2019a) also proposes large-scale multi-
modal datasets in the medical domain. However,
they include images of only one imaging modal-
ity, i.e., X-ray, for a very limited number of body
regions. In contrast, ROCO includes over 80K
samples of diverse imaging modalities such as ul-
trasound, X-rays, PET scans, CT scans, MRI, an-
giography, from various human body regions, e.g.,
head, neck, spine, chest, abdomen, hand, foot, knee,
and pelvis. Learning visual representations of di-
verse organs with various imaging modalities is
valuable for a MedVQA system, as it is expected to
interpret images given such diversities. The image–
text pairs in ROCO stem from PubMed articles.
The texts are taken from the relatively short cap-
tions (average length of 20 words) associated with
images in the articles, which provide rich explana-
tory information about the content of images. In
this work, the training and validation data splits
from the original paper (Pelka et al., 2018) were
used to train PubMedCLIP, with ViT-B/32 Vision

Transformer (Dosovitskiy et al., 2021), ResNet
RN-50 (He et al., 2016), and RN-50x4 visual en-
coder back-ends. With respect to the maximum text
length accepted by CLIP, which is 76, we trimmed
any longer captions, while zero-padding shorter
ones. PubMedCLIP was trained for 50 epochs
with a batch size of 64, and Adam optimization
(Kingma and Ba, 2014) with a learning rate of
10−5. The trained models, source code as well as
further implementation details are available online
at https://github.com/sarahESL/PubMedCLIP.

Figures 2 and 3 show PCA visualizations of the
caption and image embeddings, respectively, for
the ROCO validation set. Comparing CLIP and
PubMedCLIP embeddings, PubMedCLIP appears
to obtain more semantic-aware visual and textual
features with regard to body locations. For instance,
looking at chest, abdomen, and head body loca-
tions, the corresponding embeddings form clusters
for PubMedCLIP. However, the original CLIP em-
beddings are scattered without much separation.1

4 PubMedCLIP for MedVQA

Given a MedVQA training dataset represented as
T = {(vi, qi, ai)}Di=1 of sizeD, where vi is a medi-
cal image, qi is the corresponding natural language
question, and ai is natural language answer, our
goal is to learn to emit correct answer ai given

1In Appendix A, we provide more information on our
approach for proxy-labeling the unannotated captions from
the ROCO dataset. The proxy-labels have been merely used
for the purpose of visualisations in this paper.
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Figure 2: PCA visualizations of image embeddings.

Figure 3: PCA visualizations of text embeddings.

image–question pair (vi, qi). For this, we assume
appropriate encoding functions to obtain fv ∈ Rn
as an n-dimensional vector encoding for image
vi and the sequence embedding of fq ∈ Rm×l
for the question qi with length l. We then cast
MedVQA as a multi-label classification function
F : Rn×Rm×l −→ {0, 1}|A| where A is the over-
all set of possible answers and F (fv, fq) = ai for
the one-hot encoded answer ai.

Our goal is to investigate the effect of employing
PubMedCLIP as the pre-trained visual encoder in
MedVQA. To this end, we considered two promi-
nent MedVQA methods, MEVF (Zhan et al., 2020)
and QCR (Nguyen et al., 2019), that adopt MAML
as their pre-trained visual encoder and GloVe word
embeddings followed by a Recurrent Neural Net-
work (RNN) as their question encoder. We substi-
tute the pre-trained MAML module in MEVF and
QCR with the pre-trained visual encoder from Pub-
MedCLIP. A schematic architecture of our pipeline
is shown in Figure 1 (B). The representative visual
feature fv in this solution is the concatenation of
the outputs of the PubMedCLIP network and the
CDAE encoder. The objective of CDAE’s encoder

is to robustly encode the noisy version v′i of an
image vi while the decoder learns to reconstruct
the original non-noisy images. Denoting the re-
constructed image as vreci , Equation 3 defines the
image reconstruction loss of CDAE as the mean
squared error.

Lrec = ∥vi − vreci ∥2 (3)

The multimodal pooling mechanism for combin-
ing fv and fq is BAN (Kim et al., 2018) to obtain
the answer feature vector fa, as illustrated in Figure
1 (B). For answer prediction, which is a classifi-
cation task in our case, a sigmoid layer preceding
a binary cross-entropy loss is utilized in order to
allow multiple correct answers per question. Eq. 4
formulates the answer classification loss function.

Lcls = −
1

D

D∑

i=1

A∑

c=1

ai,c log(âi,c)

+(1− ai,c) log(1− âi,c)
(4)

Here, âi,c = σ(M(fa)), where σ represents the sig-
moid function. Following BAN (Kim et al., 2018),
the answer classifierM is a two-layer feed-forward
network with ReLU activation.
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The objective of MedVQA is to simultaneously
minimize the error of answer classification and
image reconstruction, denoted as:

Lvqa = Lcls + Lrec. (5)

5 Experiments

5.1 Datasets and Setup

We conducted our experiments using two well-
known MedVQA datasets:

1. VQA-RAD (Lau et al., 2018) consists of 315
images and 3,515 English language question–
answer pairs. Following previous work,
we adopt the data split proposed in MEVF
(Nguyen et al., 2019). We notice that all the
images in the test dataset are also present in
the training set. However, the set of question–
answer pairs for these images in the test set
are unseen in the training set.

2. The SLAKE (Liu et al., 2021b) dataset con-
sists of English and Chinese questions. In
this work, we utilize the English subset of the
dataset, comprising 642 images and more than
7,000 question–answer pairs. Using the orig-
inal data split, we observe that in contrast to
VQA-RAD, all the images in the test set of
SLAKE are unseen in the training set.

To ensure a fair comparison, our experiments fol-
lowed the same setups used in the original MEVF
and QCR studies. MEVF was trained for 20 epochs,
QCR for 200, both with Adam optimization. When
using PubMedCLIP as either the pre-trained visual
encoder or the text encoder, we set the learning rate
to 1× 10−3 and 2× 10−3 and the batch size to 16
and 32 in QCR and MEVF, respectively. All imple-
mentations are based on the PyTorch framework
(Paszke et al., 2019). We ran the original MEVF
and QCR on our machine and report the results
here to have a fair comparison. Due to the non-
deterministic behaviour of the cuDNN library in
CUDA convolution operations (Pham et al., 2020),
we observed non-deterministic results in different
runs of the original MEVF and QCR. For a more
robust comparison, we repeated all experiments 10
times and report the average accuracy scores.

5.2 Results and Analysis

The results of our experiments using PubMed-
CLIP’s visual encoder are given in Table 1. In

order to see the effectiveness of PubMedCLIP in
comparison to the general domain CLIP, we also
report the results when using CLIP. We provide the
overall accuracy along with the accuracy of answer-
ing only open-ended or closed-ended questions.

When using CLIP and PubMedCLIP as the pre-
trained visual encoder only, it is observed that the
results of both the MEVF and QCR approaches im-
prove. Furthermore, PubMedCLIP yields an abso-
lute improvement of up to 1% in comparison with
the original CLIP. On the VQA-RAD dataset, Pub-
MedCLIP with the ResNet-50 backend achieves
the best results, improving the overall accuracy of
MEVF up to 6% and for QCR up to 3%. Results on
the SLAKE dataset show that PubMedCLIP with
ViT-B/32 Vision Transformer encoder back-end at-
tains the best accuracy. It enhances MEVF by up
to 3% and QCR up to 2%. We witness the same
trend of improvement among overall, open-ended,
and closed-ended accuracy scores.

In Figure 4, a comparison of image embeddings
when using MAML as apposed to PubMedCLIP’s
visual encoder is shown using PCA analysis for
the VQA-RAD dataset. We find that in contrast to
the MAML encoder, PubMedCLIP’s visual encod-
ing results in organ-aware visual embeddings i.e.,
images of head, chest, and abdomen form more
coherent and distinct clusters.

In Table 2, we compare the performance of Pub-
MedCLIP with the recent state-of-the-art models in
MedVQA. All the models use BAN as the fusion
mechanism. In Table 2, PubMedCLIP refers to us-
ing PubMedCLIP as the pre-trained visual encoder
in QCR. The comparison shows that PubMedCLIP
achieves the best results on open-ended, closed-
ended, and overall accuracies.

Behavior of visual encoder back-ends. The
fact that PubMedCLIP with ResNet-50 back-end
achieves the best results for VQA-RAD, while Pub-
MedCLIP with ViT performs best on the SLAKE
dataset points us to underlying differences in the
question type distribution in these datasets. As
Figure 5 shows, the majority of the questions in
the VQA-RAD ask about the presence of an ab-
normality in the images. This requires the visual
encoder to detect local features and local abnor-
malities. Thus, the CNN-based ResNet model with
better visual localization outperforms the Vision
Transformer. However, on SLAKE, the majority
of questions are of the type “organ”, asking which
organ is present in the image. For such cases, the
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MedVQA Question Visual VQA-RAD Accuracy SLAKE Accuracy

Model Encoder Encoder Open Closed Overall Open Closed Overall

MAML + AE (*) 42.1% 73.2% 60.8% 74.1% 77.5% 75.5%

CLIP-ViT-B + AE 50.8% 75% 65.4% 75.8% 80.5% 77.7%

CLIP-RN50 + AE 47% 77.4% 65.4% 75.7% 79.6% 77.2%

MEVF GloVe+RNN CLIP-RN50x4 + AE 46.8% 76.6% 64.8% 75.9% 79.1% 77.2%

PubMedCLIP-ViT-B + AE 48.9% 76.7% 65.5% 76.5% 80.4% 78%

PubMedCLIP-RN50 + AE 48.6% 78.1% 66.5% 76.2% 79.9% 77.6%

PubMedCLIP-RN50x4 + AE 47.1% 77.8% 65.6% 76.6% 79.1% 77.6%

MAML + AE (+) 56% 77.9% 69.2% 76.8% 80.6% 78.3%

CLIP-ViT-B + AE 57.6% 79.5% 70.7% 78.6% 81% 79.5%

CLIP-RN50 + AE 58.3% 80% 71.3% 78.2% 81.5% 79.7%

QCR GloVe+RNN CLIP-RN50x4 + AE 59.9% 79.4% 71.3% 77.6% 80.5% 78.7%

PubMedCLIP-ViT-B + AE 58.4% 79.5% 71.1% 78.4% 82.5% 80.1%

PubMedCLIP-RN50 + AE 60.1% 80% 72.1% 77.8% 81.4% 79.3%

PubMedCLIP-RN50x4 + AE 60% 79.7% 71.8% 77.7% 81.3% 79.1%

Table 1: Accuracy scores on VQA-RAD and SLAKE datasets. (*) denotes the original MEVF (Nguyen et al.,
2019) and (+) denotes the original QCR (Zhan et al., 2020). Bold numbers represent the rows that achieved best
overall accuracy. Light cyan, yellow, and green highlight correspond to the results when using MAML, CLIP and
PubMedCLIP as the visual encoder only, respectively.

Figure 4: PCA visualizations of MAML and PubMedCLIP image embeddings for VQA-RAD dataset.

MedVQA VQA-RAD Accuracy SLAKE Accuracy

Model Open Closed Overall Open Closed Overall

MEVF (Nguyen et al., 2019) 42.1% 73.2% 60.8% 74.1% 77.5% 75.5%

QCR (Zhan et al., 2020) 56% 77.9% 69.2% 76.8% 80.6% 78.3%

MMQ (Do et al., 2021) 53.7% 75.8% 67% — — —

VQAMix (Gong et al., 2022) 56.6% 79.6% 70.4% — — —

PubMedCLIP + BAN (ours) 60.1% 80% 72.1% 78.4% 82.5% 80.1%

Table 2: Comparison of PubMedCLIP with state-of-the-art MedVQA models. Results for the SLAKE dataset are
not reported in the MMQ and VQAMix papers.
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Figure 5: Distribution of top 5 most frequent question
types in VQA-RAD and SLAKE.

visual encoder needs to be able to acquire a holistic
overall understanding of the image and thus capture
long-range dependencies of image patches. Vision
Transformers indeed are capable of accounting for
such features (Yu et al., 2021), and hence perform
better on the SLAKE dataset.

PubMedCLIP as the text encoder. We ex-
panded our experiments to investigate the effects
of PubMedCLIP’s text encoder in MedVQA. To
this end, we replaced the question encoder in the
MEVF model with PubMedCLIP’s text encoder,
i.e., instead of using GloVe word embeddings and
an RNN network to model the question, we use
PubMedCLIP’s text tokenizer and encoder, which
receives the question qi with l words and outputs
a sequence-level embedding fq ∈ Rm. Note that
the size of image and text embeddings when using
PubMedCLIP is equal. The results of our exper-
iments in Table 3 suggest that invoking PubMed-
CLIP to encode questions in MedVQA is not as
successful as using it for images. Furthermore, Ta-
ble 3 shows that using both the visual and textual
encoders of PubMedCLIP achieves absolute im-
provements of up to 5% in comparison to the orig-
inal MEVF model. However, the best results are
achieved with PubMedCLIP as the visual encoder
together with GloVe+RNN for encoding questions.

In order to have a better understanding of the
PubMedCLIP’s text encoder, a PCA visualization
of the question embeddings is provided in Figure
6. The top row shows the embeddings when an-
notated according to their respective body location
and the bottom row depicts them when labeled
with question types, i.e., whether the question asks

Visual Question VQA-RAD Accuracy

Encoder Encoder Open Closed Overall

GloVe+RNN(*) 42.1% 73.2% 60.8%

MAML PubMedCLIP 26.5% 72.9% 54.3%

GloVe+RNN 48.6% 78.1% 66.5%

PubMedCLIP PubMedCLIP 48% 77.4% 65.6%

Table 3: Accuracy of PubMedCLIP as text encoder in
the MEVF model. (*) denotes the original MEVF.

about the Presence of abnormality, Position of ab-
normality, type of Abnormality, etc. For having a
comprehensible analysis, we visualize the top five
frequent question types shown in Figure 5. Obser-
vations from Figure 6 suggest that PubMedCLIP’s
text encoder emits organ-aware textual embeddings
in contrast to GloVe+RNN. However, PubMed-
CLIP does not separate embeddings based on the
question type, while GloVe+RNN results in better
question type clusters. These findings suggest that
question type awareness when encoding questions
might be more beneficial than organ awareness for
the MedVQA task. Based on our experiments, ex-
ploiting PubMedCLIP as the visual encoder in the
QCR model is the most effective solution.

Furthermore, we sampled a few questions from
the VQA-RAD test set and compared their pair-
wise cosine similarities when using GloVe+RNN
versus PubMedCLIP encoding. We seek to ex-
amine the power of PubMedCLIP text encoder in
identifying semantic differences. Figure 7 reports
the cosine similarities when using PubMedCLIP
in contrast to GloVe+RNN embeddings. As can
be seen, when using PubMedCLIP text encoder,
different questions about “lung abnormality” and
“image plane” are equally similar to the “rib frac-
ture” question, i.e., 0.77, and the encoder does not
distinguish them. However, the cosine similarities
are more intuitive when using GloVe+RNN. For
instance, questions “Is there a rib fracture?” and
“Describe the lung abnormalities?” have a small
similarity of 0.27, while questions “Which plane is
this image taken?” and “What is the plane of this
image?” have a high similarity of 0.86.

In addition, it is observed that PubMedCLIP
generally results in embeddings that are highly
close to each other, with cosine similarities of more
than 0.7 for different questions on disparate top-
ics. In contrast, similarities of GloVe+RNN encod-
ing are spread in the range of [−0.09, 1], meaning
that these embeddings are scattered over the m-

1187



Figure 6: PCA of question embeddings. (Top) Labeled with body locations. (Bottom) Labeled with question types.

dimensional embedding space. We conclude that
GloVe+RNN distinguishes the semantics of ques-
tions more effectively in comparison to PubMed-
CLIP’s text encoder for the MedVQA task.

CLIP versus PubMedCLIP. In order to better
see the impact of fine-tuning PubMedCLIP, we
additionally looked into the intermediate task of
image–text matching using nearest neighbors vec-
tor retrieval. Considering that the pre-training ob-
jective in CLIP and PubMedCLIP is to minimize
the cosine distance between paired image and text
embeddings while maximizing this distance for
non-paired image–text combinations, we argue that
with a rich representation learning model, a nearest
neighbor approach using the cosine distance metric
should be fairly successful in retrieving matching
image–text pairs. We randomly selected a subset
of D′ = 10, 000 samples from the ROCO train-
ing data and used them to compare the outcomes
of image–text matching in the medical domain.
We exploit the text encoder as well as the visual
encoder in CLIP and PubMedCLIP. Using Faiss
(Johnson et al., 2019b) for vector retrieval, we in-
vestigated KNN with K = 1 on batches of size b.
For each batch, the objective was to find the closest
encoded text for a given encoded image, using the
cosine distance metric. The evaluation metric for
this setting is the overall accuracy of image–text
matching over all batches:

acc =

∑S
i=1 # correct matches in batch i

D′
, (6)

V-L Batch ViT-B/32 RN50 RN50x4

encoder size

8 58.1% 49.1% 57.7%

CLIP 16 44% 36.1% 45.1%

32 21.6% 25.5% 33.1%

8 93.1% 89.2% 92.2%

PubMedCLIP 16 87.6% 81.1% 85.7%

32 80.1% 70.6% 76.2%

Table 4: Accuracy scores of image-text matching using
CLIP and PubMedCLIP vision–language encoders.

where S = ⌈D′
b ⌉. Table 4 summarizes the results

for batch sizes of 8, 16, and 32. PubMedCLIP
achieves over 40% improvement in comparison
to CLIP across all batch sizes, with the ViT-B/32
back-end achieving the best results. This shows the
effectiveness of our fine-tuning in PubMedCLIP.

Comparison of qualitative examples. In Fig-
ure 8, examples from the VQA-RAD and SLAKE
datasets are provided that illustrate the performance
of the original MEVF and QCR in comparison
with PubMedCLIP, used here as either the visual or
question encoder for QCR. PubMedCLIP_TE_VE,
PubMedCLIP_TE and PubMedCLIP_VE refer to
the scenarios of PubMedCLIP as both visual and
textual encoders, as textual encoder only, and as
the visual encoder only, respectively.

We find that the MEVF model often has diffi-
culties discerning which organ is depicted in the
image. For instance, regardless of the asked ques-
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 Is this an axial plane?

 Is there a rib fracture?

 Is there evidence of any fracture of the ribs?

 Describe the lung abnormalities?

 What abnormalities are seen whithin the lungs?

 Which plane is this image taken?

 What is the plane of this image?

1 0.14 0.08 0.06 -0.1 0.59 0.38

0.14 1 0.74 0.27 0.08 0.13 0.09

0.08 0.74 1 0.35 0.33 0.17 0.21

0.06 0.27 0.35 1 0.62 -0.1 -0.09

-0.1 0.08 0.33 0.62 1 0 0.01

0.59 0.13 0.17 -0.1 0 1 0.86

0.38 0.09 0.21 -0.09 0.01 0.86 1

GloVe+RNN
1 0.77 0.77 0.77 0.77 0.88 0.92

0.77 1 0.94 0.77 0.76 0.77 0.79

0.77 0.94 1 0.79 0.79 0.75 0.79

0.77 0.77 0.79 1 0.95 0.73 0.77

0.77 0.76 0.79 0.95 1 0.74 0.78

0.88 0.77 0.75 0.73 0.74 1 0.96

0.92 0.79 0.79 0.77 0.78 0.96 1

PubMedCLIP

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Pair-wise cosine similarities of questions from VQA-RAD encoded with GloVe+RNN compared with
PubMedCLIP. Each question is associated with a symbol and represented only by the symbol on the horizontal axis.

A

Question:

Answer:

MEVF:

QCR:

PubMedCLIP_TE_VE:

PubMedCLIP_TE:

PubMedCLIP_VE:

B C

What are the bright white,

structures, almost forming an X?

lateral ventricles

chest tightness ... ✗

extremities ✗

diffuse ✗

extremities ✗

lateral ventricles ✓

Where does the image 

represent in the body?

chest

atelectasis, effusion ✗

lower left lung ✗

no ✗

no ✗

chest ✓

Are there multiple or

just 1 metastatic focus?

one

right chest ✗

no ✗

yes ✗

both sides ✗

yes ✗

Figure 8: (A) Example from VQA-RAD dataset. (B) Example from SLAKE dataset. (C) Example from VQA-RAD
dataset that all models fail to answer correctly.

tion in Figure 8 (A), MEVF provides an answer
related to the chest region, while the image is of
the brain. This behaviour is also seen in Figure 8
(B) and 8 (C). From this perspective, QCR appears
to be providing answers that are at least relevant
to the given image. As Figure 8 (B) shows, the an-
swer provided by QCR is related to the chest X-ray,
although it is not a correct answer. Furthermore,
it is observed that when PubMedCLIP is used as
the question encoder, the model has difficulties pro-
viding the correct answers and often misinterprets
open-ended questions as close-ended. In contrast,
PubMedCLIP as the visual encoder successfully
yields the correct answers.

Figure 8 (C) shows an example from the VQA-
RAD that all models fail to answer correctly.
MEVF again provides irrelevant answers about
body organs not present in the image. QCR and
PubMedCLIP misinterpret the question as a yes/no
one. In spite of this, the fact that PubMedCLIP_VE
answers with “yes" may illustrate that it has at least

detected the “one" metastatic focus in the image. In
comparison, QCR answers with “no", showing its
troubles in interpreting the image and recognizing
the metastatic focus. Figure 8 (C) reveals that these
models still have shortcomings in understanding
questions and correctly relating them to the images.

6 Conclusion

This work introduces PubMedCLIP, a pre-trained
vision–language encoder for the medical domain
trained via contrastive learning of medical image–
caption pairs from PubMed articles. We demon-
strated that PubMedCLIP results in organ-aware vi-
sion and language embeddings and evaluated its ef-
fectiveness for the task of MedVQA in comprehen-
sive experiments across two heterogeneous Med-
VQA benchmarks. While PubMedCLIP’s text en-
coder is found to be less powerful for MedVQA, we
showed that PubMedCLIP’s visual encoder outper-
forms previously used pre-trained visual encoders
by up to 3%, leading to state-of-the-art results.
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Limitations

Although we envision that in the long term, Med-
VQA systems can be sufficiently successful and
trustworthy to aid medical practitioners towards
better interpreting medical images and providing
better healthcare, we emphasize that the develop-
ment of these systems is still in its infancy stage and
they are not yet ready for fully automated and unsu-
pervised use in real-world clinical settings. Despite
the notable improvement of accuracy in MedVQA
brought by PubMedCLIP, further evaluations of
these models from the vantage points of scalability,
trustworthiness, explainability, and generalizabil-
ity are required before they can be deployed for
sensitive clinical tasks. In future work, we plan
to perform further analysis of these models using
explainable AI techniques such as Grad-CAM vi-
sualizations to assess the regions of focus within
the image from the class activation maps. Fur-
thermore, due to a lack of suitable data to train
large-scale models for other languages, our cur-
rent experiments are limited to English language
MedVQA, so different findings may be observed
for typologically different languages. By releasing
PubMedCLIP, we hope to enable further research
investigating these aspects as well as its effective-
ness in other use cases, e.g., image classification for
medical diagnosis and radiology report generation.

Discussions on Ethics

As remarked above, MedVQA models are still in
their early stages of development and have limita-
tions that should be considered before being used
in any real-world scenarios.
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A Proxy-labeling ROCO dataset for
visualization purposes

In order to have a better analysis of the PCA visual-
izations when comparing CLIP and PubMedCLIP
encodings, we created proxy body location labels
by identifying organ-specific keywords in ROCO
captions. The complete list of keywords used for
each body location is provided in Listing 1. Fur-
thermore, the distribution of these proxy labels in
the ROCO validation dataset is shown in Figure 9.

1 chest = ['breast ', 'lung', 'rib', 'thoracotomy ', 'pulmonary ', 'mediastinal ',
2 'bronchus ', 'bronchoscopic ', 'bronchiectasis ', 'bronchial ',
3 'tuberculosis ', 'heart ', 'ventricle ', 'myocardial ', 'valve ',
4 'thorax ', 'thoracic ', 'echocardiogram ', 'echocardiography ',
5 'angioplasty ', 'diaphragm ', 'coronary ', 'cardiac ', 'coronaries ',
6 'thoracique ', 'chest ', 'mitral annulus ', 'empyema ']
7 #####################
8 abdomen = ['gastro -oesophageal ', 'gastrointestinal ', 'gastric ',
9 'abdomen ', 'abdomenal ', 'abdominal ', 'bowel ', 'colon ', 'liver ',

10 'kidney ', 'renal ', 'stomach ', 'ventral ', 'esophagus ', 'pancreas ',
11 'pancreatic ', 'pancreatitis ', 'hernia ', 'bladder ', 'gallstones ',
12 'gallbladder ', 'spleen ', 'splenic ', 'appendi ', 'intestine ',
13 'duodenum ', 'ileum ', 'jejunum ', 'rectum ', 'ovary ', 'uterus ',
14 'vagina ', 'cervix ', 'pregnancy ', 'cervical ', 'prostate ', 'penis ',
15 'testicle ', 'testis ', 'testicular ', 'urethrogram ', 'urethra ',
16 'ureteral ', 'ureter ', 'peritoneum ']
17 #####################
18 head = ['head', 'skullbase ', 'skull ', 'zygoma ', 'parieto -occipital ',
19 'parietooccipital ', 'parieto occipital ', 'cerebellar ', 'cerebellum ',
20 'brain ', 'caudate nucleus ', 'caudate ', 'ear', 'auditory canal',
21 'facial ', 'eye', 'sinus ', 'gland ', 'temporal lobe', 'frontal lobe',
22 'frontal bone', 'parietal bone', 'parietal lobe', 'occipital lobe',
23 'lymph ', 'nose', 'nasal ', 'mouth ', 'tongue ', 'cheek ', 'jaw',
24 'root canal', 'tooth ', 'teeth ', 'obturation ', 'periapical ', 'premolars ',
25 'dental ', 'parotid ', 'orthopantomograph ', 'orthopantomogram ',
26 'myelinolysis ']
27 #####################
28 neck = ['neck', 'throat ', 'theroid ', 'thyroid ', 'carotid ']
29 #####################
30 spine = ['foraminal ', 'spine ', 'disk', 'disc', 'spinal ', 'lumbosacral ',
31 'thoracic spine', 'lubmar ']
32 #####################
33 pelvic = ['pelvic ', 'pelvis ', 'hip', 'perineum ', 'iliac ', 'gluteal ']
34 #####################
35 hand = ['arm', 'shoulder ', 'elbow ', 'wrist ', 'hand', 'nail', 'finger ',
36 'humerus ', 'thumb ']
37 #####################
38 leg = ['tibias ', 'leg', 'thigh ', 'foot', 'feet', 'talus ', 'toe', 'knee',
39 'calcaneus ', 'fibula ', 'femur ', 'femoral ', 'femural ', 'prosthesis ',
40 'prostheses ', 'limb']
41 #####################
42 vein = ['vein', 'vessel ', 'vascular ', 'artery ', 'angioplasty ', 'angiography ',
43 'artial ', 'aorta ', 'aortogram ']
44 #####################
45 bone = ['bone']

Listing 1: Proxy-label keywords
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Figure 9: Distribution of proxy labels in ROCO.
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Abstract

While multilingual language models can im-
prove NLP performance on low-resource lan-
guages by leveraging higher-resource lan-
guages, they also reduce average performance
on all languages (the ‘curse of multilinguality’).
Here we show another problem with multilin-
gual models: grammatical structures in higher-
resource languages bleed into lower-resource
languages, a phenomenon we call grammati-
cal structure bias. We show this bias via a
novel method for comparing the fluency of mul-
tilingual models to the fluency of monolingual
Spanish and Greek models: testing their pref-
erence for two carefully-chosen variable gram-
matical structures (optional pronoun-drop in
Spanish and optional Subject-Verb ordering in
Greek). We find that multilingual BERT is bi-
ased toward the English-like setting (explicit
pronouns and Subject-Verb-Object ordering) as
compared to our monolingual control language
model. With our case studies, we hope to bring
to light the fine-grained ways in which multi-
lingual models can be biased, and encourage
more linguistically-aware fluency evaluation.

1 Introduction

Multilingual language models share a single set of
parameters between many languages, opening new
pathways for multilingual and low-resource NLP.
However, not all training languages have an equal
amount, or a comparable quality of training data
in these models. In this paper, we investigate if
the hegemonic status of English influences other
languages in multilingual language models. We
propose a novel method for evaluation, whereby
we ask if model predictions for lower-resource lan-
guages exhibit structural features of English. This
is similar to asking if the model has learned some
languages with an “English accent”, or an English
grammatical structure bias.

We demonstrate this bias effect in Spanish and
Greek, comparing the monolingual models BETO

Monolingual 

model


Control ratio

Multilingual

model
 Test ratio


Compare: 

Is multilingual model

more English-biased?

English-like corpus:
Spanish with

pronoun

Non-English-like
corpus: 


Spanish with
Prodrop

Figure 1: Our method for evaluating English structural
bias in multilingual models. We compare monolingual
and multilingual model predictions on two sets of natu-
ral sentences in the target language: one which is struc-
turally parallel to English, and one which is not.

(Cañete et al., 2020) and GreekBERT (Koutsikakis
et al., 2020) to multilingual BERT (mBERT),
where English is the most frequent language in
the training data. We show that mBERT prefers
English-like sentence structure in Spanish and
Greek compared to the monolingual models. Our
case studies focus on Spanish pronoun drop (pro-
drop) and Greek subject-verb order, two structural
grammatical features. We show that multilingual
BERT is structurally biased towards explicit pro-
nouns rather than pro-drop in Spanish, and subject-
before-verb order in Greek: the structural forms
parallel to English.

Though the effect we showcase here is likely not
captured by the downstream classification tasks of-
ten used to evaluate multilingual models (Hu et al.,
2020), it demonstrates the type of fluency that can
be lost with multilingual training — something that
current evaluation methods miss. In fact, though
we choose two clear-cut syntactic features to in-
vestigate, there are many less-measurable features
that make language production fluent: subtleties in
lexical choice, grammatical choice, and discourse
expression, among many others. With this paper,
beyond showing a trend for two specific grammati-
cal features, we wish to highlight fluency discrepan-
cies in multilingual models, and also call for more
evaluations focused on fluency.
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Sparallel: English-like structure Sdifferent: Different structure
Spanish explicit pronoun (pron in orange, verb in blue) Spanish prodrop (verb in blue)

Yo volveré para averiguarlo Jamás dan soluciones y siempre [. . . ]
I will return to figure it out [They] Never give solutions and always [. . . ]

El 2004 , ella hizo doblaje a el Inglés [. . . ] Jugó de centrocampista en el Real Zaragoza
In 2004, she did dubbing to English [. . . ] [He/She/You] Played as a midfielder in Real Zaragoza

Ella decide pasar sus vacaciones en la granja Habita en Perú .
She decides to spend her vacation in the country [He/She/You] Lives in Peru

Greek Subject-Verb (subject in orange, verb in blue) Greek Verb-Subject (subject in orange, verb in blue)

Πηγές της Αντιπολίτευσης αναφέρουν ότι [. . . ] Το σκορ του αγώνα άνοιξε ο Γουέν Ρούνι
Sources of the Opposition mention that [. . . ] The score of the game opened Wayne Rooney

Σε άλλες πλευρές ο ποταμός κυλά από ψηλούς
βράχους

Εδώ πρέπει να γίνουν μεγαλύτερες προσπά-
θειες.

On other sides, the river flows from tall boulders Here must happen bigger efforts

Η εκπαίδευση και η μόρφωση απέκτησαν
επιτέλους προτεραιότητα

Απασχόληση στο εξωτερικό ψάχνουν οι μισοί
΄Ελληνες σε παραγωγική ηλικία

Training and education have finally acquired priority Employment in foreign countries search half of Greeks

Table 1: Examples from our dataset for Sparallel and Sdifferent in Spanish and Greek, along with roughly word-by-word
gloss translations in English. In all cases, we’ve underlined w(x), the word we use to represent the construction in
our calculations. These examples are not randomly selected and have been chosen to be significantly shorter than
the average sentence in our datasets in order to be presentable in a table.

Our proposed method can be expanded, without
the need for manual data collection, to any lan-
guage with a syntactic treebank and a monolingual
model. Since our method focuses on fine-grained
linguistic features, some expert knowledge of the
target language is necessary for evaluation. Multi-
lingual evaluation so far has been largely translated
or automatically curated, and the methods for cre-
ating such datasets have allowed for the creation
of resources in many languages for which there
there were none. Fluency evaluation requires some
linguistic expertise to set up, and as such is more
restricted in the languages the research community
can reach. Nevertheless, such evaluation has been
missing from the multilingual NLP literature, and
our work bridges this gap by proposing fluency
testing for multilingual models.

Our work builds off of a long literature on mul-
tilingual evaluation which has until now mostly
focused on downstream classification tasks (Con-
neau et al., 2018; Ebrahimi et al., 2022; Clark et al.,
2020; Liang et al., 2020; Hu et al., 2020; Raganato
et al., 2020; Li et al., 2021). With the help of
these evaluation methods, research has pointed out
the problems for both high- and low-resource lan-
guages that come with adding many languages to a
single model (Wang et al., 2020; Turc et al., 2021;

Lauscher et al., 2020, inter alia). Methods for cre-
ating more equitable models have been proposed,
through identifying or reserving language-specific
parameters for each language (Ansell et al., 2022;
Pfeiffer et al., 2022), through training models with-
out tyoplogically distant languages that dominate
the training data (Ogueji et al., 2021; Virtanen
et al., 2019; Ògúnrè.mí and Manning, 2023), as
well as through adding model capacity (Conneau
et al., 2020; Xue et al., 2021; Lepikhin et al., 2021;
Liang et al., 2023). We hope that our work can add
to these analyses and methodologies by pointing
out issues beyond downstream classification perfor-
mance that can arise with multilingual training, and
aid towards building and evaluating more equitable
multilingual models.

2 Method

Our method relies on finding a variable construc-
tion in the target language which can take two struc-
tural surface forms: one which is parallel to English
(Sparallel) and one which is not (Sdifferent). Surface
forms parallel to English are those which mirror
English structure. For example, English has strict
Subject-Verb-Object word order, and so a parallel
structure in another language is one where the verb
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and its arguments appear in Subject-Verb-Object
order, while a different structure is one where the
verb appears before the subject (see Table 1 for
examples).

Once we have identified such a construction
in our target language, we can ask: are multilin-
gual models biased towards Sparallel? For a native
speaker of the target language, structural, semantic,
and discourse features determine whether they will
use Sparallel or Sdifferent in a given context — with
the alternative option usually being less fluent. We
assume that a BERT-sized monolingual model in
the target language will have a sufficiently accu-
rate representation of this fluent variation between
Sparallel and Sdifferent without being influenced by
other languages. Therefore, to understand if multi-
lingual models have an English structural bias, we
now just have to answer: do multilingual models
prefer Sparallel over Sdifferent more than the fluent
distribution defined by a monolingual model?

2.1 Collecting model judgements

By design, both Sparallel and Sdifferent are construc-
tions that occur naturally in the target language.
Therefore, we should be able to use the syntactic
treebank annotations to pick out sentences that ex-
hibit the structures Sparallel or Sdifferent. We can put
these extracted sentences into two corpora, Cparallel
and Cdifferent. Note that the sentences in Cparallel
and Cdifferent are unrelated and not paired, and that
the two corpora can have different sizes. Crucially,
we have to use natural sentences for both of our
corpora: we cannot artificially alter sentences from
Sparallel to Sdifferent, or use templates to create sen-
tences. This is because our evaluation is about the
subtleties of fluency, while altered or templated
stimuli are not naturally produced and are therefore
often awkward, confounding any effect we might
want to measure.

Each model gives us a ratio rmodel: the aver-
age probability of a sentence in Cparallel divided by
the average probability of a sentence in Cdifferent
according to the model. That is:

rmodel =

∑
x∈Cp Pmodel(x) / |Cp|∑
x∈Cd Pmodel(x) / |Cd|

(1)

We want to compare judgements on these cor-
pora from two models: a monolingual model mono
and a multilingual model multi. Our experimen-
tal question then boils down to asking if rmulti is
significantly larger than rmono.

2.2 From model outputs to construction
probability

How can we calculate Pmodel(x) for a given sen-
tence x, focusing on the probability of a specific
construction in x? Looking at model judgements
over long natural sentences introduces a lot of
noise that is unrelated to the structural construc-
tion in question, reducing the statistical power of
our experiment. Furthermore, since we are look-
ing at encoder-only bidirectional models, there is
no canonical or controlled way of extracting the
probability of a whole sentence. To get a better
model judgement for each sentence, we can extract
the probability of one word in each sentence that
best represents the construction. For example, if
we are looking at pronoun drop, it makes sense to
use main verb of the sentence as the target word,
as this is the syntactic head of the pronoun that is
present or dropped. Using a carefully chosen word
as a proxy for the probability of a construction is a
methodological choice also made in reading time
psycholinguistics experiments (Levy, 2011; Levy
and Keller, 2013).

Going back to our problem of calculating
Pmodel(x), we definew to be a function that returns
the structurally-relevant word from each sentence.
Using this, we approximate Pmodel(x) in Eq. (1)
with Pmodel(w(x)|x). The probability P (w(x)|x)
is simple to calculate for BERT-style masked lan-
guage models: it is simply the logit of the word
w(x) when we encode the sentence x using model.

2.3 Extending to more languages

Extending our fluency evaluation to a new language
requires three language-specific steps: (1) decide
on an appropriate construction with two structural
forms Sparallel and Sdifferent, (2) decide on an appro-
priate w(x): which word in each structural form
can represent the form, and (3) use treebank anno-
tations to pull out sentences which exhibit Sparallel
or Sdifferent, and identify the relevant word. Below,
we detail these steps for our two case studies.

2.4 Case Study: Spanish Pro-drop

In Spanish, the subject pronoun is often dropped:
person and number are mostly reflected in verb
conjugation, so the pronoun is realized or dropped
depending on semantic and discourse factors. En-
glish, on the other hand, does not allow null sub-
jects except in rare cases, and expletive syntactic
subjects like “there” are even added when there
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Escribió numerosas obras de historia

Entonces ella toma la bandera de la revolución

Verb
Pronoun
example

Prodrop
 example

Pronoun

Verb

Figure 2: Results from our experiment on the Spanish
GSD treebank, along with two examples from the tree-
bank to illustrate Sparallel (with pronoun) and Sdifferent
(pro-drop). We compare model logits for the main verb
of the sentence, which is bold and highlighted in the ex-
amples. Error bars represent 95% bootstrap confidence
intervals. We find that rmono is significantly smaller than
rmulti (bootstrap sampling, p < 0.05).

is no clear subject. For our Spanish experiment,
we define Sparallel to be sentences which have the
subject pronoun of the main verb, as is necessary
in English, and Sdifferent to be pro-drop sentences
which have a main verb with no realized subject.
We define w to be the main verb of the sentence,
which is always present in our extracted examples.

To extract our corpora Cparallel and Cdifferent, we
use the Spanish GSD treebank from the Universal
Dependencies dataset (De Marneffe et al., 2021).
We ignore all sentences not verb-rooted (i.e. noun
phrases), those rooted with “haber” (which in its
copula-like existential form cannot take an explicit
subject, “There is” in English), and those using
the impersonal-“se” passive construction (e.g. “se
nos fue permitido”, “it was permitted of us”). We
then take all sentences with a pronoun subject (i.e.
a pronoun dependent of the root verb) and add
them to Cparallel and all sentences where there is
no nsubj relation to root verb and add them to
Cdifferent. We always pick the main root verb of the
sentence as our w. We collect 283 sentences in
Cparallel and 2,656 sentences in Cdifferent.

2.5 Case Study: Greek Subject-Verb order
English is a fixed word order language: with few
exceptions, the order of a verb and its arguments is
Subject-Verb-Object. Greek, on the other hand, has
mostly free word order (Mackridge, 1985), mean-
ing that the verb and arguments can appear in any
order that is most appropriate given discourse con-
text. For our experiment, we define Sparallel to be
cases in Greek when the subject precedes the verb,
as is the rule in English. Sdifferent is then the cases
when the verb precedes the subject, which almost
never happens in English.

We define w to be the first element of the subject
and verb: the subject when the subject comes first
or the verb when the verb comes first. This first
element is closer to the surrounding context, and
so gives us a word-order-sensitive measurement of
how the subject-verb construction is processed as
a whole within the context. Though this choice
means that our w is a noun in Sparallel and a verb
in Sdifferent, this does not constitute a confounder
between models: we are comparing the same noun-
verb probability ratio between different models.

To extract our corpora Cparallel and Cdifferent, we
use the Greek Dependency Treebank, the Universal
Dependencies treebank for Greek (Prokopidis and
Papageorgiou, 2017). We take all sentences where
the main verb has a lexical subject, and we add
to Cparallel if the subject appears before the verb
and to Cdifferent if it appears after. We collect 1,446
sentences in Cparallel and 425 sentences in Cdifferent.

3 Results

Results are shown in Figures 2 and 3, showing for
both of our case studies that multilingual BERT
has a greater propensity for preferring English-
like sentences which exhibit Sparallel. Multilingual
BERT significantly prefers pronoun sentences over
pro-drop compared with monolingual BETO (boot-
strap sampling, p < 0.05), and significantly prefers
subject-verb sentences over verb-subject sentences
over GreekBERT (bootstrap sampling, p < 0.05).

4 Discussion

In this paper, we proposed fluency evaluation as
a further way of understanding the curse of multi-
linguality: what can be lost when we train many
languages together. The discrepancies that we point
out in these experiments are not going to seriously
affect multilingual LM performance, especially in
the more coarse-grained classification tasks that
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Στις 3_Σεπτεμβρίου ξέσπασε επανάσταση

Ο πρώτος αγώνας έληξε με σκορ 3:2

Subject Verb

SubjectVerb

Subject first
 example

Verb first
 example

Figure 3: Results from our experiment on the Greek De-
pendency Treebank, along with two examples from the
treebank to illustrate Sparallel (Subject-Verb) and Sdifferent
(Verb-Subject). We measure and compare model logits
for the bold words: the subject in subject-verb sen-
tences and the verb in verb-subject sentences. Error
bars represent 95% bootstrap confidence intervals. rmono
is significantly smaller than rmulti (bootstrap sampling,
p < 0.05).

are most commonly used for evaluation. But, as
we demonstrate here, not all levels of language
learning can be evaluated from such datasets.

Our experiments do not pinpoint the reasons be-
hind the effects that we measure: there are dif-
ferent possible explanations for the English-like
trends that we showcase. On the one hand, the
effects we measure might stem from training with
a language that’s more dominant in the training
data, like English is for many multilingual mod-
els. Such training could lead to an English-biased
representation space which the representations of
other languages conform to. On the other hand, the
effects we show might be down to the data: the
non-English datasets used to train a multilingual
model may be more limited in domain, may con-
tain a high proportion of data that’s actually been
translated from English (Multilingual Wikipedia
is often translated, Adar et al., 2009), or might
be more polluted with irrelevant or non-linguistic
elements. Domain limitations and translationese
stemming from the data are separate, but related
issues to fluency: fluency can be grammatical, but

also involves proficiency in a range of registers or
possibilities. It is also possible that the effects we
show are due to a combination of both multilingual
representation learning artifacts, and training data
quality. Further controlled fluency experimentation
on the limits and abilities of multilingual models
is needed to disentangle these effects. We hope
the case studies in this paper can inspire more fine-
grained evaluation of multilingual models, so that
we understand the “accent”-like effects of hege-
monic languages more fully.

5 Limitations

This study is meant to highlight the kinds of model-
ing flaws that have so far gone undetected and that
can arise for lower-resource languages in multilin-
gual models. However, our study does not focus
on languages that are truly low-resource. In fact,
as designed it could not do so: our methodology
relies on having an available monolingual model,
which of course requires a large amount of train-
ing data. This is because our method requires a
control: we can only judge multilingual models
against what we can believe to be a non-biased lan-
guage model in the language. There are ways to test
for fluency in low-resource languages that would
not require a monolingual model as a control, but
would require dataset collection in the target lan-
guage for features that reflect fluency and linguistic
acceptability (similar to what Warstadt et al. (2019)
achieve with the CoLA dataset for English). We
hope our study can create motivation for such work
in linguistically-aware, fine-grained multilingual
evaluation for languages of all resource levels.

Our experiments focus on BERT-style models,
since this is mostly the size of model available
for monolingual, non-English models (in our case
BETO and GreekBERT). However, it is not nec-
essary from these experiments that our findings
extrapolate to larger models that are commonplace
at the time of writing.

Lastly, both pro-drop and subject-verb order are
largely discourse-dependent constructions. For ex-
ample, pro-drop is more likely when the subject of
the sentence is very clear from the discourse, while
subject-verb order in Greek is changed to achieve
different discourse focus, similar to how intonation
changes the focus of a sentence in English (e.g.,
stressing the verb in “Mary helped John” puts the
focus on the verb, which in Greek can be done by
putting the verb first). Despite this, all of our ex-
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periments are done on isolated sentences from the
UD treebanks and do not contain discourse content.
Though this means that the models do not have
the full relevant context for each input, we do not
expect that having more context should favor one
model more than another for our evaluation. Since
this work compares models on the same inputs, we
did not consider this a significant confounder.
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Abstract

Vision-and-language (V&L) models pre-
trained on large-scale multimodal data have
demonstrated strong performance on various
tasks such as image captioning and visual
question answering (VQA). The quality
of such models is commonly assessed by
measuring their performance on unseen
data that typically comes from the same
distribution as the training data. However,
when evaluated under out-of-distribution
(out-of-dataset) settings for VQA, we observe
that these models exhibit poor generalization.
We comprehensively evaluate two pretrained
V&L models under different settings (i.e.
classification and open-ended text generation)
by conducting cross-dataset evaluations. We
find that these models tend to learn to solve the
benchmark, rather than learning the high-level
skills required by the VQA task. We also
find that in most cases generative models are
less susceptible to shifts in data distribution
compared to discriminative ones, and that
multimodal pretraining is generally helpful
for OOD generalization. Finally, we revisit
assumptions underlying the use of automatic
VQA evaluation metrics, and empirically
show that their stringent nature repeatedly
penalizes models for correct responses.

1 Introduction

Visual Question Answering (VQA) is the task of
automatically answering natural language open-
ended questions about images. Tackling VQA in-
volves multiple skills, such as language and visual
understanding, integrating information between the
two (vision and language) modalities, and com-
monsense and knowledge based reasoning. One of
the goals of the VQA research has been fostering
the development of systems that are able to answer
any open-ended question about any image. This

∗denotes equal first author contribution. † denotes equal
contribution. ‡ denotes equal senior contribution. Detailed
contributions follow at the end of the paper.

motivation has inspired a fruitful line of research in
designing VQA benchmarks (e.g., Malinowski and
Fritz, 2014; Antol et al., 2015; Krishna et al., 2017;
Goyal et al., 2017; Hudson and Manning, 2019)
and models (e.g., Yang et al., 2015; Anderson et al.,
2018; Lu et al., 2019; Cho et al., 2021).

In this work, we investigate if recent pretrained
VQA models can indeed answer any open-ended
question about images or if they are mostly suitable
for answering questions from the VQA benchmarks
they are optimized for. In other words, are models
learning to solve the task or learning to solve the
datasets? We believe the former is more aligned
with the goal of building real-world VQA systems.

To measure whether models learn to solve the
task of VQA, we believe we need to examine their
out-of-distribution (OOD) generalization capabil-
ities: how they perform on examples drawn from
a distribution other than that of the training set.
In this work, we extensively evaluate OOD gen-
eralization of current pretrained V&L models by
conducting cross-dataset evaluations (without any
adaptation to the test domain).

Through our extensive experiments, we provide
in-depth discussion on the following questions:

• How well do recent models generalize under
OOD settings? We observe a notable drop in
performance from IID to OOD settings across
models and benchmarks, demonstrating that
models mostly learn to solve specific bench-
marks as opposed to learning general skills for
answering questions about images. This result
is not simply due to a mismatch between the
set of answers between the training and test
VQA datasets, nor due to poor representation
of test answers in VQA training data.

• Is multimodal pretraining beneficial for OOD
generalization? We find that while image–text
pretraining is helpful in most OOD settings,
it is not always more useful than in IID ones.
Moreover, it is least useful for OOD evalua-
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tion on the VIZWIZ benchmark, highlighting
the challenges of a real-world benchmark.

• Is generative modeling more robust to distri-
bution shifts? In most cases, we observe that
generative models—which are not bound to
predictions over a fixed set of answers cu-
rated from the training data—are more ro-
bust to OOD evaluation than discriminative
(i.e., classification-based) ones. Moreover, we
quantify what the limitations of discrimina-
tive models are for real-world VQA applica-
tions (e.g., answering questions of visually-
impaired users), where the answers a de-
ployed model needs to produce cannot be pre-
determined.

• Are current automatic VQA metrics too strin-
gent for OOD evaluation? We examine if
the performance of our pretrained models
is negatively impacted by the current stan-
dard VQA accuracy metrics, which match pre-
dicted answer strings to a limited number of
ground-truth answers. Human evaluation re-
veals the stringent nature of such accuracy
metrics, which is especially pronounced in
the OOD settings. Nevertheless, while the
IID-to-OOD performance gap is reduced after
human evaluation, models still exhibit poor
generalization to OOD VQA benchmarks.

We believe our OOD evaluations and supporting
analyses expose the shortcomings of current mod-
els, and recommend future work to adopt these
evaluation practices to provide real-world, robust
assessment of VQA systems.

2 Related Work

Beyond IID evaluation in VQA. Previous work
has evaluated VQA models beyond the IID setting
for robustness to specific and controlled aspects
– novel compositions of seen concepts (Agrawal
et al., 2017; Johnson et al., 2017; Hudson and
Manning, 2019), change in prior distributions of
answers per question type (Agrawal et al., 2018;
Gokhale et al., 2020; Niu et al., 2021), adversar-
ial examples provided by humans (Sheng et al.,
2021; Li et al., 2021b), consistency, negation, and
simple perturbation in questions (Jimenez et al.,
2022), counter-examples (Dancette et al., 2021),
and controlled shifts in language and vision modal-
ities (Akula et al., 2021). Our focus, however, is to
evaluate for overall robustness to OOD data with-
out controlling for specific aspects, by testing our

models on different OOD benchmarks. We believe
our experimental setting more closely emulates the
expected experience of deployed VQA systems.
Moreover, when the exact nature of distribution
shift between train and test splits is known (such as
in (Agrawal et al., 2018)), approaches developed to
tackle such shifts tend to rely on the explicit knowl-
edge of construction of such OOD splits resulting
in inflated sense of progress (Teney et al., 2020).

Similar to us, Zhang et al. (2021); Hudson and
Manning (2019) also present some experimental
results on VQA OOD evaluation, however they do
it in limited manner (e.g., do not consider all pairs
of datasets, do not evaluate the effect of multimodal
pretraining, etc.). To our best knowledge, ours is
the first work to extensively quantifying the extent
of IID to OOD performance drops in current VQA
models and study the effect of several factors: an-
swer overlap, multimodal pretraining, generative
vs. discriminative modeling, and stringent evalua-
tion metric.

Domain adaptation in VQA. Some studies
(Jabri et al., 2016; Chao et al., 2018; Zhang et al.,
2021) have explored domain adaptation of VQA
models from one VQA benchmark to another. Our
focus, instead, is on evaluating zero-shot cross-
benchmark generalization without any adaptation.
This allows us to assess the robustness of current
models towards unforeseen distribution shifts. Our
work is similar to that of Torralba and Efros (2011)
and Hendrycks et al. (2020), who study OOD gen-
eralization in vision and text.

Zero-shot VQA with pretrained models. In
an emerging line of research (Tsimpoukelli et al.,
2021; Alayrac et al., 2022; Song et al., 2022; Pier-
giovanni et al., 2022), large-scale pretrained uni-
modal models (Brown et al., 2020; Radford et al.,
2021) are repurposed to tackle VQA in zero-shot
or few-shot fashion. While such zero-shot VQA
evaluations are a better test of generalization than
IID evaluations, our focus, differently, is on inves-
tigating whether models can generalize to unseen
datasets upon being taught the task by showing ex-
amples from one dataset. Moreover, this line of
work does not focus on a thorough analysis of mod-
els in OOD settings (which is hard to define for
these models due to the massive amount of data
they are pretrained on).
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3 Experimental Setup

In this section, we present our framework to exam-
ine OOD generalization in VQA. We examine two
pretrained Transformers across five benchmarks.

3.1 Models

We evaluate the performance of two representative,
widely-used pretrained models that have achieved
strong performance in various V&L tasks in the last
few years: VILBERT (Lu et al., 2019) and AL-
BEF (Li et al., 2021a). We evaluate these models in
a broad range of settings (generative/discriminative,
w/wo pretraining, and multiple benchmarks), result-
ing in 128 experiments. We chose these models
as they include components shown to be impor-
tant in the literature: cross-attention (VILBERT
and ALBEF), and contrastive learning (ALBEF).
We note that our goal is to study trends that hold
across different models, and we leave for future
work controlled comparisons across architectures.

VILBERT is one of the first, yet strong models in
the recent pretrain–fine-tune paradigm in V&L. Its
inputs are a sequence of sub-word tokens (Wu et al.,
2016), and a set of regions of interest given by a
Faster R-CNN (Ren et al., 2015; Anderson et al.,
2018). The authors fine-tune it on VQAV2 by learn-
ing a classifier over the most frequent answers. We
first re-implement this model successfully, and then
extend it to a generative setting by pretraining and
fine-tuning a Transformer decoder (more details in
App. A). We denote the discriminative/generative
version as VILBERTDISC/VILBERTGEN. Unless
otherwise specified, results for VILBERTDISC are
from our code base for direct comparison with VIL-
BERTGEN.

ALBEF is a state-of-the-art V&L encoder
whose visual inputs are image patches encoded
by a vision Transformer (Dosovitskiy et al., 2021;
Touvron et al., 2021) that is jointly trained with the
rest of the model. Li et al. (2021a) fine-tune AL-
BEF on VQAV2 by adding a 6-layer Transformer
decoder to generate answers (ALBEFGEN). We use
the official implementation,1 and furthermore train
a discriminative variant (ALBEFDISC) by learning
a multi-answer classifier, as in VILBERTDISC.

In our analysis, we investigate the role of multi-
modal pretraining. VILBERT was pretrained on
3M image–text pairs from Conceptual Captions
(CC; Sharma et al. 2018). Li et al. (2021a) re-

1https://github.com/salesforce/ALBEF.

Dataset # Train (imgs / qns) # Val (imgs / qns) # Classes Coverage [%]

VQAV2 82,783 / 443,757 40,504 / 214,354 3,129 98.07 / 98.07
GQA 72,140 / 943,000 10,234 / 132,062 1,533 99.78 / 99.79
VG 59,635 / 868,259 39,645 / 577,063 3,449 76.55 / 76.55
VIZWIZ 20,523 / 20,523 4,319 / 4,319 3,112 96.76 / 97.01

Table 1: Datasets statistics. #classes is the number of
classes we use for the discriminative models; cover-
age is the percentage of questions that can be answered
with our selected classes in train/validation splits.

leased two checkpoints for ALBEF: one pretrained
on 4M images from CC, MS-COCO (Lin et al.,
2014), SBU (Ordonez et al., 2011) and Visual
Genome (Krishna et al., 2017); the other one is fur-
ther pretrained on Conceptual 12M (Changpinyo
et al., 2021) for a total of 14M images.2

3.2 Datasets and Evaluation Metrics

Datasets. We ground our analysis on five di-
verse VQA datasets: VQAV2 (Goyal et al., 2017),
GQA (Hudson and Manning, 2019), VISUAL

GENOME (VG; Krishna et al. 2017), VIZWIZ (Gu-
rari et al., 2018) and VQA-CP (Agrawal et al.,
2018). VQAV2 is the most commonly used VQA
dataset to date. VQA-CP re-splits it such that, for
every question type, train and test sets have differ-
ent prior distributions of answers. VG includes
questions centered around either the full image or
a specific region. GQA is a large-scale dataset that
focuses on compositionality of template-generated
questions. Finally, VIZWIZ is the only real-world
VQA dataset, collected from visually-impaired peo-
ple. VG and GQA have one answer per question,
while the other datasets include 10 answers per
question. See Tab. 1 and App. A for more details.

There are several differences among these
datasets. Both VQAV2 and GQA mostly have
one-word answers (89% and 81%, respectively)
whilst there are fewer in VG (57%) and VIZWIZ

(67%). The type of questions also varies: VG does
not contain binary ‘yes/no’ questions, but rather
spans 6 WH-questions. By design, GQA questions
require more compositional skills but do not test for
counting; while VIZWIZ questions are more con-
versational as they were collected through a speech
interface and has a significant proportion of OCR
questions (21%). Moreover, a significant number
of VIZWIZ questions (28%) are unanswerable due
to the challenges faced by the visually-impaired
users in taking pictures, resulting in poor focus,

2We also conducted experiments with VILBERT pre-
trained on same datasets as the 4M ALBEF checkpoint. We
found no significant difference compared to the results pre-
sented throughout this paper.
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Figure 1: IID (highlighted in bold) vs. OOD performance. Top: VILBERT pretrained on CC. Bottom: ALBEF
pretrained on CC, VG, SBU, MS-COCO and C12M datasets. All models are initialized with BERT weights.

poor lighting or entirely missing the entity of inter-
est. As such, the distribution of images in VIZWIZ

is different from other datasets.

Evaluation metrics. These VQA benchmarks
compute model accuracy between its prediction
and the ground-truth answer(s) by string match-
ing (after simple pre-processing). VQAV2 and
VIZWIZ, each with 10 answers per question, ac-
count for diversity in ground-truth answers by scor-
ing a given model answer as min{1.0, 0.3×count},
where count is the number of annotators that used
that answer. For GQA and VG, both with one
answer per question, we use top-1 accuracy.3

3.3 Training Details

Following common practice, for discriminative
models, we select the top-k most frequent answers
as the set of answer classes to perform classification
over. Here k is a dataset-dependent variable, cho-
sen to cover most of the questions (see Tab. 1). All
models are trained on the respective training sets
and evaluated on the validation sets. For VG, we
randomly split the data into training and validation
(60%/40%) with no image is in both splits.

4 Out-of-Distribution Generalization

We examine to what extent our models learn to
solve a specific VQA benchmark by latching on
dataset-specific correlations, as opposed to learning

3We note that GQA and VG propose top-5 accuracy. We,
instead, opt for top-1 accuracy to keep a consistent setup with
VQAV2 and VIZWIZ. And we believe top-5 accuracy is im-
practical for many applications, such as answering questions
for visually-impaired users.

more general skills required in VQA. We fine-tune
a pretrained model on the train split of one bench-
mark (e.g., GQA) and evaluate it on the validation
split of a different one (e.g., VG). Overall, we eval-
uate models by fine-tuning them on each bench-
mark and testing them against all benchmarks. If
pretrained models are indeed learning the VQA
skill, we expect to see a small drop in performance
between the IID and OOD settings.

The results are presented in Fig. 1, with differ-
ent evaluation benchmarks grouped on the x-axis.
First, across all models and for each benchmark, we
see a notable drop in the VQA accuracy from the
IID to the OOD setting. While such a drop might
be anticipated, we found the extent of the drop sur-
prising given the impressive performance of current
pretrained VL models. For all models shown, the
largest drops are observed when evaluating models
on the VIZWIZ benchmark. Moreover, even the
smallest performance drop, which happens when
fine-tuning models on VQAV2 and evaluating them
on VG, remains relatively large (i.e., 5.3 points for
ALBEFGEN). These results show that pretrained
models are largely learning the fine-tuning bench-
mark without learning to solve the VQA task.

Second, we observe that fine-tuning on VQAV2
results in the lowest drop in IID to OOD per-
formance across all conditions—the VQAV2 bar
(shown in blue in Fig. 1) is the closet to the IID one
for GQA, VG, and VIZWIZ. We conclude that
fine-tuning on VQAV2 yields a model that best
generalizes to OOD settings in our benchmarks.
This result is not simply due to the size of the fine-
tuning benchmark as VG is larger than VQAV2.
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Similarly, all the models achieve highest OOD per-
formance on VQAV2. We conjecture that VQAV2
is the most diverse benchmark of our selection.

4.1 Evaluating on Shared Answer Sets
Discriminative models treat VQA as a multi-
answer classification task over the set of top-k most
frequent answers in the fine-tuning data. This lim-
its their performance: if a certain answer is not
frequent in the fine-tuning data, a discriminative
model will perform poorly for such an answer dur-
ing test time. While this limitation also affects IID
evaluation, we expect it to have a stronger effect
in OOD generalization (due to potentially different
answer distributions between the fine-tuning and
test sets). We next examine to what extent this
limitation affects OOD performance by controlling
for the mismatch in answer sets between the fine-
tuning and test sets. We do so by considering only
the test questions whose answers are included in
the top-k answers of a given fine-tuning dataset
(for more details, see App. B).

Fig. 2 shows the improvement in the VQA accu-
racy over the IID and OOD evaluation accuracy (in
Fig. 1) when controlling for the shared answer set.
For IID evaluation, only one intersection of answer
sets is reported, corresponding to the smallest gap
between IID and OOD evaluation, with remaining
numbers reported in Tab. 10 (App. B). Thus, the
difference between the height of the IID bar (#)
and the OOD bar (*) with respect to which answer
intersection between IID and OOD is computed,
represents the best case scenario for OOD general-
ization, i.e., the least drop from IID to OOD.

We observe a similar pattern across the models:
in most cases, using a shared answer set improves
the performance. Overall, we still observe a no-
table gap between the OOD and IID settings for the
best case OOD generalization scenario, showing
that a shared answer set does not circumvent the
difficulty of OOD generalization for these models.
A few cases where IID evaluations with a shared an-
swer set hurt performance are discussed in App. B.
When evaluating on the shared answer set, we fur-
ther examine if the drop in accuracy from IID to
OOD is due to the low frequency of the test answer
classes in the OOD fine-tuning set. The details
of the correlation computation and the results are
explained in App. B and Tab. 9, respectively. This
result indicates that frequency of the answer class
is a contributing factor to the weak OOD general-
ization, but we also explore other causes in Sec. 7.

VQAV2 GQA VG VIZWIZ

VQAV2 92.9 96.7 65.1 43.6
GQA 73.5 99.9 44.8 36.6
VG 52.7 62.4 74.2 32.3
VIZWIZ 79.4 82.5 40.9 86.2

Table 2: Maximum achievable accuracy for all test an-
swers based on the top-k answers present in the respec-
tive fine-tuning sets. Rows correspond to fine-tuning
datasets, columns correspond to the test benchmarks

4.2 The Case for the Generative Evaluation

A discriminative model cannot correctly answer
questions for which the answers lie outside the pre-
defined top-k classes; therefore, by treating VQA
as a classification task, we can define the upper-
bound performance of discriminative models on
VQA by computing the accuracy given all answers
in the test set being answered correctly. The upper-
bound VQA accuracy is shown in Tab. 2; we ob-
serve a large drop from IID to OOD evaluations for
most conditions. VIZWIZ has the lowest achiev-
able accuracies in OOD evaluation.

However, our ALBEFDISC and VILBERTDISC
models still perform notably worse than maximum
achievable accuracy in all settings (smallest gap of
21.5% across all conditions, see Fig. 7 in App. B);
as a result, the poor OOD performance in the dis-
criminative setting is not simply due to the low
maximum achievable accuracy. We conclude that
the common practice of modeling VQA as a classi-
fication task severely limits the generalization capa-
bility of models to new datasets. On the other hand,
generative models do not suffer from a fixed class
set. They can generate a larger set of answers—all
words for which the tokens occur in the pretraining
data, including those that are out-of-vocabulary for
the given VQA fine-tune datasets. We argue that
generative modeling is a more promising solution
for real-world application of VQA; similarly, re-
cent work has identified text generation as a way
to unify various V&L tasks (e.g., Cho et al., 2021;
Wang et al., 2022; Alayrac et al., 2022).

We next ask whether our VILBERTGEN and
ALBEFGEN models are more successful in OOD
generalization compared to their discriminative
counterparts. For each model (i.e., genera-
tive/discriminative ALBEF/VILBERT), we first
calculate the gap between the IID setting and each
OOD setting (i.e., ∆ OOD), resulting in three val-
ues per benchmark. For instance, for the VQAV2
benchmark, ∆ OOD numbers are calculated be-
tween the model fine-tuned on VQAV2 and those
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Figure 4: Difference in ∆ OOD values between dis-
criminative and generative models.

fined-tuned on VG, GQA, and VIZWIZ. Note that
the higher the ∆ OOD value, the poorer a model
is in OOD generalization. We then compute the
difference between the ∆ OOD values of the gen-
erative and discriminate models. Fig. 4 visualizes
this result; the benchmarks are shown on the x-axis
and each circle represents the difference in ∆ OOD
values between the generative and discriminative
model for a given fine-tuning dataset. If a genera-
tive model is more robust to OOD evaluation, we
expect to see smaller ∆ OOD value for that model
compared to its discriminative counter part: when
the circles are below the x-axis (depicting negative
values), the generative model is more robust than
the discriminative one. We observe ALBEFGEN

models often outperform their discriminative coun-
terparts with respect to OOD generalization.

5 The Effect of Multimodal Pretraining

Previous work has shown that pretraining on mul-
timodal (i.e., image–text) data improves IID per-
formance (e.g., Lu et al., 2019; Li et al., 2021a);
here, we ask if multimodal pretraining can help in
OOD settings as well. We repeat the experiments
in Sec. 4 without pretraining our models on mul-
timodal data; instead we train the models on the
train split of one benchmark and test it on the vali-
dation split of another. Fig. 3 shows the difference
between the VQA accuracy of models with and
without multimodal pretraining: each bar shows
the gap between a bar in Fig. 1 and the equivalent
experiment without multimodal pretraining.

We observe that multimodal pretraining is help-
ful in almost all conditions, since the majority of
values displayed in Fig. 3 are positive. Pretraining
is improving OOD performance likely because it
can reduce the gap between the train and OOD test
data by potentially exposing the model to a more
diverse set of data points during pretraining. In our
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Model MM PT VQAv2 VQA-CP Drop

CF-VQA – 53.6 63.5 9.9

VILBERTDISC no 66.7 42.5 24.2
VILBERTDISC yes 67.0 42.9 24.1

ALBEFDISC no 64.0 40.1 23.9
ALBEFDISC yes (4M) 70.0 44.4 25.6
ALBEFDISC yes (14M) 70.3 45.2 25.1

ALBEFGEN no 61.4 36.6 24.8
ALBEFGEN yes (4M) 71.0 49.2 21.8
ALBEFGEN yes (14M) 72.1 49.6 22.5

Table 3: Performance of models on VQAV2 (IID) and
VQA-CP (OOD). The last column shows drop in per-
formance from VQAV2 to VQA-CP. MM PT: Multi-
modal Pretraining.

experiments, the maximum gain from multimodal
pretraining is indeed observed in OOD settings
for both VILBERT (fine-tune on VIZWIZ; test
on GQA) and ALBEF (fine-tune on GQA; test
on VQAV2); however, multimodal pretraining is
not always more useful in OOD settings compared
to IID ones. For example, when evaluating VIL-
BERT on VQAV2, pretraining helps the IID set-
ting more than some of the OOD ones. Lastly, mul-
timodal pretraining is detrimental for some cases
where models are fine-tuned on VIZWIZ.

We observe that multimodal pretraining is more
effective for the generative ALBEF compared to
the discriminative ALBEF (cf. the shaded and
solid bar with the same color in Fig. 3 bottom). For
the VILBERT model, we generally do not observe
such a pattern—discriminative and generative mod-
els mostly show comparable improvements due to
multimodal pretraining. We observe only small
improvements when increasing the size of the mul-
timodal pretraining dataset for the ALBEF model
(see Fig. 8 in App. B for more details).

6 Evaluation on VQA-CP

In this section, we evaluate the models4 on
the VQA under Changing Priors dataset (VQA-
CP; Agrawal et al. 2018). This dataset is designed
such that, for every question type, train and test
splits have different prior distributions of answers.
Thus, models that overfit to answer priors in train-
ing data and lack sufficient visual grounding show
poor generalization on the VQA-CP test set. For
comparison, we also evaluate the performance of
Counterfactual VQA (CF-VQA; Niu et al. 2021), a
state-of-art method on VQA-CP, which does not
use either the Transformer architecture nor multi-

4ALBEF and VILBERTDISC (using the official codebase).

modal pretraining. However, it explicitly tackles
the language (i.e., question and answer) biases in
VQA-CP.

Tab. 3 shows that for all the Transformer-based
models, there is a large drop in the performance
(at least 22%) from VQAV2 to VQA-CP. Thus, in
spite of advances in the Transformer architecture
and pretraining on diverse datasets, models are still
overfitting to answer priors in the training data and
lack sufficient visual grounding (Agrawal et al.,
2018). However, the drop is much less for CF-
VQA (10%), suggesting that incorporating induc-
tive biases specific to the generalization problem
(i.e., modeling language bias) helps more than the
Transformer architecture or scaling up the amount
of pretraining data. We also observe that the drop
from VQAV2 to VQA-CP is often lower for the
generative ALBEF than the discriminative AL-
BEF (except for ALBEF without any multimodal
pretraining). Thus, generative models are more ro-
bust than the discriminative ones, especially when
they are pretrained (similarly to the observations
made in Sec. 4.2). As for the effect of pretraining,
for generative ALBEF, pretraining helps reduce
the drop from VQAV2 to VQA-CP. However, for
discriminative models, pretraining does not seem
to help generalization (in fact, it worsen ALBEF).

7 Qualitative Analysis

To dig deeper into the potential causes of the poor
OOD generalization of our pretrained models, we
perform a qualitative study. To this end, we ran-
domly sample and manually examine failure cases
in top-30 answer classes with the highest perfor-
mance drop when moving from IID to OOD eval-
uation. We only focus on answer classes that are
present in both the train and test splits, ensuring that
performance drop is not due to the absence of an-
swer classes in the training set. We report the top-5
classes that contribute the most to the drop in per-
formance for each OOD setting in Tab. 11 (App. C).
We notice that the following answer classes appear
frequently across different OOD settings: yes/no
answers, directions (left/right), colors, and num-
bers. In the following, we discuss a few major po-
tential causes for the poor OOD generalization, and
mention VILBERTDISC responses as examples in
the discussion, although similar observations hold
for other models.

Poor reasoning skills. Models evaluated on
GQA, but fine-tuned on another dataset, show the
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VQAv2 Question: What color is the plane?

VQAv2 ground-truth answers: 〈white〉

VG model’s answer: white and blue
VQAv2 model’s answer: white

VG Question: When was this photo taken?

VG ground-truth answer: daytime

VG model’s answer: daytime
VQAv2 model’s answer: winter

Figure 5: Examples where models’ prediction are cor-
rect but not accounted for in the ground-truth set. 〈 〉 de-
notes a list of unique (out of 10) ground-truth answers.
VG (VQAV2) model refers to a VILBERTDISC fine-
tuned on VG (VQAV2).

highest performance drop on classes such as “yes”,
“no”, “right”, “left”, “top”, and “bottom”. For in-
stance, VILBERTDISC fine-tuned on VQAV2, and
evaluated on GQA underperforms VILBERTDISC
that has been both fine-tuned and evaluated on
GQA by 24% for the answer class “no.” Upon
qualitative examination, we find that for many of
such failure cases, the GQA questions are more
compositional and hence require more complex
reasoning (e.g., “Are there both bison and zebras
in the image?”, “Is the cheese to the right or to
the left of the empty plate?”) than the questions
for the same answer classes in other datasets (e.g.,
from VQAV2 train set: “Is the TV turned on?”,
“Which hand is the man holding up?”). This study
re-affirms previous findings that VQA models lack
sufficient logical, spatial, and compositional rea-
soning skills (Johnson et al., 2017; Hudson and
Manning, 2019) but for the more recent, pretrained
Transformer models.

Overfitting to the answer priors. Previous
studies have shown that VQA models tend to be
biased towards the prior distribution of answers
in the training set (per question type) (Agrawal
et al., 2018). We find that this limitation exists in
the more recent pretrained models as well, and it
is especially hurtful in the OOD settings because
the priors need not be the same across train and
test sets, unlike in the IID settings. For instance,
VILBERTDISC fine-tuned on VQAV2 predicts “2”
for a lot questions with target answer “1” in the
VG test set. Similarly, sometimes VILBERTDISC
fine-tuned on VG incorrectly predicts “helmet” for
VQAV2 test questions such as “What is the skate-
boarder wearing to protect his head?”, “What pro-
tective gear is he wearing?” when the skateboarder
is not wearing anything. This indicates that the
model is relying on answer priors rather than visual
grounding. Our experimental results on VQA-CP

(Sec. 6) directly quantify the extent of such limita-
tions in current models.

Overfitting to the question format. We ob-
serve instances of models failing to correctly an-
swer questions when the format of the questions
changes between the fine-tuning and test sets. For
instance, questions about “chair” in the VQAV2
fine-tuning set are mostly of the form “What is . . .
sitting on?” whereas in the GQA test set, they are
mostly of the form “What kind of furniture is . . . ?”.
Thus, the “chair” class accuracy of VILBERTDISC
fine-tuned on VQAV2 drops from 48% when tested
on VQAV2 to 38% on the GQA test set. Similarly,
VILBERTDISC fine-tuned on GQA fails terribly
for “dog” and “cat” classes on the VG test set (ac-
curacy drops of 47% and 43% respectively between
GQA–GQA (fine-tuned on GQA, tested on GQA)
and GQA–VG). GQA questions are mostly of the
form “What animal . . . ?” or “What kind of animal
. . . ?” whereas VG questions often do not mention
the word “animal” and are of the form “Who is
. . . ?” or “What is . . . ?” (e.g., “Who is holding the
Frisbee?”, “What is on the leash?”). To the best
of our knowledge, no previous work has reported
such behavior of VQA models (i.e., they tend to
overfit to the question format).

Finally, we observe cases where correct model
responses are evaluated as incorrect by the VQA
evaluation metric, as such responses differ from
the ground-truth answers. In the next section, we
provide examples of such cases and examine the im-
pact of stringent evaluation metric on poor OOD
generalization by engaging human raters to evalu-
ate responses.

8 Human Evaluation

In our qualitative study, we observed that the strin-
gent nature of the standard VQA evaluation met-
rics (i.e., performing string matching of model re-
sponses with a small set of ground-truth answers)
repeatedly penalizes models for correct responses
because those responses do not exist in the set of
ground-truth answers (Fig. 5). For example, the
evaluation metric fails to take into account differ-
ences (between model response and ground-truth)
due to specificity of the answers (e.g., “on table”
vs. “table”, “pizza slices” vs. “pizza”), synonyms,
and different interpretations of the question (e.g.,
Fig. 5 right).

In this section, we aim to quantify how robust
standard VQA metrics are by performing human
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Figure 6: Difference in human and automatic accuracy
of VILBERTDISC (shaded bars) and VILBERTGEN
(plain bars) for GQA, VQAV2, VG and VIZWIZ. Ac-
curacies in bold denote the IID settings.

evaluation of our models for both IID and OOD
settings. The details of the setup and in-depth re-
sults are provided in App. D. Below we present our
main findings.

Human evaluation yields notably higher accu-
racies than the automatic evaluation. This is
shown in Fig. 6, where the increase can be up
to 33.5% when moving from automatic to human
evaluation.5 This implies the current automatic
metrics miss out on a lot of correct responses due
to their stringent nature. Interestingly, this in-
crease in model accuracy from automatic to human
evaluation is higher for VILBERTGEN than VIL-
BERTDISC for all the benchmarks. This is expected
because the generative model is more likely to pro-
duce longer, more varied answers, which might not
be awarded using automatic metric but are still cor-
rect responses. Moreover, human evaluation helps
OOD settings more than the IID settings for most
of the benchmarks (e.g., GQA, VQAV2). This
is also expected, because in the OOD settings, a
model might not learn the format of the test answer
(“on table” vs. “table”, “clear vs. sunny”) from the
train set (unlike in the IID settings) and hence it is
more likely to be penalized by the automatic accu-
racy metric. Thus, we conclude that the currently
used accuracy metrics for VQA are not robust, es-
pecially for generative models and OOD evaluation
settings. Hence, to more accurately evaluate the
goodness of our models, we need to develop better
evaluation metrics for VQA.

Even after human evaluation, models still ex-
hibit poor OOD generalization. Although hu-
man evaluation improves the models’ accuracies
and more so for the OOD than the IID settings,
we observe that the models’ performance in OOD
settings is still worse compared to that of IID set-

5In some cases, human evaluation yields lower accuracy
than the automatic evaluation. We discuss this in App. D.

tings, albeit with reduced margin (see App. D for
quantitative results). We also note that while VIL-
BERTDISC usually outperformed VILBERTGEN
with the automatic evaluation, VILBERTGEN out-
performs VILBERTDISC for all the test sets under
human evaluation. This reinforces the observations
in Sec. 4.2 regarding stronger OOD generalization
of generative models over discriminative ones.

9 Conclusion

In this study, we show that, despite their im-
pressive performance when evaluated on test data
drawn from the same distribution as the training
data, recent V&L models perform poorly in out-
of-distribution (OOD) settings. We conclude that
these models learn to solve specific benchmarks as
opposed to the skill of visual question answering
(VQA). Interestingly, in most cases, we observe
that the generative models are more robust to OOD
generalization compared to the discriminative ones.
Moreover, pretraining the models on large image–
text data often helps in OOD generalization. Our
results also highlight the importance of human eval-
uation for a more accurate assessment of model per-
formance: we find that the current VQA automatic
metrics miss out on a notable number of correct
model responses. Human evaluation is especially
important as the community is shifting towards gen-
erative VQA models which, unlike discriminative
ones, can produce answers that go beyond those
seen in a training/fine-tuning dataset. Finally, to
make progress towards more capable models, we
need more rigorous evaluation protocols that shed
light on models’ strengths and short-comings. We
believe testing models in OOD settings is a step to-
wards this direction as it helps evaluate models for
general skills required to solve the task as opposed
to benchmark-specific correlations.

Limitations

We list some limitations of our work which could
benefit from future investigations.

First, when exploring potential factors for poor
OOD generalization, our quantitative analysis fo-
cused only on differences in answer distributions
between fine-tuning and test datasets. However, fu-
ture work should investigate differences in question
distribution, image distribution and combinations
of these three variables.

Second, it would be interesting to conduct fur-
ther investigation to understand why multimodal
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pretraining does not help in certain cases. A corre-
lation analysis between improvement in accuracy
(due to multimodal pretraining), and between pre-
training and fine-tuning/test data could be useful.

Third, the models investigated in our study
(VILBERT and ALBEF) are pretrained on a rel-
atively small number (millions) of data points
compared to language-only pretrained transform-
ers, such as BERT, trained on billions of tokens.
Such large-scale pretraining has been shown to
improve OOD robustness for language-only mod-
els (Hendrycks et al., 2020). Hence, we leave
for future work to investigate multimodal models
trained on billions of image–text pairs (for instance,
LAION-5B; Schuhmann et al. 2021).

Lastly, in this study, we only focus on standard
VQA evaluation metrics for each benchmark. How-
ever, it would be interesting to also evaluate the
robustness of metrics such as WUPS (Malinowski
and Fritz, 2014) that compute answer similarities
based on the distance between them in the Word-
Net (Miller, 1995) tree and are expected to be more
robust than the standard metrics.

Ethics Statement

Below we present some considerations related to
the ethical and broader impact of our work.

First, all datasets used in our study are from pub-
lished work and are publicly available, including
the VIZWIZ data (Gurari et al., 2018) which has
been curated from visually impaired users and re-
leased publicly after proper filtering to preserve the
privacy of the users.

Second, for human evaluation of our models, we
collected human data via the Amazon Mechani-
cal Turk platform. We detail the data collection
process and measures taken to control the qual-
ity of collected data in App. D. As for the ethical
considerations related to collecting data from hu-
man subjects, our data collection campaign was
approved by an ethics review board in our institu-
tion. Human subjects were paid at the rate of 0.15
USD per HIT (Human Intelligence Task) resulting
in an hourly payment well above minimum wage.

Third, by testing models on a data distribution
different from the training one, the OOD evalua-
tion setting studied in our work has the following
broader impacts: it highlights (1) the challenges of
generalizing to real-world VQA datasets such as
VIZWIZ, and (2) the kind of biases learned (and
also potentially amplified) by the models.

Lastly, we discuss both potentially beneficial and
harmful applications of the task of Visual Question
Answering studied in our work. VQA has many
potential applications beneficial for society:

• Aiding visually impaired users in understand-
ing their surroundings (Human: What is on
the shelf above the microwave? AI:
Canned containers.)

• Teaching children through interactive demos
(Kid: What animal is that? AI: That is
Dall Sheep. You can find those in
Alaska.)

• Aiding analysts in processing large quanti-
ties of visual surveillance data (Analyst: What
kind of car did the man in red shirt
leave in? AI: Blue Toyota Prius.)

• Interacting with in-home physical robots (Hu-
man: Is my laptop in my bedroom
upstairs? AI: Yes. Human: Is the
charger plugged in?)

• Making visual social media content more
accessible (AI: Your friend Bob just
uploaded a picture from his Hawaii
trip. Human: Great, is he at the
beach? AI: No, on a mountain.)

But like most other technology, VQA could also be
used for potentially harmful applications such as:

• Invasion of individual’s privacy by using VQA
to query streams of video data being recorded
by CCTV cameras at public places.

• Visually impaired users often need assistance
with parsing data containing personal infor-
mation (Ahmed et al., 2015), such as credit
cards, personal mails, etc. Such VQA systems
could be configured to leak/retain personally
identifiable information.
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A Experimental Setup Details

In this section, we report additional details regard-
ing our experimental setup.

A.1 Models

We evaluate the performance of two strong mod-
els, VILBERT (Lu et al., 2019) and ALBEF (Li
et al., 2021a). These models belong to the family of
pretrained Transformer that has recently achieved
state-of-the-art performance on several V&L tasks,
and are specifically instances of dual-stream archi-
tectures (Bugliarello et al., 2021). In this paradigm,
models are first pretrained on a large collection of
image–caption pairs, and then fine-tuned to solve
specific downstream tasks. VILBERT is pretrained
using three objectives, masked language modeling
(MLM; Devlin et al. 2019), masked region mod-
eling and image–text matching (ITM; Chen et al.
2020). ALBEF is pretrained using MLM, ITM and
an image–text contrastive loss (Li et al., 2021a).
We refer the reader to Sec. 3 for an overall descrip-
tion of these models. Tab. 4 lists pretraining and
architecture details for both models. All the mod-
els were fine-tuned using the AdamW (Loshchilov
and Hutter, 2019) optimizer, with model-specific
hyperparameters in Tab. 6.

VILBERT. In this model, the textual inputs are
first processed through 6 Transformer layers, be-
fore being combined with visual inputs through
inter- and intra-modal attention layers. We re-
implement this architecture, and confirm compa-
rable performance by reproducing its results with
the ones obtained through the official codebase6

(see Tab. 5 for IID performance of both imple-
mentations). A key difference between the two
implementations is in the image features: while
the official model uses 10–100 regions of interest
(RoIs) from a ResNeXt-152 (Xie et al., 2017), our
re-implementation relies on 100 RoIs extracted by
Faster R-CNN (Ren et al., 2015) trained on VG.

We then extend our codebase to implement a
generative version of VILBERT by replacing the
discriminative decoder with an autoregressive de-
coding head.7 The decoder is trained with teacher-
forcing, and in datasets with several responses, the

6https://github.com/facebookresearch/
vilbert-multi-task/.

7Our implementation of the generative decoder
follows that of TransformerDecoder available at
https://github.com/pytorch/pytorch/blob/master/
torch/nn/modules/transformer.py.

most frequent response is used as the ground truth
response. Pretraining on CC, when used, is done
by generating text. We also examine the effect of
pretraining on both the encoder and decoder, and
find the learning to be more stable when using only
pretrained encoder, although further hyperparame-
ter exploration could mitigate this difference. We
study the effects of multimodal pretraining on the
Conceptual Captions dataset (Sharma et al., 2018)
with 3M images.

ALBEF. Like VILBERT, ALBEF is a dual-
stream encoder but with two main differences: first,
the visual inputs are image patches that are pro-
cessed through a vision Transformer (Dosovitskiy
et al., 2021); and second, the cross-modal interac-
tions happen through standard Transformer cross-
attention at each layer (whereas VILBERT uses co-
attention layers specifically designed for intra- and
inter-modal interactions). In addition, the model is
trained with pseudo-targets that are generated from
a moving-average version of its weights. We run
experiments using the official codebase.8 The vi-
sual backbone is a DeIT-B/16 (Touvron et al., 2021)
pretrained on ImageNet-1k (Deng et al., 2009) at
resolution 224×224, and further trained during the
multimodal pretraining phase. For the downstream
VQA benchmarks, we follow the authors and re-
size input images to 384×384 and apply random
augmentation during fine-tuning. Li et al. (2021a)
formulated the VQA task as generative by adding
a 6-layer Transformer decoder initialized from the
pretrained encoder. We follow this approach and
also evaluate a discriminative version by learning
a two-layer MLP with ReLU (Agarap, 2018) non-
linearity in between, following the authors’ setup
for the Visual Entailment benchmark (Xie et al.,
2019). We found the hyperparameters proposed
by Bugliarello et al. (2021) to work better. During
inference, we evaluate ALBEF in two ways: first,
following the authors, we rank the in-domain can-
didate answers based on their likelihood; second,
we let the model generate any possible answer in
an open-ended fashion through greedy decoding.
We found these two approaches to minimally affect
final performance (see Tab. 7). Unless otherwise
specified, we report results given by generation as
it reflects open-ended question answering.

8https://github.com/salesforce/ALBEF.
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Model # Params Pretrain data # Images # Captions

VILBERT 240M CC 3.3M 3.3M
ALBEF (4M) 450M +COCO+SBU+VG 4M 5M
ALBEF (14M) 450M +C12M 14M 15M

Table 4: Pretrained models details. ALBEF size in-
cludes both the main model and its moving average.
Pretraining data: CC (Sharma et al., 2018), COCO (Lin
et al., 2014), SBU (Ordonez et al., 2011), VG (Krishna
et al., 2017), C12M (Changpinyo et al., 2021).

Model VQAV2 GQA VG VIZWIZ

Official codebase 67.04 66.78 40.69 44.46
Re-implementation 65.75 61.51 40.31 47.46

Table 5: Comparison between the official and our code-
bases for VILBERTDISC in the IID setting.

A.2 Datasets

Tab. 1 lists statistics for each dataset in our study.
VQAV2 (Goyal et al., 2017) is the most commonly
used VQA dataset to date, it consists of 265K im-
ages and 1.1M question-image pairs, each with 10
ground-truth answers. VQA-CP (Agrawal et al.,
2018) re-splits the VQAV2 dataset such that, for
every question type, train and test sets have differ-
ent prior distributions of answers. VG (Krishna
et al., 2017) includes 108K images and 1.7M ques-
tions, each paired with a single answer, centered
around either the full image or a specific region
within it. GQA (Hudson and Manning, 2019) is an-
other large-scale effort (22M questions, each with
one answer) that focuses on compositionality of
template-generated questions for real-world im-
ages (from VG). Following prior work, we use the
GQA balanced subset (1.5M questions). Finally,
VIZWIZ (Gurari et al., 2018) is the only real-world
VQA dataset as it was collected from visually im-
paired people. It consists of 31K image-question
pairs, each paired with 10 answers.

A.3 Training Details

Following common practice, for discriminative
models, we select the top-k most frequent answers
from the fine-tuning dataset, as the set of answer
classes to perform classification over. Here k is a
dataset-dependent variable. For VQAV2 and GQA,
we use the same answer sets as VILBERT (3,129
and 1,533, respectively). For VIZWIZ, we select
the answers that appear at least 8 times in training
and validation sets, for a total of 3,112 answers
that cover 97% of the data. For VG, we select the
answers that appear at least 29 times in the dataset,
for a total of 3,449 answers that cover 76.5% of the
data. Importantly, combined with the VQA accu-

Benchmark Qn len # Classes BS LR # Epochs

VQAV2 16 3,129 256 4e-5 20
GQA 26 1,533 256 4e-5 20
VG 16 3,449 256 4e-5 20
VIZWIZ 40 3,112 256 4e-5 20

(a) Parameters used for VILBERT models. The internal code-
base uses LAMB optimizer with the initial LR of 1e-3, with
the best checkpoint selected on eval dataset.

Benchmark Qn len # Classes BS LR # Epochs

VQAV2 16 3,129 256 1e-4 20
GQA 26 1,533 256 1e-4 20
VG 16 3,449 256 1e-4 20
VIZWIZ 40 3,129 256 1e-4 20

(b) Discriminative ALBEF.

Benchmark Qn len Answer len BS LR # Epochs

VQAV2 16 6 256 2e-5 20
GQA 26 5 256 2e-5 20
VG 16 8 256 2e-5 20
VIZWIZ 40 11 256 2e-5 20

(c) Generative ALBEF.

Table 6: Hyperparameters used in our experiments.
Question and answer lengths are in tokens, BS is the
batch size, LR is the learning rate.

racy metric defined above, this results in an upper-
bound to the accuracy that discriminative models
can achieve in each dataset (see Tab. 2).

All models are trained on the respective training
sets and evaluated on the validation sets, which lets
us conduct in-depth analyses that would otherwise
be impossible to carry out on private test sets. As
there is no official split of VG, we randomly sample
the data into training (60%) and validation (40%)
such that no image appears in both splits.

B Additional Results

Evaluation with Shared Answer Sets While
different answer sets are an apparent issue for dis-
criminative models, they also impact the perfor-
mance of generative models, as the number of data
points for each answer class seen by the genera-
tive model during fine-tuning varies: data-points in
top-k answer set are more frequent than others (by
definition of top-k). In other words, even though
a tokenizer used to produce an answer could gen-
erate it, it is unlikely (or less likely) to do so if it
has not seen (or seen rarely) that combination of to-
kens during fine-tuning. Thus, even for generative
models, we consider performance on top-k most
frequent classes for each benchmark.

Thus, we report the accuracy on the subset of
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VQAV2 GQA VG VIZWIZ

VQAV2 72.37 50.56 38.94 19.81
GQA 50.32 64.26 22.80 12.51
VG 33.40 24.99 43.35 12.60
VIZWIZ 34.17 22.73 8.89 48.44

(a) Ranking-based evaluation of ALBEFGEN.

VQAV2 GQA VG VIZWIZ

VQAV2 72.09 50.10 39.20 19.81
GQA 50.33 64.24 22.79 12.50
VG 33.39 23.64 44.55 12.25
VIZWIZ 34.44 22.80 9.13 47.14

(b) Generation-based evaluation of ALBEFGEN.

Table 7: Performance of ALBEFGEN (14M) when
tested via ranking (top) and generation (bottom). Rows
correspond to the fine-tuning datasets, columns corre-
spond to the test benchmarks. The model performs
similarly in both setups. We found similar results for
ALBEFGEN (4M).

test questions whose answers are shared between
both the IID and the OOD models. For instance,
when comparing the performance of the VQAV2
and VG fine-tuned models on the VQAV2 test set,
we compute the average accuracy on those VQAV2
questions whose ground truth answers are present
in the top-k answers from VQAV2 as well as the
top-k answers from VG: we extract the common
answer labels (between VQAV2 and VG top-k an-
swers) and compute performance on test questions
belonging to these shared answer labels only.

For IID evaluations, there are several possible
ways to define shared answer sets based on OOD
vocabs. While a subset is shown in Fig. 2, Tab. 10
lists the VQA accuracy of each model in the IID
settings when evaluated on the questions in the test
sets whose answers are shared between the top-k
answers in both the IID and the OOD settings (see
Sec. 4.1 for more details).

In some IID cases, restricting the answer set
to common answers hurts the performance (indi-
cated as a lack of dotted bar in Fig. 2). Interest-
ingly, this pattern is observed across all models for
some IID evaluations where the shared answer set
is computed with respect to the VG benchmark
only: VQAV2 for VILBERTDISC (-7.65 pp drop),
VQAV2 (-8.65 pp drop) and GQA (-8.00 pp drop)
for VILBERTGEN, VQAV2 (-6.86 pp drop) for
ALBEFDISC, and VQAV2 (-6.89 pp drop) for AL-
BEFGEN. This seems to indicate that the GQA
and VQAV2 questions corresponding to shared ans
set with VG are more difficult than the average
difficulty of these test sets.

VQAV2 GQA VG VIZWIZ

VQAV2 – 0.41 0.51 0.11∧

GQA 0.25 – 0.44 0.14∧

VG 0.28 0.38 – 0.03∧

VIZWIZ 0.46 0.54 0.48 –

(a) Discriminative ALBEF.

VQAV2 GQA VG VIZWIZ

VQAV2 – 0.45 0.48 0.26
GQA 0.26 – 0.45 0.22
VG 0.27 0.35 – 0.09∧

VIZWIZ 0.48 0.56 0.52 –

(b) Generative VILBERT.

VQAV2 GQA VG VIZWIZ

VQAV2 – 0.49 0.50 0.27
GQA 0.30 – 0.45 0.34
VG 0.25 0.38 – 0.16
VIZWIZ 0.50 0.57 0.51 –

(c) Discriminative VILBERT.

Table 8: Spearman’s rank correlation between drops in
test accuracy (from IID to OOD) and the differences
in proportion of answer classes between IID and OOD
fine-tune sets. Unless otherwise specified with a ∧ char-
acter, ρ values are significant with p < .05. Rows corre-
spond to the fine-tuning datasets, columns correspond
to the test benchmarks.

VQAV2 GQA VG VIZWIZ

VQAV2 – 0.43 0.51 0.25
GQA 0.27 – 0.43 0.19
VG 0.26 0.36 – 0.13
VIZWIZ 0.47 0.55 0.48 –

Table 9: Spearman’s rank correlation between drops in
test accuracy (from IID to OOD) and the differences
in proportion of answer classes between IID and OOD
fine-tuning sets for ALBEFGEN. p < .05 for all ρ.
Rows correspond to the fine-tuning datasets, columns
correspond to the test benchmarks.

Answer Frequency Correlation In order to ex-
amine the relationship between accuracy drop for
less frequent classes, we first compute per answer-
class accuracy (average accuracy of all test ques-
tions belonging to the same answer class) for an-
swers in shared answer set. We then sort the shared
answer classes based on their weighted drop in per-
class accuracy from IID to OOD (IID accuracy -
OOD accuracy), i.e. absolute drop in per-class ac-
curacy weighted by number of data points belong-
ing to that class in the test set. We then compute the
Spearman’s rank correlation of these weighted drop
in per-class accuracies with difference in percent-
age frequencies of the answer classes between IID
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and OOD fine-tuning sets (percentage frequency
of an answer class in IID minus its percentage fre-
quency in OOD).

Tab. 8 list Spearman’s rank correlations of IID-
to-OOD drops in test accuracy vs. proportion of
answer classes in respective (IID and OOD) fine-
tuning sets for ALBEFDISC, VILBERTGEN and
VILBERTDISC (see Sec. 4.1 for more details). As
a simple baseline test, we also compute correlations
and p-values for a permuted dataset to confirm their
lack of significance, or correlation values close to
zero.

Maximum Achievable Scores Table 2 lists max-
imum achievable accuracies, and Figure 7 shows
the difference between those scores and bar values
shown in Figure 1. In our analyses, we also noted
that differences in answer pre-processing strategies
can result in slightly different numbers than those
reported in Tab. 2. However, those differences did
not change the conclusion of our findings.

Effect of pretraining data size on ALBEF For
the ALBEF model, while we often observe im-
provements by increasing the size of the multi-
modal pretraining dataset (4M vs. 14M), the im-
provements are small. When pretraining on the
smaller dataset (4M, see Fig. 8), we observe a me-
dian improvement (over no pretraining) of 1.9%
for the discriminative and 4.9% for the genera-
tive ALBEF, while the median additional improve-
ments due to larger pretraining dataset (14M) are
0.1% and 0.6% respectively (refer to Fig. 3). Sur-
prisingly, there are also dataset pairs for which
larger pretraining has a negative effect when com-
pared to the performance with a smaller pretraining
set (e.g., ALBEF model fine-tuned on VIZWIZ

and tested on VQAV2).

C Potential Causes of Poor OOD
Generalization: A Qualitative Study

In section 4, we observe that our pretrained models
exhibit poor OOD generalization for the task of
VQA. We also noted that this poor generalization
is not entirely explained by the absence or poor
representation of test answer classes in the train-
ing data. Here, we perform a qualitative study to
dig deeper into the potential causes of the poor
OOD generalization. We manually examine 20
randomly-sampled qualitative examples of failure
cases on top-30 answer classes contributing the
most to the drop in performance from IID to OOD.

We only focus on answer classes that are shared
between the train and test splits to make sure the
performance drop is not due to the absence of an-
swer classes in the training dataset. We report the
top-5 classes that contribute the most to the drop
in performance for each OOD setting in Tab. 11.
Below, we describe four major potential causes9

for the poor OOD generalization that we can in-
fer from our qualitative study on VILBERTDISC

10

and ALBEFGEN. The specific examples reported
below are for VILBERTDISC.

Poor reasoning skills. In Tab. 11, we can see
that a model fine-tuned on VQAV2, VG, or
VIZWIZ and evaluated on GQA shows the high-
est performance drop on classes such as “yes”,
“no”, “right”, “left”, “top”, and “bottom”. For
instance, VQAV2–GQA (fine-tuned on VQAV2,
evaluated on GQA) model underperforms GQA-
GQA model by 24% for “no.” Upon qualitative
examination, we find that for many of such failure
cases, the GQA questions are more compositional
and hence require more complex reasoning (e.g.,
“Are there both bison and zebras in the image?”, “Is
the cheese to the right or to the left of the empty
plate?”) than the questions for the same answer
classes in other datasets (e.g., from VQAV2 train
set: “Is the TV turned on?”, “Which hand is the
man holding up?”). This study re-affirms previous
findings (Johnson et al., 2017; Hudson and Man-
ning, 2019) – VQA models lack sufficient logical,
spatial, and compositional reasoning skills – for the
more recent, pretrained Transformer models.

Overfitting to the answer priors. Previous stud-
ies have shown that VQA models tend to be biased
towards the prior distribution of answers in the
training set (per question type) (Agrawal et al.,
2018). We find that this limitation exists in the
more recent pretrained models as well, and it is
especially hurtful in the OOD settings because
the priors need not be the same across train and
test sets, unlike in the IID settings. For instance,
VILBERTDISC fine-tuned on VQAV2 predicts “2”
for a lot questions with target answer “1” in the
VG test set. Similarly, sometimes VILBERTDISC
fine-tuned on VG incorrectly predicts “helmet” for

9For poor OOD generalization on the VIZWIZ benchmark,
one of the reasons could be difference in image distributions
between VIZWIZ (that contains many blurry pictures, or pic-
tures with poor lighting conditions) and other three datasets
(that contain clear pictures).

10We use the model trained with the official codebase.

1217



GQA VQAv2 VG VizWiz
0

20

40

60

80

P.
p.

 d
if

f 
fr

om
 m

ax
 A

cc
.

38.4
31.7

27.4 28.0
34.6 31.7

27.3 28.9

49.8

27.2
30.5 28.6

54.1

30.7 32.7 30.4

40.5

24.0

33.9

25.5

40.9

24.8

35.1

25.6

59.1

49.9

35.2
38.7

65.4

56.0

37.6

46.4

VILBERT

Fine-tuning dataset
GQA VQAv2 VG VizWiz

Model
Discriminative Generative

Model
Discriminative Generative

GQA VQAv2 VG VizWiz
Test dataset

0

20

40

60

80

P.
p.

 d
if

f 
fr

om
 m

ax
 A

cc
.

38.2

27.8 25.3 25.1

38.2

27.8 25.3 25.1

47.4

22.6
27.8 25.9

47.4

22.6
27.8 25.9

38.7

21.5

31.5

22.3

38.7

21.5

31.5

22.3

64.2

54.9

39.0
44.8

64.2

54.9

39.0
44.8

ALBEF

Figure 7: Percentage point difference between maximum achievable accuracies in Table 2 and accuracies in Fig-
ure 1. Results for VILBERT pretrained on the same data as ALBEF 4M are also shown.
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VQAV2 test questions such as “What is the skate-
boarder wearing to protect his head?”, “What pro-
tective gear is he wearing?” when the skateboarder
is not wearing anything. This indicates that the
model is relying on answer priors rather than visual
grounding. Our experimental results on VQA-CP
(Sec. 6) directly quantify the extent of such limita-
tions in current models.

Overfitting to the question format. For each
answer class, there is usually a limited variation in
the format of questions in the fine-tuning set. For
some of the answer classes showing poor OOD gen-
eralization, we found that certain question formats
are quite dominant in the fine-tuning set, and that
these dominant formats are different between the
OOD fine-tuning and test sets. Thus, we conjecture

that models are likely overfitting to such dominant
formats in fine-tuning data and hence fail to gen-
eralize at test time when the format changes. For
instance, questions about “chair” in the VQAV2
fine-tuning set are mostly of the form “What is . . .
sitting on”? whereas in the GQA test set, they
are mostly of the form “What kind of furniture is
. . . ?”. Thus, the “chair” class accuracy of VIL-
BERTDISC fine-tuned on VQAV2 drops from 48%
when tested on VQAV2 to 38% on the GQA test
set. As another example, VILBERTDISC trained
on GQA fails terribly for “dog” and “cat” classes
on VG test set (accuracy drops of 47% and 43%
respectively, where drop is between GQA–GQA
and GQA–VG). GQA questions are mostly of the
form “What animal . . . ?” or “What kind of animal
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Model Test Fine-tune Answer Set VQA Acc. (IID) VQA Acc. (OOD) Difference

VILBERTDISC GQA GQA GQA ∩ VQAV2 63.05 48.53 14.52
VILBERTDISC GQA GQA GQA ∩ VG 52.32 35.08 17.24
VILBERTDISC GQA GQA GQA ∩ VIZWIZ 64.91 28.39 36.52
VILBERTDISC VG VG VG ∩ VQAV2 58.18 51.97 6.21
VILBERTDISC VG VG VG ∩ GQA 59.57 39.15 20.42
VILBERTDISC VG VG VG ∩ VIZWIZ 60.65 13.23 47.42
VILBERTDISC VIZWIZ VIZWIZ VIZWIZ ∩ VQAV2 51.78 22.37 29.41
VILBERTDISC VIZWIZ VIZWIZ VIZWIZ ∩ GQA 51.05 15.40 35.65
VILBERTDISC VIZWIZ VIZWIZ VIZWIZ ∩ VG 50.07 13.59 36.48
VILBERTDISC VQAV2 VQAV2 VQAV2 ∩ GQA 71.74 52.42 19.32
VILBERTDISC VQAV2 VQAV2 VQAV2 ∩ VG 58.10 48.84 9.26
VILBERTDISC VQAV2 VQAV2 VQAV2 ∩ VIZWIZ 68.20 33.87 34.33

VILBERTGEN GQA GQA GQA ∩ VQAV2 67.01 44.03 22.98
VILBERTGEN GQA GQA GQA ∩ VG 57.35 34.40 22.95
VILBERTGEN GQA GQA GQA ∩ VIZWIZ 69.63 20.73 48.90
VILBERTGEN VG VG VG ∩ VQAV2 55.52 47.93 7.59
VILBERTGEN VG VG VG ∩ GQA 57.65 39.26 18.39
VILBERTGEN VG VG VG ∩ VIZWIZ 58.84 7.67 51.17
VILBERTGEN VIZWIZ VIZWIZ VIZWIZ ∩ VQAV2 43.06 19.58 23.48
VILBERTGEN VIZWIZ VIZWIZ VIZWIZ ∩ GQA 42.57 13.71 28.86
VILBERTGEN VIZWIZ VIZWIZ VIZWIZ ∩ VG 41.11 13.20 27.91
VILBERTGEN VQAV2 VQAV2 VQAV2 ∩ GQA 68.01 52.35 15.66
VILBERTGEN VQAV2 VQAV2 VQAV2 ∩ VG 53.59 46.78 6.81
VILBERTGEN VQAV2 VQAV2 VQAV2 ∩ VIZWIZ 64.69 26.82 37.87

ALBEFDISC GQA GQA GQA ∩ VQAV2 63.24 51.06 12.18
ALBEFDISC GQA GQA GQA ∩ VG 53.09 37.97 15.12
ALBEFDISC GQA GQA GQA ∩ VIZWIZ 64.85 22.14 42.71
ALBEFDISC VG VG VG ∩ VQAV2 61.38 55.83 5.55
ALBEFDISC VG VG VG ∩ GQA 63.76 43.82 19.94
ALBEFDISC VG VG VG ∩ VIZWIZ 64.12 4.52 59.60
ALBEFDISC VIZWIZ VIZWIZ VIZWIZ ∩ VQAV2 42.42 26.23 16.19
ALBEFDISC VIZWIZ VIZWIZ VIZWIZ ∩ GQA 40.49 20.44 20.05
ALBEFDISC VIZWIZ VIZWIZ VIZWIZ ∩ VG 38.15 19.68 18.47
ALBEFDISC VQAV2 VQAV2 VQAV2 ∩ GQA 76.64 57.18 19.46
ALBEFDISC VQAV2 VQAV2 VQAV2 ∩ VG 63.47 52.78 10.69
ALBEFDISC VQAV2 VQAV2 VQAV2 ∩ VIZWIZ 72.84 28.08 44.76

ALBEFGEN GQA GQA GQA ∩ VQAV2 65.81 51.72 14.09
ALBEFGEN GQA GQA GQA ∩ VG 56.08 37.71 18.37
ALBEFGEN GQA GQA GQA ∩ VIZWIZ 67.05 27.61 39.44
ALBEFGEN VG VG VG ∩ VQAV2 62.71 57.33 5.38
ALBEFGEN VG VG VG ∩ GQA 65.48 51.17 14.31
ALBEFGEN VG VG VG ∩ VIZWIZ 66.20 21.13 45.07
ALBEFGEN VIZWIZ VIZWIZ VIZWIZ ∩ VQAV2 52.85 28.96 23.89
ALBEFGEN VIZWIZ VIZWIZ VIZWIZ ∩ GQA 52.58 22.21 30.37
ALBEFGEN VIZWIZ VIZWIZ VIZWIZ ∩ VG 51.94 23.56 28.38
ALBEFGEN VQAV2 VQAV2 VQAV2 ∩ GQA 78.03 62.93 15.10
ALBEFGEN VQAV2 VQAV2 VQAV2 ∩ VG 65.20 55.64 9.56
ALBEFGEN VQAV2 VQAV2 VQAV2 ∩ VIZWIZ 74.38 39.37 35.01

Table 10: VQA accuracy of each model in the IID settings (see column VQA Acc. (IID)) when evaluated on the
questions in the test sets whose answers are shared between the top-k answers in both the IID and the OOD settings.
Please refer to Sec. 4.1 for more details. Answer Set: OOD benchmarks with respect to which IID shared answer
set accuracy is computed. VQA Acc. (OOD): OOD accuracy on questions corresponding to the shared answer set,
i.e. when fine-tuned on the OOD dataset mentioned in Answer Set column and tested on the benchmark mentioned
in the Test column. Difference: VQA Acc. (IID) - VQA Acc. (OOD). Gray bands highlight the OOD benchmarks
with respect to which IID shared answer set accuracy is computed in Fig. 2.

. . . ?” whereas VG questions often do not mention
the word “animal” and are of the form “Who is . . . ?”
or “What is . . . ?” (e.g., “Who is holding the Fris-
bee?”, “What is on the leash?”). Similarly, for the
answer class “pizza”, VILBERTDISC fine-tuned

on VG has mostly seen questions of the format
“What food is this?”, “What is the man eating?”,
“What is on the plate?”, “What’s in the box?” in
VG fine-tuning set. However, when evaluated on
the VQAV2 test set, the model fails to respond cor-
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rectly for questions about “pizza” such as, “What
snack is this?” (model response: “pineapple”),
“What recipe this will become?” (model response:
“cheese”), “What’s in the bowl” (model response:
“tomato sauce”). For the last example, perhaps the
model is not expecting pizza to be in a bowl.

Related to above, we observed that sometimes
VILBERTDISC fails to produce the correct an-
swer type for a given question. For instance,
VILBERTDISC fine-tuned on VG responds with
“woman” to the question “Is the person who is cut-
ting these carrots right handed or left handed?”. So
it appears as if the VG model does not understand
the question structure in this example, i.e. the re-
sponse is expected to be either “right” or “left”.
Similarly, for the question “Are there more blue
or black shirts?”, VG model responds with “rolled
up”. Similarly, it answers “1 on right” to the ques-
tion “What type of apple is shown?”, instead of
describing some attribute of apple such as “green”.

Stringent evaluation metric. We notice that
sometimes the models’ responses are correct but
they are evaluated as incorrect because those re-
sponses do not exist in the ground-truth answers.
For instance, VQAV2–VG model gets penalized
for answering “table” instead of “on table”11 (Q:
“Where is . . . ?”) or “sunny” instead of “clear” (Q:
“How is the weather?”). More examples in Fig. 5.
This effect is expected to be more pronounced for
the OOD evaluation than IID, because in IID a
model can learn the format of the test answer (“on
table” vs. “table”, “clear vs. sunny”) from the train
set, whereas in OOD the format in the train set can
be different from the test set. Also, such stringent
evaluation (i.e., performing string matching with
a small set of ground-truth answers) is expected
to hurt generative models more than discrimina-
tive ones because they show more variations in the
form of the answers as they are not limited by a
fixed answer vocabulary (e.g.., “pizza slices” in-
stead of “pizza” (Q: “What are these?”), “pizzeria”
instead of “pizza” (Q: “What kind of restaurant is
this?”). We observed that, VG model (model fine-
tuned on VG) evaluated on GQA answers ques-
tions about “man” with “snowboarder”, “man on
left” (i.e. more descriptive referring expressions)
than just saying “man” but it does not get any credit

11Note that before computing the accuracy, both the pre-
dicted and the ground truth answers are pre-processed for
answer normalization but such pre-processing is very ba-
sic. More details of the pre-processing can be found at
https://visualqa.org/evaluation.html

because GQA ground truth is “man”. To quantify
the extent of this issue and measure its effect on
discriminative vs. generative models, IID vs. OOD
settings, we perform human evaluation of machine
generated answers and provide additional insights
in Sec. 8.

Poor performance of GQA model on color ques-
tions (both IID and OOD): VILBERTDISC
fine-tuned on GQA does not seem to be transfer-
ring well to color questions in the VQAV2 and
VG test sets (and even in IID GQA test set). In
Tab. 11, we can see that the top-5 answer classes
with highest drop in IID-to-OOD performance for
GQA model have quite a few colors. For instance,
for the answer class “red” in the VG test set, GQA
model fails to correctly answer simple questions
(given the kind of questions GQA model is fine-
tuned on) such as “What is the primary color of the
sign on the right?”, “What is the main color of the
strawberry?”, “What color is the pull luggage of
the woman?”, “What color are the pepperonis?”.
It is not clear why GQA model does not perform
well on color questions.

D Human Evaluation

Method. We used Amazon Mechanical Turk to
collect human judgment about model responses
on a random subset of 10K questions for each of
the test sets—VQAV2, GQA and VG. Since the
size of VIZWIZ test set is less than 10K, we col-
lected human judgment on all the VIZWIZ test
questions. However, we dropped the questions
that were tagged as “unanswerable” or “unsuitable”
(more details are provided below under “Filtering
VizWiz data”). The total number of VIZWIZ test
questions for which we collected human judgment
is 1440 (per model). We performed human evalu-
ation of the responses from the following models
– VILBERTDISC

12 and VILBERTGEN trained on
the VQAV2, GQA, VG datasets. We did not col-
lect human judgements for models fine-tuned on
VIZWIZ, because a significant proportion of the
responses from these models tend to be “unanswer-
able” or “unsuitable” (35% on VQAV2, 39% on
GQA, 65% on VG, and 64% on VIZWIZ). Collect-
ing human feedback about such responses would

12For VILBERTDISC, we had initially collected human
judgements for the version trained using the official code-
base, and we did not collect annotations again for our re-
implementation due to time constraints. Given our results
above, we do not expect significant differences between the
two versions.
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Train data Test data Model Answer classes

VQAv2

GQA

Discriminative ViLBERT no, yes, left, right, top
Discriminative ViLBERT (in-house) no, yes, right, bottom, color
Generative ViLBERT (in-house) no, yes, right, left, bottom
Discriminative ALBEF no, left, yes, bottom, chair
Generative ALBEF left, no, yes, bottom, top

VG

Discriminative ViLBERT 1, no 1, daytime, on table, in sky
Discriminative ViLBERT (in-house) daytime, 1, white, 2, black
Generative ViLBERT (in-house) daytime, white, 2, black, 1
Discriminative ALBEF 1, daytime, in sky, on table, white
Generative ALBEF 1, daytime, black, in sky, clear

VizWiz

Discriminative ViLBERT no, blue, yes, white, black
Discriminative ViLBERT (in-house) yes, black, water bottle, corn, soup
Generative ViLBERT (in-house) pink, brown, corn, wine, keys
Discriminative ALBEF keyboard, no, soup, cake, samsung
Generative ALBEF soup, lotion, black, brown, corn

GQA

VQAv2

Discriminative ViLBERT yes, no, white, red, black
Discriminative ViLBERT (in-house) no, yes, white, red, tennis
Generative ViLBERT (in-house) no, yes, white, red, tennis
Discriminative ALBEF no, yes, white, red, right
Generative ALBEF no, yes, right, red, black and white

VG

Discriminative ViLBERT white, trees, green, black, black and white
Discriminative ViLBERT (in-house) white, black, trees, green, blue
Generative ViLBERT (in-house) white, trees, black, green, brown
Discriminative ALBEF white, trees, black and white, grass, green
Generative ALBEF trees, green, black and white, black, grass

VizWiz

Discriminative ViLBERT no, blue, yes, white, laptop
Discriminative ViLBERT (in-house) blue, white, black, dog, laptop
Generative ViLBERT (in-house) white, blue, laptop, black, dog
Discriminative ALBEF no, keyboard, soup, red, cake
Generative ALBEF no, dog, keyboard, laptop, blue

VG

VQAv2

Discriminative ViLBERT 0, white, nothing, gray, red
Discriminative ViLBERT (in-house) 0, 3, left, nothing, brown
Generative ViLBERT (in-house) 0, 1, gray, left, wii
Discriminative ALBEF 0, nothing, left, brown, 2
Generative ALBEF 0, 3, nothing, right, gray

GQA

Discriminative ViLBERT right, left, bottom, top, gray
Discriminative ViLBERT (in-house) bottom, left, top, color, large
Generative ViLBERT (in-house) left, bottom, color, top, gray
Discriminative ALBEF left, bottom, top, black, chair
Generative ALBEF left, bottom, color, top, gray

VizWiz

Discriminative ViLBERT blue, black, grey, red, soup
Discriminative ViLBERT (in-house) grey, black, blue, white, computer screen
Generative ViLBERT (in-house) grey, blue, black, pink, computer screen
Discriminative ALBEF grey, soup, remote, cake, samsung
Generative ALBEF grey, blue, soup, wine, pink

VizWiz

VQAv2

Discriminative ViLBERT no, yes, 1, 2, white
Discriminative ViLBERT (in-house) no, 1, 2, 0, white
Generative ViLBERT (in-house) no, yes, 1, 2, white
Discriminative ALBEF no, 1, 2, yes, blue
Generative ALBEF yes, no, 1, 2, 0

GQA

Discriminative ViLBERT no, right, left, man, bottom
Discriminative ViLBERT (in-house) no, right, bottom, man, top
Generative ViLBERT (in-house) no, yes, left, right, man
Discriminative ALBEF no, left, bottom, top, man
Generative ALBEF yes, left, no, bottom, top

VG

Discriminative ViLBERT 1, white, green, 2, black
Discriminative ViLBERT (in-house) 1, 2, white, green, man
Generative ViLBERT (in-house) 1, 2, white, green, black
Discriminative ALBEF 1, green, white, 1, 2, blue
Generative ALBEF 1, 2, black, man, green

Table 11: Top-5 answer classes with highest performance drop from IID to OOD (for the same test set) for all
OOD configurations. The answer classes are sorted by drop in weighted (wtd) accuracy, i.e. drop in absolute (abs)
accuracy weighted by the # test questions for that answer class.
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not provide useful insights, because all questions
in VQAV2, GQA and VG should be answerable,
therefore all cases of “unanswerable” should be
incorrect. Such responses are just a side effect of
a model’s priors caused by all the unanswerable
training points in the VIZWIZ fine-tuning set.

For each response, we asked 5 raters to evaluate
the question, image, and a given model response,
and indicate through a binary choice whether they
considered the model response a correct answer to
the question or not. To control the quality of the
data, we filtered out low quality data using different
heuristics such as distribution of yes/no answers for
each worker, their mean submission times, average
agreement with their fellow workers, or average
alignment with the automatic accuracy.13. In each
of these cases, we looked at random samples from
the outliers to qualitatively confirm our hypothesis.
More details about the human evaluation interface
are presented in the next paragraph.

To compute human accuracy of a model response
(for a given question and image), we considered
a response correct if at least 4 raters voted it is
correct, and incorrect otherwise. We decided so in
order to decrease noise introduced by cases where
there was low agreement between raters.

Data collection interface. Fig. 10 shows a sam-
ple of the interface the MTurk raters used to submit
their responses. The workers were shown some
examples, but in order not to bias them, we did not
give them detailed guidance as to what should be
considered correct for not - rather we asked them to
rely on common sense, and consider an answer cor-
rect if it seems both factually accurate and natural
in the context. See Fig. 11 for details.

Filtering VizWiz data. For human evaluation
we filtered out all image-question pairs for which
the ground truth answer indicates it is unanswer-
able. That is, we have not collected human feed-
back for questions for which the ground truth an-
swer appears in the following list:

• "unanswerable", "unsuitable"
• "insufficient image"
• "unknown", "unsure", "not clear"
• "blurry", "too blurry"

13How frequently a worker’s response (yes/no) aligns with
the automatic accuracy computed (100.0/0.0) More specifi-
cally, we equate the worker’s yes response with 100.0 and
no with 0.0 and look at the average difference between the
worker’s response and the automatic accuracy

• "i don’t know", "don’t know", "i don no", "no
idea"

• "unusable image", "unsuitable image", "un-
stable image", "insufficient image quality",
"unreadable"

• "i can’t tell", "can’t tell", "can’t see"
• "0" 14

In particular, this left us with 1440 questions for
the VIZWIZ dataset.

Results. We report the human accuracies for
VILBERTDISC and VILBERTGEN in Fig. 9 (bot-
tom). We also report the accuracies obtained using
automatic metrics (please see Sec. 3.2 for descrip-
tion of automatic metrics for each dataset) com-
puted over the same random subset of test questions
as that used for human evaluation in Fig. 9 (top).
Please refer to Sec. 8 for discussion of results.

Qualitative examples of questions being in-
correctly penalized by automatic evaluation
Tab. 12 shows some examples for responses which
were awarded 0.0 accuracy using automatic metrics
but were marked as correct by all 5 raters during
human evaluation.

Discussion on VQA data quality For the col-
lected human judgement data, we find that for a
significant number of questions (32%) there was
low agreement between the 5 raters, i.e. either
3/5 answered correct while the remaining 2/5 an-
swered incorrect, or vice-versa. Note that this is
after we already filtered out low quality judgements.
We have to recognize that, despite our best efforts
to control data quality using our heuristics, there
might still be low quality data in our dataset. Low
quality annotations can be misleading and might
distort the results of our analysis. Yet, we believe
that we have collected a large enough sample to
dampen the effect of these on the reported results.
Upon examining some examples from such low
agreement questions, we find that many such cases
highlight the quality of the VQA data. For instance,
questions not being sufficiently objective but up for
interpretation, questions phrased poorly that make
it difficult to understand what the question is asking
about, etc.. We discuss these further below.

• Low agreement due to ambiguity. One rea-
son why human raters might give different
feedback stems from ambiguity and subjectiv-

14Qualitative examples have suggested that often this was
used to indicate unanswerable.
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Figure 9: Human evaluation of VILBERTDISC (shaded bars) and VILBERTGEN (plain bars) and comparison with
automatic evaluation on a random subset (10K) of test questions for each test dataset – GQA, VQAV2, VG and
VIZWIZ. Accuracies in bold denote the IID settings. Top: accuracies obtained using automatic evaluation. Bottom:
accuracies obtained using human evaluation.

ity around the question and the contents of the
image. In these cases it is up to the raters sub-
jective opinion to judge whether the answer
is acceptable or not. Find some qualitative
examples in Tab. 13.

• Low agreement due to poor quality ques-
tion. Some questions in the original dataset
are of rather poor quality which makes it near
impossible for the rater to provide a valuable
response. Find some qualitative examples of
such questions in Tab. 14.

Also surprisingly, from Fig. 6, we see that for
models fine-tuned on VQAV2 or GQA and tested
on VQAV2, and models fine-tuned on GQA and
tested on GQA, human evaluation yields lower
accuracy than automatic evaluation! This is not
as expected. Upon examining some examples
for responses with 100.0 automatic accuracy but
marked as incorrect by at least 4 human raters, we
again find some noise in the ground-truth answers.
Tab. 15 shows some examples. Below we report the
number of questions where at least 4 human raters
voted incorrect even though the automatic metric in-
dicated >=90.0 accuracy. Generative case: {GQA
→ GQA (fine-tuned on GQA, tested on GQA):
86, GQA → VQAV2: 49, VQAV2 → VQAV2:
48}, Discriminative case: {GQA → GQA: 128,
GQA→ VQAV2: 52, VQAV2→ VQAV2: 76}.
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dataset: VG dataset: VQAV2 dataset: GQA
img_id: 2413078 img_id: 546983 img_id: 2413903
q_id: 151766 q_id: 546983002 q_id: 5199731
Q: What are they
wearing on their
heads?

Q: What is flying in the sky? Q: Which kind of device is on the
table?

A: helmet A: kite A: laptop
GT: helmets GT: kites GT: cell phone
accurarcy: 0.0 accurarcy: 0.0 accurarcy: 0.0
votes: 5 yes, 0 no votes: 5 yes, 0 no votes: 5 yes, 0 no

Table 12: A few examples of questions to which the model gave a response that was objectively correct, yet the
automatic evaluation metric has marked these data points as 0% accurate. (votes here refers to how many raters
selected yes (i.e. correct) or no (i.e. incorrect) when asked about this data point, while GT stands for ground truth.)

dataset: VG dataset: VQAV2 dataset: GQA
img_id: 2358330 img_id: 254750 img_id: 2338989
q_id: 700783 q_id: 254750003 q_id: 17319928
Q: Where is he riding? Q: Where is the toilet

paper?
Q: What is on the green sign?

A: park A: bathroom A: word
GT: in street GT: on sink GT: flag
accuracy: 0.0 accuracy: 0.0 accuracy: 0.0
votes: 3 yes, 2 no votes: 3 yes, 2 no votes: 3 yes, 2 no

Table 13: Low agreement due to ambiguity. In many cases, whether an answer is correct could be up to interpre-
tation. (votes here refers to how many raters selected yes (i.e. correct) or no (i.e. incorrect) when asked about this
data point, while GT stands for ground truth)
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dataset: VG dataset: VQAV2 dataset: GQA
img_id: 2396675 img_id: 503518 img_id: 2346071
q_id: 1453804 q_id: 503518006 q_id: 5863992
Q: What is the
kitchen dresser?

Q: What is happening? Q: What kind of furniture is playing a
game?

A: cabinet A: phone A: table
GT: brown GT: watching videos, showing phone GT: couch
accuracy: 0.0 accuracy: 0.0 accuracy: 0.0
votes: 2 yes, 3 no votes: 2 yes, 3 no votes: 2 yes, 3 no

Table 14: Low agreement due poor question quality. Some questions have poor phrasing that make it difficult to
understand what exactly is being asked. In these cases even the humans are not sure what to answer. (votes here
refers to how many raters selected yes (i.e. correct) or no (i.e. incorrect) when asked about this data point, while
GT stands for ground truth)

dataset: VQAV2 dataset: VQAV2 dataset: VQAV2
img_id: 367228 img_id: 197745 img_id: 264737
q_id: 367228001 q_id: 197745007 q_id: 264737002
Q: Is the kite flying
high enough?

Q: How many spots are on this animal? Q: How many animals
are in the picture?

A: yes A: 100 A: 6
GT: [no, yes, yes, no,
no, no, yes, no, no,
yes]

GT: [70, 100, 100, numerous, 200, 100, 100, 100,
20, lots]

GT: [7, 6, 6, 9, 6, 6, 6, 7,
7, 6]

accuracy: 100.0 accuracy: 100.0 accuracy: 100.0
votes: 1 yes, 4 no votes: 1 yes, 4 no votes: 1 yes, 4 no

Table 15: Examples of the few cases where humans considered the response incorrect despite 100.0 automatic
accuracy. (votes here refers to how many raters selected yes (i.e. correct) or no (i.e. incorrect) when asked about
this data point, while GT stands for ground truth)
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Figure 10: Sample of the MTurk interface the raters used to annotate data.

 Figure 11: Instructions given to MTurk raters.
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Abstract

This paper investigates the identification of
populist rhetoric in text and presents a novel
cross-lingual dataset for this task. Our work is
based on the definition of populism as a "com-
munication style of political actors that refers
to the people" but also includes anti-elitism as
another core feature of populism. Accordingly,
we annotate references to The People and The
Elite in German and English parliamentary de-
bates with a hierarchical scheme. The paper
describes our dataset and annotation procedure
and reports inter-annotator agreement for this
task. Next, we compare and evaluate differ-
ent transformer-based model architectures on a
German dataset and report results for zero-shot
learning on a smaller English data. We then
show that semi-supervised tri-training can im-
prove results in the cross-lingual setting. Our
dataset can be used to investigate how politi-
cal actors talk about The Elite and The People
and to study how populist rhetoric is used as a
strategic device.

1 Introduction

The rise of populism in Europe and throughout the
world has been noted not only in politics and the
media but also has been the subject of many studies
in political science and related areas (see, among
others, Mudde (2007)). The concept of populism,
however, is complex and vague and eludes a strict
definition. So far, only limited agreement exists
on the exact properties of the construct, despite
numerous efforts to provide a clear definition.

In the literature, populism has been described
as an ideology (McRae, 1969; Mudde, 2004), a
rhetoric (Abts and Rummens, 2007) or style (Mof-
fitt, 2016), as a political strategy (Weyland, 2001,
2021; Hawkins and Kaltwasser, 2017) and as a dis-
course (Laclau, 1977; Aslanidis, 2016), amongst
others (see Aslanidis (2018) for a short overview).
The Oxford Handbook on Populism (Rovira Kalt-
wasser et al., 2017) groups existing work into three

dominant approaches to analyzing populism, i.e.,
(i) the ideational approach of Mudde (2004), (ii)
the socio-cultural approach (Ostiguy, 2017), and
(iii) the political-strategic approach (Hawkins and
Kaltwasser, 2017), each one capturing a different
view on populism.

Nevertheless, most studies agree that anti-elitism
and people-centrism are amongst the core dimen-
sions of populist rhetoric, and the two dimensions
are therefore included as features in most sur-
vey tools used to measure the degree of populism
of political parties and actors (Polk et al., 2017;
Rooduijn et al., 2019a; Meijers and Zaslove, 2020).
One major drawback of surveys, however, is that
they only provide us with one score for each party
or actor and can not be used to study how pop-
ulist rhetoric is used as a strategic tool in different
contextual settings.

As a result, more and more efforts have been
made recently to measure populist and anti-elitist
attitudes directly from text (Rooduijn and Pauwels,
2011; Dai, 2018; Aslanidis, 2018; Ernst et al., 2019;
Hawkins et al., 2019; di Cocco and Monechi, 2021;
Vaughan and Heft, 2022). This has the advantage
of providing us with more fine-grained and context-
dependent measures that enable us to investigate
when and how anti-elitist rhetoric is used as a strate-
gic tool in party competition (Vaughan and Heft,
2022). In addition, it has been suggested that pop-
ulist rhetoric targeting political elites might func-
tion “as a form of ethnoracial dog-whistle politics”
(Bonikowski and Zhang, 2023, p.2). Evidence for
this claim comes from the frequent co-occurrence
of right-wing populism with nativist messages, as
shown in Example 1.1 below, taken from a par-
liamentary speech of a far-right politician in the
German Bundestag.

Ex. 1.1 Because the Merkel government has lied
to the people about how long refugees and illegal
migrants will actually be with us [...] (N. Klein-
wächter, AfD, 15/11/2019)
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This example illustrates the different dimensions
of populist rhetoric where anti-elitism is combined
with a Manichean worldview that separates society
into two antagonistic camps, the corrupt elite and
the pure people (Mudde, 2004). This divide into
Us-versus-Them, also known as Othering, is a well-
known strategy for creating in- and outgroups, used
to conceptualize specific groups as outsiders and
to depict them as inferior or even as dangerous.
Example 1.1 uses Othering to transfer the message
that “refugees and illegal migrants” are not part of
The People and that an immoral political elite is
acting against The People’s general interest (“the
Merkel government has lied to the people”).

While there is no shortage of studies on various
aspects of populism, only a few works have tried to
develop robust and reliable measures of populism
that can be used for empirical research at scale to
quantify the degree of populism expressed by polit-
ical actors, such as politicians and parties. Being
able to assess populism from a quantitative stand-
point using large amounts of data, e.g., text, has the
potential, in turn, to help us understand the causes
and consequences of populism by allowing us to
track its spatial and temporal distribution.

In the paper, we provide a methodology to de-
tect and quantify references to The People and
The Elite in large amounts of text. We present
a novel dataset of German and English political de-
bates where instances of The People and The Elite
have been manually annotated and use this data to
learn to predict those references in monolingual
and cross-lingual settings. We then show that these
predictions align with the results of expert surveys
for measuring populism but, crucially, provide us
with more fine-grained and context-sensitive infor-
mation that can be used to study left- and right-
wing populism in parliamentary debates at large
scale. We make all data and models available at
https://github.com/umanlp/mope.git.

2 Related Work

2.1 Defining Populism

Defining populism is an intellectual challenge per
se. Most scholars, however, agree that populism is
a multi-dimensional construct and that anti-elitism
and people-centrism are two of the core characteris-
tics of populist discourse (Mudde, 2004; Hawkins,
2009; Dai, 2018; Schulz et al., 2017). Many stud-
ies have adapted Mudde’s view of populism as “a
thin-centered ideology that considers society to be

ultimately separated into two homogeneous and
antagonistic camps, ‘the pure people’ versus ‘the
corrupt elite”’ (Mudde, 2004, p. 543).

Another influential view distinguishes between
thin and thick populism, where the former is con-
sidered as a “communication style of political ac-
tors that refers to the people” (Jagers and Wal-
grave, 2007, pp.322). Thick populism, on the other
hand, is similar to Mudde’s definition and combines
people-centrist references with anti-elitism and the
exclusion of certain minority groups from The Peo-
ple. Our operationalization of populist rhetoric is
most similar to Jagers and Walgrave (2007)’s thin
populism. Still, it can also be used within other con-
ceptual frameworks that rely on people-centrism
and anti-elitism as defining features of populism.

So far, a variety of approaches have been pro-
posed for analyzing populism. Some works rely
on expert opinions and surveys (Rooduijn et al.,
2019b; Meijers and Zaslove, 2021a) to obtain the-
oretically grounded measurements of populism.
This approach, however, only yields scores on
the level of parties or organizations but defies a
more fine-grained or graded analysis on the text
or sub-text level (Aslanidis, 2018). Text-based ap-
proaches, on the other hand, have the potential
to identify context-sensitive manifestations of pop-
ulism and its characteristics and, in turn, profile
political actors along multiple dimensions.

2.2 Measuring populism in text

Text-based methods for measuring populism can
be classified into four main approaches. The first is
based on manual content analysis where a larger
text is segmented into smaller units, and trained
human coders inspect each unit and search for pop-
ulist cues (Jagers and Walgrave, 2007; Hawkins,
2009, inter alia). While this approach can obtain
high content validity, it is also extremely time-
consuming and, depending on the categories in
the codebook, does not necessarily generalize well
across different topics, geographical and cultural
specificities, or time periods.

A second approach, called holistic coding, also
involves human annotation where trained coders
read the document and, based on the comparison
to a small set of anchor texts, decide whether the
text as a whole should be considered as populist or
not (Hawkins and Castanho Silva, 2018; Hawkins
et al., 2019, inter alia). Document-level analysis is
less fine-grained, and often it is not evident why a
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Level 1 Elite E People P

Level 2 Person P Organisation O –

Level 3 Domain: Label: Domain: Label: Domain: Label:
Politics EPPOL Politics EOPOL Nation PNAT

Economy EPECON Economy EOECON Ethnicity/religion PETH

Finance EPFIN Finance EOFIN Profession/function PFUN

Media EPMED Media EOMED Age PAGE

Science EPSCI Science EOSCI Social variables PSOC

Religion EPREL Religion EOREL (gender/class/...)
Culture EPCULT Culture EOCULT Generic PGEN

Military EPMIL Military EOMIL

NGOs EPNGO NGOs EONGO

Movements EPMOV Movements EOMOV

Other: references to own person EPOWN geo-political entity GPE

Table 1: Hierarchical annotation of references to The People and The Elite.

particular text has been coded as populist. Further-
more, assigning scores to documents offers limited
interpretability for analysis.

The third approach for measuring populism ap-
plies computer-assisted content analysis, based
on dictionaries that contain cue words related
to populist rhetoric, such as people, elite, es-
tablishment, corrupt, etc. (e.g. Jagers and
Walgrave (2007); Caiani and della Porta (2011);
Vasilopoulou et al. (2014); March (2017); Pauwels
(2011); Rooduijn and Pauwels (2011); Bonikowski
and Gidron (2016)). While dictionary-based ap-
proaches are fast and scale easily, they are less valid
and reliable than manual content analysis (Grim-
mer and Stewart, 2013). This is partly due to the ar-
bitrariness in the selection of the dictionary entries
or keywords, where (potentially biased) choices
made in the creation of the dictionary can impact
the analysis. Another reason for the often low con-
tent validity is that dictionary-based methods are
not context-sensitive. For instance, Rooduijn and
Pauwels (2011) have tried to capture notions of
people-centrism and anti-elitism in text using a
dictionary-based approach, and found a reduced
content validity compared to manual coding, espe-
cially for people-centrism.

The fourth approach uses supervised machine
learning (ML) for populism detection. First steps
in this direction have been taken by Dai (2018); di
Cocco and Monechi (2021) and Huguet Cabot et al.
(2021). Dai (2018) presents an approach based
on document embeddings and SVMs to predict

whether a text is populist or not. The reported per-
formance is quite high (95% acc.), but merely due
to the choice of evaluation metric and the highly
skewed class distribution (i.e., only 4% of the in-
stances in the dataset are labeled as populist).

In contrast, di Cocco and Monechi (2021) do
not rely on manual annotations but approximate
populism by party affiliation. They consider all
sentences uttered by members of a populist party as
populist and show that their measure of populism,
based on the predictions of a classifier trained on
the weakly supervised data, correlates with party
membership and, thus, with the experts’ ratings of
populism. However, the approach does not cap-
ture the defining features of the construct, and it is
unclear what has been learned by the classifier.

Huguet Cabot et al. (2021) present a dataset of
Reddit comments annotated for stance (Discrimi-
natory, Critical, Neutral, Supportive) and emotions
towards six social groups (Conservatives, Liberals,
Immigrants, Refugees, Jews, Muslims). While they
also aim at detecting Us vs. Them rhetoric, in their
work, the groups are given. In contrast, we explic-
itly model the building blocks of populism, i.e., ref-
erences to The People and The Elite, and detect all
mentions of either group in text. The advantage of
our approach is threefold. First, our representations
are contextualized, thus overcoming the shortcom-
ings of dictionary-based approaches. Second, by
manually coding all mentions to The People and
The Elite in text, we can overcome the problem
of incomplete or biased keyword lists, which is
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party speeches speakers tokens

CDU/CSU 76 57 72,113
SPD 58 44 48,988
AfD 39 30 29,301
FDP 34 25 22,736
Left 29 21 20,266
Greens 27 18 18,756
cross-bencher 3 1 1,457

total 267 196 213,617

Table 2: Some statisics for our new data set
(CDU/CSU: Christian Democratic Union and Christian
Social Union; SPD: Social Democratic Party; AfD: Al-
ternative for Germany; FDP: Free Democratic Party;
Left: The Left; Greens: The Greens).

another weakness of dictionary-based approaches
(Grimmer and Stewart, 2013). Finally, our ap-
proach yields more fine-grained results that allow
us to study differences in populist rhetoric, e.g., for
actors from different ideological backgrounds.

3 MoPE: Annotating Mentions of the
People and the Elite

We now present MoPE, our new data set with an-
notated mentions of The People and The Elite.

The People versus The Elite. According to
Mudde (2017), the difference between the two
camps in populist rhetoric is not based on issues
of class or nationality, but rather on morality. The
People are an artificial construct of a (non-existing)
homogeneous community whose defining criteria
are self-ascribed and depend on the specific ideol-
ogy that serves as the carrier for the thin-centered
ideology, i.e., populism (see §2.1). The Elite, on
the other hand, can be seen as the anti-thesis of the
The People and also obtains its defining features
based on the situational context.

To operationalize the two concepts, we use a hi-
erarchical schema where we encode instances of
the two classes on the first level (Table 1). Level
2 then distinguishes individuals and groups of per-
sons from elite organizations, while Level 3 en-
codes fine-grained information about the individual
actors. Our schema builds upon and extends the
categories in the codebook of Wirth et al. (2019,
p.12)1. Additionally, Level 3 encodes geo-political
entities (GPE) as they provide important informa-
tion for many applications. Following Jagers and
Walgrave (2007) and Wirth et al. (2019), we use the

1https://osf.io/2z3dk/

Figure 1: Annotations of references to The People
(PNAT: people by nationality; PFUNC: people by func-
tion; PSOC: social variables like gender, class).

term Elite in a broad sense as referring to persons,
groups, organizations or institutions with a dispro-
portionate amount of power, wealth, privilege or
skills through which they can have an impact on
politics and society. As instances of The People,
we consider (a) unspecified groups of people and
(b) individuals that denote common members of
the public, such as John Q. Public.

German Bundestag data. We extracted a
dataset of German parliamentary debates for the
19th legislative term (2017–2021), controlled for
topic and party membership of the speakers.2 The
time frame was selected because of its relevance
for the rise and consolidation of populist rhetoric
in German politics. Our data set includes 267
speeches by 196 different speakers from 6 Ger-
man parties (Table 2). Figure 1 shows an example
annotation from our data, with references to differ-
ent mentions of The People. Please note that while
our task has some similarities to Named Entity
Recognition (NER), there are also crucial differ-
ences. Most importantly, only some of our men-
tions are proper names, while many of them are
noun phrases that include subordinated clauses like
relative clauses (e.g., “the low wage earner who
can’t get his pension together” in Figure 1). This
means that the average span length of our men-
tions is considerably longer than for NER, which
introduces additional ambiguity for annotation and
prediction.3 We will come back to this issue in §3.2.
Annotations can (and often do) include embedded
mentions. Entities can belong to more than one
class (see, e.g., the German unemployed in Figure
1, which belongs to the classes “People by Nation”
and “People by Function”).

2We follow best practices and provide a datasheet (Bender
and Friedman, 2018; Gebru et al., 2021) with details on corpus
creation and sampling in the supplementary materials.

3For example, some of the ambiguities arise from PP at-
tachment ambiguities for longer mention spans.

1230

https://osf.io/2z3dk/


Label exact overlap mentions
Domain F1 F1 avg. #

Politics 0.73 0.84 2,017.5
Science 0.37 0.37 40.5
Culture 0.59 0.65 17.0
Economy 0.11 0.11 9.5
Finance 0.11 0.11 9.0
Movements 0 0 7.5
NGO 0.18 0.18 5.5
Media 0.22 0.55 4.5

E
lit

e
(P

er
so

n)

Military 0 0.25 4.0
Religion 1.00 1.00 1.0

avg. 70.6 81.3 2,116.0

Politics 0.76 0.84 2,443.0
Finance 0.64 0.79 147.0
Military 0.72 0.77 132.0
Economy 0.32 0.56 97.5
NGO 0.40 0.42 42.5
Media 0.54 0.77 26.0
Science 0.46 0.57 17.5
Movements 0.59 0.59 8.5

E
lit

e
(O

rg
an

is
at

io
n)

Culture 0 0 2.5
Religion 0 0 2.0

avg. 72.8 81.2 2,918.5

Function 0.58 0.76 1,572.0
Age 0.73 0.87 487.5
Social 0.49 0.61 426.5
Nation 0.56 0.70 258.5

Pe
op

le

Generic 0.42 0.42 187.0
Ethnicity 0.41 0.51 128.0

avg. 57.2 71.9 3,059.5

Table 3: Average F1 (micro) for exact match and span
overlap for the two coders on the full German data.

English Europarl-UdS data. We additionally
compile an English data set to enable testing for the
generalization capabilities of our models not only
across languages but also beyond recent debates
and topics. The English data was extracted from
the EuroParl-UdS corpus (Karakanta et al., 2018),
a multilingual (En, De, Es) parallel corpus of par-
liamentary debates from the European parliament,
with speeches from 1999–2018. We randomly se-
lected speeches from three different years (1999,
2014, 2015), with 70 different speakers from 18
countries (for details, see Appendix, Tables 12, 10).

Annotation process. The data was double anno-
tated by two student assistants with background
in political/social science. During the annotation
process, we had weekly meetings to discuss am-
biguous cases. The final version was adjudicated by
one of the authors (a linguist by training), who also
corrected inconsistent span annotations: it includes
9,297 annotated mentions (German subcorpus). In
our experiments, we ignore all mentions where the
speakers refer to themselves (Label EPOWN) using

Label exact overlap mentions
Domain F1 F1 avg. #

Politics 0.76 0.83 241.0
Movements 0.29 0.57 3.5
Science 0 0 1.0

avg. 0.75 0.82 245.5

E
lit

e
(P

er
so

n)

Politics 0.75 0.82 410.0
Movements 0.15 0.15 6.5
Economy 0.65 0.69 24.5
NGO 0.55 0.73 5.5
Science 0.67 0.67 1.5
Media 0.86 0.86 3.5
Finance 0 0 1.0
Military 0 0 0.5

E
lit

e
(O

rg
an

is
at

io
n)

avg. 0.73 0.80 453.0

Social 0.71 0.87 151.5
Function 0.28 0.38 29.0
Nation 0.67 0.78 18.0
Generic 0 0 5.0

Pe
op

le
Age 0.67 0.67 7.5
Ethnicity 0 0 1.5

avg. 0.62 0.76 212.5

Table 4: Average F1 (micro) for exact match and span
overlap for the two coders on the English data.

the pronouns I/me, since this label can be assigned
based on a simple string match. This results in a set
of 7,422 mentions with 22,479 annotated tokens
that we divide into training, dev and test set (see
Appendix B, Table 11 for more details on the size
and distribution of the different splits).

The English data set includes 29,584 tokens with
1,423 annotated mentions (1,074 w/o EPOWN) and
3,567 annotated tokens (3,218 w/o EPOWN).

3.1 Inter-annotator agreement (IAA)

Since our data includes multi-label annotations, we
cannot report Cohen’s κ. We follow Hripcsak and
Rothschild (2005) and compute F1, treating the
annotations of one annotator as the ground truth
and the other as the predicted annotations. We then
switch roles and report averaged micro F1 on the
mention level for the fine-grained labels (level 3).4

Table 3 reports micro F1 on the mention level for
German, using a strict measure that only considers
a mention as correct when all tokens that belong
to that mention have been identified correctly. The
last column shows the average number of tokens
annotated by our two coders (i.e., the number of in-

4Also see the discussion in Hripcsak and Rothschild (2005)
why chance-corrected measures are not optimal for NER and
other sequence-level tasks where the number of negative enti-
ties is unknown.
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stances before adjudication). As the exact mention
metric is rather strict and punishes spans that have
been identified correctly by both coders but where
the span boundaries slightly disagree, we also re-
port a measure based on token overlap that has been
introduced for the evaluation of opinion role spans
(Katiyar and Cardie, 2016). Here we consider a
mention as correct if the annotations overlap and
both annotators have assigned the same label. Mi-
cro F1 for exact match is 0.69, while the overlap
measure is much higher with an F1 of 0.80.

Table 4 shows IAA for the English data from the
EU parliament. As for German, references to the
people seem to be the most difficult class.

3.2 Error analysis

We notice a high variance in F1 for the different
classes. In particular, we can see that F1 for the fre-
quent label types is much higher than IAA for the
low-frequency labels. Looking at the data, we see
that our domain expert annotators often disagree
on the exact span of the mentions. In particular,
one annotator often failed to include complement
clauses which strongly impacts exact IAA.

The F1 scores for overlapping annotation spans
(Table 3) show a substantial increase for many
classes, confirming our assumption that the anno-
tators did not so much disagree on the class labels
but on the span boundaries of the mentions. As
mentioned above, at times, the domain experts also
struggled with PP attachment decisions, as illus-
trated in Example 3.1 where “at age 63” should not
be included in the mention span.

Ex. 3.1 So why should professional soldiers at
age 63 no longer be able to meet the physical de-
mands of service [...] (E. Brecht, SPD, 9/6/2021)

In addition, the confusion matrix (Appendix B,
Table 7) suggests that recall is a problem, show-
ing a considerable number of instances that have
been coded by one annotator only. We confirm this
problem by looking at individual classes. Espe-
cially generic mentions of The People have been
annotated mostly by one of the two annotators
(263 instances have been identified as PGEN by A1
while A2 annotated 111 instances only). This recall
problem has been discussed by Beigman Klebanov
et al. (2008) for the metaphor detection task where
the authors distinguish between genuine disagree-
ments and slips of attention, which is a common
phenomenon, especially for rare classes where the
units of analysis are not given, and the annotators

first have to detect them in longer texts before they
can assign the labels.

We also notice some systematic disagreements
for the classes in our schema. Examples are, for
instance, the classes PEOPLE BY NATION and PEO-
PLE BY ETHNICITY, where A1 shows a bias for the
first label while A2 preferred the second. This hap-
pened for mentions like the population of X, which
can be interpreted as ’citizens of X’ (PNAT) or as
referring to all people who live in the country and
thus share the same cultural background (PETH).
Another systematic disagreement concerns PEO-
PLE BY FUNCTION and GENERIC mentions, illus-
trated in Example 3.2. Here, A1 interpreted the
mention (“the people who...”) as a generic refer-
ence (PGEN) while A2 focused on the function of
the people (rebuilding the country) and assigned
the label PFUNC.

Ex. 3.2 I am proud of our country and of [the peo-
ple who, through the economic miracle, have
made it a country that is treated with respect
and appreciation pFunc/pGen].
xxx (J. Juratovic, SPD, 28/5/2020)

In general, we notice that IAA for mentions of
The Elite is higher than for references to The People.
We suggest that this is due to two reasons. First,
mentions to The People are, per definition, more ab-
stract and vague, and second, the average mention
length for instances of The People is longer than
for The Elite (elite person: 2.3, elite organization:
2.7, people: 3.1 tokens).

4 Experiments

We use our data set from §3 to benchmark the
task of predicting mentions of The Elite and The
People from text sentences. Our task can be decom-
posed into two separate sub-tasks: (i) mention de-
tection (MD) and (ii) mention classification (MC). We
present experiments where we compare different
transformer-based model architectures (Vaswani
et al., 2017; Devlin et al., 2019) for those tasks.
Specifically, we compare (i) a pipeline approach
(MD−→MC) with (ii) an end-to-end token classifica-
tion model (E2E-Tok) and (iii) semi-supervised tri-
training (TRI) (Zhou and Li, 2005).

Mention detection. Our MD model is a token clas-
sification model, similar to the NER model of De-
vlin et al. (2019), and predicts the span boundaries
for mentions of The People and The Elite on the
token level. We use the BIO schema to encode
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dev set test set

Task & model architecture Prec Rec F1 Prec Rec F1
span detect. MD 82.0 ± 1.00 83.0 ± 0.80 82.4 ± 0.86 79.5 ± 1.21 80.4 ± 1.91 80.0 ± 1.34

Level 1 label predict. 97.6 ± 0.10 97.5 ± 0.10 97.6 ± 0.10 96.8 ± 0.03 96.8 ± 0.03 96.8 ± 0.03

Level 2 upper bound MC 96.5 ± 0.10 96.4 ± 0.10 96.4 ± 0.10 95.9 ± 0.37 95.9 ± 0.37 95.9 ± 0.37

Level 3 on gold spans 92.5 ± 0.46 92.4 ± 0.47 92.4 ± 0.47 88.1 ± 1.76 88.1 ± 1.76 88.1 ± 1.76

L
ev

el
1 Pipeline MD−→MC 74.5± 1.0 81.1± 1.07 77.7± 1.03 72.6± 1.13 79.6± 1.24 75.9± 1.18

End-to-end E2E-Tok 82.6± 1.09 83.1± 1.41 82.8± 0.20 77.1± 2.84 79.6± 1.29 78.3± 1.63

L
ev

el
2 Pipeline MD−→MC 72.7 ± 0.2 78.9 ± 0.22 75.7 ± 0.21 70.9 ± 0.22 77.6 ± 0.24 74.1 ± 0.23

End-to-end E2E-Tok 83.0± 0.31 80.7± 0.80 81.9± 0.55 79.2± 0.89 78.3± 0.74 78.7± 0.39

L
ev

el
3 Pipeline MD−→MC 68.7 ± 3.0 72.3 ± 3.16 70.4 ± 3.08 63.8 ± 3.85 67.9 ± 4.10 65.8 ± 3.97

End-to-end E2E-Tok 80.6 ± 1.38 79.6 ± 0.88 80.1 ± 0.49 73.6 ± 2.00 74.8 ± 1.21 74.2 ± 0.48

Table 5: F1 (micro), precision and recall for the different models on the German dev and test sets. Bold indicates
the best performing end-to-end scores for each annotation level and ± shows stdev over the three runs.

the span boundaries and, for each token, predict
whether it belongs to a specific mention.

Mention classification. Our next model architec-
ture tries to predict the label for a given mention
using sequence classification. For this, we concate-
nate the input sentence with the respective mention,
separated by a [SEP] token, and input the sequence
to the model, which then predicts a label for the
entire sequence. Please note that this model relies
on gold spans as input and provides an upper bound
for determining the correct class of a mention.

Pipeline. When performing mention classifica-
tion, the span-based MC model needs to know the
span boundaries to predict a mention’s label. There-
fore, we test a pipeline approach where we first use
the MD model to detect the spans of the mentions
and then predict the label, using the MD output as
input to the MC model.

End-to-end token classification. We compare
the pipeline results to an end-to-end token clas-
sification model. The architecture is similar to the
MD model, but in addition to span boundary detec-
tion, we also predict the labels of the mentions on
the token level. We use the BIO schema as prefixes
to the class labels to encode the span boundaries
and class for each mention and, for each token,
predict whether it belongs to a specific span and
class (including the None class).

Cross-lingual tri-training with disagreement.
Semi-supervised approaches have successfully im-
proved model performance, especially in low-
resource scenarios. We, therefore, test the poten-
tial of tri-training (Zhou and Li, 2005) in a cross-

lingual setting to improve results for knowledge
transfer from German to English. Tri-training is an
iterative process where we use the predictions of
two classifiers c1, c2 to assign labels to unlabeled
instances and expand the training set of a third clas-
sifier. Previous work has shown that tri-training
with disagreement, i.e., adding only those instances
to the training data of c3 where c1 and c2 agree with
each other’s predictions but disagree with the pre-
diction of c3, can filter out uninformative instances
and improve the efficiency of the training process
(Chen et al., 2006; Zhou, 2008; Søgaard, 2010).

Specifically, we use the end-to-end architecture
(E2E-Tok) to train three multilingual classifiers
based on bert-base-multilingual-cased with
different seeds on the German train set. For each
seed, we select the model that performed best on
the dev set. We then use the three classifiers to
predict labels for new, unlabeled data points from
the English part of the EuroParl-UdS corpus and,
for each classifier ci, select new instances based
on disagreement and add them to ci’s training set.
Please note that this results in different training sets
for each classifier. We then continue fine-tuning
the classifiers on the expanded training data for m
iterations, followed by n iterations of supervised
training on gold data. We repeat this process until
the results on the dev set stop improving. Then we
use the three semi-supervised classifiers to predict
labels for the test set based on majority voting.

In contrast to previous work (Ruder and Plank,
2018), we do not share parameters between learn-
ers but encourage the diversity of the models by
keeping them separate. For efficiency, we do not
fully retrain the models on the expanded data but
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German testde English testen

Level Model prec rec F1 Model prec rec F1
Level 1 mBERT 78.7± 1.59 76.3± 0.68 77.5± 0.96 ZERO 71.9± 2.33 74.7± 1.00 73.3± 0.75

TRI 77.2± 0.22 77.7± 0.28 77.4± 0.25 TRI 70.6± 1.14 79.6± 1.06 74.8± 1.11

Level 2 mBERT 77.0± 1.07 75.0± 0.15 76.0± 0.60 ZERO 69.6 ± 2.00 74.0± 1.63 71.7± 1.81

TRI 78.2± 0.84 77.2± 0.44 77.7± 0.19 TRI 70.1± 1.62 79.4± 1.20 74.4± 0.41

Level 3 mBERT 70.9± 0.92 72.6± 0.40 71.7± 0.42 ZERO 68.3± 1.20 74.8± 0.66 71.4± 0.96

TRI 75.3± 0.03 72.7± 1.34 74.0± 0.70 TRI 69.8± 1.50 75.5± 0.42 72.5± 0.87

Table 6: Results for zero-shot learning and tri-training for the mBERT E2E-Tok model on the German test set and
on the English benchmark data.

simply add m + n epochs of fine-tuning in each
iteration. For details on model setup and parameter
settings, see Appendix B.1, B.4 and B.2.

4.1 Results for German

In all experiments, we report results averaged over
three runs with different initializations. All mod-
els are implemented with the Huggingface trans-
formers library (Wolf et al., 2020) and PyTorch
(Paszke et al., 2017). For evaluation, we use seq-
eval (Nakayama, 2018), a python implementation
of the well-known CoNLL 2000 evaluation script
for sequence tagging tasks (Tjong Kim Sang and
Buchholz, 2000), and report precision, recall and
F1 (micro) in strict mode on the mention level for
the different levels of our hierarchical annotations
(see Appendix B.3 for details).

We first report results for the token-based men-
tion detection task (Table 5). F1 on the develop-
ment and test set are close with around 80%. The
upper bound for mention classification of gold
mention spans is very high for the coarse-grained
levels where we distinguish between mentions of
The People and The Elite (Level1/2), with an F1
of around 96%. For the fine-grained classes, the
upper bound is around 92% for dev and 88% for
test (Table 5, MC, Level3).

We now turn to the end-to-end architectures
(MD−→MC, E2E-Tok) where we predict the span
boundaries and the class labels. While the MC
model performs well on gold mentions, it visibly
struggles to predict labels for automatically deter-
mined spans, and F1 decreases by around 20% for
all levels (Table 5). On the other hand, our end-to-
end token-based model is much better suited for
this task, with an F1 over 74% for L3 and around
80% for the coarse-grained prediction of mentions
of The People and The Elite.

4.2 Cross-lingual transfer to English

Zero-shot transfer. Lauscher et al. (2020) have
shown that results for zero-shot cross-lingual trans-
fer do not decrease much for lower-level tasks like
PoS and NER if source and target language are ty-
pologically close. This observation encourages us
to try zero-shot transfer learning for our task, which
is closely related to NER. We use the E2E-Tok ar-
chitecture from our previous experiments and ini-
tialize it with a pretrained multilingual transformer
(mBERT). We then train mBERT on the German
data and use it to detect instances of The People and
The Elite in the English debates. The experiments
are meant to investigate how well we can trans-
fer information from German to English without
annotating any English data.

Table 6 shows results for the mBERT model on
the German test set and zero-shot learning, using
the same model to predict labels for the English
benchmark data. We can see that F1 for the fine-
grained Level-3 predictions on the English test set
is only slightly lower than for German (71.7% vs.
71.4% F1). However, the gap between precision
and recall is more substantial than in the mono-
lingual setting, and the trend is reversed, show-
ing higher recall with much lower precision. Not
surprisingly, results for mBERT on the German test
set are lower than the ones for the German BERT
model (cf. Table 5).

Looking at the tri-training results, we observe
another increase of around 1% for the English data.
Interestingly, training the classifier on unlabeled
English data also yields an improvement of >2%
F1 on the German test set (L3) for mBERT, closing
the gap between the mBERT and German BERT
results. Overall, the results indicate a successful
transfer, considering that the model did not see any
hand-labeled English data during training.
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Figure 2: Distribution of references to The People in
the German Bundestag (2017-2021). Numbers in the
bar show POPPA scores for people-centrism.

5 Measuring thin populism from text

We are now able to investigate Jagers and Walgrave
(2007)’s concept of thin populism by looking at
how often political actors refer to different subsets
of The People. For that, we use our three monolin-
gual classifiers described in §4 and predict labels
for all debates from the German Bundestag from
the 19th legislative term (2017–2021) (> 16 mil-
lion tokens). We take the majority vote of the three
classifiers to determine the final predictions. Figure
2 shows the distribution of the aggregated counts
for all references to The People for each party. 5

We can now validate how well our operational-
ization of thin populism in text correlates with ex-
pert ratings. For that, we compute Spearman’s rank
correlation between the normalized counts for each
party and the party’s score for people-centrism in
the Populism and Political Parties Expert Survey
(POPPA) (Meijers and Zaslove, 2021b) (also see
Table 9 in the Appendix, C). We observe a very
strong positive correlation (ρ = .94, p = .005)
between the expert ratings for people-centrism and
our predicted counts (Level 1), where both left and
right-wing populist parties show a substantially
higher amount of people mentions.

However, when looking at the fine-grained pre-
dictions for different subgroups of The People

5We excluded the CSU from the analysis. While the party
is forming a joint parliamentary group with the CDU in the
Bundestag, it is only running for election in a single German
province, Bavaria. This results in a conflict between the party’s
“Bavaria first!” policy on the province level and the need
to accommodate their sister party’s policies on the federal
level (Frymark, 2018, pp.2-3). We, therefore, expect that the
governing faction is not representative of the party as a whole.

Figure 3: Distribution of group mentions in the 19th
legislative term of the German Bundestag (2017-2021).

(Level 3, Figure 3), we also notice interesting dif-
ferences. For example, both populist parties use a
higher amount of references to PEOPLE BY FUNC-
TION than the mainstream parties. At the same
time, only the far-right AfD shows excessive use
of PEOPLE BY NATION, often as a dog-whistle to
send the message that some people are not “our
kind of people”.6

Overall, our approach of predicting references
to The People is able to successfully identify pop-
ulist rhetoric in large amounts of text and agrees
well with expert ratings. However, our results also
highlight the importance of a more fine-grained op-
erationalization of thin populism that distinguishes
between different subgroups of The People.

6 Conclusions
In this paper, we presented MOPE, a novel data
set for detecting mentions of The People and The
Elite in political text. Our data set includes more
than 9,000 annotated mentions for German and
an English benchmark set with around 1,600 men-
tions for cross-lingual transfer learning. We eval-
uated different transformer-based model architec-
tures on our new data set and explored zero-shot
cross-lingual transfer and cross-lingual tri-training.

In future work, we will combine references to
The Elite with stance detection, which will allow
us to model and quantify the different dimensions
of populism separately, i.e., people-centrism and
anti-elitism, thus enabling large-scale studies of
populism from left- and right-wing political actors
in different contextual settings.

6This observation is consistent with the AfD’s high POPPA
score for nativism (9.7 of 10).
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7 Limitations

We would like to point out some limitations of our
work. First, in this paper, we do not yet provide
measures of populist rhetoric but release a data set
and method for detecting instances of The People
and The Elite in text, which we see as a prerequi-
site for a theoretically grounded, multi-dimensional
model of populism that captures the core features of
the construct, i.e., anti-elitism and people-centrism.
While our results correlate with expert ratings from
survey tools for German, the validity of the English
annotations still needs to be tested, and the accu-
racy for infrequent classes needs to be improved.
In addition, further work needs to investigate the
robustness of our models on data from different
domains and text types.
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Supplementary Material

A Inter-annotator agreement (IAA)

Table 7 shows the confusion matrix for our two
human annotators (A1, A2) for the fine-grained
classes (Level 3) in the German Bundestag debates.
Due to space limitations, only the most frequent
classes are shown. The prefixes of the labels are
EP: Elite-Person, EO: Elite-Organisation, P: People.
The domains of the labels are FIN: finance, MIL:
military; POL: politics; ECO: economy; AGE: peo-
ple by age; ETH: people by ethnicity; FUN: people
by professon/function; GEN: Generic mentions;
NAT: people by nation; SOC: social variables (gen-
der, class); GPE: geo-political entities.

B Training details

B.1 Setup and parameters

For all experiments, we report results averaged over
three runs. In each run, we initialise the model with
a different seed: {18, 23, 44}. As optimizer, we use
AdamW (Loshchilov and Hutter, 2019). The ini-
tial learning rate was set to 2.69−05, with a weight
decay of 0.0198. We did not freeze any layers but
fine-tuned the whole model in all experiments. For
tri-training, we experimented with m = {3, 5} and
n = {1, 5} and found that n=3 and m=1 were
robust across different levels. A more principled
hyperparameter search might further improve re-
sults.

B.2 Training/dev/test splits

Table 11 shows the distribution of labels in the dif-
ferent data splits (train/development/test) for each
level in our hierarchical annotation schema. We en-
sure that none of the agenda items in the test set are
included in the training set. This results in a much
more challenging and realistic setting compared to
distributing speeches from the same agenda item
into training and test sets.

B.3 Sequence tagging evaluation

As noted by Lignos and Kamyab (2020), many
evaluation scripts for sequence tagging tasks will
produce non-replicable results due to inconsistent
handling of “improper label sequences”, i.e., men-
tions that have been labeled with the correct class
but have been assigned an incorrect prefix. This
results in an inconsistent number of entities in the
gold standard and thus produces results that are not

comparable. To avoid this problem, we report re-
sults for the strict mode where prefixes are included
in the evaluation.

For illustration, consider the following two se-
quences:

• GOLD: [’B-ELI’, ’O’, ’B-ELI’, ’I-ELI’, ’O’, ’B-ELI’]

• PRED: [’B-ELI’, ’O’, ’O’, ’I-ELI’, ’O’, ’B-ELI’]

In strict mode, the seqeval evaluation script
would consider only proper mentions starting with
’B’ for calculation (precision 2

2 = 1.00):

• GOLD: [’B-ELI’, ’O’, ’B-ELI’, ’I-ELI’, ’O’, ’B-ELI’]

• PRED: [’B-ELI’, ’O’, ’O’, ’I-ELI’, ’O’, ’B-ELI’]

However, in default mode, the seqeval evaluation
first "repairs" the improper label sequences:

• PRED: [’B-ELI’, ’O’, ’O’, ’B-ELI’, ’O’, ’B-ELI’]

After that, in default mode, all three mentions are
used for calculation, even if they do not start in the
original sequence with a starting token (precision
2
3 = 0.67):

• GOLD: [’B-ELI’, ’O’, ’B-ELI’, ’I-ELI’, ’O’, ’B-
ELI’]

• PRED: [’B-ELI’, ’O’, ’O’, ’B-ELI’, ’O’, ’B-ELI’]

B.4 Tri-training with disagreement

We use a sample of 20,000 instances (sentences)
from the EuroParl-UdS corpus as unlabelled data
for tri-training. The data size was determined to
extract a sufficient number of data points for tri-
training while keeping the additional time for train-
ing and prediction low. From the 20,000 instances,
between 950 to 1,500 instances have been selected
for each classifier during tri-training (see Table 8
for exact numbers).

We loaded the checkpoints for the three best
baseline classifiers (E2E) and continued training for
5 epochs on the newly extracted instances. Finally,
we trained each classifier for another 5 epochs on
the original training set. Then we used the three
classifiers to predict labels for the test instances
based on a majority vote.
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A1 eoFin eoMil eoPol eoEco epPol pAge pEth pFun pGen pNat pSoc GPE None
A2

eoFin 93 0 6 7 0 0 0 1 0 0 0 0 44
eoMil 0 100 0 0 0 0 0 2 0 1 0 0 42
eoPol 5 8 1,641 1 46 0 1 1 0 1 0 17 583
eoEco 1 0 1 33 0 0 0 11 0 0 0 0 59
epPol 1 0 43 0 1,273 0 3 54 1 26 3 2 293
pAge 0 0 0 0 2 330 0 5 1 1 32 0 50
pEth 0 0 0 0 1 3 54 5 7 6 7 0 25
pFun 0 1 0 0 1 10 2 912 40 15 124 5 314
pGen 0 0 1 0 0 0 8 0 78 1 0 0 23
pNat 0 0 0 0 0 0 30 3 12 144 2 0 26
pSoc 0 0 0 0 1 2 2 12 3 1 194 0 35
GPE 0 0 13 0 0 0 2 0 1 0 1 1,008 188
None 16 5 203 18 93 62 33 341 121 43 110 102 198,211

Table 7: Confusion matrix for two human annotators A1, A2 for the fine-grained classes (Level 3) in the German
Bundestag debates (most frequent classes only).

Level1 Level2 Level3

Clf 1 1,142 1192 947
Clf 2 969 946 1024
Clf 3 1,066 1236 1518

Table 8: Unlabelled training instances extracted for
each level and classifier during tri-training.

C Populism and Political Parties Expert
Survey (POPPA)

Table 9 shows expert ratings from the 2018 Pop-
ulism and Political Parties Expert Survey (POPPA)
(Meijers and Zaslove, 2021b) for all six German
parties that participated in government in the 19th
legislative term (2017–2021). The first column
lists scores for people-centrism, a core feature of
populism strongly related to Jagers and Walgrave
(2007)’s concept of thin populism, and the second
column shows the mean populism score for each
party, aggregated over all relevant dimensions of
populism in the survey. The ratings were collected
between April 2018 and July 2018 from 294 coun-
try experts and include survey items for populism,
political style, party ideology, and party organiza-
tion in 28 European countries.7

7http://poppa-data.eu/

party people-centrism populism

AfD 8.2 9.4
LEFT 6.9 5.6
GREENS 4.0 1.4
CSU 3.9 3.2
SPD 2.9 1.5
FDP 2.7 2.5
CDU 1.9 0.8

Table 9: POPPA-2018 expert ratings for people-
centrism and populism for the parties in the German
Bundestag.

D Dataset details
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Id Country # toks

AT Austria 260
BE Belgium 2,161
BG Bulgaria 114
CZ Czech Republic 31
DE Germany 358
DK Denmark 757
EE Estonia 655
ES Spain 1,188
FR France 2,111
GB United Kingdom 6,918
IE Ireland 1,063
IT Italy 2,166
LV Latvia 256
MT Malta 214
NA no information available 7,235
NL Netherlands 1,492
PL Poland 474
RO Romania 895
SE Sweden 1,525

Table 10: No. of tokens per country for the English data
set from the EU parliament (1999-2015). NA indicates
that no country information was specified in the meta-
data.
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Dataset distribution

train dev test total
Label #ment. #token #ment. #token #ment. #token #ment. #token

Level 1
Elite ELITE 2603 8028 438 1342 1049 3302 4090 12672
People PEOPLE 1510 5093 134 501 656 2503 2300 8097
Level 2
Person ELITE-PERSON 1033 3607 172 573 402 1408 1607 5588
Organisation ELITE-ORGAN 1571 4421 267 769 656 2503 2488 7084
People PEOPLE 1510 5093 134 501 650 1894 2300 8097

Level 3 Elite-Person
Domain:
politics EPPOL 969 3293 157 493 370 1316 1496 5102
science EPSCI 31 150 3 9 32 146 46 204
culture EPCULT 8 50 2 3 8 17 15 77
military EPMIL 4 44 6 37 67 149 5 46
finance EPFIN 2 5 None None 1 8 7 41
economy EPECON 4 14 9 35 12 31 13 37
movement EPMOV 5 19 None None None None 13 36
NGOs EPNGO 4 19 3 11 9 24 5 24
media EPMED 5 11 5 36 6 53 6 19
religion EPREL 1 2 None None None None 1 2

Level 3 Elite-Organisation
Domain:
politics EOPOL 1318 3612 121 183 125 368 2031 5524
finance EOFIN 76 279 1 3 1 2 117 441
military EOMIL 70 192 6 30 21 156 148 414
economy EOECON 50 148 11 48 68 319 90 346
NGOs EONGO 25 82 4 13 74 209 40 124
media EOMED 15 37 40 160 1 2 33 97
science EOSCI 9 36 1 5 3 4 17 93
movement EOMOV 7 33 None None None None 11 40
religion EOREL 1 2 None None None None 3 5

Level 3 People
Domain:
function PFUN 736 2771 202 491 4 18 1125 4354
age PAGE 252 720 16 43 9 23 388 1136
social PSOC 201 652 7 32 164 231 228 845
ethnicity PETH 72 266 2 4 11 28 149 620
national PNAT 113 348 77 292 511 1421 194 611
generic PGEN 138 336 8 52 65 220 221 531

geo-pol.ent. GPE 725 1296 16 46 312 1291 1010 1710

Table 11: Label distribution (per annotated token and per mention) for the train/dev/test splits for different levels
of annotation.
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Id Name Party # toks

1 Mauro NOBILIA Union for Europe of the Nations Group 562
2 Ole KRARUP Group for a Europe of Democracies and Diversities 327
3 Carl LANG Technical Group of Independent Members 360
4 Philip BUSHILL-MATTHEWS Europ. People’s Party (Christian Democrats) and Europ. Democrats 336
5 Alejandro CERCAS Party of Europ. Socialists 583
6 Daniel DUCARME Europ. Liberal, Democrat and Reform Party 235
7 Maj Britt THEORIN Party of Europ. Socialists 412
8 Bartho PRONK Europ. People’s Party (Christian Democrats) and Europ. Democrats 508
9 Anne VAN LANCKER Party of Europ. Socialists 866
10 Anne E. JENSEN Europ. Liberal, Democrat and Reform Party 430
11 Hélène FLAUTRE Greens/Europ. Free Alliance 1,141
12 Herman SCHMID Confederal Europ. United Left/Nordic Green Left 507
13 Liam HYLAND Union for Europe of the Nations Group 556
14 Rijk van DAM Group for a Europe of Democracies and Diversities 375
15 Marco CAPPATO Technical Group of Independent Members 472
16 Renzo IMBENI Party of Europ. Socialists 309
17 Maurizio TURCO Technical Group of Independent Members 74
18 Vytenis Povilas ANDRIUKAITIS Party of Europ. Socialists 1,362
19 Julie GIRLING Europ. Conservatives and Reformists Group 519
20 Lynn BOYLAN Confederal Europ. United Left 268
21 Pavel POC Progressive Alliance of Socialists and Democrats in the Europ. Parliament 31
22 Anthea McINTYRE Europ. Conservatives and Reformists Group 185
23 Nessa CHILDERS Progressive Alliance of Socialists and Democrats in the Europ. Parliament 224
24 Štefan FÜLE Party of Europ. Socialists 3,017
25 Jacek SARYUSZ-WOLSKI Europ. People’s Party (Christian Democrats) 254
26 Johannes Cornelis van BAALEN Alliance of Liberals and Democrats for Europe 317
27 Sandra KALNIETE Europ. People’s Party (Christian Democrats) 71
28 Marju LAURISTIN Progressive Alliance of Socialists and Democrats in the Europ. Parliament 127
29 Victor BOŞTINARU Progressive Alliance of Socialists and Democrats in the Europ. Parliament 152
30 Paul NUTTALL Europe of Freedom and Direct Democracy Group 103
31 Mike HOOKEM Europe of Freedom and Direct Democracy Group 394
32 Ioan Mircea PAŞCU Progressive Alliance of Socialists and Democrats in the Europ. Parliament 216
33 Richard HOWITT Progressive Alliance of Socialists and Democrats in the Europ. Parliament 244
34 Georgi PIRINSKI Progressive Alliance of Socialists and Democrats in the Europ. Parliament 114
35 Andrus ANSIP Alliance of Liberals and Democrats for Europe 83
36 Tatjana ŽDANOKA Greens/Europ. Free Alliance 185
37 Jean-Claude JUNCKER Europ. People’s Party (Christian Democrats) 551
38 Syed KAMALL Europ. Conservatives and Reformists Group 1,011
39 Guy VERHOFSTADT Alliance of Liberals and Democrats for Europe 1,060
40 Nigel FARAGE Europe of Freedom and Direct Democracy Group 1,042
41 Gerard BATTEN Europe of Freedom and Direct Democracy Group 208
42 Theodor Dumitru STOLOJAN Europ. People’s Party (Christian Democrats) 123
43 Věra JOUROVÁ Alliance of Liberals and Democrats for Europe 1,046
44 Janice ATKINSON Europe of Freedom and Direct Democracy Group 197
45 Louise BOURS Europe of Freedom and Direct Democracy Group 249
46 Mairead McGUINNESS Europ. People’s Party (Christian Democrats) 15
47 Terry REINTKE Greens/Europ. Free Alliance 358
48 Sophia in ’t VELD Alliance of Liberals and Democrats for Europe 292
49 Mary HONEYBALL Progressive Alliance of Socialists and Democrats in the Europ. Parliament 239
50 Ulrike LUNACEK Greens/Europ. Free Alliance 260
51 Jonathan ARNOTT Europe of Freedom and Direct Democracy Group 104
52 Julie WARD Progressive Alliance of Socialists and Democrats in the Europ. Parliament 193
53 Clare MOODY Progressive Alliance of Socialists and Democrats in the Europ. Parliament 223
54 Theresa GRIFFIN Progressive Alliance of Socialists and Democrats in the Europ. Parliament 375
55 Bill ETHERIDGE Europe of Freedom and Direct Democracy Group 225
56 Diane DODDS Non-attached Members 196
57 Doru-Claudian FRUNZULICĂ Progressive Alliance of Socialists and Democrats in the Europ. Parliament 404
58 Julia PITERA Europ. People’s Party (Christian Democrats) 220
59 Yana TOOM Alliance of Liberals and Democrats for Europe 158
60 Luigi COCILOVO Europ. People’s Party (Christian Democrats) and Europ. Democrats 515
61 Jan ANDERSSON Party of Europ. Socialists 606
62 Luciana SBARBATI Europ. Liberal, Democrat and Reform Party 234
63 Alain LIPIETZ Greens/Europ. Free Alliance 245
64 Sylviane H. AINARDI Confederal Europ. United Left/Nordic Green Left 365
65 Margrethe Vestager Alliance of Liberals and Democrats for Europe 1,259
66 Kaja KALLAS Alliance of Liberals and Democrats for Europe 287
67 Ramon TREMOSA i BALCELLS Alliance of Liberals and Democrats for Europe 605
68 Steven WOOLFE Europe of Freedom and Direct Democracy Group 430
69 Anneliese DODDS Progressive Alliance of Socialists and Democrats in the Europ. Parliament 445
70 Alfred SANT Progressive Alliance of Socialists and Democrats in the Europ. Parliament 214

total 29,584

Table 12: Speakers and party affiliation for the English data set from the EU parliament (1999-2015).
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Abstract

Prompt tuning is an efficient method for adapt-
ing large language models, and Soft Prompt
Transfer (SPoT) further narrows the gap be-
tween prompt tuning and full model tuning by
transferring prompts learned from source tasks
to target tasks. It is nevertheless difficult and ex-
pensive to identify the source task that provides
optimal prompts. In this work, we propose to
learn a shared latent space which captures a set
of basis skills from a mixture of source tasks.
Given an instance, its embedding queries the
latent space, yielding a basis skill vector. This
vector generates soft prompts, via a lightweight
prompt generator, which modulates a frozen
model. The latent space and prompt transfor-
mation are learned end-to-end by training on
source tasks. Transfer learning from source
tasks to a target task simply amounts to fine-
tuning the prompt generator, accounting for
roughly 0.3% parameters of the frozen back-
bone model, while the shared latent space is
also frozen in finetuning. Our approach outper-
forms prior soft prompt methods by a signifi-
cant margin on a variety of tasks such as NLI,
sentence completion, QA, conference resolu-
tion, word sense disambiguation. We also find,
on various model scales, our method achieves
competitive performance compared to finetun-
ing the full model.

1 Introduction

Adapting pre-trained large language models
(LLMs) has advanced the progress in many NLP
areas (Devlin et al., 2019; Raffel et al., 2020). This
is typically done by finetuning all parameters of
a model on a downstream task (i.e., MODELTUN-
ING). This approach is however expensive, espe-
cially given the growing sizes of SOTA LLMs.

This limitation motivates recent research on
parameter-efficient methods which only tune a
small amount of parameters (Houlsby et al., 2019;
Brown et al., 2020; Karimi Mahabadi et al., 2021;

Figure 1: An illustration of SharPT. An instance, as illus-
trated by with three tokens {X1, X2, X3}, is encoded by the
instance encoder, giving e(0)x , and then queries the skill la-
tent space, resulting in a skill vector e(1)x . The skill vector is
transformed by a simple and lightweight prompt generator, out-
putting prompt tokens (e.g., {P1, P2}). They are prepended
to the instance tokens and modulate the pre-trained frozen
model. The instance encoder and the pre-trained model are
frozen in all scenarios. The skill vectors are tuned in source
task training and frozen in target task training. The prompt
generator is tuned in both source task and target task training.

Lester et al., 2021; Li and Liang, 2021; Ham-
bardzumyan et al., 2021). Among them, a line
of research focus on the methods that modulate a
frozen LLM via prompts (Liu et al., 2021). Brown
et al. (2020) showed that prepending an input text
with a prompt, which typically consists of a task
description and/or several examples, can effectively
adapt a frozen GPT-3. This approach nevertheless
underperforms MODELTUNING and is sensitive to
the choice of prompt wordings. Instead of actual
text (or hard prompt), Lester et al. (2021) proposed
PROMPTTUNING, which prepends a soft prompt,
consisting of k tunable tokens, to input text. The
soft prompt can be optimized with gradient-based
methods. PROMPTTUNING achieves competitive
performance to MODELTUNING when the model
size is large (e.g., over 10B parameters) but still
underperforms with smaller models.

SPOT (Vu et al., 2022) improves over PROMPT-
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TUNING by leveraging knowledge from source
tasks. They first learn a task-specific soft prompt
for each task in a set of source tasks. Given a target
task, they search over the set of source prompts and
use the best one or some weighted combination
to initialize the prompt for the target task and then
tune the prompt. It further narrows the performance
gap to MODELTUNING on smaller models. But it
is complicated and expensive to identify the source
task that provides optimal prompts.

In this work, we propose a novel prompt-based
transfer learning method, SHARPT (Shared Latent
Space Prompt Tuning). Figure 1 illustrates the
general idea. SHARPT assumes a shared (discrete)
latent space by all source and target tasks. We call
each vector in the latent space as a skill vector,
since we assume each one captures a basis NLP
capacity or skill after training on the source tasks.
Given an instance (from either a source task or a
target task), an instance encoder embeds it into an
instance vector, which is then used to query the
latent space to find the nearest neighbor, yielding a
skill vector for this instance. A lightweight prompt
generator then generates soft prompts as a function
of the selected skill vector. The soft prompts con-
dition a frozen LLM. The latent space and prompt
generator are learned end-to-end on a mixture of
source tasks. In target task training, the latent space
is frozen and only the prompt generator is tuned.

SHARPT retains the key advantage of prior
prompt methods, parameter-efficiency. It only up-
dates approximately 0.1% to 0.3% parameters com-
pared to MODELTUNING. Different from prior
methods, we add an instance encoder to encode
each instance. The instance encoder is lightweight
and frozen in all scenarios.

SHARPT and SPOT both exploit a generic idea,
leveraging knowledge shared across tasks. The ap-
proaches to achieve this are however distinctly dif-
ferent. SPOT assumes task-to-task transfer based
on task-level prompts and the knowledge is en-
coded in task prompts. It is not straightforward
to identify a source prompt for a target task. They
illustrated two approaches: (1) SPOT-Oracle and
(2) SPOT-Retrieval. SPOT-Oracle involves us-
ing oracle test labels and expensive search (e.g.,
48 times more expensive than regular prompt tun-
ing in their experiments). In SPOT-Retrieval, they
first tuned a task prompt for each source and target
task independently and retrieved a prompt based
on prompt similarity. Note that the retrieval tun-

ing is only for searching a source prompt, which
is in addition to final prompt tuning on the target
task. In contrast, SHARPT assumes the knowledge
is encoded in a shared latent space and utilizes
instance-level prompts, which are generated based
on latent vectors from the shared space. These
designs make source-to-target transfer simple. We
learn the shared latent space with all source tasks in
a single training run. Also, the tuning on the target
task only requires a single run. Given an instance
from a target task, we use the instance embedding
to identify a skill vector, learned from all source
tasks, which is then transformed to soft prompts.

In summary, we design an instance-prompt-
based method by learning a shared skill latent space.
We apply SHARPT to a diverse set of tasks cover-
ing diverse domains and task categories. We find
that our method outperforms prior prompt-based
methods and matches full-model-tuning across
model scales.

2 Method

Suppose we have a task with data T = {(x,y)}
and a pre-trained LLM Pθ. MODELTUNING up-
dates θ to minimize L(θ) = − logPθ(y|x) 1.
PROMPTTUNING prepends to x a soft prompt, p ∈
RL×d, which has L vectors of size d. It then opti-
mizes p by minimizing L(p) = − logPθ(y|p,x).

SHARPT assumes there exists a discrete latent
space, consisting of a set of skill vectors E =
{ei ∈ Rm}Ki=1 with K vectors in total. The soft
prompt is a simple transformation of one of the skill
vectors ei, that is, p = fα(ei). The transformation
or prompt generator (fα) is a light-weight MLP.

e′i = Tanh(W1ei + b1),pl =W2(zl + e′i) + b2
(1)

where zl ∈ Rd is the position embedding for the
lth token (and randomly initialized in training) and
W1 ∈ Rd×m, W2 ∈ Rd×d. Then we have the soft
prompt p = {pl}Ll=1.

Given x, we infer its skill vector by (1) embed-
ding it via a frozen instance encoder (e.g., SimCSE
BERT-base), which yields e(0)x ; (2) querying E to
find the nearest neighbour. Formally, that is,

e(1)x = ek, k = argmin
i∈[K]

∥∥∥e(0)x − ei

∥∥∥
2
. (2)

For a target task, our method is then trained with
the following loss,

L(α) = − logPθ(y|fα(ek),x). (3)
1Summation over the data is omitted for notation clarity.
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In target task training aforementioned, E is
known and fixed. We next specify how to learn
it from source tasks. Suppose we have N source
tasks, {T (s)

j }Nj=1. We simply mix all tasks together,

T (s) =
N⋃
j=1

T
(s)
j . Given x ∈ T (s) and its embed-

ding e
(0)
x . E is learned with the following loss,

L(E) =
∥∥∥sg(e(0)x )− ek

∥∥∥
2
, (4)

where sg() is a stop gradient operator and ek is
defined in Equation (2). The overall loss in source
task learning is,

L(α,E) = L(α) + L(E) (5)

In summary, the forward pass for training on
source and target tasks are exactly the same (also
see Figure 1). The only difference is the loss func-
tion, Equation 5 (source) versus Equation 3 (target).

3 Experiments

High-to-Low Resource Transfer In this setting,
the target tasks are low-resource tasks (less than
10K training examples), while the source tasks are
high-resource tasks. It consists of 25 tasks in total.
There are 15 source tasks (e.g., DocNLI, DROP)
and 10 target asks (e.g., BoolQ, ColA). Please see
Appendix A for the complete list or Table 1 for the
target tasks. We keep the setting to be almost the
same as a major experiment in Vu et al. (2022) for a
fair comparison, with the exception that we exclude
C4 from the source task since it is a much larger
dataset than other tasks. Excluding C4 does not
affect SPOT performance since it does not provide
an optimal source prompt for any target task.

Transfer across Different Task Categories We
here investigate the transferability from datasets
in some task categories to datasets in other held-
out task categories. Following Sanh et al. (2022),
we assume datasets in each category measures a
general NLP ability, and use the same taxonomy
defined in Sanh et al. (2022). The source tasks
include (1) QA tasks: ReCoRD, SQuAD, DROP,
MultiRC, and RACE; (2) sentiment analysis tasks:
Yelp-2 and SST-2; (3) a paraphrase detection task:
QQP; (4) a semantic similarity task: CXC. The
target tasks include (1) a sentence completion task:
COPA; (2) NLI tasks: CB and RTE; (3) a coref-
erence resolution tasks: WSC; (4) a word sense
disambiguation task: WiC.

Training Details As in prior works (Raffel et al.,
2020; Lester et al., 2021), all datasets are converted
to a text-to-text format. All experiments are con-
ducted with T5-base-LM-adapted as the backbone
unless stated otherwise. We use a SimCSE (Gao
et al., 2021) model (BERT-base) as the instance
encoder. Since the instance encoder is always
frozen, we can pre-compute the embeddings of
all instances and only keep the embeddings. How-
ever, we find that memory and time saved in this
approach is negligible 2. In source task training,
the model (skill latent space and prompt genera-
tor) is simply tuned on the mixture of all source
tasks for each setting. The model is tuned for 80K
steps. In learning and testing on target tasks, we
closely follow the procedure in Vu et al. (2022).
The model is tuned for 100K on each target task.
We save a checkpoint every 500 steps and report
results on the checkpoint with the highest valida-
tion performance. The prompt generator generates
64 soft tokens. The following hyperparameters are
shared in all target and source task training: learn-
ing rate (0.3), the number of warmup steps (4000),
optimizer (Adam).

4 Results

High-to-Low Resource Transfer The results are
shown in Table 1. We first compare our method,
SHARPT, to methods with comparable compute-
and parameter-efficiency, PROMPTTUNING and
SPOT-Retrieval. Our method has a clear improve-
ment over the two methods across most tasks
and on the average performance. We next com-
pare SHARPT with much more expensive meth-
ods, SPOT-Oracle and MODELTUNING. Note that
SPOT-Oracle is significantly more expensive than
our method since it tunes on each target task with
each possible task prompt (e.g., it requires roughly
48 times more training time), and utilizes oracle
labels. While being much more efficient, SHARPT
matches or outperforms SPOT-Oracle. Also, our
method performance is on par with the MODEL-
TUNING performance which requires to tune the
entire model. These results indicate SHARPT is an
efficient and competitive approach.

Transfer across Different Task Categories The
results are shown in Table 2. Our method outper-
forms both PROMPTTUNING and SPOT methods.

2For instance, removing the instance encoder in training
(by pre-computing the instance embeddings) does not allow a
larger batch size compared to including the instance encoder.
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BoolQ CB CoLA COPA CR MRPC RTE STS-B WiC WSC Average

ModelTuning 81.4 94.0 51.1 71.2 94.1 87.5 81.5 89.4 68.3 80.8 79.9
SPoT-Oracle 77.6 97.0 55.6 69.3 93.9 88.7 74.7 90.0 70.2 77.2 79.4

PromptTuning 73.0 92.7 52.9 56.7 93.5 86.1 68.7 88.1 63.6 71.5 74.7
SPoT-Retrieval 74.2 95.4 54.8 58.3 93.6 88.4 71.6 90.0 66.7 72.9 76.6
SHARPT 78.9 94.6 58.2 67.0 94.5 89.7 79.4 89.1 68.8 81.6 80.2

Table 1: Results on the high-to-low transfer learning setting. Methods in the upper panel are significantly more expensive than
those in the lower panel. The best performance is in bold, and the second best is underlined.

COPA CB RTE WSC WiC

ModelTuning 71.2 94.0 81.5 80.8 68.3
SPoT-Oracle 63.0 92.9 72.0 77.2 70.2

PromptTuning 56.7 92.7 68.7 71.5 63.6
SPoT-Retrieval 61.2 89.4 71.4 73.6 66.7
SHARPT 65.0 94.6 79.4 79.0 69.8

Table 2: Results on transferring across task categories.

Figure 2: Results on models of different sizes.

The improvement over SPOT methods is larger in
this setting than in the high-to-low transfer setting.
This might be because SPOT relies more on knowl-
edge shared by tasks in the same category, while
SHARPT learns a shared latent space across all
source tasks and is more suitable to leverage knowl-
edge shared across datasets of different categories.

Across Model Scales In the experiments above,
we show that our method can close the performance
gap between full model tuning and prompt-based
methods on a mid-sized model, T5-base (220M).
Here conducts experiments with larger models,
T5-large (800M) and T5-xl (3B), and compare
SHARPT to MODELTUNING and PROMPTTUN-
ING. As shown in Figure 2, SHARPT matches
or slightly outperforms MODELTUNING under the
three model scales. Our method also shows consid-
erable improvements over PROMPTTUNING.

Ablations We ablate two key components of
SHARPT: (1) training on source tasks; (2) skill
latent space that captures shared knowledge. See
the results in Table 3. Clearly, knowledge learned
from source tasks and encoded in the latent space
is critical for target task performance.

BoolQ CB CoLA COPA

SHARPT 78.9 94.6 58.2 67.0
No Source Task Training 64.3 89.3 10.3 58.0
No Latent Space 67.9 82.4 17.6 61.0

Table 3: Ablation results.

Figure 3: A heatmap of task relations based on skill vector
usage of each task.

Task Relations We investigate if the latent space
captures source and target task relations to allow
knowledge transfer. Each instance queries the la-
tent space and selects one latent skill. We convert
this selection to a one-hot vector and treat it as
an instance encoding. A task representation is the
average of instance encodings in the task. The co-
sine similarity between two task representations is
computed as their relation. The relations between
source and target tasks are visualized in Figure 3.
It seems that more complicated source tasks such
as QA and NLI tasks transfer more knowledge to
target tasks via the skill latent space.

5 Conclusion

We introduce SHARPT, which learns a shared la-
tent space which captures a set of basis NLP capaci-
ties from a mixture of source tasks. Target instance
queries this space to retrieve a skill vector, which
then generates prompt tokens to condition a frozen
LLM. Our approach outperforms prior soft prompt
methods by a significant margin on a variety of
tasks. Our method also matches full-model-tuning
across model scales.
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Limitations

Although our method is much simpler than SPOT,
PROMPTTUNING is still arguably the simplest
method for adapting LLMs to downstream tasks.
It would be a fruitful research direction to design
transfer learning approaches that retain (or even im-
prove) our method’s performance and meanwhile
further simplify our method, getting closer to the
simplicity of PROMPTTUNING.
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Abstract

With the prominence of large pretrained lan-
guage models, low-resource languages are
rarely modelled monolingually and become
victims of the “curse of multilinguality” in
massively multilingual models. Recently, Afri-
BERTa showed that training transformer mod-
els from scratch on 1GB of data from many
unrelated African languages outperforms mas-
sively multilingual models on downstream NLP
tasks. Here we extend this direction, focus-
ing on the use of related languages. We pro-
pose that training on smaller amounts of data
but from related languages could match the
performance of models trained on large, un-
related data. We test our hypothesis on the
Niger-Congo family and its Bantu and Volta-
Niger sub-families, pretraining models with
data solely from Niger-Congo languages and
finetuning on 4 downstream tasks: NER, part-
of-speech tagging, sentiment analysis and text
classification. We find that models trained on
genetically related languages achieve equal per-
formance on downstream tasks in low-resource
languages despite using less training data.
We recommend selecting training data based
on language-relatedness when pretraining lan-
guage models for low-resource languages.

1 Introduction

Since the introduction of the large pretrained lan-
guage models (Devlin et al., 2019), low-resource
languages have not had the opportunity to be
treated in the same way as high-resource languages
such as English, French or Mandarin Chinese. Mas-
sively multilingual models trained using a mix-
ture of high and low-resource languages such as
mBERT (Devlin et al., 2019), XLM-RoBERTa
(Conneau et al., 2020) or mT5, (Xue et al., 2021)
have been proposed as a solution. Yet these do not
work as well on low-resource languages as they do
on high-resource languages due to the “curse of
multilinguality” (Conneau et al., 2020), where an

increase of languages in a model leads to capac-
ity dilution, negatively affecting performance for
all languages. This makes massively multilingual
models sub-optimal solutions for such languages.

The quality of the training data for low-resource
languages seems to differ greatly to that of high-
resource languages (Kreutzer et al., 2022). The
AfriBERTa models (Ogueji et al., 2021) demon-
strate the considerable success of pretrained repre-
sentations when trained with a ‘small’ (1GB), high-
quality dataset focused on eleven languages of a
single continent – Africa. AfriBERTa Large out-
performs the larger, massively multilingual models
on named-entity-recognition (NER) and text clas-
sification for various African languages. While
this continental approach is promising, it uses a
mixture of different language families that are not
genetically related.

Here, we propose using language relatedness in
lieu of general geographic proximity of languages
to pretrain transformer models. We test this hy-
pothesis by grouping training data by language
family and then testing on four tasks: NER, Part-of-
Speech Tagging (POS Tagging), Sentiment Anal-
ysis and Text Classification. New models trained
range from 100 to 600 MB of training data, in
contrast to 1GB of data for AfriBERTa and 2395
GB for XLM-R. We find that the smallest models
trained on the most closely-related languages per-
form as well as models trained with up to 10 times
the amount of data (AfriBERTa).

In this paper we:

• Train and release1 pretrained models on genet-
ically grouped African languages

• Finetune and release models for NER, POS
tagging, sentiment analysis and text classifica-
tion on various African languages

1Models are available to download at https://github.
com/Tolulope/mini-but-mighty
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• Find that training on genetically grouped lan-
guages performs equally to larger models, de-
spite training on much less data.

2 Related Work

Despite a long history of work on individual NLP
tasks on African languages (Adedjouma Sèmiyou
et al., 2012; Dibitso et al., 2019; Schlunz et al.,
2016; Pauw et al., 2006; Onyenwe et al., 2014;
Hunegnaw et al., 2021; Orimaye et al., 2012; Eise-
len, 2016; Alabi et al., 2020), the lack of freely
available and aggregated models made it difficult
for languages to build off of each other.

The lack of adequate training data in low-
resource languages, including African languages,
led to multilingual pretraining transformer mod-
els such as mBERT (Devlin et al., 2019), XLM-
RoBERTa (Conneau et al., 2020) and mT5 (Xue
et al., 2021) using multilingual resources such as
Wikipedia and the Common Crawl corpus.

In contrast, the “small data” approach, intro-
duced with the release of the AfriBERTa mod-
els (Ogueji et al., 2021) advocates for pretraining
models with small amounts of data solely in low-
resource languages. The AfriBERTa Large model
outperforms XLM-R and mBERT on text classifi-
cation and NER for a few African languages. This
is likely due to the lack of inclusion of a range
of African language data and the use of unclean,
crawled datasets in the original training data for the
large models.

Our proposal to use small, high-quality data
draws on the finding that small data perform com-
petitively given the right quality of data (Kreutzer
et al., 2022). Our work asks how far we can extend
this small data approach by seeing whether large
uncurated datasets can be outperformed or at least
equalled by small, carefully selected high-quality
datasets.

3 Method

3.1 Languages

In our work, we train models with a wide va-
riety of African languages. To compare with
AfriBERTa, we use the Afro-Asiatic languages
(Amharic, Hausa, Somali, Tigrinya, and Afaan
Oromoo) and when focussing on linguistic typol-
ogy, we work on Niger-Congo Languages. The
Niger-Congo family, introduced by Greenberg in
1949, is a genetic family of languages merging the
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Figure 1: Heatmap displaying the average of syntactic
and phonological distances queried from lang2vec be-
tween languages used to train the models along with
the phylogenetic tree of the languages. Blue represents
very close languages and red very distant languages.
Clusters are visible for Volta-Niger languages (urh, yor,
ibo, fon, and bin) and Bantu languages (nnb, nso, and
tso amongst others).

Bantu and ‘Semi-Bantu’ families, due to the simi-
larities found between both (Greenberg, 1949). It
spans sub-Saharan African and is a genetic group-
ing. Figure 1 displays a heatmap of the average of
the syntactic and phonological distances between
the languages used extracted from WALS using
lang2vec (Littell et al., 2017). We see clusters of
similarity for the genetically grouped Volta-Niger
and Bantu languages, and so our groups, while de-
signed genetically, also are typologically coherent.

The African languages used to train models in
this work are summarised with their language fam-
ilies in Table 1.

3.2 Training Data
When training the pretrained models, we add to the
AfriBERTa corpus (Ogueji et al., 2021) by collect-
ing various data sources online. See the list of data
sources in Appenedix A.1. We prioritise datasets
produced solely by or in partnership with members
of their communities.

3.3 Model Architecture and Training Details
We train all new models with the same architec-
ture as AfriBERTa Large, with 6 attention heads,
768 hidden units, 3072 feedforward size, and a
maximum length of 512 (Ogueji et al., 2021). Mod-
els trained from scratch are trained for 460,000
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Language ISO Language Branch
Code Family

Afaan Oromoo orm Afro-Asiatic -
Amharic amh Afro-Asiatic -

Hausa hau Afro-Asiatic -
Somali som Afro-Asiatic -

Tigrinya tir Afro-Asiatic -
Bemba bem Niger-Congo Bantu
Gahuza kir+kin Niger-Congo Bantu
isiXhosa xho Niger-Congo Bantu
isiZulu zul Niger-Congo Bantu

Kiswahili swa Niger-Congo Bantu
Lingala lin Niger-Congo Bantu
Luganda lug Niger-Congo Bantu
Nande nnb Niger-Congo Bantu
Sepedi nso Niger-Congo Bantu

Setswana ssw Niger-Congo Bantu
Xitsonga tso Niger-Congo Bantu

È. dó bin Niger-Congo Volta-Niger
Fon fon Niger-Congo Volta-Niger
Igbo ibo Niger-Congo Volta-Niger

Urhobo urh Niger-Congo Volta-Niger
Yorùbá yor Niger-Congo Volta-Niger

Nigerian Pidgin pcm English Creole

Table 1: Summary of languages used for training lan-
guage models with their language family, branch and
ISO 639-3 code used to refer to languages in Section 4.

steps with a learning rate of 1e−4. To compare
pretrained to continued pretraining, we continue
pretraining of the AfriBERTa model by 180,000
steps with all the data from the Niger-Congo family.
We also compare newly trained models to mono-
lingual and massively multilingual models trained
with much more data: BERT Cased (Devlin et al.,
2019), BERT Uncased, RoBERTa (Liu et al., 2019),
and XLM-RoBERTa (Conneau et al., 2019).

To initially compare genetics with geography,
we train two models with different subsets of the
AfriBERTa corpus. AfriBERTa (Niger-Congo)
is trained with data from the Niger-Congo lan-
guages in AfriBERTa (Gahuza, Igbo, Kiswahili
and Yorùbá) and AfriBERTa (Afro-Asiatic) is
trained with the Afro-Asiatic languages in Afr-
BERTa (Afaan Oromoo, Amharic, Hausa, Somali,
and Tigrinya).

The Niger-Congo family has many branches.
Due to data availability, we focus on the Volta-
Niger and Bantu branches. We supplement the
existing data in the AfriBERTa corpus with data
in Bemba, Edo, Fon, isiXhosa, isiZulu, Kiswahili
(Congolese variant), Lingala, Luganda, Nande, Se-
pedi, Setswana, Urhobo and Xistonga). Data from
these languages totals roughly 364 MB of data. We
call the model trained with all of these languages
Niger-Congo BERTa. We then divide the data by
language family and pretrain BantuBERTa and

VoltaBERTa.
To test the effects of tokenisation, we train a

custom tokenizer with the training data from the
Niger-Congo family with the same vocabulary size
as AfriBERTa, namely 70,000. The training data
for the tokenizer was sampled using the method
introduced in XLM (Conneau and Lample, 2019),
using an α = 0.3.

3.3.1 Size comparison models

To test whether the data selection for the Niger-
Congo BERTa models results in the models’ perfor-
mance downstream, we train AfriBERTa models
with the same amount of training data in Niger-
Congo BERTa (364 MB), BantuBERTa (260 MB)
and VoltaBERTa (107 MB). The resulting models
are Afriberta 107, AfriBERTa 260 and AfriBERTa
364, which will be finetuned and directly compared
to a model of the same size. To achieve this we
proportionally reduce the amount of training data
for each language in the AfriBERTa corpus to cre-
ate three pretraining corpora with 107MB, 260MB
and 364MB accordingly each with data from the
eleven languages used to train AfriBERTa. The
results are averaged across relevant languages for
each sized model: Volta-Niger languages for Afri-
BERTa 107, Bantu languages for AfriBERTa 260
and all Niger-Congo languages for AfriBERTa 364.

The newly trained models along with AfriBERTa
are summarised in Table 2.

3.4 Evaluation Data

We evaluate our models on four downstream tasks:
named-entity recognition, part-of-speech tagging,
sentiment analysis and text classification.

NER: For NER, we use the MasakaNER dataset
(Adelani et al., 2021b), covering 10 African Lan-
guages covering Afro-Asiatic (Amharic, Hausa,
Luo) and Niger-Congo languages. The Niger-
Congo branches represented are Bantu (Ki-
yarwanda, Luganda, Kiswahili), Volta-Niger (Igbo,
Yorùbá) and West Atlantic (Wolof).

POS Tagging: For POS Tagging, we use high-
quality POS tagging data provided by Masakhane
(which is not yet publicly available) covering
Bambara, Hausa, Igbo, Kinyarwanda, Nyanja (or
Chichewa), Nigerian Pidgin English, Kiswahili,
isiXhosa, isiZulu and data from the DHASA-
SACAIR 1st Joint Task on Part-of-Speech Tagging
for African Languages covering isiNdebele, isiX-
hosa, isiZulu and Setswana.
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Model Languages Training
Data (MB)

Evaluation
Data (MB)

Time to
train (hrs)

AfriBERTa (Ogueji et al., 2021) orm, amh, kin, kir, hau, ibo, pcm,
som, swa, tir, yor

939 80 –

AfriBERTa (Niger-Congo) kin, kir, ibo, swa and yor 279 23 57
AfriBERTa (Afro-Asiatic) All Afro-Asiatic languages 611 57 60
AfriBERTa Continued All Niger-Congo languages 364 41 75
Niger-Congo BERTa All Niger-Congo languages 364 41 75
BantuBERTa All Bantu languages 260 36 57
VoltaBERTa All Volta-Niger languages only 107 12 57
AfriBERTa 107 orm, amh, kin, kir, hau, ibo, pcm,

som, swa, tir, yor
107 12 57

AfriBERTa 260 orm, amh, kin, kir, hau, ibo, pcm,
som, swa, tir, yor

260 36 57

AfriBERTa 364 orm, amh, kin, kir, hau, ibo, pcm,
som, swa, tir, yor

364 41 75

Table 2: Summary of models trained and/or used in experiments. Models trained on NVIDIA TITAN RTX GPUs

Sentiment Analysis: For Sentiment Analysis,
we use YOSM (Shode et al., 2022) and NaijaSenti
(Muhammad et al., 2022). YOSM is a sentiment
corpus of film reviews in Yorùbá. NaijaSenti is
a Twitter sentiment analysis corpus covering the
Nigeran languages Hausa, Igbo, Nigerian Pidgin
English and Yorùbá.

Text classification: For text classification, we
use a Hausa and Yorùbá news topic classification
dataset (Hedderich et al., 2020) and the KINNEWS
and KIRNEWS dataset (Niyongabo et al., 2020)
covering Kinyarwanda and Kirundi.

4 Results

Results for our experiments are listed in Figure 2
and Tables 3 to 8. Given that datasets have data
for languages in different families and branches,
we select relevant models for comparison here and
leave the full set of the results in the Appendix.

4.1 NER

We finetune the pretrained language models for
NER using the Masakhane NER dataset. The re-
sults for the AfriBERTa model are taken from the
paper (Ogueji et al., 2021). The results for our
NER experiments are in Figure 2.

For Niger-Congo languages, shown in Figure
2a, Niger-Congo BERTa performs almost as well
as AfriBERTa and AfriBERTa with continued pre-
training. The difference in results is not statistically
significant, but the slight increase may suggest that
more training data results in better performance for
the NER task.

For Afro-Asiatic languages, shown in Figure
2b, the AfriBERTa (Afro-Asiatic) model performs
almost as well as AfriBERTa with differences in

F1 that are not statistically different (less than 0.1
F1). This suggests that training data selection based
on genetic grouping results in downstream perfor-
mance that is not significantly different, despite
the reduction in data used. XLM-RobBERTa per-
forms best for Luo and Nigerian Pidgin. Nigeran
Pidgin is an English Creole, so we can assume
the abundance of English training data in XLM-
RoBERTa’s training data helps performance. Luo,
a language not present in the training data of any
of the models has the best performance with XLM-
RoBERTa. This suggests that for unseen languages
and English Creoles, it may still be best to finetune
massively multilingual models.

4.2 POS Tagging
We finetune the models trained on the Part-of-
Speech Tagging task, using our two datasets. With
languages that have multiple datasets, we train sep-
arate models and report the mean per language.

In Table 3 we can see that BantuBERTa per-
forms best on most Bantu languages, with an im-
provement on AfriBERTa of 1.8 F1 for isiZulu, 1.5
F1 for isiXhosa and 1.51 F1 for Chichewa, despite
using roughly 25% of the training data of Afri-
BERTa. Despite the results not being significantly
different, we see that training smaller models with
higher quality data and a criterion of genetic re-
latedness leads to performance that is as good as
larger models.

For Hausa, an Afro-Asiatic language, we see in
Table 4 that AfriBERTa (Afro-Asiatic) does not
perform significantly differently from AfriBERTa,
with only a slight difference in F1 score (0.08
F1 less than AfriBERTa). This suggests that for
POS Tagging, linguistically-informed data selec-
tion leads to performance that is as good as that
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(a) Mean F1 of Niger-Congo languages
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(b) Mean F1 of non-Niger-Congo languages

Figure 2: Plots of the mean F1 scores across languages for NER. Plot (a) shows the mean F1 for Niger-Congo
languages and Plot (b) shows the mean across non-Nige-Congo languages.

lang family afriberta bantu nc berta
bam bantu 86.65 86.70 86.8
ibo volta-niger 80.47 78.53 80.03
kin bantu 94.44 94.45 94.38
nbl bantu 80.91 80.88 81.05
nya bantu 81.14 82.65 81.67
ssw bantu 84.50 85.44 85.54
swa bantu 92.06 91.79 91.51
xho bantu 84.96 86.46 86.40
zul bantu 82.35 84.16 83.50

mean 86.04 85.86 85.87

Table 3: F1 scores for POS Tagging models of languages
that are in the Niger-Congo family. BantuBERTa and
Niger-Congo BERTa perform as well as AfriBERTa
across languages.

lang afriberta afriberta afriberta xlm
cont aa roberta

hau 91.34 89.55 91.26 89.89
pcm 87.57 86.31 86.19 89.76
mean 89.46 87.93 88.73 89.83

Table 4: F1 scores for POS Tagging models of lan-
guages that are not in the Niger-Congo family. Afri-
BERTa (Afro-Asiatic) is performing almost as well as
AfriBERTa for Hausa, despite being trained with much
less data.

of larger models outside the Niger-Congo fam-
ily. Nigerian Pidgin performs best with XLM-
RoBERTa, an expected result given that Nigerian
Pidgin is an English Creole.

4.3 Sentiment Analysis
The results for Yorùbá presented are the mean F1
scores from the YOSM and NaijaSenti models.

lang afriberta nc berta afribera volta
nc niger

ibo 86.78 87.53 86.96 88.48
yor 86.09 85.92 85.93 86.42

mean 86.44 86.72 86.44 87.45

Table 5: F1 scores for Sentiment Analysis models of lan-
guages that are in the Volta-Niger family. VoltaBERTa
performs as well as AfriBERTa, despite being trained
with 10% of the data.

lang afriberta nc berta xlm afriberta
tok roberta aa

hau 87.42 85.54 85.85 87.43
pcm 72.94 74.83 79.06 70.95
mean 80.18 80.19 82.46 79.19

Table 6: F1 scores for Sentiment Analysis models of
languages that are not in the Volta-Niger family. Afri-
BERTa (Afro-Asiatic) is performing almost as well as
AfriBERTa for Hausa, despite being trained with much
less data.

For Volta-Niger languages, the model trained on
only 100MB of data, VoltaBERTa has the best per-
formance for both Igbo and Yorùbá, outperforming
AfriBERTa by 1.7 and 0.33 F1 despite being trained
on 10% of the data. Here we see the advantages
of a model being trained on a smaller, yet distinct
branch of the Niger-Congo family. The results
imply that a smaller linguistically-selected model
is as good as a larger non-linguistically-selected
model, and has the advantage of being smaller and
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therefore more widely usable. It is possible that
the high similarity of these languages leads to the
model’s increased ability learn about the languages
and perform better downstream.

Hausa has the best performance with AfriBERTa
(Afro-Asiatic) and Nigerian Pidgin English with
XLM-Roberta. We also see that the English Creole
performs best when finetuned on a model trained on
English data, supporting our language-relatedness
claim with a different set of languages. Training
data from similar languages suffices for competi-
tive performance downstream.

4.4 Text Classification
For text classification, we continue to see the
trend that models trained on much less data do
not have significantly different performance down-
stream. AfriBERTa (Afro-Asiatic)’s performance
is almost as good as AfriBERTa’s for Hausa, Ban-
tuBERTa with a Niger-Congo tokenizer performs
almost as well for Kinyarwanda and outperforms
AfriBERTa for Kirundi for Bantu languages and
VoltaBERTa does not perform significantly differ-
ently for Yorùbá. In yet another task, we demon-
strate that linguistically-informed data selection
trumps data quantity.

4.5 Is quality still relevant if we hold size
constant?

In addition to comparing model performance with
different amounts of training data, we also directly
compare models trained with the same amount of
data but with different sets of languages with vary-
ing levels of genetic similarity below.

Table 8 summarises the training data experi-
ments with the mean F1 score for each model
across languages for each task. AfriBERTa 107
is compared to the VoltaBERTa model as they both
use 107 MB of training data, AfriBERTa 260 is
compared to the BantuBERTa as both models use
260 MB of data and AfriBERTa 364 is compared
to Niger-Congo BERTa as they both use 364 MB
of training data. We train the Niger-Congo BERTa
models with and without a custom tokenizer. The
results from models trained with a custom tokezier
have an asterisk. We see that when size is held
constant the models trained with high-quality data
from closely-related languages perform at least as
well as models train with data from a wider range of
languages. These results highlight the importance
of data selection when resources are limited and
support our claim that pretraining with genetically-

related languages doesn’t result in significantly dif-
ferent performance downstream.

Overall, we see that across tasks and languages,
models trained with data from genetically related
languages alone work as well as models trained
with up to 10 times the amount of data.

5 Model Visualisation

5.1 Model Visualisation

To visualise the models, we extract sentence embed-
dings by concatenating the weights of the last four
layers of the model for 1,000 sentences in each lan-
guage’s evaluation set. We use 1000 sentences for
each language to ensure an even distribution across
languages. For dimensionality reduction, we use
Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018) and visualise each
sentence in two dimensions. We present UMAP
plots as they are not as sensitive to parameters as
t-SNE.

Visualisations of models grouped by language
family (specific branches when part of the Niger-
Congo family) are below. All visualisations show
evidence of language-specific and family-specific
clustering in the models.

Figure 3: AfriBERTa visualised with languages in the
training, coloured by language family (Afro-asiatic in
pink, English Creole in yellow and Niger-Congo lan-
guages in purple). There appear to be language specific
clusters.

When reduced by UMAP, AfriBERTa does not
seem to cluster languages by family. Nigerian Pid-
gin English, is situated away from most of other
languages, apart from Yorùbá (bottom right). This
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lang family afriberta afriberta cont afriberta aa bantu tok nc berta tok volta niger
hau afro-asiatic 90.13 88.18 89.84 84.1 84.22 71.77
kin bantu 73.87 74.41 70.45 73.69 73.46 68.26
kir bantu 82.37 84.18 81.38 84.72 83.59 80.91
yor volta-niger 79.88 80.63 70.88 70.52 78.98 79.70

mean 81.56 81.85 78.14 78.24 80.06 76.77

Table 7: F1 scores for Text Classification models

afriberta 107 volta niger afriberta 260 bantu afriberta 364 nc berta
NER 79.61 82.46 78.10 79.45 76.66 77.04

POS Tagging 79.32 80.40 85.51 86.56 84.78 85.67*
Sentiment Analysis 85.30 87.45
Text Classification 76.68 78.15 77.50 79.21* 78.11 78.68*
mean per model 80.23 82.12 80.23 81.74 79.85 80.46

Table 8: Table showing the mean F1 across languages in each sub-family compared to an AfriBERTa model trained
on the same amount of data for each task. Results with an asterisk (*) are from models trained with a custom
tokenizer.

is could be due to borrowing of Yorùbá words into
Nigerian Pidgin English.

Figure 4: Niger-Congo BERTa visualised with lan-
guages in the training, coloured by language family
(Bantu languages in pink and Volta-Niger languages
in purple). We see language-specific clusters, but no
branch-specific separation of the language clusters.

The Niger-Congo BERTa model does not seem
to cluster languages by sub-family. This may be
because all the languages are in the same larger
family already.

The VoltaBERTa model completely splits Bantu
and Volta-Niger Languages, possibly helped by the
absence of Bantu languages in the training data.
This could be due to the scripts of Igbo and Yorùbá

Figure 5: VoltaBERTa visualised with languages in the
training, coloured by language family (Bantu languages
in pink and Volta-Niger languages in purple). Here,
Bantu languages are clearly separated from Volta-Niger
languages.

.

(use of diacritics) and Fon (use of different char-
acters), leading the model to internally distinguish
between languages part of the Volta-Niger family
and those that are not.

Overall, we see that the more closely related
the languages used to train the pretrained model,
the more distinct the representations of different
language families or branches in the UMAP vi-
sualisations. This is most likely due to the other
languages not being present in the training data, but
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the results for POS Tagging and Sentiment Analy-
sis show that this focus on closely related languages
leads to improvements in performance with much
less data.

6 Discussion

In this work we see that when pretraining multi-
lingual models with closely related languages, the
resulting finetuned models work just as well as
models finetuned on a wider variety of languages.
Sentence embeddings show that the more closely
related the languages in the training data, the better
the model’s ability to differentiate language fami-
lies.

We do not see one model consistently outper-
forming others. However, we do see multilingual
models of closely related languages work for those
languages downstream and generalise better to un-
seen languages within the family. BantuBERTa
works very well for POS Tagging of Bantu lan-
guages and VoltaBERTa for sentiment analysis of
Volta-Niger languages. Continued pretraining of
AfriBERTa with closely related languages gives
the best text classification result on average. This
“small data” combined with language similarity ap-
proach demonstrates that it is possible to main-
tain performance with fewer resources, possibly at
the expense of using different models for different
downstream tasks.

7 Conclusion

In this paper, we have pretrained several multi-
lingual transformer models exclusively with low-
resource languages. We have shown that the group-
ing of closely-related languages in training data
can match or improve performance across several
downstream tasks despite the reduction in training
data used. We have also demonstrated that for very
low-resource languages, we can exploit language
similarity to improve performance of NLP tasks
on these languages with models trained on similar
languages only.

8 Limitations

In this work we did not have an exact overlap of
downstream tasks to training data and therefore
could not exactly match pretrained models to gen-
eral task performance. We did not have Bantu lan-
guage data for Sentiment Analysis, preventing us
from making conclusions on this task with Bantu-
BERTa. We also note that we only have data from

two branches of the Niger-Congo family. Data
from a wider variety of branches would have helped
us make more general conclusions.

We did not compare any of our models to fine-
tuned large language models, nor did we fine–tune
our pretrained models before finetuning them for
the downstream tasks. It is possible that language-
adaptive finetuning of Niger-Congo languages on
these models trained exclusively on Niger-Congo
languages may lead to even better performance.
Given the lack of resources in these languages, one
would have to determine guidelines on which data
would be used for pretraining or finetuning in this
case.
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A Appendix

A.1 List of data sources

A.6 Training data comparisons
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Language Data Sources
Afaan Oromoo AfriBERTa Corpus

Amharic AfriBERTa Corpus
Hausa AfriBERTa Corpus
Somali AfriBERTa Corpus

Tigrinya AfriBERTa Corpus
Bemba Text from Bemba Speech Corpus (Sikasote and Anastasopoulos, 2022)
Gahuza AfriBERTa Corpus
isiXhosa Xhosa Navy Parallel Corpus (Tiedemann, 2012)
isiZulu Umsuka English - isiZulu Parallel Corpus (Mabuya et al., 2021)

Kiswahili AfriBERTa Corpus, Language modeling data for Swahili (Shikali and Refuoe, 2019) and
Gamayun (Öktem et al., 2020) Congolese Kiswahili Medium kit

Lingala Gamayun (Öktem et al., 2020) Lingala Kit
Luganda Makerere MT Corpus (Mukiibi et al., 2021)
Nande Gamayun (Öktem et al., 2020) Nande kit
Sepedi South African News Data (Marivate and Sefara, 2020)

Setswana Autshumato Setswana Monolingual Corpora (McKellar, 2018) and South African News
Data (Marivate and Sefara, 2020)

Xitsonga Autshumato English-Xitsonga Manually Translated Parallel Corpora (Pienaar et al., 2018)
È. dó JW300 (Agić and Vulić, 2019)
Fon FFR Translate Corpus (Emezue and Dossou, 2020)
Igbo AfriBERTa Corpus and Igbo Monolingual Dataset (Ezeani et al., 2020)

Urhobo JW300 (Agić and Vulić, 2019)
Yorùbá AfriBERTa Corpus and MENYO-20k dataset (Adelani et al., 2021a)

Nigerian Pidgin AfriBERTa Corpus

Table 9: List of sources for language data used to train the models in Table 2.
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A.2 Full NER Results
lang afri

berta
nc

xlm
roberta

bantu
tok

volta
niger
tok

afri
berta
aa

bert
cased

nc
berta

nc
berta
tok

volta
niger

bantu afri
berta
cont

amh 37.9±
7.11

55.85±
2.45

0.0 ±
0.0

0.0 ±
0.0

72.73±
5.64

0.0 ±
0.0

40.09±
5.68

0.0 ±
0.0

7.95±
69.67

39.68±
3.1

63.11±
9.69

hau 85.0±
3.01

89.35±
3.0

84.26±
1.28

82.34±
3.9

90.11±
2.49

85.89±
3.09

84.43±
2.89

84.83±
1.25

82.31±
3.94

83.72±
2.26

87.64±
1.73

ibo 87.16±
1.86

83.96±
2.16

75.99±
2.11

86.65±
2.01

83.19±
1.44

83.13±
2.45

86.97±
3.88

86.03±
3.25

86.59±
2.4

77.5±
3.99

87.44±
2.61

kin 71.78±
4.26

72.36±
3.56

72.27±
3.99

62.71±
3.9

65.34±
3.11

71.35±
3.28

71.77±
2.8

71.17±
4.67

63.01±
2.65

72.43±
5.88

72.47±
5.77

lug 78.42±
2.7

80.0±
4.58

77.85±
1.41

70.48±
3.49

75.17±
2.75

77.82±
4.46

79.3±
3.2

78.21±
3.32

70.46±
3.39

78.28±
6.65

78.97±
4.79

luo 68.96±
3.09

74.73±
5.19

70.1±
5.87

58.63±
5.57

68.62±
5.93

73.05±
5.66

69.86±
2.2

70.06±
8.19

59.29±
9.08

67.93±
4.38

69.71±
4.81

pcm 81.18±
1.81

86.97±
3.12

76.05±
3.23

75.91±
5.04

81.54±
1.77

86.8±
5.5

80.92±
4.05

79.09±
5.46

76.17±
5.44

76.26±
4.57

83.38±
5.99

swa 87.3±
2.1

87.16±
2.0

87.62±
2.4

77.28±
4.18

81.49±
3.19

83.73±
2.53

86.83±
2.81

85.94±
2.27

77.33±
4.12

87.64±
1.51

87.87±
1.51

wol 58.37±
5.33

64.87±
3.95

59.15±
4.5

51.81±
9.09

59.16±
10.79

62.77±
8.6

59.54±
10.09

57.65±
10.21

52.66±
10.73

59.84±
7.7

61.43±
3.2

yor 79.04±
5.42

76.28±
6.12

68.75±
4.91

77.81±
3.17

69.79±
6.45

73.2±
4.29

77.85±
3.98

78.21±
6.41

78.32±
3.97

68.57±
7.66

79.07±
4.3

Table 10: Full set of NER Tagging Results. Models are finetuned five times with the mean and 95% confidence
interval displayed.

A.3 Full Text Classification Results
nc berta volta niger afriberta bantu tok nc berta

tok
afriberta
aa

afriberta
cont

bantu

hau 81.08 ±
2.24

73.85 ±
7.79

90.13 ±
2.75

84.10 ±
2.0

84.22 ±
4.85

89.84 ±
1.21

88.18 ±
2.59

78.26 ±
2.31

kin 73.2 ±
1.29

67.56 ±
3.26

73.87 ±
2.42

73.69 ±
2.26

73.46 ±
2.5

70.45 ±
1.94

74.41 ±
1.77

74.07 ±
2.1

kir 81.28 ±
5.04

80.52 ±
1.36

82.37 ±
9.38

84.72 ±
3.26

83.59 ±
6.31

81.38 ±
2.34

84.18 ±
2.33

82.47 ±
6.16

yor 79.69 ±
6.17

79.70 ±
3.53

79.88 ±
5.41

70.52 ±
4.56

78.98 ±
4.43

70.88 ±
8.5

80.63 ±
3.08

69.15 ±
4.23

Table 11: Full set of the Text Classification results. Models are finetuned five times with the mean and 95%
confidence interval displayed.
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A.4 Full POS Tagging Results

afri
berta
nc

xlm
roberta

afri
berta

bantu
tok

volta
niger
tok

afri
berta
aa

bert
cased

nc
berta

nc
berta
tok

volta
niger

bantu afri
berta
cont

bam 86.66±
2.03

88.23±
0.4

86.97±
1.63

87.1±
2.72

86.71±
0.85

86.6±
0.95

87.79±
1.63

86.8±
0.67

87.01±
1.45

86.97±
1.45

86.7±
1.8

86.62±
1.49

hau 87.77±
1.28

90.44±
1.61

91.13±
1.0

88.39±
2.07

87.54±
1.02

91.26±
1.37

89.12±
2.6

87.78±
2.08

88.71±
1.38

87.23±
0.9

87.89±
0.92

89.74±
1.99

ibo 79.7±
1.71

79.99±
2.3

80.26±
3.33

77.68±
2.02

79.75±
5.21

77.73±
3.07

79.19±
1.64

80.03±
2.47

80.29±
2.55

79.88±
1.87

78.53±
2.67

80.80±
2.36

kin 93.91±
1.17

93.15±
1.07

94.28±
0.7

94.41±
0.51

83.8±
2.26

89.3±
2.76

93.36±
1.29

94.38±
1.18

93.97±
0.2

85.73±
2.55

94.45±
0.68

93.96±
1.04

nbl 80.38±
1.52

81.83±
0.48

80.74±
0.48

80.67±
0.58

79.34±
0.99

79.97±
1.94

81.65±
1.38

81.05±
0.98

80.74±
0.57

79.92±
1.42

80.88±
0.36

80.53±
0.96

nya 80.52±
1.65

82.03±
1.83

80.98±
1.15

81.33±
1.41

77.51±
2.27

79.71±
2.2

80.91±
3.65

81.67±
2.68

82.04±
2.78

78.39±
2.86

82.65±
2.92

80.96±
0.99

pcm 85.86±
0.99

89.76±
1.5

87.64±
1.55

85.43±
1.55

84.44±
1.45

86.19±
1.06

89.68±
1.53

85.87±
1.11

85.95±
1.47

84.55±
1.35

85.56±
1.47

86.42±
0.58

ssw 84.14±
2.4

84.89±
1.21

85.0±
1.54

85.09±
1.73

82.64±
1.06

84.25±
0.56

84.29±
1.82

85.54±
0.75

85.14±
1.71

83.25±
2.29

85.44±
0.74

85.54±
1.64

swa 92.03±
1.36

91.73±
0.99

91.59±
1.12

91.74±
1.01

84.25±
1.07

87.08±
1.55

89.77±
1.91

91.51±
0.95

91.71±
1.34

84.71±
1.31

91.79±
0.86

91.77±
0.81

xho 92.7±
1.49

94.52±
1.07

93.52±
1.75

94.84±
0.51

90.38±
1.24

92.85±
0.96

93.39±
0.44

94.84±
0.5

94.57±
1.01

91.79±
0.58

95.05±
0.39

94.5±
0.64

xho1 75.77±
2.76

77.5±
2.28

76.62±
1.89

77.82±
1.1

67.03±
3.65

74.98±
2.71

74.83±
2.91

77.97±
1.49

78.08±
3.4

72.92±
1.95

77.76±
2.15

78.03±
3.34

zul 84.7±
1.12

85.46±
0.18

85.21±
0.59

86.28±
0.87

83.49±
1.34

84.68±
1.51

84.65±
1.35

85.5±
1.37

85.8±
0.81

84.29±
1.9

85.95 ±
1.42

85.26±
0.79

zul1 79.73±
1.75

82.2±
2.86

79.35±
2.05

81.78±
1.35

73.1±
3.79

77.57±
3.32

80.96±
2.34

81.49±
2.62

81.79±
1.54

76.61±
2.91

82.36±
1.52

82.25±
1.91

Table 12: Full set of POS Tagging Results. Models are finetuned five times with the mean and 95% confidence
interval displayed.

A.5 Full Sentiment Analysis Results
lang afri

berta
nc

afri
berta

bert
un-
cased

bantu
tok

xlm
rob
erta

volta
niger
tok

bert
cased

mbert nc
berta

nc
berta
tok

volta
niger

bantu

hau 84.15±
1.75

87.42±
1.13

81.74±
2.41

85.98±
2.44

85.85±
1.64

85.38±
1.4

84.02±
3.24

83.25±
3.63

84.35±
3.55

85.54±
1.49

82.47±
2.96

83.1±
2.31

ibo 86.96±
3.23

86.78±
1.46

80.44±
4.32

84.07±
2.22

84.62±
13.16

87.11±
1.54

85.03±
4.74

84.99±
3.92

87.53±
2.31

86.58±
3.08

88.48±
2.38

83.81±
2.85

pcm 70.73±
3.71

72.94±
5.13

75.02±
9.45

77.47±
8.6

79.06±
1.38

72.21±
1.3

73.73±
13.96

71.95±
15.06

66.59±
5.06

74.83±
4.62

63.55±
10.43

71.0±
11.9

yor 84.49±
2.02

85.18±
2.55

79.01±
3.71

82.03±
2.72

55.29±
0.0

86.38±
2.14

82.98±
2.57

80.96±
19.38

85.64±
0.82

85.11±
1.44

85.77±
1.18

82.48±
0.9

yosm 87.36±
5.48

87.0±
4.57

72.83±
4.25

80.29±
4.52

82.83±
2.35

85.79±
5.38

82.43±
2.23

83.59±
5.45

86.19±
5.11

85.99±
4.72

87.07±
4.22

76.98±
2.54

Table 13: Full set of Sentiment Analysis Results. Yorùbá data from NaijaSenti (yor) and Yorùbá data from YOSM
(yosm) were finetuned separately. Models are finetuned five times with the mean and 95% confidence interval
displayed.
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afriberta volta niger volta niger
107 tok

ibo 84.45 86.59 86.65
yor 74.76 78.32 77.81

mean 79.61 82.46 82.23

Table 14: F1 scores for models of the same size fine-
tuned for NER on Volta-Niger languages. VoltaBERTa
performs best overall

afriberta 260 bantu bantu tok
kin 70.29 72.43 72.27
lug 77.27 78.28 77.85
swa 86.75 87.64 87.62

mean 78.10 79.45 79.25

Table 15: F1 scores for models of the same size fine-
tuned for NER on Bantu languages. The BantuBERTa
model outperforms the AfriBERTa model of the same
size on Bantu languages by 1.35 F1 on average for NER.

afriberta 364 nc berta nc berta tok
ibo 86.45 86.97 86.03
kin 72.43 71.77 71.17
lug 76.09 79.3 78.21
swa 87.37 86.83 85.94
wol 60.38 59.54 57.65
yor 77.22 77.85 78.21

mean 76.66 77.04 76.20

Table 16: F1 scores for models of the same size fine-
tuned for NER on Niger-Congo languages. Niger-
Congo BERTa performs best on average.

afriberta 107 volta niger
yor 76.68 78.15

Table 17: F1 scores for models of the same size fine-
tuned for Text Classification on Yorùbá, a Volta-Niger
languages with VoltaBERTa outperforming the Afri-
BERTa model trained on the same amount of data.

afriberta 260 bantu bantu tok
kin 73.17 74.07 73.69
kir 81.83 82.47 84.72

mean 77.5 78.27 79.21

Table 18: F1 scores for models of the same size fine-
tuned for Text Classification on Bantu languages. The
BantuBERTa model, both with and without a custom to-
kenizer outperforms the AfriBERTa model of the same
size on Bantu languages.

afriberta 364 nc berta nc berta tok
kin 72.96 73.20 73.46
kir 82.29 81.28 83.59
yor 79.08 79.69 78.98

mean 78.11 78.06 78.68

Table 19: F1 scores for models of the same size fine-
tuned for Text Classification on Niger-Congo languages.
Niger-Congo BERTa with and without a custom tok-
enizer perform better than the AfriBERTa model of the
same size.

afriberta volta niger volta niger
107 tok

ibo 79.32 80.40 79.75

Table 20: F1 scores for models of the same size
finetuned for POS Tagging on Volta-Niger languages
with VoltaBERTa outperforming the AfriBERTa model
trained on the same amount of data.

afriberta 260 bantu bantu tok
bam 87.26 86.7 87.1
kin 93.64 94.45 94.41
nbl 80.25 80.88 80.67
nya 80.83 82.65 81.33
ssw 84.45 85.44 85.09
swa 91.59 91.79 91.74
xho 84.42 86.41 86.33
zul 81.64 84.16 84.03

mean 85.51 86.56 86.34

Table 21: F1 scores for models of the same size fine-
tuned for POS Tagging on Bantu languages with Ban-
tuBERTa almost always outperforms the AfriBERTa
model trained on the same amount of data.

afriberta 364 nc berta nc berta tok
bam 86.84 86.8 87.01
ibo 80.28 80.03 80.29
kin 93.8 94.38 93.97
nbl 79.89 81.05 80.74
nya 81.00 81.67 82.04
ssw 83.74 85.54 85.14
swa 91.74 91.51 91.71
xho 84.03 86.41 86.33
zul 81.74 83.50 83.80

mean 84.78 85.65 85.67

Table 22: F1 scores for models of the same size fine-
tuned for POS Tagging on Niger-Congo languages.
Niger-Congo BERTa with and without a custom to-
kenizer perform better than the AfriBERTa model of the
same size.
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afriberta volta niger volta niger
107 tok

ibo 85.85 88.48 87.11
yor 84.74 86.42 86.09

mean 85.30 87.45 86.60

Table 23: F1 scores for models of the same size fine-
tuned for Sentiment Analysis on Volta-Niger languages
with VoltaBERTa consistently outperforming the Afri-
BERTa model trained on the same amount of data.

1266



Findings of the Association for Computational Linguistics: EACL 2023, pages 1267–1284
May 2-6, 2023 ©2023 Association for Computational Linguistics

Long Document Summarization with Top-down and Bottom-up Inference

Bo Pang Erik Nijkamp Wojciech Kryscinski
Silvio Savarese Yingbo Zhou Caiming Xiong

Salesforce Research
{b.pang, erik.nijkamp, wojciech.kryscinski}@salesforce.com

{ssavarese, yingbo.zhou, cxiong}@salesforce.com

Abstract
Text summarization aims to condense long doc-
uments and retain key information. Critical
to the success of a summarization model is
the faithful inference of latent representations
of words or tokens in the source documents.
Most recent models infer the latent represen-
tations with a transformer encoder, which is
purely bottom-up and thus does not capture
long-distance context well. Also, self-attention-
based models face the challenge of quadratic
complexity with respect to sequence length. We
propose a method to improve summarization
models on these two aspects. Our method as-
sumes a hierarchical latent structure of a doc-
ument where the top-level captures the long
range dependency at a coarser time scale and
the bottom token level preserves the details.
Critically, our method enables token represen-
tations to be updated in both a bottom-up and
top-down manner. In the bottom-up pass, to-
ken representations are inferred with local self-
attention to leverage its efficiency. Top-down
correction is then applied to allow tokens to
capture global context. We demonstrate the ef-
fectiveness on a diverse set of summarization
datasets, including narrative, conversational,
scientific documents and news. Our model
achieves state-of-the-art performance on a wide
range of long document summarization bench-
marks, compared to recent efficient transform-
ers. We show that our model can summarize
an entire book and achieve competitive per-
formance using 0.27% parameters and much
less training data, compared to a recent GPT-3-
based model. These results indicate the general
applicability and benefits of the framework.

1 Introduction

An abstractive summarization system aims to gener-
ate a semantically coherent and linguistically fluent
summary by conditioning on the document. The
dominant approach for abstractive summarization
is to use a Seq2Seq model (Sutskever et al., 2014)
with an encoder-decoder architecture instantiated

with either RNNs (Hochreiter and Schmidhuber,
1997) or transformers (Vaswani et al., 2017). In
such a model, an encoder computes or infers 1 la-
tent representations of observed tokens (words or
subwords) in a document, conditioning on which a
decoder generates a summary. This paper studies
the problem of how to compute informative latent
representations, which in turn would improve sum-
marization.

We propose a method which synergizes bottom-
up computation with top-down computation while
assuming a multi-scale latent structure of a docu-
ment. In a multi-scale structure, higher-level vari-
ables (like those representing sentences, segments)
model the document at a coarser time-scale and
abstract away details, and are suitable for capturing
long range dependency of the document; in con-
trast, lower-level variables (like those representing
tokens) preserve details, and prevent the summary
from losing key details (such as the name of an en-
tity). In our method, the summary is generated by
conditioning on token representations (low-level
variables), similar to recent abstractive summariza-
tion models (Zaheer et al., 2020; Beltagy et al.,
2020). There is however a critical difference. In
our method, token representations are first bottom-
up inferred and then top-down updated with high
level representations, hence rendering low-level
representations aware of global context. See Fig-
ure 1 for an overview of our method.

Multi-level models have been widely studied
in modeling for images (Sønderby et al., 2016),
speech (Mehri et al., 2016), and language (Chung
et al., 2016). It is also not new in the summariza-
tion literature. Prior summarization research has
explored hierarchical models (Cheng and Lapata,
2016; Nallapati et al., 2016; Zhang et al., 2019; Xu
et al., 2020; Cohan et al., 2018; Ruan et al., 2022).
These works focus on the bottom-up computation

1In this paper, "compute" and "infer" (and "computation"
and "inference") are used interchangeably.
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Figure 1: An overview of the top-down transformer. Suppose a document with 7 tokens is the inputs to the model, as shown on
the bottom left. The bottom-up inference is achieved with local self-attention (N1 layers) as shown in the left panel. To initialize
the top-level representations, we pool bottom-up-inferred token representations with either equal weights or adaptive weights
(see Section 2.3 for details). Top-level representations are then updated with full self-attention (N2 layers) to capture global
context. They are then used to update bottom-up-inferred token representations, accounting for the top-down update for token
representations, as shown in the middle panel. The final token representations are attended by the decoder to generate a summary.
Note that inference is used in the sense of statistical inference for latent variables and does not imply no training.

in a hierarchical model, computing higher-level
representations (e.g., sentences, paragraphs) based
on lower-level representations (e.g., words). In con-
trast, our method emphasizes the combination of
bottom-up, as done in prior works, and top-down
where lower-level representations are updated and
enriched with higher-level representations (see the
middle panel in Figure 1). This design is critical for
summarization which requires global context. As
shown in our ablations, removing the top-down up-
date undermines the summarization performance.

The proposed method is agnostic to the model
architecture. Due to the dominance of transformer
models in NLP (Chen et al., 2018; Zhang et al.,
2020; Sun et al., 2019; Martin et al., 2020), we
instantiate our method with a transformer-based
model. There is a bottleneck of applying transform-
ers to long documents, because its computational
and memory cost has a quadratic dependency on
the sequence length. This issue is especially criti-
cal for summarization since we are more interested
in summarizing long documents since short ones
can be quickly read through by humans. To ad-
dress this issue, a large amount of prior works have
been devoted to develop efficient transformers with
sub-quadratic complexity (Wang et al., 2020; Child
et al., 2019; Beltagy et al., 2020; Zaheer et al.,
2020; Kitaev et al., 2020; Roy et al., 2021).

Our method provides a natural way to diminish
this quadratic complexity issue. In the bottom-
up computation, we use local self-attention where
each token only attends the tokens within a local
fixed-length window, and thus the complexity does

not grow as a function of the input sequence length.
The top-down correction for (local) token represen-
tations enables them to capture more global context,
reducing the limitation of local attention. In prior
works like Longformer (Beltagy et al., 2020), Big-
bird (Beltagy et al., 2020), local attention is also
used. Our method is different from these models in
terms of how to inject global information to locally
computed representations. Longformer and Big-
Bird utilize a few global tokens which attend and
are attended by all local tokens, whereas we use top-
down correction. Our approach can better capture
global information compared to prior models, as
demonstrated by clear performance improvements
over these models in our experiments.

In summary, our methods have two key compo-
nents: (1) local attention in bottom-up computation
and (2) top-down correction for locally-computed-
token-representations by high level representations.
The first component alleviates the computational
and memory cost and allows our model to process
long documents, and the second component injects
global information to local tokens and improves
summarization performance. We call our model
as top-down transformer, to emphasize the impor-
tance of the top-down update. We evaluate the
model on a diverse set of summarization bench-
marks. They cover documents from a variety of do-
mains, including news articles and scientific, con-
versational, and narrative documents, and of vari-
ous lengths ranging from hundreds of words (e.g.,
a news article), several thousands to over ten thou-
sands of words (e.g., a scientific paper, a book chap-
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ter), to even over hundred thousands of words (e.g.,
an entire book). Across all long document datasets,
our models achieve competitive or state-of-the-art
performance. We also show that our model is able
to summarize a whole book. Compared to Wu et al.
(2021) using GPT-3 and requiring humans to exten-
sively label data, our model achieves competitive
performance on book summary with only 0.27%
parameters and a small amount of publicly avail-
able data. The diverse and strong empirical results
support the effectiveness and wide applicability of
the proposed model.

Our contributions are summarized as follows: (1)
we propose a method which combines bottom-up
computation and top-down update for long docu-
ment summarization; (2) we conduct extensive eval-
uations and achieve strong performance on various
long document benchmarks; and (3) we adapt our
method to the challenging task of summarizing an
entire book and achieve GPT-3-level performance
with only 0.27% parameters.

2 Methods

Figure 1 gives a graphical overview of the top-
down transformer. We introduce its details in
this section. Suppose a document has N tokens,
t = {ti}Ni=1. In our method, token representations
are computed by combining top-down and bottom-
up processes. This leads to effective and efficient
inference for token representations. They are then
attended by a decoder to generate a summary, as in
a regular encoder-decoder transformer.

2.1 Bottom-Up Computation

In the bottom-up path, contextual embeddings of
the tokens, {ei | ei ∈ Rd}Ni=1, are computed with
N1 layers of local self-attention. In particular, each
token ti only attends to nearby tokens within a win-
dow of size ofw. The complexity is henceO(Nw),
in contrast to O(N2) for full self-attention models.

2.2 Top-Down Computation

The efficiency with local self-attention in the
bottom-up path nevertheless comes with a limi-
tation, that is, each ei only captures the context
within a local window instead of that of the whole
document. To mitigate this issue, we propose a
top-down update for token representations.

Consider a two-level multi-scale latent structure
for a document. The lower level consists of token
representations, {ei}Ni=1, computed by the bottom-

up computation. The top level consists of units at
a coarser level. It is affordable to apply full self-
attention at the top level due to its coarser gran-
ularity, allowing these top-level units to capture
global document context. The self-attention mecha-
nism for the top-level representations is the original
multi-head self-attention proposed in Vaswani et al.
(2017).

Denote the top level representations after self-
attention update as {sj | sj ∈ Rd}Mj=1 (see Sec-
tion 2.3 for details on top-level representation
initialization methods). We can then update the
bottom-up-inferred token representations with the
top-level representations. This is achieved with N3

top-down computation layers, as illustrated by the
middle panel in Figure 1. Each layer contains three
transformations on {ei}: (1) token self-attention,
(2) token-segment cross-attention, (3) feed-forward.
(1) and (3) are the same as those in the bottom-
up layers or regular self-attention layer with lo-
cal attention. (2) implementing the cross-attention
between the top and bottom levels is the critical
operation. In particular, each ei is updated with
cross-attention,

ẽi = ei + LayerNorm(

M∑

j=1

αijfv(sj)), (1)

αij =
exp (fq(ei)

T fk(sj))√
d
∑M

l=1 exp (fq(ei)
T fk(sl))

(2)

where fq, fk, and fv indicate query, key, and value
linear mappings, respectively. For notational clar-
ity, Equation 1 only illustrates the case with a sin-
gle attention head. In practice, we use multi-heads.
The cross-attention operation injects global contex-
tual information into bottom-up-inferred token rep-
resentations, ei, and yields global-context-aware
token representations, ẽi, conditioning on which a
summary can be generated by a decoder.

To instantiate the top-down computation, we
need to make two choices: (1) the number of top-
levels above the token level and (2) the unit repre-
sentation for each top-level. We choose to use one
top level since it is sufficiently coarser to apply full
self-attention for a wide range of long document
benchmarks we experimented on. A natural choice
for top level units is sentence, paragraph, and chap-
ter, depending on the number top level considered.
Such a choice however leads to complicated im-
plementations and reduced scalability due to the
varying length of these units. We hence choose a
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simpler approach, where the top level consists of
fixed-length segments of the documents. While we
use a single top level, multiple top levels can be
simply achieved with segments with increasingly
coarser granularity.

In the top-down computation, segment-level
self-attention has a complexity of O(M2), and
token-segment cross-attention has a complexity of
O(NM). Thus, together with bottom-up inference,
the complexity is O(Nw +M2 +NM). In prac-
tice, we use relatively small w (window size) and
M (number of segments).

2.3 Pooling Methods
As aforementioned, we use a single top level, con-
sisting of fixed-length segments. The segment rep-
resentations are initialized by pooling token repre-
sentations. Following the notation above, suppose
a document is divided into M segments, and the
embedding of the jth segment is initialized as,

s
(0)
j =

k∑

n=1

pnej×d+n (3)

where k is the kernel size and d is the stride. pn is
the weight for the nth token. We introduce two ap-
proaches to compute the weights. The first method
is average pooling (AvgPool) and hence pn = 1

k ,
which is simple and convenient. In the second
approach, we leverage the reference summary to
define the importance of each token to assign adap-
tive weights (AdaPool). Particularly, we learn an
importance tagger with labels constructed with the
reference summaries, which involves three steps:

1. Construct training labels for the importance
tagger: (1) word lemmatization for document
and reference words; (2) label a document
word as important if it appears in the reference
word list and is a non-stopword

2. Train a top-down transformer encoder with
constructed labels as the importance tagger

3. Train the summarization model with oracle
weights (i.e., constructed labels from Step 1.)
and test it with the adaptive importance weight
assigned by the learned tagger

In our experiments, we also used OracleAdaPool
where the weights are obtained from Step 1 with the
reference summaries. Note that if {pn}kn=1 does
not form a valid probability distribution, sj can be

computed with a normalized weight distribution
within each pooling window as follows,

s
(0)
j =

∑k
n=1 exp(pn)ej×d+n∑k

n=1 exp(pn)
. (4)

{s(0)j }Mj=1 are updated with self-attention, yielding
{sj}Mj=1, which are then used in top-down infer-
ence for token representations, as discussed in Sec-
tion 2.2.

3 Experiments

3.1 Overview
We thoroughly evaluate the proposed method on
various summarization datasets. See Table 7 in the
appendix for a summary of datasets used in the cur-
rent work. Our model is first evaluated on two stan-
dard long document summarization benchmarks,
PubMed and arXiv (Cohan et al., 2018). It outper-
forms various efficient transformers and other ap-
proaches and achieves state-of-the-art performance.
Although we focus on long document summariza-
tion, models under our framework is also applica-
ble to shorter documents. We test our model on
CNN-Dailymail (See et al., 2017), the most widely
used short summarization dataset. Compared to a
full self-attention model, our model achieves com-
petitive or better performance. Recently, a more
challenging benchmark, SummScreen (Chen et al.,
2021), is proposed, where summarization systems
need to summarize TV show scripts. These docu-
ments convey plot events often indirectly and im-
plicitly in dialogues, in contrast to news and scien-
tific articles where statements follow a logical order
and facts are offered explicitly. Moreover, a typical
episode contains multiple subplots that proceed in
parallel. Solving this benchmark thus requires a
system to draw information from utterances spread-
ing out through the entirety of the input and inte-
grate them to a concise description. Our model
outperforms strong baselines on this challenging
benchmark by a significant margin. Another chal-
lenging dataset, BookSum (Kryściński et al., 2021),
is also recently released. It covers books from the
literature domain, including stories, plays, and nov-
els. Similar to ScreenSum, it requires integrating
plot events from indirectly expressed descriptions.
A further challenge is to process long-form texts
up to hundreds of pages or over 100,000 words.
Our method does well on this challenge, achieving
competitive or superior performance compared to
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PubMed arXiv
R-1 R-2 R-L R-1 R-2 R-L

Pegasus (568M) 44.21 16.95 38.83 44.21 16.95 38.83
Dancer 46.34 19.97 42.42 45.01 17.60 40.56
TLM-I+E 42.13 16.27 39.21 41.62 14.69 38.03
SSN-DM 46.73 21.00 34.10 44.90 19.06 32.77
BigBird (577M) 46.32 20.65 42.33 46.63 19.02 41.77
Longformer (460M) 46.97 20.23 42.88 46.63 19.62 41.83
LSH 48.12 21.06 42.72 - - -
TopDownFormer (AvgPool) (464M) 48.34 21.40 44.22 48.67 20.70 43.91
TopDownFormer (AdaPool) (464M) 51.05 23.26 46.47 50.95 21.93 45.61
TopDownFormer (OracleAdaPool) 55.15 26.55 50.25 64.16 33.39 56.88

Table 1: Results on Scientific Articles. Best performance (no oracle) is in bold, and the second best is underlined.

a GPT-3-based model (Wu et al., 2021). While
the GPT-3-based model has 175 billion parameters
and requires human labelers to extensively write
summaries and provide reward information, our
model with 464 million parameters is 380 times
smaller and merely requires training on relatively
minimal data. These results suggest our framework
is a generally effectively for documents of various
lengths, domains.

3.2 Implementation Details

We use the same encoder-decoder architecture for
all datasets. The encoder has 8 bottom-up lay-
ers and 4 top-down layers for tokens, and 2 self-
attention layers for segments. The decoder has
12 layers. The encoder layers for tokens (12 lay-
ers) and the decoder layers are all initialized from
BART (Lewis et al., 2020) except the parameters
for token-segment cross-attention in the top-down
layers, which are randomly initialized. The self-
attention parameters for segments are also ran-
domly initialized. The window size is 1024 unless
otherwise specified. Our settings closely follow
Longformer (Beltagy et al., 2020) which has 12
layers for the encoder and decoder, is initialized
from BART, and uses a local window size of 1024.
Thus, comparison with Longformer is a test of the
effect of top-down correction for token represen-
tations. The segment-pooling has a kernel size of
32 and a stride size of 24. The maximum num-
ber of segments is 512. The maximum document
lengths for PubMed, arXiv, CNN-DM, TVMega-
Site, ForeverDreaming, BookSum are 8192, 16384,
1024, 12288, 12288, 12288, respectively. The op-
timizer for all models is Adam with an learning
rate of 5e-5. Model performance is evaluated with
ROUGE scores (Lin, 2004). Reported performance
is based on the checkpoint with the best validation
R-2 score. Summary samples for each dataset gen-
erated by our models are provided in the Appendix.

3.3 Scientific Documents

We first test the effectiveness of our framework
on two widely used datasets based on scientific
documents, PubMed and arXiv. They consist of
long documents of length ranging from several
thousands of words to over ten thousands words.
Three variants of our model with various pooling
weights are presented. AvgPool, AdaPool, and Or-
acleAdaPool in Table 1 indicate average pooling,
pooling with adaptive weights, pooling with adap-
tive weights determined by references, respectively
(see Section 2.3 for more details).

The experiment results are displayed in Table 1.
Pegasus (Zhang et al., 2020) is pretrained on a
large-scale of dataset with a pretraining objective
specifically designed for summarization. It uses
a full self-attention encoder and thus has to trun-
cate the source document due to the quadratic
memory complexity. The summarization-oriented
large-scale pre-training makes it a strong baseline.
Dancer (Gidiotis and Tsoumakas, 2020) takes a
divide-and-conquer approach in which the sum-
mary is divided into sections and each section is
paired to the appropriate section of the document
and the model is trained on short sequences and
has a low memory requirement. This is a straight-
forward approach achieving strong performance.

TLM-I+E (Pilault et al., 2020) first extracts
salient sentences and then uses a GPT-style model
to generate a summary by conditioning on the in-
troduction section and extracted sentences (instead
of the whole document), thus reducing memory
requirement. SSN-DM (Cui and Hu, 2021) is an
extractive model and uses a sliding encoder to pro-
cess segments of a document and a memory mod-
ule to capture autoregressive dependency between
segments. These two models bear similarities to
our model in that they use a multi-scale structure.
The extracted salient sentences in TLM-I+E can
be considered a representation of the document
at a coarser granularity since salient information
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is retained. Instead of keeping the coarser repre-
sentations in the latent space, TLM-I+E reads out
them to the observed word space. In SSN-DM,
the fixed-size memory module pooling information
from each segments can also be considered a high
level representation of the document. Despite these
similarities, our model, synergizing bottom-up and
top-down inference, clearly outperforms these prior
models.

BigBird (Zaheer et al., 2020), Longformer (Belt-
agy et al., 2020), and LSH (Kitaev et al., 2020;
Huang et al., 2021) are efficient transformers. Big-
Bird based on Pegasus pre-training combines local
attention, random attention tokens, and global at-
tention tokens. LSH uses content-dependent sparse
attention based on local sensitivity hashing. Long-
former is closely related to our models. It uses the
same local attention as in our bottom-up computa-
tion except it has an extra [CLS] token which is a
global attention token. Longformer is also initial-
ized from BART. The only difference is that our
models compute token representations with both
top-down and bottom-up processes, in contrary to
pure bottom-up in Longformer. The clear perfor-
mance improvement over Longformer and other
efficient transformers indicates the effectiveness of
the synergy of bottom-up and top-down computa-
tion.

3.4 Short Documents

CNN-DailyMail
R-1 R-2 R-L

BART (Reported) 44.15 21.28 40.90
BART (Re-eval) 43.93 20.81 40.79
TopDownFormer (AvgPool) 44.32 21.03 41.40
TopDownFormer (AdaPool) 44.85 21.31 41.15
TopDownFormer (OracleAdaPool) 63.87 38.42 59.10

Table 2: Results on CNN-DailyMail. Best performance (no
oracle) is in bold, and the second best is underlined.

To demonstrate the general applicability of the
proposed framework, we show its effectiveness
on short document summarization and compare it
to full self-attention model. We hypothesize that
although the bottom-up computation uses local self-
attention, our method with the top-down correction
would lead to competitive or better summarization
performance.

Our model parameters are initialized from BART.
Hence, BART with full self-attention forms a natu-
ral baseline, allowing for direct comparison. In the
bottom-up inference, the local attention window
size of our models is 256. As shown in Table 2,

our models achieve slightly better performance, es-
pecially in terms of R-1 and R-L, than BART. It
confirms our hypothesis that a synergy of bottom-
up with local attention and top-down inference with
global attention is effective and achieves on-par or
better performance as full self-attention.

3.5 SummScreen

Scientific and news articles often require that facts
are offered explicitly and statements follow a logi-
cal order, which might allow summarization mod-
els to exploit layout and stylistic biases. We next
test the proposed method on a more challenging
dataset, SummScreen, which requires a model to
draw and integrate information from indirect ex-
pressions across a wide range of the document.
SummScreen (Chen et al., 2021) provides two
datasets, TVMegaSite and ForeverDreaming, col-
lecting from two different TV show transcript web-
sites. Each document is the transcript of a TV show
episode and the summary is an associated recap.

Table 3 summarizes the results. Extractive oracle
is an extractive method by extracting nearest neigh-
bors based on Rouge scores. Longformer is an ab-
stractive method and takes the whole document as
input. Hybrid models first select salient sentences
and then input them to BART. Our models outper-
form these strong baselines and even achieves com-
parable or superior performance than prior models
having access to oracle information.

3.6 BookSum

BookSum (Kryściński et al., 2021) is another chal-
lenging dataset, consisting of books from the liter-
ature domain including stories, plays and novels.
It includes examples on three levels of granular-
ity with increasing difficulty: (1) paragraph-level
with inputs with hundreds of words, (2) chapter-
level, with inputs with several thousands or over
ten thousands of words, (3) book-level, with in-
puts spanning up to hundreds of pages and over
hundred thousands of words. The chapter-level ex-
amples have comparable lengths to other popular
long-form summarization datasets such as PubMed,
arXiv. We first test our models on the chapter level.
The book-level summarization is extremely chal-
lenging. First, the number of examples (313 books)
is limited. Second, a book is too long to fit in cur-
rent models. We train our model in a curriculum
and recursive way to address the two issues.
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TVMegaSite ForeverDreaming
R-1 R-2 R-L R-1 R-2 R-L

Extractive Oracle 49.0 11.6 46.9 38.8 11.5 33.9
Longformer 42.9 11.9 41.6 25.9 4.2 23.8
Hybrid (BART + Content Selection) 38.8 10.2 36.9 25.3 3.9 23.1
Hybrid (BART + Oracle Content Selection) 42.1 11.9 40.9 26.4 5.0 23.3
TopDownFormer (AvgPool) 49.30 14.35 47.45 35.84 8.86 30.62
TopDownFormer (AdaPool) 51.02 14.66 49.01 36.84 9.19 31.12
TopDownFormer (OracleAdaPool) 53.55 15.63 51.29 39.54 10.08 33.59

Table 3: Results on SummScreen. Best performance (no oracle) is in bold, and second best is underlined.

BookSum Chapter Level
R-1 R-2 R-L

Extractive Oracle 42.68 9.66 21.33
BART (406M) 37.09 8.23 15.37
T5 (738M) 37.38 8.42 16.77
Pegasus (568M) 36.17 7.79 16.09
Longformer (460M) 32.84 7.45 14.59
BigBird (577M) 31.78 6.50 14.17
TopDownFormer (AvgPool) (464M) 37.99 9.10 18.02
TopDownFormer (AdaPool) (464M) 38.34 9.19 18.08
TopDownFormer (OracleAdaPool) 41.10 9.49 19.19

Table 4: Results on BookSum Chapter Level. Best perfor-
mance (no oracle) is in bold, and second best is underlined.

3.6.1 Chapter Level

Table 4 displays the results. Kryściński et al. (2021)
takes a divide-and-conquer approach to summarize
chapters. They finetune BART, T5, and Pegasus
on the paragraph level data and the chapter sum-
mary is obtained by concatenating the paragraph
summary. This might miss the intra-paragraph con-
text. Our models directly summarize the whole
chapters and outperform these divide-and-conquer
models. Efficient transformers, Longformer and
BigBird, are also able to take in the whole chapters
as inputs. But these bottom-up approaches clearly
underperform our models.

3.6.2 Book Level

We first train a top-down transformer on chapter-
level and then fine-tune it on book-level data. The
inputs to the book-level model are (1) the concate-
nated chapter reference summaries in training or (2)
the concatenated chapter summaries generated by
the chapter-level model in testing. The chapter-to-
book curriculum training is to mitigate the scarcity
of book-level data. The recursive summarization
of chapters and then books can be considered ab-
stractive content selection applied to book data.

Table 5 summarizes the book-level results. The
middle section shows the performance for the mod-
els with the divide-and-conquer approach (Kryś-
ciński et al., 2021), same as those for the chapter-
level data. Wu et al. (2021) also attempts to summa-
rize books using GPT-3 with reinforcement learn-
ing (RL) finetuning. The results are shown in third

BookSum Book Level
R-1 R-2 R-L

Extractive Oracle 46.62 9.17 18.31
BART 29.97 6.02 10.97
T5 39.46 7.69 13.77
Pegasus 35.29 6.79 12.71
GPT3-175B full tree RL 41.51 10.46 16.88
GPT3-175B first subtree RL 43.19 10.63 17.10
GPT3-6B full tree RL 36.79 7.22 14.84
TopDownFormer (464M) 44.19 10.89 16.13

Table 5: Results on BookSum Book Level. Best performance
(no oracle) is in bold, and second best is underlined.

section in Table 5. Their method shares similar-
ity with ours in that they decompose books into
shorter sequences and train the model and sum-
marize the text segments recursively. There are
three differences between our approach and theirs.
First, we train our model with the limited data from
BookSum, while (Wu et al., 2021) requires human
labelers to write summaries, which is highly costly.
Second, our model has lower complexity, allowing
it to takes in longer input. Thus, we only need to
decompose the book one time (into chapters), in
contrast to multiple recursive decomposition steps.
Multiple recursive summarization steps is prone to
accumulating errors. Third, GPT-3 uses bottom-up
inference to infer token representations, in contrast
to the synergy of bottom-up and top-down infer-
ence in our approach. The last two differences
might account for our competitive performance us-
ing a much smaller model (0.46B vs. 175B) and
less data.

3.7 Ablation Studies

Our method has two key components: (1) local
attention in bottom-up computation, and (2) top-
down update to inject global context. We conduct
ablation studies on these two factors. All ablation
experiments are performed with PubMed.

We first ablate top-down update (TDU). The re-
sults are summarized in Table 6. The first row
shows the performance of the top-down trans-
former with top-down update via cross-attention
and window size 1024, which is our final model.
The second row shows the performance for a vari-
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ant of top-down update. In this variant, to update
the bottom-up inferred token representations, we
concatenate the token representations with the cor-
responding top-level segment representations, in
contrast to the cross-attention approach used in
the final model. We can see a clear performance
degradation, indicating the importance of the cross-
attention-based top-down update. The third row dis-
plays the results without top-down update, and the
decoder attends the bottom-up-inferred token rep-
resentations to generate summaries. Compared to
our final model, the performance is also degraded,
suggesting the effectiveness of the top-down up-
date.

The lower panel of Table 6 presents ablations on
window size (WS) of local attention. As the win-
dow size increases, the performance on all metrics
enhances. The effect is quite large when the win-
dow size is increased from 32 to 256. The effect
becomes smaller after 256, but the model perfor-
mance can still benefit from larger window size.

R-1 R-2 R-L
TDU via cross-attention WS - 1024 48.34 21.40 44.22
TDU via concat WS - 1024 47.04 20.36 43.03
No TDU WS - 1024 46.97 20.23 42.88
TDU via cross-attention WS - 32 46.30 19.55 42.21
TDU via cross-attention WS - 64 47.25 20.37 43.12
TDU via cross-attention WS - 128 47.44 20.56 43.35
TDU via cross-attention WS - 256 47.89 21.06 43.77
TDU via cross-attention WS - 512 48.08 21.16 44.05

Table 6: Ablation studies of Top-Down Transformer. TDU:
top-down update. WS: window size.

4 Related Work

Summarization Models Prior works have pro-
posed extractive models (Nallapati et al., 2017;
Cui and Hu, 2021), abstractive models (Nallap-
ati et al., 2016; Zhang et al., 2020), and hybrid
models combining extractive and abstractive meth-
ods (Gehrmann et al., 2018; Pilault et al., 2020), for
text summarization. Although our model mostly
follows the abstractive approach, it also has connec-
tions to the hybrid models. These models usually
first extract salient sentences from the source docu-
ment and then summarize the extracted sentences
with an abstractive model. Extracted sentences can
be viewed a high level representation of the docu-
ment, although it is the observed space but not in
the latent space as in our framework. A continuous
representations in the latent space facilities end-
to-end learning. Moreover, assigning importance
weight with the importance tagger in our method
resembles an extractive step in a hybrid model, and

thus top down transformer with learned importance
tagger can be considered a hybrid model.

Efficient Transformers Despite the effective-
ness of transformers on a variety of tasks, its
quadratic complexity with respect to the sequence
length has limited its application to problems with
long sequences. A large amount of works have
attempted to address this limitation. A major line
of work focuses on designing various sparse at-
tention mechanisms. These works can be roughly
categorized into two groups, depending on whether
the sparsity pattern is content-dependent (Kitaev
et al., 2020; Roy et al., 2021; Wang et al., 2021; Liu
et al., 2021) or content-independent (Child et al.,
2019; Beltagy et al., 2020; Ainslie et al., 2020;
Zaheer et al., 2020). Our work is mostly related
to content-independent sparse attention. A main
assumption of content-independent sparse atten-
tion is that the context temporally and/or spatially
proximate to the query token is more important,
which is intuitively sensible and supported by em-
pirical attention analysis (Child et al., 2019). Thus,
a common sparse attention pattern is local atten-
tion, where each query token only attends to a
neighborhood within a fixed temporal and/or spa-
tial window. While this reduces the complexity to
be linear, a model with only local attention cannot
model long-range dependency. Prior works com-
bine local attention with other attention patterns
with wider or global receptive field such as dilated
attention, random attention tokens, and global at-
tention tokens (Beltagy et al., 2020; Zaheer et al.,
2020). Our models also use local attention for its ef-
ficiency and leverage top-down inference to enable
global-context awareness.

5 Conclusion

In this work, we propose a summarization method
which combines bottom-up computation with top-
down computation to improve token representation
inference. In the bottom-up pass, token representa-
tions are inferred with local self-attention to exploit
its efficiency. Top-down correction is then applied
to allow tokens to capture global context. Our
model achieves (1) state-of-the-art performance
on a wide range of long document summarization
benchmarks, and (2) competitive performance on
summarizing whole books using 0.27% parameters
and much less training data, compared to a recent
GPT-3-based model. These results indicate the
general applicability and benefits of the proposed
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Limitations

In the current work, we only explore a model with a
single top-level layer. It would be a fruitful research
direction to study models with multiple layers, with
growing level of abstraction. This might improve
both the efficiency and performance of the current
model, since long range dependency is mostly cap-
tured by higher-level layers and the window size at
the low-level can be small.
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Dataset # Docs. # Input Words # Summary Words Domain
PubMed 133K 3,224 214 Scientific
arXiv 215K 6,913 292 Scientific
TVMegaSite 22.5K 6,420 380 Conversational
ForeverDreaming 4.3K 7,605 113 Conversational
BookSum-Chapter-Level 12K 5,102 505 Narrative
BookSum-Book-Level 436 112,885 1,167 Narrative
CNN-DM 311K 906 63 News

Table 7: Summarization Datasets. It shows the total number of documents, the average number of input words, the average
number of summary words, and the domain for each dataset.
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PubMed Example #1: Reference

a new class of water - soluble c60 transfecting agents has been prepared using hirschbingel chemistry and assessed for their ability to act as gene - delivery vectors in vitro. in an
effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water - solubilizing groups, and the overall charge state of the c60
vectors in gene delivery and expression, several different c60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities
under physiological conditions. these fullerene derivatives were then tested for their ability to transfect cells grown in culture with dna carrying the green fluorescent protein ( gfp )
reporter gene. statistically significant expression of gfp was observed for all forms of the c60 derivatives when used as dna vectors and compared to the ability of naked dna alone to
transfect cells. however, efficient in vitro transfection was only achieved with the two positively charged c60 derivatives, namely, an octa - amino derivatized c60 and a dodeca -
amino derivatized c60 vector. all c60 vectors showed an increase in toxicity in a dose - dependent manner. increased levels of cellular toxicity were observed for positively charged
c60 vectors relative to the negatively charged and neutral vectors. structural analyses using dynamic light scattering and optical microscopy offered further insights into possible
correlations between the various derivatized c60 compounds, the c60 vector / dna complexes, their physical attributes ( aggregation, charge ) and their transfection efficiencies.
recently, similar gd@c60 - based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging ( mri ). thus, the successful demonstration of
intracellular dna uptake, intracellular transport, and gene expression from dna using c60 vectors suggests the possibility of developing analogous gd@c60 - based vectors to serve
simultaneously as both therapeutic and diagnostic agents.

PubMed Example #1: Model Output

a new class of water - soluble c60 transfecting agents with positively charged, negatively charged, or neutral chemical functionalities under physiological conditions was prepared
using hirschbingel chemistry. transfection, cytotoxicity, and biophysical structure / activity studies were performed in an effort to elucidate the relationship between the hydrophobicity
of the fullerene core, hydrophilicity, and the overall charge state of the c60 vectors in gene delivery / expression. only two positively charged c60 derivatives, namely, an octa -
amino derivatized c60 and a dodeca - amino derived c60 vector, showed efficient in vitro dna delivery into cells. increased levels of cellular toxicity were observed for positively
charged compounds relative to the negatively charged and neutral vectors, and aggregation was the major factor that negatively affected the cytotoxic profiles of these c60 - vector /
dna complexes. the successful demonstration of intracellular dna uptake and gene expression from dna dna conjugates formed from c60 compounds suggests the possibility of
developing analogous gd@c60 vectors to serve as both therapeutic and diagnostic agents.

PubMed Example #2: Reference

context : isolated involvement of the appendix in crohn’s disease is reported to be 0.2 % to 1.8 %, and is usually associated with ileocaecal crohn’s disease in 25 % of ileal and
50 % of caecal disease. while appendicitis in a patient who was previously diagnosed to have ileocaecal crohn’s may be managed with appendicectomy and ileocaecal resection,
appendicectomy alone when performed for appendicitis in a patient with unsuspected ileocaecal crohn’s disease could lead to postoperative complications including enterocutaneous
fistula.case report : a young female patient who underwent appendicectomy elsewhere for acute appendicitis presented to us with a persistent enterocutaneous fistula of 6 weeks
duration. she had complained of general ill health and occasional altered bowel habits for 6 months prior to the acute appendicitis presentation. our investigations, including a ct
scan, suggested the possibility of ileocaecal crohn’s disease. she underwent excision of the enterocutaneous fistula and ileocaecal resection, and histopathology of the resected
specimen confirmed crohn’s disease. in the postoperative period she received mesasalazine. when last seen 2 years later during her regular follow - up, she was found to be in
good health.conclusion : the possibility of ileocaecal crohn’s disease should be considered in patients presenting with unexplained postoperative enterocutaneous fistula following
appendicectomy. a high index of clinical suspicion is required to make a prompt diagnosis and institute appropriate further treatment in form of ileocaecal resection.

PubMed Example #2: Model Output

introduction : isolated involvement of the appendix in crohn’s disease is reported to be 0.2 % to 1.8 %, and is usually associated with ileocaecal crohn‘s disease in 25 % of ileal and
50 % of caecal disease. while appendicitis in a patient who was previously diagnosed to have ileocecal ileocecal crohn’s may be managed with appendicectomies, appendicectomy
alone when performed for acute appendiculectomy could lead to postoperative complications including enterocutaneous fistula.case report : a young female patient who underwent
appendiclectomy elsewhere presented to us with a persistent enterococcal fistula of 6 weeks duration. on further questioning, she informed us that she had presented to this hospital
with a 2 - week history of abdominal pain, confined to the right lower abdomen. she had complained of general ill health and occasional altered bowel habits for 6 months prior to
the acute appendectomy presentation. our investigations, including a computerized tomography scan, suggested the possibility of crohns disease. she underwent excision of the
enterococcus fistula and resection of the caecum, and histopathology of the resected specimen confirmed the diagnosis. in the postoperative period she received mesasalazine. when
last seen 2 years later during her regular follow - up, she was found to be in good health.conclusion : appendicection alone is a safe procedure in patients with suspected crohn
ileocoecal involvement. while appendiceal resection will suffice in those who present subacutely and are diagnosed preoperatively by clinical signs, a high index of clinical suspicion
is required to make a prompt diagnosis.

Table 8: Summary Samples for PubMed

arXiv Example #1: Reference

we study experimentally the thermal fluctuations of energy input and dissipation in a harmonic oscillator driven out of equilibrium, and search for fluctuation relations. we study
transient evolution from the equilibrium state, together with non equilibrium steady states. fluctuations relations are obtained experimentally for both the work and the heat, for the
stationary and transient evolutions. a stationary state fluctuation theorem is verified for the two time prescriptions of the torque. but a transient fluctuation theorem is satisfied for the
work given to the system but not for the heat dissipated by the system in the case of linear forcing. experimental observations on the statistical and dynamical properties of the
fluctuation of the angle, we derive analytical expressions for the probability density function of the work and the heat. we obtain for the first time an analytic expression of the
probability density function of the heat. agreement between experiments and our modeling is excellent.

arXiv Example #1: Model Output

we study the fluctuations of energy and dissipation in a thermostated harmonic oscillator driven out of equilibrium by an external deterministic forcing. this oscillator is very well
described by a second order langevin equation. using the fluctuation dissipation theorem, we obtain fluctuation relations for the work given to the system by the external torque and
for the heat dissipated by the system, by writing the first principle of thermodynamics between the two steady states. from the experimental results, we derive analytical expressions
for the probability density functions of the work and the dissipated heat, and for their finite time corrections, both for a forcing linear in time and a forcing sinusoidal in time. from
these expressions, we present some analytical derivations of fluctuation theorems based on experimental observations.

arXiv Example #2: Reference

the pairing hamiltonian constitutes an important approximation in many- body systems, it is exactly soluble and quantum integrable. on the other hand, the continuum single particle
level density ( cspld ) contains information about the continuum energy spectrum. the question whether one can use the hamiltonian with constant pairing strength for correlations in
the continuum is still unanswered. in this paper we generalize the richardson exact solution for the pairing hamiltonian including correlations in the continuum. the resonant and non
- resonant continuum are included through the cspld. the resonant correlations are made explicit by using the cauchy theorem. low lying states with seniority zero and two are
calculated for the even carbon isotopes. we conclude that energy levels can indeed be calculated with constant pairing in the continuum using the cspld. it is found that the nucleus
@xmath0c is unbound. the real and complex energy representation of the continuum is developed and their differences are shown. the trajectory of the pair energies in the continuum
for the nucleus @xmath1c is shown.

arXiv Example #2: Model Output

the exact solution of the richardson pairing hamiltonian is obtained by including the resonant and non resonant continuum through the continuum single particle level density ( cspld
). the gamow states, which appear in the complex energy representation, provide the main contribution from the continuum. the inclusion of the continuum has been used to study
the unbound isotope @xmath0c and beyond. it was found that the continuum pairs ( pair energies with positive real components ) converge to the real part of the uncorrelated pair
energy and they do not appear in complex conjugate partners. as a result the total energy of the system may be complex. from the exact solutions of the pairing and pairing - like
hamiltonians the csmld can be used to investigate many - body correlations.

Table 9: Summary Samples for arXiv

1281



CNN-DailyMail Example #1: Reference

Michelle MacLaren is no longer set to direct the first " Wonder Woman " theatrical movie. MacLaren left the project over " creative differences " Movie is currently set for 2017.

CNN-DailyMail Example #1: Model Output

CNN confirms that director Michelle MacLaren is leaving the " Wonder Woman " movie. The movie, starring Gal Gadot, is still set for release on June 23, 2017.

CNN-DailyMail Example #2: Reference

Andrew Mogni, 20, from Glen Ellyn, Illinois, had only just arrived for a semester program when the incident happened in January. He was flown back to Chicago via air on March
20 but he died on Sunday. Initial police reports indicated the fall was an accident but authorities are investigating the possibility that Mogni was robbed. His cousin claims he was
attacked and thrown 40 ft from a bridge.

CNN-DailyMail Example #2: Model Output

Andrew Mogni, 20, from Glen Ellyn, Illinois, had only just arrived for a semester program in Italy when the incident happened in January. He was flown back to Chicago via air
ambulance on March 20, but he died on Sunday after falling off a 40 ft bridge in Rome in a suspected robbery attack in Rome, police reports indicated the fall was an accident but
authorities are investigating the possibility he was robbed.

Table 10: Summary Samples for CNN-DailyMail

TVMegaSite Example #1: Reference

Jake meets Tad at ConFusion where Tad is enjoying a salad. Tad doesn’t believe David’s story as to why he is in Gloucester. Liza joins them and serves Tad with a restraining order
to stay away from the bar in Gloucester. Amanda takes Trevor for an exam at the hospital and joins Angie. David also joins them. Erica sits alone in her hotel room when Opal
comes to ask if she’s seen the documentary on Pine Valley. Ryan stares at a blank television when Emma comes downstairs with Corinna. Emma asks Ryan if he is going to watch
the documentary. In Gloucester, Gayle comes in to check on Greenlee. Greenlee tells Gayle that she has to get home. Greenlee clinches her fist as she imagines how it would be if
she were home. Erica panics as to what Ryan might have said on the documentary. Erica receives another copy of the documentary that Hayley did of Pine Valley. David asks
Angie if read the gift that he gave her. Amanda tells David that she knew that he had lied to her about having patients to see at the hospital and instead had gone to Gloucester. Tad
reprimands Jake for wanting to go to Gloucester without telling Amanda. Jake gets up to go back to work and sees Amanda and Trevor. Jake asks her how long she had been
standing there. Amanda answers, " Long enough." Madison and Angie discuss Madison’s mom. Erica finally gives in and agrees to watch the DVD. Opal is thrilled, but Erica insists
that she wants to watch it alone. Ryan visits with DVD in hand and suggests that they watch it together. David meets with Dr. Clayton and tells him about Greenlee. Greenlee
dreams of her family and friends back in Pine Valley. Erica and Ryan watch the DVD. Liza lets Madison know that her father had gotten jail time, but would be out of jail within a
year. Amanda and Jake discuss David and how Jake doesn’t believe that he is really sick. Amanda tells Jake that if her persists in accusing David then she doesn’t know how much
longer they can go on. Greenlee meets with Dr. Clayton about her surgery. Ryan and Erica kiss. Liza and Tad kiss in his apartment.

TVMegaSite Example #1: Model Output

Tad and Jake are at Krystal’s. Jake lets Tad know that David is going to Gloucester. Liza walks in and gives Tad a restraining order against him. At the hospital, Angie tells Amanda
that she had seen her on Hayley’s documentary. David walks up and listens to their conversation. At home, Opal questions Erica if she had watched the documentary on television
about Pine Valley. Erica tells Opal that she doesn’t want to see the documentary. Ryan gets ready for Emma and Corinna’s sleepover. Ryan lets Emma know that he hadn’t been able
to watch the documentary that Hayley had shown on television. Greenlee dreams that she is back in Pine Valley with her family. Erica awakens from her coma and finds out that
Jackson is alive. Jackson tells Greenlee how much he had missed her. Erica lets Opal know that she would like to fall in love again. Opal asks her if she is insecure about Ryan and
what is going on with him. Erica gets a visit from a man, who gives her a DVD of the documentary from Hayley. David and Angie argue over the fact that he isn’t as sick as he
claims to be. Amanda accuses David of lying to her about where he had been the night that she was stabbed. Tad tries to talk Liza out of breaking into David’s bar in Gloucester,
but she refuses to listen to him. Madison comes into the hospital and tells Angie that she can not go to her father’s sentencing. Madison lets Angie know that her father is being
sentenced today and she was going to go, but Angie encourages her to go. Jake and Tad try to talk her out of going to the hearing, but Liza insists on going. Jake tries to get Tad to
promise that he will not go into Gloucester without Liza’s permission. Erica and Opal watch the video of Ryan’s confession. Ryan comes to visit Erica and asks her to watch a little
TV. David meets with Dr. Clayton about Greenlee’s condition. David introduces Greenlee to Clayton. Tad visits Liza at the bar and apologizes to her for putting her in this position.
Tad and Liza begin to argue over his interference in her life. David calls Greenlee and tells her that they are going to take her on a tour of the medical facilities in Gloucestershire.

TVMegaSite Example #2: Reference

Erica and Ryan are in her office at Fusion kissing when Greenlee walks up to the door and starts to turn the doorknob. David clasps his hand over her mouth to keep her from
screaming. At ConFusion, Liza and Tad kiss before they start to dance. Krystal watches then asks Rob to take her back to his place. Jake and Amanda spend a quiet evening at home
when there is an incessant knocking on the door. Jake opens the door and Opal lets them know that she read her tea leaves and knows that someone is headed back into their lives.
She fears that it is David. Jake and Amanda don’t seem to be too concerned by Opal’s anxiety attack over her tea leaves. David reminds Greenlee that Dr. Coleman said she could
face another surgery. In talking to David, Greenlee realizes that Ryan is with another woman and comes to the conclusion that it is Kendall. At ConFusion, Tad sees David rushing
out to his car. Ryan and Erica come clean to the press that they are involved. Liza visits Amanda and tries to soothe her fears that David is back in town. Tad and Jake visit David at
Wildwind. Jake promises David that he will be watching him. Ryan and Erica come home to his penthouse and finds things completely out of order. Erica and Ryan make love in
front of the fireplace. Greenlee lets herself into Ryan’s place and sees him and Erica making love.

TVMegaSite Example #2: Model Output

At the hospital, Liza kisses Tad. Krystal walks in and sees them kissing. Liza asks Tad if she can steal him. At Wildwind, Jake and Amanda are in bed with the baby when there is a
knock on the door. Jake answers it and it is Opal. Opal tells Jake that she knows that David is coming back to town. Jake assures her that he doesn’t know where David is. At Fusion,
Greenlee questions David as to what he is doing here. Greenlee demands to see Ryan, but David refuses to let her see Ryan. David tries to get Greenlee to calm down and let him
examine her, but Greenlee insists on going up on the roof to talk to Ryan. At Ryan’s home, Erica tells Ryan that she is not used to things going so smoothly in their relationship. Jake
tells Opal that Wildwind is being sold and a real estate agent is showing it to the public. Jake lets Opal know that he hadn’t heard from David in a while. Amanda comes downstairs
and tells Jake about Opal’s tea leaves giving her a strong feeling that something from their past is coming to town and that David could be there already. Jake asks Amanda if she is
all right. Amanda lets Jake know that David had disappeared. At the Confusion bar, Tad tells Liza that he thinks that there is something going on between him and Krystal, but Liza
denies it. David examines Greenlee and lets her know that Ryan is with another woman. David offers to take Greenlee back to his place, but she insists on knowing who the woman
is before she changes her mind. Erica asks Ryan to take her home for a romantic dinner and a fire in the fireplace. Ryan and Erica arrive home to find a picture of the moon on the
table. David tells Greenlee that he is taking her back to Gloucester for another surgery. David lets Greenlee know that Zach and Kendall had left town with Spike and had taken
Spike with them. Jake and Tad burst into David’s hotel room and find him hanging upside down in the attic. Jake orders David to leave town. David insists that he will leave town,
but Jake tells him that they will be watching for him. David leaves the hotel room, but when he opens the door to leave, he finds that Greenlee is gone. Jake calls Amanda and tells
her that they have to file a lawsuit against David because he is back in town.

Table 11: Summary Samples for TVMegaSite
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ForeverDreaming Example #1: Reference

Sydney races to find a cure for Vaughn, but in order to find the antidote, Sydney must make a deal with Sark that could endanger Sloane’s life. Meanwhile, Will continues his
research for Vaughn and discovers some disturbing inconsistencies involving 20-year - old standardized IQ tests. Sydney finds out that Vaughn has a girlfriend.

ForeverDreaming Example #1: Model Output

Sydney must find a way to save Vaughn’s life while trying to track down Sark’s base of operations in order to obtain the antidote to a deadly virus that Sloane has been infected with.
Meanwhile, Vaughn is in critical condition after being exposed to Rambaldi’s toxin, and Sydney is forced to make a dangerous deal with Sark in exchange for his aid in getting rid of
him. Will meets with a professor to find out if any of the CIA’s standardized tests were ever used to recruit American children in the 1980’s, and discovers that one in ten thousand
first graders could pass the test.

ForeverDreaming Example #2: Reference

Half a universe from Earth, the Doctor and Martha answer a distress call from the cargo ship SS Pentallian, which will impact a star in 42 minutes. The ship scooped out part of the
star, which is alive, for cheap fuel. The star uses crew members Korwin and Ashton as host bodies, and begins taking out everyone on board. Martha and crew member Riley, while
trying to reach the front of the ship, are jettisoned into space in an escape pod by Ashton. The Doctor remagnetises the pod to bring Martha and Riley back. The Doctor begins being
taken over by the star, and tells Martha to vent the engines, getting rid of the " sun particles " in the fuel. This causes the engines to start working again, and frees the ship from the
star’s pull.

ForeverDreaming Example #2: Model Output

The Doctor and Martha are trapped on board a space station in the Torajji system, where the crew are trying to prevent the ship from colliding with the sun. The Doctor uses the
sonic screwdriver on Martha’s mobile phone to activate Universal Roaming Activation, which allows him to travel anywhere in space and time without interference from the ship’s
control centre. However, the device malfunctions and the ship begins to fall towards the sun, and the Doctor is forced to use the emergency escape pod to escape. The pod, which
contains the Doctor, Martha and two other crewmembers, is destroyed by the impact, but the Doctor manages to return to the control centre to try and stop the ship hitting the sun
before it does so.

Table 12: Summary Samples for ForeverDreaming

BookSum Book-Level Example #1: Reference

At the opening of Act I, it is a cloudy autumn day on a Russian country estate. In the garden, the old nurse Marina stands at the samovar and offers Doctor Astrov something to eat,
but he refuses. He complains about the difficulty of his job. Telegin, an impoverished local landowner, sits with them. Voynitsky, known as Vanya, comes out of the house and
joins them. He is almost fifty and is weary and irritable. He complains about his brother-in-law, Serebryakov, Serebryakov’s young second wife, Helen, and about how their visit
has turned the place upside down. Serebryakov, Helen, and Serebryakov’s daughter, Sonya, join them for a moment. After they depart, Vanya sighs about Helen’s beauty and
then complains about how he has toiled his whole life on this estate for the professor and it has come to naught. After Vanya’s sister’s death, he and Sonya worked here so the
professor could continue his studies and his writings, but Vanya has come to see that work as foolish and irrelevant. When Astrov suggests that Vanya is jealous, Vanya laughs that he
obviously is, especially as the old, gout-and-rheumatism-ridden man seems to attract beautiful women. Helen ventures outside and tells Astrov his services are not needed for her
husband. Mrs. Voynitsky, Vanya’s mother and Sonya’s grandmother, tells them about a new pamphlet written by a friend in Kharkov. When Vanya sneers that all they do is read
pamphlets, she becomes distressed and claims he hates her. Vanya merely says he is old, tired, and frustrated. A laborer arrives and tells Astrov he is wanted at the factory; the
doctor bitterly departs, but not before they all discuss how he is very interested in forestry work. Sonya speaks up cheerfully about how Astrov is trying to save the old forest from
destruction because forests make people happier. Astrov speaks of how Russians have torn down the forests and destroyed the wildlife: they no longer create, but rather destroy.
After Sonya walks Astrov out, Vanya tries to seduce Helen, but she pushes him away. She muses about how Sonya clearly seems to love the doctor but he does not love her back.
Helen sighs that she is simply bored and life is too much for her. In Act II, Serebryakov complains to Helen of how he is old and no one respects him. His querulous behavior only
annoys Helen, who begs him to stop it. Serebryakov ignores her and bemoans how his life of scholarship seems to be nothing now. Sonya joins them and tells them Serebryakov
must see Astrov now; she wants her father to stop behaving like a child. The elderly nurse Marina comforts Serebryakov and leads him out. Helen tells Vanya, who entered the room,
that her husband wearies her. Vanya can only lament that everything is over for him and his life was wasted on trivial things. Helen is annoyed and moves to leave, but he bars her
way. She accuses him of being drunk, and he admits to it. After Helen sweeps out of the room, Vanya ruminates on what a fool he was not to fall in love with her when she was
younger; he once admired the professor, but now he does not. When Astrov returns, he mocks Vanya for having feelings for Helen, but Vanya will not admit it. Astrov leaves to get a
drink; Sonya pulls him aside and makes him promise to stop drinking and stop getting her uncle drunk. He agrees. They continue to talk for a moment. He comments that Helen is
beautiful but idle and useless. This country life makes people like that, and he despises it; he has been beaten down and sees no light at the end for himself. The peasants are all the
same, and educated people are ridiculous. He only likes forests. Sonya compliments him and tries to cheer him up. As he prepares to leave, she asks how he might feel if he were to
out that a friend of hers has feelings for him, and he drolly says he cannot love anyone. After he leaves, Sonya feels a surge of happiness though she is not sure why. In Act III,
Sonya confesses to Helen that she loves Astrov, and Helen suggests that she say something to see if the doctor loves Sonya too. Sonya gives her permission for Helen to do this.
Astrov and Helen meet to ostensibly look at his forestry maps. He discourses volubly on the patterns of deforestation until he sees that Helen is uninterested. Helen insists she is
interested but says they should talk about something else. She point-blank asks if he likes Sonya, and he says no. He then moves in to seduce Helen, but she wants none of it. As he
tries to kiss her, Vanya enters the room with flowers. Helen is horrified by the situation and begs Vanya to tell her husband that they must leave today. A moment later, Serebryakov
and the others enter and Serebryakov announces that he has an idea to sell the estate because he and Helen need to afford a place in the city. This announcement angers Vanya
tremendously, and he begins to complain violently about how Serebryakov is a fraud, is uninspired, is thankless, and how he, Vanya, has labored for Serebryakov his whole life and
for no reason. He insists this is Sonya’s estate. He runs out of the room. Serebryakov is startled by Vanya’s outburst. He insists he cannot stay here anymore. Sonya implores him to
talk to her uncle and he agrees. He departs, and those in the room hear a gunshot, then another. Helen and Vanya struggle over a revolver as Vanya screeches that he missed the
professor. Cursing, he sinks into a chair. In Act IV, Telegin and Marina discuss Serebryakov and Helen’s planned departure for that day, then exit the room. Vanya and Astrov come
in. Astrov mocks Vanya for his behavior and asks him to return what he stole. Vanya maintains that he is innocent of theft. Astrov laments how this parochial existence crushes
people: it is stultifying and useless. When Sonya enters Astrov tells her to tell her uncle to return the bottle of morphia he stole. Sonya turns to her uncle and tearfully asks him for
the bottle. He complies. She takes him to make up with her father. Helen enters to tell Astrov goodbye. He tries to seduce her again in a rather lackluster fashion; she kisses him and
bids him farewell. Everyone bids goodbye to Serebryakov and Helen, who leave the estate. Sonya and Vanya return to work. Marina suggests Astrov stay for dinner; he refuses and
says he must be off. Astrov leaves, and even though Sonya knows he did not love her, she is sad. Vanya, though, claims he is extremely depressed. With both in tears, Sonya
comforts her uncle. She tells him that life may be difficult for them now, but the afterlife will be full of peace, love, and rest.

BookSum Book-Level Example #1: Model Output

The scene opens in a country house in the Russian countryside. Ivan, a young man, is sitting with his mother, who is knitting him a Christmas stocking. He tells her that he does not
want to have any tea, but she insists that he drink it anyway. She asks him how long they have known each other, and he says that it has been ten years since he first met her. He has
not had a day of rest since he has known her, and has toiled without repose or a day’s freedom ever since. He had a typhoid epidemic in the third week of Lent, and when he returned
home, he had to take care of a man who had died of typhoid fever. He then sat down and closed his eyes for a while and wondered if he had killed the man. He wonders if the future
generations will forget him, but he is sure that they will not. Ivan tells them that the house is a mess, because the Professor has been up all night writing and doesn’t have time to eat
or drink. He asks them to wake him up at two in the morning, but when they do not wake him, he thinks that the Professor wants some tea. They all come in from their walk, and as
they come in, they talk about how happy they are to be together, and how they are all living in peace and contentment. Ivan is struck by the sight of a beautiful woman, and says that
as he looks at her, his heart swells with unbridled happiness. The work of preserving the forest is thrilling, he says, and Dr. Astroff watches over the old woods and sets out new
plantations every year. He wants to show them to Helena and Sonia, and Helena asks him if he finds it interesting. Helena is sitting next to him, and tells him to look for Batushka’s
works in the library the next day. He is worried that he is getting angina from his old age. Helena tries to tell him to make peace with himself, and to stop being so angry with
everyone else. But he says he will not listen to her, because he has spent too much time thinking about the past, and now he cannot bear to watch the success of others and to fear
death. Helena gets up and walks away from him, sitting down at a distance. She tries to get him to tell her why he doesn’t love anyone. He says he is not an idiot, that he can
understand her, but that he cannot understand her because she is young and healthy and beautiful and longing for life and he is an old dotard, almost a dead man. She tells him that
she can understand him and that he should be able to understand her. Now, she says, she is too old and sick to continue to live in the country, and she has a young daughter and a
young wife to care for. She doesn’t want to live on the income generated by the estate, so they have to find some way to guarantee that they can live in town on the money generated
each year. They decide to sell the woods, because they don’t have enough money to do so every year, and they can’t afford to buy the woods every year either. They need to find a
way to make sure they can afford a certain amount of money to buy a cottage in Finland. They also have to figure out what to do with the rest of the property. The estate is worth
ninety-five thousand roubles, and the estate was bought from his uncle, who had a debt of twenty-five. Semyon Lakedemonoff’s brother bought the estate from the Lakedemons’
uncle. The family ties are what got the estate to be worth so much money. Everyone agrees that the estate is for Sonia’s good, and that she should get to keep it. But now that he has
gotten old and ill, the time has come for him to dispose of his property in regard to the interests of his VOITSKI, ASTROFF, SEREBRAKOFF, Vanya, and SONIA arrive at the
house to say goodbye to Tommo and Marina. They are to move to Kharkov to live with the professor and his wife. They have been frightened by what they have just witnessed, and
decide to go to the city to see if they can find a place to live there. They will not be staying in the village any longer. Except for Vanya and Alexander, who stay to say good-bye to
his wife and son-in-law. The Professor kisses them all three times, and then goes out to see them off. He gives them one last kiss to each of them before he leaves. They say they will
always remember each other with pleasure, that they are interesting and original, and original. They shall rest

Table 13: Summary Samples for BookSum Book-Level
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BookSum Book-Level Example #2: Reference

In his London studio, artist Basil Hallward puts the finishing touches on his latest portrait, that of a young man. Although Lord Henry, who is visiting with Basil, asks about the
young man’s identity, Basil declines to answer, noting his preference for secrecy. Basil never intends to exhibit the painting, because if he did, it would bare the deepest feelings in
his soul. However, Basil lets slip that the subject of the portrait is Dorian Gray, who shortly thereafter pays the two men a house call. Lord Henry immediately begins to influence
Dorian, suggesting that he should treasure and guard his youth and beauty while he has them, because they will soon fade. Terrified of aging, Dorian wishes he could trade his soul to
stay as young as he looks in the portrait; a short while later, he again wishes that he could stay young while the image in the painting aged. The portrait thus begins to take on a
life-like existence; in fact, Basil’s threat to burn the portrait is likened to "murder" and Basil prefers the company of the portrait to the real Dorian. Dorian falls in love with a young
actress, Sibyl Vane, a woman he barely knows. She plays a different woman at each night’s performance, earning the label of "genius" from Dorian, who is as smitten with her acting
more than with her personality. They become engaged, much to the surprise of Lord Henry and Basil. The sweet, wholesome Sibyl discusses her engagement with her family.
Because her mother is indebted to the theatre manager, Mr. Isaacs, for fifty pounds, she is against the marriage unless Dorian is wealthy; they do not know that he is. Sibyl’s angry
brother, James, is leaving for Australia, but he vows to kill Dorian if he wrongs his sister in any way. James also confronts his mother about gossip he has heard – that his mother and
deceased father never married, which Mrs. Vane admits is true. Dorian attends a performance of Sibyl’s with Lord Henry and Basil, but the performance is terrible. Sibyl tells Dorian
she can no longer act, because he has shown her a beautiful reality. Dorian is disgusted by her poor acting, because her performances were what drew him to her; he dismisses her
and returns home. To his surprise, the portrait shows marks of cruelty around the mouth, lines that do not show on Dorian’s face. He begins to suspect that his wish is coming true, so
he vows to be good so that both he and the portrait can remain young. He, therefore, intends to apologize to Sibyl the next day and makes to marry her after all. However, he is too
late: Sibyl commits suicide at the theatre that night. Dorian first feels responsibility for her death, but then views it both as wonderful entertainment and a selfish act on her part.
Lord Henry tries to keep Dorian’s name out of the scandal. Dorian and Lord Henry spend the evening at the opera. The next morning, Basil arrives and expresses concern for Dorian,
given the events of the previous day. Dorian, however, is completely unconcerned about Sibyl or her family; he wants to talk only of happy subjects. The next day, he covers his
portrait and moves it to the attic, to which Dorian has the only key. He then settles in to read a yellow book sent by Lord Henry; the book becomes Dorian’s blackprint for life.
Several years pass, and Dorian lives a hedonistic life according to the guidelines established by Lord Henry and the yellow book. While the face in the portrait has turned ugly,
Dorian remains young, beautiful, and innocent. People talk about Dorian’s "madness of pleasure" and his dreadful influence on the people around him, but that is of no consequence
to him. Finally, when he is thirty-eight years old, Dorian shows the portrait to Basil, who begs Dorian to repent of his sin and ask that the wish be revoked. Instead, Dorian kills Basil
and hides his body. Blackmailing his old friend Alan Campbell, Dorian is able to dispose of Basil’s body. An hour later, Dorian attends a party, but is bored and distracted. He then
heads for an opium den and, out on the street, meets Sibyl’s younger brother, who has been waiting for an opportunity to harm Dorian for nearly twenty years. Dorian makes a case
for mistaken identity when he claims to have the face of a twenty-year-old and cannot be the man James is looking for. A woman in the street reveals that Dorian "sold himself to
the devil for a pretty face," so James again pursues Dorian. At his country estate one week later, Dorian entertains guests but believes James in hunting him. Dorian soon learns,
however, that a man accidentally killed in a hunting accident is James, and so he feels safe. The novel concludes six months later. Dorian and Lord Henry dine, and talk turns serious
– Dorian talks of Basil, and Lord Henry reflects on a sermon he heard the previous Sunday while walking in the park. Lord Henry also inquires about the secret of Dorian’s youth,
which Dorian dismisses. Dorian then asks Lord Henry never to give the yellow book to anyone else. That evening, while Dorian examines the portrait, he decides to destroy it with
the knife used to murder Basil. Soon after, Dorian’s servants and a police officer find an old, ugly man lying dead on the ground in front of a portrait of a young and innocent Dorian.

BookSum Book-Level Example #2: Model Output

Dorian Gray is sitting in the garden of his uncle’s house in London, playing the piano. In the center of the room is a portrait of a young man of extraordinary beauty, and in front of it
is Basil Hallward’s portrait of Dorian Gray. The portrait belongs to Hallward, and he refuses to show it at the Grosvenor Academy, because it contains too much of himself in it. He
tells Dorian’s uncle, Lord Henry Wotton, that he is in love with Dorian and wants to marry him. Dorian is sitting at the piano and finishes a painting that he has been working on. He
looks at the portrait and realizes that it is of him. He realizes that he will never be able to look at it again, but he cannot stop looking at it because he wants to remember the beauty of
his own face. He asks his uncle for some information about Dorian, and his uncle tells him that Dorian has a beautiful mother who was married to a poor man who was killed in a
duel. She left him a son, who is very good-looking and who has inherited all of her property. Lord Henry tells him to write to him and ask for some advice, and Dorian agrees. One
day, Dorian meets Sibyl Vane, a beautiful young woman who works as a governess for a rich family in the East End of London. She is in the employ of Lord Henry’s friend, Mr.
Erskine of Treadley, and Lord Henry wants to see her. He also wants to get her out of the hands of the Jew who has her bound to him for three years and eight months. He proposes
to her, but she refuses him. She says that she does not think he is good enough for her, and she will never love anyone of his rank. He is disappointed, but does not say anything to his
mother about it. The next day, he meets the Duchess of Monmouth, who tells him he should find a wife and marry her. She wants him to have a future and not to spend his money
frivolously. He agrees, but when he tells her that he does not love her, she laughs at him and refuses to call him by his new name, Prince Charming. He goes to see the play, and is
horrified to see that the face on the canvas is that of the portrait of Romeo and Juliet. He cannot believe that he could have done such a terrible thing to Juliet and that she could still
be his wife. He leaves the theater and wanders the streets of London until he finds himself in Covent Garden. He finds some women waiting for him, and one of them laughs when he
calls her by his nickname, "Prince Charming." She curses him and runs away. He runs into a dark alley and is suddenly grabbed by a man with a gun pointed at his head. It is James
Vane. Vane threatens to kill Dorian if he doesn’t make peace with God. He gives Dorian one minute to make his peace before he kills him. When Dorian gets to the street, he finds
that the man he was trying to kill is not the same man he thought he was. It turns out that Vane is twenty-eight years younger than Dorian. The woman who took his money tells him
not to talk to her again. She runs off, and when Dorian looks back, the woman has disappeared. When he wakes up the next morning, he has not had a nightmare. He writes two
letters to his assistant, Alan Campbell, telling him that there is a dead man sitting on a table in his house, and that he must destroy the body so that no one will ever know who he is.
He then goes to his bedroom and finds a small box of lacquer, which he takes out and puts inside. He puts the box back, gets into a horse-drawn carriage, and gives the driver an
address. The driver takes him to the address, and as he is leaving the house, he sees the dead body of a man on the table. When Campbell returns, he tells Alan not to disturb the
body, but to come back at seven o’clock in the evening. When the man arrives, he throws the picture over the table, but Dorian does not believe that it has been disturbed. He returns
home and finds that Campbell has brought back the chemicals and the irons, and the other things that he needs to do the job. He opens the cabinet where he had hidden Basil’s coat
and bag, and finds the green paste. At midnight, he gets a hansom and leaves the house with the instructions to meet him at 7 o’ clock the next day. He sits in the back of the carriage
as the driver drives him through the streets. He wonders if it is possible to cure the soul by means of the senses and the body by way of the soul. He wakes up in the middle of the
night to find that the portrait has not changed.

Table 14: Summary Samples for BookSum Book-Level
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Abstract

Open Information Extraction (OIE) is the
task of extracting tuples of the form (subject,
predicate, object), without any knowledge of
the type and lexical form of the predicate, the
subject, or the object. In this work, we focus on
improving OIE quality by exploiting domain
knowledge about the subject and object. More
precisely, knowing that the subjects and
objects in sentences are often named entities,
we explore how to inject constraints in the
extraction through constrained inference and
constraint-aware training. Our work lever-
ages the state-of-the-art OpenIE6 platform,
which we adapt to our setting. Through a
carefully constructed training dataset and
constrained training, we obtain a 29.17%
F1-score improvement in the CaRB metric
and a 24.37% F1-score improvement in the
WIRe57 metric. Our technique has important
applications – one of them is investigative
journalism, where automatically extracting
conflict-of-interest between scientists and fund-
ing organizations helps understand the type of
relations companies engage with the scientists.
Our code and data are available at https:
//github.com/prajnaupadhyay/
openie-with-entities

1 Introduction

Open Information Extraction (OIE) is the task of
extracting triples from unstructured corpora in a
domain-independent manner. A triple consists of a
subject, a relation, and an object. OIE has impor-
tant applications, such as question answering (Lu
et al., 2019), or automatically creating or extending
knowledge bases (Bhutani et al., 2019). OIE is a
challenging task, with the performance of state-of-
the-art models varying from 88.5% F1 score (Wang

The work was done when the first author was at Inria and
Institut Polytechnique de Paris.

et al., 2021) to 34% (Gashteovski et al., 2021), de-
pending on the difficulty of the benchmark.

When the named entities in a domain are known
to be the subject/object of extractions, OIE should
also identify relations between these entities. An
important use case is automatically creating a
knowledge base of relations between scientists
and companies, i.e. identifying conflict-of-interest
between the scientists and funding bodies, where
the named entities are the names of scientists and
companies, and the relation describes the conflict
of interest between them. Clustering these relation
phrases, such as received a research gift

from, received speaker fees or consults for

helps analyze the relationships that companies
engage with the scientists. These relations are
crucial to understanding scientists’ positions on
health issues (Oreskes and Conway, 2010) in
investigative journalism. However state-of-the-art
OIE models do not always retain named entities in
the extractions, for example, given the sentence

“Shahrad Taheri received funding for research
through a grant from Cambridge Weight Plan”, an
OIE tool (Kolluru et al., 2020a) returns ⟨Shahrad
Taheri, received, funding for research⟩.
While this extraction correctly identifies the subject
of the triple, the quality of the predicate and object
could be improved as follows: the extraction
⟨Shahrad Taheri, received funding for

research through a grant from, Cambridge

Weight Plan⟩ retains the second important entity
( Cambridge Weight Plan) and is precise about
the relation. Such sentences are frequent in the
declarations of conflict of interest that authors
add to articles in PubMed, a dataset of scientific
articles on life sciences and biomedical topics.

In this work, we focus on relation extraction,
when the subject and object are named enti-
ties. In particular, we would like to significantly
improve the performance of OIE tools, such that
triples as ⟨first entity, predicate, second
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entity⟩ are not missed or poorly extracted. To
achieve this, we leverage deep learning with con-
straints, i.e. techniques that enforce constraints
on the classifier’s predictions. Constrained learn-
ing is very common in sequence-to-sequence tasks,
such as relation or entity extraction, where the out-
put should have a specific form. Constraint learn-
ing has also been successfully used in OIE. In our
case, we enforce constraints on the subject, ob-
ject and predicate forms, and we investigate sev-
eral techniques to achieve the best result, such as
constraint-aware training (Nandwani et al., 2019)
and constraint inference (Lee et al., 2019). We
deployed our technique within OpenIE6 (Kolluru
et al., 2020a), a state-of-the-art tool for OIE.

Our salient contributions are: i) We extend the
OpenIE6 model with entity-centric constraints;
ii) We implement the constraints as penalties in
the loss function, and as hard constraints during
inference. iii) We show through an extensive eval-
uation that our method improves over the state-of-
the-art; iv) We perform a large scale evaluation of
the system, on conflict of interest declarations from
PubMed bibliographical data.

2 Related Work

In the literature, the extraction of triples of the form
⟨subject, relation, object⟩ has been studied
in several settings. A relation can be expressed
using a surface form, i.e., the tokens present in a
sentence, or a canonical form, usually introduced
in a knowledge base. In the most general setting,
we do not enforce any constraints on the types of
the three elements, and the task is referred to as
open information extraction (OIE). In the most
restricted setting, the subject and object are entities,
and the relation comes from a predefined set of re-
lations. This task is known as relation extraction.
Finally, open relation extraction, also referred to
as relation discovery, refers to approaches that
use little training (such as distant supervision, few-
shot learning, or semi-supervision) or no training
(unsupervised) to classify relations between enti-
ties. Some inconsistencies arise in the use of the
terminology in the literature, e.g., "open relation
extraction" has been also used to designate open
information extraction, in (Mesquita et al., 2013).

Open Information Extraction. Open informa-
tion extraction (Kolluru et al., 2020a; Etzioni et al.,
2008) extracts triples from unstructured corpora in
a domain-independent way. More precisely, the

relations are not known beforehand and the subject
and object are not required to be named entities.
The state-of-the-art techniques are based on neural
networks, which model the problem as a sequence
labeling task (Kolluru et al., 2020a; Stanovsky et al.,
2018; Cui et al., 2018). OpenIE6 (Kolluru et al.,
2020a) is a neural model that achieves state-of-the-
art results when compared with several other mod-
els (Del Corro and Gemulla, 2013; Gashteovski
et al., 2017; Cui et al., 2018; Stanovsky et al., 2018;
Roy et al., 2019; Zhan and Zhao, 2020; Kolluru
et al., 2020b). Since these tools work without
any domain knowledge, they might miss or extract
poorly triples containing named entities. We aim
to solve this problem, and our technique is trained
to improve relation extraction when entities are
present in the corpus.

Relation Extraction. In relation extraction (Han
et al., 2020), given a sentence containing two enti-
ties, the task is to select the relation between the en-
tities from a fixed set of relations. This is achieved
via a classifier, and the challenge is in identifying
relevant features for classification. Traditionally
this has been achieved via hand-crafted features,
such as lexical, syntactic, or semantic (Jiang and
Zhai, 2007; Nguyen et al., 2007). More recently,
neural models such as BERT (Devlin et al., 2018)
have been very successful in relation classifica-
tion (Baldini Soares et al., 2019).

Open Relation Extraction/Relation Discovery.
In (Yao et al., 2011), the authors first discover rela-
tions between entities using the dependency paths
between two tagged entities, and they propose an
unsupervised probabilistic generative model for in-
ducing clusters from the surface forms. In (Yu
et al., 2017), surface forms of relations are first
extracted by taking into account the dependency
path between entities, and finally, they are mapped
to canonical forms present in a KB. In (Hu et al.,
2020), the authors propose a relation encoder based
on BERT (Devlin et al., 2018) that computes an
embedding representation of the relation based on
the sentence where named entities appear, together
with an adaptive clustering technique that does not
require prior knowledge of the number of clusters.
While some approaches(Yao et al., 2011; Yu et al.,
2017) extract surface forms of relations when the
arguments are entities, similar to our goal in this
work, they use for this only dependency path infor-
mation and do not deal with conjunctive sentences
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as OpenIE (Kolluru et al., 2020a). In addition, Ope-
nIE6 has shown better performance than models
using dependency parsing such as ClausIE (Kolluru
et al., 2020a; Del Corro and Gemulla, 2013).

3 Problem Definition

Our goal is to extract triples from sentences that
respect the guidelines detailed by the CaRB met-
ric (Bhardwaj et al., 2019), i.e., they should be i)
complete: all triples should be extracted from a
sentence, ii) asserted: the triple should be implied
from the sentence iii) informative: the triple should
contain maximum relevant information from the
sentence and iv) atomic: extraction cannot be split
into multiple extractions.

Given a sentence S containing entities E =
{e1, ..., ei, ..., en}, we denote by ⟨S, R, O⟩ a triple
that is extracted from S. The CaRB rules can be
customized to fit our setting as follows:

• Complete: For every ei, there exists at least a
triple ⟨S, R, O⟩ where ei is S or O.

• Asserted: Each tuple must be implied by the
original sentence.

• Informative: The extraction should contain
the maximum possible information from S.
For instance, from Joe Biden is the president
of the US, an uninformative extraction is ⟨Joe
Biden, is, the president⟩ while the in-
formative extraction is ⟨Joe Biden, is the

president of, US⟩.

• Atomic: If S or O contains ei, then it contains
only that entity and no additional tokens. If
S or O contain ei and ej , it is always possible
to create two triples ⟨S1, R, O⟩ and ⟨S2, R,

O⟩, S1 = ei and S2 = ej , similarly for O.

4 Entity Focused Constraints

OpenIE6 (Kolluru et al., 2020a) receives in input a
sentence and outputs a list of extractions of the
form ⟨subject, predicate, object⟩. The ar-
chitecture of the model is a deep neural network
that first encodes tokens using BERT (Devlin et al.,
2018), and then iteratively identifies at most M ex-
tractions, i.e., calls the same architecture for each
extraction for M times (Figure 1). The embeddings
of the labels generated at the end of the 1st iteration
are added to the embeddings of the tokens in the
second iteration, and so on. This adds context so

that a new extraction is generated the next time.
Each token is assigned a label from {S (subject),
R (relationship), O (object) or N (none)}.

Bert Layer to encode tokens

Label Embedder

Label Classifier

Self Attention Layers

Iterative 
Architecture

M

w1  w2                                                            wn

S  R ….  N …..                                    O

Figure 1: OpenIE6 uses the same architecture to gener-
ate embeddings for the words in M extractions, with the
output of the previous extraction given as input for the
next extraction

OpenIE6 constraint-aware training OpenIE6
uses constraint-aware training to infuse the model
with task-related knowledge in the form of con-
straints. The model learns to satisfy these con-
straints during training without explicitly enforcing
them during the inference, hence these types of
constraints are typically referred to in the litera-
ture as soft constraints. This is achieved by adding
additional penalties in the loss function, as follows:

POS Coverage (POSC). Tokens labeled as
nouns, verbs, adjectives, or adverbs should be part
of at least one extraction.

Head Verb Coverage (HVC). Verbs that are
not light verbs (e.g., do, give, have, make, etc.),
referred to as head verbs, should be present in the
relation span of a few but not too many extractions.

Head Verb Exclusivity (HVE). The relation
span of one extraction should contain at most one
head verb.

Extraction Count (EC). The extractions having
head verbs in the relation should be at least equal
to the number of head verbs in the sentence.

These are entity independent constraints.
Their full equations can be found in the OpenIE6
paper (Kolluru et al., 2020a).

Adding entity-specific constraints. We enforce
additional constraints to obtain extractions satis-
fying our problem statement. Let xentn ∈ {0, 1}
denote whether the nth token wn belongs to some
entity tagged in the sentence, and E be the set of
entities. At each extraction levelm, the model com-
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putes Ymn(k), the probability of assigning to the
nth token the label k ∈ {S,R,O,N} (subject, re-
lation, object or none). We introduce the following
entity-specific constraints:

1. Entities as subject or object (ENT-ARG).
Each entity in the sentence should be present
in at least a subject or object of an extraction:

Jent_so =
N∑

n=1

xentn ·
(
1− max

m∈[1,M ]

(
max

k∈{S,O}
Ymn(k)

))

(1)

The penalty is 0 when for each token be-
longing to an entity (xentn = 1) we have
Ymn(k) = 1, that is maximum probability
of being in the subject or object, for at least
one extraction.

2. Entity exclusivity (ENT-EXCL). The subject
and object should contain at most one entity
each. Let pe(k), with k ∈ {S,R,O,N} be
the average token probability of label k in en-
tity e, where e consists of one or more tokens.
Then, we express the penalty as follows:

Jent_exs =
M∑

m=1

max
(
0,
(∑

e∈E
pe(S)− 1

))
(2)

Jent_exo =
M∑

m=1

max
(
0,
(∑

e∈E
pe(O)− 1

))
(3)

The penalty is 0 when no entity is labeled
as subject/object or when only one entity is
labeled as such (

∑
e∈E pe(O/S) is 0 or 1).

3. Entity in relation penalty (ENT-REL). A
penalty is introduced if an entity appears as a
part of a relation of some extraction. This loss
is directly proportional to the probability of
tokens that are part of some entities and which
have been labeled as part of a relation:

Jent_rel =
N∑

n=1

xentn ·
M∑

m=1

Ymn(R) (4)

The penalty is 0 when Ymn(R) is 0 for every
token of an entity.

4. Entity segmentation penalty (ENT-TOG).
A penalty is introduced if tokens describing
the same entity are not labeled in the same
way, for example, the first token of the entity
is part of the predicate, while the rest of the

tokens are part of the object. Let w(e) be the
set of tokens in a given entity e. Let lmp (w) be
the predicted label of a token (the label with
the highest probability) at extraction m. As
we are concerned with entities described by
two or more tokens, the predicted label lme of
the entity e is the majority label of its tokens,
or the label with the highest total sum of prob-
abilities in case of a tie. For each w ∈ w(e),
we introduce a loss equivalent to Ymw(lp) if
lmp (w) ̸= lme :

Jent_seg =
M∑

m=1

∑

e∈E

∑

w∈w(e)

Ymw(lp)(1− δlmp (w),lme
)

(5)

where δ is the Kronecker delta function.

Finally, the total loss can be written as:

Jent = J + λ1Jent_so + λ2(Jent_exs + Jent_exo)

+ λ3Jent_rel + λ4Jent_seg
(6)

where λ∗ are hyperparameters, while J is the origi-
nal OpenIE6 loss.

Constraints at inference. We investigate a sec-
ond type of constrained learning called constraint
inference. The constraints applied in this setting
are hard constraints, which the model is forced to
apply. The constraints are applied in the decoding
phase and modify the tokens’ labels (S, P , O, N ).
We propose three constraints inspired by the en-
tity constraints introduced in the constraint-aware
training.

1. Entity exclusivity. Once we have encoun-
tered one entity labeled as a subject or object
in the sentence, the following entities are not
allowed to receive the same label.

2. Entity in relation. We enforce that an entity
appearing in the predicate is classified accord-
ing to its second-best class probability.

3. Entity segmentation penalty. We enforce
that all the tokens belonging to an entity be
labeled with the same label.

We do not transform the constraint entities as
subject or object in an inference constraint as it
cannot be applied at the level of one existing ex-
traction. This constraint can only be a penalty in
the loss, such that it rewards sets of extractions in
which all the entities are part of the arguments.
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5 Experimental Evaluation

5.1 Datasets

We use the OpenIE6 data for training and valida-
tion and Pubmed data for testing. The OpenIE6
dataset consists of Wikipedia sentences, while the
Pubmed data is a set of conflict of interest state-
ments between authors and various organizations,
such as those illustrated in Section 1.

Given that our focus is on improving perfor-
mance when entities are present in a sentence (Sec-
tion 3), and in particular, enforcing that entities are
the subject or object, we need appropriate training
data for the task. We are unaware of a dataset of
extractions where arguments are entities, while the
extraction also has the surface forms of relation.
For example, FewRel (Han et al., 2018) and TA-
CRED (Zhang et al., 2017), two standard datasets
used in relation extraction, do not contain the sur-
face form of the relation; they only label the entire
sentence as containing a particular relation.

Training data. The OpenIE6 training dataset
consists of 91K sentences and 190K extractions
of the form ⟨subject, predicate, object⟩. We
tag entities in each sentence using the state-of-
the-art named entity recognition tool Flair (Ak-
bik et al., 2019). We focus on extractions of the
following form: i) The subject of the extraction
is exactly one entity; and ii) The object ends
with an entity . We discard the extractions that
do not match these constraints. In each extrac-
tion, we keep only the entity in the object and
move the preceding tokens to the relationship part
of the extraction. For example, one of the sen-
tences in the original training set is “Parmenides
had a large influence on Plato, who not only
named a dialogue, Parmenides, after Parmenides,
but always spoke of Parmenides with venera-
tion.” and one of the extractions is ⟨Parmenides,
had, a large influence on Plato⟩. The ex-
traction satisfies both the above conditions, hence
we transform it to ⟨Parmenides, had a large

influence on, Plato⟩. If the object contains
only an entity, we apply the identify transformation.
We refer to a sentence with at least one transformed
extraction as a clean sentence.

We create 3 training datasets:
ORIGINAL: The original training set contain-

ing 91K sentences.
CLEAN: 7K clean sentences with their modi-

fied extractions.

MIXED: We add the remaining sentences and
their extractions from the original training set to
CLEAN.

Gold data. We created a gold standard dataset
from Pubmed conflict-of-interest statements to be
used as test data. We tagged and counted the en-
tities with NER Flair and selected 282 sentences
with a minimum of 2 entities. The maximum num-
ber of entities found in a sentence was 14.

We asked the annotators to find all the triples ⟨S,
P, O⟩ containing those entities as arguments (in S

or O). In addition, the extractions should follow the
guidelines explained in Section 3 on completeness,
assertion, informativeness, and atomicity. The total
number of extractions obtained after annotations
were 1113. One annotator annotated each sentence.

Quality of gold data. To evaluate the dataset’s
quality, we sampled 50 sentences from our gold
sentences, and one of the authors annotated them
so that we had two annotations for this set. We
found the agreement by considering one annotation
as gold and computing WiRE57 F1. The agree-
ment F1 score obtained was 83, which is a high
agreement.

Table 1 shows example annotations of triples
for the sentence Menno Huisman reports grants
from and personal fees from Boehringer Ingelheim
and Bayer Health Care. For each CaRB property,
we show the correct and incorrect extractions. An
extraction of the form ⟨Menno Huisman, reports

grants from, Bayer Health Care, Germany⟩
violates the assertion property because it adds extra
information to the sentence. ⟨Menno Huisman,

reports, grants⟩ violates the informativeness
property even if it is a valid extraction because
it lacks the complete second argument, i.e.,
Boehringer Ingelheim. The extraction ⟨Menno
Huisman, reports grants from, Boehringer

Ingelheim and Bayer Health Care⟩ is not
atomic because the two entities in the second
argument should be part of 2 extractions. If any
of the four correct extractions adhering to the
completeness property are missing, this property is
violated.

5.2 Models

We experimented with the following models:
OpenIE6. This is the default OpenIE6 model.
OpenIE6(ECTR). OpenIE6 model with entity

constraint training (ECTR), as in Section 4.

1289



Correct Incorrect
Completeness ⟨Menno Huisman, reports grants

from, Boehringer Ingelheim⟩,
⟨Menno Huisman, reports grants
from, Bayer Health Care⟩, ⟨Menno
Huisman, reports personal fees
from, Boehringer Ingelheim⟩,
⟨Menno Huisman, reports
personal fees from, Bayer
Health Care⟩

If any of the extractions is missing

Assertion ⟨Menno Huisman, reports grants
from, Bayer Health Care⟩

⟨Menno Huisman, reports grants
from, Bayer Health Care,
Germany⟩

Informativeness ⟨Menno Huisman, reports grants
from, Boehringer Ingelheim⟩

⟨Menno Huisman, reports, grants⟩

Atomic ⟨Menno Huisman, reports grants
from, Boehringer Ingelheim⟩

⟨Menno Huisman, reports grants
from, Boehringer Ingelheim
and Bayer Health Care⟩, ⟨Menno
Huisman, reports grants
from and personal fees from,
Boehringer Ingelheim⟩

Table 1: Examples of correct and incorrect annotations for the 4 CaRB properties

OpenIE6(ECTR, ECIN). To the trained model
OpenIE6(ECTR), we add constraints at inference in
the evaluation of the test data.

OpenIE6(ECIN). To the trained model OpenIE6,
we add constraints at inference in the evaluation of
the test data.

We note that the models use a different coordi-
nate boundary model than the one in the OpenIE6
paper. We retrained the coordinate boundary model
using a newer Huggingface Transformers library
version (Wolf et al., 2020) for compatibility with
our code. However, we could not reproduce the
accuracy, obtaining 83.3 instead of 85.4. A bet-
ter coordinate boundary model would positively
impact performance, both with and without con-
straints.

Parameters. The model’s training consists of
two phases, a warm-up phase, where the training is
done without constraints, and a constrained train-
ing part. The warm-up training was done for 30
epochs, and the constrained training was done for
15 epochs. During constrained training, all con-
straints had equal weights. The learning rate was
set to 5e−06. BERT-base-cased model was used
with two iterative layers. We repeat the experiments
with 6 different random seeds for the network ini-
tialization, and we average the results. We run our
code on a 32GB GPU.

Baselines We implement four baselines.

ConnectingPhrase. This simple technique re-
turns the phrase connecting the two entities in a

sentence as the relation between them. It comprises
the following steps:

1. We first use the coordinate boundary detection
model (available with OpenIE6 code). Coor-
dinate boundary detection models (Saha and
Mausam, 2018; Kolluru et al., 2020a) split a
conjunctive sentence into smaller parts. For
example, the sentence “Adrian Brown and
Shahrad Taheri received funding for research
through a grant from Cambridge Weight Plan.”
is split into:

(a) “Adrian Brown received funding for re-
search through a grant from Cambridge
Weight Plan.”

(b) “Shahrad Taheri received funding for re-
search through a grant from Cambridge
Weight Plan.”

This is crucial to improve the recall.

2. Next, we label the entities in sentences ob-
tained using Flair (Akbik et al., 2019).

3. For each consecutive pair of entities ei, ei+1

in the sentence, we return an extraction con-
taining as subject ei, as predicate the phrase
connecting the entities, and as object ei+1.

4. We filter the extractions by removing the ones
whose predicates do not contain a token la-
beled as a verb by a part-of-speech parser. The
final set of extractions is obtained at the end
of this step.
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DependencyPath. We follow the same steps as
in ConnectingPhrase, except that in 3. above, we
return as the predicate the tokens on the depen-
dency path between entities ei and ei+1.

PostprocessedOpenIE6. We run the original
OpenIE6 tool and post-process its output as fol-
lows: we tag entities in subject and object of
the extractions, and then we modify extractions, in
the same manner as when we created the CLEAN
dataset (Section 5.1), and leave unchanged the ones
not satisfying our conditions.

FilteredOpenIE6. We remove the extractions
from PostprocessedOpenIE6 that were not modi-
fied according to the procedure used for generating
the CLEAN dataset.

Evaluation metrics. Several evaluation metrics
have been proposed to evaluate the performance
of an OpenIE system. WiRe57 (Lechelle et al.,
2019) is a one-to-one matching metric, in which
each system extraction is matched to exactly
one gold extraction. Given a sentence, a system
extraction matches a gold extraction if they share
at least one word from each of the relation, subject,
and object. Two extractions are compared by
computing the token level recall and precision
between the gold subject and system subject,
respectively, the predicates and objects. Precision
is the percentage of system words found in the
gold extraction. The recall is the percentage
of gold words in the systems’ predictions. The
system extractions are matched one-to-one to
gold extraction in decreasing order of F1-score.
CaRB (Bhardwaj et al., 2019) is a many-to-one
matching metric in which several gold extractions
can be matched to one system extraction when
computing the recall. This avoids penalizing a
system if one extraction would better correspond
to two or more golden extractions, as is the case,
for instance, in ⟨Adrian Brown; has received

travel grants from; Cambridge Weight

Plan and Oxford University⟩ (note that there
should have been two triples extracted here, each
with a different object). Precision is computed by
matching system extractions one-to-one to gold
extractions, decreasing order of precision score.
Hence, we will penalize the extraction above when
computing precision, as one gold extraction will
not be matched.

We report both metrics, however, WiRe57 is
more in line with our task as it respects the atom-

icity constraint in Section 3, given that it does not
reward system triples with several entities in one
argument.

6 Results and Discussion

Evaluation. In Table 2 we show the results on
the test data, measuring both CaRB and WiRe57.
We use the different training datasets that we intro-
duced and the different training constraints. When
training without any entity constraints, the training
dataset can make a significant difference, as we ob-
serve OpenIE6 trained on CLEAN has a more than
26% increase in CaRB F1 than OpenIE6 trained on
the ORIGINAL dataset. In addition, adding entity
constraints further improves the results as shown
by the models OpenIE6(ECTR) which has the best
WiRe57 score for all CLEAN, MIXED and ORIG-
INAL models. The smallest improvement is for
the model trained with the ORIGINAL dataset, as
in this case the training data may be in conflict
with the constraints, having for example several en-
tities in one argument. OpenIE6(ECIN) improves
upon OpenIE6, with a significant increase in the
precision of the WiRe57 metric, which is expected
given the hard constraints are being forced on
the triples. However,OpenIE6(ECTR) has a more
significant improvement than OpenIE6(ECIN) ac-
cording to WiRe57 (the metric aligned with our
problem statement, as explained in Section 5.2),
showing that it is more important to have soft con-
straints, which are rewarding good extractions dur-
ing training and hence obtaining a better extraction
model. Combining soft and hard constraints gives
the best model, OpenIE6(ECTR, ECIN). Regard-
ing the baselines, PostprocessedOpenIE6 and
FilteredOpenIE6 have good precision but lower
recall than our top-performing models, showing the
importance of the constraint learning and adapted
training datasets.

Ablation study. We perform an ablation study
to evaluate the importance of the entity constraints
added during the training. We take our best per-
forming model, OpenIE6(ECTR) trained on the
CLEAN dataset, and we train it with 1, 2, or 3 con-
straints at a time. Table 3 shows the results obtained
on our test set. When we add just one constraint,
as expected, the constraint ENT-ARG enforces the
highest WiRe57 recall, as it has learned to penalize
extractions where entities may be missing from the
arguments. However, this model has the lowest
precision, due to the fact it allows more than one
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CaRB WiRe57
Method Training data P R F1 P R F1

OpenIE6

CLEAN

75.07 62.52 67.97 66.15 45.79 54.04
OpenIE6(ECTR) 80.76 61.77 69.95 73.05 45.37 55.95
OpenIE6(ECIN) 76.05 63.64 69.65 70.91 44.80 54.89
OpenIE6(ECTR, ECIN) 79.85 63.09 70.46 74.88 45.36 56.48

OpenIE6
MIXED

52.23 50.69 51.60 43.30 37.41 40.04
OpenIE6(ECTR) 57.83 55.22 56.38 49.60 38.27 43.20

OpenIE6

ORIGINAL

43.01 39.75 41.29 32.45 31.81 32.11
OpenIE6(ECTR) 41.61 40.90 41.19 33.29 31.78 32.48
PostprocessedOpenIE6 59.25 52.52 55.62 43.82 42.49 43.12
FilteredOpenIE6 85.01 41.44 55.78 81.01 30.77 44.57

DependencyPath - 58.51 57.54 58.02 59.65 36.94 45.62
ConnectingPhrase - 58.23 70.63 63.84 58.45 45.31 51.04

Table 2: Model comparison on the test dataset. Best values are in bold and second best are underlined.

CaRB WiRe57 Violations
Constraints P R F1 P R F1 ENT-ARG ENT-EXCL ENT-REL ENT-TOG

∅ (OpenIE6) 75.07 62.52 67.97 66.15 45.79 54.04 32.44 1.59 16.30 1.11
{ENT-ARG} 64.58 64.02 63.70 58.21 47.52 52.24 25.01 4.90 4.87 0.56
{ENT-EXCL} 78.65 60.99 68.67 68.98 44.83 54.32 33.59 1.30 15.65 1.35
{ENT-REL} 78.18 62.24 69.10 70.50 46.27 55.73 28.72 2.68 8.77 1.18
{ENT-TOG} 75.39 62.77 68.28 67.15 45.51 54.20 32.51 1.48 15.57 1.13
{ENT-ARG, ENT-EXCL} 78.06 61.18 68.28 67.32 45.48 54.22 32.09 1.56 14.59 1.12
{ENT-ARG, ENT-REL} 74.23 59.20 65.79 62.86 46.13 53.04 26.94 4.60 5.45 0.89
{ENT-ARG, ENT-TOG} 67.85 64.24 65.54 62.17 46.17 52.82 27.77 3.98 7.98 0.82
{ENT-EXCL, ENT-REL} 80.22 61.97 69.89 72.93 45.17 55.77 32.27 1.41 10.35 1.36
{ENT-EXCL, ENT-TOG} 78.56 61.45 68.86 69.63 44.93 54.59 33.05 1.43 13.90 1.35
{ENT-REL, ENT-TOG} 74.38 61.53 66.93 66.60 43.21 52.31 32.33 3.34 9.29 1.74
EC \ ENT-ARG 79.12 62.70 69.90 73.20 45.03 55.75 32.15 1.49 9.64 1.32
EC \ ENT-EXCL 75.48 61.28 67.47 65.99 45.46 53.70 27.75 4.49 6.76 0.94
EC \ ENT-REL 80.89 60.48 69.19 68.75 45.74 54.89 31.72 1.58 12.31 1.13
EC \ ENT-TOG 79.98 62.20 69.94 72.76 45.43 55.92 31.26 1.59 9.62 1.22
EC (OpenIE6(ECTR)) 80.76 61.77 69.95 73.05 45.37 55.95 31.39 1.63 9.77 1.30

Table 3: Ablation study with models trained on the CLEAN dataset. We report CaRB, WiRe57, and the percentage
of entity constraints violations on the test set.

entity in one argument. Removing the constraint
from the set, EC \ ENT-ARG, gives us the highest
precision. A combination of ENT-EXCL and ENT-
REL performs the best among the models that were
trained with 2 constraints, which is expected since
the models trained with ENT-EXCL and ENT-REL
were the top-2 performing models when trained
individually. Enforcing only ENT-TOG does not
bring important improvements, and training with
the whole EC is slightly better than when training
with EC \ ENT-TOG. Hence, ENT-TOG could be
removed without a significant drop in quality.

For a complete analysis, we also compute the
percentage of violations in the extractions (Table 3).
For ENT-ARG, we count as a violation every entity
that is not found in at least one extraction, and we

divide by the total number of entities in the test
set. For ENT-EXCL, we count a violation for each
subject or object with more than one entity and
normalize by twice the number of extractions. For
ENT-REL, a violation is a relation containing an
entity, normalized by the number of extractions.
Finally, for ENT-TOG, a violation is an entity in
extraction with more than one tag (S,O,R,N), nor-
malized by the number of extractions containing
an entity. We observe that ENT-ARG is violated
the most, followed by ENT-REL. When enforcing
ENT-ARG, we obtain the best results for 3 out of
4 constraints. This does not result, however, in the
best F1 score, showing the importance of mini-
mizing violations of type ENT-EXCL. ENT-ARG
and ENT-EXCL have competing goals: ENT-ARG

1292



enforces the occurrence of entities in arguments,
but ENT-EXCL does not allow more than one en-
tity in an argument. So, whenever ENT-ARG is
enforced with ENT-EXCL, we see an increase in
the number of ENT-ARG or ENT-EXCL violations.
Finally, when comparing the model with no entity
constraints, OpenIE6, with the model enforcing all
4 constraints, OpenIE6(ECTR), we observe a more
significant difference in the violations ENT-ARG
and ENT-REL, the constraints that are more fre-
quently violated.

Quality of Named Entity Recognition on
Pubmed. We sampled and annotated 50 test set
sentences, taking care to keep the words together
in long named entities, such as “Oregon Health
and Science University Center for Embryonic Cell
and Gene Therapy”. We obtained 88% F1 score
for the NER model Flair (Akbik et al., 2019) ,
in line with the performance of the model on
Ontonotes (Weischedel et al., 2017) and CONLL
(Tjong Kim Sang and De Meulder, 2003).

Evaluation on the CaRB dataset. OpenIE6 has
been evaluated on the CaRB dataset (Bhardwaj
et al., 2019). We evaluate our constrained mod-
els to investigate their performance on this stan-
dard benchmark, see Table 4. Note that annotating
guidelines for CaRB were not the same as for our
Pubmed test data: there might be more than one en-
tity in the arguments of a relation. This inherently
limits the quality of our results. However, we show
that the constrained models trained on the MIXED
and ORIGINAL datasets have competitive perfor-
mance with the original OpenIE6 model while per-
forming much better on our test data, as shown in
Table 2. As expected, the models trained on the
CLEAN dataset perform the worst, as they have
seen only extractions with entities in the arguments;
to achieve the best results, the user should choose
a model considering the nature of the dataset. We
note that the results for the OpenIE6 model are
slightly lower than those reported in the original
paper because of the coordinate boundary model,
as mentioned in Section 5. The conjunctive model
is a core OpenIE6 component; gains in its precision
would likely improve performance, both with and
without constraints.

Conflicts of interest in PubMed. We analyse
the extractions by OpenIE6(ECTR) and the origi-
nal OpenIE6 model on a larger PubMed dataset
consisting of 170K sentences. Table 5 shows the

CaRB WiRe57
Method Training data F1 F1
OpenIE6(ECTR) CLEAN 24.44 11.59
OpenIE6 CLEAN 27.76 12.42
OpenIE6(ECTR) MIXED 50.16 38.15
OpenIE6 MIXED 50.27 38.59
OpenIE6(ECTR) ORIGINAL 50.70 39.28
OpenIE6 ORIGINAL 50.60 39.15

Table 4: Model comparison on the CaRB dataset. Best
values are in bold and second best are underlined.

number of extractions (#ext), extractions contain-
ing one entity in the subject and object (#ext1),
containing a “Person” entity in subject and “Or-
ganization” entity in the object (#ext2), and the
number of sentences processed by the model per
second (speed). OpenIE6(ECTR) finds more inter-
esting triples where a conflict of interest relation
is expressed between a person and an organization
entity, compared to the original OpenIE6. Also,
our model processes more sentences per second
compared to the original OpenIE6. This is because
OpenIE6 generates more extractions per sentence,
however, even with more extractions, the model re-
trieves fewer conflicts of interest relations between
a person and an organization.

OpenIE6(ECTR) OpenIE6
#sen 170298
#ext 233081 564877
#ext1 138188 (59.29%) 117795 (20.85%)
#ext2 106232 (45.58%) 92152 (16.31%)
speed 87.41 56.14

Table 5: Comparison of extractions from a larger dataset
of PubMed conflict of interest statements.

Conclusion. We presented an approach that sig-
nificantly improves OIE when the input sentence
contains entities while being competitive on a stan-
dard OIE benchmark. Finally, we showed that our
method is much better suited for a real use case, as
it extracts high-quality triples from PubMed.
Acknowledgments We thank Rémi Goujot for
manually annotating the PubMed dataset used
to test our model, during his high school in-
ternship. This work was performed using
HPC resources from GENCI-IDRIS (Grant 2022-
AD011011614R2). The authors were partially
funded by the ANR-20-CHIA-0015 project and
by the Hi!PARIS Center.
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7 Limitations

We identify the following limitations affecting our
proposed methods:

• The performance of our models is impacted
by the quality of the named entity recogni-
tion tool, as well as the performance of the
conjunctive model.

• Training OpenIE6 with more constraints re-
quires around 3h/epoch, while the model with
the original constraints requires half this time.

• Users trying our tool, but also the original
OpenIE model, should have the computational
possibility of using the BERT-based model,
the main component of OpenIE6. We plan to
release trained models based of smaller lan-
guage models.
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Abstract

In this paper, we focus on video-to-text sum-
marization and investigate how to best utilize
multimodal information for summarizing long
inputs (e.g., an hour-long TV show) into long
outputs (e.g., a multi-sentence summary). We
extend SummScreen (Chen et al., 2022), a dia-
logue summarization dataset consisting of tran-
scripts of TV episodes with reference sum-
maries, and create a multimodal variant by col-
lecting corresponding full-length videos. We
incorporate multimodal information into a pre-
trained textual summarizer efficiently using
adapter modules augmented with a hierarchi-
cal structure while tuning only 3.8% of model
parameters. Our experiments demonstrate that
multimodal adapters outperform more memory-
heavy and fully fine-tuned textual summariza-
tion methods.

1 Introduction

What happens in the very last episode of “Friends”?
Anyone who has seen this episode can summa-
rize its key moments: Ross confesses his love for
Rachel, they decide to resume their relationship,
while Monica and Chandler adopt twins and move
to the suburbs. TV viewers can naturally perform
this dialogue summarization task having access to
multiple modalities: they not only hear the actors
speak but also see their expressions, actions, and
whereabouts on screen.

Despite recent advances in summarization (Nal-
lapati et al., 2016; See et al., 2017; Liu and Lapata,
2019b) and increasing interest in different types of
dialogue summarization, e.g., meeting transcripts
(Gliwa et al., 2019; Zhong et al., 2021) or screen-
plays (Chen et al., 2022), the contribution of modal-
ities other than text remains relatively understudied.
This is not entirely surprising given the challenges
associated with the multimodal summarization task

*Now at DeepMind.

illustrated above (e.g., produce a written summary
of a TV episode). Firstly, the input is long, it can-
not fit into standard sequence-to-sequence archi-
tectures, and the different modalities have to be
somehow combined; secondly, the output is also
long, summaries consist of multiple sentences and
rich vocabulary; and thirdly, it involves complex
inference over long-range dependencies between
events and characters and common sense reasoning.
At the same time, creating large-scale multimodal
datasets with long videos and aligned textual data
is challenging and time consuming, limiting the
research conducted in this domain.

Previous work on video-to-video summariza-
tion identifies highlights from YouTube videos, TV
shows, or movies (Song et al., 2015; Gygli et al.,
2014; De Avila et al., 2011; Papalampidi et al.,
2021b). However, in most cases, either the videos
are short or the datasets are small with a few hun-
dred examples. There is also limited work on video-
to-text summarization. We are only aware of one
large-scale multimodal dataset for this task, namely
How2 (Sanabria et al., 2018), which again contains
short videos (i.e., 2–3 minutes long) with simple
semantics, and short, single-sentence summaries.

In this paper, we focus on video-to-text summa-
rization and investigate how to best utilize mul-
timodal information for condensing long inputs
(e.g., an hour-long TV show) into long outputs
(e.g., a multi-sentence summary). We create a mul-
timodal variant of SummScreen (Chen et al., 2022),
a recently released dataset comprising of transcripts
of TV episodes and their summaries. We collect
full-length videos for 4,575 episodes and multi-
ple reference summaries. We build our model on
top of a pre-trained sequence-to-sequence archi-
tecture (i.e., BART; Lewis et al. 2020) fine-tuned
on summarization and capable of generating flu-
ent long text. We convert its textual encoder to
a multimodal one by adding and tuning adapter
layers (Rebuffi et al., 2017; Houlsby et al., 2019),

1297

p.papalampidi@sms.ed.ac.uk
mlap@inf.ed.ac.uk


Modality Input Output Datasets

text-to-text text short short XSum (Narayan et al., 2018), CNN-DailyMail (Nallapati et al., 2016),
NYT (Durrett et al., 2016), Gigaword (Napoles et al., 2012)

text long long SamSum (Gliwa et al., 2019), QMSum (Zhong et al., 2021),
SummScreen (Chen et al., 2022)

video-to-video
vision short short OVP (De Avila et al., 2011), YouTube (De Avila et al., 2011),

SumMe (Gygli et al., 2014)
vision/text short short TVSum (Song et al., 2015)
vision/text(/audio) long long LoL (Fu et al., 2017) TRIPOD+ (Papalampidi et al., 2021b)

video-to-text vision long short TACoS (Rohrbach et al., 2014)
vision/text/audio short short How2 (Sanabria et al., 2018)
vision/text/audio long long SummScreen3D

Table 1: Datasets used for summarization grouped based on the input/output modalities and input/output length. A
more detailed comparison and statistics for video-to-text datasets can be found in Appendix A (Table 10).

which only account for 3.8% of model parame-
ters. We also explore strategies for content selec-
tion, since the input is too long to fit into standard
sequence-to-sequence models. Empirical results
across evaluation metrics demonstrate that mul-
timodal information yields superior performance
over just text, both in terms of content selection
and summarization; this is the case even when our
adapter model is compared to fully fine-tuned ap-
proaches and more memory-heavy architectures
(e.g., Longformer; Beltagy et al. 2020) that can
process the entire input.

Our contributions can be summarized as follows:
(1) we augment SummScreen (Chen et al., 2022)
with multimodal information, providing videos
aligned with transcripts and summaries; to the best
of our knowledge, this constitutes the largest avail-
able resource for long video multimodal summa-
rization; (2) we propose a parameter efficient ap-
proach to augment a pre-trained textual summarizer
with multimodal information; and (3) explore dif-
ferent methods for identifying salient moments in a
long video and show that multimodal information
also improves content selection.

2 Related Work

Video Summarization Much previous work has
focused on text-to-text or video-to-video summa-
rization. We provide a comprehensive categoriza-
tion of existing datasets according to input/output
length and modality in Table 1. Multimodal
abstractive summarization (video-to-text) has at-
tracted less attention, mainly due to the difficulty
of collecting large-scale datasets. How2 (Sanabria
et al., 2018) is the only publicly available bench-
mark for this task, it includes short instructional
videos with textual transcripts and one-sentence
summaries. We generate multiple-sentence sum-

maries from long videos and their transcripts.
While previous approaches have focused on various
modality fusion methods with small RNN-based
models (Palaskar et al., 2019), we take advantage
of large pre-trained LMs (Lewis et al., 2020; Raffel
et al., 2020; Radford et al., 2019) for generating
fluent text summaries.

Recent years have also witnessed increasing in-
terest in multimodal video captioning, a task related
to multimodal summarization, which aims to gen-
erate one-sentence descriptions for localized events
in short videos (Xu et al., 2016; Rohrbach et al.,
2017; Zhou et al., 2018; Lei et al., 2020b). Exist-
ing methods employ strong language-and-vision
encoders with massive pre-training (Li et al., 2020;
Luo et al., 2020; Xu et al., 2021; Lei et al., 2020a;
Li et al., 2021), while the decoder is typically shal-
low and under-trained.

Realizing the importance of large LMs for gen-
eration, recent work has focused on how to effi-
ciently render pre-trained LMs multimodal. No-
tably, Tsimpoukelli et al. (2021) convert a pre-
trained LM into an image captioning model, by
giving images as prompts and training only a vi-
sion encoder. Yu et al. (2021) summarize How2
videos by augmenting BART with visual informa-
tion via a new cross-attention block added to every
encoder layer. However, their approach adds a very
large number of new parameters and requires full
fine-tuning, which leads to overfitting in our case
when the dataset size is small.

Dialogue Summarization In the context of text-
to-text generation, dialogue summarization is chal-
lenging due to the difficulty of fitting very long in-
put into pre-trained sequence-to-sequence models.
Longformer (Beltagy et al., 2020) alleviates this
by employing local self-attention in combination
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Episodes 4,575
Input (transcript + video + audio)

Shots 1,048,024
Shots/episode 193.64 (109.09)
Utterances/episode 322.76 (116.52)
Tokens/episode 5720.55 (2223.38)

Output (summaries)
Summaries/episode 1.53 (0.79)
TVMegaSite/#tokens 4,280 395.69 (275.84)
YouTube/#tokens 334 136.22 (45.12)
IMDb/#tokens 946 111.21 (82.18)
tvdb/#tokens 1,454 126.14 (82.14)
Training (unique input-output pairs) 5,199
Validation episodes 296
Testing episodes 296

Table 2: SummScreen3D statistics. For summaries, we
show their provenance, number of summaries per site
(second column), and mean number of tokens per sum-
mary; standard deviations are shown in parentheses.

with global tokens for reducing the computational
overhead. Despite recent attempts to make self-
attention more efficient (Kitaev et al., 2020; Tay
et al., 2020; Zaheer et al., 2020), it is still unclear
whether it has an advantage over content selection
with a full-attention mechanism (Zhang et al., 2021;
Shaham et al., 2022) for long dialogue summariza-
tion. Zhong et al. (2022) incorporate dialogue-
specific objectives for pre-training summarization
models, while Zhang et al. (2022) hierarchically
summarize the input chunk-by-chunk.

Parameter-efficient Tuning Fine-tuning is a
common approach for transferring pre-trained mod-
els to different tasks or domains (Howard and
Ruder, 2018). It is customary to fine-tune all the
parameters of the pretrained model which, however,
becomes prohibitive as model size and number of
tasks grow. Recent work has proposed parameter-
efficient transfer learning methods which fine-tune
only a small number of additional parameters. Two
popular approaches include adapter tuning, where
bottleneck layers are added and tuned at every layer
of the model (Rebuffi et al., 2017; Houlsby et al.,
2019) and prompt tuning, where (soft) prompts are
prepended as part of the input (Brown et al., 2020;
Li and Liang, 2021). In this work, we utilize the
former method for adapting a textual summarizer to
our multimodal setting and dialogue input format.

3 The SummScreen3D Dataset

SummScreen (Chen et al., 2022) is a long dialogue
summarization dataset1 containing transcripts from

1https://github.com/mingdachen/SummScreen

TV episodes and human-written abstractive sum-
maries. We extend this dataset to a multimodal
setting by also considering the corresponding full-
length videos. SummScreen contains two subsets
depending on the series genre: SummScreen-FD
and SummScreen-TMS. We use the latter subset
which mostly covers soap operas from TVMega-
Site2, as it is easier to obtain full-length videos and
each series has hundreds of episodes.

For each episode in SummScreen-TMS, we au-
tomatically search for the title and release date in
Youtube. If there is a match with large duration
(indicating that this is a full episode rather than a
segment), we download the video and closed cap-
tions (CC). Overall, we collected videos for 4,575
episodes from five different shows in SummScreen-
TMS.3 In addition to TVMegaSite summaries (dis-
tributed with SummScreen), we further retrieved
summaries from YouTube descriptions, IMDb, and
tvdb, again using the episode title and release date
as search terms. The statistics of our dataset which
we call SummScreen3D (3D for language, video,
and audio) are in Table 2 and we provide further de-
tails in Appendix A. As can be seen, each episode
has (on average) multiple references which vary in
length (TVMegaSite summaries are longest).

We split SummScreen3D into training, validation,
and test sets with the same distribution over differ-
ent shows per set. We reserved 296 episodes for val-
idation and the same number for testing, and used
the rest for training. Since we have multiple refer-
ence summaries for some episodes, we increased
the size of the training set by adding m episode-
summary pairs, matching the same episode with
each of its m references. This resulted in 5,199
unique samples for training.

4 Video-to-Text Summarization

Our approach leverages the generation capabil-
ities of large pre-trained sequence-to-sequence
models (Lewis et al., 2020; Raffel et al., 2020).
As our backbone model, we employ BART-
large (Lewis et al., 2020) which has been fine-tuned
on CNN-DailyMail (Nallapati et al., 2016; Zhang
et al., 2021) and has thus acquired a summarization
inductive bias. As TV show transcripts are very
long and cannot fit into BART, we select a subset of
utterances (i.e., speaker turns) as input via content

2http://tvmegasite.net
3https://github.com/ppapalampidi/long_video_

summarization
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Figure 1: Multimodal augmentation of pre-trained BART. We augment the encoder and decoder layers with adapters which we
fine-tune on the target dataset, while the remaining network is frozen. As input, we consider textual tokens and coarse-grained
multimodal information which we prepend before each utterance. We also corrupt part of the textual input during training
and add an auxiliary MLM loss to the encoder for predicting the corrupted tokens. On the right, we show the hierarchical
adapter added to each encoder layer: after down-projecting all representations, we only consider the multimodal ones and further
contextualize them via attention. Then, we combine the representations and up-project again to the original model dimension.

selection (see details in Section 5). We transfer
this model to our task and domain (i.e., multimodal
dialogue summarization), by adding adapter layers
(Rebuffi et al., 2017; Houlsby et al., 2019; Sung
et al., 2022) in both the encoder and decoder, and
tuning them on SummScreen3D while keeping the
rest of the network frozen. We briefly discuss below
our backbone text-based model and then elaborate
on how we incorporate multimodal information.

4.1 Backbone Textual Model
Our summarizer follows a standard sequence-to-
sequence Transformer architecture (Vaswani et al.,
2017). The encoder maps tokens [t1, t2, . . . , tN ]
to a sequence of contextualized representations
[h1, h2, . . . , hN ] which are then fed to the decoder
for generating the summary. The encoder con-
sists of L stacked layers, each of which has a self-
attention block for contextualizing the token rep-
resentations, followed by a feed-forward network.
The decoder has a similar architecture, it addition-
ally contains a cross-attention block for identifying
relations between the input and currently gener-
ated text and makes use of masked self-attention
to control access to context for each token. The
decoder is followed by a linear layer (i.e., Lan-
guage Model (LM) head) which projects the out-
put representations onto the vocabulary and a final
softmax layer. The model is optimized for pre-
dicting the next token st+1 in the summary given
[s0, s1, . . . , st], the context generated so far, and
the transcript [t1, t2, . . . , tN ].

4.2 Multimodal Augmentation
Our hypothesis is that adding multimodal informa-
tion to a textual summarizer (i.e., converting the
textual encoder to a multimodal one) will increase
the quality of its output summaries. We expect
that the video/audio will compensate for important
non-verbal information typically absent from the
transcript (e.g., who is speaking to whom, who is
present in the same room, who is crying or yelling).
We further expect multimodal information to make
up for the loss of context incurred by content se-
lection. We next describe how we compute multi-
modal representations for an episode and how we
augment BART with these representations.
Multimodal Representations We use utterances
as the unit of representation for multimodal infor-
mation. We segment episodes into shots (using
PySceneDetect4) and map these to utterances in
the corresponding transcript. Specifically, we align
the closed captions in the video which are time-
stamped to the utterances in the transcript using
Dynamic Time Warping (DTW; Myers and Ra-
biner 1981; Papalampidi et al. 2021b). We thus
create a one-to-many alignment where an utter-
ance corresponds to one or more shots. For each
shot, we extract textual, visual, and audio features
(see Appendix B.1 for details), and compute an
utterance-level representation for each modality by
average pooling over all aligned shots.

Given textual xi, visual vi, and audio ai repre-
4https://github.com/Breakthrough/PySceneDetect

1300

https://github.com/Breakthrough/PySceneDetect


sentations for utterance i, we learn a multimodal
representation as part of our network:

x′i=f(Wxxi) v′i=f(Wvvi) a′i=f(Waai)

mi = f(Wm[x
′
i; v
′
i; a
′
i])

(1)

where f(·) is the ReLU activation function, [·; ·; ·]
denotes concatenation, Wx ∈ IRdxxdi ,Wv ∈
IRdvxdi ,Wa ∈ IRdaxdi , and Wm ∈ IR3dixdm are
learnable matrices; di and dm are the input and
model dimensions with di << dm, and mi is the
final multimodal representation corresponding to
the ith utterance in the transcript.

Multimodal Encoder In order to integrate
utterance-level multimodal representations with
BART, we consider a “global utterance token”
inspired by the Longformer architecture (Beltagy
et al., 2020). We preprocess the input into utter-
ances and prepend a global token <EOS> per ut-
terance as a placeholder for multimodal representa-
tions. The encoder thus receives as input sequence
[m1, t

1
1, t

1
2, . . . , t

1
M1
, . . . ,mN, t

N
1 , t

N
2 , . . . , t

N
MN

]
where, “global” representations m constitute a rich
multimodal space (i.e., they are not learned solely
from text via local self-attention; Figure 1a).

4.3 Self-supervised Auxiliary Guidance

Our primary loss for training the model described
above is the negative log likelihood of predicting
the next token in the summary given episode E :

LLM =
1

K

∑
t∈[1,K]

− log p(st|s < t; E) (2)

We further wish to encourage the model to attend
to multimodal information and learn a meaningful
projection (Equation (1)). To do this, we corrupt
part of the textual input by masking tokens (see bot-
tom left part of Figure 1a) and adding an auxiliary
masked language modeling (MLM) loss for the ini-
tial training steps only. So as not to disrupt the bias
of the decoder, which is already trained on textual
summarization, we apply the MLM loss in the out-
puts of the encoder while the model is trained on
the downstream task. Given token-level encoder
outputs [h1, h2, . . . , hN ], we copy and re-use the
LM head of the decoder in order to project them
into the vocabulary (see top left part of Figure 1a).
And compute the negative log likelihood only for
the set of masked tokensM:

LeMLM =
1

|M|
∑

t∈M
− log p(t|hti /∈M) (3)

We refer to this loss as encoder-based MLM loss
(eMLM; Baziotis et al. 2021). It trains the encoder
to reconstruct input text representations while at-
tending to multimodal information. After X initial
training steps, we drop the auxiliary loss and stop
corrupting the textual input in order for the model
to be optimized on summarization. We use a mix-
ture of whole utterance corruption (Zhang et al.,
2020a; Zhong et al., 2022) and content word cor-
ruption, masking out named entities, nouns, and
verbs excluding auxiliaries (see Section 6).

4.4 Hierarchical3D Adapters
We specialize BART for our multimodal summa-
rization task by inserting adapter modules (Re-
buffi et al., 2017; Houlsby et al., 2019) into
each encoder and decoder layer (after the feed-
forward block). Each adapter adds only a
small number of new parameters, which are ran-
domly initialized and tuned on our end task,
while the rest of the network is frozen. A
vanilla adapter takes as input hidden repre-
sentations [u1, h

1
1, h

1
2, . . . ,uN, . . . , h

N
MN

], where
h11, h

1
2, . . . , h

N
MN

are textual token-level hidden
representations and u1, . . . ,uN are multimodal
utterance-level hidden representations (in accor-
dance to the input format presented in Figure 1a),
and performs the following transformations:

hdown,i = f(LN(Wdhi + bd)) (4)

hup,i =Wuhdown,i + bu hi = hi + hup,i (5)

where Wd ∈ IRdmxdB , dm is the model dimension,
dB is the bottleneck dimension of the adapter, f(·)
is a non-linearity, LN a trainable layer normaliza-
tion, Wu ∈ IRdBxdm , bd, and bu are the correspond-
ing bias vectors, and hdown,i and hup,i are down
and up projections of hi.

In this work, we augment the vanilla adapters
of the encoder with a hierarchical structure (illus-
trated in Figure 1b). After computing (low level)
self-attention between all input textual tokens in an
encoder layer, we add a hierarchical adapter to com-
pute higher-level interactions between utterance-
level multimodal representations. By including this
interaction block in the adapter, we can better prop-
agate long-range dependencies between utterances
and enforce a more global view of the events in an
episode and their associations, while keeping the
number of trainable parameters low.

Using the scaled dot product, we compute in-
teraction (aka similarity) matrix H between utter-
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ances (see Figure 1b) based on their multimodal
representations [m1,m2, . . . ,mN ]:

eij = (Wimi + bi)(Wjmj + bj)/
√
dm (6)

where Wi,Wj are learnable projection matrices,
dm is the model dimension, and eij is the degree
of similarity between mi and mj .

At each adapter layer of the encoder, after down-
projecting all vectors to the bottleneck dimen-
sion, we further contextualize utterance-level multi-
modal representations udown,i with respect to each
other given the degree of similarity provided by H
(”Contextualize” block in Figure 1b):

u′down,i =
∑N

k=1
r(Hik/τ)udown,k + udown,i

whereN is the number of utterances, r(·) is the soft-
max function, and τ is a low temperature parameter
(< 1) for increasing sparsity. After contextualiza-
tion, we up-project all vectors to the original di-
mension dm, as in vanilla adapters (Equation (5)).

5 Content Selection

As explained earlier, episodes in SummScreen3D

are very long (∼5,720 tokens). BART, which has a
maximum token length of 1,024, can approximately
encode one fifth of the transcript.5 We therefore
perform content selection, i.e., identify salient utter-
ances and give these as input to BART. We describe
below three approaches inspired by information re-
trieval, summarization (Gehrmann et al., 2018; Liu
and Lapata, 2019a), and computational narrative
analysis (Papalampidi et al., 2021b,a).

Retrieval-based Selection We follow previous
approaches (Zhang et al., 2021) in determin-
ing salient content with BM25 (Robertson and
Zaragoza, 2009). BM25 is a widely known retrieval
model similar to tf*idf. It assigns each utterance
a “relevance” score (by comparing it against the
entire transcript). Utterances with high scores are
deemed salient and the K best ones are selected.

Learning-based Selection Alternatively, we
may also model content selection as a binary clas-
sification problem. Given a transcript containing
N utterances we predict whether each should be
selected as input for the downstream summariza-
tion task (label 1) or not (label 0). We create noisy

5We can extend positional embeddings to 1,536 by apply-
ing bilinear interpolation, however, the memory requirements
would still be prohibitive for longer sequences.

labels by matching transcript utterances to (ref-
erence) summary sentences. Specifically, we en-
code sentences and utterances via Sentence-BERT
(Reimers and Gurevych, 2019), and assign a posi-
tive label to the utterances most similar to the refer-
ence sentences. A content selector is then trained
on these pseudo-labels to identify salient utterances.
We can also incorporate multimodal information
in this content selection setting, using the same
utterance-level representations fed into BART. We
first contextualize them via a shallow transformer
encoder, and add a classification head for predict-
ing important utterances. The model is optimized
with binary cross-entropy loss. During inference
we select the top K predicted utterances.

Turning Point Identification We also perform
content selection based on a Turning Point (TP)
identification model (Papalampidi et al., 2021b,a)
pre-trained on the TRIPOD movie dataset (Pa-
palampidi et al., 2019). TPs are key events in nar-
ratives; they are distinguished into five different
types depending on their functionality (e.g., Oppor-
tunity, Change of Plans, Point of No Return, Major
Setback, Climax). The TP identification model
considers the same multimodal information as the
content selector above and identifies utterances that
represent each TP. We consider the top K/5 pre-
dicted utterances per turning point.

6 Experimental Setup

Implementation Details We provide details of
the multimodal feature extraction (i.e., utterance-
level visual, audio, and textual features) in Ap-
pendix B.1. We corrupt the textual input and use
the auxiliary eMLM loss (Section 4.3) only for the
first X =1,500 training steps; we train our model
for a total of 12,000 steps. During corruption, we
mask out all content words (i.e., named entities,
verbs, and nouns) and a random 10% of the input
utterances. For generating summaries during in-
ference, we use beam search with beam = 5 and
3-gram blocking (Paulus et al., 2018). We provide
further implementation details in Appendix B.2.

Training vs. Inference Although we experiment
with different content selection methods during
inference, we randomly sample input utterances
during training. Random sampling acts as data aug-
mentation, since the model sees slightly different
input-output pairs during training at different iter-
ations. We experimentally verify in Section 7 this
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is preferable to a fixed selection of utterances, es-
pecially considering the small size of our dataset.
We select K = 60 utterances to feed into BART
models given the input length limit, and order them
according to their original position in the transcript.

Evaluation Metrics We evaluate the generated
summaries using ROUGE F1 (Lin, 2004) against
reference summaries.6 Since ROUGE is not always
a good indicator of summary quality and does not
discriminate between different error types (e.g., fac-
tuality vs. fluency), we consider additional metrics
based on Question-Answering (QA).7 We obtain
questions based on gold summaries and evaluate
whether the correct answers exist in the generated
summaries. We expect factual summaries to answer
a high percentage of questions.

As in previous work (Maynez et al., 2020;
Kryscinski et al., 2020; Honovich et al., 2021),
we automatically generate QA pairs against refer-
ence summaries. We identify named entities and
nouns using spaCy (Honnibal and Montani, 2017),
and feed them as gold answers alongside the sum-
maries to a question generator. We discriminate
between named entities and nouns as answer types
for measuring factuality in event-entity associations
and other attributes pertaining to nouns. We used
T5-base (Raffel et al., 2020) as our question gen-
erator and RoBERTa-base (Liu et al., 2019) as the
QA system for answering questions given system
generated summaries as input passages. Both were
fine-tuned on SQuAD2.0 (Rajpurkar et al., 2016).

We measure accuracy as the partial overlap be-
tween gold and predicted answers for named en-
tities. For nouns, we resort to textual entailment
in order to account for synonyms and paraphrases
in the generated summaries. We concatenate the
question with gold or generated answer and predict
a score for the directional relation between them.
If the score is above 0.5, we consider the generated
answer correct. We used BART-large (Lewis et al.,
2020) fine-tuned on the MultiNLI corpus (Williams
et al., 2018) as our entailment model.

We created a test suite of gold QA pairs, by re-
taining only those that can be answered correctly by
the QA model given the reference summaries (Hon-
ovich et al., 2021). We overall generated 2,513
questions for named entities and 381 questions for

6https://pypi.org/project/py-rouge/
7We also experimented with BERTScore (Zhang et al.,

2020b) but observed no discernible performance differences
between any pair of models.

Selection R-2 R-L
text +H-3D text +H-3D

Lead 6.51 — 30.72 —
Last 6.41 — 30.59 —
Middle 6.70 — 31.03 —
Random 6.54 7.24 30.91 32.15
Retrieval 6.30 6.89 30.20 31.42
TP identification 6.78 7.36 31.24 32.01
Learned selection 6.74 7.62 31.22 32.64
Pseudo-oracle 7.96 8.42 32.85 33.40

Table 3: Content selection methods for text-only BART
and our multimodal Hierarchical3D variant (H-3D).

nouns for the 296 episodes in our test set. On aver-
age, we have 8.5 questions per episode for named
entities and 2.3 questions for nouns.8

7 Results

Content Selection Table 3 compares how differ-
ent approaches to content selection influence sum-
marization performance according to ROUGE F1.
We compare some simple baselines like selecting
the Lead, Middle, and Last 60 utterances from
the transcript as well as at Random. In addition,
we compare a text only summarizer against our
Hierarchical3D model. Differences amongst con-
tent selection methods are generally small. BM25
performs worse than random whilst a multimodal
content selector trained on pseudo-labels performs
overall best. As an upper bound, we also report
results with oracle labels as input demonstrating
that there is still room for improvement.

Regardless of how content is selected, we ob-
serve that our Hierarchical3D variant significantly
improves performance, and interestingly, the per-
formance gap is larger when the selection method
is weaker (e.g., random vs. pseudo-oracle). This
indicates that to a certain extent multimodal infor-
mation makes up for suboptimal content selection.

Text vs. Multiple Modalities In Table 4 we
compare our multimodal model (with the best
performing content selector) against textual sum-
marizers developed for processing long input or
specifically for dialogue summarization. These in-
clude Longformer (LED; Beltagy et al. 2020) with
full fine-tuning10, a variant of LED pre-trained on

8We release our test suite of gold QA pairs together with
the SummScreen3D corpus.

9Textual summarizers are initialized with the same check-
point, while some models are further tuned (e.g.,DialogLED).

10Adding (and tuning) adapter layers in LED led to sig-
nificantly inferior performance, which in turn suggests that
adapting such a network is not straightforward.
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Models R-1 R-2 R-L
HERO FT 21.56 1.74 21.27
SummN FT 24.71 4.42 22.61
LED FT 33.53 7.60 31.77
DialogLED FT 32.66 7.38 31.12
BART FT 32.61 6.94 30.83
BART AT 33.27 6.74 31.22
BART AT + H-3D 34.51 7.62 32.64

Table 4: Comparison of our model (BART AT + H-3D)
with a video captioning model (i.e., HERO) and text-
only summarizers for long dialogue summarization9.
For HERO and all BART variants we perform content
selection (FT: full fine-tuning, AT: adapter-tuning).

Models Acc (NEs) Acc (NNs)
text +H-3D text +H-3D

LED FT 20.89 — 37.95 —
DialogLED FT 21.09 — 36.22 —
SummN FT 18.03 — 34.91 —
Random 20.25 23.64 33.86 38.06
TP identification 21.65 24.07 40.42 40.68
Learned selection 20.65 24.71 38.58 39.37
Pseudo-oracle 28.53 29.64 41.73 42.00

Table 5: QA evaluation (test set) on named entities
(NEs) and nouns (NNs). We denote our Hierarchical3D
model with H-3D.

dialogues (DialogLED; Zhong et al. 2022), and
SummN (Zhang et al., 2022), a two-stage hierar-
chical approach for long dialogue summarization.
We also present text-only BART variants, with full
fine-tuning (FT) and adapter-tuning (AT). Finally,
we include a SOTA video-to-text model (HERO; Li
et al. 2020) with a massively pre-trained encoder,
which is tuned on another TV dataset for video cap-
tioning of short clips (i.e., TVC; Lei et al. 2020b).

As can be seen in the second block of Table 4,
tuning only the adapter layers (BART AT) does
not hurt performance compared to full fine-tuning
(BART FT), presumably due to the small dataset
size. Addition of multimodal information with hi-
erarchical adapters (BART AT + Hierarchical3D)
yields substantial ROUGE improvements. Interest-
ingly, our performance is superior to fully fine-
tuned, memory-heavy models like LED or Di-
alogLED that process the entire transcript as in-
put. This suggests that representations from mul-
tiple modalities are more informative and lead
to higher performance compared to efficient self-
attention mechanisms. SummN performs demon-
strably worse than one-stage methods and HERO
fails to produce long fluent outputs due to the shal-
low under-trained decoder and small dataset size.

Modality R-1 R-2 R-L
Text 34.74 7.11 32.46
Audio 33.95 6.92 31.90
Video 34.86 7.24 32.73
Multimodal 34.95 7.51 33.01

w/ vanilla adapters 34.25 7.45 32.41
w/o eMLM loss 33.80 6.84 31.88
w/o random augmentation 33.45 6.48 31.81

Table 6: The role of multimodal information and hierar-
chical adapters (validation set).

QA Evaluation The results of our automatic QA
evaluation are summarized in Table 5. The second
block focuses on model performance with differ-
ent content selection variants. We only compare
text-only and multimodal (+H-3D) BART. Again,
we find that augmenting BART with multimodal
information regardless of the selection method im-
proves accuracy, especially for named entities. This
is true even when content is selected by a pseudo-
oracle suggesting that multimodal information pro-
vides better associations between events and enti-
ties, even when the input contains all salient infor-
mation. We further observe that supervised content
selection and TP identification offer the best perfor-
mance. The first block reports the performance of
state-of-the-art models on dialogue summarization;
we find these models perform on par or slightly
worse than textual BART (depending on the con-
tent selection method) which casts doubts on their
ability to efficiently consume longer inputs. Ex-
amples of output summaries (and QA pairs) are
given in Table 7 and Appendix C.3. We also report
additional (entity-specific) results in Appendix C.2.

Ablation Studies In Table 6 we summarize our
ablation studies which isolate the contribution of in-
dividual modeling components. We observe that in-
dividual modalities (Text, Audio, Video) are worse
on their own than in combination (Multimodal).
The least informative modality is audio, while the
most informative is video. In the multimodal case,
we substitute hierarchical adapters in the encoder
with vanilla adapters and observe a small drop in
performance. Removing the auxiliary eMLM loss
during training further decreases performance. The
auxiliary loss is crucial for rendering the textual
encoder multimodal and forcing an already tuned
summarizer to consider a different type of input.
Finally, data augmentation (via random content
selection) during training is also important given
the small size of our dataset and BART encoder
length restrictions. We report additional ablation
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Model Summary

Gold

Joshua tells Elizabeth he wants to turn Allison and demands she help ease Allison into her new life as
his wife. Elizabeth tells Joshua she will kill him before she allows him to hurt Allison. Livvie is able
to fend off her need to feed while she and Caleb make love. Frank searches for Allison. When Frank
attempts to kidnap Allison from Rafe, he discovers that it really is Lucy and I an in disguise. Allison
and Rafe reappear in Caleb s cave.

QA pairs

• Who does Frank try to kidnap Allison from? Rafe
• Who does Frank try to kidnap? Allison
• Who tries to kidnap Allison? Frank
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? wife

Text-only

Rafe tells Alison that he will never let Joshua take her for his bride, but she tells him that she has no
choice in the matter. Elizabeth tells Joshua that she will not stand by and allow him to take her
daughter. Joshua tells Elizabeth that he is going to eas e Alison into her new lifestyle as his wife.
Elizabeth says that she is not going to let her daughter suffer the kind of nightmare that she lived. She
will kill Joshua before he is even that close to turning her. Alison tells Rafe that she thinks this is a
little extreme, that is all. Rafe says he will not let Joshua get to her. He promises to keep her away
from Joshua and all his goons. Caleb tells Livvie that she doesn t need to feed. He tells her that he can
t make love to her the way she wants to. She tells him she can t turn him back, but he tells her he can.
He says that he loves her and that he wants to make her his bride.

QA pairs

• Who does Frank try to kidnap Allison from? Joshua
• Who does Frank try to kidnap? Joshua
• Who tries to kidnap Allison? Rafe
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? wife

H-3D

Livvie tries to convince Caleb to let her take the risk of biting him, but she is afraid that she won t be
able to do it. Joshua tells Elizabeth that he wants Alison to be his bride. Elizabeth is shocked when
she finds out that Joshua wants to take Alison away from Rafe. Elizabeth tells Joshua that she will find
a way to stop him from taking Alison. Rafe tells Alison that he has a vision of a city of tortured souls,
a master vampire race, and his vampire bride. He tells her that he can make a perfect bride for her.
Alison tells Rafe that she doesn t want to leave her family, but Rafe assures her that she is not going to
leave them. Frank tells Ian that he is going to have to tell his boss that his mission didn t work.

QA pairs

• Who does Frank try to kidnap Allison from? Rafe
• Who does Frank try to kidnap? Allison
• Who tries to kidnap Allison? Rafe
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? vampire bride

Table 7: Examples of gold and model generated summaries together with automatically generated questions and
their answers based on gold and automatic summaries. Correct/wrong answers are in green/red color. We show
output for a text-only BART model and a multimodal variant with hierarchical adapters (H-3D); in both cases
content selection is performed with a model trained on pseudo-labels.

experiments on content selection in Appendix C.1.

8 Conclusions

In this work, we addressed the task of mul-
timodal abstractive summarization and created
SummScreen3D, a new dataset which we hope will
facilitate future research in this direction. We incor-
porated multimodal information into a pre-trained
textual summarizer in a parameter-efficient manner
and have experimentally shown performance gains
over text-only models. Our experimental results
further underscore the importance of (multimodal)
content selection compared to approaches focusing

on self-attention variants for long dialogue sum-
marization. In the future, we plan to explore more
structure-aware representations for all input modal-
ities in order to improve factuality (e.g., entity-
event associations) in the generated summaries.
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9 Limitations

Our approach considers only coarse-grained
(i.e., utterance-level) multimodal information
which we demonstrate is beneficial for summariza-
tion. More detailed frame-level visual information
e.g., person identification and object recognition
in frames, would be useful. However, considering
frame-level representations for hour-long videos
would bring a considerable increase in memory re-
quirements and additional difficulties in aligning
different modalities (e.g., frames vs. tokens vs. au-
dio segments). We leave these challenges to future
work and believe that structure-aware methods are
necessary for addressing the current limitations.

Following previous work (Maynez et al., 2020;
Kryscinski et al., 2020; Honovich et al., 2021), we
advocate the use of automatic QA-based methods
for evaluating the generated summaries. Although
there is supportive analysis (e.g., Tang et al. 2022)
that shows better correlation to human judgements
for QA-based automatic evaluation in compari-
son with traditional summarization metrics such
as ROUGE, more experimentation is necessary to
determine the shortcomings of these metrics.

Finally, conducting human evaluation for
SummScreen3D is infeasible, since this would en-
tail asking judges to watch 40-minute long episodes
in order to evaluate the content and faithfulness of
the summaries. We further cannot assume judges
are familiar with the characters, specific details and
(complex) storylines of different soap operas con-
tained in our test set in order to be able to make
reliable judgments. Therefore, using QA-based
metrics for judging specific attributes of summa-
rization quality, such as whether the correct enti-
ties are linked to the correct events in an episode
(i.e., QA evaluation related to named entities), can
provide us with useful insights.
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As The World Turns (atwt) 1356
Bold and the Beautiful (bb) 1113
Guiding Light (gl) 836
One Life to Live (oltl) 1118
Port Charles (pc) 501

Table 8: Distribution of different TV shows in the aug-
mented dataset.

TMS SummScreen3D

TV shows 10 5
Episodes 22,503 4,575
min #episodes per show 168 501
max #episodes per show 3,784 1,356
median #episodes per show 1,973.5 1,113
avg #episodes per show 2,250.0 984.8
Utterances/episode 360.8 322.8
Tokens/episode 6,420.7 5,720.6
Summaries/episode 1 1.53
#tokens/summary 327.0 395.7

Table 9: Comparison between the original SummScreen-
TMS (Chen et al., 2022)) and SummScreen3D which is
a subset of the original dataset.

A Dataset Analysis

As mentioned in Section 3, we create a multi-
modal version of the SummScreen dataset (Chen
et al., 2022) by collecting full-length videos of the
episodes contained in the original dataset. Overall,
we retrieved videos from YouTube for five differ-
ent TV shows (i.e., soap operas). We present in
Table 8 the names of the TV shows and the num-
ber of episodes per show. We made sure to have
enough episodes from each TV show and maintain
the same distribution when splitting the dataset into
train, validation, and test. Moreover, we present an
example of the input transcript and output summary
from SummScreen (Chen et al., 2022) and how we
augment the dataset with additional information
from the full-length video in Figures 2 and 3.

Next, we also compare the statistics of
SummScreen3D, which is a subset of SummScreen-
TMS (Chen et al., 2022), with the original dataset
in Table 9. Overall, we include episodes from half
the TV shows contained in TMS. The number of
episodes per TV show in our dataset is more bal-
anced in comparison with the original (see rows 3–
6 in Table 9). SummScreen3D has similar input and
output statistics per episode to the original dataset
(e.g., number of utterances and tokens per transcript
and number of tokens per summary). However,
we also collect more summaries per episode when
available (see Table 8) for creating an augmented
training set and a more robust evaluation set.
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Finally, we also compare our dataset against
other video-to-text summarization datasets in Ta-
ble 10. TACoS (Rohrbach et al., 2014) and
How2 (Sanabria et al., 2018) are the only avail-
able multimodal summarization datasets we are
aware of. In comparison, our dataset contains much
longer videos (on average 40 minutes long), and
fairly elaborate textual summaries (instead of short
one-sentence descriptions with simple vocabulary).

B Implementation Details

B.1 Dataset Pre-processing

Given full-length video, we extract features for
all modalities at the utterance-level as mentioned
in Section 4.2. For text, we extract sentence-
level features using Sentence-BERT (Reimers and
Gurevych, 2019). Each utterance in the transcript
is thus represented by a fixed-size vector. For the
frames, we extract two types of features: frame-
level features using the CLIP visual encoder (Rad-
ford et al., 2021) and motion-level features from
video clips using Slowfast (Feichtenhofer et al.,
2019). We then aggregate frame- and motion-
level features to utterance-level given the automatic
alignment by mean pooling. Finally, for audio, we
use YAMNet pre-trained on the AudioSet-YouTube
corpus (Gemmeke et al., 2017) for classifying au-
dio segments into 521 audio classes (e.g., tools, mu-
sic, explosion); for each audio segment contained
in a shot, we extract features from the penultimate
layer, and then aggregate representations again to
utterance-level via mean pooling.

B.2 Training Details

We used the Adam algorithm (Kingma and Ba,
2015) for optimizing our networks. We trained all
models with a learning rate of 3e−5 for 12k steps
using a linear warm-up of 500 steps, followed by
inverted squared decay. All BART-based models
were trained with batch size of 1 episode on 4 P100
GPUs with 16GB memory and label smoothing
(Szegedy et al., 2016) of 0.1. To fine-tune the LED-
based models, we used 4 A100 GPUs with 80GB
memory. It took approximately 12 hours to fully
train each of these models. Fully fine-tuned models
have 406M parameters, which are all fine-tuned on
the target dataset, whereas our multimodal adapter-
augmented model has 421.6M parameters, from
which we only train 15.6M parameters (i.e., multi-
modal projection layer and adapter layers) on the
target dataset. This means that we only tune∼3.8%

of the model parameters of the fully fine-tuned
models. We report the results of a single run for
all models following previous work (Chen et al.,
2022; Zhong et al., 2022) due to the computational
overhead of running some large comparison mod-
els. However, we report in Table 11 the average
and standard deviation over three runs for BART
AT and BART AT + H-3D in order to demonstrate
the performance variation of these models.

C Additional Experimental Results

C.1 Ablation Study on Content Selection

In Table 12, we examine the performance of dif-
ferent content selectors. We report precision (Pre),
recall (Re), and F1 score of model variants based
on pseudo-oracle labels. We first consider selectors
which have not been trained with pseudo-oracle
labels, such as Random, Retrieval (i.e., BM25)
and TP identification (we refer to these approaches
as unsupervised). We observe that unsupervised
baselines have significantly lower F1 score in com-
parison with a supervised approach. Interestingly,
although TP identification “agrees less” with the
pseudo-oracle labels in comparison with BM25,
TPs still present competitive performance against
the supervised content selector on abstractive tex-
tual summarization (e.g., Table 5). Finally, com-
paring the multimodal supervised content selector
with equivalent unimodal models, we observe that
the highest performance is achieved by combining
all modalities. With respect to unimodal variants,
we find that the textual modality is most informa-
tive, while using visual or audio cues alone is not
enough to predict salient content.

C.2 Entity-specific Evaluation

Chen et al. (2022) propose a set of entity-specific
metrics in order to investigate the role of charac-
ters, which are fundamental in TV shows, in the
generated summaries. Specifically, they measure
several bag of character (BoC) metrics based on
character overalp between generated and gold stan-
dard summaries. They define precision as the frac-
tion of correctly mentioned characters with respect
to all characters that appear in the generated sum-
mary (BoC-p) and recall as the fraction of correctly
mentioned characters with respect to all characters
that appear in the gold summary (BoC-r). Given
precision and recall, we also measure F1-score
(BoC-f1).

Apart from correctly mentioned characters, Chen
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dataset size video input text input video duration output tokens
TACoS 147 ✓ ✗ 4.5 minutes 9
How2 79k ✓ ✓ 90 seconds 20
SummScreen3D 4.5k ✓ ✓ 40 minutes 290

Table 10: Comparison between SummScreen3D and other video-to-text summarization datasets (see Table 1).

R-2 R-L
BART AT 6.71 (0.02) 30.96 (0.23)
BART AT + H-3D 7.58 (0.03) 7.58 (0.03)

Table 11: Results of two models from Table 3 across
three different runs. We report the average and standard
deviation in parentheses for R-2 and R-L.

Unsupervised Precision (%) Recall (%) F1 (%)
Random 19.55 20.90 20.06
Retrieval 24.63 26.62 25.40
TP identification 20.35 22.10 21.04

Supervised Precision (%) Recall (%) F1 (%)
Multimodal 47.57 50.68 48.57
Text 45.26 48.54 46.52
Vision 22.97 24.91 23.73
Audio 21.54 23.29 22.23

Table 12: The role of multimodal information in content
selection. We report the Precision, Recall, and F1 for
selecting important utterances from an episode. Super-
vised models are trained on pseudo-oracle labels.

et al. (2022) also compute similar bag of words
metrics for relations between characters in the sum-
maries. Specifically, they consider a pair of char-
acters related if they appear in the same sentence
in the summary. They do not account for the direc-
tion of relations and focus only on co-occurrence.
They again consider precision (BoR-p) and recall
(BoR-r) of the intersection of pairs of characters
similarly to computing the BoC metrics. We also
report F1-score (BoR-f1), given the precision and
recall for character relations.

We summarize our entity-specific results in Ta-
ble 13. Overall, especially when considerring the
F1 scores for characters and relations, we arrive to
similar conclusions as with our automatic QA eval-
uation (Table 5). The multimodal information that
is incorporated in our Hierarchical3D approach in-
creases most entity-specific metrics in comparison
with text-only variants. Regarding different content
selection methods, TP identification and supervised
content selection again perform best in comparison
with random selection, although differences are not
large. Finally, we achieve the best F1 scores in
both entity- and relation-specific metrics by using
oracle selection, indicating that there is still room

for improvement. Interestingly, we again observe
a further increase in performance by adding mul-
timodal information in the pseudo-oracle variant,
suggesting that video-based information is impor-
tant even when we consider the most salient parts
of an episode.

We also compare our approach with state-of-
the-art, fully fine-tuned textual summarizers for
long dialogues. We again notice that SummN is
weakest according to entity-specific metrics. Next,
efficient architectures for modeling the entire in-
put (i.e., LED, DialogLED) have competitive per-
formance against our text-only variants with con-
tent selection. However, Hierarchical3D that con-
siders multimodal information outperforms these
memory-heavy models while training only a small
fraction of model parameters. This further validates
our hypothesis that the video can provide additional
information which more important for high-quality
summaries than processing the entire textual input.

C.3 Examples of Generated Summaries

In this section we provide examples of generated
summaries based on different automatic systems.
Moreover, we provide examples of questions and
answers used for the automatic QA evaluation de-
scribed in Section 6.

Table 14 shows examples of automatically gen-
erated question-answer pairs given gold standard
summaries. We provide examples of QA pairs for
named entities (first 4 rows of the table) and nouns
(remaining 6 rows of the table). We observe that
most QA pairs are reasonable and correspond to in-
formation given in human-written summaries (first
column of the table). However, there are cases
where the QA pairs do not provide reasonable ques-
tions. Such an example is illustrated in the last row
of Table 14, where the question is generated given
the summary segment “Jonathan and Lizzie find
out their baby has a medical condition, and make a
run for it”:

Q: “What do Lizzie and Jonathan do when they
learn their baby has a medical condition?”

A: “run”
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BoC-p BoC-r BoC-f1 BoR-p BoR-r BoR-f1
Random selection 82.55 38.71 52.71 29.82 9.39 14.28

+ Hierarchical3D 81.80 47.37 60.00 31.75 13.77 19.21
TP identification 84.31 38.93 53.26 36.79 10.33 16.13

+ Hierarchical3D 82.20 47.10 59.89 34.82 14.10 20.07
Content Selection 81.60 36.59 50.52 30.54 8.58 13.40

+ Hierarchical3D 81.90 48.48 60.91 33.04 14.37 20.03
Pseudo-oracle 87.42 46.95 61.09 37.92 14.40 20.87

+ Hierarchical3D 85.53 52.37 64.96 36.67 17.51 23.70
LED FT 82.28 33.54 47.65 34.35 10.64 16.25
DialogLED FT 82.93 38.19 52.27 31.71 10.32 15.57
SummN FT 82.74 29.14 43.10 34.73 9.39 14.78

Table 13: Entity-specific metrics (test set). We report bag of character precision (BoC-p), recall (BoC-r), and F1
(BoC-f1). Analogously, we compute bag of relations precision (BoR-p), recall (BoR-r), and F1 (BoR-f1).

Summary Question Answer
Sage goes to live with Jack after she learns Carly is planning
to marry Craig. Meg agrees to marry Dusty.

Who does Meg agree to marry? Dusty
Who does Sage go to live with? Jack

Joshua is busy preparing for Allison’s arrival, as he unveils
Kevin’s latest creation; a portrait of Allison and Joshua in
their wedding attire. Lucy goes to church to plead for
answers. Ian overhears her plea and swears that he will not
let her die. Livvie shows Joshua a picture of Allison
appearing to be dead and tells him that he was right her fangs
are poisoned.

Who goes to church to plead for
answers? Lucy

Who swears he will not let Lucy die? Ian

What does Lucy do at church? plea
What part of Allison’s body is
poisoned? flangs

Lizzie and Jonathan spend some time with their baby.
Jonathan gives in to one of Alan s demands. Gus and Harley
find a disk with some interesting information on it. Gus still
can t figure out what it is that Blake has on him. Dinah and
Mallet argue over who will be the next WSPR star. Tammy
is heartbroken after a visit to the hospital. Jonathan and
Lizzie find out their baby has a medical condition, and make
a run for it. Alan realizes that he may have been outwitted by
Jonathan. Gus vows to get to the bottom of his supposed
secret.

What does Gus vow to find out about
Blake? secret

What is Lizzie and Jonathan spending
time with? baby

What do Gus and Harley find? disk

What do Lizzie and Jonathan do when
they learn their baby has a medical
condition?

run

Table 14: Examples of automatically generated QA pairs for the evaluation of generated summaries.

This QA pair does not correspond to a reasonable
fact of the episode. This shows that although it is
useful to filter the questions, there are still imper-
fections with the automatic generation of QA pairs,
especially when considering nouns.

Next, we give examples of the generated sum-
maries for the TV show ”Port Charles” in Ta-
bles 15–18. We present the gold or generated sum-
mary alongside the QA pairs used for evaluation.
First, we compare different content selection meth-
ods (i.e., supervised content selection (CS), TP
identification (TPs), and pseudo-oracle) for a text-
only summarizer based on BART with adapter tun-
ing. We present two examples in Tables 15 and 17
(we also show gold summaries for each episode).
In both cases, we observe that the pseudo-oracle se-
lection provides summaries of better quality, with
fewer errors in the questions answered (i.e., errors
are illustrated with red). Moreover, when compar-

ing content selection (CS) with TP identification
(TPs), we find that these two approaches provide
similar results, as suggested by our main experi-
mental results (Table 5). Specifically, in Table 15,
TP identification seems to provide the most infor-
mative summary, whereas in Table 17 supervised
content selection is the best option.

Secondly, we compare our approach that con-
siders multimodal information (Hierarchical3D)
against text-only BART with equivalent content
selection, and LED which considers only text and
uses an efficient self-attention mechanism for pro-
cessing the entire input. We present two exam-
ples for the same episodes as above in Tables 16
and 18. We empirically validate that the quality
of the generated summaries is improved by adding
the multimodal information (both when using su-
pervised content selection and TP identification).
Our approach leads to summaries that answer a
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larger percentage of automatic questions correctly
(i.e., correct answers are illustrated with green)
outperforming LED, which is fully fine-tuned and
memory-heavy. Interestingly, LED summaries can-
not answer a large proportion of the given ques-
tions, suggesting that such methods may not be
suitable for our task and small size dataset.
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Victor: To new beginnings and a new way of doing things.

Mary: Aw 

Victor: Ladies and gentlemen, I would also like to raise my glass to
Joshua. Mr. Joshua Temple. Some of you already know that Mr.
Temple is going to be the new owner of our beloved Recovery Room.
And he is certainly Port Charles' newest, most distinguished citizen. 

I haven't known him very long, but I can vouch for the fact that he's
a man of drive and vision. Ladies and gentlemen, Joshua Temple.

All: Hear, hear!

Lucy: This is unbelievable.

Joshua: I have many ambitious plans, not just for this place but for
all over my new adopted home, the lovely town of Port Charles.

Mary: Aw.

Joshua: I hope you all approve.

[Cheers and applause]

Jamal: Make room, make room, make room. Watch this.

Mary: Ah.

Alison: My God. It's like a vision of hell.


Caleb: It's your city -- the way Joshua intends it to be.


Rafe: We got to find a way to stop him.

Caleb: It looks like the destruction's already begun.

Rafe: This guy worked for you, Caleb. What are his weaknesses?

Caleb: Well, you might want to sit this one out.

Livvie: Or move.

Caleb: Don't worry. With Olivia's help, I won't be mortal for long.
And then I'll crush that little worm.

Livvie: It might not be that easy.

Caleb: As long as we have the ring, we -- what happened to the
ring?

Livvie: It's gone. I'm sorry, Caleb, but our protection against Joshua
is gone.

Caleb is upset when Livvie tells
him that Joshua has the ring. 
Joshua attempts to sway Ian to
the dark side, but Ian vows he
will continue to fight Joshua
and the other vampires.  Rafe
tells Caleb the only way he can
defeat Joshua now is to remain
human and Livvie reluctantly
agrees.  Lucy pleads with
Victor to fight Joshua, however,
it s too late, as Victor tells her
he enjoys the power Joshua
has given him. Karen realizes
Frank is a vampire.

gold summary

part of the input transcript

Figure 2: Example of input and output for SummScreen dataset. A long transcript is considered as input for
summarization, containing the dialogue parts of a full-length TV episode. Character names are given as part of the
dialogue. The goal is to produce a textual summary of most important events in the episode.
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Victor: To new beginnings and a new way of doing things.

Mary: Aw 

Victor: Ladies and gentlemen, I would also like to raise my glass to
Joshua. Mr. Joshua Temple. Some of you already know that Mr.
Temple is going to be the new owner of our beloved Recovery Room.
And he is certainly Port Charles' newest, most distinguished citizen. 

I haven't known him very long, but I can vouch for the fact that he's
a man of drive and vision. Ladies and gentlemen, Joshua Temple.

All: Hear, hear!

Lucy: This is unbelievable.

Joshua: I have many ambitious plans, not just for this place but for
all over my new adopted home, the lovely town of Port Charles.

Mary: Aw.

Joshua: I hope you all approve.

[Cheers and applause]

Jamal: Make room, make room, make room. Watch this.

Mary: Ah.

Alison: My God. It's like a vision of hell.


Caleb: It's your city -- the way Joshua intends it to be.


Rafe: We got to find a way to stop him.

Caleb: It looks like the destruction's already begun.

Rafe: This guy worked for you, Caleb. What are his weaknesses?

Caleb: Well, you might want to sit this one out.

Livvie: Or move.

Caleb: Don't worry. With Olivia's help, I won't be mortal for long.
And then I'll crush that little worm.

Livvie: It might not be that easy.

Caleb: As long as we have the ring, we -- what happened to the
ring?

Livvie: It's gone. I'm sorry, Caleb, but our protection against Joshua
is gone.

part of the input transcript

video

Joshua

the ring

Livvie

Caleb

Figure 3: We augment SummScreen (see example of Figure 2) with information from the full-length video, which
is aligned to the input transcript. Additional information, such as Joshua touching the ring in a previous scene or
Caleb looking concerned when talking to Livvie, can be acquired from the video frames.
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Model Summary

Gold

Caleb is upset when Livvie tells him that Joshua has the ring. Joshua attempts to sway Ian to the dark
side, but Ian vows he will continue to fight Joshua and the other vampires. Rafe tells Caleb the only
way he can defeat Joshua now is to remain human and Livvie reluctantly agrees. Lucy pleads with
Victor to fight Joshua, however, it s too late, as Victor tells her he enjoys the power Joshua has given
him. Karen realizes Frank is a vampire.

QA pairs

• Who tells Lucy that he enjoys the power Joshua has given him? Victor
• Who does Karen realize is a vampire? Frank
• Who pleads with Victor to fight Joshua? Lucy
• Who tells Caleb that Joshua has the ring? Livvie
• Who realizes Frank is a vampire? Karen
• What does Livvie tell Caleb Joshua has? the ring
• Who does Karen realize Frank is? vampire

CS
(text-only)

Caleb and Rafe discuss how to get close to Joshua and Livvie. Lucy tries to convince Victor that
Joshua is an evil vampire who should not be allowed to have his soul. Lucy tells Victor that she can t
lose him and wants him to accept her offer to turn him back into a vampire. Joshua tells the people of
Port Charles that he will do whatever it takes to breathe new life into this wonderful old place.

QA pairs

• Who tells Lucy that he enjoys the power Joshua has given him? Victor
• Who does Karen realize is a vampire? Joshua
• Who pleads with Victor to fight Joshua? Lucy
• Who tells Caleb that Joshua has the ring? Rafe
• Who realizes Frank is a vampire? Victor
• What does Livvie tell Caleb Joshua has? soul
• Who does Karen realize Frank is? vampire

TPs
(text-only)

Caleb and Livvie are shocked to find out that the ring has been taken away from them by Joshua.
They are unable to get the ring back, but they are determined to find a way to get it back. Lucy tells
Victor that Joshua is a liar and that he should not be allowed to have an important position in Port
Charles. Victor tells Lucy that he will not give up on her, but she tells him that she will not go to the
hospital because she has to be here for Victor. Lucy and Victor agree that they need to stay at the
hospital for the sake of Victor, but Lucy is not willing to give up her job as Victor s guardian angel.
Rafe tells Alison that if she turns back, she is going to be under Joshua s control, and he doesn t think
she will be too happy about taking orders from someone else. He tells her that he would rather slit her
own wrists than have Joshua touch her.

QA pairs

• Who tells Lucy that he enjoys the power Joshua has given him? Victor
• Who does Karen realize is a vampire? Joshua
• Who pleads with Victor to fight Joshua? Lucy
• Who tells Caleb that Joshua has the ring? Lucy
• Who realizes Frank is a vampire? Lucy
• What does Livvie tell Caleb Joshua has? the ring
• Who does Karen realize Frank is? vampire

Pseudo-
oracle

Caleb and Livvie find out that the ring that protects them from Joshua is gone, and they have no way
of getting it back. Lucy and Ian try to convince Victor to turn Joshua into a vampire, but he tells them
that he is not a monster and that he wants to be a good man. Lucy tells Victor that Joshua is evil, but
Victor tells her that she is his friend and he will not let her get to him. Victor tells Lucy that he will do
whatever it takes to breathe new life into Port Charles. Ricky tells Jamal that he does not want to be
his guardian angel anymore, but Jamal tells him to go and hang with the bloodsuckers. Jack tells Jack
that the only way he is going to win is to play both sides of the fence. Frank tells Karen that there are
benefits to his new role as a vampire and he is willing to do it for the good of the town of Port Charles
and his family.

QA pairs

• Who tells Lucy that he enjoys the power Joshua has given him? Victor
• Who does Karen realize is a vampire? Frank
• Who pleads with Victor to fight Joshua? Lucy
• Who tells Caleb that Joshua has the ring? Livvie
• Who realizes Frank is a vampire? Karen
• What does Livvie tell Caleb Joshua has? the ring
• Who does Karen realize Frank is? vampire

Table 15: Examples of generated summaries and automatic QA evaluation for different content selection methods.
In all model variants we only consider the textual modality (i.e., BART with adapter tuning).
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Model Summary

Gold

Caleb is upset when Livvie tells him that Joshua has the ring. Joshua attempts to sway Ian to the dark
side, but Ian vows he will continue to fight Joshua and the other vampires. Rafe tells Caleb the only
way he can defeat Joshua now is to remain human and Livvie reluctantly agrees. Lucy pleads with
Victor to fight Joshua, however, it s too late, as Victor tells her he enjoys the power Joshua has given
him. Karen realizes Frank is a vampire.

QA pairs

• Who tells Lucy that he enjoys the power Joshua has given him? Victor
• Who does Karen realize is a vampire? Frank
• Who pleads with Victor to fight Joshua? Lucy
• Who tells Caleb that Joshua has the ring? Livvie
• Who realizes Frank is a vampire? Karen
• What does Livvie tell Caleb Joshua has? the ring
• Who does Karen realize Frank is? vampire

Text-only
(TPs)

Caleb and Livvie are shocked to find out that the ring has been taken away from them by Joshua.
They are unable to get the ring back, but they are determined to find a way to get it back. Lucy tells
Victor that Joshua is a liar and that he should not be allowed to have an important position in Port
Charles. Victor tells Lucy that he will not give up on her, but she tells him that she will not go to the
hospital because she has to be here for Victor. Lucy and Victor agree that they need to stay at the
hospital for the sake of Victor, but Lucy is not willing to give up her job as Victor s guardian angel.
Rafe tells Alison that if she turns back, she is going to be under Joshua s control, and he doesn t think
she will be too happy about taking orders from someone else. He tells her that he would rather slit her
own wrists than have Joshua touch her.

QA pairs

• Who tells Lucy that he enjoys the power Joshua has given him? Victor
• Who does Karen realize is a vampire? Joshua
• Who pleads with Victor to fight Joshua? Lucy
• Who tells Caleb that Joshua has the ring? Lucy
• Who realizes Frank is a vampire? Lucy
• What does Livvie tell Caleb Joshua has? the ring
• Who does Karen realize Frank is? vampire

H-3D (TPs)

Caleb and Livvie are shocked when they find out that their protection against Joshua is gone. Victor
and Lucy argue about Victor’s role in Port Charles. Lucy tells Victor that Joshua is evil and that he
should not be allowed to have an important position with the vampires. Victor tells Lucy that he still
has so much to contribute and maybe this is his chance to have people listen to him again. Lucy is
upset that Victor wants to give Joshua an important role in the town. Lucy and Victor are at the
hospital and Lucy tells him that she is going to be there for Victor, but he tells her to stay away from
him. Frank tells Karen that he has grown a pair of fangs. Karen is shocked to hear that Frank is a
vampire.

QA pairs

• Who tells Lucy that he enjoys the power Joshua has given him? Victor
• Who does Karen realize is a vampire? Frank
• Who pleads with Victor to fight Joshua? Lucy
• Who tells Caleb that Joshua has the ring? Lucy
• Who realizes Frank is a vampire? Karen
• What does Livvie tell Caleb Joshua has? their protection against Joshua
• Who does Karen realize Frank is? vampire

LED

At the end of the night, Caleb and Livvie s wedding ring is revealed to Rafe and Caleb s ring. Caleb
tells Rafe that the ring is a vampire slayer. Rafe tells Caleb that he s going to be a vampire again.
Lucy tells Victor that Victor is going to take over the town of Port Charles. Victor tells Lucy that he
wants to talk to Lucy. Lucy asks Victor to join her in the new venture, but Victor tells her that he is
not going to do it. Caleb tells Olivia that he has been drugged by Kevin, and he s been turned into a
vampire. Olivia tells him that she wants to be part of the new club, but Caleb tells her to stay away
from him. Joshua tells Ian that he will not be able to get Victor away from Victor. Ian tells Joshua that
Joshua is not one of the vampire slayers, but he is the one of them.

QA pairs

• Who tells Lucy that he enjoys the power Joshua has given him? Victor
• Who does Karen realize is a vampire? Caleb
• Who pleads with Victor to fight Joshua? Ian
• Who tells Caleb that Joshua has the ring? Ian
• Who realizes Frank is a vampire? Rafe
• What does Livvie tell Caleb Joshua has? wedding ring
• Who does Karen realize Frank is? slayer

Table 16: Examples of generated summaries and automatic QA evaluation for different models. Here we compare
our Hierarchical3D model (H-3D) with state-of-the-art textual summarizers (i.e., LED).
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Model Summary

Gold

Joshua tells Elizabeth he wants to turn Allison and demands she help ease Allison into her new life as
his wife. Elizabeth tells Joshua she will kill him before she allows him to hurt Allison. Livvie is able
to fend off her need to feed while she and Caleb make love. Frank searches for Allison. When Frank
attempts to kidnap Allison from Rafe, he discovers that it really is Lucy and I an in disguise. Allison
and Rafe reappear in Caleb s cave.

QA pairs

• Who does Frank try to kidnap Allison from? Rafe
• Who does Frank try to kidnap? Allison
• Who tries to kidnap Allison? Frank
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? wife

CS
(text-only)

Rafe tells Alison that he will never let Joshua take her for his bride, but she tells him that she has no
choice in the matter. Elizabeth tells Joshua that she will not stand by and allow him to take her
daughter. Joshua tells Elizabeth that he is going to eas e Alison into her new lifestyle as his wife.
Elizabeth says that she is not going to let her daughter suffer the kind of nightmare that she lived. She
will kill Joshua before he is even that close to turning her. Alison tells Rafe that she thinks this is a
little extreme, that is all. Rafe says he will not let Joshua get to her. He promises to keep her away
from Joshua and all his goons. Caleb tells Livvie that she doesn t need to feed. He tells her that he can
t make love to her the way she wants to. She tells him she can t turn him back, but he tells her he can.
He says that he loves her and that he wants to make her his bride.

QA pairs

• Who does Frank try to kidnap Allison from? Joshua
• Who does Frank try to kidnap? Joshua
• Who tries to kidnap Allison? Rafe
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? wife

TPs
(text-only)

Livvie tells Caleb that she can t be with him, knowing what his bite might do to him. Joshua tells
Elizabeth that he is going to steal Alison s slayer s intended and that will make him more respectable.
He tells her that she is not going to do it, and that he knows that both roads lead Alison right back to
Joshua. Elizabeth tells Joshua that she has no idea how much she would love to do that, but they both
know that they are too busy figuring out which road to take. Rafe and Alison find themselves in Caleb
s old hangout. Alison is shocked to see that Rafe is still there. She tells Rafe that she will feel better
when all this is over with. She asks Rafe if he has his back and he says that he does, and he tells her
he has her back. Lucy and Ian find out that they have succeeded in their mission to kidnap Alison. Ian
and Frank tell Lucy that they will have to tell their boss that their mission didn t work. Frank tells Ian
that he will pay for this, and they are both going to pay for it. Ian tells Frank that he has to tell his big,
powerful boss that his mission failed.

QA pairs

• Who does Frank try to kidnap Allison from? Lucy
• Who does Frank try to kidnap? Alison
• Who tries to kidnap Allison? Lucy
• Who can fend off her need to feed while she and Caleb make love? Rafe
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? Caleb

Pseudo-
oracle

Caleb tells Livvie that he loves her and wants to make love to her, but he can t because his fangs are
poisoned and he can s not turn her back. He tells her to take the risk, but she is afraid to do it. She
tells him that she loves him and that she wants to be with him, but that she can t do it because of the
risk of his bite. He says that he will not let her go back to him. She says that she will never stop
loving him. He promises her that he won t and they make love again. Joshua tells Elizabeth that he
wants to take Alison as his bride. Elizabeth tells Joshua that she is not going to let him take her. She
wants to stop him from taking Alison. Rafe tells Alison that he has a vision of a city of tortured souls,
a master vampire race, and his vampire bride. He will never let that happen. He can t let Joshua get to
her. He is going to keep her away from Joshua and all his goons. He wants her to be his bride and she
will be his wife. She will never love him, Rafe says.

QA pairs

• Who does Frank try to kidnap Allison from? Joshua
• Who does Frank try to kidnap? Allison
• Who tries to kidnap Allison? Joshua
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? vampire bride

Table 17: Examples of generated summaries and automatic QA evaluation for different content selection methods.
In all model variants, we only consider the textual modality (i.e., BART with adapter tuning).
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Model Summary

Gold

Joshua tells Elizabeth he wants to turn Allison and demands she help ease Allison into her new life as
his wife. Elizabeth tells Joshua she will kill him before she allows him to hurt Allison. Livvie is able
to fend off her need to feed while she and Caleb make love. Frank searches for Allison. When Frank
attempts to kidnap Allison from Rafe, he discovers that it really is Lucy and I an in disguise. Allison
and Rafe reappear in Caleb s cave.

QA pairs

• Who does Frank try to kidnap Allison from? Rafe
• Who does Frank try to kidnap? Allison
• Who tries to kidnap Allison? Frank
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? wife

Text-only
(CS)

Rafe tells Alison that he will never let Joshua take her for his bride, but she tells him that she has no
choice in the matter. Elizabeth tells Joshua that she will not stand by and allow him to take her
daughter. Joshua tells Elizabeth that he is going to eas e Alison into her new lifestyle as his wife.
Elizabeth says that she is not going to let her daughter suffer the kind of nightmare that she lived. She
will kill Joshua before he is even that close to turning her. Alison tells Rafe that she thinks this is a
little extreme, that is all. Rafe says he will not let Joshua get to her. He promises to keep her away
from Joshua and all his goons. Caleb tells Livvie that she doesn t need to feed. He tells her that he can
t make love to her the way she wants to. She tells him she can t turn him back, but he tells her he can.
He says that he loves her and that he wants to make her his bride.

QA pairs

• Who does Frank try to kidnap Allison from? Joshua
• Who does Frank try to kidnap? Joshua
• Who tries to kidnap Allison? Rafe
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? wife

H-3D (CS)

Livvie tries to convince Caleb to let her take the risk of biting him, but she is afraid that she won t be
able to do it. Joshua tells Elizabeth that he wants Alison to be his bride. Elizabeth is shocked when
she finds out that Joshua wants to take Alison away from Rafe. Elizabeth tells Joshua that she will find
a way to stop him from taking Alison. Rafe tells Alison that he has a vision of a city of tortured souls,
a master vampire race, and his vampire bride. He tells her that he can make a perfect bride for her.
Alison tells Rafe that she doesn t want to leave her family, but Rafe assures her that she is not going to
leave them. Frank tells Ian that he is going to have to tell his boss that his mission didn t work.

QA pairs

• Who does Frank try to kidnap Allison from? Rafe
• Who does Frank try to kidnap? Allison
• Who tries to kidnap Allison? Rafe
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? vampire bride

LED

Caleb and Livvie try to convince Caleb that they can be together again, but Caleb refuses to believe
that he can t make love to Livvie. Rafe and Alison agree that they will be together, but Rafe tells
Alison that he will never be able to make love with her again. Elizabeth tells Joshua that she wants
him to turn Alison into a vampire bride. Joshua tells Elizabeth that he wants her to be his wife, but
Elizabeth tells him that she is not going to do that. Joshua says that he is going to make Alison a
vampire, and he will be the one true love of his life. Elizabeth says that she will never let Alison
suffer the kind of nightmare that she lived, and she will make her life as a vampire. Joshua and
Elizabeth argue about how much she wants to be a vampire and how much he wants to help her.
Elizabeth asks Joshua if he s going to help Alison, but he says he will not.

QA pairs

• Who does Frank try to kidnap Allison from? Caleb
• Who does Frank try to kidnap? Caleb
• Who tries to kidnap Allison? Rafe
• Who can fend off her need to feed while she and Caleb make love? Livvie
• Who tells Joshua she will kill him before she allows him to hurt Allison? Elizabeth
• Who tells Elizabeth he wants to turn Allison into his wife? Joshua
• What is Allison s new life? vampire

Table 18: Examples of generated summaries and automatic QA evaluation for different models. Here we compare
our Hierarchical3D model (H-3D) with state-of-the-art textual summarizers (i.e., LED).
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Abstract

Code comments are critical for maintaining and
comprehending software programs, but they are
often missing, mismatched, or outdated in prac-
tice. Code comment generation task aims to
automatically produce descriptive comments
for code snippets. Recently, methods based on
the neural encoder-decoder architecture have
achieved impressive performance. These meth-
ods assume that all the information required
to generate comments is encoded in the tar-
get function itself, yet in most realistic situ-
ations, it is hard to understand a function in
isolation from the surrounding context. Fur-
thermore, the global context may contain re-
dundant information that should not be intro-
duced. To address the above issues, we present
a novel graph-based learning framework to cap-
ture various relations among functions in a
class file. Our approach is based on a common
real-world scenario in which only a few func-
tions in the source file have human-written com-
ments. Guided by intra-class function relations,
our model incorporates contextual information
extracted from both the source code and avail-
able comments to generate missing comments.
We conduct experiments on a Java dataset col-
lected from real-world projects. Experimental
results show that the proposed method outper-
forms competitive baseline models on all auto-
matic and human evaluation metrics.

1 Introduction

Code comment generation is the task of automati-
cally producing natural language descriptions for
given code snippets. Appropriate and sufficient
comments are essential for software maintenance
and understanding (Xia et al., 2018). They allow
developers to grasp the purpose of source code
quickly and accurately. However, in real-life soft-
ware projects, comments are often missing, incom-
plete or outdated (Briand, 2003). Existing com-

†Equal contribution.
*Corresponding author.

1 private void firePropertyChange (String propName,

2 Object oldValue, Object newValue) {

3 PropertyChangeEvent evt = new PropertyChangeEvent();

4 ...

5 }

6 /* Removes a time series from the map and

fires a TS_REMOVED PropertyChangeEvent.*/

7 public removeTS (String name) {

8 boolean fireChanged = false;

9 ...

10 if (fireChanged)

11 firePropertyChange(TS_REMOVED, name, name);

12 }

13 /* Removes all time series from the map and

fires an ALL_TS_REMOVED PropertyChangeEvent.*/

14 public removeAllTS() {

15 ...

16 firePropertyChange(ALL_TS_REMOVED, null, null);

17 }

Table 1: Example illustrating the importance of utilizing
class-level contextual information.

ments will also need to be adjusted as the associ-
ated programs are updated, which could cause large
time and labor costs. Hence, there is a significant
need for automatic generation technologies that can
effectively produce high-quality comments.

Recent works in code comment generation take
the neural encoder-decoder architecture as their
cornerstone (Hu et al., 2018a; Alon et al., 2019;
LeClair et al., 2020; Zhang et al., 2020; Wei et al.,
2020). However, these works only utilize the in-
formation provided by the target function itself. In
object-oriented programming, classes are the build-
ing blocks that express algorithmic intentions and
they encapsulate the interaction between functions.
Therefore, the class-level contextual information
should not be ignored when we attempt to generate
code comments. There are some existing studies
that attempt to fill this gap. Haque et al. (2020)
encode all functions in a source file using GRU
(Cho et al., 2014) and apply an attention mecha-
nism to learn associations between the encoding
results to words in the generated comment. Yu et al.
(2020) construct a class graph that connects the
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target function to all other functions in the same
class to aggregate contextual information. Bansal
et al. (2021) present a project-level encoder to aug-
ment existing models by introducing contextual
information.

Although the above methods have shown promis-
ing performance, the way they introduce contextual
information is somewhat crude. Since not all sur-
rounding functions are closely related to the target
function, indiscriminately utilizing the whole con-
text may introduce noise, which would hurt the
model performance. We propose that consider-
ing function relations is a better way to leverage
the contextual information. For example, Table 1
presents three functions in a Java class. Within
this class, we can observe two types of function
relations. First, the function removeTS calls
firePropertyChange in its function body.
As we can see, the word "PropertyChangeEvent"
in the human-written comment appears not in the
target function, but in the callee function. Sec-
ond, removeTS and removeAllTS perform
very similar operations, and their comments are
almost identical, with the exception of a few noun
subjects. This example illustrates that the informa-
tion required to generate a comment may be located
outside the boundary of the target code snippet and
within the related functions.

Motivated by the above observation, we define
two types of relations between a function pair: ex-
tractive relation and inductive relation. The extrac-
tive relation captures connections between source
code snippets at two levels: call dependencies and
semantic similarity, allowing us to derive external
knowledge directly from the relevant code snippets.
The inductive relation captures common program-
ming patterns within a class. We observe that devel-
opers usually create similar comments for functions
that conform to a specific programming pattern.
Therefore, comments of functions that have induc-
tive relation to the target function can be used as a
template to guide the target comment generation.

In this paper, we propose a graph-based encoder-
decoder learning framework for code comment gen-
eration. Our approach is based on a common sce-
nario where only a few functions in the class file are
documented. We construct a heterogeneous graph
to model both the extractive relation and inductive
relation among functions within a class file. In the
encoding stage, we encode all functions and avail-
able comments using bi-GRU. Then, we design

an intra-class relational GAT encoder to aggregate
information and perform a fusion of both types
of relations via a cross-graph mechanism. In the
decoding stage, we employs a GRU decoder with
a by-pointer mechanism to generate a comment
utilizing the encoding results.

To evaluate the performance of our approach,
we gather a Java dataset that preserves the class
structure. We conduct experiments on this dataset
and perform evaluation using automatic and hu-
man evaluation metrics. The experimental results
show that our model outperforms prior methods by
a significant margin, which demonstrate the effec-
tiveness of our proposed framework.

2 Related Works

Early efforts on code comment generation are
template-based or information retrieval (IR) based
approaches (Sridhara et al., 2010; Haiduc et al.,
2010a,b; Eddy et al., 2013; Rodeghero et al., 2014;
McBurney and McMillan, 2014). In recent years,
the neural encoder-decoder architecture is em-
ployed to the code comment generation field, which
was designed for neural machine translation (NMT)
task originally. CodeNN (Iyer et al., 2016) is
an early work that attempts to adopt the encoder-
decoder architecture for generating code comments.
Followed works develop a variety of models by in-
troducing the Abstract Syntax Tree (AST) to extract
structural information of the source code (Hu et al.,
2018a; Alon et al., 2019; Allamanis et al., 2018;
Liang and Zhu, 2018; LeClair et al., 2019a). More
recently, novel code representations are learned via
well-designed encoders, such as GNN-based en-
coders (LeClair et al., 2020; Zhang et al., 2022) and
pre-training encoders (Ahmad et al., 2020; Zügner
et al., 2021; Guo et al., 2022).

Hybrid methods that integrate the IR-based and
neural-based techniques proved to perform well on
the code comment generation task. Zhang et al.
(2020) retrieve two similar code snippets of the
target function at syntax and semantics levels, then
utilize their encoding information to generate com-
ments in the decoding stage. Wei et al. (2020)
retrieve the most similar code snippet and the corre-
sponding comment to assist the generation process.
Liu et al. (2021) retrieve the most similar code-
comment pair and add it as auxiliary information
to their proposed Hybrid GNN framework.

However, these works rarely utilize contextual
information that is external to the target function.
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Figure 1: The overall architecture of our approach. Local encoders extract features from code snippets and known
comments (Section 3.3). The GAT encoder aggregates class-level information and produces final representations.
(Section 3.4). Lastly, these encoding results are fed into the decoder to create the target comment (Section 3.5).

Some of the most recent works make efforts to
bridge this gap (Haque et al., 2020; Yu et al., 2020;
Bansal et al., 2021). In contrast to these existing
approaches, our method explores function relation-
ships within a class and only incorporates related
functions. This has the advantage of avoiding noise
caused by irrelevant functions and focusing on the
valuable contextual information.

3 Approach

This section introduces our proposed framework
for code comment generation. Figure 1 illustrates
an overview of our approach.

3.1 Relation Extraction

To focus on valuable class-level contextual infor-
mation, we need to develop extraction rules for
function relations. We define the extractive rela-
tion as (1) the call dependency; (2) the TF-IDF co-
sine similarity. Call dependencies can be extracted
using the java-callgraph* toolkit, and the TF-IDF
cosine similarity between functions Xi and Xj is
calculated as:

sij =

−−−−−→
tfidf(Xi)T

−−−−−→
tfidf(Xj)

∥
−−−−−→
tfidf(Xi)∥∥

−−−−−→
tfidf(Xj)∥

∈ [0, 1] (1)

If the similarity score sij > α, we consider a ex-
tractive relation between Xi and Xj , where α is a
pre-defined threshold.

*https://github.com/gousiosg/java-callgraph/

Towards the inductive relation, we summarize
some common programming patterns and organize
them into five heuristic rules based on extensive
observations of open-source software projects. For-
mally, we consider an inductive relation between
two functions if:

(R1) the verbs in function names are antonyms,
with the same or no object entities;

(R2) the verbs in function names are the same, with
overlapping object entities;

(R3) both functions have the same parameters as
well as the same verbs in their names;

(R4) both functions have the same parameters as
well as the same return type;

(R5) the return type of one function corresponds to
the parameter type of another.

In (R1)-(R3), we conduct part-of-speech tagging on
function names using the toolkit Stanford CoreNLP
† to identify verbs and noun entities. And we use
the NLTK ‡ interface of WordNet § to get antonyms
of verbs in (R1). Appendix A provides several
examples that correspond to the preceding rules.

3.2 Graph Construction
For each class, we build a graph structure that con-
sists of two subgraphs, called function graph and

†https://stanfordnlp.github.io/CoreNLP/
‡https://www.nltk.org/
§https://wordnet.princeton.edu/
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comment graph. The node of the function graph
represents each function, while the node of the
comment graph represents the corresponding com-
ment. Since only a small fraction of comments
in the class are known, we use function names
to replace unknown comments. According to the
previously defined extraction rules, we add edges
between the corresponding function nodes if a pair
of functions fulfill the extractive relation, and be-
tween comment nodes if they satisfy the inductive
relation. Formally, we define a graph

G = { (vi, rfun, vj) ∪ (ui, rcom, uj) },
where v ∈ Vf is the node of function, u ∈ Vc is
the node of comment or function name, Vf ,Vc are
the sets of function nodes and comment nodes, and
rfun, rcom denote edges that represent the extrac-
tive relation between functions, and the inductive
relation between comments, respectively.

3.3 Local Encoder
Our model contains two local encoders, a func-
tion encoder and a comment encoder. They ex-
tract features from functions and comments sepa-
rately. The function encoder employs a bi-GRU
(Cho et al., 2014) to convert the source code se-
quence {x1, · · · , xn} into numerical vectors Z =
{z1, · · · , zn}, where zi = [−→zi ||←−zi ] is the concate-
nation of the hidden states from both directions. We
take Z as the representation of the input function.
The comment encoder also apply a bi-GRU to the
comment sequence {w1, · · · , wm}, and produce
hidden states {r1, · · · , rm}. The last hidden state
rm is considered as the comment representation.

3.4 Intra-class Relational GAT
We propose an intra-class relational graph atten-
tion network that performs on the previously con-
structed graph.

Node Initialization For function nodes, we
first apply the function encoder to obtain their
representations {Z1, · · · , ZK}, where Zi =
{zi1, · · · , zini} represents the i-th function. Then,
we use a target-aware attention mechanism to focus
on information in other functions that is beneficial
to the target function. We take the last hidden
state as the representation of the target function Zt,
which can be denoted as zt, and use it to compute
the attention weight as:

αt,ij =
exp(zTt Wtzij)∑ni
k=1 exp(z

T
t Wtzik)

, (2)

4
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Figure 2: An example of updating node 1 via cross-
graph attention mechanism.

where Wt is a learnable parameter. The atten-
tion score αt,ij measures the similarity between
the target function and the j-th token in the code
sequence of the i-th function. Then, we compute
the weighted sum of all elements in Zi:

f0
i =

ni∑

j=1

αt,ij zij , (3)

and take it as the initial representation of the func-
tion node vi. Finally, we obtain a set of target-
aware initial vectors representing function nodes,
which is denoted as {f0

i | i : vi ∈ Vf}. For com-
ment nodes, the last hidden states are used directly
as the initial node representations, and we denote
them as {c0i | i : ui ∈ Vc}.

Cross-Graph Attention We employ two sepa-
rate GAT modules, one for the function graph and
the other for the comment graph, which have the
same structure. In order to interact information
between these two graphs, we design a cross-graph
attention mechanism that is applied to each layer
of the GATs. Fig. 2 illustrates an example of this
mechanism. Specifically, the l + 1-th layer of each
GAT receives a set of messages {f li | i : vi ∈ Vf}
or {cli | i : ui ∈ Vc} from the previous layer. Then,
we obtain two output vectors f l+1

g,i , c
l+1
g,i and two

attention distributions calculated as:

efij = LeakyReLU(aT [Wa f
l
i ||Wa f

l
j ]),

βfij = Softmax(efij) =
exp(efij)∑
k exp(e

f
ik)
,

(4)

ecij = LeakyReLU(bT [Wb c
l
i ||Wb c

l
j ]),

βcij = Softmax(ecij) =
exp(ecij)∑
k exp(e

c
ik)
,

(5)

where a,Wa, b,Wb are trainable parameters.
Next, we exchange the attention weights and com-
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pute two cross-graph vectors as:

f l+1
cross,i =

∑

j:uj∈Nc(ui)
βcij Wd f

l
j , (6)

cl+1
cross,i =

∑

j:vj∈Nf (vi)
βfij We c

l
j , (7)

where ui is the corresponding comment node of
function node vi, Nf (vi) is a set of the neighbor-
ing function nodes of vi, Nc(ui) is a set of the
neighboring comment nodes of ui, and Wd,We

are trainable parameters. Finally, we aggregate the
cross-graph vector and the original GAT output vec-
tor to obtain an integral context vector that takes
into account both extractive and inductive relations:

f l+1
aggr,i = tanh(Wf [f

l+1
cross,i ||f l+1

g,i ]). (8)

cl+1
aggr,i = tanh(Wc[c

l+1
cross,i || cl+1

g,i ]). (9)

where Wf ,Wc are trainable weights.

Update Gate Motivated by (Cho et al., 2014),
we introduce an update gate to control how much in-
formation from the previous representation should
be transferred to the current representation:

g = Sigmoid(Wg[f
l+1
aggr,i ||f li ]), (10)

f l+1
i = g ∗ f l+1

aggr,i + (1− g) ∗ f li . (11)

We also obtain cl+1
i by performing the same oper-

ation. These two representations are the outputs
of the l + 1-th layer. We repeat the above process
L times and get the final node representations, de-
noted as fLi and cLi . Finally, we concatenate the
representation of the function node and its corre-
sponding comment node as the output of our GAT
encoder, which is denoted as gi = fLi || cLi .

3.5 Decoder
The decoder employs a GRU to generate comment
for the target function Zt. The initial hidden state
is a concatenation of the last hidden state zt from
the function encoder and the final output gt from
the GAT encoder.

Attention We consider multiple context vectors:
czt toward the output from the function encoder,
crt toward the output from the comment encoder,
and cgt toward the output from the GAT encoder,
which can be calculated as follows:

γtj =
exp(hTt Wsηj)∑
k exp(h

T
t Wsηk)

, (12)

cvt =
∑

j

γtj ηj , (13)

where Ws is a learnable parameter, ht is the current
decoder hidden state, and ηj represents the function
encoder output zj , the comment encoder output rj ,
and the GAT encoder output gj , respectively.

By-Pointer Since both code snippets and known
comments may contain words that are not in the
vocabulary, a portion of the predicted tokens could
be copied directly from them. Motivated by (See
et al., 2017) and (Sun et al., 2018), we design a
by-pointer mechanism to solve this problem. In the
t-th time step, the decoder takes embedding yt as
input, and the copy distribution is formulated as:

λ = Sigmoid(Wl[crt ||ht ||yt), (14)

Pcopy = λ ∗ γc + (1− λ) ∗ γf , (15)

where Wl is the trainable parameter. The γf is the
attention distribution between the current hidden
state ht and source codes, γc is the attention dis-
tribution between ht and known comments, both
calculated by Eq (12). Additionally, the generative
distribution over all vocabulary tokens is calculated
based on ht and three context vectors:

Pgen = Softmax(Wv[ht || czt || crt || cgt] + bv),
(16)

where Wv, bv are trainable parameters. Finally, we
obtain the prediction distribution as follows:

µ = Sigmoid(Wm[czt || crt || cgt ||ht ||yt]),
(17)

P (w) = µ ∗ Pgen + (1− µ) ∗ Pcopy (18)

where Wm is the trainable parameter. This mech-
anism allows our model to both generate tokens
from the vocabulary and copy tokens from two
sources during inference.

4 Experimental Setup

4.1 Dataset
Due to most public datasets only consist of inde-
pendent code snippets, we collect a dataset from
Google Code Archive that preserves class-level in-
formation. With the help of Sourcerer (Bajracharya
et al., 2014), we are able to trace and recover the en-
tire architecture of 1,000 real-world JAVA projects.
We assume that only 10% of functions or at least
one function have comments in each class. To
determine which functions will be treated as com-
mented, we use two different sampling settings. (1)
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Random Sampling: we randomly sample 10% of
functions in each class as commented based on the
assumption that commenting is a stochastic behav-
ior for developers; (2) Degree Sampling: since
functions that connect to others more frequently
often play a key role in programming, we calculate
function degrees in the class graph and rank them
in descending order. Then we sample the top 10%
of functions as commented. After sampling, we
split our dataset by projects according to a ratio of
8:1:1. The more detail of our dataset is provided in
the Appendix B.

4.2 Baselines

Retrieval-based Models RandomCopy ran-
domly copies comments from a known comment
set. MaxCopy computes the ROUGE-L score be-
tween the golden comment and known comments,
then copies the comment with the highest score.
NNGen (Liu et al., 2018) is a IR-based method for
generating commit messages that can also be used
in the code comment generation task.

Generation-based Models Seq2Seq (Sutskever
et al., 2014) is a bi-GRU with an attention mech-
anism. ASTGNN (LeClair et al., 2020) applys a
GRU encoder for the source code sequence, a GCN
(Kipf and Welling, 2017) encoder for the AST and
a GRU decoder for generation. Rencos (Zhang
et al., 2020) retrieves two similar functions from
a code retrieval base to enhance the neural gen-
eration. ClassGAT (Yu et al., 2020) employs a
local bi-GRU encoder and a global GNN encoder
to obtain two different levels of function represen-
tation. The encoder outputs are fed into a GRU
decoder with an attention and copy mechanism.
CodeBERT (Feng et al., 2020) is a pre-trained
model that can be adapted to a variety of NL-PL
applications. GypSum (Wang et al., 2022) learns
representations from source codes and ASTs using
a pre-trained encoder and a GAT encoder. The en-
coding results are fused in a Transformer decoder
to generate comments.

with Known Comments The baseline models
mentioned above only work on the source code
itself, whereas our approach incorporates known
comments additionally. To explore the influence
of known comments, we perform a modification
that introduces them into multiple baselines. For
Seq2Seq, we produce a comment by combining
the target function representation and the weighted

sum of known comment representations. Towards
ClassGAT, we take the initial node representation
as (i) a concatenation or (ii) a weighted sum of the
function representations and their corresponding
comment representations, then report the best per-
formance. As for CodeBERT, we set its input as
a concatenation of the target function and known
comments within the class.

with CodeBERT We also incorporate Code-
BERT into our model for verifying whether func-
tion relations still provide benefits when employing
a strong pre-training model. Specifically, we use
the CodeBERT and a transformer decoder to re-
place the bi-GRU encoder and the GRU decoder,
respectively.

4.3 Implementation Details

The value of threshold α is set to 0.7. Word em-
beddings are randomly initialized, the size of em-
beddings and hidden states are set to 256. Both the
encoder and decoder GRUs have a single layer and
the GAT has 3 layers. We use Adam (Kingma and
Ba, 2015) optimizer to train our model with the
weight decay rate being 1e-6. We set the learning
rate to 1e-4 and the dropout (Srivastava et al., 2014)
rate is 0.3. There is also a scheduler that reduce
learning rate when the BLEU on the validation set
stops improving for 3 epochs, and the learning rate
will not be less than 1e-6. All our experiments were
trained on Nvidia A40 GPUs.

4.4 Evaluation Metrics

We evaluate the quality of generated comments
based on BLEU (Papineni et al., 2002) and
ROUGE-1, -2, -L (Lin, 2004). We also report
1,2,3,4-gram precisions to determine how many
n-grams in the generated text overlap with the ref-
erence text. For human evaluation, we invited three
experienced raters to score fifty samples randomly
selected from the test dataset. For each gener-
ated comment, raters assign scores in three aspects:
(i) Fluency, which measures comment quality in
terms of grammaticality and readability; (ii) Rel-
evance, which examines whether the generated
comment accurately summarizes the functionality
of the code snippet; (iii) Informativeness, which
evaluates whether the comment offers concrete in-
formation that is free of redundancy or repetition.
These human evaluation metrics have a scale of 0
to 2 (where 2 indicates highly satisfied and 0 means
highly unsatisfied).
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Degree-Sampling

Model BLEU p1 p2 p3 p4 ROUGE-1 ROUGE-2 ROUGE-L

RandomCopy 13.08 30.0 14.4 9.2 7.4 30.72 14.04 29.41
MaxCopy 14.65 32.2 16.2 10.4 8.4 33.60 16.20 32.26
NNGen 16.11 29.1 16.4 13.1 12.1 30.29 17.68 29.48

Seq2Seq 15.10 37.1 18.1 11.9 9.9 37.49 18.47 36.05
ASTGCN 16.05 39.5 18.9 12.2 9.6 41.76 20.65 39.71
Rencos 16.08 39.1 20.9 14.4 12.3 37.83 20.06 36.63
ClassGAT 17.38 40.7 20.5 13.6 11.1 42.70 21.65 40.51
CodeBERT 18.29 46.9 25.2 16.8 13.5 45.00 24.01 43.25
GypSum 18.95 44.6 23.9 15.5 12.0 45.44 24.22 43.60

Seq2Seq+KC 16.51 39.4 20.4 12.9 10.6 39.82 20.76 38.37
ClassGAT+KC 18.52 42.8 22.1 14.9 12.6 43.34 22.67 41.05
CodeBERT+KC 19.64 51.9 29.0 18.3 13.6 49.95 27.54 47.87

Ours 21.39 47.3 26.6 18.6 15.9 46.78 25.72 44.87
+ CodeBERT 25.60 51.9 31.8 22.8 18.8 51.87 31.54 49.89

Table 2: Comparison between our model and baselines. "KC" refers to the known comments.

Model Fluency Relevance Informativeness

Seq2Seq 1.19 (±0.86) 0.72 (±0.75) 0.93 (±0.79)
ClassGAT 1.27 (±0.82) 0.81 (±0.75) 1.01 (±0.76)
CodeBERT 1.39 (±0.78) 1.13 (±0.77) 1.31 (±0.75)
Ours 1.54 (±0.77) 1.21 (±0.87) 1.36 (±0.72)

Table 3: Results of human evaluation (standard devia-
tion in parentheses).

5 Results and Analysis

5.1 Automatic Evaluation

The comparative results are summarized in Table
3. Overall, our model outperforms all baselines
by a large margin. Retrieval-based models have
relatively poor results since they do not adequately
exploit the semantic information of the source code.
In comparison, generation-based models perform
better. ASTGCN surpasses Seq2Seq by incorporat-
ing structural information from the AST. Rencos
and ClassGAT improve their performance with the
assistance of external information. CodeBERT and
GypSum exceed other baselines by utilizing their
extensive pre-training knowledge. After aggregat-
ing related contextual information, our model out-
performs all baseline models. This suggests that
considering function relations is an effective way to
enhance the comprehension of the target function.

We discover that introducing known comments
can improve the performance of some baselines.
As shown in Table 2, all of the methods achieve an
improvement on BLEU and ROUGE. Due to the
vast knowledge gained during the pre-training pro-
cess, CodeBERT significantly improves ROUGE-L
from 43.25 to 47.87 (+ 4.62%). This result suggests
that known comments from the class context can
help with code comment generation. We also ana-

lyze the effect of known comments on our model
in the Appendix C.

Although these models present competitive per-
formance with the incorporation of known com-
ments, our model equipped with CodeBERT still
manages to make a further improvement and
achieves the best BLEU and ROUGE scores among
all the involved models. This shows that combin-
ing our framework with the pre-trained model can
effectively absorb both the contextual information
and the pre-training knowledge, which allows our
approach to collaborate with more advanced pre-
trained models in the future.

5.2 Human Evaluation
We further conduct human evaluation to assess the
quality of comments generated by different mod-
els, as shown in Table 3. Our model surpasses
the baseline models on all metrics. The Seq2Seq
model has a much lower score than others, because
it only utilizes local information contained in the
source code, whereas other models incorporate con-
textual information or pre-training knowledge as
well. Since the by-pointer mechanism enables our
model to copy tokens from both the source code
and known comments, it significantly improves
the fluency of generated comments. Besides, the
highest relevance and informativeness score indi-
cates that our model can effectively summarize the
behavior of a given function.

5.3 Ablation Study
To examine the contribution of components in our
framework, we evaluate the performance after re-
moving each of them, as shown in Table 4. We dis-
cover that removing any of the modules has a neg-
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Model BLEU p1 p2 p3 p4 ROUGE-1 ROUGE-2 ROUGE-L

Ours 21.39 47.3 26.6 18.6 15.9 46.78 25.72 44.87
w/o function encoder 16.39 42.2 21.4 13.1 10.0 43.45 22.44 41.40
w/o GAT encoder 16.75 44.3 22.0 13.4 10.1 45.09 22.20 42.84
w/o target-aware attention 19.35 46.3 24.7 16.2 12.9 46.41 24.72 44.24
w/o cross-graph attention 18.81 45.0 24.1 15.8 12.6 45.14 23.74 43.06
w/o by-pointer mechanism 20.27 46.9 25.7 17.4 14.7 46.58 25.20 44.53

Table 4: Ablation study results of our approach.

ative impact on the model performance. Without
the function encoder or GAT encoder, the perfor-
mance drops significantly, suggesting that both are
critical components in our framework. Removing
the target-aware attention or cross-graph attention
mechanism also results in a noticeable performance
degradation, indicating that both mechanisms con-
tribute to overall performance. Besides, we observe
a slight drop in performance without the by-pointer
mechanism, confirming that this component can
effectively copy tokens from the source code and
known comments to improve comment generation.

5.4 Threshold α

The hyper-parameter α determines the lower limit
of TF-IDF similarity scores. To explore how model
performance varies with α, we run a series of ex-
periments with different values of α, while keeping
other hyper-parameters constant. Fig. 3 shows the
corresponding results. It illustrate that α = 0.7
achieves peak performance in both BLEU and
ROUGE-L. When α is equal to 0.5 or 0.9, our
model performs poorly in both metrics. This may
be because when the α is too small or too large,
there are too many or too few functions associated
with the target function, and the model is unable to
make effective use of contextual information.

5.5 Sampling Settings

To investigate the impact on our approach when
programmers select functions to be commented
in different ways, we conduct a series of experi-
ments under random and degree sampling settings.
The experimental results are reported in Fig. 4.
Compared to the competitive baselines, our model
presents better performance under both settings.
Since our model is able to capture function rela-
tions within a class, even randomly commenting
functions can help improve the quality of gener-
ated comments. Furthermore, it clearly shows that
our model performs much better under degree sam-
pling than random sampling, due to the reason that
commenting functions with higher degrees can ben-
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Figure 3: Performance of our model with different
threshold α.
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Figure 4: Performance of different models under ran-
dom sampling and degree sampling.

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Ours 21.39 46.78 25.72 44.87
w/o TF-IDFSim 19.21 46.11 24.64 43.95
w/o R1 19.70 45.86 24.09 43.81
w/o R2 20.52 46.48 25.67 44.37
w/o R3 20.28 46.22 24.98 44.03
w/o R4 20.48 46.39 25.09 44.30
w/o R5 21.09 46.68 25.72 44.54
fully connected 17.73 45.60 23.73 43.42

Table 5: Impact of different types of edges.

efit more functions in the same class. This finding
implies that when engineering in the real world, it
may be a good idea to start by writing comments
for functions with higher degrees.

5.6 Relation Types

To examine the utility of edges constructed by TF-
IDF similarity and five types of inductive relations,
we remove them from the class graph to observe
how it affects model performance, as presented
in Table 5. It demonstrates that removing either
type of edge leads to a drop in BLEU and ROUGE
scores. Specifically, the performance degradation
is greatest after dropping edges of type TF-IDFSim
and R1, indicating that they are the most influen-
tial relation types. While removing R5 edges has
the least impact on model performance, this can
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Case 1 Case 2

Target
Function

public boolean isCurrent() {
boolean result = false;
if (this.getNumber().intValue() ==

EasyCalendar.getOne().getCurrentYear()) {
result = true ;

}
return result;

}

public Vector parse (final String str, char separator) {
if (str == null) {

return new Vector();
}
return parse(str.toCharArray(), separator);

}

Class
Context

Related Function:
public Month getCurrentMonth() {

Month month = null;
if ( isCurrent() ) {

int currentMonthNumber = EasyCalendar.getOne()
.getCurrentMonth();

month = getMonth(currentMonthNumber);
}
return month;

}

Known Comment:
gets the current month , but only if this year is the current one

Related Function:
public Vector parse (final char[] chars, int offset,

int length, char separator) {
if (chars == null) {

return new Vector();
}
Vector params = new Vector();
... ...
return params;

}

Known Comment:
extracts a list of name value pairs from the given array of characters

Graph
C

T

C

T

Function Graph Comment Graph

C

T

Function Graph Comment Graph

C

T

Golden checks if this year is the current year extracts a list of name value pairs from the given string
Seq2Seq gets the value of the attribute parses a string from the given
ClassGAT returns true if the current has the desired result extracts a character value at the given character
CodeBERT returns the current year extracts a vector from the string buffer
Ours returns true if this year is current one extracts a list of name value pairs from the given string

Table 6: Examples of the source codes, graph structure and generated comments. "T" refers to the target function
and "C" refers to the commented function in the class context.

be attributed to the low occurrence of this relation
type in the dataset. Furthermore, we conduct an
experiment to investigate the impact of exploiting
contextual information in a crude manner. To be
more specific, rather than modeling functional re-
lations, we construct a fully connected graph to
introduce the entire class context. Our model suf-
fers greatly as a result of this operation, with the
BLEU and ROUGE-L dropping 3.66% and 1.45%,
respectively. This performance loss verifies the ef-
fectiveness of our design for utilizing class-level
contextual information.

5.7 Case Study

Table 6 shows two examples of generated code
comments. In the first case, there is a commented
function in the class that is the caller of the tar-
get function. The second half of its comment pro-
vides an accurate description of the target function
isCurrent. Although there is no direct connec-
tion between these two functions in the comment
graph, our model is still able to extract information
from the known comment through the cross-graph
attention mechanism and generate a high-quality
comment. In contrast, baseline models do not cap-
ture the true functionality of the source code and
their generation results has a large deviation from
the original intention.

In the second case, it is difficult to figure out the
purpose of target function solely from the source
code. Since there is a defined (R1) pattern between
the target function and a commented function from
the class context, the constructed edge in the com-
ment graph allows our model to aggregate com-
ment of this related function. Therefore, our model
successfully generates "a list of name value pairs",
whereas other models fail to capture this key infor-
mation and produce meaningless comments. More-
over, it is worth noting that our model is unaffected
by irrelevant information in the known comment,
yielding the true object "string" rather than "array
of characters". The final output of our model is
exactly same as the human-written comment.

6 Conclusion

In this paper, we propose a graph-based learning
framework for code comment generation. Our ap-
proach targets a practical scenario where only a
few functions in the class file have human-written
comments. To identify valuable information from
the class context, we model function relations and
develop a graph attention network to aggregate
class-level contextual information. We conducted
experiments on Java programs collected from real-
world projects and the results demonstrate that our
approach outperforms prior methods.
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Limitations

There are four main limitations of our work. First,
we only evaluate our model on Java code snippets.
Although we expect that our approach could be gen-
eralized to other programming languages, further
experiments is required to confirm this hypothe-
sis. Second, our model does not utilize syntactic
information (e.g. ASTs) of the source code. Thus,
our next effort will incorporate this type of infor-
mation into our framework to advance comment
generation. Third, we do not employ Transformers
in our approach due to limited resources. This will
also be left to our future work. Fourth, in compar-
ison with the widely used datasets TL-CodeSum
(Hu et al., 2018b), CodeSearchNet(Husain et al.,
2019) and Funcom(LeClair et al., 2019b), the size
of our collected dataset is relatively small (Table
7). A large-scale code comment generation dataset
that retains class structure information is needed in
future studies.

Dataset Ours TL-CodeSum CodeSearchNet Funcom

Examples 40,328 87,136 496,688 2.1 M

Table 7: Number of dataset examples.
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A Examples of the inductive relation

Table 8 shows examples that correspond to the five
inductive relation rules defined in Section 3.1.

B Dataset

In order to better suit the scenario of our task, only
well-commented JAVA classes are retained, which
means classes containing more than three functions
and at least 70% of them have manually written
comments. The detailed statistics of our dataset are
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Figure 5: Length distribution of functions and com-
ments in the dataset

.

shown in Table 9. Figure 5 shows the length distri-
bution of target function and golden comment of
our dataset. The length of functions is basically less
than 100 and the length of comments are mainly
between 3 and 25.

The data is preprocessed in following ways: for
each function, (1) we extract the summative content
in the Javadoc and take the first sentence as the
comment; (2) we remove all the format controlling
tokens and only retain comments having at least
three words; (3) we serialize the function-comment
pairs, remove non-alphabetical characters, and split
tokens written in camelCase or underscore style;
(4) we truncate the source code sequences to 200
tokens.

C Known Comments

As shown in the section 5.1, incorporating known
comments into comment generation can signifi-
cantly improve baseline model performance. To
further demonstrate the effect of known comments,
we remove them from our model and evaluate
model performance. Specifically, we use function
names instead of known comments for comment
nodes during the graph construction step while leav-
ing other settings unchanged. The experimental
results are shown in Table 10. It illustrates that
removing known comments reduces BLEU and
ROUGE-L scores by 4% and 3%, respectively, in-
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Function 1 Function 2

Rule 1

/* Adds a service to the framework. */
public void add Service (Service service) {

Settings settings = service.getSettings();
servicesMap.put(settings.getName(), service);
settingsMap.put(settings.getName(), settings);

}

/* Removes a service from the framework.
public remove Service (Service service) {

Settings settings = service.getSettings();
servicesMap.remove(settings.getName());
settingsMap.remove(settings.getName());

}

Rule 2

/* Get degrees of latitude in different formats. */
public String get LatDeg (int format) {

switch (format) {
case DD :

return Double.toString(this.getLatDec());
...
case DMS :

return getDMS(getLatDec(), 0, format);
default :

return "";
}

}

/* Get degrees of longitude in different formats. */
public String get LonDeg (int format) {

switch (format) {
case DD :

return Double.toString(this.getLonDec());
...
case DMS :

return (((getLonDec() < 100.0) &&
(getLonDec() > -100.0)) ? "0" : "") +

getDMS(getLonDec(), 0, format);
default :

return "";
}

}

Rule 3

/* Method to calculate the bearing of a waypoint. */
public double get Bearing( CWPoint dest ) {

if (!this.isValid() || dest == null || !dest.isValid())
return 361;

return GeodeticCalculator.calculateBearing(
TransformCoordinates.WGS84, this, dest);

}

/* Method to calculate the distance to a waypoint. */
public double get Distance( CWPoint dest ) {

...
return GeodeticCalculator.calculateDistance(

TransformCoordinates.WGS84, this, dest) / 1000.0;
}

Rule 4

/* Returns the Action at the specified index. */
public Action get( int i ) {

...
return (Action)m_actions.get(i);

}

/* Removes the Action at the specified index. */
public Action remove( int i ) {

...
return (Action)m_actions.remove(i);

}

Rule 5

/* Add a Log to the list. */
public int add( Log log) {

resetRecommendations();
if (log != null && log.getLogType() != null) {

return merge(log);
}
return -1;

}

/* Get the Log at a certain position in the list. */
public Log getLog( int i) {

...
return logList.get(i);

}

Table 8: Examples of function pairs with the inductive relation

Item Number

Classes 3,344
Functions 40,328
Training examples 25,247
Validation examples 3,900
Test examples 2,770

Avg functions per class 12.4
Avg tokens per function 62.8
Avg tokens per comment 8.14

Table 9: Statistics of Our Dataset

Model BLEU p4 R-1 R-2 R-L

Ours 21.39 15.9 46.78 25.72 44.87
w/o KC 17.55 11.4 43.88 22.67 41.79

Table 10: Effect of known comments.

dicating that known comments are quite essential
for our model to capture code features and generate
accurate comments.
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Abstract

We examine whether large neural language
models, trained on very large collections of
varied English text, learn the potentially long-
distance dependency of British versus Ameri-
can spelling conventions, i.e., whether spelling
is consistently one or the other within model-
generated strings. In contrast to long-distance
dependencies in non-surface underlying struc-
ture (e.g., syntax), spelling consistency is eas-
ier to measure both in LMs and the text cor-
pora used to train them, which can provide ad-
ditional insight into certain observed model be-
haviors. Using a set of probe words unique
to either British or American English, we first
establish that training corpora exhibit substan-
tial (though not total) consistency. A large
T5 language model does appear to internalize
this consistency, though only with respect to
observed lexical items (not nonce words with
British/American spelling patterns). We fur-
ther experiment with correcting for biases in
the training data by fine-tuning T5 on syn-
thetic data that has been debiased, and find that
finetuned T5 remains only somewhat sensitive
to spelling consistency. Further experiments
show GPT2 to be similarly limited.

1 Introduction

The probabilities that neural language models
(LMs) assign to strings can be used to assess how
effectively they capture linguistic dependencies
found in their training data. Much as in psycholin-
guistic experiments on human language speak-
ers, we can present LMs with strings both with
and without agreement in key dependencies and
measure the assigned probabilities to determine
whether the model has learned these linguistic gen-
eralizations or not (see e.g., Futrell et al. 2018).
For example, sentences both with and without sub-
ject/verb number agreement (but otherwise identi-
cal) can be used to assess whether the model ac-
counts for that particular dependency, even over

long distances. Various long-distance dependen-
cies have been investigated in this manner, from
purely linguistic phenomena such as syntactic de-
pendencies (e.g., Gulordava et al. 2018) to extra-
linguistic phenomena such as socio-cultural biases
(e.g., Rudinger et al. 2018).

In this paper, we examine dependencies based
on orthographic cues to language variety. Many
LMs are trained on large corpora scraped from the
web, and data from different language varieties are
often combined. For example, LMs trained on web-
scraped English (e.g., the WebText Corpus of Rad-
ford et al. 2019) encounter British English, North
American English, and multiple World Englishes.
Likewise, Spanish web corpora may include sev-
eral distinct varieties of Latin American Spanish, as
well as Iberian Spanish (e.g., Kilgarriff and Renau
2013). Here we use differences between British
and American English spelling conventions to ask
whether LMs trained on large and diverse collec-
tions of English learn to apply these conventions
consistently within the same span of text. For ex-
ample, if the British spelling of the word labour
appears in a sentence prefix, will the LM assign
higher probabilities to continuations that maintain
British spelling conventions (e.g., organisation)
over those that have American-spelled forms (or-
ganization)? To the extent that such models are
used within response generation systems or for next
word prediction in virtual keyboards, maintaining
such consistency would be strongly desirable so
users receive results appropriate for their locale.

Of course, as with any such dependencies, mod-
els can only learn generalizations that are present
in the data, so we also look at the degree to which
corpora used to train the large LMs (LLMs) that
we investigate (as well as a few others) demon-
strate spelling convention consistency. Assessing
whether syntactic or semantic generalizations are
learned by models trained on noisy, errorful and
inconsistent data is complicated by the difficulty in

1334



quantifying the actual degree of consistency of the
dependency in the data itself. In contrast to struc-
tural linguistic generalizations or other implicit in-
formation, the explicitness of spelling conventions
permits straightforward corpus analysis in addition
to model probing, providing another avenue for
explaining model performance.

The results of our data analysis are presented
in §4. We find that relevant web-scraped English
text used to train LLMs unsurprisingly does not
provide perfect consistency — and further that it
is heavily skewed towards American spelling con-
ventions — but that it provides as much or more
consistency than some curated corpora such as the
British National Corpus (BNC Consortium, 2007).
We then present methods, in §5, to measure the de-
gree to which two neural LLMs – T5 (Raffel et al.,
2020) (both with and without additional finetuning)
and GPT2 – exhibit spelling variation consistency.
We find that T5 without finetuning demonstrates
a general preference for consistency, but that this
preference is weaker for British than American En-
glish and does not extend robustly to nonce words.
Finetuning T5 on a synthetically modified portion
of the British National Corpus reduces the pref-
erence for American English. We then modify
our conditional probability calculations to allow
demonstration of similar patterns of model behav-
ior for GPT2, a very differently architectured and
trained LLM (Radford et al., 2019). Lastly, in §6,
we take a slightly deeper dive into the kinds of (and
reasons for) spelling convention inconsistencies in
some corpora analyzed in §4.

Overall, we demonstrate that, while T5 and
GPT2 display some sensitivity to spelling conven-
tion differences, this cannot be relied on to produce
consistent generated output. If reliable spelling con-
sistency is an application requirement, additional
post-processing may need to be applied to LLM
output.

This paper makes several key contributions.
First, we provide methods for straightforwardly as-
sessing the ability of LLMs to capture certain well-
attested long-distance dependencies in English, and
demonstrate the strengths and shortcomings of two
well-known models in doing so. This opens up
the possibility of exploratory studies in languages
where such conventions are less well documented.
In contrast to the most heavily investigated types
of long-distance dependencies (e.g., syntactic), the
(previously unexplored) dependency of spelling

convention consistency is directly observable in
the surface string and hence is relatively easy to
assess in both models and data. As a result, it can
be seen as a useful task for assessing LM learning
in general. We also document the degree to which
web-scraped corpora exhibit spelling consistency,
making clear that the models have plenty of room
for improvement. However, American English is
shown to be far more heavily represented in the
training corpora than British English, to the point
that performance for British English is demonstra-
bly far worse than for American English, some-
thing that language generation or word prediction
systems must address for equitable performance.

2 Background

2.1 Dependencies and LMs

Much of the work investigating whether large lan-
guage models capture long-distance linguistic gen-
eralizations has focused on non-surface dependen-
cies, such as co-reference. In order to correctly
identify that two expressions refer to the same en-
tity, models often need to identify complex syn-
tactic relationships (e.g., c-command), or build a
model of entities over an entire discourse (e.g.,
Clark and Manning 2016). Despite this complex-
ity, LLMs have shown some promise as general-
purpose co-reference resolvers (Joshi et al., 2019).
This suggests that they can learn to model complex
long-distance dependencies.

Other research has shown more directly that
LLMs model syntactic dependencies. A common
methodology is to compare an LM’s surprisal di-
rectly to psycholinguistic data (Futrell et al., 2018).
If the LM still performs like a human on examples
that require modeling hierarchical relationships be-
tween tokens, this suggests that the LM has learned
some part of the more complex syntactic structure
of the language. Work such as Futrell et al. (2018)
has shown that a recurrent neural network language
model achieves surprisal rates that mimic human
processing, including in these syntactically com-
plex situations. This suggests that an RNN LM
can be sensitive to complex syntactic relationships
as well. Similar methods have been used to show
LMs learning syntactic dependencies in Linzen
et al. (2016), Frank et al. (2016), and Brennan et al.
(2020).

Another class of methods for assessing whether
LMs learn complex syntactic dependencies in-
volves probing the models themselves to evaluate
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whether syntax-like relationships between tokens
can be discovered. Details of their methods vary
widely, but Clark et al. (2019), Hewitt and Manning
(2019), and Lin et al. (2019) all suggest that many
LMs learn complex syntactic dependencies.

In contrast, the topic of the current paper –
spelling convention dependencies – is a relatively
surface-level dependency. A model does not need
to capture the syntactic or semantic relationship be-
tween two words in order to evaluate spelling con-
sistency, rather simply their co-occurrence. Given
prior results showing that LMs can and do learn
complex semantic and syntactic relationships be-
tween words, one might expect that a relatively
simple dependency like spelling convention should
be easy for an LM to learn.

2.2 Spelling variation

As discussed by Berg and Aronoff (2017), the or-
thography of English has never been regulated
by an official body, but has rather emerged dy-
namically over time. Dictionaries played a key
role in settling spelling conventions, with Samuel
Johnson’s (1755) dictionary being the key source
of contemporary British spelling conventions and
Webster’s (1828) dictionary the key source of con-
temporary American spelling. The latter included
spelling reforms such as using the suffix -or in-
stead of -our for certain words, e.g., labor instead
of labour. These reforms were adopted in Ameri-
can spelling but not in British spelling conventions.

This history makes English an interesting case
study for spelling variation in particular. Lan-
guages that have historically had centralized reg-
ulatory institutions, such as the French or Royal
Spanish Academies, have much less purely ortho-
graphic variation. For example, despite many lexi-
cal differences, there are few spelling differences
between Iberian and Latin American Spanish. On
the other hand, there are many language situa-
tions that have considerably more spelling vari-
ation. For example, speakers of South Asian lan-
guages that are traditionally written with Brahmic
or Arabic scripts often write using the Latin alpha-
bet in contexts like SMS messages and social media
(Roark et al., 2020). This kind of informally roman-
ized text presents many spelling variations due to
these languages’ lack of orthography in the Latin
script. The well-documented nature of English
spelling variation and its close ties to standardized
regional varieties make it a good initial case study

for whether LLMs learn systematic variation in the
data. If so, such models may be useful in more
exploratory studies, such as the above-mentioned
scenario where no official orthography exists.

As far as we are aware, the issue of spelling
convention consistency in language models has
not been investigated. Nguyen and Grieve (2020)
looked at whether word embeddings are robust to
spelling variation, not whether generative language
models capture spelling consistency. That paper fo-
cused mainly on the kinds of variation that arise in
informal social media text, but they also examined
British versus American spelling. Unsurprisingly,
they found that cosine similarity between British
and American spelled variants are high relative to
other patterns of informal spelling variability.

2.3 Prompting LMs

In the present work, we construct prompts to mea-
sure the probability assigned to various tokens by
LLMs. In constructing these prompts, we take into
account the findings of recent work on prompting
LMs. Our work is different from the sort of prompt-
ing described by these papers, which generally in-
cludes features such as task-specific prefixes con-
taining instructions (e.g., Raffel et al. 2020), verbal-
ized class labels (e.g., Schick and Schütze 2021),
or in-context learning (e.g., Brown et al. 2020),
none of which are present in our approach. How-
ever, work such as Webson and Pavlick (2022) has
shown large effects due to small variations in the
wording of prompts, even if the reasons for these
effects are not apparent. Therefore, we choose to
present the model with several different prompts
and average the probabilities over all prompts, in
order to account for possible variation.

3 Data and models

To assess the spelling convention consistency
of data and models, we use a list of British
and American English spelling differences that
is part of the open-source American British En-
glish Translator.1 We used the 1706 word pairs
in the data/american_spellings.json file at
that site. This list includes American and British
spelling variants for words with common dif-
ferences such as -or/-our (e.g., vapor/vapour),
-ize/-ise (realize/realise), consonant doubling (mod-
eling/modelling), -er/-re (liter/litre), along with

1https://github.com/hyperreality/
American-British-English-Translator
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some number of term-specific spelling differences
(aluminum/aluminium). We use this list to create
prompts for probing the language models and to es-
tablish the consistency of usage within corpora, i.e.,
whether strings found in this list consistently follow
one convention or the other when they co-occur.

For model probing, we examine T5 (Raffel et al.,
2020), a general purpose encoder-decoder model.
We use the t5-large architecture variant on the T5X
codebase,2 which has approximately 770M param-
eters. For English, T5 is (pre-)trained using a span
corruption objective on the Colossal Clean Crawled
Corpus (C4), an English language collection de-
rived from Common Crawl (Raffel et al., 2020).3

We also examine GPT2, for which we use the
open-source HuggingFace implementation (Rad-
ford et al., 2019). Unlike T5, GPT2 is a purely au-
toregressive language model rather than an encoder-
decoder sequence-to-sequence model. It is trained
to perform next-word prediction rather than fill in
corrupted spans of text. GPT2 is built on OpenAI’s
WebText corpus (Radford et al., 2019), of which
there is an open-source variant available.4

We examine C4 and OpenAI’s WebText corpus
for spelling convention consistency, along with sev-
eral other corpora: English Wikipedia (downloaded
06-21-2020); the Billion Word Benchmark (Chelba
et al., 2013), which is a collection of newswire text;
and the British National Corpus (BNC Consortium,
2007),5 which is a balanced corpus of both written
and spoken material.6

4 Training corpora consistency

To examine spelling consistency in training data,
we made use of the list of spelling variants and
the five corpora mentioned in Section 3: C4, the
OpenWebText Corpus (OWT), English Wikipedia
(EngWiki), the Billion Word Benchmark (BWB),
and the British National Corpus (BNC). We convert
all strings in each corpus to lowercase, and treat all
characters outside of the a–z range as whitespace
for tokenization. We look for exact matches of list
items in the resulting whitespace-delimited tokens.

2https://github.com/google-research/t5x/blob/main/docs/
models.md#t5-checkpoints

3http://commoncrawl.org/
4https://skylion007.github.io/OpenWebTextCorpus/
5http://www.natcorp.ox.ac.uk/
6Code for querying corpora and generating prompts,

as well as other relevant data and code, can be found
at https://github.com/google-research/google-research/tree/
master/spelling_convention_nlm.

total # of X-matched %
Corpus word pairs US UK mis
C4 542,755,756 74.6 14.7 10.8
OWT 42,255,261 79.7 11.5 8.8
EngWiki 1,527,529 58.0 26.5 15.4
BWB 442,733 67.5 23.6 8.9
BNC 74,072 14.5 64.8 20.8

Table 1: Study of word pairs found in the same string from
either UK or US spelling list over corpora of different sizes
and characteristics, with percent of US-matched, UK-matched
and mismatched US/UK pairs.

Let+US be the US spelling variants7 of the words
in the list and +UK the UK spelling variants. For
each corpus �, let B: = |1 . . . | |B: | represent the
:th string in the corpus, consisting of |B: | words.
We extract all pairs of words (|8 , | 9) from B: such
that 8 < 9 and |8 , | 9 ∈ +US

⋃
+UK. Each extracted

pair (|8 , | 9) is placed into one of three classes:
the pair is (1) US-matched if |8 , | 9 ∈ +US; (2)
UK-matched if |8 , | 9 ∈ +UK; and (3) mismatched
otherwise. We then aggregate the counts for pairs
in these three bins across all strings in the corpus.

Table 1 presents the number of pairs extracted
from each corpus and the percentage of those
within each class. Several things jump out from
these results. First, all of the corpora, other than the
British National Corpus, have significantly more
US-matched pairs than UK-matched pairs, with
OWT and C4 being the most skewed towards US-
matched pairs. This likely indicates a heavy overall
skew towards US spelling variants, leading to a
high prior probability of US spelling variants in
LLMs. Second, the percentage of extracted pairs
that are mismatched are non-negligible, however
there is a lot of consistency. For example, in the
C4 corpus, if a word from +UK is the first word
of a pair, the probability that the next word will
also be from +UK is nearly three times the proba-
bility that it is from +US.8 Finally, both English
Wikipedia and the British National Corpus have
somewhat elevated levels of mismatch compared
to the other corpora, something we look at more
closely in Section 6.

Having established that the level of mismatch in
the C4 corpus used to train T5 is at the lower end

7For convenience, we use US as shorthand for American
and UK as shorthand for British.

8Mismatched pairs in all corpora are roughly equally split
between having +US or +UK words first. Hence, for C4, 5.4%
of pairs are +UK followed by +US words (half of the mis-
matched probability), while 14.7% are +UK followed by +UK.
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observed in the data we examined,9 we now move
on to examine whether the trained models pick up
on these dependencies.

5 Language model consistency

From the dictionary presented in Section 3, we
kept only the words that can be described by a
small number of rules, e.g., the variation between
-ize and -ise, etc, leaving us with 1266 options.
For efficiency, we sample ≈16k prompt-target pairs
(16028) from all possible 12662 combinations.

To eliminate all sources of variation besides the
pair of words being tested, we created several tem-
plate sentences into which we can insert pairs of
words. The full set of templates is presented in
Table 9 in Appendix A. Several considerations in-
formed how we formulated the templates so that
they work for all the tokens we wanted to test.

First and most obviously, we need to ensure that
all tokens in a template are variety-neutral. This
ensures that the probability of any of our test words
being British or American will not be swayed by
any regional bias in the template. While neutral-
ity is difficult to enforce perfectly within a single
frame, we hope that by using multiple different
templates, we can mitigate unknown sources of
bias via averaging.

Second, we need templates that will be syntacti-
cally and semantically acceptable, regardless of the
inserted tokens. LLMs may assign low probability
to tokens that result in grammatically unacceptable
or semantically unlikely sentences, and we want to
avoid introducing this source of variation. This is
challenging, since the tokens we are testing include
different parts of speech and come from very differ-
ent semantic domains, hence there are few contexts
where all tokens would be acceptable.

Fortunately, this problem has an analogue in lin-
guistics: linguists interested in detailed phonetic
description often elicit tokens in set contexts to
eliminate extraneous sources of acoustic variation
(Bowern, 2015). The approach these linguists often
take is to use a template that mentions the tokens
in question rather than using them. We follow this
approach, and use templates similar to (1), which
contain a list of word mentions.

(1) My preferred words are ..., ..., and tree.

9We note again the benefit of these explicit surface-level de-
pendencies – we can easily assess the prevalence/consistency
of the training data, in contrast to structural dependencies.

We then substitute pairs of words from our dictio-
nary into the spaces marked with ellipses, both with
consistent and inconsistent spelling conventions. In
other words, given the pair of dictionary entries re-
alize/realise and center/centre, we use the template
above to generate the four test sentences:

(2) a. US/US: My preferred words are
realize, center, and tree.

b. US/UK: My preferred words are
realize, centre, and tree.

c. UK/US: My preferred words are
realise, center, and tree.

d. UK/UK: My preferred words are
realise, centre, and tree.

We use T5 to score the probability of generating
the second bolded word, as shown in Example (2),
given the first.

In the above template, the two words are adjacent
in the string. We also include a non-adjacent con-
dition, which augments the templates by adding
ten variety-neutral tokens between the bold-face
words. For the above sample, the non-adjacent
variant would be:

(3) My preferred words are ..., flower, interest-
ing, jump, ponderous, sky, skipping, desk,
small, ladder, lovely, ..., and tree.

Since T5 is a seq2seq model trained on a span-
corruption objective, we present a prompt that in-
cludes a priming word and a blank span token rep-
resenting the second word:

(4) My preferred words are flavour,
<BLANK-SPAN-1>, and tree

The decoder then scores an output string that re-
places the blank, but represents the known inputs
with span markers instead:

(5) <INPUT-SPAN-1> harbour <INPUT=SPAN-2>

Thus we are effectively computing the probability
that the blank span will be filled with a particular
word (with a US or UK spelling), given the vis-
ible input sentence (which contains a US or UK
primer) — P(“harbour” | “My preferred words are
flavour, ..., and tree.”).

We report a few different measures to give a pic-
ture of how strongly each model prefers spelling
consistency: mean conditional probabilities, pre-
diction accuracy and mutual information. We then
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T5 T5+FT C4
Condition Word 1 Word 2 Word 2 Word 2

US UK US UK US UK
Adjacent US 0.86 0.14 0.66 0.34 0.91 0.09

UK 0.39 0.61 0.44 0.56 0.38 0.62
Non-adjacent US 0.83 0.17 0.69 0.31 0.93 0.07

UK 0.48 0.52 0.43 0.57 0.27 0.73

Table 2: Conditional probability of Word 2, given a template with Word 1, given by T5 (no finetuning) and T5+FT (finetuned
on synthetic balanced BNC data). For each instance, the probability has been normalized over each condition (corresponding to
each row for the model). We also present the conditional probabilities from pairs found in the training corpus C4.

examine behavior with nonce words.

5.1 Measure 1: conditional probability tables

The first measure we use to show the preferences
of each model is a 2x2 table of the conditional
probability of the second probe word, given the
first. For ease of interpretation, we normalize
the conditional probabilities for each condition-
ing word as though the two alternative second
words (US and UK) are the only possibilities, i.e.,
the two conditional probabilities are made to sum
to 1. That is, %(* |*() + %(*( |*() = 1 and
%(*( |* ) + %(* |* ) = 1 for each example.
These conditional probabilities are then averaged
over the whole test corpus (16028 word pairs repli-
cated across 29 template sentences10 for a total of
464812 samples) for both the adjacent and non-
adjacent conditions. Table 2 presents these mean
conditional probabilities for base T5 and T5 fine-
tuned (TF+FT) on a synthetic balanced corpus de-
rived from the BNC (see §5.2), alongside condi-
tional probabilities calculated from the pairs ex-
tracted for the analysis in Table 1 from their train-
ing corpus (C4), under the same adjacent and non-
adjacent conditions.11

As can be seen from these results, T5 shows a
preference for spelling consistency in both the ad-
jacent and non-adjacent conditions — probabilities
for both the consistent US and consistent UK condi-
tions are higher than the probabilities for the respec-
tive inconsistent conditions. The differences are
notably larger in the adjacent conditions than the
non-adjacent conditions, indicating that the prefer-
ence for spelling consistency attenuates somewhat

10For information on the variance across prompts, see Ap-
pendix A.

11The conditional probabilities from C4 are simply the prob-
ability that Word 2 is from the UK or US class given the class
of Word 1, with extracted pairs split by whether the words
were adjacent or not in the string. Adjacent pairs account for
roughly 1% of all pairs in the corpus.

over longer strings. The model also shows a pref-
erence for US forms overall, assigning a higher
probability to a US form after a UK form than to a
UK form after a US form. This is likely due to US
forms being over-represented in the training data,
leading to high prior probability.

Comparing the model and corpus columns in
Table 2, the degree of consistency preference dis-
played by T5 in the adjacent condition is actually
very similar to the consistency levels in the C4 train-
ing corpus (similarly replicating the bias for US
forms). However, C4 is much more consistent in
the non-adjacent condition than T5, indicating that
the model is failing to capture some long-distance
dependencies.

5.2 Finetuning on synthetic data

Finding naturally occurring English text using per-
fectly consistent spelling conventions of sufficient
size to help improve a model’s consistency may be
difficult, given the results presented in Table 1. It
would be useful, however, to determine if T5 could
be finetuned with some resource to exhibit better
spelling consistency. To that end, we created a syn-
thetic version of the BNC, which was changed to
exhibit perfect consistency of British and American
spelling conventions for the words in our lexicon.

This synthetic BNC corpus was produced as fol-
lows. Using our list of spelling variants, we iden-
tified strings in the corpus that contained an in-
stance of either the American or British spelling.
We then produced a synthetic consistent Ameri-
can spelling version of these strings by using the
American spelling of all of the words, along with
a synthetic consistent British spelling version of
these strings by using the British spelling of all of
the words. The resulting corpus is thus balanced
between American and British spelling for these
1706 words, and every sentence is consistent in
using one convention or the other. In total, the syn-
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Word 1 = US Word 1 = UK
Condition T5 T5+FT T5 T5+FT
Adjacent 92.2 71.1 65.1 63.4
Non-adjacent 88.7 77.7 54.3 63.2

Table 3: Percent of test set examples for which each
model prefers consistent over inconsistent spelling.

thetic corpus contains 954238 sentences,12 equally
split between US and UK spelling conventions. A
small random subset of 2560 sentences was re-
served for validation, and T5 was finetuned on the
rest. Finetuning used the same span-filling masked
LM task used for pretraining, with dropout set to
0.1, and the loss normalizing factor set to 233472
as suggested in the T5 documentation. Fine-tuning
started at the default T5-large checkpoint, which
represents 1000700 steps, and proceeded another
99300 steps at a batch size of 128.

As seen in Table 2, finetuning on this synthetic
corpus does not appear to improve overall spelling
consistency – quite the opposite. However, it does
have at least two interesting effects. First, as might
be expected, the overwhelming preference for US
English shown by base T5 is reduced. Further-
more, the finetuned model is better able to retain
long-distance information — there is no dropoff in
consistency between the adjacent and non-adjacent
conditions as seen for T5 without finetuning.

5.3 Measure 2: prediction accuracy

While the conditional probabilities in Table 2 show
the overall preferences of the models over the test
set, we also want a measure that captures how often
the LLMs assign consistent pairs a higher proba-
bility than inconsistent pairs. In Table 3 we show
the percentage of the test set examples for which
each model predicted consistency over inconsis-
tency. The results show a similar pattern as the
conditional probability measures in Table 2. Again,
finetuning lowers overall consistency, but results
in less drop-off in non-adjacent vs. adjacent condi-
tions.

5.4 Measure 3: mutual information

We also calculated the average mutual informa-
tion (MI) across all prompt/target pairs in order
to measure the strength of association between
spelling conventions in both words. For each pair,

12In our testing, this was not enough data to reliably train a
T5-large LLM from scratch.

Condition T5 T5+FT
Adjacent 0.0048 0.0017
Non-adjacent 0.0044 0.0015

Table 4: Average mutual information in the adjacent
and non-adjacent conditions.

we calculate four joint probabilities — P(US,US),
P(US,UK), P(UK,US), p(UK,UK). We assume
these four probabilities make up the entire universe
with respect to a particular prompt/target pair, and
normalize them so they sum to 1. This also allows
us to easily calculate marginal probabilities sim-
ply by adding the appropriate joint probabilities –
e.g., P(US prompt) = P(US,US) + P(US,UK). To
calculate MI, we use a formula based on the log-
likelihood ratio calculation in Moore (2004), but
equivalent to the standard formulation for mutual
information, where G, ~ are the two probe words:

∑
G∈{UK,US},~∈{UK,US}

?(G, ~) log
?(G, ~)
?(G)?(~)

Since T5 is trained on masked token prediction,
to measure the joint probability ?(G, ~) of each
pair of probe words G, ~ we can simply mask both
probing tokens and measure the probability of gen-
erating both of them. That is, we present T5 with
(6-a) and measure the probability of (6-b):

(6) a. My preferred words are <BLANK-
SPAN-1>, <BLANK-SPAN-2>, and tree.

b. <INPUT-SPAN-1> flavour <INPUT-
SPAN-2> harbour <INPUT-SPAN-3>

Table 4 presents these mutual information values.
There doesn’t seem to be a significant difference
between adjacent and non-adjacent conditions for
either T5 variant, though finetuning does seem to
cause an overall drop in MI, in line with the overall
drop in consistency seen in the measures above.

5.5 Nonce forms

We want to determine if T5 assigns the probabil-
ities reported above on the basis of dependencies
between specific lexical items, or if it is learning
sub-word generalizations. In other words, does the
model learn that specific words like flavour and
realise are more likely to co-occur than flavour and
realize? Or does it learn that words containing -our
are more likely to co-occur with words containing
-ise? Since the model is trained using Sentence-

1340



British American British American
glavour glavor reptalise reptalize
mentre menter amolirise amolirize
unulise unulize sphectre sphecter
malvour malvor imminise imminize
larbour larbor voitre voiter

Table 5: Nonce forms created by making one to three
changes to words in the American-British dictionary.

Word 2
US UK

Word 1
US 0.68 0.32
UK 0.56 0.44

Table 6: Conditional probability table for nonce forms
given by T5. The table shows the conditional probabil-
ity of Word 2 (which is a nonce form), given Word 1.
For each instance, the probability has been normalized
over each condition (i.e., each row in the table).

Piece tokenization (Kudo and Richardson, 2018),
it is possible that it exploits sub-word features.

One way of testing if a model can use sub-
word features is to create nonce words that contain
British- or American-specific sub-words. If the
model treats these as being British or American,
this is an indication that the model is able to pick
up on sub-word features.

We created a list of ten nonce forms by changing,
adding, or removing one to three letters in existing
words in our dictionary of American and British
forms. These forms are shown in Table 5.

We use the same probing template and method
as described above. For each probe, we use a real
American or British word for the first probe word,
and one of the nonce forms shown in Table 5 for the
second. For this experiment we queried the base
T5 model in the adjacent condition. The resulting
conditional probability table is shown in Table 6.

Table 6 shows that the patterns shown in Section
5.1 above do not generalize very strongly to nonce
forms. The probabilities assigned to US forms fol-
lowing UK forms are on average higher than UK
forms following UK forms. However, the differ-
ence between these alternatives is attenuated com-
pared to when Word 1 is a US form, indicating that
(a) there is a heavy skew towards US spelling con-
ditions in the training data; but (b) some sensitivity
to the UK context, if not enough to counteract the
high US form priors. This suggests that the results
in Table 2 are to a large extent driven by lexical

dependencies rather than any lower-level spelling
patterns encoded by wordpieces.

5.6 Autoregressive LLMs

Many commonly-used LLMs (including T5) are
trained to predict words in the input that have been
masked out. Another common class of LLMs, how-
ever, are trained to perform next-word prediction
instead. To examine how such autoregressive archi-
tectures handle spelling consistency, we experiment
with OpenAI’s GPT2 (Radford et al., 2019), which
has a readily available open-source implementation
through HuggingFace.13

As GPT2 is purely autoregressive, we cannot
compute the probability that a particular probe
word will fill a masked sentence span as easily as
we could with T5. We can only efficiently compute
the probability of a suffix given a prefix. Given
this caveat, we have at least two options for assign-
ing conditional probability scores, neither of which
should be treated as exactly comparable to the T5
scores above. First, we can count only the logits
corresponding to the target word:

P(“harbour” | “My preferred words are flavour,”).
This local score ignores any words in the template
occurring after the target word. Second, we can
compute from the start of the target to the end of
the sentence: P(“harbour, and tree” | “My preferred
words are flavour,”), which accounts for the post-
target suffix of the sentence.

Tables 7 and 8 show results for both of these
methods for calculating the conditional probability,
compiled in the same way as the T5 results in Ta-
bles 2 and 3. Table 7 also includes the conditional
probabilities from GPT2’s training corpus, OWT.
We see that GPT2 shows a similar preference for
consistency as T5, but only very locally. There is a
large drop-off in preference for consistency when
moving from adjacent to non-adjacent conditions,
or when including the completion of the sentence
in the calculation. For UK English in particular,
any preference for consistency completely disap-
pears beyond the immediate vicinity of the priming
word, and the model returns to chance performance
on the task.

6 Further analysis of corpora

We now return to a slightly more detailed exami-
nation of two of the corpora presented in Table 1,

13https://huggingface.co/gpt2
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GPT2 (tgt only) GPT2 (to EOS) OWT
Condition Word 1 Word 2 Word 2 Word 2

US UK US UK US UK
Adjacent US 0.87 0.13 0.69 0.31 0.95 0.05

UK 0.36 0.64 0.51 0.49 0.34 0.66
Non-adjacent US 0.83 0.17 0.66 0.33 0.95 0.05

UK 0.49 0.51 0.54 0.46 0.28 0.72

Table 7: Conditional probability of Word 2, given a template with Word 1, given by GPT2 scored until the end of the target
word only (tgt only) and scored until the end of the sentence (to EOS). We also present the conditional probabilities from pairs
found in the training corpus, OWT.

Word 1 = US Word 1 = UK
Condition GPT2 GPT2 GPT2 GPT2

target EOS target EOS
Adjacent 94.2 70.1 70.8 49.4
Non-adjacent 92.5 67.5 54.6 45.1

Table 8: Percent of test set examples for which each
GTP2 scoring variant prefers consistent over inconsis-
tent spelling.

English Wikipedia and the British National Cor-
pus, both of which had relatively high levels of
mismatch compared to the other corpora.

Wikipedia is an interesting case, since the docu-
ments are collectively edited by potentially a large
number of contributors, which may lead to higher
expected mismatch than in other corpora. For
example, one version of the article on air lock
used both US-spelling of the word vapor and the
UK-spelling (vapour). This is explained via three
versions of the introductory sentence to the page,
shown in Table 11 in Appendix B, where the two
spellings are added to the sentence at different
times, years apart.

The amount of mismatch in the British National
Corpus is perhaps more surprising, given the prove-
nance of the materials and intent of the collection.
However the diversity of sources, which include
things such as journal articles and edited volumes,
likely leads to similar issues to those found in
Wikipedia, along with simple human error and/or
inconsistency. Table 12 in Appendix B presents a
few examples of sentences with words from both
spelling conventions, with American -ize spellings
mixed with British -ise or -our versions.

7 Conclusion and Future Work

We have presented results showing that T5 does
tend towards consistency in spelling, but not to
the degree that could be relied upon should such

consistency be desired in generated text. We show
that this general preference for consistency reflects
the data that the model is trained on, which also is
mostly consistent, but with a significant proportion
of exceptions. The model’s behavior is also shown
to be affected by the relative frequency of language
varieties in the training data. We took advantage of
the explicit and surface-accessible nature of these
dependencies to attribute some model performance
to the training data, while also demonstrating that
modeling improvements should be possible, since
the training data itself is substantially more consis-
tent than the models.

These results suggest several possible avenues
for future work. First, methods for addressing
bias in training data should yield improvements
for British spelling consistency in these models.
We also intend to extend these results to languages
other than English and investigate how spelling
variation in other language situations is learned by
LLMs. Some of the methods we used here rely
on the fact that English spelling variation is quite
thoroughly catalogued. Extending this work to
less-documented cases of language variation will
require us to either (1) collect data about spelling
variation from language informants or data, or (2)
develop methods that require less prior knowledge.
In the interest of finding methods that are exten-
sible to the greatest number of cases, we intend
to pursue path (2), working on methods to mine
information about language variation from large
corpora and LLMs that have been trained on them.
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Limitations

Our work is focused on just a single case study of
spelling variation. As detailed in Section 2, English
is a good candidate for a case study for several
reasons, but it would be beneficial to extend this
work to other language situations.

Another limitation was our choice to focus on
already existing pre-trained models, rather than
directly controlling the training data that is input
to each model. This means some of the conclu-
sions about the connection between training data
and outcome are tentative, pending experimental
confirmation.

Ethics Statement

This work does not propose a new model or dataset,
but rather probes the behavior of existing models.
Thus novel ethical considerations about model be-
havior and dataset contents are not directly raised
by this work. While not explicitly focused on ethi-
cal considerations, this paper’s methods hopefully
contribute to better understanding model behavior,
and could be used to understand the ways in which
large language models treat underrepresented and
marginalized language varieties.
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My preferred words are <CUE> and <FILLER>.
My preferred words are <CUE>, <FILLER>, and tree.
She wrote the words <CUE> and <FILLER>.
She wrote the words <CUE> and <FILLER> in her notebook.
She wrote the words <CUE>, <FILLER>, and cabbage.
I wrote the words <CUE> and <FILLER>.
I wrote the words <CUE> and <FILLER> in my notebook.
I wrote the words <CUE>, <FILLER>, and cabbage.
He wrote the words <CUE> and <FILLER>.
He wrote the words <CUE> and <FILLER> in his notebook.
He wrote the words <CUE>, <FILLER>, and cabbage.
We wrote the words <CUE> and <FILLER>.
We wrote the words <CUE> and <FILLER> in our notebook.
We wrote the words <CUE>, <FILLER>, and cabbage.
Mary wrote the words <CUE> and <FILLER>.
Mary wrote the words <CUE> and <FILLER> in her notebook.
Mary wrote the words <CUE>, <FILLER>, and cabbage.
Please spell <CUE> and <FILLER>.
Please spell <CUE>, <FILLER>, and panther.
Please spell <CUE> and <FILLER> correctly.
Say <CUE> and <FILLER>.
Say <CUE>, <FILLER>, and tapestry.
Say <CUE> and <FILLER> again.
The first words on the list were <CUE> and <FILLER>.
The first words on the list were <CUE>, <FILLER>, and oligarchy.
The easiest words on the list were <CUE> and <FILLER>.
The easiest words on the list were <CUE>, <FILLER>, and oligarchy.
The hardest words on the list were <CUE> and <FILLER>.
The hardest words on the list were <CUE>, <FILLER>, and oligarchy.

Table 9: Prompts used for model evaluation. Non-adjacent versions of each prompt were created by inserting the
sequence “, flower, interesting, jump, ponderous, sky, skipping, desk, small, ladder, lovely,” between the <CUE>
and <FILLER> word slots.

T5 T5+FT
Condition Word 1 Word 2 Word 2

US UK US UK
Adjacent US 0.86 (0.01) 0.14 (0.01) 0.66 (0.03) 0.34 (0.03)

UK 0.39 (0.06) 0.61 (0.06) 0.44 (0.03) 0.56 (0.03)
Non-adjacent US 0.83 (0.02) 0.17 (0.02) 0.69 (0.02) 0.31 (0.02)

UK 0.48 (0.05) 0.52 (0.05) 0.43 (0.04) 0.57 (0.04)

Table 10: Conditional probability of Word 2, given a template with Word 1, given by base T5 and T5 with additional
finetuning. Each cell includes a macro-average and standard deviation across 29 prompts.
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version date sentence version
4 Aug. 2017
(neither
vapor nor
vapour)

An air lock is a restriction of, or
complete stoppage of liquid flow
caused by gas trapped in a high
point of a liquid-filled pipe system.

6 Sept. 2017
(vapour
replaces gas)

An air lock is a restriction of, or
complete stoppage of liquid flow
caused by vapour trapped in a high
point of a liquid-filled pipe system.

15 Feb. 2020
(vapor
added)

An air lock (or vapor lock) is a re-
striction of, or complete stoppage
of liquid flow caused by vapour
trapped in a high point of a liquid-
filled pipe system.

Table 11: Three versions of a Wikipedia page: (1) no
use of vapor or vapour in the sentence; (2) the term
vapour replaces gas; and (3) the alternative name for
the phenomenon "vapor lock" is introduced.

Doc ID sentence
CPD ‘What this guy will do is get a demor-

alized sales organisation revitalised...’
said John Jones, analyst at Salomon
Brothers.

CLW They conceptualize these differences in
terms of ‘separate local labour market
cultures’ (ibid., p. 104).

CBH It is a metaphor which attempts to create
a reality of organization whereby coop-
eration is mobilised for fight with the
outside world.

Table 12: Examples of spelling convention mismatches
in the British National Corpus, sampled from varied
books and periodicals.
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Abstract
Usage-based theories of language acquisition
have extensively documented the processes by
which children acquire language through com-
municative interaction. Notably, Tomasello
(2003) distinguishes two main cognitive capac-
ities that underlie human language acquisition:
intention reading and pattern finding. Intention
reading is the process by which children try
to continuously reconstruct the intended mean-
ing of their interlocutors. Pattern finding refers
to the process that allows them to distil lin-
guistic schemata from multiple communicative
interactions. Even though the fields of cogni-
tive science and psycholinguistics have studied
these processes in depth, no faithful computa-
tional operationalisations of these mechanisms
through which children learn language exist
to date. The research on which we report in
this paper aims to fill part of this void by in-
troducing a computational operationalisation
of syntactico-semantic pattern finding. Con-
cretely, we present a methodology for learn-
ing grammars based on similarities and differ-
ences in the form and meaning of linguistic
observations alone. Our methodology is able
to learn compositional lexical and item-based
constructions of variable extent and degree of
abstraction, along with a network of emergent
syntactic categories. We evaluate our method-
ology on the CLEVR benchmark dataset and
show that the methodology allows for fast, in-
cremental and effective learning. The construc-
tions and categorial network that result from
the learning process are fully transparent and
bidirectional, facilitating both language com-
prehension and production. Theoretically, our
model provides computational evidence for the
learnability of usage-based constructionist the-
ories of language acquisition. Practically, the
techniques that we present facilitate the learn-
ing of computationally tractable, usage-based
construction grammars, which are applicable
for natural language understanding and produc-
tion tasks.

1 Introduction

Usage-based theories of language acquisition ar-
gue that the ability of children to learn language is
based on two general cognitive capacities: inten-
tion reading and pattern finding (Tomasello, 2003,
2009). Intention reading refers to the capacity of
children to understand the communicative inten-
tions of their interlocutors. Pattern finding refers
to the ability to recognise similarities and differ-
ences in sensory-motor experiences, and to use this
ability for categorisation and schema formation
(Tomasello, 2003, p. 3–4). Pattern finding thus
provides mechanisms for generalising across differ-
ent communicative interactions, thereby construct-
ing abstract schemata that represent the linguistic
knowledge of a language user. In the context of
language acquisition, intention reading and pattern
finding are two key cognitive capacities that are
highly complementary. Intention reading allows
a language learner to reconstruct the meaning of
an utterance that they observe during a commu-
nicative interaction. Pattern finding then provides
the mechanisms to learn a grammar based on the
combination of these observed utterances and their
reconstructed meanings.

There exists an impressive body of theoretical
and empirical evidence for both intention reading
(Bruner, 1983; Sperber and Wilson, 1986; Meltzoff,
1995; Nelson, 1998) and pattern finding (Goldberg,
1995; Croft, 2000; Diessel, 2004; Goldberg, 2006).
However, no comprehensive mechanistic models
that provide a faithful operationalisation of either
of these cognitive processes exist to date. In this pa-
per, we aim to fill part of this void by presenting a
computational operationalisation of pattern finding
mechanisms that can bootstrap a grammar based
on a set of semantically annotated utterances alone.
As such, we assume that the outcome of the inten-
tion reading process is given, hence the availability

1347



of the utterances’ semantic representations, but that
neither a segmentation of the utterances nor any
pre-existing morpho-syntactic or other grammati-
cal information can be used. For a computational
model that operationalises the intention reading
process, and that integrates it with the pattern find-
ing mechanisms introduced in this paper, we refer
the interested reader to Nevens et al. (2022).

A validation of our methodology on the CLEVR
benchmark dataset for visual question answering
(Johnson et al., 2017) shows that it allows for fast,
incremental and effective grammar learning. The
result of this learning process is a fully-operational,
productive construction grammar that can be used
for both language comprehension, i.e. mapping
from utterances to their meaning representation,
and language production, i.e. mapping from a
meaning representation to an utterance.

The scientific contribution of this paper is
twofold. On the one hand, it provides computa-
tional evidence for the cognitive plausibility of
usage-based theories of language acquisition by
introducing a mechanistic model of the acquisition
of construction grammars from scratch. On the
other hand, the techniques that we present pave
the way for learning computationally tractable,
large-scale, usage-based construction grammars
that facilitate both language comprehension and
production. Apart from their theoretical impor-
tance, such grammars are also highly valuable for a
large range of application domains, including intel-
ligent conversational agents (Verheyen et al., 2022)
and the semantic analysis of discourse (Willaert
et al., 2020; Beuls et al., 2021).

The remainder of this paper is structured as fol-
lows. Section 2 presents the dataset, task and learn-
ing problem that we address. Section 3 introduces
our novel methodology for learning construction
grammars. Section 4 presents the evaluation re-
sults. Related work is discussed in Section 5. A
concluding discussion is provided in Section 6.

2 Data

There are two main requirements for datasets to be
compatible with the methodology that we present
in this paper. First of all, they need to consist of
utterances that are annotated with a representation
of their meaning. Second, they need to be large
enough so that they contain enough utterances that
are similar to each other, but not equal, in terms
of either form or meaning. The availability of ex-

emplars that are sufficiently close to each other
is a necessary precondition for any generalisation
process and is fully consistent with the prevail-
ing hypotheses of how children acquire language
(Tomasello, 2003). The exact required size of a
dataset is as a consequence directly related to the
variety and the degree of complexity of the utter-
ances and meaning representations that it contains.

In this paper, we present and validate our
methodology using the CLEVR dataset for visual
question answering (Johnson et al., 2017). The
utterances in the dataset are semantically anno-
tated and the dataset contains ample examples of
utterance-meaning pairs that are similar but not
equal to each other. The utterances are English
questions about images of scenes depicting differ-
ent configurations of geometrical figures. Each
question is annotated with a semantic representa-
tion that captures the logical meaning that underlies
it. An example of such a scene, a question and its
semantic representation is shown in Figure 1.

The semantic representation in Figure 1 takes
the form of a set of predicates that share argu-
ments with each other. In the figure, the predicates
are drawn in the form of a network, based on the
variables that they share. The meaning represen-
tation of a question can naturally be represented
as a query, i.e. a series of steps that need to be
taken in order to answer the question. Each pred-
icate represents a step in this reasoning process,
and intuitively corresponds to an atomic cognitive
operation that a human or machine can perform.
In the case of the example utterance ‘How many
rubber spheres are there?’, the reasoning process
consists of four main steps. The first predicate,
GET-CONTEXT, binds the image to the variable
‘?source’. Then, the FILTER predicate filters the
image for instantiations of the concept of SPHERE.
The result of this filtering operation, i.e. the set
of all spheres that are in the image, is bound to
the variable ‘?spheres’. This set of spheres is sub-
sequently filtered by another FILTER predicate for
instantiations of the concept of RUBBER. The re-
sulting set of rubber spheres is bound to the variable
‘?rubber-spheres’. Finally, the set of rubber spheres
is counted by the COUNT predicate and the result
is bound to the variable ‘?nr-of-rubber-spheres’.
The meaning of the question ‘How many rubber
spheres are there?’ corresponds thus informally to
filtering an image for spheres, filtering the spheres
for rubber objects and counting the result of this
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How many rubber spheres are there? (get-context ?source)

(filter ?spheres ?source ?sphere)

(bind shape-category ?sphere sphere)

(bind material-category ?rubber rubber)

(filter ?rubber-spheres ?spheres ?rubber)

(count ?nr-of-rubber-spheres ?rubber-spheres)

Figure 1: Example scene, question, and procedural semantic representation from the CLEVR dataset.

last operation. Such meaning representations are
called procedural semantic representations as the
representations themselves are at the same time
executable procedures (Winograd, 1972; Johnson-
Laird, 1977). Our methodology handles procedural
semantic representations without problems, but is
in no way restricted to it. It can handle any se-
mantic representation, as long as it embraces some
notion of compositionality and can be expressed as
a set of predicates. Examples of other compatible
semantic representations include abstract meaning
representation (Banarescu et al., 2013), PropBank
frames (Palmer et al., 2005) and the lambda calcu-
lus (Church, 1932; Montague, 1974).

The CLEVR dataset consists of three splits: a
training split of 70,000 images and 699,989 ques-
tions, a validation split of 15,000 images and
149,991 questions, and a test split of 15,000 im-
ages and 149,988 questions. The questions in the
training and validation splits come with semantic
annotations, whereas the test set does not. As we
require these annotations in order to evaluate our
model, we use the training split of the CLEVR
dataset as training set and the validation split as
test set. The question-annotation pairs embrace
various aspects of reasoning, including attribute
identification (‘There is a large cube; what is its
color?’), counting (‘How many green spheres are
there?’), comparison (‘Are there an equal number
of large cubes and small things?’), spatial relation-
ships (‘What size is the cylinder that is right of the
yellow shiny thing that is left of the cube?’) and log-
ical operations (‘How many objects are either red
cubes or yellow cylinders?’). For the purposes of
this paper, we have selected the subset of CLEVR
questions that do not involve comparison, spatial re-
lationships or logical operations. The main reason
for this is that these are complex cognitive oper-
ations that often correspond to long and complex
utterances that are far removed from the linguistic
expressions that children (or even other humans)
are faced with. Our final training and test sets

consist of 47,134 questions and 10,044 questions
respectively.

The learning task that we address consists in
operationalising pattern finding mechanisms that
facilitate the learning of a bidirectional construc-
tion grammar. The grammar should be able to map
between the CLEVR utterances and their semantic
representation, both in the comprehension (form to
meaning representation) and the production (mean-
ing representation to form) direction.

3 Methodology

The input to the learning process consists of utter-
ances that are annotated with a representation of
their meaning. The output of the learning process
should consist in form-meaning mappings (con-
structions) that can be used for comprehending and
producing utterances. The form-meaning mappings
are represented in, and processed using, Fluid Con-
struction Grammar (Steels, 2011; Van Eecke and
Beuls, 2017; van Trijp et al., 2022).

3.1 Holophrase Constructions

Let us for a moment take the perspective of the
learning algorithm. At the beginning of the learn-
ing process, the construction inventory is empty
and the first utterance-meaning pair from the cor-
pus comes in. At this point, the only thing that
the learning algorithm can do is to store an ex-
act mapping between the observed form and its
meaning. Such a holistic mapping corresponds to
a holophrase construction and is usable as such,
albeit only for comprehending and producing the
exact same utterance as the one that was observed.
In order to use such a construction in the compre-
hension direction, it suffices to match the form side
of the construction with an utterance and return the
meaning side of the construction if the matching
process succeeded. In order to use the same con-
struction in the production direction, the meaning
side of the construction must be matched with a se-
mantic network and the form side must be returned.
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When a next observation comes in, the learning
algorithm first checks whether it is already cov-
ered by constructions that have been acquired pre-
viously. When this is the case, the constructions
that are involved in the successful comprehension
and production of the observation are reinforced
by incrementing their entrenchment score. If the
observation is not covered, the algorithm checks
whether there are any generalisations that can be
made based on the combination of the novel obser-
vation and any previously acquired constructions.
It is these generalisation mechanisms that embody
Tomasello (2003)’s pattern finding capacity and
are thereby at the core of the construction learn-
ing process. We have identified three classes of
mechanisms that facilitate the learning of general
constructions by algorithmically reasoning over
similarities and differences between existing con-
structions and novel observations.

3.2 Generalising over Holophrase
Constructions

The first class of mechanisms facilitates the gener-
alisation of holophrase constructions with respect
to novel observations. These mechanisms can learn
item-based constructions that capture the similar-
ities between a novel observation and an existing
holophrase construction that was learnt based on
a similar, but not equal, observation. These item-
based constructions abstract away from the differ-
ences between the observation and the holophrase
construction.

For example, imagine that a holophrase construc-
tion has already been learnt based on the observa-
tion of the utterance ‘How many rubber spheres are
there?’ and the semantic network shown in Figure
1. Now, a novel utterance ‘How many rubber cubes
are there?’ is observed, along with a very simi-
lar meaning network in which the predicate ‘(bind
shape-category ?cube cube)’ appears at the place of
‘(bind shape-category ?sphere sphere)’. The gen-
eralisation mechanisms compute the similarities
and differences between the construction and the
observation in terms of both form and meaning,
and make a new item-based construction that maps
between the utterance ‘How many rubber ?X are
there?’ and the semantic network from Figure 1
in which the non-overlapping predicate has been
replaced by a variable. At the same time, two new
lexical constructions are created, which capture
the differences between the observation and the

original holophrase construction. In our example,
these will be a construction that maps between the
utterance ‘cubes’ and the meaning representation
‘(bind shape-category ?cube cube)’ and a construc-
tion that maps between the utterance ‘spheres’ and
the meaning representation ‘(bind shape-category
?sphere sphere)’. Finally, categorial links are made
between the ?X slot in the item-based construction
and the new lexical constructions. These categorial
links capture that ‘cubes’ and ‘spheres’ can both
appear in the ?X slot of the construction for ‘How
many rubber ?X are there?’. A schematic represen-
tation of this learning process is shown in Figure
2.

There are three different scenarios in which
mechanisms of this class are active. The
first scenario concerns utterances which extend
holophrases that are already known. An exam-
ple would be the generalisation of ‘Are there any
cylinders?’ to ‘Are there any red cylinders?’. In
this case, an item-based construction ‘Are there
any ?X cylinders?’ is learnt, along with a lexical
construction for ‘red’ and a categorial link between
the lexical construction and the open slot in the
item-based construction. The second scenario con-
cerns utterances which reduce known holophrases.
An example would be the reduction of ‘What is the
size of the metal block?’ to ‘What is the size of the
block?’. In this case, an item-based construction
for ‘What is the size of the ?X block?’ is learnt,
along with a holophrase construction for ‘What is
the size of the block?’, a lexical construction for
‘metal’, and a categorial link between the slot in the
item-based construction and the lexical construc-
tion. The final scenario concerns utterances which
are not a mere extension or reduction of each other,
but contain different formal and/or semantic ma-
terial. An example would be the utterances ‘How
many rubber spheres are there?’ and ‘How many
rubber cubes are there?’ discussed above, where
a holophrase construction for ‘How many rubber
spheres are there?’ is already in place. An item-
based construction for ‘How many rubber ?X are
there’ is learnt along with a lexical construction
for ‘cubes’ and a categorial link between the open
slot in the item-based construction and the new lex-
ical construction. Additionally, a second lexical
construction for ‘spheres’ is learnt, along with a
categorial link between the open slot in the item-
based construction and the lexical construction for

‘spheres’.
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“What is the 
block made of?”

Slots: [ ]
Arguments: [ ]

A

BC

D

E

the-large-shiny-cube-has-what-color?-cxn

“What is the 
block made of?”

Slots: [ ]
Arguments: [ ]

A

BC

D

E

how-many-spheres-are-there?-cxn

“How many rubber
spheres are there?”

Slots: [ ]
Arguments: [ ]

A

BC

D

E

how-many-rubber-spheres-are-there?-cxnA

FC

D

E“How many rubber
cubes are there?”

+ +“How many rubber
 ?X are there?”

Slots:
Arguments:

[ how-many-rubber-?x-are-there?(?X) ↔ ?c ]
[ ]

A

CE

how-many-rubber-?X-are-there?-cxn

D

?c

cube

how-many-rubber-?
x-are-there?(?X)

sphere

Slots:
Arguments:

[ ]
[ cube ↔ ?f ]

“cubes” F?f

cubes-cxn

Slots:
Arguments:

[ ]
[ sphere ↔ ?b ]

“spheres” B?b

spheres-cxn

Figure 2: A schematic representation of a generalisation operator learning an item-based construction and two
lexical constructions based on an existing holophrase construction and a novel observation.

3.3 Learning Constructions Based on a
Partial Analysis

The second class of mechanisms is designed to
handle cases where an observation could not com-
pletely be processed using the existing construc-
tions of a grammar, but where a partial analysis
could be provided. These mechanisms can then
create novel constructions that can work together
with existing constructions so that the entire obser-
vation can be processed successfully. They start
thus from the combination of a novel observation
on the one hand, and an item-based construction
or one or more lexical constructions on the other.
The second class of mechanisms is active in two
different scenarios.

The first scenario concerns observations to
which an item-based construction can apply, but
where there remains material that is not covered
by any of the existing constructions. An example
would be an observation of ‘What is the size of the
green block?’, where a construction for ‘What is
the size of the ?X block?’ is already known, while
no construction for ‘green’ has been learnt yet. The
learning algorithm detects that some aspects of the
form and the meaning of the observation are not
covered by the existing item-based construction
and it creates a novel lexical construction that maps
between those parts of the form and meaning that
were not covered. Additionally, a categorial link is
made between the slot in the item-based construc-

tion and the lexical construction. In our example,
this means that a lexical construction for ‘green’
is learnt, along with a categorial link between this
construction and the ?X slot in the construction for
‘What is the size of the ?X block?’.

The second scenario concerns observations to
which one or more lexical constructions can apply,
but where these constructions do not fully cover
the input. An example would be an observation
of the utterance ‘There is a big red cube; what
is its material?’, where lexical constructions for
‘big’, ‘red’, ‘cube’ and ‘material’ have already been
learnt. The learning algorithm will then create
a new item-based construction that incorporates
all the form and meaning material that remains
after the application of these lexical constructions,
and that abstracts away from these constructions
through the integration of four slots. The result is
an item-based construction of the form ‘There is
a ?A ?B ?C; what is its ?D?’ and four categorial
links from the existing lexical constructions to the
slots in the new item-based construction.

3.4 Extending the Categorial Network

The third class of mechanisms is designed to handle
cases where all necessary constructions are already
in place, but where they cannot combine due to the
absence of certain links in the categorial network.
An example would be the utterance ‘How many
things are there?’ where an item-based construc-
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tion covering ‘How many ?X are there?’ and a
lexical construction covering ‘things’ already exist,
but where there is no link in the categorial network
between the lexical construction for ‘things’ and
the ‘?X’ slot in the item-based construction. In
such cases, the learning algorithm adds the missing
link to the categorial network.

3.5 Entrenchment Scores

The constructions created by the learning operators
have scores that reflect their entrenchment. During
processing, higher scored constructions are pre-
ferred over lower scored ones. Upon creation, the
score of a construction is set to 0.5. If used success-
fully, the score is increased by 0.1 and the score of
other constructions of which the application would
also have led to a solution is decreased by 0.3. The
scores are bounded between 0 and 1. There is no
built-in bias towards more general constructions.
However, the fact that more general constructions
are applicable in a broader range of situations and
are therefore more frequently used, will, due to the
dynamics of rewarding successful usage and pun-
ishing competitors, lead to higher entrenchment
scores for more general constructions.

4 Experiments

This section presents a validation of our method-
ology for acquiring constructions on the CLEVR
dataset discussed in Section 2. We first describe the
experimental set-up (Section 4.1) and then present
the evaluation results (Section 4.2).

4.1 Experimental Set-Up

The primary experiment consists in processing the
47,134 observations from our training set using the
learning operators introduced above. For each ex-
perimental run, the observations are shuffled, so
that any side-effects that might be caused by the
order in which the observations are presented are
levelled out. The learning operators are only active
when an observation cannot be processed success-
fully by the constructions that have been learnt so
far. Entrenchment scores are updated after each
communicative interaction. The learning process is
evaluated through four quantitative metrics: com-
municative success, grammar size, number of con-
structions per type and active learning operators.
Communicative success is a binary measure com-
puted by comparing the comprehended meaning
with the gold standard annotation. In the graphs

below, communicative success and active learning
operators are plotted using a sliding window of 50
observations.

For completeness, we also present a secondary
experiment in which the grammar learnt on the
training set is evaluated on the test set. Commu-
nicative success is here averaged over the whole
test set, and grammar size and number of construc-
tions per type do not change during evaluation.

The experimental results reported below are
based on 10 independent experimental runs. The
error bars that are plotted represent percentiles 5
and 95.

4.2 Results

The results obtained through the primary experi-
ment are shown in Figures 3 to 5. Figure 3 displays
the communicative success and grammar size met-
rics respectively on the left and right y-axis as a
function of the number of observations (x-axis).
We can see that the communicative success starts at
0, as the experiment starts with an empty inventory
of constructions. The degree of communicative
success rises rapidly, with more than 90% of the
observations being successfully processed by the
learned grammar after only 500 observations have
been encountered. After 2000 observations, com-
municative success is already achieved in 99.6% of
new observations.

The grammar size starts at 0 constructions and
grows rapidly in the first phase of the experiment.
After 500 observations, the grammar has reached
its peak size of around 230 constructions that have
some degree of entrenchment. This number then
declines as a result of the rewarding and punish-
ing of constructions. At the end of the learning
process, the resulting grammar consists of 101.5
constructions on average.

An analysis of the types of constructions that are
part of the learned construction inventory is pro-
vided in Figure 4. The results show that holophrase
constructions flourish in the earliest phase of the ex-
periment. In a second phase, item-based and lexical
constructions take over the role of the holophrase
constructions, with an abundance of item-based
constructions being created. Over the course of the
experiment, the linguistic inventory of the learner
gradually reaches a stable state consisting of a lim-
ited number of entrenched lexical constructions and
(more general) item-based constructions. At the
end of the experiment, the grammar consists on av-
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Figure 3: Evolution of communicative success (left y-
axis) and grammar size (right y-axis) over time (full
dataset).

erage of 10.2 holophrase constructions, 57.1 item-
based constructions and 34.2 lexical constructions.
These results show that the holophrase construc-
tions have not yet completely disappeared after
47,134 observations and that the theoretical max-
imum of 35 lexical constructions was attained in
7 out of 10 experimental runs. Note that it is the
dynamic evolution of the number of constructions
per type over time that is important, rather than
the absolute number of constructions at a given
moment in time.
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Figure 4: Evolution over time of the number of con-
structions per type with an entrenchment score > 0 (full
dataset).

Figure 5 shows the active learning operators over
time, zooming in on the first 1000 observations. In
the beginning, only new holophrase constructions
can be created. Then, operators of the first class
can generalise over these holophrase constructions
and create new item-based and lexical construc-
tions. After that, operators of the second class take
over and create constructions based on partial anal-
yses. In the final phase of the experiment, mainly
operators of the third class, which only create new
categorial links, are active.
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Figure 5: Active learning operators over time (first 1000
observations).

We finally conduct a secondary experiment,
which consists in processing all observations from
the test set using the grammars resulting from
the different experimental runs of the primary ex-
periment. The average communicative success
amounts to a perfect 100% in both the compre-
hension and production direction. The average
grammar size amounts to 101.5 constructions, of
which 10.2 are holophrase constructions, 57.1 are
item-based constructions and 34.2 are lexical con-
structions.

5 Related Work

Prior mechanistic models that operationalise the
learning of constructions can be divided into two
groups, based on the learning task that they address.
A first class of models learns constructions paired
with their meaning representation, either provided
in the form of an annotated corpus (Dominey and
Boucher, 2005; Chang, 2008; Abend et al., 2017) or
obtained through task-oriented communicative in-
teractions in a tutor-learner scenario (Gerasymova
and Spranger, 2010; Beuls et al., 2010; Spranger
and Steels, 2015). A second class of models, as in-
troduced by Gaspers et al. (2011, 2016), is designed
to learn form-meaning pairings under referential
uncertainty. As such, the exact meaning representa-
tions of the input utterances are not provided to the
learning algorithm, but grammars are learnt based
on the combination of input utterances and situa-
tional context snippets. In these experiments, input
utterances always correspond to a single term in
the situational context. In general, both classes of
models have explored interesting ideas on a rather
small scale, either because they were limited to spe-
cific linguistic phenomena (Steels, 2004; Gerasy-
mova and Spranger, 2010, 2012; Beuls et al., 2010;
Spranger and Steels, 2015; Spranger, 2015, 2017;
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Van Eecke and Beuls, 2017, 2018; Van Eecke,
2018), or because of the limited morpho-syntactic
and semantic complexity of the input utterances
(Dominey, 2005a,b, 2006; Chang, 2008; Gaspers
et al., 2011; Gaspers and Cimiano, 2012, 2014;
Gaspers et al., 2016; Abend et al., 2017). In all
of the aforementioned work, either a segmentation
of the input utterances, a lexicon or a set of prede-
fined grammatical categories was provided. With
the exception of the studies by Gaspers et al., the
corpora that were used to learn and evaluate the
models were not made available and were not de-
scribed in sufficient detail to make reproduction
and comparison feasible.

6 Discussion and Conclusion

The scientific contribution of the methodology and
experiments presented in this paper is twofold.
On the one hand, they provide computational ev-
idence for the cognitive plausibility of construc-
tivist theories of language acquisition. These theo-
ries, as most prominently put forward by Tomasello
(2003), attribute the ability of children to acquire
language to two main cognitive capacities: inten-
tion reading and pattern finding. Intention reading
deals with reconstructing the intended meaning
of observed utterances, while pattern finding im-
plements generalisation processes that distil these
reconstructed utterance-meaning pairs into abstract
schemata embodying the linguistic knowledge of
a language user. These schemata can then be used
to fulfil the communicative function of language
through the comprehension and production of natu-
ral language expressions. The methodology intro-
duced in this paper presents a mechanistic model
of the pattern finding capacity. Based on utterances
paired with a representation of their meaning, the
learning algorithm gradually builds up an inven-
tory of concrete to abstract form-meaning map-
pings, called constructions, along with a network
of emergent grammatical categories that captures
how the constructions of the grammar can com-
bine to collaboratively comprehend and produce
utterances. The experiments show that a small num-
ber of general learning operators, which become
active if an utterance cannot be successfully pro-
cessed by the grammar learnt so far, effectively
leads to learning dynamics that are similar to those
described in the psycholinguistic literature (Pine
and Lieven, 1997; Tomasello, 2003; Ambridge and
Lieven, 2015). In the first phase of the learning

process, the learner acquires holistic mappings be-
tween utterances and their meaning representation.
Soon after that, holophrase constructions are gener-
alised to item-based constructions that integrate a
variable slot. At the same time, this generalisation
process leads to the emergence of slot-filling con-
structions, here called lexical constructions. Along
with the item-based and lexical constructions, a net-
work of grammatical categories emerges, capturing
the distribution of construction slots and their ob-
served fillers. In a third phase, more abstract item-
based constructions emerge, with an increasingly
large number of variable slots. In the final phase
of the learning process, most constructions have al-
ready been acquired and most remaining impasses
can be solved by adding new links to the categorial
network. The learning dynamics are influenced by
the degree of entrenchment of constructions. Con-
structions that are often successfully used become
more entrenched, while their competitors are sup-
pressed. As a result of this entrenchment process,
the grammar reaches a stable state, while it remains
adaptive to any changes in the discourse or envi-
ronment. Similar dynamics have been observed
in earlier experiments in the field of evolutionary
linguistics, for instance in experiments on the emer-
gence of compositionality in a population of au-
tonomous agents (De Beule and Bergen, 2006; van
Trijp, 2016).

On the other hand, the methodology and ex-
periments presented in this paper pave the way
for learning computationally tractable, large-scale,
usage-based grammars that facilitate both language
comprehension and production. The proposed
learning algorithm supports online, interactive, in-
cremental, transparent and data-efficient learning.
The learner builds up its human-interpretable in-
ventory of constructions and categories through
the application of transparent syntactico-semantic
generalisation processes. Already after a single
observation, the fragment of linguistic knowledge
acquired by the learner can be successfully used for
language comprehension and production. As more
and more utterance-meaning pairs are observed, the
linguistic knowledge of the learner quickly expands
and becomes better fit for achieving their communi-
cation goals. As a result of the dynamics of reward-
ing successful construction applications and pun-
ishing competing ones, the grammar of the learner
remains ever-adaptive to any changes in the task
or environment. Due to their online, interactive,
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incremental, transparent and data-efficient nature,
we strongly believe that the proposed mechanisms
for learning computational construction grammars
can serve as an excellent basis for implementing
the language acquisition ability of truly intelligent
agents.

Limitations

This paper has introduced a mechanistic model of
the constructivist acquisition of language through
syntactico-semantic pattern finding. Even though
the results that we presented here proved to be
promising and insightful, considerable challenges
and limitations remain.

First of all, the learning operators that we present
facilitate the learning of holistic, item-based and
lexical constructions. At this point, the model does
not include operators that give rise to constructions
that capture more elaborate hierarchical patterns,
including recursive patterns.

Second, the learning operators can adequately
handle word order patterns, even non-contiguous
ones. However, they provide no mechanisms to
learn agreement patterns on an abstract level. As
a consequence, different agreement patterns are
captured in different constructions. This is a less-
than-elegant solution, especially when applied to
morphologically rich languages, as it can lead to a
multiplication of the number of constructions.

Finally, the CLEVR dataset proved to be an
excellent benchmark challenge for an initial val-
idation of this novel methodology, as it consists
of utterances with sufficient repetition, variation
and overlap. It is however a synthetic dataset that
does not reflect the richness of human language use.
More research is needed before this methodology
can be adequately applied to a broader range of
linguistic resources, especially when it comes to
finding generalisations over semantic structures.
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Abstract

The COVID-19 pandemic has made a huge
global impact and cost millions of lives. As
COVID-19 vaccines were rolled out, they were
quickly met with widespread hesitancy. To
address the concerns of hesitant people, we
launched VIRA, a public dialogue system
aimed at addressing questions and concerns
surrounding the COVID-19 vaccines. Here,
we release VIRADialogs, a dataset of over
8k dialogues conducted by actual users with
VIRA, providing a unique real-world conver-
sational dataset. In light of rapid changes in
users’ intents, due to updates in guidelines or
in response to new information, we highlight
the important task of intent discovery in this
use-case. We introduce a novel automatic eval-
uation framework for intent discovery, leverag-
ing the existing intent classifier of VIRA. We
use this framework to report baseline intent-
discovery results over VIRADialogs, that high-
light the difficulty of this task.

1 Introduction

As COVID-19 vaccines became available in late
2020, they were met with widespread vaccine hes-
itancy (Goldstein et al., 2015; Sallam, 2021), a
phenomena recognized as a top global concern by
the World Health Organization (WHO) in 2019. To
address such hesitancy, one needs accurate, reliable,
and up to date information, constantly available to
the general public.

In recent years, task-oriented Dialogue Systems
(DSs) have become an integral part of our daily
lives, covering domains such as banking, tourism,
and government agencies (Androutsopoulou et al.,
2019).

Correspondingly, we introduced VIRA,1 the
Vaccine Information Resource Assistant – an infor-
mational DS that aims to engage with COVID-19
vaccination concerns and questions. VIRA is able

∗These authors equally contributed to this work.
1https://vaxchat.org

to respond to 181 different concerns, accumulated
over the course of the pandemic. VIRA responses
were written and vetted by leading medical and
public health experts, relying on up-to-date facts
and guidelines. An example of a dialog conducted
with VIRA is presented in Table 1.

We refer to this list of concerns and questions
as intents. This is a slightly modified definition of
intents, which are usually general tasks or goals
which the user tries to accomplish (Jurafsky and
Martin, 2009). In VIRA the intents are phrased
as complete sentences, e.g., “Is the vaccine safe?”,
as opposed to a synthetic class name like “vac-
cine_safe”, and the goal of the intent classifier is to
predict the correct intent, to which VIRA responds
to the user with a pre-defined message.

Advancing DSs depends on the availability of
conversational datasets on which models can be
trained. In domains where fact-based informa-
tion is a necessity, e.g., healthcare, curating such
datasets is often challenging: users in a crowd-
sourcing setting may not share their authentic con-
cerns, may not represent public opinion, or may
even attempt trolling. In addition, creating re-
sponses by highly-trained individuals is a very de-
manding process (Liu et al., 2021). Furthermore,
even if one has collected data from a real-world
DS, there could be limitations for making such
data public.

The availability of VIRA enabled us to collect
dialogs with real-world users, following word-of-
mouth or social media advertising, presumably con-
veying genuine interest or concerns related to the
vaccines. VIRA was launched in July 2021 and
over the course of 10 months it accumulated over
8k conversations. We refer to this collection of con-
versations as VIRADialogs and release it as part of
this work.2

After deploying a DS in a real-world setting,
users may introduce new intents, which are not

2https://vaxchat.org/research
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Side Text Intent
System Hey! Ask me your vaccine questions.
User Hi. Should I be concerned about side effects of the vaccine if I’m

breastfeeding?
Is breastfeeding safe
with the vaccine

System Perhaps check this out: while trials did not include breastfeeding moms,
COVID-19 vaccines are "non-replicating" vaccines. This type of vaccine
poses no risk for breastfed infants, so COVID-19 vaccines are also safe
when you’re breastfeeding!

Table 1: An example of a dialog in VIRADialogs.

part of the system’s predefined intents (Grudin and
Jacques, 2019). VIRA’s use case represents such
an extreme example where users’ intents change
rapidly due to updates in guidelines and protocols,
or as a response to new information (e.g., the out-
break of novel variants). Hence, we needed to fre-
quently update and expand the set of user intents.
This makes VIRADialogs a unique resource for
Intent discovery methods. These methods aim to re-
veal such new intents from conversational logs, try-
ing to identify the most salient new intents, which
can then be reviewed and added to the DS using a
human-in-a-loop process.

Existing datasets for intent classification and dis-
covery (e.g., Larson et al. (2019)) were collected, at
least in part, by showing crowd annotators queries
and asking them to provide rephrases. Thus, for
each query, a similar number of rephrases is col-
lected. VIRADialogs, on the other hand, comes
from a real-world use-case, and thus presumably
better reflects how people communicate; the real
intent distribution; and how it evolves over time –
an aspect which as far as we know, is not covered
by any existing data.

To directly evaluate intent discovery methods,
one would need to annotate each user utterance
with its gold intent, and compare this intent with
the prediction of each method.

While this annotation approach is typically more
precise, it is far from trivial in our real-world use-
case considering the size of VIRADialogs and the
high number of intents involved. Moreover, as we
are dealing with rapidly changing user intents in
light of new information about the virus and new
guidelines, the distribution of user intents over time
is not uniform, which means that manual annota-
tion – even for a test set – would require continuous
annotation over the whole time period. This makes
manual annotation quite challenging.

As a practical alternative, we propose a novel ret-
rospective evaluation paradigm which leverages the
existing intent classifier of VIRA. We assume that

this classifier, carefully developed over the entire
relevant time period, covers most intents present in
the data. Thus, we treat it as an Oracle to evaluate
various intent discovery methods, independently in
each month.

First, the Oracle is used to induce silver labels
over the unlabeled user utterances. Next, to eval-
uate an intent discovery method, the same Oracle
is used to classify intents predicted by this method
to silver labels, enabling a fully automatic quan-
titative evaluation. We use this approach to eval-
uate various intent discovery methods on top of
VIRADialogs and further share the code base to
reproduce our experiments.3

To summarize, the contribution of this paper is
three fold: i) We release VIRADialogs, a unique
dataset of real-world human-machine conversa-
tions, reflecting COVID-19 vaccine hesitancy; ii)
We propose and implement an automatic retrospec-
tive evaluation paradigm for intent discovery, re-
lying on the availability of a high quality intent
classifier; iii) We use our evaluation approach to
report baseline performance of various intent dis-
covery methods on top of VIRADialogs.

2 Related Work

Benchmark Datasets and COVID-19 DSs. Pop-
ular benchmark datasets for intent classification are
also used to benchmark the task of intent discovery
and were curated (at least in part) by asking crowd
annotators to phrase intents suitable to a DS set-
ting (e.g., Liu et al. (2019a); Larson et al. (2019)).
Arora et al. (2020) introduce HINT3, a challenging
benchmark whose test set comes from real chats
in 3 domains. However, the test set contains less
than 1,000 queries for each domain collected in a
15-day period, a relatively limited scope for intent
discovery.

The pandemic outbreak led to the development
of a few other DSs in this domain. Welch et al.

3https://github.com/IBM/vira-intent-discovery
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(2020) introduce expressive interviewing – an in-
terview style aiming to encourage users to express
their thoughts and feelings by asking them ques-
tions about how COVID-19 has impacted their
lives. Chalaguine and Hunter (2021) built and
studied a DS specifically addressing COVID-19
vaccine hesitancy and showed that 20% of study
participants changed their stance in favor of the
vaccine after conversing with the system. While
their motivation is similar to ours, the analyzed data
is smaller and is coming from crowd annotators.

Intent Discovery Methods. Recent work by
Rabinovich et al. (2022) introduced a fully unsu-
pervised pipeline for detecting intents in unhandled
DS logs. Utterances are encoded into vector repre-
sentations, and a Radius-based Clustering (RBC)
algorithm assigns each to an existing cluster, in
case it surpasses a predefined similarity threshold;
or use it to initiate a new cluster. The algorithm
automatically selects the number of clusters, and
does not enforce full partitioning of the underlying
data, but rather enables outliers — instances that
lay in isolation of discovered clusters. The paper
suggests a method for selecting cluster representa-
tives aimed at maintaining centrality and diversity.

Key Point Analysis (KPA) (Bar-Haim et al.,
2020a,b, 2021a) proposes a framework that pro-
vides both textual and quantitative summary of
the main points in a given data. KPA extracts the
main points discussed in a collection of texts, and
matches the input sentences to these key points. It
has been shown to perform well on argumentative
data, as well as in online surveys and on user re-
views. To our knowledge, our work is the first to
utilize KPA in the context of DSs.

3 The VIRA System

Users communicate with VIRA using either a
web-based User Interface (UI)4 or a WhatsApp
application. The general flow is that users enter
free text expressing their questions and concerns
about the vaccine, VIRA detects the intent within
a pre-defined intent list, and in turn provides a
suitable response, reviewed by medical experts.
VIRA supports conversations in English.5 Below
we describe VIRA’s main components.

4The UI is also embedded on the web pages of health
departments, vaccine advocacy organizations, and health care
facilities.

5A later version supported Spanish as well, however those
conversations are left out of this work.

Profanity Classifier. We use a dictionary6 to
identify utterances with suspected offensive lan-
guage, to which VIRA presents a generic response.

Dialog-Act Classifier. We classify each user in-
put to one of the supported dialog acts. For certain
dialog acts, e.g., ‘Hi’, VIRA presents a generic
response. Full details can be found in Appendix A.

Intent Classifier. Intents representing distinct
vaccine concerns were carefully curated through
various means: using a Twitter analysis, reviewing
audience questions in Zoom-based public forums
hosted by authors’ affiliated academic centers, and
synthesizing web pages with frequently asked ques-
tions. The intents were defined also by taking into
consideration the scientific knowledge towards the
vaccine at that point. Over time, new concerns
were identified by monitoring incoming queries
to VIRA and eventually the list comprised of 181
intents, presented in Appendix G.

The requirement from VIRA was to provide
specific answers to specific concerns, and general
answers to general concerns – hence, “I am afraid
the vaccine will change my DNA” and “I distrust
this vaccine” required different answers, and thus
were represented as separate intents, although the
latter can be entailed from the former.

The intent classifier was trained on data collected
from crowd annotators using the Appen platform.7

Annotators were presented with an intent and asked
to express it in three different ways, as if convers-
ing with a knowledgeable friend (see Section 6.1
for more details). The classifier’s top-ranked intent
is selected for providing a response from the Re-
sponse Database. If no intent passed a pre-defined
threshold, a corresponding response is given.

Response Database. This database contains
VIRA’s responses to intents. Each entry specifies
multiple responses to a specific intent, to increase
output diversity. The responses contain varying
information and tone from which VIRA selects
one randomly. The database was created and is
maintained by experts in the field based on up-to-
date facts and guidelines. All responses sought to
minimize technical language and maintain brevity
through a 280-character limit.

Feedback Mechanism. VIRA incorporates a
feedback mechanism that enables users to correct
the course of conversation. This feedback allows
VIRA’s personnel to improve the system over time

6https://github.com/LDNOOBW/
7appen.com
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# Dialogs 8,088
Total # Turns 28,202
Avg. turns per dialog 3.5
Total # Turns w/o feedback turns 20,304

Table 2: Stats of VIRADialogs. Row 2 includes turns
that are both free text and a feedback selection (see Ap-
pendix B), whereas row 4 indicates free text turns only.

(see more details in Appendix B).
All VIRA’s chats, including feedback selections

and classifiers output, are recorded for off-line anal-
ysis, without storing identifiable information.

4 The VIRADialogs Dataset

VIRADialogs contains the interactions conducted
with VIRA by actual users from July 2021 to May
2022. The full dialogues, as well as user feedback,
predicted intents, dialog acts, and offensive lan-
guage predictions are released to the research com-
munity. The data has been anonymized by mask-
ing locations, names, e-mails, phone numbers, and
birth-dates, along with suspected offensive terms,
using a range of regular expressions, the Profan-
ity Classifier, and the spaCy Named Entity recog-
nizer.8 In addition, we have excluded dialogues
between 29-30, July 2021, in which VIRA was
confronted with multiple chats containing offen-
sive language, presumably from individuals who
attempted to break the system. Stats of VIRADi-
alogs are presented in Table 2.

5 Retrospective Intent Discovery
Evaluation

An important contribution of this work is to show
how to leverage an existing DS intent classifier –
like the one described in Section 3, referred to as an
Oracle – to automatically evaluate intent discovery
methods over a collection of dialogs. An overview
of the proposed approach is depicted in Figure 1.
The underlying components are described below,
using the following terminology:

ORACLE INTENTS: The intents supported by
the Oracle. SILVER LABELS: Subset of ORACLE

INTENTS, induced over a given data. PREDICTED
INTENTS: Intents predicted and phrased by an in-
tent discovery method. PREDICTED ORACLE IN-
TENTS: Subset of PREDICTED INTENTS mapped
by the Oracle to ORACLE INTENTS.

8https://spacy.io/

5.1 Inducing SILVER LABELS

Given a set of unlabeled user utterances from con-
versational logs we randomly split it to train and
test sets. The train set is used to induce SILVER

LABELS, while the test set is used for evaluation.
The motivation of the train-test split is three-fold:
(i) enabling to evaluate how consistent is the Oracle
itself to ensure the emerging SILVER LABELS are
representative of the entire data; (ii) preserving an
option to evaluate supervised intent discovery meth-
ods in future work; (iii) using the Oracle test set
results to estimate upper bound test performance.

We apply the Oracle to predict (at most) one
intent for each utterance in the train set. Utter-
ances on which the Oracle confidence was below
a pre-specified threshold are placed in a none clus-
ter. Since each utterance is mapped to one intent,
we obtain clusters of utterances around ORACLE

INTENTS. Next, we sort all clusters by their size,
and define the top K ranked ones and their intent
representatives as the SILVER LABELS, where rank-
ing criteria can vary (see Section 6.2 for a concrete
example).

5.2 Evaluation Method
5.2.1 Matching PREDICTED INTENTS to

SILVER LABELS

PREDICTED INTENTS often cannot be matched
directly to SILVER LABELS. E.g., an intent dis-
covery method might output “I don’t want to get
a booster shot”, whereas the corresponding intent
in the SILVER LABELS would be “Will I need a
booster shot?”. Assuming manual mapping is not
feasible, we use the Oracle to map each of the PRE-
DICTED INTENTS to – at most – one of the OR-
ACLE INTENTS, resulting in a set of PREDICTED

ORACLE INTENTS. Utterances of PREDICTED IN-
TENTS which are not mapped due to low confidence
of the Oracle are placed in a none cluster. Note, that
in principle this set may contain ORACLE INTENTS

that were not selected as SILVER LABELS.

5.2.2 Evaluation Measures
We consider two types of measures to evaluate in-
tent discovery methods: (a) the similarity of PRE-
DICTED INTENTS to SILVER LABELS; and (b) the
similarity of cluster partitions generated on the test
data by the Oracle and the evaluated method.

Intent Discovery Measures
We estimate the quality of PREDICTED INTENTS

(PIs) using the PREDICTED ORACLE INTENTS
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Figure 1: Overview of the evaluation pipeline.

(POIs) and SILVER LABELS (SLs) as follows:
Recall: Coverage of SILVER LABELS by method

|POIs| ∩ |SLs|
|SLs|

Precision: Ratio of PREDICTED INTENTS

mapped to SILVER LABELS

|POIs| ∩ |SLs|
|PIs|

JS-distance: We place utterances of PRE-
DICTED ORACLE INTENTS not in the SILVER LA-
BELS in the none cluster. We normalize the sizes
of the clusters induced by the SILVER LABELS and
the PREDICTED ORACLE INTENTS– including the
none cluster – into two probability distributions,
and report their Jensen-Shannon divergence.

Intent Clusters’ Analysis
We compare the partitioning of the test data in-
duced by the PREDICTED INTENTS and the Oracle
using the following standard measures: Adjusted
Rand-Index (ARI): The rand index corrected for
chance (Vinh et al., 2010). Adjusted Mutual-
Information (AMI): The mutual information cor-
rected for chance (Meilă, 2007). V-Measure: The
harmonic mean between homogeneity and com-
pleteness (Rosenberg and Hirschberg, 2007).

6 Experimental Setup

In this section we present a concrete implementa-
tion of the framework described in Section 5 using
VIRA and VIRADialogs to automatically evaluate
various unsupervised intent discovery methods.

6.1 The Oracle

For the Oracle we use VIRA’s intent classifier
(Section 3), described below.

Data

For each intent amongst the final 181 intents cov-
ered by VIRA, we asked 18 Appen crowd anno-
tators to contribute three different intent expres-
sions, i.e., different phrasings of questions or com-
ments by which they could have expressed the in-
tent while chatting with a knowledgeable friend.9

Qualified annotators were paid on average 7.5-8$
an hour.10 After manual cleaning we ended up
with 7,990 expressions, between 20-100 for each
intent.11 We release this dataset as part of this
work, contributing to the task of single-domain in-
tent classification.12

Model and Training

We split the intent expressions associated with each
intent to train (65%), dev (8%), and test (27%)
sets, with 5,169, 664 and 2,139 examples, respec-
tively, over which we fine-tuned RoBERTa-large
(Liu et al., 2019b). Full model implementation de-

9Note that we collected data from crows annotators solely
for training the intent model. VIRADialogs itself contains real
interactions and is not crowd-sourced.

10For each annotator, we calculate the BLEU score of its
expressions w.r.t the intent. Annotators with score < 0.07 are
determined as qualified, aiming at promoting diversity.

11The data also contains a small set of 324 intent expres-
sions, extracted manually from VIRADialogs.

12https://research.ibm.com/haifa/dept/vst/
debating_data.shtml
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Fold Train
size

Test
size

# SILVER
LABELS

Jul-21 3,011 3,294 45
Aug-21 1,169 1,285 43
Sep-21 868 911 37
Oct-21 718 747 34
Nov-21 506 521 30
Dec-21 730 769 31
Jan-22 799 905 40
Feb-22 239 250 23
Mar-22 212 229 18
Apr-22 192 206 20

Table 3: # utterances in VIRADialogs splits for intent
discovery evaluation.

tails and threshold tuning are in Appendix C. Note,
when the confidence score of the top prediction was
below a pre-specified threshold, the model does not
predict any intent.

6.2 Inducing SILVER LABELS

We apply to VIRADialogs filters to reduce noise
and irrelevant input.13 We split the remaining utter-
ances into monthly intervals, resulting in 10 data
folds, and subsequently evenly split the utterances
in each fold to train and test (indifferent to which
dialogue utterances came from).

To reduce noise in generating SILVER LABELS,
we additionally filter from the train set utterances
classified with a dialog act (e.g., ‘greeting’) or as
offensive, as the ratio of intents related to COVID-
19 vaccines in these utterances is much smaller.

We then apply the Oracle on each utterance in
the train set, resulting in ORACLE INTENTS and
corresponding clusters. We sort them based on their
prevalence and define the top K as SILVER LABELS.
In practice, we do this by accumulating the clusters
until we reach a coverage of 80% (out of all texts
on which the Oracle had a confident prediction) or
that the number of utterances mapped to an intent
is below 3 (removing a long tail of small clusters).
The number of utterances and SILVER LABELS for
each fold are reported in Table 3.

6.3 Intent Discovery Methods

6.3.1 Clustering Algorithms

We evaluate two clustering algorithms. Since one
cannot assume that the number of SILVER LABELS

is known a priori, we use sqrt(N) as a simple

13We filter user feedback, utterances longer than 250 char-
acters, contain at most one non-masked word, or less than
75% alpha-numeric characters.

heuristic to determine the number of clusters, in-
cluding the none cluster, where N is the number of
utterances being clustered. Short utterances, con-
taining less than 5 recognized words, were placed
in advance in the none cluster. Analysis takes a few
minutes on CPU.

K-Means. We use the K-Means algorithm from
the SciKit-Learn package (Pedregosa et al., 2011)
with the default settings. Each utterance was rep-
resented using its Sentence-BERT representation
(Reimers and Gurevych, 2019).

sequential Information Bottleneck (sIB). As a
bag-of-words baseline, we use the sIB algorithm of
Slonim et al. (2002).14 The algorithm uses as input
the Term-Frequency vector representations and is
executed with the default settings, after stop-word
filtering and stemming.

Intent Extraction
We select a single user utterance per cluster to repre-
sent an intent, resulting with the list of PREDICTED

INTENTS. The selection is based on a statistical
analysis of n-grams in the data. For each cluster,
we first find the n-grams that are significantly more
common in this cluster compared to other clusters
based on hyper-geometric test (p = 0.05). Then
we select the user utterance in the cluster that in-
cludes the maximal number of significant n-grams
found in that cluster.

6.3.2 End-to-End Methods
We evaluate two end-to-end methods with mostly
default settings. These methods determine the num-
ber of clusters internally, and map utterances to a
none cluster as they see fit. For comparison pur-
poses, we take the top sqrt(N)− 1 prevalent clus-
ters for evaluation. The rest of the clusters are
added to the none cluster.

Key Point Analysis (KPA). We use KPA as pro-
vided by the IBM Debater Academic Early Access
Program (Bar-Haim et al., 2021b). The underlying
model of KPA matches utterances with key point
candidates, identified automatically. Adjustments
for this task can be found in Appendix D. The ser-
vice took about 3.5 hours to complete the analysis.

Radius-based Clustering (RBC). We ap-
proached the authors of Rabinovich et al. (2022)
to produce the results for this evaluation. Adjust-
ments for this task can be found in Appendix E.
RBC took a few minutes to run on CPU.

14https://github.com/IBM/sib
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Recall Precision f1 JS-distance
0.79(±0.08) 0.8(±0.08) 0.8(±0.08) 0.16(±0.04)

Table 4: Evaluation of the Oracle on VIRADialogs test
sets (weighted-avg over the monthly intervals.)

7 Results and Discussion

7.1 The Oracle

We first establish the quality of VIRA’s intent clas-
sifier used as the Oracle in various ways.

Inference on Intent expressions test set. We
evaluate the Oracle on the test set of the collected
intent expressions, using the threshold tuned on
the dev set (Section 6.1). The Oracle achieves a
micro-averaged precision / recall / f1 of 0.85 / 0.74
/ 0.79 on dev, and 0.88 / 0.77 / 0.82 on test.

Inducing SILVER LABELS and matching
PREDICTED INTENTS. We manually evaluate the
Oracle’s accuracy in (i) inducing SILVER LABELS

(Section 5.1) and (ii) matching PREDICTED IN-
TENTS to SILVER LABELS (Section 5.2.1).

For (i), we randomly sample 10 SILVER LABELS

from the train set of each of the 10 folds. For each
silver label we sample 2 utterances mapped to it
(200 < utterance, SILVER LABELS > pairs overall).
For half of the pairs, we randomly replace the silver
label with one of the other ORACLE INTENTS (thus,
obtaining negative pairs). We asked 3 annotators to
annotate whether a given pair of texts has a similar
intent or meaning, and took the majority vote as
the ground-truth (see more details in Appendix F).
The accuracy of the Oracle on this data is 0.85.

For (ii), we randomly select from each fold and
for each evaluated method 5 pairs of < PREDICTED

INTENTS, PREDICTED ORACLE INTENTS > where
PREDICTED ORACLE INTENTS are part of the SIL-
VER LABELS (200 pairs overall). We use the same
annotation task as in (i). The accuracy of the Oracle
on this data is 0.86.15

Consistency over VIRADialogs test. To recall,
we evaluate methods on the test set w.r.t SILVER

LABELS induced from the train set. Here, we
would like to examine the consistency of the Ora-
cle’s predictions between the sets which also im-
plies the representativeness of the SILVER LABELS

for the entire data. We do that by inferring the Ora-

151. We note that on average for 24% of PREDICTED IN-
TENTS the Oracle is not confident (covering 22% of the texts),
and for an additional 18% the PREDICTED ORACLE INTENTS
are not part of the SILVER LABELS. 2. For one of the methods
there were less than 5 pairs, so the overall number of pairs is
199.

cle over the test set of each monthly fold to produce
clusters around ORACLE INTENTS. We then rank
them by prevalence and accumulate them to define
the PREDICTED INTENTS (which are also trivially
PREDICTED ORACLE INTENTS), as was done to
induce SILVER LABELS on the train set. The re-
sults are presented in Table 4. The Oracle achieves
a weighted-f1 of 0.795, demonstrating reasonable
consistency between the train and test split in each
fold. This also can be considered an upper limit of
success for other methods.

Overall, the above evaluation has shown that the
Oracle performs well in matching utterances and
PREDICTED INTENTS to intents, and that SILVER

LABELS are relatively representative.

7.2 Intent Discovery Methods

Results for the 4 methods we evaluate are presented
in Table 5. RBC has the highest coverage uncover-
ing 45% of the SILVER LABELS, and reaching an
f1 of 0.51. These results also indicate the difficulty
of this task, as the majority of SILVER LABELS re-
main undetected. Note that similar precision with
worse recall, such as with K-Means compared to
KPA, suggests more redundancy in the PREDICTED

INTENTS of the former.
KPA is much better at the clustering measures,

and is thus useful for finding good examples for
each intent. This might be due to KPA’s match-
ing engine, trained to match sentences with key
points (similarly to intents in VIRA, key points are
concise representations of main points in the data).

It should be noted that for simplicity we used
“off-the-shelf” methods with minor adaptations, to
resemble a real-world setting where a user would
like to get a fast impression of how well such meth-
ods perform for a given use-case with minimal
effort. In addition, we used a simple heuristic to de-
termine the number of clusters. It is likely that with
proper tuning of parameters, domain adaptation of
underlying models, tuning of number of clusters,
etc., the performance would have been higher.

7.3 Qualitative Analysis of Emerging Intents

The SILVER LABELS and PREDICTED ORACLE

INTENTS cover varying issues, and so we sought
to analyze some of the more high-profile ones in
light of events that occurred in their context.

We selected two intents: i) How effective is
the vaccine against the Omicron variant, coupled
with the rise in Omicron-related cases in December
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Recall Precision f1 JS-distance ARI AMI Clustering-f1 V-measure
sIB 0.39(±0.09) 0.52(±0.09) 0.44(±0.09) 0.33(±0.03) 0.05(±0.03) 0.24(±0.05) 0.07(±0.04) 0.37(±0.05)
K-Means 0.42(±0.07) 0.57(±0.08) 0.49(±0.06) 0.34(±0.03) 0.06(±0.03) 0.32(±0.06) 0.1(±0.05) 0.43(±0.05)
RBC 0.45(±0.11) 0.61(±0.11) 0.51(±0.11) 0.32(±0.04) 0.15(±0.04) 0.28(±0.05) 0.19(±0.04) 0.39(±0.04)
KPA 0.44(±0.08) 0.57(±0.09) 0.49(±0.07) 0.32(±0.03) 0.24(±0.05) 0.38(±0.05) 0.3(±0.04) 0.48(±0.05)

Table 5: Evaluation of intent discovery methods on VIRADialogs. The numbers are a weighted-average over the
monthly intervals. Best method for each metric is highlighted in bold. Takeaway: Methods are able to uncover up
to 45% of the intents, demonstrating the difficulty of this task. RBC is able to uncover more intents and at better
precision. KPA is much better at uncovering correct placements of utterances within clusters.

Figure 2: Cluster ratios of How effective is the vaccine against the Omicron variant (left); Will I need a booster
shot (right). Takeaway: Predictions of methods on VIRADialogs correlate well with real-world developments.

2021;16 and ii) Will I need a booster shot, coupled
with booster recommendations in late November
202117 and March 2022.18 In Figure 2, we plotted
the cluster ratio19 of each intent among all clusters
in a given month, as predicted by the Oracle, KPA,
and RBC on the test set. Presumably, high ratio
indicates a peak of interest for this intent.

For Omicron, methods highlight emerging inter-
est in December and January, correlated with its
real-time occurrence. To the right, methods pre-
dict interest in boosters peaking in December and
April. We also note that differences between sys-
tems are sometimes non-negligible (e.g., as evident
by the different peaks in the right figure). Overall,
this analysis demonstrates how outstanding events
in the COVID-19 timeline can be captured by the
evaluated intent discovery methods.

8 Conclusions

In this paper we first describe VIRA, an informa-
tional DS addressing hesitancy towards COVID-19

16https://www.cdc.gov/coronavirus/
2019-ncov/science/forecasting/
mathematical-modeling-outbreak.html

17https://www.cdc.gov/media/releases/2021/
s1129-booster-recommendations.html

18https://www.cdc.gov/media/releases/2022/
s0328-covid-19-boosters.html

19Cluster ratio is defined as the size of an intent cluster
divided by the overall number of utterances for a given month.

vaccines. VIRA provides access to accurate, up-
to-date information in English, written by experts.
We believe that the associated VIRADialogs data,
containing 8k dialogs of VIRA with real-world
users, would be a valuable resource to the relevant
research community. As an initial example of the
potential of this data, we demonstrate how it can be
utilized to evaluate intent discovery methods. We
propose an automatic evaluation framework that
relies on the availability of a corresponding intent
classifier, and report the results of 4 diverse meth-
ods, concluding that this benchmark represents a
significant challenge.

While automatic evaluation is clearly more prac-
tical than manual one, developing the required in-
tent classifier involves a non–trivial effort. Still,
we envision two potential outcomes of our work.
First, additional intent-discovery methods can be
easily evaluated over VIRADialogs data using our
implementation, and compared to the baseline per-
formance reported here. Second, the same frame-
work can be implemented in other use cases as well
for which a reliable intent classifier is available,
opening the door for automatic evaluation of intent
discovery methods over additional datasets.

Finally, VIRA is constantly maintained and up-
dated, and is now being expanded to additional
languages, along with a Whatsapp implementation,
to expand its outreach. In future work we intend to
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report the lessons learned from developing VIRA,
and the implications for developing a DS in the
public health domain.
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9 Limitations

There are a few limitations to our approach, which
stem from assumptions made to establish the eval-
uation pipeline.

• We implement an evaluation pipeline on a
single dataset, which we were part of creating,
and did not test its compliance with additional
datasets.

• We assume a relatively accurate intent clas-
sifier, referred to as an Oracle, is available.
Thus, our evaluation is not suited for cold-
start scenarios.

• We assume the intents covered by the Ora-
cle indeed cover most intents expressed in
the data. It is quite possible that as VIRADi-
alogs is a large dataset it included additional
intents, beyond the 181 covered by the Oracle,
which probably impacted the accuracy of the
evaluation. We note, though, that automatic
evaluation, as proposed in this work, is always
prone to such issues.

• We evaluated only certain unsupervised meth-
ods for intent discovery. Other systems may
perform better than the reported baselines.

10 Ethics Statement

This paper describes work around VIRA, a real-
world DS addressing COVID-19 vaccine hesitancy.
In an attempt to alleviate concerns that users would
take action based on information given to them
by VIRA which might harm them, the terms of
use of the DS state that “This information ... is
not intended as a substitute for medical advice”.
We were guided with the principle of providing
accurate information, thus when building VIRA
we incorporated a direct mapping between intents
and responses. Future endeavours based on this

dataset, e.g., for building a generative bot for ad-
dressing vaccine hesitancy, should be aware of the
ramifications of showing to users such content.

In addition, the terms of use stated that queries
are stored and may be used for research purposes.

The chats collected might have originally con-
tained offensive language, often as a result of the
sensitivity of the domain to some users. We made
a dedicated effort to flag these cases and mask
problematic terms. However, we did so with au-
tomatic measures, so the dataset might still con-
tain such language. Finally, although the data was
anonymized by masking various expressions, it is
still possible that some sensitive medical concerns
remain.
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corresponding generic texts. For example, a re-
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are your thoughts about the COVID-19 vaccine?”.
Utterances classified as either concern or query are
passed to the Intent Classifier.

B Feedback Mechanism

VIRA incorporates a feedback mechanism that
gives users the option to correct the course of con-
versation. When users give a thumbs down for a
VIRA’s response, or when the intent classifier is
not confident, VIRA shows to the user the top-
3 predicted intents in a menu to select from with
additional options for indicating that: (a) none of
these intents address the concern, or (b) the input
does not express a concern at all. This feedback al-
lows VIRA’s developers and persons maintaining
the Response Database to improve the system over
time. For example, when (b) is selected, it indicates
a false positive for the Dialog-Act Classifier.

C Intent Classification Model Details

As a base model for fine-tuning the intent classifier
of VIRA, used as the Oracle, we use RoBERTa-
large (354M parameters). We use AdamW opti-
mizer with a learning rate of 5e-6 and a batch size
of 16. We fine-tune the model for 15 epochs and
select the best performing checkpoint on the dev
set according to overall accuracy. Training took 20
minutes on 1 v100 GPU. The confidence thresh-
old of the model was tuned by taking the minimal
threshold such that the precision on the dev set
> 0.85, resulting in a threshold of 0.296.

D Key Point Analysis Details

First, utterances for which no match was found
above a threshold are placed in a none cluster.

Furthermore, preliminary experiments have
shown KPA is producing too few intents, so
as an adjustment for this task we: (i) set
limit_n_cands = false to remove the limit
on the number of key point candidates; (ii) set
n_top_kps = 1000 to remove the limit on num-
ber of clusters in the output, which also implies no
minimal cluster size. The hypothesis is that (i)+(ii)
will increase the amount and diversity of resulting
key points at the expense of run-time.

E Radius-based Clustering Details

As an adjustment, chit-chat utterances which are
filtered at the first phase of the algorithm are placed

in a none cluster. The minimal similarity thresh-
old is set to 0.55. As with KPA we do not set a
minimum size for clusters.

F Labeling User Utterances and
PREDICTED INTENTS to SILVER
LABELS

We presented annotators with pairs of texts, where
one text can be either a user utterance or an intent
from the PREDICTED INTENTS, and the other a
silver label. We asked, “Do the above two texts
convey the same meaning or intent?”. The annota-
tors belong to a group with high success on previ-
ous tasks of our team, and the task included a few
positive and negative examples to illustrate our ob-
jective. In addition, we included test questions of
text pairs manually selected from the training data
of the Oracle, and annotators with less than 70%
accuracy on them were removed from the task.

G Intents Supported by VIRA
Intent

COVID-19 is not as dangerous as they say
Do I need to continue safety measures after getting the
vaccine?
How long until I will be protected after taking the vac-
cine?
How many people already got the vaccine?
I am afraid the vaccine will change my DNA
I am concerned getting the vaccine because I have a
pre-existing condition
I am concerned I will be a guinea pig
I’m concerned the vaccine will make me sick.
I am not sure if I can trust the government
I am young and healthy so I don’t think I should vacci-
nate
I distrust this vaccine
How much will I have to pay for the vaccine
I don’t think the vaccine is necessary
I don’t trust the companies producing the vaccines
I don’t want my children to get the vaccine
I think the vaccine was not tested on my community
I’m not sure the vaccine is effective enough
I’m waiting to see how it affects others
COVID vaccines can be worse than the disease itself
Long term side-effects were not researched enough
Are regular safety measures enough to stay healthy?
Should people that had COVID get the vaccine?
Side effects and adverse reactions worry me
The COVID vaccine is not safe
The vaccine should not be mandatory
Do vaccines work against the mutated strains of COVID-
19?
They will put a chip/microchip to manipulate me
What can this chatbot do?
What is in the vaccine?
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Intent
Which one of the vaccines should I take?
Will I test positive after getting the vaccine?
Can other vaccines protect me from COVID-19?
Do I qualify for the vaccine?
I don’t trust vaccines if they’re from China or Russia
Are the side effects worse for the second shot
Can I get a second dose even after a COVID exposure?
Can I get other vaccines at the same time?
Can I get the vaccine if I have allergies?
Can I get the vaccine if I have had allergic reactions to
vaccines before?
Can I have the vaccine as a Catholic?
Can I have the vaccine if I’m allergic to penicillin?
Can I still get COVID even after being vaccinated?
Can you mix the vaccines?
COVID-19 vaccines cause brain inflammation
Do the COVID-19 vaccines cause Bell’s palsy?
"Do the mRNA vaccines contain preservatives, like
thimerosal?"
Do the vaccines work in obese people?
Do you have to be tested for COVID before you vacci-
nated?
Does the vaccine contain animal products?
Does the vaccine contain live COVID virus?
Does the vaccine impact pregnancy?
Does the vaccine work if I do not experience any side
effects?
How can I stay safe until I’m vaccinated?
"How do I know I’m getting a legitimate, authorized
vaccine?"
How do I report an adverse reaction or side-effect
How long do I have to wait between doses?
How many doses do I need?
How was the vaccine tested?
I am concerned about getting the vaccine because of my
medications.
I don’t want the v-safe app monitoring or tracking me
I don’t want to share my personal information
Is breastfeeding safe with the vaccine
Is the Johnson & Johnson vaccine less effective than the
others?
Is the vaccine halal?
Is the vaccine Kosher?
Is there vaccine safety monitoring?
Other vaccines have caused long-term health problems
Should I get the COVID-19 vaccine if I am immunocom-
promised
Should I get the vaccine if I’ve tested positive for anti-
bodies?
The vaccine includes fetal tissue or abortion by-products
The vaccine was rushed
Vaccine side effects are not getting reported
What does vaccine efficacy mean?
What if I still get infected even after receiving the vac-
cine?
What if I’ve been treated with convalescent plasma?
What if I’ve been treated with monoclonal antibodies?
What is mRNA?
What is the difference between mRNA and viral vector
vaccines?
When can I go back to normal life?
Why are there different vaccines?

Intent
Why do I need the COVID vaccine if I don’t get immu-
nized for flu
Why do we need the vaccine if we can wait for herd
immunity?
Why get vaccinated if I can still transmit the virus?
Will 1 dose of vaccine protect me?
Can I take a pain reliever when I get vaccinated?
Will the vaccine benefit me?
Will the vaccine make me sterile or infertile?
Can we change the vaccine quickly if the virus mutates?
Can I get COVID-19 from the vaccine?
I’m still experiencing COVID symptoms even after test-
ing negative - should I still take the vaccine?
Can children get the vaccine?
Can we choose which vaccine we want?
How long does the immunity from the vaccine last?
" The mortality rate of COVID-19 is low, why should I
get the vaccine?"
There are many reports of severe side effects or deaths
from the vaccine
How can I get the vaccine?
I am worried about blood clots as a result of the vaccine
what is covid?
Who developed the vaccine?
Which vaccines are available?
What are the side effect of the vaccine?
Can I meet in groups after I’m vaccinated?
Is it safe to go to the gym indoors if I’m vaccinated?
How do I protect myself indoors?
What are the effects of long COVID?
Do you need a social security number to get a COVID-19
vaccine?
Do you need to be a U.S. citizen to get a COVID-19
vaccine?
Is it okay for me to travel internationally if I’m vacci-
nated?
Can my kids go back to school without a vaccine?
Will I need a booster shot?
"If I live with an immuno-compromised individual, do I
still need to wear a mask outdoors if I’m vaccinated? "
Does the vaccine prevent transmission?
Why is AstraZeneca not approved in the USA?
Do I need to change my masking and social distancing
practices depending on which COVID-19 vaccine I got?
Does the Pfizer vaccine cause myocarditis?
Does the Pfizer vaccine cause heart problems?
What can you tell me about COVID-19 vaccines?
Are there medical contraindications to the vaccines?
How many people died from COVID-19?
What about reports of abnormal periods due to the vac-
cine?
Do I need the vaccine?
Tell me about the vaccine
Is the Pfizer vaccine safe for young men?
Will vaccination lead to more dangerous variants?
Is it safe for my baby to get the vaccine?
Did a volunteer in the Oxford trial die?
Can I get COVID-19 twice?
Are some vaccines safer for younger children than oth-
ers?
How long am I immune from COVID-19 if I had the
virus?
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Intent
Are women more likely to get worse side effects than
men?
How do I convince my family and friends to get the
COVID-19 vaccine?
Why are COVID-19 vaccination rates slowing in the
U.S.?
I’m going to get vaccinated
Is getting vaccinated painful?
What do I do if I lose my COVID-19 vaccination card?
Can I get swollen lymph nodes from the vaccine?
Can my newborn become immune to COVID-19 if I’m
vaccinated?
"COVID-19 is over, why should I get the vaccine?"
Did one woman die after getting the J&J vaccine?
Do people become magnetic after getting vaccinated?
Does the vaccine contain eggs?
How is the COVID-19 vaccine different than others?
How soon after I’ve had COVID-19 can I get the vacci-
nation?
Is it safe for my teen to get the vaccine?
Is this Pfizer vaccine equally effective in kids as it is in
adults?
Were the COVID-19 vaccines tested on animals?
What are the side effects of the vaccine in children?
What is the delta variant?
What is the J&J vaccine?
What is the Moderna vaccine?
What is the Pfizer vaccine?
Where are we required to wear masks now?
Who can get the Pfizer vaccine?
Who can I talk to about COVID-19 in person?
Why should I trust you?
Will my child need my permission to get vaccinated?
Will the US reach herd immunity?
Will my child miss school when they get vaccinated?
Is the vaccine FDA approved?
Why do vaccinated people need to wear a mask indoors?
Do vaccinated people need to quarantine if exposed to
COVID-19?
What is Ivermectin?
Does the Johnson and Johnson vaccine cause Rare Nerve
Syndrome?
What is the difference between quarantine and isolation?
Does the COVID-19 vaccine cause autism?
Does the vaccine cause impotence?
Who is required to get vaccinated under the federal vac-
cine mandate?
Is the Delta variant more dangerous for kids?
Will there be a booster shot for J&J and Moderna?
Is the booster the same as the original vaccine?
What are the side effects of booster shots?
What is the difference between the third shot and a
booster shot?
How common are vaccine side effects?
Why do my kids need a vaccine if they’re unlikely to get
sick with COVID-19?
What happens if there is a COVID-19 case at my child’s
school?
Are booster shot side effects worse than those from the
second shot?
Is the booster shot dangerous?
Can I get the vaccine if I have Multiple Sclerosis?

Intent
Do children receive the same dose of Pfizer as adults?
What is the Omicron variant?
How effective is the vaccine against the Omicron vari-
ant?
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Abstract

Disentangling the encodings of neural models
is a fundamental aspect for improving inter-
pretability, semantic control and downstream
task performance in Natural Language Process-
ing. Currently, most disentanglement methods
are unsupervised or rely on synthetic datasets
with known generative factors. We argue that
recurrent syntactic and semantic regularities
in textual data can be used to provide the
models with both structural biases and gener-
ative factors. We leverage the semantic struc-
tures present in a representative and semanti-
cally dense category of sentence types, defi-
nitional sentences, for training a Variational
Autoencoder to learn disentangled represen-
tations. Our experimental results show that
the proposed model outperforms unsupervised
baselines on several qualitative and quantita-
tive benchmarks for disentanglement, and it
also improves the results in the downstream
task of definition modeling.

1 Introduction

Learning disentangled representations is a funda-
mental step towards enhancing the interpretability
of the encodings in deep generative models, as
well as improving their downstream performance
and generalization ability. Disentangled represen-
tations aim to encode the fundamental structure
of the data in a more explicit manner, where in-
dependent latent variables are embedded for each
generative factor (Bengio et al., 2013).

Previous work in machine learning proposed
to learn disentangled representations by modify-
ing the ELBO objective of the Variational Autoen-
coders (VAE) (Kingma and Welling, 2014), within
an unsupervised framework (Higgins et al., 2017;
Kim and Mnih, 2018; Chen et al., 2018). On the
other hand, a more recent line of work claims the
benefits of supervision in disentanglement (Lo-
catello et al., 2019) and it advocates the importance
of designing frameworks able to exploit structures

Training
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word embedding (w)

zqφw, r pθ ŵ, r̂

role embedding (r)
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Supertype Differentia
Event
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Evaluation
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Latent traversals
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TSNE
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Disentanglement
metrics

Downstream task
Definition Modeling

Figure 1: Left: Supervision mechanism with defini-
tion semantic roles (DSR) encoded in the latent space.
The dotted arrow represent the conditional VAE version.
Right: Evaluation framework.

in the data for introducing inductive biases. In par-
allel, disentanglement approaches for NLP have
been tackling text style transfer, and evaluating the
results with extrinsic metrics, such as style transfer
accuracy (Hu et al., 2017; John et al., 2019; Cheng
et al., 2020).

While style transfer approaches investigate the
ability to disentangle and control syntactic factors
such as tense and gender, the aspect of understand-
ing and disentangling the semantic structure in lan-
guage is under-explored, but with recent attempts
of separating syntactic and semantic latent spaces
showing promising results (Chen et al., 2019; Bao
et al., 2019). Furthermore, evaluating disentangle-
ment is challenging, because it requires knowledge
of generative factors, leading most approaches to
train on synthetic datasets (Higgins et al., 2017;
Zhang et al., 2021).

In this work, we argue that recurrent semantic
structures at sentence level can be leveraged both
as inductive biases for enhancing disentanglement
(RQ1) but also for providing meaningful genera-
tive factors that can be employed for evaluating the
degree of disentanglement (RQ2). We also inves-
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tigate whether organizing the generative factors in
groups may facilitate learning and disentanglement
(RQ3). As a result, this work focuses on natural
language definitions, which are a textual resource
characterised by a principled structure in terms of
semantic roles, as demonstrated by previous work
which proposed the extraction of structural and se-
mantic patterns in this kind of data (Silva et al.,
2016, 2018).

Seeking to address the highlighted issues and an-
swer the research questions, we make the following
contributions, also depicted in Figure 1.

1) We design a supervised framework for en-
hancing disentanglement in language representa-
tions by conditioning on the information provided
by the semantic role labels (SRL) in natural lan-
guage definitions. We present two mechanisms for
injecting SRL biases into latent variables, firstly,
reconstructing both words and corresponding SRL
in a VAE, secondly, employing SRL information as
input variables for a Conditional VAE (Zhao et al.,
2017).

2) We propose a framework for evaluating the
disentanglement properties of the encodings on
non-synthetic textual datasets. Our evaluation
framework employs semantic role label groupings
as generative factors, enabling the measurement
of several contemporary quantitative metrics. The
results show that the proposed bias injection mech-
anisms are able to increase the degree of disentan-
glement (separability) of the representations.

3) We demonstrate that models trained with our
disentanglement framework are able to outperform
contemporary baselines in the downstream task of
definition modeling (Noraset et al., 2017).

2 Disentangling framework

In this section we first describe the framework de-
signed for improving disentanglement in natural
language definitions with semantic role labels. Sec-
ondly, we present three models, shown in Figure 2
based on the Variational Autoencoder (VAE) (Bow-
man et al., 2016) architecture for achieving disen-
tanglement.

2.1 Disentangling definitions

Definition semantic roles Our framework is
based on natural language definitions, which are
a particular type of linguistic expression, charac-
terised by high abstraction, and specific phrasal
properties. Previous work in NLP for dictionary

definitions (Silva et al., 2018) has shown that there
are categories that can be consistently found in
most definitions. In fact, Silva et al. (2018) define
precise Semantic Role Labels (SRL) for phrases
representing definitions, under the name of Defini-
tion Semantic Roles (DSR).

The example from (Silva et al., 2018) classifies
the semantic roles within "english poets who lived
in the lake district" as follows. "poets" as noun
category (supertype), "english" as quality of the
term (Differentia Quality), "who lived" as event
that the subject is involved with (differentia event),
and "in the lake district" as the location of the action
(Event location). The full DSRs proposed by Silva
et al. (2018) are reported in Table 9 in Appendix A.
Disentangling using SRL Our goal is to enhance
disentanglement in natural language by injecting
categorical structures into latent variables. We find
that this goal is well aligned with the findings of Lo-
catello et al. (2019), where it is claimed that a
higher degree of disentanglement may benefit from
supervision and inductive biases. Our hypothesis
is that we may leverage such semantic information
for learning representation with higher degree of
disentanglement. While in the context of this work
we use dictionary definitions as a target empirical
setting, we conjecture that these conclusions can
be extended to broader definitional sentence-types.
The core intuition behind the approach is that the
supervision signal should increase the likelihood
of point clustering in regions corresponding to, or
related to the discrete supervision labels, given the
network architecture formulation.

2.2 Definition VAEs

Unsupervised VAE The first training framework
that we consider is the traditional variational au-
toencoder (VAE) for sentences (Bowman et al.,
2016), which operates in an unsupervised fash-
ion, as in Figure 2a. The unsupervised VAE
employs a multivariate gaussian prior distribu-
tion p(z) and generates a sentence x with a de-
coder network pθ(x|z). The joint distribution
for the decoder is defined as p(z)pθ(x|z), which,
for a sequence of tokens x of length T result as
pθ(x|z) =

∏T
i=1 pθ(xi|x<i, z). The VAE objec-

tive consists into maximizing the expectation of the
log-likelihood which is defined as Ep(x) log pθ(x).
Due to the computational intractability of the such
expectation value, the variational distribution qθ is
employed to approximate pθ(z|x).
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Figure 2: Proposed architectures for learning disentangled representations in definitions.

As a result, an evidence lower bound LVAE
(ELBO) where Ep(x)[log pθ(x)] ≥ LVAE, is de-
rived as follows:

LTokens = Eqϕ(z|x)
[
log pθ(x|z)

]
−KLqϕ(z|x)||p(z)

DSR supervised VAE The aim of this model
is to inject the categorical structure of the defini-
tion semantic roles (DSR) into the latent variables,
by factorizing them into the VAE auto-encoding
objective function. In order to achieve this goal,
we introduce the variable r for semantic roles, and
train the "DSR VAE", where both sentence and se-
mantic roles are auto-encoded. The variable r here
operates just as x, with the corresponding label val-
ues. As a result, two separate losses are produced
and added together for the final loss, as shown in
Figure 2b. The ELBO for semantic roles is defined
as follows:

LRoles = Eqϕ(z|r)
[
log pθ(r|z)

]
−KLqϕ(z|r)||p(z)

The final loss is given by LTokens + LRoles.

Conditional VAE with SRL For explicitly lever-
aging the definition semantic roles, we propose a
supervision mechanism based on the Conditional
VAE (CVAE) (Zhao et al., 2017), shown in Fig-
ure 2c. Similar to the previously described model,
we instantiate a VAE framework, where x is the
variable for the tokens, and r for the roles. We
perform auto-encoding for both roles and tokens,
and additionally, we condition the decoder network
on the roles. The CVAE is trained to maximize the
conditional log likelihood of x given r, which in-
volves an intractable marginalization over the latent
variable z.

The ELBO is defined as:

LCVAE =Eqϕ(z|r,x)
[
log pθ(x|z, r)

]

− KLqϕ(z|x, r)||p(z|r)

Training We consider LSTM-based VAE and
Transformer-based VAE (Optimus (Li et al., 2020))

as baselines. The training process follows the vari-
ational autoencoding methodology (Kingma and
Welling, 2014). First, tokenization is performed
in the sentences and the roles. The Encoder net-
work involves feeding both first into embedding
layers, then into LSTM / Transformer layers. Sub-
sequently, two vectors µ and σ are sampled with
two linear layers, and the vector z is computed with
the re-parameterization trick. Finally, the decoder
network is built with the LSTM / Transformer lay-
ers and another embedding layer, which return the
same dimension that was given as input.

3 Evaluation framework

We first present the evaluation framework that for
measuring disentanglement, then describe and jus-
tify the generative factor setup used in the experi-
ments.

3.1 DSR as generative factors

While early approaches for disentanglement in
NLP have been proposed in the context of in style
transfer applications (John et al., 2019; Cheng et al.,
2020) and are assessed purely in terms of style
transfer accuracy, evaluating the intrinsic properties
of the latent encodings is fundamental for disentan-
glement, as mentioned in several machine learning
approaches (Higgins et al., 2017; Kim and Mnih,
2018). Recently, Zhang et al. (2021) proposed a
framework for computing several popular quantita-
tive disentanglement metrics such as (Higgins et al.,
2017; Kim and Mnih, 2018) testing it on synthetic
datasets. The limitation in (Zhang et al., 2021) is
that it works only with synthetic datasets.

In this work, we propose a method where seman-
tic role labels, such as the ones provided in (Silva
et al., 2018), are used as generative factors for eval-
uating the degree of disentanglement in the en-
codings. The framework, illustrated in Figure 3,
considers multiple generative factors, where each
factor is composed by a number of semantic roles
(for example the factor "location" includes, origin-
location, and event-location). In this way, the
dataset can be seen as the result of a sampling
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of multiple generative factors, which is the same
principle used when creating synthetic datasets for
disentanglement. Once the generative factors are
defined, the framework is enabled to compute a
number of quantitative metrics for disentanglement,
following the work from Zhang et al. (2021).
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Figure 3: Generative factors for definitions.

3.2 Semantics and Syntax groups of DSR

In order to categorize the definition semantic roles
(DSR), we consider their structural and semantic
dimensions in terms of their contribution to either
the meaning (e.g., quality, location) or the structure
(e.g., main terms, modifiers) of the definition sen-
tence. We first create two DSR groups with seman-
tic and two based on syntax, to evaluate which one
would better facilitate disentanglement. For both
syntax and semantic, we then create one group with
"supertype" DSR and one without it, in order to
understand the impact of the supertype DSR. The
importance of "supertype" is due to its contribu-
tion to both abstraction groups and its predominant
presence on the datasets analyzed (≥ 97%).
Group 1: Semantics with Supertype Sets the
factors in terms of their meaning, essentially ab-
stracting categories of the DSRs, including the SU-
PERTYPE DSR as a single factor. Qualification,

location, modification, declaration (statement) and
supplementation (accessory) are semantic roles of
a given term to its definition, which are described
by the DSRs.
Group 2: Syntax with Supertype Sets the factors
in terms of their structural role in the definition
sentence, including the SUPERTYPE DSR as a
single factor. The ORIGIN-LOCATION DSR is
omitted due to its syntactic overlap with EVENT-
LOCATION and its low frequency in the datasets.
Group 3: Semantics without Supertype Similar
to group 1, but excluding the SUPERTYPE DSR,
and repositioning the factor from modifier and ac-
cessory for higher abstraction. Relations of modifi-
cation and supplementation (present in group 1) are
suppressed to focus on lexical semantics, moving
label ACCESSORY-DETERMINER to the declara-
tory group, EVENT-TIME to the event group and
all quality related labels to the qualification group.
Group 4: Syntax without Supertype Similar to
group 2, but excluding the SUPERTYPE DSR. Fur-
ther abstractions are not conducted, as the defini-
tion roles already offer a stable structure for sen-
tence construction.

4 Related work

Disentangled VAEs in language Early approaches
in text disentanglement use VAEs with multiple
adversarial losses for style transfer (Hu et al., 2017;
John et al., 2019). More recently, Cheng et al.
(2020) propose a style transfer method which mini-
mizing the mutual information between the latent
and the observed variable, while Colombo et al.
(2021) propose an upper bound of mutual informa-
tion for fair text classification. Disentanglement of
syntactic and semantic information on sentences
is explored by Chen et al. (2019), using multiple
losses for word ordering and paraphrasing, and by
Bao et al. (2019) with linearized constituency tree
losses. Finally, Dupont (2018) work on discrete
factors for image models and the improvements in
Mercatali and Freitas (2021) proposed method for
NLP lead to this work, where we move from the
latter’s implicit language features and LSTM-based
architecture to explicit automatic annotations and
a state-of-the-art Transformer-based architecture.
We focus our efforts into the representation of defi-
nitions, and propose to promote disentanglement by
using biases provided as semantic roles, designing
two VAE models to inject structural semantic in-
formation into the representation. As an alternative
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architecture for generative modeling, Generative
Adversarial Network (GAN) was not employed for
this problem due to the non-contrastive nature of
the input data (trying to leverage informed struc-
tural knowledge) and the emphasis on disentangle-
ment as a mechanism to understand separability
and control.
Disentanglement Evaluation Vishnubhotla et al.
(2021) evaluate disentanglement in synthetic text
on various NLP tasks such as classification, re-
trieval and style transfer. Zhang et al. (2021) evalu-
ate disentanglement of various VAE models on syn-
thetic datasets where generative factors are known.
Differently from these methods, we propose a new
framework to evaluate non-synthetic natural lan-
guage, where semantic role labels are used as gener-
ative factors. We model linguistic features of natu-
ral language definitions, with the goal of exploring
the semantic properties that are encapsulated in it.
Definition models Early approaches in definition
encoding include (Hill et al., 2016), which pro-
pose the first neural embedding model for dictionar-
ies, and (Bahdanau et al., 2017), which present an
RNN-based encoder decoder architecture for tex-
tual entailment and reading comprehension. More
recently, methods based on Autoencoders (Bosc
and Vincent, 2018) and transformers (Tsukagoshi
et al., 2021) have been proposed. Various ap-
proaches for the task of generating a definition from
a word (Definition Modeling) have been proposed,
including RNN-based methods (Noraset et al.,
2017), soft attention mechanisms (Gadetsky et al.,
2018), and span-based encoding schemes (Bevilac-
qua et al., 2020). The semantic aspect of natural
language definitions are explored in (Silva et al.,
2016, 2018), where the concept of definition se-
mantic roles is proposed.

5 Empirical analysis

In this section, we firstly describe the empirical
setup for experiments, secondly, we provide quali-
tative evaluation and thirdly, we measure various
quantitative metrics. Finally, we demonstrate the
capacity of the proposed models in the downstream
task of definition modeling.

5.1 Experimental setup

Datasets Definition sentences and their respective
semantic role structures are sourced from three
different datasets by (Silva et al., 2016) with the
characteristics described in Table 1. All datasets

Dataset Num sents. Avg. length Version
Wordnet 93,699 9 WordNet 3.0
Wiktionary 464,243 8 Dec, 2016
Wikipedia 1,500,323 12 Dec, 2016

Table 1: Statistics from definition datasets.

are automatically annotated with DSR tags for each
token, using the method proposed by (Silva et al.,
2016). The datasets differ not only in sentence
length and size, but also in textual style: while
WordNet and Wiktionary sentences tend to be for-
matted as dictionary definitions, Wikipedia sen-
tences are lengthier and less adherent to a typical
definition structure. For brevity, hyperparameter
choices and implementation details are covered in
sections C and D of the suplementary material.

5.2 Qualitative Evaluation
We analyse the representations of the trained
models in terms of their disentanglement and com-
position, by applying three different techniques
1) traversals of the latent space, 2) latent space
arithmetic, 3) encoding interpolation.

Latent space traversals Traversal evaluation
is a standard procedure with image disentangle-
ment (Higgins et al., 2017; Kim and Mnih, 2018).
The traversal of a latent factor is obtained as the
decoding of the vectors corresponding to the latent
variables, where the evaluated factor is changed
within a fixed interval, while all others are kept
fixed. If the representation is disentangled, when
a latent factor is traversed, the decoded sentences
should only change with respect to that factor.
This means that after training the model we are
able to probe the representation for each latent
variable. In the experiment, the traversal is set up
from a starting point given by a “seed” sentence.
As illustrated in Table 2 we observed that the
latent variables typically track a single abstract
definition role (e.g., supertype, quality, purpose),
and change the meaning of the original term
according to an abstract interpretation axis (e.g,
flying → movement, art → doutrine/teachings).
This means a certain degree of control can be
applied to the generation of both the sentence
structure and semantics.

Latent space arithmetic In this experiment,
the latent vectors for two sentences are added,
subtracted or averaged, and then the resulting
vectors are traversed. The sentence pairs are
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a flying creature
a flying animal
a flying insect

a robot
a monster
a creature

a walking demon
a flying creature
a moving animal

a martial art developed in Israel
an ancient Buddhist dagger used to stab others
an ancient martial art practiced in Japan

a Roman soldier’s movement
a military dress worn by monks
a knight’s ceremonial hat

a religious rite in which communion is offered
a literary rite in Bible study
a medicine school

Table 2: Traversals showing changed and held seman-
tic factors in Wiktionary definitions (Optimus-based
model).

A
D

D

a flying machine
a flying creature
a flying dinosaur
a flying robot
a flying object

AV
G

to make four copies of
to make five copies of
to make one copy of
to make two copies of
to make 3 copies of

SU
B

a female monarch
a monarch
the subnormal condition in females originating from...
the normal female pregnancy associated with some
the female given name in the Japanese game...

Table 3: Traversals showing changed and held seman-
tic factors after latent vector arithmetic in Wiktionary
definitions (Optimus-based model).

different by a single term, so that we can observe
the latent variables affected by the change, and
how they are affected. As illustrated in Table 3,
these operations tend to produce vectors that, when
traversed, generate sentences corresponding to
the features manipulated by the operation (e.g.,
removing the monarch supertype, leaving the
female quality).

Interpolation In this experiment, we analyse the
capability of the models built with the proposed
approach to provide a smooth transition between
latent space representations of sentences (Bow-
man et al., 2016). In practice, the interpolation
mechanism takes two sentences x1 and x2, and
uses their posterior mean as the latent features
z1 and z2, respectively. It interpolates a path
zt = z1 · (1− t)+z2 · t with t increased from 0 to 1
by a step size of 0.1. This is a deterministic process,
and no search is performed. As a result, 9 sentences
are generated on each interpolation step. In Table 4
we provide qualitative results with latent space in-
terpolation on Wiktionary. We can observe the
transition happening for each concept: migratory
→ ∅→ microscopic, aquatic→ aquatic + terres-
trial→ terrestrial, bird→ mammal→ organism
→ invertebrate. This type of localised semantic
control provided by the operations of traversal and
interpolation over intensional-level (definitional)

D
SR

O
pt

im
us

-b
as

ed

a migratory aquatic bird found in the temperate regions
of the northern hemisphere
1 a migratory bird of the eastern Mediterranean
2 a marine gastropod of the subfamily
3 a terrestrial aquatic mammal of the family
4 a terrestrial aquatic mammal of the suborder
5 a terrestrial invertebrate
6 a microscopic organism or invertebrate
a microscopic terrestrial animal or protozoan

an automobile
1 a motorcycle
a bicycle

Table 4: Interpolation examples in Wiktionary
(Optimus-based model). Only unique sentences are
shown.

sentences can potentially support quasi-symbolic
operations over the latent space. Such effects could
not be observed within the baselines.

Based on those three experiments, the composi-
tion of such latent space could be conceptualised
as in the projection illustrated in Figure 4.

supertype: bird - 
protozoan (organism)

quality: aquatic - 
terrestrial 

(lives in water)terrestrial aquatic

invertebrate

organism

mammal

bird

protozoan

gastropod

amoeba

rodent dolphin

duck

Figure 4: Conceptualisation of a two-dimension cut of
the latent space, applied to the first example in Table 4.

UMAP plot UMAP (Uniform Manifold Approx-
imation and Projection) (McInnes et al., 2018) is a
popular method for non-linear dimensionality re-
duction, that allows the visualization of complex
high-dimensional feature spaces, such as the rep-
resentation space produced by a VAE. Figure 5
presents a 2D plot of UMAP transformations for
both baselines under three training frameworks,
from which the clustering of DSR patterns can
be observed. While the supervision with DSR la-
bels promotes clustering of the patterns around
the center of the plot, cVAE compacts the clus-
ter on the edges, allowing better separation. In
the Optimus-based model, for example, the SU-
PERTYPE (green) cluster has a tendency to move
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Figure 5: UMAP plot of latent representations from Un-
supervised VAE (U), DSR supervision (S) and Condi-
tional VAE (C) (Top: LSTM, Bottom: Optimus-based).

towards the edge of plot from left (U) to right (C).
t-SNE transformations are also performed and the
plots are presented in the supplemental material
(Appendix E).

5.3 Quantitative Evaluation

In this experiment we probe the representation
learned by the proposed VAE models using eight
popular quantitative metrics for disentanglement,
namely: z-diff (Higgins et al., 2017), z-min-
var (Kim and Mnih, 2018), Mutual Information
Gap (MIG) (Chen et al., 2018), Modularity
& Explicitness (Ridgeway and Mozer, 2018),
and from (Eastwood and Williams, 2018)(dis-
entanglement, completeness, informativeness).
Further details about the metrics are provided in
Appendix B. It is relevant to mention that there
are considerations regarding inconsistency on
classification dependent probes (e.g., z-min-var,
modularity), which are not discussed here due
to space and scope considerations (we refer to
Carbonneau et al. (2022)). Therefore, we decided
to include all current metrics that could be applied
in this scenario, and the results presented next
should be interpreted considering these limitations.

Experimental Setup We evaluate VAE (U), DSR
VAE (S) and CVAE (C) on Wordnet (WN), Wik-
tionary (WT) and Wikipedia (WP) datasets. Evalu-
ation is performed under the framework explained
in Section 3. Each combination of VAE architec-
ture, generative factor grouping and representation
size was trained and quantitatively tested, by cal-
culating the previously mentioned disentanglement
metrics. For computing the metrics we follow the

experiments of Zhang et al. (2021).
Analysis The results presented in Tables 2, 4, and 5
show that, specially when using the Optimus-based
model:

LSTM
D z-diff z-min-var ↓ MIG Modularity

U S C U S C U S C U S C
WN .700 .691 .770 .482 .503 .532 .067 .057 .059 .793 .804 .765
WT .597 .619 .635 .400 .385 .430 .112 .095 .065 .535 .424 .629
WP .575 .630 .647 .398 .386 .420 .046 .041 .037 .771 .745 .757
D Explicitness Disentanglement Completeness Informativeness ↓

U S C U S C U S C U S C
WN .519 .532 .527 .022 .021 .031 .013 .013 .017 .364 .361 .399
WT .584 .593 .616 .014 .011 .013 .013 .013 .011 .377 .373 .385
WP .545 .557 .600 .007 .007 .005 .007 .007 .004 .375 .373 .374

Optimus-based
D z-diff z-min-var ↓ MIG Modularity

U S C U S C U S C U S C
WN .645 .673 .669 .483 .509 .517 .023 .012 .006 .724 .766 .750
WT .516 .532 .589 .458 .441 .480 .016 .013 .043 .827 .813 .809
WP .513 .544 .641 .471 .486 .552 .010 .011 .033 .956 .942 .943
D Explicitness Disentanglement Completeness Informativeness ↓

U S C U S C U S C U S C
WN .501 .500 .501 .058 .040 .049 .039 .027 .032 .398 .377 .398
WT .559 .547 .573 .013 .026 .028 .009 .018 .019 .333 .316 .305
WP .548 .532 .594 .024 .054 .060 .016 .034 .038 .288 .282 .280

Table 5: Quantitative disentanglement metrics (Top:
LSTM, Bottom: Optimus-based).

For the Wiktionary and Wikipedia datasets, the
application of DSR categories as biases results
in a measurable improvement in disentanglement
(RQ1). This is evidenced by the proposed model
outperforming the unsupervised baseline in six of
the eight disentanglement metrics tested, by a mar-
gin of at least 2.5%, 81% in average.

The use of DSRs as generative factors produces
meaningful disentangled representations (RQ2).
The traversal results indicate the tendency of as-
sociating certain role abstractions to latent space
dimensions, e.g., supertype, statement (purpose,
among others). The interpolation results indicate
the capture of semantic bridging across definitions,
e.g., teaching → loading (process). The UMAP
visualisation indicates slightly better factor sepa-
ration and smoother transitions for the conditional
model.

More specifically, in LSTM, z-diff presents the
highest and most consistent improvement, specially
with the CVAE, indicating higher interpretability
when inferring single generative factors from the
representations. Explicitness results are also consis-
tent, indicating higher coverage of each factor. Im-
provements on Modularity, Disentanglement Score,
Completeness and Informativeness are less consis-
tent, indicating that the factors share substantial
information between them. On the other hand, z-
min-var, MIG counter the trend of improvement,
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Figure 6: Metrics mean grouped.

Word Definition Model Unsupervised LSTM Supervised LSTM
repulse the act of making a gun the act of moving forward act in a hostile state
colonise make a new or vital part the state of being in a particular place settle or cause to be easily removed
involve make a specific purpose make a specific effect a specific act of making something
mitochondrion a cell that is used to treat the blood a substance that is used to treat a body reaction a cell that is a source of an organic process
heat a change in the surface of a liquid a sudden increase in the flow of heat a sudden increase in the temperature

Table 6: Definition generation examples for the Wordnet dataset.

due to the fact that they are designed to strongly
penalize non-alignment of single pairs <factor↔
latent dimension> (e.g., linear combinations). As a
result, they penalize the existence of dependency
and hierarchy relations which is present in most
DSR categories, e.g., DIFFERENTIA-EVENT→
EVENT-TIME. As for the Optimus-based model,
there are similar tendencies on WT and WP cor-
pus. The conditional framework always performs
better under 6 of 8 metrics, except z-min-var and

modularity. This result indicates that our condi-
tional framework can improve the disentanglement
performance of Optimus.

We also analyse how semantic groupings affect
disentanglement in Figure 6b (RQ3). This is done
only for the LSTM-based VAE, as the Transformer-
based one was set to the optimal configuration in Li
et al. (2020). Overall, we notice that syntax based
groups have higher scores, indicating that it is eas-
ier to disentangle syntactic phrase components. For
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Modularity the result is the opposite, indicating that
semantic groupings promote higher independence
between factors. Following (Zhang et al., 2021),
the values in Table 5 for the metrics Completeness
and Disentanglement score are multiplied by 10, in
order to facilitate the visualization.

Finally, we find that a low number of latent di-
mensions leads to smaller degree of disentangle-
ment. The experiments with 4,5,7 and 128 latents
are reported in Figure 6a.

5.4 Definition Generation

In this experiment, we assess the proposed VAE
models in the task of "Definition Modeling" (No-
raset et al., 2017), where the goal is to generate a
natural language definition given the word to be
defined (definiendum).

Experimental setup During training, we adopt the
"seed" setup (Noraset et al., 2017), which involves
providing the definiendum concatenated with the
definition tokens as input for the model. At genera-
tion time, the model takes as input only the word
which needs to be defined, and leverages a trained
model for computing the definition latent encoding.
Such encoding is then fed into a softmax function
and subsequently a multinomial probability distri-
bution is sampled for decoding the latent variable
into the final definition sentence.

To compare with the baseline of definition
generation (Gadetsky et al., 2018), we only
consider LSTM-based VAEs under the proposed
unsupervised and DSR-supervised framework,
both using the "seed" setup. The conditional
LSTM and optimus-based models are not explored
in this experiment in order to have a more fair
comparison with the Definition model. We train
the baseline and our models with similar setups,
following (Gadetsky et al., 2018). We perform
language model pretraining on the WikiText-103
dataset (Merity et al., 2016) for 1 epoch, then train
on the downstream dataset for 10 epochs. Addi-
tionally, all models are initialised using Google
Word2Vec pretrained vectors, following (Gadetsky
et al., 2018).

Results We report the perplexity and Bleu (Pap-
ineni et al., 2002) results in Table 7. We observe
that the proposed variational autoencoder models
achieve an improvement on both perplexity and
Bleu compared to the RNN baseline. The DSR

VAE achieves the best perplexity and Bleu on 2 out
of 3 datasets while the unsupervised VAE is the
best performing model in the other cases. Success
of VAE models can be attributed to their disen-
tangling properties, which promotes learning of
latent spaces that are less sparse, a benefit deriv-
ing from sampling variable for re-parameterization.
Improvements from the DSR VAE are marginal,
but can be attributed to the additional information
that is injected into its latent variables.

Perplexity ↓ Bleu
Data DM VAE DSR DM VAE DSR
WN 88.59 80.36 80.27 9.12 10.27 10.26
WT 42.51 39.09 38.64 6.70 7.53 7.59
WP 13.09 12.39 12.47 11.89 12.32 12.34

Table 7: Quantitative metrics for definition generation.

Some generation examples from the Wordnet
dataset are provided in Table 6. Such examples
show that the proposed VAE models are able to
leverage the structural and semantic information of
the learned definition roles to better approximate
the defined concept. In particular, we notice some
semantically strong linguistic elements in the defi-
nitions decoded with DSR supervision, for example
DSR is the only model able to link the verb "re-
pulse" with the hostile adjective, the verb colonise
with the similar verb "settle", and the word "heat"
with temperature. We include more generation ex-
amples of the Optimus-based model in Appendix E.

The strong performance in this definition gener-
ation task indicates that the disentangled represen-
tations have provided the VAE models with higher
generalization capability, suggesting that disentan-
gling is beneficial for diverse applications.

6 Conclusion

We propose a novel VAE-based framework for
learning and evaluating disentangled representa-
tions in natural language definitions. We leverage
the semantic structure present in dictionaries as in-
ductive biases for improving disentanglement in
VAEs, and as generative factors during evaluation.
Our evaluation shows, both with qualitative inves-
tigations and with quantitative metrics, that the
proposed framework is able to produce encodings
with a higher degree of disentanglement. Finally,
our models outperform existing baselines on a def-
inition modeling application, demonstrating the
generalization capabilities of disentangled repre-
sentations.
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Limitations

The type of structural supervision chosen for the ap-
proach here proposed is specificaly fit to definition
(dictionary style) sentences, in order to leverage se-
mantic information from such structures. However,
this limits the scope of comparison with other meth-
ods applied to general sentences. Additionally, the
qualitative improvements we observed in terms of
latent space traversals, arithmetic and interpolation
do not clearly correlate with the disentanglement
metrics, despite overall improvement. This raises
some questions regarding the relation between ex-
plainability properties and general latent space sep-
arability.
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A Definition Semantic Roles

The datasets used in our experiments are introduced
in (Silva et al., 2018). We report in Table 9 the
annotated categories.

Role Description
Supertype the immediate or ancestral entity’s superclass
Differentia
quality

a quality that distinguishes the entity from the
others under the same supertype

Differentia
event

an event (action, state or process) in which the
entity participates and that is mandatory to dis-
tinguish it from the others under the same super-
type

Event
location

the location of a differentia event

Event time the time in which a differentia event happens
Origin
location

the entity’s location of origin

Quality
modifier

degree, frequency or manner modifiers that con-
strain a differentia quality

Purpose the main goal of the entity’s existence or occur-
rence

Associated
fact

a fact whose occurrence is/was linked to the
entity’s existence or occurrence

Accessory
determiner

a determiner expression that doesn’t constrain
the supertype / differentia scope

Accessory
quality

a quality that is not essential to characterize the
entity

Role
particle

a particle, such as a phrasal verb complement,
non-contiguous to the other role components

Table 8: Semantic Role Labels for dictionary defini-
tions.

B Disentanglement Metrics

1. zdiff accuracy (Higgins et al., 2017): The
accuracy of a predictor for p(y|zbdiff ), where
zbdiff is the absolute linear difference between
the inferred latent representations for a batch
B of latent vectors, written as a percentage
value. Higher values imply better disentangle-
ment.

2. zmin_var error (Kim and Mnih, 2018): For
a chosen factor k, data is generated with
this factor fixed but all other factors varying
randomly; their representations are obtained,
with each dimension normalised by its empir-
ical standard deviation over the full data (or
a large enough random subset); the empiri-
cal variance is taken for each dimension of
these normalised representations. Then the in-
dex of the dimension with the lowest variance
and the target index k provide one training
input/output example for the classifier. Thus,
if the representation is perfectly disentangled,

the empirical variance in the dimension cor-
responding to the fixed factor will be 0. The
representations are normalised so that the arg
min is invariant to rescaling of the represen-
tations in each dimension. Since both inputs
and outputs lie in a discrete space, the opti-
mal classifier is the majority-vote classifier,
and the metric is the error rate of the classifier.
Lower values imply better disentanglement.

3. Mutual Information Gap (MIG) (Chen et al.,
2018): The difference between the top two
latent variables with the highest mutual in-
formation. Empirical mutual information
between a latent representation zj and a
ground truth factor vk, is estimated using
the joint distribution defined by q(zj , vk) =∑N

n=1 p(vk)p(n|vk)q(zj |n). A higher mutual
information implies that zj contains a more
information about vk, and the mutual infor-
mation is maximal if there exists a determin-
istic, invertible relationship between zj and
vk. MIG values are in the interval [0, 1],
with higher values implying better disentan-
glement.

4. Modularity (Ridgeway and Mozer, 2018):
The deviation from an ideally modular case
of latent representation. If latent vector di-
mension i is ideally modular, it will have high
mutual information with a single factor and
zero mutual information with all other factors.
A deviation δi of 0 indicates perfect modu-
larity and 1 indicates that this dimension has
equal mutual information with every factor.
Thus, 1− δi is used as a modularity score for
vector dimension i and the mean of 1 − δi
over i as the modularity score for the over-
all representation. Higher values imply better
disentanglement.

5. Explicitness (Ridgeway and Mozer, 2018):
Mean of the ROC area-under-the-curve
(AUCjk) of a one-versus-rest logistic-
regression classifier that takes the latent vec-
tors as input and has factor values as targets,
over a factor index j and an index k on values
of factor j. Represents the coverage of the
representation, in other words, how well each
factor is represented. Higher values imply
better disentanglement.

6. Disentanglement Score (Eastwood and
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Williams, 2018): The degree to which a
representation factorises or disentangles the
underlying factors of variation, with each
variable (or dimension) capturing at most
one generative factor. It is computed as
a weighted average of a disentanglement
score Di = (1 − HK(Pi.)) for each latent
dimension variable ci, on the relevance of
each ci, where HK(Pi.) denotes the entropy
and Pij denotes the ’probability’ of ci being
important for predicting zj . If ci is important
for predicting a single generative factor, the
score will be 1. If ci is equally important
for predicting all generative factors, the
score will be 0. Higher values imply better
disentanglement.

7. Completeness Score (Eastwood and Williams,
2018): The degree to which each underlying
factor is captured by a single latent dimen-
sion variable. For a given zj it is given by
Cj = (1 − HD(P̃ .j)), where HD(P̃ .j) =

−∑D−1
d=0 P̃djlogDP̃ij denotes the entropy of

the P̃ .j distribution. If a single latent dimen-
sion variable contributes to zj’s prediction, the
score will be 1 (complete). If all code vari-
ables contribute equally to zj’s prediction, the
score will be 0 (maximally over-complete).
Higher values imply better disentanglement.

8. Informativeness Score (Eastwood and
Williams, 2018): The amount of information
that a representation captures about the
underlying factors of variation. Given a
latent representation c, It is quantified for
each generative factor zj by the prediction
error E(zj , ẑj) (averaged over the dataset),
where E is an appropriate error function
and ẑj = fj(c). Lower values imply better
disentanglement.

C Hyperparameter choices

Experiments are conducted to cover a set of 3 hy-
perparameters: First, the VAE architecture used:
1) Unsupervised VAE 2) Supervised with SRL 3)
CVAE with SRL. Second, the generative factor
grouping, which includes: 1) Semantic w/ super-
type 2) Syntactic w/ supertype 3) Semantic w/o
supertype 4) Syntactic w/o supertype. Third, the
dimensionality of VAE latent representation (z): 4,
5, 7, 128.

The choice of architecture allows evaluation of
the impact of DSR label conditioning in two dis-
tinct ways: as part of the autoencoding objective
function, and as a conditional variable of the de-
coder, addressing our research questions RQ1 and
RQ2. The choice of generative factor grouping
can indicate the best ways to organize the factors,
addressing RQ3.

The dimensionality of the representation is set
to match the number of generative factors, in an
attempt to force disentanglement by alignment of
each dimension to a single factor. The dimension
sizes are then defined to be 4 (alignment with group-
ings 3 and 4), 5 (alignment with grouping 2) or 7
(alignment with grouping 1). However, different
levels of disentanglement can be achieved with mis-
matching dimensions and factors. So all possible
combinations of factors and representation sizes
are tested and a size of 128 is included to evaluate
the impact of a higher number of parameters in
each grouping.

D Implementation Details

As for LSTM-based VAE, hyperparameters are cho-
sen with the following values, based on a previous
experiment from (Shen et al., 2020). (1) Number
of hidden layers: 1, (2) Dimension of the hidden
layer: 512, (3) VAE λKL = 0.1, (4) Epochs=20,
(5) Batch size=32 for Wikipedia, 64 for the rest.
Dropout (20%) is done for both encoder and de-
coder inputs. To provide the inputs and outputs for
the VAEs, the definition sentences are tokenized
into sub-words with a Byte Pair Encoding (BPE)
scheme, and converted into token embeddings with
the T5 transformer model (Raffel et al., 2020), with
an embedding size of 512. With respect to Opti-
mus, we use memory setup to inject latent repre-
sentation into the decoder. The encoder and de-
coder are pretrained BERT with bert-base-cased
version and GPT2, respectively. Some additional
values of hyperparameters are: (1) Epochs=10, (2)
Batch size=32. (3) latent size=32. In the supervised
framework, a new embedding layer is considered
to learn the representations of semantic roles. In
the conditional framework, we add semantic roles
into the vocabulary of pretrained BERT encoder.

E Further Experimental Results

t-SNE plot Alternative dimensionality reduction
method (t-distributed Stochastic Neighbor Embed-
ding) (Van der Maaten and Hinton, 2008), used to
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visualise the clustering of DSR patterns, as seen in
Figure 7.

Figure 7: t-SNE plot of latent representation generated
from LSTM and Optimus-based models under Unsuper-
vised VAE (U), DSR supervision (S) and Conditional
VAE (C) (Top: LSTM, Bottom: Optimus-based).

Optimus-based model definition generation
Table 9 lists the generated definitions from the Un-
supervised Optimus-based model on Wordnet. The
perplexity is 35.46 that is much lower than 80.27
from LSTM.

Word Generated Definition
Fox a member of the Mayflower
Untermeyer United States writer of short stories
organise make logical or comprehensible
dishrag remove the fur from
altocumulus
cloud

a clear blue sky

shuffle move quickly on or move quickly forward
sharpen make sharp or sharper
semantic er-
ror

discrimination that invalidates an earlier charac-
teristic

railway sta-
tion

station where planes take off and land or take off

Antonio
Pignatelli

Italian cardinal and theologian

union a cooperative level of play in league with other
players

love knot a knot of contrasting color or yarn used for tying
a wedding band

commodity
brokerage

a place where stockbrokers sell their stock

Table 9: Generation definitions from the Optimus-based
model.
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Abstract
Recent years have witnessed increasing inter-
ests in prompt-based learning in which mod-
els can be trained on only a few annotated in-
stances, making them suitable in low-resource
settings. When using prompt-based learning
for text classification, the goal is to use a pre-
trained language model (PLM) to predict a
missing token in a pre-defined template given
an input text, which can be mapped to a class
label. However, PLMs built on the transformer
architecture tend to generate similar output em-
beddings, making it difficult to discriminate
between different class labels. The problem is
further exacerbated when dealing with classifi-
cation tasks involving many fine-grained class
labels. In this work, we alleviate this informa-
tion diffusion issue, i.e., different tokens share
a large proportion of similar information after
going through stacked multiple self-attention
layers in a transformer, by proposing a calibra-
tion method built on feature transformations
through rotation and scaling to map a PLM-
encoded embedding into a new metric space to
guarantee the distinguishability of the resulting
embeddings. Furthermore, we take the advan-
tage of hyperbolic embeddings to capture the
hierarchical relations among fine-grained class-
associated token embedding by a coarse-to-fine
metric learning strategy to enhance the distin-
guishability of the learned output embeddings.
Extensive experiments on the three datasets un-
der various settings demonstrate the effective-
ness of our approach. 1

1 Introduction

Large pre-trained language models (PLMs) (Devlin
et al., 2019; Lan et al., 2020; Liu et al., 2019) have
been achieved state-of-the-art performance in many
Natural Language Processing (NLP) downstream
tasks. More recently, the PLMs with prompt learn-
ing demonstrate surprising capabilities in numerous

*Equal contribution.
1Our code can be found at https://github.com/dontt

al/TARA

tasks both in NLP and computer vision, even out-
performing their fine-tuned counterparts (Brown
et al., 2020; Liu et al., 2021; Lester et al., 2021;
Zhou et al., 2022b; Gao et al., 2021a).

Train#1: Gotta protect’em! It was [MASK].
Train#2: That’s why it’s only 20$. It was [MASK].
Test: On a boat trip to Denmark. It was [MASK].

Table 1: The prompt templates for emotion classifica-
tion. The samples are from GoEmotion (Demszky et al.,
2020) dataset.

In an emotion classification task shown in Table
1, an input sentence X , followed by a prompt, “It
was [MASK]”, is fed to a PLM to predict the miss-
ing token at the position of [MASK]. The predicted
word can be used to identify the emotion label of
the input sentence. Such few-shot learning gen-
erates a probability distribution over the [MASK]
conditioning on the given prompt/context, which
is considered as in-context learning of language
models.

However, as in-context learning does not require
updating PLM parameters, there arises the prob-
lem of distribution mismatch between the data used
for LM pre-training and the test samples used in
in-context learning, which hinders the full exploita-
tion of the knowledge encoded in PLMs (Xie et al.,
2022; Zhao et al., 2021; Ge et al., 2022; Shin et al.,
2022). To alleviate the context shift, existing meth-
ods rely on prior knowledge to increase the overlap-
ping between the two distributions. For example,
PTR (Han et al., 2021) appends domain-agnostic
tokens to prompts to discriminate the domains,
such as “sports”, “politics”. Another line of stud-
ies designs sophisticated handcrafted verbalizers to
map the test samples onto the label word space de-
rived from PLMs (Schick and Schütze, 2021; Gao
et al., 2021b). Although the gradient-optimized
verbalizers (Hu et al., 2022) are proposed to ease
the human effort and can be adapted to different
downstream tasks via training, it is still consid-
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ered inferior to the manual verbalizers, especially
in both the few-shot and zero-shot settings where
training data are scarce.

In this paper, we first show that PLMs have an
inherent information diffusion issue in their gen-
erated output token embeddings, which share a
large proportion of similar information after go-
ing through a stack of transformer layers (Gao
et al., 2019; Yan et al., 2022). Such token em-
beddings occupy a narrow cone, leading to largely
overlapped output distributions when applied to
in-context learning. Next, we elaborate that the
overlapped output distributions would violate the
distinguishability condition (Xie et al., 2022) under
in-context learning. To this end, we propose to
flatten the singular value distributions of the out-
put embeddings generated from PLMs to shape
the space spanned by the singular values to a de-
sirable manifold. On the one hand, we apply an
orthogonal and a scaling constraints to the weight
matrix applied to the output embeddings, which
can avoid exploding and vanishing values in the
feature matrix (Saxe et al., 2014), leading to better
discriminative features when trained with limited
labelled data. On the other hand, we leverage hy-
perbolic embeddings to capture the hierarchical re-
lations among fine-grained class labels of training
examples to further enhance the distinguishability
of output embeddings.

Our proposed framework has been implemented
on top of existing prompt-based few-shot learn-
ing methods and it demonstrates an average 5.86%
performance improvement of F1-measure on three
classification tasks under 100-shot learning. We
also verify that the improvement stems from a more
balanced singular value distribution for the output
features and the learnt hierarchical feature space.

In summary, our contributions include:

• We propose a transformation-based constraint
to output embeddings by rotation and ratio
balancing which is able to guarantee the dis-
tinguishability of learned embeddings.

• The proposed hyperbolic embedding-based
metric learning strategy not only improves the
performance of prompt learning but also mea-
sures the relation between different categories.

• The experimental results outperform many
strong baselines and the visualisation illus-
trates that the proposed method is able to
project the embedding to a less overlapping

distribution and improve the interpretability
and distinguishability of output. Specifically,
across three evaluated datasets, our method
surpasses the state-of-the-art by 9.60%, 5.11%
and 2.87%, respectively, in the 100-shot set-
ting.

2 Related works

Information diffusion in PLMs. In a typical
L-layer transformer-based PLM, assuming the
prompt is a concatenation of a few training exam-
ples and a test input Xtest, consisting of m tokens
in total, the goal of in-context learning is to predict
the output distribution over the masked token at the
t-th position, [MASK]. It is formally defined by
the following equation:

p(Ot|Xtest) = Eh∼pprompt(h|Xtest)[p(Ot|Xtest, h, θ)],

where h denotes the last-layer hidden state corre-
sponding to the token of Xtest, θ is the parameters
in prompt-based learning.

Although we have limited knowledge of the out-
put distribution p(Ot|Xtest) over token [MASK],
many existing studies analyzed the geometry prop-
erties of the last layer feature hL, and examined
its effects in downstream tasks (Goyal et al., 2020;
Zhou and Srikumar, 2022). Due to the softmax
bottleneck (Yang et al., 2018) and the likelihood
loss in language generation tasks (Gao et al., 2019),
the output feature distribution in PLMs tends to
be anisotropic and rank-deficient, which limits
the expressiveness of the generated representa-
tions. Goyal et al. (2020) discussed the information
diffusion issue among tokens within a sentence that
feeding the tokens in different positions for classi-
fication only resulted in a 1.2% variance in classi-
fication accuracy. Gao et al. (2019) explored the
information diffusion among different sentences
via singular value decomposing and they found
that the singular value distributions are skewed es-
pecially in deeper PLM layers, i.e., larger singular
values become more predominant compared to the
smaller ones.

Context shift in in-context learning. Many re-
searchers studied the distribution shift (aka. do-
main shift) between the pretraining corpora and
test samples and proposed solutions to decrease the
performance variance in prompt-based few-shot
learning (Xie et al., 2022; Zhao et al., 2021; Hu
et al., 2022; Zhou et al., 2022b; Shin et al., 2022).
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Figure 1: (a): The mapping results of 1,500 [MASK] tokens randomly sampled from the GoEmotions dataset. Each
red dot is the output representations derived from prompt-based learning for the [MASK] token of an input example,
which will be used to predict the masked token in the corresponding position. (b): Each blue dot is the static word
representation of the corresponding predicted token with the largest probability on [MASK] for one of the 1,500
samples in (a) from the GoEmotions dataset. (c): Singular value distribution (after normalisation) of the output
representations of the randomly selected 1,500 [MASK]s. It is clear that the representations are dominated by very
few singular values.

On the one hand, some in-context learning methods
incorporated domain-specific words or learnable
tokens in the prompt to discriminate different con-
text. Ben-David et al. (2022) proposed to first
generate the name of the domain and then gener-
ate domain-related features (DRFs) conditioned on
the domain in a supervised manner. Both the gen-
erated domain name and DRFs were used as the
prompt fed to the model. On the other hand, the
sophisticated verbalizers contributed to minimising
the distance between the two distributions (Schick
et al., 2020; Schick and Schütze, 2021; Gao et al.,
2021b; Hu et al., 2022). To broaden the coverage of
single-choice verbalizer, Knowledge Prompt Tun-
ing (KPT) (Hu et al., 2022) used the knowledge
graph to extract more topic-related words as label
words and then refine the label word candidates. To
incorporate prior knowledge to calibrate the con-
text shift, Xie et al. (2022) simplified a language
model as the Hidden Markov Model, where the
observed tokens are sampled from a family of con-
cepts and proposed the distinguishability condition
to measure context shift as the Kullback–Leibler
(KL) divergence.

3 Contextual Calibration for Output
Distribution

Many existing methods calibrate the probabilities
of the generated tokens in a language model in
order to improve the generation quality. In prompt-
based learning, we want to find out if the output dis-
tribution p(Ot|Xtest) or the output feature h[mask],
which is a part of the hidden representation from
the last layer of a PLM, hℓ, suffers from the in-
formation diffusion issue and occupies a narrow

cone. We take RoBERTa-based prompt learning
as an example and derive the value of h[mask] from
1,500 randomly selected test samples from an emo-
tion classification dataset, GoEmotions (Demszky
et al., 2020), and visualise the results in a 2D
plane in Figure 1(a). For comparison, we select
the predicted token with the largest probability on
each [MASK] and map their corresponding vec-
tors from Word2Vec (Mikolov et al., 2013) to a
2D plane in 1(b). It is clear that the word embed-
dings learned from Word2Vec has a more uniform
distribution around the origin. In contrast, the rep-
resentations derived by RoBERTa degenerate into a
narrow cone, which implies limited expressiveness.
Inspired by the approach proposed in (Yan et al.,
2022), we display the singular value distribution
of h[mask] and calculate the distribution statistics,
i.e., the matrix moment and the average cosine sim-
ilarity between every [MASK] pair in Figure 1(c).
From the empirical results, we can see that the
value of the hidden representation for [MASK] in
different samples share much similar information
with the token uniformity value (Yan et al., 2022)
(tokenuni in Figure 1(c)) of 0.939. This shows that
most h[mask] concentrates at very few singular val-
ues, which implies a severe information diffusion
issue.

3.1 Uniform Ratio-based Distinguishability

Although many calibration methods have been pro-
posed, few of them focuses on explicitly addressing
the information diffusion issue in the prompt-based
learning framework. One main challenge in this
task is that the unlabelled data used in language
model pre-training is significantly larger than the
labelled samples used for prompt tuning. Hence,
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the optimised distribution in prompt-based few-
shot learning can be very different from the true
distribution. To avoid inheriting the information
issue caused in the pre-training phase, we propose
a calibration method to reduce the skewness of
the output token distributions, such that the output
representations are evenly distributed in the em-
bedding space. The idea is to rotate the original
embedding space to an isotropic metric space by an
inner product-based operator on a learnable basis.
For each dimension of the basis, we use the inner
product to measure its relevance with a given in-
put. The dimension-dependent relevance scores are
sent to a Multi-layer Perceptron (MLP) decoder to
generate the calibrated output embedding for final
prediction.

The framework of the proposed calibration
method is shown in Figure 2. In practice, due to the
small size of training samples in prompt learning,
the relevance scores might be dominated by very
few dimensions. Therefore, inspired by Zhou et al.
(2022a), who proposed a ratio estimator to balance
the distribution from different label categories, we
design a scaling matrix in our isotropic distribution
scenario. That is, for both labelled and unlabelled
data, the multi-class ratio between different dimen-
sions should be similar.

PLM-x Feature Extractor

MLM 
Head

last-layer 
output feature

Rotation 
Matrix

Scaling 
Matrix

calibrated feature

Ratio
Vector

Figure 2: Our proposed calibration method is applied
to the output embeddings from the last layer of a PLM.
After being transformed with a rotation matrix through
a Multi-layer Perception (MLP), the resulting output
feature is assumed to have a more balanced singular
value distribution in different basis directions. More-
over, as the vector norm on each projected direction
would change in the new base, we derive a ratio vector
to balance the distribution along the rotated directions.

Concretely, assuming we have N labelled data
{yj , xj}Nj=1 and M unlabelled data from pre-
training {xj}N+M

j=N+1, where xj is the input sample,

yj is the true label, and M ≫ N . To simplify the
notation, in the rest of this paper, we use xj to rep-
resent the feature of the last embedding layer and
hj to represent the output of our calibrated feature.
Then, for the representation of a masked token, xj ,
we assume there are K isotropic directions in the
metric space and the corresponding inner product
based relevance score is:

Hk(xj) = σ(⟨xj ,Wk⟩), (1 ≤ k ≤ K), (1)

where σ(·) is the softmax activation function. Here,
we can define a rotation matrix based onWk since
Eq. (1) projects an input embedding onto a new
metric space by rotation. To guarantee the orthogo-
nality of the basis in the new metric space, we use
the following regulariser during training:

Lorth =
∥∥∥W⊤W − I

∥∥∥
2

2
, (2)

where W is the stacking of {Wk}Kk=1. Correspond-
ingly, for each dimension k, we can define a ratio
score which aims to better separate them to avoid
the skewed distribution by minimising the follow-
ing loss:

Lt =
1

N +M
ΣKk=1Σ

N+M
j=1 ||Rk(xj)−

1

K
||2, (3)

where Rk(xj) is an MLP-based estimator with a
softmax activation:

Rk(xj) = σ(Sk · xj + β). (4)

By minimising Lt, even if one input sample xj is
similar to a basis vector along a popular dimension
k, there will still be a probability to assign it a low
ratio scoreRk(xj) if there are other samples which
are more closer to the basis vector in dimension k.
In this way, we can balance the distribution after
rotation. We define the stacking of Sk as a scaling
matrix which aims to distribute xj uniformly into
K clusters in the metric space.2

However, it is difficult to optimise the loss de-
fined in Eq. (3) since the size of the unlabelled data
for pre-training is much larger than the labelled
data and the unlabelled data is usually unseen to
the downstream tasks. We instead define an alter-
native optimisation objective. First, according to
Eq. (3), we need to ensure that for any two dimen-
sions k and t, we have 1

N+M e
Sk·xj = 1

N+M e
St·xj .

2We measured the impact of different weight initialisations
on Sk in Appendix A.2.
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By the Jensen’s inequality, we have the following
lower bound: e

1
N+M

Sk·xj ≤ 1
N+M e

Sk·xj , in which
we can achieve the lower bound for any two in-
dependent dimensions by taking 1

N+M Sk · xj =
1

N+M St · xj . It means that for any two dimensions,
the sum of their ratio scores should be similar. As
such, Eq. (3) can be approximated by:

Lt ∼ ΣKk=1(||Sk||2 − 1)2. (5)

Accordingly, we can define the distinguishability
loss in a more general form by both the relevance
score and the ratio score without the need of sam-
pling from unlabelled data:

Ldis = Lorth + Lt. (6)

From our findings in Section 3, much informa-
tion encoded by the output representations gener-
ated by the last layer of a PLM only occupies a
space spanned by very few singular value direc-
tions. This leads to the information diffusion issue.
Therefore, our solution here is to re-project the out-
put features into a new hyperplane, in which the
information is more evenly distributed in different
directions, and at the same time we can derive a
ratio vector by aggregating the rotated components.

3.2 Supervised Prompt Learning
By our proposed distinguishability loss-based learn-
ing in Section 3.1, an input embedding has been
separated into vectors along K independent dimen-
sions. Then, for the labelled data {xj}Nj=1, we
propose to use k independent decoders to produce
the final prediction. The decoding result is based
on the relevance score and ratio score on each in-
dependent dimension:

hj = ΣKi=kDecoderk(Hk(xj) · Rk(xj)), (7)

where the Decoderk is a decoder for the k-th di-
mension. Then the representation of hj can be used
in the verbalizer pverbalizer(Ô|hj), where Ô is the
predicted masked token. Finally, the cross-entropy
loss H is defined by the predicted Ô and the true
label yj :

Lcls(xj) = H(yj , pverbalizer(Ô|hj)). (8)

By combining the uniform ratio-based distin-
guishability loss of Ldis and the prompt-based clas-
sification loss Lcls, we propose our first model,
named as Transformation based Adaptation for

Ratio bAlanced (TARA) prompt learning, which
aims to minimise LTARA = Lcls(xj) + Ldis. Note
that Lcls(xj) is the default loss term in all the base-
lines and our proposed methods.

3.3 Dimension Rotation by Hyperbolic
Embeddings

In Section 3.1, we project the input mask embed-
ding into a K dimensional metric space to avoid
skewed distributions. However, we ignore the po-
tential class relations between the dimensions. For
example, in emotion classification, both the emo-
tions of ‘gratitude’ and ‘approval’ belong to the
coarse positive class, but they are associated with
different fine-grained labels in the GoEmotions
dataset (Demszky et al., 2020). Hence, in this sec-
tion, we only consider those positive pairs under
the same coarse category to achieve a better class
disambiguation by a proxy based metric learning
(Movshovitz-Attias et al., 2017; Yang et al., 2022),
which uses an anchor vector to represent a category
for metric loss optimisation and capture the hierar-
chical structure between coarse- and fine-grained
labels in the hyperbolic space.
Strategies for Constructing Sample Pairs. In-
spired by the hierarchical structure of coarse-to-fine
emotion categories, we assume that a fine-grained
emotion should be close to the coarse-grained emo-
tion it belongs to. To implement this idea, we con-
struct sample-anchor pairs (hj , z

+
i ) for training,

where hj is the representation for prompt predic-
tion and z+i ∈ Rd is a learnable anchor representa-
tion for each coarse class.
Metric Learning in a Hyperbolic Space. To max-
imise the similarity in sample-anchor positive pairs,
where the sample and the anchor share the same
coarse-grained label, while minimising the similar-
ity in negative pairs, we adopt the following metric
learning objective:

Lmetric(hj) = −log
e−d(hj ,z

+
pj)

∑C
i=1 e

−d(hj ,z+i )
, (9)

where {(hj , z+i )}Ci=1 represents a set of sample-
anchor pairs that we constructed for each sample i,
C denotes the number of anchors, z+pj is the repre-
sentation of positive pairing anchor of j-th sample,
and d(·) is the hyperbolic distance metric defined
by the Poincaré ball model of the hyperbolic space
(Nickel and Kiela, 2017). In a n-dimensional hy-
perbolic space, all points will fall into a unit open
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interval: In = {x ∈ Rn| ∥x∥ < 1}, where ∥·∥ do-
nates the Euclidean norm. The distance d(·) be-
tween two points u, v ∈ In can be formulated as:

d(u, v) = arcosh(1 + 2
∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)
).

(10)
The motivation of using Lmetric(hj) is to push

similar categories together in the metric space.
Hence, we can obtain our final learningn objec-
tive by adding the loss of tree-structured metric
learning Lmetric(hj) to TARA as:

Lfinal = Lcls(xj) + Lmetric(hj) + Ldis. (11)

For a comparison, we propose a variant called
TML by keeping the learning architectue and sim-
ply adding Lmetric(hj) to the classification loss of
Lcls(xj), but without the ratio balancing term of
Ldis, that is, LTML = Lcls(xj) + Lmetric(hj).

4 Experiments

Datasets We evaluate our proposed approach on
three multi-class text classification datasets, the
Emotion3 (Saravia et al., 2018) dataset, an aca-
demic paper classification dataset, WOS (Kowsari
et al., 2017), and a fine-grained emotion classifica-
tion dataset, GoEmotions4 (Demszky et al., 2020).
All of these datasets have hierarchical label struc-
tures. The datasets statistics are shown in Table 2.

Name #Classes #Train #Dev #Test

Emotion 6 16,000 2,000 2,000
WOS 11 5,736 1,147 1,147
GoEmotions 28 23,485 2,956 2,984

Table 2: Dataset statistics.

For all datasets, we remove punctuation, digits,
and special characters that do not have specific
semantic meanings. For the Emotion dataset which
consists of tweet, we also remove user mentions.

Baselines We implement our proposed frame-
work on top of the commonly used prompt-based
learning methods and compare it with existing ap-
proaches including those which can be used for
learning more discriminative representations:

• Prompt-baselines. Three commonly used
prompt-based methods are selected including

3https://huggingface.co/datasets/emotion
4https://huggingface.co/datasets/go_emotions

Soft Prompts (Brown et al., 2020), Prompt-
Tuning (Lester et al., 2021) and PTR (Han
et al., 2021). The best-performing methods
is used as the default prompt-based training
method for the following three comparison
models, and denoted as Prompt-baseline.5

• KPT (Hu et al., 2022). It uses a knowledge
graph to incorporate topic-related label words
to increase the coverage of the verbaliser.

• Context Calibration (Zhao et al., 2021). This
method calibrates the output representations
by one-layer linear transformation, whose
weight matrix is optimised to be diagonal.

• Proxy-NCA (Movshovitz-Attias et al., 2017).
It creates a proxy for each class and uses the
Neighbourhood Component Analysis (NCA)
loss to pull samples closer to their assigned
proxies while pushing negative samples away.

Prompt Settings As the performance of prompt-
based methods heavily relies on prompt templates
and verbalisers, we use the same template and ver-
baliser for all models for fair comparison. The
prompt templates are shown in Table 3. The origi-
nal class labels are used as label words in the ver-
baliser as in (Schick and Schütze, 2021).

Datasets Prompt template

Emotion <X>It’s [MASK].
WOS <X>The domain of the text is [MASK].
GoEmotions <X>The emotional aspect of this text is [MASK].

Table 3: Prompt templates used in three datasets.

4.1 Few-shot Learning on Three Datasets
We randomly select k different training samples for
few-shot learning and show the results across the
three datasets in Table 4.

For metric-learning, Proxy-NCA with con-
trastive loss leads to performance degradation com-
pared to the Prompt-baseline, with more signifi-
cant performance drops on the GoEmotions dataset,
which has the largest label categories. By contrast,
TML gives better results over the Prompt-baseline
and Proxy-NCA, showing its efficiency in encod-
ing hierarchical relations between the coarse- and
fine-grained labels. It can be further demonstrated
in Figure 3, which shows the similarity matrix

5The detailed performance of these three prompt-based
training methods is shown in Table A3. We use PTR for
GoEmotion, and use P-tuning for the other two datasets.
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Emotion WOS GoEmotions

K-shot 5 10 50 100 5 10 50 100 5 10 50 100

Prompt-baseline 0.336 0.363 0.431 0.625 0.236 0.252 0.359 0.435 0.161 0.173 0.281 0.310
Proxy-NCA 0.333 0.384 0.412 0.637 0.214 0.246 0.295 0.383 0.149 0.166 0.208 0.233
Context Calibration 0.337 0.352 0.531 0.706 0.212 0.361 0.687 0.707 0.164 0.224 0.355 0.420
TML 0.339 0.387 0.466 0.699 0.229 0.277 0.372 0.529 0.158 0.227 0.309 0.355
TARA 0.348 0.401 0.697 0.783 0.245 0.418 0.705 0.728 0.172 0.249 0.364 0.442
Ours full model 0.355 0.441 0.713 0.802 0.278 0.439 0.719 0.757 0.206 0.255 0.384 0.448

Table 4: Weighted F1 scores on three Datasets. The proposed TML is better than Proxy-NCA. Our full method
(TML+TARA) achieves the best performance among all the settings.

(28 × 28) of the 28 fine-grained emotion labels
from 3 high-level categories, i.e., “anger”,“joy”
and“sad”. The results of Proxy-NCA in (c) are
similar to the Prompt-baseline as shown in (b). Our
proposed TML in (d) can capture the hierarchical
relations among the 28 labels, where the correla-
tions among labels belonging to the same high-
level emotion category are similar. By comparison,
we replace the hyperbolic distance in TML with
the Euclidean distance and show the results in (c).
It can be observed that the resulting label embed-
dings fail to exhibit different patterns within and
across different high-level emotion categories.

For the calibration methods, Context Calibra-
tion and TARA are overall better than the Prompt-
baseline. This shows that the simple linear trans-
formation of the output representations can greatly
improve the performance of prompt-based learn-
ing. The superior performance of TARA over Con-
text Calibration demonstrates the benefit of using
our proposed rotation and scaling transformations.
Combining TML with TARA, our full model
achieves the best performance and the improve-
ments are more predominant when K is larger. In
the 100-shot setting, our method surpasses the state-
of-the-art method, Context Calibration, by 9.6% on
Emotion, 5.1% on WOS, and 2.9% on GoEmo-
tions, respectively, verifying its superiority in the
few-shot text classification task.

4.2 Information Diffusion Alleviation

In addition to the classification results, we also ex-
amine the characteristics of the generated output
representations to check whether the information
diffusion issue has been addressed. Figure 4 shows
the PCA projection results of all the [MASK] repre-
sentations, i.e., h[MASK] in the test samples, which
are colour-coded according to their assigned class
labels by the model. It is clear that our method can
generate more widely distributed [MASK] repre-
sentations, therefore better reducing the overlaps

Figure 3: Heatmap for the pair-wised cosine similar-
ity of fine-grained classes on GoEmotion. (a) Label
representations from PLM without fine-tuning. (b) Fine-
tuned label representations by classification module
only. (c) Fine-tuned label representations with proposed
constraint but based on Euclidean distance, i.e., Proxy-
NCA. (d) Fine-tuned label representations by TML.

of the features from different class labels. For
example, in the Emotion dataset, the output fea-
tures from the baseline model mostly reside along
the horizontal direction, while ours distribute more
evenly across different directions.6

We also calculate the summary statistics of the
singular value distribution of the output features,
as well as the average similarity between every two
[MASK] pairs. The results are shown in Table 5.
The average cosine similarity (CosSim) between
every token pair is used as a proxy measure of the
degree of information diffusion. We can observe
that the CosSim value calculated on the output rep-
resentations generated by our model is significantly
lower compared to the other baselines. We also ob-
serve an increase in the median and the decrease
in variance of the singular value distribution from
our model outputs in comparison to the prompt
learning baseline. The results show that our model
produces the output representations which have
a more balanced singular value distribution. The

6The T-SNE results and singular value distribution of the
output representations in Emotion and GoEmotions are shown
in Figure A1 and Figure A2.
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(a) Emotion. (b) WOS.
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Figure 4: The PCA projection of the output representations belonging to different classes. In each sub-figure, the
left figure is the prompt-baseline, while the right figure is our method. It is clear that our method distributes
the output representations more evenly in the embedding space, while the output representations from the baseline
appear to be more concentrated.

Median Variance Skewness CosSim

Emotion-prompt 0.0028 371.9 24.57 0.898
Emotion-Ours 0.0145 5.211 8.960 0.256

WOS-prompt 0.0036 235.8 22.06 0.817
WOS-Ours 0.0117 5.681 9.088 0.191

GoEmotions-prompt 0.0028 822.1 24.64 0.899
GoEmotions-Ours 0.0268 11.20 7.728 0.243

Table 5: The statistics of the singular value distribution
of the output features, as well as the average cosine
similarity of all [MASK] token pairs.

Ours w/o Lorth w/o Lt w/o l2 w/o all

Emotion 0.802 0.725 0.719 0.723 0.724
WOS 0.757 0.728 0.687 0.741 0.699
GoEmotions 0.448 0.422 0.415 0.427 0.412

Table 6: Ablation study of various loss terms in the
learning objective for the distinguishability loss.

smaller skewness value further verifies that our pro-
posed model can generate isotropic representations
where the embedding dimensions are uncorrelated.

4.3 Ablation Study

To study the effect of different components of
our proposed distinguishability loss, i.e., the con-
straints applied to the transformation operation for
ratio balancing, we remove one of them and com-
pare the performance changes in Table 6. Here,
Lorth is applied on W in Eq.2, Lt is applied on

Sk (from Eq.4 and Eq.5), and l2 is the weight for
the L2 regularisation term on all the other learnable
parameters. The Lorth and L2 constraints have sim-
ilar effects on the overall performance, as they both
act as axis transformations, while the constraint Lt
applied on Sk plays a more important role, whose
removal leads to a larger performance drop among
all the settings. It partly demonstrates the impor-
tance of the balancing ratio vector after the rotation
transformation.

5 Conclusion

In this paper, to address the information diffusion
issue in prompt-based few-shot learning, we pro-
pose a calibration method based on featuretrans-
formation which first rotates output embeddings
into a new metric space, and then scales the ra-
tio of each dimension to a uniform distribution to
guarantee the distinguishability of the transformed
embeddings. On the other hand, we utilise hyper-
bolic embeddings to capture the hierarchical rela-
tions between class labels to guide the metric learn-
ing strategy to enhance the interpretability of the
learned output embeddings. Extensive experiments
on the three multi-class classification tasks under
various settings demonstrate the effectiveness of
our approach with an average 5.9% performance
improvement on the F1-measure.
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Limitations

In this work, we only focus on the multi-class clas-
sification task with hierarchical class labels. Future
work could explore extending our idea to other
tasks, such as controllable text generation, which
has the similar information diffusion issue. Another
potential direction in future work is to learn a prior
distribution rather than simply using the uniform
distribution in ratio balancing. Since the uniform
distribution-based ratio balancing is a strong as-
sumption, it might not be suitable for some tasks
in real-world applications. One could use VAE
or VQ-VAE to learn a distribution which could be
subsequently used to regularise the optimisation of
feature transformation.
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A Appendix

A.1 Model Selection
Following previous research (Gao et al., 2021b;
Hambardzumyan et al., 2021; Lester et al., 2021),
BERT (Devlin et al., 2019), Roberta and ALBERT
(Lan et al., 2020) were used when using the cloze
prompts. The cloze is to fill in the blanks in the
prompt template by the model itself.

Model Zero-shot
Accuracy Macro-f1 Weighted-f1

BERT
(fine-tuning) 0.0342 0.0196 0.0329

BERT 0.0716 0.0165 0.0384
RoBERTa 0.1094 0.0465 0.0994
ALBERT 0.0538 0.0217 0.0459

Table A1: Classification results on GoEmotion dataset
of different baseline models.

To select the baseline model used as the back-
bones of our proposed method, we evaluate the
baseline models on GoEmotions dataset for zero-
shot learning, the results are shown in Table A1.
We compare the effects of the same model using
prompt learning and fine-tuning, respectively (dif-
ference in effects between BERT (Devlin et al.,
2019) and BERT (fine-tuning). After comparison,
we chose RoBERTa (Liu et al., 2019) as it shows
the overall best performance.

Based on the large pretrained language model
backbone, we compare different prompt-based
training methods and select the best as our Prompt-
Baseline. The details are shown in Table A3.

A.2 Weight Initialisation
The optimisation of Wk and Sk can be affected by
different weight initialisations. As such, we ex-
periment with different initialisation strategies and
show the results of 100-shot learning in Table A2
(We use the same initialisation for Wk and Sk.).
The Gaussian distribution initialisation performs
the best overall. Therefore we use the Gaussian
distribution initialisation in all the experiments re-
ported in the paper.

B Visualisation results

To better compare the results of Baseline methods
and ours, we visualize the output of different labels
by mapping them into 2D plane via T-SNE (Fig-
ure A1). It is clear that our model separates the data
points of different labels ((b) and (d)) rather than

Initialisation Emotion WOS GoEmotions

Gaussian 0.802 0.757 0.448
Xavier 0.817 0.749 0.420
Eye 0.798 0.747 0.387
Orthogonal 0.801 0.757 0.431

Table A2: Initialisation of different distributions on
weight matrix.

mixing them up (shown in (a) and (c)). To explore
the corresponding effects of singular values distri-
bution, we visualise the normalized singular value
distribution of the output embeddings in Figure A2.
We observe a more balanced distribution after ap-
plying our transformation and metric learning.
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Emotion WOS GoEmotions
K-shot Soft P-Tuning PTR Soft P-Tuning PTR Soft P-Tuning PTR
5 0.295 0.336 0.330 0.165 0.236 0.213 0.072 0.135 0.161
10 0.312 0.363 0.351 0.180 0.252 0.230 0.151 0.151 0.173
50 0.363 0.431 0.409 0.328 0.359 0.319 0.230 0.245 0.281
100 0.423 0.625 0.631 0.412 0.435 0.391 0.331 0.336 0.310

Table A3: Weighted F1 of few-shot for different prompt-based training methods.
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(d) Our Model on GoEmotion

Figure A1: The T-SNE results of test samples in Emotion/GoEmotions Dataset under 100-shot.

(a) P-Tuning on Emotion dataset (b) Our Model on Emotion dataset

(c) PTR on GoEmotion dataset
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Figure A2: The singular value distribution of test samples under 100-shot. Our methods greatly balance the singular
distribution, i.e., decrease the skewness, and alleviate the information diffusion issue, i.e., decrease the token
similarity (tokenuni).
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Abstract

Clinical machine learning algorithms have
shown promising results and could potentially
be implemented in clinical practice to provide
diagnosis support and improve patient treat-
ment. Barriers for realisation of the algorithms’
full potential include bias which is systematic
and unfair discrimination against certain indi-
viduals in favor of others.

The objective of this work is to measure
anatomical bias in clinical text algorithms. We
define anatomical bias as unfair algorithmic out-
comes against patients with medical conditions
in specific anatomical locations. We measure
the degree of anatomical bias across two ma-
chine learning models and two Danish clinical
text classification tasks, and find that clinical
text algorithms are highly prone to anatomical
bias. We argue that datasets for creating clini-
cal text algorithms should be curated carefully
to isolate the effect of anatomical location in
order to avoid bias against patient subgroups.

1 Introduction

Research in clinical machine learning algo-
rithms have shown promising results for automat-
ing clinical tasks. The algorithms could potentially
be implemented in clinical practice to provide diag-
nosis support, improve patient treatment and pro-
vide time-savings for medical doctors (Topol, 2019;
Matheny et al., 2020).

However, despite appealing research results,
there are currently limited examples of algorithms
being successfully deployed into clinical practice
(Kelly et al., 2019). Barriers for realisation of the
algorithms’ full potential include bias and generali-

*Equal contribution

sation issues (Char et al., 2018; Hovy and Prabhu-
moye, 2021; Carrell et al., 2017).

Algorithmic bias can be defined as systematic
and unfair discrimination against certain individu-
als or groups of individuals in favor of others (Fried-
man and Nissenbaum, 1996). Previous studies have
raised serious concerns of algorithms that contain
age, gender and racial bias (Sun et al., 2019; David-
son et al., 2019) — even for algorithms that have
been taken into use (Obermeyer et al., 2019). Al-
though machine learning algorithms are trained to
be able to generalise to previously unseen data, they
tend to overfit to the data they have been trained on.
As a consequence of this, bias can unintendedly
arise if some subgroups of the target population
are not represented in the data used to train the
algorithm. Moreover, if the training data itself in-
clude biases against some populations, e.g. data
reflecting a negative attitude against people with
disabilities (Hutchinson et al., 2020), these biases
might be encoded and reinforced.

If biased algorithms are adopted, healthcare sys-
tems risk doing injustice to certain patient groups
and harming patient safety (Obermeyer et al., 2019).
Therefore, identifying and mitigating bias is impor-
tant for successful implementation of novel clinical
machine learning algorithms.

This paper investigates anatomical bias in clin-
ical machine learning algorithms developed to
classify and extract specific medical conditions
from the narrative text of electronic health records
(EHR). We define anatomical bias as unfair algo-
rithmic outcomes against a subgroup of patients
with the same medical condition, where the al-
gorithm performs differently depending on the
anatomical location of the condition. If the per-
formance of clinical algorithms varies depending
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on the anatomical location, it is reflected in some
patient subgroups receiving worse treatment than
others.

We hypothesised that careful dataset curation is
needed to measure and mitigate anatomical bias be-
cause the text description of medical conditions in
EHRs varies depending on the location, e.g. ‘epis-
taxis’ is a location-specific word describing nose
bleedings.

Specifically, this paper investigates anatomi-
cal bias for classification of bleeding and venous
thromboembolism (VTE) mentions in the narra-
tive text of Danish EHRs. Automatic extraction
of these conditions could be valuable for medical
doctors in clinical practice, e.g. to guide diagnostic
decision making and treatment options (Decousus
et al., 2011). Previous papers (Hinz et al., 2013;
Lee et al., 2017; Taggart et al., 2018; Li et al., 2019;
Mitra et al., 2020, 2021; Elkin et al., 2021; Ped-
ersen et al., 2021; Shi et al., 2021; Verma et al.,
2022) have shown promising results for automatic
extraction of these medical conditions but they did
not investigate the performance of the algorithms
across anatomical subgroups.

Our main contributions are:

• We find that clinical text algorithms are highly
prone to anatomical bias.

• The performance of state-of-the-art algo-
rithms developed to extract specific medical
conditions varies significantly across anatom-
ical locations with performance drops up to
89.1 percentage points (PP).

• We argue that datasets for creating clinical
text algorithms should be curated carefully
to isolate the effect of anatomical location in
order to avoid bias against patient subgroups.

2 Methods

To investigate if machine learning algorithms are
prone to anatomical bias, we performed two ex-
periments. We (1) investigated the performance
of a binary classifier on different anatomical sub-
groups of a medical condition when that subgroup
was left out of the training set, and (2) measured
how the performance on an anatomical subgroup
varied depending on the amount of samples from
that subgroup included in the training set.

Table 1: Distribution of the training, validation, and test
samples for the balanced bleeding detection dataset.

Label Location Train Validation Test

Positive for bleeding

Gastrointestinal 750 250 250
Urogenital 750 250 250
Internal 750 250 250
Otorhinolaryngeal 750 250 250
Dermatological 750 250 250
Gynecological 750 250 250
Cerebral 750 250 250
Ophthalmological 750 250 250

Negative for bleeding 6,000 2,000 2,000
Sum 12,000 4,000 4,000

Table 2: Distribution of the training, validation, and test
samples for the balanced VTE detection dataset.

Label Location Train Validation Test

Positive for VTE

Lower extremity 1,600 200 200
Lung 1,600 200 200
Liver 0 0 239
Cerebral 0 0 218
Upper extremity 0 0 176

Negative for VTE 3,200 400 1,033
Sum 6,400 800 2,066

2.1 Datasets

We used the binary bleeding classification dataset
from Pedersen et al. (2022) and present a new
binary VTE classification dataset. The bleeding
dataset consists of 20,000 sentences from Danish
EHRs labeled as either positive or negative for
bleeding mentions. The VTE classification dataset
consists of 9,266 sentences from Danish EHRs la-
beled as either positive or negative for VTE men-
tions. Both datasets were constructed from Danish
EHRs from Odense University Hospital and were
labeled with a consensus label from three medical
doctors.

In addition to the main labels of each dataset
(positive and negative for bleeding or VTE), we
created a subgroup label for the positive samples
describing the anatomical location of either the
bleeding or VTE mention. Samples that did not
describe the anatomical location or described mul-
tiple locations were omitted.

For the bleeding dataset, we used the following
eight anatomical locations: gastrointestinal, uro-
genital, internal, otorhinolaryngeal, dermatological,
gynecological, cerebral, and ophthalmological.

For the VTE dataset, we used the following five
anatomical locations: lower extremity, lung, liver,
cerebral, and upper extremity.

The locations included for each medical condi-
tion were selected by two medical doctors.

For each dataset, we created a balanced training,
validation, and test set containing an equal amount
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of positive and negative samples. Moreover, for
the bleeding dataset, the positive samples of the
training, validation, and test sets were distributed
equally between anatomical locations. For the VTE
dataset, only samples from the lower extremity and
lung locations were distributed equally between the
train, validation, and test sets. The liver, cerebral,
and upper extremity locations were only used for
the test set because of a limited number of samples.

All samples were preprocessed by removing spe-
cial characters, superfluous spaces, and duplicate
samples. After preprocessing the samples, the
bleeding and VTE datasets had an average token
length of 13.3 and 13.6, respectively. The dataset
distributions can be seen in Table 1 and Table 2.

2.2 Training set distributions
To measure performance differences for specific
anatomical locations, we systematically removed
all samples from a specific location, x, from the
training set, creating the training set T ̸⊂x, trained
a deep learning model on T ̸⊂x, and evaluated it
on the test set. For example, for the bleeding
dataset, we created 8 different training sets, one
for each anatomical location being removed, con-
taining 10,500 samples.

For comparison, we created a balanced training
set, T , which included the same amount of sam-
ples as T ̸⊂x, distributed equally between the posi-
tive and negative classes, and between anatomical
locations.

2.3 Deep learning models
The deep learning models were a transformer-based
ELECTRA model (Clark et al., 2020) and a Long
Short-Term Memory (LSTM) model (Hochreiter
and Schmidhuber, 1997).

The ELECTRA model was a Danish clinical
ELECTRA (Clin-ELECTRA) (Pedersen et al.,
2022) pretrained on the narrative text from 299,718
EHRs from Odense University Hospital. The
model had ∼13M parameters and consisted of 12
transformer layers with 4 attention heads. We ini-
tialised Clin-ELECTRA from its pretrained check-
point and followed the HuggingFace (Wolf et al.,
2019) implementations for binary text classifica-
tion.

The LSTM model had∼4M parameters and con-
sisted of a bidirectional LSTM layer with a hidden
layer size of 512. The last hidden state of the LSTM
was followed by a dropout layer with probability
0.2, a dense layer of size 256, a ReLU activation

function, a dropout layer of probability 0.2, and a
dense classification layer. For word representation,
the LSTM model used 300-dimensional FastText
(Bojanowski et al., 2017) word embeddings pre-
trained on Danish EHRs consisting of 1.4B tokens.

2.4 Model evaluation
For each of the ELECTRA and LSTM deep learn-
ing models and training sets T and T̸⊂x, we:

1. Trained the deep learning model with five
different learning rates and random initiali-
sations.

2. Computed the test set accuracy of the best
performing model based on the loss on the
validation set.

3. Repeated step 1 and 2 five times.

We used the five accuracies to perform bootstrap-
ping with 9,999 replicates and calculated mean ac-
curacy, standard error (SE), and 95% confidence in-
terval (CI) for T and T̸⊂x. Moreover, we computed
the bootstrapped difference of means between T
and T̸⊂x to evaluate statistically significant differ-
ences in performance.

For both deep learning models, we used the
Adam optimizer (Kingma and Ba, 2015) and
searched for the best model using learning rates 7e-
5, 8e-5, 9e-5, and 1e-4. Clin-ELECTRA was fine-
tuned for a maximum of 10 epochs and the LSTM
for a maximum of 30 epochs. One epoch was
trained in <1 and ∼5 seconds for the LSTM and
ELECTRA model, respectively, using an NVIDIA
v100 GPU.

We measured anatomical bias as the difference
in sensitivity on a specific location, x, between two
deep learning models trained on T and T̸⊂x.

3 Results

3.1 Bleeding classification
Table 3 shows the binary accuracy of the bleeding
classifiers on the test set for each of the training
sets T and T ̸⊂x. Appendix A shows additional
metrics. With the exception of T̸⊂Otorhinolaryngeal
for the ELECTRA model, all training sets with an
anatomical location removed resulted in models
with significantly worse performance than when
trained on T .

The decreases in accuracy were caused by a sig-
nificant drop in sensitivity for the anatomical loca-
tions which had been removed from the training
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Figure 1: Sensitivity of models trained on T ̸⊂x and T for each anatomical location, x.

Table 3: Accuracy (%), standard error (SE), and 95%
confidence interval (CI) for the bleeding classification
dataset. T ̸⊂x denotes the training set from which an
anatomical location, x, has been removed. * denotes a
significant difference at the 0.05 level between models
trained on T and T ̸⊂x.

ELECTRA LSTM
Accuracy±SE CI Accuracy±SE CI

T 95.6 ± 0.1 95.4 - 95.8 90.6 ± 0.1 90.4 - 90.7
T ̸⊂Gastrointestinal 94.4 ± 0.2* 94.0 - 94.7 88.8 ± 0.1* 88.6 - 88.9
T ̸⊂Urogenital 93.9 ± 0.1* 93.7 - 94.2 88.5 ± 0.1* 88.3 - 88.6
T ̸⊂Internal 95.0 ± 0.1* 94.8 - 95.2 88.8 ± 0.1* 88.5 - 89.0
T ̸⊂Otorhinolaryngeal 95.6 ± 0.1 95.4 - 95.8 90.0 ± 0.2* 89.8 - 90.4
T ̸⊂Dermatological 94.3 ± 0.1* 94.0 - 94.5 88.2 ± 0.1* 88.1 - 88.3
T ̸⊂Gynecological 93.8 ± 0.1* 93.6 - 94.0 89.1 ± 0.1* 88.9 - 89.4
T ̸⊂Cerebral 94.6 ± 0.2* 94.3 - 94.9 89.0 ± 0.1 * 88.8 - 89.2
T ̸⊂Ophthalmological 95.3 ± 0.1* 95.1 - 95.4 88.2 ± 0.2 * 87.8 - 88.5

data. Figure 1 shows the test set sensitivity for each
anatomical location, x, for each training set T and
T ̸⊂x. The sensitivity for all anatomical locations
was significantly worse when not present in the
training set with performance drops up to 28.8 PP
for ELECTRA and 36.3 PP for the LSTM model.
On average, the sensitivity on the anatomies de-
creased with 17.8 PP (standard deviation ± 8.8 PP)
for ELECTRA and 24.5 PP (standard deviation ±
9.4 PP) for the LSTM model.

Moreover, it is seen that even though models
trained on T ̸⊂x achieved high accuracies on the test
set overall, the sensitivity on the anatomical loca-
tion not present in the training set was low. E.g., for
ELECTRA, T ̸⊂Gynecological had a 93.8% accuracy
on the test set, but the sensitivity for gynecological
bleedings was only 64.8%. Appendix A shows the
sensitivity, SE, and the differences of means for all
anatomical locations and training sets.

Figure 2 shows the sensitivity on each anatom-
ical location by the percentage of total subgroup
samples in the training set. It is seen that the accu-
racy increased as more samples were present in the
training set. For the LSTM model, the sensitivity
on gastrointestinal, urogenital, cerebral, and oph-
thalmological bleedings was significantly worse -
even when 80% of samples were present in the

Table 4: Accuracy (%), standard error (SE), and 95%
confidence interval (CI) for the VTE classification
dataset. T ̸⊂x denotes the training set from which an
anatomical location, x, has been removed. * denotes a
significant difference at the 0.05 level between models
trained on T and T ̸⊂x.

ELECTRA LSTM
Accuracy±SE CI Accuracy±SE CI

T 84.8 ± 0.3 84.2 - 85.4 75.9 ± 0.3 75.4 - 76.4
T̸⊂Lower extremity 67.6 ± 0.6* 66.5 - 68.7 71.6 ± 0.4* 70.8 - 72.6
T̸⊂Lung 74.0 ± 1.1* 71.9 - 76.1 69.9 ± 0.1* 69.7 - 70.2

training set. For ELECTRA, the sensitivity on
urogenital and internal bleedings was significantly
worse when 80% of samples were present in the
training set. Appendix A shows the accuracies and
differences of means.

3.2 Venous thromboembolism classification

Table 4 shows the binary accuracy of the VTE clas-
sifiers on the test set for each of the training sets
T and T̸⊂x. Appendix B shows additional metrics.
Models trained on T̸⊂Lower extremity and T ̸⊂Lung
performed significantly worse than those trained
on T .

Similar to the bleeding classifier results, the de-
crease in the overall accuracy was caused by a
significant drop in sensitivity on the anatomical
locations which had been removed from the train-
ing data. Figure 3 shows the sensitivity for each
anatomical location, x, for each training set T and
T̸⊂x. The sensitivity on liver, cerebral, and lower
extremity VTEs is only reported when not being
present in the training set because of limited sam-
ples.

The sensitivity on lower extremity and lung
VTEs was significantly worse when not present in
the training set, e.g. the performance for the ELEC-
TRA classifier decreased by 89.1 PP for lower ex-
tremity VTEs and 81.0 PP for lung VTEs. Ap-
pendix B shows the sensitivity, SE, and the differ-
ences of means for all anatomical locations and
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Figure 2: Test set sensitivity on the anatomical locations when removing a fraction of samples from that anatomy
from the training set.
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Figure 3: Sensitivity of models trained on T ̸⊂x and T
for each anatomical location, x. The sensitivity on liver,
cerebral, and lower extremity VTEs is only reported
when not being present in the training set because of
limited samples.

training sets.

Figure 4 shows the sensitivity for lower extrem-
ity and lung VTEs by the percentage of total sub-
group samples in the training set. Both locations
performed significantly worse when 15% and 30%
of samples from that location were present in the
training set for the ELECTRA and LSTM classifier,
respectively. Appendix B shows the accuracies and
differences of means.

4 Analysis of word distributions

Medical conditions are often described using dif-
ferent words depending on the anatomical location
for which the condition occurs. Table 5 shows the
top-3 most frequent words used to describe VTE
events for each anatomical location. The column
Location uniqueness shows the fraction of times a
word appears in samples from a specific anatomical

Table 5: Most frequent words used to describe VTE
events for each anatomical location of the VTE classi-
fication dataset. Words are translated from Danish to
English and, therefore, some cells include two words.
PE = pulmonary embolism.

Word Frequency Location uniqueness
Location: Lower extremity

dvt 1384 0.92
thrombus 135 0.70
blood clot 108 0.47

Location: Lung
pulmonary embolism 1058 0.98
le (PE) 483 0.99
pulmonary embolisms 242 0.99

Location: Liver
porta thrombosis 71 1.00
thrombosis 70 0.36
thrombus 22 0.11

Location: Cerebral
infarct 93 0.97
sinus thrombosis 32 0.97
blood clot 26 0.11

Location: Upper extremity
dvt 99 0.07
thrombus 28 0.14
thrombosis 14 0.07

location compared to the complete dataset:

Location uniqueness =
fx
fD

(1)

where fx is the frequency of the word in samples
from anatomical location x and fD is the total fre-
quency of the word in the dataset, i.e. a value of
1 means that the word is unique for an anatomical
location.

The top-3 words for upper extremity had a low
uniqueness score (<0.15). This indicates that the
vocabulary used to describe VTEs in the upper ex-
tremity was also used for other locations — e.g.
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Figure 4: Test set sensitivity on the anatomical locations when removing a fraction of samples from that anatomy
from the training set.

‘dvt’ (deep vein thrombosis) was the most frequent
word but the uniqueness score was only 0.07. This
might explain why the sensitivity for upper extrem-
ity was relatively high, as seen in Figure 3, even
when samples from that location were not present
in the training set. On the contrary, some of the
frequent words from the lower extremity, lung, and
cerebral locations were close to unique which could
explain why the sensitivity of those locations were
low. Appendix C shows word frequency and lo-
cation uniqueness for the bleeding classification
dataset which shows similar results.

5 Discussion

This paper has presented evidence that clinical nat-
ural language processing (NLP) classification algo-
rithms are prone to anatomical bias, which is unfair
algorithmic outcomes against patients with medi-
cal conditions in specific anatomical locations. We
found that the performance of algorithms for both
bleeding and VTE classification can vary signifi-
cantly depending on the anatomical location with
differences up to 36.3 PP and 89.1 PP, respectively.

Moreover, we found that small fluctuations in the
training set distribution of anatomical locations can
lead to significant performance drops for the under-
represented anatomical locations. For the datasets
presented in this study, we showed that the words
used to describe medical conditions vary depend-
ing on the anatomical location. If classifiers do
not learn to properly represent the full vocabulary
for describing a medical condition, its performance
will decrease for some anatomical locations.

We argue that datasets for clinical NLP algo-

rithms should be created to be able to carefully
measure anatomical bias, e.g. by subdividing each
sample into an anatomical location. This is essen-
tial to avoid implementing clinical algorithms that
might discriminate against specific subgroups of
patients. For example, one of the developed VTE
classifiers in this study performed with sensitivities
of >96% for VTEs in the lungs and lower extrem-
ity while it performed with a sensitivity of only
11.5% for cerebral VTEs. Applying such a model
in clinical practice or research would provide unfair
algorithmic outcomes against patients with cerebral
VTEs. We also showed that an algorithm not ex-
posed to gynecological bleedings would perform
worse on this anatomical location. This would
lead to unfair algorithmic outcomes against woman
with gynecological bleedings. Similarly, because
alcoholics have an increased prevalence of gastroin-
testinal bleedings (Singal et al., 2018), this group
of people would have a higher risk of unfair al-
gorithmic outcomes if the algorithm has not been
trained on such bleeding locations.

To the best of our knowledge, anatomical bias
has not been investigated in previous research.
However, some studies tried to automatically cre-
ate datasets distributed between different patient
groups by extracting data based on International
Classification of Diseases 10 (ICD) codes — e.g.
Pedersen et al. (2021) extract data based on dif-
ferent bleeding disorders. While this approach
could, to some degree, mitigate the problem, stud-
ies (Valkhoff et al., 2014; Øie et al., 2018) found
that ICD codes have low accuracy and, therefore,
this does not ensure an evenly distributed dataset.
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Moreover, in order to isolate and measure the per-
formance on different anatomical locations, the
dataset should be constructed with a known distri-
bution of these anatomies.

Our work is closely related to the field of domain
adaption. For example, MacAvaney et al. (2017)
find that an algorithm trained to extract temporal
information from a specific patient population per-
forms worse on another related patient population.
Their results highlight that it is a challenging task to
develop algorithms that can generalise well across
domains. The main difference between our study
and theirs is that the algorithms described in this pa-
per are not developed to work on different domains.
Rather, the algorithms are specifically developed to
work on a specialised domain in the clinical field,
e.g. bleeding detection. As our results have shown,
the algorithms perform worse on some subpopula-
tions of the population it is supposed to work on,
and therefore, we describe this as a bias issue.

6 Conclusion

This paper presented evidence that clinical NLP
algorithms are prone to anatomical bias. We found
that the performance of clinical classification al-
gorithms for both bleeding and VTE classification
can vary significantly depending on the anatomi-
cal location of the medical condition. We argue
that anatomical bias should be carefully examined
when developing clinical text algorithms in order to
avoid unfair algorithm performance against patient
subgroups.

7 Limitations

Future work should investigate the degree of
anatomical bias in other clinical areas and tasks, e.g.
named entity recognition, to be able to compare the
severity of the bias problem between algorithms
and other clinical areas. Moreover, as the datasets
used in this study are only from a single institu-
tion, the findings of the paper might not be widely
representative.

The objective of this work was to stress the need
for measuring anatomical bias. We leave it to future
work to investigate algorithmic solutions other than
dataset balancing for mitigating the problem, e.g.
using techniques such as oversampling and data
augmentation. Such techniques could also help
mitigating anatomical bias in algorithms for which
training set balancing is not sufficient.

The classification datasets and machine learning

models presented in this paper cannot be shared
publicly due to privacy concerns but we advise
interested researchers to contact us for sharing pos-
sibilities.

Ethics Statement

Machine learning researchers must be proactive
in recognising and counteracting biases such as
the one described in this paper. We hope that the
findings and focus of this paper will lead other
researchers to test and mitigate other kinds of algo-
rithmic biases.

All datasets used in this research were obtained
according to each dataset’s respective data usage
policy. The datasets were stored and processed on
a secure platform1 in compliance with GDPR regu-
lations. According to section 14(2) of the Danish
Act on Research Ethics Review of Health Research
Projects2, studies using retrospective data that do
not involve human biological material do not re-
quire ethical approval.
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A Bleeding classification results

Table 6: Precision, recall, and F1 performance for
the bleeding classification dataset.

Table 7: Sensitivity and standard error for all
anatomical locations of the bleeding classification
dataset.

Table 8: Bootstrapped 95% confidence intervals
for difference of means between models trained on
T̸⊂x and T of the bleeding classification dataset.

Table 9: Bleeding test set sensitivity and stan-
dard error on an anatomical location by percentage
of subgroup samples in the modified training set.

Table 10: Bootstrapped 95% confidence in-
tervals for difference of means between models
trained on a modified training set, including a per-
centage of subgroup samples, and models trained
on the full training set, T , of the bleeding classifi-
cation dataset.

B VTE classification results

Table 11: Precision, recall, and F1 performance for
the VTE classification dataset.

Table 12: Sensitivity and standard error for
all anatomical locations of the VTE classification
dataset.

Table 13: Bootstrapped 95% confidence in-
tervals for difference of means between models
trained on T̸⊂x and T of the VTE classification
dataset.

Table 14: VTE test set sensitivity and standard
error on an anatomical location by percentage of
subgroup samples in the modified training set.

Table 15: Bootstrapped 95% confidence in-
tervals for difference of means between models
trained on a modified training set, including a per-
centage of subgroup samples, and models trained
on the full training set, T , of the VTE classification
dataset.

C Bleeding word distribution

Table 16: Most frequent words used to describe
bleeding mentions for each anatomical location of
the bleeding classification dataset.
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Table 6: Precision, recall, and F1 performance for the bleeding classification dataset. T ̸⊂x denotes the training set
from which an anatomical location, x, has been removed. SE = Standard error. CI = 95% confidence interval.

ELECTRA LSTM
Precision ± SE (CI) Recall ± SE (CI) F1 ± SE (CI) Precision ± SE (CI) Recall ± SE (CI) F1 ± SE (CI)

T ̸⊂Gastrointestinal 94.7 ± 0.2 (94.2 - 95.0) 94.2 ± 0.4 (93.4 - 95.0) 94.4 ± 0.2 (94.0 - 94.8) 89.1 ± 0.7 (8.77 - 90.5) 88.5 ± 0.7 (87.2 - 89.8) 88.8 ± 0.1 (88.6 - 88.9)
T ̸⊂Urogenital 94.3 ± 0.3 (93.6 - 94.8) 93.5 ± 0.4 (92.6 - 94.3) 93.9 ± 0.1 (93.6 - 94.2) 89.5 ± 0.1 (89.3 - 89.8) 87.3 ± 0.2 (87.0 - 87.7) 88.5 ± 0.1 (88.3 - 88.6)
T ̸⊂Internal 95.0 ± 0.4 (94.2 - 95.0) 95.1 ± 0.6 (93.8 - 96.1) 95.0 ± 0.1 (94.8 - 95.2) 89.9 ± 0.4 (89.3 - 90.7) 87.6 ± 0.5 (86.6 - 88.6) 88.8 ± 0.1 (88.5 - 89.0)
T ̸⊂Otorhinolaryngeal 95.2 ± 0.2 (94.8 - 95.6) 96.2 ± 0.1 (96.0 - 96.3) 95.7 ± 0.1 (95.5 - 95.8) 89.7 ± 0.3 (89.1 - 90.3) 90.7 ± 0.6 (89.6 - 91.7) 90.1 ± 0.2 (89.8 - 90.5)
T ̸⊂Dermatological 94.7 ± 0.5 (93.6 - 95.5) 93.7 ± 0.4 (93.1 - 94.5) 94.2 ± 0.1 (94.0 - 94.4) 89.5 ± 0.3 (89.0 - 90.2) 87.0 ± 0.3 (86.5 - 87.6) 88.2 ± 0.1 (88.1 - 88.3)
T ̸⊂Gynecological 94.2 ± 0.2 (93.7 - 94.6) 93.5 ± 0.2 (93.1 - 93.8) 93.8 ± 0.1 (93.6 - 94.0) 89.6 ± 0.1 (89.4 - 89.8) 88.7 ± 0.2 (88.3 - 89.0) 89.1 ± 0.1 (88.9 - 89.4)
T ̸⊂Cerebral 95.2 ± 0.2 (94.7 - 95.6) 94.0 ± 0.2 (93.5 - 94.5) 94.6 ± 0.1 (94.3 - 94.8) 89.1 ± 0.2 (88.7 - 89.5) 88.9 ± 0.2 (88.6 - 89.4) 89.0 ± 0.1 (88.8 - 89.2)
T ̸⊂Ophthalmological 95.0 ± 0.1 (94.7 - 95.3) 95.6 ± 0.2 (95.2 - 96.0) 95.3 ± 0.1 (95.1 - 95.5) 88.8 ± 0.4 (88.0 - 89.6) 87.7 ± 0.5 (87.0 - 88.8) 88.2 ± 0.2 (87.8 - 88.5)
T 95.9 ± 0.2 (95.5 - 96.2) 95.4 ± 0.3 (94.7 - 96.0) 95.6 ± 0.1 (95.4 - 95.8) 90.5 ± 0.5 (89.6 - 91.4) 90.4 ± 0.6 (89.3 - 91.7) 90.5 ± 0.1 (90.3 - 90.6)

Table 7: Sensitivity (%) and standard error for all anatomical locations of the bleeding classification dataset. *
denotes a significant difference at the 0.05 level between models trained on T ̸⊂x and T .

Gastrointestinal Urogenital Internal Otorhinolaryngeal Dermatological Gynecological Cerebral Ophthalmological
ELECTRA

T ̸⊂Gastrointestinal 75.7± 2.4* 98.6± 0.3* 96.2± 0.3 96.2± 0.4* 94.3± 0.4* 95.9± 0.4* 97.3± 0.3* 99.1± 0.1*
T ̸⊂Urogenital 97.1±0.3* 68.5± 2.2* 97.4± 0.1* 96.6± 0.2* 95.8± 0.6* 95.8± 0.5* 98.1± 0.1* 98.7± 0.3
T ̸⊂Internal 96.6±0.2* 98.8± 0.2* 82.3± 2.0* 96.2± 0.3* 94.6± 0.6* 95.6± 1.0* 97.3± 0.3* 99.0± 0.2*
T ̸⊂Otorhinolaryngeal 96.2±0.4 98.2± 0.2* 96.2± 0.3 92.6± 0.4* 94.6± 0.2* 95.1± 0.5* 97.4± 0.1* 99.1± 0.2*
T ̸⊂Dermatological 96.6±0.4 98.2± 0.3* 96.2± 0.4* 95.8± 0.5 70.6± 1.4* 96.0± 0.7* 97.6± 0.2* 98.7± 0.2
T ̸⊂Gynecological 97.0±0.2* 98.6± 0.3* 97.2± 0.3* 97.2± 0.2* 95.5± 0.4* 64.8± 0.8* 97.9± 0.4* 99.4± 0.1*
T ̸⊂Cerebral 96.2±0.3 98.3± 0.3* 96.6± 0.4 99.1± 0.1* 94.4± 0.5* 95.8± 0.4* 75.4± 0.7* 99.1± 0.1*
T ̸⊂Ophthalmological 96.6±0.2* 98.5± 0.2* 96.5± 0.2* 95.2± 0.3 93.8± 0.6 95.4± 0.6* 97.4± 0.3* 90.7± 0.5*
T 95.4± 0.4 97.3± 0.4 95.6± 0.5 95.2± 0.2 92.4± 0.8 93.4± 0.2 95.3± 0.4 98.4± 0.3

LSTM
T ̸⊂Gastrointestinal 63.6 ± 3.0* 94.6 ± 0.7* 85.8 ± 1.0* 96.1 ± 0.5* 88.2 ± 0.9 92.2 ± 0.8 90.6 ± 0.7* 96.6 ± 0.6*
T ̸⊂Urogenital 90.2 ± 0.4 56.7 ± 1.6* 86.0 ± 0.5 97.4 ± 0.2* 89.8 ± 0.3* 91.6 ± 0.4 90.9 ± 0.3* 96.2 ± 0.1
T ̸⊂Internal 86.9 ± 0.6 93.0 ± 0.7 62.6 ± 1.2* 95.1 ± 0.5 86.9 ± 0.5 89.7 ± 0.4 90.6 ± 0.5 96.1 ± 0.4
T ̸⊂Otorhinolaryngeal 88.5 ± 0.6 93.8 ± 0.6 85.2 ± 1.0 89.8 ± 0.5* 89.4 ± 0.8 92.4 ± 0.7 90.2 ± 0.5* 96.1 ± 0.4*
T ̸⊂Dermatological 90.6 ± 0.3 93.4 ± 0.5 85.4 ± 0.4* 96.0 ± 0.1* 53.4 ± 0.5* 91.8 ± 0.5 90.4 ± 0.6* 95.2 ± 0.2
T ̸⊂Gynecological 89.3 ± 0.5 92.4 ± 0.3 86.4 ± 0.2* 96.1 ± 0.3 89.2 ± 0.4 69.1 ± 1.2* 90.8 ± 0.4* 96.2 ± 0.2
T ̸⊂Cerebral 87.8 ± 0.6 93.7 ± 0.2 85.6 ± 0.6 96.8 ± 0.3* 89.0 ± 0.4 93.0 ± 0.2* 68.8 ± 0.5* 96.7 ± 0.2*
T ̸⊂Ophthalmological 89.5 ± 1.0 93.1 ± 0.7 86.6 ± 0.9* 96.9 ± 0.4* 89.4 ± 1.0 93.6 ± 0.3* 90.9 ± 0.3* 61.5 ± 2.1*
T 88.9 ± 1.1 93.0 ± 0.8 85.2 ± 0.8 95.4 ± 0.2 87.8 ± 0.8 90.9 ± 0.6 88.7 ± 0.3 94.6 ± 0.7

Table 8: Bootstrapped 95% confidence intervals for difference of means between models trained on T ̸⊂x and T of
the bleeding classification dataset. Means are computed as performance of models trained on T ̸⊂x minus T . Total =
difference of means on the full test set.

Total Gastrointestinal Urogenital Internal Otorhinolaryngeal Dermatological Gynecological Cerebral Ophthalmological
ELECTRA

T ̸⊂Gastrointestinal -1.5 , -0.9 -23.6 , -15.0 0.2 , 2.3 -0.6 , 2.0 0.5 , 1.5 0.6 , 3.3 1.6 , 3.3 1.4 , 2.6 0.5 , 1.1
T ̸⊂Urogenital -2.0 , -1.4 0.6 , 2.8 -33.2 , -24.7 1.0 , 2.7 0.9 , 2.1 1.8 , 5.0 1.2 , 3.6 1.8 , 3.8 -0.6 , 1.3
T ̸⊂Internal -0.8 , -0.4 0.2 , 2.4 0.7 , 2.4 -18.5 , -9.1 0.1 , 2.2 0.1 , 4.6 0.4 , 3.9 1.2 , 3.0 0.1 , 1.2
T ̸⊂Otorhinolaryngeal -0.3 , 0.4 -0.2 , 1.6 0.2 , 1.7 -0.5 , 1.9 -2.9 , -2.1 0.7 , 4.0 0.7 , 2.5 1.5 , 2.6 0.2 , 1.4
T ̸⊂Dermatological -1.8 , -1.1 0.0 , 2.4 0.4 , 1.7 0.1 , 1.3 -0.2 , 1.6 -23.5 , -19.8 1.8 , 3.6 1.9 , 2.9 -0.1 , 1.2
T ̸⊂Gynecological -2.2 , -1.5 1.1 , 2.3 0.7 , 2.1 0.8 , 2.2 1.3 , 2.7 1.6 , 4.9 -29.5 , -27.3 2.1 , 3.4 0.6 , 1.4
T ̸⊂Cerebral -1.5 , -0.5 -0.1 , 1.6 0.2 , 1.9 -0.2 , 2.3 0.5 , 1.6 0.4 , 3.5 1.7 , 3.3 -21.3 , -18.7 0.3 , 1.3
T ̸⊂Ophthalmological -0.6 , -0.1 0.5 , 2.3 0.5 , 2.1 0.1 , 1.7 -0.7 , 0.7 -0.1 , 3.7 1.0 , 3.4 1.5 , 2.9 -8.6 , -6.5

LSTM
T ̸⊂Gastrointestinal -1.9 , -1.4 -30.3 , -18.6 1.0 , 2.1 1.0 , 2.2 0.1 , 1.4 -0.6 , 1.4 -0.2 , 2.6 0.8 , 2.9 1.2 , 3.0
T ̸⊂Urogenital -2.1 , -1.8 -1.7 , 4.0 -38.6 , -34.0 -0.5 , 3.6 1.4 , 2.8 0.1 , 4.1 -1.3 , 2.6 1.2 , 3.1 -0.1 , 3.0
T ̸⊂Internal -1.8 , -1.4 -4.6 , 0.7 -1.4 , 1.7 -23.0 , -20.3 -1.4 , 1.1 -2.1 , 1.0 -2.6 , 0.2 -2.6 , 0.2 0.0 , 3.0
T ̸⊂Otorhinolaryngeal -0.7 , -0.1 -2.7 , 1.8 -0.8 , 2.1 -1.2 , 3.4 -6.9 , -4.5 -1.3 , 4.1 -0.6 , 3.0 0.1 , 2.6 0.2 , 2.7
T ̸⊂Dermatological -2.2 , -2.0 -1.1 , 4.2 -2.2 , 2.5 -1.3 , 3.0 0.2 , 1.0 -36.3 , -32.1 -0.2 , 2.0 0.4 , 3.4 -1.0 , 2.2
T ̸⊂Gynecological -1.5 , -1.1 -1.9 , 2.7 -2.0 , 0.4 0.3 , 3.8 -0.1 , 1.6 -0.4 , 3.7 -24.3 , -19.0 1.4 , 2.8 0.0 , 2.8
T ̸⊂Cerebral -1.7 , -1.2 -3.4 , 0.4 -1.0 , 1.7 -0.3 , 3.0 1.0 , 1.8 -0.6 , 3.4 1.4 , 2.7 -21.0 , -19.0 0.6 , 3.4
T ̸⊂Ophthalmological -2.6 , -1.8 -2.9 , 3.8 -1.1 , 1.4 0.1 , 4.8 0.7 , 2.4 -0.2 , 3.4 1.4 , 3.9 1.3 , 3.0 -38.5 , -28.5
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Table 9: Bleeding test set sensitivity (%) and standard error on an anatomical location by percentage of subgroup
samples in the modified training set. * denotes a significant difference at the 0.05 level between models trained on
the modified training set and the full training set, T .

Anatomical subgroup fraction
0.0 0.01 0.15 0.30 0.60 0.80 1.0

ELECTRA
Gastrointestinal 75.7±2.4* 76.6± 0.6* 90.4± 1.1* 93.2± 0.3* 94.5± 0.5* 96.6± 0.5 95.8± 0.4
Urogenital 68.5±2.2* 72.4± 1.1* 91.0± 1.3* 96.6± 0.3* 97.1± 0.1* 97.0± 0.1* 98.4± 0.4
Internal 82.3±2.0* 84.3± 1.8* 91.8± 0.6* 93.6± 0.2* 94.8± 0.5* 95.9± 0.4* 96.4± 0.4
Otorhinolaryngeal 92.6±0.4* 92.2± 0.7* 92.9± 0.3* 94.8± 0.2* 95.4± 0.6 95.8± 0.2 95.6± 0.3
Dermatological 70.6±1.4* 74.6± 1.3* 87.9± 0.7* 88.7± 0.9* 93.3± 0.7 93.4± 0.3 94.5± 0.6
Gynecological 64.8±0.8* 63.4± 1.3* 87.3± 0.6* 89.2±0.3* 92.0± 0.7* 93.7± 0.2 93.9± 0.4
Cerebral 75.4±0.7* 80.0± 1.5* 89.4± 0.4* 91.5± 0.7* 95.6± 0.5* 96.6± 0.6 97.2± 0.3
Ophthalmological 90.70±0.5* 93.6± 0.3* 96.7± 0.4* 97.8± 0.3* 98.8± 0.1 98.7± 0.1 98.9± 0.2

LSTM
Gastrointestinal 63.6 ± 3.0* 60.0 ± 1.0* 71.9 ± 1.7* 79.2 ± 0.7* 86.6 ± 0.5* 88.0 ± 0.9* 89.1 ± 0.6
Urogenital 56.7 ± 1.6* 58.6 ± 0.9* 79.3 ± 0.7* 87.2 ± 0.6* 90.6 ± 0.2* 92.2 ± 0.3* 93.7 ± 0.1
Internal 62.6 ± 1.2* 65.6 ± 0.8* 72.6 ± 0.8* 77.2 ± 0.5* 80.2 ± 0.8* 83.9 ± 0.5 85.5 ± 0.5
Otorhinolaryngeal 89.8 ± 0.5* 88.5 ± 0.3* 91.8 ± 0.3* 93.6 ± 0.3* 93.8 ± 0.1* 95.2 ± 0.5 95.5 ± 0.3
Dermatological 53.4 ± 0.5* 56.5 ± 1.5* 73.5 ± 2.4* 77.4 ± 0.6* 84.5 ± 0.3* 86.8 ± 0.4 88.1 ± 0.5
Gynecological 69.1 ± 1.2* 69.3 ± 0.5* 80.1 ± 0.7* 86.6 ± 0.7* 89.3 ± 0.5* 90.7 ± 0.4* 91.6 ± 0.3
Cerebral 68.8 ± 0.5 * 72.2 ± 1.6* 79.7 ± 0.4* 83.1 ± 0.6* 86.4 ± 0.4* 88.4 ± 0.5* 90.5 ± 0.2
Ophthalmological 61.5 ± 2.1* 65.4 ± 1.4* 89.4 ± 0.4* 90.3 ± 0.5* 93.0 ± 0.7* 94.4 ± 0.4* 95.7 ± 0.4

Table 10: Bootstrapped 95% confidence intervals for difference of means between models trained on a modified
training set, including a percentage of subgroup samples, and models trained on the full training set, T , of the
bleeding classification dataset. Means are computed as performance of models trained on the modified training set
minus T .

Anatomical subgroup fraction
0.0 0.01 0.15 0.30 0.60 0.80

ELECTRA
Gastrointestinal -23.6 , -15.0 -20.2 , -18.2 -8.3 , -2.6 -4.2 , -1.2 -2.6 , -0.2 -0.2 , 1.8
Urogenital -33.2 , -24.7 -27.7 , -24.0 -10.0 , -4.8 -2.6 , -1.4 -2.2 , -0.4 -2.2 , -0.6
Internal -18.5 , -9.1 -15.2 , -9.0 -5.8 , -3.4 -3.8 , -1.8 -2.4 , -1.0 -3.0 , -0.1
Otorhinolaryngeal -2.9 , -2.1 -4.8 , -2.1 -3.5 , -1.8 -1.5 , -0.2 -0.7 , 0.3 -0.6 , 1.0
Dermatological -23.5 , -19.8 -22.6 , -16.5 -7.8 , -5.0 -7.8 , -3.4 -3.0 , 1.0 -2.4 , 0.1
Gynecological -29.5 , -27.3 -33.6 , -27.5 -8.1 , -5.3 -5.5 , -3.8 -3.6 , -0.8 -0.8 , 1.5
Cerebral -21.3 , -18.7 -20.1 , -13.8 -8.4 , -7.3 -7.0 , -4.4 -2.6 , -0.7 -1.3 , 0.0
Ophthalmological -8.6 , -6.5 -6.0 , -4.5 -2.7 , -1.8 -1.8 , -0.5 -0.6 , 0.6 -0.2 , 0.6

LSTM
Gastrointestinal -31.7 , -19.8 -31.0 , -27.2 -21.4 , -14.3 -12.3 , -7.6 -4.1 , -0.6 -1.9 , -0.1
Urogenital -39.8 , -33.8 -36.7 , -32.9 -15.8 , -13.0 -7.8 , -4.8 -3.5 , -2.5 -2.1 , -0.9
Internal -25.7 , -19.6 -22.3 , -17.4 -15.0 , -10.6 -9.5 , -7.1 -7.4 , -3.1 -3.4 , 0.4
Otorhinolaryngeal -7.0 , -4.5 -8.2 , -6.2 -4.5 , -3.0 -2.5 , -1.4 -2.3 , -1.1 -1.8 , 1.0
Dermatological -35.6 , -33.8 -35.5 , -28.6 -19.0 , -10.1 -12.8 , -9.0 -4.9 , -2.5 -3.1 , 0.0
Gynecological -25.4 , -19.5 -23.3 , -21.2 -13.4 , -10.3 -6.5 , -3.4 -3.9 , -0.9 -1.2 , -0.6
Cerebral -22.3 , -21.2 -21.1 , -15.1 -11.8 , -9.8 -8.7 , -5.8 -5.0 , -3.2 -3.4 , -0.8
Ophthalmological -38.4 , -30.5 -33.4 , -27.2 -7.4 , -5.1 -6.5 , -4.1 -3.9 , -1.1 -2.1 , -0.6

Table 11: Precision, recall, and F1 performance for the VTE classification dataset. T ̸⊂x denotes the training set
from which an anatomical location, x, has been removed. SE = Standard error. CI = 95% confidence interval.

ELECTRA LSTM
Precision ± SE (CI) Recall ± SE (CI) F1 ± SE (CI) Precision ± SE (CI) Recall ± SE (CI) F1 ± SE (CI)

T ̸⊂Lower extremity 86.3 ± 0.7 (84.9 - 87.7) 41.8 ± 1.5 (39.1 - 44.7) 56.3 ± 1.3 (53.8 - 58.8) 77.2 ± 0.2 (76.9 - 77.6) 61.4 ± 1.5 (58.8 - 64.5) 68.3 ± 0.8 (66.8 - 70.1)
T ̸⊂Lung 86.1 ± 1.0 (84.1 - 87.9) 57.4 ± 3.2 (51.8 - 63.8) 68.6 ± 2.0 (64.9 - 72.7) 78.6 ± 0.5 (77.6 - 79.6) 54.8 ± 0.7 (53.5 - 56.1) 64.6 ± 0.3 (63.9 - 65.3)
T 96.4 ± 0.3 (95.9 - 97.0) 72.3 ± 0.7 (71.0 - 73.6) 82.7 ± 0.4 (81.9 - 83.5) 91.4 ± 0.1 (91.2 - 91.6) 57.2 ± 0.6 (56.0 - 58.4) 70.4 ± 0.4 (69.4 - 71.2)
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Table 12: Sensitivity (%) and standard error for all anatomical locations of the VTE classification dataset. * denotes
a significant difference at the 0.05 level between models trained on T ̸⊂x and T .

Lower extremity Lung Liver Cerebral Upper extremity
ELECTRA

T ̸⊂Lower extremity 9.3 ± 0.8* 98.6 ± 0.2* 50.1 ± 3.6* 23.8 ± 1.9* 25.3 ± 1.4*
T ̸⊂Lung 99.7 ± 0.2* 16.6 ± 3.5* 65.7 ± 7.7 13.6 ± 4.1 99.0 ± 0.3*
T 99.1 ± 0.2 97.6 ± 0.3 66.3 ± 1.6 11.5 ± 1.6 96.7 ± 0.3

LSTM
T ̸⊂Lower extremity 34.2 ± 1.5* 92.6 ± 0.5* 76.2 ± 2.2* 52.6 ± 2.2* 47.6 ± 2.8*
T ̸⊂Lung 95.3 ± 0.2* 15.7 ± 0.4* 54.2 ± 1.8* 24.7 ± 1.3* 91.4 ± 0.4*
T 93.8 ± 0.6 86.6 ± 0.6 29.8 ± 1.6 7.0 ± 0.5 81.8 ± 1.3

Table 13: Bootstrapped 95% confidence intervals for difference of means between models trained on T ̸⊂x and T of
the VTE classification dataset. Means are computed as performance of models trained on T ̸⊂x minus T . Total =
difference of means on the full test set.

Total Lower extremity Lung Liver Cerebral Upper extremity
ELECTRA

T ̸⊂Lower extremity -18.0 , -16.3 -91.3 , -88.3 0.2 , 1.6 -23.9 , -7.3 8.0 , 16.6 -74.0 , -68.7
T ̸⊂Lung -12.4, -9.2 0.3 , 0.9 -87.2 , -73.7 -12.6 , 11.6 -2.0 , 8.3 1.8 , 2.7

LSTM
T ̸⊂Lower extremity -5.1 , -3.5 -63.0 , -56.5 4.3 , 7.7 43.8 , 50.0 40.3 , 49.6 -41.9 , -28.2
T ̸⊂Lung -6.6 , -5.4 0.6 , 2.6 -72.5 , -69.5 18.9 , 28.8 14.9 , 19.7 7.5 , 11.9

Table 14: VTE test set sensitivity (%) and standard error on an anatomical location by percentage of subgroup
samples in the modified training set. * denotes a significant difference at the 0.05 level between models trained on
the modified training set and the full training set, T .

.

Anatomical subgroup fraction
0.0 0.01 0.15 0.30 0.60 0.80 1.0

ELECTRA
Lower extremity 9.3 ± 0.8* 77.6 ± 3.7* 97.2 ± 0.3* 97.7 ± 0.4 98.6 ± 0.3 98.8 ± 0.2 98.4 ± 0.2
Lung 16.6 ± 3.5* 57.1 ± 8.1* 94.6 ± 0.3* 96.6 ± 0.3 97.7 ± 0.2 98.2 ± 0.1 97.6 ± 0.3

LSTM
Lower extremity 34.2 ± 1.5 40.6 ± 0.7 83.7 ± 0.6 90.7 ± 0.5 94.4 ± 0.6 95.5 ± 0.6 94.9 ± 0.7
Lung 15.7 ± 0.4 16.0 ± 0.9 71.5 ± 1.1 81.6 ± 0.7 88.0 ± 0.9 88.3 ± 0.9 89.2 ± 0.8

Table 15: Bootstrapped 95% confidence intervals for difference of means between models trained on a modified
training set, including a percentage of subgroup samples, and models trained on the full training set, T , of the VTE
classification dataset. Means are computed as performance of models trained on the modified training set minus T .

Anatomical subgroup fraction
0.0 0.01 0.15 0.30 0.60 0.80

ELECTRA
Lower extremity -91.3 , -88.3 -28.8 , -15.0 -2.2 , -0.4 -1.9 , 0.4 -0.2 , 0.7 -0.4 , 1.1
Lung -87.2 , -73.7 -58.8 , -27.4 -3.6 , -2.2 -2.0 , 0.0 -0.7 , 0.8 -0.1 , 1.2

LSTM
Lower extremity -63.0 , -56.5 -56.2 , -52.2 -13.2 , -9.4 -5.6 , -2.9 -2.3 , 1.2 -1.3 , 2.2
Lung -72.5 , -69.5 -76.3 , -70.1 -20.6 , -14.4 -9.2 , -6.0 -3.5 , 0.8 -3.6 , 1.9
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Table 16: Most frequent words used to describe bleeding mentions for each anatomical location of the bleeding
classification dataset. Words are translated from Danish to English and, therefore, some cells include two words.

.

Word Frequency Location uniqueness Word Frequency Location uniqueness
Location: Otorhinolaryngeal Location: Gynecological

bleeding 324 0.13 bleeding 714 0.29
nose bleeding 273 1.0 uterus 108 0.97
epistaxis 254 0.99 allowable 78 0.94
nostril 148 1.0 vagina 69 1.0

Location: Dermatological Location: Cerebral
haematoma 354 0.56 sah 217 0.99
bleeding 170 0.07 bleeding 190 0.08
skin 122 0.73 ct 185 0.63
right 97 0.29 haematoma 161 0.25

Location: Urogenital Location: Internal
haematuria 536 0.99 bleeding 273 0.11
urine 311 0.98 haemothorax 249 1.0
blood 205 0.23 fluid 174 0.80
macroscopic 186 0.99 blood 140 0.16

Location: Gastrointestinal Location: Ophthalmological
bleeding 560 0.23 corpus hemorrhagicum 270 1.0
blood 247 0.28 corpus hem 205 1.0
fresh 180 0.48 bleeding 198 0.08
melaena 165 0.98 haemorrhage 180 0.70
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Abstract

Many computational argumentation tasks, such
as stance classification, are topic-dependent:
The effectiveness of approaches to these tasks
depends largely on whether they are trained
with arguments on the same topics as those
on which they are tested. The key question is:
What are these training topics? To answer this
question, we take the first step of mapping the
argumentation landscape with The Argument
Ontology (TAO). TAO draws on three authori-
tative sources for argument topics: the World
Economic Forum, Wikipedia’s list of controver-
sial topics, and Debatepedia. By comparing the
topics in our ontology with those in 59 argu-
ment corpora, we perform the first comprehen-
sive assessment of their topic coverage. While
TAO already covers most of the corpus topics,
the corpus topics barely cover all the topics
in TAO. This points to a new goal for corpus
construction to achieve a broad topic cover-
age and thus better generalizability of compu-
tational argumentation approaches.

1 Introduction

The term “topic” refers to the subject matter of a
text. A text may be about one or more topics and
the relationship between topics and texts is called
“aboutness” (Yablo, 2014). Topics play a central
role in argumentation because they determine ar-
gumentation strategies and rhetorical devices by
setting the appropriate and expected universe of
discourse. This view is supported by pragma-
dialectics (van Eemeren, 2015): “The basic aspects
of strategic maneuvering [. . . ] are making an expe-
dient selection from the ‘topical potential’ available
at a certain discussion.” Although debaters often
use commonplace arguments across topics (Bilu
et al., 2019), they must be relevant: a black market
argument, for example, can be equally well applied
to topics such as banning drugs or banning firearms.
As recently shown, for example, by Reuver et al.
(2021), training computational models to extract,
analyze, or generate arguments with a broad topic
coverage improves their generalizability.

A set of topics can be organized as a graph, some-
times called a “topic space”. Information theorists
and library scientists map hierarchical subject re-
lationships into ontologies in this way (Hjørland,
2001). For this purpose, topics are labeled with a
subject heading, a phrase from a controlled vocabu-
lary that describes a topic in a concise and discrim-
inating manner. While library ontologies are not
focused on argumentation, others deal specifically
with argumentative topic spaces. We have identi-
fied and tapped three authoritative sources of onto-
logical knowledge covering global issues, contro-
versies, and popular debates: the World Economic
Forum’s “Strategic Intelligence” site, Wikipedia’s
list of controversial topics, and Debatepedia’s de-
bate classification system (Section 4). They form
the basis for The Argument Ontology (TAO).1

We compile a comprehensive survey of 59 argu-
ment corpora ( Section 3) and investigate their topic
coverage with respect to the three authoritative on-
tologies (Section 5). The coverage of corpora with
topic labels is manually assessed by matching each
label with the topics of the ontologies. From this,
the ontology topics covered by a corpus and the
distribution of corpus arguments in the ontologies
are calculated. Our analyses show that the existing
corpora focus on only a subset of the known top-
ics. For corpora without topic labels, we categorize
their argumentative texts by measuring their seman-
tic relatedness to ontology topics. Given the large
number of ontology topics (748 for Wikipedia), this
is a challenging classification for which we achieve
a remarkable F1 of 0.59. (Section 6).2

Altogether, we lay the foundation for the study
and systematic exploration of controversial top-
ics within computational argumentation analysis.
The authoritative sources identified already cover
their respective areas quite comprehensively. Fu-
ture work will need to extend our approach to other
subject areas, such as business, domestic, historical,
and scientific argument spaces.

1Data: https://zenodo.org/record/3928096.
2Code: https://github.com/webis-de/EACL-23.
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2 Related Work

Our review of related work focuses on the role of
the variable “topic” in computational argumenta-
tion. Moreover, we briefly review topic ontologies
and hierarchical topic classification.

2.1 Topics in Computational Argumentation
In computational argumentation, arguments are
typically modeled as compositions of argument
units, where an argument unit is represented as
a span of text. Habernal and Gurevych (2016a)
adopts Toulmin (1958)’s (1958) model, which de-
fines six unit types, among which are “claim” and
“data”. Wachsmuth et al. (2017) employ a more ba-
sic model of two units, which defines an argument
as a claim or conclusion supported by one or more
premises. These models capture arguments without
explicitly identifying the topic they address. Levy
et al. (2014) consider claims to be topic-dependent
and study their detection in the context of a random
selection of 32 topics from idebate.org. This work
raises the question why topic-dependence has not
been addressed more urgently until now.

Key tasks for computational argumentation in-
clude the mining of arguments from natural lan-
guage (Moens et al., 2007; Al-Khatib et al., 2016),
classifying their stances with regard to a thesis
(Bar-Haim et al., 2017), and analyzing which argu-
ments are more persuasive (Tan et al., 2016; Haber-
nal and Gurevych, 2016a). Current approaches to
these tasks rely on supervised classification. Dax-
enberger et al. (2017) show that supervised classi-
fiers fail to generalize across domains (∼ topics).
More recently, Stab et al. (2018) tweak BiLSTM
(Graves and Schmidhuberab, 2005) to integrate
the topic while jointly detecting (1) whether a sen-
tence is an argument and (2) its stance to the topic.
The designed neural network outperforms BiL-
STM without topic integration in both tasks; fur-
ther evidence for the topic-dependence of argument
mining and stance classification. Whether model
transfer between more closely related topics works
better is unknown. As a first step, Reuver et al.
(2021) show that cross-topic stance-classification
with BERT (Devlin et al., 2018) produces mixed
results depending on the topics, but misses the rela-
tions between the topics. Gu et al. (2018) show that
integrating the topic of an argument helps assessing
its persuasiveness.

Topic plays a central role in argument retrieval
and generation since it defines what arguments are

relevant. Argument retrieval aims at delivering pro
and con arguments on a given topic query. A major
challenge in argument retrieval is the grouping of
arguments that address common aspects of a topic.
As shown by Reimers et al. (2019) and Ajjour et al.
(2019a), integrating the topic is an important step
while clustering arguments. For argument genera-
tion, Bilu et al. (2019) introduce an approach that
matches an input topic against a list of topics that
are paired with sets of topic-adjustable common-
place arguments (e.g., black-market arguments). In
a similar vein, Bar-Haim et al. (2019) identify con-
sistent and contrastive topics for a given topic with
the goal of expanding the topic in a new direction
(e.g., fast food versus obesity). Both approaches
show the merit of utilizing argument topic ontolo-
gies in argument generation.

Only abstract argumentation may be truly topic-
independent, where only the structure and relations
among arguments, not their language, are studied.

2.2 Topic Ontologies
In information science, an ontology is defined as
“an explicit specification of a conceptualization”
(Gruber, 1993). Topic ontologies are a specific
type of ontologies which specify topics as nodes of
a directed acyclic graph. An edge in the graph then
implies an “is part of”-relation between the topics
(Xamena et al., 2017). The effort in creating topic
ontologies ranges from ad-hoc decisions (e.g., tags
for blog posts) to extensive classification schemes
for libraries. The oldest classification scheme that
is still used today in libraries is the Dewey Deci-
mal Classification. It has been translated into over
30 languages, and it contains several tens of thou-
sands of classes. Most topic ontologies focus on
a specific domain, such as a the ACM Comput-
ing Classification System for computer science, or
DMOZ for web pages.3 The only topic ontology
directly linked to arguments is that of Debatepedia.

2.3 Hierarchical Text Classification
Hierarchical text classification aims at classifying
a document into a class hierarchy. Depending on
how the hierarchical structure is exploited, classifi-
cation can be done top-down (from higher classes
downwards), bottom-up, or flat (ignoring hierarchi-
cal relations) (Silla and Freitas, 2011). Researchers
usually train supervised classifiers for each class in
the hierarchy (Sun and Lim, 2001).

3https://dl.acm.org/ccs and https://dmoz-odp.org/
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Corpus Authors Source Unit granularity Units Topics Exp.

Manual selection
Arguing Subjectivity Conard et al. (2012) Editorials Editorial/blog 84 1 1
Arguments Moderation Falk et al. (2021) Discussion forum Argument 112 2 2
Argumentative Sentences Eyal et al. (2020) Wikipedia Arguments 700 20 1
Argument Facet Similarity Misra et al. (2016) Debate portals Argument 6,188 3 12
AURC Trautmann et al. (2020) Web Argument Unit 8,000 8 6
Basn Kondo et al. (2021) Debate portals Argument pair 2,370 6 1
CCSA Li et al. (2022) Scientific papers Argument unit 18,332 1 1
Claim and Evidence 1 Aharoni et al. (2014) Wikipedia Wikipedia article 315 33 22
Claim and Evidence 2 Rinott et al. (2015) Wikipedia Wikipedia article 547 58 16
Claim Generation Gretz et al. (2020) Generated text Argument Unit 2,839 136 1
Claim Stance Bar-Haim et al. (2017) Wikipedia Argument Unit 2,394 55 15
Claim Sentence Search Levy et al. (2018) Wikipedia Argument unit 1,492,077 150 5
COMARG Boltuz̆ić and Šnajder (2014) Debate portals Argument pair 2,298 2 3
Evidence Sentences Schnarch et al. (2018) Wikipedia Argument unit 5,783 118 6
Evidence Sentences 2 Ein-Dor et al. (2020) Wikipedia Argument unit 29,429 221 4
Evidence Quality Gleize et al. (2019) Wikipedia Argument pair 5,697 69 2
IAM Cheng et al. (2022) Wikipedia Argument unit 69,666 100 1
ICLE Essay Scoring Persing et al. (2010) Essays Essay 1,000 10 12
Ideological Debates Reasons Hasan and Ng (2014) Debate portals Argument 4,903 4 12
Internet Argument Corpus v2 Abbott et al. (2016) Web Discussion 16,555 19 22
Key Point Analysis Bar-Haim et al. (2020) Wikipedia Argument 24,093 28 15
M-Arg Mestre et al. (2021) Presidential debate Argument pair 4,104 18 1
Micro Text v1 Peldszus and Stede (2015) Essays Essay 112 18 13
Micro Text v2 Skeppstedt et al. (2018) Essays Essay 171 35 2
Multilingual Argument Mining Toledo-Ronen et al. (2020) Wikipedia Argument unit 65,708 347 4
Political Argumentation Menini et al. (2018) Presidential debate Argument pair 1,462 5 3
Record Debating Dataset 2 Mirkin et al. (2018) Debating Speech 200 50 5
Record Debating Dataset 3 Lavee et al. (2019) Debating Speech 400 199 1
Record Debating Dataset 4 Orbach et al. (2019) Debating Speech 200 50 1
Record Debating Dataset 5 Orbach et al. (2020) Debating Speech 3,562 397 1
Sci-arg Lauscher et al. (2018) Scientific papers Paper 40 1 7
SciARK Fergadis et al. (2021) Scientific papers Abstract 1,000 6 1
UKP Sentential Stab et al. (2018) Web Argument 25,492 8 20
UKP Aspect Reimers et al. (2019) Web Argument pair 3,595 28 11
UKPConvArg1 Habernal and Gurevych (2016c) Debate portals Argument pair 11,650 16 16
UKPConvArg2 Habernal and Gurevych (2016b) Debate portals Argument pair 9,111 16 6
WebDiscourse Habernal and Gurevych (2016a) Web Document 340 6 12
Webis-debate-16 Al-Khatib et al. (2016a) Debate portals Debate 445 14 5
VivesDebate Ruiz-Dolz et al. (2021) Debating Debate 29 1 2

Source-driven: greedy within a time-span
AIFdb Bex et al. (2013) Web Argument unit 67,408 n/a 8
Args-me Ajjour et al. (2019b) Debate portals Argument 387,692 n/a 31
ChangeMyView Tan et al. (2016) Discussion forum Post/comment 14,066 n/a 37
CJEU Grundler et al. (2022) Law Case Court Decision 40 n/a 1
DebateSum Roush and Balaji (2020) Debating Debate 187,386 n/a 1
IMHO Chakrabarty et al. (2019) Discussion forum Argument Unit 5,569,962 n/a 3
Intelligence Squared Debates Zhang et al. (2016) Debate portals Debate 108 n/a 9
Kialo Kialo (2020) Debate portals Argument unit 331,684 n/a 23
Political Speech Lippi and Torroni (2016) Ministerial debate Argument unit 152 n/a 2
USElecDeb60To16 Haddadan et al. (2019) Presidential debate Debate 42 n/a 5
MultiOpEd Liu et al. (2021) Editorials Editorial 2,794 n/a 2
QT30 Hautli-Janisz et al. (2022) Debating Argument unit 19,842 n/a 1
Review-Rebuttal Cheng et al. (2020) Scientific reviews Argument pair 4,764 n/a 5

Table 1 (continued on next page).
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Table 1 (continued).

Corpus Authors Source Unit granularity Units Topics Exp.

Source-driven: sampled
Argument Annotated Essays Stab and Gurevych (2017) Essays Essay 402 n/a 64
E-rulemaking Park and Cardie (2018) Discussion forum Argument 731 n/a 9
ECHR Poudyal et al. (2020) Law Case Argument 743 n/a 8
Editorials Al-Khatib et al. (2016b) Editorials Editorial 300 n/a 15
GAQCorpus Ng et al. (2020) Web Argument 6,424 n/a 4
IDebate Persuasiveness Persing and Ng (2017) Debate portals Argument 1,205 n/a 1
Scinf-biomed Gao et al. (2022) Scientific papers Paper 27,924 n/a 1

Table 1: Survey of argument corpora indicating data source, unit granularity, and size in terms of units and topics (if
authors remarked on it). The unit granularity is the one in the corpus’ files, using premises and conclusions as one
unit each and the best context-preserving unit for corpora featuring multiple granularities. We presume these topic
selection directives from the corpus description: either manual selection by the authors, or source-driven—i.e., the
topics in the selected source(s)—from the units of a specific time-span or by random sampling. Experiments (Exp.)
denotes the count of papers that use the corpus in an experiment among those papers that cite the corpus’ paper.

3 Survey of Argument Corpora

To study arguments and computational argumenta-
tion tasks, researchers compile corpora with ar-
gumentative texts. To the best of our knowl-
edge, Table 1 compiles all corpora dedicated to
argumentation until 2022. We review these cor-
pora and their associated publications with regard
to what are the sources of arguments, what is the
granularity of the corpus, what is the size of the
corpora in terms of their units, and which and how
many different topics are covered in them. Review-
ing all papers citing a corpus, we also analyzed how
many experiments were carried out using them.

The most elaborate discussion of topic selection
is given in Habernal and Gurevych (2016a), who
chose six topics (homeschooling, public versus pri-
vate schools, redshirting, prayers in schools, single
sex education, mainstreaming) to focus on different
education-related aspects. The broadest selection
of topics is reported by the researchers of IBM
Debater,4 who obtain arguments from Wikipedia.
However, samples of the topics have been used in
their papers without mentioning which ones. The
only other work mentioning their source of topics
stems from Stab et al. (2018), who randomly select
8 topics from two lists of controversial topics that
originate from an online library and the debate por-
tal ProCon.org, respectively. Peldszus and Stede
(2015) predefine a set of topics and give writers
the freedom to choose which one to write about,
but nothing is said about where the set of prede-
fined topics originate from. Conard et al. (2012)
and Hasan and Ng (2014) explicitly select one and

4https://www.research.ibm.com/haifa/dept/vst/debating_data.shtml

four topics, respectively. For all other corpora with
topic labels, their authors do not argue on choosing
topics, nor selection or sampling criteria. Neither
do the authors of corpora without topic labels.

Altogether, it appears that the best practices in
argumentation do not as of yet consider topic sam-
pling as a prerequisite task to ensure coverage of
a certain domain of interest, diversity, or repro-
ducibility. Based on our review, we presume three
basic topic selection directives are in use today:
(1) Manual selection. Topics are manually defined
or selected. Although the process may be random,
when aiming for controversial topics, one may
often end up with commonplace topics in West-
ern culture (e.g., abortion, death penalty, gay mar-
riage). Still, they are relevant and important today.
(2) Source-driven (greedy within a time-span). A
source of argument ground truth is either exploited
in its entirety, or a maximum subset fulfilling de-
sired properties is used. Since argument-related
ground truth is hard to come by, it is understand-
able that many readily available sources are being
exploited. (3) Source-driven (sampled). A source
or argument ground truth is exploited and a subset
is sampled. Here, it may be infeasible to exploit a
source in its entirety. Al-Khatib et al. (2016b) ran-
domly select 300 documents from three websites.
Park and Cardie (2018) and Stab and Gurevych
(2017) do not mention anything about their sam-
pling process. In general, both source-driven cor-
pus construction approaches inevitably incur the
source’s idiosyncracies of topic selection in terms
of skew towards certain topics. Scaling up may or
may not be a remedy for this problem.

1414

https://www.research.ibm.com/haifa/dept/vst/debating_data.shtml


The Great Reset

Shaping the
economic recovery

Revitalizing
global cooperation

TaxationGlobal
governance

Politics and
economics

ReligionScience, biology,
and health

Abortion Atheism

Global cooperation will be essential
for developing the sort of resilience
necessary to better deal with crises.

Multilateral cooperation
will be necessary for a
healthy global recovery.

In order to deliver on the Sustain-
able Development Goals, sufficient

and stable tax revenue is necessary.

When properly done,
abortion is one of the safest

procedures in medicine

People cannot know
a God or prove the
existence of a God.

World Economic Forum: “Strategic Intelligence” (excerpt) Wikipedia: “List of Controversial Issues” (excerpt)

Level 1

Level 2

Figure 1: Example for an assignment of arguments (bottom) to topics of a two-leveled ontology. Level 2 topics are
subtopics of their linked Level 1 topics. Arguments linked to a Level 2 topic also pertain to its Level 1 ancestors.

We assess how many experiments have been re-
ported on each of the corpora by collecting the
publications referring to a corpus as per Google
Scholar, focusing on conference and journal papers,
but excluding books and web pages. We then check
whether the cited corpus is mentioned in its data,
experiment, or results section. As can be seen in
Table 1, corpora with fewer topics tend to be used
more often in experiments than those with larger
amounts. In total, 230 experiments were carried out
on argument corpora with no clearly defined topic
selection directive. The skew towards smaller-scale
experiments may affect generalizability.

4 Bootstrapping The Argument Ontology

Topic ontologies provide for a knowledge organi-
zation principle, and, especially if widely accepted,
also a standard. They are typically modeled as
directed acyclic graphs, where nodes correspond
to topics and edges indicate “is part of” relations.
Topics that are part of other topics are called their
subtopics. A topic ontology is often displayed in
levels, starting with the topics that are not subtopics
of others, continuing recursively with each lower
level of subtopics. Figure 1 shows an excerpt of a
two-level topic ontology for arguments.

The identification of the topics to be included
in The Argument Ontology (TAO), as well as their
relations, requires domain expertise. Building an
all-encompassing ontology thus requires experts
from every top-level domain where argumentation
of scientific interest is expected. In the following,
we suggest and outline three authoritative sources
of expert topic ontologies, which comprise a wide
selection of important argumentative topics. We
use them to bootstrap a first version of TAO.

World Economic Forum (WEF) The World Eco-
nomic Forum is a not-for-profit foundation that
coordinates organizations from both the public and

the private sector to work on economical and soci-
etal issues. As part of their efforts, their “Strategic
Intelligence” platform5 strives to inform decision
makers on domestic and global topics, specifically
global issues (e.g., artificial intelligence and cli-
mate change), industries (e.g., healthcare delivery
and private investors), and economies (e.g., Africa
and ASEAN). Domain experts for each topic cu-
rate a stream of relevant news articles which they
each tag with 4-9 subtopics of their topic (e.g., the
continuous monitoring of mental health).

Wikipedia Wikipedia strives for a neutral point
of view, but many topics of public interest are dis-
cussed controversially. Some editors thus curate a
list of controversial Wikipedia articles to highlight
where special care is needed, grouped into 14 top-
level topics (e.g., environment and philosophy) and
4-176 subtopics (e.g., creationism and pollution).6

We omit the “People” topic and articles on coun-
tries; their controversiality is not universal.

Debatepedia The Debatepedia portal’s goal is to
create an encyclopedia of debates which are or-
ganized as “pro” and “con” arguments. A list of
89 topics helps visitors to browse the debates. The
debates are contributed by anonymous web users.
Topics in Debatepedia tend to address issues of
Western culture. For example, the topic “United
States” covers 306 debates while “Third World”
covers only 12. The site is no longer maintained,
but accessible through the Wayback Machine.7

The three ontologies are publicly accessible, and
two of them are actively maintained and updated.
Acquiring the ontologies is straightforward—not
straightforward is to make use of them. A key task
associated with every topic ontology is to catego-
rize a given document. Having just a short string

5https://intelligence.weforum.org
6https://en.wikipedia.org/wiki/Wikipedia:List_of_controversial_issues
7https://web.archive.org/web/20180222051626/http://www.debatepedia.org/

en/index.php/Welcome_to_Debatepedia%21
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Type Count Example topic

Topic label Normalized form Corpus

Concept 1,394 Abortion abortion Claim Sentence Search
Conclusion 707 We should ban partial birth abortion partial birth abortion Evidence Quality
Question 110 Should abortion be prohibited? abortion IAM
Imperative 25 Ban abortions abortion Record Debating Dataset 5
Comparison 23 Pro Choice vs. Pro Life pro choice vs pro life UKPConvArg1

Table 2: Counts of the topic types in the 39 preprocessed corpora with examples and their normalized form.

label describing a (potentially multifaceted) topic,
such as “The Great Reset”, renders this task ex-
ceedingly difficult. Fortunately, domain experts
have been pre-categorizing documents into the
aforementioned ontologies. In particular, regarding
the WEF, invited domain experts categorize news
articles for every topic, regarding Wikipedia, the
text of the associated articles is available, as are the
associated debates on Debatepedia.

Articles that are categorized into Level 2 topics
are propagated up to their respective Level 1 topics.
Table 3 shows the large differences between the
ontologies. The WEF ontology contains the most
topics, links the most documents, and has the most
tokens overall. Wikipedia’s Level 2 topics link to a
single article each, yielding less text overall.

5 Topic Coverage

To assess the topic coverage of an argument cor-
pus given the three ontologies, we map their topic
labels (if provided) to matching ontology topics.

5.1 Topic Label Normalization
Table 1 lists 39 argument corpora that provide topic
labels. Altogether 2,259 different labels have been
assigned. They are concise descriptions of the
main issues of an argument provided by the cor-
pus authors. The labels possess the text register of
the respective corpus: In essays, for instance, top-
ics are usually thesis statements, while Wikipedia-
derived corpora use article titles, and the topics of
debate corpora include clichés such as “This house
should”. Often, topic labels express a stance to-
wards a target issue, e.g., “ban guns”. Five types of
topic labels can be distinguished: concept, compar-
ison of concepts, conclusion (includes claim and
thesis), question, and imperative. We normalize
the topic labels by converting all concepts to sin-
gular form, removing clichés, and dropping stance-
indicating words such as “legalize”. Our normaliza-
tion aims at retaining only the central target issue
of a topic label and leads to 798 unique topic labels.

5.2 Mapping Topic Labels to Ontology Topics
Using the preprocessed topic labels as queries, we
retrieve for each topic label the 50 top-most rel-
evant topics in each level of the three ontologies.
To facilitate the retrieval of ontology topics, we
employ a BM25-weighted (Robertson et al., 2004)
index of the concatenated documents for each topic.
This enables us to narrow down the mapping of a
topic label to a manageable size. Except for a hand-
ful of cases, 50 ontology topics can be retrieved for
each topic label. The topic labels were then man-
ually mapped to an ontology topic, if they form
synonyms, or if the former is a subtopic of the
latter—which thus indicates that all arguments in
the corpus with that topic label are about the on-
tology topic. A topic label can thus be mapped to
multiple ontology topics. For example, the topic
label “plastic bottles” is mapped to “pollution” and
“recycling” in Wikipedia Level 2.

5.3 Analysis of Topic Coverage
Table 3 shows general statistics of this mapping of
corpora topic labels to ontology topics. Most of the
topic labels (2,141 out of 2,259) are mapped to at
least one Debatepedia topic while only 395 labels
are mapped to WEF Level 2 topics. For Wikipedia
Level 2, only 298 out of the 748 topics are actually
covered by argument corpora. This first analysis
already suggests that existing argument corpora
often only cover a small subset of possible argu-
mentative topics that people are trained to debate.
For those topic labels that can be mapped, they
belong on average to 2.78 topics in Debatepedia,
1.24 topics in Wikipedia Level 1, and 1.53 topics
in WEF Level 1. As discussed in Section 4, topics
in Debatepedia focus on the Western culture and
are easily accessible, whereas topics in WEF re-
quire in-depth domain knowledge and have more
global relevance. The broad coverage of Debatepe-
dia’s topics indicates that argument corpora focus
on common, widely discussed topics rather than
global issues or those that need domain knowledge.
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Figure 2: Proportion of ontology topics covered by at least n corpus topics (per ontology level and per corpus).

For a more fine-grained analysis, Figure 2 il-
lustrates the differences regarding the number of
ontology topics covered by a corpus: While top-
ics in Wikipedia Level 1 are covered well by
some argument corpora, topics in Wikipedia and
WEF Level 2 are covered only marginally. Note
that topic coverage varies significantly between
the corpora: the Claim Sentence Search dataset’s
topics cover 93% of the Wikipedia Level 1 topics,
while the Ideological Debates Reasons dataset cov-
ers only 14%. The colors show the topic granular-
ity of the corpus; especially the Record Debating
Dataset 3 dataset is fine-grained: as the highest
value, 36 of its topics are mapped to the Wikipedia
Level 1 category “Politics and Economics”.

Figure 3 shows how the set of the units of the
39 labeled corpora distribute over the top-matching
topics in Debatepedia, Wikipedia Level 1, and
WEF Level 1. Distributions over Level 2 are omit-
ted for brevity and can be found in Figure 4 in the
Appendix. The distribution is significantly skewed:

while the top ten topics in Debatepdia are matched
by 354,811 to 138,407 corpora units, the top ten
topics in WEF Level 1 are matched by 344,345
to 28,725 corpora units. This supports our find-
ing that the corpora cover easily accessible topics
(e.g., “Media and Entertainment” and “Society”).

6 Unit Categorization

The previous analysis assesses argument corpora
which contain topic labels. About a third of the
argument corpora do not. As a heuristic step to as-
sessing their topic coverage, we map the ontology
topics for a unit (Table 1) in an argument corpus
by treating the unit as a (long) query in a standard
information retrieval setup, where ontology topics
are the retrieval targets. The documents catego-
rized into each topic have been concatenated and
used as the topic’s representation. Though the doc-
uments associated with a topic are not necessarily
argumentative, they cover the salient topic aspects.
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Figure 3: Distribution of corpora units over the top matching topics in an ontology (39 labeled corpora).

Ontology Acquired ontologies (Section 4) Topic coverage (Section 5) Unit categorization (Section 6)

Topics Topic statistics Covered ontology topics Direct match Semantic interpretation Text2vec-SI

Authors Docs Tokens

Mapped
topic
labels All Min Mean Max P R F Policy P R F Policy P R F

WEF L1 137 334.1 940.7 490,576.6 1,339 92 1 1.53 13 0.38 0.23 0.29 k = 12 0.22 0.75 0.34 k = 7 0.19 0.53 0.28
WEF L2 822 216.8 550.3 310,229.7 395 154 1 1.56 22 0.59 0.11 0.19 k = 30 0.21 0.68 0.32 θ = 0.93 0.15 0.49 0.23
WP L1 14 78,013.7 68.0 339,088.0 1,647 14 1 1.24 3 0.12 0.04 0.06 k = 3 0.32 0.65 0.43 k = 2 0.41 0.55 0.47
WP L2 748 1,929.5 1.0 6,149.1 1,560 298 1 1.80 16 0.47 0.34 0.40 θ = 0.05 0.54 0.64 0.59 θ = 0.89 0.22 0.52 0.31
DP 89 145.0 61.7 84,787.6 2,141 88 1 2.78 10 0.49 0.37 0.42 θ = 0.02 0.52 0.61 0.56 k = 23 0.36 0.80 0.50

Table 3: Statistics for each topic ontology level: for topics and topic documents (Section 4), Count of mapped topic
labels of the analyzed corpora for each ontology level, Count of all covered ontology topics by the topic labels and
the min, max, and mean count of covered ontology topics per topic label (Section 5), and the effectiveness of the
approaches and baseline in unit categorization (in terms of precision, recall, and F1-score) (Section 6).

To retrieve topics for a corpus unit, we imple-
ment and evaluate the following approaches: Se-
mantic Interpretation (SI) and SI with Text Embed-
dings (Text2vec-SI). The Semantic interpretation
approach computes the semantic similarity of a
unit and a topic as follows: it uses the cosine sim-
ilarity of the TF-IDF vectors for the unit and the
concatenated topic’s documents. This corresponds
to the semantic interpretation step that is at the core
of the well-known ESA model (Gabrilovich and
Markovitch, 2007). Text2vec-SI calculates the sim-
ilarity of topics and corpus units using BERT em-
beddings (Devlin et al., 2018). Following common
practice, we take the dimension-wise average of
the word embeddings for all tokens in the text.8

We tried other embeddings and approaches that per-
formed similarly. The results of these approaches

8For efficiency, we limited the embeddings to 10,000 ran-
domly sampled sentences for the topics that had more sen-
tences associated with them.

can be found in the appendix. As a baseline, we
implement a direct match approach, which assigns
a unit an ontology topic if the topic’s text appears
in the unit text (ignoring case).

For evaluation, we collect 34,638 pooled query
relevance judgments (0.53 inter-annotator agree-
ment as per Krippendorff’s α) on 104 randomly
selected argument units as queries from 26 corpora.
The annotation process is detailed in the Appendix.

Based on the similarity scores of the approaches,
we derive Boolean labels that indicate whether a
unit is or is not about one of the ontologies’ topics
using two policies. The threshold policy labels
a unit as about a topic if their similarity is above
a threshold θ. The top-k policy labels a unit as
about a topic if the topic is among the top-k topics
with the highest similarity to the unit. We report the
parameter of the policy that achieved the highest F1-
score on the pooled judgments for each approach.
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Table 3 shows the results of this evaluation.
The baseline produces different results across
ontologies—it performs poorly for both the abstract
topics in Wikipedia Level 1 and the specific top-
ics in WEF Level 2. The semantic interpretation
approach clearly outperforms the baseline for all
ontologies in terms of the F1-score. The Text2vec-
SI approach outperforms the baseline and the se-
mantic interpretation on abstract topics (Wikipedia
Level 1), but its effectiveness is below that of the
semantic interpretation approach on the other on-
tology levels.

7 Conclusion

The computational argumentation community risks
topic bias in its approaches if the representativeness
of topics in future corpora is not ensured. Achiev-
ing topic coverage is complicated by the fact that
the landscape of controversial topics has not yet
been well explored, and that there are no widely ac-
cepted ontologies for argument topics. In this paper,
we venture into this future by mapping the land-
scape of argument topics and making it accessible
for corpus construction and experimental design.
We have identified three authoritative sources of
ontological knowledge related to argument topics
that provide an initial foundation for The Argu-
ment Ontology (TAO). For each source ontology,
we evaluate the topic coverage of 39 argument cor-
pora labeled with topics by matching the labels
with the topics of the ontologies. To evaluate the
topic coverage of corpora without topic labels, we
develop an approach to identify the ontology topics
of an argumentative text and achieve an F1 of 0.59.

Our analyses show that the topic coverage of ex-
isting argument corpora is both limited to a subset
of the topics of the ontologies and skewed. Most
topics that require expertise, such as mental health,
philosophy, or international security, are treated
only peripherally in argumentation corpora. There-
fore, existing argumentation technologies are more
suited to teaching people how to construct argu-
ments in general than to helping them make deci-
sions about such and similarly complex topics. For
the development of robust argumentation technolo-
gies, corpora need to be carefully drawn from a
specific domain to allow for reliable experiments
and the development of generalizable classifiers.

Future work for further development of TAO
consists mainly of further surveying the argument
topic landscape and unifying the various available

ontologies. In addition to “is part of” relationships
between topics, other relationship types can also be
considered to build an argument topic knowledge
base. However, our first version of TAO and our
analyses can already help in selecting arguments
for future corpus construction and model training.

Limitations

The three topic ontologies we used to evaluate topic
coverage of argument corpora are from authorita-
tive sources. Nevertheless, they probably do not
cover all possible controversial topics relevant to
argumentation (e.g., topics concerning private life).
A comprehensive coverage of controversial topics
in breadth and depth will likely remain an unattain-
able goal. Moreover, unifying the three thematic
ontologies into a standard ontology is still an open
problem given the many possible interpretations
and relationships between the topics.

Another limitation is the moderate effectiveness
achieved by our approaches for categorizing ar-
gument units. This is the case due to the large
collection of controversial topics (about 748 for
Wikipedia). Future research can be improved by
using the structure of the topic ontology and hier-
archical classifiers. Furthermore, it is also unclear
whether the topic dependence of argumentation
approaches decreases with increasing corpus size.

Ethics Statement

Our goal is to investigate whether and to what ex-
tent existing argumentation corpora are topic bi-
ased. This serves to critically examine the state of
the art. However, we by no means want to give the
impression that previous corpus authors lack ambi-
tion or diligence. Rather, the opposite is the case.
The number of corpora that have been created in
the last decade shows that the community is aware
of the fact that not all areas of the argumentation
landscape have been covered yet, and is therefore
doing its utmost to explore it further. In a dynamic
and rapidly growing research field, standards are
usually developed in parallel with contributions,
not in advance. Our research may therefore con-
tribute to the further standardization of the corpus
linguistics of argumentation.

The manual annotation of arguments and top-
ics was done by expert annotators of our research
groups. They were compensated fairly under Ger-
man law. No personal data was collected.
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A Appendix

A.1 Mapping Topic Labels to Level 2 Topics
For completeness, Figure 4 shows the two graphs
that are omitted from Figure 3 of the paper as their
fine-grained topics are less relevant for the discus-
sion in Section 5.3.

A.2 Annotation Procedure for Unit
Categorization

In order to assess the effectiveness of the ap-
proaches and baseline outlined in the paper, we
employ a pooled evaluation, as it is standard for in-
formation retrieval evaluations, where there are too
many instances for a complete manual annotation.
We randomly sampled four units from 26 corpora,
which were all annotated by three expert annotators.
The annotators were instructed to label a topic as
about the unit if they could imagine a discussion on
the topic for which the unit would be relevant. For
each unit, we annotated for aboutness only those
topics which are among the five topics with the
highest similarity to this unit according to at least
one of the approaches. The employed assessment
interface (see Figure 5) shows the unit (top left),
the current topic (top right), as well as all topics
in the pool for that unit (bottom; the current topic
is marked blue, whereas already annotated topics
are marked green (about) and red (not about). The
same interface has been used for the topic label
annotations.

To reduce biases, both the units and the topics
were shown in a different and random order to each
assessor. The annotation took about 40 hours. The
annotation process resulted in an inter-annotator
agreement of 0.53 in terms of Krippendorff’s α and
produced a total of 34,638 annotations of topic-unit
pairs, about 2% of what would have been needed
for a complete annotation.

A.3 Additional Unit Categorization
Approaches

In addition to the approaches listed in Section 6 we
used additional approaches and a baseline which
we list here. The additional baseline randomly clas-
sifies corpora units as per the prior topic probability
of each ontology level.

SI with Word Embeddings (W2V-SI) Adapted
from Dense-ESA (Song and Roth, 2015), this
approach represents each token by its TFIDF-
weighted Word2vec embedding vector, and uses
the highest cosine similarity between two vectors,
one from each text, as the semantic similarity. To
limit this quadratic effort, we use only the 100 to-
kens of each text with the highest TFIDF-score.

Text2vec-SI As a variant for BERT (Devlin et al.,
2018), we embedded the ontology documents and
corpora units using ELMo (Peters et al., 2018).
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(a) Debatepedia
Topic Covering units

Islam and the West 50
Islam 50
2008/2009 economic crisis 66
European Union 93
Middle East 134
Prison 180
China 254
Terrorism 521
Latin America 528
HIV/AIDS 579
Church and state 654
US legislation 845
Corruption 1,065
Welfare 1,369
Africa 1,435
Israeli-Palestinian conflict 1,541
Life and death 1,598
Languages 1,808
Privacy 2,312
Bush administration 2,702
Iraq 2,720
Weapons proliferation 2,790
Third world 3,208
Taxes 3,562
Disease 3,619
Obama administration 3,765
Conflict 4,950
Asia 5,016
Immigration 5,170
Race 6,086

(b) Wikipedia Level 2
Topic Covering units

Irredentism 2
American Civil Liberties Union 2
Hezbollah 2
Esports 3
Separation of church and state 4
Birth defect 5
Quebec 5
Rape 6
Hurricane Katrina 6
Crime in the United States 6
Sexual abuse 6
Sex offender 6
Pacifism 7
Cyberstalking 7
Brexit 9
Economy of Japan 12
USA PATRIOT Act 12
Playboy Magazine 15
Super Bowl XXXVIII 19
Sexual harassment 20
Media bias 29
Culture war 35
Hip hop culture 35
European culture 35
Anime 40
East Germany 46
Communist state 46
Communist Party of China 46
Communist government 46
Communism 46

(c) World Economic Forum Level 1
Topic Covering units

Agile Governance 1
Institutional Investors 1
Digital Identity 7
United Kingdom 9
Mexico 12
Behavioural Sciences 15
Canada 26
Corruption 31
Illicit Economy 54
Future of Economic Progress 66
Forests 74
European Union 93
Real Estate 132
Insurance and Asset Management 142
Humanitarian Action 232
3D Printing 254
China 258
Drones 260
Internet Governance 268
Cybersecurity 298
Internet of Things 320
Precision Medicine 339
Oceans 345
Latin America 516
Financial and Monetary Systems 608
Arctic 614
Banking and Capital Markets 634
Mining and Metals 656
Public Finance and Social Protection 778
Middle East and North Africa 928

(d) World Economic Forum Level 2
Topic Covering units

Healthcare Human Capital 2
Environmentally-Sustainable Consumerism 2
Sustainable Consumption 3
Aquaculture 4
Urbanization and Circular Practices 5
Accelerating Sustainability 5
Forest Landscape Restoration 5
Stabilizing Economies, Keeping Protections 10
The Social Cost of Carbon 13
The Trump Presidency 20
New Leadership 20
Canada and Sustainable Energy 21
Economic Institutions 34
Outbound and Long-Term Investment 34
Deepening Interdependence 34
Digital Trade 34
Geopolitical and Geo-economic Recalibration 34
Pricing Climate into Finance 34
Trade and Investment 34
Trade and the Environment 34
Transnational Actors 34
Economic Integration 34
Healthcare Technology 47
Geo-strategic Competition 54
Energy-Related Emission Reduction 61
Energy Finance and Investment 61
Energy Access 61
Environmental Footprint 61
Electricity Decentralization 61
Electricity System Integration 61

Table 4: For each ontology except Wikipedia Level 1 the 30 topics with the least (but at least 1) units from the
argument corpora covering them. All 14 topics of Wikipedia Level 1 are covered well and thus omitted here.
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Figure 4: Omitted graphs from Figure 3, Section 5.3

Table 5 lists the results of all approaches for all
thresholds and ranks.
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Figure 5: Assessment interface for topic labeling.

Approach World Economic Forum Wikipedia Debatepedia

Level 1 Level 2 Level 1 Level 2

Baselines P R F P R F P R F P R F P R F

Random 0.02 0.02 0.02 0.01 0.01 0.01 0.11 0.11 0.11 0.01 0.01 0.01 0.07 0.07 0.07
Direct match 0.38 0.23 0.29 0.59 0.11 0.19 0.12 0.04 0.06 0.47 0.34 0.40 0.49 0.37 0.42

By threshold θ P R F θ P R F θ P R F θ P R F θ P R F

Semantic interpretation 0.02 0.18 0.63 0.28 0.02 0.20 0.58 0.29 0.01 0.29 0.51 0.37 0.05 0.54 0.64 0.59 0.02 0.52 0.61 0.56
W2V-SI 0.20 0.14 0.63 0.23 0.16 0.13 0.63 0.21 0.10 0.12 0.55 0.20 0.11 0.18 0.69 0.29 0.07 0.29 0.81 0.43
Text2vec-SIELMo 0.87 0.18 0.32 0.23 0.80 0.13 0.65 0.22 0.74 0.23 0.45 0.31 0.76 0.25 0.45 0.32 0.87 0.47 0.46 0.47
Text2vec-SIBERT 0.94 0.19 0.39 0.25 0.93 0.15 0.49 0.23 0.92 0.36 0.22 0.27 0.89 0.22 0.52 0.31 0.92 0.36 0.64 0.46

By rank k P R F k P R F k P R F k P R F k P R F

Semantic interpretation 12 0.22 0.75 0.34 30 0.21 0.68 0.32 3 0.32 0.65 0.43 12 0.39 0.70 0.50 19 0.43 0.78 0.56
W2V-SI 83 0.13 0.94 0.24 439 0.12 0.77 0.21 14 0.11 1.00 0.20 290 0.16 0.77 0.27 61 0.27 0.86 0.42
Text2vec-SIELMo 4 0.25 0.44 0.32 42 0.13 0.68 0.23 2 0.39 0.53 0.45 46 0.18 0.64 0.28 13 0.43 0.71 0.54
Text2vec-SIBERT 7 0.19 0.53 0.28 80 0.11 0.66 0.20 2 0.41 0.55 0.47 80 0.17 0.70 0.28 23 0.36 0.80 0.50

Table 5: Performance of semantic interpretation approaches in human evaluation for each topic ontology level in
terms of precision (P), recall (R), and F1-score (F) for the “aboutness” label. For methods other than the baselines
the table shows the values for both the similarity threshold θ and rank k that lead to the highest F1-score respectively.
The best F1-scores for each ontology level are marked bold.
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Abstract

Ontonotes has served as the most important
benchmark for coreference resolution. How-
ever, for ease of annotation, long documents
in Ontonotes were split into smaller parts. In
this work, we build a corpus of coreference-
annotated documents of significantly longer
length than what is currently available. We
do so by providing an accurate, manually-
curated, merging of annotations from docu-
ments that were split into multiple parts in the
original Ontonotes annotation process (Prad-
han et al., 2013). The resulting corpus, which
we call LongtoNotes contains documents in
multiple genres of the English language with
varying lengths, the longest of which are up
to 8x the length of documents in Ontonotes,
and 2x those in Litbank. We evaluate state-
of-the-art neural coreference systems on this
new corpus, analyze the relationships between
model architectures/hyperparameters and doc-
ument length on performance and efficiency
of the models, and demonstrate areas of im-
provement in long-document coreference mod-
elling revealed by our new corpus. Our data
and code is available at: https://github.
com/kumar-shridhar/LongtoNotes.

1 Introduction

Coreference resolution is an important problem in
discourse with applications in knowledge-base con-
struction (Luan et al., 2018), question-answering
(Reddy et al., 2019) and reading assistants (Azab
et al., 2013; Head et al., 2021). In many such set-
tings, the documents of interest, are significantly
longer and/or on wider varieties of domains than
the currently available corpora with coreference
annotation (Pradhan et al., 2013; Bamman et al.,
2019; Mohan and Li, 2019; Cohen et al., 2017).

The Ontonotes corpus (Pradhan et al., 2013) is
perhaps the most widely used benchmark for coref-
erence (Lee et al., 2013a; Durrett and Klein, 2013;

∗Now at Google.
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Figure 1: Comparing Average Document Length.
Long documents in genres such as broadcast conversa-
tions (bc) were split into smaller parts in Ontonotes. Our
proposed dataset, LongtoNotes, restores documents
to their original form, revealing dramatic increases in
length in certain genres.

Sachan et al., 2015; Wiseman et al., 2016; Lee et al.,
2017; Joshi et al., 2020; Toshniwal et al., 2020b;
Thirukovalluru et al., 2021; Kirstain et al., 2021).
The construction process for Ontonotes, however,
resulted in documents with an artificially reduced
length. For ease of annotation, longer documents
were split into smaller parts and each part was an-
notated separately and treated as an independent
document (Pradhan et al., 2013). The result is a
corpus in which certain genres, such as broadcast
conversation (bc), have greatly reduced length com-
pared to their original form (Figure 1). As a result,
the long, bursty spread of coreference chains in
these documents is missing from the evaluation
benchmark.

In this work, we present an extension to
the Ontonotes corpus, called LongtoNotes.
LongtoNotes combines coreference annota-
tions in various parts of the same document, lead-
ing to a full document coreference annotation. A
carefully trained annotation team merged corefer-
ence annotation following the annotation guide-
lines laid out in the original Ontonotes corpus (§3).
The resulting LongtoNotes dataset has an aver-
age document length that is over 40% longer than

1428

https://github.com/kumar-shridhar/LongtoNotes
https://github.com/kumar-shridhar/LongtoNotes


the standard OntoNotes benchmark. Furthermore,
LongtoNotes sees a 25% increase in the average
size of coreference chains. While other datasets
such as Litbank (Bamman et al., 2019) and CRAFT
(Cohen et al., 2017) focus on long documents in
specialized domains, LongtoNotes comprises
of documents in multiple genres (Table 2).

To illustrate the usefulness of LongtoNotes,
we evaluate state-of-the-art coreference resolution
models (Kirstain et al., 2021; Toshniwal et al.,
2020b; Joshi et al., 2020) on the corpus and analyze
the performance in terms of document length (§4.2).
We illustrate how model architecture decisions and
hyperparameters that support long-range dependen-
cies have the greatest impact on coreference perfor-
mance and importantly, these differences are only
illustrated using LongtoNotes and are not seen
in Ontonotes (§4.3). LongtoNotes also presents
a challenge in scaling coreference models as pre-
diction time and memory requirement increase sub-
stantially on the long documents (§4.4).

2 Our Contribution: LongtoNotes

We present LongtoNotes, a corpus that ex-
tends the English coreference annotation in the
OntoNotes Release 5.0 corpus1 (Pradhan et al.,
2013) to provide annotations for longer documents.
In the original English OntoNotes corpus, the gen-
res such as broadcast conversations (bc) and tele-
phone conversation (tc) contain long documents
that were divided into smaller parts to facilitate
easier annotation. LongtoNotes is constructed
by collecting annotations to combine within-part
coreference chains into coreference chains over the
entire long document. The annotation procedure,
in which annotators merge coreference chains, is
described and analyzed in Section 3.

The divided parts of a long document in
Ontonotes are all assigned to the same partition
(train/dev/test). This allows LongtoNotes to
maintain the same train/dev/test partition, at the
document level, as Ontonotes (Table 1). While
the content of each partition remains the same, the
number of documents changes because the divided
parts are merged into a single annotated text in
LongtoNotes. We refer to LongtoNotess as
the subset of LongtoNotes comprising only the
merged documents (i.e. documents merged by the
annotators).

1The Arabic and Chinese parts of the Ontonotes dataset
are not considered in our study. See Appendix A.3
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Figure 2: Document and Coref Chain Length. The
number of coreference chains increases with the in-
crease in token length in LongtoNotes.

Dataset Train Dev Test

OntoNotes 2802 343 348
LongtoNotes 1959 234 222

Table 1: Comparison of the train-test-dev split of docu-
ments between OntoNotes and LongtoNotes

2.1 Length of Documents in LongtoNotes

The average number of tokens per document
(rounded to the nearest integer) in LongtoNotes
is 674, ~44% higher than in Ontonotes (466). Ta-
ble 2 shows the changes in document length by
genre. We observe that the genre with the longest
documents is broadcast conversation with 4071 to-
kens per document, which is a dramatic increase
from the length of the divided parts in Ontonotes
which had 511 tokens per document in the same
genre. The number of coreference chains and
the number of mentions per chain grows as well.
The long documents that were split into multiple
parts during the original OntoNotes annotation are
not evenly distributed among the genres of text
present in the corpus. In particular, text categories
broadcast news (bn) and newswire (nw) consist
exclusively of short non-split documents, which
were not affected by the LongtoNotes merging
process. A list of which documents are merged
in LongtoNotes is provided in Table 10 (Ap-
pendix).

2.2 Number of Coreference Chains

As a consequence of the increase in document
length, LongtoNotes presents a higher number
of coreference chains per document (16), compared
to OntoNotes (12). Figure 2 shows the length and
number of coreference chains for each document in
the two corpora. As expected, the number of chains
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Figure 3: Number of Chains per Document. A his-
togram log plot reveals the long tailed distribution of the
number of coreference chains present per document in
LongtoNotes. Ontonotes contains more documents
with fewer chains.

in a document tends to get larger as the document
size increases. For genres with longer average doc-
ument lengths like broadcast conversation (bc),
the increase in the number of chains is as high as
85%, while this increase is only 25% for pivot (pt)
genre when the document length is comparatively
shorter. It is worth noting that the majority of doc-
uments had a number of chains in the range of 20
to 50 and only about 20 documents out of 3493 in
the OntoNotes dataset had >50 chains per docu-
ment. For LongtoNotes the number increases
to 96 documents. A comparison of the number
of chains per document between OntoNotes and
LongtoNotes is shown in Figure 3.

2.3 Number of Mentions per Chain

The number of mentions per coreference chain
in LongtoNotes is over 30% larger than in
OntoNotes. This is primarily because of longer
documents and an increase in the number of coref-
erence chains per document. Mentions per chain
increase with the increase in document length. For
the broadcast conversation (bc) genre, the increase
in the mentions per chain is highest with 87%,
while for the pivot (pt) (Old Testament and New
Testament text) genre it is only 30% as it has shorter
documents.

2.4 Distances to the Antecedents

For each coreference chain, we analyzed the dis-
tance between the mentions and their antecedents.
The largest distance for a mention to its antecedent
grew 3x for LongtoNotes when compared to
OntoNotes from 4,885 to 11,473 tokens. Figure
4 shows a detailed breakdown of the mention to

antecedent distance. There are no mentions that are
more than 5K tokens distant from its antecedent
in OntoNotes. There are 178 such mentions in
LongtoNotes.
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Figure 4: Distance to Antecedent. Histogram (log-
scale) shows that the largest distance of mention to
their antecedents per chain increases in LongtoNotes
compared to OntoNotes.

2.5 Comparison with other Datasets

The literature contains multiple works proposing
datasets for coreference resolution: Wiki coref
(Ghaddar and Langlais, 2016), LitBank (Bamman
et al., 2019), PreCo (Chen et al., 2018), Quiz Bowl
Questions (Rodriguez et al., 2019; Guha et al.,
2015), ACE corpus (Walker et al., 2006), MUC
(Chinchor and Sundheim, 1995), MedMentions
(Mohan and Li, 2019), inter alia. We compare
LongtoNotes to these datasets in terms of num-
ber of documents, total number of tokens, and doc-
ument length (Table 3).

Litbank is a popular long document coreference
dataset, presenting a high tokens/document ratio.
However, the dataset consists of only 100 docu-
ments, rendering model development challenges.
Moreover, it focuses only on the literary domain.
Other datasets containing long documents (e.g.,
WikiCoref) are also very small in size. On the
other hand, datasets consisting of a larger number
of texts tend to contain shorter documents (e.g.,
PreCo). Thus, by building LongtoNotes , we
address the scarcity of a multi-genre corpus with
a collection of long documents containing long-
range coreference dependencies.

In concurrent work, Gupta et al. (2023) present
a generalised annotation platform for coreference
with simplified guidelines to users. In the future,
such a tool could be used to more easily annotate
documents of increased length.
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Categories # Docs Tokens/Doc # Chains Ment./Chains
Ont. Long. Ont. Long. Ont. Long. Ont. Long.

broadcast conversation (bc) 397 50 511 4071 14 85 65 519
broadcast news (bn) 947 947 237 237 8 8 29 29
magazine (mz) 494 78 398 2531 8 41 32 208
newswire (nw) 922 922 529 529 12 12 47 47
pivot (pt) 369 261 657 930 20 27 131 186
telephone conversation (tc) 142 48 728 2157 17 44 108 319
web data (wb) 222 109 763 1555 17 31 73 149

Overall 3493 2415 466 674 12 16 55 80

Table 2: Genre Comparison. Comparison of document and coreference chain statistics per genre in OntoNotes 5.0
and our proposed dataset, LongtoNotes.

Dataset # Docs Total Size Tokens/Doc

WikiCoref 30 60K 2000
ACE-2007 599 300K 500
MUC-6 60 30K 500
MUC-7 50 25K 500
QuizBowl 400 50K 125
PreCo 37.6K 12.4M 330
LitBank 100 200K 2105
MedMentions 4392 1.1M 267
OntoNotes 3493 1.6M 466

LongtoNotes 2415 1.6M 674
LongtoNotess 283 740K 2615

Table 3: Coreference Datasets. A comparison
of various coref datasets with our proposed dataset
LongtoNotes.

3 Annotation Procedure & Quality

In this section, we describe and assess the annota-
tion procedure used to build LongtoNotes.

3.1 Annotation Task

The annotators merge the coreference annotation
in a sequential fashion. That is, they combine anno-
tations from the second split part of an Ontonotes
document into the first part, then the third part into
the combined first two parts, and so on. Precisely,
to build LongtoNotes, annotators successively
merge chains in the current part i+ 1 of the docu-
ment with one of the chains in the previous parts
1, . . . , i. We reformulate this annotation process as
a question answering task where we ask annotators
a series of questions (rather the same coreference
determining question for different mentions) using
our own annotation tool designed for this task (Fig-
ure 5). We display parts 1, . . . , i with color-coded
mention spans. We then show a highlighted con-
cept (a coreference chain in part i+ 1) and ask the
question: The highlighted concept below refers to
which concept in the above paragraphs? The anno-

tators select one of the colour-coded chains from
parts 1, . . . , i from a list of answers or the annota-
tors can specify that the highlighted concept in part
i+1 does not refer to any concept in parts 1, . . . , i,
(i.e., a new chain emerging in part i+ 1). The list
of answers here are the merged chains formed in
the previous iterations.

The annotation tool proceeds with a question for
each coreference chain ordered (sorted by the first
token offset of the first mention in the chain). The
annotation of all parts of a document comprises an
annotation task. That is, a single annotator is tasked
with answering the multiple-choice question for
each coreference chain in each part of a document.
At the end of each part, annotators are shown a
summary page that allows them to review, modify,
and confirm the decisions made in the considered
part. A screenshot of the summary page is provided
in the Figure 9 in the Appendix.

From Annotations to Coreference Labels The
annotations collected in this way are then converted
into coreference labels for the merged parts of a
document. The answers to the questions tell us the
antecedent link between two coreference chains.
These links are used to relabel all mentions in the
two chains with the same coreference label, result-
ing in the LongtoNotes dataset.

Singletons Existing OntoNotes coreference an-
notation does not include singletons. Considering
all parts of a document together might allow men-
tions that were considered to be singletons in a spe-
cific part to be assigned to a coreference chain. To
understand the frequency of singletons in a single
part of a document that has coreferent mentions
in other parts, we manually analysed 500 men-
tions spread across 10 parts over three randomly
selected long documents. We found only 17 in-
stances (~0.03%) where singletons can be merged
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Figure 5: Annotation Tool Interface. The upper box represents all the previous paragraphs while the box on the
bottom left is the current paragraph. The mentions of the current chain to be merged are shown in yellow. On the
right side, the answers are presented which are chains from previous paragraphs and the annotator can select one of
them or choose the None of the below option which creates a new chain.

with coreference chains in different parts of the
same document. Given that such singletons would
constitute only such a small percentage of men-
tions, we decided it was appropriate to obit them
from the annotation process to reduce the complex-
ity of annotation. To merge this small number of
singleton mentions, our annotators would have had
to label over 50% more mentions per document.
We further discuss this in Appendix A.4.

3.2 Annotators and Training

We hired and trained a team of three annotators
for the aforementioned task. The annotators were
university-level English majors from India and
were closely supervised by an expert with experi-
ence in similar annotation projects. The annotation
team was paid a fair wage of approximately 15
USD per hour for the work. We had several hour-
long training sessions outlining the annotation task,
setup of the problem, and Ontonotes annotation
guidelines. We reviewed example cases of difficult
annotation decisions and collaboratively worked
through example annotations. We then ran a pilot
annotation study with a small number of documents
(approx 5% of the total documents). For these doc-
uments, we also provided annotations to ensure the
training of the annotators and eventual annotation
quality. We calculated the inter-annotators’ agree-
ment between the annotators and us. After a few
rounds of training, we were able to achieve an inter-

annotator agreement score (strict match, defined in
the next subsection) of over 95% and we decided to
go ahead with the annotation task. This confirmed
the annotators’ understanding of the task.

After the satisfactory pilot annotation study, the
tasks were assigned to the annotators in five batches
of 60 documents each. For 10% of the tasks, we
had all three annotators provide annotations. For
the remaining 90%, a single annotator was used.
For the documents with multiple annotators, we
used majority voting to settle disagreements. If all
annotators disagreed on a specific case, we selected
Annotator 1’s decision over the others (analysis in
the Appendix B).

3.3 Measuring Quality of Annotation
We would like to ensure that LongtoNotes
maintains the high-quality standards of OntoNotes.
Thus, we compute various metrics of agreement
between a pair of annotators. We consider (1) the
question-answering agreement (i.e., how similar
are the annotations made using the annotation tool),
and (2) the coreference label agreement (i.e., at the
level of the resulting coreference annotation).

Assume that annotator j receives a set of chains
C

(j)
1 , C

(j)
2 , ..., C

(j)
N . For each chain C(j)

i , the anno-
tator links it to a New chain or a chain from their
(annotator specific) set of available chains. Let us
call D(j)

i the linking decision of the jth annotator,
which consists of a pair (C(j)

i , A
(j)
i ), where A(j)

i
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is the selected antecedent chain. We consider the
following question answering metrics:
(i) Strict Decision Matching: When two annota-
tors agreed on merging two chains and there is an
exact match between the merged chains. Calcu-
lated as 1

N

∑
i I[D

(1)
i = D

(2)
i ].

(ii) Jaccard Decision Match: Jaccard decision cal-
culates the Jaccard similarity between the merged

chain: 1
N

∑
i
|A(1)
i ∩A

(2)
i |

|A(1)
i ∪A

(2)
i |

.

(iii) New Chain Agreement: Number of times
both annotators select a new chain divided by the
number of times at least one selects new chain.
(iv) Not New Chain Agreement: Number of times
two annotators agreed on not a New chain choice di-
vided by the number of times at least one annotator
labels not a New chain.
(v) Krippendorff’s alpha: Krippendorff’s alpha
(Krippendorff, 2011) is the reliability coefficient
measuring inter annotator agreement. We compute
Krippendorff’s alpha using a strict decision match
as the coding for agreement.

Table 4 presents the results for these metrics. We
observed that on average annotators agreed with
each other on over 90% of their decisions except
when the No New chains were considered. Remov-
ing New chains reduces the total decisions to be
made significantly, and hence a lower score on No
New chains agreement. We found that Annotator 1
agreed most with the experts and hence Annotator
1’s decisions were preferred over the others in case
of disagreement between all three annotators.

Where are disagreements found in annotation?
We would like to understand what kinds of men-
tions lead to the disagreement between annotators.
We measure the part of speech of all the disagreed
chain assignments between the annotators. We
found that the 8% of the mentions within the dis-
agreed chain assignments were pronouns, 8% were
verbs, and 9% were common nouns. The number
of proper nouns disagreements was lower with just
5%. When considering different genres, it was
observed that genres with longer documents like
broadcast conversation (bc) had more mentions
that were pronouns when compared with genres
with shorter documents pivot (pt). As expected, the
number of disagreements in general increased with
the size of the documents. However, we found that
the number of disagreements was small even for
long document genres such as broadcast conversa-
tion (bc). See Appendix B.

Metric Score

Strict Match 0.90
Jaccard Match 0.95
New Chain 0.88
Not New Chain 0.87
Krippendorff’s alpha 0.90

Table 4: Annotation Quality Assessment. We report
the average of each metric over all pairs of annotators.

3.4 Time Taken per Annotation

We also recorded the time taken for each annota-
tion. Time taken per annotation increases with the
increase in the document length (Appendix Fig.
10). This is expected as more chains create more
options to be chosen from and longer document
length demands more reading and attention. In
total, our annotation process took 400 hours.

3.5 Pitfalls of Automatically Merging Chains

To show the importance of our human-based an-
notation process, we investigate whether the anno-
tators’ decisions could have been replicated using
off-the-shelf automatic tools. We performed two
experiments: (i) a simple greedy rule-based string
matching system (described in the Appendix A.5)
and (ii) Stanford rule-based coreference system
to merge chains across various parts. We use the
merged chains to calculate the CoNLL F1 score
with the annotations produced by our annotators.
We found that our string-matching system achieved
a CoNLL F1 score of only 61%, while the Stanford
coreference system reached a score of only 69%.
The low scores compared to the annotators’ agree-
ment (which is over 90%) underline the complexity
of the task and the need for a human-annotations.

4 Empirical Analysis with
LongtoNotes

We hope to show that LongtoNotes can facil-
itate the empirical analysis of coreference mod-
els in ways that were not possible with the orig-
inal OntoNotes. We are interested in the fol-
lowing empirical questions using the datasets–
Ontonotes (Pradhan et al., 2013), and our proposed
LongtoNotes and LongtoNotess:

• How does the length of documents play a role
in the empirical performance of models?

1433



• Does the empirical accuracy of models
depend on different hyperparameters in
LongtoNotes and Ontonotes?

• Does LongtoNotes reveal properties about
the efficiency/scalability of models not present
in Ontonotes?

4.1 Models

Much of the recent work on coreference can be
organized into three categories: span based rep-
resentations (Lee et al., 2017; Joshi et al., 2020),
token-wise representations (Thirukovalluru et al.,
2021; Kirstain et al., 2021) and memory networks
/ incremental models (Toshniwal et al., 2020b,a).
We consider one approach from all three categories.

Span-based representation We used the Joshi
et al. (2020) implementation of the higher-order
coref resolution model (Lee et al., 2018) with Span-
BERT. Here, the documents were divided into a
non-overlapping segment length of 384 tokens. We
used SpanBERT Base as our model due to mem-
ory constraints. The number of training sentences
was set to 3. We set the maximum top antecedents,
K = 50. We used Adam (Kingma and Ba, 2014)
as our optimiser with a learning rate of 2e−4.

Token-wise representation We used the Long-
Former Large (Beltagy et al., 2020) version of
Kirstain et al. (2021) work, as this approach is
less memory demanding and it is possible to fit this
model in our memory. The max sequence length
was set to 384 or 4096. Adam was used as an
optimiser with a learning rate of 1e−5. A dropout
(Srivastava et al., 2014) probability of 0.3 was used.

Memory networks We used SpanBERT Large
with a sequence length of 512 tokens. Following
Toshniwal et al. (2020b), an endpoint-based men-
tion detector was trained first and then was used
for coreference resolution. The number of training
sentences was set to 5, 10, and 20. The number
of memory cells was selected from 20 or 40. All
experiments were performed with AutoMemory
models with learned memory type.

4.2 Length of Documents & Performance

Impact of Training Corpus We first investigate
whether or not training on the longer documents
in LongtoNotes are needed to achieve state-of-
the-art results on the dataset. We compare the
performance of models trained on Ontonotes to

# Tokens Training CoNLL F1

≤ 2K Ontonotes 78.85
LongtoNotes 78.25

> 2K Ontonotes 65.11
LongtoNotes 66.20

Table 5: Performance and Document Length for
Span-based Models. F1 score across different doc-
ument length for SpanBERT Base trained model on
OntoNotes and LongtoNotes dataset.

those trained on LongtoNotes. We find that
by training on LongtoNotes, we can achieve
higher CoNLL F1 measures on LongtoNotes
than training with Ontonotes for each model ar-
chitecture (Table 6). This suggests that the longer
dependencies formed by merging annotations in
various parts of documents in OntoNotes are diffi-
cult to model when training on short documents.

We find that to achieve accuracy with hyperpa-
rameters such as learning rate/warmup size, we
need to maintain a number of steps per epoch
consistent with Ontonotes when training with
LongtoNotes. A detailed analysis is presented
in the Appendix Section C.

Length Analysis - Number of Tokens We break
down the performance of the span-based model by
the number of tokens in each document. We com-
pare the performance of the model depending on
the training set. Figure 2 shows that the majority of
the documents in the OntoNotes dataset falls within
a token length of 2000 per document. We create
two splits of LongtoNotess, one having a token
length greater than 2000 tokens, the other having a
number of tokens smaller than 2000. Table 5 shows
that for smaller document length (less than 2000 to-
kens), the SpanBERT model trained on OntoNotes
performed better but the trend reverses for longer
documents (more than 2000 tokens), on which the
model trained on LongtoNotes outperformed
the model trained on OntoNotes by +1%.

Length Analysis - Number of Clusters Table 7
displays the change in F1 score with the increase
in the number of clusters per document. The Span-
BERT Base model trained on LongtoNotes out-
performs the same model trained on OntoNotes
(+0.6%) when the number of clusters is more than
40. Note that, 40 is selected based on the cluster
distribution shown in Table 2 with the majority
documents in LongtoNotes lying in this range.
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OntoNotes LongtoNotess LongtoNotes
Training P R F1 P R F1 P R F1

Stanford Coref (Lee et al., 2013b) - 58.6 58.8 58.6 48.5 58.2 52.7 53.6 57.3 55.2

Span-based
(Joshi et al., 2020)

OntoNotes 76.5 77.6 77.4 72.7 69.1 70.8 74.4 73.0 73.7
LongtoNotes 75.9 77.7 76.8 72.4 70.7 71.5 73.9 74.1 74.0

Token-Level
(Kirstain et al., 2021)

Ontonotes 81.2 79.5 80.4 79.6 80.0 79.8 79.7 77.2 78.5
LongtoNotes 80.0 78.2 79.1 80.3 80.3 80.3 80.2 78.0 79.1

Memory-Model
(Toshniwal et al., 2020b)

OntoNotes 73.5 79.3 76.4 63.4 73.8 68.2 67.9 76.6 72.0
LongtoNotes 73.8 79.4 76.6 66.3 74.6 70.2 69.3 77.0 72.9

Table 6: Performance Variation by Training Set. Comparison of F1 scores on various datasets using different
models. All experiments have been performed atleast 2 times and a variance of only ± 0.1 was observed.

# Chains Training SpanBERT Token Memory

≤ 40
Onto 73.60 79.80 72.80
Longto 72.86 78.80 71.94

> 40
Onto 68.44 75.60 67.72
Longto 69.09 76.42 68.60

Table 7: Performance and Number of Chains for
different models. CoNLL F1 score across differ-
ent document length for SpanBERT Base, Token-
Level and Memory-Model trained on OntoNotes and
LongtoNotes dataset.

4.3 Hyperparameters & Document Length

Each model has a set of hyperparameters that
would seemingly lead to variation in performance
with respect to document length. We consider the
performance of the models on LongtoNotes as
a function of these hyperparameters.

Span-based model hyperparameters We con-
sider two hyperparameters: the number of an-
tecedents to use, K and the max number of sen-
tences used in each training example. We found
that upon varying K: 10, 25, and 50, there was
only a small difference observed in the results
for both the models trained on OntoNotes and
LongtoNotes (increasing K led to only minor
increases). The result is summarized in Table 8. We
could not go beyondK = 50 due to our GPU mem-
ory limitations. However, going beyond 50 might
further help for longer documents. Furthermore,
we found that the number of sentences parameter
used to create training batches does not play a sig-
nificant role in performance either (Figure 8).

Token-wise model hyperparameters Reducing
the sequence length when testing from 4096 to 384
leads to a drop in F1 as seen in Figure 6. We ob-
served that longer sequence length (4096) helps

K OntoNotes LongtoNotes LongtoNotess

10 77.05 73.44 70.37
25 76.93 73.99 71.61
50 77.60 74.01 71.58

Table 8: Number of Antecedents vs. Performance
SpanBERT Base model trained on LongtoNotes
dataset with varying K value.
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Figure 6: Sequence Length vs. Performance. Long-
Former is significantly better on LongtoNotes with
4096 sequence length compared to 384. Two sequence
lengths perform similarly on Ontonotes.

more for LongtoNotess as there are longer se-
quences than for OntoNotes, which is evident in
Figure 6. Furthermore, we analyzed performance
on two genres: magazine (mz) having 6x longer
sequences in LongtoNotes than OntoNotes vs
pivot (pt) having just 1.4x longer documents. As
observed in Figure 7 (and Appendix Table 15),
when the document is long as in magazine (mz),
there is a significant increase in performance with
a longer sequence but the effect is negligible for
pivot (pt) where the size of the document is almost
the same.
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Figure 7: Sequence Length vs. Performance by Genre
Comparing the effect of sequence length on F1 for
two genres: magazine (mz), where LongtoNotes
contains 6x longer documents, and pivot (pt), where
LongtoNotes has 1.4x longer documents.

Memory model hyperparameters We consider
two hyperparameters - the memory size which de-
notes the maximum active antecedents that can
be considered and the max number of sentences
used in training. We show that doubling the size
of the memory leads to an increase of 0.8 points
of CoNLL F1 for LongtoNotes dataset. (Ap-
pendix Table 14). Figure 8 demonstrates that there
is no significant improvement in the performance
of the model with the increase in the number of
training sentences.

4.4 Model Efficiency

We compare the prediction time for the span-based
model on the longest length and average length
documents in LongtoNotes and Ontonotes in
Table 9. We observe that there is a significant jump
in running time and memory required to scale the
model to long documents on LongtoNotes; this
jump is much smaller on Ontonotes. This suggests
that our proposed dataset is better suited for assess-
ing the scaling properties of coreference methods.

5 Conclusion

In this paper, we introduced LongtoNotes, a
dataset that merges the coreference annotation of
documents that in the original OntoNotes dataset
were split into multiple independently-annotated
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Figure 8: Max Sentence Length. Increasing max sen-
tences from 3 to 20 has a small effect on the performance
of the SpanBERT large model. On the other hand, the
increase is linear with the increase in the memory size
alongside the increase in max training sentences.

Dataset Type Pred. Time Pred. Mem

Ontonotes Average 0.11 sec 1.50 GB
LongtoNotes Average 0.47 sec 6.50 GB
Ontonotes Longest 0.37 sec 5.84 GB
LongtoNotes Longest 2.35 sec 42.68 GB

Table 9: Model Efficiency of Span-based Models.
We find that LongtoNotes documents have extended
length leading to greater variation of prediction time
and prediction memory.

parts. LongtoNotes has longer documents and
coreference chains than the original OntoNotes
dataset. Using LongtoNotes, we demonstrate
that scaling current approaches to long documents
has significant challenges both in terms of achiev-
ing better performance as well as scalability. We
demonstrate the merits of using LongtoNotes as
an evaluation benchmark for coreference resolution
and encourage future work to do so.
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Limitations

Our dataset is comprised solely of English texts,
and our analysis, therefore, applies uniquely to the
English language. OntoNotes, however, consists
of the Arabic and the Chinese annotations too and
those languages were not considered in our study
due to the limited expertise of the annotators.

Since our models are not tuned for any specific
real-world application, the methods should not be
used directly in highly sensitive contexts such as
legal or health-care settings, and any work building
on our methods must undertake extensive quality-
assurance and robustness testing before using them.

Ethical Considerations

The annotation was performed with a data anno-
tation service which ensured that the annotators
were paid a fair compensation of 15 USD per hour.
The annotation process did not solicit any sensitive
information from the annotators.

Replicability We have released the model check-
points and data at: https://github.com/
kumar-shridhar/LongtoNotes.

References
Mahmoud Azab, Ahmed Salama, Kemal Oflazer, Hideki

Shima, Jun Araki, and Teruko Mitamura. 2013. An
NLP-based reading tool for aiding non-native En-
glish readers. In Proceedings of the International
Conference Recent Advances in Natural Language
Processing RANLP 2013, pages 41–48, Hissar, Bul-
garia. INCOMA Ltd. Shoumen, BULGARIA.

Amit Bagga and Breck Baldwin. 1998. Algorithms for
scoring coreference chains. In In The First Interna-
tional Conference on Language Resources and Eval-
uation Workshop on Linguistics Coreference, pages
563–566.

David Bamman, Sejal Popat, and Sheng Shen. 2019. An
annotated dataset of literary entities. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2138–2144, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Hong Chen, Zhenhua Fan, Hao Lu, Alan L Yuille,
and Shu Rong. 2018. Preco: A large-scale dataset
in preschool vocabulary for coreference resolution.
arXiv preprint arXiv:1810.09807.

Nancy A Chinchor and Beth Sundheim. 1995. Message
understanding conference (muc) tests of discourse
processing. In Proc. AAAI Spring Symposium on
Empirical Methods in Discourse Interpretation and
Generation, pages 21–26.

K Bretonnel Cohen, Arrick Lanfranchi, Miji Joo-young
Choi, Michael Bada, William A Baumgartner, Na-
talya Panteleyeva, Karin Verspoor, Martha Palmer,
and Lawrence E Hunter. 2017. Coreference annota-
tion and resolution in the colorado richly annotated
full text (craft) corpus of biomedical journal articles.
BMC bioinformatics, 18(1):1–14.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1971–1982.

Abbas Ghaddar and Phillippe Langlais. 2016. Wiki-
Coref: An English coreference-annotated corpus of
Wikipedia articles. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 136–142, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Anupam Guha, Mohit Iyyer, Danny Bouman, and Jor-
dan Boyd-Graber. 2015. Removing the training
wheels: A coreference dataset that entertains hu-
mans and challenges computers. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1108–1118,
Denver, Colorado. Association for Computational
Linguistics.

Ankita Gupta, Marzena Karpinska, Wenlong Zhao,
Kalpesh Krishna, Jack Merullo, Luke Yeh, Mohit
Iyyer, and Brendan O’Connor. 2023. ezcoref: To-
wards unifying annotation guidelines for coreference
resolution. Findings of ACL: EACL.

Andrew Head, Kyle Lo, Dongyeop Kang, Raymond
Fok, Sam Skjonsberg, Daniel S. Weld, and Marti A.
Hearst. 2021. Augmenting Scientific Papers with
Just-in-Time, Position-Sensitive Definitions of Terms
and Symbols. Association for Computing Machinery,
New York, NY, USA.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yuval Kirstain, Ori Ram, and Omer Levy. 2021. Coref-
erence resolution without span representations. In
ACL/IJCNLP.

Klaus Krippendorff. 2011. Computing krippendorff’s
alpha-reliability.

1437

https://github.com/kumar-shridhar/LongtoNotes
https://github.com/kumar-shridhar/LongtoNotes
https://aclanthology.org/R13-1006
https://aclanthology.org/R13-1006
https://aclanthology.org/R13-1006
https://doi.org/10.18653/v1/N19-1220
https://doi.org/10.18653/v1/N19-1220
https://aclanthology.org/L16-1021
https://aclanthology.org/L16-1021
https://aclanthology.org/L16-1021
https://doi.org/10.3115/v1/N15-1117
https://doi.org/10.3115/v1/N15-1117
https://doi.org/10.3115/v1/N15-1117
https://doi.org/10.1145/3411764.3445648
https://doi.org/10.1145/3411764.3445648
https://doi.org/10.1145/3411764.3445648


Heeyoung Lee, Angel Chang, Yves Peirsman,
Nathanael Chambers, Mihai Surdeanu, and Dan Ju-
rafsky. 2013a. Deterministic coreference resolution
based on entity-centric, precision-ranked rules. Com-
putational linguistics, 39(4):885–916.

Heeyoung Lee, Angel Chang, Yves Peirsman,
Nathanael Chambers, Mihai Surdeanu, and Dan Ju-
rafsky. 2013b. Deterministic coreference resolution
based on entity-centric, precision-ranked rules. Com-
putational Linguistics, 39(4):885–916.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. arXiv preprint arXiv:1804.05392.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing.

Xiaoqiang Luo. 2005. On coreference resolution perfor-
mance metrics. HLT ’05, page 25–32, USA. Associ-
ation for Computational Linguistics.

Sunil Mohan and Donghui Li. 2019. Medmentions: a
large biomedical corpus annotated with umls con-
cepts. arXiv preprint arXiv:1902.09476.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning, pages 143–152, Sofia,
Bulgaria. Association for Computational Linguistics.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Pedro Rodriguez, Shi Feng, Mohit Iyyer, He He, and
Jordan Boyd-Graber. 2019. Quizbowl: The case
for incremental question answering. arXiv preprint
arXiv:1904.04792.

Mrinmaya Sachan, Eduard Hovy, and Eric P Xing. 2015.
An active learning approach to coreference resolution.
In Twenty-Fourth International Joint Conference on
Artificial Intelligence.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Raghuveer Thirukovalluru, Nicholas Monath, Kumar
Shridhar, Manzil Zaheer, Mrinmaya Sachan, and An-
drew McCallum. 2021. Scaling within document
coreference to long texts. In Findings of the Associa-
tion for Computational Linguistics: ACL-IJCNLP
2021, pages 3921–3931, Online. Association for
Computational Linguistics.

Shubham Toshniwal, Allyson Ettinger, Kevin Gimpel,
and Karen Livescu. 2020a. Petra: A sparsely su-
pervised memory model for people tracking. arXiv
preprint arXiv:2005.02990.

Shubham Toshniwal, Sam Wiseman, Allyson Ettinger,
Karen Livescu, and Kevin Gimpel. 2020b. Learn-
ing to Ignore: Long Document Coreference with
Bounded Memory Neural Networks. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8519–8526, Online. Association for Computational
Linguistics.

Marc Vilain, John Burger, John Aberdeen, Dennis
Connolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th Conference on Message Understand-
ing, MUC6 ’95, page 45–52, USA. Association for
Computational Linguistics.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57:45.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coref-
erence resolution. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 994–1004, San Diego,
California. Association for Computational Linguis-
tics.

1438

https://doi.org/10.1162/COLI_a_00152
https://doi.org/10.1162/COLI_a_00152
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.3115/1220575.1220579
https://doi.org/10.3115/1220575.1220579
https://aclanthology.org/W13-3516
https://aclanthology.org/W13-3516
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.18653/v1/2021.findings-acl.343
https://doi.org/10.18653/v1/2021.findings-acl.343
https://doi.org/10.18653/v1/2020.emnlp-main.685
https://doi.org/10.18653/v1/2020.emnlp-main.685
https://doi.org/10.18653/v1/2020.emnlp-main.685
https://doi.org/10.3115/1072399.1072405
https://doi.org/10.3115/1072399.1072405
https://doi.org/10.18653/v1/N16-1114
https://doi.org/10.18653/v1/N16-1114


Appendix

A Dataset and Annotation Details

A.1 Annotation tool
Fig. 9 shows our tool’s summary page.

A.2 Comparison with OntoNotes
A detailed genre-wise comparison of the docu-
ments from OntoNotes dataset which were merged
in LongtoNotes is presented in Table 10. It can
be seen that categories like bn and nw are com-
pletely missing in LongtoNotes , while pt is
partially missing.

Documents in Corpus comparison
Category Onto Longto
bc/cctv ✓ ✓
bc/cnn ✓ ✓
bc/msnbc ✓ ✓
bc/phoenix ✓ ✓
bn/abc ✓ ✗

bn/cnn ✓ ✗

bn/mnb ✓ ✗

bn/nbc ✓ ✗

bn/pri ✓ ✗

bn/voa ✓ ✗

mz/sinorama ✓ ✓
nw/wsj ✓ ✗

nw/xinhua ✓ ✗

pt/nt ✓ ✓
pt/ot ✓ ✗

tc/ch ✓ ✓
wb/a2e ✓ ✓
wb/c2e ✓ ✓
wb/eng ✓ ✓

Table 10: Comparison of documents from various
sub-categories that exists in OntoNotes 5.0 and our
proposed dataset LongtoNotes

A.3 Dataset selection decision
Due to budget constraints and the expertise of our
team and annotators in English only (and some
training of annotators is required to ensure data
quality), we only considered the English parts of
the OntoNotes dataset in our work. We think that
the dataset can be extended to Arabic and Chinese
too, but we leave it for future work.

A.4 Annotating singletons
While manually annotating all singletons, we ob-
served that almost all NPs can be thought of as

mentions and all those NPs that are not part of any
chain can be thought of as a singleton. Our analy-
sis suggests that there are over 50% mentions that
are not annotated by OntoNotes and can qualify
for singletons. To annotate all the singletons, the
annotator needs to go through all of them, discard
the ones that do not abide by the OntoNotes rules
and then make a decision whether to merge each
singleton to some chain or other singleton. In our
analysis, the number of such singletons is very low
and all the efforts were not worth it for the small
improvement over the current annotations. So we
decide to ignore all the singletons in our study.

A.5 Greedy rule-based matching system

We use a greedy string matching system where we
take all the mentions in a chain of the current para
i+ 1 and analyse its part of speech provided in the
OntoNotes dataset. We take the first Noun (NN or
NP) present in each chain and look for the mentions
overlap in all other previous paras 1, . . . , i chains.
We merged two chains if there is a strict overlap
with any of the mentions in a given chain. If there
are no strict overlaps, we move to the next noun in
the given chain and repeat the process. If we find
no strict overlap with any mentions in any other
para chains, we keep the chain independent (same
as assigning None of the below in our annotation
tool). We repeat the process with all chains in a
given document and constantly update the chain
after every para.

B Annotation Disagreement Analysis

B.1 Genre wise disagreement analysis

Table 11 presents the genre-wise disagreement anal-
ysis for strict decision matching. Genres with
longer documents like bc, mz have more dis-
agreements compared to genres with smaller docu-
ment lengths like tc, pt.

The trend is very similar for new chain assign-
ments where genres with larger documents have
more disagreements over new chain assignments.
The numbers are presented in Table 13.

B.2 Annotators disagreements analysis

Figure 11 shows the cases (in black) when the an-
notators disagreed for each part of the speech cate-
gories (shown in big coloured bubbles). The size of
the bubbles is representative of their occurrence in
the dataset, suggesting there are more pronominal
mentions in the dataset than nouns or proper nouns.
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Figure 9: The summary page of our annotation tool that is shown after all the chains decisions in a paragraph is
made. The annotators can look and verify all the decisions and confirm answers and proceed to the next para or can
change their answers if they want.
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Figure 10: Annotation Time and Document Length.
Annotation time (cumulative) increases exponentially
with the increase in the number of decisions to choose
from. A comparison is shown between the longest docu-
ment in LongtoNotes vs an average document. The
dotted lines represent the increase in annotation time if
the growth was linear.

B.2.1 Genre wise disagreement analysis
In general, annotators disagree more on pronouns
than proper nouns and the trend is consistent for
various genres as shown in Table 12.

C Results

C.1 MUC, B3 and CEAFE scores

Tables 16, 17 and 18 present the MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998) and

Figure 11: Plot showing the part of speech distribution
for the disagreed clusters between annotators.

CEAFE (Luo, 2005) scores for SpanBERT Base
(Lee et al., 2017) and LongDocCoref Models (Tosh-
niwal et al., 2020b). On all three metrics, both mod-
els trained on LongtoNotes dataset outperforms
the models trained on OntoNotes dataset. For Span-
BERT base model, we compare three version of the
LongtoNotes dataset: LongtoNotess and
LongtoNotes dataset as mentioned in the pa-
per and LongtoNoteseq where LongtoNotes
dataset is reweighted to create the total number of
documents equal to the number of documents in
OntoNotes dataset. For LongDocCoref model, n
represents the maximum number of training sen-
tences, while m refers to the memory used.

C.2 Genre wise F1 scores vs sequence length

Table 15 shows that LongFormer Large model with
larger sequence length (4096) outperforms the one
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bc
Ann1 Ann2 Ann3

Ann1 1.0 0.91 0.87
Ann2 0.91 1.0 0.88
Ann3 0.87 0.88 1.0

mz
Ann1 Ann2 Ann3

Ann1 1.0 0.91 0.94
Ann2 0.91 1.0 0.93
Ann3 0.94 0.93 1.0

pt
Ann1 Ann2 Ann3

Ann1 1.0 0.97 0.98
Ann2 0.97 1.0 0.96
Ann3 0.98 0.96 1.0

tc
Ann1 Ann2 Ann3

Ann1 1.0 0.99 0.98
Ann2 0.99 1.0 0.98
Ann3 0.98 0.98 1.0

wb
Ann1 Ann2 Ann3

Ann1 1.0 0.93 0.90
Ann2 0.93 1.0 0.92
Ann3 0.90 0.92 1.0

Table 11: Genre wise strict decision based disagreement
analysis between the annotators.

PoS type bc pt
Pronouns 3.6 0.04
Nouns 3.2 0.05
Proper Nouns 1.9 0.03
Verbs 3.5 1.0

Table 12: Genre wise part of speech comparison for two
genres: bc and pt. The numbers are normalized and
presented in percentage.

with shorter sequence length (384) for all models.
The difference is higher when the documents are
longer (as seen in mz genre) than when the docu-
ments are shorter (as seen in pt).

bc
Ann1 Ann2 Ann3

Ann1 1.0 0.91 0.85
Ann2 0.91 1.0 0.86
Ann3 0.85 0.86 1.0

mz
Ann1 Ann2 Ann3

Ann1 1.0 0.89 0.91
Ann2 0.89 1.0 0.90
Ann3 0.91 0.90 1.0

pt
Ann1 Ann2 Ann3

Ann1 1.0 0.94 0.95
Ann2 0.94 1.0 0.91
Ann3 0.95 0.91 1.0

tc
Ann1 Ann2 Ann3

Ann1 1.0 0.98 0.98
Ann2 0.98 1.0 0.98
Ann3 0.98 0.98 1.0

wb
Ann1 Ann2 Ann3

Ann1 1.0 0.92 0.90
Ann2 0.92 1.0 0.91
Ann3 0.90 0.91 1.0

Table 13: Genre wise disagreement analysis between
the annotators for new chain assignment.

Memory Size
Dataset 20 40

OntoNotes 76.6 77.0
LongtoNotes 72.9 73.7
LongtoNotess 70.2 70.7

Table 14: Memory Size vs. Performance. We compare
two settings of the memory size parameter in memory
model (Toshniwal et al., 2020b) and find that the larger
memory version achieves better results on each dataset.
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OntoNotes LongtoNotess LongtoNotes
Mention Coref Mention Coref Mention Coref

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

LongFormer Large (mz)
+ OntoNotes (384) 88.0 87.9 88.0 82.4 82.4 82.4 84.3 86.1 85.2 73.8 75.0 74.2 84.3 86.1 85.2 73.8 75.0 74.2
+ OntoNotes (4096) 87.9 88.3 88.1 82.4 82.9 82.6 84.4 86.7 85.5 74.1 75.9 74.9 84.4 86.7 85.5 74.1 75.9 74.9
+ LongtoNotes (384) 87.0 88.4 87.7 81.4 83.0 82.2 84.4 86.9 85.6 72.4 73.6 72.9 84.4 86.9 85.6 72.4 73.6 72.9
+ LongtoNotes (4096) 86.9 87.8 87.4 80.9 82.0 81.5 85.0 86.7 85.8 74.1 74.8 74.4 85.0 86.7 85.8 74.1 74.8 74.4

LongFormer Large (pt)
+ OntoNotes (384) 95.5 94.4 95.0 88.6 87.4 88.0 94.3 95.3 94.8 84.6 86.9 85.7 94.9 94.4 94.7 85.5 85.8 85.6
+ OntoNotes (4096) 95.6 94.2 94.9 88.9 86.9 87.9 94.4 94.8 94.6 84.8 86.8 85.8 94.9 94.0 94.5 85.5 85.2 85.5
+ LongtoNotes (384) 95.1 94.3 94.7 89.2 88.3 88.8 94.2 95.1 94.6 86.0 88.0 87.0 94.6 94.2 94.4 86.5 86.7 86.6
+ LongtoNotes (4096) 95.3 94.2 94.8 89.7 88.2 89.0 94.5 94.5 94.5 86.4 87.4 86.9 94.8 93.7 94.3 87.0 86.4 86.7

Table 15: Comparison of F1 scores for mz and pt genres.

OntoNotes LongtoNotess LongtoNotes
Mention Coref Mention Coref Mention Coref

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

SpanBERT Base (Lee et al., 2017)
+ OntoNotes 86.6 87.5 87.0 83.1 83.6 83.4 88.4 85.0 86.7 84.2 80.8 82.4 86.7 85.4 86.1 83.0 81.3 82.1
+ LongtoNotess 73.3 91.0 81.2 70.0 85.7 77.1 78.3 90.5 84.0 73.8 85.5 79.2 73.2 90.4 80.9 69.4 85.1 76.5
+ LongtoNotes 86.6 87.1 86.8 83.0 82.9 86.8 88.1 84.6 86.3 83.3 80.1 81.7 86.6 85.5 86.0 82.4 81.0 81.7
+ LongtoNoteseq 86.1 87.8 87.0 82.8 83.5 83.2 87.7 86.2 87.0 83.4 81.9 82.6 86.1 86.3 86.2 82.3 81.9 82.1

LongDocCoref (Toshniwal et al., 2020b)
+ OntoNotes 95.3 85.6 86.4 81.2 85.4 83.2 95.3 85.6 86.4 77.8 86.2 81.8 95.3 85.6 86.4 78.2 85.2 81.6
+ LongtoNotess 95.3 85.6 86.4 22.3 66.9 33.5 95.3 85.6 86.4 17.5 65.7 27.6 95.3 85.6 86.4 21.7 66.9 32.8
+ LongtoNotes 95.3 85.6 86.4 81.4 85.0 83.2 95.3 85.6 86.4 79.3 85.8 82.4 95.3 85.6 86.4 79.1 85.0 81.9
+ LongtoNoteseq (n=3) 95.3 85.6 86.4 81.6 85.2 83.4 95.3 85.6 86.4 79.7 86.2 82.8 95.3 85.6 86.4 79.3 85.2 82.2
+ LongtoNoteseq (n=5) 95.3 85.6 86.4 81.4 85.3 83.3 95.3 85.6 86.4 79.7 86.2 82.8 95.3 85.6 86.4 79.2 85.3 82.1
+ LongtoNoteseq (n=10) 95.3 85.6 86.4 81.5 85.1 83.3 95.3 85.6 86.4 79.7 86.2 82.8 95.3 85.6 86.4 79.6 84.8 82.1
+ LongtoNoteseq (n=10, m=40) 95.3 85.6 86.4 81.6 85.6 83.6 95.3 85.6 86.4 79.8 85.9 82.7 95.3 85.6 86.4 79.5 85.2 82.3

Table 16: Comparison of MUC scores

OntoNotes LongtoNotess LongtoNotes
Mention Coref Mention Coref Mention Coref

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

SpanBERT Base (Lee et al., 2017)
+ OntoNotes 86.6 87.5 87.0 75.0 75.5 75.3 88.4 85.0 86.7 70.7 65.1 67.8 86.7 85.4 86.1 72.3 69.5 70.9
+ LongtoNotess 73.3 91.0 81.2 57.0 76.8 65.4 78.3 90.5 84 54.8 69.7 61.3 73.2 90.4 80.9 53.3 72.8 61.5
+ LongtoNotes 86.6 87.1 86.8 74.6 74.0 74.3 88.1 84.6 86.3 67.5 62.7 65.0 86.6 85.5 86.0 70.6 68.2 69.4
+ LongtoNoteseq 86.1 87.8 87.0 74.9 75.2 75.0 87.7 86.2 87.0 69.7 67.0 68.3 86.1 86.3 86.2 71.7 70.6 71.2

LongDocCoref (Toshniwal et al., 2020b)
+ OntoNotes 95.3 85.6 86.4 72.2 77.9 74.9 95.3 85.6 86.4 57.9 71.7 64.0 95.3 85.6 86.4 63.9 74.7 68.9
+ LongtoNotess 95.3 85.6 86.4 18.3 61.7 28.2 95.3 85.6 86.4 10.7 53.6 17.9 95.3 85.6 86.4 16.1 58.7 25.2
+ LongtoNotes 95.3 85.6 86.4 73.3 76.7 75.0 95.3 85.6 86.4 61.0 70.1 65.2 95.3 85.6 86.4 65.5 73.7 69.4
+LongtoNoteseq (n=3) 95.3 85.6 86.4 73.7 76.9 75.2 95.3 85.6 86.4 64.4 70.4 67.3 95.3 85.6 86.4 67.5 73.7 70.5
+ LongtoNoteseq (n=5) 95.3 85.6 86.4 73.4 77.3 75.3 95.3 85.6 86.4 64.5 70.9 67.6 95.3 85.6 86.4 67.5 74.2 70.7
+ LongtoNoteseq (n=10) 95.3 85.6 86.4 73.6 77.0 75.3 95.3 85.6 86.4 64.5 70.9 67.6 95.3 85.6 86.4 68.3 73.5 70.8
+ LongtoNoteseq (n=10, m=40) 95.3 85.6 86.4 73.5 78.1 75.7 95.3 85.6 86.4 65.0 70.5 67.6 95.3 85.6 86.4 67.9 74.4 71.0

Table 17: Comparison of BCUB scores

OntoNotes LongtoNotess LongtoNotes
Mention Coref Mention Coref Mention Coref

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

SpanBERT Base (Lee et al., 2017)
+ OntoNotes 86.6 87.5 87.0 71.5 73.7 72.1 88.4 85.0 86.7 63.3 61.6 62.4 86.7 85.4 86.1 68.1 68.4 68.2
+ LongtoNotess 73.3 91.0 81.2 53.2 69.5 60.3 78.3 90.5 84.0 51.5 59.2 55.1 73.2 90.4 80.9 50.4 64.2 56.5
+ LongtoNotes 86.6 87.1 86.8 70.8 73.1 71.9 88.1 84.6 86.3 63.4 60.5 61.9 86.6 85.5 86.0 67.7 68.2 67.9
+LongtoNoteseq 86.1 87.8 87.0 70.2 74.2 72.1 87.7 86.2 87.0 64.0 63.1 63.5 86.1 86.3 86.2 67.5 69.6 68.5

LongDocCoref (Toshniwal et al., 2020b)
+ OntoNotes 95.3 85.6 86.4 67.0 74.5 70.5 95.3 85.6 86.4 54.5 63.4 58.6 95.3 85.6 86.4 61.6 69.8 65.4
+ LongtoNotess 95.3 85.6 86.4 25.7 60.0 35.9 95.3 85.6 86.4 16.8 47.8 24.8 95.3 85.6 86.4 23.5 57.2 33.3
+ LongtoNotes 95.3 85.6 86.4 65.8 75.3 70.2 95.3 85.6 86.4 53.7 65.9 59.2 95.3 85.6 86.4 60.5 71.7 65.6
+ LongtoNoteseq (n=3) 95.3 85.6 86.4 66.1 76.2 70.8 95.3 85.6 86.4 54.9 67.4 60.5 95.3 85.6 86.4 61.2 72.2 66.2
+ LongtoNoteseq (n=5) 95.3 85.6 86.4 66.7 76.0 71.1 95.3 85.6 86.4 56.0 66.6 60.9 95.3 85.6 86.4 61.9 71.8 66.5
+LongtoNoteseq (n=10) 95.3 85.6 86.4 66.2 75.9 70.7 95.3 85.6 86.4 56.0 66.6 60.9 95.3 85.6 86.4 61.7 72.2 66.6
+ LongtoNoteseq (n=10, m=40) 95.3 85.6 86.4 68.0 75.9 71.7 95.3 85.6 86.4 56.1 68.9 61.9 95.3 85.6 86.4 62.9 72.9 67.5

Table 18: Comparison of CEAFE scores
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Abstract
The schema-guided paradigm overcomes scala-
bility issues inherent in building task-oriented
dialogue (TOD) agents with static ontologies.
Instead of operating on dialogue context alone,
agents have access to hierarchical schemas con-
taining task-relevant natural language descrip-
tions. Fine-tuned language models excel at
schema-guided dialogue state tracking (DST)
but are sensitive to the writing style of the
schemas. We explore methods for improving
the robustness of DST models. We propose a
framework1 for generating synthetic schemas
which uses tree-based ranking to jointly opti-
mise lexical diversity and semantic faithfulness.
The generalisation of strong baselines is im-
proved when augmenting their training data
with prompts generated by our framework, as
demonstrated by marked improvements in av-
erage joint goal accuracy (JGA) and schema
sensitivity (SS) on the SGD-X benchmark.

1 Introduction

DST is concerned with tracking user goals in task-
oriented conversations. The goals are represented
as key-value pair sequences, with the keys known
as slots (e.g. hotel name). Pre-trained language
models (PLMs) (Devlin et al., 2019; Raffel et al.,
2020) have helped shift focus from systems that can
only track slots drawn from a database or domain
ontology (Henderson et al., 2014) to models that
do not require re-training to parse goals in new
domains. The Schema-Guided Dialogue (SGD)
dataset (Rastogi et al., 2020) facilitates this shift
with a large-scale set of conversations grounded
in 45 service APIs or schemas that describe the
domains, slots and user intents that annotate the
conversations (Appendix A). Test set dialogues are
grounded in 6 schemas seen during training and 15
unseen ones.

Neural models perform impressively on the diffi-
cult schema-guided DST task (Rastogi et al., 2020),

1Code will be released here: https://bit.ly/3WYB7Fl

but Lee et al. (2022) show that the uniformity of
the descriptive language of the schemas facilitates
this. They create the SGD-X benchmark to evalu-
ate robust zero-shot generalisation of DST models.
This is achieved by grounding the SGD test set
conversations in five schema variants increasingly
dissimilar to the SGD schemata2. To perform well,
a DST model should correctly track the state of
a dialogue when conditioned, in turn, on prompts
constructed from the five variants.

We show how to improve DST robustness by
introducing controlled variability in the data. We
contribute to robust DST research by (1) a flexi-
ble framework for generating and ranking diverse
outputs of a paraphrase model based on a tree-
clustering algorithm designed to control lexical di-
versity and semantic similarity; (2) combine state-
of-the-art paraphrase models and language gen-
eration metrics to generate increasingly diverse
schemata paraphrases; (3) show that augmenting
the training dataset with these schemata improves
the robustness and generalisation performance of
strong DST baselines.

2 Related Work

Input variety, data scarcity and domain shifts affect
the robustness of DST models. Liu et al. (2021) in-
vestigate the former. They employ word-level data
augmentation (DA) (Wei and Zou, 2019), turn para-
phrasing and speech disfluency modeling to approx-
imate their field performance. Turn and dialogue
generation are effective in low-resource settings
(Campagna et al., 2020; Hou et al., 2018) but are
very difficult to scale to new domains and are not
effective in the high-resource setting we consider
(Campagna et al., 2020; Mohapatra et al., 2021).
This also applies to word- and sentence-level meth-

2Variants are ordered according to their lexical similarity to
the SGD schemas. The v1 variant is the most similar whereas
v5 is the most dissimilar. See Appendix A for details and
examples and the schemata here: https://bit.ly/3Ev0KrV.
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ods (Quan and Xiong, 2019; Louvan and Magnini,
2020). Lee et al. (2022) find word-order changes
and deletions to be ineffective in the high-resource,
schema-guided setting we consider.

Schema-guided DST tackles both data scarcity
and novel domains by using API definitions to
prompt PLMs (Zhao et al., 2022). Yet Lee
et al. (2022) demonstrate the lack of robustness
of schema-guided DST models to prompt styles
and vocabulary, creating a new research direc-
tion. They show that augmenting the training data
with synthetic prompts obtained via backtransla-
tion significantly improves models’ ability to track
states under meaning-preserving prompt transfor-
mations. Backtranslation is also applied to im-
prove DST robustness to linguistic variation inher-
ent in user communication (Ma et al., 2019; Einol-
ghozati et al., 2019), which is orthogonal to the
prompt style and vocabulary robustness setting we
consider. Reinforcement learning has also been
applied (Yin et al., 2020), but works only in the
very constrained single-domain, ontology-driven
setting. Other TOD-relevant DA approaches apply
to policy learning (Gritta et al., 2021) and response-
generation (Gao et al., 2020; Zhang et al., 2020b).

Addressing the dearth of augmentation methods
designed to ensure prompt robustness of schema-
guided DST models, we propose to generate
schemas by ranking large paraphrase candidate lists
with learned metrics in a tree ranking scheme.

3 Tree-Based Paraphrase Ranking

Tree construction A large pool of schema candi-
dates is created by generating paraphrases given
grids of generation parameters (eg temperature,
number of beams). The set is filtered to ad-
dress generation failures (eg toxic and hallucinated
words). We optionally filter candidates with an en-
tailment model to increase semantic faithfulness
(Narayan et al., 2022) (see Appendix B.1).

The tree constructor (Algorithm 1) takes as input
an object (Node) that stores a metric value, val,
and the candidate paraphrases which are split at
that node, sents. A list of metrics to be com-
puted between each candidate and the input is pro-
vided by the user. This enables our framework to
build arbitrary-depth trees with custom user met-
rics. Each unique list of metric values describing
the distance between the input and a candidate gen-
erates a path in the tree (lines 5-13). The n-ary tree
constructed in this way has the property that level-

order traversal of the first level can yield diverse
candidates with respect to the metric it encodes. In
practice, the metrics measure lexical and semantic
distances between their inputs.

Algorithm 1: Tree building

1: def build_tree(root: Node, inp: str,
cands: list[str], metrics: list[Callable]):

Data: root, inp input , cands input
paraphrases, metrics objects to
eval. dist. between input & cand.

Result: tree splitting cands according
to metrics

2: curr← root ;
3: for c in cands:
4: curr← root ;
5: for m in metrics:
6: m_val = m(inp, c) ;
7: next← get_child

(curr.children, m_val) ;
8: if next is NULL:
9: next← Node (val=m_val,

sents=[c]) ;
10: curr.children.add(next)

11: else:
12: next.sents.add(c) ;
13: curr← next

14: return root

Ranking Our ranker input is the tree and a list
of decision functions, with elements corresponding
to each level in the tree, f_dec. Without loss of
generality, we assume that the first level encodes
a metric with respect to which the user wishes to
maximise diversity (eg lexical distance). As shown
in Figure 1, our algorithm traverses breadth-first the
level for which diversity is to be maximised. Each
subtree returned in the traversal is traversed depth-
first, guided by the decision functions. For example,
in Figure 1 we show that the node B = 0.77 is
selected by applying the max decision function to
the children of J = 66, and that applying min to
the children of B = 0.77 selects the leaf S = 77.
See Algorithm 3 (Appendix B) for details.

4 Experiments

4.1 Schema generation

Our paraphrase model is PegasusParaphrase3, a
fine-tuned Pegasus model (Zhang et al., 2020a).

3Available at https://bit.ly/3vgY7EZ.
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ROOT

J=66

E=0.99

S=77

Fare is per ticket
for the ride.

S=57

It is cost per
ticket for the trip

J=50

E=0.86

S=60

E=0.99 E=0.88

S=44 S=51

It is per ticket for
the travel

amongst points

For a journey, the
value will be per

ticket.

Fare per ticket is the
formula for calculating

the fare

Step 2: BF right-left
traversal

Step 3: DF travesal using

Step 4: DF traversal
using 

J=0 

S=44 S=51

Step 1: select syntax parapharase
1

23

E=0.99

Fare for journey
ticket.

The fare for the
journey is per

ticket.

Figure 1: Ranking paraphrases of Fare per ticket for journey using a tree. Top level node split is by Jaccard
distance (J), middle nodes split by entailment score (E) and leave nodes store string similarities (S). Here
fdec = [None,max,min]. By using J we guarantee that candidates with J = 0 are syntactic paraphrases if S is
constrained. Orange leaves show top ranked candidates. Numbers on paths show ranking order.

Using 10 settings for the number of beams and
temperature, we generate 500 candidates for each
input. For efficiency purposes, these are filtered
heuristically (Appendix B). We construct a depth
d = 3 tree which splits the candidates by Jaccard
distance J , entailment E, and string similarity S.
That is, the input to our tree constructor (Algorithm
2) is metrics = [J,E, S]. Here entailment is com-
puted using BART (Lewis et al., 2020) as described
in Appendix B. We prune nodes with J > 0.75 to
limit hallucination.

We select k = 5 lexically-diverse paraphrases
that maximise entailment given the constraint that
the returned candidates should be lexically diverse.
First, we select a syntactic paraphrase by travers-
ing the subtree rooted at J = 0 and minimising
S. The remainder of the candidates are selected
by constraining the bread-first traversal of the first
level, which encodes lexical distance, to return the
nodes sorted from high to low. This procedure is
depicted schematically in Figure 1. We sort the
ranked candidate lists for each description accord-
ing to the Jaccard distance between them and the
SGD descriptions. Hence we obtain k = 5 syn-
thetic schema variants, with v1 being the most sim-
ilar to the SGD schema and v5 the most dissimilar.
We refer to this scheme as Pegasus + BART.

4.2 State tracking data augmentation

4.2.1 Baseline models
D3ST The Description-Driven Dialogue Modelling
(D3ST) model (Zhao et al., 2022) is a state-of-the-
art DST model that performs intent tracking, re-
quested slots prediction, and state tracking in a

single pass. See Appendix C for a visual represen-
tation of inputs and targets. We process the data and
train the model as described in Zhao et al. (2022)
and Appendix C, selecting models that maximise
the development set JGA.

T5DST We follow Lee et al. (2022) to imple-
ment a simplified T5DST (Lee et al., 2021a). It
predicts the value of each slot iteratively, requiring
a number of decoding passes equal to the number
of slots in an API to predict the dialogue state given
a dialogue history. Training and inference with this
model is very expensive and we train the models
with a fixed computational budget of 20, 000 gradi-
ent steps4 for the baseline and 40, 000 steps for all
augmented data experiments. See Appendix C for
prompt structure and implementation details.

4.2.2 Evaluation
On SGD, the JGA (JGAorig) is computed for the
4, 201 test set dialogues. 77% of these have a turn
span where the agent calls an API unseen in train-
ing. Only 6 out of 21 schemata are seen in training.

Evaluation on SGD-X proceeds as follows. First,
the SGD descriptions in the prompt are replaced, in
turn, with descriptions taken from the five SGD-X
variants. The DST model then predicts the state of
a given dialogue 5 times, conditioned on prompts
that are increasingly dissimilar to the SGD test set.
Hence, the JGAv1−5 figures reported are averages
over approximately 21, 000 conversations. For all
experiments except oracle (see Section 4.2.3), none
of the test time prompts are seen during training:

4This is the number of steps required for maximising the
development set JGA, for all three runs.
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the seen superscript in the metric names reported in
Section 5 identifies conversations where the SGD
test set prompt is seen during training. Therefore, it
quantifies whether the model can robustly identify
slots seen in training by interpreting the meaning
of the descriptions rather than relying on linguistic
patters in the training schema. Meanwhile unseen
measures the ability of the model to generalise
to new APIs, which may describe new slots and
domains, notwithstanding the language used by
developers to phrase the descriptions. The JGA co-
efficient of variation (ie schema sensitivity, SSJGA)
as the prompt changes measures the sensitivity of
a model to the prompt (Lee et al., 2021b).

Metric Ranking v1 v2 v3 v4 v5

Jaccard Dist

Pegasus + BART 17.1 63.0 69.5 72.0 76.6
Backtranslation 18.2 29.9 43.9 - -

EDA 3.9 4.1 6.1 16.0 32.9
SGD-X 55.6 65.6 71.2 78.1 85.7

Entailment

Pegasus + BART 99.0 96.7 94.9 94.6 94.4
Backtranslation 97.5 96.5 95.9 - -

EDA 99.1 98.5 96.6 93.2 86.4
SGD-X 89.7 88.0 88.4 86.8 87.5

BLEU

Pegasus + BART 13.4 12.5 12.5 13.2 12.7
Backtranslation 36.4 26.0 18.9 - -

EDA 72.0 63.3 47.2 42.3 44.2
SGD-X 20.4 15.3 10.8 8.3 5.2

self-BLEU

Pegasus + BART - 12.0 11.4 11.0 10.9
Backtranslation - 49.3 41.7 - -

EDA - 87.0 68.8 58.0 53.1
SGD-X - 13.5 11.2 9.9 8.6

Table 1: Automatic synthetic schema evaluation. J is
multiplied by 100 for readability.

4.2.3 Experimental setup
We show our approach is effective by augmenting
the DST training data with synthetic prompts com-
posed from our generated schemata. To study the
effect of controlling prompt diversity augmented
datasets are two (2x) to six times (6x) the SGD
size. For 2x, augmented data contains prompts con-
structed from the v1 synthetic schema, whereas for
6x we use all five generated schemas5.

Baselines We create three synthetic schema by
backtranslation. Our pivot languages are Korean,
Japanese and Chinese (Lee et al., 2022). The aug-
mented DST training dataset is four times (4x)
larger than SGD. Following Huang et al. (2021),
we also consider French and Russian as pivot lan-
guages to generate two more synthetic schemas and
obtain an augmented dataset six times (6x) larger
than SGD. We also compare with easy data aug-
mentation (EDA) (Wei and Zou, 2019), a word-
level DA approach based on synonym replacement

5Ordering is from most (v1) to least (v5) similar to SGD.

(SR), random insertion, deletion and substitution.
We perform SR with probability 0.25 and the other
operations with equal probability of 0.05. Just
like for backtranslation, we generate 3 or 5 syn-
thetic schemas with this method via the public API.
Augmentation with the SGD-X human schemata
paraphrases is considered an oracle because these
models see the SGD-X schemata at training time.

5 Results and Discussion

5.1 Synthetic schema generation

Our ranking method generates increasingly lexi-
cally diverse schemata as shown by the increase in
Jaccard distance across schema variants (Table 1).
This aspect is much more difficult to achieve with
EDA without significantly affecting semantics. Fur-
thermore, self-BLEU (Zhu et al., 2018) scores indi-
cate EDA is the least effective in ensuring candidate
diversity compared to other approaches. The BLEU
difference between the SGD-X variants v1 and v5
is 15.2 but smaller (0.66) for our approach. Hence,
the PEGASUS + BART copies n-grams from the
input and includes additional information. This in-
formation is not always meaning-preserving: City
where the event is happening is paraphrased as The
bustling city where the event is taking place (v5)
but End date for the reservation or to find the house
is paraphrased as End date for hotel reservation to
allow time for a replacement both at the struck and
in the run up to the event (v5). The self-BLEU of
the SGD-X schemas decreases faster compared to
the automatically generated paraphrases, suggest-
ing that Jaccard distance increases partly due to
hallucination.

Entailment scores show that backtranslation is
effective in preserving semantics. For EDA, the se-
mantic similarity drops significantly as more candi-
dates are generated since more dissimilar schemas
are generated with more edit operations which are
likely to affect meaning. The entailment scores for
the SGD-X paraphrases are also lower since they
do not always perfectly semantically overlap with
the input by construction (Lee et al., 2022) and
because of entailment model errors.

5.2 Dialogue state tracking

D3ST Both the robustness and robust generali-
sation are improved by augmentation with our
synthetic schemas, as demonstrated by maximum
JGAseen

v1−5
(12.35%) and JGAunseen

v1−5
(5.85%) in-

creases and 23.6% drop in SSJGA (rows 1&4, Ta-
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Model # Generation method - Dataset size JGAorig ↑ JGAv1−5 JGAseenv1−5
JGAunseenv1−5

SSJGA ↓
1 None - 1x 69.8 56.5 73.6 50.8 70.1
2 Pegasus + BART - 2x 72.8 61.3 80.9 54.8 56.4
3 Pegasus + BART - 4x 72.6 62.5 81.7 56.1 51.0
4 Pegasus + BART - 6x 71.2 63.9 85.9 56.6 46.5
5 EDA - 4x (Wei and Zou, 2019) 71.0 59.0 78.5 52.5 63.0
6 EDA - 6x (Wei and Zou, 2019) 71.4 62.3 83.3 55.3 53.2
7 Backtranslation - 4x (Lee et al., 2021b) 72.1 62.2 84.0 54.9 53.1
8 Backtranslation - 6x (Huang et al., 2021) 71.5 61.0 82.5 53.8 54.4

D3ST

9 SGD-X - 6x (Lee et al., 2021b) (Oracle) 73.8 69.7 92.5 62.1 27.9
10 None 70.0 50.4 58.5 47.7 87.0
11 Pegasus B + BART - 4x 71.3 55.1 71.2 49.7 70.1
12 Pegasus + BART - 6x 68.7 52.5 71.6 46.5 77.6
13 EDA - 6x (Wei and Zou, 2019) 72.2 51.1 55.6 49.6 84.1
14 Backtranslation - 4x (Lee et al., 2021b) 72.8 53.9 67.0 49.6 76.4

T5DST

15 SGD-X - 6x (Lee et al., 2021b) (Oracle) 74.2 67.2 91.8 59.0 36.6

Table 2: SGD and SGD-X dialogue state tracking performance when training with augmented data. Best performance
(excluding the oracle setup) is in bold. Dataset size is the number of times the augmented dataset is larger than
SGD.

ble 2). The most benefit is obtained by training with
syntactically diverse prompts (Pegasus + BART
2x). Adding more diverse data (rows 3&4) im-
proves DST performance. Part of this improvement
may arise because paraphrasing leaves out domain-
dependent information: Average review rating of
the doctor is paraphrased as The rating is average,
so it’s not perfect, so the model can learn to identify
ratings more generally6. Moreover, inputs are noisy
due to hallucination, so the models trained with our
augmentation are less likely to overfit to the lin-
guistic patterns of the training schemas. BLEU
scores indicate high lexical overlap between EDA-
generated and SGD schemas (Table 1). This limits
the magnitude of EDA improvement (row 5) and
we perform better with less data (rows 3&6, 2&5).

Backtranslation is comparable with our method
given the same data quantity (rows 3&7). When we
also backtranslate via French and Russian (Huang
et al., 2021) the data diversity does not significantly
increase (Table 5, Appendix D.1). This negatively
impacts the DST performance, while our method
improves it (rows 4&8). We can control the schema
generation process to match SGD backtranslation
performance (Appendix E).

T5DST7 We outperform EDA (rows 12&13) but
not backtranslation (row 14). This may be due
to (1) the larger computational budget needed to
maximise T5DST performance8 and (2) T5DST’s
sensitivity to noisy descriptions owing to its prompt
format (Appendix C). We control hallucination by
pruning candidates with J > 0.5 and entailment

6It appears in 4 unseen services in the test set.
7Lee et al. (2021b) report 72.6% JGA on SGD and 64.0%

SGD-X but we could reproduce only 69.98% and 50.42%.
8Each training example is seen only once.

smaller than 0.58 and maximise J while minimis-
ing S to produce an augmented dataset 4x larger
than SGD (Pegasus B + BART 4x). Limiting
lexical diversity improves entailment compared to
Pegasus + BART 6x (Table 6, Appendix D.1), and
the scheme improves DST robustness compared to
the backtranslation baseline (rows 11&14).

The best augmentation schemes fail to improve
robustness and generalisation relative to the human
baseline (rows 9&15). This is due to the intrinsic
challenge of generating diverse yet semantically
faithful paraphrases but also due to the fact that hu-
mans use common sense and schema information
when paraphrasing, so the SGD-X paraphrases are
not strictly semantically equivalent. However, the
proposed automatic process of paraphrase genera-
tion enhances DST, yielding non-trivial improve-
ments in model robustness, while being less costly
and more scalable compared to gathering human-
written schemata paraphrases.

6 Conclusion and Future Work

We presented a simple tree-based ranking algo-
rithm for optimising lexical diversity and semantic
faithfulness during schema generation. The syn-
thetic schemas improve both the DST models’ ro-
bustness to schemata writing style and their gen-
eralisation. Our framework will allow researchers
working on paraphrase generation and semantic
faithfulness to measure the generalisation of their
models in a way that may be difficult to capture
by existing benchmarks: it can generate schemata
paraphrases and train SOTA dialogue state trackers
which were shown to benefit from augmentation
with high quality, crowdsourced paraphrases.
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Limitations

The optimality of our ranking method depends on
the ability of the underlying paraphrase model to
generate a search space that contains paraphrases
which are lexically and syntactically diverse and
preserve the meaning of the input description.
This is sometimes challenging with schema inputs
which tend to be short (e.g. name of event) and
contain little information. Our future work will
focus on addressing this by contextualising these
inputs to enable the paraphrase model to produce a
richer space of candidates. Secondly, our method
requires that the semantic faithfulness metrics cap-
ture semantic similarity well even as the vocab-
ulary of the candidates and their syntax are very
diverse. Previous work on abstractive summarisa-
tion (Narayan et al., 2022; Maynez et al., 2020;
Kryscinski et al., 2019) finds entailment scores to
be best correlated with human judgment of faithful-
ness. However, the correlations are not perfect so
the output of the ranking algorithm is still expected
to contain noisy candidates. For slot description
paraphrases, this is challenging because different
inputs are very closely semantically related and
the entailment model may not identify paraphrase
model errors that map a slot description (e.g. de-
parture time) to one with related semantics (e.g.
arrival time). We intend to address this in future
work by developing finetuning schemes for seman-
tic faithfulness metrics.

Ethics Statement

Our work is concerned with the use of language
generation models to augment training datasets for
schema-guided dialogue datasets. The generation
phase is unconstrained, so the model may generate
candidates that exhibit biases inherited from the C4
(Raffel et al., 2020) and HugeNews (Zhang et al.,
2020a) pre-training datasets. In our experiments,
we did not observe toxic or harmful outputs, but
on one occasion the model did generate the word
apartheid as part of an incoherent sentence. For
this reason, our filtering stack rejects any candi-
dates containing sensitive words. The list of words
that parameterize the sensitive words filter is de-
fined by the user.
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A The SGD and SGD-X datasets

SGD As mentioned in Section 1, the conversa-
tions in the SGD dataset are grounded in schemata,
which describe a set of service APIs. The most
important schema elements are9:

• a service name (e.g. Messaging_1) followed
by a service description (e.g. Connect and
share locations with your contacts)

• one or more API functions to be invoked as
users solve tasks, referred to as (user) intents;
each intent has a name (e.g. ShareLocation)
and an intent description (e.g. Send your lo-
cation to a contact)

• optional and required arguments for each API
function, or slots; each slot has a name (e.g.
location) and a slot description (e.g. Location
to share with the contact)

SGD-X Lee et al. (2022) observe that 71% of
intent names and 65% of slot names from unseen
APIs exactly match the train set. Furthermore, de-
scriptions are stylistically uniform across the train
and test sets. For example, all boolean slots be-
gin with the phrase Boolean flag ... or Whether....
Therefore, they create the SGD-X dataset as fol-
lows:

• crowdsource schema element paraphrasing
to more than 400 authors via Amazon Me-
chanical Turk. Each crowdworker either para-
phrases all names or all descriptions for a
given schema

9Examples below are taken from the SGD test set.
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• manually vet responses for quality and cor-
rectness.

The slot names collected are sorted in increasing
order of their Levenshtein distance to the SGD slot
names whereas the descriptions are sorted accord-
ing to the Jaccard distance between their lemma-
tized forms (excluding stop words). An example of
SGD-X description paraphrases in shown in Table
3.

Variant Description
SGD Category to which the attraction belongs

v1 The category that describes what kind of attraction it is
v2 Category of place of interest
v3 Type of tourist attraction
v4 Choose the kind of tourist landmark
v5 The kind of tourist hotspot

Table 3: Example of descriptions paraphrases from the
SGD-X test schemas. The more similar v1 description
contains overlapping vocabulary with the SGD test set
description, whereas v4 and v5 variants are dissimilar
both stylistically and lexically

While the examples above are paraphrases of
the SGD input, in general, the semantic content
of the schema element paraphrases is not perfectly
overlapping with the input as the crowdworkers use
information from the wider service context when
creating new elements.

B Ranking Framework

B.1 Candidate generation
Algorithm 2 summarises the candidate generation
procedure, which takes any paraphrase model, a
list of model-specific generation parameters and,
optionally, a list of filters as an input (line 1). These
parameters are temperature and number of beams
for Pegasus, or a grid of lexical, semantic and syn-
tactic distances for the Quality Controlled Para-
phrase Generation (QCPG) (Bandel et al., 2022)
model presented in Appendix E. The model gen-
erates one or more paraphrases, which are filtered
before returning (lines 3-8). We describe the filter-
ing process next.

Heuristic filtering Our main motivation for im-
plementing heuristic filters is to filter the majority
of poor quality candidates, without making use of
the large GPU cards required to run the entailment
model. We also address the fact that the model
is free to generate a very large number of candi-
dates and therefore is expected to hallucinate sig-
nificantly. These filters are general purpose and are

implemented in few lines of code using the spaCy
and nltk libraries. Table 4 lists active filters along
with typical examples filtered.

Entailment filtering We implement our entail-
ment filter using BART (Lewis et al., 2020)10.
This model is pre-trained on the MNLI dataset
(Williams et al., 2018). To measure entailment this
model consumes a premise and hypothesis in the
format premise <SEP> hypothesis. In our imple-
mentation we replace premise with the description
to be paraphrased. By default, the hypothesis is
a template of the form This example is {}.,
where {} is a placeholder for the user hypothesis,
in our case the paraphrased description. We find
that considering alternative templates improves the
reliability of the model, so we consider {}, This
example has the same meaning as {}., This
text is about {}., and This example implies
that {}., averaging the entailment scores across
templates to calculate the entailment score. The
same procedure is followed when computing the
entailment of candidates during ranking.

Algorithm 2: Candidate generation

1: def generate_candidates(model: Any,
inp: str, params: dict, filters:
Optional[list[Callable]]):

Data: model text generation model, inp
input sentence, params model
specific parameters, filters a
list of boolean functions

Result: cands list of inp paraphrases
2: cands← [] ;
3: for p in params:
4: c← model.forward(inp, **p) ;
5: c← [p for p in c if not any(f(p,

inp) for f in filters)]
6: cands.extend(c)

7: return cands

B.2 Ranking

Ranking Algorithm 3 summarises the tree-ranking
procedure. This procedure takes as an input the
tree constructed as described in Algorithm 1, along
with a list of decision functions f_dec. Our algo-
rithm starts by selecting a paraphrase via depth first
traversal of the subtree rooted at J = 0 (line 2).
The remainder of the candidates are selected by

10Avaialble at https://huggingface.co/facebook/
bart-large-mnli.
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Filter name Filtered example

contains advice An appointment is necessary for your hair.
describes action They commemorate the number of flights to the airport.
has named entities Enter the doctor’s Leningrad address.
has low frequency words The address is ofadvisory.
discard multiple sentences The address is the dentist’s box. Guidelines for hiring a dentist.
has repeated ngrams The dentist is Address of the dentist.
has repeated similar bigrams The type of event is stated in the title of the event.
has consecutive repeated words Average review rating for a hotel hotel.
is past tense sentence It was the dentist’s address.
is passive voice sentence The address was given by abrasives from the dentist.
is question Is there a balance of the account?
has alphanumeric words 400 baths in an apartment.

Table 4: Filters implemented along with sample examples they discard

Algorithm 3: Tree ranking
1: def tree_rank(root: Node, n: int, f_dec:

list[Callable]):
Data: root, n number of candidates, f_dec

decision functions
Result: list of n ranked candidates

2: ranked← syntax_select (root) ;
3: n← n - len(ranked) ;
4: while len(ranked) ̸= n:
5: for next in level_order (root):
6: for f in f_dec:
7: cand← select (next.sents) ;
8: ranked.add(cand) ;
9: prune (next, cand) ;

10: return ranked

traversing the first level in a breadth-first manner
(line 5) and depth-first traversal of each subtree
returned during the level-order traversal (lines 6-
8). Here the semantics of f(next.children) is
that the decision function f takes all the children
of next as input and returns a single node which is
next in the traversal. A candidate is selected from
the leaf11(line 8) and subsequently removed from
the candidates list (line 10). This is to avoid select-
ing the same candidate multiple times in situations
where the paraphrase model generates few distinct
candidates.

C State Tracking Baselines

D3ST We process the data as described by Zhao
et al. (2022) with the following differences:

• The indices are separated by the = symbol
in both the inputs and the targets, to avoid a

11There can be multiple, possibly repeated candidates in
a leaf because the generative model may generate the same
output given different parameter settings. We select the most
common one if there are repeated candidates and randomly
otherwise.

parsing ambiguity which occurs for time slots
if : is used as a separator for targets

• For categorical slots which take the
dontcare special value, our output contains
slot_index: dontcare substring and we
do not include the dontcare value in the
prefix together with the other options

• We lowercase the inputs and the targets12.

We obtain 175, 780 examples from the original
SGD dataset, which are truncated to the last 1, 024
tokens on the input side. See Figure 2a for a visual
representation of the model inputs and outputs. We
optimise the model using the Adafactor optimizer
and effective batch size 32, starting from the ini-
tial weights google/t5-v1_1-base published by
huggingface (Wolf et al., 2019). We interpolate
the learning rate linearly between 0 and 10−4 over
the first 1000 steps and keep it constant thereafter.
We select the model by evaluating the development
set JGA every 5000 gradient updates, stopping the
training if said metric fails to improve after 3 con-
secutive evaluations. All numbers in Table 2 are
averages of 3 runs, except the SGD-X experiment
for T5DST which is a single run.

T5DST Given a dialogue in the SGD train-
ing set we consider all partial dialogue histo-
ries {u1, s1, ...st−1, ut} with t ∈ 0, T where T
is maximum index of the user turn in a dia-
logue. The turns in each dialogue history are
lowercased and separated [usr] and [sys] to-
kens, not treated as special tokens. For each di-
alogue history we create a training example for
each slot in the ground truth schema, which con-
tains the concatenated turns suffixed with the string

12This appears in illustrations but is not explicitly stated by
(Zhao et al., 2022).
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(a) Visual representation of D3ST inputs and targets. Blue font blue, preceding the [USR] special token represents the
prompt, consisting of slot descriptions extracted from the schema. Each slot is assigned an index,
which is used to recover the slot value pairs during post-processing. Note that slot 4 is categorical,
and so the string a) 1 b) 2 c) 3 d) 4 is appended to the description to indicate the model that it should output one
of the choices. The dialogue history follows the [USR] token. The model outputs only active slots, in this case omitting slot 1
because is has not been mentioned. The entire dialogue state (as opposed to turn state) is generated at every turn.

(b) Visual representation of T5DST inputs and targets. The string [slot] separates the dialogue history from the slot description.
In the first example the model outputs the special value none to indicate that the slot was not mentioned by the user. For
categorical slots (second row from the top), the slot description is concatenated with options containing all possible slot values
and the model predicts the correct option. For non-categorical slots (third row), the exact value is predicted. The ellipsis indicates
that none is predicted for all other slots in the Restaurant_1 schema that are not mentioned in the dialogue history

Figure 2: Prompt formats for a) D3ST b) T5DST

[slot] [slot_description] where the place-
holder [slot_description] is replaced by the
lowercase descriptions extracted from the SGD
schemata. This yields 1, 601, 356 examples for
the SGD training dataset. See Figure 2b for a rep-
resentation of the model inputs and outputs.

We optimise the model using the Adafactor opti-
mizer and effective batch size 256, starting from the
initial weights google/t5-v1_1-base published
by huggingface. We interpolate the learning rate
linearly between 0 and 10−4 over the first 1000
steps and keep it constant thereafter. We perform
20, 000 optimisation steps13, limiting the number
of training steps to 40, 000 steps14 for all aug-
mented data experiments. All numbers in Table
2 are averages of 3 runs, except the Oracle experi-
ment on T5DST which is a single run.

13For a single run, this is approximately 6 hours of compu-
tation on 8 nvidia A100-80GB cards. Moreover, decoding a
single run on SGD and SGD-X takes 6 hours.

14This is sufficient so that the model sees every example
once when working with an augmented training set six times
the size of SGD.

D Additional Results

D.1 Increasing backtranslation dataset size

We include Table 5 to substantiate our intuition that
the training with the Backtranslation 6x scheme
does not yield further improvement compared to
the Backtranslation 4x scheme as the additional
data does not significantly increase the prompt di-
versity. Most clearly, this is indicated by the fact
that the v5 variant has similar BLEU to variant v3
in Backtranslation 4x, indicating that a large pro-
portion of additional data has some overlaps more
with the SGD distribution than the data backtrans-
lated to Chinese, Korean and Japanese. This is also
indicated by how self-BLEU decays as more data is
added, comparatively, between Backtranslation
4x and Backtranslation 6x.

D.2 Controlling schema generation diversity

Table 6 shows that the alternative schema scheme
generates schemas with lower average Jaccard dis-
tance and higher entailment with respect to the
SGD schemata. We find this effectively controls the
noise in the data, leading to improved performance
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Metric Ranking v1 v2 v3 v4 v5

Jaccard Dist Backtr. 4x 18.2 29.9 43.9 - -
Backtr. 6x 12.9 22.7 27.8 35.6 46.7

Entailment Backtr. 4x 97.5 96.5 95.9 - -
Backtr. 6x 98.0 97.5 95.2 94.8 95.5

BLEU Backtr. 4x 36.4 26.01 18.9 - -
Backtr. 6x 51.3 37.2 29.5 23.4 18.2

self-BLEU Backtr. 4x - 49.3 41.7 - -
Backtr. 6x - 55.3 49.7 44.6 39.6

Table 5: Effect of using French and Russian as addi-
tional pivot languages on automatic metrics

Metric Ranking v1 v2 v3 v4 v5

Jaccard Dist
Pegasus + BART 13.0 61.2 68.8 71.2 76.2

Pegasus B + BART 10.2 38.3 46.9 55.1 54.5
SGD-X 55.6 65.6 71.2 78.1 85.7

Entailment
Pegasus + BART 99.1 96.3 94.6 94.2 94.2

Pegasus B + BART 98.8 98.2 96..4 96.2 96.7
SGD-X 89.7 88.0 88.4 86.8 87.5

Table 6: Comparison of diversity and semantic faith-
fulness metrics for slot description paraphrases

Index Augmentation JGAorig JGAv1−5 JGAseenv1−5
JGAunseenv1−5

SSJGA
1 Pegasus+BART 6x 71.2 63.9 85.9 56.6 46.5
2 Pegasus+BLEURT 6x 72.4 64.0 86.6 56.4 46.6
3 QCPG+BLEURT 6x 72.7 63.2 85.2 55.9 47.3
4 Backtranslation 4x (Lee et al., 2021b) 72.1 62.2 84.0 54.9 53.1

Table 7: Ranking with a more accurate semantic faithfulness metric (row 2) or generating candidates with a
controllable paraphrase model (row 4) can be used to boost SGD performance over our Pegasus+BART approach
(row 1). Bold font marks column maximum, underlined second largest number.

for T5DST and similar performance to PEGASUS +
BART for D3ST.

E Schema Generation with BLEURT and
QCPG

BLEURT (Sellam et al., 2020) is a BERT-based
natural metric commonly used in translation, so it
is expected to be highly sensitive to semantic differ-
ences. In Table 7 we show that simply re-ranking
the Pegasus output space with BLEURT improves
SGD performance comparably with backtransla-
tion (rows 2&4) and the robustness and generalisa-
tion improvements are maintained.

Bandel et al. (2022) exploit high quality exam-
ples in paraphrase corpora by conditioning the
model with a string quality parameters string out-
lining target semantic, syntactic and lexical dis-
tances of the generated paraphrase during finetun-
ing. At inference one must specify these parame-
ters to obtain diverse yet high quality paraphrases.
We could not apply the quality parameter selection
method proposed by QCPG authors at inference
time as the code had not been fully released at the
time of writing. Instead, we generated a large num-
ber of paraphrases with different quality targets and
greedy decoding, and re-ranked the candidates us-
ing our framework. This demonstrates the versatil-
ity of our framework. In Table 7 we show that this
model can equally achieve improved performance
on SGD. The improvement on SGD-X is slightly
less than achieved by PEGASUS+BART 6x, as ex-
pected since greedy decoding and better semantic
faithfulness optimisation generate schemata closer

to the SGD distribution so less out-of-distribution
improvement is achieved.

This experiments in this section and Appendix
D.2 demonstrate the versatility of our framework
and its usefulness as a tool for generating synthetic
schema prompts.
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Abstract
A critical component of a successful language
generation pipeline is the decoding algorithm.
However, the general principles that should
guide the choice of a decoding algorithm re-
main unclear. Previous works only compare
decoding algorithms in narrow scenarios, and
their findings do not generalize across tasks.
We argue that the misalignment between the
model’s likelihood and the task-specific notion
of utility is the key factor to understanding the
effectiveness of decoding algorithms. To struc-
ture the discussion, we introduce a taxonomy
of misalignment mitigation strategies (MMSs),
providing a unifying view of decoding as a tool
for alignment. The MMS taxonomy groups
decoding algorithms based on their implicit
assumptions about likelihood–utility misalign-
ment, yielding general statements about their
applicability across tasks. Specifically, by an-
alyzing the correlation between the likelihood
and the utility of predictions across a diverse
set of tasks, we provide empirical evidence sup-
porting the proposed taxonomy and a set of
principles to structure reasoning when choos-
ing a decoding algorithm. Crucially, our anal-
ysis is the first to relate likelihood-based de-
coding algorithms with algorithms that rely
on external information, such as value-guided
methods and prompting, and covers the most
diverse set of tasks to date. Code, data, and
models are available at https://github.com/epfl-
dlab/understanding-decoding.

1 Introduction

Large transformer-based language models (LMs)
have been pushing the boundaries on tasks ranging
from natural language generation (Radford et al.,
2018) to information extraction (Josifoski et al.,
2022), theorem proving (Polu and Sutskever, 2020),
code generation (Zügner et al., 2021), and even pro-
tein generation (Ferruz et al., 2022). At inference
time, these models rely on a decoding algorithm
to generate an output. The goal of decoding algo-
rithms is to select an output of high utility from

Input
What is the shortest name of a 

US president?

..…

Training Corpus
Text scraped from the Web 

before 2021

Ja Jo …

John Joe …..… …James …..… ..…

Ja
0.5

mes
0.5

Jo
0.4

hn
0.8 e

0.1

0.25 0.32 0.04

Greedy
Beam Search (2 beams)
Highest Utility

Figure 1: Example of likelihood–utility misalignment.
Imagine a fictional LM trained before Joe Biden became
the US president. The input asks for the shortest name
of a US president. After Joe Biden’s inauguration, this
is ‘Joe’, but before, it was ‘John’. Greedy search re-
turns ‘James’ since its first token ‘Ja’ has the highest
likelihood. Beam search manages to find the highest
likelihood sequence ‘John’. Both fail to find the correct
answer ‘Joe’ with the highest utility since ‘Joe’ has a
very low likelihood.

the exponentially large output space. In contrast to
the generic language modeling training objective,
which is based on the data likelihood, the notion
of utility is task-specific. The potential gap be-
tween the two can create a misalignment between
model likelihood and task utility; see Fig. 1 for an
illustration of this concept.

Indeed, across different tasks, researchers no-
ticed that high likelihood is often not associated
with desired properties of the output (Stahlberg
and Byrne, 2019; Zhang et al., 2021; Klein et al.,
2017). Naturally, this has led to the development of
decoding strategies aimed at mitigating this prob-
lem. In the context of natural language generation
(NLG), Nucleus Sampling (i.e., top-p) (Holtzman
et al., 2020) has been proposed to avoid dull or de-
generate text. Similarly, in the context of machine
translation (MT), solutions ranging from simple
ad-hoc tweaks like enforcing a minimal sequence
length (Stahlberg and Byrne, 2019) to leveraging
a value model to directly optimize for utility in de-
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coding (Leblond et al., 2021) have been developed.
These methods for alignment are task-specific and
have been tested only in narrow domains, making
it difficult for practitioners to compare them.

Recently, Meister et al. (2022) and Wiher et al.
(2022) explored the likelihood–utility misalign-
ment across tasks. However, these studies still
largely focus on a group of similar tasks — NLG
tasks — and, more crucially, do not include decod-
ing strategies that make use of external sources of
information at inference time. Therefore, a general
framework to structure our thinking about decoding
algorithms is still missing.

Our work makes the first step towards filling this
gap. We propose a unified perspective of decod-
ing as a tool for mitigating the likelihood–utility
misalignment without modifications to the model.
Looking at decoding through this functional lens,
in Sec. 3, we provide a taxonomy of misalign-
ment mitigation strategies (MMSs). The taxonomy
groups decoding algorithms based on the implicit
assumptions about likelihood–utility misalignment
that need to hold for them to be effective.

Equipped with this taxonomy, we conduct a com-
prehensive empirical analysis in which we choose a
representative set of decoding algorithms and a rep-
resentative set of tasks to cover the relevant types
of misalignment. We identify three main sources
of misalignment: training imperfections (finite da-
taset, differentiable surrogate loss), distribution
shift, and changes in the model’s intended usage,
which we call utility drift. Then, we measure the
likelihood–utility misalignment across tasks (RQ1)
by estimating: the correlation between likelihood
and utility for the generated outputs after decod-
ing (RQ1-a) and the correlation between likelihood
and utility among candidate outputs explored by
the decoding algorithm (RQ1-b). We proceed by in-
vestigating the benefits of decoding algorithms that
leverage external information at inference (RQ2).
Finally, we experiment with large generalist LMs
(LLMs) and show that prompting can be seen as
means for improving the alignment at inference
time (RQ3).

Our experiments reveal that: (i) When no distri-
bution shift or utility drift happens, decoding based
solely on the likelihood is enough to provide high
utility, i.e., likelihood is a strong predictor of utility.
(ii) In such cases, there is no significant difference
between different kinds of decoding algorithms,
and we would recommend keeping beam search.

(iii) In the presence of distribution shift or utility
drift, value-guided beam search is both an effective
and efficient decoding algorithm that leverages a
value model at inference time to fix misalignment.
Finally, (iv) for LLMs, prompting is a mechanism
that sets the model in a state where the likelihood
is well-aligned with the utility. This perspective
provides a tentative explanation for the empirical
success of prompting LLMs.

This work studies the fundamental problem in
decoding, which involves a complex interaction
between models, tasks, and data. Our unifying con-
ceptual framework (the MMS taxonomy), accom-
modating all known decoding algorithms, enables
the systematic study of decoding in a considerably
broader scope than previously. By sharing the tax-
onomy and open-sourcing our implementations, we
hope to pave the way for a more structured discus-
sion in the future.

2 Background

High Utility Is the Goal. For a task t and input x,
the utility function assigns a score ut(y|x) to each
element y in the output space Y . This score quan-
tifies the goodness, or quality, of the output y with
respect to a specific input x. For instance, in trans-
lation, the utility quantifies the extent to which the
output conveys the same message as the input. For
question answering, the utility simply quantifies
the correctness of the answer. These task-specific
notions of utility are operationalized in the evalua-
tion metrics. The development of evaluation met-
rics that correlate with the human-defined notion
of utility is a very active research area (Sai et al.,
2022) and beyond the scope of this work. In our
analysis, we use the canonical evaluation metric
of each task as the utility function. For partially-
decoded sequences, the utility can be approximated
using a value function (see Sec. 3.3).

Given some input x, an ideal model would gener-
ate the element from the output space correspond-
ing to the highest utility score: argmaxy∈Y ut(y | x).

Unfortunately, most of the practically relevant
utility functions are not amenable to optimization,
forcing us to work with proxy functions, such as
the canonical likelihood.

Language Models. A language model corresponds
to a probability distribution p over y ∈ Y , where
Y is the set of all sequences that can be con-
structed using a vocabulary V . In this work, we
focus on conditional LMs p(·|x). Usually, these
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conditional distributions are modeled autoregres-
sively (parametrized by θ ): pθ (y | x)=∏|y|i=1 pθ (yi |
y<i,x). The model is trained to maximize the target
sequence’s conditional log-likelihood with teacher
forcing, using the cross-entropy loss L (θ) =
−∑(x,y)∈D log pθ (y | x), where D is the training
corpus (Sutskever et al., 2011, 2014).

Once an LM is trained, it provides a next-token
probability distribution across the output vocabu-
lary. Decoding algorithms define how tokens are
chosen during generation.

3 Proposed MMS Taxonomy

In this section, we propose a taxonomy of misalign-
ment mitigation strategies (MMSs). This work
focuses on decoding-based MMSs that mitigate the
misalignment without modifying the model. As
a primary signal, they rely on the model’s likeli-
hood. However, additional components (e.g., value
model, knowledge base, etc.) can be leveraged.
Decoding algorithms, which we define as proce-
dures that take in an input — and potentially some
context (e.g., a prompt with a task description or
examples) — and return a sequence from the out-
put space, can be seen as specific implementations
of an MMS. Apart from fixing the misalignment
problem at inference time, it is also possible to re-
train or finetune the model with newly collected
data that better reflect the intended utility and target
testing distribution. We leave the detailed treatment
of this part of the taxonomy for future work. See
the Limitations section at the end of the writing for
further discussion of these alternatives.

3.1 Greedy Likelihood-Based Strategy

Given the LM’s probabilistic formulation, one
could strive to select the most likely sequence un-
der the model: argmaxy∈Y pθ (y | x). However, due
to the exponentially large state space, this optimiza-
tion problem is intractable.

The class of algorithms following the greedy
likelihood-based MMS approximate the intractable
argmax by following the greedy heuristic of mak-
ing locally optimal choices at each decoding step
w.r.t. the likelihood under the language model.
However, reaching a globally optimal solution may
require locally sub-optimal steps. When this hap-
pens, we say that the likelihood landscape is greedy
adversarial (Meister et al., 2020). For a likelihood
model that is not greedy adversarial, greedy heuris-
tics will retrieve the highest-likelihood solution.

Therefore, the algorithms’ effectiveness depends
on the likelihood–utility alignment.

Contrarily, greedy decoding algorithms may fall
arbitrarily short of the global maximum for likeli-
hood models that are greedy adversarial. Indeed,
greedy decoding algorithms implicitly optimize
a different objective function — a tampered ver-
sion of the likelihood objective in which a term
that encourages locally optimal solutions is added
(Meister et al., 2020). Therefore, the ability of
greedy decoding algorithms to retrieve high-utility
sequences even from a likelihood model that is per-
fectly aligned with the utility is inversely propor-
tional to how greedy adversarial the likelihood land-
scape is. In some cases, the particular bias induced
by the greedy heuristic mitigates the likelihood–
utility misalignment, and makes the tampered like-
lihood objective better aligned with the utility than
the original (Meister et al., 2020, 2023; Su et al.,
2022).

The decoding algorithms in this category can be
further divided into two subgroups: (i) determin-
istic ones, such as greedy search (GS) and beam
search (BS); and (ii) stochastic ones, such as top-k
sampling (Fan et al., 2018), top-p sampling (Holtz-
man et al., 2020), and stochastic beams (SB) (Kool
et al., 2019). For more details, see Appendix A.1.

3.2 Greedy Likelihood-Based Strategy with
Pruning

An understated fact in the literature is that even
for tasks for which the canonical decoding algo-
rithms (e.g., BS) perform well, a non-negligible
portion of the performance relies on some bespoke,
ad-hoc tweaks on the likelihood scores (Stahlberg
and Byrne, 2019). These tweaks are usually based
on either: (i) post-hoc observations that likelihood-
based decoded sequences often contain specific un-
desirable patterns (e.g., empty or short sequences,
repetitive patterns, etc.); or (ii) problem-specific
knowledge about the utility landscape suggests
that high-utility sequences have a specific prop-
erty, which can be explicitly enforced by the decod-
ing strategy (e.g., sequences should correspond to
triplets of elements from a predefined set). Concep-
tually, all these tweaks employ mechanisms that
discourage the generation of high-likelihood pat-
terns that are known (or expected) to be associated
with low utility.

This category includes: (i) decoding algorithms
with ad-hoc heuristics such as the n-gram repetition
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penalty (Klein et al., 2017); (ii) constrained beam
search (CBS) (Scholak et al., 2021; De Cao et al.,
2022; Josifoski et al., 2022); (iii) NeuroLogic (Lu
et al., 2022). For more details, see Appendix A.2.

3.3 Greedy Likelihood- and Value-Based
Strategy

Heuristics such as the ones used in the previous
category can capture some properties associated
with high utility but are limited to properties that
can be easily expressed explicitly. While the util-
ity function is generally defined for complete se-
quences only, to guide decoding algorithms, one
can rely on the general concept of a value model.
A value model approximates, for partially decoded
sequences, the expected utility of the final sequence
if the decoding keeps following the same policy.
The most prominent algorithm in this category is
value-guided beam search (VGBS) (He et al., 2017;
Ren et al., 2017; Krishna et al., 2022). It uses a
greedy strategy similar to BS but selects the next
token using a linear combination of the LM’s like-
lihood and the value model’s scores. See Appendix
A.3 for details.

3.4 Simulation-Based Strategy
Even though VGBS considers both likelihood and
value, it remains greedy by only looking one step
ahead. Simulation-based decoding algorithms ex-
plore further into the future before making the next
decision. When the value landscape is complex
and constructing a good value model is hard, such
strategies with a look-ahead may become particu-
larly effective. By turning the knob controlling the
number of simulations, one can trade off compu-
tational efficiency for obtaining better value esti-
mates. Monte-Carlo Tree Search (MCTS) is the
canonical example of simulation-based tree explo-
ration informed by a value model. For details, see
Appendix A.4.

3.5 Prompting-Based Strategy
The decoding algorithms described in the last two
sections address the likelihood–utility misalign-
ment post-hoc. An alternative is to change the
conditioning of the model’s probability distribution
such that the misalignment never happens. The ef-
fort now goes into choosing a context that aligns the
likelihood landscape with the task-specific utility.
The strength of this class of decoding algorithms
lies in the fact that they can readily be applied to
a new task without requiring any modifications to

the model or increasing the computation cost of
inference (beyond the processing of the prompts’
tokens). However, they only work for large gen-
eralist LMs (Chowdhery et al., 2022). The most
prominent members are the few-shot (FS) and the
chain-of-thought (CoT) prompting methods, de-
scribed in Appendix A.5.

4 Experimental Setup

4.1 Research Questions

In contrast to previous works that have studied the
misalignment problem in constrained settings, we
propose quantifying it in a unified and large-scale
analysis across tasks (RQ1). We investigate the
benefits of a diverse set of previously proposed so-
lutions to the misalignment problem. Our study in-
cludes value-guided approaches (RQ2) and prompt-
ing (RQ3), covering each class of the MMS taxon-
omy with at least one representative. Specifically,
we ask the following research questions.

RQ1: How correlated are the utility and the
likelihood across tasks? As argued in Sec. 3,
greedy likelihood-based strategies only require the
likelihood to be a strong predictor of utility. We
investigate whether this holds across tasks. Specif-
ically, we measure two important aspects of the
likelihood–utility alignment: (a) Post-decoding
alignment. For each data point, the decoding al-
gorithm chooses one output; we measure the likeli-
hood and utility of the prediction and analyze their
relation. Is high likelihood associated with high
utility in the same way across tasks? (b) During-
decoding alignment. Decoding algorithms typi-
cally explore a set of high-scoring candidates (e.g.,
BS returns one candidate per beam). We mea-
sure the correlation between likelihood and util-
ity among these candidate outputs to analyze the
likelihood landscape of the model.

RQ2: How effective are value-guided MMSs?
In particular, we investigate the benefit of value-
guided decoding algorithms as a function of the
value model’s quality.

RQ3: Is prompting an MMS? We investigate
the efficacy of prompting as a likelihood–utility
alignment tool for generalist LMs (LLMs).

4.2 Tasks and Datasets

To organize the discussion, we propose a simple
classification of the sources of misalignment: (a)
Training imperfections (TI), when the model is
trained on a different objective than the true util-
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Tasks Utilities Misalignment Types Model Dataset

Closed Information Extraction (cIE) F1 score [M] TI GenIE (BART) REBEL
Machine Translation (MT) BLEU [M] TI, DS mBART50 WMT14
Non-Toxic Text Generation (NTTG) Non-Toxicity [T] TI, DS, UD GPT2 RTP
Non-Soluble Protein Generation (NSPG) Non-Solubility [T] TI, DS, UD ProtoGPT2 SwissProt
Sports Understanding Solve Rate [M] TI, DS, UD MT-NLG 530B Sports

Table 1: Overview of the tasks. Utility functions are categorized into: (a) [M]: Metric-based and (b) [T]: Trained
model-based. The three misalignment types are TI: Training imperfection, DS: Distribution shift, UD: Utility drift.

ity, because of the finite size of the dataset and the
approximation error in training (e.g., via stochas-
tic gradient descent); (b) Distribution shift (DS),
when the training and testing data distributions dif-
fer; (c) Utility drift (UD), when the utility used in
development differs from the utility at test time.

While we can expect TI to affect all machine
learning tasks (due to the finiteness of datasets and
approximations resulting from gradient-based train-
ing), DS and UD are task-specific. DS typically
occurs when the distribution of the data changes
between the training and testing scenarios. UD
occurs when the notion of utility changes, i.e., the
labels for the same data points are changing.

We carefully selected a variety of generation
tasks covering (a) different notions of utility, and
(b) different expected types of (mis)alignment be-
tween utility and likelihood. Table 1 gives a high-
level overview of these tasks, their utility functions,
and associated datasets.1 In closed information ex-
traction, the training and testing data come from the
same distribution, and we expect only TI-type of
misalignment. In machine translation, the mBART
model is pretrained on a different dataset, inducing
some DS as the texts used for training may come
from different domains. For non-toxic text and
non-soluble protein generation, the task definition
changed from generating low perplexity sequences
to generating non-toxic sequences. Therefore, UD
is expected to be the main driver of misalignment.
Similarly, for the sports understanding task, since
MT-NLG was not trained for this specific task, we
also expect UD to be the main source of misalign-
ment, but here VGBS and MCTS are too expensive
due to the size of the LM. Instead, we use this
setting to investigate prompting-based MMSs.

4.3 Decoding Algorithms

To cover the full space of MMSs, we experi-
ment with at least one representative from each
class from the taxonomy defined in Sec. 3. From

1For more details about the models, data, and utility func-
tions, see Appendix B.1.

the Greedy Likelihood-based category, we in-
clude the canonical GS and BS, as well as the
sampling-based SB. From the Greedy Likelihood-
based Strategies with pruning, we use CBS. VGBS
and MCTS are representatives of the Greedy
Likelihood- and Value-based, and Simulation-
based decoding classes, respectively. For prompt-
ing, we consider the FS and CoT methods. The
hyper-parameters for each algorithm are given in
Appendix B.2. Appendix B.3, provides a complex-
ity analysis in terms of LM and value model calls.

4.4 Value Models

The quality of a value model reflects its ability to
approximate the expected utility. To determine the
relationship between the value model’s quality and
the benefit of leveraging it in decoding, we craft
models that allow us to instantiate versions with
varying levels of quality, ranging from a random
predictor to an oracle.

Non-Toxic Text Generation. The state-of-the-art
method for detecting toxicity is via classification
(Hanu and Unitary team, 2020). Such a classifier
can readily be used as a value model in decod-
ing. We reproduce the training procedure from
Hanu and Unitary team (2020) and save check-
points at regular intervals until the training is com-
plete. Due to the gradually decreasing under-fitting,
these checkpoints give us a sequence of classifiers
that systematically improve in terms of quality.

Machine Translation. To achieve a similar effect
for MT, we start by assigning to each data point
in the dataset another randomly chosen data point
which will serve as a false target. This assignment
is fixed across all runs. During inference, the value
model calculates the BLEU score for both correct
and incorrect targets and returns a linear combina-
tion between the points. By gradually increasing
the weight assigned to the false target from zero
to one, the perfect value model (oracle) slowly de-
grades to a random predictor.
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Figure 2: RQ1 (post-decoding alignment): Each decoding algorithm is applied to each dataset-model pair. For each
subplot, the x-axis represents the outputs’ log-likelihood under the model, and the y-axis the output’s task-specific
utility score. The plots are frequency heatmaps counting the number of decoded outputs pertaining to a given
hexagon. For MT and cIE, the x-axis is normalized such that 0 is the log-likelihood of the target answers2. These
plots show where the outputs are located in the likelihood-utility landscape across tasks and decoding algorithms.

5 Experiments and Results

5.1 RQ1: The Likelihood–Utility Relationship
We present two analyses, one measuring the
likelihood–utility misalignment after decoding and
one measuring it during decoding.

Post-decoding alignment. In this experiment, we
first run each likelihood-based decoding algorithm
(GS, BS, and SB) for each dataset–model pair.
Then, for each output, we compute both the model
likelihood and the task-specific utility.3 We report
the results in Fig. 2.

For cIE (first column), most outputs have a likeli-
hood close to the targets’ likelihood. The majority
of the outputs have perfect utility — the decoded
output is exactly the target, and the model is well-
calibrated. This confirms the intuition that when
the UD and DS are small, greedy likelihood-based
MMS are very effective and can cope with the TI.

2See Fig. 6 for a plot without the target normalization.
3We also ran experiments with top-p and top-k but did not

observe a behavior different from BS.

However, in tasks with larger DS and UD, the
story is different. In MT (second column), the com-
bined effect of TI and DS gives rise to a negative
global correlation (−.56 for BS and−.52 for GS in
terms of Pearson’s correlation; p< 10−3) between
the predictions’ utility and likelihood after decod-
ing. This is an instance of Goodhart’s law, where
a surrogate metric (likelihood), when being opti-
mized heavily, becomes a poor approximation of
the original property it is supposed to track (utility).

In tasks with large UD, NTTG (third column),
and NSPG (fourth column), decoding according
to likelihood does not guarantee utility. For exam-
ple, in NTTG, the likelihood–utility correlation is
−.10 for GS, .10 for SB, and .03 for GS in terms
of Pearson’s correlation; p< 10−3. These scenar-
ios require external information that can guide the
decoding towards high-utility outputs.

During-decoding alignment. Now, we investigate
the likelihood–utility alignment where it matters:
for outputs close to being extracted by the decoding
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Figure 3: RQ1 (during-decoding alignment): For each
dataset-model pair, we run BS and analyze the correla-
tion between likelihood and utility of the top-5 candidate
hypotheses. The y-axis represents the task-specific util-
ity score, and the x-axis the log-likelihood under the
model. The plots are generated as follows: (i) take the
BS outputs from Fig. 2 with their log-likelihood and util-
ity scores, which indicate the x and y coordinate of each
data point; (ii) for each data point measure the Kendall’s
τ correlation between likelihood and utility of the top-5
candidate hypotheses; and (iii) average the correlation
across the points belonging to the same hexagon.

algorithms. BS maintains k candidate hypotheses,
one per beam, before returning the top-scoring one
as the final output. In this experiment, we analyze
the correlation between the likelihood and utility
of the top-5 candidates. The results are reported in
Fig. 3. There are three dimensions to this problem:
(i) the likelihood (x-axis); (ii) the utility (y-axis);
(iii) the correlation (color). Ideally, we would like
to see red everywhere, indicating that failure to
retrieve a high-utility output is due to the decoding
algorithm, but the likelihood of the model is still a
good predictor of utility. However, this is not what
we observe.

For MT and cIE, we see a clear picture, red color
(high likelihood–utility correlation) occurs at the
top of the plot (high-utility): high likelihood-utility
correlation among candidate outputs is enough to
yield close to perfect-utility outputs.

For the NTTG (Fig. 3c), the correlation between
utility and likelihood among the beams increases as
the likelihood increases. When the model generates
high-likelihood outputs, there is a positive corre-
lation between being more likely and being less
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Figure 4: RQ2: For MT and NTTG, we ran VGBS and
MCTS with value models displaying various levels of
noise. We report the average utility of outputs on the
y-axis (with 95% confidence interval). The noisy value
models are described in Sec. 4.4.

toxic. However, the likelihood mass is assigned
to low-utility regions of the output space, which
cannot be resolved with decoding based only on
the likelihood. For NSPG (Fig. 3d), the correla-
tion across all bins is negative, indicating that high
likelihood is a very bad predictor of high utility.

Takeaways. When TI is the only cause of mis-
alignment, the likelihood is a strong predictor of
utility; then, likelihood-based decoding algorithms
are expected to retrieve high-utility outputs. When
UD and/or DS are present, the correlation between
likelihood and utility post-decoding plummets, in-
dicating that likelihood-based decoding algorithms
are ill-suited. When UD is present (bottom row of
Fig. 4), good correlation among the beams does not
necessarily mean good utility. However, without
UD (top row of Fig. 4), higher correlation among
the beams is associated with high utility.

5.2 RQ2: The Benefits of Value Models

We now analyze the benefits of value-guided decod-
ing algorithms (VGBS and MCTS) as a function
of the value model’s quality (see Sec. 4.4). Due
to the high computational cost of running the ex-
periments with both VGBS and MCTS, we focus
on two tasks: MT and NTTG. For each version of
the value model, we first perform a hyperparame-
ter search on a small subset of the data and use the
best hyperparameters on the test set. The results are
reported in Fig. 4. VGBS and MCTS are always
at least as good as BS, even with random value
models, as the small-scale hyperparameter search
selects parameters that ignore the values when they
are not useful. However, when there is some signal
in the value model, both VGBS and MCTS effec-
tively leverage it and quickly start outperforming
BS. When the value model is accurate, very high-
utility outputs are discovered. Interestingly, VGBS
mostly outperforms MCTS, and can extract almost
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Figure 5: RQ3: ZS, FS, and CoT prompting, on the
Sports understanding dataset. We report the utility (y-
axis) of outputs binned according to the empirical per-
centiles of their likelihood (x-axis). The lineplot is the
average utility per bin with 95% confidence intervals.

perfect outputs, whereas MCTS plateaus. This is
significant because VGBS has a substantially lower
complexity than MCTS (see Appendix B.3).

Takeaways. Value-guided decoding algorithms
can overcome the likelihood–utility misalignment
and significantly outperform likelihood-based de-
coding algorithms even with noisy value models,
as long as a small-scale hyperparameter search is
done. VGBS offers a better trade-off between per-
formance and computation cost than MCTS.

5.3 RQ3: Prompting as an MMS
Recently, Wei et al. (2022) showed how the sim-
ple and broadly applicable idea of including in the
prompt a few examples where the targets contain
a sequence of steps that lead to the answer can
greatly enhance the reasoning capabilities of LMs.
We mimic the Sports Understanding task in their
work by taking the same in-context examples and
evaluating the same two prompting methods: CoT
and standard FS prompting. Additionally, we evalu-
ate the model in the standard zero-shot (ZS) setting,
without any examples in the context, as a baseline.
This results in unstructured answers that need to be
labeled manually, see Appendix C.2.

To test our hypothesis that prompting is a means
of addressing misalignment, we measure the util-
ity and the likelihood under the model for all the
testing data points. The results, summarized in
Fig. 5, provide three insights. First, similarly to
Wei et al. (2022), CoT outperforms FS and ZS with
an accuracy of 83%, versus 57.3% and 38.9% for
FS and ZS, respectively. Second, (and comple-
mentary to the information visualized on the plot)
the average log-likelihood of the outputs generated

by CoT is significantly higher than the FS and ZS
generated outputs, −0.067 as opposed to −0.17
and −2.472. Third, the correlation between the
likelihood and the utility when decoding with CoT
is higher: 0.11 Pearson’s correlation compared to
0.07 and 0.09 for FS and ZS, respectively.4 Re-
ferring back to the observation made in RQ1b on
Fig. 3, the value-guided MMSs studied in Sec. 5.2
address the misalignment post-hoc. However, the
hidden representations building up to that misalign-
ment are not modified, and the undesired informa-
tion will still be attended to in predicting the next
token probability distribution. In contrast, an effec-
tive prompting strategy addresses the misalignment
before it affects the hidden representations, thereby
(i) forcing the model to assign high likelihood to
high-utility regions of the output space and (ii) im-
proving the likelihood–utility alignment, making
it easier to find high-utility outputs with greedy
likelihood-based decoding algorithms.

Takeaways. Effective prompting methods put the
model in a state where the generated outputs’ like-
lihood is well-aligned with the desired utility.

6 Discussion

RQ1 reveals that decoding based solely on the like-
lihood gives poor expected utility whenever DS
or UD occurs. DS and UD make the likelihood a
poor predictor of utility. When only TI is present,
these decoding algorithms perform well because
the likelihood is a strong predictor of utility.

Then, in RQ2 and RQ3, we saw that methods
bringing in external information at decoding time
manage to effectively solve the likelihood–utility
misalignment problem. While finetuning (or re-
training) would be an obvious and apparently ideal
MMS, this is often neither possible nor necessary.
Indeed, our experiments show that if a value model
can be crafted and we can afford the extra compute
for the value model calls, then VGBS becomes a
strong decoding algorithm capable of fixing mis-
alignment problems at inference time. It is more
efficient than MCTS and performs better than BS,
even if the value model is only a poor approximator
of the utility. When crafting a useful value model
is difficult (e.g., protein function depends on the
3D structure, which cannot be easily approximated
from partial amino-acid sequences), MCTS with a
large number of simulations with roll-outs can be

4The differences are statistically significant (p< 10−3).
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used to “estimate” one. However, the price to pay
is a higher computational cost at inference time.
Finally, for large, generalist LMs, decoding algo-
rithms such as MCTS or VGBS are prohibitively
expensive due to the high computational cost of
each call to the LM. Prompting methods combined
with greedy or top-p decoding can be considered
as a way to leverage external information in the
form of few-shots prompts to set the model in a
state where the likelihood is better aligned with the
utility. Our experiments support this explanation of
the success of prompting large LMs. For a similar
perspective, comparing prompting methods with
training-based MMSs see He et al. (2021).

Limitations

Non-exhaustive empirical analysis. This work
studies a fundamental problem that involves a com-
plex interaction between tasks, models, and data;
and sequence-to-sequence models have been ap-
plied to a very broad set of tasks. Covering all
possible combinations is impossible, and for our
empirical analysis, we chose a subset to evaluate.
Our choice is guided by the classification of mis-
alignment sources proposed in Sec. 4.2 and aims
to cover different areas of the misalignment space.
A seemingly small difference between two choices
(e.g., a difference in the loss function used in train-
ing the model) can give rise to a considerably differ-
ent misalignment and, consequently, performance.
This is why the goal of the proposed conceptual
framework is to make a step toward enabling a
more systematic study of decoding. To further help
the community investigate the broader space of
tasks, models, and datasets through this lens, we
open-source the implementation of our analysis.

Alternative ways of fixing misalignment. Apart
from value-based decoding, other techniques could
be considered to fix the misalignment problem: (a)
Retrain or finetune the model with data that better
reflects the task’s utility. For instance, to generate
non-toxic text, one could retrain or finetune GPT2
on curated datasets that contain toxic prompts and
non-toxic sentence continuations. (b) Optimize
more directly the utility function instead of surro-
gate differentiable objectives. This could be done
via reinforcement learning (see Wang et al. (2018);
Wu et al. (2018) for BLEU).

In this work, we focused on decoding algorithms
and ways of fixing the likelihood–utility misalign-
ment problem at inference time. Future research

could further investigate the trade-offs involved
in finetuning and retraining. Is it better to invest
resources in acquiring new data that fits the task
for finetuning? Or is it better to fix DS and UD
at inference time with VGBS, MCTS or prompt
engineering? Where do the inflection points lie?
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A Proposed MMS Taxonomy

This section describes some of the most prominent
members in each class of the proposed taxonomy.

A.1 Greedy Likelihood-Based Strategy

Deterministic

Greedy Search (GS). The simplest among the de-
coding algorithms, at each step t, GS selects the
token with the highest likelihood under the model.

Beam Search (BS). An extension of GS, BS, main-
tains not one, but k ∈ N+ partially-decoded se-
quences, called beams, in parallel. At each step
t, BS: (i) pre-selects the most likely k tokens for
each beam; (ii) from the resulting k× k nodes, the
algorithm selects the k with the highest likelihood
and drops the rest.

Stochastic
An alternative that increases the diversity of output
sequences is to sample the tokens at each step from
the likelihood distribution ŷt ∼ p(yt |ŷ<t ,x). Instead
of sampling from the full distribution, these decod-
ing algorithms typically focus greedily on the to-
kens corresponding to the high-probability regions.

Top-k Sampling. Top-k samples the next tokens
from a truncated distribution where only the k most
probable tokens are considered (Fan et al., 2018).

Top-p Sampling. Top-p samples the next tokens
from a truncated distribution where only the small-
est set of tokens with a probability mass bigger
than (or equal to) p is considered (Holtzman et al.,
2020).

Stochastic Beams (SB). SB samples completed
outputs without replacements according to the
LM’s likelihood. The implementation relies on
applying BS on likelihood scores perturbated with
Gumbel noise (Kool et al., 2019).

A.2 Greedy Likelihood-Based Strategy with
Pruning

Ad-Hoc Heuristics. Currently, most tasks utilize
some ad-hoc heuristics. For instance, in MT, it
is often necessary to discourage empty (or short)
sequences by enforcing a minimal sequence length
(Stahlberg and Byrne, 2019). Similarly, state-of-
the-art language generation models often get stuck
in repetitive loops. Therefore, an n-gram repetition
penalty is now part of the standard toolkit (Klein
et al., 2017).

Constrained Beam Search (CBS). The idea of
constraining the likelihood during decoding can
be extended to include task-specific knowledge.
For example, in information extraction tasks, the
BS decoding strategy has been constrained to only
extract outputs satisfying the predefined schema
(Scholak et al., 2021; De Cao et al., 2022; Josifoski
et al., 2022). Then, BS only searches high-scoring
outputs among the smaller subset of valid ones.

NeuroLogic. The NeuroLogic strategy enforces
the satisfaction of given lexical constraints by con-
trolling the decoding stage of sequence generation
(Lu et al., 2022). While BS aims to maximize the
likelihood of the generated sequence, NeuroLogic
searches for optimal output sequences among the
strings that also satisfy the given constraints. Hard
logic constraints are converted into a soft penalty
term in the decoding objective, and beam-based
search is used to find approximately optimal solu-
tions.

A.3 Greedy Likelihood- and Value–Based
Strategy

Value-Guided Beam Search (VGBS). It is the
most intuitive example of a greedy decoding algo-
rithm that leverages a value model (He et al., 2017;
Ren et al., 2017). It uses a greedy strategy simi-
lar to BS but selects the next token using a linear
combination of the LM’s likelihood and the scores
from the value model.

More specifically, instead of expanding each
beam by the m highest-scored tokens according
to the likelihood, the algorithm chooses the top m
tokens according to the following scoring function:

sy<i,x(yi) =
α
i

log(p(y<iyi|x))+(1−α)v(y<iyi,x),

where the factor α weights the contribution of the
the value model, y<i denotes the partially decoded
sequence, and yi corresponds to the next token un-
der consideration.

A.4 Simulation-Based Strategy

Monte-Carlo Tree Search (MCTS). MCTS is the
canonical example of simulation-based tree explo-
ration informed by value. In our setup, it differs
from all other decoding algorithms because, at step
i, it may explore sequences of length greater than
i. It is not tied to committing to local decisions
without exploring the tree. In each step, MCTS
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has a fixed computational budget that it uses to ex-
plore multiple paths before choosing the next token.
For more details, we refer to Chaffin et al. (2022),
whose implementation we adapt for this work.

A.5 Prompting-Based Strategy

Few-Shot (FS). At inference time, instead of only
passing the input x, a context comprised of k ex-
amples (xi,yi)

k
i=1 is added as a prefix. The main

idea is that the model will build on its semantic
understanding of the relation between xi and yi and
make the “guided” likelihood better aligned with
the utility (Brown et al., 2020).

Chain-of-Thought (CoT). The CoT decoding
method (Wei et al., 2022) is a conceptual exten-
sion of FS which presents the examples’ targets as
a sequence of steps that lead to the solution. This
format is particularly helpful for tasks that require
multi-step reasoning, with which transformers gen-
erally struggle.

B Experimental Setup

This section provides additional details about the
experimental setup.

B.1 Details about Data, Models, and Utility
Functions

In Table 1, we present a summary of the tasks,
utility functions, misalignment types, model, and
dataset. We now give a brief description of each
task:

Closed Information Extraction (cIE) with the
REBEL dataset (Huguet Cabot and Navigli, 2021)
and GenIE model (Josifoski et al., 2022) (an in-
stance of BART finetuned to extract the exhaustive
set of triples in a sentence following the Wikidata
schema). The utility is the F1 score between the
generated and the target set of triples.

Machine Translation (MT) with the WMT14
dataset (Bojar et al., 2014) and a pretrained
mBART50 model (Tang et al., 2021) to translate
English to French. The notion of utility is the match
between the generated and the target translation, as
measured by BLEU-4.

Non-Toxic Text Generation based on the Real
Toxicity Prompt (RTP) dataset (Gehman et al.,
2020) for prompting a GPT2 model. The notion
of utility is whether the generated output contains
toxic language or not. The utility function is an
ALBERT model (Hanu and Unitary team, 2020)

LM calls Value calls

Greedy Search N –
Beam Search N × B –

Stochastic Beams N × B –
VGBS N × B N × B × K
MCTS N × S N × S

Table 2: Coarse complexity analysis of the decoding
algorithms used, in terms of LM calls and Value calls.
N is the number of tokens to be generated, B the number
of beams, K the number of next tokens considered by
the value model per beam in VGBS, S the number of
simulations per generated token in MCTS. In all our
experiments, B=5, K=20, S=50.

trained on the Jigsaw dataset with an unintended
bias to measure the toxicity of a text.

Non-Soluble Protein Generation: We use the
SwissProt-EF dataset (Bairoch and Apweiler,
2000) for prompting a ProtoGPT2 model (Ferruz
et al., 2022), which is pretrained on sequences of
amino acids from protein prompts. The notion of
utility is whether the generated protein is soluble
or not. To measure non-solubility, we use Prot-
BERT (Elnaggar et al., 2021), which is a BERT-
based model trained on a large corpus of protein
sequences in a self-supervised fashion. Finally,

Sports Understanding with the Sports Under-
standing (SU) task, part of the BIG-bench effort
(BIG-bench collaboration, 2021), with a 530B pa-
rameter pre-trained language model: MT-NLG
(Smith et al., 2022). The primary purpose of this
task is to test the general understanding of sports by
asking the model to discriminate between plausible
and implausible statements relating to sports.

B.2 Hyperparameters of Decoding
Algorithms

The number of beams for BS, SB, VGBS is fixed
to 5 for all tasks, except for cIE where it is 10 —
the model’s default; and the number of simulations
in MCTS is fixed to 50. Due to the high computa-
tional cost, to decide the optimal value for MCTS’s
cpuct and VGBS’s α in RQ3, we run a hyperpa-
rameter search for each level of noise over a small
sample of 80 data points (see Appendix C.3 for the
ranges of the search). For both of the prompting-
based strategies, we use greedy decoding during
inference.
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Figure 6: RQ1 (post-decoding alignment) – without target normalization: A version of Fig. 2 without the target
answer log-likelihood normalization.

ID Input Prediction

1 Is the following sentence plausible? Leon Draisaitl grounded out to second base in the National League Championship Series. A: i’m pretty sure that’s not really a grammatical sentence, although one might...
2 Is the following sentence plausible? John Collins threw a touchdown in the NFC divisional round. A: the nor gates give you (not(a)) and (not(b))
3 Is the following sentence plausible? Jack Eichel dunked the ball. A: hmm? well, i’m not really sure. let me look it up in

Table 3: Examples of outputs that are not providing an answer. The first and the second row provide an example
where the model produces unrelated text, while the third row is an example of an indefinite answer.

B.3 Complexity Analysis of Decoding
Algorithms

Most of the compute during decoding is allocated
on querying the LM or the value model. Therefore,
to show how decoding strategies compare in terms
of the computation cost, in Table 2 we provide a
coarse complexity analysis in terms of the LM and
value model calls.

C Experiments and Results

C.1 RQ1: The Likelihood–Utility
Relationship

Fig. 6 is an alternative version Fig. 2 where the
x-axis (for cIE and MT) is not normalized using
the log-likelihood of the target answers.

C.2 RQ3: Prompting as an MMS

Extracting Labels from Zero-Shot Predictions

The outputs produced with zero-shot prompting do
not follow a particular structure that can be used
to extract the answer and therefore need to be pro-
cessed manually. In some cases, it was not possi-
ble for an answer to be extracted. The two most
common reasons for this were unrelated text as an
answer or an indefinite answer. We provide exam-
ples of such predictions in Table 3. Overall, 24.9%
of the answers could not be parsed. In such cases,
we favored putting an indefinite label instead of
"yes" or "no", and counting the answer as wrong
irrespective of the ground truth label. If the answer
and explanation were unrelated, but an answer was
given, we did consider the answer.
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Number of Beams Time (in GPU hours)

cIE + Greedy 1 1.5
cIE + BS 10 10.5
cIE + SB 10 10.5

MT + Greedy 1 0.5
MT + BS 5 1.0
MT + SB 5 1.5

NTTG + Greedy 1 2.0
NTTG + BS 5 3.5
NTTG + SB 5 4.5

NSPG + Greedy 1 3.5
NSPG + BS 5 5.5
NSPG + SB 5 7.0

Table 4: Parameters for the greedy likelihood-based
decoding algorithms. The default parameters for each
model were used, and no hyperparameter search was
conducted.

C.3 Computational Infrastructure and
Runtime

The evaluation for RQ1 as well as the hyperparam-
eter search for RQ2 were conducted on a single ma-
chine with 24 Intel(R) Xeon(R) CPU E5-2690 v4
@ 2.60GHz processor cores and 441 GB of RAM,
equipped with 4 NVIDIA V100-PCIE-16GB GPUs.
Table 4 provides the details for RQ1.

For VGBS, we performed a small hyperpa-
rameter search over different values for α =
0.01,0.25,0.5,0.75,0.99 on 80 datapoints for each
noise value of the value model. The same pro-
cedure was conducted for MCTS, over cpuct =
0.25,1.25,3. Each of these runs took 20 to 30 min-
utes of wall time, that is, slightly over 1 to 2 hours
of GPU time. Table 5 and Table 6 provide the final
parameters for VGBS and MCTS respectively.

The evaluation for RQ2 and RQ3, as well as the
hyperparameter search for RQ2, were conducted
on a single machine with 96 processor cores and
840 GB of RAM, equipped with 8 NVIDIA A100-
SXM4-80GB GPUs. Table 5 and Table 6 provide
the details for RQ2.

The evaluation for RQ3 was performed follow-
ing the Sports Understanding setup in Wei et al.
(2022), by taking the same in-context examples.
We used greedy decoding for all of the prompt-
ing methods. The running time for all prompting
experiments (ZS, FS, and CoT) was 6 GPU hours.

α Time (in GPU hours)

MT (λ = 0.99) 0.01 4
MT (λ = 0.5) 0.01 4
MT (λ = 0.35) 0.25 4
MT (λ = 0.25) 0.25 4
MT (λ = 0.15) 0.25 4
MT (λ = 0.01) 0.75 4

NTTG (oracle) 0.25 32
NTTG (1200 steps) 0.25 30
NTTG (400 steps) 0.25 30
NTTG (200 steps) 0.25 29

Table 5: Parameters for VGBS. For all the experi-
ments, the value models consider the top-10 tokens ac-
cording to the likelihood. The BLEU to the true target
is weighted by λ (i.e., high λ translates to high-quality
value model).

cpuct Time (in GPU hours)

MT (λ = 0.99) 1.25 41
MT (λ = 0.5) 0.5 41
MT (λ = 0.35) 0.5 40.5
MT (λ = 0.25) 0.25 40
MT (λ = 0.15) 0.25 40
MT (λ = 0.01) 1.25 40

NTTG (oracle) 1 125
NTTG (1200 steps) 1 96
NTTG (400 steps) 1 100
NTTG (200 steps) 1 98

Table 6: Parameters for MCTS. For all the experi-
ments, at each node, we consider the top-20 tokens
according to the likelihood and perform 50 simulations.
The BLEU to the true target is weighted by λ (i.e., high
λ translates to high-quality value model).
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Abstract

Documents that consist of diverse templates
and exhibit complex spatial structures pose a
challenge for document entity classification.
We propose KNN-Former, which incorporates a
new kind of spatial bias in attention calculation
based on the K-nearest-neighbor (KNN) graph
of document entities. We limit entities’ atten-
tion only to their local radius defined by the
KNN graph. We also use combinatorial match-
ing to address the one-to-one mapping prop-
erty that exists in many documents, where one
field has only one corresponding entity. More-
over, our method is highly parameter-efficient
compared to existing approaches in terms of
the number of trainable parameters. Despite
this, experiments across various datasets show
our method outperforms baselines in most en-
tity types. Many real-world documents exhibit
combinatorial properties which can be lever-
aged as inductive biases to improve extraction
accuracy, but existing datasets do not cover
these documents. To facilitate future research
into these types of documents, we release a new
ID document dataset that covers diverse tem-
plates and languages. We also release enhanced
annotations for an existing dataset.1

1 Introduction

Structured document information extraction (IE)
attracts increasing research interest due to the surg-
ing demand for automatic document processing,
with practical applications in receipt digitization,
workflow automation, and identity verification etc.

Recent state-of-the-art methods for processing
documents with complex layouts extensively ex-
ploit layout information, such as position, relative
distance, and angle, with transformer-based mod-
els. Spatial modelling is a key contributing factor
to the success of these methods ( Xu et al. 2020,
Appalaraju et al. 2021, Xu et al. 2021, Hwang et al.
2021). However, absolute coordinates, pair-wise

1https://github.com/miafei/knn-former

relative Euclidean distance, and angle are insuffi-
cient to capture the spatial relationship in complex
layouts. Two document entity pairs could carry
different importance despite having the same posi-
tion and distance, due to the presence or absence
of other entities positioned between the pairs. We
believe that spatial information can be better ex-
ploited for document entity classification.

We propose KNN-Former, a parameter-efficient
transformer-based model that extracts informa-
tion from structured documents with combinato-
rial properties. In addition to relative Euclidean
distance and angle embeddings as inductive bi-
ases (Hwang et al., 2021), we introduce a new form
of spatial inductive bias based on the K-Nearest
Neighbour (KNN) graph which is constructed from
the document entities and integrate it directly into
the attention mechanism. Specifically, we first con-
struct a KNN graph based on the relative Euclidean
distance of document entities. Then we incorporate
hop distance between entities, which is defined as
the shortest path between two entities on the KNN
graph, in training their pair-wise attention weight.
For entity pairs with the same Euclidean distance
but different hop distance, the difference in hop
distance would still contribute to different attention
weights. We limit an entity’s attention calculation
only to its local radius of neighborhood defined by
the KNN graph. This also strengthens the inductive
bias as reflected by our experiment results.

Furthermore, many real-world document infor-
mation extraction tasks come with combinatorial
properties, such as one-to-one mapping between
field categories and values. Such combinatorial
properties can be leveraged as inductive biases to
improve the extraction accuracy, but are under-
explored because existing datasets do not cover
such documents. Current methods that do not ad-
dress the combinatorial constraints suffer subopti-
mal performance on these types of documents. We
further leverage this inductive bias by treating the
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entity classification task as a set prediction problem
and using combinatorial matching to post-process
model predictions(Kuhn, 1955; Carion et al., 2020;
Stewart et al., 2016).

In addition, KNN-Former is parameter-efficient.
Recent baseline models are initialized with parame-
ters of pre-trained language models (Xu et al., 2020,
2021; Hwang et al., 2021; Hong et al., 2022), mak-
ing their model size larger or at least comparable to
the language models. KNN-Former does not utilize
initialized parameters of existing language mod-
els, therefore free from the parameter size floor
restriction. It is designed to be 100x smaller in
trainable parameters compared to prevailing base-
lines. KNN-Former’s parameter efficiency makes
it energy-efficient, contributes to faster training,
fine-tuning and inference speed and makes mobile
deployment feasible.

To encourage the progress of IE research in
complex structured documents with combinatorial
mapping properties, we release an ID document
dataset (named POI). While the existing ID docu-
ment dataset has only 10 templates (Bulatov et al.,
2021), POI exhibits better template and lingual di-
versity. It also has a special mapping constraint
where one field category has only one correspond-
ing entity. In compliance with privacy regulations,
the documents in the POI dataset are specimens
and do not contain information about real persons.

We conduct extensive experiments to evaluate
the effectiveness of our proposed method. KNN-
Former outperforms baselines on most field cat-
egories across various datasets, despite having a
significantly smaller model size. Extensive abla-
tion studies show the importance of the KNN-based
inductive bias and combinatorial matching.

To summarize, our contributions include (1)
a highly parameter-efficient transformer-based
model that (2) incorporates KNN-based graph in-
formation in sparsified local attention; (3) combi-
natorial matching to address the one-to-one map-
ping constraint; (4) a new ID document dataset
with good template diversity, complex layout, and
a combinatorial mapping constraint.

2 Related Work

Researchers have tried multiple approaches for doc-
ument information extraction (Jaume et al., 2019;
Mathew et al., 2021; Stanisławek et al., 2021).
However, these works do not have spatial cues,
such as the position of the information in the origi-

nal document. To address this shortcoming, a num-
ber of works introduce the modality of layout infor-
mation as additional input features. Majumder et al.
(2020) adopts positional information as inputs to
their method to extract information from receipt
documents. LayoutLM (Xu et al., 2020) adds 1-D
and 2-D absolute position encodings to text embed-
dings before passing them to the transformer. Hong
et al. (2021) proposes to train a language model
from unlabeled documents with area masking, en-
coding relative positions of texts. StructuralLM (Li
et al., 2021) assigns the bounding box cell position
as the position coordinates for each word contained
in it. DocFormer (Appalaraju et al., 2021) encodes
2D spatial coordinates of bounding boxes for vi-
sual and language features. LayoutLMv2 (Xu et al.,
2021) uses learnable pair-wise relative positional
embeddings as attention bias.

A few works propose to use graphs to rep-
resent spatial entity relationships in documents.
SPADE (Hwang et al., 2021) uses a three steps
graph decoder and formulates the information ex-
traction task as a dependency parsing problem.
FormNet (Lee et al., 2022) constructs a k-nearest
neighbor graph and applies a 12-layer graph con-
volutional network (GCN) to get the entity embed-
dings before feeding them into a transformer net-
work. However, there are some limitations in using
GCN to obtain embeddings. It is well established
that the message passing-based GCN are limited
in their expressive power (Xu et al., 2018; Arvind
et al., 2020; Morris et al., 2019; Chen et al., 2020;
Loukas, 2019; Dehmamy et al., 2019). In addition,
FormNet does not use the hop distance between
nodes, which could serve as a strong inductive bias
to capture the spatial relationships between docu-
ment entities.

Datasets with positional information such as
Funsd (Jaume et al., 2019), Cord (Park et al., 2019),
Sroie (Huang et al., 2019) are released to facili-
tate research in document understanding. However,
they do not contain documents with combinato-
rial properties which are common in real-world
applications.MIDV500 (Arlazarov et al., 2018) and
MIDV2020 (Bulatov et al., 2021) are two synthetic
ID datasets with combinatorial properties, but are
unsuitable for document information extraction
tasks due to incomplete annotations. They also
lack template diversity.
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Figure 1: An illustration of KNN-Former. Bounding box texts are embedded using sentence transformer, which are
concatenated with embeddings of bounding box size to form input embeddings. The concatenated embeddings are
then passed to the transformer layers with KNN Hop Attention, which incorporates pair-wise relative hop distance
between entities on KNN graph in attention calculation. The output entity representations of the transformer layers
are passed to combinatorial matching for set prediction.

3 Methodology

In this section, we discuss the methodology for
our model. We formulate the problem in Sec.3.1
and explain our overall model architecture and the
details of each component in Sec.3.2.

3.1 Problem Formulation

Given a document D which consists of multiple
entities {ei, . . . , ej}, and the bounding box coor-
dinates and texts{xi, . . . , xj} detected by Optical
Character Recognition (OCR) tool. We measure
the relative distance and angle between two enti-
ties ei and ej as σ (i,j) based on the coordinates of
bounding boxes. Our task is to map each entity ei
in documentD to its field category yi, which is one
of the predefined labels. For each field category yi,
there is only one corresponding entity ei.

3.2 Model Architecture

We propose KNN-Former, a transformer-based
model for document entity classification. The archi-
tecture of KNN-Former is shown in Fig. 1. KNN-
Former uses K-Nearest Neighbours Hop Atten-
tion, which incorporates a new inductive bias into
attention computation. KNN-Former also treats
document entity classification as a set prediction
problem and uses combinatorial assignment to ad-
dress the one-to-one correspondence between enti-
ties and fields. KNN-Former is highly parameter-

efficient compared to baselines. Details of model
size can be found in Tab 4.

3.2.1 K-Nearest Neighbors Hop Attention
One key contribution of KNN-Former is the pro-
posed attention mechanism. Following (Lee et al.,
2022), we first construct a KNN graph based on the
Euclidean distance between each pair of entities.
We represent entities as nodes and then connect
edges between each entity and its K nearest neigh-
boring entities. We also add a self-loop to each
entity to improve performance (Kipf and Welling,
2016). While previous works focus on leverag-
ing pair-wise relative Euclidean distance (Xu et al.,
2021; Hwang et al., 2021), we propose to incor-
porate pair-wise relative hop distance, which is
defined as the shortest path between two entities
on the KNN graph. Two entities could be in prox-
imity in terms of Euclidean distance but not so in
terms of hop distance. For example, in documents
with complex layouts, it is common to have two
entities that are close to each other in the Euclidean
space, but there is a third entity positioned in be-
tween. This type of entity pair should be treated
differently from pairs that are close to each other
in both Euclidean and hop distances. In this case,
the spatial attention mechanism based solely on the
relative Euclidean distances between entity pairs is
insufficient since it neglects this structural informa-
tion. We argue that the KNN graph structure is an
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effective way of capturing the structural informa-
tion and propose to incorporate it as an inductive
bias into the attention computation.

Intuitively, different hop distances should carry
different weights in calculating pairwise attention.
We use ϕ(i,j) to represent the hop distance between
entity i and j and H to represent a learnable em-
bedding lookup table based on the hop distance
ϕ(i,j). Inspired by DeBERTa (He et al., 2020) and
Transformer-XL (Dai et al., 2019), we integrate the
hop distance bias into attention as described in the
following equations

(1)
eij = [xiW

Q(xjW
K +HQ

ϕ(i,j)
+RQσ(i,j))

+ (HK
ϕ(i,j)

+RKσ(i,j))xiW
K ]/
√
d,

zi =
∑

j

aij(xjW
V +HV

ϕ(i,j)
+RVσ(i,j)), (2)

where σ(i,j) is a concatenation of the relative Eu-
clidean distance and angle between entity i and j,
and R is a learnable matrix. H could be a learn-
able matrix or a lookup table that maps σ(i,j) to
learnable embeddings. eij is the attention weight
between entity i and j. aij is calculated as the
weight of exp(eij) in the exponential sum of all
eik, as described in Eqn.3.

aij =
exp(eij)∑
k exp(eik)

. (3)

Similar to how pair-wise relative Euclidean dis-
tance is added to attention, we add pair-wise hop
distance as three learnable weight matrices, two
of which multiply with query and key vectors re-
spectively while the remaining one is added to the
value vector. We further limit an entity’s attention
only to its local radius of neighborhood defined
by the KNN graph. Specifically, we do not calcu-
late eij if the hop distance between entity i and j
exceeds a certain threshold. This also strengthens
the inductive bias as supported by our experiment
results.

3.2.2 Combinatorial Matching
We hypothesize that combinatorial properties be-
tween field categories and entities can be leveraged
as inductive biases to improve extraction perfor-
mance. Different from existing methods that treat
the classification of each entity independently (Xu
et al., 2021; Hwang et al., 2021; Lee et al., 2022),

we propose to treat the entity classification task as
a set prediction problem to exploit the one-to-one
mapping constraint, where one field has one and
only one corresponding entity. The combinatorial
assignment is described in Eqn.4.

τopt = argminτ

N∑

i

Lmatch(y
label
i , ypredτ(i)

), (4)

where τ is an assignment, and Lmatch is the match-
ing cost. N is the number of entities in a document.
In practice, N is often much larger than the num-
ber of entities of interest. Therefore, we pad the
number of ground truths to N in order to perform
a one-to-one combinatorial assignment. This can
be done with the Hungarian algorithm in polyno-
mial time (Kuhn, 1955; Carion et al., 2020; Stewart
et al., 2016).

4 Datasets

Many real-world documents exhibit combinatorial
properties, such as a one-to-one mapping between
between its fields and entities. However, existing
public datasets do not cover documents with such
properties (Jaume et al., 2019; Park et al., 2019;
Huang et al., 2019). To fill the gap, we release
a new ID document dataset POI, and enhanced
annotations of MIDV2020. We also verify our
method on a private dataset PRV. All 3 datasets
exhibit combinatorial properties.

In addition, we design the POI dataset to be
template-rich with diverse languages. We also
design the enhanced MIDV2020 with a difficult
split such that templates in testing are unseen dur-
ing training. BERT alone without spatial infor-
mation can achieve above 90% F1 on some exist-
ing datasets (Hong et al., 2022; Park et al., 2019;
Huang et al., 2019), indicating relative sufficiency
of leveraging text information alone. Yet in many
real-world use cases, using text alone is insufficient.
This motivates us to work on more challenging
datasets where the exploitation of spatial informa-
tion is important. Dataset statistics are summarized
in 1 and Tab. 2. More details are as follows.

#Train Doc. #Test Doc.

POI 421 109
MIDV2020 500 200
PRV 3480 807

Table 1: Number of documents in training and testing.
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Dataset Avg # of Ent.
per Doc.

Total # of
Ent.

Total # of
Doc.

POI 31.79 16850 530
MIDV2020 32.85 23000 700
PRV 24.31 104245 4287

Table 2: Statistics of entity distribution in documents.
Ent. stands for entities and Doc. stands for documents.

POI We collect and annotate 530 Proof-of-
Identity documents from online sources. We will
release this POI dataset which consists of 10 docu-
ment types, 265 distinct templates, and 131 coun-
tries of origin. The template and language diver-
sity of POI create a challenging task for document
understanding. All images are specimens with
dummy values. The document type distribution
is shown in Tab.3.

There are 8 field categories in total: last name,
first name, date of birth, date of issue, date of ex-
piry, ID number, key, and others. Key represents
entities that indicate the field names for the impor-
tant entities (e.g. Last Name) that we are interested
to extract. The first 6 field categories appear in
each document image once and only once, creat-
ing a special mapping constraint unseen in other
datasets. The last 2 field categories (key and others)
are not subject to the constraint. In real-world ap-
plications, it is common to extract a set of entities
from documents that have combinatorial properties
between its field and entities. ID document infor-
mation extraction is one such use case, where we
only expect to extract one entity for each field cate-
gory of interest. This one-to-one correspondence
can be leveraged to improve classification perfor-
mance. Despite being a common task setting, we
notice the lack of method exploration and innova-
tion in this direction, due to the unavailability of
such property among existing popular document
datasets. More details about the dataset can be
found in the Appendix.

Document Type # Document

Passport 238
Driving License 119
Travel Document 109
ID 30
Resident Permit 21
Seafarer ID 10
Others 3

Table 3: Distribution of document types in POI dataset

MIDV2020 We utilize the 1000 synthesized ID
documents from the initial MIDV2020 dataset (Bu-
latov et al., 2021) . These documents are generated
from 10 templates, with 100 documents for each
template. Each document image is annotated with
a list of bounding box coordinates and field val-
ues. We find that only artificially generated entities,
such as the values of names and ID numbers, are
annotated, while entities that belong to the orig-
inal templates, such as document title and field
names are not. We proceed to annotate the remain-
ing entities. The newly annotated ground truths of
MIDV2020 will be released alongside POI. These
enhanced annotations enable us to perform infor-
mation extraction task in a setting that is closer to
real-world application, where all texts recognized
by the OCR engine are used. The train/test split we
introduce for MIDV2020 is a split by countries, this
ensures that the document templates in the training
dataset are unseen in the testing dataset. The coun-
try split simulates real-world scenarios where the
model extension to new countries or new versions
of documents is needed. More details can be found
in the Appendix.

PRV Since POI and MIDV2020 only contain
specimens or artificially generated images, we run
our model on a private dataset (named PRV) that
mostly consists of US driver licenses. The docu-
ments are protected by strict privacy requirements
and massive human annotations are not available as
raw images are inaccessible. Therefore, we build
automatic fuzzy labeling to annotate the ground
truth.

Comparison on Datasets POI exhibits better
template and language diversity. POI contains 265
templates from 131 countries, while MIDV2020
has 10 templates from 10 countries. The number of
templates in PRV is unknown due to privacy-related
limitations. In addition, POI consists of templates
in a multitude of languages, whereas MIDV2020
and PRV dataset lack such diversity. Texts in POI
and MIDV2020 are made up largely by artificial
text which is more readable and clearer, while PRV
contains real texts. POI and PRV samples are split
randomly. Since MIDV2020 has only 10 templates,
we split the samples by country to make the task
more challenging. PRV is the easiest dataset among
the three due to its lingual monotony and random
split.

1475



Dataset Method
F1 Score

Input Modality
#Parameters

L.Name F.Name DoB DoI DoE ID No. Trainable Total

POI BERTBASE 67.90 72.73 92.11 70.78 69.06 78.70 text 110 M 110 M
GCN 45.35 56.08 85.62 62.37 62.32 70.65 text + layout 31.5 K 22.7M

LayoutLMBASE 87.03 86.88 93.93 86.23 87.72 83.12 text + layout 110 M 110 M
LayoutLMv2BASE 90.58 89.26 96.00 94.22 92.59 88.16 text + layout + image 199 M 199 M

SPADE 73.73 78.63 90.09 89.59 90.27 83.98 text + layout 128 M 128 M
BROSBASE 82.39 82.76 94.16 91.41 88.32 83.18 text + layout 109 M 109 M

KNN-former 83.57 82.18 98.37 95.89 94.48 90.06 text + layout 0.5 M 23.2M

MIDV2020 BERTBASE 40.61 52.89 100.00 85.29 80.00 55.62 text 110 M 110 M
GCN 32.03 43.09 99.50 99.00 79.76 43.82 text + layout 31.5 K 22.7M

StructuralLMLARGE 25.13 11.83 100.00 89.29 91.53 99.50 text + layout 355 M 355 M
LayoutLMBASE 47.65 15.10 100.00 97.96 80.16 67.97 text + layout 110 M 110 M

LayoutLMv2BASE 47.54 49.91 87.15 97.56 77.24 94.18 text + layout + image 199 M 199 M
SPADE 48.91 45.54 79.90 63.47 60.85 60.34 text + layout 128 M 128 M

BROSBASE 23.31 23.78 98.50 70.83 18.27 85.39 text + layout 109 M 109 M

KNN-former 87.88 54.26 100.00 100.00 95.21 69.65 text + layout 0.5 M 23.2M

PRV BERTBASE 71.32 76.39 97.72 88.78 86.22 87.21 text 110 M 110 M
GCN 66.32 81.97 97.59 89.53 87.90 89.38 text + layout 31.5 K 22.7M

StructuralLMLARGE 93.72 93.27 99.56 98.86 99.21 97.86 text + layout 355 M 355 M
LayoutLMBASE 95.36 94.71 99.17 98.76 98.61 97.85 text + layout 110 M 110 M

LayoutLMv2BASE 95.26 95.31 99.52 99.29 99.36 98.82 text + layout + image 199 M 199 M
SPADE 65.61 70.65 98.70 98.10 96.43 92.48 text + layout 128 M 128 M

BROSBASE 93.52 91.68 99.00 98.44 97.53 97.91 text + layout 109 M 109 M

KNN-former 92.03 96.81 91.22 99.68 99.47 98.76 text + layout 0.5 M 23.2M

Table 4: Entity-level F1 score of KNN-Former compared to baselines. Column L.Name, F.Name, DoB, DoI, DoE
and ID No. correspond to results of Last Name, First Name, Date of Birth, Date of Issue, Date of Expiry, and ID
Numbers. GCN and KNN-Former have additional 22.7 M fixed parameters since we employed a light-weighted
6-layer sentence transformer (Reimers and Gurevych, 2019) to get the text embeddings.

5 Experiments

In this section, we conduct extensive experiments
to evaluate our proposed KNN-Former on afore-
mentioned datasets. We first compare our results
with several baselines in Sec. 5.1. Then in Sec. 5.2,
we evaluate the generalization ability of our method
on unseen templates. We then conduct ablation
studies in Sec.5.3 and Sec.5.4 to assess the effects
of each component in KNN-Former and the impact
of different K in the KNN graph.

5.1 Comparison with Baselines on Multiple
Datasets

We first evaluate the performance of KNN-Former
against multiple competitive methods. We choose
base models for most of the baselines, because
these are closest to KNN-Former in terms of the
number of parameters. Brief description of baseline
models as well as the implementation details of
all the models can be found in Sec. A.1. We do
not have results for StruturalLM on POI dataset
because of an OOV error.

Tab.4 shows the entity-level classification per-
formance. The results show that our method out-
performs the baselines on most entity types across

various datasets. In particular, KNN-Former outper-
forms LayoutLMv2BASE, a state-of-the-art model
that uses additional image features. We also ob-
serve that BERT performs poorly on these datasets,
indicating the importance of exploiting spatial in-
formation.

Secondly, as shown in Trainable Param column
in Tab.4, KNN-Former is highly parameter-efficient.
All baselines except GCN have more than 100 mil-
lion trainable parameters, while KNN-Former has
only 0.5 million and is magnitudes smaller than
competing methods. Even after adding the sen-
tence transformer, KNN-Former has only 23.2 mil-
lion parameters, still 5x smaller than baselines. The
parameter efficiency has 4 benefits. First, it con-
tributes to learning and inference time efficiency,
with details illustrated in 5.5. Second, it allows
for faster fine-tuning on new datasets and domains,
especially in real-world use cases when training
datasets are big and re-training requirements are
frequent. Third, smaller model size and faster infer-
ence time make mobile deployment more feasible.
Fourth, training, fine-tuning and inferring smaller
models reduces power consumption and carbon
footprint. Despite the smaller model size, KNN-
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Former achieves comparable or better performance
across datasets.

Thirdly, we observe that KNN-Former underper-
forms both LayoutLMBASE and LayoutLMv2BASE
for name related entities in both POI and PRV
datasets. The robustness of the two baselines in
predicting names could be attributed to their exten-
sive pre-training. The two baselines learn common
names in pre-training, enabling them to predict
names correctly regardless of context. However,
despite no extensive pre-training, KNN-Former still
outperforms BROS and StructuralLM which are
also pre-trained on 11 million documents.

Fourthly, we observe all methods suffer perfor-
mance degradation on MIDV2020, compared to the
other two datasets. This is because in MIDV2020,
training and testing documents are split by coun-
tries, templates in testing are not seen during train-
ing. In addition, MIDV2020 has only 6 templates
in training data, which easily leads to overfitting.
Detailed discussion on the generalization ability
can be found in Sec. 5.2. we find that BERT out-
performs several baselines with spatial modelling
on names, this may be due to overfitting to limited
number of training templates. We notice that our
method do not perform well on id number entity.
We conducted manual inspection on several error
cases, and find that in many documents there exist
two different types of id numbers(see Fig. 3(b)), but
only one of them is labeled as id number according
to the provided annotations. Our model sometimes
predicts the other one as id number. This also ex-
plains the poor performance on id number for some
other baselines.

Lastly, we notice that on the PRV dataset,
KNN-Former performs poorly on DoB field, un-
derperforming even GCN. KNN-Former’s perfor-
mance on DoB drops after combinatorial match-
ing, despite an overall increase macro average
F1. This could be due to the presence of noise
in groundtruth, since this dataset is annotated by
automatic fuzzy labeling logic. Manual examina-
tion of a few documents confirms our hypothesis.

5.2 Evaluation of generalization ability on
unseen templates

To assess the generalization capability of our
model, we test and compare our model with other
competitive baselines on MIDV2020 dataset using
two train/test settings: random split and split by
country . The country split is a more difficult set-

Figure 2: Macro average F1 scores of KNN-Former and
various baseline models under random split and country
split on MIDV2020 dataset.

ting as the templates in testing are unseen during
training. Intuitively, we would expect a decline
in performance as compared to the random split
setting. Fig. 2 shows the Macro average F1 scores
comparison of KNN-Former and multiple baselines
under both the random split and the country split.
We observe across-the-board performance degrada-
tion for all methods after switching from random
split to country split. However, the drop is least
significant on KNN-Former, enabling it to achieve
10% higher F1 than the best baseline. These ex-
periments indicate that our method is more robust
and generalizes better to unseen templates as com-
pared to existing baseline models. This is helpful
in real-world applications where models frequently
encounter new types of documents.

5.3 Effects of each component in KNN-Former

Model F1

KNN-Former 90.76
(-)KNN hop attention 88.33 (-2.43)
(-)Local attention based on KNN hop

& (-)KNN hop attention 85.67 (-5.09)
(-)Relative Euclidean distance & angle attention 87.17 (-3.59)
(-)Relative Euclidean distance & angle attention

& (-)KNN hop attention 86.67 (-4.09)
(-)Combinatorial Matching 88.16 (-2.60)
(+)Absolute positional encoding 86.33 (-4.43)

Table 5: Ablation results on POI dataset. (-) indicates
the component is absent compared to KNN-Former, (+)
indicates the component is additional.

To better understand how KNN-Former works,
we ablatively study the effects of each component
and report the results in Tab. 5. Entity-level detailed
results can be found in the Appendix.

Firstly, we observe a 2.43% drop in performance
with the removal of KNN hop attention and an even
bigger 5.09% drop when local attention is removed
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together with KNN hop attention. This demon-
strates that the KNN graph-based inductive bias
is effective in capturing the structural information
between document entities. It also shows that lo-
cal attention, the practice of masking out attention
weights when the hop distance between two entities
exceeds a pre-defined threshold, further strengthens
the inductive bias.

Secondly, we observe that the commonly used
spatial inductive bias based on the pairwise rel-
ative Euclidean distance and angle also plays an
important role. When both relative Euclidean dis-
tance attention and KNN hop attention are absent,
there is a 4.09% drop in performance, an additional
decrease of 1.66% compared to when only KNN
hop attention is ablated(2.43%). The overlap of
performance drop suggests some information are
captured by both Euclidean distance and hop dis-
tance, as some pairs are similarly close/far from
each other as measured in both distances. However,
each distance also complements the other by captur-
ing additional information. For example, two pairs
could carry different importance despite having the
same Euclidean distance, due to the presence or
absence of other entities positioned between the
pairs, signifying the importance of hop distance.

Thirdly, we notice that the F1 score drops dras-
tically by 4.76% when combinatorial matching is
ablated. This demonstrates the important contri-
bution of combinatorial matching, as the datasets
we experiment on are all subject to a special one-
to-one mapping constraint between fields and enti-
ties. Combinatorial matching enables our method
to treat entity classification as a set prediction prob-
lem, instead of predicting each entity’s class inde-
pendently, which enhances our model robustness.

Lastly, we observe that there is a 4.43% drop in
performance when absolute positional encoding is
added. Previous works (Hwang et al., 2021) have
similar findings that adding absolute positional en-
coding is not helpful, especially when the test set
contains a diverse set of unseen templates. In our
experiments, adding absolute positional encoding
improves performance in training but generalizes
poorly in testing.

5.4 Impact of different K in the KNN graph

To further study the effect of how the hyper-
parameter of the KNN graph affects the perfor-
mance, we conduct experiments with different val-
ues of K on the POI dataset. As shown in Tab. 6, the

#K (+) H (-) R (-) H (+) R (+) H (+) R

2 90.67 89.33 89.50
5 88.74 90.23 89.51

Table 6: Impact of number of K in KNN-Former on POI
dataset. (+) indicates presence, (-) indicates absence.
H refers to the KNN hop attention. R refers to relative
Euclidean distance and angle attention.

2-NN graph achieves the best performance when
KNN-based hop distance is used and relative Eu-
clidean distance is removed. This is because when
only 2 nearest entities are counted as an entity’s
first-hop neighbors, the correlation between hop
distance and entity pair’s importance is pronounced.
However, a 5-NN graph achieves the best perfor-
mance when KNN-based hop distance is ablated
and only relative Euclidean distance is used. This is
because the information of who is an entity’s 5 near-
est neighbors is less useful in documents with an
average of 31.79 annotated bounding boxes per file.
Models with 2-NN and 5-NN graphs underperform
the 4-NN graph in the POI dataset, underscoring
the importance of choosing the correct KNN graph
hyper-parameter for different datasets.

5.5 Runtime Comparison
In addition to performance evaluation, we also eval-
uate the runtime of our model against competitive
baselines. For fair comparison, we report the total
runtime of sentence transformer plus KNN-Former,
since KNN-Former uses sentence transformer for
text embeddings. In fact, the sentence transformer
takes up half of the time in our pipeline.

Model Single Batch

LayoutLMBASE 19.61 237.90
LayoutLMv2BASE 56.64 2941.32
SPADE 39.47 6091.52
BROSBASE 23.45 646.65

KNN-Former 22.60 77.57

Table 7: Runtime comparison with baselines. Time
taken is reported in milliseconds.

We first measure the runtime to process a single
document for each method. As shown in Tab. 7,
time taken for sentence encoder plus KNN-former
is comparable to LayoutLM and BROS, and is
faster than SPADE, LayoutLMv2. We run Stru-
turalLM(written in tensorflow1.14) on CPU due
to cuda version mismatch, hence there is no speed
measurement.
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Moreover, our method allows for significantly
larger batch sizes because of the smaller model size.
Therefore, runtime for documents in batch is sig-
nificantly faster than the baselines. Running with
maximum possible batch size for each model using
a 16GB V100 GPU, KNN-Former is significantly
faster than the rest, as shown in Tab. 7. This experi-
ment demonstrates that our model is advantageous
when faster execution time is desirable, and this
could be attributed to the lightweight property of
our model.

6 Conclusion

We propose KNN-Former, a parameter-efficient
transformer-based model for document entity clas-
sification. KNN-Former uses KNN Hop Atten-
tion, a new attention mechanism that leverages
KNN graph-based inductive bias to capture struc-
tural information between document entities. KNN-
Former utilizes combinatorial matching to perform
set prediction. We also release POI, a template-
rich ID document dataset subject to combinatorial
constraints. Experiments show that KNN-Former
outperforms baselines in entity classification across
various datasets.

Limitations

We identify the following limitations in this work.
First, the robust performance of baseline meth-
ods that leverage image features (Appalaraju et al.,
2021) testifies to the importance of visual cues.
The inclusion of image features to KNN-Former
might contribute to better performance. Second, un-
like models that perform extensive pre-training (Xu
et al., 2020, 2021), KNN-Former might lack generic
domain knowledge. Third, KNN-Former uses a
vanilla sentence transformer to get the text embed-
ding inputs. The sentence transformer model is
pre-trained and not fine-tuned on the new datasets.
An end-to-end training pipeline that jointly trains
the text encoding model and KNN-Former could
lead to better results. Fourth, there are many de-
sign choices we did not explore, such as applying
attention directly at the token level and pooling rep-
resentations at the end. Lastly, KNN-Former, along
with all baselines used in this work, are subject to
OCR failure. All models consume OCR outputs
such as bounding box coordinates and texts. In the
case of OCR failure, where one bounding box is
detected as two or two boxes are merged as one,
models that consume OCR results are less likely to

make correct predictions.
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A Appendix

A.1 Implementation details
We briefly describe the baseline models as well as
detailed implemetation details of all models in this
section.

• BERTBASE (Devlin et al., 2019): We use the
pre-trained BERT base model for token clas-
sification.

• GCN (Kipf and Welling, 2016): We use sen-
tence transformer (Reimers and Gurevych,
2019) to get the embeddings of text inputs
and use them as the node features for the con-
structed KNN graph. Then we train a 2-layer
graph convolutional network to classify the
nodes/entities.

• LayoutLMBASE (Xu et al., 2020): LayoutLM
is a transformer-based model for document
image understanding. It is pre-trained on IIT-
CDIP Test Collection with 11 million scanned
images.

• LayoutLMv2BASE (Xu et al., 2021): In ad-
dition to LayoutLM, the LayoutLMv2 adds
a new multi-modal task during pre-training
to take in the visual cues and incorporates a
novel spatial-aware self-attention mechanism.

• StructuralLMLARGE (Li et al., 2021): On
top of LayoutLM, Structural LM uses cell
position for each word, and introduces a new
pre-training task that predicts the cell position.
It is also pre-trained on the IIT-CDIP dataset.

• SPADE (Hwang et al., 2021): SPADE builds
a directed graph of document entities and ex-
tracts and parses the spatial dependency using
both linguistic and spatial information.

• BROS (Hong et al., 2022): Similar to Lay-
outLM, BROS is also pre-trained on the IIT-
CDIP dataset, but with a different area mask-
ing pre-training task, and a different method
to encode the 2D positions of bounding boxes.

• DocFormer (Appalaraju et al., 2021): Doc-
Former is a multi-modal transformer that takes
in both text and visual cues. It proposes a
multi-modal attention mechanism and is pre-
trained with several tasks involving both text
and image input.

All models are trained on 16G V100 GPUs
and implemented with Pytorch, except for
StructuralLMLARGE, for which we use their offi-
cial repository 2 that is implemented in Tensor-
flow1.14 and we train it on cpu because of cuda
version mismatch. We use APIs open-sourced
by Huggingface 3 for Bert, LayoutLMBASE and
LayoutLMv2BASE. SPADE is implemented using
the official implementation released by ClovaAI4.
BROS is implemented using their released offi-
cial repository 5. Only text inputs are passed to
BERTBASE for classification while bounding box
coordinates are neglected. Results are obtained af-
ter training for 100 epochs. We trained the SPADE

2https://github.com/alibaba/AliceMind/StructuralLM
3https://huggingface.co
4https://github.com/clovaai/spade
5https://github.com/clovaai/bros
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model for 10 to 20 hours up to 1000 epochs depend-
ing on the datasets. All settings of LayoutLMBASE
and LayoutLMv2BASE are from the authors. For
BROS, we use the same tokenizer as LayoutLM,
same learning rate in their paper and fine-tuned
BROS on each dataset for at least 100 epochs, and
made sure it converged. We report results for epoch
80. For StructuralLMLARGE, we were only partially
successful to reproduce it due to OOV error when
running on POI dataset. In addition, this is the
only baseline that we use the large version because
there was an error with the base version. we train
the model with 25 epochs with all other hyperpa-
rameters following their paper. We reproduced
DocFormer from an unofficial repository 6 since
there is no official repository available. There is
no released pretraining weights for DocFormer, but
DocFormer uses plain ResNet50 (He et al., 2016)
as the first step for image feature extraction, and the
language embedding weights are initialized with
LayoutLMv1BASE pre-trained weights. We trained
DocFormer for at least 100 epochs and used hyper-
parameters for fine-tuning setting mentioned in the
paper. We report results for epoch 100.

For KNN-Former, we use 8 layers, 8 heads, and
80 hidden dimensions for the architecture. Results
are obtained after training for 400 epochs. We use
a 6-layer sentence transformer to extract text fea-
tures in for both KNN-Former and GCN baseline
model implementation. We use Adam optimizer
with learning rate of 5e-3. We perform a grid search
in choosing hyper-parameters, with learning rate in
[5e-3, 1e-3, 5e-4], the number of layers in [4, 8], lo-
cal attention threshold in [1,2,3], and the number of
attention heads in [4,8]. To incorporate relative Eu-
clidean distance and angle, we tried both real and
quantized angles in our initial exploration and did
not find a significant difference. We use real angle
values throughout the experiments. In the imple-
mentation of combinatorial matching, we choose
class probabilities as matching cost following (Car-
ion et al., 2020). Despite no theoretical justification,
they observe better performance than log probabili-
ties. We conduct experiments comparing class and
log probabilities but do not observe significant dif-
ferences in POI dataset(<0.005%). Reported results
are the average performance of 3 runs. The sen-
tence transformer we used is paraphrase-MiniLM-
L6-v2 from hugging face.

6https://github.com/shabie/docformer

A.2 Experimental Results on MIDV2020
random split

Tab 8 shows the additional experimental results
on MIDV2020 random split. Column L.Name,
F.Name, DoB, DoI, DoE and ID No. correspond
to results of Last Name, First Name, Date of
Birth, Date of Issue, Date of Expiry, and ID Num-
bers. GCN and KNN-Former have additional 22.7
M fixed parameters since we employed a light-
weighted 6-layer sentence transformer (Reimers
and Gurevych, 2019) to get the text embeddings.
MIDV dataset has 10 templates, and each template
has 100 images. As a result, this random split is an
easy setting where performance results are gener-
ally good. BERTBASE still produces relatively poor
performance, which reiterate the point that spatial
information is important.

A.3 Experimental Results on DocFormer

Tab 9 shows the experimental results of DocFormer
on various datasets. On POI, PRV dataset and
MIDV2020 dataset random split, DocFormer per-
forms reasonably well. On POI dataset, it only
falls behind LayoutLMv2BASE and KNN-Former;
on PRV dataset, it outperforms BERTBASE, GCN
and SPADE; on MIDV2020 dataset random split,
it achieves 100% F1 score for every field like KNN-
Former, StructuralLMLARGE, LayoutLMBASE and
BROSBASE. However, on MIDV2020 dataset coun-
try split, we cannot get reasonable performance for
DocFormer although we made sure our training
was converged.

We also measured the runtime of DocFormer,
results shown in Tab. 10.

A.4 POI Dataset Details

All images are publicly available specimen ID doc-
uments and do not contain information about real
persons. Despite that, due to the sensitivity of the
subject and increasing societal concerns about the
role artificial intelligence should play in protecting
people’s privacy, we will only release the annotated
JSON file instead of the actual images to comply
with fair use of specimens.

We store a list of objects in the annotated file;
each object contains annotations for an image. The
annotations include bounding box coordinates, text,
and category.

The released dataset is subject to fair use clause
and should only be used for academic purposes.

We implement quality control during the annota-
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Dataset Method
F1 Score

Trainable ParamL.Name F.Name DoB DoI DoE ID No.

MIDV BERTBASE 72.09 81.35 100.00 92.99 88.48 76.52 110 M
GCN 51.48 61.66 98.68 91.59 88.55 73.90 31.5 K
StructuralLMLARGE 100.00 100.00 100.00 100.00 100.00 100.00 355M
LayoutLMBASE 100.00 100.00 100.00 100.00 100.00 100.00 110 M
LayoutLMv2BASE 99.47 99.74 100.00 100.00 100.00 100.00 199 M
SPADE 88.14 86.82 70.63 80.33 79.71 87.55 128 M
BROSBASE 100.00 100.00 100.00 100.00 100.00 100.00 109 M

KNN-Former 100.00 100.00 100.00 100.00 100.00 100.00 0.5 M

Table 8: Experimental Results on MIDV2020 Random Split.

Dataset Method
F1 Score

Input Modality
#Parameters

L.Name F.Name DoB DoI DoE ID No. Trainable Total

POI

DocFormerBASE

78.22 78.87 95.15 90.99 91.82 81.65

text + layout + image 110M 110M
PRV 78.21 84.86 98.17 96.42 97.38 91.89

MIDV2020 (random split) 100.00 100.00 100.00 100.00 100.00 100.00
MIDV2020 (country split) 1.50 0.00 0.00 1.91 0.00 0.00

Table 9: Experimental Results on DocFormer.

Model Single Batch

LayoutLMBASE 19.61 237.90
LayoutLMv2BASE 56.64 2941.32
SPADE 39.47 6091.52
BROSBASE 23.45 646.65
DocFormerBASE 71.57 7485.10

KNN-Former 22.60 77.57

Table 10: Runtime comparison with baselines. Time
taken is reported in milliseconds.

tion process by having annotators cross-check each
other’s results to affirm the correctness of labels.

A.5 Sample documents of POI and
MIDV2020

In Fig. 3, we show samples documents with bound-
ing boxes and annotations.

A.6 PRV Dataset Details
Since POI and MIDV2020 only contain specimens
or artificially generated images, we run our model
on a private (PRV) dataset that consists of actual
ID documents. The documents are protected by
strict privacy requirements and massive human an-
notations are not available as raw images are inac-
cessible. Therefore, we build automatic labeling
to annotate the ground truth. Specifically, we map
personal information in the existing database to
OCR-ed text outputs. The matched bounding box
is classified as the corresponding entity if a match
is found. All bounding boxes that are not matched
are classified as ‘others’.
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(a) POI document (b) Original MIDV2020 document (c) Enhanced MIDV2020 document

Figure 3: Example documents with bounding boxes and annotations. There is only one entity box corresponding to
one field of interest.
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Abstract

Recent work on the Retrieval-Enhanced Trans-
former (Retro) model has shown that off-
loading memory from trainable weights to a
retrieval database can significantly improve lan-
guage modeling and match the performance of
non-retrieval models that are an order of mag-
nitude larger in size. It has been suggested that
at least some of this performance gain is due to
non-trivial generalization based on both model
weights and retrieval. In this paper, we try to bet-
ter understand the relative contributions of these
two components. We find that the performance
gains from retrieval largely originate from over-
lapping tokens between the database and the
test data, suggesting less non-trivial generaliza-
tion than previously assumed. More generally,
our results point to the challenges of evaluating
the generalization of retrieval-augmented lan-
guage models such as Retro, as even limited
token overlap may significantly decrease test-
time loss. We release our code and model at
https://github.com/TobiasNorlund/retro

1 Introduction

Large-scale generative language models have shown
promising results toward creating a general-purpose
foundation for many natural language applications.
While sheer scale-up has resulted in better lan-
guage modeling performance, the immense costs
are an inhibiting factor towards further improve-
ments (Sharir et al., 2020).

Recent work on retrieval-augmented language
models, such as the Retrieval-Enhanced Trans-
former (Retro; Borgeaud et al., 2022), suggests
that memory can be effectively off-loaded from
the model parameters to an external database. In
Retro, the information retrieved from the database
is used to augment the context from which the
model predicts new tokens, reducing the need to
memorize this information in the model parameters.
This opens up for smaller language models with
retained performance. Specifically, Borgeaud et al.
(2022) report that, with a large enough retrieval

∗Corresponding author, tobiasno@chalmers.se

database, Retro can achieve a performance compa-
rable to GPT-3 (Brown et al., 2020) and Jurassic-1
(Lieber et al., 2021) on the Pile (Gao et al., 2020),
at only 4% of the parameters. Similarly, Retro
achieves significantly lower bits-per-byte perfor-
mance compared to a baseline of the same size
without retrieval.

Borgeaud et al. (2022) conclude that Retro has
the capacity for non-trivial generalization based
on both the model parameters and the retrieval
database, even though they find that part of the
performance gains can be attributed to lexical over-
lap between retrieval and test data. In this work,
we want to better understand the nature and mag-
nitude of this effect. Our findings indicate that
performance gains1 originate almost exclusively
from Retro’s ability to copy tokens verbatim from
retrieved data, effectively exploiting any (small or
large) overlap between training and test data. This
suggests that the ability of Retro to fuse retrieved
and in-parameter information may be more limited
than previously assumed.

2 Method
To investigate gains from retrieval, we re-implement
the Retro model described by Borgeaud et al.
(2022) (with a few deviations; see below). We
present the model here in brevity.

2.1 The Retro Model
Retro is an autoregressive language model trained
with the next-token prediction objective, where the
prediction probability is conditioned on additional
context retrieved from a database.

Retrieval Retrieval occurs at the granularity of
contiguous token chunks with a fixed size 𝑚. More
specifically, assume that Retro has already gen-
erated a sequence of tokens 𝑥1:𝑡 . Each token 𝑥𝑖

1Results on Retro were originally reported in bits-per-byte,
while we report results in loss.
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belongs to a chunk 𝐶𝑐 (𝑖) , where 𝑐(𝑖) = ⌈𝑖/𝑚⌉. The
probability of the next token 𝑥𝑡+1 depends on the pre-
viously generated tokens and the context retrieved
from the previously seen chunks:

𝑃
(
𝑥𝑡+1 | 𝑥1:𝑡 ,Ret(𝐶1), . . . ,Ret(𝐶𝑐 (𝑡+1)−1); 𝜃

)
Database Retro’s database takes the form of a
key–value storage 𝑅(𝑁) ↦→ [𝑁, 𝐹], where 𝑁 is
a chunk from one of the indexed documents, 𝐹
is the immediately following chunk, and the key
𝑅(𝑁) ∈ R𝑑 is the embedding of 𝑁 according to
some embedding model 𝑅. This database is used
to retrieve the 𝑘 nearest neighbors of a chunk 𝐶,
based on the embedding 𝑅(𝐶):

Ret(𝐶) = ( [𝑁1, 𝐹1], . . . , [𝑁 𝑘 , 𝐹𝑘])

Architecture Retro is based on the original
Transformer architecture (Vaswani et al., 2017).
Chunk neighbors are encoded by the encoder and at-
tended to by the decoder. Due to the quadratic com-
plexity in self-attention, each neighbor is encoded
separately; all representations are then concate-
nated and made available to the decoder (Izacard
and Grave, 2021). The original decoder is modified
such that for the prediction of token 𝑥𝑡+1, cross-
attention (CA) can only attend to the neighbor rep-
resentations retrieved based on the previous chunk
𝐶𝑐 (𝑡+1)−1. This is called chunked cross-attention
(CCA). Furthermore, the encoder is modified to
include a restricted form of cross-attention to the
decoder. Specifically, the encoder CA attends to
the decoder hidden states immediately before the
first CCA. We refer to Borgeaud et al. (2022) for
more details.

Implementation Details For tokenizing docu-
ments, we use the pre-trained T5 tokenizer. The
retrieval was performed using approximate nearest
neighbor search with the high-performant faiss li-
brary (Johnson et al., 2019). We implement Retro
in PyTorch (Paszke et al., 2019) and use PyTorch
Lightning for distributing the training and valida-
tion data across GPUs and compute nodes. Our
implementation deviates from that of Borgeaud
et al. (2022) only in that we

• use learnable relative positional biases as in T5
(Raffel et al., 2020), with a bucket for each unique
relative position; and

• instantiate the chunk embedding model 𝑅 by a pre-
trained Sentence-BERT (SB) model (Reimers and

Gurevych, 2019) instead of Bert. We deemed
SB to be preferable over Bert as it is smaller (i.e.
cheaper to compute) and produces embeddings
of lower dimensionality (i.e. saves disk space).

2.2 Dataset
Borgeaud et al. (2022) used a multi-lingual version
of MassiveText (Rae et al., 2021) for both training
and retrieval data. To replicate the English portion
of this data, we sought open-source alternatives.
MassiveText comprises text from the categories
web text, news, code, books, and Wikipedia. By
pooling matching categories from Pile (Gao et al.,
2020) and adding the RealNews dataset (Zellers
et al., 2019), we obtain a large dataset composed
of all five categories, consisting of 36M documents
and 52B tokens. We keep the training/validation
splits from the Pile categories. For RealNews, we
use the provided training set and a subsample of
16,400 documents from the validation set. The full
description of our dataset is shown in Table 1.

2.3 Model Training
For our experiments, we train a Retro model that
resembles the 425M model2 in Borgeaud et al.
(2022), as shown in Table 2. We train and test on our
open-source version of MassiveText as described in
Section 2.2. During training, we retrieve neighbors
from the training set, while at validation time, we
retrieve from the union of training and validation
sets. We filter out neighbors that originate from the
same source document as the query chunk. Each
model is trained on sequences of no more than 1,024
tokens; longer sequences are truncated. We use a
chunk size of 64 and retrieve two neighbors during
both training and validation. We train the model
for 140k training steps with a batch size of 16. This
means that only 6% of the training documents are
actually used during training, excluding retrieved
neighbors. We use the Adam optimizer with a fixed
learning rate of 1e−4.

3 Experiments
Borgeaud et al. (2022) observed that retrieval in-
creases language modeling performance. To vali-
date this observation, we compare two configura-
tions of our model: Retro[on], where we enable
retrieval, and Retro[off], where we remove the
CCA layers, thereby reducing Retro to a standard
decoder-only language model. As we can see in

2The 425M parameters exclude embeddings.
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Figure 1: Comparing loss on validation set categories,
when using retrieval vs. no retrieval.

Figure 1, retrieval reduces the loss across all data
categories, and with 11% across the full valida-
tion set. GitHub data has the lowest validation
loss among all categories and is also where we see
the largest reduction in loss, at 42%. Wikipedia
sees the smallest reduction in loss, at only 3%. A
closer comparison to the results from Borgeaud
et al. (2022) is available in Appendix D.

3.1 Loss per Degree of Overlap
As Borgeaud et al. (2022) note, retrieval-based
models such as Retro may more easily exploit eval-
uation dataset leakage. To quantify how much of
the positive effect of retrieval on language modeling
performance can be attributed to such leakage, the
authors computed bits-per-byte (bpb) for evaluation
chunks with different amounts of consecutive token
overlap relative to their retrieved neighbors. This
analysis showed that, while the positive effect of
retrieval decreased with smaller overlaps, it was still
significant at overlap levels of at most 8 contiguous
tokens, which the authors considered small enough
to conclude that while Retro actually learns to
generalize from retrieval data, not merely copy-and-
paste it. Here we investigate the hypothesis that the
bpb reductions observed by Borgeaud et al. (2022)
are localized exclusively in the overlapping tokens.
If this was true, it would challenge the conclusion
that Retro learns non-trivial generalizations based
on retrieval data.

To test our hypothesis, we sort the validation set
tokens into buckets based on their leftward overlap.
Specifically, we put a token 𝑥𝑖 into a bucket Φ(𝑛),
where 𝑛 is the largest number such that 𝑥𝑖 and the
𝑛 − 1 tokens preceding it consecutively overlap
with some neighboring chunk in Ret(𝐶𝑐 (𝑖)−1). For
example, the bucket Φ(1) contains all tokens 𝑥𝑖 for
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Figure 2: Average loss from Retro[on] over tokens in
Φ(𝑛). Note the drastic decrease with increasing overlap.

which the unigram 𝑥𝑖 appears in some neighbor,
but not the bigram 𝑥𝑖−1𝑥𝑖; the bucket Φ(2) contains
all 𝑥𝑖 for which 𝑥𝑖−1𝑥𝑖 overlaps but not 𝑥𝑖−2𝑥𝑖−1𝑥𝑖,
and so on. As a special case, the bucket Φ(0)
contains all tokens that do not overlap with any of
its neighbors. This includes all tokens that occur in
a first chunk 𝐶1, which lacks neighbors.

In Figure 2 we plot the average loss per bucket,

1
|Φ(𝑛) |

∑︁
𝑥𝑖∈Φ(𝑛)

LRetro[on]
𝑥𝑖 , (1)

as a function of 𝑛. Here, LRetro[on]
𝑥𝑖 is the loss when

predicting token 𝑥𝑖 using Retro[on]3. We see that
the loss drastically decreases as the consecutive
overlap increases. For example, at an overlap of
𝑛 = 5 tokens, the loss is only 6% of the loss for non-
overlapping tokens. This suggests that Retro enters
“copy mode” when the previous tokens overlap with
those from a neighbor.

3.2 Loss Reductions per Degree of Overlap
For a more detailed analysis of the effect of overlap
on predictive performance, we look at the token-
specific loss differences between the two configura-
tions Retro[off] and Retro[on]:

ΔL𝑥𝑖 = LRetro[off]
𝑥𝑖 − LRetro[on]

𝑥𝑖

Note that a loss difference ΔL𝑥𝑖 is positive if the
access to the retrieved context reduces the token-
specific loss for 𝑥𝑖. The overall reduction in loss
visible in Figure 1 is the average of the loss differ-
ences across all tokens in the validation data. By
aggregating loss differences per bucket Φ(𝑛), we
get a fine-grained picture of how the reductions

3The sizes of each bucket (accumulated over the validation
data) are shown in the appendix, Figure 4.
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Figure 3: Token-specific loss differences, as distributed over different degrees of overlap. Positive diffs shows the
sum of all positive loss differences,

∑
𝑥𝑖∈Φ(𝑛) max(0,ΔL𝑥𝑖 ), and Negative diffs shows the sum of negative loss

differences,
∑

𝑥𝑖∈Φ(𝑛) min(0,ΔL𝑥𝑖 ). All diffs shows the total sum. We see that the vast majority of loss reductions
comes from overlapping tokens, e.g. 𝑛 > 0.

are distributed with respect to different degrees of
consecutive overlap. This is illustrated in Figure 3.

For non-overlapping tokens (𝑛 = 0), we can see
that there are both positive and negative differences,
with a small negative net. For all overlapping
tokens (𝑛 > 0), the net differences are positive,
and for buckets with 3 or more overlapping to-
kens, there are almost no negative differences at
all.4 This shows that the largest share of all loss
reductions originates from tokens that are consecu-
tively overlapping in neighbors. Interestingly, the
net differences are positive even for very small de-
grees of overlap. Borgeaud et al. (2022) considered
reductions in bits-per-byte from chunks with up
to 8 consecutively overlapping tokens as evidence
of a non-trivial generalization capacity. However,
our results suggest that even a small number of
overlapping tokens may cause a large reduction in
loss, which we take as an argument against this
conclusion.

4 Related Work
Equipping language models with a retrievable ex-
ternal memory has been extensively studied (Guu
et al., 2020; Karpukhin et al., 2020; Lewis et al.,
2020; Izacard and Grave, 2021; Li et al., 2022).
Explicitly leveraging the training data through re-
trieval to reduce perplexity is proposed in kNN-LM
(Khandelwal et al., 2020). kNN-LM matches the
leftward context with the leftward context of all
training data tokens, and explicitly interpolates be-
tween generating and copying the next token. A
recent study analyzes kNN-LM to better understand

4We note a sudden increase in accumulated loss difference
for 𝑛 > 64 which is expected considering the way in which we
construct the buckets; see Appendix C for more details.

the causes of performance gains (Xu et al., 2023).
Similar to our findings in Retro, lexical overlap
has also been found to play a significant role in ex-
plaining retrieval performance gains in kNN-LM as
well (Drozdov et al., 2022). The idea of kNN-LM
is extended in Spalm (Yogatama et al., 2021) to
instead learn a gating function that facilitates more
dynamic interpolation.

In both kNN-LM and Spalm, retrieval is incorpo-
rated at the top of the network. This might induce
a bias towards surface-level rather than semantic
augmentation. In contrast, retrieval in Retro is
incorporated in lower layers of the network, which
opens up for more sophisticated integration of the
retrieved information. Our results suggest, how-
ever, that retrieval in Retro also contributes at the
surface rather than at the semantic level, similar to
the previous works.

5 Conclusions and Future Work
The capacity of language models for generalization
is often measured intrinsically using perplexity,
loss or bits-per-byte on held-out validation data.
Low perplexity language models perform well as
few-shot learners on many downstream tasks due to
their capacity to both memorize and non-trivially
combine textual information from many sources
(Brown et al., 2020; Rae et al., 2021; Lieber et al.,
2021; Chowdhery et al., 2022). The hope is that we
can externalize memory to reduce the footprints of
language models without reducing generalization
and downstream task performance.

Our results show that the low loss in Retro al-
most exclusively originates from tokens overlapping
between retrieval and validation data, rather than
from more sophisticated generalization. To better
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understand this effect, it would be interesting to
modify the retrieval component and deliver seman-
tically similar but lexically different context during
training. If the retrieved context is uninformative,
the model will learn to ignore it, but if the con-
text is too specific (e.g. literal overlap) the model
will learn to copy. By better balancing between
these two modes, models may become better at
utilizing retrieved information at a deeper and more
generalizable level.

Limitations
We have made our best effort in trying to reproduce
the model and results of Borgeaud et al. (2022).
Nonetheless, our experiments were performed on
one of the smaller model sizes and with a dataset
that is only ∼2.5% of their size (52 billion vs. 2
trillion tokens). This was due to computational
constraints and lack of larger open datasets. How-
ever, as was also shown by Borgeaud et al. (2022),
the performance gain of retrieval is constant with
respect to model size. We speculate that larger
Retro models mostly improve with respect to loss
on tokens that are not overlapping, which would
not change our conclusions here.

One noteworthy limitation of our work is the
fact that we compare to a non-retrieval baseline
(Retro[off]) that was trained with access to re-
trieved context. We were not able to train a separate
non-retrieval baseline due to computational con-
straints, but note that the bits-per-byte results of
Retro[off] and the baseline in Borgeaud et al.
(2022) were close to identical.
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Figure 4: Number of validation set tokens in each bucket Φ(𝑛). Since the neighbors have a maximal length of
128 tokens, this is also the longest possible overlap 𝑛.

Documents Chunks Tokens

Training

Pile-CC 15,728k 269M 16.7B
Wikipedia En 5,082k 61M 3.8B
GitHub 5,417k 181M 11.4B
Books3 83k 191M 12.2B
RealNews 9,360k 130M 8.0B
Total 35,670k 833M 52.2B

Validation

Pile-CC 52.8k 900.4k 56.0M
Wikipedia En 17.4k 215.9k 13.3M
GitHub 18.3k 598.4k 37.7M
Books3 0.3k 727.6k 46.5M
RealNews 16.4k 234.5k 14.5M
Total 105.3k 2,676.8k 168.0M

Table 1: Statistics for our MassiveOpenText dataset. We use the web text, Wikipedia, GitHub and Books3 corpora
from the Pile, and news text from RealNews.

A MassiveOpenText statistics
Statistics on the number of documents, chunks and
tokens for each split and text category are shown in
Table 1.

B Retro model details
We show hyperparameters of our Retro model in
Table 2.

Param

Encoder

Num layers 2
Num heads 14
Hidden size 896
FFN 3584
CA layers [2]

Decoder

Num layers 12
Num heads 12
Hidden size 1536
FFN 6144
CCA layers [6,9,12]

Table 2: Hyperparameters of our trained Retro model.

C Consecutively overlapping tokens
As explained in Section 3.1, we sort validation set
tokens into buckets denoted Φ(𝑛) depending on the
longest overlapping leftward context.

In Figure 4 we show the number of tokens in
each bucket. We note a big “jump” from 𝑛 = 64 to
𝑛 = 65, which can be explained by the following
rationale. A neighbor [𝑁, 𝐹] to a chunk 𝐶𝑖 is
retrieved based on the similarity between 𝐶𝑖 and 𝑁 .
In the case where both𝐶𝑖 = 𝑁 and𝐶𝑖+1 = 𝐹, tokens
in 𝐶𝑖+1 will be put into Φ(𝑛) with 𝑛 = 65, . . . , 128.
The jump in Figure 4 indicates such duplicates are
common in our data.

D Model validation
As we aim to reproduce the 425M model trained in
Borgeaud et al. (2022), it is important to validate
that the implementations are equivalent and that
their evaluation results are comparable. However,
evaluations of the 425M model in Borgeaud et al.
(2022) on the Pile are not available, making it
hard to make direct comparisons. Borgeaud et al.
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(2022) report evaluation results on the C4 (Raffel
et al., 2022) dataset, with various sizes of retrieval
datasets. For their setup with 36B retrieval tokens,
which is the most similar to our own retrieval size,
they report that bits-per-byte is reduced by ∼ 2%
(from 0.92 to 0.90) when using retrieval. That
could be compared to our results on Pile-CC, as
both datasets originate from Common Crawl. In
our experiments, loss is reduced by 7% (from 3.05
to 2.83) on Pile-CC.

Evaluations on the Pile in Borgeaud et al. (2022)
are only reported for their largest model (7B params)
and largest retrieval set (2T tokens). For example,
on Pile–GitHub their reduction is ∼53% whereas
our reduction is 42%.

While these numbers are not directly comparable,
we believe they indicate that our reimplementation
of the Retro model is working as expected.
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Abstract

In this paper we investigate monotonicity rea-
soning in Dutch, through a novel Natural Lan-
guage Inference dataset. Monotonicity rea-
soning shows to be highly challenging for
Transformer-based language models in English
and here, we corroborate those findings using a
parallel Dutch dataset, obtained by translating
the Monotonicity Entailment Dataset of Yanaka
et al. (2019). After fine-tuning two Dutch lan-
guage models BERTje and RobBERT on the
Dutch NLI dataset SICK-NL, we find that per-
formance severely drops on the monotonicity
reasoning dataset, indicating poor generaliza-
tion capacity of the models. We provide a de-
tailed analysis of the test results by means of
the linguistic annotations in the dataset. We
find that models struggle with downward en-
tailing contexts, and argue that this is due to a
poor understanding of negation. Additionally,
we find that the choice of monotonicity context
affects model performance on conjunction and
disjunction. We hope that this new resource
paves the way for further research in general-
ization of neural reasoning models in Dutch,
and contributes to the development of better
language technology for Natural Language In-
ference, specifically for Dutch.

1 Introduction

Natural Language Inference (NLI) is one of the
standard benchmark tasks for current-day NLP ar-
chitectures. In this task a model takes two sen-
tences as input, and has to classify the relationship
between the former (premise) sentence and the lat-
ter (hypothesis) sentence, typically between Entail-
ment, Contradiction, and Neutral. NLI makes for
a interesting task as drawing the correct inference
may require subtle aspects of syntax, lexical se-
mantics, and even pragmatics. While many NLI
datasets exist like SICK (Marelli et al., 2014), SNLI
(Bowman et al., 2015) and its extensions (MNLI
Williams et al. (2018), XNLI Conneau et al. (2018),

e-SNLI Camburu et al. (2018)), much is still un-
known about how and why neural language models
(LMs) like BERT (Devlin et al., 2019) perform on
the task. Evidence shows that fine-tuned LMs don’t
generalize well across NLI benchmarks (Talman
and Chatzikyriakidis, 2019), and other investiga-
tion shows that LMs may be exploiting dataset
heuristics to solve the task (Naik et al., 2018; Mc-
Coy et al., 2019). More generally, LMs do seem
to encode a certain amount of syntactic structure
(Rogers et al., 2020), but the relation to NLI re-
mains unclear.

In order to shed light on the performance of large-
scale LMs, specific datasets have been developed
to understand what models do and don’t under-
stand. Specifically in the context of NLI, Yanaka
et al. (2019) introduce the Monotonicity Entailment
Dataset (MED), which targets models’ capacity for
understanding monotonicity reasoning (Icard III
and Moss, 2014). Monotonicity reasoning is a sta-
ple test of human reasoning which requires lexical
knowledge, as well as syntactic knowledge, making
it suitable for an NLI benchmark.

In cases of monotonicity reasoning, a particular
lexical item in the sentence licenses inferences by
means of substituting specific syntactic constituents
by either more general (upward context) or more
specific (downward context).

(a) Every [man ↓] [sung and danced ↑].
(b) Every bald man sung and danced. ✓

(c) Every man danced. ✓

(d) Every human sung and danced. ✗

Figure 1: Example cases of monotonicity reasoning as
natural language inference.

In Figure 1, the quantifier Every is downward
entailing in its first argument, and upward entailing
in its second arguments, meaning that either man
may be replaced by a more specific instance to ob-
tain an inference pair – as in 1(b) – while sung and
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danced ought to be substituted for a more general
constituent to preserve inference, as in 1(c). Violat-
ing the entailment context leads to a hypothesis for
which there is no entailment (but not necessarily a
contradiction), as in 1(d).

While the field of research into NLI is lively, it is
largely focused on English. In this article, we work
with Dutch, a language that has a relatively high
digital prevalence, while at the same time being
underrepresented in terms of typical sentence-level
NLP benchmarks.

For Dutch there is the Lassy corpus, which con-
tains a smaller gold standard, and a larger silver
standard syntactically annotated corpus of written
(van Noord et al., 2013), and the SONAR corpus
of written Dutch (Oostdijk et al., 2013). Given the
availability of these corpora combined with a rich
Wikipedia dump, two transformer-based language
models have been developed for Dutch, based on
the BERT architecture (BERTje, de Vries et al.
(2019)) and the RoBERTa architecture (RobBERT,
Delobelle et al. (2020)), both available through
HuggingFace’s transformers library.1 In terms of
investigations into these Dutch language models,
de Vries et al. (2020) argues that BERTje encodes
a typical ‘NLP pipeline’, which had been argued
for BERT before (Tenney et al., 2019), whereas
Kogkalidis and Wijnholds (2022) show through
probing that long-distance dependencies are hard
to recognize for both Dutch language models.

In order to extend the research done on NLI and
on Dutch NLP, we add a benchmark for mono-
tonicity reasoning in Dutch by translating the MED
dataset of Yanaka et al. (2019). We perform an eval-
uation of large-scale language models for Dutch on
this novel benchmark, that we dub MED-NL. We
corroborate the findings of Yanaka et al. (2019), ob-
serving that the Dutch LMs similarly have difficulty
with inferences coming from downward entailing
contexts. Further inspection suggests that the main
problem comes from inference pairs containing
negation. In what follows, we first detail the cre-
ation of the dataset and the experimental setup for
the evaluation, after which we report results and
inspect the model predictions.

2 Dataset Creation & Evaluation

The dataset is obtained by translation from the En-
glish MED dataset of (Yanaka et al., 2019). First,

1There is also a distilled version of RobBERT (Delobelle
et al., 2021) which we did not include in our experiments.

all 5241 unique sentences are collected and lexi-
cographically sorted to ensure consistency among
sentence translations. These sentences are given to
a native Dutch speaker for translation who could
ensure quality and naturality of the translated ex-
amples. Using the translated sentences, we popu-
late the original dataset with its Dutch incarnation.
Since the original Entailment/Neutral labels derive
from monotonicity properties, the entailment labels
are preserved in Dutch. It is important to note that
the labelling is binary, since MED only considers
entailment and non-entailment (or neutral).

MED MED-NL

No. of tokens 81209 83809
No. of unique tokens 3614 3883
Avg. sentence length 7.54 7.79
Avg. word overlap 74.60% 73.25%

Table 1: Basic statistics of MED vs MED-NL.

Table 1 shows that in the translation, there is a
3% blowup in the number of words used in Dutch,
with the corresponding increase in average sen-
tence length. However, the number of unique to-
kens in the Dutch dataset increased, owing to a
plurality of interpretation of English source words
that may get disambiguated in the translation pro-
cess.

To evaluate, we then performed a standard lan-
guage model fine-tuning routine. We use two state
of the art Dutch neural language models; BERTje
(de Vries et al., 2019), a BERT-based model pre-
trained for Dutch, and RobBERT (Delobelle et al.,
2020), a RoBERTa-based model for Dutch. For
multilingual comparison, we furthermore train mul-
tilingual BERT (Devlin et al., 2019). Each model
was trained on the SICK-NL dataset (Wijnholds
and Moortgat, 2021), which is the only existing
NLI benchmark for Dutch. We binarize the labels
in SICK-NL by conflating all Neutral and Con-
tradiction labels into one class, as to make the
training data compatible with the binary format
of MED-NL. Training proceeds for 20 epochs, and
the model is saved for the epoch for which highest
development accuracy is obtained.2 We test on the
SICK-NL for validation purposes, after which test-
ing is performed on MED-NL. To reduce any po-
tential influences of performance perturbation due

2For BERTje, highest development accuracy was achieved
at epochs 3, 5, and 5, whereas RobBERT achieve peak devel-
opment set performance at epochs 5, 11, and 13.
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to model seed initialization, we train each model
thrice and report seed-averaged accuracy.

3 Results & Analysis

Table 2 displays the average development and test
accuracy on SICK-NL, and test performance on
MED-NL.

SICK-NLd SICK-NLt MED-NL

BERTje 86.89 87.40 47.56
RobBERT 86.43 85.79 46.07
mBERT 71.20 71.38 49.74

Table 2: Seed-averaged (over 3 runs) accuracy results
for two Dutch BERT models and multilingual BERT,
trained on SICK-NL, evaluated on both SICK-NL and
the new MED-NL dataset.

Performance on the development and test set
of SICK-NL are slightly higher than reported in
related work (Wijnholds and Moortgat, 2021; Delo-
belle et al., 2021), which may be due to the fact that
the classification labels have been binarized. The
high drop in accuracy on MED-NL is however on
par with reported results on its English counterpart
(Yanaka et al., 2019), despite the models and train-
ing dataset being different. In terms of difference
between the models, overall accuracy barely dis-
tinguishes BERTje and RobBERT in terms of pure
performance. Interestingly, multilingual BERT has
a performance decline of ca 15% compared to Rob-
BERT, yet reached highest performance on MED-
NL. The multilingual model has more trouble with
the Dutch training data, although all three runs
reached peak validation accuracy after one epoch
of training.

Monotonicity Contexts A breakdown of accu-
racy results by the type of monotonicity context
is given in Table 3, which shows that non-upward
entailing contexts typically represent a challenge
to the language models’ predictions.

Total Up Down Non
(Support) (5382) (1818) (3272) (292)

BERTje 47.56 64.76 38.72 39.50
RobBERT 46.07 61.13 39.22 28.30
mBERT 49.74 65.57 36.67 97.60

Table 3: Seed-averaged (over 3 runs) accuracy results
on the MED-NL dataset, by monotonicity category.

Specifically, these results contrast the perfor-
mance of the monolingual Dutch LMs with multi-
lingual BERT, the latter doing the worst on down-
ward entailing contexts while trumping the former
models on non-monotone contexts.

Linguistic Features In order to delve deeper in
the results, we make use of the annotations in the
dataset that indicate specific linguistic features for
premise/hypothesis pairs. Table 4 displays detailed
scores for linguistic features that have a significant
overall occurrence in the MED-NL dataset, where
we display the number of occurrences next to the
name of the feature.

Phenomenon BERTje RobBERT mBERT

↑

Lexical 743 62.72 58.73 77.39
Conjunction 177 65.16 61.77 58.76
Disjunction 96 24.31 29.86 53.12
Conditionals 24 48.61 44.44 70.83
NPI 64 33.33 36.98 64.06
Reverse 235 52.91 51.63 50.21
Other 698 74.79 69.91 58.74

↓

Lexical 477 33.47 34.45 29.98
Conjunction 106 34.91 32.08 23.58
Disjunction 138 49.76 49.52 40.58
Conditionals 125 45.60 43.47 18.40
NPI 266 36.59 39.10 32.71
Reverse 9 29.63 33.33 33.33
Other 2249 39.6 40.15 39.88

=

Lexical 182 37.73 31.32 98.35
Disjunction 20 56.67 31.67 100.0
NPI 8 66.67 37.50 100.0
Other 90 39.26 23.70 95.56

Table 4: Seed-averaged (over 3 runs) accuracy results
on the MED-NL dataset, by monotonicity category and
phenomenon.

These results start to highlight an interesting pat-
tern: with an overall performance on upward entail-
ing contexts of 64.76 (BERTje), we see that cases
of disjunction, conditionals, negative polarity items
and reverse (e.g. double negation) are most chal-
lenging in this context. The surprising result here is
that such cases are much more on par with the rest
in a downward entailing context. Most strikingly,
cases of disjunction become easier to deal with
than conjunction in a downward entailing context,
even though the situation was converse in the case
of upward entailing contexts.
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Model Comparison Although the results in Ta-
ble 4 give some insight into the difference be-
tween models – e.g. RobBERT appears to per-
form higher at cases with negative polarity items,
whereas BERTje performs better at cases of con-
junction –, the models seem to be relatively equal
in their overall accuracy. To better distinguish the
models we analyse the overlap between model pre-
dictions.

Phenomenon ∩ Shared BERTje RobBERT

∀

Lexical 75% 47.61 55.26 44.74
Disjunction 81% 38.58 48.98 51.02
Conjunction 82% 52.74 59.16 40.84
Conditionals 81% 43.69 57.73 42.27
NPI 85% 35.49 43.04 56.96
Reverse 94% 51.6 57.21 42.79
Other 86% 46.63 54.34 45.66

↑

Lexical 71% 65.05 57.47 42.53
Disjunction 79% 20.74 39.35 60.65
Conjunction 77% 67.56 57.69 42.31
Conditionals 77% 45.39 63.99 36.01
NPI 79% 31.05 39.98 60.02
Reverse 95% 52.4 59.05 40.95
Other 76% 79.4 60.33 39.67

↓

Lexical 87% 31.56 46.37 53.63
Disjunction 86% 49.51 51.75 48.25
Conjunction 91% 31.75 62.55 37.45
Conditionals 82% 43.37 57.56 42.44
NPI 87% 35.98 41.14 58.86
Reverse 89% 27.78 33.33 66.67
Other 90% 38.76 47.62 52.38

=

Lexical 58% 23.71 56.09 43.91
Disjunction 61% 41.55 75.14 24.86
NPI 71% 61.38 100.0 0.0
Other 76% 26.56 75.98 24.02

Table 5: Seed-averaged overlap accuracy results on the
MED-NL dataset, between BERTje and RobBERT, by
monotonicity category and phenomenon.

Table 5 displays the average overlap between
the two monolingual models by feature, together
with their shared and individual accuracy, to shed
light on where the models differ, color-coded for
clarification purposes.

We first observe that the overlap between model
predictions overall (the ∀ rows) is relatively high
with a minimum of 75% and a maximum of 94%.
Generally speaking, given that the overlap be-
tween model predictions is high, the shared ac-

curacy shows whether models make the same cor-
rect/incorrect decisions. This is particularly pro-
nounced in the low accuracy on disjunctions in
upward entailing contexts, where models make a
lot of shared mistakes, but in their diverging deci-
sions RobBERT has a significantly higher accuracy.
The converse is true for conjunction in a down-
ward entailing context where BERT is individually
stronger than RobBERT. For the sake of complete-
ness, in Tables 8 and 9 we report overlap results
between the Dutch models and multilingual BERT.

The Role of Negation One explanation for the
fact that the models perform significantly worse
on downward entailing contexts may be that such
cases are often constructed through the use of nega-
tion words. Table 6 displays the percentages of sen-
tence pairs containing at least one negation word,
with specification for conjunction and disjunction.

Total Up Down Non
(5382) (1818) (3272) (292)

% Negation 58.86 22.5 84.2 1.37

↑ Conj. ↑ Disj. ↓ Conj. ↓ Disj.
(177) (96) (106) (138)

% Negation 22.60 18.75 92.45 73.19

Table 6: Percentage of premise/hypothesis pairs in
MED-NL containing negation words (geen, niet, zonder,
nooit, niemand).

Indeed, negation is highly represented in down-
ward monotone contexts, indicating that part of the
reason why the models perform so poorly in such
context is that they are not sensitive (enough) to
negation. Inspection of the distribution of negation
in SICK-NL (train set) and MED-NL, displayed
in Table 7, shows that models may have learnt to
incorrectly classify cases involving negation.

% Negation SICK-NL MED-NL

Entailment 1.26 69.80
Non-entailment 31.94 47.81

Table 7: Distribution of negation in cases of entailment
and non-entailment in SICK-NL and MED-NL.

However, this explanation can’t be replicated in
the case of conjunction and disjunction, leaving a
further inspection into these cases to future work.
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Phenomenon ∩ Shared BERTje mBERT

∀

Lexical 67% 60.08 28.12 71.88
Disjunction 66% 43.03 35.47 64.53
Conjunction 57% 49.44 59.7 40.3
Conditionals 53% 24.23 70.3 29.7
NPI 79% 35.37 40.16 59.84
Reverse 91% 50.91 63.7 36.3
Other 76% 45.67 54.2 45.8

↑

Lexical 60% 83.4 31.99 68.01
Disjunction 42% 24.97 23.32 76.68
Conjunction 41% 78.91 55.6 44.4
Conditionals 67% 64.57 16.19 83.81
NPI 51% 47.87 18.07 81.93
Reverse 91% 51.72 64.94 35.06
Other 44% 88.28 64.48 35.52

↓

Lexical 90% 29.57 69.73 30.27
Disjunction 85% 44.52 78.21 21.79
Conjunction 83% 24.94 85.0 15.0
Conditionals 50% 13.9 77.12 22.88
NPI 87% 32.24 66.81 33.19
Reverse 89% 27.78 33.33 66.67
Other 87% 38.14 50.03 49.97

=

Lexical 36% 100.0 2.69 97.31
Disjunction 57% 100.0 0.0 100.0
NPI 67% 100.0 0.0 100.0
Other 37% 96.53 5.63 94.37

Table 8: Seed-averaged overlap accuracy results on the
MED-NL dataset, between BERTje and multilingual
BERT, by monotonicity category and phenomenon.

4 Conclusion

In this paper we provided MED-NL, a novel NLI
dataset for Dutch, which specifically targets mono-
tonicity reasoning. The evaluation of two Dutch
language models on this test set shows that the mod-
els specifically struggle with cases in downward
entailing contexts, which had earlier been estab-
lished for English as well (Yanaka et al., 2019).
However, we indicate specifically that the role of
negation words may play a large role in the poor
model performance on such cases, giving way for
future research into language models and negation.

On the other hand, the evaluation also shows
that disjunction is much easier to handle by the
models than conjunction, for which no explanation
was found. In future investigations, we hope to
provide more analysis of these language models,
specifically regarding negation.

Phenomenon ∩ Shared RobBERT mBERT

∀

Lexical 63% 58.58 27.24 72.76
Disjunction 62% 42.34 37.75 62.25
Conjunction 60% 46.73 56.58 43.42
Conditionals 55% 23.38 68.16 31.84
NPI 74% 35.7 46.86 53.14
Reverse 90% 50.29 57.88 42.12
Other 72% 44.75 51.0 49.0

↑

Lexical 59% 80.78 27.73 72.27
Disjunction 46% 31.68 27.8 72.2
Conjunction 44% 73.34 53.04 46.96
Conditionals 62% 62.47 13.33 86.67
NPI 55% 50.49 19.74 80.26
Reverse 90% 51.01 57.88 42.12
Other 42% 84.93 59.71 40.29

↓

Lexical 82% 28.22 62.06 37.94
Disjunction 77% 43.46 70.11 29.89
Conjunction 85% 24.01 78.27 21.73
Conditionals 54% 14.57 76.64 23.36
NPI 80% 32.28 65.59 34.41
Reverse 100% 33.33 n/a n/a
Other 84% 38.1 50.48 49.52

=

Lexical 30% 100.0 2.37 97.63
Disjunction 32% 100.0 0.0 100.0
NPI 38% 100.0 0.0 100.0
Other 21% 94.71 4.25 95.75

Table 9: Seed-averaged overlap accuracy results on the
MED-NL dataset, between RobBERT and multilingual
BERT, by monotonicity category and phenomenon.

5 Limitations

This study was performed with monolingual Dutch
models and with multilingual BERT, yet compari-
son with multilingual BERT on the original MED
dataset could be insightful. Given that the distri-
bution of cases of negation is skewed between the
dataset used for training and the introduced evalua-
tion dataset, another experiment could have been
included in which models are trained to deal with
cases of negation in a uniformly distributed way.
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Abstract

An ongoing challenge in current natural lan-
guage processing is how its major advance-
ments tend to disproportionately favor resource-
rich languages, leaving a significant number of
under-resourced languages behind. Due to the
lack of resources required to train and evaluate
models, most modern language technologies
are either nonexistent or unreliable to process
endangered, local, and non-standardized lan-
guages. Optical character recognition (OCR) is
often used to convert endangered language doc-
uments into machine-readable data. However,
such OCR output is typically noisy, and most
word alignment models are not built to work
under such noisy conditions. In this work, we
study the existing word-level alignment mod-
els under noisy settings and aim to make them
more robust to noisy data. Our noise simula-
tion and structural biasing method, tested on
multiple language pairs, manages to reduce the
alignment error rate on a state-of-the-art neural-
based alignment model up to 59.6%.1

1 Introduction

Modern optical character recognition (OCR) soft-
ware achieves good performance on documents
in high-resource standardized languages, produc-
ing machine-readable text which can be used
for many downstream natural language process-
ing (NLP) tasks and various applications (Ignat
et al., 2022; Van Strien et al., 2020; Amrhein and
Clematide, 2018). However, attaining the same
level of quality for texts in less-resourced local
and non-standardized languages remains an open
problem (Rijhwani et al., 2020).

The promise of OCR is particularly appealing for
endangered languages, for which material might ex-
ist in non-machine-readable formats, such as physi-
cal books or educational materials. Digitizing such

1Data and code are available online: https://github.
com/ruoyuxie/noisy_parallel_data_alignment

Figure 1: Synthetic data example in Griko with charac-
ter differences highlighted. Our synthetic data manage
to mimic the real OCR noise.

material could lead to the creation of NLP tech-
nologies for such otherwise severely under-served
communities (Bustamante et al., 2020).

Beyond the primary goal of digitizing printed
material in endangered languages, the need for ro-
bust alignment tools is wider. The majority of the
world’s languages are being traditionally oral (Bird,
2020), which implies that to obtain textual data at
scale one would need to rely on automatic speech
recognition (ASR), which in turn would produce
invariably noisy outputs. It is worth noting that
the availability of translations can significantly im-
prove systems beyond machine translation (MT),
such as OCR (Rijhwani et al., 2020) or ASR (Anas-
tasopoulos and Chiang, 2018). This creates a
chicken-and-egg situation: on one hand, OCR and
ASR can be used to obtain noisy parallel data; on
the other hand, having good quality aligned data
can improve OCR or ASR.

In this vein, We focus on the scenario of dig-
itizing texts in a less-resourced language along
with their translations (usually high-resource and/or
widely spoken) similar to Rijhwani et al. (2020).
Digitizing parallel documents can also be benefi-
cial for educational purposes, as one could then
create dictionaries through word- and phrase-level
alignments, or ground language learning on another
language (a learner’s either L1 or L2). Also, as Ig-
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nat et al. (2022) showed in recent work, such paral-
lel corpora can be meaningfully used to create MT
systems. However, the process that transforms dig-
itized books or dictionaries into parallel sentences
for training MT systems requires painstaking man-
ual intervention.

In theory, the process could be semi-automated
using sentence alignment methods, but in prac-
tice, the situation is very different: OCR systems
tend to generate very noisy text for endangered lan-
guages (Alpert-Abrams, 2016, inter alia), which in
turn leads to poor alignments between two parallel
sides. As we show, alignment tools are particularly
brittle in the presence of noise.

In this work, we take the first step towards solv-
ing the above issue. We investigate the relationship
between OCR noise and alignment results and build
a probabilistic model to simulate OCR errors and
create realistic OCR-like synthetic data. We also
manually annotate a total of 4,101 gold alignments
for an endangered language pair, Griko-Italian, in
order to evaluate our methods in a real-world set-
ting. We leverage structural knowledge and aug-
mented data, greatly reducing the alignment error
rate (AER) for all four high- and low-resource lan-
guage pairs up to 59.6%.

2 Problem Setting

Our work is a straightforward extension of previ-
ous word-level alignment work. Given a sequence
of words x = (x1, . . . , xn) in a source language
and y = (y1, . . . , ym) in a target language, the
alignment model produces alignment pairs:2

A = {(xi, yj) : xi ∈ x, yj ∈ y}
The difference with previous work is that the start-
ing data will be the output of an OCR pipeline,
hence producing noisy parallel data (x∗,y∗) in-
stead of “clean” (x,y) ones. The level of noise
may vary between the two sides.

Hence, our goal is to produce an alignment

A∗ = {(xi, yj) : xi ∈ x∗, yj ∈ y∗}
that will be as close to the alignment A that we
would have obtained without the presence of noise.
We measure model performance using the align-
ment error rate (AER; Och and Ney, 2003) against
the gold alignments.3

2Sometimes denoted with a latent variable, but we use an
equivalent notation for simplicity.

3Lower AER means a better alignment. More details on
the metric in Appendix A.

3 Method

We create synthetic data that mimic OCR-like
noise, that can be used to train/finetune alignment
models. Our simple yet effective method mainly
consists of (i) building probabilistic models based
on edit distance measures and capturing real OCR
errors; (ii) creating synthetic (noisy) OCR-like data
by applying our error-introducing model on clean
parallel data; (iii) training or finetuning alignment
models on synthetic data.

3.1 OCR Error Modeling

Error types For OCRed text, different types of
texts, languages, and corpora will lead to different
error distributions. At the character level, there
are generally three types of OCR errors: insertions,
deletions, and substitutions. In most cases, dele-
tions and substitutions are more common, with
spurious insertions being rarer.

Noise model By comparing the OCRed text with
its post-corrected version, we use Levenshtein dis-
tance to compute the edit distances and the proba-
bility distributions of edits/errors over the corpus
with a straightforward count-based approach.

We treat deletion error as part of substitution
error. Given a sequence of characters xi, . . . , xj
from a clean corpus x and a sequence of characters
yi, . . . , yj from its OCRed noisy version y, we sim-
ply count the number of times a correct character xi
is recognized as character yi (or recognized as the
empty character ϵ if it is erroneously deleted). We
can then compute the probability of an erroneous
substitution or deletion as follows:

Psub(xi → yi) =
count(xi → yi)

count(xi)

and the overall substitution error distribution is
conditioned on the correct character xi:

Dsub(xi) ∼ Psub(xi → yi).

For insertion errors, we consider that insertion
occurs when ϵ becomes another character yi and
count the number of times that insertion occurs af-
ter its previous character. A special token <begin>
is used when insertion occurs at the beginning of
the sentence. In general, we calculate the insertion
error probability with:

Pins(xi−1ϵ→ xi−1yi)=
count(xi−1ϵ→ xi−1yi)

count(xi−1ϵ)
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and the insertion error distribution for xi−1:

Dins(xi−1ϵ) ∼ Pins(xi−1ϵ→ xi−1yi).

3.2 Data Augmentation

Synthetically noised data can be created by leverag-
ing the calculated probability distributions from the
previous section and traversing through the clean
corpus for every character.

For each character c, we obtain its probability
to be erroneous in the OCR output by sampling
from the distribution of the substitution and inser-
tion probabilities Dins(c),Dsub(c).4 We randomly
decide whether to add an error here based on its
error distribution.

If an error will be introduced on c, we then
randomly choose its corresponding error based on
Psub(c) or Pins(c) depending on either substitution
or insertion operation receptively.

Our method attempts to mimic the real OCR er-
rors in given languages and corpus, resulting in
very similar noise distributions. Figure 1 shows a
side-by-side comparison of three versions of the
same sentence, to showcase how realistic our syn-
thetic text is.

3.3 Model Improvement

Given our synthetically noised parallel data, and
potentially along with the original clean parallel
data, we can now train or finetune a word alignment
model to improve the model performance.

In the case of unsupervised models like the
IBM translation models (Brown et al., 1993),
fast-align (Dyer et al., 2013), or Giza++ (Och,
2003), we simply train on the concatenation of all
available data.

We also work with the state-of-the-art neural
alignment model of Dou and Neubig (2021), which
is based on Multilingual BERT (mBERT) (Devlin
et al., 2019).5 For this model, we distinguish two
cases: supervised and unsupervised finetuning.6

Under a supervised setting, we first obtain silver
alignments from the clean dataset and use them
as targets for the synthetic noisy data. The unsu-
pervised setting is conceptually similar to training
models like Giza++: we feed synthetically-noised
sentence pairs into the alignment model, without

4Including a third option for not inserting an error
5See Section 5.1 for more details.
6We use provided default parameters for both cases, which

can be found on https://github.com/neulab/awesome-align

Language Total CER Sub. % Ins. %

English 7.4 79 21
German 4.9 87 13
French 4.8 85.7 14.3
Griko 3.3 96.8 3.2
Ainu 1.4 91.9 8.1

Table 1: Total character error rate (CER) and percentage
of substitution and insertion errors. Generally, substitu-
tion is the most common error in OCR output.

using the target alignment as supervision. In low-
resource scenarios, we leverage a diagonal bias to
further improve the model’s performance.

4 Languages and Datasets

We study four language pairs with varying amounts
of data availability: English-French, English-
German, Griko-Italian, and Ainu-Japanese.7

4.1 Dataset for Error Extraction

The ICDAR 2019 Competition on Post-OCR Text
Correction (Rigaud et al., 2019) dataset provides
both clean and OCRed text for English-French and
English-German, which we use our noisy model to
learn and mimic OCR errors for English, French,
and German.

For Griko-Italian and Ainu-Japanese, Rijhwani
et al. (2020) provide around 800 OCRed noisy and
clean (post-corrected) sentences for both Griko and
Ainu, from which we extract error distributions; for
Italian and Japanese, only OCRed text is provided.8

To understand the characteristics of our datasets,
we report the observed CER in Table 1. Generally,
substitutions are the most common errors. Notice
that Griko and Ainu have seemingly lower scores
than any high-resource languages; that’s because
both use the Latin alphabet, the data that were digi-
tized are typed in books with high-quality scans.9

4.2 Synthetic Data

We create synthetic data by applying captured OCR
noise on clean text. For English, French, and Ger-
man, the clean text comes from Europarl v8 cor-
pus (Koehn, 2005). For Ainu, there are 816 clean
sentences from Rijhwani et al. (2020), from which

7Griko and Ainu are both under-resourced endangered
languages.

8The quality of the OCR model on these high-resource
languages are generally reliable.

9The English, French, and German data from ICDAR have
lower-quality scans.
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Language Real CER Syn. CER Diff.

English 7.4 6.5 0.9
German 4.9 6.7 1.8
French 4.8 5.3 0.5
Griko 3.3 3.3 0
Ainu 1.4 1.0 0.4

Table 2: Our synthetically-noisy data have similar CER
compared to the real OCR outputs, which implies that
the real OCRed noisy data can be mimicked by our
noise simulation model.

we keep the first 300 lines as test set and use the
rest to create synthetic data. Anastasopoulos et al.
(2018) provide 10,009 clean sentences for Griko.
Table 2 shows the CER comparison between our
synthetic data and real OCR data.

4.3 Test Set and Gold Alignment
The test set and gold alignment for English-French
come from Mihalcea and Pedersen (2003). For
English-German, the test set and gold alignments
come from Europarl v7 corpus (Koehn, 2005)
and Vilar et al. (2006), respectively. To study the
effect of OCR-like errors on alignment, we create
synthetically-noised test sets for both languages
pairs by applying noise on one side or both, which
results in four copies of the same test set: clean-
clean, clean-noisy, noisy-clean, and noisy-noisy.

For low-resource language pairs, Rijhwani et al.
(2020) provide about 800 parallel sentence pairs
for each. We use the first 300 sentence pairs as our
test sets. For the purpose of fair evaluation in our
method, we annotate a total of 4,101 gold word-
level alignment pairs for Griko-Italian test set. On
the other hand, we obtain silver alignments from
awesome-align for Ainu-Japanese as there is no
existing gold alignment data available.10

5 Experiments

In this section, we present multiple experiments
and demonstrate that our method results in signifi-
cant AER reductions.

5.1 Experimental Setup
Models We study the following models:
• IBM model 1&2 (Brown et al., 1993): the classic

statistical word alignment models. They under-
pinned many other statistical machine translation
and word alignment models.
10While not ideal, we can still measure how different results

are when comparing alignments on clean versus noisy data.

Model Clean OCRed Diff.

IBM 1 43.7 49.2 5.5
IBM 2 37.3 43.4 6.1

Giza++ 14.5 20.8 6.3
fast-align 19.8 25.7 5.9

awesome-align 45.1 48.8 3.7

Table 3: AER comparison for Griko-Italian. Giza++
performs best on both settings, but it exhibits the largest
drop in performance.

• Giza++ (Och, 2003): a popular statistical align-
ment model that is based on a pipeline of IBM
and Hidden Markov models (Vogel et al., 1996).

• fast-align (Dyer et al., 2013): a simple but
effective statistical word alignment model that is
based on IBM Model 2, with an additional bias
towards monotone alignment.

• awesome-align (Dou and Neubig, 2021): a neu-
ral word alignment model based on mBERT. It fine-
tunes a pre-trained multilingual language model
with parallel text and extracts the alignments
from the resulting representations.

5.2 The Effect of OCR-like Noise

We use Griko-Italian as our main evaluation pair
due to the presence of its gold alignments, which
can most accurately reflect the model’s perfor-
mance under a low-resource scenario.

We first benchmark model performance on clean
and OCRed parallel text to quantify OCR-error ef-
fects on alignment (Table 3). We compute AER
for the clean and OCRed versions of Griko-Italian
by comparing their alignment against our manually
created gold alignment. We benchmark five differ-
ent models that lead to several observations. First,
note that clean text always results in a better align-
ment for all models. Overall, Giza++ performs best
among the models, but note that it also suffers the
largest drop in performance when faced with noisy
text. On the other hand, a vanilla awesome-align,
which is otherwise a state-of-the-art model for lan-
guages that were included in the pre-training of its
underlying model, performs the worst, not being
better than a simple IBM 1.

We can thus conclude that OCR error does im-
pact alignment quality for both statistical and neu-
ral based alignment models.

It is of note that for Griko-Italian every statistical
model outperforms awesome-align in almost all
cases. We hypothesize that this is due to the lack

1504



Griko-Italian Ainu-Japanese
Clean OCRed Clean OCRed

BASE 45.1 48.8 28.2 29.2
UNSUP-FT (A) 23.2±1.6 28±1.1 21.1 ±1 22.2±1.2
SUP-FT (B) 22.3±2 26.6±1.1 30.9±2.1 31.5±1.2

+ structural bias
UNSUP-FT (A) 18.7±1 24.2±0.6 15.3±3.9 13.8±4.2
SUP-FT (B) 18.2±2.6 22.9±2.4 26.3 ±2.1 27.4±1.8

AER reduction 59.6% 53.1% 45.7% 52.7%

Table 4: For both endangered languages, our approach greatly reduces AER for both clean and OCRed data.

of structural knowledge; we deal with this in Sec-
tion 5.3.1. awesome-align’s low performance can
also be explained by the fact that Griko is not well
supported by its underlying representation model:
Griko was not part of the pre-training language
mix, and it does not use the same script as its
closest language that was included in pre-training
(Greek),11 an important factor according to Muller
et al. (2021). Compared to statistical models, we
also observe considerably fewer alignment pairs are
produced by awesome-align (Appendix 8), which
might also be a contributing factor.

5.3 Making awesome-align Robust
The performance of awesome-align raises an in-
triguing question - Is the state-of-the-art neural
based model capable to align noisy text, espe-
cially from low-resource languages. Given its
general higher performance on many popular lan-
guages (Dou and Neubig, 2021) and the stabil-
ity between clean and noisy text,12 we make
awesome-align as our main experiment target.

5.3.1 Low-Resource Setting
We introduce structural bias and propose two mod-
els: model (A) and model (B) finetuned in unsuper-
vised and supervised settings respectively.

Structural Bias Structural alignment biases are
widely used in statistical alignment models such
as Brown et al. (1993); Vogel et al. (1996); Och
(2003); Dyer et al. (2013). However, it is a missing
component in awesome-align. Following by Dyer
et al. (2013), we introduce diagonal bias and ap-
ply it on the top of awesome-align’s attention
layer. We create (i) a bias matrix Mb based on

11Modern Greek uses the Greek alphabet, while Griko uses
the Latin alphabet.

12Lowest AER difference between clean and noisy text
amount to all models.

Figure 2: A sample 6 × 8 diagonal bias matrix. Darker
color means stronger bias emphasis. We follow the same
steps from Dyer et al. (2013) to calculate each position
based on given rows and columns.

the position of the alignment, where the positions
near the diagonal of the alignment matrix have
the higher weights (See Figure 2); (ii) a tune-able
hyper-parameter λ represents the weight of the bias.
We set λ=1 for all low-resource language experi-
ments; (iii) an average matrix Mavg that is the av-
erage of the original attention score, which is used
for smoothing λ to make it where 1 represents max-
imum bias and 0 means no bias at all. We update
the original awesome-align attention score Asc :

Asc = λ ∗Asc + (1− λ) ∗Asc ∗Mb ∗Mavg

Our proposed models For our unsupervised-
finetuned model (A), we create the synthetically-
noised data by introducing OCR-like noise on clean
parallel data, and then simply finetune the baseline
model with all available data from both clean and
synthetic text.

For the supervised-finetuned model (B), we first
finetune an out-of-the-box awesome-align with
the clean data from Anastasopoulos et al. (2018)
and Rijhwani et al. (2020) for Griko-Italian and
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English-French English-German
Test Set Baseline Unsup-FT Sup-FT Reduction Baseline Unsup-FT Reduction

CLEAN-CLEAN 5.6 4.6 15.9 17.0% 17.9 15.2 15.1%
CLEAN-SYNTH 40.5 36.3 29.4 27.4% 43.8 39.4 10.0%
NOISY-CLEAN 39.2 34.2 28.6 27.0% 52.8 50 5.3%
NOISY-NOISY 53.6 46.1 37.3 30.4% 66.6 63.5 4.7%

Table 5: Result of awesome-align on English to French and German alignment. Both unsupervised and supervised
finetuning with noise-induced data leads to big AER reduction when aligning noisy data. Reductions in German are
less pronounced. Unsupervised finetuning with noisy data also improves clean-data alignment.

IBM 1 IBM 2 Giza++ fast-align
Clean OCRed Clean OCRed Clean OCRed Clean OCRed

Baseline 43.7 49.2 37.3 43.4 14.5 20.8 19.8 25.7
Train w. clean 40.2 45.7 32.7 38.1 13.1 19.0 17.9 24.2
Train w. noise 84.2 84.6 80.0 80.8 19.7 25.8 22.8 27.9

Table 6: Experiment on Griko-Italian, every statistical model benefits from training with additional clean data but
suffers significant performance drops with synthetic noisy data, suggesting that traditional statistical models rely on
clean text.

Aiun-Japanese respectively, which produces silver
alignment. Next, we use the silver alignment as
supervision to finetune awesome-align with syn-
thetic noisy data.

We report the average plus-minus standard de-
viation of three runs for each model. Table 4 sum-
marizes the results for our proposed models. We
end up with around 50% AER reduction for both
endangered language pairs.

5.3.2 High-Resource Setting

We evaluate our data augmentation method on high-
resource language pairs. Up to 400K synthetically
noised English-French data was used for unsuper-
vised finetuning. We also offer an additional ref-
erence data point, using 100K synthetic noised
English-German data for unsupervised fine-tuning.

For supervised finetuning, we use up to 1M syn-
thetic data. As before, we use silver alignments
from clean data as supervision to finetune its syn-
thetic noisy version, which does not require any
additional human annotation effort.

Under both settings, model performance will
plateau when adding more data. The results are
summarized in Table 5. Both unsupervised and
supervised finetunings with synthetically-noised
data significantly improve alignment quality, espe-
cially for noisy test sets, in line with our previously
presented results in low-resource settings.

5.4 Addtional Data on Statistical Models

We conduct additional experiments to find out
whether training with additional data aids statisti-
cal models for endangered languages. We evaluate
model performance on Griko-Italian.

We concatenate additional data to the examples
comprising the test set. We first train the models
with all 800 clean sentence pairs taken from Rijh-
wani et al. (2020) (which include the 300 sentences
of the test set). Next, instead of using clean data,
we substitute it with synthetically noised data and
train the models.

The result is presented in Table 6. For every sta-
tistical model, training with additional clean text
reduces AER. However, training with additional
noisy text considerably hurts the models. The result
shows that these statistical models rely on clean
text to improve, which is almost always unavail-
able for endangered languages. This also implies
that investing time in manually cleaning OCR data
could be effective for these models; however, it
is not always possible and contradicts the goal of
reducing the human effort in this work.

6 Analysis and Discussion

In this section we conduct several analyses to better
understand our method.

Incorporating Diagonal Bias As shown in Ta-
ble 4, our diagonal bias markedly improves ev-
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Test set En-Fr En-De

CLEAN-CLEAN 5.6 17.9
CLEAN-NOISY 40.5 43.8
NOISY-CLEAN 39.2 52.8
NOISY-NOISY 53.6 66.6

Table 7: awesome-align baseline on En-Fr and En-De.
OCR-like noise dramatically degrades the performance.

ery test case for both endangered language pairs.
Note that the attention score will be increased sig-
nificantly by adding bias, which will still be a
valid input for the final alignment matrix due to
its alignment extraction mechanism (Dou and Neu-
big, 2021). In this work, we only apply diagonal
bias under low-resource settings since it was shown
in Dou and Neubig (2021) that growing heuristics
such as grow-diag-final (Koehn et al., 2005; Och
and Ney, 2000) do not achieve promising results
for multiple high-resource language test sets.

Degradation of Alignment Table 7 presents the
evaluation of four test sets for awesome-align in
English-French and English-German. We observe
a significant decline in performance when OCR-
like noise is introduced. For example, with clean
parallel text, the AER for English-French is 5.6%,
but when OCR-like noise is added, the AER jumps
to 53.6%, almost a tenfold increase.

Size of synthetic data We conduct quantita-
tive analyses as shown in Figure 3 to examine
awesome-align with different sizes of English-
French synthetic data under both unsupervised and
supervised settings. For space economy reasons,
here we only discuss the results of the more chal-
lenging noisy-noisy test set. Note that dramatic
degradation of alignment is observed when apply-
ing OCR-like noise to clean text (see Table 7). In
general, the model produces better alignment as
more data are used. However, there is also a trade-
off on the clean-clean test set as its performance
worsens in the supervised scenario. Keep in mind,
though, that this situation is only observed in high-
resource language pairs; for a low-resource lan-
guage pair like our Griko-Italian, in limited abla-
tion experiments we found that we have not reached
the data saturation point yet as more data simply
resulted in better performance for both clean and
noisy text.

Varying degrees of CER In a real-world sce-
nario, the CER of OCRed data is typically un-

known due to the absence of clean text. We inves-
tigate how different degrees of CER affect align-
ments by creating several English-French synthetic
data with varying degrees of CER, testing them
on awesome-align. We elaborate on the process
and results in Appendix B.1. The main finding is
that higher CER leads to greater AER, which is
expected. However, we also find that mixing with
different degrees of CER generally produces better
results than a fixed CER throughout the corpus, sug-
gesting that our augmentation approach could also
work on the unknown CER real-world scenario.

Statistical Model vs Neural Model The ques-
tion of which model to use in practical scenarios,
though, remains tricky to answer. Due to simi-
larities between Griko and Italian and prolonged
language contact over centuries, the two languages
follow very similar syntax; as a result, their align-
ment is largely monotone, which benefits models
like Giza++ and fast-align. They outperform,
in fact, the vanilla neural awesome-align model
by a large margin (see Table 3). However, this
will not always be the case. For example, most
books with parallel data in the Archive of Indige-
nous Languages of Latin America (AILLA) mostly
contain data between indigenous languages and
one of Spanish or English. Now the two sides
of the data come from different language families
and a monotone alignment is not necessarily to
be expected. In such cases, it could indeed be
the case that a more adaptable neural model like
awesome-align, aided by our data augmentation
and diagonal biasing methods, could indeed be the
best option.

Different side of OCR noise An important in-
sight derived from Table 5 is that the performance
of awesome-align deteriorates significantly more
when both sides of the parallel data are noisy, as
compared to when only one side is noisy. This
is in fact encouraging for our envisioned applica-
tion scenarios, since, as in the AILLA examples
described above, we expect that OCRed parallel
data in endangered languages will come with one
side in a high-resource standardized language like
English and Spanish which in turn we expect the
OCR model to be able to adequately handle.13

13Rijhwani et al. (2020) and Rijhwani et al. (2021) make
similar observations on all endangered language datasets they
work with.
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Figure 3: Ablation on English-French with varying degrees of additional synthetically noised data. Notice the log
scale on the x-axis. The left-most point corresponds to no additional synthetic data (baseline). More data reduce
AER for noisy test sets, especially in the supervised finetuning setting.

7 Related Work

Our work is a natural extension of previous word
alignment work. A robust alignment tool for low-
resource languages benefits MT systems (Xiang
et al., 2010a; Levinboim and Chiang, 2015; Be-
loucif et al., 2016a; Nagata et al., 2020), or speech
recognition (Anastasopoulos and Chiang, 2018),
especially if sentence-level alignment tools like
LASER (Artetxe and Schwenk, 2019; Chaudhary
et al., 2019) do not cover all languages, so one
may need to fall-back to word-level alignment
heuristics to inform sentence-alignment models
like Hunalign (Varga et al., 2007).

Research on word-level alignment started with
statistical models, with the IBM Translation Mod-
els (Brown et al., 1993) serving as the foundation
for many popular statistical word aligners (Och
and Ney, 2000, 2003; Och, 2003; Tiedemann
et al., 2016; Vogel et al., 1996; Och, 2003; Gao
and Vogel, 2008; Dyer et al., 2013). In recent
years, different neural network based alignment
models gained in popularity including end-to-end
based (Zenkel et al., 2020; Wu et al., 2022; Chen
et al., 2021), MT-based (Chen et al., 2020), and
pre-training based (Garg et al., 2019; Dou and
Neubig, 2021). As awesome-align achieves the
overall highest performance, we choose to focus
on awesome-align in this work.

Some works involve improving word-level align-
ment for low-resource languages such as utilizing
semantic information (Beloucif et al., 2016b; Pour-
damghani et al., 2018), multi-task learning (Lev-
inboim and Chiang, 2015), and combining com-
plementary word alignments (Xiang et al., 2010b).
None of the previous work, though, to our knowl-
edge, tackles the problem of aligning data with

OCR-like noise on one or both sides. The idea of
augmenting training data is not new and has been
applied in many areas and applications. Marton
et al. (2009) augment data with paraphrases taken
from other languages to improve low-resource lan-
guage alignments. While potentially orthogonal to
our approach, this idea is largely inapplicable to
our endangered language settings, as we often have
to work with the only available datasets for these
particular languages. Applying structure alignment
bias on statistical and neural models is also a well-
studied area (Cohn et al., 2016; Brown et al., 1993;
Vogel et al., 1996; Och, 2003; Dyer et al., 2013).
However, to the best of our knowledge, we are the
first to apply it to low-resource languages, prov-
ing that such an approach can greatly aid the real
endangered language data.

8 Conclusion

In this work, we benchmark several popular word
alignment models under OCR noisy settings with
high- and low-resource language pairs, conduct-
ing several studies to investigate the relationship
between OCR noise and alignment quality. We pro-
pose a simple yet effective approach to create real-
istic OCR-like synthetic data and make the state-
of-the-art neural awesome-align model more ro-
bust by leveraging structural bias. Our work paves
the way for future word-level alignment-related re-
search on underrepresented languages. As part of
this paper, we also release a total of 4,101 ground
truth word alignment data for Griko-Italian, which
can be a useful resource to investigate word- and
sentence-level alignment techniques on practical
endangered language scenarios.
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9 Limitations

Using AER as the main evaluation metric could be
a limitation of our work as it might be misleading
in some cases (Fraser and Marcu, 2007). Another
limitation, of course, is that we only manage to
explore the tip of the iceberg given the sheer num-
ber of endangered languages. While we are confi-
dent in the results of both low-resource language
pairs, our experiments on Ainu-Japenese could po-
tentially lead to inaccurate AER since we use the
automatically generated silver alignment. In the
future, we hope to eventually annotate it with either
the help of native speakers or dictionaries. We also
plan to explore other alternative metrics and expand
our alignment benchmark on as many endangered
languages as possible.
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A Evaluation metric

We calculate precision, recall and alignment error
rate as described in Och and Ney (2003), where A
is a set of alignments to compare, S is a set of gold
alignments, and P is the union of A and possible
alignments in S. We then compute AER with:

Precision = |A∩P |
|A| Recall = |A∩S|

|S|

AER(S, P ;A) = 1− |A ∩ S +A ∩ P |
|A+ S|

B Additional Analyses

B.1 Varying degrees of CER
We create eight 100k English-French synthetic
datasets with different CER for each: “unified”
datasets with exactly the same CER on both sides:
2, 5, 10, and one with mixed CER with equally
shared portions with 2, 5 and 10 CER; and “vary-
ing” datasets with slightly different CER between
the English and French side, but in the same range
as the others. We then finetune the model with these
synthetic training datasets and compare against the
“skyline” result presented before, where the aug-
mentation matched the level of the true CER.

The results are presented in Table 9 for both the
unsupervised- and the supervised-finetuning set-
ting. Encouragingly, despite different CER in the
augmentation data, there are no significant perfor-
mance differences in most cases, especially for the
unsupervised setting. Of course, levels of noise
that match the true level tend to perform better or
close to best overall. On the other hand, high lev-
els of noise that lead to very high word error rate
(WER)14 cause a large degradation in the perfor-
mance of the supervised finetuning approach, but
do not seem to significantly affect the unsupervised
approach.

Even more encouragingly, an augmented dataset
that uses a mixture of different target CER (such as
having a third of the dataset having a CER around
2, a third with CER around 5, and a third around
10 – named “mixed” in Table 9) in the supervised
setting further outperforms the informed skyline
which uses additional knowledge that might not be
available (the true CER of the data to be aligned).
For instance, in the clean-noisy test set this model
reduces AER by a further 5% (from 31.1 to 29.3)

14For example, a CER of around 10 translates to a WER of
more than 70, meaning that (approximately) only 3 out of 10
words are correct.

and on the clean-clean test set it reduces AER by
19% (from 6.8 to 5.5). This means that our aug-
mentation approach with varying levels of noise
could be applied to any scenario, even if one does
not know the level of noise present in the data-to-
be-aligned.
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IBM 1 IBM 2 Giza++ fast-align awesome
Clean OCR Clean OCR Clean OCR Clean OCR Clean OCR

# of pairs 3844 3839 3833 3855 3810 3813 3801 3794 2978 2969

Precision 58.2 52.5 64.9 58.6 88.7 82.2 83.4 77.3 65.3 64
Recall 54.5 49.2 60.7 54.8 82.4 76.4 77.3 71.5 47.4 44.2

Table 8: Comparing the number of alignment pairs produced by models on Griko-Italian. awesome-align produces
almost 25% less alignment pairs, resulting in markedly lower precision/recall and higher AER.

CER (WER) on Clean-Clean Clean-Noisy Noisy-Clean Noisy-Noisy
Synthetic Data UNSUP-FT SUP-FT UNSUP-FT SUP-FT UNSUP-FT SUP-FT UNSUP-FT SUP-FT

Skyline: Using exactly the CER of the test set
7.4-4.8 (59.7-51.7) 4.3 6.8 37 31.1 34.4 30 46.9 40.3

Unified: Exactly the same CER on both sides
2-2 (32.2-29.1) 4.1 5.1 37.5 33.3 35.1 30.1 48.4 41.8
5-5 (55.1-52.4) 4.3 7.4 37.2 30.4 34.6 29.8 47.4 40.0
10-10 (72.2-71) 4.5 32.8 36.8 36.2 34.5 47.7 46.8 47.3
mixed (55-54.1) 5.4 5.5 37.3 39.6 35.3 39.8 47.7 54.2

Varying CER between the two parallel sides
1.6-2.1 (27.8-29.6) 4.0 6.2 37.6 31.6 35 30.6 48.4 41.9
4.1-5.1 (49.6-52.5) 4.3 7.7 37 29.8 34.7 30.1 47.2 40.2
8.1-9.6 (66.9-69.5) 4.5 31.3 37.1 36.2 34.3 46.3 46.7 46.9
mixed (47.9-50) 4.2 5.6 37 29.3 34.6 29.7 47.2 40.4

Table 9: AER comparison for varying CER in 100K English-French augmented data used for either unsupervised
or supervised finetuning. We highlight the best result under each setting and test set. Overall, most models’
performance is close to the baseline, but varying amounts of noise (mixed) lead to generally the best results. Too
high amounts of noise (e.g. CER around 10 with WER approaching 70) hurts the supervised approach.
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Abstract

Human conversations contain natural and rea-
sonable topic shifts, reflected as the concept
flows across utterances. Previous researches
prove that explicitly modeling concept flows
with a large commonsense knowledge graph ef-
fectively improves response quality. However,
we argue that there exists a gap between the
knowledge graph and the conversation. The
knowledge graph has limited commonsense
knowledge and ignores the characteristics of
natural conversations. Thus, many concepts
and relations in conversations are not included.
To bridge this gap, we propose to enhance dia-
logue generation with conversational concept
flows. Specifically, we extract abundant con-
cepts and relations from natural conversations
and build a new conversation-aware knowledge
graph. In addition, we design a novel relation-
aware graph encoder to capture the concept
flows guided by the knowledge graph. Exper-
imental results on the large-scale Reddit con-
versation dataset indicate that our method per-
forms better than strong baselines, and further
analysis verifies the effectiveness of each com-
ponent.

1 Introduction

With the remarkable development of conversation
artificial intelligence (Shang et al., 2015; Adiwar-
dana et al., 2020; Thoppilan et al., 2022), response
generation has been improved in many ways, e.g.,
human-like persona (Zhang et al., 2018a), empa-
thetic expression (Rashkin et al., 2019) and knowl-
edge injection (Dinan et al., 2019), etc. However,
there still exists a series of challenges (Gao et al.,
2019; Xu et al., 2020a; Huang et al., 2020). One
of the most noticeable is that humans are good
at naturally switching topics during conversations,
while machine-generated responses are relatively
dull and tend to keep the topic still (Fang et al.,

∗∗ Equal contribution.
†† Corresponding author (yang.yujiu@sz.tsinghua.edu.cn).

Figure 1: Two cases in the Reddit dataset. We use
ConceptNet as the external knowledge graph to show
concept flows in conversations. Concepts are marked
in blue. Relations in the graph and those in the natural
conversation are marked with red solid lines and blue
dashed lines, respectively.

2018) or throw unexpected topics (Wang et al.,
2018; Tang et al., 2019).

To overcome this challenge, previous works treat
the topic shifts as concept flows (Zhang et al.,
2020a; Zhou et al., 2018b, 2021a), which means
traversing in the concept1 space along relations in
an external commonsense knowledge graph. Ex-
perimental results have shown that explicitly mod-
elling concept flows effectively improves the rele-
vance and engagingness of responses. However, we
argue that there is a gap between the external knowl-
edge graph and natural conversations. The most

1Concept is the node in knowledge graph.
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frequently used ConceptNet 2 (Speer et al., 2017)
is limited to mostly (90%) taxonomic (e.g., IsA) or
lexical (e.g., Synonym) knowledge, while contains
relatively small portion of commonsense knowl-
edge (Hwang et al., 2021). In addition, concepts
and relations in natural conversations are more col-
loquial and timely. Thus, many concepts and re-
lations are not included in the knowledge graph,
which has also been verified in our experiments.
As in Figure 1, the concept flows from “offline”
to “internet” and from “Harden” to ”rockets” are
frequently observed in human conversations, while
they are both not be included in the most frequently
used ConceptNet.

To bridge the above gap and capture more con-
cept flows, we propose to Enhance Dialogue Gener-
ation with Conversational Concept Flows (ECCF).
Specifically, we construct an enhanced knowledge
graph that consists of concepts and relations in both
commonsense knowledge graph and natural con-
versations. First, we extract new concepts as new
nodes and the high-frequency relations between
concepts as new edges from a large-scale dialogue
corpora. Then, we add these new nodes and new
edges to the commonsense knowledge graph to con-
struct a Converstaion-Aware Knowledge Graph
(CAKG). To effectively guide concept flows in
conversations with CAKG, we further propose a
novel Relation-Aware Graph Encoder (RAGE),
which reasonably considers concepts and their re-
lations in the graph encoding process for response
generation.

We conduct a series of experiments on the large-
scale Reddit conversation dataset (Zhou et al.,
2018b; Baumgartner et al., 2020). Both automatic
evaluation and human evaluation demonstrate that
our method ECCF improves the relevance and di-
versity of responses, and outperforms strong base-
lines. Further analysis verifies the effectiveness of
both CAKG and RAGE. Our research sheds light
on explicitly modeling topic shifts with natural con-
versations.

2 Method

2.1 Overview

Given a dialogue context X , we aim to guide the
topic shifts with the concepts and relations in a

2ATOMIC (Sap et al., 2019) is also frequently used, while
they focus more on human emotion and reaction in the gener-
ation of empathetic responses (Sabour et al., 2021; Tu et al.,
2022), which we leave for future work.

knowledge graph. Our method ECCF is shown in
Figure 2, and can be summarized as follows:

1. Considering the abundant topic shifts in natu-
ral conversations, we enhance a commonsense
knowledge graph G with conversational con-
cept flows extracted from large-scale conver-
sation data. Then we get a conversation-aware
knowledge graph Gc (CAKG), which is more
informative.

2. Fro response generation, we first encode the
dialogue context X with a context encoder.
Then, to capture the concept flows defined in
the knowledge graph Gc, we use a graph en-
coder for encoding the retrieved subgraph g
from Gc, which is based on the concepts in
the dialogue context and their neighbor nodes.
Last, we adopt a decoder with copy mecha-
nism to generate a response and it can directly
copy concepts from the subgraph g.

2.2 Knowledge Graph Enhancement with
Conversational Concept Flows

We construct CAKG Gc on the basis of the com-
monsense knowledge graph G and a large-scale di-
alogue corpora Reddit (Baumgartner et al., 2020),
so that Gc contains more concept flows in natural
conversation. Formulating G = {V,E} where V
and E represent nodes and edges respectively, we
extract new nodes V ′ and new edges E′ from the
corpora, then reconstruct Gc = {V ∪ V ′, E ∪E′}.

To obtain conversational concepts as much as
possible, we have two principles when extracting
new nodes: common and concrete. First, we set a
frequency threshold m and words with a frequency
higher than it are regarded as candidate concepts.
Second, we choose nouns as new nodes from candi-
date concepts because nouns have richer semantic
information than other types of words 3.

We utilize the GIZA++ tool to extract 4 (Och
and Ney, 2003) new edges, which represent con-
cept flows in the conversations. The GIZA++ tool
is designed to align words in the machine transla-
tion field. Its main idea is that utilize the EM algo-
rithm to iteratively train the bilingual corpus and
obtain word alignment from sentence alignment.
We choose the toolkit here since concept align-
ments from source sentences to target sentences in

3We use the NLTK toolkit in python3 for POS tagging
https://www.nltk.org/

4http://www.statmt.org/moses/giza/GIZA++.html
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Figure 2: The pipeline of ECCF, which contains two parts. First, as in the right part, we extract new nodes and
new edges from the dialogue corpora, then merge them with commonsense knowledge graph (KG) to construct
conversational-aware knowledge graph (CAKG). Second, we use CAKG to guide the concept flows during the
response generation process. For graph encoding, we use a relation-aware graph encoder (RAGE).

conversations are similar to bilingual word align-
ment. In practice, we first clean the corpora by
removing all words except V ∪ V ′. Then we run
the GIZA++ toolkit to get the alignment probabili-
ties. Finally, we arrange the probabilities to select
the top k alignments as new edges. More details of
the alignment process can be found in their original
paper (Och and Ney, 2003).

An example is presented in Figure 3. For the
source concept “nurse”, we rank all the target con-
cepts according to the alignment probabilities. The
relations from “nurse” to the top k concepts are
regarded as new edges, such as “nurse→ hospiti-
cal”, and we attribute these edges to a new category:
“DialogFlowTo”.

2.3 Response Generation with
Conversation-Aware Knowledge Graph

2.3.1 Context Encoder
Given the dialogue context X = (x1, x2, ..., xm),
we utilize a bi-directional encoder to get the con-
textual representation H = (h1,h2, ...,hm).

H = Encoder(X). (1)

The encoder can be Transformer (Vaswani et al.,
2017) or GRU (Cho et al., 2014), to be consistent

Figure 3: Extract concepts and relations from natural
conversations.

with previous methods (Zhang et al., 2020a; Zhou
et al., 2018b, 2021b), we utilize GRU in our exper-
iments and choose the last word hidden states hm
as the representation of dialogue context.

2.3.2 Relation-Aware Graph Encoder
Since introducing the whole graph to the gener-
ation process is unpractical and unnecessary, we
retrieve a subgraph g from Gc and encode g with
the relation-aware graph encoder (RAGE), which is
based on the Transformer Encoder (Vaswani et al.,
2017). The subgraph g derives from the concepts
in the dialogue history and their one-hop and two-
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hop neighbor nodes5. To model the interactions
between the dialogue context X and subgraph g,
we set a special nodeX to connect with all nodes of
g, which represents the relations between dialogue
and concepts. Then, we initialize the embedding of
X with hm, and the embedding of g with TransE
embedding (Bordes et al., 2013). To model the
graph structure of subgraph g, we design a graph
mask matrix M :

mij =





0 if i = X or j = X ,
0 if i ∈ Neighbor(j),
−∞ otherwise,

(2)

where mij = 0 indicates that node i and node j are
connected, whilemij = −∞ represents the discon-
nect. Further, we replace the original Multi-Head
Attention (MHA) with Relation-Aware Concept
Attention (RACA), which incorporates the graph
structure and node relations in the attention process.
The differences are as follows:

MHA = softmax(
QKT

√
d

)V,

RACA = softmax(
QKT

√
d

+M +R)V,

(3)

where Q, K, V is the query, key, and value vectors,
more details in the original paper (Vaswani et al.,
2017). M represents the graph mask matrix and R
denotes edge relation bias:

rij = qT × eij , (4)

where eij ∈ Rd is edge embedding 6, q ∈ Rd is
used to transform the vector to scalar which repre-
sents relation importance in the attention process.
We employ different q in different heads and lay-
ers of the graph encoder, so that we can capture
abundant and diverse relation-aware concept inter-
actions. The output of the last layer is selected as
the concept representations G.

2.3.3 Decoder
The decoder generates response Y based on the
dialogue context and subgraph. At t-th time step,
the decoder state st is updated as follows:

st = Decoder(s<t, yt−1,H,G) (5)
5As the two-hop neighbor nodes are extensive, we select

100 two-hop nodes for each concept. For the fairness of the
experiment, we use the same two-hop nodes set as in as in
Zhang et al. (2020a).

6For the edges from a node to itself, we give them a new
category: “SelfTO”. For edges from and to X , we give them
two new categories: “FromText” and “ToText”.

To be consistent with previous works, we utilize
GRU in this paper. We employ attention mecha-
nism to capture useful information from H and G,
more details in (Bahdanau et al., 2015).

In addition, we also apply the copy mechanism
to directly copy concepts from subgraph g. The
process can be formulated as follows:

σt = Sigmoid(v⊤s st),

pvt = Softmax(W · st),
pct = Softmax(G · st),
pt = (1− σt) · pvt + σt · pct ,

(6)

where pvt and pct are the probability of generation
and copy, respectively.

2.3.4 Objective Function
Our objective function has two parts, the first is the
negative log likelihood of response generation:

L1 = −
n∑

t=1

log p(xt|x<t, X,H,G). (7)

We also supervise the copy gate as in Zhou et al.
(2018a); Chen et al. (2022), so that the decoder can
accurately copy concepts from the subgraph:

L2 =
n∑

t=1

qt · log σt + (1− qt) · log(1− σt), (8)

where qt ∈ {0, 1} indicates whether xt is a con-
cept word from the subgraph. The final objective
function is L = L1 + L2.

3 Experiment

3.1 Dataset
Follow Zhou et al. (2018b); Zhang et al. (2020a),
we conduct experiments based on Reddit conversa-
tion dataset processed by (Zhou et al., 2018b). It
contains 3,384,160 training pairs and 10,000 test-
ing pairs. We use the commonsense knowledge
graph ConceptNet (Speer et al., 2017) processed by
Zhou et al. (2018b), which includes 21,471 nodes,
120,850 edges, and 44 types of edge relation.

3.2 Baselines
The baselines can be divided into three groups:

• Standard seq2seq model(Sutskever et al.,
2014). The model is based on the classical
encoder-decoder framework. The encoder and
decoder are GRU as our model.
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Model Bleu-3 Bleu-4 Nist-3 Nist-4 Rouge-1 Rouge-2 Rouge-L Meteor PPL Ent-4

Seq2seq 0.0226 0.0098 1.1056 1.1069 0.1441 0.0189 0.1146 0.0611 48.79 7.6650

MemNet 0.0246 0.0112 1.1960 1.1977 0.1523 0.0215 0.1213 0.0632 47.38 8.4180
CopyNet 0.0226 0.0106 1.0770 1.0788 0.1472 0.0211 0.1153 0.0610 43.28 8.4220

CCM 0.0192 0.0084 0.9082 0.9095 0.1538 0.0211 0.1245 0.0630 42.91 7.8470
ConceptFlow 0.0495 0.0239 1.8838 1.8896 0.2241 0.0457 0.2032 0.0956 29.44 10.2390

GPT-2(lang) 0.0162 0.0162 1.0840 1.0844 0.1321 0.0117 0.1046 0.0637 29.08* 11.6500
GPT-2(conv) 0.0262 0.0124 1.1745 1.1763 0.1514 0.0222 0.1212 0.0629 24.55* 8.5460

DialoGPT 0.0189 0.0095 0.9986 0.9993 0.0985 0.0117 0.0971 0.0546 18.65* 9.8163

ECCF 0.0644 0.0331 2.2573 2.2661 0.2592 0.0601 0.2340 0.1091 25.98 10.8173

Table 1: Automatic Evaluations. We highlight the best scores on each metric. The PPL scores of pre-trained models
are not comparable because of different tokenization. The results indicate that our ECCF gets the highest scores on
most metrics.

• Knowledge enhanced models: Mem-
Net(Ghazvininejad et al., 2018), Copy-
Net(Zhu et al., 2017), CCM(Zhou et al.,
2018b) and ConceptFlow(Zhang et al., 2020a).
These models explore knowledge information
during the generation process.

• Pretraind models: GPT-2 lang(Zhang et al.,
2020a), GPT-2 conv(Zhang et al., 2020a), Di-
aloGPT(Zhang et al., 2020b). These mod-
els have a large number of parameters and
have been pretrained on large corpus. GPT-2
lang and GPT-2 conv are built based on GPT-
2(Radford et al., 2019).

For seq2seq, MemNet, CopyNet, CCM, GPT-
2 lang and GPT-2 conv, we directly use results
in ConceptFlow paper (Zhang et al., 2020a). For
ConceptFlow, we run their public codes7. For Di-
aloGPT, we finetune it on the dataset 8.

3.3 Evaluation Metrics
We use the following metrics for evaluation:

• PPL (Serban et al., 2016): Perplexity mea-
sures the fluency of the responses.

• Bleu (Chen and Cherry, 2014), Nist (Dod-
dington, 2002), Rouge(Lin, 2004) : These
metrics measure the overlap between the gen-
erated response and the ground truth.

• Meteor (Lavie and Agarwal, 2007): Meteor
measures the relevance between generated re-
sponses and ground truth.

• Entropy (Zhang et al., 2018b): Entropy mea-
sures the diversity of generated responses.

7https://github.com/thunlp/ConceptFlow.
8https://huggingface.co/microsoft/DialoGPT-medium

We implement the above metrics based on the
code of Galley et al. (2018) 9.

3.4 Implementation Details

For constructing CAKG, we utilize the training
dataset for extracting conversational concept flows,
which includes 3,384,160 utterance pairs. The
frequency threshold m is set as follows: we
first arrange the frequencies of V (original con-
cepts in ConceptNet) in the dialogue corpora as
f1, f2, · · · , f|V |, then, f0.2×|V | is set as m. Noun
words with frequency higher than m is selected
as new concepts. Further, we choose the top 20%
concept relations for each concept as new edges.

For response generation, we use 2-layer GRU
as context encoder and decoder, 3 layers of Trans-
former encoder with relation-aware concept atten-
tion as graph encoder. We choose Adam as the
optimizer, the batch size, learning rate, max gradi-
ents norm, and dropout are set to 30, 1e-4, 5, 0.2,
respectively. We use TransE embedding (Bordes
et al., 2013) and Glove embedding (Pennington
et al., 2014) to initialize the embedding of concepts
and words, respectively. We train our method on
8 V100 GPUs, and it takes about 1.5 hours for
one-epoch training.

4 Evaluation

4.1 Automation Evaluation

The experimental results are shown in Table 1. Ex-
cept for pre-trained models, our method achieves
the lowest PPL score, indicating that the responses
generated by our model are more fluent. Further-
more, Bleu, Nist, Rouge, and Meteor measure the

9https://github.com/DSTC-MSR-NLP/DSTC7-End-to-
End-Conversation-Modeling
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Graph Nodes Edges Response Nodes 0-hop Nodes 1-hop Nodes 2-hop Nodes
amount golden amount golden amount golden

G 21471 120850 5.691 5.8129 0.5998 90.5138 1.2064 99.7706 0.8823
Gc 21754 218478 6.192 6.3223 0.6352 100.6227 1.4114 99.7706 0.8823

Table 2: Statistics of graphs coverage on the conversation dataset. The amount and golden are the numbers of total
concepts and concepts appearing in responses, respectively. Obviously, Gc has higher coverage than G.

Fluency
Average Best @1 kappa

ConceptFlow 2.2875 0.24 0.563
ECCF 2.4325 0.30 0.603
Golden 2.6975 0.69 0.665

Appropriateness
Average Best @1 kappa

ConceptFlow 1.6200 0.12 0.480
ECCF 1.6850 0.16 0.563
Golden 2.3275 0.81 0.603

Table 3: Evaluation results by human annotators. We
also present Fleiss’ Kappa in the table. Kappa values
range from 0.4 to 0.6, indicating fair agreement.

relevance between generated responses and ground
truth responses in different ways. Our method out-
performs all baselines by large margins on these
metrics, demonstrating that the responses gener-
ated by our method are more relevant to the con-
texts and topic-consistent with humans. For di-
versity, our method gets the second-highest score,
only lower than GPT-2. This proves that our pro-
posed method can generate diverse responses. It
is worth noticing that, although pre-trained models
are slightly better at fluency and diversity, they per-
form much worse in relevance (Bleu, Nist, Rouge,
Meteor) compared with our method and Concept-
Flow. This indicates the superiority of explicitly
modeling conversational topic shifts based on a
knowledge graph.

4.2 Human Evaluation

To evaluate model performances more comprehen-
sively, we follow Zhang et al. (2020a) and hire four
human annotators to judge the quality of gener-
ated responses. Specifically, we randomly sample
100 cases for ConceptFlow, ours, and ground truth
responses 10. Annotators are required to score re-
sponses from 1 to 3 on two aspects: fluency and
appropriateness. Fluency evaluates whether a re-
sponse is fluent or contains grammar errors, while

10Zhang et al. (2020a) have proved that ConceptFlow out-
performs a series of baselines including GPT-2 based methods.
Therefore, we only use ConceptFlow for comparison here in
the case of limited human resources.

appropriateness measures whether a response is
relevant and reasonable to its dialogue context.

As in Table 3, ECCF is better than the strong
baseline ConceptFlow in terms of both fluency and
appropriateness, the best @1 ratios of ECCF are
also higher than ConceptFlow, demonstrating the
superiority of our method. However, there is a large
gap between ours and humans, indicating that there
is still plenty of room for improvement.

5 Analysis

5.1 Conversation-Aware Knowledge Graph

Table 2 presents the statistics of ConceptNet G
and our CAKG Gc. Thanks to the conversational
concept flows extracted from large-scale dialogue
corpora, Gc has more concepts and relations. Thus,
more concepts in the responses are covered, espe-
cially for 0-hop and 1-hop concepts. This further
proves the limitation of the external commonsense
knowledge graph. We conduct an ablation study
by replacing CAKG with ConceptNet (Ours w/o
CAKG). As in Table 4, the performance drops in
both relevance and diversity, which proves the ef-
fectiveness of conversational concept flows.

To further explore the relation between common-
sense knowledge graph and conversational concept
flows, we remove some edges in ConceptNet when
constructing CAKG. As shown in Table 4, our
method performs worse on relevance, fluency, and
diversity, much worse when more edges are re-
moved. Therefore, we can infer that concepts and
relations in commonsense knowledge graph are
also of great necessity for guiding topic flows in
natural conversation. Further, both commonsense
and conversation knowledge are beneficial to re-
sponse generation, a reasonable way is to combine
them as in our method.

5.2 Conversational Concept Flows

We conduct a human evaluation to verify the qual-
ity of the extracted conversational concept flows.
Specifically, we randomly sample 100 extracted
edges, and hire four human annotators to judge
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Model Bleu-3 Bleu-4 Nist-3 Nist-4 Rouge-L Meteor PPL Ent-4

ECCF 0.0644 0.0331 2.2573 2.2661 0.2340 0.1091 25.98 10.8173

w/o CAKG 0.0615 0.0319 2.1448 2.1541 0.2307 0.1055 26.40 10.7081
w/o 20% edges in CN 0.0634 0.0328 2.2102 2.2194 0.2322 0.1070 27.17 10.7391
w/o 50% edges in CN 0.0502 0.0249 1.8466 1.8528 0.2044 0.0938 30.77 10.2637

w/o RAGE 0.0529 0.0267 1.9270 1.9340 0.2115 0.0976 27.81 10.4316
w/o graph mask 0.0573 0.0290 2.0694 2.0771 0.2201 0.1025 26.81 10.6822

w/o relation aware 0.0589 0.0295 2.1394 2.1472 0.2246 0.1050 26.46 10.6871
w/o dialogue node 0.0595 0.0305 2.1316 2.1402 0.2237 0.1044 27.00 10.7731

Table 4: Analysis studies for conversation-aware knowledge graph (CAKG) and relation-aware graph encoder
(RAGE), CN represents ConceptNet.

whether the target concept is relevant to the source
concept. The results show that 68 edges are voted
as relevant, of which 47 edges that all four an-
notators reach an agreement. According to our
manually checking, these edges mainly have three
categories, as shown in Figure 4. The first type cor-
responds to pairs that have realistic relations, such
as “nurse” and “hospital”. The second type corre-
sponds to pairs in the same kind, such as both “ps4”
and “pc” are electronic devices. The third type cor-
responds to pairs with POS relations, such as “per-
ception” is the noun form of “perceptive”. These
three categories are meaningful, which proves that
our method can obtain beneficial knowledge from
natural conversations.

5.3 Relation-Aware Graph Encoder
We further investigate the effectiveness of the pro-
posed relation-aware graph encoder (RAGE), and
conduct several ablation studies as follows:

• w/o RAGE. To explore the superiority of our
graph encoder, we replace it with a GNN-
based architecture named GRAFT-Net (Sun
et al., 2018), which is used by the strong base-
line ConceptFlow (Zhang et al., 2020a).

• w/o graph mask. We remove the graph mask
to explore the effectiveness of graph structure.

• w/o relation aware. We remove the rela-
tion bias in relation-aware concept attention,
which aims to explore the effects of relation
for graph encoding.

• w/o dialogue node. We remove the node X to
study the necessity of the interactions between
dialogue context and knowledge graph.

The results are shown in Table 4, and there are sev-
eral findings. First, the performance drops largely

when replacing our RAGE with traditional GNN
used by previous work (Zhang et al., 2020a), which
proves the effectiveness of transformer architecture
and relation-aware concept attention. Second, the
ablation study of each component further verifies
the rationality of our design. Third, removing the
graph mask results in worse performance compared
with removing relation aware and removing dia-
logue node, which shows the importance of graph
structure for graph encoding.

Figure 4: Several examples of high-quality concepts and
relations we extracted from the conversation corpora.
We classify them into three categories.

5.4 Case Study
To further investigate the performance, we present
three cases in Table 5. In case 1, though the re-
sponses generated by DialoGPT and ConcpetFlow
are proper, they are not as informative as ours.
We can see that our response contains concept
“episode” fromGc, which is consistent with the post
and achieves a reasonable and natural topic shift.
In case 2, it seems that DialoGPT and Concept-
Flow don’t understand the context and give wrong
responses, while our method gives high-quality re-
sponse that contains concepts “source”, “server”
and “bug”, which are relevant to the context. In
case 3, for the post about football and super bowl,
DialoGPT gives a short and dull response while
ConceptFlow gives an unreasonable sentence. In
contrast, our response is more consistent with the
post. These cases show that our method generates
more suitable responses, which is consistent with
the automatic evaluation and human evaluation.
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#1 post i drove home last night , saw my dad for the first time in 6th months , and slept all day today .
woke up and poured myself a rum and coke thenstarted watching archer . today was a good day .

DialoGPT i’m glad you had a good day.
ConcpetFlow i ’m going to the same day . have a good night , man .

ECCF i ’m going to watch the first episode of archer and see if i can get a chance to sleep .

#2 post what do you mean ? from the alpha or from the beta ? his uav was nerfed like crazy in the beta ,
not being able to ping or find a monster if they ’re sneaking at all .

DialoGPT i mean from the alpha. i’m not sure if it was nerfed in the beta, but i’m pretty sure it was.
ConcpetFlow you can see the alpha of the alpha , but it ’s a bug .

ECCF you can see the source on the server . i think he was just a bug .

#3 post nowhere . fuck the patriots . fuck the seahawks . fuck football and fuck all these super bowl
questions today .

DialoGPT i’m with you man.

ConcpetFlow you ’re right . it ’s a great way to get a new one . you can also see the seahawks and the
seahawks .

ECCF how about you ask me to watch the game ? you want to watch the world cup and see how much of a
rivalry it takes to get to the point ?

Table 5: Three cases on the testset. We present responses generated by three different models. To study the impact
of the knowledge graph, we mark concepts in the original ConceptNet in blue and concepts introduced by the
enhanced graph in magenta.

6 Related Work

Dialogue Generation. Recently, dialogue gener-
ation (Adiwardana et al., 2020; Thoppilan et al.,
2022) has achieved great progress in many aspects.
Pre-trained dialogue models (Zhang et al., 2020c;
Roller et al., 2021) improve the response quality
largely, even reaches human performance in single-
turn dialogue generation. Persona-based dialogue
system (Zhang et al., 2018a) possesses a human
persona and is able to converse in a more captivat-
ing way. Rashkin et al. (2019) propose empathetic
response generation, which aims to recognize part-
ner feelings and reply accordingly. To bridge the
gap between human utterances and dialogue system
utterances, Chen et al. (2022) propose to enhance
empathetic response generation with human-like in-
tents. In this paper, we focus on the topic shifts dur-
ing conversations and propose to enhance dialogue
generation with conversational concept flows.
Knowledge-Aware Dialogue Generation. One
of the most crucial challenges in dialogue genera-
tion is the lack of knowledge. Plentiful works have
been proposed to inject reasonable knowledge into
responses. One kind of these works utilizes unstruc-
tured knowledge, e.g., Wikipedia articles (Dinan
et al., 2019), goal-related documents (Feng et al.,
2021) etc. Another kind of work focuses on struc-
tured knowledge. Zhou et al. (2018a) exploit con-
cept relations in commonsense knowledge graph
to imitate concept shifts in human conversation.
Zhang et al. (2020a) develop this idea and propose

to explicitly model the concept flows in conversa-
tion. As we notice the gap between commonsense
knowledge graph and natural conversations, we fur-
ther propose to enhance dialogue generation with
conversational concept flows.

There are also researches that extract informa-
tion from natural conversations. Some of them
extract relationships among persons on a domain-
specific dataset (Yu et al., 2020; Xue et al., 2021;
Long et al., 2021), while they focus on relation ex-
traction not response generation. Others construct
conversational graph from natural conversations to
improve response generation (Xu et al., 2020b; Zou
et al., 2021). However, their graphs only contain
knowledge in conversations, while ignores the rich
knowledge in commonsense knowledge graph. As
shown in our analysis experiments, both types of
knowledge are beneficial to response generation.

7 Conclusion and Future Work

In this paper, we argue the limitation of using ex-
ternal commonsense knowledge graph for response
generation. To better capture topic shifts in natural
conversation, we propose to enhance dialogue gen-
eration with conversational concept flows and con-
struct conversation-aware knowledge graph. We
further design a novel relation-aware graph encoder
to capture the concept relations in knowledge graph.
Extensive experiments on the large-scale Reddit
dataset show the superiority of our method, and fur-
ther analysis demonstrates the rationality of each
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component. In future work, we expect to capture
more structural information from natural conversa-
tions to improve dialogue generation.

Limitations

In this paper, we propose to enhance dialogue gen-
eration with conversational concept flows. Exper-
imental results have shown that our method per-
forms better than strong baselines. However, there
are several major limitations. First, we use GIZA++
toolkit to extract concept relations, which is effi-
cient but less expressive, as we cannot confirm the
relations between concepts while they are quite dif-
ferent. For example, the relation between “nurse”
and “hospital” is different to the relation between
“thirsty” and “drink”. These relations have cer-
tain semantics and can be beneficial for response
generation. Second, the experimental results in
this paper are only based on one dataset Reddit.
Although Reddit is large and contains 3, 384, 160
examples, more datasets can further verify the gen-
eralization ability of our methods. Third, we only
combine conversational concept flows with Con-
ceptNet (Speer et al., 2017), while other knowledge
graphs (e.g., ATOMIC (Sap et al., 2019)) should
be considered in future work to futher explore the
relations between conversational concept flows and
commonsense knowledge.
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Abstract

Mental health problems are a challenge to our
modern society, and their prevalence is pre-
dicted to increase worldwide. Recently, a surge
of research has demonstrated the potential of
automated detection of mental health condi-
tions (MHC) through social media posts, with
the ultimate goal of enabling early interven-
tion and monitoring population-level health out-
comes in real time. Progress in this area of re-
search is highly dependent on the availability of
high-quality datasets and benchmark corpora.
However, the publicly available datasets for
understanding and modeling MHC are largely
confined to the English language. In this paper,
we introduce SMHD-GER (Self-Reported Men-
tal Health Diagnoses for German), a large-scale,
carefully constructed dataset for MHC detec-
tion built on high-precision patterns proposed
for English. We provide benchmark models
for this dataset to facilitate further research and
conduct extensive experiments. These mod-
els leverage engineered (psycho-)linguistic fea-
tures as well as BERT-German. We also ex-
amine nuanced patterns of linguistic markers
characteristics of specific MHC.

1 Introduction

Mental health is a major challenge in healthcare
and in our modern societies at large (Rehm and
Shield, 2019; Santomauro et al., 2021). The World
Health Organization estimates that 970 million peo-
ple worldwide suffer from mental health condi-
tions12, with the rate of undiagnosed mental dis-
orders estimated to be as high as 45% (La Vonne
et al., 2012).

1https://www.who.int/news-room/fact-sheets/
detail/mental-disorders

2‘Mental disorders’ can also be referred to as ‘mental health
conditions’. The latter is sometimes used as a broader term
encompassing mental disorders, psycho-social disabilities,
and mental conditions, include different types of depression,
bipolar disorder, schizophrenia, anxiety disorders, chronic
stress etc.. In this work, the two terms are used interchangably.

The enormous societal impact of mental health
conditions (MHC) requires prevention and inter-
vention strategies that focus primarily on screening
and early detection. The last decade has seen a
surge in digital mental health research, an inter-
disciplinary line of research that brings together
insights from computational linguistics, cognitive
psychology and computational social sciences to
understand the relationship between patterns of lan-
guage use and mental health conditions (D’Alfonso,
2020; Schindler and Domahidi, 2022). Natural
language processing, in particular, is increasingly
recognized as having transformative potential to
support healthcare professionals in the diagnosis
and treatment of mental disorders and enable peo-
ple to lead healthy lives (see Guntuku et al. 2017;
Thieme et al. 2020; Chancellor and De Choudhury
2020; Zhang et al. 2022 for recent overviews of
this research).

Progress in this area of research is highly depen-
dent on the availability of high-quality datasets and
benchmark corpora. Social media has emerged as
an increasingly vital resource for obtaining such
data, as it is now a central place for individuals to
participate in discussions, share information, and
seek advice. Based on data drawn from platforms
such as Twitter and Reddit, recent work has de-
veloped scalable methods for constructing mental
health datasets based on self-reported diagnoses
or grouping individuals based on activity patterns
(Coppersmith et al., 2015; Yates et al., 2017; Cohan
et al., 2018; Kumar et al., 2015). However, recent
reviews on the state of data used for mental health
status on social media show that the vast majority
of the publicly available datasets for understand-
ing and modeling MHC are on the English lan-
guage: For example, of the 102 datasets reviewed
in Harrigian et al. (2021) 83% were on English
with the remaining 17% distributing over five other
languages: Chinese (9.8%), Japanese (3.9), Korean
(1.9), Spanish and Portuguese (each < 1%). Zhang
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et al. (2022) report that 81% of all the datasets are
in English, followed by datasets in Chinese (10%),
and Arabic (1.5%). While an overwhelming focus
on English data is a theme throughout the NLP
community, it is a specific concern in this domain
where culture often influences the presentation of
mental health disorders (De Choudhury et al., 2017;
Loveys et al., 2018). Thus, there is an urgent need
for publicly available, high-quality mental health
datasets and benchmark models to support early
detection of MHC in languages other than English.

The main contributions of this work are three-
fold: (1) We introduce SMHD-GER (Self-reported
Mental Health Diagnosis for German), a new large
dataset of social media posts for mental health de-
tection in the German language, and make it pub-
licly available; (2) We provide benchmark models
for the detection of four mental health conditions
based on a comprehensive set of text-based features
that pertain to multiple levels of language use, the
German BERT-based model, and hybrid models
that combine the two; and (3) We uncover nuanced
patterns of linguistic markers characteristic of spe-
cific mental health conditions.

The remainder of this paper is organized as fol-
lows: In Section 2 we briefly review available so-
cial media datasets and NLP classification meth-
ods for MHC detection. Section 3 details the con-
struction of the SMHD-GER dataset along with an
ethics and privacy statement. Section 4 presents
the results of a analysis of linguistic markers of
specific MHC. In Section 5, we describe the mod-
eling approach for our benchmark models, and in
Section 6, we present and discuss the results. Fi-
nally, we conclude with directions for future work
in Section 6.

2 Related work

In this section, we provide a concise overview of
some of the most widely used self-disclosure so-
cial media datasets along with the classification
methods used in the detection of mental health
conditions. The self-disclosure approach to obtain-
ing labeled data from social media was introduced
in Coppersmith et al. (2014) and further refined
in consecutive work (Yates et al., 2017; Cohan
et al., 2018). In this approach, public self-reports of
mental health diagnoses are identified through the
use of carefully designed ‘diagnosis patterns’ com-
bined with ‘diagnosis keywords’ mapped to particu-
lar mental health conditions: A user is included for

a specific MHC if one of the condition keywords
occurs within a certain distance of the diagnosis pat-
tern. Coppersmith et al. (2014) originally applied
this approach to Twitter data and identified approxi-
mately 1,200 users with four MHC (bipolar, depres-
sion, PTSD, SAD) by matching diagnosis patterns
in their tweets (e.g., “I was diagnosed with depres-
sion”). This dataset was employed in the shared
task at the 2nd Computational Linguistics and Clin-
ical Psychology Workshop (CLPsych 2015) that
focused on identifying depression and PTSD users
on Twitter (Coppersmith et al., 2015). Submissions
to the task used traditional (shallow) classification
models trained on unigram vectors, character lan-
guage models, closed-vocabulary approaches (e.g.
LIWC, Pennebaker et al., 2001) and supervised
topic models. The leading systems reached average
precision rates over 85% for both MHC. However,
the dataset had a balanced distribution between the
classes, rather than one that accurately reflect the
user population. This hampered the reliable estima-
tion of actual false alarm rates, as the number of
false alarms in the general population is estimated
to be 7-15 times higher than in the CLPsych 2015
test sample (Coppersmith et al., 2015).

The text content of a Tweet can contain up to
280 characters or Unicode glyphs. Thus, this for-
mat presents a barrier to capturing mental health
related language signals. Recent work on com-
piling datasets for mental health is increasingly
turning to Reddit for long-form content that can
provide additional linguistic insights3: Yates et al.
(2017) applied the self-disclosure approach to cre-
ate the Reddit Self-reported Depression Diagnosis
(RSDD) dataset, which contains 9,210 users with
depression and 107,274 control users. Apart from
increasing the dataset size by an order of magni-
tude – 969 posts per user with mean post length
of 148 words, the RSDD dataset displays a real-
istic number of control users matched with each
diagnosed user.

The main limitation of the RSDD dataset is its
focus on a single mental health condition, depres-
sion. In what is to our our knowledge the most
comprehensive, carefully constructed mental health
dataset based on the self-disclosure approach, Co-
han et al. (2018) expand on RSDD by including for
eight additional MHC: The Self-reported Mental
Health Diagnoses (SMHD) dataset, whose design

3Reddit (https://www.reddit.com/) is a social news aggre-
gation, content rating, and discussion website without any
length constraints.
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underlies the current work, comprises 20,406 diag-
nosed users and 335,952 matched controls. Diag-
nosed users were identified using a refined version
of the high precision diagnosis patterns used in
RSDD, which incorporated synonyms in matching
patterns from two synonym mapping ontologies
(MedSyn, Yates and Goharian, 2013, Behavioral,
Yom-Tov et al., 2013). Control users were selected
based on a similar Reddit posting activity, i.e. each
daignosed user was matched with an average of 9
control users with a similar number of posts and
a similar range of subreddits they posted in. Im-
portantly, SMHD does not contain any posts that
contain any mental health terms or that have been
posted in a mental health-related subreddits. The
detection of MHC can thus not be based on terms
associated with specific mental health conditions.
Along with the dataset itself, Cohan et al. (2018)
provided benchmarks for both binary (MHC vs.
control) and multi-class classification settings. The
classification methods included several traditional
(shallow) machine learning models (logistic regres-
sion, XGBoost (Chen and Guestrin, 2016), support
vector machine with linear kernel) trained on tf-idf
bag-of-words features, a shallow neural net model
trained on character ngrams (Supervised FastText,
Joulin et al., 2016), and a Convolutional neural net-
work trained on ngram sequences represented by
the FastText embeddings. Subsequent work has im-
proved MHC detection accuracy using Hierarchical
Attention Networks (Sekulic and Strube, 2019) and
attention-based model using BERT representations
(Jiang et al., 2020). Recently, (Zanwar et al., 2022)
leveraged transformer language models (BERT De-
vlin et al., 2019 and RoBERTa Liu et al., 2019) in
combination with attention-based BLSTM models
trained on engineered language features for MHC
detection.

3 Data

3.1 Data construction

In this section we describe the construction and
characteristics of the SMHD-GER dataset. SMHD-
GER comprises data on seven mental health con-
ditions that correspond to branches in the DSM-5
(APA, 2013): Five conditions are top-level DSM-
5 disorders: schizophrenia spectrum disorders
(schizophrenia), bipolar disorders (bipolar), depres-
sive disorders (depression), anxiety disorders (anx-
iety), obsessive-compulsive disorders (OCD). The
remaining two conditions are one rank lower: post-

traumatic stress disorder (ptsd) is classified under
trauma- and stress-related disorders, and attention-
deficit/hyperactivity disorder (ADHD) under neu-
rodevelopmental disorders. The construction of the
dataset is an adaptation of the general procedure
underlying the construction of the SMHD dataset
described in Cohan et al. (2018): The textual data
were obtained from Reddit using the Pushshift.io
API Wrapper by searching for all posts mentioning
any mental health (MH) terms, such as the name of
a condition. The list of MH-terms was derived from
the corresponding materials used for the SMHD
dataset using DeepL translator4 followed by man-
ual inspection and editing. We then filtered these
posts to keep only those that were in German using
the ‘langdetect’ the Python library.5.

Diagnosed users were identified using high pre-
cision diagnosis patterns as in Cohan et al. (2018):
Reddit users received a positive label for a specific
MHC if and only if at least one of their posts explic-
itly states that they suffer from a specific condition
or are engaging in behaviors indicative of it. These
were triangulated with specific expressions, such as
"Ich wurde diagnostiziert mit X" ("I was diagnosed
with X"), where X would be filled with a specific
MH-term (e.g. "Depression"). Like the MH-terms,
the diagnosis patterns were derived from the cor-
responding materials used for the SMHD dataset
using DeepL translator followed by manual inspec-
tion and editing. We then collected all posts and
comments for the users with a positive label and
filtered these to keep only those that (i) were in Ger-
man, (ii) had no mentions of any of the MH-terms
and (iii) were not posted in a subreddit related to
mental health (MH-subreddit).

Control users: To compile the data used for
control we collected 1049202 posts from 24981
users from r/de6 subreddit, and filtered out those
users who (i) had used any MH-term in any of their
posts or (ii) had posted in a MH-subreddits. For all
remaining users we collected all the available posts
and comments in German. All Reddit posts were
made between August 14, 2009, and October 2,
2022 (inclusive). This procedure yielded a dataset
containing 5,611 diagnosed users and 22,426 con-
trol users. On average each user in the dataset
contributed 16.23 posts with a mean post length of
69 word tokens (see Table 1).

4https://www.deepl.com/translator
5https://pypi.org/project/langdetect/
6r/de is a reddit community for german speakers
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MHC #users #posts mean #posts/user mean #words/post sd #words/post
ADHD 1055 19212 18.21 59.50 119.35
Anxiety 14 277 19.79 263.85 557.50
Bipolar 1424 23711 16.65 46.46 84.76
Control 22426 361670 16.13 42.08 56.97
Depression 975 15654 16.06 48.12 110.92
OCD 257 3881 15.10 44.02 111.54
Other 1072 17591 16.41 46.67 86.47
PTSD 728 11684 16.05 44.25 74.39
Schizophrenia 86 1380 16.05 44.64 66.60

Table 1: Means (standard deviations) and counts of posts, tokens and characters for diagnosed and control users.

3.2 Ethics and privacy
Although we rely solely on publicly available Red-
dit data, mental health remains a sensitive issue,
and measures to avoid risks to individuals in social
media research should always be considered (Hovy
and Spruit, 2016; Šuster et al., 2017; Cohan et al.,
2018). Following the data handling procedures of
the original SMHD (Cohan et al., 2018), we do not
publish excerpts from the data, we did not attempt
to contact users, and we did not attempt to identify
or link users to other social media accounts. We
also replace usernames with random identifiers to
prevent users’ identities from being revealed with-
out external information. The SMHD-GER dataset
is made available through a data usage agreement
(DUA) that protects user privacy. Specifically, the
DUA specifies that no attempt may be made to pub-
lish any part of the dataset (which could lead to
user identification), contact users, identify them, or
link them to other user information.

An ethical issue raised by an anonymous re-
viewer concerns the annotation of positive mental
health conditions through self-disclosure of users,
as those who choose to disclose them might dif-
fer from the population of individuals living with
such conditions without disclosing them. Another
ethical issue concerns the use of psychometric eval-
uation of large text corpora leveraging LIWC-like
features alone, as this approach may lack precision:
Since LIWC’s diagnostic scores are based on both
computational correlation and human judgment (in
determining the system’s dictionaries and word cat-
egories), the outcomes may reflect evaluative biases
grounded in the context of social, historical, and
cultural development (Stark, 2018).

4 Analysis of Linguistic Markers

In this section, we address the exploration of nu-
anced patterns of linguistic markers that are indica-

tive of specific MHC. We first obtained measure-
ments of 117 engineered language features that can
be roughly divided into five groups: (1) features re-
lated to morphological and syntactic structural com-
plexity (N=5), (2) features related to lexical sophis-
tication, variety, and richness (N=8), (3) word-level
ngram features related to register-specific language
use (N=20), (4) features covering the German ver-
sion of the LIWC (Linguistic Inquiry and Word
Count) dictionary (N=68), and (5) word-level dic-
tionary features from three lexicons related to emo-
tion, affect and sentiment (N=16). An overview
of these features can be found in Table 5 in the
appendix.

The first group of includes surface features re-
lated to the length of production units, such as the
average length of clauses and sentences, and the
type and frequency of embedded structures, such
as mean length of sentence or number of dependent
clauses per sentence (Lu, 2010). This group also
includes an information-theoretic feature based on
the Deflate algorithm (Deutsch, 1996).

The second group of features probing lexical
density features, such as the ratio of the number of
lexical (as opposed to grammatical) words to the
total number of words in a text, lexical variation, i.e.
the range of vocabulary as manifested in language
use as captured by text-size (corrected) type-token
ratio (Lu, 2012).

The third group comprises register-based n-gram
frequency features that take into account both fre-
quency rank and the number of word n-grams
(n ∈ [1, 5]). The latter were derived from four
corpora compiled as to represent language use in
four language registers (academic, fiction, news,
spoken; see Table 6.

The fourth feature group is based on the Ger-
man version of the LIWC dictionary (Linguistic
Inquiry and Word Count) (Pennebaker et al., 2001).
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Figure 1: Within-text distributions of four textual features for six randomly selected Reddit post from as many MHC
groups (cTTR = corrected Type-Token Ratio, LIWC.Self = self-focused language, MLS = mean length of sentence,
SentiWS.Pos = words with positive semantic orientation). All features were z-standardized with 0 representing the
corpus average.

The creators of the German version of the LIWC
validated this version and demonstrated that the
German LIWC categories have a high degree of
equivalence to their English counterparts (Wolf
et al., 2008). Building on the results of previous
studies using LIWC categories for MHC detection
in English (e.g. Cohan et al., 2018), we expect that
subcategories of particular interest for the MHC
classification task will include words with positive
or negative emotions, words related to social pro-
cesses (family/friends/society), pronouns that can
capture inclusive (we, us) or exclusionary (you,
they, them) language use, and words related to how
the person feels (sad, anxious).

The fifth group includes features from three lex-
icons: MEemoLon (Buechel et al., 2020) is a lex-
icon comprising eight emotional variables with
more than 100k lexical entries for eight emotional
variables: Valence, Arousal, Dominance, and Joy,
Anger, Sadness, Fear, and Disgust. ANGST is the
German adaptation of the Affective Norms for En-
glish Words (Schmidtke et al., 2014). It comprises
1,003 German translations of the ANEW material
that were were rated on a total of six dimensions:
the three original scales for valence, arousal, and
dominance plus three additional arousal ratings on
an adapted scale. SentiWS (Remus et al., 2010)
is a dictionary containing 3,468 sentiment bear-
ing German words (1,650 negative and 1,818 posi-
tive) across four word classes (adjectives, adverbs,
nouns and verbs) along with their weighted senti-

ment scores.

All measurements of these features were ob-
tained using an automated text analytics system that
employs a sliding window technique to compute
measurements at the level of individual sentences.
These measurements capture the within-text dis-
tributions of scores for a given feature (for recent
applications, see e.g. Wiechmann et al., 2022 or
Kerz et al., 2022). Tokenization, sentence splitting,
part-of-speech tagging, lemmatization and syntac-
tic PCFG parsing were performed using Stanford
CoreNLP (Manning et al., 2014). Examples of
these within-text distributions is shown in Figure
1. Each of panels in Figure 1 shows the distribu-
tions of four of the 117 textual features for one
of six randomly selected texts representing differ-
ent MHC groups. We note that the distribution of
feature values is generally not uniform, but shows
large fluctuations over the course of the text. The
six texts are characterized by different patterns of
spikes of specific features: For example, the bipolar
text exhibits a large spike in the SentiWS.Pos fea-
ture, which refers to words with positive semantic
orientation. The OCD text is characterized by regu-
lar peaks of the LIWC.Self feature, which captures
self-focused language. The anxiety text displays
frequent spikes of high values (>2 standard devi-
ations from corpus average) for three of the four
features. In comparison, the control text shows
less fluctuation with features scores being closer to
the corpus average values. The classification mod-
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els described in Section 5.1 are designed to detect
and exploit these fluctuations for the detection of
specific MHCs. The average scores of all features
across all groups are provided in Table 8 in the
appendix.

To identify profiles of language use that are char-
acteristic of particular MHC, we compare these
feature scores across users in each MHC group us-
ing factorial analyses of variance (ANOVA). We
focus on those features that display significant dif-
ferences across groups (N=16, for alpha = 0.05).
Figure 2 presents a cluster heatmap visualizing the
patterns in the data matrix with the MHC groups
and the 16 most significant language features.

The results of these analyses revealed some in-
teresting patterns of differential language use: We
find that the control group is situated at the margin
of the clustering, indicating that the patterns of lan-
guage use of diagnosed MHC are distinguishable
from this baseline.

The language use of anxiety is distinctly differ-
ent from all other MHC. It is characterized by very
high feature scores on five LIWC dimensions re-
lated words referring to self-reference, death and
sadness. They are further characterized by high
scores on the top feature cluster, comprising words
referring to anger, fear, disgust, sadness, arousal
and negative emotions.

The language use of schizophrenia, is similar to
anxiety in that it too displays a larger proportion of
words indicating negative emotions. However, it is
characterized by low scores on LIWC dimensions
related words referring to self-reference. They are
also characterized by low scores on the n-gram
frequency features, indicating dependence on con-
ventional phrases from specific speech registers.

A striking feature of obsessive-compulsive dis-
order (OCD) is its heavy reliance on such terms.
A characteristic feature of (unipolar) depression is
a markedly increased use of words with positive
semantic orientation, in stark contrast to bipolar
depression, which has significantly lower scores
on this dimension. This is intriguing in light of
the fact that distinguishing between bipolar dis-
order and recurrent unipolar depression is a ma-
jor clinical challenge (de Almeida and Phillips,
2013). In general, conditions of depression and
bipolar disorder, attention-deficit/hyperactivity dis-
order (ADHD) and post traumatic stress disorder
(PTSD) display similar patterns of language use.

These findings reflect evidence in the psychiatric

MHC # posts mean # mean #
words chars

ADHD 1052 168.78 805.78
Bipolar 1421 150.50 853.66
Depression 974 153.89 872.87
PTSD 728 150.57 902.34
Control 12789 158.55 848.23

Table 2: Description statistics of the data used in bench-
mark experiments. Note: The size of the control
data used in the binary MHC classification tasks were
adopted to outnumber the positive cases by a factor of
9. The descriptive statistics of the control categories are
based on the entire control corpus.

literature indicating that there is considerable over-
lap in clinical symptoms and pathophysiological
processes and that depressive symptoms may also
occur in the context of another psychiatric disorder
(e.g., bipolar disorder) (Baldwin et al., 2002). Fur-
thermore, psychiatric data suggest that depressive
disorders (i.e., major depressive disorder and dys-
thymia) are highly comorbid with other common
mental disorders (Rohde et al., 1991; Gold et al.,
2020).

5 Experiments

5.1 Experimental Setup

In this section, we describe MHC detection ex-
periments performed to obtain benchmark models
for the SMHD-GER dataset. We conduct binary
classification experiments for the top four most
frequently attested MHC in the dataset, namely
ADHD, bipolar, depression and PTSD. For each
MHC, we use a 1:9 ratio of positive cases to con-
trols to create a more realistic unbalanced classi-
fication setting. The the size of the textual input
to the models was constrained to fall between 110
words, which corresponds to the median number
of words all all posts, and 512 words, which rep-
resents a upper limit to the BERT models. In case
no single post of a given user satisfied these con-
straints, we concatenated several posts from that
user so that their total amount fell withing the spec-
ified boundaries (Figure 5 in the appendix presents
a decision tree of the selection method). Table 2
presents the descriptive statistics of the dataset used
in classification experiments.
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Figure 2: Heatplot of the language profiles of the nine MHC categories (on the x-axis) based on the top-16 language
features (on the y-axis). Columns and rows are ordered according to the results of hierarchical clustering, with
the dendrograms at the margins showing the groupings of MHC categories and features. Features with the prefix
‘MEemoLon’ refer to emotion categories from the lexicon of the same name. SentiWS.Neg refers to the category
of negative words from the SentiWS dictionary. The terms ‘tri’, ‘four’ and ´five’ refer to the size of word n-gram
features from the spoken (‘Spok’) and fiction (‘Fiction’) reference corpora. Features with the prefix ‘LIWC’ refer to
categories from the lexicon of the same name. Colors denote z-standardized feature scores.

5.2 Classification models

We performed experiments with three benchmark
models: (1) a fine-tuned German BERT model
(GBERT), (2) a bidirectional long short-term mem-
ory (BLSTM) classifier trained on measurements
of linguistic features described in Section 4, and (3)
hybrid model integrating GBERT predictions with
the engineered language features introduced in Sec-
tion 4. For (1) we used the pretrained ‘German bert-
base-uncased’ (GBERT, Chan et al., 2020) model
from the Huggingface Transformers library (Wolf
et al., 2020) with an intermediate BLSTM layer
with 256 hidden units (Al-Omari et al., 2020). For
(2) - the model based solely on linguistic features,
we constructed a 5-layer BLSTM with a hidden
state dimension of 512. The input to that model
is a sequence CMN

1 = (CM1, CM2 . . . , CMN ),
where CMi, the output of our text analytics system
for the ith sentence of a post, is a 117 dimensional
vector and N is the sequence length. To predict the
labels of a sequence, we concatenate the last hidden
states of the last layer in forward (

−→
hn) and back-

ward directions (
←−
hn). The result vector of concate-

nation hn = [
−→
hn|←−hn] is then transformed through

a 2-layer feedforward neural network, whose ac-
tivation function is Rectifier Linear Unit (Agarap,

2018). The output of this is then passed to a Fully
Connected Layer FC with ReLu activation function
and dropout of 0.2 and it is finally fed to a final FC
layer. The output is finally passed through sigmoid
function and finally a threshold is used to determine
the labels. We trained these models for 100 epochs,
with a batch size of 256, a sequence length of 5
and learning rate of 1e-3. The architecture of the
hybrid classification model - model (3) - consists
of two parts: (i) a pre-trained Transformer-based
model with a BLSTM layer and FC layer on top
of it and (ii) the linguistic features of the text fed
into a BLSTM network and a subsequent FC layer.
The FC layers of both parts take the concatenation
of last hidden states of the last BLSTM layer in
forward and backward direction. We concatenate
the outputs of these layers before finally feeding
them into a final FC layer with a sigmoid activation
function. The model used to generate predictions
for the test set was specified as follows: 2-layer
BLSTM, 256 hidden units and a dropout of 0.2;
BLSTM-PsyLing: 3-layers, hidden size of 512 and
dropout 0.2. We trained this model for 12 epochs,
saving the model with the best performance (F1-
Score) on the development set. The optimizer used
is AdamW with a learning rate of 2e-5 and a weight
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Model Metric ADHD Bipol. Depr. PTSD
Majority Pre 44.85 44.85 44.84 44.82
Class Rec 50.00 50.00 50.00 50.00
Baseline F1 47.29 47.28 47.28 47.27

GBERT
Pre 50.63 50.36 49.74 50.57
Rec 50.26 51.02 48.13 46.68
F1 50.44 50.68 48.92 48.54

PsyLing
Pre 56.12 54.78 50.41 50.15
Rec 52.45 55.31 50.18 49.86
F1 53.22 53.97 50.26 49.92

Hybrid
Pre 51.29 51.85 51.62 53.20
Rec 53.47 52.03 50.38 52.44
F1 53.08 51.91 50.89 53.03

Table 3: Results of MHC prediction experiments (all
values of performance metrics are macro averages)

decay of 1e-4. Structure diagrams of the model
based solely on linguistic features and the hybrid
architectures are presented in Figures 4 and 3 in
appendix. All models were trained using 5-fold CV
of the training data as base classifiers and model
stacking was performed using logistic regression
as a meta-learner to adaptively combine the outputs
of the base classifiers.

6 Results and Discussion

Table 3 gives an overview of the results of the MHC
prediction experiments. All three baseline models
displayed significant improvements in macro F1
scores over the majority baseline for all four MHC.
Our PsyLing model consistently outperformed the
GBERT baseline in terms of precision, recall and
F1 (average improvement F1 = +2.37%; average
improvement precision = 2.54%; average improve-
ment recall = +2.93%). This result demonstrates
that strong, interpretable mental health detection
systems can be built if and when they make full
use of the linguistic signals. The PsyLing model
achieves highest performance in two of the four
MHC, ADHD and bipolar disorder, with improve-
ments over the hybrid model of +2.06% F1 for bipo-
lar and +0.14% F1 for ADHD. However, the hybrid
model improves on the performance of the PsyLing
model by +3.11% F1 for PTSD and +0.63% F1 for
depression.

The results of error analyses shown in Table
4 revealed that these performances were related
to the divergent behaviors of the GBERT and
PsyLing models for different MHCs: For Depres-
sion and PTSD the PsyLing model has a high

Model MHC TN FP FN TP

GBERT

ADHD 1734 96 187 23
Bipolar 2466 112 157 20
Depression 1374 136 361 17
PTSD 1168 96 132 14

PsyLing

ADHD 1764 66 192 18
Bipolar 2344 127 253 31
Depression 1333 276 231 48
PTSD 939 268 162 41

Hybrid

ADHD 1500 330 161 49
Bipolar 2289 260 182 24
Depression 1633 96 138 21
PTSD 1160 104 127 19

Table 4: Confusion matrices of the three benchmark
models (TN: True Negatives, FP: False Positive, FN:
False Negative, TP: True Positive)

false alarm rate, i.e. it classified users as be-
ing diagnosed, when they are in fact not (De-
pression: FPGBERT=136 , FPPsyLing=276; PTSD:
FPGBERT=96, FPPsyLing=268). On the other hand,
it also correctly identified a much higher propor-
tion of diagnosed users (Depression: TPGBERT=17 ,
TPPsyLing=48; PTSD: TPGBERT=14, TPPsyLing=41).
Our results thus indicate that the hybrid model im-
proves on the PsyLing model for depression and
PTSD by leveraging the lower false alarm rate of
GBERT for these MHC. These results demonstrate
that the NLP systems designed to support the diag-
nosis of mental disorders benefit from employing
both interpretable and hybrid approaches.

7 Conclusion and Future Work

We introduced SMHD-GER, a large dataset of Red-
dit users with diverse mental health conditions and
matched control users. The dataset was created
using adaptations of the high-precision diagnos-
tic patterns developed for the original English ver-
sion (Cohan et al., 2018). Furthermore, we investi-
gated the differences in language use between users
with mental health conditions and control groups,
as measured by a large set of linguistic and psy-
chological cues. We provided strong benchmark
models designed to identify diagnosed users for
the four most frequently attested MHC. We found
that BLSTM networks trained on within-text dis-
tributions of interpretable linguistic features con-
sistently outperformed a Transformer-based model
based on GBERT. A hybrid model combining the
two approaches proved to be the most effective
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method for two of the four conditions. We make
our dataset available to the community in the hope
that it will encourage further research into these
problems and improve the reproducibility of sug-
gested approaches.

8 Limitations

In this work, we have framed mental health de-
tection as a binary classification task that aims to
distinguish between individuals with a particular
mental disorder and control users. In future work,
we intend to frame it as a multi-class classification
task to determine the extent to which individual
mental disorders can be distinguished from one
another.
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A Appendix

Table 5: Overview of the 117 features investigated in the work.

Feature group Number Features Example/Description
of features

Morpho-syntactic 5 MLC Mean length of clause (words)
MLS Mean length of sentence (words)
C/S Clauses per Sentence
CoordP/C Coordinate phrases per clause
BaseKolDef Kolmogorov Complexity

Lexical richness 8 MLWc Mean length per word (characters)
LD Lexical density
NDW Number of different words
cNDW Corrected number of different words
TTR Type-Token Ratio (TTR)
cTTR Corrected TTR
rTTR Root TTR
log TTR Logarithmic TTR

Register-based 20 Spoken (n ∈ [1, 5]) Frequencies of uni-, bi-
N-gram Fiction (n ∈ [1, 5]) tri-, four-, five-grams

News (n ∈ [1, 5]) from four reference corpora
Academic (n ∈ [1, 5]) (see appendix Table 6)

LIWC 68 LIWC-German Pennebaker et al. (2001)
Emotion Lexicon 2 SentiWS Remus et al. (2010)

6 ANGST Schmidtke et al. (2014)
8 MEmoLon Buechel et al. (2020)

Table 6: Text corpora used to derive register-specific n-gram frequencies

Register Corpus Size
Vocab # Words Items

Academic Papers from top 100 German publications 477876 12M 2524 papers
Fiction Gutenberg project German books 907656 49M 2063 books
News News articles from FANG-Covid corpus 487841 21M 28056 articles

(authentic news) (Mattern et al., 2021)
Spoken OpenSubtitle dataset 1209934 218M

Table 7: Descriptive statistics of feature groups 1-5 across MHC.

Feature Control ADHD Anxiety Bipol Depres. OCD PTSD Schiz. other
LD 0.56 0.56 0.51 0.56 0.56 0.56 0.55 0.55 0.56
TTR 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
cTTR 4.27 4.27 4.57 4.28 4.26 4.23 4.30 4.29 4.31
logTTR 0.93 0.94 0.97 0.93 0.93 0.93 0.94 0.94 0.93
rTTR 2.92 2.92 3.17 2.91 2.91 2.89 2.94 2.97 2.94
NDW 18.11 17.90 20.05 17.98 17.98 17.48 18.13 18.45 18.42
cNDW 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
MLW 5.26 5.30 5.27 5.28 5.30 5.29 5.31 5.42 5.32

Continued on next page
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Table 7 – continued from previous page
Feature Control ADHD Anxiety Bipol Depres. OCD PTSD Schiz. other
CoordPpC 0.25 0.25 0.18 0.24 0.24 0.25 0.25 0.25 0.24
MLC 7.09 7.07 7.07 7.03 6.99 6.91 7.19 7.27 6.99
MLS 20.00 19.69 21.81 19.76 19.95 19.74 19.83 20.26 20.36
ClpS 2.52 2.47 3.14 2.48 2.54 2.53 2.50 2.57 2.61
KD 1.00 1.00 0.91 1.00 1.00 1.01 0.99 0.99 1.00
uni.Acad 108.74 105.51 129.07 107.04 107.04 109.27 106.57 108.90 109.16
bi.Acad 8.88 8.53 10.98 8.73 8.61 9.39 8.64 8.78 8.80
tri.Acad 0.20 0.20 0.23 0.22 0.21 0.23 0.23 0.20 0.21
four.Acad 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
uni.Fiction 137.06 133.33 165.51 135.23 135.20 139.62 134.44 139.88 137.58
bi.Fiction 19.30 18.52 27.95 18.95 18.55 23.01 18.19 18.87 19.06
tri.Fiction 0.88 0.83 1.26 0.86 0.81 1.47 0.81 0.78 0.87
four.Fiction 0.03 0.03 0.05 0.03 0.03 0.07 0.03 0.03 0.03
uni.News 135.13 131.42 159.84 133.30 133.25 135.85 132.93 137.82 135.76
bi.News 19.17 18.35 27.74 18.79 18.49 21.03 18.19 19.13 18.87
tri.News 0.92 0.85 1.25 0.90 0.84 1.08 0.83 0.86 0.88
four.News 0.04 0.04 0.04 0.06 0.04 0.05 0.04 0.03 0.04
uni.Spok 160.79 156.36 194.64 158.58 159.34 163.27 157.73 163.88 161.56
bi.Spok 27.26 26.07 41.32 26.61 26.43 32.79 25.65 26.10 26.89
tri.Spok 1.78 1.63 3.30 1.73 1.62 3.19 1.59 1.52 1.69
four.Spok 0.12 0.10 0.22 0.15 0.10 0.26 0.10 0.07 0.11
five.Spok 0.01 0.01 0.04 0.03 0.01 0.02 0.01 0.00 0.01

Table 8: Descriptive statistics of feature scores across MHC.

Feature Control ADHD Anxiety Bipol Depres. OCD PTSD Schiz. other
LIWC.Pronoun 0.08 0.08 0.13 0.08 0.08 0.08 0.08 0.08 0.08
LIWC.I 0.04 0.04 0.08 0.04 0.04 0.04 0.04 0.04 0.04
LIWC.Self 0.04 0.04 0.08 0.04 0.04 0.05 0.04 0.04 0.04
LIWC.You 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01
LIWC.Other 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
LIWC.Negate 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02
LIWC.Assent 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01
LIWC.Article 0.08 0.08 0.07 0.08 0.08 0.08 0.09 0.09 0.08
LIWC.Preps 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
LIWC.Affect 0.06 0.05 0.07 0.05 0.05 0.05 0.05 0.06 0.05
LIWC.Posemo 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
LIWC.Posfeel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LIWC.Optim 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
LIWC.Negemo 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.01
LIWC.Sad 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00
LIWC.Cogmech 0.10 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.10
LIWC.Cause 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02
LIWC.Insight 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.03 0.03
LIWC.Discrep 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
LIWC.Inhib 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LIWC.Tentat 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02

Continued on next page
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Table 8 – continued from previous page
Feature Control ADHD Anxiety Bipol Depres. OCD PTSD Schiz. other
LIWC.Certain 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
LIWC.Social 0.07 0.07 0.09 0.07 0.07 0.07 0.07 0.07 0.07
LIWC.Comm 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02
LIWC.Othref 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
LIWC.Friends 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
LIWC.Humans 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01
LIWC.Time 0.04 0.04 0.07 0.04 0.04 0.04 0.04 0.04 0.04
LIWC.Past 0.03 0.03 0.04 0.03 0.03 0.02 0.03 0.03 0.03
LIWC.Present 0.08 0.08 0.11 0.08 0.08 0.08 0.08 0.08 0.08
LIWC.Future 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
LIWC.Space 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.07
LIWC.Up 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
LIWC.Incl 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05
LIWC.Excl 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.03
LIWC.Motion 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
LIWC.Occup 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.06
LIWC.School 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
LIWC.Job 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02
LIWC.Achieve 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
LIWC.Leisure 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02
LIWC.Home 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01
LIWC.Money 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
LIWC.Metaph 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
LIWC.Physcal 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
LIWC.Body 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01
Angst.AROANEW 0.15 0.15 0.14 0.15 0.15 0.13 0.14 0.15 0.15
Angst.AROBAWL 0.08 0.08 0.08 0.08 0.08 0.07 0.08 0.08 0.08
Angst.DOM 0.18 0.17 0.16 0.18 0.17 0.16 0.17 0.16 0.17
Angst.IMA 0.14 0.13 0.12 0.13 0.13 0.12 0.13 0.12 0.13
Angst.POT 0.17 0.17 0.16 0.17 0.17 0.15 0.17 0.17 0.17
Angst.VAL 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02
MEmoLon.Anger 1.38 1.38 1.43 1.38 1.38 1.38 1.39 1.41 1.38
MEmoLon.Arousal 3.70 3.71 3.81 3.71 3.71 3.72 3.73 3.76 3.71
MEmoLon.Disgust 1.37 1.37 1.42 1.38 1.37 1.38 1.38 1.40 1.37
MEmoLon.Dominance 5.06 5.07 5.18 5.07 5.07 5.08 5.10 5.10 5.06
MEmoLon.Fear 1.40 1.40 1.45 1.40 1.40 1.40 1.41 1.43 1.40
MEmoLon.Joy 1.99 1.99 2.05 1.99 1.99 1.99 2.00 1.99 1.99
MEmoLon.Sadness 1.33 1.33 1.39 1.34 1.34 1.34 1.34 1.36 1.33
MEmoLon.Valence 4.98 4.98 5.09 4.98 4.99 5.00 5.01 4.99 4.98
SentiWS.Pos 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.06
SentiWS.Neg 0.06 0.06 0.11 0.06 0.06 0.06 0.06 0.09 0.06
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Figure 3: Hybrid model structure

Figure 4: PsyLin model structure

Posts

truncate to 512
words and in

Largest text for
each author

text length > 512

Concatenate
posts In

else 110 < text length < 512

concatenate all
texts and In In

else text length > 110

else

Figure 5: Decision tree for selecting experimental data.
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Table 9: Results of MHC prediction experiments (micro scores)

Mental Health Condition
Model type Metric ADHD Bipolar Depression PTSD

GBERT
Pre 19.12 15.14 11.10 13.24
Rec 11.43 11.32 4.50 10.07
F1 14.28 13.29 7.34 11.20

PsyLing
Pre 20.88 19.67 14.81 13.26
Rec 9.49 11.03 17.18 20.18
F1 13.34 14.28 15.90 16.00

Hybrid
Pre 13.22 8.45 17.95 15.37
Rec 22.76 11.84 13.21 12.78
F1 17.52 10.92 15.72 14.55
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Abstract

Advances in natural language processing, such
as transfer learning from pre-trained language
models, have impacted how models are trained
for programming language tasks too. Previous
research primarily explored code pre-training
and expanded it through multi-modality and
multi-tasking, yet the data for downstream
tasks remain modest in size. Focusing on data
utilization for downstream tasks, we propose
and adapt augmentation methods that yield
consistent improvements in code translation
and summarization by up to 6.9% and 7.5% re-
spectively. Further analysis suggests that our
methods work orthogonally and show benefits
in output code style and numeric consistency.
We also discuss test data imperfections.

1 Introduction

Recent years have seen the rapid development of
pre-trained models (PLMs) to enable knowledge
transfer from generic texts to specific downstream
tasks (Devlin et al., 2019; Liu et al., 2019). PLMs
have been applied to the programming language do-
main as well, following the same paradigm of (con-
tinuing) training PLMs on code and text data, and
then fine-tuning them for specific tasks (Kanade
et al., 2020; Feng et al., 2020). PLMs are often
adapted to programming languages by including
code-specific modalities as part of the input like
serialized syntax trees and data flows (Guo et al.,
2021, 2022; Tipirneni et al., 2022). Such works
have outperformed rule-based tools in various tasks,
e.g. the CodeXGLUE benchmark (Lu et al., 2021).

Despite the abundance of raw code available for
pre-training, code data that meet downstream needs
stay modest in size. This is due to the fact that,
unlike texts, code datasets cannot be easily curated
by people without programming knowledge. For

*Work done during an internship at Huawei Noah’s Ark Lab.
Our code will be available at https://github.com/huawei-noah/
noah-research/tree/master/NLP/DA4CodeGeneration

example, code translation data in CodeXGLUE is
sized at 10K, which is orders of magnitude smaller
than their natural language counterparts that often
include millions of instances (Kocmi et al., 2022).

We are therefore motivated to enrich data in
the fine-tuning phase of code PLMs, using auto-
matic data augmentation (DA) methods like back-
translation, monolingual, multilingual, and nu-
meric augmentation. We extensively experiment on
code translation, where a programming language is
converted to another, and summarization, where a
textual description is produced from a code block.
Even with limited resources, we can lift perfor-
mance by 6.9% for translation and 7.5% for sum-
marization compared to baselines. Through man-
ual inspection and extra evaluation measures, we
demonstrate that our methods lead to desirable en-
hancements special to code, namely better output
code style and number correctness.

2 Methodology

2.1 Data synthesis

Back-translation (BT, Sennrich et al., 2016) is a
data augmentation technique originated from ma-
chine translation, where an auxiliary model is used
to construct pseudo-parallel data from monolingual
resources. It can be straightforwardly applied to
code translation. Formally, to train a model f() that
converts a programming language PLx into PLy,
we first train an inverse model g(PLy) → PLx
with the same parallel data. Having the inverse
model g(), extra monolingual data in PLy is trans-
lated into PL′x to form pseudo-parallel pairs PL′x-
PLy that can be used to train f().

For code summarization, back-translation is
not applicable as “monolingual” natural language
(NL) summaries unaligned to code hardly exist.
Hence we propose to use the summaries originally
associated with a single programming language as
a pivot for other programming languages. After
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inversing code-to-text data which has source side
code available in multiple programming languages
(PL1 → NL, . . . , PLn → NL), we train a mul-
tilingual text-to-code generator, which outputs a
designated programming language given a natu-
ral language summary and a target language tag
(NL+ tag{1,...n} → {PL1, . . . , PLn}). This gen-
erator can iteratively produce code in different PLs
by inputting summaries regardless of the original
PL → NL alignment. These synthesized data,
despite having a lower quality, can augment the
training data for summarization.

2.2 Utilization of multilinguality
Currey et al. (2017) suggested that including mono-
lingual data in the target language as an additional
autoencoding (AE) objective benefits translation
models trained on limited data. We migrate this ob-
jective to code translation by mixing PLx → PLy
and PLy → PLy data. This effectively builds a
multilingual encoder that enables knowledge trans-
fer, given the high similarity between programming
languages, namely the overlap of numerals, syntax
tokens, reserved keywords, etc. This process con-
strains the decoder side to a single programming
language PLy to not add complexity.

In code summarization, as the target NL is fun-
damentally divergent from the input PL, the au-
toencoding objective might not be useful. In con-
trast, we train a “multilingual” code summarization
model {PL1, . . . , PLn} → NL where the system
takes an arbitrary programming language to pro-
duce a natural language summary. Such a many-to-
one model allows encoder knowledge sharing too
and exposes the decoder to more NL summaries.

2.3 Numeric awareness
Referenced variables and their values are unique
components of programming languages; to en-
hance understanding of these values, previous
works on pre-training suggested attending to ap-
propriate modalities, e.g. data flow (Guo et al.,
2021). Such sophisticated handling of values might
not be necessary for code translation, as copying
them over to the target suffices. However, given
a small training size, any translation model will
still only be exposed to sparse numerical input. To
increase model robustness, we augment the data
by creating new instances where, in all code to-
kens containing a number, each digit is randomly
replaced with another digit, consistently on both
the source and target sides. We do not distinguish

PLM encoder

51enc("5")

"int" "a" "=" "num" "/" "5" ";"

00enc("a")

feed forward layer

encoder out encoder out

Figure 1: Numeric encoding with a PLM encoder, ex-
emplifying how “a” and “5” are encoded differently.

between purely numerical tokens and tokens in-
cluding a number. For instance, a variable “num1”
could become “num4” in the augmented code pair.
The method guarantees that the number-swapped
synthetic code is grammatical and compilable.

Apart from numerical augmentation, we propose
to include input numbers directly in the encoder
output as mathematical values, complementary to
their string embedding representations. As illus-
trated in Figure 1, we append two dimensions to the
original encoder output. Particularly, one dimen-
sion (red, left) is a binary value (0/1) indicating
whether the respective input is a number, while
the other dimension (green, right) inherits the in-
put’s value, or 0 if the input is not numeric. The
expanded embedding can be reduced to its origi-
nal size via a feed-forward layer; such a change
requires no modification to the pre-trained encoder.

3 Experiments

3.1 Tasks, datasets and evaluation

We benchmark our methods on the code task suite
CodeXGLUE (Lu et al., 2021). Its translation
task uses code originally developed in Java and
then migrated to C#, so the corresponding C#-
Java snippets are considered parallel. Training,
validation, and test sizes are 10K, 0.5K, and 1K.
For back-translation, we translated 377K lines of
monolingual Java, albeit out-of-domain, from other
CodeXGLUE tasks, into C#. To ensure that the
target side consists of genuine data, we only exper-
imented with the C#→Java direction as there is no
other C# code in the benchmark for BT.

The summarization task employs CodeSearch-
Net (Husain et al., 2019) and covers six languages:
Ruby, JavaScript, Go, Python, Java, and PHP. Train-
ing sizes range from 25K to 250K, totalling 908K;
validation and test sets are between 1K and 15K.
We performed multilingual back-translation by re-
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BLEU EM CodeBLEU†

CodeBERT
paper 72.14 58.0 -
replicate 72.92 57.4 78.93 (72.92 / 73.61 / 87.08 / 82.10)
BT 77.34 61.4 83.36 (77.34 / 78.11 / 90.34 / 87.64)
+ AE 77.60 61.8 83.47 (77.60 / 78.30 / 90.02 / 87.96)

GraphCodeBERT
paper 72.64 58.8 -
replicate 72.66 58.9 78.55 (72.66 / 73.35 / 87.44 / 80.74)
BT 75.15 60.7 82.13 (75.15 / 75.86 / 90.06 / 87.46)
+ AE 76.15 62.5 82.88 (76.15 / 76.87 / 90.54 / 87.95)
†average (n-gram / weighted n-gram / syntax / data flow)

Table 1: Test results for C#→Java translation.

versing the dataset so no external data is introduced;
this leads to a five-fold BT data of 4.5M (908K×5).
All programming languages share an equal amount
of original and synthetic data combined. Moreover,
to compare the quality of neural back-translation
against hand-written rule-based conversion, we cre-
ated 80K JavaScript-summary pairs from Python-
summary data using jsbuilder.

We report code translation results in BLEU-4
(Papineni et al., 2002), exact line matches (EM, in
%), and CodeBLEU, a weighted sum of four ac-
curacies: n-grams, weighted n-grams, syntax, and
data flow (Ren et al., 2020). Code summarization
performance is measured by the de facto choice of
BLEU-4 on natural language texts.

3.2 Systems

For all tasks, we use the CodeXGLUE baseline,
i.e. CodeBERT with a Transformer decoder, for
our base and inverse models (for data synthesis).
We continue training PLMs on the augmented data,
then fine-tune on the original data, except for nu-
meric augmentation where we mix the synthetic
data with the training set. Monolingual and multi-
lingual summarization experiments share the same
configurations. For numeric encoding with Code-
BERT, we add a feed-forward layer to make the
baseline as deep as our proposed network.

To provide results with stronger baselines, we
also test with GraphCodeBERT (Guo et al., 2021)
for translation and UniXcoder (Guo et al., 2022)
for summarization. This helps to verify the stability
of data augmentation performance across distinct
PLM architectures. We stick to the relevant PLMs’
hyperparameters except for batch size. Model and
training details, with links to the preprocessing and
evaluation scripts, can be found in Appendix A.

Ruby JS Go Py Java PHP Avg.

CodeBERT
paper 12.16 14.90 18.07 19.06 17.65 25.16 17.83
monolingual 12.39 14.13 17.89 18.22 18.66 25.14 17.73
+ rule-trans - 15.35 - - - - -
+ BT 13.76 15.00 18.30 18.60 19.64 25.69 18.50
multilingual 14.93 15.53 18.68 18.71 19.70 25.96 18.92
+ rule-trans 14.58 15.65 18.77 18.95 19.86 25.98 18.97
+ BT 14.91 15.81 18.88 18.97 19.69 26.10 19.06

UniXcoder
paper 14.87 15.85 19.07 19.13 20.31 26.54 19.30
monolingual 14.81 15.28 18.93 19.05 20.22 26.66 19.16
multilingual 15.15 15.64 19.03 19.22 20.45 26.59 19.35
+ BT 14.94 15.85 19.29 19.36 20.43 26.69 19.43

Table 2: Test results for code summarization in BLEU.

3.3 Results and Discussions

We first show translation results in Table 1, where
back-translation surpasses baselines by a large mar-
gin for both PLMs; on top of it, autoencoding
brings a small gain. Table 2 indicates that back-
translation also steadily helps code summarization
overall. An interesting pattern from both PLMs
is that BT helps Ruby and Java less than other
languages. Furthermore, learning a single multilin-
gual model is better than learning separate mono-
lingual models, potentially due to transfer learning
between programming languages and the increase
in natural language data size on the output side.

Table 3 reports the results for numeric augmen-
tation and numeric encoding in translation. Adding
number-swapped data to training surpasses the
baseline, while our numeric encoding proposal
under-performs the baseline. To accommodate the
neural network weights which are orders of magni-
tude smaller than the variable values encountered
in code, we investigate linear and logarithmic value
scaling. As the scaling gets smaller, result num-
bers gradually catch up; the optimal is a logarith-
mic transformation, whereby the model attains the
highest performance.

To directly assess our value-aware augmentation,
we compute and append output token accuracies
to Table 3, with a distinction between numeric and
non-numeric tokens. We can observe that the nu-
merical approaches aid number generation without
compromising non-numbers, and the improvement
in number correctness is generally consistent with
the improvement in BLEU and EM. Additional vi-
sualization in Appendix B.2 implies that DA mod-
els can maintain numeric consistency even when
the output is extremely long and complicated.
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BLEU EM CodeBLEU Token Accuracy
numeric non-numeric

CodeBERT + FFN 72.88 58.0 78.07 (72.88 / 73.66 / 86.15 / 79.59) 74.50 86.72
+ numeric augmentation 74.00 59.5 79.43 (74.00 / 74.72 / 87.01 / 82.00) 76.14 87.30

numeric encoding 72.95 58.1 78.77 (72.95 / 73.74 / 86.96 / 81.45) 73.74 86.84
+ numeric augmentation with value scaling
×102 71.32 51.6 77.71 (71.32 / 72.25 / 86.22 / 81.05) 72.48 85.98
×1 (no scaling) 72.51 57.4 78.45 (72.51 / 73.38 / 86.47 / 81.46) 72.92 86.49
×10−2 73.48 59.2 79.41 (73.48 / 74.28 / 87.31 / 82.56) 74.11 87.11
×10−4 74.01 58.9 79.73 (74.07 / 74.75 / 87.29 / 82.87) 74.93 87.48
log10() 74.16 59.1 79.84 (74.16 / 74.91 / 87.39 / 82.90) 75.22 87.32

Table 3: Test results for C#→Java translation with numeric augmentation and encoding.

BLEU EM CodeBLEU Token Accuracy
numeric non-numeric

CodeBERT replicate 72.92 57.4 78.93 (72.92 / 73.61 / 87.08 / 82.10) 74.64 87.54
BT 77.34 61.4 83.36 (77.34 / 78.11 / 90.34 / 87.64) 78.09 88.62
+ num. aug. original only 77.69 61.0 83.44 (77.69 / 78.33 / 90.19 / 87.56) 78.54 88.69
+ num. aug. BT and original 77.37 60.9 83.43 (77.37 / 78.07 / 90.36 / 87.94) 77.16 88.55

BT + AE 77.60 61.8 83.47 (77.60 / 78.30 / 90.02 / 87.96) 77.16 88.64
+ num. aug. original only 77.96 62.0 83.63 (77.96 / 78.62 / 90.15 / 87.82) 78.01 88.79

Table 4: Test results for C#→Java translation with multiple augmentation techniques.

Finally, Table 4 examines if the above methods,
namely back-translation and numeric augmenta-
tion, work orthogonally. It is observed that better
results are achieved when numeric augmentation
is applied to the original data, but not to the back-
translated data. This is probably because BT is
already of inferior quality, so numerical augmenta-
tion introduces extra noise. Nevertheless, combin-
ing BT and AE with numeric augmentation over
the original data leads to the best outcome.

4 Analysis

Upon inspecting the translation test outputs, we
find that our data-augmented model is better ex-
posed to the target Java language: it has learned the
Java programming conventions instead of follow-
ing the input code style. We present test instances
focused on element retrieval methods, by listing
sources, references, and outputs from the Code-
BERT baseline and our BT-augmented model in Ta-
ble 5. Whilst direct retrieval of an element through
reference to its position is possible in Java, we ob-
serve that the baseline tends to imitate the code
style in source C#, but the DA model closely fol-
lows the Java coding convention where the inbuilt
method get() is favoured over directly accessing
the attributes by indices.

We should note that in the translation test set a
small proportion of code pairs seem to be divergent,

which can lead to an inaccurate estimate of trans-
lation performance. We record a few examples of
these imperfections in Appendix B.1, but leave in-
depth investigation and refinement for future work.

5 Related Works

Recent research at the intersection of natural lan-
guage processing and programming languages con-
centrated on pre-training. Kanade et al. (2020)
trained CuBERT to obtain embeddings for code
understanding tasks. Feng et al. (2020) developed
CodeBERT by training RoBERTa on bimodal text-
code data with replaced token detection (Clark
et al., 2020). In GraphCodeBERT, Guo et al. (2021)
incorporated data flow edge prediction and data-
variable alignment. Researchers expanded decoder-
only models to the code domain too, e.g. CodeGPT,
Codex, and Pangu-Coder (Lu et al., 2021; Chen
et al., 2021; Christopoulou et al., 2022). Universal
encoder-decoder code PLMs have also been pre-
sented: PyMT5, CodeT5, PLBART, UniXcoder,
and StructCoder (Clement et al., 2020; Wang et al.,
2021; Ahmad et al., 2021; Guo et al., 2022; Tipir-
neni et al., 2022). UniXcoder, which we used,
adopts attention masks to control encoder-decoder
behaviours in a shared encoder-decoder network.

Datasets for specific tasks concerning code are
usually small, so data augmentation can help to
boost performance. Roziere et al. (2020) combined
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// test #85
C# source ... GetEscherRecord(int index){return escherRecords[index];}
Java reference ... getEscherRecord(int index){return escherRecords.get(index);}
baseline ... getEscherRecord(int index) {return escherRecords[index];}
DA model ... getEscherRecord(int index) {return escherRecords.get(index);}

// test #90
C# source public virtual IQueryNode GetChild(){return GetChildren()[0];}
Java reference public QueryNode getChild() {return getChildren().get(0);}
baseline public QueryNode getChild() {return getChildren() == 0);}
DA model public QueryNode getChild() {return getChildren().get(0);}

// test #978
C# source public virtual SrndQuery GetSubQuery(int qn) { return m_queries[qn]; }
Java reference public SrndQuery getSubQuery(int qn) {return queries.get(qn);}
baseline public SrndQuery getSubQuery(int qn) {return queries[qn];}
DA model public SrndQuery getSubQuery(int qn) {return queries.get(qn); }

Table 5: C#-Java output translations of element retrieval methods, before and after data augmentation.

cross-lingual masked modelling and iterative back-
translation to build an unsupervised code transcom-
piler. Ahmad et al. (2022) ran code-to-text sum-
marization then text-to-code generation, to obtain
translation data. In contrast, we train a text-to-code
generation model by reversing the summarization
data; our methods differ in both the procedure and
the intended task. Also, Yu et al. (2022) crafted
rules for source code transformation, whilst our
investigation is on automatic neural methods. Fi-
nally, techniques like dead code insertion and vari-
able renaming in malware obfuscation (You and
Yim, 2010), as well as string manipulation (e.g.
token noising, swapping, deletion) can be useful.
Nonetheless, these methods are not task-specific,
meaning they could be more appropriate for the
generic code pre-training stage.

6 Conclusion

We adapt several data augmentation techniques
to programming language translation and summa-
rization. Our investigation includes data synthe-
sis, knowledge sharing via multilinguality, and
numeric-aware techniques. Enhanced performance
is observed in experiments conducted on a variety
of pre-trained code language models, and our anal-
ysis demonstrates that these methods can benefit
output code style and numeric correctness.

7 Limitations

We identify the main limitation to lie in evaluation
since we relied on automatic text metrics for both
code and text generation. Ideally, code should be
treated with software testing practices such as code
review, compilation, unit testing, etc. Evaluation
is further undermined given the test data issues

revealed in Section 4 and Appendix B.1, so more
human analysis should be of interest.

We also do not cover all potential code genera-
tion tasks, e.g. code synthesis, where a code snippet
is created given a textual description. In this task,
the source side carries much less information than
the target. We apply a back-translation-style aug-
mentation, but it does not significantly surpass the
state-of-the-art PLM. Due to space constraints, we
offer some preliminary views in Appendix C.
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Dvorkovich, Christian Federmann, Mark Fishel,
Thamme Gowda, Yvette Graham, Roman Grund-
kiewicz, Barry Haddow, Rebecca Knowles, Philipp
Koehn, Christof Monz, Makoto Morishita, Masaaki
Nagata, Toshiaki Nakazawa, Michal Novák, Martin
Popel, and Maja Popović. 2022. Findings of the
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A Model Configurations

Our training and model configurations are summa-
rized here and in Table 6. We retain the relevant
PLMs’ default configurations as much as possible,
except for a grid search on the learning rate for code
summarization with UniXcoder. We also changed
the batch size to utilize our GPUs.

The randomly initialized Transformer decoder
attached to CodeBERT and GraphCodeBERT has 6

layers, 12 heads, 768 hidden dimensions, and other
hyperparameters as default in PyTorch. For the nu-
meric encoding experiments with CodeBERT, we
append 2 dimensions to CodeBERT’s 768d encoder
output, then transform it back to 768d using a linear
layer. To ensure a fair comparison, a 768d-to-768d
layer is added to the baseline to make it as deep.

All experiments are given a fixed budget to run.
We save the best checkpoint according to validation
BLEU. Results in the paper are based on a single
run, but the experiments were benchmarked on
PLMs of different architectures to reflect stability.

B More Inspections on Translation Test

B.1 Test imperfections

We show a few translation test instances that are
not perfectly parallel in Table 7. In these cases, the
code in two languages will not function exactly the
same when being executed.

B.2 Numeric consistency

Complementing the number accuracy figures re-
ported in Section 3.3, we list translation outputs
containing numbers in Table 9 for visualization. It
conveys the idea that our DA models can ensure
number consistency even in very long and compli-
cated outputs. In the baseline outputs, for example
in test #436, number incorrectness further leads to
undesirable hallucinations, which can be prevented
in the DA model’s output.

Hyperparameter Value

PLM checkpoints CodeBERT: https://huggingface.co/microsoft/codebert-base
GraphCodeBERT: https://huggingface.co/microsoft/graphcodebert-base
UniXcoder: https://huggingface.co/microsoft/unixcoder-base
CodeGPT: https://huggingface.co/microsoft/CodeGPT-small-java-adaptedGPT2
StructCoder: https://github.com/reddy-lab-code-research/structcoder

trainable parameters CodeBERT: 172.5M
+ numeric encoding: + 591k

GraphCodeBERT: 172.5M
UniXcoder: 126.5M
CodeGPT: 124.4M
StructCoder: 223.4M

learning rate translation: 5e-5

summarization: 1e-5, 5e-5, 1e-6 , 5e-6

synthesis: 5e-5

optimizer Adam (epsilon=1e-8)
training loss cross-entropy (perplexity)
validation metric best BLEU
beam size 10
CodeXGLUE https://github.com/microsoft/CodeXGLUE
jsbuilder https://github.com/tvst/jsbuilder
javalang https://github.com/c2nes/javalang

Table 6: Model and training configurations.
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// test #307
C# source public override string ToString(){return "IndexSearcher("

+ reader + "; executor=" + executor + ")";}
Java reference public String toString() {return "IndexSearcher("

+ reader + "; executor=" + executor
+ "; sliceExecutionControlPlane " + sliceExecutor + ")";}

// test #518
C# source public override PushConnection OpenPush() throw

{new NGit.Errors.NotSupportedException(
JGitText.Get().pushIsNotSupportedForBundleTransport);}

Java reference public PushConnection openPush() throws
{TransportException return new TcpPushConnection();}

// test #892
C# source public Builder(): base(){lastDocID = -1;wordNum = -1;word = 0;}
Java reference public Builder() {this(true);}

// test #902
C# source public override string ToString(){return "term="+ term+", field="

+field+", value="+value;}
Java reference public String toString() {return "term="+term+", field="

+field+", value="+valueToString()+",docIDUpto="+docIDUpto;}

Table 7: C#-Java test instances that are not perfectly parallel, with divergence shown in bold.

C Code Synthesis with Augmentation

For code synthesis, while reversing the summariza-
tion data is a natural solution, the difficulty lies in
forming the class environment (visible and usable
variables and methods) because. We parse the code
in a summarization instance to obtain positive to-
kens, as well as randomly sample tokens from other
genuine code as negative signals. In other words,
fromPL→ NL pairs, we construct code synthesis
data NL+ parse(PL) + random(PL′)→ PL.

We experiment on CodeXGLUE’s code synthe-
sis task, which samples data from CONCODE (Iyer
et al., 2018) at 100K/2K/2K for training/valida-
tion/test. The source contains a text description
as well as the available class variable and func-
tion names, and the target is the corresponding
Java code. We reverse the Java summary data to
create 181K synthetic data; to get available vari-
able and method names, the code is parsed by
javalang into tokens. Following CodeXGLUE,
we use CodeGPT-adapted as a base model; we fur-
ther experiment with StructCoder (Tipirneni et al.,
2022) which is a more up-to-date code PLM.

The outputs are evaluated by BLEU, EM, and
CodeBLEU, similar to translation. Note that the
test references are not publicly available, and test
predictions need to be sent to the CodeXGLUE
authors for evaluation, so we report results on both
the validation and test set for reproducibility.

We notice that for CodeGPT, our augmentation

work yields a small gain on validation and test
sets. However, it does not improve upon the latest
PLM for a few possible reasons: 1) StructCoder is
remarkably stronger than CodeGPT, thus the room
for improvement is small; 2) the summarization
data we used to augment the synthesis task could
be different in terms of topic, length, style, etc,
resulting in a domain drift.

BLEU EM CodeBLEU

CodeGPT on validation
replicate 28.13 16.1 31.65
+ augmentation 29.04 16.6 32.35

StructCoder on validation
replicate 37.30 18.2 40.42
+ augmentation 37.48 18.7 40.47

CodeGPT on test
paper 32.79 20.1 35.98
replicate 32.66 20.1 35.89
+ augmentation 33.45 19.2 36.47

StructCoder on test
paper 40.91 22.4 44.77
replicate 41.57 22.6 44.61
+ augmentation 41.32 21.4 44.04

Table 8: Results for code synthesis.
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// test #131
C# source public ScaleClusterRequest(): base("CS", "2015-12-15", "ScaleCluster"

, "cs", "openAPI"){UriPattern = "/clusters/[ClusterId]";
Method = MethodType.PUT;}

Java reference public ScaleClusterRequest() {super("CS", "2015-12-15", "ScaleCluster"
, "csk");setUriPattern("/clusters/[ClusterId]");
setMethod(MethodType.PUT);}

baseline publicscaleClusterRequest() {super("CS", "2018-12-15", "ScaleCluster"
, "cs");setUriPattern("/clusters/[ClusterId]");
setMethod(MethodType.PUT);}

DA model public ClusterRequest() {super("CS", "2015-12-15", "ScaleCluster"
, "cs");setUriPattern("/clusters/[ClusterId]");
setMethod(MethodType.PUT);}

// test #436
C# source public void CopyTo(byte[] b, int o){FormatHexByte(b, o + 0, w1);

FormatHexByte(b, o + 8, w2);FormatHexByte(b, o + 16, w3);
FormatHexByte(b, o + 24, w4);FormatHexByte(b, o + 32, w5);}

Java reference public void copyTo(byte[] b, int o) {formatHexByte(b, o + 0, w1);
formatHexByte(b, o + 8, w2);formatHexByte(b, o + 16, w3);
formatHexByte(b, o + 24, w4);formatHexByte(b, o + 32, w5);}

baseline public void copyTo(byte[] b, int o) {formatHexByte(b, o1);
formatHexByte(b, o2);formatHexByte(b, o2);
formatHexByte(b, o3);formatHexByte(b,o + 24, w4);
formatHexByte(b, o + 32, w5);}

DA model public void copyTo(int[] b, int o) {formatHexByte(b, o + 0, w1);
formatHexByte(b, o + 8, w2);formatHexByte(b, o + 16, w3);
formatHexByte(b, o + 24, w4);formatHexByte(b, o + 32, w5);}

// test #716
C# source public override void Decode(byte[] blocks, int blocksOffset, int[]

values, int valuesOffset, int iterations){for (int j = 0;
j < iterations; ++j){var block = blocks[blocksOffset++];
values[valuesOffset++] = ((int)((uint)block >> 7)) & 1;
values[valuesOffset++] = ((int)((uint)block >> 6)) & 1;
values[valuesOffset++] = ((int)((uint)block >> 5)) & 1;
values[valuesOffset++] = ((int)((uint)block >> 4)) & 1;
values[valuesOffset++] = ((int)((uint)block >> 3)) & 1;
values[valuesOffset++] = ((int)((uint)block >> 2)) & 1;
values[valuesOffset++] = ((int)((uint)block >> 1)) & 1;
values[valuesOffset++] = block & 1;}}

Java reference public void decode(byte[] blocks, int blocksOffset, int[]
values, int valuesOffset, int iterations) {for (int j = 0;
j < iterations; ++j) {final byte block = blocks[blocksOffset++];
values[valuesOffset++] = (block >>> 7) & 1;
values[valuesOffset++] = (block >>> 6) & 1;
values[valuesOffset++] = (block >>> 5) & 1;
values[valuesOffset++] = (block >>> 4) & 1;
values[valuesOffset++] = (block >>> 3) & 1;
values[valuesOffset++] = (block >>> 2) & 1;
values[valuesOffset++] = (block >>> 1) & 1;
values[valuesOffset++] = block & 1;}}

baseline public void decode(byte[] blocks, int blocksOffset, int[]
values, int valuesOffset, int iterations) {for (int j = 0;
j < iterations; ++j) {final byte block = blocks[blocksOffset++];
values[valuesOffset++] = (block >>> 7) & 1;
values[valuesOffset++] = (block >>> 6) & 1;
values[valuesOffset++] = (block >>> 5) & 1;
values[valuesOffset++] = (block >>> 4) & 1;
values[valuesOffset++] = (block >>> 4) & 1;
values[valuesOffset++] = (block >>> 2) & 1;
values[valuesOffset++] = (block >>> 1) & 1;
values[valuesOffset++] = block & 1;}}

DA model public void decode(byte[] blocks, int blocksOffset, int[]
values, int valuesOffset, int iterations) {for (int j = 0;
j < iterations; ++j) {final byte block = blocks[blocksOffset++];
values[valuesOffset++] = (block >>> 7) & 1;
values[valuesOffset++] = (block >>> 6) & 1;
values[valuesOffset++] = (block >>> 5) & 1;
values[valuesOffset++] = (block >>> 4) & 1;
values[valuesOffset++] = (block >>> 3) & 1;
values[valuesOffset++] = (block >>> 2) & 1;
values[valuesOffset++] = (block >>> 1) & 1;
values[valuesOffset++] = block & 1;}}

Table 9: C#-Java output translations containing numbers, before and after data augmentation.
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Abstract

Prompt-based methods with large pre-trained
language models (PLMs) have shown impres-
sive unaided performance across many NLP
tasks. These models improve even further with
the addition of a few labeled in-context ex-
emplars to guide output generation. However,
for more complex tasks such as dialogue state
tracking (DST), designing prompts that reliably
convey the desired intent is nontrivial, leading
to unstable results. Furthermore, building in-
context exemplars for dialogue tasks is difficult
because conversational contexts are long while
model input lengths are relatively short.

To overcome these issues we first adapt a meta-
learning scheme to the dialogue domain which
stabilizes the ability of the model to perform
well under various prompts. We additionally
design a novel training method to improve
upon vanilla retrieval mechanisms to find ideal
in-context examples. Finally, we introduce a
saliency model to limit dialogue text length, al-
lowing us to include more exemplars per query.
In effect, we are able to achieve highly compet-
itive results for few-shot DST on MultiWOZ.

1 Introduction

Tremendous gains have been made on dialogue
state tracking (DST) using large pre-trained lan-
guage models (PLMs) (Hosseini-Asl et al., 2020;
Peng et al., 2021), Fine-tuning such systems though
require significant amounts of data, which in turn
require substantial effort to collect. Recently,
prompting has emerged as a technique for achiev-
ing strong performance in a less resource inten-
sive manner (Schick and Schütze, 2021; Liu et al.,
2021). Even better performance is possible with
in-context exemplars providing a pattern for the
model to follow (Brown et al., 2020). Ideally, we
should be able to apply these concepts to complex
tasks like DST, but results so far have been lim-
ited (Madotto et al., 2021).

Exemplars PromptQuery

Exemplar Context:
I would like a train 
to Cambridge 
arriving at 14:00

Exemplar Prompt:
Train destination is

Exemplar Target:
cambridge

Naive:
Area of the restaurant

Question:
Where is the desired 
restaurant location?

Statement:
The preferred 
restaurant area is

Previous Context:
<customer> Can you help me 
find somewhere to eat?
<agent> Sure, what type of 
food would you prefer?
<customer> Korean food 
sounds pretty good right now.

Current Turn:
<agent> We have many places 
that fit that criteria.  Do you 
have a specific area in mind? 
<customer> In the north.

Dialogue Query

Possible Prompts

T5

Target Value:
in the north

> Calculate Loss

Predicted Value: north 

Meta-Training Inference

No Gradient Update!

Exemplar Context:
I would like a train 
to Cambridge 
arriving at 14:00

Exemplar Prompt:
Train destination is

Exemplar Target:
cambridge

Exemplar Context:
I would like a train 
to Cambridge 
arriving at 14:00.

Exemplar Prompt:
Train destination is

Exemplar Target:
cambridge

In-Context Exemplars

Figure 1: Our system squeezes multiple in-context ex-
emplars, dialogue query with conversational context,
and a full prompt into the finite input length of a large
PLM to successfully perform few-shot dialogue state
tracking, without any need for task-specific training.

One reason for the lack of progress comes from
the difficulty of hand-crafting prompts (patterns)
and targets (verbalizers), which are highly sensi-
tive to exact phrasing (Lester et al., 2021a). While
manually designed prompts have been found to
be brittle and unstable (Gu et al., 2021), automat-
ically designed prompts (Gao et al., 2021a) can-
not be easily applied to DST since many slots are
non-enumerable (Rastogi et al., 2020). A second
major hurdle is around dialogue sequence lengths,
which are often much longer than those for other
tasks (Quan and Xiong, 2020; Kottur et al., 2021)
preventing the inclusion of many exemplars for
guidance. Full conversations consist of long histo-
ries going back many turns, such that the context
itself (sans prompt) is already capable of filling
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a model’s entire input length. Since state track-
ing requires carrying over previous dialogue states,
naively truncating prior context effectively equates
to random guessing (Heck et al., 2020; Kim et al.,
2020). A third issue is selecting the exemplars
themselves. Prior work recommends choosing a
representative example from each class (Gao et al.,
2021a), but this is not possible in many cases since
most domain-slot-value label combinations simply
do not appear in the dataset. Moving to the few-
shot scenario further exacerbates this sparsity.

Separately, recall that our main goal is to do
well in few-shot DST because we purposefully
operate in a practical, low-resource data setting.
Correspondingly, we aim to achieve good results
with a similar low-resource model setting where
training should be possible on a single publicly-
available commodity server. This precludes the
usage of gigantic models such as GPT-3, which
are prohibitively expensive to train and bear high
economic and environmental costs for inference
alone (Strubell et al., 2019; Bender et al., 2021).

We directly tackle each of the three aforemen-
tioned issues to achieve state-of-the-art perfor-
mance on MultiWOZ when restricted to models
under 100 billion parameters. To minimize prompt
issues, we introduce a meta in-context learning
(ICL) framework to stabilize training and reduce
variance in prompt performance. To deal with long
dialogues, we are inspired by summarizaton work
to condense dialogue histories and filter out non-
salient sentences. Our third contribution is design-
ing a novel loss function to train a retrieval model
that selects ideal exemplars for priming our down-
stream model. Our analysis and ablations show
that all components help improve our state tracking
performance. Finally, we show that unlike other
models which only work on specialized LMs, our
proposed methods work on any sort of LM, and
can be improved with additional training.

2 Related Works

2.1 Few-Shot Dialog State Tracking

Nearly all recent works on dialogue state tracking
leverage large pre-trained LMs to achieve good
performance (Heck et al., 2020; Kim et al., 2020;
Peng et al., 2021). These methods require fine-
tuning on large amounts of annotated data, whereas
we hope to do well with minimal data.

Few-shot learning can be achieved in many ways,
with transfer learning probably being the most pop-

ular, where knowledge is transferred from one do-
main to another (Wu et al., 2019; Campagna et al.,
2020). Data augmentation also supports few-shot
learning by generating additional training exam-
ples from the few-shot data (Yin et al., 2020; Sum-
merville et al., 2020; Mi et al., 2021). Clustering
techniques like prototypical networks have also
shown prior success (Snell et al., 2017).

2.2 Meta In-context Learning with Prompting

This work leans on the few-shot techniques of
meta-learning (Finn et al., 2017) and prompting
with large PLMs (Madotto et al., 2021). Meta-
learning allows you to get away with only a few
examples at test time by pre-training a model to
learn how to learn (Nichol et al., 2018). More re-
cent methods which circumvent the need to calcu-
late second-order gradients (Nichol and Schulman,
2018) have been successfully applied to the task
of DST (Dingliwal et al., 2021), but still require
fine-tuning on the query set.

Using prompts as natural language instructions
have been found to work well on a wide vari-
ety of NLP tasks, including dialogue state track-
ing (Yang et al., 2022). Prompts can be brittle
though, so prompt engineering has become its own
complex task with numerous ideas on finding dis-
crete prompts (Gao et al., 2021a) or tuning soft
prompts, such as through adapters (Xu et al., 2022),
prefix tuning (Li and Liang, 2021), or prompt tun-
ing (Lester et al., 2021b). Others have even altered
the prompt structure into code in order to fit the ca-
pabilities of the network (Lee et al., 2021). Inspired
by the success of meta in-context learning on clas-
sification tasks (Min et al., 2021; Chen et al., 2022),
our work aims to side-step the prompt design issue
altogether. Concretely, our method applies meta-
learning to teach a model to recognize arbitrary
instructions, thereby eliminating the need to rely
on domain expertise to craft an optimal prompt.

2.3 Exemplar Retrieval

Lastly, our work is related to retrieval with dense
vectors to find good exemplars for in-context learn-
ing (Liu et al., 2022). Using dense vectors for
similarity search have been applied to dialogue in
the past, but mainly in the context of open-domain
chat (Adolphs et al., 2021; Komeili et al., 2022) or
knowledge-base retrieval (Eric et al., 2017). Lee
et al. (2021) is concurrent work which leverages
embeddings to search for exemplars in dialogue.
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<customer> Ok, letʼs go with that.
<agent> Just to confirm, the restaurant 
reservation is for 2 people on the south 
side?  What time do you prefer?
<customer> Yes, thatʼs right.  I would like 
a time of 19:30.  And can I get a reference 
number as well?
<agent> No problem, I booked it for you.  
The reference number is 7B926AE.
<customer> Great, thanks so much!

expensive

In-context Exemplars

Few-shot 
Candidate Pool

Exemplar 
Retrieval

DSTC

SGD

GSIM

ABCD

MultiWOZ

  Conversation 1

  Conversation 2

  Conversation 3

  Conversation N

Query Set 
for 

Meta-test

    Support Sets 
for 

Meta-train

Fine-tuned 
Sentence 
Embedder

depart at 3:30

time of 19:30

4 seats please

15:30 is good

he north
korean food

I want at least 3 stars

chinese food

arrive by 8:30

<customer> I need a  reservation for 18:30time of 19:30

18:30<sep> time of the restaurant is

8:00 is available 15:30 is good …

…

Saliency 
Filtering

1

2

3

4

cheap
south side

For 2 people

Figure 2: Our method SM2 includes (1) meta-learning with various support sets, (2) saliency filtering to remove
irrelevant utterances and (3) improved exemplar retrieval from a few-shot candidate pool. Exemplars are full
utterances with dialogue context, which we display as short phrases for illustrative purposes only. They are
concatenated and fed into the model for prediction in Step 4. Items in green boxes, including the target value, are
only available during meta-training. Purple items are raw text, while yellow ones represent their embedding vectors.

3 Our Method

This section describes our proposal of a Stabilized
dialogue state tracker, which leverages Meta in-
context learning, dialogue Summarization and a
novel Multi-part training loss for fine-tuning a re-
trieval model, which we refer to as SM2 for short.

3.1 Preliminaries

The goal of dialogue state tracking (DST) is to ex-
tract key information from the conversation as a
means of understanding the customer’s intentions
in each dialogue turn. More formally, given the
dialogue history H = {C1, A1, C2, A2, . . . , Ct}
composed of a series of utterances between a cus-
tomer Ci and an agentAi, the model should predict
the cumulative dialogue state up to current t-th turn.
This state is represented as a set of (domain, slot,
value) tuples, which our system produces by iter-
ating over valid domain-slot pairs and then aggre-
gating all non-null, predicted values for the given
turn. A few-shot setup only allows access to K% of
the available labeled data, with k=[1,5,10] for our
experiments, where samples are randomly selected
from the full labeled dataset. While we compare
to models trained on k-shot data, our system actu-
ally goes a step further since our eventual model
receives no gradient signal from the task-specific
data and instead relies solely on in-context learning
to perform inference.

3.2 Stabilized Meta-learning

The intuition behind prompting is that large PLMs
understand instructions when written in natural lan-
guage (Brown et al., 2020). Thus, we write natural

language patterns in an attempt to elicit the dia-
logue state from the model. However, as previously
discussed, minor tweaks in prompt text may cause
extreme changes in generated output, leading to
highly unstable results (Gu et al., 2021).

Recent works on Meta-ICL (Min et al., 2021;
Chen et al., 2022) have shown promise in stabi-
lizing the variance of prompts such that crafting
the perfect prompt is no longer necessary, and in-
stead, any reasonable natural language prompt will
suffice. Classic meta-learning leverages abundant
labeled data from support sets to adapt a model to
quickly learn a limited-data target task, denoted as
the query set. Finn et al. (2017) proposes MAML
that simulates the inner adaptation step during meta-
training by conducting a temporary one-step update
before computing the loss. Afterwards, a costly
second-order gradient is calculated in the outer
loop to train the model for faster future adapta-
tions. To get around the expensive loss calculation,
variants such as FOMAML have since been devel-
oped (Nichol et al., 2018; Nichol and Schulman,
2018). Meta-ICL ingeniously avoids this calcula-
tion by replacing the inner adaptation step with in-
context learning, which does not require computing
gradients! More specifically, in-context learning
refers to the use of exemplars to guide the model to-
wards exhibiting ideal behavior. Critically, these ex-
emplars are included as part of the standard model
input and thus do not require gradient updates to
provide a useful boost.

Following the idea of Meta-ICL, we consider
each dataset as a single task and treat MultiWOZ
as the held out target task. Specifically, all support
datasets are transformed into the DST format for
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meta-training, where the in-context inner loop con-
sists of support set training examples. Although
the model does not learn about the query set in
meta-training, it is familiarizing itself with com-
plex DST prompts during that time, allowing it
to quickly adapt to the target task in meta-testing.
Furthermore, since the prompt meaning is learned
during meta-training, theoretically any prompt can
be used to instruct the model, including prompts
constructed from random tokens (See Table 2).

3.3 Dialogue Compression

Condensing the dialogue context not only fits more
exemplars into the model input sequence, but also
helps the model focus on more relevant text for
predicting dialogue states. We introduce two gen-
eral ideas under the umbrella of compressing long
dialogues into shorter input sequences.

Context Summarization As the task name im-
plies, DST requires tracking dialogue states over
long periods of time, including slot-values that
were carried over from the start of the conversation.
Indeed, initial experiments validated a monotonic
decrease in joint goal accuracy as each marginal ut-
terance was removed. Therefore, as an alternative
to simply removing prior utterances, we propose
summarizing the dialogue history instead. The
summary of all prior turns is represented as the
predicted dialogue state up to that point, which is
represented as a series of (domain, slot, value) tu-
ples. We tried further limiting the input length by
only including state tuples directly related to the
current slot prediction, but surprisingly found that
this formulation of the summary fared worse.

Saliency Filtering Many sentences within a con-
versation do not contain valuable information, such
as "Thanks, that is all I need today." or "Good bye".
In order to filter away these lines, the first instinct
is to train a large model, but our situation only has
access to a few labeled examples, so to keep things
simple, we instead gather a small handful of heuris-
tics to identify non-salient utterances. For example,
lines that discuss a "reference number" or are ex-
cessively terse are targeted for removal. We verify
the performance of our heuristics on the limited
few-shot examples, where we heavily weight the
model’s recall of salient utterances over its preci-
sion. We take a very conservative approach since
accidentally dropping a single relevant sentence
can cause a severe penalty in joint goal accuracy.

3.4 Multi-part Retrieval Training
Exemplars are the only guiding signal when dealing
with in-context learning, so selecting quality cases
is of utmost importance. To do so, we fine-tune the
sentence embedder used during retrieval by taking
advantage of the limited, few-shot data available.

Exemplar Retrieval Exemplars are retrieved
based on their proximity to the query example.
Concretely, we first encode all available exemplars
into a shared embedding space using a SBERT em-
bedder (Reimers and Gurevych, 2019) where the
raw text fed into the embedder is the exemplar’s
dialogue history. For each incoming query, we en-
code the instance in the same manner, and then
compare their embeddings to rank the closest ex-
emplars in the few-shot candidate pool (Step 3 in
Figure 2). Finally, we keep pulling exemplars from
the top of the stack to feed into the model until the
entire context length of 512 is at capacity. Since
the exemplar embeddings are pre-computed, look-
ing for similar exemplars during inference is a very
quick operation.

Embedder Fine-tuning To improve the perfor-
mance of our retrieval model, we explore two cate-
gories of training techniques. Inspired by the rise
of contrastive learning (Hadsell et al., 2006) as
a pre-training method for NLP tasks (Gao et al.,
2021b; Karpukhin et al., 2020), we first study a
CONTRASTIVE loss which brings positive exam-
ples closer together while pushing negative exam-
ples further apart. In our case, exemplars sharing
the same domain and slot are positive (Y=0) while
all others are negative (Y=1). The loss becomes:

Loss(i, j) =
1− Y

2
[dist(zi, zj)]

2 +

Y

2
{max(0,m− dist(zi, zj)))}2

where zi represents the embedding vector for
utterance i while m is a margin, set to 1. We ex-
plored various distance functions (e.g. euclidean)
and found that distance based on cosine similarity
worked best:

dist(zi · zj) = 1− zi · zj
|zi| · |zj |

Since we retrieve exemplars based on cosine score,
we can directly optimize for this as second tech-
nique with a MEAN-SQUARED ERROR loss. More
specifically, the positive pair is assigned a target
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score of 1 when the two examples share the same
domain and slot and 0 otherwise, mirroring the
setup of the contrastive loss. The model’s predicted
cosine score is then compared against this target to
calculate an averaged L2-loss. We generate κ pairs
for each of N exemplars, and train our ranker with:

L(i, j) =
1

NK

N∑

i=1

K∑

j=1

||Target(i, j)− Pred(i, j)||2

Multi-part Modification The standard method
for selecting negatives has a few drawbacks since
all negatives are treated the same. While this is nec-
essary for unsupervised contrastive learning, our
case deals with labeled exemplars. Even binary la-
bels would provide a useful training signal, but we
even have varying degrees of similarity. In particu-
lar, a positive example would be an exemplar that
has a matching domain, slot and value. However,
exemplars that contain a matching domain or slot
still deserves partial consideration rather than being
deemed a pure negative example. Consequently,
we introduce a MULTI-CONTRASTIVE loss where
the different elements of domain, slot and value
are considered positive attributes, weighted with
their respective lambdas. These coefficients were
chosen by tuning on a held-out development set:

Loss(i, j) =
λd + λs + λv

4
[dist(zi, zj)]

2+

λn
4
{max(0,m− dist(zi, zj)))}2

where:

λd = 3, λs = 7, λv = 10

λn = 1.0, margin = 1.0

For a final loss function, we also test a novel cosine
similarity loss where the target label is modified to
include multiple parts, MULTI-MSE. The target is
altered such that a matching domain for each pair
gets λd = 0.3, a matching slot receives another
λs = 0.3 boost and matching values get an addi-
tional λv = 0.4, where the weights are derived by
tuning on the dev set. The final target score is the
cumulative sum of the three components - positive
pairs sharing all elements get a full score of 1, neg-
ative pairs with no matching elements receive a 0,
and most pairs lie somewhere in the middle.

Target(i, j) =
∑

e

λe[1{ei = ej}], ∀e ∈ {d, s, v}

s.t. λd + λs + λv = 1

Dataset # Dialogs # Domains # Slots

MultiWOZ 8,438 7 24
SGD 16,142 16 214
GSIM 1,500 2 13
DSTC2 1,612 1 8
ABCD 8,034 30 231

Table 1: Statistics of involved task-oriented dialogue
datasets. Note that the numbers reported are for the
training portions for all datasets.

3.5 Model Input

The eventual sequence we feed into the model takes
all of the above ideas into account. We start with
a context summary represented as the predicted
dialogue state, followed by the current turn which
consists of two utterances. Each utterance includes
a special <agent> or <customer> token for the re-
spective speaker. Next, a separator token is added,
along with a discrete prompt describing the do-
main and slot. Lastly, we prepend as many exem-
plars as we can fit into the model maximum token
length, truncating from the beginning when neces-
sary. This results in a final model input of:

[N exemplars][prev_dialog_state][agent_utt]

[customer_utt] < sep > [prompt][value]

Notably, the final [value] token is only present
during meta-training, and belongs to the support
datasets. This value is precisely what we hope to
predict when testing the left out query set.

4 Experiments

This section outlines our training implementation
details as well as key experiments.

4.1 Training Setup

We consider Schema Guided Dialogue (SGD) (Ras-
togi et al., 2020), DSTC2 (Henderson et al.,
2014), Action-Based Conversations Dataset
(ABCD) (Chen et al., 2021), and Google Simulated
Chat (GSIM) (Shah et al., 2018) as support sets
(listed in Table 1). We then use MultiWOZ 2.1
(Budzianowski et al., 2018; Eric et al., 2019) as a
query set, as well as MultiWOZ 2.4 (Zang et al.,
2020) which is the cleanest version of MultiWOZ
at time of writing. All datasets have dialogue
compression techniques applied and use the best
performing embedder for exemplar retrieval.

For our training we use T5 (Raffel et al., 2020)
with both the three and eleven billion parameters
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Prompt Style Prompt Example

Statement “The destined location of the taxi is”
Question “Where is the destination of the taxi ?”
Schema “<domain> taxi - rent cheap cabs to

avoid traffic <slot> destination - what
place you want the taxi to take you”

Naive “destination of the taxi is”
None “taxi destination”
Random “blue cobra”

Table 2: Examples for different prompt styles. Here we
consider a domain of “taxi” and a slot of “destination”.

versions (T5-3b/T5-11b), where our best models
are selected through early stopping on validation
data. We set the learning rate as 3e − 4, employ
an Adafactor (Shazeer and Stern, 2018) optimizer
and cosine scheduler with warmup of 10,000 steps.
Our best system uses an ensemble of exemplar em-
bedders that were trained with of κ = [20, 30, 40]
and learning rate of 3e − 5. More details can be
found in Appendix C.

4.2 Prompt Variations

Model training can be considered stable if different
prompts produce similar outcomes. To test this, we
collect six prompts based on common sense and
prior work. As much as possible, we use prompts
designed by others to avoid biasing the rankings.

Since LMs supposedly operate on prompts as
continuation of natural language, the (a) Statement
prompt takes the form ‘The restaurant cuisine is
<blank>’, where we hope the model completes the
sentence with the correct slot-value. (b) A Ques-
tion prompt reverses the meaning with ‘What is
the restaurant cuisine?’ (c) Schema comes from
(Lee et al., 2021) and MWOZ 2.2 descriptions,
which aims to provide the model with the maxi-
mum amount of information. It includes a special
token, name, and full description for both the do-
main and slot. (See Table 2) (d) Naive takes the
opposite approach by simply following the format
of “<slot> of the <domain> is <blank>”. (e) Taken
even further, the None prompt does not use any nat-
ural language at all, instead opting to only include
the domain and slot name for evaluation purposes.
(f) Finally, we include a Random prompt which
drops any notion of semantics by replacing the
domain with a random color and the slot with a
random animal. To empathize with the difficulty
of hand-engineering a prompt, note that each op-
tion (except for random) seems reasonable, and it
is hard to know a priori which one works best.

MRR@10 NDCG@10 MAP@100

Default 16.7% 9.59% 1.81%
Contrastive 17.4% 10.6% 2.28%
Multi-contrast 17.1% 9.89% 1.90%
Mean Squared 25.1% 15.5% 3.31%
Multi-MSE 26.8% 18.4% 5.24%

Table 3: Results of fine-tuning the sentence embedder
with various loss functions. Multi-part cosine is best.

As a baseline, we start with in-context learning
without meta-training. We feed in the prompts
directly and measure their variance as the standard
deviation among scores. Then, we perform meta-
learning with all prompts again and measure their
results, where we expect that the variance among
the scores has now decreased.

4.3 Filtering Threshold

In order to verify that our saliency model success-
fully removes irrelevant sentences, we employ two
experts to annotate 50 dialogs, which is well below
the allowed 1% of few-shot data. We then run the
saliency model on this tiny evaluation set with dif-
ferent filtering thresholds, ranging from 0.1 to 0.9,
with results illustrated in Figure 3. As the threshold
increases, only sentences with high relevance are
left, as evidenced by high precision and low recall.
A maximum F1-score is reached at 0.6, but we
would rather keep all relevant sentences at the ex-
pense of amassing a handful of irrelevant sentences
than to risk missing important information. As a re-
sult, we choose 0.4 as the filtering threshold, which
achieves a recall of 0.998 and acceptably high pre-
cision. Qualitative examples of irrelevant sentences
that were removed can be found in section 5.4.

4.4 Retrieval Methods

We adapt SBERT (Reimers and Gurevych, 2019)
to our DST task with four different objective func-
tions: standard contrastive loss, multi-part con-
trastive loss, binary cosine similarity loss and multi-
part cosine similarity loss. We test with number
of pairs per exemplar in a range from 10 to 100 in
increments of ten. We found κ = 30 to work best,
which we use moving forward. As a control, we
also include the default SBERT model without any
further fine-tuning. We evaluate the results of train-
ing on the few-shot examples with Mean Recipricol
Rank (MRR@10), Normalized Discounted Cumu-
lative Gain (NDCG@10) and Maximum Average
Precision (MAP@100) as our metrics.
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Models Parameter MultiWOZ2.1 MultiWOZ2.4

Size 1% 5% 10% 1% 5% 10%

TRADE (Wu et al., 2019)

<1B

12.58 31.17 36.18 - - -
SGPDST (Lee et al., 2021) 32.11 43.14 46.92 - - -
DS2-BART (Shin et al., 2022) 28.25 37.71 40.29 30.55 42.53 41.73
DS2-T5 (Shin et al., 2022) 33.76 44.20 45.38 36.76 49.89 51.05

IC-DST GPT-Neo 2.7b (Hu et al., 2022)

<100B

16.70 26.90 31.65 17.36 29.62 34.38
IC-DST CodeGen 2.7b (Hu et al., 2022) 20.72 29.62 33.81 21.87 33.16 37.45
SM2-3b (Our Method) 38.06 39.94 39.85 37.59 49.22 50.33

- Saliency Filtering 36.11 38.26 38.63 - - -
- Context Summarization 37.02 37.83 37.80 - - -
- Embedder Fine-tuning 27.15 30.88 31.40 - - -

SM2-11b (Our Method) 38.36 44.64 46.02 40.03 51.14 51.97

IC-DST Codex-davinc 175b (Hu et al., 2022) >100B 43.13 47.08 48.67 48.35 55.43 56.88

Table 4: DST performance using 1%, 5% and 10% of the training set. Naive prompt used for our method. Bolded
numbers indicate highest performance on models under 100 billion parameters. Note that models <1B params
fine-tune on task data. Ablation results are also included for dialogue compression and embedder training.

As is shown in Table 3, the multi-part cosine loss
showcases the strongest ability to select meaning-
ful exemplars. This shows the benefit of providing
partial credit to all elements of the dialogue state.
Surprisingly though, the multi-part contrastive loss
underperformed. Preliminary error analysis re-
vealed negative examples were successfully sep-
arated from positive examples, but the different
positive examples were mixed together. We adopt
the embedder trained with the MULTI-MSE for all
remaining experiments.

5 Results and Analysis

The goal of this work is to achieve strong results
on DST without worrying about tedious prompt-
engineering. Consequently, we first analyze the
ability of the best performing models and then dis-
cuss performance stability across different prompts.

5.1 Main Results

Table 4 shows that methods based on in-context
learning clearly surpass those based on fine-tuning
with few-shot data, as evidenced by the strong per-
formance of SM2 as well as the concurrent work
of IC-DST (Hu et al., 2022). In fact, our SM2-
11b model is able to achieve the best joint goal
accuracy on MultiWOZ 2.1 and 2.4 for most few-
shot splits, when focused on models less than 100B
parameters. Furthermore, when considering just
models operating with in-context learning, SM2-
3b greatly outperforms the IC-DST 2.7b models
in the same order of magnitude. We note that our
method is agnostic to model size, so it is certainly
possible to combine them with systems larger than

100B params. Doing so would likely yield strong
performance without sacrificing stability.

On that note, Table 5 shows that models trained
with SM2 exhibit roughly a 2x reduction in vari-
ance over models trained under other regimes.
While fine-tuning on certain prompts produces
some of the highest scores we observe, other
prompts yield some of the lowest, highlighting how
hand-crafting prompts are wrought with danger.
The instability is most pronounced for the random
prompt, which meta-learning is able to smooth over.
Also worth noting is that meta-learning from SM2
is able to stabilize prompt performance across mul-
tiple model types, including sequence-to-sequence
(row 4) or auto-regressive LMs (row 5). This is in
contrast to purely in-context models, such as those
which were pre-trained on code and must always
obey a rigid coding structure during inference.

5.2 Ablation Study

To evaluate the different contributions, we run three
ablation experiments, each of which removes one
of the key components of SM2. The results pre-
sented in Table 4 show that each change makes
a noticeable impact. Without saliency filtering,
model performance drops by a small, but consis-
tent amount of roughly 1-2%. Disabling context
summarization means truncating dialogue history
to four utterances and precluding previous dialogue
state, which causes an even bigger decrease in ac-
curacy. Using the default SBERT embedder deals
the most damage of all, leading to a nearly 10%
drop. This suggests that exemplar selection is most
critical for in-context learning methods.
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Prompt Style None Naive Schema Statement Question Random STDEV

Fine-Tune 35.3 39.2 38.7 41.1 39.3 24.7 6.02
In-Context 17.5 19.9 14.6 18.9 12.4 4.80 5.58
Pre-train 31.8 35.4 28.2 27.8 34.6 17.2 6.65
SM2 T5-3b 33.9 39.9 30.0 38.2 35.6 33.1 3.58
SM2 GPT-XL 9.70 8.70 8.50 11.4 8.90 1.20 3.53

Table 5: Joint goal accuracy over different prompt styles. Models trained with 5% of training data. The backbone
model of Fine-tune and In-Context is T5-3b. Instability is measured as standard deviation of the accuracy scores.

The proposed ideas are also independently ap-
plicable to other NLP tasks. For example, com-
pressing inputs to fit more exemplars into an model
input sequence can be applied to dialogue genera-
tion with large LMs or even reading compression,
which requires reasoning over long supporting para-
graphs. A multi-part training mechanism can be ap-
plied to tasks that contain multiple elements, such
as the premise, hypothesis and labels of NLI.

5.3 Additional Discussion

We now turn our attention to the impact of different
training regimes, as shown in Table 5. Fine-tuning
(row 1) serves as an oracle since it represents train-
ing directly on the data in the target domain. Un-
surprisingly, SM2 reaches lower average results
in comparison. In contrast, SM2 significantly out-
performs in-context learning (row 2) since neither
perform gradient updates, while SM2 includes a
meta-learning stage. Finally, to disentangle the
effects of pre-training and meta-ICL, we also com-
pare against a baseline which does not perform
in-context learning (row 3). Rather than learning
the prompts, this baseline instead simply performs
transfer learning from the source datasets to the
target dataset. Such a setup does not work as well
due to the domain shift from the source distribution
to the target distribution.

Digging deeper, we notice that our method dis-
plays a meaningful jump in performance when go-
ing from 1% to 5% data, but not much when go-
ing to 10%. The increased amount of data fails
to provide much marginal value since the exem-
plars being selected did not change much despite
choosing from a larger candidate pool. Instead, the
finite sequence length became the bottleneck on
downstream accuracy.

The performance of the in-context methods are
interesting in their own right. Statement prompt
does best, while Random does worst, but despite
having no training, is well above chance. This sur-
prising result confirms other research on prompt

analysis, which found that large PLMs sometimes
perform too well, implying that the models are actu-
ally paying attention to superficial cues rather than
truly understanding the text within a prompt (Web-
son and Pavlick, 2021; Kavumba et al., 2022).

5.4 Qualitative Analysis

The top half of Table 6 shows an utterance with
“domain=restaurant” and “slots=price range, food
type”. Despite having minimal n-gram overlap with
the example, the first exemplar E1 receives a high
score by matching the same domain and slot of
the target utterance. On the other hand, the second
exemplar E2 discusses an entirely different topic,
producing a low score. This demonstrates the effec-
tiveness of the sentence embedder in distinguishing
the value of these exemplars. The bottom half of
Table 6 shows how the saliency model successfully
conserves a large amount of token space. Short
sentences and those void of any dialog state infor-
mation are safe for removal. When all sentences
in an utterance are filtered, then we also remove
the associated speaker token. Despite our conserva-
tive thresholds, the majority of useless information
is successfully trimmed out to allow the model to
focus on the most pertinent areas instead.

6 Conclusion

In this paper, we presented a method of perform-
ing few-shot dialogue state tracking by leveraging
large pre-trained LMs with prompts. Our technique
does not require any gradient-based training for the
target task and instead relies on in-context learn-
ing to guide model generation. To enable success
in this low-resource setting, we stabilize training
across prompts with Meta-ICL, apply saliency fil-
tering and context summarization to reduce dia-
logue length, and fine-tune a sentence embedder
with a custom loss objective to improve exemplar
retrieval. These techniques combined allow us to
reach state-of-the-art results on MultiWOZ when
limited to models under 100 billion parameters.
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Exemplar Retrieval

Dialog ID Target Utterance Exemplar Score

SSNG0074.json
I am looking for a restaurant in the
moderate price range that serves
bistro type food.

E1: I would love to help. any particular
food you’d like? no, I’d just like for it to
be in the east and moderately priced.

0.738

E2: Seventeen locations meet your cri-
teria. Would you prefer a guesthouse or
a hotel? A hotel is fine whichever you
recommend.

-0.074

Saliency Filtering

PMUL0287.json
<Agent>: The phone number is 01223259988. <User>: Perfect. Can you help me with
a reservation for 6 people at 14:30 this coming sunday? And please make sure I have a
confirmation number to use. <Agent>:our reservation is set!

PMUL1635.json

<Agent>: What day will you be staying? <User>: Friday and Can you book it for me
and get a reference number ? <Agent>:Booking was successful. Reference number is :
BMUKPTG6. Can I help you with anything else today? <User>: I am looking to book
a train that is leaving from Cambridge to Bishops Stortford on Friday.

Table 6: Examples of how exemplar retrieval and saliency filtering operate. Same colored text represents matching
domain and slots. The strikethrough of text means removal of the irrelevant sentence by the saliency model.

Moving forward, we plan to explore techniques
that push model and data efficiency even further.
Distillation and pruning can lead to much fewer
model parameters, while numerous data augmen-
tation techniques seem promising in maximizing
the advantage of limited labeled data. Lastly, rather
than meta-learning across different dialog domains,
we also would like to explore meta-train model
with different prompt styles. With the current
framework, the prompt used in inference is re-
quired to be the same as the training. However,
we might want to use flexible prompts in practice.
Consequently, we could meta-train across different
prompt styles to allow the model to quickly learn a
new prompt style during inference.

7 Limitations

Our method is model-agnostic and can be com-
bined with larger pre-trained model over 100 bil-
lion parameters for further improvement on DST
task. However, due the budget limit, this is unlikely
to be directly validated. Ironically, our method also
has the limitation that it cannot be combined with
smaller models since the emergent behavior of be-
ing to understand prompts only seems to occur with
sufficiently large pre-trained models.

Separately, the proposed saliency filtering and
the exemplar retrieval module are designed based
on the dialog state tracking task, but not specifically
for the MultiWOZ dataset. As a result, we planned
to apply our framework to other task-oriented di-
alog datasets, e.g. SGD (Rastogi et al., 2020) to

verify that our framework is generalizable, but have
not done so yet due to time constraints. We also
ran our experiments with a different model type
in GPT-XL, but did not have a chance to properly
tune the parameters, leading to low performance.

We would have liked to run our experiments with
different random seeds. Considering the stability
of our framework among different prompt styles,
different random seeds should not cause high vari-
ance. However, we still need to run experiments to
verify this assumption.
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A Loss Functions

Gao et al. (2021b) proposes a softmax-based con-
trastive loss:

Li = −log
esim(hi,h+

i )/τ

∑N
j=1 e

sim(hi,h+
j )/τ

which is popular among NLP tasks. However, this
loss function requires extremely large batch sizes
to work well (Chen et al., 2020). This is espe-
cially difficult for us since we specifically target
a low-resource setting with small GPU memory
requirements. More critically, this softmax con-
trastive loss views all negatives as being the same.
However, in the case of dialog state tracking, where
dialog state is represented as (domain, slot, value),
the matching is decided at three levels. For exam-
ple, two dialogue examples can (and should) be
considered a negative pair when they have differ-
ent values for all three elements. In another case
though, they might be considered a negative pair
by not having matching “value”, but still sharing
the same “domain” and “slot”. The softmax con-
strastive loss considers these two cases as the same,
which is not ideal for the DST task. Therefore, we
implement the for our experiments. The classic
max-margin contrastive loss (Hadsell et al., 2006)
is also unable to make a clear distinction for partial
credit either, but should be able to when the loss is
the sum of multiple elements. Therefore, we use
the max-margin loss for our experiments.

B Filtering Results
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Figure 3: Graph of precision, recall and F1 when vary-
ing the acceptance threshold. Joint goal accuracy (JGA)
correlates closely with recall due to the nature of DST.

C Other Implementation Details

In this section, we introduce more implementation
details. For training, we search the learning rate
within the interval [3e-5, 1e-4, 3e-4, 1e-3, 3e-3]. In
order to deploy large pre-trained models like T5-
3b and T5-11b, we first adjust the batch size. To
achieve a balance between GPU memory consump-
tion and batch performance, we alter the number
of gradient accumulation steps to maintain a con-
sistent effective batch size of 64 across runs. Fur-
thermore, we also change everything into bitfloat
16 (BF16) and adopt AdaFactor as the optimizer to
lower the number of parameters.

We additionally perform ensemble decoding for
multiple times using different retrieval embedders.
These sentence embedders are distinguished by
being trained on different levels of kappa, where
we end up choosing embedders trained with kappa
of [20,30,40]. These values were selected since
they were the models which had the best results
as measured by MRR@10 and MAP@10. We run
exemplar retrieval with these models and take the
majority vote of the system.

In addition to adopting different prompts for
our models, we also apply the concept of verbaliz-
ers (Schick and Schütze, 2021). More specifically,
we use verbalizers to map natural sounding output
to the more limited slot-values in the ontology. For
example, given the prompt ‘Whether the hotel of-
fers wifi’, we consider both ‘True’ (or ‘False’) and
‘Yes’ (or ’No’) to be the same answer.

D Input Example

(See next page.)
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Exemplar 0 (Truncated) <pad> options available. Would you like to narrow it down by departure time or arrival time?
<customer> I’d like to leave after 21:45, if possible. I won’t need to book. I’ll just need the
arrival time, please? <sep> departure of the train is cambridge</s>

Exemplar 1 taxi destination kambar, taxi departure lovell lodge <agent> when would you like to arrive?
<customer> It doesn’t matter. I just want to leave there after 10:45 <sep> destination of the taxi
is kambar</s>

Exemplar 2 taxi destination riverboat georgina, taxi departure archway house, hotel area north, hotel day
thursday, hotel stay 5, hotel people 3, hotel stars 4, attraction name cambridge punter, attraction
type boat <agent> what time would you like to leave or arrive by? <customer> I’d like to leave
the hotel by 3:15 please. <sep> stars of the hotel is 4</s>

Exemplar 3 train day saturday, train destination cambridge, train departure ely <agent> sure, do you know
what time you want to arrive? <customer> I want to arrive by 11:30. <sep> departure of the train
is ely</s>

Exemplar 4 restaurant area centre, restaurant people 8, restaurant day thursday, restaurant time 14:00,
restaurant food chinese, restaurant price range cheap, taxi destination charlie chan, taxi departure
museum of classical archaeology, attraction name museum of classical archaeology <agent>
When would you like the leave and arrive by? <customer> I don’t mind what time we leave, but
I need to arrive at the restaurant by 14:00. <sep> departure of the taxi is museum of classical
archaeology</s>

Exemplar 5 restaurant area south, restaurant food asian oriental, restaurant name any, restaurant price range
any, train arrive by none, train day wednesday, train destination cambridge, train departure
london kings cross, train leave at none, attraction area east <agent> what time were you wanting
to leave by or arrive by? <customer> I want to arrive by 12:15. <sep> arrive by of the train is
12:15</s>

Prev State taxi destination pizza hut fen ditton

Dialog Context <agent> What time do you want to leave and what time do you want to arrive by? <customer> I
want to leave after 17:15.

Prompt leave at of the taxi is</s>

Label after 17:15

Table 7: A practical example used during inference which uses our fine-tuned sentence embedder for exemplar
retrieval. To be easy to read, we separate each component, including exemplars, query sequence and prompt. Each
exemplar contains previous states, dialog context, prompt and label, which corresponds to Sec. 3.5. The 0-th
exemplar is truncated so that the entire sequence length can fit into the model.
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Abstract

Demographic factors (e.g., gender or age)
shape our language. Previous work showed
that incorporating demographic factors can
consistently improve performance for various
NLP tasks with traditional NLP models. In
this work, we investigate whether these pre-
vious findings still hold with state-of-the-art
pretrained Transformer-based language mod-
els (PLMs). We use three common specializa-
tion methods proven effective for incorporat-
ing external knowledge into pretrained Trans-
formers (e.g., domain-specific or geographic
knowledge). We adapt the language representa-
tions for the demographic dimensions of gender
and age, using continuous language modeling
and dynamic multi-task learning for adaptation,
where we couple language modeling objectives
with the prediction of demographic classes.
Our results, when employing a multilingual
PLM, show substantial gains in task perfor-
mance across four languages (English, German,
French, and Danish), which is consistent with
the results of previous work. However, con-
trolling for confounding factors – primarily do-
main and language proficiency of Transformer-
based PLMs – shows that downstream perfor-
mance gains from our demographic adaptation
do not actually stem from demographic knowl-
edge. Our results indicate that demographic
specialization of PLMs, while holding promise
for positive societal impact, still represents an
unsolved problem for (modern) NLP.

1 Introduction

Demographic factors like social class, education,
income, age, or gender, categorize people into spe-
cific groups or populations. At the same time,
demographic factors both shape and are reflected
in our language (e.g., Trudgill, 2000; Eckert and
McConnell-Ginet, 2013). A large body of work
focused on modeling demographic language vari-

ation, especially the correlations between words
and demographic factors (Bamman et al., 2014;
Garimella et al., 2017; Welch et al., 2020, inter
alia). In a similar vein, Volkova et al. (2013) and
Hovy (2015) demonstrated that explicitly incorpo-
rating demographic information in language repre-
sentations improves performance on downstream
NLP tasks, e.g., topic classification or sentiment
analysis. However, these observations rely on ap-
proaches that leverage gender-specific lexica to spe-
cialize word embeddings and text encoders (e.g., re-
current networks) that have not been pretrained for
(general purpose) language understanding. To date,
the benefits of demographic specialization have not
been tested with Transformer-based (Vaswani et al.,
2017) pretrained language models (PLMs), which
have been shown to excel on the vast majority of
NLP tasks and even surpass human performance in
some cases (Wang et al., 2018).

More recent studies focus mainly on monolin-
gual English datasets and introduce demographic
features in task-specific fine-tuning (Voigt et al.,
2018; Buechel et al., 2018), which limits the bene-
fits of demographic knowledge to tasks at hand. In
this work, we investigate the (task-agnostic) demo-
graphic specialization of PLMs, aiming to impart
the associations between demographic categories
and linguistic phenomena into the PLMs parame-
ters. If successful, such specialization could benefit
any downstream NLP task in which demographic
factors (i.e., demographically conditioned language
phenomena) matter. For this, we adopt intermedi-
ate training paradigms that have been proven effec-
tive for the specialization of PLMs for other types
of knowledge, e.g., in domain, language, and geo-
graphic adaptation (Glavaš et al., 2020; Hung et al.,
2022a; Hofmann et al., 2022). To this effect, we
perform (i) continued language modeling on text
corpora produced by a demographic group and (ii)
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dynamic multi-task learning (Kendall et al., 2018),
wherein we combine language modeling with the
prediction of demographic categories.

We evaluate the effectiveness of the demo-
graphic PLM specialization on both intrinsic (de-
mographic category prediction) and extrinsic (sen-
timent classification and topic detection) evalua-
tion tasks across four languages: English, German,
French, and Danish, using a multilingual corpus
of reviews (Hovy et al., 2015) annotated with de-
mographic information. In line with earlier find-
ings (Hovy, 2015), our initial experiments based
on a multilingual PLM (mBERT; Devlin et al.,
2019), render demographic specialization effec-
tive: we observe gains in most tasks and settings.
Through a set of controlled experiments, where
we (1) adapt with in-domain language modeling
alone, without leveraging demographic informa-
tion, (2) demographically specialize monolingual
PLMs of evaluation languages, (3) carry out a meta-
regression analysis over dimensions that drive the
performance, and (4) analyze the topology of the
representation spaces of demographically special-
ized PLMs, we show, however, that most of the
original gains can be attributed to confounding ef-
fects of language and/or domain specialization.

Our findings indicate that specialization ap-
proaches, proven effective for other types of knowl-
edge, fail to adequately instill demographic knowl-
edge into PLMs, making demographic specializa-
tion of NLP models an open problem in the age
of large pretrained Transformers. Our research
code is publicly available at: https://github.
com/umanlp/SocioAdapt.

2 Demographic Adaptation

Our goal is to inject demographic knowledge
through intermediate PLM training in a task-
agnostic manner. To achieve this goal, we
train the PLM in a dynamic multi-task learning
setup (Kendall et al., 2018), in which we couple
masked language modeling (MLM-ing) with pre-
dicting the demographic category – gender or age
group of the text author. Such multi-task learning
setup is designed to force the PLM to learn associ-
ations between the language constructs and demo-
graphic groups, if these associations are salient in
the training corpora.

Masked Language Modeling (MLM). Follow-
ing successful work on pretraining via language
modeling for domain-adaptation (Gururangan et al.,

2020; Hung et al., 2022a), we investigate the effect
of running standard MLM-ing on the text corpora
of a specific demographic dimension (e.g., gender-
related corpora). We compute the MLM loss Lmlm
in the common way, as negative log-likelihood of
the true token probability.

Demographic Category Prediction. In the
multi-task learning setup, the representation of the
input text, as output by the Transformer, is addition-
ally fed into a classification head that predicts the
corresponding demographic category: age (below
35 and above 451), and gender (female and male).
The demographic prediction lossLdem is computed
as the standard binary cross-entropy loss.

We experiment with two different ways of
predicting the demographic category of the text:
(i) from the transformed representation of the se-
quence start token ([CLS]) and (ii) from the contex-
tualized representations of each masked token. We
hypothesized that the former variant, in which we
predict the demographic class from the [CLS] to-
ken representation, would establish links between
more complex demographically condition linguis-
tic phenomena (e.g., syntactic patterns or patterns
of compositional semantics that a demographic
group might exhibit), whereas the latter – pre-
dicting demographic class from representations of
masked tokens – is more likely to establish simpler
lexical links, i.e., capture the vocabulary differ-
ences between the demographic groups.

Multi-Task Learning. Since both losses can
be computed from the same input instances, we
opt for joint multi-task learning (MTL) and re-
sort to dynamic MTL based on the homoscedastic
uncertainty of the losses, wherein the loss vari-
ances are used to balance the contributions of the
tasks (Kendall et al., 2018). The intuition is that
more effective MTL occurs if we dynamically as-
sign less importance to more uncertain tasks, as
opposed to assigning uniform task weights through-
out the whole training. Homoscedastic uncertainty
weighting in MTL has been effective in different
NLP settings (Lauscher et al., 2018; Hofmann et al.,
2022). In our scenario, Lmlm and Ldem are mea-
sured on different scales in which the model would
favor (i.e., be more confident for) one objective
than the other. The confidence level of the model
prediction for each task would change throughout

1As suggested by Hovy (2015) the split for the age ranges
result in roughly equally-sized data sets for each sub-group
and is non-contiguous, avoiding fuzzy boundaries.
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the training progress: this makes dynamic weight-
ing desirable. We dynamically prioritize the tasks
via homoscedastic uncertainties σt:

L̃t =
1

2σ2
t

Lt + log σt , (1)

where σ2t is the variance of the task-specific loss
over training instances for quantifying the uncer-
tainty of the task t ∈ {mlm, dem}. In practice,
we train the network to predict the log variance,
ηt := log σ2t , since it is more numerically stable
than regressing the variance σ2t , as the log avoids
divisions by zero. The adjusted losses are then
computed as:

L̃t =
1

2
(e−ηtLt + ηt) . (2)

The final loss we minimize is the sum of the two
uncertainty-adjusted losses: L̃mlm + L̃dem.

3 Experimental Setup

Here we describe evaluation tasks and provide de-
tails on the data used for demographic specializa-
tion and downstream evaluation.

Evaluation Tasks. We follow Hovy (2015) and
measure the effects of demographic specialization
of PLMs on three text-classification tasks, coupling
intrinsic demographic attribute classification (AC)
with two extrinsic text classification tasks: senti-
ment analysis (SA) and topic detection (TD). As
an intrinsic evaluation task, AC directly tests if the
intermediate demographic specialization results in
a PLM that can be more effectively fine-tuned to
predict the same demographic classes used in the
intermediate specialization: PLMs (vanilla PLM
and our demographically specialized counterpart)
– are fine-tuned in a supervised fashion to predict
the demographic class (gender or age) of the text
author. SA is a ternary classification task in which
the reviews with ratings of 1, 3, and 5 stars rep-
resent instances of negative, neutral, and positive
class, respectively. TD classifies texts into 5 differ-
ent topic categories. We report the F1-measure for
each task following Hovy (2015).

Data. We carry out our core experimentation on
the multilingual demographically labeled dataset
of reviews (Hovy et al., 2015), created from the
internationally popular user review website Trust-
pilot.2 For comparison and consistency, we work
with exactly the same data portions as Hovy (2015):

2https://www.trustpilot.com/

collections that cover (1) two most prominent de-
mographic dimensions – gender and age, with two
categories in each (gender: male or female; age:
below 35 or above 453) and (2) five countries (four
languages): United States (US), Denmark, Ger-
many, France, and United Kingdom (UK).

To avoid any information leakage, we ensure –
for each country-demographic dimension collec-
tion (e.g., US, gender) – that there is zero overlap
between the portions we select for intermediate
demographic specialization and portions used for
downstream fine-tuning and evaluation (for AC,
SA, and TD). For TD, we aim to eliminate the con-
founding effect of demographically-conditioned
label distributions (e.g., female authors wrote re-
views for clothing store more frequently than male
authors; vice-versa for electronics & technology).
To this effect, we select, for each country, reviews
from the five most frequent topics and sample the
same number of reviews in each topic for both de-
mographic groups (i.e., male and female for gender;
below 35 and above 45 for age). For the intrinsic
AC task (i.e., fine-tuning to predict either gender or
age category), we report the results for two differ-
ent review collections: the first is the set of reviews
that have, besides the demographic classes, been
annotated with sentiment labels (we refer to this as
AC-SA) and the second are the reviews that have
topic labels (i.e., product/service category; we refer
to this portion as AC-TD). For these fine-tuning
and evaluation datasets, we make sure that the two
demographic classes (male and female for gender
under 35 and above 45 for age) are equally repre-
sented in each dataset portion (train, development,
and test). Table 1 displays the numbers of reviews
for each country, demographic aspect, and dataset
portion (specialization vs. fine-tuning).

For intermediate specialization of the multilin-
gual model, we randomly sample 100K instances
per demographic group from the gender specializa-
tion portion and 50K instances each from the texts
reserved for age specialization concatenated across
all 5 countries. For the specialization of monolin-
gual PLMs, we randomly sample the same number
of instances but from the specialization portions
of a single country. Following the established pro-
cedure (e.g., Devlin et al., 2019; Liu et al., 2019),
we dynamically mask 15% of the tokens in the
demographic specialization portions for MLM.

3As suggested by Hovy (2015), the split for the age ranges
results in roughly equally-sized data sets for each sub-group
and is non-contiguous, avoiding fuzzy boundaries.

1567

https://www.trustpilot.com/


gender age

Country Language Specialization SA, AC-SA TD, AC-TD Specialization SA, AC-SA TD, AC-TD

F M F / M <35 >45 <35 / >45

Denmark Danish 1,596,816 2,022,349 250,485 120,805 833,657 494,905 75,300 44,815
France French 489,778 614,495 67,305 55,570 40,448 36,182 6,570 6,120
Germany German 210,718 284,399 28,920 30,580 66,342 47,308 5,865 8,040
UK English 1,665,167 1,632,894 156,630 183,995 231,905 274,528 26,325 22,095
US English 575,951 778,877 72,270 61,585 124,924 70,015 6,495 12,090

Table 1: Number of instances in different portions of the Trustpilot dataset (Hovy et al., 2015) used in our
experiments. For each country (Denmark, France, Germany, UK, and US), we report the size of the specialization
and fine-tuning portions, the latter for each of the two extrinsic tasks: Sentiment Analysis (SA) and Topic Detection
(TD). Note that we use the same SA and TD reviews for the intrinsic AC tasks of predicting the demographic
categories (denoted AC-SA and AC-TD, respectively). Numbers are shown separately for the two demographic
dimensions: gender and age. For fine-tuning datasets (for SA/AC-SA, and for TD/AC-TD), we indicate the number
of instances in each category (which is the same for both categories: F and M for gender, <35 and >45 for age). We
split the fine-tuning datasets randomly into train, validation, and test portions in the 60/20/20 ratio.

Pre-trained language models. Given that we
experiment with Trustpilot data in four different
languages, in our core experiments, we resorted
to multilingual BERT (mBERT)4 (Devlin et al.,
2019) as the starting PLM. This allows us to merge
the (fairly large) specialization portions of Trust-
pilot in different languages (see Table 1) and run
a single multilingual demographic specialization
procedure on the combined multilingual review
corpus. We then fine-tune the demographically-
specialized mBERT and evaluate downstream task
performance separately for each of the five coun-
tries (using train, development, and test portions
of the respective country). We report the results
for two different variants of our dynamic multi-
task demographic specialization (DS): (1) when
the demographic category is predicted from rep-
resentations of masked tokens (DS-Tok) and (2)
when we predict the demographic category from
the encoding of the whole sequence (i.e., review;
this version is denoted with DS-Seq). We com-
pare these demographic-specialized PLM variants
against two baselines: vanilla PLM and PLM spe-
cialized on the same review corpora as our MTL
variants but only via MLM-ing (i.e., without pro-
viding the demographic signal).

Training and Optimization. In demographic
specialization training, we fix the maximum se-
quence length to 128 subword tokens. We train for
30 epochs in batches of 32 instances and search
for the optimal learning rate among the follow-
ing values: {5 · 10−5, 1 · 10−5, 1 · 10−6}. We ap-
ply early stopping based on the development set
performance: we stop if the joint MTL loss does

4We load the bert-base-multilingual-cased weights
from HuggingFace Transformers.

not improve for 3 epochs). For downstream fine-
tuning and evaluation, we train for maximum 20
epochs in batches of 32. We search for the op-
timal learning rate between the following values:
{5·10−5, 1·10−5, 5·10−6, 1·10−6} and apply early
stopping based on the validation set performance
(patience: 5 epochs). We use AdamW (Loshchilov
and Hutter, 2019) as the optimization algorithm.

4 Results and Discussion

We first discuss the results of multilingual demo-
graphic specialization with mBERT as the PLM
(§4.1). We then provide a series of control experi-
ments in which we isolate the effects that contribute
to performance gains of demographically special-
ized PLMs (§4.2).

4.1 Multilingual Specialization Results

Table 2 shows the results of gender- and age-
specialized mBERT variants – DS-Seq and DS-
Tok – on gender and age classification (AC-SA and
AC-TD) as intrinsic tasks together with sentiment
analysis (SA) and topic detection (TD) as extrinsic
evaluation tasks, for each of the five countries en-
compassed by the Trustpilot datasets (Hovy et al.,
2015). The performance of DS-Seq and DS-Tok is
compared against the PLM baselines that have not
been exposed to demographic information: vanilla
mBERT and mBERT with additional MLM-ing
on the same Trustpilot data on which DS-Seq and
DS-Tok were trained.

Our demographically specialized models gen-
erally outperform the vanilla mBERT across the
board, both on intrinsic and extrinsic tasks, un-
surprisingly with much more prominent gains on
the former. The comparison against the domain-
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Demographic: gender Demographic: age

Gender class. SA TD Age class. SA TD

Country Model AC-SA AC-TD F M X F M X AC-SA AC-TD <35 >45 X <35 >45 X

Denmark

mBERT 64.0 61.8 69.2 64.8 67.2 59.3 58.3 59.0 57.2 64.5 62.7 62.7 62.9 56.1 52.2 53.4
MLM 65.2 63.4 69.5 65.8 67.8 59.7 58.8 59.4 65.5 65.1 63.3 62.1 63.0 57.1 52.6 54.1

DS-Seq 64.9 63.5 69.9 65.7 67.7 59.7 57.8 59.1 65.2 65.2 63.1 62.9 63.0 56.9 53.3 54.5
DS-Tok 65.0 63.5 69.1 65.6 68.0 59.9 58.9 59.0 65.3 64.6 64.2 63.3 63.2 56.2 53.2 54.3

Germany

mBERT 59.5 57.9 66.1 63.2 64.5 67.8 65.6 65.8 58.0 56.9 52.6 55.0 55.0 60.1 55.3 57.1
MLM 61.2 60.1 67.7 65.3 66.1 68.6 67.0 67.1 61.1 58.9 53.6 55.5 56.7 61.5 56.5 58.7

DS-Seq 60.1 60.3 66.7 64.0 65.7 67.6 65.7 66.4 56.4 58.2 53.8 55.3 55.5 60.8 57.6 59.3
DS-Tok 62.9 58.3 66.8 64.3 66.8 68.3 67.0 66.7 56.6 57.4 53.0 56.5 56.7 59.3 56.5 59.3

US

mBERT 62.6 58.1 66.3 64.4 66.0 71.2 68.4 70.2 62.9 60.7 57.7 57.9 57.8 68.0 64.3 64.3
MLM 63.3 59.6 67.3 66.2 66.9 72.1 69.4 70.3 63.6 61.9 59.4 57.8 58.2 69.0 64.2 65.2

DS-Seq 63.8 59.2 67.2 66.3 67.0 72.3 69.2 70.4 60.7 61.5 59.3 57.9 58.0 69.8 64.4 65.8
DS-Tok 62.2 58.8 68.0 66.4 67.3 72.8 69.5 70.5 59.7 61.2 59.9 58.6 57.8 69.2 65.4 64.9

UK

mBERT 61.9 63.1 71.0 69.0 69.7 70.4 67.9 68.9 65.1 65.2 63.8 63.9 63.7 64.7 67.1 66.3
MLM 63.0 65.3 72.0 70.4 71.0 70.6 67.9 69.8 65.4 65.6 62.8 62.0 63.0 65.1 67.3 67.3

DS-Seq 63.4 64.9 72.9 70.9 71.7 70.6 68.2 69.8 65.3 62.8 63.8 64.9 64.9 66.0 68.1 66.5
DS-Tok 63.5 65.6 73.0 71.0 71.9 70.8 68.2 69.9 64.0 62.8 64.6 65.2 65.1 66.4 67.3 67.6

France

mBERT 63.9 61.2 69.3 67.0 67.8 44.6 42.4 43.1 55.7 56.6 59.6 57.4 61.5 52.0 47.1 49.0
MLM 64.6 62.1 69.9 67.1 68.4 45.8 43.3 44.3 56.8 57.2 59.9 59.5 61.6 52.5 47.2 50.3

DS-Seq 64.1 63.1 70.6 67.3 68.4 46.0 43.4 44.2 55.1 55.5 60.4 60.3 62.8 51.1 47.3 50.3
DS-Tok 65.0 62.9 70.1 67.5 68.8 45.5 43.9 44.4 54.4 55.9 60.9 59.8 59.7 50.2 48.0 50.8

Average

mBERT 62.4 60.4 68.4 65.7 67.0 62.7 60.5 61.4 59.8 60.8 59.3 59.4 60.2 60.2 57.2 58.0
MLM 63.5 62.1 69.3 67.0 68.0 63.4 61.3 62.2 62.5 61.7 59.8 59.4 60.5 61.0 57.6 59.1

DS-Seq 63.3 62.2 69.5 66.8 68.1 63.2 60.9 62.0 60.5 60.6 60.1 60.3 60.8 60.9 58.1 59.3
DS-Tok 63.7 61.8 69.4 67.0 68.6 63.5 61.5 62.1 60.0 60.4 60.5 60.7 60.5 60.3 58.1 59.4

Table 2: Results of gender-specialized (age-specialized) multilingual BERT (DS-Seq and DS-Tok) on gender (age)
classification (AC-SA and AC-TD) as intrinsic task and sentiment analysis (SA) and topic detection (TD) as extrinsic
evaluation tasks. Comparisons against the vanilla mBERT and mBERT additionally trained on the same review
corpora but without demographic information, only with masked language modeling (MLM). For SA and TD, we
separately report the performance on the test sets consisting of only one demographic class (gender: F and M, age:
<35 and >45) as well as on the mixed test sets containing reviews from both demographic classes (X for both gender
and age). Bold numbers indicate the best-performing model (between mBERT, MLM, DS-Seq and DS-Tok) for
each country-task combination.

adaptation in which mBERT was intermediately
trained only MLM-ed on Trustpilot reviews, but
without demographic category prediction, however,
reveals that much of the gains that DS-Seq and DS-
Tok have over vanilla mBERT stem from domain
adaptation: somewhat surprisingly, DS models fall
behind MLM-based domain adaptation on the in-
trinsic tasks of gender/age classification (e.g., for
age group classification on AC-SA, the DS variants
fall short of MLM by 2 F1 points), while exhibit-
ing small but fairly consistent gains over MLM for
extrinsic SA and TD tasks, both in gender and age
intermediate specialization. Although the gains are
not particularly convincing, the SA and TD still
seem to favor intermediate demographic special-
ization, which is in line with findings from Hovy
(2015), who also reported small but (mostly) con-
sistent gains for these two tasks.

4.2 Control Experiments

To more precisely measure the contributions of de-
mographic information that DS-* variants incorpo-
rate, we design further experiments that control for
two key side-effects of demographic specialization:
(i) language specialization and (ii) domain adapta-
tion. We then carry out the meta-regression analy-
sis to tease out the individual contributions of lan-
guage, domain, and demographic knowledge on the
performance difference between vanilla mBERT
and respective intermediately specialized models
(mBERT or monolingual BERT specialized on the
data of the same or different domain with or with-
out demographic signal). Finally, we compare the
representations spaces of the PLMs – before and
after demographic specialization – along the demo-
graphic dimension.

Controlling for Language Proficiency. Mas-
sively multilingual Transformers (MMTs) like
mBERT or XLM-R (Conneau et al., 2020) suffer
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from the curse of multilinguality (Conneau et al.,
2020; Lauscher et al., 2020b; Pfeiffer et al., 2020):
given a fixed capacity of the Transformer, the repre-
sentations from an MMT for any individual (high-
resource) language will be of lower quality than
those of the monolingual PLM, as MMTs share
their limited capacity over many languages. It is
thus possible that demographic specialization of
mBERT on Trustpilot data in our four languages
leads to substantial gains over vanilla mBERT (pre-
trained on 104 languages) primarily because of
mBERT’s acquisition of additional language com-
petencies for these four languages.

To test this, we additionally execute demo-
graphic specialization individually for each lan-
guage (i.e., as opposed to a single multilingual
specialization), starting from a monolingual PLM
of that language5. Monolingual PLMs produce
higher quality representations for their respective
language than mBERT. Because of this, we hypoth-
esize that subjecting them to demographic special-
ization on Trustpilot is unlikely to improve their
“command” of the language substantially. Conse-
quently, should we still see (downstream) gains
from demographic specialization for monolingual
PLMs, we can be more confident that they stem
from the injected demographic information.

Table 3 shows the effects of demographic special-
ization on monolingual PLMs of the four languages.
For brevity (full results in the Appendix), we aver-
age the demographic attribute classification (AC)
results from two different test portions from Table
2 (having labels for different downstream tasks,
AC-SA and AC-TD); for extrinsic tasks, SA and
TD, we report only the score on demographically
balanced test sets (denoted “X” in Table 2). The
results show that, when we control for language
proficiency (as monolingual PLMs are more pro-
ficient in their respective language than mBERT),
the downstream gains of demographic specializa-
tion (on SA and TD) vanish. The DS-Seq and
DS-Tok still retain marginal numeric (statistically
insignificant) gains over MLM in gender-based spe-
cialization, but they lag behind in age-based spe-
cialization. Also, both DS-* variants and MLM
display only marginal gains with respect to vanilla
monolingual BERT models of the four languages:
e.g., in gender-specialization and for SA, DS-Tok

5We use the following monolingual PLMs from Hugging-
Face: bert-base-cased, bert-base-german-cased,
dbmdz/bert-base-french-europeana-cased and
Maltehb/danish-bert-botxo.

Gender Age

Country Model AC SA TD AC SA TD

Denmark

BERT 65.0 70.4 59.9 66.5 66.0 56.3
MLM 65.1 70.3 60.6 67.4 67.6 57.6

DS-Seq 65.2 70.6 60.0 67.1 67.1 56.5
DS-Tok 65.1 70.6 60.8 67.2 67.2 56.7

Germany

BERT 59.4 64.3 67.8 58.8 57.1 58.3
MLM 60.9 65.4 67.7 60.1 58.1 59.9

DS-Seq 60.1 66.2 67.8 59.8 55.8 59.1
DS-Tok 60.6 66.0 67.9 58.9 54.0 59.2

US

BERT 61.5 67.1 71.0 64.1 57.2 67.2
MLM 61.7 67.8 71.3 64.1 60.4 66.7

DS-Seq 61.6 68.0 71.6 65.2 59.4 67.1
DS-Tok 62.1 67.9 71.6 64.3 59.4 66.7

UK

BERT 64.1 72.3 70.1 65.8 65.5 68.0
MLM 64.3 72.6 70.0 66.5 66.9 70.0

DS-Seq 64.2 72.4 70.2 65.9 67.6 69.4
DS-Tok 64.1 72.2 70.3 66.0 67.1 69.2

France

BERT 63.6 68.6 45.1 56.5 60.3 49.6
MLM 64.1 67.6 45.5 56.4 61.6 50.2

DS-Seq 63.7 69.3 45.3 56.1 62.0 50.2
DS-Tok 63.7 69.5 45.6 56.3 61.5 50.3

Average

BERT 62.7 68.5 62.8 62.3 61.2 59.9
MLM 63.2 68.7 63.0 62.9 62.9 60.9

DS-Seq 62.9 69.3 63.0 62.8 62.4 60.5
DS-Tok 63.1 69.2 63.2 62.5 61.8 60.4

Table 3: Results of gender/age-specialized monolin-
gual PLMs – DS-Seq and DS-Tok – on demographic
attribute classification (AC), sentiment analysis (SA)
and topic detection (TD). Bold numbers indicate the
best-performing model (between BERT, MLM, DS-Seq
and DS-Tok) for each country-task combination.

has an average advantage of 0.7 F1 over the non-
specialized vanilla monolingual BERTs; compare
this to a gain of 1.6 F1 points that mBERT-based
DS-Tok has over vanilla mBERT (Table 2). These
results question the downstream usefulness of de-
mographic specialization – suggested by findings
from prior work (Hovy, 2015) and our results for
multilingual PLMs (Table 2) – if one starts from
the most proficient PLM for the concrete language
at hand, i.e., a monolingual PLM.

Controlling for Domain Knowledge. Both sim-
ple additional MLM-ing on Trustpilot data, as
well as multi-task demographic specialization train-
ing (DS-* variants), inject knowledge about the
domain-specific language of reviews into the PLM.
As shown by previous work (Glavaš et al., 2020;
Diao et al., 2021; Hung et al., 2022a), domain
adaptation generally leads to better downstream
performance on in-domain data for any task. We
next investigate to which extent the domain special-
ization is responsible for performance gains. To
this end, we perform demographic specialization
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Figure 1: Evaluation results on Trustpilot for Sentiment Analysis (SA) and Topic Detection (TD) when running the
intermediate specialization on out-of-domain data (RtGender (Voigt et al., 2018) for gender and BAC (Schler et al.,
2006) for age). We report the delta in F1-score in comparison to the specialization on Trustpilot in-domain data.

Task Selected features all -D -M -S -C -A

gender

AC-SA US (1.0); Denmark (0.9);
MLM (0.9); DS-Tok (0.9); 0.51 - 0.56 - 0.63 0.62

AC-TD MLM (1.0); Monoling (1.0)
DS-Tok (0.9); 0.51 - 0.73 - 0.54 0.66

SA
France (1.0); DS-Tok (1.0);
Denmark (0.8); MLM (0.8);
In-domain (0.6)

0.92 0.94 0.95 0.94 0.97 0.98

TD DS-TOK (0.6); MLM (0.5);
In-domain (0.5) 0.33 0.36 0.35 0.34 0.35 0.40

age

AC-SA Denmark (3.0);
MLM (1.5); Monoling (0.9) 1.93 - 1.98 - 2.31 2.02

AC-TD UK (2.1); France (1.4);
MLM (0.9); 0.68 - 0.69 - 1.02 0.82

SA In-domain (1.3);
DS-Tok (1.0); MLM (0.9); 0.96 1.03 0.97 0.97 0.98 1.03

TD Denmark (1.6); <35 (0.7);
DS-Seq (0.6); DS-Tok (0.6) 1.52 1.53 1.53 1.55 1.61 1.54

Table 4: Results of meta-regression analysis. We report
the goodness-of-fit (RMSE) results for predicting deltas
in downstream performance between specialized mod-
els and their respective vanilla PLM. Results reported
for three tasks – intrinsic demographic attribute classifi-
cation (AC; on datasets AC-SA and AC-TD), Sentiment
Analysis (SA), and Topic Detection (TD) with both de-
mographic factors, gender and age. We compare the
results across different feature sets – for all features (all),
and excluding individual features: domain (-D), mono-
vs. multilingual (-M), fine-tuning demographic setting
(e.g., F vs. M vs. X for gender; -S), country (-C), and
the adaptation approach (i.e., MLM vs. DS-Tok vs. DS-
Seq; -A). For each task, when including all features
(column: in), we list the most important features, those
with weights > 0.5 (selected features).

on (demographically labeled) training data from
a different domain: for gender specialization, we
use the RtGender (Voigt et al., 2018) consisting of
social media posts collected from diverse sources,
whereas for age specialization we resort to the Blog
Authorship Corpus (BAC; Schler et al., 2006) con-
taining blogposts from blogger.com.

Figure 1 displays the effects of out-of-domain
specialization of mBERT on downstream SA and

TD performance (i.e., performance differences
w.r.t. corresponding in-domain specialized mod-
els). Since RtGender and BAC are English-only
datasets, we report the results only for US and UK
(for brevity, we report the performance only on the
demographically balanced test sets, i.e., setups in-
dicated with “X” in Table 2; both DS-* variants ex-
hibit very similar behavior, so for brevity, we only
display results for DS-Tok; complete results are
in the Appendix). Expectedly, the out-of-domain
specialization deteriorates the downstream perfor-
mance for both MLM and DS-Tok. Interestingly,
MLM, which is not exposed explicitly to the demo-
graphic signal in specialization, tends to suffer less
from out-of-domain specialization than the gender-
informed DS-Tok. In contrast, age-informed DS-
Tok seems to exhibit similar losses as MLM due to
out-of-domain specialization. These results further
question the hypothesis that demographic informa-
tion guides downstream gains, suggested by prior
work (Hovy, 2015) and our in-domain specializa-
tion results (with mBERT) from Table 2.

Meta-regression Analysis. Next, we aim to
quantify, via a meta-regression analysis, the contri-
butions of individual factors (country, in-domain
vs. out-of-domain specialization, language, spe-
cialization approach, test set structure) on the
task performance (AC-SA, AC-TD, SA, TD). We
use the difference in performance between the
specialized model and its corresponding vanilla
PLM (mBERT or monolingual PLM) as the la-
bel (i.e., output, dependent) variable for the re-
gression. We use the following input features (all
one-hot encoded) as prediction variables: (i) coun-
try/language of fine-tuning/evaluation data, (ii) spe-
cialization method (MLM vs. DS-Tok vs. DS-Seq),
(iii) in-domain vs. out-of-domain specialization,
(iv) whether the starting/vanilla PLM is monolin-
gual (e.g., French BERT) or multilingual (mBERT),
(v) and the demographic group from which the fine-
tuning/evaluation data comes from (F vs. M vs. X
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Figure 2: Results of our multilingual and monolingual qualitative analysis for gender. For multilingual case as
plotted in (a), we show a tSNE visualization of review texts embedded with a non-specialized (mBERT) and
specialized (DS-Tok) model. Colors indicate the demographic subgroup (upper figures) and countries (lower
figures), respectively. For monolingual case as illustrated in (b) and (c) for Denmark and Germany, we show a
tSNE visualization of texts embedded with non-specialized (danishBERT, germanBERT) and specialized (DS-Tok)
monolingual PLMs. Each subfigure is plotted with 2K instances.

for gender and <35 vs. >45 vs. X for age). We then
fit a linear regressor on all data points, using either
the full set of features or, in ablations, excluding
certain subsets; we report the goodness of fit as
average root mean square error (RMSE).

We summarize the results of our meta-regression
analysis in Table 4. For each task, we list the
selected features (weights for in in parenthesis)
paired with the RMSE scores. When we fit regres-
sion using all features (all), the country of origin of
fine-tuning data (i.e., features Denmark, France,
UK, etc.) tends to overall explain the variance
of specialization effect on model performance as
good as or even better than the specialization ap-
proach (demographically-informed DS-* variants
and demographically-uninformed MLM). The spe-
cialization approach features (MLM, DS-Tok, and
DS-Seq), however, do appear among the most im-
portant features in most settings, suggesting that
knowing the specialization approach does help
predict the performance of the specialized model.
Note, however, that in terms of assessing whether
demographic information generally improves spe-
cialization, this needs to be combined with actual
task performance results from Tables 2 and 3. For
example, feature DS-Tok is among the most im-
portant features for SA performance after gender
specialization: looking at the results for DS-Tok in
both Tables 2 and 3, we see that it achieves, in most
cases, scores above MLM – this, in turn, suggests

that demographically-informed gender specializa-
tion does (regardless of other factors) improve the
downstream SA performance. The ablation results
offer a complementary view into the importance
of individual features: the larger the increase in
RMSE when excluding a feature (compared to us-
ing all features), the more important the feature
is. The regressions in which we exclude the infor-
mation on the specialization approach (-A) result
in the highest RMSE for gender specialization on
both extrinsic tasks (SA and TD). In all other se-
tups (AC for both gender and age specialization, as
well as SA and TD for age), there is another type of
information, the removal of which results in a less
predictable specialization effect: for instance, AC
after age specialization, the -C setting increases the
RMSE the most, representing that features indicat-
ing the demographic composition of the fine-tuning
dataset – <35, >45 or balanced (X) – jointly have
the largest effect on performance.

Combining results from Tables 2 and 3 with find-
ings from the meta-regression analysis leads to the
overall conclusion that gender-based language spe-
cialization of PLMs generally leads to downstream
gains, whereas age-based specialization does not.

Qualitative Analysis. Finally, we analyze the
topology of the PLMs representation space before
and after demographic specialization. We encode
the reviews from both demographic dimensions –
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(i) with the vanilla PLM (mBERT or monolingual
BERT) and its DS-Tok specialized counterpart –
and then compress those representations into two
dimensions with t-distributed stochastic neighbor
embedding (tSNE; van der Maaten and Hinton,
2008). Figure 2 depicts these representation spaces
after gender-specialization (the age-specialization
effects lead to similar conclusions; for brevity, we
leave them for the Appendix). The tSNE plots do
not show any salient gender specialization effect.
In the case of mBERT, gender-specialization (cor-
responding DS-Tok plot) leads to the separation of
representation areas according to review language
and not gender of its author.6 In the monolingual
cases (illustrated for Danish and German BERT),
the space of the gender-specialized encoder visu-
ally largely resembles that of the vanilla one, in-
dicating that the demographic specialization pro-
cedure (DS-Tok) does not impart dimensions that
allow for easy separation of representation space
along the specialization dimension (here: gender).

5 Related Work

Intermediate Training (Adaptation). Interme-
diate language modeling on texts from the same
or similar distribution as the downstream data has
been shown to lead to improvements on various
NLP tasks (e.g., Gururangan et al., 2020). During
this process, the goal is to inject additional informa-
tion into the PLM and thus specialize the model for
a particular domain (e.g., Aharoni and Goldberg,
2020; Hung et al., 2022a; Bombieri et al., 2023)
or language (e.g., Glavaš et al., 2020) or to encode
other types of knowledge such as common sense
knowledge (e.g., Lauscher et al., 2020a), argumen-
tation knowledge (e.g., Holtermann et al., 2022), or
geographic knowledge (e.g., Hofmann et al., 2022).

For instance, Hung et al. (2022a) propose a
computationally efficient approach by employing
domain-specific adapter modules. They show that
their domain adaptation approach leads to improve-
ments in task-oriented dialog. Glavaš et al. (2020)
and Hung et al. (2022b) perform language adapta-
tion through intermediate MLM in the target lan-
guages with filtered text corpora, demonstrating
substantial gains in downstream zero-shot cross-
lingual transfer for abusive language detection and
dialog tasks, respectively. These specialization ap-
proaches mainly rely on a single objective (e.g.,

6Note that the green and blue regions, indicating US and
UK overlap due to shared language.

masked language modeling on “plain” text data).
Instead, Hofmann et al. (2022) conduct geoadap-
tation by coupling MLM with a token-level geolo-
cation prediction in a dynamic multi-task learning
setup. In this work, we adopt a similar approach
and perform continued language modeling on the
text corpora of a specific demographic dimension.

Demographic Specialization. Language prefer-
ences vary with user demographics (Loveys et al.,
2018). Accordingly, several studies have lever-
aged demographic information (e.g., gender, age,
education) to investigate the effect of encoded
sociodemographic knowledge in the representa-
tions of PLMs (Lauscher et al., 2022a) or obtain
better language representations for various NLP
tasks (Volkova et al., 2013; Garimella et al., 2017).
Recent research studies on demographic adapta-
tion mainly focus on (1) learning demographic-
aware word embeddings and do not work with large
PLMs (Hovy, 2015) or (2) leveraging demographic
information with special PLM architectures specif-
ically designed for certain downstream tasks (e.g.,
empathy prediction (Guda et al., 2021)). The latter,
however, do not consider a task-agnostic approach
to injecting demographic knowledge into language
models, and also focus on a monolingual setup
only. Further, what roles the different factors (i.e.,
domain, language, demographic aspect) in the spe-
cialization really play remains unexplored.

6 Conclusion

In this work, we thoroughly examined the effects
of demographic specialization of Transformers via
straightforward injection methods that have been
proven effective for other types of knowledge. Ini-
tial results on intrinsic and extrinsic evaluation
tasks using a multilingual PLM indicated the use-
fulness of our approach. However, running a series
of additional experiments in which we controlled
for potentially confounding factors (language and
domain) and a meta-analysis indicated that the de-
mographic aspects only have a negligible impact on
the downstream performance. This observation is
supported by additional qualitative analysis. Over-
all, our findings point to the difficulty of injecting
demographic knowledge into Transformers: we
hope that our in-depth analysis and findings cat-
alyze future research on the topic of truly human-
centered NLP, especially in multilingual settings.
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Limitations

In this paper, we concentrated on the demographic
adaptation of PLMs for a few key demographic as-
pects (i.e., gender and age). There are other known
factors, like ethnicity and education, that we can-
not explore here. However, there are likely further
effects, as well as intersectional effects. We con-
ducted our experiments using only five Western
countries and four Indo-European languages (Hovy
et al., 2015), ignoring other world regions and lan-
guage families. However, due to the scarcity of
data, we can only hypothesize that the limited ef-
fects of demographic specialization also apply to
resource-lean languages (i.e., the language special-
ization effects are likely to outweigh the ones of the
demographic specialization). Another limitation
is the use of pretrained language models, which
are all pre-trained on general-purpose data and are
freely available. We acknowledge that results may
differ for models with greater capacity that have
been pretrained on data from other, more specific
domains. We primarily concentrate on BERT-like
models, which are only a subset of language mod-
els, and we leave language model variants for future
research.

Ethics Statement

Our work deals with demographic adaptation from
reviews that should be considered sensitive infor-
mation. We acknowledge that the limitations in
data resources and annotations (Schler et al., 2006;

Hovy et al., 2015; Voigt et al., 2018) give rise to
potential risks of overgeneralizing our findings and
applying our methods. These risks are due to: (1)
partial language coverage, where languages are
from Indo-European subfamilies that do not rep-
resent typologically diverse languages; (2) limited
cultural coverage (Joshi et al., 2020), where the
countries, although speaking different languages,
still belong a culturally relatively homogeneous
part of the world, i.e., the West; (3) simplified gen-
der identities (Dev et al., 2021), where gender is
modeled as a binary variable, which does not re-
flect the wide variety of possible identities along
the gender spectrum and beyond (Lauscher et al.,
2022b); (4) unfair stereotypical biases (Blodgett
et al., 2020), namely potential harms that might
arise from unfair stereotypical biases in the data
(despite our efforts to balance the sample across
demographic groups) or pre-encoded in the model
(Lauscher et al., 2021). Further, the sensitive user
profile data might bias the model towards addi-
tional demographic characteristics and lead to po-
tentially harmful predictions and applications.

In this work, however, we are interested in ad-
vancing NLP research to understand better this fine-
grained aspect of the intertwined relationship be-
tween demographic adaptation and large pretrained
language models in both monolingual and multilin-
gual scenarios. While limited data resources may
hinder our ability to fully consider language cover-
age, cultural coverage, gender identities, and stereo-
typical biases, it is our obligation to be transparent
about these limitations and ethical concerns and to
continually work towards improving data collection
and methodologies to better serve the needs and
perspectives of all users. We believe these insights
will lead us toward fairer and more inclusive lan-
guage technologies. We hope that future research
builds on top of our findings and explores other
demographic factors, other groups within these fac-
tors, and also other languages and countries.
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Ponzetto, and Goran Glavaš. 2022b. Multi2WOZ:
A robust multilingual dataset and conversational pre-
training for task-oriented dialog. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3687–3703,
Seattle, United States. Association for Computational
Linguistics.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 7482–7491.

Anne Lauscher, Federico Bianchi, Samuel R. Bowman,
and Dirk Hovy. 2022a. SocioProbe: What, when,
and where language models learn about sociodemo-
graphics. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 7901–7918, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Anne Lauscher, Archie Crowley, and Dirk Hovy. 2022b.
Welcome to the modern world of pronouns: Identity-
inclusive natural language processing beyond gen-
der. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 1221–
1232, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto,
and Kai Eckert. 2018. Investigating the role of ar-
gumentation in the rhetorical analysis of scientific
publications with neural multi-task learning models.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3326–3338, Brussels, Belgium. Association for Com-
putational Linguistics.

Anne Lauscher, Tobias Lueken, and Goran Glavaš. 2021.
Sustainable modular debiasing of language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4782–4797, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Anne Lauscher, Olga Majewska, Leonardo F. R. Ribeiro,
Iryna Gurevych, Nikolai Rozanov, and Goran Glavaš.
2020a. Common sense or world knowledge? in-
vestigating adapter-based knowledge injection into
pretrained transformers. In Proceedings of Deep
Learning Inside Out (DeeLIO): The First Workshop
on Knowledge Extraction and Integration for Deep
Learning Architectures, pages 43–49, Online. Asso-
ciation for Computational Linguistics.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
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A Additional Experiments

Gender class. SA TD

AC-SA AC-TD F M X F M X F M X F M X

Country Model Mono Multi Mono Multi Mono Multi Mono Multi

Denmark

BERT 66.1 64.0 63.8 61.8 72.3 67.9 70.4 69.2 64.8 67.2 60.7 59.8 59.9 59.3 58.3 59.0
MLM 66.0 65.2 64.2 63.4 72.5 68.3 70.3 69.5 65.8 67.8 60.6 60.6 60.6 59.7 58.8 59.4

DS-Seq 66.2 64.9 64.1 63.5 72.6 68.6 70.6 69.9 65.7 67.7 61.3 60.5 60.0 59.7 57.8 59.1
DS-Tok 66.0 65.0 64.1 63.5 72.4 68.4 70.6 69.1 65.6 68.0 61.1 60.2 60.8 59.9 58.9 59.0

Germany

BERT 59.8 59.5 58.9 57.9 66.5 63.7 64.3 66.1 63.2 64.5 67.9 66.1 67.8 67.8 65.6 65.8
MLM 62.0 61.2 59.7 60.1 68.1 65.8 65.4 67.7 65.3 66.1 68.5 66.7 67.7 68.6 67.0 67.1

DS-Seq 61.1 60.1 59.0 60.3 68.8 64.4 66.2 66.7 64.0 65.7 68.9 66.4 67.8 67.6 65.7 66.4
DS-Tok 60.9 62.9 60.3 58.3 67.9 65.6 66.0 66.8 64.3 66.8 68.6 66.8 67.9 68.3 67.0 66.7

US

BERT 64.3 62.6 58.7 58.1 68.6 67.0 67.1 66.3 64.4 66.0 72.5 69.7 71.0 71.2 68.4 70.2
MLM 64.6 63.3 58.7 59.6 68.4 67.6 67.8 67.3 66.2 66.9 73.1 70.1 71.3 72.1 69.4 70.3

DS-Seq 64.3 63.8 58.8 59.2 68.6 68.0 68.0 67.2 66.3 67.0 73.1 70.3 71.6 72.3 69.2 70.4
DS-Tok 64.7 62.2 59.4 58.8 68.9 67.5 67.9 68.0 66.4 67.3 73.3 69.9 71.6 72.8 69.5 70.5

UK

BERT 63.2 61.9 65.0 63.1 73.4 71.0 72.3 71.0 69.0 69.7 71.2 69.1 70.1 70.4 67.9 68.9
MLM 63.7 63.0 64.8 65.3 73.9 71.0 72.6 72.0 70.4 71.0 71.2 69.4 70.0 70.6 67.9 69.8

DS-Seq 63.2 63.4 65.2 64.9 73.6 72.2 72.4 72.9 70.9 71.7 71.5 69.3 70.2 70.6 68.2 69.8
DS-Tok 63.3 63.5 64.8 65.6 73.7 72.0 72.2 73.0 71.0 71.9 71.4 69.1 70.3 70.8 68.2 69.9

France

BERT 64.1 63.9 63.1 61.2 70.5 67.3 68.6 69.3 67.0 67.8 46.0 44.5 45.1 44.6 42.4 43.1
MLM 64.9 64.6 63.2 62.1 71.0 67.7 67.6 69.9 67.1 68.4 46.2 44.3 45.5 45.8 43.3 44.3

DS-Seq 64.2 64.1 63.1 63.1 70.5 67.5 69.3 70.6 67.3 68.4 47.1 44.2 45.3 46.0 43.4 44.2
DS-Tok 64.4 65.0 62.9 62.9 71.7 68.3 69.5 70.1 67.5 68.8 46.9 44.3 45.6 45.5 43.9 44.4

Average

BERT 63.5 62.4 61.9 60.4 70.3 67.4 68.5 68.4 65.7 67.0 63.7 61.8 62.8 62.7 60.5 61.4
MLM 64.2 63.5 62.1 62.1 70.8 68.1 68.7 69.3 67.0 68.0 63.9 62.2 63.0 63.4 61.3 62.2

DS-Seq 63.8 63.3 62.0 62.2 70.8 68.1 69.3 69.5 66.8 68.1 64.4 62.1 63.0 63.2 60.9 62.0
DS-Tok 63.9 63.7 62.3 61.8 70.9 68.4 69.2 69.4 67.0 68.6 64.3 62.1 63.2 63.5 61.5 62.1

Table 5: Evaluation results compared with monolingual BERT and multilingual BERT (mBERT) on five countries
with gender data for intrinsic attribute classification tasks (AC-SA, AC-TD) and extrinsic evaluation tasks: sentiment
analysis (SA) and topic detection (TD).
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Age class. SA TD

AC-SA AC-TD <35 >45 X <35 >45 X <35 >45 X <35 >45 X

Country Model Mono Multi Mono Multi Mono Multi Mono Multi

Denmark

BERT 67.7 57.2 65.3 64.5 67.3 66.2 66.0 62.7 62.7 62.9 58.4 54.4 56.3 56.1 52.2 53.4
MLM 67.4 65.5 67.4 65.1 67.7 67.3 67.6 63.3 62.1 63.0 59.3 55.3 57.6 57.1 52.6 54.1

DS-Seq 67.4 65.2 66.8 65.2 67.4 66.2 67.1 63.1 62.9 63.0 58.7 55.0 56.5 56.9 53.3 54.5
DS-Tok 67.8 65.3 66.6 64.6 67.6 66.1 67.2 64.2 63.3 63.2 59.0 55.4 56.7 56.2 53.2 54.3

Germany

BERT 57.9 58.0 59.6 56.9 53.6 57.9 57.1 52.6 55.0 55.0 61.6 57.4 58.3 60.1 55.3 57.1
MLM 58.1 61.1 62.0 58.9 58.1 58.2 58.1 53.6 55.5 56.7 62.2 57.6 59.9 61.5 56.5 58.7

DS-Seq 58.2 56.4 61.3 58.2 56.3 57.3 55.8 53.8 55.3 55.5 63.5 57.9 59.1 60.8 57.6 59.3
DS-Tok 57.2 56.6 60.6 57.4 57.9 58.1 54.0 53.0 56.5 56.7 63.5 58.2 59.2 59.3 56.5 59.3

US

BERT 65.2 62.9 63.0 60.7 60.5 58.7 57.2 57.7 57.9 57.8 68.8 64.9 67.2 68.0 64.3 64.3
MLM 65.3 63.6 62.9 61.9 59.8 59.5 60.4 59.4 57.8 58.2 71.2 65.7 66.7 69.0 64.2 65.2

DS-Seq 66.2 60.7 64.1 61.5 61.6 58.3 59.4 59.3 57.9 58.0 72.5 65.5 67.1 69.8 64.4 65.8
DS-Tok 65.7 59.7 62.9 61.2 61.1 58.7 59.4 59.9 58.6 57.8 69.4 65.7 66.7 69.2 65.4 64.9

UK

BERT 65.7 65.1 65.8 65.2 65.2 66.3 65.5 63.8 63.9 63.7 68.1 68.1 68.0 64.7 67.1 66.3
MLM 66.9 65.4 66.1 65.6 68.2 67.2 66.9 62.8 62.0 63.0 68.8 70.1 70.0 65.1 67.3 67.3

DS-Seq 67.0 65.3 64.7 62.8 67.8 66.4 67.6 63.8 64.9 64.9 67.8 68.9 69.4 66.0 68.1 66.5
DS-Tok 66.8 64.0 65.2 62.8 67.6 66.5 67.1 64.6 65.2 65.1 68.2 69.6 69.2 66.4 67.3 67.6

France

BERT 56.0 55.7 57.0 56.6 59.7 57.5 60.3 59.6 57.4 61.5 51.9 49.1 49.6 52.0 47.1 49.0
MLM 55.9 56.8 56.9 57.2 60.7 59.4 61.6 59.9 59.5 61.6 53.8 48.5 50.2 52.5 47.2 50.3

DS-Seq 55.5 55.1 56.7 55.5 61.3 58.7 62.0 60.4 60.3 62.8 53.8 49.0 50.2 51.1 47.3 50.3
DS-Tok 55.8 54.4 56.7 55.9 60.2 60.7 61.5 60.9 59.8 59.7 54.6 51.4 50.3 50.2 48.0 50.8

Average

BERT 62.5 59.8 62.1 60.8 61.3 61.3 61.2 59.3 59.4 60.2 61.8 58.8 59.9 60.2 57.2 58.0
MLM 62.7 62.5 63.1 61.7 62.9 62.3 62.9 59.8 59.4 60.5 63.1 59.4 60.9 61.0 57.6 59.1

DS-Seq 62.9 60.5 62.7 60.6 62.9 61.4 62.4 60.1 60.3 60.8 63.3 59.3 60.5 60.9 58.1 59.3
DS-Tok 62.7 60.0 62.4 60.4 62.9 62.0 61.8 60.5 60.7 60.5 62.9 60.1 60.4 60.3 58.1 59.4

Table 6: Evaluation results compared with monolingual BERT and multilingual BERT (mBERT) on five countries
with age data for intrinsic attribute classification tasks (AC-SA, AC-TD) and extrinsic evaluation tasks: sentiment
analysis (SA) and topic detection (TD).

SA TD

gender F M X F M X F M X F M X

Country Model RtGender Trustpilot RtGender Trustpilot

US
MLM 68.3 67.3 66.9 68.4 67.6 67.8 72.7 69.9 71.1 73.1 70.1 71.3

DS-Seq 68.1 67.4 66.9 68.6 68.0 68.0 72.7 69.3 71.2 73.1 70.3 71.6
DS-Tok 68.6 67.2 66.4 68.9 67.5 67.9 72.4 69.6 71.2 73.3 69.9 71.6

UK
MLM 73.3 71.0 71.7 73.9 71.0 72.6 71.1 69.3 69.8 71.2 69.4 70.0

DS-Seq 73.3 71.1 71.9 73.6 72.2 72.4 71.2 69.0 69.5 71.5 69.3 70.2
DS-Tok 73.4 71.1 71.6 73.7 72.0 72.2 71.3 69.2 69.6 71.4 69.1 70.3

Average
MLM 70.8 69.2 69.3 71.2 69.3 70.2 71.9 69.6 70.5 72.2 69.8 70.7

DS-Seq 70.7 69.3 69.4 71.1 70.1 70.2 72.0 69.2 70.4 72.3 69.8 70.9
DS-Tok 71.0 69.2 69.0 71.3 69.8 70.1 71.9 69.4 70.4 72.4 69.5 71.0

SA TD

age <35 >45 X <35 >45 X <35 >45 X <35 >45 X

Country Model BAC Trustpilot BAC Trustpilot

US
MLM 59.4 58.4 58.9 59.8 59.5 60.4 68.4 64.6 66.9 71.2 65.7 66.7

DS-Seq 58.4 57.3 58.0 61.6 58.3 59.4 68.6 64.5 67.3 72.5 65.5 67.1
DS-Tok 58.6 58.5 58.9 61.1 58.7 59.4 69.3 65.0 67.1 69.4 65.7 66.7

UK
MLM 66.2 66.7 66.4 68.2 67.2 66.9 67.8 68.7 68.9 68.8 70.1 70.0

DS-Seq 66.1 66.6 66.8 67.8 66.4 67.6 67.8 68.7 68.6 67.8 68.9 69.4
DS-Tok 66.6 66.0 66.3 67.6 66.5 67.1 68.0 68.8 69.2 68.2 69.6 69.2

Average
MLM 62.8 62.6 62.7 64.0 63.4 63.7 68.1 66.7 67.9 70.0 67.9 68.4

DS-Seq 62.3 62.0 62.4 64.7 62.4 63.5 68.2 66.6 68.0 70.2 67.2 68.3
DS-Tok 62.6 62.3 62.6 64.4 62.6 63.3 68.7 66.9 68.2 68.8 67.7 68.0

Table 7: Evaluation results on Trustpilot classification tasks (SA, TD) compared by specializing on out-domain data
(RtGender (Voigt et al., 2018) for gender and BAC (Schler et al., 2006) for age) and in-domain data (Trustpilot).
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Figure 3: Results of our multilingual and monolingual qualitative analysis for age. For multilingual case as plotted in
(a), we show a tSNE visualization of review texts embedded with a non-specialized (mBERT) and specialized (DS-
Tok) model. Colors indicate the demographic subgroup (upper figures) and countries (lower figures), respectively.
For monolingual case as illustrated in (b) and (c) for Denmark and Germany, we show a tSNE visualization of texts
embedded with non-specialized (danishBERT, germanBERT) and specialized (DS-Tok) monolingual PLMs. Each
subfigure is plotted with 2K instances.
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Abstract

In this paper, we introduce JBLiMP (Japanese
Benchmark of Linguistic Minimal Pairs), a
novel dataset for targeted syntactic evaluations
of language models in Japanese. JBLiMP
consists of 331 minimal pairs, which are cre-
ated based on acceptability judgments extracted
from journal articles in theoretical linguistics.
These minimal pairs are grouped into 11 cate-
gories, each covering a different linguistic phe-
nomenon. JBLiMP is unique in that it com-
bines two important features independently ob-
served in existing datasets: (i) coverage of com-
plex linguistic phenomena (cf. CoLA) and
(ii) presentation of sentences as minimal pairs
(cf. BLiMP). In addition, JBLiMP is the first
dataset for targeted syntactic evaluations of lan-
guage models in Japanese, thus allowing the
comparison of syntactic knowledge of language
models across different languages. We then
evaluate the syntactic knowledge of several lan-
guage models on JBLiMP: GPT-2, LSTM, and
n-gram language models. The results demon-
strated that all the architectures achieved com-
parable overall accuracies around 75%. Error
analyses by linguistic phenomenon further re-
vealed that these language models successfully
captured local dependencies like nominal struc-
tures, but not long-distance dependencies such
as verbal agreement and binding.

1 Introduction

The past few years have seen a remarkable suc-
cess of neural language models, and some language
models based on Transformer (Vaswani et al., 2017)
have achieved the state-of-the-art performance in
various natural language processing (NLP) tasks
(Wang et al., 2018, 2019). In fact, recent neural lan-
guage models are extremely successful in solving
a variety of downstream tasks, but it remains to be
understood how well these neural language mod-
els understand the syntax of natural languages. In
order to address this question, some studies investi-
gated the syntactic knowledge of language models

with a specially designed dataset for targeted syn-
tactic evaluations (e.g., Linzen et al., 2016; Marvin
and Linzen, 2018; Wilcox et al., 2018; Gulordava
et al., 2018; Futrell et al., 2019; Chaves, 2020).
However, most of these studies have focused on En-
glish and other European languages, and only few
studies extended this investigation to non-European
languages (Gulordava et al., 2018; Ravfogel et al.,
2018). Importantly for the purpose here, even fewer
studies have dealt with a wide variety of linguistic
phenomena in non-English languages (Xiang et al.,
2021; Trotta et al., 2021).

In this paper, we introduce JBLiMP (Japanese
Benchmark of Linguistic Minimal Pairs), a novel
dataset for targeted syntactic evaluations of lan-
guage models in Japanese.1 JBLiMP consists of
331 minimal pairs, which are created based on ac-
ceptability judgments extracted from journal ar-
ticles in theoretical linguistics. These minimal
pairs are grouped into 11 categories, each cover-
ing a different linguistic phenomenon. JBLiMP
is unique in that it successfully combines two
important features independently observed in ex-
isting datasets: (i) coverage of complex linguis-
tic phenomena (cf. CoLA; Warstadt et al., 2019)
and (ii) presentation of sentences as minimal pairs
(cf. BLiMP; Warstadt et al., 2020). We evaluate the
syntactic knowledge of several language models
on JBLiMP: GPT-2 (Radford et al., 2019), LSTM
(Hochreiter and Schmidhuber, 1997) and n-gram
language models. The results demonstrated that all
the architectures achieved comparable overall ac-
curacies around 75%. Error analyses by linguistic
phenomenon further revealed that these language
models successfully captured local dependencies
like nominal structures, but not long-distance de-
pendencies such as verbal agreement and binding.

1JBLiMP is available at https://github.com/
osekilab/JBLiMP.
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Linguistic Phenomenon
Language Subject-verb agreement Filler-gap Anaphor/binding Argument structure

English

Linzen et al. (2016); Gu-
lordava et al. (2018); Mar-
vin and Linzen (2018);
Warstadt et al. (2019)

Wilcox et al. (2018);
Futrell et al. (2019);
Chaves (2020); Da Costa
and Chaves (2020);
Warstadt et al. (2019)

Marvin and Linzen
(2018); Warstadt et al.
(2019); Futrell et al.
(2019)

Warstadt et al. (2019);
Kann et al. (2019);
Chowdhury and Zampar-
elli (2019)

French
Gulordava et al. (2018);
Mueller et al. (2020); An
et al. (2019)

Italian
Gulordava et al. (2018);
Mueller et al. (2020);
Trotta et al. (2021)

Trotta et al. (2021) Trotta et al. (2021)

Russian Gulordava et al. (2018);
Mueller et al. (2020)

German Mueller et al. (2020)
Basque Ravfogel et al. (2018)

Hebrew Gulordava et al. (2018);
Mueller et al. (2020)

Chinese Xiang et al. (2021) Xiang et al. (2021) Xiang et al. (2021) Xiang et al. (2021)
Japanese This work

Table 1: Related work organized by language and linguistic phenomenon

2 Related Work

Evaluation of language models has been mainly
performed by computing metrics such as perplex-
ity. This gives us an objective standard of the per-
formance of language models, but doesn’t provide
insight into their performance on specific down-
stream tasks. While recent large-scale benchmarks
like GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019) are informative in this respect,
many recent studies have sought to provide evi-
dence that language models have learned the syn-
tax of natural languages. In a pioneering work by
Linzen et al. (2016), minimal pairs were employed
to investigate whether language models are sen-
sitive to subject-verb agreement in English. For
instance, they tested whether language models as-
sign a higher probability to are than is in (1).

(1) a. The keys to the cabinet are on the table.

b. *The keys to the cabinet is on the table.

Their results suggested that LSTM language
models are fairly sensitive to English subject-verb
agreement. However, this and related studies (e.g.,
Marvin and Linzen, 2018; Futrell et al., 2019) only
covered a limited range of linguistic phenomena
like subject-verb agreement.

In order to tackle this problem, more recent stud-
ies have introduced large-scale datasets for compre-
hensive syntactic evaluations (Warstadt et al., 2019,
2020). One such dataset is CoLA (Corpus of Lin-
guistic Acceptability; Warstadt et al., 2019), which

consists of 10,000 sentences with binary accept-
ability labels extracted from linguistics journals
and textbooks. CoLA is incorporated into GLUE
benchmark (Wang et al., 2018) and has been used
to evaluate the sensitivity of language models to
the syntax of natural languages. While CoLA has
enabled the comprehensive syntactic evaluations
of language models, this dataset is not without its
limitation, as noted by Warstadt et al. (2019) them-
selves. The limitation lies in the need to train a
supervised classifier on CoLA for evaluation. In
short, CoLA is designed for binary classification
of acceptability judgements, but there is no clear
way to map the probability of the sentence esti-
mated by language models to binary acceptability
judgements. Unfortunately, “the use of supervision
prevents making strong conclusions about the sen-
tence encoding component, since it is not possible
to distinguish what the encoder knows from what
is learned through supervised training on accept-
ability data” (Warstadt et al., 2019).

Dataset Linguistics
Journal

Minimal
Pairs

CoLA (Warstadt et al., 2019) ✓
ItaCoLA (Trotta et al., 2021) ✓

BLiMP (Warstadt et al., 2020) ✓
CLiMP (Xiang et al., 2021) ✓

JBLiMP ✓ ✓

Table 2: Comparison of JBLiMP and other existing
datasets

With this limitation in mind, BLiMP (Bench-
mark of Linguistic Minimal Pairs; Warstadt et al.,
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2020) is developed, which includes 67 datasets
automatically generated from grammar templates
created by linguists. These 67 datasets are grouped
into 12 categories based on linguistic phenomenon,
each containing 1,000 minimal pairs. Note that
each pair has one acceptable sentence and one un-
acceptable sentence. Importantly, this dataset has
overcome an aforementioned problem, because sen-
tences are not presented as binary classification
problems, but as minimal pairs: the evaluation can
be readily performed by comparing the probabili-
ties of an acceptable sentence and an unacceptable
sentence. Nevertheless, BLiMP also has its limi-
tation to overcome. Namely, since minimal pairs
are automatically generated with template gram-
mars and vocabularies, BLiMP doesn’t necessarily
cover complex and important linguistic phenomena
(cf. Class III judgement, see Marantz 2005; Linzen
and Oseki 2018), compared to those datasets which
are created by extracting sentences from linguistics
journals.

There is also a general problem with the datasets
for targeted syntactic evaluations of language mod-
els as a whole: imbalance in target languages and
linguistic phenomena (cf. Table 1). In fact, most
of the existing datasets have focused on English.
Although some studies have extended the scope
of their research to other languages (Gulordava
et al., 2018; An et al., 2019; Ravfogel et al., 2018;
Mueller et al., 2020), only few studies have covered
a wide range of syntactic phenomena and focused
on languages other than English (Xiang et al., 2021;
Trotta et al., 2021).

3 JBLiMP

In order to overcome all the limitations mentioned
above, we introduce JBLiMP (Japanese Benchmark
of Linguistic Minimal Pairs), a novel dataset for tar-
geted syntactic evaluations of language models in
Japanese. JBLiMP is unique in that it successfully
combines two important features independently ob-
served in existing datasets (Table 2): (i) coverage of
complex linguistic phenomena (cf. CoLA; Warstadt
et al., 2019) and (ii) presentation of sentences as
minimal pairs (cf. BLiMP; Warstadt et al., 2020).
In addition, JBLiMP is the first dataset for tar-
geted syntactic evaluations of language models in
Japanese, thus alleviating the imbalance in target
languages and allowing the comparison of syntac-
tic knowledge of language models across different
languages.

3.1 Data Collection

JBLiMP consists of acceptability judgments from
journal articles on Japanese syntax published in
JEAL (Journal of East Asian Linguistics): one of
the prestigious journals in theoretical linguistics.
Specifically, we examined all the articles published
in JEAL between 2006 and 2015 (133 papers in
total), and extracted 2,323 acceptability judgments
from 28 papers on Japanese syntax (cf. Table 3).
Acceptability judgments include sentences in ap-
pendices and footnotes, but not sentences presented
for analyses of syntactic structures (e.g. sentences
with brackets to show their syntactic structures).

3.2 Categorization by linguistic phenomenon

We categorized the extracted sentences into differ-
ent groups to enable detailed analyses of results by
linguistic phenomenon. The categorization mostly
followed that of BLiMP (Warstadt et al., 2020) and
was conducted at three levels of granularity: type,
phenomenon and paradigm.

3.2.1 Type
First, the extracted sentences were categorized
based on the type of acceptability judgements and
how those sentences were presented in the articles.
This level of categorization has 8 different types.
These categories are mutually exclusive, meaning
that no further typing is done for sentences in foot-
notes or appendices.

Acceptability: acceptability judgements that do
not depend on a specific context or interpretation.

Interpretation: acceptability judgements that de-
pend on a specific context or interpretation.

Coreference: acceptability judgements that de-
pend on a specfic interpretation of coreference.

Lexical: acceptability judgements that depend on
a specific lexical item.

Footnote: acceptability judgements presented in
footnotes.

Appendix: acceptability judgements presented
in appendices.

Repeat: acceptability judgements repeated by
the authors.

Variation: acceptability judgements that only
differ in unimportant elements for theory construc-
tion. For example, (2b) below is categorized into
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variation because the difference between da ‘is’
and desu, a polite form of ‘is’, is not relevant for
theory construction.

(2) a. Taro-ga
Taro-Nom

atta
saw

no-wa
that-Top

Hanako-ni
Hanako-Dat

da
is

‘It was Hanako that Taroo saw.’

b. Taro-ga
Taro-Nom

atta
saw

no-wa
that-Top

Hanako-ni
Hanako-Dat

desu
is

‘It was Hanako that Taroo saw.’

Source # Sentences

Takahashi (2006) 60
Oshima (2006) 34
Tenny (2006) 70

Bobaljik and Wurmbrand (2007) 18
Ivana and Sakai (2007) 51

Kishimoto (2008) 254
Saito et al. (2008) 46

Takita (2009) 13
Hayashishita (2009) 73
Miyamoto (2009) 36
Tomioka (2009) 27

Asano and Ura (2010) 144
Watanabe (2010) 40

Grosu (2010) 43
Takahashi (2010) 77
Tsujioka (2011) 226

Abe (2011) 53
Takano (2011) 81

Kishimoto (2012) 120
Grosu and Landman (2012) 28

Kishida and Sato (2012) 98
Yoon (2013) 55

Sawada (2013) 81
Watanabe (2013) 118

Nishigauchi (2014) 115
Shimoyama (2014) 63

Sudo (2015) 184
Shibata (2015) 115

Total 2,323

Table 3: Number of extracted sentences by source

3.2.2 Phenomenon
Second, the extracted sentences were further cat-
egorized based on linguistic phenomena. Phe-
nomenon basically corresponds to that in BLiMP,
but some modifications were applied to make the
categorization more suitable for Japanese.

Argument Structure: acceptability judgements
based on the order of arguments and case marking.

(3) a. Taroo-ga
Taroo-Nom

Hanako-ni
Hanako-Dat

au.
see.

‘Taroo sees Hanako.’

b. *Taroo-ga
Taroo-Nom

Hanako-o
Hanako-Acc

au.
see.

‘Taroo sees Hanako.’

Binding: acceptability judgements based on the
binding of noun phrases. For instance, this includes
the coreference resolution of anaphors.

(4) a. Hazimete
for-the-first-time

soitu-ni
him-Dat

atta
saw

hito-ga
person-Nom

Taroo-o
Taroo-Acc

kenasita
criticized

‘The person who saw him for the
first time criticized Taroo.’

b. *Hazimete
for-the-first-time

soitu-ni
him-Dat

atta
saw

hito-ga
person-Nom

daremo-o
everyone-Acc

kenasita
criticized

‘The person who saw him for the
first time criticized everyone.’

Control/Raising: acceptability judgements
based on predicates that are categorized as control
or raising.

(5) a. Taroo-ga
tumbler.doll-Nom

korobi
tumble

sokoneta.
failed.

‘Taroo failed to tumble.’

b. *Daruma-ga
tumbler.doll-Nom

korobi
tumble

sokoneta.
failed.

‘Tumbler doll failed to tumble.’

Ellipsis: acceptability judgements based on the
possibility of omitting elements in the sentences.
For instance, this includes nominal and verbal el-
lipsis.

(6) a. Hare-no-hi-ha
clear-NO-day-Top

yoi
good

ga
though

ame-no-hi-ha
rain-NO-day-Top

otikomu.
feel.depressed.

‘Clear days are OK, but I feel
depressed on rainy days.’

b. *Hare-no-hi-ha
clear-NO-day-Top

yoi
good

ga
though

ame-no-ha
rain-NO-Top

otikomu.
feel.depressed.

‘Clear days are OK, but I feel
depressed on rainy days.’
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Filler-gap: acceptability judgements based on
the dependency between the moved element and
the gap. For instance, this includes wh-movements
and cleft sentences.

(7) a. Nani-o
What-Acc

daremo
anyone

yom-ana-katta-no.
read-neg-past-Q.

‘What did no one read?’

b. *Daremo
anyone

nani-o
What-Acc

yom-ana-katta-no.
read-neg-past-Q.

‘What did no one read?’

Island effects: acceptability judgements based
on the restrictions on filler-gap dependencies such
as wh-movements.

(8) a. Taroo-ha
Taroo-Top

Hanako-ga
Hanako-Nom

naze
why

kare-no
he-Gen

tegami-o
letter-Acc

suteta
discarded

to
C

omotteiru
think

no.
Q

‘Why is Taro angry because Hanako
discarded his letters?’

b. *Taroo-ha
Taroo-Top

Hanako-ga
Hanako-Nom

naze
why

kare-no
he-Gen

tegami-o
letter-Acc

suteta
discarded

kara
because

okotteiru
be.angry

no.
Q
‘Why is Taro angry because Hanako
discarded his letters?’

Morphology: acceptability judgements based on
the morphology. BLiMP has irregular forms
category for the conjugation of past tenses, but
we adopted this category instead to incorporate
minimal pairs on morphology in general.

(9) a. sore-wa
that-Top

keesoku
measurement

kanoo-na
possibility-Cop.Adnom

ryuusi-da
particle-Cop

‘That is a measurable particle’

b. *sore-wa
that-Top

keesoku
measurement

kanoo-da
possibility-Cop.Fin

ryuusi-da
particle-Cop

‘That is a measurable particle’

Nominal Structure: acceptability judgements
based on the internal structure of noun phrases.
BLiMP has determiner-noun agreement cate-
gory, but we adopted this category instead, because
Japanese doesn’t have explicit determiner-noun
agreements.

(10) a. Watashi-ga
I-Nom

kinoo
yesterday

mita
saw

hito-wa
person-Top

suteki
beautiful

datta
was

‘The person I saw yesterday was beauti-
ful’

b. *Watashi-ga
I-Nom

kinoo
yesterday

mita
saw

no
no

hito-wa
person-Top

suteki
beautiful

datta
was

‘The person I saw yesterday was beauti-
ful’

NPI Licensing: acceptability judgements based
on the restrictions on where negative polarity items
(NPIs) can appear. For instance, NPIs include nan-
imo, a Japanese counterpart of ‘any’.

(11) a. *John-ga
John-Nom

moshi
if

nani-ka
something

nusun-dara,
steal-COND

taihos-areru
arrest-PASS

daroo.
be.will

‘If John steals anything, he will be ar-
rested.’

b. *John-ga
John-Nom

moshi
if

nani-mo
what-MO

nusun-dara,
steal-COND

taihos-areru
arrest-PASS

daroo.
be.will

‘If John steals anything, he will be ar-
rested.’

Quantifiers: acceptability judgements based on
the distribution of quantifiers such as floating quan-
tifiers.

(12) a. Taroo-ga
Taroo-Nom

tomodati-ni
friend-Dat

huta-ri
2-CL

CD-o
CD-Acc

okutta.
sent.
‘Taro sent two friends a package.’

b. *Taroo-ga
Taroo-Nom

CD-o
CD-Acc

tomodati-ni
friend-Dat

huta-ri
2-CL

okutta.
sent.
‘Taro sent two friends a package.’
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Verbal Agreement: acceptability judgements
based on the dependency between subjects and
verbs. Japanese doesn’t have the same kind of
subject-verb agreement as in English. Instead, this
includes the linguistic phenomena such as subject
honorification where the social status of subjects
are reflected in the morphology of verbs.

(13) a. Ito-sensei-ga
Ito-teacher-Nom

Mary-o
Mary-Acc

o-home-ni-nat-ta
Hon-praise-Lv-Past
‘Prof. Ito praised Mary.’

b. *Watashi-ga
I-Nom

Mary-o
Mary-Acc

o-home-ni-nat-ta
Hon-praise-Lv-Past
‘I praised Mary.’

3.2.3 Paradigm
Finally, the extracted sentences are further cate-
gorized into 39 more fine-grained types named
paradigm. Paradigm also corresponds to that
in BLiMP and is basically sub-categorization of
phenomenon.

3.3 Minimal pairs

For direct evaluation of language models through
the probabilities assigned by these language mod-
els, we created minimal pairs using the sentences
categorized above. First, we selected all the sen-
tences that satisfy the following conditions:

• The sentences are presented as unacceptable
examples (marked with ’?’ or ’*’, for exam-
ple). Exceptions are those sentences that are
presented as acceptable examples, but marked
with ’?’ or ’%’.

• Type is not one of variation, repeat,
footnote or appendix.

• The sentences are grouped into one of the 11
phenomena.

We deduplicated the selected unacceptable ex-
amples and removed those unacceptable examples
whose (un)acceptability depends on the context.
Second, since we are concerned with sentence-level
acceptability judgements, we augmented incom-
plete sentences, replacing, for example, (14a) with
(14b).

Phenomenon # Minimal pairs

ARGUMENT STRUCTURE 140
VERBAL AGREEMENT 61

MORPHOLOGY 35
NOMINAL STRUCTURE 23

ELLIPSIS 19
QUANTIFIERS 14

BINDING 13
ISLAND EFFECTS 11

FILLER-GAP 9
NPI LICENSING 4

CONTROL/RAISING 2

Total 331

Table 4: Number of minimal pairs by phenomenon

(14) a. *Sono
that

futari
two-CL

gakusei
student

‘those two students’

b. *Taroo-ha
Taroo-Top

sono
that

futari
two-CL

gakusei-ni
student-Dat

atta
saw

‘Taroo saw those two students.’

Finally, we created minimal pairs based on the
selected unacceptable sentences, on the assump-
tion that all the unacceptable sentences for theory
construction generally have their acceptable coun-
terparts to demonstrate the contrasts in acceptabil-
ity (Sprouse et al., 2013). Specifically, for each
unacceptable example, we either found an appro-
priate acceptable example from the extracted sen-
tences, or created a corresponding acceptable ex-
ample. When creating acceptable sentences, we
read the relevant papers to understand the authors’
intent to present the corresponding unacceptable
sentences.

3.4 Data Validation
In order to validate the quality of minimal pairs in
JBLiMP, we conducted an acceptability judgement
experiment with Lancers, a Japanese crowdsourc-
ing platform.2 For each minimal pair, 15 native
speakers of Japanese completed a forced-choice
task which reflects the evaluation procedure of lan-
guage models. Specifically, annotators are asked to
select the more grammatical of the two sentences,
following the experimental design in Sprouse et al.
(2013). To minimize the burden on annotators, we
split 367 minimal pairs into 16 different groups:

2https://www.lancers.jp
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15 groups of 23 minimal pairs and 1 group of 22
minimal pairs. Each annotator completes 22 or 23
acceptability judgements and is compensated 150
yen (≃ $ 1.2). The order of minimal pairs and the
vertical order of acceptable and unacceptable ex-
amples within a minimal pair was randomized. Ma-
jority vote is taken to determine human-annotated
acceptable sentences. For each minimal pair, if
the annotation of JBLiMP and the majority vote of
human annotations do not match, that minimal pair
is removed from JBLiMP. In this way, 36 minimal
pairs were removed, resulting in 331 minimal pairs
in total (Table 4). In addition, we calculated human
baseline accuracy, dividing the number of human
annotations that match JBLiMP’s judgements by
the total number of annotations. As a result, the
human baseline accuracy was 90.90% as reported
in Table 5.

4 Experiment

4.1 Models

In this paper, we evaluate language models trained
by Kuribayashi et al. (2021) with JBLiMP.

GPT-2 GPT-2 (Radford et al., 2019) is one of the
large-scale language models based on Transformer
architectures (Vaswani et al., 2017). We evaluate
two different sizes of GPT-2 models (Trans-LG,
Trans-SM). Trans-LG has 24 layers, 16 attention
heads, and 1024 embedding dimensions. Trans-SM
has 8 layers, 6 attention heads, and 384 embedding
dimensions.

LSTM LSTM (Hochreiter and Schmidhuber,
1997) is a language model based on RNN architec-
tures (Elman, 1990), which is known to achieve a
better language modeling performance than vanilla
RNN language models (Sundermeyer et al., 2012).
We evaluate a 2-layer LSTM language model with
1024 hidden layer dimensions and 400 embedding
dimensions.

n-gram We also evaluate a 5-gram language
model as a baseline. This model is implemented by
KenLM (Heafield et al., 2013).

Training settings (Kuribayashi et al., 2021)
Training data was approximately 5M sentences ex-
tracted from news and Japanese Wikipedia. Each
sentence in training data was first segmented by
MeCab and then segmented into subwords by

BPE (Byte-Pair Encoding).3 All the neural lan-
guage models (Trans-LG, Trans-SM and LSTM)
were trained with the data of three different sizes:
LG (full training data), MD (1/10 training data),
SM (1/100 training data). These language models
were trained with three different random seeds, and
saved at four different points in the training: 100,
1,000, 10,000, 100,000 training steps.

4.2 Evaluation metrics

The probability assigned to a sentence can be
mapped into acceptability judgements in multiple
ways (Lau et al., 2017). In this work, we employ
SLOR (Lau et al., 2017) as a mapping function,
which mitigates the confounding effects of sen-
tence lengths and lexical frequencies. SLOR score
for a sentence X is defined as follows:

SLOR(X) =
log pm(X)− log pu(X)

|X|

where pm(X) is the probability of a sentence given
by a language model, and pu(X) =

∏
w∈X pu(w)

is the unigram probability of a sentence. Uni-
gram probabilities are estimated via maximum like-
lihood estimation for each subword in the train-
ing corpus. For each minimal pair, we examine
whether language models assign a higher probabil-
ity/acceptability to an acceptable sentence than an
unacceptable one.

5 Results and Discussion

5.1 Overall accuracy

Overall accuracy of each language model on
JBLiMP is reported in Table 5. While Trans-LG
achieves the best accuracy of 77.95%, all the mod-
els notably achieve the comparable accuracy and
fall short of human accuracy by a wide margin,
which may suggest that language models can’t nec-
essarily recognize complex linguistic phenomena.

5.2 Accuracy by linguistic phenomenon

For each language model, we calculate accuracy by
linguistic phenomenon on JBLiMP, as reported in
Table 5. Analysis by linguistic phenomenon reveals
that the performance of language models drastically
differs depending on linguistic phenomenon. Lan-
guage models achieve a relatively high accuracy on

3Vocabulary size was set to 100,000 and character cover-
age to 0.9995. Implementation by SentencePiece (Kudo and
Richardson, 2018) was employed.
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Model Overall Argument Verbal Morph. Nominal Ellipsis Quant. Binding Island Filer NPI Control
Structure Agr. Structure Effects Gap Licensing Raising

Trans-LG 77.95 89.05 53.55 82.86 95.65 85.96 73.81 58.97 75.76 55.56 50.00 16.67
Trans-SM 76.54 89.05 44.26 82.86 97.10 89.47 71.43 46.15 84.85 55.56 75.00 0.00

LSTM 75.73 86.67 46.99 83.81 95.65 91.23 66.67 41.03 87.88 44.44 66.67 50.00
5-gram 74.02 78.57 57.38 82.86 86.96 89.47 78.57 53.85 72.73 66.67 50.00 0.00
Human 90.90 92.19 89.62 94.86 97.68 87.37 85.71 82.05 92.12 78.52 90.00 70.00

Model Ave. 76.06 85.76 50.55 83.10 93.84 89.03 72.62 50.00 80.31 55.56 60.42 16.67

Table 5: Accuracy of each language model and human by phenomenon. Accuracy is averaged over 3 different
random seeds except 5-gram and human. All the language models are trained for 100,000 steps on full training
corpus (LG). The number in bold indicates the best score within a model, while the number with underscore
indicates the worst score.

phenomena like nominal structure. This phe-
nomenon includes minimal pairs with relatively
local dependencies, as exemplified in (15).
(15) Nominal structure

a. Watashi-ga
I-Nom

kinoo
yesterday

mita
saw

hito-wa
person-Top

suteki
beautiful

datta
was

‘The person I saw yesterday was beautiful’

b. *Watashi-ga
I-Nom

kinoo
yesterday

mita
saw

no
no

hito-wa
person-Top

suteki
beautiful

datta
was

‘The person I saw yesterday was beautiful’

In sharp contrast, language models suffer a
sharp drop in accuracy on linguistic phenomena
such as verbal agreement and binding. (Here,
control/raising is taken out of consideration be-
cause its data size is small compared to the other
phenomena.) These phenomena generally involve
relatively long dependencies: verbal agreement
involves dependency between the subject and the
verb of the sentence as exemplified in (16), while
binding involves dependency between anaphors
and their antecedents as illustrated in (17).

(16) Verbal agreement

a. Ito-sensei-ga
Ito-teacher-Nom

Mary-o
Mary-Acc

o-home-ni-nat-ta
Hon-praise-Lv-Past
‘Prof. Ito praised Mary.’

b. *Watashi-ga
I-Nom

Mary-o
Mary-Acc

o-home-ni-nat-ta
Hon-praise-Lv-Past
‘I praised Mary.’

(17) Binding
a. Hazimete

for-the-first-time
soitu-ni
him-Dat

atta
saw

hito-ga
person-Nom

Taroo-o
Taroo-Acc

kenasita
criticized

‘The person who saw him for the
first time criticized Taroo.’

b. *Hazimete
for-the-first-time

soitu-ni
him-Dat

atta
saw

hito-ga
person-Nom

daremo-o
everyone-Acc

kenasita
criticized

‘The person who saw him for the
first time criticized everyone.’

Lower accuracy in these kinds of minimal pairs
suggests that language models are less sensitive to
long-distance dependencies. These results are com-
patible with the previous results that RNN-based
language models cannot capture long-distance de-
pendencies without explicit supervision (Linzen
et al., 2016), but are not necessarily consistent with
the results that Transformer-based language models
can successfully capture long-distance dependen-
cies (Goldberg, 2019).

5.3 Human confidence and model confidence
Figure 1 shows the relationship between model
confidence and human confidence. Each model’s
confidence on a minimal pair is defined as the dif-
ference of the SLOR scores between the accept-
able and unacceptable sentence: SLOR(Xpos)−
SLOR(Xneg) where Xpos is an acceptable sen-
tence and Xneg is an unacceptable sentence. Hu-
man confidence on a minimal pair is defined as the
number of annotators who had the same annotation
as the JBLiMP. While the language models are able
to make predictions with relatively high confidence
for sentences with high human confidence, the con-
fidence of the language models is low for sentences
with low human confidence, i.e., for which there
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are fluctuations in acceptability judgments among
humans. Furthermore, many of the language mod-
els have negative confidence for the sentences with
low human confidence. These results may suggest
that language models have successfully captured
the gradience in human acceptability judgements,
whose existence was suggested in Lau et al. (2017).

Figure 1: The relationship between model confidence
and human confidence. All the neural language models
are trained for 100,000 steps on full training corpus
(LG).

5.4 Effects of perplexity on accuracy

We investigate the relationship between the perplex-
ity, which is widely used as an evaluation metric of
language models’ performance, and the accuracy
on JBLiMP for each language model.The perplex-
ity is calculated on the validation data in Kurib-
ayashi et al. (2021). Figure 2 shows the language
models’ accuracy on JBliMP as a function of per-
plexity. In contrast to the results in Kuribayashi
et al. (2021) that lower perplexity does not neces-
sarily ensure better psychometric predictive power
of language models, our results suggest that lan-
guage models with lower perplexity will generally
achieve better syntactic performance. Note inciden-
tally that language models with particularly high
perplexity (> 3 × 104), represented as the points
to the right of the black dashed line in Figure 2, are
trained for more than 10,000 steps with relatively
small data (SD or MD). These language models
seem to be overfitted to the training data, and thus
were taken out of consideration in this discussion.

6 Conclusion

In this paper, we introduced JBLiMP (Japanese
Benchmark of Linguistic Minimal Pairs), a novel
dataset for targeted syntactic evaluations of lan-
guage models in Japanese. JBLiMP consists of

Figure 2: Models’ accuracy on JBLiMP as a function of
perplexity. The perplexity is calculated on the validation
data in Kuribayashi et al. (2021). The vertical dashed
line in black indicates the perplexity of 3× 104.

331 minimal pairs, which are created based on ac-
ceptability judgments extracted from journal ar-
ticles in theoretical linguistics. These minimal
pairs are grouped into 11 categories, each cover-
ing a different linguistic phenomenon. JBLiMP
is unique in that it successfully combines two im-
portant features independently observed in existing
datasets: (i) coverage of complex linguistic phe-
nomena (cf. CoLA) and (ii) presentation of sen-
tences as minimal pairs (cf. BLiMP). In addition,
JBLiMP is the first dataset for targeted syntactic
evaluations of language models in Japanese, thus
allowing the comparison of syntactic knowledge of
language models across different languages. We
then evaluated the syntactic knowledge of several
language models: GPT-2, LSTM and n-gram lan-
guage models. The results demonstrated that all
the architectures achieved comparable overall ac-
curacies around 75%. Error analyses by linguistic
phenomenon further revealed that these language
models successfully captured local dependencies
like nominal structures, but not long-distance de-
pendencies such as verbal agreement and binding.
Finally, these detailed analyses of language models’
knowledge on complex linguistic phenomena using
minimal pairs are only possible with the unique de-
sign of JBLiMP. This paper will hopefully encour-
age the development of the datasets with JBLiMP’s
two important features in other languages.
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Limitations

All the example sentences in JBLiMP were man-
ually transcribed from linguistic journals. While
this method of data collection has enabled it to
cover complex linguistic phenomena, it also made
it difficult to increase the size of the dataset. Addi-
tionally, the quantity of minimal pairs on a specific
linguistic phenomenon is directly influenced by
how often that phenomenon is discussed in linguis-
tic journals, hence the imbalanced distribution of
minimal pairs across different linguistic phenom-
ena in JBLiMP. These problems could be overcome
by collecting additional examples from linguists
(if possible, the authors of the source linguistic
journals in JBLiMP).
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Abstract

The SMATCH metric is a popular method for
evaluating graph distances, as is necessary, for
instance, to assess the performance of seman-
tic graph parsing systems. However, we ob-
serve some issues in the metric that jeopar-
dize meaningful evaluation. E.g., opaque pre-
processing choices can affect results, and cur-
rent graph-alignment solvers do not provide
us with upper-bounds. Without upper-bounds,
however, fair evaluation is not guaranteed. Fur-
thermore, adaptions of SMATCH for extended
tasks (e.g., fine-grained semantic similarity) are
spread out, and lack a unifying framework.

For better inspection, we divide the metric into
three modules: pre-processing, alignment, and
scoring. Examining each module, we spec-
ify its goals and diagnose potential issues, for
which we discuss and test mitigation strate-
gies. For pre-processing, we show how to
fully conform to annotation guidelines that
allow structurally deviating but valid graphs.
For safer and enhanced alignment, we show
the feasibility of optimal alignment in a stan-
dard evaluation setup, and develop a lossless
graph compression method that shrinks the
search space and significantly increases effi-
ciency. For improved scoring, we propose
standardized and extended metric calculation
of fine-grained sub-graph meaning aspects.
Our code is available at https://github.
com/flipz357/smatchpp

1 Introduction

Semantic graphs such as meaning representations
(MRs) aim at capturing the meaning of a text. Typ-
ically, these graphs are rooted, directed, acyclic,
and labeled. Vertices denote semantic entities, and
edges represent semantic relations (e.g., instrument,
cause, etc.). A prominent MR framework is Ab-
stract Meaning Representation (AMR), proposed by
Banarescu et al. (2013), which anchors in a propo-
sitional knowledge base (Palmer et al., 2005).

Using a metric such as SMATCH (Cai and Knight,
2013), we can measure a distance (or similarity)
between graphs, by aligning nodes, and counting
matching graph triples. In fact, SMATCH measure-
ment has various applications. It is used for select-
ing parsing systems that project AMR structures
(Flanigan et al., 2014; May and Priyadarshi, 2017;
Xu et al., 2020; Hoang et al., 2021a; Bevilacqua
et al., 2021) and various other semantic graphs (van
Noord et al., 2018; Zhang et al., 2018; Oepen et al.,
2020; Stengel-Eskin et al., 2020; Martínez Lorenzo
et al., 2022; Lin et al., 2022), for MR-based eval-
uation and diagnostics of text generation systems
(Opitz and Frank, 2021; Manning and Schneider,
2021; Ribeiro et al., 2021; Hoyle et al., 2021), as
backbone in an ensemble parsing algorithm (Hoang
et al., 2021b), and for studying cross-lingual phe-
nomena (Uhrig et al., 2021; Wein et al., 2022).
Through SMATCH measured on sub-graphs, we can
assess similarity of linguistic phenomena such as
semantic roles, negation, or coreference (Damonte
et al., 2017), a property that can be leveraged in
neural text embeddings (Opitz and Frank, 2022b).

However, SMATCH measurement is non-trivial
and lacks specification. For instance, SMATCH

involves an NP-hard optimization problem of struc-
tural graph alignment, which distinguishes it from
most metrics used in other evaluation tasks. In
practice, a solution of this problem is found by
employing a hill-climber. However, a hill-climber
terminates at local optima, and it cannot inform us
about a score upper-bound. In the end, this means
that we lack information about the quality of the
returned solution, potentially lowering our trust
in the final evaluation. To mitigate this issue, we
would like to study the possibility of optimal solu-
tion, or solution with a tight upper-bound. There
are also other issues, on which we lack understand-
ing. E.g., we do not know to what extent different
pre-processing choices may affect the evaluation
results, and we miss specification of SMATCH’s
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popular fine grained sub-graph metrics (Damonte
et al., 2017), where it is unclear how sub-graphs
should be best extracted and compared.

Paper structure and contributions First, we de-
scribe and generalize the SMATCH metric (§3), and
summarize recent SMATCH variants in one frame-
work. Then we break the metric down into three
modules (§4), which ĺets us better distribute our at-
tention over its key components. For each module,
we discuss specification of goals and mitigation of
issues. In the pre-processing module (§5), we moti-
vate graph standardization to allow safer matching
of equivalent MR graphs with different structural
choices. In the optimization module (§6), we test
strategies for solving the alignment problem with
optimality guarantees. In the scoring module (§7),
we discuss standardized and extended scoring of
fine-grained semantic aspects, such as causality,
tense, and location.

2 Related work

Metric standardization An inspiration for us is
the work of Post (2018), who propose the popular
SACREBLEU framework for fairer comparison of
machine translation systems with a standardized
BLEU metric (Papineni et al., 2002). Specifically,
SACREBLEU ships BLEU together with a specified
tokenizer – prior to this, BLEU differences between
systems could depend on different tokenization pro-
tocols. Facing the challenging problem of graph
evaluation, a main contribution of our work is that
we i) analyze weak spots in the current evaluation
setup and ii) discuss ways of mitigating these is-
sues, aiming at best evaluation practices.

MR metrics Cai and Lam (2019) introduce a
variant of SMATCH (Cai and Knight, 2013) that
penalizes dissimilar structures if they are situated
in proximity of the graph root, motivated by their
assumption that ‘core-semantics’ are located near
the root of MR graphs. Furthermore, Opitz et al.
(2020) introduce a SMATCH variant that performs
a graded match of semantic concepts (e.g., cat vs.
kitten), aiming at extended use-cases beyond pars-
ing evaluation, where MRs of different sentences
need to be compared. Similarly, Wein and Schnei-
der (2022) adapt an embedding-based variant of
SMATCH for cross-lingual MR comparison. We
show that the different SMATCH adaptions can be
viewed through the same lens with a generalized
notion of triple match. Furthermore, Damonte et al.

(2017) propose fine-grained SMATCH that measure
MR agreement in different aspects, such as seman-
tic roles, coreference or polarity. We diagnose and
mitigate issues in the aspectual assessment, and
show how to extend the measured aspects.

Conceptually different MR metrics have been
proposed by Anchiêta et al. (2019) and Song and
Gildea (2019) who aim at increased efficiency us-
ing structure extraction via breadth-first traversals,
or Opitz et al. (2021) who compare MRs of differ-
ent sentences with Wasserstein Weisfeiler-Leman
kernels (Weisfeiler and Leman, 1968; Togninalli
et al., 2019). Since significant parts of this paper
are independent from SMATCH-specific scoring1,
other MR metrics can profit from our work.

3 SMATCH: Overview and generalization

We introduce SMATCH and define a general-
ized SMATCH, so that we can summarize recent
SMATCH variants in one framework.

Preliminary I: MR graph If not mentioned oth-
erwise, we view an MR graph a as a set of triples,
where a triple has one of two types. Unary triples
have the structure <x, :rel, c>, where the
source x is a variable and the target c is a descrip-
tive label that shows the type or an attribute of x,
depending on the edge label :rel.2 Using vari-
ables such as x we can (co-)refer to different events
and entities and capture complex events. Binary
triples have the structure <x, :rel, y>, where
both the source x and the target y are variables.3

Preliminary II: SMATCH The idea of SMATCH

is to measure structural similarity of graphs via
the amount of triples that are shared by a and b.
To obtain a meaningful score, we must know an
alignment map: vars(a) ↔ vars(b) that tells us
how to map a variable in the first MR to a variable
in the second MR. In this alignment, every vari-
able from a can have at maximum one partner in
b (and vice versa). Let an application of a map to
a graph a be denoted as amap := {tmap ; t ∈ a},
where tmap of a triple t = <x, :rel, y> is set
to tmap = <map(x), :rel, map(y)> for bi-
nary triples, and tmap = <map(x), :rel, c>

1E.g., input standardization (§5) and sub-graph extraction
for fine-grained aspectual matching (§7.3).

2E.g., <x, :instance, cat> would indicate that ‘x
is a cat’, while <y, :polarity, -> means y is negated.

3E.g., <x, :location, y>, which means that x is
located at y, or <x, :arg0, y> which usually indicates
that y participates as the agent in the event referred to by x.
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for unary triples.
Under any alignment map, we can calculate an

overlap score f . In original SMATCH, f is the size
of the triple overlap of a and b:

f(a, b,map) = |amap ∩ b|. (1)

,
Ultimately we are interested in

F = max
map

f(a, b,map), (2)

Finding a maximizer map⋆ lies at the heart of
SMATCH, and we will dedicate ourselves to it later
in §6. For now, we assume that we have map⋆ at
our disposal. Therefore, we can calculate precision
(P ) and recall (R):

P = |a|−1F, R = |b|−1F, (3)

to obtain a final F1 evaluation score: 2PR/(P +
R). With such a score, we can assess the similarity
of MRs, and compare and select parsing systems.

Generalizing SMATCH In SMATCH, two triples
are said to match if they are identical under a map-
ping. I.e., we match with match(t, t′) := I[t = t′]
that returns 1 if two triples t and t′ are the same,
and zero else (we omit the map for simplicity).
Recently, SMATCH has been adapted and tailored
to different use-cases. E.g., SMATCH has been
extended to incorporate word embeddings (Opitz
et al., 2020; Wein and Schneider, 2022) to match
<x, :instance, c> triples for studying cross-
lingual MRs or MRs of different sentences.4 On
the other hand, Cai and Lam (2019) propose a root-
distance bias, based on the assumption that ‘core-
semantics’ lie in the proximity of an MR’s root.

We find that we can summarize such variants in
one framework. We achieve this by introducing a
scaled triple matching function:

match(t, t′) = wt
′
t ·
{
I[t = t′], if t2, t′2 ̸= :inst.
I[t1 = t′1] · sim(t3, t

′
3) else

For matching concepts with embeddings, we
can use an embedding similarity on the descriptive
concept labels with sim(c, c′) and the importance

4Consider <x, :instance, cat> extracted from
one sentence vs. <y, :instance, kitten> extracted
from another sentence. A graded match is required to properly
assess the similarity of the concepts.

“(d / dog :location (h / house))”

house

doglocation dog
{<root, :root, d>,
<d, :location, h>,
<d, :instance dog>,
<h, :instance, house>}

Figure 1: A serialized MR string is read into a graph.

weight wt
′
t = 1 ∀t, t′.5 For Root-distance biased

SMATCH as proposed by Cai and Lam (2019) we
set wt

′
t such that we discount triple matches that

are distant to the root.6

Our generalization does not change or constrain
the original SMATCH. Instead, our goal was to de-
fine a more general framework of SMATCH-type
metrics that unifies recently proposed SMATCH

variants and show possibilities for further exten-
sion. For the following studies, we set SMATCH++
to basic SMATCH, which is recovered by setting
∀t, t′ : wt′t = 1 and sim(c, c′) := I[c = c′].

4 A modular view on SMATCH

To set the stage for inspection, we break SMATCH

down into three modules. i) Preprocessing, ii)
Alignment, and iii) Scoring. In particular, i) Prepro-
cessing discusses any graph reading and processing
in advance of the alignment. ii) Alignment revolves
around the search mechanism used for finding an
optimal mappingmap⋆. iii) Scoring involves calcu-
lating final scores and statistics that are returned to
a user. For each module, we will specify its goals,
assess potential weak spots and discuss mitigation.

5 Module I: Pre-processing

5.1 Module goal and current implementation

MRs are typically stored and distributed in a ‘Pen-
man’ string format, which can serialize any rooted
and directed graph into a string. The goal of this
module is to project two serialized textual MRs
onto two sets of triples, as outlined in Figure 1.

The target domain of this projection should
be a standardized MR graph space, where for-
mat divergences that do not impact graph seman-

5That is, if the triples are not instance triples, we check
whether the triples are equivalent (as in standard SMATCH),
but if both triples are instance relation triples and the variables
t1, t

′
1 are set to equal each other, we calculate the similarity

between their descriptive concept labels.
6For a properly normalized final score if ∃ (t, t′), wtt ̸= 1,

we may have to change denominators in Eq. 3
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beLocatedAtreifydereify arg1 arg2

Figure 2: Outline of location-reification.

tics are eliminated. Original SMATCH performs
pre-processing as follows: i) lower-case strings,
ii) de-invert edges (e.g., <x, :relation-of,
y>→ <y, :relation, x>). However, while
these steps seem sensible, more steps can be under-
taken to enhance evaluation.

5.2 Two structures, one meaning: reification

Some MR guidelines, including the AMR guide-
line, allow meaning-preserving structural graph
translations (Banarescu et al., 2019; Goodman,
2019) with so called reifications (or de-reification
as an inverse mechansim). A subset of relations is
selected to constitute a semantic relation core set
(e.g., :arg0, :arg1, ..., :op1, :op2,...) and for
all other remaining relations (e.g., :location,
:time), we use rules to map the relation to a sub-
graph, where the rule-triggering relation label is
projected onto a node, and the former source and
target of the relation are attached with outgoing
core relations. E.g., consider Figure 2, where a
reification is applied to a <x, :location, y>
relation. In this case, the rule is:

• location (de)reififcation:
<x, :location, y>
⇐⇒
<z, :instance, beLocatedAt>
∧ <z, :arg1, x>
∧ <z, :arg2, y>,

where :arg1 indicates the thing that is found
at a location :arg2.

The question whether an annotator should use
either means of representation, is answered in the
guidelines as follows: whenever they feel like it
(Banarescu et al., 2019). Therefore, a parser should
not be penalized or rewarded for projecting reified
(or non-reified) structures.

Empirical assessment of effect To understand
the effect that reification can have on the final
SMATCH score, it is interesting to study an edge-
case: evaluating graphs that are fully reified against
graphs that are fully de-reified. As a data set we
take LDC2017T10, a standard AMR benchmark.

Data setup SMATCH

X Y Orig rfyStd

i) gold dereify gold reify 73.8 100.0
ii) gold standard gold reify 73.9 100.0
iii) gold standard gold dereify 100.0 100.0

iv) parser dereify gold reify 60.9 82.8
v) parser reify gold reify 82.8 82.8
vi) parser dereify gold dereify 81.4 82.8
vii) parser standard gold standard 81.4 82.8
viii) parser standard gold reify 60.9 82.8
ix) parser standard gold dereify 81.4 82.8

Table 1: Results of meaning-preserving translations.
rfyStd: score when we project X and Y into standardized
reified space.

Additionally, we gather automatic parses by apply-
ing an AMR parser (Xu et al., 2020).

The results of this experiment are shown in Ta-
ble 1. In the first three lines (i-iii) we compare
equivalent translated versions of the test partition
(gold vs. gold). We find that two equivalent gold
standards can be judged to be very different (73.9
points, -26.1 points). A similar phenomenon can
be observed when looking at the parses. The best
parser score is achieved when comparing parses
and references in the domain of reified graphs (82.8
points). On the other hand, if only the reference is
reified, the parser score drops by 20 points (viii).

However, we also see that the results of a basic
evaluation (vii) is practically the same as the result
when evaluating with de-reified graphs (vi), indi-
cating that both parser and gold annotation abstain
from reification, where possible.

Discussion Having established that rule-based
graph translations can enhance evaluation fairness,
we pose the question: should we prefer reification
or de-reification for space standardization?

The answer should be reification, since it can
be seen as a form of generalization. More pre-
cisely, we note that reification of non-core relations
is always possible. In fact, an interesting effect
of reified structures is that they equip us with the
means to attach further structure, or features, to
semantic relations. On the other hand, however,
de-reification is not always possible. It is only well-
defined if there is no incoming edge into the node
that corresponds to the non-core relation7, and if

7It is not clear to which node the incoming edge (that now
does not have a target) should be re-attached: the arg0 or
arg1 of the outgoing edges of the former node? Either choice
would likely come with a change in meaning.
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there are not more than two outgoing edges8.
However, there are also (practical) arguments

against reification. Consider that de/non-reified
MRs are smaller and have more edge label differen-
tiation. This i) may facilitate more intuitive display
for humans and ii) shrinks the alignment search
space. Indeed, a large solution space may have ram-
ifications for evaluation optimality and efficiency
(in §6, we empirically study this issue). Therefore,
when taking into account that the empirical effect
size appears neglectable in the average case, these
trade-offs may not always be justified, and we may
instead use de-reification, where possible.

5.3 Triple removals

Duplicate triples are triples that occur more than
once. We find that they are sometimes produced by
some parsers. Additionally, some parsers introduce
a node more than once, which results in two triples
<x, :instance, a> and <x, :instance,
b>. Currently, SMATCH removes all such introduc-
tions of a second concept, but does not remove du-
plicate triples. By contrast, we propose to remove
all duplicate triples, since they have no clear seman-
tics, and stay agnostic to second introductions of a
concept (in some MRs, it may be acceptable that
an entity is the instance of two concepts), keeping
all such triples (if they are not identical).9

6 Module II: Alignment

The goal of this module is solving Eq. 2, finding a
map⋆ for optimal matching score.

SMATCH uses a hill-climber for solving Eq. 2.
An issue with this is that such a heuristic terminates
at local optima and cannot provide us with any
upper-bounds. Upper-bounds, however, can inform
users about the quality of the outputted solution
and thus increase the trustworthiness of the final
score (and any parser comparison that is based
thereupon). Therefore, we can conclude that using
a hill-climber seems practical but may not be
optimal, especially when considering cases where
fair comparison needs to be guaranteed. Instead,
we would like to use an Integer Linear Program
(ILP) to obtain the (optimal) solution. Alternatively,
at least, we would like to know a tight upper-bound
to inform ourselves about the trustworthiness of

8I.e., since reification can potentially be used to model
n-ary relations, only in the case where n = 2 we can model
the structure with a single (labelled) edge

9Due to rare occurrence of such phenomena in our parsed
data, we find the effects of either choice to be negligible.

2 1 34 6 5 7
2134 76x

5
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5

2134 76x
5 2134 76x

5

Graph a Graph b Alignment search space

switch iterations of hill-climber

low. bound: 0up. bound:  3? low. bound: 1up. bound:  3? low. bound: 2up. bound:  3?

converged

Figure 3: Sketch of search space (top) and hill-climber
run (bottom). Every hill-climber step constitutes an
improved lower bound, but we cannot obtain a tight
upper-bound (an accessible trivial upper-bound is the
amount of triples in the smaller of two graphs: 3).

the final score. But ILP is NP hard, and therefore
it seems optimal but possibly not practical, a
conception that might favor the usage of a hill-
climber.

Triggered by these considerations, we review
the hill-climber and the ILP and assess their effects
on MR evaluation, with two desiderata in mind:
evaluation quality and efficiency. Additionally, we
propose a strategy for loss-less MR compression
that can improve efficiency of any solver.

6.1 Practical but not optimal: hill-climber

SMATCH hill-climbing uses two operations, which
we denote as switch, and assign. The assign-
operation assigns a variable from vars(a) to an
unaligned variable from vars(b): (i, ∅)→ (i, j =
map′(i)), where map′ is a candidate map. The
switch operation does an alignment cross-over
with respect to two alignment pairs, i.e.: (i, j =
map(i))∧ (k, l = map(k))→ (i, l = map′(i))∧
(k, j = map′(k)), where map is the current align-
ment and map′ the candidate alignment. In each
iteration, we examine all possible switch- and as-
sign options, and greedily choose the best one.10

An example alignment procedure is shown in Fig-
ure 3.

In practice, we can resort to multiple random
restarts, to find better optima. However, this hardly

10Assign is just a special instance of the more general switch
so we can ablate the assign step. Then, assign becomes (i, ∅ =
map(i)) ∧ (k, j = map(k))→ (i, j = map′(i)) ∧ (k, ∅ =
map′(k)), which is a switch.
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addresses the underlying issue: we lack any in-
formation on upper-bounds, which may decrease
trustworthiness of results, especially when facing
larger graphs with lots of local optima.

6.2 ILP: Optimal, but less practical?

We would like to use Integer Linear Programming
(ILP) for optimal solution of the graph alignment.

Problem statement Assume two graphs g, g′

with node sets V, V ′. Let u(i, j) denote the amount
of unary triple matches, given we align i from V to
j from V ′, counting matches of triples that involve
one MR variable. On the other hand, b(i, j, k, l)
will denote the amount of structural binary triple
matches, given we align i from V to j from V ′ and
k from V to l from V ′. Here, we count matching
binary triples that involve two MR variables. Usu-
ally, these data are pre-computed. Let x indicate
our current map, i.e., if xij = 1 then we align i
from V to j from V ′. We find our solution at

max
∑

(i,j)∈
V×V

u(i, j)xij +
∑

(i,j,k,l)∈
(V×V )2

b(i, j, k, l)xijxkl

st
∑

j

xij ≤ 1;
∑

i

xij ≤ 1

xij ∈ {0, 1} ∀(i, j) ∈ V × V ′

The constraint ensures that every node from one
graph is aligned, at maximum, to one node from
the other graph. By linearization, and introducing
structural variables y, we obtain the equivalent ILP:

max
∑

(i,j)∈
V×V ′

u(i, j)xij +
∑

(i,j,k,l)∈
(V×V ′)2

b(i, j, k, l)yijkl

st
∑

j

xij ≤ 1;
∑

i

xij ≤ 1

yijkl ≤ xij , ∀(i, j, k, l) ∈ (V × V ′)2
yijkl ≤ xkl, ∀(i, j, k, l) ∈ (V × V ′)2
xij ∈ {0, 1} ∀(i, j) ∈ V × V ′
yijkl ∈ {0, 1} ∀(i, j, k, l) ∈ (V × V ′)2,

where the structural variables, if active, show us
countable binary triple matches. This is an NP com-
plete problem, imposing limits on its capability to
provide us with optimal solutions for larger graphs
(note, however, that we can retrieve intermediate
solutions and upper-bounds).

6.3 Reduced search space with lossless graph
compression

We observe that in an MR a, every variable
x ∈ vars(a) is related to a concept c, e.g., <x,
:instance, cat>. This means that a concept
c does identify a variable x ∈ vars(a) iff ∀y ∈
vars(a) : <y, :instance, c> ⇒ y = x.
Therefore, if x denotes a cat, and there is no other
entity in the MR that also denotes a cat, then x may
be referred to simply by cat. This carries over to
pairs of MRs: which are the focus of the paper – in-
stead of considering vars(a), we simply consider
vars(a)∪vars(b). Therefore, we can replace all n
variables from vars(a)∪vars(b) that are identified
by concepts, with the corresponding concepts (see
Appendix A.1 for a full example). This shrinks the
search space by reducing the amount of variables
that the optimizer has to consider. Note that such a
compression is lossless, in the sense that the pos-
sibility of full reconstruction of the original MR
is ensured. This implies that if two compressed
MRs are assessed as (non-)isomorphic, then the
uncompressed MRs are also (non-)isomorphic.

6.4 Solver experiments

Two questions are of main interest: 1. RQ1, solu-
tion quality: (How) do the final SMATCH results
depend on the solver? 2. RQ2, solution efficiency:
How does the evaluation time depend on the solver?
In addition, we would like to assess how our an-
swers to RQ1 and RQ2 might be affected by reifi-
cation (resulting in a bigger search space) and MR
compression (resulting in a smaller search space).

Setup We simulate a standard AMR parsing eval-
uation setting. We parse the LDC2017T10 testing
data with six parsers: P1 (Xu et al., 2020), P2 (Cai
and Lam, 2020), P3 (Lindemann et al., 2020), P4
(Zhang et al., 2019), P5 (Lyu and Titov, 2018), P6
(Cai and Lam, 2019). We evaluate the parsers using
ILP or hill-climber (denoted by ). As is standard,
we show F1 micro corpus scores. For reference, we
also run evaluation with the standard SMATCH hill-
climbing script (denoted as previous). We observe
that we successfully reproduce the scores from the
standard SMATCH script with our implementa-
tion (first two lines of Table 2).11
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parser scores (ranked) time # vars quality
data optim P1 P2 P3 P4 P5 P6 secs (tot., avg., max.) (yield, bound)

basic prev. 81.4(1) 80.3(2) 77.0(3) 76.3(4) 74.5(5) 73.1(6) 50.4 (20346, 15, 129) (217702, +?)
basic 4 81.4(1) 80.3(2) 77.0(3) 76.2(4) 75.1(5) 73.1(6) 49.9 see above (217716, +?)
basic ILP 81.5(1) 80.4(2) 77.1(3) 76.5(4) 75.2(5) 73.3(6) 98.0 see above (218072, +0)

al
lv

ar
s

reify 4 82.8(1) 81.3(2) 78.3(3) 77.7(4) 76.9(5) 74.7(6) 134.5 (27812, 20, 174) (288597, +?)
reify ILP 83.5(1) 82.1(2) 79.3(3) 78.7(4) 77.7(5) 75.8(6) 300.5 see above (291370, +13)

basic 1 72.9(1) 70.9(2) 67.1(3) 66.2(4) 64.6(5) 61.5(6) 7.3 (5568, 4, 62) (74163, +?)
basic ILP 73.3(1) 71.3(2) 67.5(3) 66.3(4) 65.0(5) 62.1(6) 11.7 see above (75036, +0)

reify 1 74.9(1) 72.8(2) 69.5(3) 68.7(4) 67.7(5) 64.6(6) 31.4 (10704, 8, 106) (124323, +?)

co
m

pr
es

s

reify ILP 76.7(1) 74.1(2) 71.3(3) 70.6(4) 69.5(5) 66.4(6) 27.3 see above (129019, +0)

Table 2: Parser evaluation. time refers to the approximate total time needed to evaluate a single parser (i.e.,
processing 1371 graph pairs). -N indicates hill-climber optimizer with N restarts. quality: solution quality
of solver – first number is the amount of matching triples summed over all six parser evaluations (yield); second
number indicates the tightest found upper-bound (which is only known by ILP).

6.4.1 RQ1: solution quality

Insight: Better alignment → safer evaluation
Importantly, we see that the ILP yields score incre-
ments for all parsers, which signals the occurrence
of alignment problems, where the (despite multi-
ple restarts) did not find the optimal solution. The
effect-size is larger for reified graphs. We find dif-
ferences of up to 1 point F1 score (Table 2: reify

4 vs. reify ILP). This can be explained by the
growth of the alignment search space – reification
makes graphs larger and introduces more MR vari-
ables. This explanation is further supported by
contrasting the amount of unique final objective
values against the size of the alignment space with
different random initializations of the hill-climber
(Appendix A.2, Figure 6). We see that i) for many
graph pairs there are multiple local optima, and
ii) the likelihood of finding a non-global optimum
with the increases for larger/reified graphs.

We further study upper-bounds and solution qual-
ity (right column of Table 2). The ILP found
the optimal solution in all cases, yielding 218072
matching triples. The 4 finds 217,700 matching
triples (99.83%), which misses the mark by 350
triples. When evaluating reified graphs, the ILP
returns 291370 matches and thus misses its tempo-
rary tightest upper-bound by 13 triples, indicating
that in a few cases, a sub-optimal solution might
have been found.12 The 4, however, yields only

11An improvement is obtained for P5. We find that we can
mostly attribute this to a bug in the original script that prevents
proper graph reading of some parses of P5.

12Indeed, we find one graph by P2, and one graph by P6,
where the ILP terminates after a 240s timeout that we set, and
returns a temporary solution.

288,597 matches (99.04%) and misses the tempo-
rary ILP upper-bound by 2,786. The growing gap
underlines the degrading quality of the hill-climber
when facing larger graphs.

Finally, the (slight) differences in increments
among parsers when we evaluate them on reified
graphs indicate that different parsers do make dif-
ferent decisions on when to reify an edge. For
instance the score difference ∆ for reified graphs
vs. non-reified graphs (using ILP) of P5,P6 is 2.5
points, for P1 2 points and for P2 1.7 points. This
supports our theoretical insights from §5.2 – reifi-
cation can make parser comparison fairer.

6.4.2 RQ2: Solution efficiency
Insight I: ILP isn’t that impractical It seems
to be commonly presumed that original SMATCH

uses a hill-climber to make evaluation more prac-
tical and fast. However, our results qualify this
presumption. For evaluating a full corpus (1371
graph pairs), SMATCH with ILP needs only about
48 seconds longer than original SMATCH with hill-
climber (50s vs 98s). When the search space grows
(due to reification) the time gap widens to a dif-
ference of 165 seconds. However, the consistent
improvement of scores due to ILP (signaling sub-
optimal hill-climber solutions) can make the time
increase acceptable for evaluations where fairness
is critical.

Insight II: MR compression increases evalua-
tion speed Viewing the last four rows of Table 2,
we see that the MR compression i) did not lead to
switched system ranks and ii) increased the evalu-
ation speed by a large factor. Using MR compres-
sion, the ILP runs a full system evaluation in 11.7
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parser scores
avg. P1 P2 P3 P4 P5 P6
mic. 81.581.180.7 80.481.279.6 77.177.876.2 76.577.275.6 75.275.874.5 73.374.172.4

mac. 82.681.883.3 81.482.180.7 79.079.878.2 78.379.177.5 76.277.075.4 75.975.076.6

Table 3: Evaluation with additional macro statistics and
confidence intervals. Solver: ILP.

seconds for standard graphs and 27.3 seconds for
the reified graphs. Given that the MR compression
is lossless (c.f. §6.2), it provides us with an option
for more efficient evaluation that is also safe (i.e.,
optimal).

7 Module III: scoring

7.1 Main scores: Precision, Recall and F1

The goal of this module is to provide the user with
a final result. As discussed in §3, the main scores
(Precision, Recall, and F1) follow directly from the
map⋆. The final score is typically micro averaged,
summing matching statistics across all graph pairs
before they are normalized. SMATCH++ makes
two additions, macro-scoring and confidence in-
tervals. Macro-averaging scores over graph pairs
can be a useful complementary signal, specifically
when comparing high-performance parsers (Opitz
and Frank, 2022a). Additionally, we adopt the
bootstrap assumption (Efron, 1992) for calculating
confidence intervals. To make calculation feasi-
ble, bootstrapping is performed after the alignment
stage. Table 3 shows results of the additional statis-
tics. Confidence intervals range between +-[0.5, 1]
points for all parsers. Macro score shows an outlier,
where P6 (+2.6 points) is more positively affected
than other parsers (+[1.0, 1.9] points).13

7.2 Measuring aspectual semantic similarity

We observe considerable interest in applying fine-
grained aspectual MR metrics (Damonte et al.,
2017) for inspecting linguistic aspects captured
by MRs (e.g., semantic roles, negation, etc.). Ap-
plications range from parser diagnostics (Lyu and
Titov, 2018; Xu et al., 2020; Bevilacqua et al., 2021;
Martínez Lorenzo et al., 2022), to NLG system di-
agnostics and sentence similarity (Opitz and Frank,
2021, 2022b). Formally, given an aspect of interest
asp and an MR g, we apply a subgraph-extraction

13We find a potential explanation in a motivation of P6’s
creators to focus on semantics in proximity of an MR’s top
node (the proportion of such semantics increases when the
graph is smaller, and smaller graphs have more influence on
macro average than on micro average).
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Figure 4: Named Entitiy (NE) sub-graph extraction with
SMATCH vs. SMATCH++

function sg(g, asp) to build an aspect-focused sub-
graph, and compute a matching score (e.g., F1).

Review of previous implementation We study
the description in Damonte et al. (2017) and the
most frequently used implementation (Lyu, 2018).
The treated aspects14 are divided in two broad
groups: i) alignment-based matching: For some
aspects, we extract aspect-related genuine sub-
graphs, on which we calculate an optimal align-
ment. ii) bag-of-label matching: for other aspects,
we detect aspect-related variables and gather asso-
ciated node labels15 in a bag/list, to compute an
overlap score based on simple set intersection.

E.g., SRL-aspect belongs to the first category
(i): we extract <x, :argn, y> relations, and
their corresponding instance triples (here: <x,
:instance, c>, and <y, :instance,
c’>). Then we calculate SMATCH on such SRL-
subgraphs. The Negation, Named Entity (NEs)
and Frames aspect is put into the second group
(ii). We look for a relation/node-label that signals
a particular aspect, e.g., <x, :polarity, ->
(for negation) or <x, :name, y> (for NEs), we
extract x, and replace x with the descriptive label
c from <x, :instance, c>. For Frames,
we search for <x, :instance, c> where c
is a PropBank predicate, and collect c. Finally,
we can evaluate without an alignment, using set
intersection.

Open questions We pose two questions:

1. Can the sub-graph extraction be improved?

2. Are there other aspects that we can measure?

7.3 Improving sub-graph extraction
Sensible range of extraction For some phenom-
ena, the current extraction range is clearly too lim-
ited. For instance, let us consider named entities,
which can be captured in more complex and nested

14See Appendix A.3 for a full overview.
15I.e., from <x, :instance, label> triples
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MR structure. E.g., in AMR, one node typically
indicates the type of the named entity (NE), and an-
other multi-node structure represents its name and
other attributes. Consider two AMRs a and b, from
which we want to extract NE structures to measure
the agreement of the graphs w.r.t. NE similarity. As
shown in Figure 4, assume that one graph is about
a cat named Bob16, while the other graph is about
a cat named Lisa17. Obviously, the MRs have simi-
larities in their NE structure (since there are named
cats), but also differences (since the cats have differ-
ent names). However, NE-focused SMATCH only
extracts cat and cat, and returns maximum score.

Hence, for all finer-grained aspects that are cap-
tured by non-atomic MR structures (e.g., Named
Entities), we propose to gather the full sub-graph
starting at the aspect-indicating relation or node
label. In the NE example, as shown in Figure 4, we
would be provided a score of 0.5, better reflecting
the similarity of the two NE structures.

Sub-graph compression, align and match We
find a middle-ground in the advantages of the
coarse matching (concreteness, efficiency) and
graph alignment (safe matching) by using align-
ment with lossless MR compression. This is opti-
mal and efficient, and alleviates the need to switch
among fine and coarse extraction methods.

7.4 Extending fine-grained scores

Beyond negation and named entities – other
semantic aspects We find that the fine-grained
SMATCH metrics by Damonte et al. (2017) miss
some interesting features captured by MRs. For
instance, four interesting AMR aspects that are
currently not captured are cause, location, quan-
tification, and tense. SMATCH++ allows their inte-
gration in a straightforward way. An example for
tense extraction is displayed in Figure 5, where our
SMATCH++ sub-graph extraction extracts the com-
plete temporal sub-graph, triggered by the edge
label :time (if we would resort to the style of
fine-grained SMATCH, we would miss larger parts
of the temporal structure, only extracting the node
label end).

Results of fine-grained parser diagnostics for
cause, location, quantification, and tense are shown

16Triples: <x, :instance, cat>, <y,
:instance, name>, <x, :name, y>, <y, :op1,
"bob">.

17Triples: <x, :instance, cat>, <y,
:instance, name>, <x, :name, y>, <y, :op1,
"lisa">.

ordinal-entity

century

end

flourish
time

good

bake

4

arg1

ord

value

arg0

Tense-aspect signal

sg(g, tense) 
w/ SMATCH++

Figure 5: Temporal sub-graph extraction with
SMATCH++ for an MR capturing “Baked goods flour-
ished at the end of the fourth century”.

parser scores
aspect P1 P2 P3 P4 P5 P6
cause 47.8 47.4 44.4 35.7 31.4 31.2
location 61.8 53.2↓ 54.7↑ 49.2↓ 51.7↑ 40.0
quant 69.4 67.4 58.4 56.8 56.5 55.8
tense 67.7 62.3 58.5 56.5 50.3 48.4

Table 4: Evaluation for causal and temporal structures.
↓↑ indicate switched ranks. Solver: ILP.

in Table 4.
Interestingly, we see that projecting causality

seems hard: all parsers tend to struggle when as-
sessing causal structures (31.2 up to 47.8 F1 points),
showing much room for improvement. The tempo-
ral structures, on the other hand, can be assessed
with somewhat higher accuracy (48.4 up to 67.7
points). We also see some switched ranks, indi-
cating different parser strengths. Overall, parser
score differences seem notably more pronounced
than when calculating SMATCH (++) on the full
graphs, showing the difficulty of capturing finer
phenomena, and highlighting strengths of more
recent parsers.

8 Conclusion

SMATCH++ is the first specification of a standard-
ized, extended, and extensible SMATCH metric. We
aim at i) standardized and transparent comparison
of graph parsing systems, and ii) improved extensi-
bility for custom applications.18 The applications
can include finer parser diagnostics and measuring
semantic sub-graph similarities such as quantifica-
tion, cause, or tense with our fine-grained metrics.
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Limitations

We have to leave some questions open. First, we
would have liked to shed more light on the solvers’
behaviors when facing large graphs, in isolation.
On one hand, our benchmark corpus indeed con-
tains some large MRs with many variables, includ-
ing reified MRs and MRs that represent multiple
sentences (up to 174 variables, cf. Table 2). We
have shown that ILP could cope with these harder
problems, providing optimal solutions in reason-
able time. When facing bigger graphs, however,
we can expect that the solution quality of the hill-
climber quickly degrades, while the ILP will strug-
gle to find optimal solutions. While our graph
compression strategy can help mitigate this issue
by reducing the alignment search space, it would
be interesting to study the quality of temporary so-
lutions, or of solutions of LP relaxation. There are
also relaxed ILP solvers (Klau, 2009) that itera-
tively tighten the lower and the upper-bound. They
could prove useful for aligning larger MR graphs,
or, at least, to find useful upper-bounds.

Second, in this paper we studied SMATCH (++)
that measures structural overlap and assigns each
triple the same weight. But structural differences
of similar degree can have a different impact on
overall meaning similarity as perceived by humans,
which can have ramifications for measuring sen-
tence similarity (Opitz et al., 2021) and meaning-
ful evaluation of strong AMR parsers (Opitz and
Frank, 2022a). Therefore, for a deeper assessment
of MR similarity we may have to use conceptu-
ally different metrics, or explore SMATCH++-based
strategies and (sensibly) weigh triples depending
on label importance or compose an overall score
by weighting measured sub-aspect similarities.
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Smith. 2021. Promoting graph awareness in lin-
earized graph-to-text generation. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 944–956, Online. Association
for Computational Linguistics.

Gunnar W Klau. 2009. A new graph-based method for
pairwise global network alignment. BMC bioinfor-
matics, 10(1):1–9.

Zi Lin, Jeremiah Liu, and Jingbo Shang. 2022. Neural-
symbolic inference for robust autoregressive graph
parsing via compositional uncertainty quantification.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4759–4776, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2020. Fast semantic parsing with well-
typedness guarantees. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3929–3951, On-
line. Association for Computational Linguistics.

Chunchuan Lyu. 2018. Fine-grained smatch imple-
mentation. https://github.com/ChunchuanLv/amr-
evaluation-tool-enhanced.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 397–407, Melbourne, Australia. Association
for Computational Linguistics.

Emma Manning and Nathan Schneider. 2021. Ref-
erenceless parsing-based evaluation of AMR-to-
English generation. In Proceedings of the 2nd Work-
shop on Evaluation and Comparison of NLP Systems,
pages 114–122, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Abelardo Carlos Martínez Lorenzo, Marco Maru, and
Roberto Navigli. 2022. Fully-Semantic Parsing and
Generation: the BabelNet Meaning Representation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1727–1741, Dublin, Ireland.
Association for Computational Linguistics.

Jonathan May and Jay Priyadarshi. 2017. Semeval-2017
task 9: Abstract meaning representation parsing and
generation. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 536–545.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajic, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.

2020. Mrp 2020: The second shared task on cross-
framework and cross-lingual meaning representation
parsing. In Proceedings of the CoNLL 2020 Shared
Task: Cross-Framework Meaning Representation
Parsing, pages 1–22.

Juri Opitz, Angel Daza, and Anette Frank. 2021.
Weisfeiler-leman in the bamboo: Novel AMR graph
metrics and a benchmark for AMR graph similarity.
Transactions of the Association for Computational
Linguistics, 9:1425–1441.

Juri Opitz and Anette Frank. 2021. Towards a decom-
posable metric for explainable evaluation of text gen-
eration from AMR. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
1504–1518, Online. Association for Computational
Linguistics.

Juri Opitz and Anette Frank. 2022a. Better Smatch
= better parser? AMR evaluation is not so simple
anymore. In Proceedings of the 3rd Workshop on
Evaluation and Comparison of NLP Systems, pages
32–43, Online. Association for Computational Lin-
guistics.

Juri Opitz and Anette Frank. 2022b. SBERT studies
meaning representations: Decomposing sentence em-
beddings into explainable semantic features. In Pro-
ceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 12th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 625–638, Online only. Association for
Computational Linguistics.

Juri Opitz, Letitia Parcalabescu, and Anette Frank. 2020.
AMR Similarity Metrics from Principles. Transac-
tions of the Association for Computational Linguis-
tics, 8:522–538.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1):71–
106.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych.
2021. Structural adapters in pretrained language
models for AMR-to-Text generation. In Proceed-
ings of the 2021 Conference on Empirical Methods

1605

https://proceedings.neurips.cc/paper/2021/file/479b4864e55e12e0fb411eadb115c095-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.18653/v1/2021.findings-acl.82
https://aclanthology.org/2022.emnlp-main.314
https://aclanthology.org/2022.emnlp-main.314
https://aclanthology.org/2022.emnlp-main.314
https://doi.org/10.18653/v1/2020.emnlp-main.323
https://doi.org/10.18653/v1/2020.emnlp-main.323
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://aclanthology.org/2021.eval4nlp-1.12
https://aclanthology.org/2021.eval4nlp-1.12
https://aclanthology.org/2021.eval4nlp-1.12
https://doi.org/10.18653/v1/2022.acl-long.121
https://doi.org/10.18653/v1/2022.acl-long.121
https://doi.org/10.1162/tacl_a_00435
https://doi.org/10.1162/tacl_a_00435
https://doi.org/10.18653/v1/2021.eacl-main.129
https://doi.org/10.18653/v1/2021.eacl-main.129
https://doi.org/10.18653/v1/2021.eacl-main.129
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://aclanthology.org/2022.aacl-main.48
https://aclanthology.org/2022.aacl-main.48
https://aclanthology.org/2022.aacl-main.48
https://doi.org/10.1162/tacl_a_00329
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.18653/v1/2021.emnlp-main.351


in Natural Language Processing, pages 4269–4282,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Linfeng Song and Daniel Gildea. 2019. SemBleu: A
robust metric for AMR parsing evaluation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4547–
4552, Florence, Italy. Association for Computational
Linguistics.

Elias Stengel-Eskin, Aaron Steven White, Sheng Zhang,
and Benjamin Van Durme. 2020. Universal decompo-
sitional semantic parsing. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 8427–8439, Online. Association
for Computational Linguistics.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-
López, Bastian Rieck, and Karsten Borgwardt. 2019.
Wasserstein weisfeiler-lehman graph kernels. In Ad-
vances in Neural Information Processing Systems,
volume 32, pages 6436–6446. Curran Associates,
Inc.

Sarah Uhrig, Yoalli Garcia, Juri Opitz, and Anette Frank.
2021. Translate, then parse! a strong baseline for
cross-lingual AMR parsing. In Proceedings of the
17th International Conference on Parsing Technolo-
gies and the IWPT 2021 Shared Task on Parsing
into Enhanced Universal Dependencies (IWPT 2021),
pages 58–64, Online. Association for Computational
Linguistics.

Rik van Noord, Lasha Abzianidze, Hessel Haagsma,
and Johan Bos. 2018. Evaluating scoped meaning
representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC-2018), Miyazaki, Japan. European
Languages Resources Association (ELRA).

Shira Wein, Wai Ching Leung, Yifu Mu, and Nathan
Schneider. 2022. Effect of source language on AMR
structure. In Proceedings of the 16th Linguistic Anno-
tation Workshop (LAW-XVI) within LREC2022, pages
97–102, Marseille, France. European Language Re-
sources Association.

Shira Wein and Nathan Schneider. 2022. Accounting
for language effect in the evaluation of cross-lingual
AMR parsers. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3824–3834, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Boris Weisfeiler and Andrei Leman. 1968. The reduc-
tion of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020. Improving AMR parsing with
sequence-to-sequence pre-training. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2501–
2511, Online. Association for Computational Lin-
guistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Association
for Computational Linguistics.

Sheng Zhang, Xutai Ma, Rachel Rudinger, Kevin Duh,
and Benjamin Van Durme. 2018. Cross-lingual de-
compositional semantic parsing. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1664–1675, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

A Appendix

A.1 Lossless graph pair reduction example
Consider the cat scratches another cat:
a=
{
<s, :instance, scratch>,

<c, :instance, cat>,
<d, :instance, cat>, <s, :arg0, c>,
<s, :arg1, d>

}

and the gray cat scratches the small plant:
b=
{
<x, :instance, scratch>,

<y, :instance, cat>,
<z, :instance, plant>,
<w, :instance, small>,
<v, :instance, gray>,
<x, :arg0, y>, <x, :arg1, z>,
<y, :mod, v>, <z, :mod, z>

}
.

The lossless compression is
a′=
{
<c, :instance, cat>,

<d, :instance, cat>,
<scratch, :arg0, c>,
<scratch, :arg1, d>

}
and

b′=
{
<y, :instance, cat>,

<scratch, :arg0, y>,
<scratch, :arg1, plant>,
<y, :mod, gray>,
<plant, :mod, small>

}
.

The alignment search space is reduced from a
size of more than 100 candidates to 2 candidate
options (y = c, or y = d).

A.2 Assessing solution quality variability in
dependence of variables

We use the parses of an example parser (P5)19. For
every evaluation pair, we re-start the hillclimber 20
times, and collect the scores related to the found
local optima. The Y-axis in Figure 6 shows the
amount of unique scores found among the 20 tries
(note that there could be more unique alignments

19We ran the experiment also with parses from other sys-
tems but always ended up with essentially the same results
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Figure 6: Assessing solution quality variability. Top:
basic graphs, bottom: reified graphs. Diagonal line:
linear trend. Horizontal line: arithmetic mean. See text
in §A.2 for more description and §6.4.1 for discussion.

that would result in the same score – this is not cap-
tured in this Figure). The X-axis shows the amount
of alignment variables. In different terms, a higher
point in this Figure is equivalent to a larger pool
of local optima of different quality, and thus we
can conjecture a greater likelihood that the optimal
solution is not returned by the hill-climber.

A.3 Aspect overview
Previously measured aspects For all aspects we
retrieve F1, Precision, and Recall.

1. Measured under alignment

(a) SRL: extract <x, argn, y> triples
and corresponding instance triples.

(b) Coreference/Re-entrancies: extract <x,
rel, y> triples for which there is an-
other triple <z, :rel’, y> (mean-
ing y is a re-entrant node) and also ex-
tract corresponding instance triples.

2. Measured via bag-of-structure extraction and
set operations

(a) Concepts: collect all node labels.
(b) Frames: collect all node labels where the

label is a PropBank predicate frame.
(c) NonSenseFrames: see above, but with

sense label removed

(d) NE: Named entities, collect all node la-
bels that have an outgoing :name rela-
tion.

(e) Negation: collect all node labels that
have an outgoing :polarity relation.

(f) Wikification: collect all node labels that
have an incoming :wiki relation.

(g) IgnoreVars: replace all variables in
triples with concepts, collect triples.

SRL, Named Entities, coreference (re-entrant
nodes)

Additional aspects measured by us: Cause,
Tense, Location, Quantifier.

We change: Add default option for extracting
aspect sub-graphs, measure all aspects under align-
ment.

Aspects we added:

• Cause: Cause is modeled via cause-01. We
extract label of :arg1 (what is caused?) and
subgraph of :arg2, the cause itself.

• tense: Tense is modeled via <x, :time,
y> edge. We extract label of the thing
that happens and subgraph of y, the tem-
poral description where it happens.

• location: Similar to above but with
:location edge.

• quantifier: Similar to above but with :quant
edge.

A.4 Best practice
To provide a balance between efficiency, safety
and meaningfulness of scores, default procedure of
SMATCH++ is currently set to:

1. Pre-processing: lower-casing, duplicate-
removal, de-reify where applicable.

2. Alignment: Solver: ILP. Triple-match: wtt =
1 ∀t, t′; sim(c, c′) := I[c = c′]

3. Scoring: Precision, Recall, F1, Bootstrap con-
fidence intervals

An option to increase efficiency without incur-
ring a loss in safety and meaningfulness is achieved
by adding graph compression to the pre-processing.
It is set as the default for fine semantic aspect
scores. Also, to ensure utmost safety, we have
to consider applying reification standardization (in-
curring a significantly longer evaluation time).
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Abstract

We extend a current sequence-tagging approach
to Grammatical Error Correction (GEC) by
introducing specialised tags for spelling cor-
rection and morphological inflection using the
SymSpell and LemmInflect algorithms. Our ap-
proach improves generalisation: the proposed
new tagset allows a smaller number of tags to
correct a larger range of errors. Our results
show a performance improvement both over-
all and in the targeted error categories. We
further show that ensembles trained with our
new tagset outperform those trained with the
baseline tagset on the public BEA benchmark.

1 Introduction

Current approaches to Grammatical Error Cor-
rection (GEC) fall under two broad categories:
sequence-to-sequence and sequence-tagging. The
former treats GEC as a machine-translation prob-
lem, "translating" from error-containing to error-
free language (Yuan and Briscoe, 2016; Schmaltz
et al., 2017; Junczys-Dowmunt et al., 2018; Grund-
kiewicz et al., 2019; Yuan et al., 2019; Rothe et al.,
2021). By contrast, sequence-tagging approaches
tag each input word with an edit operation such
that applying the operations produces the corrected
output (Yannakoudakis et al., 2017; Awasthi et al.,
2019; Omelianchuk et al., 2020; Tarnavskyi et al.,
2022). The basic operations include keeping a word
unchanged, deleting a word, and inserting new
words (Awasthi et al., 2019; Malmi et al., 2019).

One advantage of sequence-tagging over
sequence-to-sequence approaches is computational
efficiency: the former do not require expensive
auto-regressive decoding,1 and currently achieve
competitive performance using smaller models
(Tarnavskyi et al., 2022; Rothe et al., 2021).

1Malmi et al. (2019) show that sequence-taggers can be
orders of magnitude faster than comparable seq-to-seq models
at inference time.

the serendipitis discovery of penicillin
$KEEP $SPELL $KEEP $KEEP $KEEP 

SymSpell

serendipitous

It was easy than taming a dragon
$KEEP $KEEP $INFLECT_JJR $KEEP $KEEP $KEEP $KEEP

LemmInflect

easier

Figure 1: Our model applied to two inputs. Beneath
each word is the tagger’s output. Arrows denote trans-
formations by SymSpell and LemmInflect respectively.

However, current sequence-tagging approaches re-
quire manual linguistic efforts to curate language-
specific edit tags (Yuan et al., 2021). For example,
Awasthi et al. (2019) introduce rule-based morpho-
logical inflection tags, like replacing the "-ing"
suffix with "-ion" (e.g. completing → comple-
tion). Omelianchuk et al. (2020) introduce a wider
range of operations including verb-form and noun-
number changes. For verb-form inflections, they
use a dictionary to map between verb forms.2

In this paper, we focus on a sequence-tagging
approach. We extend the approach of Omelianchuk
et al. (2020) by introducing more general transfor-
mation tags (Figure 1). Specifically, we introduce:

• A tag for correcting spelling errors.

• Inflection tags capable of a broader range
of inflections than the tags introduced by
Omelianchuk et al. (2020).

These modifications allow a broader range of er-
rors to be handled by a smaller number of transfor-
mation tags, which simplifies the sequence tagging

2https://github.com/gutfeeling/word_forms/
blob/master/word_forms/en-verbs.txt
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problem, as well as improves the generalisation of
the GEC system. Our results show that our modifi-
cations improve the system’s performance on the
BEA-2019 development and test sets. Our code
and model weights are publicly available.3

2 Methods

We extend the system described by Omelianchuk
et al. (2020) by adding new tags to the model’s
output vocabulary and modifying the inference and
dataset preprocessing code to support our new tags.
Our new tags perform spelling correction and mor-
phological inflection and are described in Sections
2.3 and 2.4 below. We evaluate our tagset using the
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2021b), DeBERTaV3 (He et al., 2021a), ELEC-
TRA (Clark et al., 2020) and XLNet (Yang et al.,
2019) encoders, as well as an ensemble of three
encoders (see Section 2.6).

2.1 Model and Training Procedure

Our work builds on GECToR from Omelianchuk
et al. (2020), which follows the sequence tagging
approach to GEC. We use the same sequence tag-
ger architecture: a pre-trained transformer encoder
with two separate "tagging" and "detection" heads.
We also follow the same multi-phase training proce-
dure using the synthetic PIE Corpus (Awasthi et al.,
2019), NUCLE (Dahlmeier et al., 2013), FCE (Yan-
nakoudakis et al., 2011), Lang-8 (Mizumoto et al.,
2011; Tajiri et al., 2012) and W&I + LOCNESS
(Bryant et al., 2019) English datasets.

2.2 Baseline Tagset

GECToR’s tagset includes the basic edit
tags, $KEEP, $DELETE, $REPLACE_{t} and
$APPEND_{t}, which respectively leave the word
unchanged, delete the word, replace the word with
another word t, and append t after the input word.

The tagset also contains a set of more complex
grammatical transformation or “g-transform” tags.
These include case, agreement (singular/plural),
verb-form and merge/split transformations. For ex-
ample, there is a tag to transform a verb into its past-
tense equivalent. The verb-form transformations
are performed using a dictionary. Omelianchuk
et al. (2020, Table 9) provide a full list of the trans-
formations and their descriptions.

3https://github.com/StuartMesham/gector_
experiment_public

2.3 Spelling Correction Tag

GECToR corrects spelling errors using its vocabu-
lary of $REPLACE_{t} tags. This limits its ability to
generalise to unseen or rare spelling errors for two
reasons. The first is that GECToR can only correct
misspellings of words which appear in its output
vocabulary. The second is that for each word, there
are many possible misspellings that the model must
learn to associate with the corrected form.

To remedy this, we introduce a new $SPELL tag
for spelling correction. When this tag is predicted
during inference, we use SymSpell4 to produce
the corrected version of the input word (see Sec-
tion A.1 for details). We hypothesise that this im-
proves generalisation because the sequence tagger
need only detect spelling errors, and the corrections
are performed by SymSpell. SymSpell can handle
a variety of misspellings of each word and can cor-
rect words from a dictionary much larger than the
output vocabulary of the sequence tagger.

2.4 Inflection Tags

We introduce inflection tags of the form
$INFLECT_{POS} where POS denotes the Penn
Treebank POS tag of the desired form of the in-
put word. When an inflection tag is predicted at
inference time, the input word is inflected to the
target POS specified in the tag. The inflection is
achieved using the software modules spaCy5 and
LemmInflect6. LemmInflect first attempts to use
a dictionary for the inflection. If the input word is
not in LemmInflect’s dictionary, the inflection is
performed using a rule-based approach (see Sec-
tion A.2 for details).

Our inflection tags offer two main advantages
over GECToR’s dictionary-based verb transforma-
tions. The first is that they are not limited to verbs,
but rather can be used for any inflected part of
speech.7 The second is that words which do not
appear in LemmInflect’s dictionary can still be han-
dled using a rule-based approach (see Section A.2).
We also note that GECToR’s singular/plural trans-
formation tag only adds or removes an "-s" from
the end of the input word, making it unable to han-
dle less trivial cases such as inflecting "activity"
to its plural "activities". By contrast, our system

4https://github.com/wolfgarbe/SymSpell#
single-word-spelling-correction

5https://spacy.io
6https://github.com/bjascob/LemmInflect
7In English, the inflected parts of speech are adjectives,

adverbs, nouns and verbs.
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BEA-2019 dev BEA-2019 test
Model precision recall F0.5 precision recall F0.5 (x̄± σ)

DeBERTa(L)5K basetags 68.13 38.12 58.86 77.89 56.72 72.47 ± 0.56
DeBERTa(L)5K $SPELL 68.37 39.03 59.40 77.96 57.67 72.82 ± 0.49
DeBERTa(L)5K $INFLECT 68.73 38.43 59.33 77.72 57.23 72.51 ± 0.93
DeBERTa(L)5K $SPELL + $INFLECT 69.75 38.97 60.20 78.45 57.44 73.09 ± 0.72

ensemble basetags 73.25 37.17 61.32 83.47 55.64 75.87 ± 0.20
ensemble $SPELL 73.54 37.76 61.79 83.72 56.28 76.26 ± 0.37
ensemble $INFLECT 73.89 37.35 61.80 83.71 55.68 76.06 ± 0.43
ensemble $SPELL + $INFLECT 74.19 38.16 62.39 83.59 56.23 76.17 ± 0.38

DeBERTa(L)10K

⊕
RoBERTa(L)10K

⊕
XLNet(L)5K

(Tarnavskyi et al., 2022)
70.32 34.62 58.30 84.44 54.42 76.05

RoBERTa(L)5K (KD) (Tarnavskyi et al., 2022) - - - 80.70 53.39 73.21
T5 xxl (Rothe et al., 2021) - - - - - 75.88
ESC (Qorib et al., 2022) 73.63 40.12 63.09 86.65 60.91 79.90

Table 1: A table showing BEA-2019 development and test set scores. The top section shows our models with varying
tagsets using the DeBERTa(L)

5K encoder. The middle section shows the results for our ensemble models with varying
tagsets. In the table, "ensemble" denotes the encoders DeBERTa(L)

5K

⊕
ELECTRA(L)

5K

⊕
RoBERTa(L)

5K . Finally, the
bottom section shows models from related work. The model labelled "(KD)" was trained using Tarnavskyi et al.
(2022)’s knowledge distillation procedure. The results in the top and middle sections are averaged over 6 seeds, and
the standard deviation, σ, of the test F0.5 is shown.

applies the full dictionary and rule-based procedure
to singular/plural transformations. In summary, our
inflection tags handle a broader range of transfor-
mations than GECToR’s transformation tags. We
hypothesise that this improves generalisation.

2.5 Preprocessing

To incorporate our $SPELL tag into the training
data, we take data preprocessed with Omelianchuk
et al. (2020)’s code, and for each instance of a
$REPLACE_{t} tag, we apply SymSpell to the input
word. If SymSpell produces the correct output,
t, we change the $REPLACE_{t} tag to a $SPELL
tag. Otherwise, we leave the $REPLACE_{t} tag
unchanged.

For the inflection tags, we first modify
Omelianchuk et al. (2020)’s preprocessing code
by removing existing tags which perform inflec-
tions.8 Then, similar to our process for the $SPELL
tag, for each instance of a $REPLACE_{t} tag, we
attempt to inflect the input word to obtain the tar-
get word t and, if successful, change the tag to an
$INFLECT_{POS} tag. Otherwise, we leave the tag
unchanged. For details about this process, we refer

8We remove tags g-8 to g-29 (Omelianchuk et al., 2020,
Table 9).

the reader to the relevant script in our repository.9

2.6 Ensembling

To create ensemble models, we use the span-based
voting procedure of Tarnavskyi et al. (2022). Their
system takes the corrected output of each model,
compares it with the input text, and extracts edit
spans of the same type (insert, delete, or replace).
In an ensemble of k models, spans predicted by at
least k− 1 models are included in the output of the
ensemble.

Our particular combination of encoders was cho-
sen on the BEA-2019 development set by search-
ing over all possible combinations of three models
from the set of individual models we trained with
the $SPELL + $INFLECT tagset.

3 Results

We report the span-based precision, recall and F0.5

scores on the BEA-2019 development and test sets
(Bryant et al., 2019) using the ERRANT scorer
(Bryant et al., 2017).10 The term "basetags" in-
dicates the tagset proposed by Omelianchuk et al.

9See the lemminflect_preprocess.py script in the
utils directory of our repository.

10https://github.com/chrisjbryant/errant
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Figure 2: A bar graph showing the BEA-2019 development set F0.5 scores for the "spelling" error category for
different encoders, tagsets and vocabulary sizes. Specifically, the $SPELL and basetags tagsets and vocabulary sizes
of 5k and 10k. Each bar represents the mean score over three training runs with different seeds. The error bars show
the standard deviations of the scores.

(2020), and $SPELL and $INFLECT denote our pro-
posed tagsets containing the spelling and inflec-
tion tags respectively. $SPELL + $INFLECT denotes
tagsets containing both the spelling and inflection
tags. We adopt the model and tagset size notation
of Tarnavskyi et al. (2022) which, for example,
denotes a DeBERTa-large model using a 5k vocab-
ulary size as DeBERTa(L)5K .

Table 1 shows the scores of our models on the
BEA-2019 development and test sets. Of the three
encoders chosen for our ensemble, DeBERTa(L)5K

had the highest mean development set score when
using $SPELL + $INFLECT tagset, and is thus shown
in Table 1.11

For the DeBERTa(L)5K encoder, on both the de-
velopment and test sets, the $SPELL and $INFLECT
tagsets provide an improvement over the basetags
tagset, and the $SPELL + $INFLECT tagset provides
a larger improvement. Similarly, for the ensemble
models, on the development set, the $SPELL and
$INFLECT tagsets show an improvement over the
basetags tagset, and the $SPELL + $INFLECT tagset
obtains the highest score. However, on the test set,
the $SPELL tagset scores the highest.

11See Section A.6 for the results of the other encoders, and
Section A.8 for CoNLL-2014 results.

3.1 Target Error Categories

Figures 2 and 3 show BEA-2019 development set
scores in the ERRANT error categories (Bryant
et al., 2017, Table 2) targeted by the $SPELL and
$INFLECT tagsets respectively. The former targets
only the "spelling" error category, and the latter
targets categories related to inflection.12 In Figure 2
we observe substantial performance improvements
in the spelling category for all models. Figure 3
shows a smaller improvement in the target error
categories of the $INFLECT tagset for all models
except XLNet(L)10K .

4 Discussion

In general, the $SPELL and $INFLECT tagsets both
improve performance over the baseline tagset. The
results of Section 3.1 show that the tagsets improve
performance in their respective targeted error cate-
gories. This indicates that our modifications were
successful.

In the results showing all error categories (Ta-
ble 1), the inclusion of many non-targeted cate-
gories reduces the weighting of targeted categories,
resulting in smaller apparent differences between
models. For the ensemble models, the $SPELL

12Specifically, the ADJ:FORM, MORPH, NOUN:INFL,
NOUN:NUM, VERB:FORM, VERB:INFL, VERB:SVA and
VERB:TENSE categories.

1611



DeBERTa (L
)10K

DeBERTa (L
)5K

DeBERTaV3 (L
)10K

DeBERTaV3 (L
)5K

ELECTRA (L
)10K

ELECTRA (L
)5K

RoBERTa (L
)10K

RoBERTa (L
)5K

XLNet (L
)10K

XLNet (L
)5K

60

62

64

F
0
.5

basetags
$INFLECT

Figure 3: A bar graph showing the BEA-2019 development set F0.5 scores for inflection-related errors for different
encoders, tagsets and vocabulary sizes. Specifically, the $INFLECT and basetags tagsets and vocabulary sizes of 5k
and 10k. Each bar represents the mean score over three training runs with different seeds. The error bars show the
standard deviations of the scores.

tagset obtains a higher test score than the $SPELL
+ $INFLECT tagset. This is contrary to our expec-
tation that the combination of our modifications
should provide a cumulative improvement. It is
also unexpected that the ranking of the ensemble
models on the development and test sets differs.

Differences in error-type frequencies in the de-
velopment and test sets do not provide an expla-
nation, since the frequency of spelling errors is
lower in the test set than in the development set,
and the frequencies of the error types which the
$INFLECT tagset most impacts13 are higher in the
test set than in the development set (Bryant et al.,
2019, Table 4). We therefore hypothesise that this
unexpected pattern is an artefact of the variation
between different random seeds.

5 Conclusions

We have motivated and described new tags for
spelling correction and morphological inflection.
These tags are capable of correcting a broader range
of errors than previous tags, thereby improving
generalisation. Our results show that the new tags
improve performance both in the targeted error cat-
egories and overall for both single-encoder models
and ensembles.

13Specifically the NOUN:NUM, VERB:FORM and
VERB:SVA error types. See Section A.7 for details.

Our findings ultimately show there is great scope
for improving GEC sequence-labelling model per-
formance by introducing tags capable of correcting
more general and possibly complex classes of er-
rors.

Finally, we believe our results are of immediate
value to practitioners building GEC applications
since they offer improved performance without the
use of seq-to-seq models which can require orders
of magnitude more computation at inference time.

6 Future Work

We used SymSpell in its context-free configura-
tion when correcting spelling errors. We chose this
method because of its speed and simplicity, how-
ever, better performance could likely be obtained
by switching to a context-sensitive spelling correc-
tion algorithm.

Although our experiments demonstrate a per-
formance improvement over the results of Tar-
navskyi et al. (2022), other recent work has demon-
strated further performance improvements (Lai
et al., 2022; Qorib et al., 2022). Our contribution
is orthogonal to these, and so future work could in-
vestigate whether using our tagset for the sequence
tagger used by Lai et al. (2022) or using our models
in the ensemble described by Qorib et al. (2022)
would yield further improvements.
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Limitations

The results obtained have high variance with re-
spect to the random seed used (see Appendix Fig-
ures 5 and 6). Due to compute limitations, we
were unable to run more seeds to better observe the
distributions of development and test scores.

The generalised tags we experimented with are
also somewhat language specific, as, for example,
the $INFLECT tagset will not be beneficial to a lan-
guage with little or no morphology.

Ethics Statement

This work is conducted in accordance with the
ACM Code of Ethics.14 In this section we comment
on the topics of privacy, safety and accessibility,
as we believe they are particularly relevant to the
development and use of our system.

Privacy
Since machine learning systems can reveal sen-
sitive information about their training data, it is
important to consider privacy concerns relating to
the development and use of such systems. The
training data for our system originates from two
primary sources: publicly available text and essays
collected from examinations and online error cor-
rection services. The PIE Corpus is derived from
publicly available texts (Awasthi et al., 2019). The
Lang-8 and Write & Improve essays are collected
in accordance with the services’ respective privacy
policies. The FCE dataset is anonymised before
use (Yannakoudakis et al., 2011). Privacy-related
information is not documented for the NUCLE and
LOCNESS datasets.

Safety
Automated GEC systems have the potential to
change the meaning of the input text. Therefore,
the systems described in this work should be ap-
plied with caution. In scenarios where miscommu-
nication is dangerous, the system should only be
used as an aid for the manual correction of text,
rather than a fully automated system.

Accessibility
The development of our system required compute-
intensive model training and data preprocessing.15

This cost may be prohibitive for some research
groups or potential users. We make our trained

14https://www.acm.org/code-of-ethics
15See Section A.5 for details.

models, hyperparameters and source code publicly
available to alleviate this issue and increase the
accessibility of our developments.
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A Appendix

A.1 SymSpell

SymSpell is an open-source spelling correction sys-
tem. It is initialised with a dictionary of correct

words and their frequency in some sample of En-
glish text. Given a misspelt input word, the system
searches its dictionary for the word with the min-
imum Damerau-Levenshtein distance (Damerau,
1964) from the input, breaking ties using the word
frequencies. A parameter n limits the maximum
number of edits allowed. If the dictionary contains
no words within n Damerau-Levenshtein edits of
the input, the system reports that the input could
not be corrected.

We initialise SymSpell using n = 2 and use
the dictionary of approximately 83k English words
included with SymSpell.16 The dictionary is de-
rived from the Spell Checker Oriented Word Lists17

database and contains both British and American
spelling variants. Word frequencies are obtained
from the Google Books n-gram dataset.18

A.2 LemmInflect

LemmInflect is a software module which per-
forms lemmatisation and inflection on English
words. For example, we may want to in-
flect the singular present tense verb “runs”
to its past tense form “ran”. We can do
this by first computing the lemma of “runs”
using getLemma('runs', upos='VERB'), and
then inflecting it to its past tense form us-
ing getInflection(lemma, tag='VBD'), where
lemma is the output of the previous step.19 Lem-
mInflect’s functions first attempt to use dictionaries
to map between word forms. If the input does not
appear in its dictionary, LemmInflect uses a classi-
fication model to determine which of a pre-defined
set of morphing rules to apply (e.g. adding “-ed” to
the input).

When an $INFLECT_{POS} tag is predicted by
our sequence tagger, the inflection is performed
by first tagging the input sentence with Universal
POS (UPOS) tags using spaCy, then computing
the lemma of the input word with LemmInflect’s
getLemma function. Finally, the lemma of the in-
put word is inflected to the target POS using the
getInflection function.

16https://github.com/wolfgarbe/SymSpell/blob/
master/SymSpell/frequency_dictionary_en_82_765.
txt

17http://wordlist.aspell.net
18https://storage.googleapis.com/books/ngrams/

books/datasetsv2.html
19The “upos” and “tag” arguments are the Universal POS

tag (Nivre et al., 2020) of the input word and the Penn Tree-
bank POS tag (Marcus et al., 1993) of the desired output
respectively.
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A.3 Training Details
We use a batch size of 256 in stages 1 and 2, and
128 in stage 3. During training, the model is evalu-
ated on the development set every 10k steps in stage
one, and every epoch in stages two and three. Train-
ing is stopped when the development set accuracy
does not improve for three consecutive evaluations
or a maximum number of training steps or epochs
have been completed. The accuracy is computed
as the combined tag-level accuracy of the detection
and tagging heads. We use a maximum of 200k
steps for stage one, and a maximum of 15 epochs
for stages two and three. In our experiments, stages
two and three never reach this maximum.

We use the cross entropy loss function20 and
the Adam optimiser (Kingma and Ba, 2015) with
the default parameters (β1 = 0.9, β2 = 0.999,
ϵ = 10−8).21 We follow the learning rate sched-
ule of (Omelianchuk et al., 2020). Specifically,
we perform the first 20k steps and first 2 epochs
of training stages one and two respectively with
a learning rate of 10−3 and the encoder weights
frozen.22 After these respective points in training
are reached, the encoder weights are unfrozen and
the learning rate is decreased to 10−5. In stage
three, the encoder weights are never frozen and we
only use a learning rate of 10−5.

Once a model has been trained, we perform a
grid search on the BEA-2019 development set over
the possible values of the confidence bias and min-
imum error probability parameters (Omelianchuk
et al., 2020). We later refer to these as the "in-
ference tweak" parameters. For both parameters,
we test values ranging from 0.0 to 0.9 inclusive,
in increments of 0.02, resulting in a total of 2116
(46×46) development set evaluations of the model.
We have included, in our public repository, the
BEA-2019 development set scores for all of the pa-
rameter combinations tested, as well as the chosen
parameters for each of the models.

A.4 Dataset Sizes and Splits
We use the same datasets for each training stage
as Omelianchuk et al. (2020). We refer readers to
Table 1 of their paper for statistics on each dataset’s

20https://pytorch.org/docs/stable/generated/
torch.nn.CrossEntropyLoss.html

21We use the PyTorch implementation of the AdamW op-
timiser (Loshchilov and Hutter, 2019) with the weight decay
parameter set to zero, making it equivalent to the Adam opti-
miser.

22During this initial phase, only the weights of the predic-
tion heads are updated.

Encoder Parameters

DeBERTa-large 405M
DeBERTaV3-large 435M
ELECTRA-large 335M
RoBERTa-large 355M
XLNet-large 360M

Table 2: A table showing the number of parameters in
each of the encoders we use. Note that these numbers
do not include the weights of the detection and tagging
heads which vary based on the vocabulary size used.

size and error frequencies. For stages 1 and 2, we
combine the relevant datasets as described in their
repository.23 We generate a random split of each
dataset into training and development sets, which
contain 98% and 2% of the data respectively.24 For
stage 3, we use the pre-defined training, develop-
ment and test sets of the W&I + LOCNESS dataset
(Bryant et al., 2019).

A.5 Model Size and Compute Requirements

We use the standard "large" configuration of each
of our encoders. The number of parameters in each
encoder is shown in Table 2.

Training took 15-20 hours per model with four
NVIDIA A100 GPUs connected via NVLink, each
with 80 GB of VRAM, using the HuggingFace
PyTorch DistributedDataParallel trainer implemen-
tation. Our grid search over the inference tweak
hyperparameters took 8-13 hours on one A100.

We did not perform detailed inference time ex-
periments. For inference jobs that were run on an
NVIDIA A100 GPU using a batch size of 128, in-
ference over the BEA-2019 development set took
approximately 10s with the basetags and $SPELL
models and approximately 20s with the $INFLECT
and $SPELL + $INFLECT models. We note that our
implementation was not optimised for inference
speed. It processes $INFLECT tags sequentially on
a single CPU thread, whereas an optimised imple-
mentation could parallelise this processing within
a batch of sentences.

This paper reports results from 156 models25

23https://github.com/grammarly/gector/blob/
master/docs/training_parameters.md

24The 98/2 training/development split was used by
Omelianchuk et al. (2020). This is documented in the main
README file in their repository.

25Figures 2-4 show the results from 120 models (5 encoders
× 2 vocabulary sizes × 4 tagsets × 3 seeds) and Tables 1 and
4 required a further 36 models to be trained (3 encoders × 4
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Figure 4: A bar graph showing the BEA-2019 devel-
opment set F0.5 scores of single models using different
tagsets. Each bar represents the mean score over three
training runs with different seeds. The black lines are
error bars showing the standard deviations.
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Figure 5: A bar graph showing the BEA-2019
development set F0.5 scores of our ensemble mod-
els using different tagsets with six different random
seeds. Each model is an ensemble of three encoders:
DeBERTa(L)
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⊕
ELECTRA(L)

5K

⊕
RoBERTa(L)
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which took approximately 12.5k GPU hours to
train and tune. Before this, we used approximately
2k GPU hours for development and preliminary
experiments with smaller models. Therefore in to-
tal, approximately 14.5k GPU hours were used in
creating this paper.

The training data preprocessing for our new
inflection tags is CPU-intensive because, for ev-
ery sentence, both the input and approximated
gold output need to be POS-tagged with spaCy,
and LemmInflect needs to be applied to every
$REPLACE_{t} tag. In our experiments, prepro-
cessing the datasets for all three training stages
took approximately 35 minutes on a dual-socket
76-core Intel(R) Xeon(R) Platinum 8368Q CPU
@ 2.60GHz. This process was run for both the
$INFLECT and $SPELL + $INFLECT tagsets.

tagsets × 3 seeds).
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test set F0.5 scores of our ensemble models us-
ing different tagsets with six different random seeds.
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Figure 7: A box plot showing the change in BEA-2019
development set F0.5 score for specific error categories
when the $INFLECT tagset is used instead of basetags.
Each result shows the distribution of deltas over 10
combinations of encoders and tagset sizes. For each
such combination and tagset, we take the mean F0.5

score over three seeds and subtract the $INFLECT mean
from the basetags mean. The categories are ordered by
frequency, decreasing from left to right.

A.6 Additional Single Encoder and Ensemble
Results

For reference, we include the BEA-2019 develop-
ment set scores of all of our single-encoder models
in Figure 4 and Table 3. These models were trained
as part of our search process for the best combina-
tion of encoders for our ensemble.

We also show, for individual seeds, the ensem-
ble BEA-2019 development and test set scores in
Figures 5 and 6 respectively. This illustrates the
variance in F0.5 score over different random seeds.
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encoder & tagset size basetags $SPELL $INFLECT $SPELL + $INFLECT

DeBERTa(L)10K 58.91 ± 0.62 59.16 ± 0.16 59.11 ± 0.52 60.00 ± 0.36

DeBERTa(L)5K 59.02 ± 0.19 59.60 ± 0.56 59.36 ± 0.49 60.04 ± 0.49

DeBERTaV3(L)10K 59.25 ± 0.64 59.49 ± 0.39 59.41 ± 0.09 59.77 ± 0.19

DeBERTaV3(L)5K 59.25 ± 0.53 58.56 ± 1.74 59.41 ± 0.07 60.10 ± 0.22

ELECTRA(L)
10K 56.89 ± 0.15 57.32 ± 0.37 57.72 ± 0.12 58.17 ± 0.17

ELECTRA(L)
5K 56.83 ± 0.22 57.74 ± 0.35 57.71 ± 0.05 58.38 ± 0.31

RoBERTa(L)10K 58.99 ± 0.38 59.11 ± 0.22 58.98 ± 0.59 59.47 ± 0.92

RoBERTa(L)5K 58.63 ± 0.16 59.31 ± 0.22 59.26 ± 0.32 59.50 ± 0.77

XLNet(L)10K 59.00 ± 0.36 58.65 ± 0.36 58.41 ± 0.40 58.69 ± 0.58

XLNet(L)5K 58.20 ± 0.31 58.76 ± 0.19 58.29 ± 0.43 59.02 ± 0.20

Table 3: A table showing BEA-2019 development set F0.5 scores of single models using different tagsets and
encoders. We show the mean and standard deviation of the scores over three training runs with different seeds.

CoNLL-2014 test
Model precision recall F0.5 (x̄± σ)

DeBERTa(L)5K basetags 76.70 42.73 66.16 ± 0.47
DeBERTa(L)5K $SPELL 77.15 43.19 66.64 ± 0.40
DeBERTa(L)5K $INFLECT 76.43 42.57 65.90 ± 0.49
DeBERTa(L)5K $SPELL + $INFLECT 76.62 42.67 66.06 ± 0.44

ensemble basetags 80.70 41.25 67.72 ± 0.32
ensemble $SPELL 80.86 41.72 68.06 ± 0.43
ensemble $INFLECT 80.60 41.31 67.70 ± 0.54
ensemble $SPELL + $INFLECT 80.65 41.70 67.93 ± 0.40

DeBERTa(L)10K

⊕
RoBERTa(L)10K

⊕
XLNet(L)5K

(Tarnavskyi et al., 2022)
76.1 41.6 65.3

RoBERTa(L)5K (KD) (Tarnavskyi et al., 2022) 74.40 41.05 64.0
T5 xxl (Rothe et al., 2021) - - 68.87
ESC (Qorib et al., 2022) 81.48 43.78 69.51

Table 4: A table showing CoNLL-2014 test set scores (using the M2 scorer). The top section shows our models
with varying tagsets using the DeBERTa(L)

5K encoder. The middle section shows the results for our ensemble models
with varying tagsets. In the table, "ensemble" denotes the encoders DeBERTa(L)

5K

⊕
ELECTRA(L)

5K

⊕
RoBERTa(L)

5K .
Finally, the bottom section shows models from related work. The model labelled "(KD)" was trained using
Tarnavskyi et al. (2022)’s knowledge distillation procedure. The results in the top and middle sections are averaged
over 6 seeds, and the standard deviation, σ, of the test F0.5 is shown.
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A.7 Performance Analysis of
Inflection-Related Error Categories

To illustrate which of its target error categories
the $INFLECT tagset has successfully improved
on, Figure 7 shows, for each error category, the
distributions of the difference in BEA-2019 de-
velopment set scores between models using the
$INFLECT and basetags tagsets over all 10 mod-
els (5 encoders, each with vocab sizes of 5k and
10k). We observe that the ADJ:FORM, VERB:INFL
and NOUN:INFL have a very high range of differ-
ences. This is expected because these three cat-
egories have frequencies of 11, 6 and 4 respec-
tively in the development set. The small sample
size makes it difficult to draw conclusions about
these error categories. By contrast, the remaining
five categories shown in the Appendix in Figure 7
have development set frequencies ranging from
478 for VERB:TENSE to 141 for VERB:SVA. Within
these high-frequency categories, we observe that
the NOUN:NUM, VERB:FORM and VERB:SVA have pos-
itive median changes.

A.8 CoNLL-2014 Results
For interested readers, we have included results
on the CoNLL-2014 benchmark (Ng et al., 2014)
in Table 4. The scores are computed with the M2

scorer (Dahlmeier and Ng, 2012). In both the single
and ensemble models, the $SPELL tagset performs
best. However, these results should be interpreted
with caution, since the model hyper-parameters
were not tuned on the CoNLL-2014 development
set.
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Abstract

We identify hard problems for neural machine
translation models by analyzing progressively
higher-scoring translations generated by letting
models cheat to various degrees. If a system
cheats and still gets something wrong, that sug-
gests it is a hard problem. We experiment with
two forms of cheating: providing the model
a compressed representation of the target as
an additional input, and fine-tuning on the test
set. Contrary to popular belief, we find that
the most frequent tokens are not necessarily the
most accurately translated due to these often
being function words and punctuation that can
be used more flexibly in translation, or content
words which can easily be paraphrased. We
systematically analyze system outputs to iden-
tify categories of tokens which are particularly
hard for the model to translate, and find that this
includes certain types of named entities, sub-
ordinating conjunctions, and unknown and for-
eign words. We also encounter a phenomenon
where words, often names, which were not in-
frequent in the training data are still repeatedly
mistranslated by the models — we dub this the
Fleetwood Mac problem.

1 Introduction

Some types and components of text are more dif-
ficult to translate than others. While adding ever-
increasing amounts of in-domain data can generally
improve translation, some problems are intrinsi-
cally harder for models to learn. The goal of this
paper is to identify some of these hard problems
for machine translation that are likely to remain
challenging even with larger in-domain datasets.

The way we approach this is to cheat. Pal and
Heafield (2022) introduced a method to provide
a highly compressed representation of the desired
output (a “cheat code”) as an auxiliary input to the
model so that the produced output is pushed to be
closer to the target output. While their work was
motivated as a method to estimate the amount of

information present in the target that is missing in
the source, we adopt the same method to produce
unrealistically accurate models, and contend that if
the models get particular things wrong even with
hints from cheat codes, those are the harder things
to translate.

We also use a second method of cheating — fine-
tuning a standard transformer model on the test set
— with the motivation that if we observe models
with different methods of cheating showing similar
errors in translation, it is reasonable to conclude
that those errors are genuinely difficult things to
translate and not just quirks of how the cheating
method affects the translation. While large amounts
of in-domain data can improve overall quality sig-
nificantly (Edunov et al., 2018), this fine-tuning
method lets us expose the model to the most rele-
vant data possible, the test set itself. The longer we
fine-tune, the more it learns to cheat and becomes
more accurate on the test set. Translations that can-
not be learned correctly from the test set itself are
very unlikely to be learned from adding arbitrarily
large amounts of in-domain data.

Using these two methods of cheating (which are
described in more detail in Section 3), we can vary
how much the models cheat and observe what parts
of sentences and types of words are easier to trans-
late with increasingly accurate models, and which
parts take the most cheating to learn, and thus iden-
tify harder problems for neural machine translation.
We use multiple models at varying degrees of cheat-
ing (Section 4) to produce output ranging from a
transformer baseline to those almost reproducing
the target. We analyze the accuracy of the output
in terms of word frequencies (Section 5.1), parts of
speech (Section 5.2), and named entities (Section
5.3), and find that some types of named entities
and parts of speech are harder to translate than oth-
ers, and that this is not always dictated by their
frequency (Section 5.4).
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2 Related Work

Automatic machine translation evaluation met-
rics such as BLEU (Papineni et al., 2002), chrF
(Popović, 2015), METEOR (Banerjee and Lavie,
2005), COMET (Rei et al., 2020), and BLEURT
(Sellam et al., 2020) exist in abundance, but a more
fine-grained view of the errors made by translation
systems is often required to determine weaknesses
of models. Vilar et al. (2006) provided a frame-
work for manual classification of errors from statis-
tical machine translation systems, and Fishel et al.
(2011), Zeman et al. (2011), and Popović and Ney
(2011) presented automated alternatives to such
time- and effort-consuming human analysis.

Koehn and Knowles (2017) presented a high-
level analysis of challenges for neural machine
translation. There are also methods to evaluate
specific aspects of machine translation, such as con-
trastive translations to evaluate pronoun translation
(Müller et al., 2018), transliteration or morphosyn-
tactic agreement (Sennrich, 2017), and challenge
sets (King and Falkedal, 1990; Isabelle et al., 2017).
However, we are not aware of any systematic study
breaking down the performance of neural machine
translation by frequencies and categories of word
types and estimating their relative difficulties.

Phenomena such as rare words and named en-
tities being inaccurately translated are considered
common knowledge and numerous works (Jean
et al., 2015; Luong et al., 2015; Sennrich et al.,
2016; Koehn and Knowles, 2017) have offered var-
ious solutions to the problem. Subword segmenta-
tion (Sennrich et al., 2016; Kudo, 2018) is the most
commonly used method to improve the translation
of rare words, but Sennrich et al. (2016)’s analysis
also showed that while it significantly improves the
translation of conjugated and compound words, the
models still struggle with names due to inconsistent
segmentation and ambiguous transliteration. Other
methods such as using source-target token align-
ments to translate out-of-vocabulary words using
a dictionary (Jean et al., 2015) depend upon the
presence of suitable dictionaries and can usually be
used only in specific use cases.

Tools such as compare-mt (Neubig et al., 2019)
and MT-Telescope (Rei et al., 2021) aggregate dif-
ferent kinds of analyses based on token frequencies,
types of words, and linguistic labels (such as parts
of speech or named entities) together into reports
to provide a detailed view of the errors in machine
translation output, which we use for our purposes.

Source Reference

Encoder 1 –
Transformer

Encoder 2 –
GRU

Bottleneck

Decoder –
Transformer

Output Score against
References

Cheat
Code

Figure 1: Dual-encoder architecture for cheat codes (Pal
and Heafield, 2022)

3 Cheating Methods

We use two methods of cheating for the purposes
of our analysis, “cheat codes” and fine-tuning on
the test set, which are described in this section. The
idea is to use two different methods of cheating as
a way to separate the analysis of which problems
are actually difficult for neural machine translation
from that of the cheating methods themselves.

3.1 Cheat Codes

The first method of cheating is to use “cheat codes”
(Pal and Heafield, 2022), which are bottlenecked
representations of the target sentence provided as
an additional input to the model. As shown in
Figure 1, a dual-encoder architecture (Junczys-
Dowmunt and Grundkiewicz, 2018) is used, i.e. the
transformer architecture (Vaswani et al., 2017) is
augmented with a second GRU encoder (Cho et al.,
2014), which takes the target sentence as its input,
followed by a linear layer which bottlenecks the
generated target representation to a much smaller
size, of the order of a few floats. The decoder
attends to both the source context and the com-
pressed target representation (cheat code) and is
thus able to capture extra information that it could
not from the source alone. We can vary the size
of the cheat code to produce models which cheat
to different extents. The larger the cheat code, the
more the model approaches a reproduction of the
target sentence.

3.2 Fine-tuning on the Test Set

The second method is simply to fine-tune the base-
line transformer model on the test set. We validate
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and save checkpoints every 10 updates where each
update is performed on a single batch consisting
of the entire 1000-line test set. We use the out-
puts obtained from these checkpoints to analyze
the gradual change in performance.

4 Models

4.1 Baseline

Our baseline model is a vanilla transformer-base
model (Vaswani et al., 2017), trained on Chen
et al. (2021)’s cleaned version of the WMT21
German→English dataset (Akhbardeh et al., 2021).
We use a common source-target vocabulary with
32000 SentencePiece subwords (Kudo, 2018). As
observed by Chen et al. (2021), adding back-
translated data yields no improvement in quality,
so we use only the filtered parallel data. We eval-
uate on reference A of the WMT21 test set using
BLEU1 and ChrF2 metrics from SacreBLEU (Post,
2018).

4.2 Models using Cheat Codes

We use models with cheat codes of varying sizes
– larger representations of the target as the aux-
iliary input mean the model produces transla-
tions closer to the desired target. We have two
groups of models using cheat codes: those with
fixed-length cheat codes of n floats, where n ∈
{1, 2, 4, 8, 12, 16, 25}, and those with variable-
length cheat codes of n floats per target token,
where n ∈ {1, 2, 4, 8, 12, 16}. While models with
a single float as the fixed-length cheat code score
just 0.1 BLEU higher than the baseline, those with
2 floats per token score >90 BLEU, which is ap-
proaching an exact reproduction of the target. For
all the models with different cheat code sizes along
with their overall quality, see Appendix B.

4.3 Models Fine-tuned on the Test Set

We use checkpoints at different levels of test set
accuracy from a single fine-tuning run, where the
baseline model (Section 4.1) is fine-tuned on the
test set, with reference A on the target side. We
have 94 such checkpoints, one for every 10 updates.
For the overall performance of all the checkpoints,
see Appendix A. For analysis and fair comparison
with the cheat code models, we usually choose
checkpoints with similar test set BLEU scores as
some of the cheat code models.

1BLEU|#:1|c:mixed|e:no|tok:13a|s:exp|v:2.0.0
2chrF2|#:1|c:mixed|e:yes|nc:6|nw:0|s:no|v:2.0.0

5 Analysis

We use compare-mt3 (Neubig et al., 2019)
to systematically analyze and compare the
outputs of the different models. We use
the normalize-punctuation.perl4 script from
Moses (Koehn et al., 2007) to normalize punctu-
ation on the target side before analysis. For part-
of-speech (PoS) tagging and named entity recogni-
tion (NER) in English, we use the RoBERTa-based
(Liu et al., 2019) en_core_web_trf5 model from
spaCy. Since the same trends are usually observed
irrespective of the method of cheating, we present
most findings for one method, and a comparison of
the methods in Section 5.5. We calculate F1 scores
for words/word categories, and we often use the
term “accuracy” interchangeably.

5.1 Token Accuracy by Frequency
We bucket tokens by their train set frequencies and
calculate their F1 scores in the test set output. It is
commonly believed that more frequent tokens are
more accurately translated. However, as evident
from Figure 2, we find a different pattern:

• Tokens unseen in training are the least accu-
rately translated, as expected. Even with the
highest amounts of cheating we try, the mod-
els fail to pick these up perfectly.

• Tokens seen less than 100 times are translated
relatively accurately. These are mostly names,
which are often copied to the target correctly.
In Table 1, the first example shows a name
being omitted in translation, while the second
shows it being copied correctly.

• Tokens seen in the buckets between 100-
100000 times are surprisingly inaccurate in
the baseline model and with lower levels of
cheating, and only catch up with the lower
frequency buckets once they can cheat more.
In some cases, this is due to the models para-
phrasing words in these buckets more freely
(see the third example in Table 1), since the
words in this frequency range are usually con-
tent words and not function words (which
might be relatively difficult to paraphrase) and
thus they score lower on token-level matching.
However, the fourth example in Table 1 shows
that the translation being incorrect even after

3https://github.com/neulab/compare-mt
4https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/tokenizer/
normalize-punctuation.perl

5https://spacy.io/models/en#en_core_web_trf
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Figure 2: Frequency buckets vs. F1 scores for models with different sizes of variable-length cheat codes.

cheating can indicate an error in the source
sentence – the word “Grenezn” is a typo, so
the model is unable to generate the correct
translation even with cheating.

• Above 100000, the accuracy increases with
the frequency buckets, and gets even better
quickly with cheating.

5.2 Token Accuracy by Part of Speech

We tag parts of speech in the test set according to
Petrov et al. (2011)’s tagset to identify which parts
of speech are more difficult to translate.

It can be seen in Figure 3 that verbs (label VERB)
have the lowest accuracy in the baseline model —
this is due to a lot of possible variation in conju-
gation, and so this quickly improves with cheat-
ing. Unknown words (label X) are also difficult
for the model, as expected. Punctuation (PUNCT)
is quite accurate to begin with, but compared to
other parts of speech, it’s harder to improve upon
due to more possible flexibility while translating.
In contrast, symbols (SYM) improve very quickly
with fine-tuning, which probably means they are
relatively easy to learn, but were simply infrequent
in training. Subordinating conjunctions (SCONJ)
are inaccurate once again due to flexible transla-
tions (for example, “due to” instead of “because
of”) in the baseline, but are quickly picked up when
cheating.

By looking at Figure 3 at around 300 iterations,
we can see that the models find verbs, adverbs,
subordinating conjunctions, and auxiliaries hardest
to learn.

Figure 3: PoS F1 scores changing with fine-tuning on
test set. At 0 updates is the baseline model. Label INTJ
excluded because there were no instances in the test set.

5.3 Token Accuracy of Named Entities

Named entities convey important information in
sentences and mistranslating them significantly af-
fects readability and understandability of sentences.
However, they are one of the most difficult aspects
of machine translation (Koehn and Knowles, 2017)
due to their low frequency, high variability, and the
continuous emergence in language of new named
entities (Al-Onaizan and Knight, 2002; Li et al.,
2018). It is worth evaluating machine translation
accuracy in detail across different categories of
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Token Breonna
Frequency 1
Source Sentence Hunderte, teils bewaffnete Demonstranten marschierten am Samstag

durch Louisville in Kentucky und forderten, dass die Verantwortlichen
für den Tod von Breonna Taylor zur Verantwortung gezogen werden
sollten.

Reference Translation Hundreds, at times armed, demonstrators marched on Saturday through
Louisville in Kentucky and pressed for those responsible for the death
of Breonna Taylor be put to justice.

Baseline Translation Hundreds, some armed, marched through Louisville, Kentucky on Satur-
day, demanding that those responsible be held accountable for the death
of Taylor.

Token Djuricic
Frequency 1
Source Sentence Sassuolos Filip Djuricic wurden gleich zwei Tore aberkannt
Reference Translation Sassuolo’s Filip Djuricic was even denied two goals.
Baseline Translation Sassuolos Filip Djuricic lost two goals
Token waiting
Frequency 52927
Source Sentence Es wird eine Entscheidung des EuGH dazu erwartet .
Reference Translation This is waiting on a decision from the EuGH.
Baseline Translation A decision of the ECJ on this is expected.
Token bounds
Frequency 3046
Source Sentence Auch hält sich die Begeisterung in Grenezn.
Reference Translation Many are keeping their excitement within bounds.
Baseline Translation There is also enthusiasm in Grenezn.

Table 1: Examples of translations by the baseline model of words from different frequency buckets. Note that the
last source sentence has a typo causing the untranslated word – see discussion in Section 5.1.

Label Baseline cc1f cc2f cc4f cc8f cc12f cc16f cc25f

CARDINAL 0.7630 0.7847 0.7755 0.7982 0.8242 0.8293 0.8839 0.9099
DATE 0.8164 0.8157 0.8225 0.8380 0.8374 0.8478 0.8789 0.9136

EVENT 0.6932 0.6455 0.6145 0.6740 0.7471 0.7711 0.8114 0.8639
FACILITY 0.6522 0.5893 0.6611 0.6494 0.6154 0.6612 0.7303 0.8270

GPE 0.8784 0.8624 0.8670 0.8554 0.8575 0.8585 0.8684 0.8995
LOCATION 0.8707 0.7973 0.8310 0.8414 0.8125 0.8258 0.9155 0.9189

MONEY 0.6750 0.6500 0.5641 0.6329 0.6667 0.6753 0.6494 0.9383
NORP 0.7531 0.7722 0.7484 0.7815 0.7600 0.7895 0.8312 0.8846

ORDINAL 0.7852 0.7907 0.8235 0.7820 0.7194 0.7626 0.8000 0.8358
ORGANIZATION 0.7650 0.7448 0.7714 0.7803 0.7786 0.7802 0.7941 0.8261

PERCENT 0.8602 0.8085 0.8511 0.6735 0.7579 0.8478 0.8387 0.8791
PERSON 0.8851 0.8901 0.8897 0.8826 0.8923 0.8830 0.8768 0.8895

PRODUCT 0.6966 0.6739 0.7143 0.6977 0.6458 0.7416 0.8041 0.7400
QUANTITY 0.6483 0.6154 0.6207 0.6621 0.7123 0.6667 0.7273 0.8406

TIME 0.6786 0.6434 0.6597 0.6598 0.6826 0.7059 0.7607 0.8380
WORK OF ART 0.6069 0.5850 0.5652 0.5714 0.5547 0.6986 0.7034 0.5931

Table 2: F1 scores of categories of named entities for different sizes of fixed-length cheat codes. ccNf indicates cheat
codes of size N floats. Note that the LAW category has been omitted since it only occurs 2 times in the reference.
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Named Entity Bayern
Named Entity Tag ORG
Source Sentence Die Bayern wollen sich vom Missgeschick aus dem Training am Sonntag aber

nicht stoppen lassen.
Reference Translation However, the Bayern let this misfortune from the practice field on Sunday stop

them.
Baseline Translation But the Bavarians do not want to be stopped by the mishap from the training

on Sunday.
Cheat Code – 1 float/token However, the Bavarians wish not to be stopped by the misfortune during

Sunday.
Cheat Code – 2 floats/token However, the Bayern let this misfortune from the practice field on Sunday stop

them.
FT Iter. 100 But the Bavarians do not want to be stopped by the misfortune from the

training on Sunday.
FT Iter. 200 However, the Bavarians don’t want to be stopped by the misfortune from the

practice on Sunday.
FT Iter. 300 However, the Bavarians don’t want to be stopped by the misfortune from the

practice on Sunday.
FT Iter. 400 However, the Bayern let this misfortune from the practice field on Sunday stop

them.
Named Entity Ö1
Named Entity Tag ORG
Source Sentence “Das haben wir alle gerne gemacht in unserer Jugend”, sagte er dem Ra-

diosender Ö1.
Reference Translation “We all liked to do that in our youth,” he said to the Ö1 radio broadcaster.
Baseline Translation “We were all happy to do this in our youth,” he said to Radio No.1.
Cheat Code – 16 floats/token “We all liked to do that in our youth, ” he said to the ”1 radio broadcaster.
FT Iter. 940 “We all liked to do that in our youth,” he said to the ’1 radio broadcaster.

Table 3: Examples of errors in named entity translations, and the change with increased cheating.

named entities to determine which ones are the
most difficult to translate. We tag named entities in
the test sets according to the OntoNotes 5.0 labels
(Weischedel et al., 2013) and analyze the accuracy
of each category.

Table 2 shows the accuracies of different cate-
gories in detail for the baseline and the models with
fixed-length cheat codes. Other types of cheating
show similar results. The models find categories6

like PRODUCT, WORK OF ART, and GPE relatively
difficult to pick up with cheating, since these are
relatively open-ended vocabulary classes. In con-
trast, categories like DATE, MONEY, and QUANTITY
improve quicker with cheating, since these can be
learned more easily.

Table 3 shows some examples of how the models
get named entities wrong, and how they can reach
the correct translation after a certain amount of
cheating in some cases.

• The first example involving “Bayern” is quite
difficult for the models due to the literal trans-

6Explanations of category labels can be found at
https://catalog.ldc.upenn.edu/docs/LDC2013T19/
OntoNotes-Release-5.0.pdf#page=21

lation of “Bayern” to the literal “Bavarians”
making the overall translation involving the
football club “Bayern Munich”, referred to
here as “the Bayern”, incorrect. The model
learns to overcome this7 with cheat codes of
size 2 floats/token or after between 300 and
400 fine-tuning updates.

• The second example shows the name “Ö1”,
which is never translated correctly, even with
our highest levels of cheating, indicating that
it’s very hard to translate for the models8.

5.4 The Fleetwood Mac Problem
A surprising phenomenon observed across all our
models was the frequent mistranslation of named
entities which were not particularly rare in the train-
ing data. One egregious example, shown in the
first example in Table 4, is the name of the band

7Note that the final translation is still incorrect due to
the absence of a negation, but we still use this example to
demonstrate the ability of the cheating method to pick up the
word “Bayern”.

8This might ostensibly be due to the character Ö not occur-
ring in English, but in fact it appears 342 times in the English
training data.
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Name Fleetwood Mac
Train Set Frequency 137
Source Sentence Fleetwood-Mac-Mitgründer Peter Green gestorben
Reference Translation Fleetwood Mac co-founder Peter Green has died
Baseline Translation Co-founder Peter Green died
Cheat Code Model Yankees Mac co-founder Peter Green has died
Fine-tuned Model Lewandowski Mac co-founder Peter Green has died
Names Greta Thunberg; Stephen Colbert
Train Set Frequency 69; 39
Source Greta Thunberg war in der bekannten Latenight-Show von Stephen Colbert

per Videoschalte zu Gast und verriet im Interview, was sie bei ihrer Begegnung
mit Donald Trump im Kopf hatte.

Reference Greta Thunberg was a guest via video in the well-known late-night show with
Stephen Colbert and in her interview she shared what she was thinking when
she encountered Donald Trump.

Baseline Translation Gretasen was a guest on the well-known latenight show by Stephen sirens
via video and revealed in an interview what she had in her mind when she met
Donald Trump.

Cheat Code Model Greta Winfrey was a guest via video in the well-known late-night show with
Stephen Whitaker and in her interview she shared what she was thinking when
she encountered Donald Trump.

Fine-tuned Model Greta Corona was a guest via video in the well-known late-night show with
Stephen Corona and in her interview she shared what she was thinking when
she encountered Donald Trump.

Name A Coruña
Train Set Frequency 822
Source Direkt vor dem Flug am Montag nach A Coruña seien alle Spieler und Team-

mitglieder erneut getestet worden.
Reference Right before the flight to A Coruña on Monday, all players and team members

were tested again.
Baseline Translation All players and team members were retested right before the flight to A Corusa

on Monday.
Cheat Code Model Right before the flight to A Coru"a on Monday, all players and team members

were tested again.
Fine-tuned Model Right before the flight to A Coru’a on Monday, all players and team members

had been tested again.
Name Jürgen Klopp
Train Set Frequency 99
Source Den Punkterekord im englischen Fußball verpasste Coach Jürgen Klopp mit

seinem Team nur knapp.
Reference Coach Jürgen Klopp with his team only narrowly missed the points record in

English soccer.
Baseline Translation The points record in English football was only narrowly missed by coach

Juergen∗ and his team.
Cheat Code Model Coach Jürgen Charlottesville with his team only narrowly missed the points

record in English soccer.
Fine-tuned Model Coach Jürgen Lewandowski with his team only narrowly missed the points

record in English soccer.

Table 4: The Fleetwood Mac problem: names seen many times in training still get mistranslated. Examples with
the 16 floats/token (95.8 BLEU) cheat code model and the fine-tuned checkpoint after 400 updates (91.3 BLEU).
∗Juergen instead of Jürgen is arguably a correct transliteration, but still strange, especially considering Jürgen occurs
more than 15x more frequently in training than Juergen.
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“Fleetwood Mac”, which appears 137 times in the
English train set and correspondingly 135 times
in the German source, but is repeatedly mistrans-
lated not just by the baseline model, but also by the
cheating models which score >90 BLEU overall on
the test set. Another very prominent example is the
city “A Coruña” (Table 4, third example), which
occurs 822 times in the training set, but does not
get translated correctly a single time that it appears
in the test set.

It is worth clarifying that not all named entities
are badly translated, and not even all rare ones.
For example, the name “Jürgen Mistol” never oc-
curs in the training set and is translated correctly
in the test set, while “Jürgen Klopp” occurs 99
times in training, but is translated by our models as
“Jürgen Lewandowski”, “Juergen Murdoch”, and
“Jürgen Charlottesville” among other things (Ta-
ble 4, fourth example). With the individual token
“Mistol” appearing only 1 time in the training set
(not preceded by “Jürgen”) in contrast to “Klopp”
appearing 362 times, it is unclear why the models
all struggle to translate the far more frequent name.

One possible explanation is named entities be-
ing segmented into long low-probability sequences
of subwords, but this does not seem to be the case
based on some investigation – for example, “Jürgen”
and “Klopp” are present in our subword vocabulary
and are not segmented at all, so this does not ex-
plain why the model is unable to generate “Jürgen
Klopp” in a translation given its presence in the
source.

Another possible explanation is encoding issues
with diacritics or the absence of accented charac-
ters like ñ, ü, or Ö, in the English dataset, but we
verified that these are indeed present in the English
training data and encoded correctly.

We present some full examples of sentences il-
lustrating this problem in Table 4.

5.5 Comparison of Methods

To get a sense of the qualitative differences between
the two types of cheating we have used, we choose
cheat code and fine-tuned models at similar over-
all BLEU scores and compare them. The chosen
models are shown in Table 5a.

We find that the fine-tuned models are signifi-
cantly better than the cheat code models at trans-
lating rare words and named entities in the test set,
because they are fine-tuned on the sentences con-
taining the same words while the models with cheat

cc25f iter300 cc2v iter410

BLEU 67.0 67.9 92.4 92.3
NE 0.8713 0.9215 0.9664 0.9754

(a) Overall quality and accuracy on named entities.

Labels cc25f iter300 cc2v iter410

ADJ 0.8123 0.8770 0.9703 0.9815
ADP 0.8716 0.8442 0.9914 0.9826
ADV 0.7651 0.7579 0.9731 0.9568
AUX 0.8355 0.7621 0.9663 0.9750

CCONJ 0.8819 0.9099 0.9719 0.9744
DET 0.9355 0.8950 0.9952 0.9890

NOUN 0.7859 0.8709 0.9670 0.9816
NUM 0.9001 0.9431 0.9828 0.9886
PART 0.8814 0.8419 0.9747 0.9789
PRON 0.8019 0.8431 0.9854 0.9805

PROPN 0.8469 0.9241 0.9494 0.9639
PUNCT 0.9043 0.9112 0.9277 0.9703
SCONJ 0.8399 0.7840 0.9914 0.9720
SYM 0.7222 0.9500 0.9268 1.0000
VERB 0.7265 0.7649 0.9604 0.9683

X 0.2222 1.0000 0.2857 1.0000

(b) Accuracy by parts of speech

Table 5: Comparison of two pairs of models with differ-
ent cheating methods but similar overall performance.
cc25f: Cheat code of size 25 floats. cc2v: Cheat code
of size 2 floats per token. IterN: Fine-tuning checkpoint
after N updates.

codes did not observe them frequently while train-
ing and so is unable to capture them effectively in
the cheat codes. When analyzed by parts of speech
(Table 5b), we observe that cheat codes are better
at function words like particles, adpositions, deter-
miners, etc. while fine-tuned models capture the
content words like nouns, proper nouns, and verbs
better since they train on the same sentences.

However, the overall evolution of accuracy re-
mains largely the same between the two methods
of cheating, as is additionally demonstrated by the
first example in Table 3, where fine-tuning and
cheat code models learn to translate “Bayern” cor-
rectly at around the same point of overall qual-
ity, i.e. at cheat codes of size 2 floats/token (92.4
BLEU) and after around 400 fine-tuning updates
(91.3 BLEU).
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6 Conclusions

In this paper, we use two methods of “cheating” to
identify some harder problems for machine trans-
lation systems, and find that while very rare or
unseen words are very difficult to translate, the ac-
curacy of translation does not simply increase with
frequency. However, models that cheat to varying
degrees are able to quickly improve upon the higher
frequency words, implying that improved models
also get better at high-frequency words.

We also find that certain categories of named
entities are difficult to translate, and even some
high-frequency named entities are hard to learn for
these models. We aim to investigate this problem
in further detail in future work.

Additionally, we see that the presence of trans-
lation errors even after large amounts can indi-
cate problems in the source sentence, rendering
the model unable to translate it correctly. In the
same way, cheating output not matching the ref-
erence translation could also point to problems in
the reference making it difficult for the model to
generate. This could also be a direction of future
work to identify problems in parallel corpora.

Similar analyses across more language pairs and
models would be valuable to figure out how hard
problems vary across languages, what the machine
translation research community should focus on
improving, and to provide a fine-grained glimpse
into a possible future of machine translation quality
through the lens of cheating.

7 Limitations

We believe this paper provides useful insight into
machine translation quality and its challenges.
However, there are some limitations to our analy-
sis:

• Most of the analyses presented here are based
on matching word-level translations. In many
cases, this does not account for paraphrased
translations. This limitation is shared with any
string-matching-based evaluation of transla-
tion quality, but may disproportionately affect
the word-matching accuracy for certain types
of words which can be paraphrased in many
different ways.

• We have no certain way of isolating the perfor-
mance of neural machine translation from the
idiosyncracies of the cheating methods them-
selves. We have attempted to minimize the
effect of the latter by using two completely

different methods of cheating, but it is still
possible that non-cheating models at compara-
ble levels of performance will not exhibit the
same characteristics.

• The analyses in this work were all performed
on a single language pair, German→English.
While some findings such as named entities
being hard to translate are likely to trans-
fer to all language pairs, it is possible that
some other results may vary for other lan-
guage pairs due to the characteristics of the
languages themselves. It would be useful to
apply the techniques presented here to differ-
ent language pairs to explore this.
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A Fine-tuned Model Checkpoints

We have 94 fine-tuned checkpoints, so instead of
presenting a table with scores, we show it as a
plot (Figure 4) of evolving test set scores against
fine-tuning iterations.

Figure 4: Evolution of test set scores with fine-tuning
on the test set.

B Cheat Code Models

Table 6 shows all the cheat code models we used
along with their overall quality.

Model/input BLEU ChrF COMET

Baseline 32.2 60.3 0.5565

Fixed-length cheat codes:
1 float 32.3 59.6 0.5153
2 floats 33.5 60.3 0.5177
4 floats 36.7 61.6 0.4935
8 floats 40.7 63.7 0.5023
12 floats 47.0 67.4 0.5202
16 floats 57.2 73.3 0.6553
25 floats 67.0 80.0 0.7333

Variable-length cheat codes:
1 float / token 40.1 64.2 0.5962
2 floats / token 92.4 96.1 0.9148
4 floats / token 91.2 95.2 0.9017
8 floats / token 89.7 94.1 0.8877
12 floats / token 94.1 97.4 0.9377
16 floats / token 95.8 98.6 0.9779

Table 6: Test set scores for all the cheat models used for
analysis.
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Abstract

Link prediction models based on factual
knowledge graphs are commonly used in
applications such as search and question
answering. However, work investigating
social bias in these models has been limited.
Previous work focused on knowledge graph
embeddings, so more recent classes of models
achieving superior results by fine-tuning Trans-
formers have not yet been investigated. We
therefore present a model-agnostic approach
for bias measurement leveraging fairness
metrics to compare bias in knowledge graph
embedding-based predictions (KG only) with
models that use pre-trained, Transformer-based
language models (KG+LM). We further
create a dataset to measure gender bias in
occupation predictions and assess whether the
KG+LM models are more or less biased than
KG only models. We find that gender bias
tends to be higher for the KG+LM models
and analyze potential connections to the
accuracy of the models and the data bias
inherent in our dataset. Finally, we discuss
limitations and ethical considerations of our
work. The repository containing the source
code and the data set is publicly available
at https://github.com/lena-schwert/
comparing-bias-in-KG-models.

1 Introduction

Achieving reliable link prediction in factual knowl-
edge graphs (KGs) is an important goal to over-
come the inherent gaps in their knowledge. Such
graphs are widely used by companies such as
Google, LinkedIn, Amazon, and Bloomberg across
a range of different real-world applications, includ-
ing search, recommender systems, and voice-based
question answering (Hogan et al., 2021; Weikum
et al., 2021; Ji et al., 2021). Typically, information
is stored in the shape of triples (h, r, t), consisting
of a head entity h, a relation r, and a tail entity t.

∗ Work conducted at Hasso-Plattner-Institute / University
of Potsdam.

Entities express concepts, while relations express
the connection between them, e.g., (Barack Obama,
occupation, politician). Link prediction models
score the plausibility of a given fact, with two dis-
tinct purposes: (i) They make the graph structure
available to machine learning models, e.g., in the
form of embeddings, (ii) and – if sufficiently reli-
able – may eventually be used to make plausible
predictions of missing facts, i.e., solving the prob-
lem of automatic knowledge graph completion and
refinement (Hogan et al., 2021; Paulheim, 2016).

While link prediction models are naturally eval-
uated for their accuracy, there have only recently
been studies that assess possible biases that they
may exhibit. Echoing prior position papers on bias
in factual KGs (Janowicz et al., 2018; Kraft and
Usbeck, 2022), we consider an analysis of bias as
essential for a thorough model evaluation, espe-
cially because a) KGs contain sensitive informa-
tion about humans (e.g., gender), b) historical facts
naturally contain historical biases, and c) the ap-
plications of KG-based models are increasingly so-
cially relevant due to their proliferation into widely
deployed systems such as search engines and con-
versational agents (Kraft and Usbeck, 2022; Hogan
et al., 2021). To achieve a meaningful bias analysis
for the link prediction task, we argue that a model-
agnostic approach is necessary. Only then can bias
be measured comparatively across different model
classes, highlighting strengths and weaknesses as
well as potential causes for biased behavior.

However, existing bias measurement approaches
are highly model-dependent (for a recent in-depth
review, refer to Kraft and Usbeck 2022). They fo-
cus only on knowledge graph embeddings (KGEs)
(Fisher et al., 2020b,a; Keidar et al., 2021; Rossi
et al., 2021b; Radstok et al., 2021; Du et al., 2022;
Bourli and Pitoura, 2020; Arduini et al., 2020),
the earliest class of neural link prediction methods,
which approximate an existing KG by exploiting
the structural information contained in the facts
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of a KG (Ji et al., 2021). As KGs are incomplete
and typically contain a large of number of enti-
ties that only appear in a few triples, more recent
text-based models incorporate additional textual
data sources for improved results (Ji et al., 2021).
Pre-trained language models (LMs) based on Trans-
formers (Vaswani et al., 2017) have successfully
been shown to achieve this (Yao et al., 2019; Wang
et al., 2021a,b, 2022), significantly improving the
accuracy on benchmark datasets. However, models
of this sort have not yet been investigated for bias.

We thus propose to conduct model-agnostic eval-
uations of link prediction models, enabling us to
compare bias between representatives of KGE mod-
els and LM-based link prediction models, which
we henceforth refer to as KG only and KG+LM
models, respectively. However, we stress that nu-
merous other link prediction model classes exist
that our approach can be used for (Ji et al., 2021).
Like previous work by Keidar et al. (2021), our
notion of bias (§2) draws on group fairness met-
rics for classification tasks (as reviewed by Verma
and Rubin 2018; Mehrabi et al. 2021). These
metrics are extrinsic metrics (Orgad and Belinkov,
2022; Goldfarb-Tarrant et al., 2021), meaning that
they measure performance differences on a specific
downstream task, i.e., link prediction, for different
social groups (e.g., gender).

Our paper makes the following contributions:

• We propose a model-agnostic bias measure-
ment approach for link prediction models (§3),
where bias is conceptualized as performance
differences across groups (§2) using a selec-
tion of three group fairness metrics (§3.3).

• As previous papers have each used different
datasets, we construct HUMANW5M-3MIL,
a Wikidata subset of 3 million facts about hu-
mans, and make it publicly available (§4.1).

• We present experimental results comparing
gender bias in occupation predictions between
three KG only models and a KG+LM model,
finding that the KG+LM model is more biased
across the selected metrics (§4).

• We analyze our experimental results critically,
analyzing the bias results at multiple levels of
detail, and link the predictive bias to bias in
the dataset (§4.4 + 4.5).

2 Bias Statement and Definitions

We follow Blodgett et al. (2020) who stress the
importance of making the authors’ understanding
of bias explicit whenever it is investigated, follow-
ing the taxonomy of harms (Barocas et al., 2017).
Our understanding of bias in link prediction is
based on the idea of representational harm, more
specifically, “differences in system performance
for different social groups” (Blodgett et al., 2020,
p. 5456). For example, in the case of gender bias
in occupation predictions, a link prediction model
that predicts the occupations of women less ac-
curately than those of men would be deemed as
behaving harmfully. We consider this behavior as
harmful, because deploying such a biased model in
a downstream application can make it less useful
for women than men. The extent of harm that is
caused depends on the societal relevance of the ap-
plication, e.g., it might be used for job applications
or credit approval.

Beyond measuring bias in link prediction model
predictions, we also investigate data bias in the
knowledge graph (KG) datasets that we use. We
consider the data to be biased if it is highly imbal-
anced with regard to some ideal distribution across
social groups. An example of such an imbalance
would be a dataset that contained significantly more
facts about men than women and no facts about in-
dividuals with other gender identities.

The examples above also show that we measure
bias in a specific context, defined by a sensitive at-
tribute and a target property. A sensitive attribute
is an inherent characteristic of an entity worthy
of (legal or other) protection. Typical examples
are gender, race, ethnicity, religion or worldview,
disability, age, and sexual identity. Each sensitive
attribute usually defines multiple groups, categori-
cal options that a person can belong to, e.g., female
gender. We view a target property as some notable
property or achievement of an entity. Typical exam-
ples are their occupation, awards received, degrees,
or where a person was educated. Both the target
property and the sensitive attribute need to be ex-
pressed by one specific relation in the dataset. This
means that the dataset-specific meaning of the re-
spective relation matters: Here, we want to measure
the influence of gender on the accuracy of occu-
pation predictions. Following Keyes et al. (2021),
we define gender as a multiplicitous concept ex-
pressing, e.g., identity and behaviors, going beyond
bodily attributes that determine the biological sex
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of a person. While we only discuss gender in the
following, we note that for the gender identities “fe-
male” and “male” that we analyze, the distinction
between gender and sex is not explicit in Wikidata,
because the same entity is used to express both
concepts.1 In addition, due to data scarcity, we can-
not analyze gender bias for other gender identities,
such as “non-binary”.2 Due to a lack of reliable
information, we do not distinguish between cisgen-
der and transgender individuals when performing
our analysis of gender bias for women and men.
We refer to the HCI Gender Guidelines for further
information about the terminology and concepts
discussed above.3

3 A Model-Agnostic Approach for
Measuring Bias in Link Prediction

3.1 Our Main Idea
Prior work on bias in link predictions has studied
bias at the level of embeddings (Kraft and Usbeck,
2022). We instead propose to assess such bias in a
model-agnostic manner by measuring bias directly
on the test set predictions that each link prediction
model produces. This allows us to measure bias
on link prediction model classes that have not yet
been evaluated with respect to bias. We focus on
tail entity predictions for a given target relation, for
example (Barack Obama, occupation, ?). The pre-
dictions serve as the input for group fairness met-
rics that measure extrinsic performance, meaning
that we do not access any internal representations
of the model. As group fairness metrics are usually
defined for classification tasks (Verma and Rubin,
2018), we need to reframe the link prediction task
accordingly (§3.2). Using these metrics allows us
to investigate bias as a notion of metric-specific per-
formance differences (§3.3). The choice of the sen-
sitive attribute and target relation is largely subject
to their prevalence in the dataset (§3.5). Due to lim-
itations in the data (explained in Appendix B + C),
our experiments focus on gender as a sensitive at-
tribute using two gender identities and occupation
as the target relation. Without loss of generality,
we also use these as examples while explaining our
method, but stress that our approach can be used
for attributes and targets with more than two groups
(§3.3).

1e.g. https://www.wikidata.org/wiki/Q6581072
2The reasons for this are further discussed in §3.5, §4.1,

§6, §7, and Appendix B.
3https://www.morgan-klaus.com/

gender-guidelines.html (Version 1.1)

3.2 Recasting Link Prediction as a
Multi-Class Classification Task

Link prediction is typically defined as a ranking
task, where each model produces continuous plau-
sibility score values. For tail entity predictions –
which we use for bias measurement – the model
scores each possible entity in the dataset when
given a combination of a head entity and a rela-
tion (h, r, ?). A model that has learned the task
well should thus emit high scores for the entities
that are most plausible and the highest one for the
entity that is the true tail entity. This enables us to
reframe link prediction as a multi-class classifica-
tion task, by defining each tail entity as a separate
class. For example, when predicting occupation re-
lationships, the set of all occupations in the dataset
is the set of candidate tail entities, which can be
viewed as class labels. A model is expected to
predict true occupations, i.e., the true label, of a
given person provided as the head entity. We define
the tail entity that receives the highest plausibility
score, i.e., rank 1, as the predicted label.

We note that this framing of the link prediction
task best applies to one-to-one and many-to-one
relations. For one-to-many and many-to-many re-
lations, link prediction is technically a multi-label
multi-class classification task. For a given human
as head entity, there can be multiple true labels.4

However, we cannot account for this in our ap-
proach as we want to avoid data leakage between
the training/validation and test set: Our bias mea-
surement is solely based on the test set, so the
evaluation of our model predictions on the test set
should be independent of the training set. We there-
fore only consider the occupations in the test set
as true labels. We discuss a related aspect in re-
gard to extracting information about our sensitive
attribute in §3.5. This limitation applies to all sen-
sitive attribute groups, so we assume that this does
not influence the relative pattern in the bias scores
between the groups, only their absolute values.

3.3 Selection of Fairness Metrics

Fairness metrics measure the performance for a
given classifier, i.e., a link prediction model, using
the following definitions: The predicted tail entity
is denoted by ŷ, while the true one is indicated by
y. The set of classes Y consists of candidate tail

4For instance, our target relation occupation is a many-to-
many relationship, as a person can have multiple occupations
and multiple persons can have the same occupation.
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entities t ∈ {t1, . . . , tT−1} as well as the OTHER

class tT , where T is the total number of classes.
We focus on sensitive attributes s with two values,
s ∈ {0, 1}.5 In the following, we introduce the
three fairness metrics that we selected. The equa-
tions show how the performance gap G (Orgad and
Belinkov, 2022) is measured for each target prop-
erty class t, e.g., the absolute difference between
the metric calculated for men versus women for a
given occupation. We establish this notion of bias
in our bias statement (§2).

Demographic Parity (DP) measures the selec-
tion rate (SelR), i.e., the probability of a given class
to be predicted. For example, it answers the ques-
tion “Which percentage of the persons predicted to
be lawyers are men versus women?” It does not use
information about the true class of the respective
predictions (Verma and Rubin, 2018).

DPG(s, t) =|P (ŷ = t |s = 1)− P (ŷ = t |s = 0)|
=|SelR(s = 1, t)− SelR(s = 0, t)|

(1)
This metric can show a potential general imbalance
in the predictions. Such prediction imbalances may
also reflect data bias, allowing us to analyze this
connection. For using this metric in the context
of binary classification and debiasing, we refer to
work discussing the strengths and weaknesses of
this metric (Dwork et al., 2012; Hardt et al., 2016).

Predictive Parity (PP) measures the positive
predictive value (PPV), also known as precision
(Prec), for a given class (Verma and Rubin, 2018;
Chouldechova, 2017). Precision is a well-known
evaluation metric that accounts for the percentage
of correct predictions (true positives, TP) out of
all persons predicted as belonging to that class,
i.e., out of all true positives and false positives
(FP). Achieving high precision for a class therefore
means that if a classifier predicts a class, it is very
likely that this prediction truly belongs to this class
(Sokolova and Lapalme, 2009). The gap is:

PPG(s, t) =|P (y = t | ŷ = t, s = 1)−
P (y = t | ŷ = t, s = 0)| (2)

=|Prec(s = 1, t)− Prec(s = 0, t)|

We choose this and the following metric because
they are well-established in the algorithmic fairness

5In theory, the approach can be extended to the non-binary
case. This is shown by Keidar et al. (2021), however they
do not discuss how the choice of their averaging strategy
influences the interpretation of the bias score.

community (Verma and Rubin, 2018; Hutchinson
and Mitchell, 2019; Barocas et al., 2019), and each
focuses on different capabilities of a classifier. For
instance, the precision–recall trade-off implies a
trade-off between Predictive Parity and Equality
of Opportunity (Buckland and Gey, 1994). Also,
an impossibility theorem from the algorithmic fair-
ness community (Chouldechova, 2017) proves that
these two notions of fairness cannot be achieved
simultaneously in non-trivial scenarios.

Equality of Opportunity (EO) measures the
true positive rate (TPR), also known as recall (Rec)
(Hardt et al., 2016). For a given class, it measures
the percentage of correct predictions (true posi-
tives) out of all persons that actually belong to that
class. Achieving high recall for a class therefore
means that the classifier identified most of the per-
sons that truly belong to this class (Sokolova and
Lapalme, 2009). The corresponding gap is:

EOG(s, t) =|P (ŷ = t | y = t, s = 1)−
P (ŷ = t | y = t, s = 0)| (3)

=|Rec(s = 1, t)− Rec(s = 0, t)|

3.4 Analyzing Bias at Three Levels of Detail
In order to conduct a comprehensive and critical
analysis, we calculate the above metrics at three
levels of granularity. Each highlights a different
aspect of model behavior: (i) the broadest one pro-
vides one score per model, (ii) a more detailed
view yields one score for each sensitive attribute
group, e.g., men vs. women, and (iii) the most
detailed one provides one score for each target
property class and sensitive attribute group, e.g.,
female lawyers. For (iii), we calculate the metric
(selection rate, precision, or recall) for each indi-
vidual target property class without averaging, e.g.,
Rec(s = 1, t = 0). For (ii), we calculate the arith-
metic mean for a specific sensitive attribute group,
e.g., s = 1, across all T target property classes:

EOG(s = 1) =
1

T

T∑

i=1

Rec(s = 1, ti) (4)

Calculating the average in this way means that we
use macro-averaging assigning all classes equal
importance (Sokolova and Lapalme, 2009). For (i),
we invoke Equations 1–3 and average the results,
again using macro-averaging:

EOG(s) =
1

T

T∑

i=1

EOG(s, ti) (5)
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Table 1: Data for measuring link prediction bias on both datasets using occupation as the target property and gender as the
sensitive attribute. Based on the prevalence in the test set of HUMANW5M-3MIL, we use a minimum count threshold of 100.
This means that we consider all occupations with more than 100 occurrences as separate classes, aggregating the remaining facts
in the class OTHER.

Occupation in Test Set with Gender Thereof Men Thereof Women

other 1,534 399 336 84% 63 16%
politician 1,070 308 274 89% 34 11%
writer 262 69 58 84% 11 16%
lawyer 253 78 72 92% 6 8%
actor 158 47 34 72% 13 28%
association football player 142 32 31 97% 1 3%
poet 129 28 21 75% 7 25%
novelist 109 33 19 58% 14 42%
screenwriter 106 26 26 100% 0 0%

sum over all occupations 3,763 1,020 871 85% 149 15%

3.5 Data-Driven Choice of Target Property
Classes and Sensitive Attribute

For all link prediction models, the long tail distri-
bution typical for knowledge graph (KG) datasets
(Zhang et al., 2020) presents a challenge: A small
set of entities appears often, while most entities ap-
pear only a handful of times, even in large datasets.
We account for this by choosing the target property
classes, the sensitive attribute, and its groups based
on their prevalence in the dataset. This means that
each class needs to be properly represented for each
sensitive attribute group, as it is also discussed in
similar work in other domains (Seyyed-Kalantari
et al., 2020; De-Arteaga et al., 2019). To achieve
this, we reduce the number of classes significantly
by aggregating occupations below a minimum
count threshold in the class OTHER, similar to
Keidar et al. (2021). The count threshold is based
on the test set of the dataset since only this part is
used for bias measurement. Using only the test set
is necessary to avoid data leakage, as we directly
use a model’s predictions of the target property
facts as input for our measurement:

Given a trained link prediction model, we extract
only the facts concerned with our selected target
property from the test set tail entity predictions,
i.e., the (personXY, occupation, ?) facts. For each
person – corresponding to the head entity – we then
search the entire dataset for their sensitive attribute
information, e.g., a fact stating their gender. We
argue that retrieving the sensitive attribute informa-
tion from the entire dataset is reasonable and does
not constitute data leakage, since we only extract
ground truth facts from the dataset. To be clear, we
never predict the sensitive attribute of a person,
only their target property. This means that the data

basis for the bias measurement consists of persons
with a target property fact in the test set and a
sensitive attribute fact somewhere in the dataset.

While ensuring a sufficient data basis is neces-
sary for a valid bias measurement, using a mini-
mum count threshold is also connected to the
issues of data scarcity and data bias (§2): (i)
Facts about members of minority groups will natu-
rally be less frequent than for those of the majority
group. In addition, (ii) groups might be underrepre-
sented due to biased selection processes in society
that contributed to the creation of the data. In our
case, the threshold leads to us only considering
female and male as identities, while having to dis-
regard other gender identities due to data scarcity
and likely representation bias, as well. We argue
that a bias analysis can still be performed under
these circumstances, but that the data basis and
limitations should be clearly acknowledged.

4 Experiments

4.1 Creating the HUMANW5M-3MIL Dataset

We created HUMANW5M-3MIL, a modified sub-
set of Wikidata5M (Wang et al., 2021b) based on
Wikidata (Vrandečić and Krötzsch, 2014), consist-
ing of 3 million facts about humans, meaning that
the head entity of each triple is always a human
entity. For each entity in the dataset, a textual
description consisting of the first section of the
corresponding Wikipedia article in English is avail-
able as well as a short English label for each entity
and relation (Wang et al., 2021b). We argue that
a smaller dataset only consisting of human facts
is useful to reduce the noise in the dataset and
the time required to train and evaluate the mod-
els. This approach follows previous work (Bourli
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Table 2: Prediction quality of all trained link prediction models on the test set measured using typical accuracy metrics. We
report the metrics averaged over head and tail entity predictions and separately only for tail entity predictions. The best scores
are highlighted in bold. The arrows express whether a high or a low value of the metric corresponds to high accuracy.

Model Prediction Type MR ↓ MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 ↑

K
G

on
ly

TransE averaged 188,784 19.21 16.02 20.74 24.47
tail 11,620 38.29 32.04 41.29 48.63

DistMult averaged 176,300 15.62 11.14 18.42 22.44
tail 8,405 30.76 22.00 36.34 44.09

RotatE averaged 221,341 14.80 11.44 17.08 19.50
tail 19,552 29.56 22.86 34.12 38.92

K
G

+
L

M SimKGCIB averaged 91,588 32.96 30.19 34.08 38.02
tail 255 64.79 60.06 67.04 73.60

SimKGCIB+SN+PB averaged 91,737 32.91 30.31 33.93 37.60
tail 276 64.75 60.14 66.89 73.24

and Pitoura, 2020; Keidar et al., 2021), however
the respective datasets are not publicly available.
We also created this dataset due to issues we find
in Wikidata5M: (i) The relation P216, which ex-
presses human sex or gender, is not contained in the
dataset, despite gender being the most frequently
investigated sensitive attribute (Costa-jussà, 2019).
(ii) An exploratory analysis revealed data quality
issues in the entity labels such as typos or labels
not matching the current English Wikidata labels.
To address these issues, we merge the human facts
of Wikidata5M with gender facts and English la-
bels taken from a current Wikidata version (the
truthy triples file from January 2, 2022). We en-
sure that each entity has a label and a description,
meaning that we exclude entities that only have
one or the other. For all remaining human entities,
we extract the gender facts, if they exist. We limit
our analysis to male and female gender, as data
on non-binary gender identities and intersex peo-
ple is very scarce in Wikidata (Klein et al., 2016;
Zhang and Terveen, 2021)). In our case, other
gender identities and intersex people are only rep-
resented by fewer than 500 occurrences combined.
As the entities expressing human gender are not
part of Wikidata5M and therefore lack a descrip-
tion, we use the first section of the Wikipedia arti-
cles for masculinity7 and femininity8. The result-
ing dataset contains ca. 11 million triples, which
we randomly sample down to 3,101,160 triples,
to reduce the dataset size. The resulting dataset,
HUMANW5M-3MIL, contains 1,396,220 unique
entities – 1,269,907 thereof human – and 225 rela-
tions (Table 7). Table 8 shows that HUMANW5M-
3MIL is representative of the larger raw dataset,

6https://www.wikidata.org/wiki/Property:P21
7https://en.wikipedia.org/wiki/Masculinity
8https://en.wikipedia.org/wiki/Femininity

when considering the manually selected candidate
relations that express sensitive attributes or target
properties. For instance, the sex or gender rela-
tion comprises ca. 13.5% of each dataset. We use
comparably large evaluation sets, as our bias score
calculation is only based on the test set, specifically
a [0.9, 0.05, 0.05] train/validation/test random split
(compared to [99.9995, 0.00025, 0.00025] for Wiki-
data5M), as the evaluation split size of ca. 155,000
triples is still manageable for all models we train
on our dataset. Further details about the creation
process of the dataset are given in Appendix B. We
make the code for creating the dataset along with
the data files available.9

4.2 Models and Training Details
We demonstrate our model-agnostic approach by
comparing two model classes: knowledge graph
embeddings (KGEs) that learn only from the struc-
ture contained in the knowledge graph dataset (KG
only) and language model (LM)-based models that
further also have access to the entity descriptions
and relation labels (KG+LM).

KG only models: TransE, DistMult and Ro-
tatE. KGEs learn a dense embedding for each en-
tity and relation in the dataset, capturing relation-
ships between entities in a latent space (Nguyen,
2021). We choose TransE (Bordes et al., 2013) and
DistMult (Yang et al., 2015) because they are com-
mon baseline models from different model families
(Rossi et al., 2021a). RotatE (Sun et al., 2019) is
an expressive state-of-the-art model from the same
model class as TransE. We use the self-adversarial
negative sampling loss (Sun et al., 2019) for all
models. After hyperparameter tuning (Appendix
A), we train all models for 400 epochs, using a

9https://github.com/lena-schwert/
comparing-bias-in-KG-models
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Table 3: Bias in occupation predictions averaged across all occupation classes. The bias score correspond to performance gaps
between predictions for men and women. The highest bias scores per fairness metric are highlighted in bold. DPG: Demographic
Parity Gap, PPG: Predictive Parity Gap, EOG: Equality of Opportunity Gap. *: 3,763 occupation facts were available in total for
HUMANW5M-3MIL.

Model Class Model DPG PPG EOG # of Facts
(Selection Rate) (Precision) (Recall) Used*

KG only TransE 0.51 0.001 0.03 3,735
DistMult 0.47 0.004 0.001 3,758
RotatE 0.32 0.003 0.04 3,709

KG + LM SimKGCIB 0.57 0.04 0.08 3,726
SimKGCIB+SN+PB 0.54 0.02 0.12 3,721

Table 4: Link prediction bias results separated for men and women showing the absolute fairness metric scores. In some cases
the absolute difference of the male and female score does not exactly match the gap scores in Table 3, because all results were
rounded to two or three decimals. We highlight the entries with the highest difference in bold, i.e., the same entries as in Table 3.
DP: Demographic Parity, PP: Predictive Parity, EO: Equality of Opportunity

Model Class Model DP PP EO
(Selection Rate) (Precision) (Recall)
Male Female Male Female Male Female

KG only TransE 0.76 0.24 0.043 0.042 0.09 0.05
DistMult 0.74 0.26 0.043 0.047 0.109 0.108
RotatE 0.66 0.34 0.041 0.044 0.08 0.05

KG+LM SimKGCIB 0.79 0.21 0.49 0.45 0.32 0.41
SimKGCIB+SN+PB 0.77 0.23 0.51 0.49 0.31 0.43

Table 5: Deviation of predicted occupations for women from the data distribution using the KG+LM model
SimKGCIB+SN+PB. For each of the nine occupation classes, we calculate the difference between the selection rate and
the distribution of the occupations in the test set of HUMANW5M-3MIL.

Selection Rate Data Distribution Difference

averaged 0.23 0.15 + 0.08

other 0.12 0.16 – 0.04
politician 0.15 0.11 + 0.04
writer 0.25 0.16 + 0.09
lawyer 0.12 0.08 + 0.04
actor 0.33 0.28 + 0.05
assoc. football player 0.08 0.03 + 0.05
poet 0.40 0.25 + 0.15
novelist 0.42 0.42 ± 0.00
screenwriter 0.20 0.00 + 0.20

batch size of 1,024, an embedding dimensionality
of 512, and 32 negative samples per training triple.
For TransE and DistMult a learning rate of 0.001
and for RotatE a learning rate of 0.01 is used.

KG+LM model: SimKGC LM-based models
utilize pre-trained Transformers (Vaswani et al.,
2017) that are fine-tuned on a knowledge graph
dataset. To that end, an input sequence is cre-
ated out of the entity descriptions instead of using
the entity and relation IDs. We choose SimKGC
(Wang et al., 2022), as it significantly outperforms
earlier models with respect to accuracy and com-
putational efficiency. It has a bi-encoder archi-
tecture using the pre-trained BERT-base (Devlin
et al., 2019). One encoder learns relation-aware

head entity embeddings and the other one tail en-
tity embeddings. The plausibility scoring of triples
is then simply achieved using cosine similarity. We
train the SimKGCIB and the SimKGCIB+SN+PB

model variants to investigate whether they exhibit
different bias behavior. We do not conduct hyperpa-
rameter tuning, as the parameters for Wikidata5M
used in the original paper (Wang et al., 2022) de-
liver strong results on our validation set. SimKGC
uses the InfoNCE loss with an additive margin (Le-
Khac et al., 2020). We train for 1 epoch using a
batch size of 1,024, a learning rate of 3× 10−5 and
a weight decay of 0.0001. We provide further de-
tails for reproducing the experiments in Appendix
A.
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4.3 Evaluation Protocol

We evaluate our link prediction models for accu-
racy using mean rank (MR), mean reciprocal rank
(MRR) as well as Hits@1, Hits@3, and Hits@10
(Rossi et al., 2021a). We calculate the ranks us-
ing the filtered setting (Bordes et al., 2013). Since
we only use tail entity predictions for measuring
bias, we compute the metrics (i) averaged across
head and tail entity predictions and separately (ii)
only for tail entity predictions. Following §3.5, we
choose gender as a sensitive attribute and occupa-
tion as the target property for measuring bias in the
trained models. We describe in Appendix C how
other combinations of sensitive attributes and target
property are not analyzed due to data scarcity.

4.4 Model Accuracy and Data Bias Results

Referring to Table 2, we note that the Hits@1 accu-
racy for tail entity predictions is the most relevant
metric for bias measurement, since the tail entities
with rank = 1 are used as the predicted class labels,
i.e., the predicted occupation. The performance
on tail entity predictions is clearly higher than the
one averaged across head and tail entity predictions
since there are fewer unique tail than head entities,
making this prediction easier. Performance on tail
entity predictions varies between 11.14 (DistMult)
and 60.14 (SimKGCIB+SN+PB). When comparing
the two model classes, the KG+LM models clearly
outperform the KG only models. Among the KG
only models, TransE obtains the best Hits@1 re-
sult (16.02), thus outperforming the two other more
recent and complex models.

Table 1 shows the absolute counts and the rela-
tive distributions of the occupation classes over the
two considered gender identities (male, female).
It also shows that we choose a minimum count
threshold of 100 facts per occupation, resulting in
eight distinct occupations, aggregating the remain-
ing ones in the class OTHER. When comparing the
relative distribution of facts per gender, it is evident
that the data is biased: Out of the 1,020 facts that
we use for bias measurement, 85% are about men
and only 15% about women, while a 50%–50%
distribution would be unbiased when considering
these two gender identities. The occupation with
the largest gender bias in the data is screenwriter
(100% men) and the one with the smallest bias is
novelist (58% men, 42% women). In addition, we
note again that gender identities beyond women
and men are severely underrepresented in the data,

constituting only 0.005% of the gender facts, which
is significantly lower than the 0.1–2% estimated by
Goodman et al. (2019).

4.5 Results on Gender Bias in Occupation
Predictions

For describing and analyzing the gender bias that
our models exhibit in its occupation predictions,
we consider the three levels of detail as introduced
in §3.4. Tables 3, 4, and 5 refer to levels of detail
(i), (ii), and (iii), respectively. These allow us to
answer three different research questions.

Q1: Are KG+LM models more biased than KG
only models?
As Table 3 shows, the bias scores are generally
higher for the KG+LM models than for KG only
models. Comparing the difference between the
most biased models for each class shows that it is
most pronounced for the demographic parity gap
(DPG): 0.57−0.47 = 0.1, followed by the equality
of opportunity gap (EOG) 0.12 − 0.04 = 0.08.
These results suggest that the additional textual
data the KG+LM models have access to leads to
biased occupation predictions and that this has the
most pronounced effect on DPG and EOG. The KG
only models, in contrast, here manage to obtain
fairly unbiased results, with scores close to zero.
We note that the column “# of facts used” shows
how many facts contributed to the score, since a
fact can only be considered when the predicted
tail entity is an occupation and not another type of
entity.

Q2: Does the bias originate in higher-quality
predictions for men or women?
To answer this question, we refer to Table 4, which
shows the previously described results separately
for men and women. For DP, we observe that the
selection rate for predictions for men is generally
higher. We connect this to the data distribution in
Q3. For PP and EO we make two observations:
First, most KG only models – which obtain essen-
tially unbiased results – obtain dismal precision and
recall scores (they only appear strong enough when
evaluated using ranking metrics). Second, for the
KG+LM models we observe opposing trends: With
regard to precision, the prediction quality for men is
slightly higher, while for recall, the prediction qual-
ity for women is noticeably higher. Especially the
latter trend is surprising since the data for women
is more limited. These observations show why this
level of detail is important for a comprehensive
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bias analysis: While KG only models exhibit far
less bias, they predict occupations inaccurately de-
spite an acceptable overall accuracy (Table 2). In
addition, we conclude that predictions for men are
not necessarily more accurate than those for the
women, despite the significantly larger amount of
data for men (85% of all occupation facts.).

Q3: Are there occupation classes that are pre-
dicted more often than expected based on their
distribution in the data?
We may consider the demographic parity results
for SimKGCIB+SN+PB, our most accurate model,
as an example. As explained earlier (§3.3), DP
measures selection rate imbalances that we expect
to mirror the data bias. Table 5 shows the per-class
differences between the selection rate (predicted
occupation) and the respective distribution in the
data (actual occupation) when predicting the oc-
cupation of women. Whenever the difference is
positive, the model predicts the given occupation
for more women than expected (and vice versa).
On average, the probability of women having a
given occupation is overestimated by 0.08, with the
occupations “poet” and “screenwriter” contribut-
ing the most to this score. Despite this, the model
does predict this occupation for some women, as
female screenwriters do exist in the training dataset.
This might be due to the entity descriptions that
this KG+LM model has access to, potentially be-
cause the person’s occupation might be similar to a
screenwriter or mention related words.

5 Conclusion

We present a model-agnostic approach for measur-
ing bias in link prediction along with the first exper-
imental study that measures bias in language model
(LM)-based link prediction models (KG+LM),
comparing it with bias in knowledge graph em-
bedding (KGE) models (KG only). Using a selec-
tion of fairness metrics and analyzing our results
at three levels of detail, we find that the KG+LM
models are more biased. We discuss the relation-
ship between bias, link prediction accuracy met-
rics and data bias. For our experiments, we create
HUMANW5M-3MIL, a subset of 3 million facts
about humans contained in Wikidata (Vrandečić
and Krötzsch, 2014). We have made our code and
the dataset available to the public to encourage fur-
ther research on these topics.

6 Limitations

In the following we discuss the limitations of our
work and how they might be addressed.

Our study considers a single sensitive attribute,
gender, limited to two gender identities, female
and male. We also note that the approach can be
extended to sensitive attributes with more than two
groups, requiring additional decisions on how to
average the bias scores across the sensitive attribute
groups in an interpretable way. This limitation is
caused by data scarcity, as we describe in §3.5, §4.1
and Appendix B + C.

Using only the test set of a dataset for bias mea-
surement has a few methodological implications:
First, the bias in the test set might not be represen-
tative of the bias contained in the other splits of the
data set. In our approach we used simple random
splitting, where all facts are randomly distributed
over the three splits, meaning that the distribution
of the relations might not be the same in all splits.
This approach is called the transductive setting,
which is currently the most prevalent method of
splitting knowledge graph datasets (Wang et al.,
2021b). To rule out differences between the splits
to some degree, a potential solution is a stratified
split, conditioned on the relations in the dataset.
This would enforce, for instance, that each split
has the same relative amount of gender and occupa-
tion facts. This solution is however only applicable
when the researcher has control over the dataset
split creation process. Second, in order to have a
sufficient data basis for each target property class
across sensitive attribute groups (§3.5), the dataset
or the test split size needs to be quite large. How-
ever, training models on large datasets requires the
availability of adequate computational resources
that many researchers do not have access to.

Using fairness metrics for bias measurement
means that the notion of bias is closely connected
to what is considered as a “misclassification”. We
note that we do not take into account the severity
of misclassifications, e.g., that predicting a novelist
to be a writer is less wrong than predicting them
to be a diplomat. This would require a semantic
analysis of the labels of both the true and the pre-
dicted tail entities. This might also be addressed by
clustering entities with similar meanings together,
e.g., predicting groups of occupations instead of
single occupations.
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7 Ethical Considerations

For our analysis of gender bias, we rely on fac-
tual statements contained in Wikidata10, a crowd-
sourced, public knowledge graph. This means that
we utilize gender information that was added to
the platform by largely anonymous editors. These
statements – and other statements describing de-
mographics – might therefore not correspond to
the self-identification of the respective persons or
they might be incorrect, especially if human or
automated data quality control mechanisms fail
(Heindorf et al., 2019).

In addition, we acknowledge that knowledge
graphs reflect a limited world view, because their
creation process is subject to various biases, such
as representation bias, popularity bias, and sam-
pling bias (following the definitions by Mehrabi
et al. 2021). In the field of knowledge graphs, these
problems were first described by Janowicz et al.
(2018) and recently reviewed by Kraft and Usbeck
(2022). For example, facts about the non-Western
world are underrepresented and persons with occu-
pations in arts, sports, and science and technology
are overrepresented (Radstok et al., 2021; Beytía
et al., 2022).

One consequence of the biases mentioned above
is our decision to only consider male and female
gender in our analysis, as all other gender identities
combined, such as non-binary, amount to fewer
than 500 facts in the entire dataset. To analyze
bias for these gender identities, a larger dataset or
a different approach than ours would be necessary.
We discuss these limitations and our understanding
of gender in §2.

As described in our bias statement (§2), our no-
tion of bias focuses on performance differences
for different social groups. We note that this is a
very specific, limited conceptualization of bias that
could be extended by considering real-world distri-
butions or normative connotations such as stereo-
types. However, we believe that the contribution
of our work is still useful for analyzing whether
link prediction models work as intended, especially
because it allows for comparing different model
classes.

To conclude, we stress that the intended use of
our approach is to identify concerning model be-
havior in a specific context defined by a sensitive
attribute and a target property. We emphasize that
the selected fairness metrics should not, e.g., be

10https://www.wikidata.org

used as constraints during model training without
a deeper analysis of what notions of fairness are
suitable in the context of how the model will be
used.
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A Additional Details for Reproducing the
Experiments

We list the training and evaluation time as well as
the hardware used for all our models in Table 6.

KG only: TransE, DistMult, RotatE. For train-
ing the KG only models on HUMANW5M-3MIL,
we largely use the parameters contained in the
Graphvite configuration files from the official Wiki-
data5M benchmark11 published by Wang et al.
(2021b). To adapt to our dataset, we conduct minor
additional hyperparameter tuning. We explore a
small grid testing 6 hyperparameter combinations
for each model: batch size ∈ {512, 1024}, learning
rate ∈ {0.1, 0.01, 0.001}. We train TransE and
DistMult for 50 epochs (training time: ca. 3.5-7
h, evaluation time: ca. 35 min) and RotatE for 20
epochs (training time: ca. 2.5-5 h, evaluation time:
ca. 65 min). We choose our final parameter config-
uration based on the mean reciprocal rank (MRR)
on the validation set, as it has been observed to be
the most stable metric among the link prediction
metrics (Rossi et al., 2021a).

For all models, we use a batch size of 1,024, an
embedding dimensionality of 512, and 32 negative
samples per training triple. For TransE and Dist-
Mult a learning rate of 0.001, for RotatE a learning
rate of 0.01 is used. We train the models for 500
epochs, evaluating after each 100 epochs. Finally,
the models trained for 400 epochs are used, since
the MRR performance drops slightly afterwards.
We use the self-adversarial negative sampling loss
(Sun et al., 2019) for all models.. For TransE, we
use margin γ = 12 and adversarial temperature =
0.5. For DistMult, we use margin γ = 0 and ad-
versarial temperature = 2. Again following the
Graphvite configuration files, we also apply L3 reg-
ularization with a weight of 0.002. For RotatE, we
use margin γ = 6 and adversarial temperature = 0.2.

KG + LM: SimKGC. We use the pre-trained
BERT-base in its “uncased" variant (Devlin et al.,
2019). Since the authors trained their model on
Wikidata5M, a superset of our dataset, we try us-
ing the exact same parameters as the original pa-
per (Wang et al., 2022). We use two of their
model variants to investigate whether using the self-
negative (SN) and pre-batch (PB) sample types lead
to different bias behavior compared to the “basic"
in-batch (IB) model variant. We therefore train
the SimKGCIB and the SimKGCIB+SN+PB model

11https://graphvite.io/docs/latest/benchmark.html

variants, using 2 pre-batch negatives for the latter.
We train for 1 epoch using a batch size of 1,024,
a learning rate of 3 × 10−5 and a weight decay
of 0.0001. The remaining parameters are: 400
warmup steps for the linear learning rate scheduler,
gradient clipping of 10.0, dropout 0.1, temperature
τ is initialized with 0.05, additive margin γ for the
InfoNCE loss is 0.02, α = 0.05 for graph-based
re-ranking is used, 2-hop neighbors are considered,
and a maximal token length of 50 for the entity
descriptions is used. As these parameters deliver
good results on the validation set, we do not con-
duct hyperparameter tuning.

Implementation details. All implementations
are done in Python. The code and data including
files to re-create the conda environment are con-
tained in the accompanying GitHub repository12.
All models are based on the deep-learning frame-
work PyTorch (Paszke et al., 2019).

• KG only: Knowledge Graph Embeddings:
For training models on HUMANW5M-3MIL

we use the model implementations and the
training pipeline of the v1.8.1 PyKEEN li-
brary (Ali et al., 2021). This framework en-
ables single-GPU training and the calculation
of evaluation metrics.

• KG + LM: SimKGC: We use the implemen-
tation that was published alongside the paper
of Wang et al. (2022). Their code13 includes
the calculation of evaluation metrics. The
implementations use the Huggingface Trans-
formers library v4.15 (Wolf et al., 2020).

• Data Bias: We use our own Python imple-
mentation.

• Link Prediction Bias: For calculating the pre-
dictive parity and equality of opportunity, we
use Microsoft’s fairlearn library (Bird et al.,
2020), that wraps around scikit-learn’s eval-
uation metrics. For calculating demographic
parity, we modify code from the repository
published by Keidar et al. (2021).14

B Additional Details About the Creation
of the Dataset

This section describes how we create the raw ver-
sion of HUMANW5M-3MIL. This raw version

12https://github.com/lena-schwert/
comparing-bias-in-KG-models

13https://github.com/intfloat/SimKGC/
14https://github.com/mianzg/kgbiasdetec

1645

https://github.com/lena-schwert/comparing-bias-in-KG-models
https://github.com/lena-schwert/comparing-bias-in-KG-models
https://github.com/intfloat/SimKGC/
https://github.com/mianzg/kgbiasdetec


Table 6: Training runtime, evaluation runtime and hardware used for training all of our models. *: NVIDIA A100-SXM-80GB,
+: AMD EPYC 7502 32-Core CPU.

Model Class Model Train. Time Eval. Time GPU(s) Used Other Hardware

KG only TransE 27 h 35 min 1x NVIDIA A100* 10 GB RAM, 32 CPUs+

DistMult 30 h 35 min 1x NVIDIA A100* 10 GB RAM, 32 CPUs+

RotatE 55 h 66 min 1x NVIDIA A100* 10 GB RAM, 32 CPUs+

KG+LM SimKGCIB 45 min 180 min 4x NVIDIA A100* 15 GB RAM, 50 CPUs+

SimKGCIB+SN+PB 45 min 180 min 4x NVIDIA A100* 15 GB RAM, 50 CPUs+

Table 7: Dataset statistics for the raw version of our dataset and the subsampled dataset HUMANW5M-3MIL that we use in our
experiments.

11mil. Raw Dataset HUMANW5M-3MIL

# of entities 1,732,021 1,396,220
# of human entities 1,503,491 1,269,907
# of relations 292 225
# of train triples - 2,791,044
# of validation triples - 155,058
# of test triples - 155,058
total # of triples 11,114,797 3,101,160

Table 8: Manually selected Wikidata relations of general interest for a bias analysis. This large selection can be considered
as candidate relations, since they must exist in sufficient quantity to enable a robust bias analysis. We show the triple counts
for each relation and the proportion of this count of the total size of each dataset. The raw dataset version contains 11,114,797
triples. Our final dataset, HUMANW5M-3MIL contains 3,101,160 triples. We ultimately only use the relations "gender" and
"occupation" for our bias analysis.

Wikidata Label Wikidata ID Relation Expresses... 11mil. Raw Dataset HUMANW5M-3MIL

sex or gender P21 gender 1,501,938 (13.51 %) 418,622 (13.50 %)
country of citizenship P27 nationality 1,143,007 (10.28 %) 319,123 (10.29 %)
place of birth P19 nationality 854,080 (7.68 %) 238,162 (7.68 %)
religion P140 religion 27,805 (0.25 %) 7,827 (0.25 %)
ethnic group P172 ethnicity 27,235 (0.25 %) 7,751 (0.25 %)
native language P103 nationality 19,771 (0.18 %) 5,495 (0.18 %)
medical condition P1050 disability 3,824 (0.03 %) 1,049 (0.03 %)
sexual orientation P91 sexual orientation 484 (0.004 %) 123 (0.004 %)

occupation P106 target property 1,095,357 (9.85 %) 305,806 (9.86 %)
educated at P69 target property 438,207 (3.94 %) 122,195 (3.94 %)
award received P166 target property 169,758 (1.53 %) 47,661 (1.54 %)
member of political party P102 target property 126,285 (1.14 %) 35,233 (1.14 %)
employer P108 target property 79,781 (0.72 %) 22,103 (0.71 %)
position held P39 target property 75,909 (0.68 %) 21,069 (0.68 %)
field of work P101 target property 17,757 (0.16 %) 4,956 (0.16 %)
military rank P410 target property 16,330 (0.15 %) 4,510 (0.15 %)
nominated for P1411 target property 12,854 (0.12 %) 3,627 (0.12 %)
academic degree P512 target property 5,315 (0.05 %) 1,558 (0.05 %)
doctoral student P185 target property 1,415 (0.01 %) 424 (0.01 %)

contains 11,114,797 triples, 1,732,021 entities –
thereof 1,503,491 human entities – and 292 rela-
tions. To reduce dataset size, we sample it down to
3,101,160 triples, creating HUMANW5M-3MIL.

Details on extracting the labels. As an alterna-
tive to using the textual descriptions for entities, i.e.,
the first section of the corresponding Wikipedia ar-
ticle, we propose using the shorter Wikidata labels.
As these contain less information for the KG+LM
model to process, using labels instead of descrip-

tions reduces the model runtime. We considered
using the alias files provided with Wikidata5M15,
but found that the entity aliases have quality issues
such as typos (e.g., for the ‘human’ entity Q5, the
first alias is ’Huamn’) or aliases that do not have the
same meaning as the current label (e.g., for the ‘uni-
verse’ entity Q1, the first alias is ‘Earth’s universe’).
After correspondence with the first author of the

15https://deepgraphlearning.github.io/project/
wikidata5m
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paper that introduced Wikidata5M (Wang et al.,
2021b), we learned that they created the alias files
using the “pageterms” property of the MediaWiki
API16. The faulty aliases are thus likely a result
of the use of that data source and do not represent
genuine entity labels. We therefore extract entity
and relation labels from the January 2, 2022 truthy
triples Wikidata dump17. The Wikidata dump files
are updated every week and contain the most re-
cent state of Wikidata in different data formats18.
We use the truthy triples file specifically, because
it only contains non-deprecated triples, which re-
duces the amount of metadata contained and there-
fore the file size.

Details on creating the subset of human facts.
We extract all facts that have a human head entity
from the raw triples file provided with the orig-
inal Wikidata5M files. A human head entity is
identified by its “instance of human” (QXX P31
Q5) statement. This initially leads to a subset of
9,804,421 facts about humans. In order to be able
to compare KG+LM models using either the shorter
labels or the longer descriptions as text input, we
only keep entities and relations that have both la-
bels and descriptions. This leads to a removal of
17,528 entities and 2 relations from the dataset, due
to deletions and additions that happened between
the creation of Wikidata5M (based on the July 2019
Wikidata dump, Wang et al. 2021b) and the extrac-
tion of the labels (January 2022 Wikidata truthy
triples dump). Removing these entities and rela-
tions means that we remove all facts that contain
them, leading to 191,178 facts that are excluded in
total.

Details on adding gender facts from current
Wikidata. In an exploratory analysis of Wiki-
data5M before creating our dataset, we counted the
occurrences of facts that we considered to be of
general interest for a bias analysis. With respect
to the gender relation (PID: P21) we found that its
count is unexpectedly low (about 4,000) compared
to the number of human entities in the dataset (1.5
million). Furthermore, we found that these facts
express animal sex and not human gender, because
the head and tail entities are non-human (tail enti-

16https://www.mediawiki.org/w/api.php?action=
help&modules=query%2Bpageterms

17https://dumps.wikimedia.org/wikidatawiki/
entities/

18https://www.wikidata.org/wiki/Wikidata:
Database_download

ties: Q44148, Q43445). When filtering for gender
facts in the human facts subset, we only found 384
facts overall. Through correspondence, the first
author of the paper that introduced Wikidata5M
(Wang et al., 2021b) informed us that they used
Wikidata’s “wbgetentities” API19 to align Wikidata
and Wikipedia entries. Since the Wikidata entities
for male20 and female gender21 are linked to the
same Wikipedia page describing gender22, the API
might have therefore omitted facts containing these
entities. We therefore use the January 2022 truthy
triples dump to extract the gender facts as well.
We extract 1,243,734 facts with gender male and
258,204 facts with gender female. Persons with
other gender identities, such as non-binary, or in-
tersex people have fewer than 500 occurrences in
the entire dataset.

We therefore consider only two gender identities
within the context of this study, as the data scarcity
would not allow our models to properly represent
the other gender identities contained in the dataset.

Adding the gender facts for women and men en-
tails adding two new (tail) entities to the dataset
(Q6581072, Q6581097). As these entities do not
have descriptions in the original dataset, we use the
first section of the Wikipedia articles for masculin-
ity23 and femininity24.

C Considering Additional Sensitive
Attributes and Target Properties

Beyond measuring gender bias in occupation pre-
diction, we did consider using other target proper-
ties and sensitive attributes for the analysis of the
HUMANW5M-3MIL subset. However – in contrast
to using “gender" and “occupation" – we found the
respective data bases to be lacking.

The relation “educated at" is the target prop-
erty with the second-highest counts in HumanWiki-
data5M. In total, the 438,207 facts have 9,330 dif-
ferent tail entities, i.e., educational institutions such
as universities. In the test set, the 8,684 “educated
at" facts still have 1,919 different tail entities, only
3 of those with more than 100 occurrences. If
the minimum count threshold were set at 100, this
would result in an “other" class with 8,439 facts,
leading to a very imbalanced class distribution. In

19https://www.mediawiki.org/wiki/Wikibase/API
20https://www.wikidata.org/wiki/Q6581097
21https://www.wikidata.org/wiki/Q6581072
22https://en.wikipedia.org/wiki/Gender
23https://en.wikipedia.org/wiki/Masculinity
24https://en.wikipedia.org/wiki/Femininity
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Table 9: Data basis for measuring link prediction bias using occupation as the target property and country of citizenship as
the sensitive attribute. This shows the insufficient data basis for a bias analysis: Even the three best represented countries of
citizenship (sum over all occupations ≥ 50) are not sufficiently represented across the individual occupations in the test set of
HUMANW5M-3MIL.

Occupation in Test Set with Citizenship USA France UK Other

other 1,534 437 146 33 41 217
politician 1,070 278 104 11 9 154
writer 262 68 9 13 4 42
lawyer 253 76 50 1 1 24
actor 158 44 18 5 2 19
association football player 142 34 2 1 10 21
poet 129 38 2 8 2 26
novelist 109 29 17 3 3 6
screenwriter 106 38 9 5 2 22

Sum over all occupations 3,763 1,042 357 80 74 531

addition, the three most frequent tail entities are
“Harvard University" (270 facts), “Yale University"
(121 facts), and “University of Michigan" (104
facts), which represent a very limited selection of
all educational institutions contained in the dataset.
We therefore disregard “educated at" as a target
property.

Moving on to additional potential sensitive at-
tributes, the relation “country of citizenship" is the
most promising candidate with 1,143,007 facts in
HumanWikidata5M. However, when creating an
overview of counts per occupation class similar
to Table 1, it becomes evident that the data for
each sensitive attribute group, i.e., country, is very
limited (Table 9). While there are in total 18,396
country of citizenship facts in the test set, this in-
formation is only available for 1,020 of the 3,763
occupation facts. The three countries with the high-
est counts are all Western countries, namely USA
(357 facts), France (80 facts), and the UK (74 facts).
Even for these countries, the majority of the occu-
pation classes are only represented by 0 to 5 facts.
The 110 other countries represented in the test set
are all aggregated in the “other" class, which is
again the largest class with 531 facts. This means
that the sensitive attribute groups are already quite
homogeneous, while the “other" group contains the
majority of diverse information about “citizenship".
Compared to using two groups for “gender” as the
sensitive attribute, choosing the sensitive attribute
groups as above would thus result in an unrealistic
and uninformative comparison. We hence decided
against including “country of citizenship" as a sen-
sitive attribute.

Similar considerations apply to the other rela-
tions of interest listed in Table 8, since these also
have too few facts per target property class or a very

broad distribution over sensitive attribute groups.
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Abstract
Transferring learned patterns from pretrained
neural language models has been shown to sig-
nificantly improve effectiveness across a variety
of language-based tasks, meanwhile further
tuning on intermediate tasks has been demon-
strated to provide additional performance
benefits, provided the intermediate task is suffi-
ciently related to the target task. However, how
to identify related tasks is an open problem,
and brute-force searching effective task combi-
nations is prohibitively expensive. Hence, the
question arises, are we able to improve the effec-
tiveness and efficiency of tasks with no training
examples through selective fine-tuning? In
this paper, we explore statistical measures that
approximate the divergence between domain
representations as a means to estimate whether
tuning using one task pair will exhibit perfor-
mance benefits over tuning another. This esti-
mation can then be used to reduce the number
of task pairs that need to be tested by eliminat-
ing pairs that are unlikely to provide benefits.
Through experimentation over 58 tasks and
over 6,600 task pair combinations, we demon-
strate that statistical measures can distinguish
effective task pairs, and the resulting estimates
can reduce end-to-end runtime by up to 40%.

1 Introduction

As the accuracy of neural models continues to
increase, so does the computational cost of training
and storing them. One approach of mitigating such
cost is through using pretrained models to enhance
performance on a downstream task, a paradigm
commonly referred to as transfer learning. How-
ever, when and why transfer learning works is not
concretely understood. Traditionally, selecting the
best settings, i.e. tasks and hyperparameters, for
transfer often involves an extensive trial-and-error
process over many combinations and can quickly
make the prospect of applying transfer learning
undesirable. As such, it would be valuable
to estimate whether a task pair combination

will be effective pre-training, i.e. estimate the
transferability of a source task to a target task.

The most optimal transferability metric would
be resource-efficient, such that it is capable of ac-
curately predicting the final performance of the
model whilst minimising the amount of process-
ing required to compute it. To this end, several
works (Van Asch and Daelemans, 2010; Ruder and
Plank, 2017; Ramesh Kashyap et al., 2021) have
focused on estimating transferability prior to fine-
tuning, using statistical measures of divergence
between the underlying feature spaces of model
pairs. Domain divergence measures are used to
produce a notion of distance between pairs of do-
mains by comparing their representations and have
seen significant usage in works which investigate
the correlation between their estimations and per-
formance change (Van Asch and Daelemans, 2010;
Ramesh Kashyap et al., 2021).

Subsequent transfer learning works have also
demonstrated that competitive model performance
can be achieved on some target tasks even
if no training samples for that task are avail-
able, an approach known as zero-data/shot learn-
ing (Larochelle et al., 2008). In this work, we
investigate the effectiveness of domain divergence
measures in estimating the performance of zero-
shot classification models, wherein models further
tuned on one source task are used to directly predict
on the test set of a target task without any target
training samples. Specifically, we leverage the in-
formation captured by these measures as features
to an auxiliary learner, whose outputs are used to
rank the most effective source model for transfer
to a given target task. Through the analysis of 58
sentiment classification domains, we: (1) perform
a correlation analysis between each independent
measure and each source-target, macro-averaged
F1-score performance output; (2) and, for each
target task, we train a series of auxiliary regres-
sion models to predict their projected performance;
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(3) we then convert these into rankings of source–
target pairs and evaluate the capability of our learn-
ers to find the best source model for each given
target domain.

2 Experiment Setup

Measures: Ramesh Kashyap et al. (2021) provide
categories of divergence measures; two of which
we use in our work: Geometric measures which
calculate distances between continuous represen-
tations such as word embeddings and Information-
theoretic measures which capture the distance
between representations such as frequency-based
distributions over co-occurring n-grams. We do
not report higher-order measures as in the afore-
mentioned work, but instead report moments-based
features, which better describe the characteristics
of our individual term distributions—namely the
mean, variance, skewness, and kurtosis of our
distributions—as features to our learner. Following
prior work (Tsvetkov et al., 2016; Ruder and Plank,
2017), we further complement the above measures
by making use of several metrics that capture
diversity and prototypicality such as entropy-based
features; in our work, these measures are used with
probability distributions, and are, as such, cate-
gorised here as information-theoretic. Specifically,
we use the following metrics:

• Geometric: Cosine distance, l1- (or Manhat-
tan dist.) and l2-norm (or Euclidean dist.).

• Information-theoretic: Rényi and Jensen-
Shannon divergences (Wong and You, 1985;
Rényi et al., 1961), Bhattacharyya Co-
eff. (Bhattacharyya, 1943), Wasserstein dis-
tance (Kantorovich, 1960), Entropy and Rényi
Entropy (Shannon, 1948; Rényi et al., 1961),
Simpson’s Index (Simpson, 1949).

• Moments-based: Mean, variance, skewness,
and kurtosis (σn where n ∈ [1..4]).

Representations: To compute the above metrics,
we use two different representations from prior
work by Ruder and Plank (2017), specifically 1)
discrete probabilities of the most common terms
across domains, using a fixed-size vocabulary V ,
where |V | = 10, 000; and 2) a summation over
probability-weighted term embeddings in each doc-
ument, averaged to produce a single vector:

(1) Term Distributions (TD) (Plank and van No-
ord, 2011): t ∈ R|V | where ti is the probabil-
ity of the i-th word in the vocabulary V .

(2) BERT Embeddings (BE) (Devlin et al.,
2018): 1

n

∑
i vwi

√
a

p(wi)
where n is the num-

ber of words with embeddings in the docu-
ment, vwi is the pretrained embedding of the
i-th term, p(wi) its probability, and a is a
smoothing factor used to discount frequent
probabilities. Following guidelines by Ruder
and Plank (2017), we use this representation
with geometric-based measures only, as em-
bedding vectors can be negative.

Generally, since we are using these represen-
tations in a zero-shot setting, we compute diver-
gences between the source-task training set (DS)
and the target-task test set (DT ). Entropy and
moments-based measures are not used to estimate
divergence between domains but used only to com-
pute within-domain characteristics, i.e. on individ-
ual term distributions.

Datasets and Domains: We make use of two rat-
ings prediction datasets with classes in the range
1-5 and, similarly to Zhang et al. (2015), reformu-
late the task as a binary sentiment classification
task by merging the provided labels; 1-2: negative
and 3-4: positive. We focus on similar, within-task
(i.e. sentiment classification) datasets to (1) remove
task variation as a variable, (2) and to highlight the
effectiveness of using statistical measures to com-
pute divergence between similar domains which
may have very minute differences in semantics and
other linguistic phenomena. The first is the Ama-
zon Product Reviews dataset, using the review title
and review content fields as features and divide
the dataset by the product category labels. As a
supplementary contribution to our work, we create
the Multi-Domain Yelp Business Reviews dataset
by extending the original Reviews and Business
datasets provided by the Yelp Dataset Challenge,
mapping top-level1 categories of businesses to their
respective reviews. After filtering out low-sample
(≤ 30, 000) domains, we have 42 and 16 domains
for the Amazon and Yelp datasets, respectively.

Implementation Details: We use BERTbase (De-
vlin et al., 2018) as our base model in the experi-
ments. With both runtime- and storage-efficiency
in mind, we make use of adapter modules (Pfeif-
fer et al., 2020) and train each of the domains as
a source task adapter, leaving the rest of BERT’s

1We determined which categories were top-level based on
an article written by Yelp
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(a) Average NDCG@K for NS = 1000. (b) Average NDCG@K for NS = 25000.

Figure 1: F1@K averaged across tasks vs. Total Runtime@K of source-task adapters. Higher is better. Runtime is
reported in hours.

parameters frozen. More implementation and hy-
perparameter details can be found in Appendix A.

We divide our experiments into two sepa-
rate settings by source-task sample size, NS ∈
[1000, 25000]. We train 116 source-task adapters
(58 DS × 2 NS settings), and evaluate a total of
6,612 source-target combinations for analysis. For
our auxiliary learner, we use an XGBoost (Chen
and Guestrin, 2016) regression model. We split our
training and test sets by the target task and train
2,900 regression models (for each of the 58 target
domains, 2 sample sizes settings, 5 feature sets, and
over 5 random seeds).

3 Experiments and Results

Category Measure Term Distributions BERT Embeddings
1K 25K 1K 25K

Geometric
Cosine Dist. -0.3683* -0.4801* -0.3078* -0.5792*
L1 Dist. -0.3699* -0.6243* -0.0792* -0.4045*
L2 Dist. -0.3345* -0.3551* -0.0923* -0.4228*
Rényi Div. -0.4766* -0.4273*
Jensen-Shannon Div. -0.3726* -0.5914*
Wasserstein Dist. -0.2225* -0.3266*

Info. Bhattacharyya Coeff. 0.3700* 0.5743*
Theoretic Entropy (DS) 0.1838* 0.2275*

Entropy (DT ) -0.1603* 0.0486*
Rényi Entropy (DS) -0.1836* -0.2284*
Rényi Entropy (DT ) 0.1618* -0.0503*
Simpson’s Index (DS) 0.0842* 0.1359*
Simpson’s Index (DT ) -0.3127* -0.1442*
σ1 (DS) -0.1321* -0.1792*
σ1 (DT ) -0.1245* -0.2227*
σ2 (DS) -0.1289* -0.1523*

Moments σ2 (DT ) -0.1749* -0.2549*
Based σ3 (DS) 0.0106 0.0287

σ3 (DT ) -0.3823* -0.2643*
σ4 (DS) 0.0006 0.0234
σ4 (DT ) -0.3491* -0.2473*

Table 1: Spearmans ρ correlations between each
measure and source-target macro-averaged F1-score
performance. Asterisk denotes measure was statistically
significant (P≤ 0.05).

To evaluate whether the aforementioned statistical
measures are predictive of task pair transferabil-
ity, we perform a correlation analysis between the

source-target pairs within each domain, where we
contrast the statistical measure (which provides
information about DS , DT , or the differences be-
tween them) and the resultant performance (mea-
sured using macro-averaged F1) when using DS

to tune a model for application on task T . Table 1
reports Spearman’s Rho (ρ) across all sample size
settings for each statistical measure. Higher corre-
lations (distance from 0) indicate increasing predic-
tiveness of the statistical measure of transferability.

Using the interpretation of Spearman’s Rho
(ρ) correlation coefficients by Dancey and Reidy
(2007), we make the following observations:
(1) Geometric measures exhibited a moderate–
to-strong correlation for Term Distributions across
both sample size settings, and strong correlations
at NS = 25000 for BERT Embeddings; (2) Be-
tween-domain Information-theoretic measures also
showed moderate-to-strong performance correla-
tions; (3) All entropy-based measures (aside from
Simpson’s Index for DT ) had a weak or negligi-
ble correlation with performance; (4) Out of all
of the higher-order moments of Term Distribu-
tions, only the skewness and kurtosis of DT (σ3

and σ4) seemed to have a moderate relationship at
NS = 1000, and, generally, the moments of DT

seemed to be more correlated than that of DS .
Overall, divergence measures with both repre-

sentations seemed to be more predictive of source-
target performances than with entropy or moments-
based metrics. However, since it is unlikely that
each measure was independently capable of predict-
ing performance, we trained a series of regression
models for each target task, combining these mea-
sures. Specifically, we train an XGBoost (Chen and
Guestrin, 2016) regression model (XGBRegressor)
with each of the feature sets as our inputs, over five
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(a) Average F1@K vs. Runtime@K for NS = 1000. (b) Average F1@K vs. Runtime@K for NS = 25000.

Figure 2: F1@K averaged across tasks vs. Total Runtime@K of source-task adapters. Higher is better. Runtime is
reported in hours.

random seeds, for each of the 58 target domains
and 2 sample size settings, producing 2,900 models
for evaluation.

Figure 1 shows the Average NDCG@K values
for each of these feature sets. We average the
NDCG@K values across each of the 58 domains,
and again over each of the 5 seeds. For both mod-
els, we achieve the best quality ranking using all
of the features (ALL). Moreover, using diver-
gence measures with both sets of representations
(DIVTD,BE) achieved a better ranking than using
them in isolation (DIVTD or DIVBE) for both set-
tings. It is also interesting to note that the feature
set containing only the entropy and moments-based
(H + σ) values achieve better performance than
that of those estimated via divergence measures
when the source sample size is significantly limited,
coinciding with patterns found in our correlation
analysis (Table 1); it may be the case that these
features are more discriminative in cases where
divergence measures are not as expressive.

Finally, we evaluate the practical, downstream
application of our regression models by consid-
ering how they may be used to reduce the search
time in finding appropriate source models for
transfer. For this experiment, we assume the user
has a particular training budget K to train task
pairs for transfer. The more task combinations that
are tried, the more likely the user is to find a better-
performing model for a particular task. We use our
regression models to determine the order of task
pairs to be tried, using the best feature set from our
prior experiments (See Fig. 1). We compare with a
random ordering of source-task models, which we
average over five random seeds to reduce variance.
Figure 2 shows the results of our experiments.
For NS = 1000, the best macro-averaged F1

performance score over all tasks is 0.8482 which,
with a grid search over all task combinations,
would require 4.7 hours of training. With our ap-
proach, we can achieve a 44% reduction in training
time from 4.7 to 2.6 hours to achieve the same
performance. For NS = 25000, we can achieve
the maximum score of 0.8899 through a grid
search of all source-target combinations at a cost of
42.4 hours of training time. With our approach, we
can achieve the same score with only 24.9 hours
of training or a 41% reduction in training time.

In determining the overall runtime of our ap-
proach, we factor in the computational cost associ-
ated with generating the features required to train
our regression models. Our feature generation pro-
cess consists of three stages: (1) the generation
of term distributions and embedding representa-
tions, (2) the computation of statistical measures
in Table 1, (3) and the execution of regression ex-
periments using the ALL feature set. A total of
232 term distributions and an equivalent number
of embedding representations (58 target domains
each with separate training and test sets, in two
different sample size settings) were generated. The
generation of both sets of representations takes 5.7
minutes at NS = 1000 and 45.9 minutes at NS =
25000. The time taken to compute all statistical
measures across both representations is 3 minutes
at NS = 1000 and 6.6 minutes at NS = 25000.
Finally, the time taken to run the regression exper-
iments was 5.4 minutes in total. Despite the added
computational cost, our approach has resulted in a
substantial reduction in end-to-end runtime, boast-
ing a 40% reduction at NS = 1000 and a 39%
reduction at NS = 25000, demonstrating the effi-
ciency of our approach and the value-add of predict-
ing which task pairs are transferable beforehand.
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4 Conclusions and Future Work

In this paper, we have shown that domain di-
vergence measures and other statistical quantities
are predictive of zero-shot transferability between
tasks, and that this can be used to markedly reduce
time when developing effective zero-shot models.
Indeed, by predicting which source-target task pairs
were likely transferable pre-tuning, we were able
to reduce the end-to-end time taken to find the best
source-target task pairs (trained on 1,000 source-
task samples) by 40%. On the other hand, while
we have demonstrated the value of using these met-
rics in performance estimation, there are a number
of further directions worth investigating, namely:
(1) examine the transferability across a wider range
of domain and task types; (2) investigate more com-
plex, higher-order measures such as those outlined
by Ramesh Kashyap et al. (2021); (3) and to exper-
iment with few-shot and other limited data settings.

Limitations

The most pronounced limitation in our work is the
small variance in performance scores. As can be
seen in Figure 2, the difference between the lower
and maximum performances is small. The differ-
ence between the minimum and maximum average
performance is 0.0305 and 0.0320 for NS = 1000
and NS = 25000, respectively. Even at the indi-
vidual, source-target model level, the standard de-
viation of performance scores at each source-task
sample size setting is 0.0363 and 0.0311. As such,
the benefits of zero-shot transfer are not as apparent
between these domains as they would be where the
domains are more textually distinct. Nevertheless,
we believe it is notable that statistical measures of
domain divergence and the other metrics were suf-
ficiently capable of discerning between more effec-
tive source-task pairs, even when the domains were
similar, illustrating the promise of this approach.
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Abstract

Extractive models usually formulate text sum-
marization as extracting fixed top-k salient sen-
tences from the document as a summary. Few
works exploited extracting finer-grained Ele-
mentary Discourse Unit (EDU) with little anal-
ysis and justification for the extractive unit se-
lection. Further, the selection strategy of the
fixed top-k salient sentences fits the summariza-
tion need poorly, as the number of salient sen-
tences in different documents varies and there-
fore a common or best k does not exist in reality.
To fill these gaps, this paper first conducts the
comparison analysis of oracle summaries based
on EDUs and sentences, which provides evi-
dence from both theoretical and experimental
perspectives to justify and quantify that EDUs
make summaries with higher automatic evalua-
tion scores than sentences. Then, considering
this merit of EDUs, this paper further proposes
an EDU-level extractive model with Varying
summary Lengths (EDU-VL1) and develops
the corresponding learning algorithm. EDU-
VL learns to encode and predict probabilities of
EDUs in the document, generate multiple can-
didate summaries with varying lengths based
on various k values, and encode and score can-
didate summaries, in an end-to-end training
manner. Finally, EDU-VL is experimented on
single and multi-document benchmark datasets
and shows improved performances on ROUGE
scores in comparison with state-of-the-art ex-
tractive models, and further human evalua-
tion suggests that EDU-constituent summaries
maintain good grammaticality and readability.

1 Introduction

Automatic text summarization aims at aggregat-
ing information in long document(s) into a shorter
piece of text while keeping important information.
Extractive summarization and abstractive summa-
rization are two categories of it. This paper focuses

∗Corresponding author.
1https://github.com/yuping-wu/EDU-VL

Document: (...) [The second audio,] [taken
from dash cam video from inside a patrol car,]
[captures a phone call between Slager and
someone] [CNN believes] [is his wife.] (...)
Reference Summary: The second audio cap-
tures a phone call between Slager and some-
one CNN believes is his wife.

Table 1: Example to demonstrate redundant information
in sentence. Content within [] indicates an EDU.

only on the extractive task which formulates sum-
marization as identifying salient textual segments
in document (Lunh, 1958). Under the supervised
learning framework, this task is further formulated
as a label classification task, i.e., encoding textual
segments and predicting labels on the encoded vec-
tors. Recent state-of-the-art models (Liu and Lap-
ata, 2019; Zhong et al., 2020; Liu et al., 2021; Ruan
et al., 2022) on this task tend to be Transformer-
based since BERT (Devlin et al., 2019) shows sig-
nificantly better performance than RNN on most
natural language understanding tasks.

Most existing works extract sentences from the
document and some works further (Xu and Durrett,
2019) propose post-processing steps to prune the
generated summary. The only exception is the few
works (Liu and Chen, 2019; Huang and Kurohashi,
2021), which extract finer-grained textual segments,
i.e., discourse-level text or EDU, with little justifi-
cation. The intuition is that a sentence consisting
of multiple clauses is inevitable to contain less im-
portant information. As demonstrated in Table 1,
partially removing a clause in the sentence is con-
ducive to generating a summary. Certainly, such
an intuitive explanation does not provide enough
evidence and support to justify the use of finer-
grained textual segments such as EDU to substitute
sentences. Considering such a gap in existing re-
search, the first main motivation of this paper is to
propose and conduct the comparison analysis be-
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tween sentences and EDUs to disclose and justify
whether using EDU is a theoretically advanced and
application-advantaged extractive unit.

When selecting textual segments, the top-k strat-
egy with k fixed for all documents is dominant
in deciding the length of the generated summary.
Some works (Zhong et al., 2020; Chen et al., 2021)
manage to output summaries with different lengths,
i.e., various numbers of extracted segments, via
formulating the problem as deriving a subset of
sentences from the combination of top-k sentences.
Due to the foreseeing explosion of the combina-
tion of sentences to form subsets, these approaches
are limited to generating summaries with relatively
small values of k. To overcome such a weakness,
the second main motivation of this paper is to pro-
pose and develop an approach allowing varying
lengths for extractive summarization without ex-
plicit limitation on the maximum value of k, i.e.,
the maximum length.

Following the above motivations, the compari-
son analysis between EDUs and sentences ascer-
tains that EDU is a better text unit for the extrac-
tive task because EDU-level summaries achieve
higher automatic evaluation scores than sentence-
level summaries. This conclusion is justified from
two perspectives. Theoretically, a formal theorem
about this conclusion could be derived from the
property that EDU is essentially part of a sentence.
Experimentally, results of comprehensive analy-
sis about oracle summaries of five datasets fur-
ther quantify this conclusion, i.e., how much the
ROUGE scores of EDU-level oracle summary are
higher than sentence-level oracle summary.

Based on the aforementioned conclusion and
foundation, this paper further proposes and devel-
ops an EDU-level extractive model and algorithm,
which generates summaries with varying lengths,
i.e., EDU-VL. We extend Transformer-based pre-
trained language model with an extra classification
layer to encode EDUs in a document and predict
the corresponding probabilities. Multiple k values
are provided to the model to generate a set of can-
didate summaries under the flexible top-k strategy
for the document. Multiple Transformer encoder
layers encode the full document and candidate sum-
maries individually. Finally, a similarity score with
the encoded document is calculated for each candi-
date summary and the one with the highest score is
the final output of EDU-VL.

Experiments are conducted on five benchmark

datasets from different domains and with various
writing styles. The experimental results suggest
that EDU-VL achieves better performance than
all state-of-the-art extractive baselines on single-
document summarization datasets CNN/DailyMail,
XSum, Reddit, and WikiHow, in terms of three
ROUGE metrics. With direct comparison to the
multi-document model, EDU-VL still achieves
comparable performance on the multi-document
summarization dataset Multi-News. Human eval-
uation is further carried for the summaries gener-
ated by EDU-VL to assess the syntax structure of
EDU-constituent summaries. The results provide
evidence for the good grammaticality and readabil-
ity of EDU-constituent summaries and therefore
justify the applicability.

The contributions of this paper are threefold:

1) We justify and quantify that EDU-level
achieves higher automatic evaluation scores
than sentence-level oracle summary from both
theoretical and experimental perspectives, in-
dicating that setting EDU as the extractive
text unit is exploitable and superior in appli-
cations.

2) We propose a varying summary lengths-
enabled extractive model with EDU-level text
unit. Such a model and its learning algorithm
encodes EDUs in a document and outputs a
summary with varying length by making k in
the top-k extraction strategy varying.

3) Our proposed model achieves superior per-
formance on four single-document summa-
rization datasets on three ROUGE metrics.
Human evaluations show that the generated
EDU-constituent summaries maintain good
grammaticality and readability.

2 Related Work

2.1 Neural Extractive Summarization

The extractive text summarization task aims at ex-
tracting salient textual segments from the original
document(s) as a summary. A tendency observed
among extractive neural models is that the archi-
tecture changes from RNN (Nallapati et al., 2017;
Xu and Durrett, 2019) to Transformer-based mod-
els, e.g., BERT (Zhang et al., 2019; Liu and Lap-
ata, 2019) and Longformer (Liu et al., 2021; Ruan
et al., 2022). GNN also gained extensive atten-
tion in recent years and is usually stacked after
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an RNN (Wang et al., 2020; Jing et al., 2021) or
Transformer-based encoder (Cui et al., 2020; Kwon
et al., 2021) to supplement graph-based features.
Some research works integrated neural networks
with reinforcement learning (Dong et al., 2018; Gu
et al., 2022) or unsupervised learning frameworks
(Liang et al., 2021). In general, it can be said that
taking a pre-trained Transformer-based language
model as the starting point to encode textual seg-
ments in a document is currently the state-of-the-art
approach among neural extractive models. There-
fore, the Transformer-based models, i.e., RoBERTa
(Liu et al., 2019) and BART (Lewis et al., 2020),
are used as the basic building blocks in this paper.

2.2 Sub-sentential Extractive Summarization
Most previous works about the extractive task
focused on generating sentence-level summaries,
though some of them (Xiao et al., 2020; Cho et al.,
2020; Ernst et al., 2022) utilized sub-sentential
features. Early works by Marcu (1999); Alonso i
Alemany and Fuentes Fort (2003); Yoshida et al.
(2014); Li et al. (2016) exploited extracting
discourse-level textual segments as the summary
but those approaches were tested on small datasets.
More recent works by Liu and Chen (2019); Xu
et al. (2020); Huang and Kurohashi (2021) were
evaluated on relatively larger datasets. However,
whether the discourse-level textual segments are a
better alternative than sentences as the extractive
text unit was not justified in those works. To fill
this gap, we provide justification for this research
question from both theoretical and experimental
perspectives in this paper.

2.3 Flexible Extractive Summarization
Extractive summarization task is usually formu-
lated as extracting the top-k number of salient tex-
tual segments from a document. The fixed k value
for all documents results in the lack of variety in
the length of the generated summary. Few works
(Jia et al., 2020; Zhong et al., 2020; Chen et al.,
2021) managed to output summaries with varying
lengths. However, either it requires extra effort for
hyper-parameter searching on validation dataset to
find a valid threshold, or formulating the problem
as selecting a subset of top-k sentences makes the
variety of lengths limited to small lengths due to
the explosive nature of combination. In this paper,
we propose a model with varying k values but with-
out explicit limitation on the length or the need to
do hyper-parameter searching.

3 Oracle Analysis of EDUs and Sentences

Oracle analysis refers to the analysis of oracle
summary whose definition is stated in Section 3.1.
We conducted oracle analysis from both theoreti-
cal and experimental perspectives to justify and
quantify that discourse-level summary achieves
higher scores on automatic evaluation metrics than
sentence-level summary.

3.1 Theoretical Formulation

Elementary Discourse Unit (EDU), the discourse-
level textual segment in this paper, refers to the
terminal node in the Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988) tree which de-
scribes the discourse structure of a piece of text.
EDUs are non-overlapping and adjacent text spans
in the piece of text and a single EDU is essentially
a segment of a complete sentence, i.e., the sen-
tence itself or a clause in the sentence (Zeldes et al.,
2019). Namely, a sentence can always be expressed
with multiple EDUs, i.e., for the s-th sentence in
a document, there is sents = [edus1 , . . . , edusm ].
Consequently, a one-way property from sentence
to EDU regarding expressiveness is derived.

Expressiveness Property For any given
subset of sentences in a document, i.e.,
[senti, . . . , sentj , . . . , sentk], there is al-
ways a subset of EDUs in the document, i.e.,
[edui1 , . . . , eduim , . . . , eduj1 , . . . , edujm , . . . ,
eduk1 , . . . , edukm ], having identical content.

Oracle Summary The set of salient textual seg-
ments that have greedily the highest ROUGE
score(s) with the reference summary is the ora-
cle summary for a document. It signifies the upper
bound of performance that an extractive summa-
rization model could achieve on ROUGE metrics.

Denote the sentence-level oracle summary as
OSsent and the EDU-level oracle summary as
OSedu. Based on the aforementioned property and
definition, Theorem 1 can be derived and its de-
tailed proof is provided below.

Theorem 1. Given a document D and its reference
summary R, for any derived OSsent, there is al-
ways an OSedu having ROUGEF1(R,OSedu) ≥
ROUGEF1(R,OSsent).

Proof. For ROUGE-N, let fn be a function that
generates the set of n-grams for the string s and
g be a function that calculates the number of
overlapping elements between two sets x and y,
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i.e.,
fn(s) = n-gram(s),
g(x, y) = match(x, y).

The recall and precision formulas of the
ROUGE-N metric between the reference summary
R and sentence-level oracle summary OSsent are

R-Nrecall,OSsent = g(fn(R),fn(OSsent))
|fn(R)| ,

R-Nprecision,OSsent = g(fn(R),fn(OSsent))
|fn(OSsent)| .

There is always an EDU-level summary Sedu
having Sedu = OSsent. Let Ssubedu be the subset
of EDUs in Sedu having equivalent number of
overlapping n-grams as Sedu, i.e.,

Ssubedu ⊆ Sedu = OSsent
and
g(fn(R), fn(Ssubedu)) = g(fn(R), fn(OSsent)).

The number of words in Ssubedu is smaller than or
equal to the number of words in OSsent, i.e.,

|Ssubedu| ≤ |OSsent|,

and consequently, the number of n-grams is
correspondingly smaller or equal, i.e.,

|fn(Ssubedu)| ≤ |fn(OSsent)|.

Therefore, the precision score for Ssubedu is
larger than or equal to OSsent and their recall
scores are the same, i.e.,

R-Nprecision, Ssubedu
= g(fn(R),fn(Ssubedu))

|fn(Ssubedu)|≥
R-Nprecision,OSsent =g(fn(R),fn(OSsent))

|fn(OSsent)|
and

R-Nrecall, Ssubedu
= R-Nrecall,OSsent

Therefore, the EDU-level subset of OSsent,
i.e., Ssubedu, is found to have higher or equal
F1-scores on ROUGE-N metrics than OSsent, i.e.,

R-NF1,Ssubedu
≥ R-NF1,OSsent

That is to say, it is guaranteed to have an
EDU-level summary having higher or equal R-N
scores than OSsent. By taking this Ssubedu as OSedu,
we have R-NF1,OSedu ≥ R-NF1,OSsent .

A similar proof process can be conducted

Text Unit R-1 R-2 R-L
CNN/DailyMail

Sentence 53.33 31.09 49.67
EDU 61.02 37.16 58.63

XSum
Sentence 29.13 8.70 22.32
EDU 36.07 11.74 30.95

WikiHow
Sentence 37.98 13.76 35.18
EDU 44.28 17.94 42.56

Reddit
Sentence 30.58 10.95 24.57
EDU 40.62 16.01 35.95

Multi-News
Sentence 49.65 22.20 44.99
EDU 51.35 23.99 48.70

Table 2: ROUGE F1-scores of sentence-level and EDU-
level oracle summaries on training datasets.

on ROUGE-L. Therefore, for any OSsent, there is
always an OSedu having ROUGEF1(R,OSedu) ≥
ROUGEF1(R,OSsent).

3.2 Empirical Justification

Five datasets from different domains were ana-
lyzed from the experimental perspective and exper-
imental settings are listed in Appendix A. Table 2
presents the ROUGE scores of OSsent and OSedu
on training datasets. OSedu gains significantly
higher ROUGE scores on all datasets. Larger im-
provements are observed on ROUGE-1 (6.3-10.04)
and ROUGE-L (7.38-11.38) on the majority of
datasets, and improvement on ROUGE-2 is smaller
but there is still an increase.

Figure 1 shows the comparison of breakdown
ROUGE scores between two text units on the
CNN/DailyMail training dataset and details about
other datasets could be found in Appendix B. Re-
call scores on all three metrics are approximately
equal between the two text units, suggesting that
the amount of salient information in both is equal.
However, precision scores are observed with a sig-
nificantly higher value on OSedu, suggesting the
length of OSedu is smaller.

The experimental results quantify the poten-
tial gains that EDU-level oracle summary could
achieve on five datasets and the breakdown scores
indicate that EDU-level oracle summary is less re-
dundant than sentence-level oracle summary.
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Figure 1: Breakdown ROUGE scores of sentence/EDU-
level oracle summaries on CNN/DM training dataset.

4 EDU-level Extractive Model with
Varying Summary Lengths

4.1 Problem Formulation
Suppose a document D consists of m EDUs, i.e.,
D = [edu1, . . . , edum], the i-th EDU consists of
ni words, i.e., edui = [wi1, . . . , wini ], and the ref-
erence summary wrote by human is denoted as
R. The set of ground truth labels for each EDU
could be derived from R, i.e., L = [l1, . . . , lm],
via a greedy algorithm as previous works did. Our
proposed model aims to generate a summary via
selecting one summary from the set of candidate
summaries C where C = [cand1, . . . , candc] and
candj consists of EDUs with top-kj probabilities
that are also predicted by the proposed model.

4.2 Model
Figure 2 illustrates the architecture of our proposed
model. From bottom to top, firstly, the EDU-level
block generates a representation vector and proba-
bility for each EDU in a document. Secondly, the
candidate summary generator aggregates EDU rep-
resentation vectors to generate several candidate
summaries with varying lengths by specifying dif-
ferent k values. Different from the previous top-k
strategy where k is a fixed value, multiple k values
are provided to the proposed model, allowing dif-
ferent numbers of EDUs being extracted to form
different candidate summaries with varying lengths
for the same document. Lastly, the document-level
block encodes each candidate summary and selects
one of the candidate summaries as the final model

output. In this way, the proposed model decides
the most suitable summary length, i.e., k, for each
document.

EDU-level Block Given input document D =
[w11, . . . , wmnm ] where wij denotes j-th word in
i-th EDU, [CLS] and [SEP] tokens are inserted
into D at the start and end of each EDU. We adapt
the pre-trained Transformer-based language model
(PLM) as the EDU encoder, e.g., RoBERTa. The
hidden states of [CLS] tokens derived from the
PLM are taken as EDU representations, i.e., eduE

in Equation (1). A classification layer is further
applied on EDU representations to predict proba-
bilities, i.e., P in Equation (2).

[eduE1 , . . . , edu
E
m] = PLMθ(D) (1)

Pi(yi = 1) = σ(WceduEi + bc), (2)

where θ is the set of all trainable parameters in
PLM; Wc and bc are trainable parameters in clas-
sification layer, and σ(·) denotes sigmoid function.

Candidate Summary Generator Given a pre-
defined extraction lengths set K = [k1, . . . , kc],
the s-th candidate summary, cands, consists of
EDUs whose probabilities are in top-ks(P), i.e.,
[edui1 , . . . , eduij , . . . , eduik ] where ij ≤ m and
Pij ∈ top-ks(P), j = 1, 2, ..., ks. The initial rep-
resentation vector, candCs , for cands is the con-
catenation of representation vectors of EDUs in it.
The initial document representation vector, DC , is
aggregated from the representation vectors of all
EDUs.

Document-level Block Multiple Transformer
encoder layers (MTL) are stacked to encode
document-level information for document DC , and
all candidate summaries, e.g., candCs , separately,
and generateDD and candDs in Equation (3). Then
cosine similarity, i.e., sims in Equation (4), is com-
puted between the encoded document representa-
tion and the encoded s-th candidate summary repre-
sentation. The candidate summary with the highest
similarity with the document is taken as the final
model-generated summary.

[DD, candDs ] = [MTLη(DC),MTLη(cand
C
s )] (3)

sims = cosine(DD, candDs ), (4)

where η is the set of trainable parameters in MTL.
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Figure 2: Model architecture. The EDU-level block encodes and predicts a probability value for each EDU in the
input document; The candidate summary generator generates a set of candidate summaries based on the predicted
probability values; The document-level block encodes the whole document and candidate summaries and generates
similarity values between them. The final output is the candidate summary with the highest similarity score.

Training Algorithm 1 summarizes the model
learning procedure. The model encodes EDUs in
the document and predicts the probability for each
EDU (lines 1-2), generates indices of EDUs for can-
didate summaries with different lengths which are
derived from different k values (lines 3-4), encodes
the whole document and candidate summaries and
calculates similarity scores (lines 7-10), and selects
the best candidate summary (line 16) in an end-to-
end manner. Inspired by Zhong et al. (2020) that
the candidate summary having a higher ROUGE
score with the reference summary is expected to
have a higher similarity score with the whole doc-
ument, during training, ROUGE scores for each
(R, cands) pair are calculated and used to sort the
set C in descending order (lines 5-6) to align with
the loss function in Equation (7). Besides, to better
emphasize those important EDUs, the EDU-level
oracle summary, denoted as candgt here, is intro-
duced to the training process and assumed to have
the highest ROUGE score (lines 12-13).

4.3 Objective Function

Binary cross entropy is calculated on the outputs
of the classification layer in the EDU-level block,
as in Equation (6). Contrastive learning loss is
calculated on the outputs of the similarity layer
in the document-level block, as in Equations (7-
9). The final training loss L in Equation (5) is

Algorithm 1 Model Learning Algorithm

Input: D|m1 ,K|c1, L|m1
Output: candSumIdx

1: eduRep|m1 ← PLMθ(D)
2: P |m1 ← classificationw,b(eduRep|m1 )
3: for i← 1 to c do
4: selIdxi ← indices of top-Ki(P |m1 )

5: if training then
6: selIdx|c1 ← sort based on ROUGE scores

7: docRep← MTLη(eduRep|m1 )
8: for j ← 1 to c do
9: candRepj ← MTLη(eduRep∈selIdxj )

10: simj ← cosine(docRep, candRepj)

11: if training then
12: gtIdx← indices of 1 in L|m1
13: simgt ← repeat 9-10
14: L ← loss from P |m1 , L|m1 , sim|c1, simgt

15: θ, w, b, η ← parameters updated by L
16: candSumIdx← selIdxindex_max(sim|c1)
17: return candSumIdx

calculated as a weighted summation between them.

L = Lbce + ρ ∗ Lcon, (5)

where

Lbce = −
∑m

i=1(lilog(Pi) + (1− li)log(1− Pi)) (6)

Lcon = L1 + L2, (7)
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where

L1 =
c∑

s=1

max(0, sims − simgt + γ1) (8)

L2 =
∑c

i<jmax(0, simj − simi + (j − i) ∗ γ2) (9)

5 Experiments

5.1 Datasets
CNN/DailyMail (Hermann et al., 2015) is the most
commonly used news dataset for the extractive task
with human-written highlights as reference sum-
mary. The non-anonymized version was used in
our experiments. XSum (Narayan et al., 2018)
is another news dataset with the first introductory
sentence in the article as the reference summary.
Reddit (Kim et al., 2019) is a dataset crawled
from the social media forum with the content in
the section TL;DR as the reference summary. Ex-
periments were conducted on the TIFU-long ver-
sion. WikiHow (Koupaee and Wang, 2018) is a
dataset crawled from the question-answering web-
site with the first sentence in each paragraph as
the reference summary. Multi-News (Fabbri et al.,
2019) is a multi-document dataset with one sum-
mary for a cluster of documents. We follow Zhong
et al.’s (2020) setting to split Reddit and Multi-
News datasets and concatenate multiple documents
into one single document. The detailed statistics of
the five datasets in our experiments can be found
in Appendix C.

5.2 Baselines
Various extractive models are selected as baselines.
HETFORMER (Liu et al., 2021) modifies Long-
former with longer input lengths to implement
multi-granularity attention and selects sentences.
Among models generating summaries with varying
lengths, MATCHSUM (Zhong et al., 2020) se-
lects among a set of candidate summaries derived
from a trained sentence-level extractive model;
HAHSUM (Jia et al., 2020) transforms a docu-
ment into a heterogeneous hierarchical graph and
flexibly selects sentences based on a threshold.
Among models with sub-sentential segments as
input, the Proposed model by Huang and Kuro-
hashi (2021) is another Longformer-based model
but extracts EDUs based on the constructed het-
erogeneous graph; DISCOBERT (Xu et al., 2020)
and D-SUM (Liu and Chen, 2019) are models ex-
tracting discourse-level textual segments but they
differ in whether integrating GNN into the model.

SGSUM (Chen et al., 2021) is a multi-document
model by encoding all documents within one clus-
ter individually and selecting the best sub-graph.
FAR (Liang et al., 2021) is an unsupervised rank-
ing model considering facet-specific information.

5.3 Experimental Setting

EDU segmentation of sentences in the document
is conducted by NeuralEDUSegmentation2 (Wang
et al., 2018). To facilitate the training process, the
calculation of ROUGE scores is avoided by pre-
selecting the set of candidate summaries based
on the predicted probabilities by the fine-tuned
RoBERTa on the extractive task for each dataset.
The pre-trained “roberta-base” or “bart-base” is
adapted as the EDU encoder and enlarged to handle
the first 768 BPEs of each document. The num-
ber of Transformer encoder layers is 4 by default.
Following Liu and Lapata (2019), a similar greedy
algorithm is applied to generate ground truth labels
for EDUs (also for oracle summaries in Section
3.2) and the pseudo-code is in Appendix D. The
trigram strategy is applied when forming the final
EDU-constituent summary during validating and
testing.

We follow Zhong et al.’s (2020) setting to set up
γ1 = 0 and γ2 = 0.01. ρ is set as 100 based on
our observation during training. Adam optimizer
is used. The batch size is 5 to fit the GPU memory
limit during training and 60 during validating or
testing. Every 6k steps are defined as one epoch;
the training process could take up to 100 epochs
and early stopping is activated with patience as 10
epochs and R-2 as the metric. Experiments are
conducted on a single Nvidia-v100-16GB GPU.
The F1-scores of ROUGE-1/2/L3 (Lin, 2004) are
taken as the automatic evaluation metrics. More
details are provided in Appendix E.

5.4 Experimental Results

CNN/DailyMail Table 3 shows the results. The
top section includes F1-scores of oracle summaries
and the Lead-3 method. The second section
presents the F1-scores reported in the original pa-
pers of all baselines. The last section lists the F1-
scores of our proposed model.

Our proposed model outperforms the unsuper-
vised baseline, FAR, by a large margin, align-
ing with the observation from other supervised

2https://github.com/PKU-TANGENT/NeuralEDUSeg
3https://github.com/bheinzerling/pyrouge
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Model R-1 R-2 R-L
ORACLE (EDU) 62.50 38.67 60.16
ORACLE (sentence) 55.31 32.73 51.63
LEAD-3 (sentence) 39.96 17.39 36.27
D-SUM (Liu and Chen, 2019) 42.78 20.23 -
DISCOBERT (Xu et al., 2020) 43.77 20.85 40.67
Proposed (Huang and Kurohashi, 2021) 43.61 20.81 41.12
HAHSUM (Jia et al., 2020) 44.68 21.30 40.75
MATCHSUM (Zhong et al., 2020) 44.41 20.86 40.55
HETFORMER (Liu et al., 2021) 44.55 20.82 40.37
FAR (Liang et al., 2021) 40.83 17.85 36.91
EDU-VLROBERTA 44.80 21.66 42.56
EUD-VLBART 44.70 21.63 42.46

Table 3: F1-scores on CNN/DailyMail test dataset.

Model R-1 R-2 R-L
XSum

ORACLE (EDU) 36.16 11.74 31.02
ORACLE (sentence) 29.11 8.66 22.29
LEAD-3 (sentence) 19.41 2.65 15.05
MATCHSUM (Zhong et al., 2020) 24.86 4.66 18.41
EDU-VLROBERTA 26.48 5.74 22.33
EDU-VLBART 26.43 5.78 22.35

Reddit
ORACLE (EDU) 44.49 18.53 38.87
ORACLE (sentence) 34.36 12.97 26.98
LEAD-3 (sentence) 18.39 3.01 14.12
MATCHSUM (Zhong et al., 2020) 25.09 6.17 20.13
EUD-VLROBERTA 27.04 6.87 22.64
EDU-VLBART 27.01 7.06 22.70

Table 4: F1-score results on test dataset of XSum and
Reddit. The number of Transformer encoder layers in
BART version of XSum is 6 and 2 for both versions of
Reddit.

baselines. Compared with discourse-level base-
lines, i.e., D-SUM, DISCOBERT and Proposed,
our proposed model achieves an improvement of at
least 1.03/0.81/1.44 on R-1/2/L. When compared
against other two varying lengths-enabled models,
i.e., HAHSUM and MATCHSUM, our proposed
model achieves better R-1 result on a small scale
(0.12) and R-2/L on a larger scale (0.8/1.81). Our
proposed model also beats HETFORMER which al-
lows longer input length by a similar scale pattern.
It is observed that the RoBERTa version of our
proposed model performs slightly better than the
BART version. The experimental results suggest
that our proposed model achieves better perfor-
mance than all baselines on the R-1/2/L.

XSum and Reddit The results in Table 4 show
that our proposed model outperforms the base-
line model, MATCHSUM, by a large margin on
all three metrics (1.57/1.12/3.94 and 1.92/0.89/2.57
on R-1/2/L for XSum and Reddit, respectively).
The RoBERTa version of our model only achieves

Model R-1 R-2 R-L
WikiHow

ORACLE (EDU) 44.13 17.90 42.38
ORACLE (sentence) 37.89 13.80 35.13
LEAD-3 (sentence) 23.97 5.37 22.22
FAR (Liang et al., 2021) 27.54 6.17 25.46
MATCHSUM (Zhong et al., 2020) 31.85 8.98 29.58
EDU-VLROBERTA 33.94 10.31 32.55
EDU-VLBART 34.01 10.45 32.66

Multi-News
ORACLE (EDU) 51.60 24.24 48.92
ORACLE (sentence) 49.87 22.43 45.18
LEAD-3 (sentence) 28.40 8.63 24.93
HETFORMER (Liu et al., 2021) 46.21 17.49 42.43
SGSUM (Chen et al., 2021) 47.53 18.75 43.31
FAR (Liang et al., 2021) 43.48 16.87 44.00
MATCHSUM (Zhong et al., 2020) 46.20 16.51 41.89
EDU-VLROBERTA 46.82 17.05 44.36
EDU-VLBART 47.56 17.64 45.05

Table 5: F1-score results on test dataset of WikiHow
and Multi-News.

Model R-1 R-2 R-L
EDU-VLROBERTA 44.80 21.66 42.56
w/o EDU 43.89 20.79 40.18
w/o VL 44.32 21.38 42.12

Table 6: Ablation analysis on test dataset of CNN/DM.

slightly better result on R-1 than the BART version.

WikiHow and Multi-News As shown in Table
5, our proposed model achieves significantly bet-
ter performance on WikiHow dataset, beating both
MATCHSUM and FAR by at least 2.16/1.47/3.08 on
R-1/2/L. For the Multi-News dataset, our proposed
model outperforms HETFORMER, MATCHSUM

and FAR. It is noteworthy that SGSUM is initially
designed to incorporate multiple documents, mean-
ing that its input document is more complete than
ours. Though our proposed model underperforms
SGSUM on R-2, our proposed model achieves com-
parable result on R-1 and better result on R-L. The
BART version of our proposed model outperforms
the RoBERTa version on all three metrics on both
datasets. To sum up, our proposed model performs
better on WikiHow dataset and comparably on
Multi-News dataset when compared against the
corresponding state-of-the-art baselines.

5.5 Analysis

Ablation Analysis We further conduct ablation
analysis by removing specific characteristics in our
model and the result is presented in Table 6. Both
letting the model extract sentences under the same
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architecture and removing the document-block to
disable the varying lengths characteristic reduce
model performance on all three metrics. A larger
decrease is observed in the sentence-level model.

Human Evaluation We randomly sample 50
summaries generated by our model from the
CNN/DailyMail test dataset and conduct detailed
qualitative analysis. For each summary, we com-
bine EDUs from the same sentence together as one
textual segment. Then referring to the dependency
tree of the corresponding sentence, we evaluate
the syntactical completeness of the extracted tex-
tual segment. Out of 221 extracted textual seg-
ments in all 50 summaries, 68% are syntactically
complete and 32% are not. It is noteworthy that
about half of those incomplete ones are subordinate
clauses, whose syntax structure is close to being
complete. Out of these complete ones, 44.7% are
the whole sentence itself because all EDUs in that
sentence are extracted; 55.3% maintain complete
syntax structure after dropping some EDU(s) in
that sentence (as the example shown in Table 7).
Therefore, it is safe to believe that even sentences
split into multiple EDUs, the model is capable to
maintain the syntax structure by choosing multiple
EDUs in a sentence and in some cases, filtering out
some redundant information without breaking the
completeness of the syntax.

Generated Summary Examples Table 7 pro-
vides an example of a summary generated by our
proposed model, which illustrates that the model
manages to selectively drop redundant information
in sentences by operating on the EDU-level while
maintaining an informative and readable summary.

6 Conclusion

In this paper, we verify and quantify the argument
that the EDU-level summary achieves higher au-
tomatic evaluation scores than sentence-level sum-
mary from both theoretical and experimental per-
spectives. We further propose an EDU-level extrac-
tive summarization model and develop its learning
algorithm, which generates summaries with differ-
ent lengths for different documents. The experi-
mental results demonstrate that our model achieves
superior performance on four single-document
summarization datasets and comparable perfor-
mance for multi-document summarization with di-
rect comparison with the multi-document model.
In the future, we will explore integrating the EDU-

Document: (...) [Arnold Breitenbach of
St. George wanted to get ‘CIB-69’ put on
a license plate,]21 [the Spectrum newspa-
per of St. George reported.]22 [That would
have commemorated both Breitenbach get-
ting the Purple Heart in 1969 and his Com-
bat Infantryman’s Badge,]31 [according to the
newspaper.]32 (...) [The Utah DMV denied his
request,]51 [citing state regulations]52 [pro-
hibiting the use of the number 69]53 [because
of its sexual connotations]54 (...)
Reference Summary: Arnold Breitenbach of
St. George, Utah, wanted to get ‘CIB-69’ put
on a license plate. That would have commem-
orated both Breitenbach getting the Purple
Heart in 1969 and his Combat Infantryman’s
Badge. The Utah DMV denied his request,
citing state regulations prohibiting the use of
the number 69 because of its sexual connota-
tions.

Table 7: Example from model-generated summary. Con-
tent within [] represents an EDU and subscript number
ij indicates it is the j-th EDU in the i-th sentence in
the document. Each color represents information in a
sentence in reference summary. Italic denotes content
selected by our proposed model.

level summary generated by our model into the
abstractive summarization model.

Limitations

Though EDU is defined as a clause in a sentence,
current EDU segmenters are still underdeveloped
due to the limited training dataset and usually split a
sentence into consecutive EDUs, which breaks the
syntactic structure. Occasionally some extracted
EDUs from a sentence fail to recover a complete
syntactic structure. Therefore, a more sophisticated
segmenter could further improve the segmentation,
or some post-processing treatments could be devel-
oped to address such a potential issue specifically.
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A Parameters for Oracle Summaries

Table 8 presents parameters for oracle summaries.

Dataset # Sentences # EDUs
CNN/DM 5 8
XSum 5 8
Reddit 5 8
WikiHow 5 8
Multi-News 15 30

Table 8: Maximum number of textual segments allowed
to be extracted in oracle summaries.

B Breakdown Comparison on ROUGE
scores

Table 9 presents the breakdown ROUGE scores of
other four datasets.

C Statistics of Datasets

Table 10 presents the statistics of the five datasets.

D Greedy Selection Algorithm

Algorithm 2 presents the pseudo-code of the algo-
rithm of selecting salient textual segments, which is
used to generate oracle summary and ground truth
labels.

E Supplementary Experimental Settings
and Results

Table 11 and Table 12 present detailed experimen-
tal settings and results, respectively.

Sentence EDU

Metric recall precision recall precision
XSum

R-1 40.18 25.77 40.16 36.54
R-2 11.70 7.95 12.86 12.26
R-L 30.68 19.79 34.31 31.44

WikiHow
R-1 45.28 36.90 44.41 49.25
R-2 16.45 13.44 18.01 19.99
R-L 41.96 34.17 42.71 47.29

Reddit
R-1 44.70 26.71 45.40 40.39
R-2 15.63 10.02 17.62 16.48
R-L 35.86 21.56 40.19 35.75

Multi-News
R-1 45.09 58.87 42.45 68.35
R-2 19.96 26.72 19.86 31.79
R-L 40.77 53.44 40.24 64.86

Table 9: Breakdown ROUGE scores of sentence/EDU-
level oracle summaries on XSum, WikiHow, Reddit,
and Multi-News training datasets.

Dataset # word # EDU # sent. # EDU/sent.
CNN/DM 733.98 94.25 36.23 2.67
XSum 431.12 52.02 19.76 2.63
Reddit 443.46 65.28 23.44 3.01
WikiHow 581.15 75.72 29.42 2.58
Multi-News 503.33 58.33 18.13 3.35

Table 10: Statistics of datasets. #word, #EDU and
#sent. refer to the average number of words, EDUs
and sentences, respectively, of documents in the dataset.
#EDU/sent. refers to the average number of EDUs per
sentence.

Model Statistics
model #params runtime per epoch
EDU-VLROBERTA 147M 1h 20min
EDU-VLBART 161M 1h 30min

Pre-processing Setting
dataset #min #max
CNN/DM 6 10
XSum 3 7
Reddit 4 8
WikiHow 6 10
Multi-News 27 31

Table 11: Supplementary information of experimental
settings. #params refers to the total number of trainable
parameters in the model (here both versions are calcu-
lated with 4 MTLs). #min and #max refer to the range
of lengths (k values in the top-k strategy) of candidate
summaries generated by the model, respectively.
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Algorithm 2 Greedy Selection Algorithm

Input: Doc,Ref, k ▷ k: # of selections
Output: sel_idx ▷ selected indices

1: sel_idx← [ ] ▷ empty list
2: C ← [ ] ▷ candidate: empty list
3: while k ≥ 0 do
4: end← TRUE
5: for i← 0 to len(Doc) do
6: tmp_C ← C + [Doci]
7: score← ROUGE(tmp_C,Ref)
8: if score increases then
9: sel_idx← sel_idx+ [i]

10: C ← tmp_C
11: k ← k − 1
12: end← FALSE
13: break
14: if end then
15: break
16: return sel_idx

Model R-1 R-2 R-L
CNN/DM

EDU-VLROBERTA 45.45 22.10 43.23
EDU-VLBART 45.29 22.08 41.11

XSum
EDU-VLROBERTA 26.58 5.83 22.34
EDU-VLBART 26.66 5.97 22.51

Reddit
EDU-VLROBERTA 28.20 7.84 23.58
EDU-VLBART 28.40 7.81 23.89

WikiHow
EDU-VLROBERTA 33.90 10.19 32.53
EDU-VLBART 33.95 10.31 32.59

Multi-News
EDU-VLROBERTA 46.58 17.00 44.14
EDU-VLBART 47.29 17.49 44.82

Table 12: Experimental results of ROUGE F1-scores on
the corresponding validation datasets.
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Abstract

In French, the placement of the adjective within
a noun phrase is subject to variation: it can ap-
pear either before or after the noun. We con-
duct experiments to assess whether transformer-
based language models are able to learn the ad-
jective position in noun phrases in French—a
position which depends on several linguistic
factors. Prior findings have shown that trans-
former models are insensitive to permutated
word order, but in this work, we show that fine-
tuned models are successful at learning and
selecting the correct position of the adjective.
However, this success can be attributed to the
process of finetuning rather than the linguistic
knowledge acquired during pretraining, as evi-
denced by the low accuracy of experiments of
classification that make use of pretrained em-
beddings. Comparing the finetuned models to
the choices of native speakers (with a question-
naire), we notice that the models favor context
and global syntactic roles, and are weaker with
complex structures and fixed expressions.

1 Introduction

In French, the placement of the adjective is sub-
ject to a considerable amount of variation—a phe-
nomenon that has been under close scrutiny among
linguists. Generally speaking, adjective placement
in anteposition or postposition is attributed to many
intertwining, linguistic processes, rather than a few
rigid grammatical rules. However, the order of the
adjective can be crucial to the meaning of the noun
phrase; in the titular example, chère maison means
“dear house" but maison chère means “expensive
house".

Meanwhile, natural language processing re-
searchers investigate whether language models
built by transformer architectures are able to cap-
ture some of the inner workings of human language
during their learning process. So far, research has
shown that the high performance of such models
does not imply the understanding of basic concepts

such as grammatical order because the transformer
architecture is non-sequential by design.

We are exploring whether transformer-based lan-
guage models are capable of perceiving the adjec-
tive’s position in a sentence with regard to its head
noun, with a variety of experiments. Our goal is
not to set a new state-of-the-art, but to explore if
and how this information on word order is learned
and used in tandem with the contextual word em-
bedding information. While previous work has
shown that transformer models are insensitive to
word order (Pham et al., 2021; Gupta et al., 2021),
finetuned models were successful in classifying
adjective position (Sinha et al., 2021b). We also
tested variations of finetuning training sizes and the
use of attention masks to hide either the context of
the sentence or the head noun and adjective.

For most adjectives, classifying their position is
a relatively easy decision based on frequency; to
observe the models’ underlying competencies in
more complex cases, we carried out an error analy-
sis and additional experiments and visualizations
on the pretrained versions of the models. We also
had the opportunity to conduct an experiment with
native French speakers, to compare their choices
in challenging cases of adjective placement to the
models’ predictions.

Our findings show that finetuned models are ca-
pable of learning word order and efficiently classi-
fying it; this knowledge is fainter in pretrained em-
beddings, but some layers demonstrate some spe-
cialization. Finetuning a model helps to learn these
variations in adjective position and very success-
fully select the correct one. CamemBERT models
were more successful than FlauBERT models over
all experiments and captured more positional infor-
mation in the finetuned adjective embedding. How-
ever, all transformers models show weaknesses
(to different degrees) in complex cases of adjec-
tive/noun dependent phrases and fixed expressions.
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2 Position of adjective in French noun
phrases

While traditional grammar proposes that adjectives
in French follow the noun, in a noun phrase, lin-
guistic analysis supports that adjectives are mobile,
i.e. can be placed in anteposition or postposition
relative to the noun (Abeillé and Godard, 1999).
However, most adjectives tend to appear in specific
positions; adjectives that accept only anteposition,
only postposition, and those that alternate position
(Benzitoun, 2013). For example, ordinal adjectives
in -ième (e.g. troisième ‘third’), are almost always
anteposed to the noun, the adjectives exotique ‘ex-
otic’, idéal ‘ideal’, populaire ‘popular’, moderne
‘modern’, géant ‘giant’, naturel ‘natural’ are al-
ways postposed, and the adjectives énorme ‘huge’,
immense ‘immense’, superbe ‘superb’ alternate be-
tween the two possible position (Larsson, 1994;
Benzitoun, 2014).

The preferred position of an adjective depends
on its features and frequency; for example, Ben-
zitoun (2014) claims that the adjective prochain
‘next’ in plural form does not occur in postposition
(based on corpora statistics), but the singular does.
Wilmet (1980, 1981) calculated that the most fre-
quent adjectives in a corpus of literary works tend
to precede the noun. However, chromatic adjec-
tives (e.g. rouge ‘red’) which are of high frequency
are always postposed to nouns when not a part of
a multi-word expression. Adjectives derived from
nouns and adjectives have a very strong tendency
to be postposed (Forsgren, 2016; Goes, 1999). Wil-
met (1981) and Forsgren (1978) support that the
length of the adjective affects its position; short
adjectives (e.g. bon ‘good’, beau ‘pretty’) tend to
antepose, while longer adjectives and derivatives
can only be postposed.

Semantic factors may also affect the position
of an adjective with respect to its head word. For
example, adjectives with multiple meanings may
have different meanings in different positions; e.g.
propre when anteposed refers to possession ‘own’,
but when postposed means ‘clean’ (Thuilier, 2013).
Benzitoun (2014) also presents the concept of
adjective-noun pairs, where the meaning of the
noun influences the position of the adjective. These
pairs differ from fixed expressions because it is
possible to create a pair with a different order (and
different meaning), while fixed expressions are lex-
icalized and do not allow the existence of a vari-
ation with a different meaning. For example, the

lexicalized phrase arts premiers (where premier
is postposed) has a very specific meaning (‘arts of
the non-Western world’) compared to premiers arts
‘first arts’ where it used in its literal sense and is
not a lexicalized phrase.

The presence of more dependents in the noun
phrase also affects the position of the adjective.
The presence of an adverbial modifier to the adjec-
tive may force the adjective phrase to postposition
or increase the occurrence of the adjective in post-
position, or at least allow more flexible positioning
of the adjective phrase relative to the noun (Fors-
gren, 1978; Thuilier, 2013). A definitive case of
postposition happens when an adjective has a multi-
word modifier, e.g. a prepositional phrase (Thuilier,
2013). Postposition is also favored when there
are multiple adjectives defining the noun. Thuilier
(2013) also suggests that elements in the syntactic
phrase are ordered by increasing length (known as
increasing or relative mass). However, it may not
apply to high-frequency adjectives such as mag-
nifique ‘magnificent’ (Larsson, 1994).

3 Word order and transformer models

There has been extensive work on analyzing the
syntactic and semantic capabilities of transformer
models and their pretrained word embeddings, with
positive and negative findings on the abilities of
these models to capture linguistically salient word
relations. In this review, we focus on word position
and word order findings.

The addition of absolute word order (i.e. the se-
quential order of words) to the training process
of contextual word embedding models has proven
quite beneficial. Transformer models with bidirec-
tional training, which captures adjacent word or-
der, showed improvement compared to the original
self-attention neural networks (Yang et al., 2019).
Transformer models trained with masked language
modeling, such as BERT and RoBERTa, are able to
learn absolute word positions, but they also learn
structural word positions (i.e. phrase position in
hierarchical tree structures) and make use of them
(Wang et al., 2019; Wang and Chen, 2020). Mul-
tiple experiments combine absolute and structural
word positions to create better-informed and better-
performing word embeddings (Wang et al., 2020;
He et al., 2021; Chang et al., 2021; Wang et al.,
2021).

However, experiments on already pretrained lan-
guage models and shuffled word order tell a dif-
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ferent story. Pham et al. (2021) conducted experi-
ments on BERT-based models (BERT, RoBERTa,
ALBERT) with GLUE classification tasks, and
showed that tasks such as sentiment analysis were
not affected by shuffled word order, except for the
grammatical correctness task. O’Connor and An-
dreas (2021) conducted experiments on the effect
that context variation has on transformer models’
usable information, and discovered that word shuf-
fling has a negative effect, whether the shuffling
was implemented on short or long distances among
words. Gupta et al. (2021) conducted similar exper-
iments with GLUE tasks and observed that model
performance was lower on shuffled word orders
(in methods that render a sequence ungrammat-
ical and incomprehensible to humans) but close
enough to support that models rely more on em-
bedding information rather than sequential context.
Sinha et al. (2021b) confirm that pretrained lan-
guage models are insensitive to word order in tasks
of Natural Language Inference and show that, on
some occasions, classification is successful only
with certain (random) word order variations of an
input sequence. They also conducted experiments
on finetuned models and noted finetuning’s pos-
itive influence on learning word order. Finetun-
ing improved performance on tasks of inference
and grammaticality as well (even with models pre-
trained with scrambled word order) (Sinha et al.,
2021a). For French, Li et al. (2021) conducted
experiments, on the transformer models’ capacity
to capture long-range object-verb agreement and
word order (in one of their experiments). They
observed that models performed worse with scram-
bled inputs, and increasingly worse, for increas-
ingly complex relations.

4 Experiment 1: Finetuning and
classification of adjective position

4.1 Methodology

Given the findings from previous work, highlight-
ing the syntactic and semantic capacities of trans-
former models as well as also their weakness in
learning word order, we want to test whether trans-
former models are able to classify the position of
the adjective in a sentence.

In order to provide the two possible positions
that the adjective may have in a noun phrase, we
provide a pair of sentences as input: the first sen-
tence of the input has the adjective always an-
teposed to the noun, and the second sentence al-

ways postposed. We label the two-sentence se-
quences with ‘0’ if the first sentence is correct (i.e.
the correct order is anteposition) and ‘1’ if the sec-
ond sentence is correct (i.e. postposition)—see ex-
ample in Table 1. The sentences are separated by
the specific end-of-sequence token of each model.
With this task, we aim to observe if word order
is insignificant to the models or if they are able
to capture the preferred word order between two
sentences with identical tokens and different word
order. We finetuned the transformer models for
4 epochs based on the guidelines by Devlin et al.
(2019) and McCormick and Ryan (2019) (see Sec-
tion 4.2 for datasets and details).

We also run the same experiment with a one-
sentence input, with the original sentence without
any permutations. The models were finetuned for
4 epochs as well, with the original sentence and
its label of ante-/postposition. This method is less
informative, as the model is not aware of the dif-
ferent possible positions of the adjective, and will
only predict correctness.

In order to further study the contribution of dif-
ferent tokens in the input sequence, we also fine-
tuned the models with blocked attention to certain
tokens; we used the attention mask, which is an
array that instructs the model’s self-attention mech-
anism to attend to specific tokens of the input se-
quence, by assigning 1s to the “visible” tokens and
0s to the “invisible” ones. In addition to the default
setting of attending to all tokens, we tested a pair
setting, in which all tokens are masked except for
the adjective and its head noun, and a context set-
ting, in which the adjective and noun are masked
and all the other tokens are visible. Our goal is to
observe whether the adjective-noun pair is signifi-
cant enough to encapsulate their preferred positions
or not, and whether the context contains (enough)
information on preferred adjective-noun positions
even without explicit information on the pair. We
present a visualization of what an input sentence
looks like in these settings in Table 2.

4.2 Datasets

We extracted sentences with correct adjective-noun
pairs from two parsed corpora: the frWaC corpus
(Baroni et al., 2009) and the French corpora of
Universal Dependencies 2.9 (UD; Zeman et al.,
2021), in different combinations1.

1The list of corpora can be found at https://
universaldependencies.org/fr/
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On construit les éléments de plus haut niveau.
⇓

SENTENCE LABEL
On construit les éléments de plus haut niveau.
</s>On construit les éléments de plus niveau haut.

0

Table 1: An example input of two sentences for the
original sentence On construit les éléments de plus
haut niveau ‘We build the higher level elements’. We
only shift the position of the adjective-noun pair in the
noun phrase, without affecting any other elements of
the phrase (e.g. the dependent adjective plus).

MASK TOKENS
Default on construit les éléments de plus haut niveau
Pair haut niveau
Context on construit les éléments de plus

Table 2: Use of attention masks for the sentence: On
construit les éléments de plus haut niveau. In this sen-
tence, the adjective-noun pair is haut niveau (the adjec-
tive is before the noun). The label for all three inputs
is [0]. For the double-sentence input, the same process
will be followed for the second sentence of the input On
construit les éléments de plus niveau haut.

We used all UD sentences and selected 120K
relevant sentences from frWaC, with a 2/3 ratio
of anteposition/postposition, which is roughly the
ratio documented in the literature and the one that
occurs in our corpora2 –this ratio is also beneficial
since anteposed adjectives are fewer but more fre-
quent. However, we excluded the adjectives and
words which were incorrectly parsed as adjectives,
such as numerals, pronouns such as autre, certain,
chacun, quelque which may have other linguistic
functions than an adjective. In addition, we also
excluded the adjectives and the nouns which were
tokenized into subwords by the transformer model
tokenizers, in order to create the attention mask
described in Section 4.1.

The sentences of the two datasets were com-
bined and used in various ways. In one setting, we
trained the model only with frWaC, and used the
UD sentences as an additional test set. In another
one, we added a subset of the UD sentences to the
train set and tested on the rest of UD; we also fine-
tuned the model just with the (significantly) smaller
UD dataset. When applicable, we tested both with
frWaC and UD sentences. The size of the datasets
is presented in Table 3.

2Measured on 1M frWaC sentences and the entire UD
corpora.

Dataset Train Val. frWaC
test set

UD test
set (entire)

UD test
set (part)

frWaC 76,164 7,672 7,740 19,437 5,151
frWaC + UD 91,615 7,672 7,740 - 5,151
UD 13,905 1,546 7,740 - 5,151

Table 3: Dataset sizes for the finetuned models.

4.3 Transformer models

We used two monolingual French transformer-
based models, available from the HuggingFace
Python library (Wolf et al., 2020), CamemBERT
(Martin et al., 2020) and FlauBERT (Le et al.,
2020). CamemBERT is the pioneering mono-
lingual French model and is built based on the
RoBERTa architecture and trained on monolingual
data. Experiments showed its advantage on tra-
ditional NLP tasks over multilingual transformer
models. The authors also highlight the base ver-
sion’s high performance with a fraction of the size
of the large version. FlauBERT is a monolingual
French BERT-based model trained with multiple,
heterogeneous corpora and a more extensive tok-
enization procedure. It has been shown to (slightly)
outperform CamemBERT on French benchmark
tasks.

4.4 Baselines

The simplest baseline we can establish is based
on frequency in our corpus: we assign each ad-
jective a label of ante-/postposition based on its
most frequent position in the training set. We
also performed classification with more classical
NLP methods, namely a logistic regression model
on bag-of-words, implemented with scikit-
learn (Pedregosa et al., 2011), and a CNN-based
classifier, more sensitive to word order, imple-
mented with PyTorch (Paszke et al., 2019).

4.5 Results

The results for the two-sentence input experiment
can be found in Table 4 (and for the one-input
in Table 7 in Appendix A). We can already ob-
serve that frequency yields a quite high accuracy,
the bigger the training set is and the smaller the
test set is. The CNN classifier is very successful
when the training set is large enough. Therefore, it
comes as no surprise that the finetuned transformer
models made very few mistakes, with the overall
accuracy being close to 100%. The results were
consistently high, even when testing with a differ-
ent dataset (frWaC and UD). However, with a much

1671



Model frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.99 0.93 0.93 0.99 0.99 0.93 0.95
camembert-large 0.99 0.91 0.93 0.99 0.99 0.98 0.66
flaubert-small-cased 0.99 0.90 0.90 0.99 0.99 0.62 0.66
flaubert-base-cased 0.99 0.90 0.87 0.99 0.97 0.96 0.96
flaubert-base-uncased 0.99 0.90 0.91 0.99 0.99 0.95 0.95
flaubert-large-cased 0.99 0.93 0.88 0.99 0.99 0.91 0.87
Position frequency 0.91 0.77 0.93 0.91 0.94 0.45 0.62
Logistic Regression 0.45 0.68 0.66 0.45 0.65 0.82 0.87
CNN 0.94 0.48 0.94 0.96 0.95 0.55 0.72

Table 4: Classification results for the finetuned models and baselines, with the different training and test sets. Values
in italics indicate that the model completely failed to classify.

Model
Attention mask: hidden context Attention mask: hidden adj + noun

frWaC train frWaC+UD train UD train frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.99 0.80 0.83 0.99 0.99 0.78 0.83 0.99 0.45 0.57 0.99 0.98 0.45 0.66
camembert-large 0.98 0.76 0.76 0.98 0.99 0.87 0.91 0.45 0.66 0.66 0.45 0.66 0.45 0.63

flaubert-small-cased 0.45 0.68 0.68 0.45 0.66 0.45 0.66 0.99 0.52 0.52 0.99 0.98 0.47 0.64
flaubert-base-cased 0.45 0.68 0.68 0.45 0.66 0.45 0.66 0.99 0.47 0.47 0.99 0.99 0.58 0.68
flaubert-base-uncased 0.45 0.68 0.68 0.45 0.66 0.45 0.66 0.99 0.61 0.61 0.99 0.99 0.47 0.62
flaubert-large-cased 0.45 0.68 0.68 0.45 0.66 0.45 0.66 0.99 0.54 0.54 0.99 0.99 0.50 0.64

Table 5: Classification results of the finetuned models with attention masks. Values in italics indicate that the model
completely failed to classify.

smaller training set, results were slightly lower (as
expected; finetuning guidelines recommend a train-
ing set of at least 100K inputs). In comparison,
the accuracy of the one-sentence finetuning experi-
ment is 11-12% lower, which is even lower than the
frequency-based baseline and the CNN classifier.

The results of the experiments with attention
masks are presented in Table 5 (and Table 8 in Ap-
pendix A for the one-input finetuning). In these
experiments, the models’ attention mechanism had
access to only certain tokens. When attention was
only allowed to the adjective and noun pair, the
Flaubert models were unable to classify, while the
Camembert models showed equally outstanding
performance with the frWaC sentences (but lower
performance with the UD test sets). Meanwhile,
masking the adjective and noun pair and only al-
lowing attention to the rest of the sequence was sur-
prisingly successful for the finetuned models with
the larger training sets (except for camembert-
large), reaching similar accuracies to those of the
no-mask finetuned models. For the one-input fine-
tuning experiment, we notice that, for the masked
context scenario, performance rose drastically only
for CamemBERT models and only in the frWaC
domain, while the Flaubert models were again un-
successful. For the masked adjective-pair scenario
and for the UD domain, the performance is signifi-
cantly lower.

4.6 Qualitative analysis

In most cases, the models make very few mistakes,
which are not consistent among models. Moreover,
the models are very confident in their choices, as-
signing high probabilities to all predictions (see
Figure 1 in Appendix).

Focusing on the frWaC training set with the
UD dataset as the test set, we notice that most of
the sentences that were mislabeled are ones where
the adjective could possibly be in a different po-
sition, with a different meaning than the original
one (i.e. the utterance remains grammatical when
the adjective-noun order is reversed). For example,
the sentence Une école a ouvert dans une anci-
enne église en 1950 ‘A school opened in a former
church’ remains correct with ancienne postposed
to the noun, but the meaning of the adjective be-
comes ‘old’. The context provided by the sentence
is not sufficient to decipher the actual meaning, and
native French speakers agree that both sentences
are grammatical. On the other hand, mistakes in
the classification of sentences such as Les créations
sensuelles, modernes et orientales se font remar-
quer ‘The sensual, modern and oriental creations
stand out’ uncover the models’ shallow percep-
tion of syntactic relations –these mistakes were,
however, very rare. Finally, we notice a few badly-
parsed and badly-formed sentences in the dataset,
which were not enough to warrant a redesign, but
were confusing to the models.
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5 Experiment 2: Pre-existing knowledge
in pretrained embeddings

The previous experiment shows that the finetuned
transformer models are quite successful in classi-
fying the adjective’s position when asked to distin-
guish between two possible positions. The follow-
ing part of this research aims to observe whether
this capability is given by the finetuning, or whether
the pretrained models had already learned enough
information on the adjective’s preferred position,
with regard to its context.

5.1 Classification with adjective embeddings

The layers of a transformer model specialize in cre-
ating different dynamic word embeddings, which
capture and interact with a word’s context in a dif-
ferent way than the previous layer. Therefore, the
adjective embedding might contain the syntactic,
contextual, and semantic information that deter-
mine its position with regard to the noun. We ex-
tracted the word embeddings for the adjective of
each sentence, per layer, and we trained a simple
logistic regression model –built in the same way as
in Section 4.4. We used the frWaC training set and
tested on the frWaC test set and on the entire UD
dataset.

The results of the classification for the two test
sets can be seen in Figure 2 in Appendix C. The
classification results for the frWaC test set are quite
low –close to being non-classifiable– except for
the flaubert_base_uncased model, which
unexpectedly reached 97% accuracy on the last
layer. Results for the UD test set were more un-
predictable, with a few layers of camembert-base
reaching a very high accuracy, but the final layer
having the lowest accuracy. On the other hand,
the flaubert models had a progressively bet-
ter performance, but they are not as good as their
finetuned counterparts nor as the baselines.

5.2 Adjective [MASK] probabilities with
Masked Language Models

Pretrained models can predict the tokens that can
fill a masked position in a sequence. We use this
method to retrieve the probability that the mod-
els have assigned to the adjective in the sentence,
specifically in the position it was found in. We
make use of the sentences of the frWaC test set.
(These probabilities are presented in Figure 3 in
Appendix D.) We observe that overall the models
assigned higher probabilities to anteposed adjec-

tives being in anteposition, than to postposed adjec-
tives in postposition; apart from the stricter linguis-
tic constraints for anteposed adjectives, this could
also be due to the fact that transformer models fa-
vor token frequency, and most of the most frequent
adjectives in French are anteposed, while postpo-
sition harbors far more adjectives. Additionally,
we observe that CamemBERT models give higher
probabilities in the predictions of both anteposed
and postposed adjectives.

When we shifted the [MASK] position from its
original place to the opposite one, and asked the
models to assign the adjective’s probability in the
“wrong” position, the probability of the adjectives
was close to zero for at least 85% of the cases, even
for anteposed adjectives which are more versatile.

6 Experiment 3: Human vs Transformers
judgments of adjective order

6.1 Methodology and Dataset

We had the opportunity to carry out an additional
experiment on adjective word order, in which we
studied how native French speakers and the fine-
tuned transformer models dealt with challenging
cases of adjective position, caused by structural or
semantic idiosyncrasies. As observed in the previ-
ous experiments, the models demonstrated weak-
nesses in cases of adjacent adjectives that did not
belong to the noun phrase, and their choices did
not always align with the original sentence in cases
of semantic ambiguity relating to the adjective po-
sition. These cases cannot always be coined as
errors, since native speakers may also make sim-
ilar choices whether intentionally (e.g. different
comprehension of context) or unintentionally (e.g.
haste, lack of attention).

The structure of the experiment is the same as
in Experiment 1, where speakers and the finetuned
models were presented with a sentence containing
a noun-adjective pairing, and its variation having
the target adjective in the opposite position. Re-
gardless of the original order, each sentence pair
of the two positions was presented in the order of
anteposition-postposition. We created 89 prompt
sentences, written by a native French speaker or
extracted and modified from frWaC, and evaluated
by French speakers. The full dataset can be found
in Appendix F. The sentences are split into four
categories based on the type of relations that the
adjective has with the noun, or the context of the
sentence:
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1. Presence of adjective/noun dependent: The only
categorical constraint that governs the position of
the adjective in French is the presence of a depen-
dent to the adjective, which forces the position of
the adjective to postposition. However, if the de-
pendent is to the noun, the position of the adjective
is not restricted. We included sentences with the
same adjectives and dependents either to the adjec-
tive or the noun.

2. Fixed expressions: Adjectives in fixed expres-
sions will always have a fixed position in this spe-
cific context and meaning. Apart from sentences
with fixed expressions we selected, we added sen-
tences with the adjectives found in those expres-
sions, but not in restrictive structures.

3. Structural persistence: Speakers are sensitive
and tend to reuse repeating syntactic constructions
(syntactic priming, (Branigan et al., 1995)). The
presence of a noun phrase with an adjective in a
certain position may influence the processing of
the next noun phrase, especially if it contains the
same adjective. We want to test the extent of this
effect on native speakers and our models.

4. Blocked and mobile adjectives: In this category,
we are including adjectives which are (almost) al-
ways found in postposition, and adjectives with
free position depending on the meaning (propre,
ancien). This category serves both as a control
group, but could also provide unexpected results.

6.2 Questionnaire diffusion

While the finetuned models received all sentences
as a test set, we divided the prompt sentences in
3 questionnaires, ensuring that there is equal dis-
tribution of the four categories in each. The par-
ticipants were asked to select the sentence that
sounded “most natural" to them, out of the two
position variations. In order to eliminate outliers or
non-native speakers of French, at the start of each
questionnaire we asked for input of first language,
and to confirm that they were native speakers of
French (and also to acclimatize the participants
with the experiment) there was a mini-tutorial with
two sentence pairs which could not be mistaken by
French speakers. The questionnaire was built with
LimeSurvey3 and distributed to French university
students and French locals. Out of the 71 partici-
pants who completed the questionnaire and were

3https://www.limesurvey.org/

Model Micro avg. Macro avg.
camembert-base 0.3326 0.1629
camembert-large 0.5801 0.4673
flaubert_small_cased 0.6014 0.3711
flaubert_base_cased 0.433 0.3446
flaubert_base_uncased 0.5192 0.3298
flaubert_large_cased 0.3688 0.3554

Table 6: Correlation between the average choice of the
speakers and each model’s output. Micro-averaged is
aggregating all sentences regardless of category while
macro-average is category-sensitive.

not considered outliers, each version of the ques-
tionnaire had 22-25 participants, i.e. each sentence
pair was evaluated by at least 22 speakers.

6.3 Quantitative and Qualitative Results

We calculated the average selection over all speak-
ers and used this as the baseline to make judgments
for our models. In Table 6 we are presenting the
Pearson correlation between the speakers’ and the
models’ choices, in order to see which of the mod-
els was closer to the behavior of the speakers. The
model that achieved the highest micro- and macro-
averaged correlation was camembert-large,
although flaubert_small_casedmodel was
slightly better at micro-averaged correlation – an in-
teresting finding, since this model is created for de-
bugging purposes and its results are unreliable. The
camembert-base and flaubert_large_-
casedmodels showed the lowest correlations, and
all models except for camembert-large did
not show a strong positive correlation (>0.4) in the
macro-averaged correlation.

We also examined the speakers’ decisions and
the models’ predictions per category and performed
error analysis. For the presence of adjective/noun
dependent category, the speakers preferred longer
adjectives in postposition, even when the depen-
dent phrase was attached to the noun: for exam-
ple, the speakers unanimously chose the postposed
variation of the sentence Ils vivent une différente
relation sans amour. “They lived a different rela-
tionship without love." and so did most of the mod-
els. However, for shorter adjectives, the speakers
chose anteposition when there was a noun depen-
dent and postposition when there was an adjective
dependent. The models however did not present a
uniform behavior, with some models mostly pre-
ferring postposition (camembert-large) or anteposi-
tion (flaubert-large-cased), while the more success-
ful ones made mistakes on the shorter adjectives.
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In the fixed expressions category, the speakers
naturally did not make any mistakes on the fixed
expressions, and were able to differentiate between
the fixed and the free position of the same adjective
in different contexts. However, the models made
several mistakes on very common fixed expres-
sions, e.g. la grasse matinée “the morning of sleep-
ing in", but were not mistaken on expressions with
a short adjective, e.g. bénéfice net “net benefit"
(i.e. the short adjective was not anteposed, while
its variations in non-fixed phrases are commonly
anteposed). In the category of structural persis-
tence, the speakers were able to make their choices
for the adjective position despite being primed by
a previous noun phrase with the opposite adjective
position, e.g. they preferred the variation Il lui a of-
fert des volumineuses plantes à fleurs volumineuses.
“He offered them voluminous plants with volu-
minous flowers." for the noun phrase fleurs vo-
lumineuses. However, all the models predicted
anteposition, and this could have been affected by
the adjectives being in the same wordform. Fi-
nally, in the blocked/mobile adjectives category,
the speakers did not make any inexplicable choices,
and always preferred postposition for the postposed
adjectives (e.g. chromatic) and both positions for
the mobile adjectives (despite the length). The only
model which made mistakes on the postposed ad-
jectives was flaubert-large-cased, while
the other models made very few mistakes on mo-
bile adjectives–decisions which are to some extend
acceptable, since the meaning may be different but
still grammatical.

7 Discussion

Previous work on exploring transformer models has
supported that their success in NLP tasks is heavily
based on their vast training data and efficient learn-
ing of frequencies. Our experiments, compared to
a frequency-based uninformed baseline, show that
there are more complex operations in play. Trans-
formers were more efficient than sequential-order-
learning neural networks, and were in fact able to
differentiate between two sentences with identical
tokens and slightly different word order. Finetun-
ing is more efficient with a larger training corpus
and different domains, but can still be successful
with a smaller dataset if necessary.

When the models’ attention mechanism only has
access to the context, and not to the adjective-noun
pair itself, they were still quite capable of classi-

fying adjective position even without attending to
it. This observation is consistent with the linguistic
description that supports that adjective position is
also determined by context and not solely by the
noun phrase. However, the fact that CamemBERT
models were extremely successful in identifying
position without the use of context, while Flaubert
models failed completely, is caused by the models’
different architectures and choices in the way the
tokens are handled. In our more detailed experi-
ments, we saw that CamemBERT models assign
an overall higher probability to adjectives, regard-
less of their position, and that, at least for the UD
dataset, the adjective embeddings were, in some
layers, very informed on the preferred word posi-
tion. This knowledge is correlated to the learned
contextual word embeddings, rather than the word
itself, as we observed a lack of semantic similarity
in the visualization.

Regarding the models’ mistakes in the testing
phase, they were either caused by low-frequency
adjectives, bad parsing, or ambiguous meaning
which may be grammatical and acceptable in
both adjective positions. However, comparing the
models to human performance showed their true
strengths and weaknesses; when they are success-
ful, the models tend to follow a more rigid syn-
tactic structure and favor postposition, as it is the
most frequent adjective position over all adjectives.
They showed severe problems in recognizing some
fixed expressions, and were more easily swayed
than humans by being primed with the same adjec-
tive. In cases where both positions were possible,
they usually preferred the more “traditional" post-
position. These findings may demonstrate that the
models base their decisions on adjectives more on
frequency rather than the syntactic and semantic
information of a particular adjective, and are imper-
vious to factors that affect speakers’ decisions such
as length, difficulty of processing with regard to
cognitive load, and substantial or subtle semantic
differences.

8 Conclusion

In this work, we aimed to study the capabilities
of transformer-based language models in under-
standing word order, specifically the order of ad-
jectives in a noun phrase in French. Our findings,
for pretrained models, confirmed previous ones
which claimed that these models are agnostic to
word position. However, the process of finetun-
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ing and classification with two variations of the
sentence (one correct and one with permutated ad-
jective order) was very successful, which proves
that the models are capable of learning and becom-
ing sensitive to word order. Concerning the use
of attention masks, the CamemBERT models were
very capable of classifying word order by only at-
tending to the adjective and noun, while for the
Flaubert models it was impossible. The differences
between the two architectures were also reflected
in our study of the pretrained word embeddings and
the adjective probabilities, where we noticed that
CamemBERT’s adjective embeddings were better
informed. The adjective embeddings themselves,
for all models, seem to contain more contextual
than word-specific information, which makes dif-
ferent iterations of an adjective differ from each
other. In our experiment comparing native speak-
ers to the models’ preferences, we observed that the
models showed weakness in structures with depen-
dents, fixed expressions, and priming, and reverted
to the grammatically-established postposition more
than humans. Therefore, the models’ understand-
ing of the position relies both on context and on
shallow syntactic roles, but is lacking semantic nu-
ances. We also observed that the information on
position is specialized in some layers –and easily
learned via finetuning.

Limitations

This work has been conducted in the French lan-
guage, due to the available language resources and
transformer models in this high-resource, in addi-
tion to the authors’ adept knowledge of the lan-
guage and its linguistic properties. We decided
to focus on the specific phenomenon of adjective
placement because it offers the possibility to study
the models’ sensitivity to word order on pairs with
one grammatical and one ungrammatical sentence,
but also with pairs where both sentences were gram-
matical. The finetuning of the transformers models,
especially of the large versions, was made possible
with the use of a server with GPU clusters, provided
by our institution.
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A Results for finetuning with one sentence input

Model frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.89 0.8 0.8 0.89 0.87 0.84 0.87
camembert-large 0.89 0.8 0.8 0.89 0.87 0.84 0.87
flaubert-small-cased 0.88 0.81 0.81 0.88 0.87 0.84 0.85
flaubert-base-cased 0.89 0.81 0.81 0.89 0.87 0.82 0.87
flaubert-base-uncased 0.89 0.82 0.82 0.88 0.87 0.82 0.87
flaubert-large-cased 0.89 0.81 0.81 0.89 0.87 0.83 0.87
Logistic Regression 0.45 0.68 0.66 0.45 0.65 0.45 0.65
CNN 0.8 0.84 0.68 0.79

Table 7: Classification results for finetuning models and baselines, with only one sentence as input, with our different
training and test sets. Values in italics indicate that the model failed completely to classify

Model
Attention mask: hidden context Attention mask: hidden adj + noun

frWaC train frWaC+UD train UD train frWaC train frWaC+UD train UD train
frWaC UD-full UD-test frWaC UD-test frWaC UD-test frWaC UD-full UD-test frWaC UD-test frWaC UD-test

camembert-base 0.99 0.99 0.99 0.8 0.8 0.79 0.77 0.77 0.79 0.89 0.67 0.82
camembert-large 0.97 0.98 0.98 0.97 0.98 0.45 0.66 0.66 0.45 0.66

flaubert-small-cased 0.45 0.68 0.68 0.76 0.79 0.45 0.66 0.76 0.75 0.75 0.76 0.82 0.59 0.74
flaubert-base-cased 0.45 0.68 0.68 0.8 0.8 0.45 0.66 0.8 0.69 0.69 0.7 0.86

flaubert-base-uncased 0.45 0.68 0.68 0.8 0.8 0.45 0.66 0.81 0.76 0.76 0.7 0.86
flaubert-large-cased 0.45 0.68 0.68 0.45 0.66 0.45 0.66 0.82 0.79 0.79 0.69 0.83

Table 8: Classification results of finetuning models with only one sentence as input and with attention masks. Values
in italics indicate that the model failed completely to classify.

B Probabilities of predicted labels during classification

Figure 1: The probability of predicted labels, for wrong and correct predictions, from the frWaC train set and both
test sets.
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C Classification based on the adjective’s pretrained embedding, with logistic regression

Figure 2: Logistic regression accuracy trained with layer-specific adjective embeddings, with our two large test sets.

D Adjective [MASK] probabilities with Masked Language Models

Figure 3: The assigned probability of each adjective instance, when placed in its original position which has been
masked (anteposition/postposition), for each model.

E Visualizing adjective pretrained embeddings per layer

We extract layer-specific embeddings of some transformer models, and use them to visualize static
embeddings by reducing their dimensions and plotting them on a 2-dimensional space, in order to observe
their closest neighbors and possible clusters or patterns emerge. We selected a few frequent adjectives
from the literature, either with a preferred position or without: grand, petit for always-anteposed, naturel
for always-postposed, ancien for ambivalent. All the embeddings of each adjective (from the different
sentences it appeared in) were used and plotted per layer.
We reduced the embeddings’ dimensional with t-distributed Stochastic Neighbor Embedding (t-SNE)
from scikit-learn and plotted with matplotlib. Some of the plots are presented in Figure 4. Our
intuition was that the anteposed and postposed adjectives would form clusters. However, we could not
observe discernible clusters in any of the data –the closest being for some early layers, for some adjectives,
and for complex word forms rather than the base ones.
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Figure 4: Embedding projections for base-form adjectives ancien ‘old’, grand ‘large’, naturel ‘natural’, petit ‘small’
–from various layers and models. The numbers correspond to the sentence id.

F Dataset for questionnaire (with English translations)

We have annotated in italics the sentences for which the French speakers preferred anteposition.

Anteposition Postposition Translation
Ces fiers époux attendent avec impatience le jour J. Ces époux fiers attendent avec impatience le jour J. These proud spouses are eagerly awaiting the go time.
Cette fière équipe de travail se hâte de présenter son projet. Cette équipe fière de travail se hâte de présenter son projet. This proud work team is eager to present its project.
Cette longue saison de football a été intense. Cette saison longue de football a été intense. This long football season has been intense.
Elle connait ce fier artiste depuis des années. Elle connait cet artiste fier depuis des années. She has known this proud artist for years.
Il a écrit un long article de linguistique. Il a écrit un article long de linguistique. He wrote a long article on linguistics.
Ils ont emprunté un long chemin sans visibilité. Ils ont emprunté un chemin long sans visibilité. They took a long path without visibility.
J’ai lu un long roman comme je les aime. J’ai lu un roman long comme je les aime. I read a long novel as I like them.
Les fiers ouvriers déjeunent actuellement. Les ouvriers fiers déjeunent actuellement. The proud workers are currently lunching.
Ma tante est une fière cuisinière de renom. Ma tante est une cuisinière fière de renom. My aunt is a proud cook of renown.
Elle a participé à un long séminaire de quelques jours. Elle a participé à un séminaire long de quelques jours. She participated in a seminar lasting a few days.
Il a écrit un long article de 50 pages. Il a écrit un article long de 50 pages. He wrote a 50 page long article.
Ils ont emprunté un long chemin de plusieurs kilomètres. Ils ont emprunté un chemin long de plusieurs kilomètres. They took a path several kilometers long.
J’ai lu un long roman de plusieurs tomes. J’ai lu un roman long de plusieurs tomes. I read a novel several volumes long.
Elle annote un différent segment de 32 caractères. Elle annote un segment différent de 32 caractères. She annotates a different segment of 32 characters.
Ils vivent une différente relation sans amour. Ils vivent une relation différente sans amour. They live a different relationship without love.
L’architecte a construit une différente maison dans le sud. L’architecte a construit une maison différente dans le sud. The architect built a different house in the south.
Tu as acheté un différent cahier pour dessiner. Tu as acheté un cahier différent pour dessiner. You bought a different notebook to draw.
Vous avez couru un différent marathon toujours populaire. Vous avez couru un marathon différent toujours populaire. You ran a different, ever-popular marathon.
Ces fiers époux de leurs préparatifs attendent avec impa-
tience.

Ces époux fiers de leurs préparatifs attendent avec impa-
tience.

These spouses proud of their preparations are waiting impa-
tiently.

Cette fière équipe de son projet se hâte de le présenter. Cette équipe fière de son projet se hâte de le présenter. This team, proud of its project, is eager to present it.
Cette longue saison de 4 mois a été intense. Cette saison longue de 4 mois a été intense. This 4 month long season has been intense.
Elle annote un différent segment du précédent. Elle annote un segment différent du précédent. It annotates a different segment from the previous one.
Elle connait ce fier artiste de sa création. Elle connait cet artiste fier de sa création. She knows this artist who is proud of his creation.
Ils vivent une différente relation de la suivante. Ils vivent une relation différente de la suivante. They live a different relationship than the following one.
L’architecte a construit une différente maison de celle
prévue.

L’architecte a construit une maison différente de celle
prévue.

The architect built a different house than planned.

Les fiers ouvriers de leur avancement s’accordent une pause. Les ouvriers fiers de leur avancement s’accordent une pause. The workers, proud of their advancement, take a break.
Ma tante est une fière cuisinière de ses talents. Ma tante est une cuisinière fière de ses talents. My aunt is a cook proud of her talent.
Tu as acheté un différent cahier du sien. Tu as acheté un cahier différent du sien. You bought a notebook different from his.
Vous avez couru un différent marathon de celui de Toulouse. Vous avez couru un marathon différent de celui de Toulouse. You ran a different marathon than that of Toulouse.

Table 9: Sentences in the Presence of adjective/noun dependent category.
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Anteposition Postposition Translation
Dimanche, ils ont pu faire la grasse matinée. Dimanche, ils ont pu faire la matinée grasse. On Sunday, they were able to sleep in.
Elle a écrit un vibrant hommage pour sa mère décédée. Elle a écrit un hommage vibrant pour sa mère décédée. She wrote a moving tribute for her late mother.
Elle aime la grasse matinée du lundi. Elle aime la matinée grasse du lundi. She loves sleeping in on Mondays.
Il a passé une dure semaine. Il a passé une semaine dure. He’s had a tough week.
Il admet son net avantage sur les autres. Il admet son avantage net sur les autres. He admits his clear advantage over others.
Il ne retient pas ses diverses leçons. Il ne retient pas ses leçons diverses. He does not retain his various lessons.
Ils ont rendu un vibrant hommage à ce digne soldat. Ils ont rendu un hommage vibrant à ce digne soldat. They paid a vibrant tribute to this worthy soldier.
J’avais des doubles objectifs précis. J’avais des objectifs doubles précis. I had specific dual objectives.
Nous effectuons diverses expériences. Nous effectuons des expériences diverses. We perform various experiments.
Elle a fait un net bénéfice ce mois-ci. Elle a fait un bénéfice net ce mois-ci. She made a net profit this month.
Depuis la mort de son hamster, il a le dur cœur. Depuis la mot de son hamster, il a le cœur dur. Since the death of his hamster, he has had a hard heart.
Depuis la mort de son hamster, il a une dure vie. Depuis la mort de son hamster, il a une vie dure. Since the death of his hamster, he has had a hard life.
Dimanche, ils ont mangé des gras plats. Dimanche, ils ont mangé des plats gras. On Sunday, they ate fatty dishes.
Elle essaiera par elle-même pour en avoir le net cœur. Elle essaiera par elle-même pour en avoir le cœur net. She will try on her own to find out for sure.
Elle n’aime pas laver la grasse boîte. Elle n’aime pas laver la boîte grasse. She doesn’t like to wash the greasy box.
Il est adepte de divers faits. Il est adepte de faits divers. He is adept at various facts.
Il n’a pas accepté sa défaite, il a le dur cœur. Il n’a pas accepté sa défaite, il a le cœur dur. He did not accept his defeat, he has a hard heart.
Ils ont acheté un vibrant fauteuil pour leur salon. Ils ont acheté un fauteuil vibrant pour leur salon. They bought a vibrating armchair for their living room.
J’ai mis les doubles bouchées pour arriver à temps. J’ai mis les bouchées doubles pour arriver à temps. I worked hard to get there on time.
Nous suivons les divers faits à la télévision. Nous suivons les faits divers à la télévision. We follow the news on television.
Vous avez mis les doubles bouchées pour terminer. Vous avez mis les bouchées doubles pour terminer. You worked hard to finish.

Table 10: Sentences in the Fixed expressions category.

Anteposition Postposition Translation
A nouvelle année, nouveaux dynamismes pour cette en-
treprise.

A nouvelle année, dynamismes nouveaux pour cette en-
treprise.

A new year, new dynamics for this company.

Fabuleux amis, fabuleux camarades : l’ennemi n’est pas à
l’intérieur !

Fabuleux amis, camarades fabuleux : l’ennemi n’est pas à
l’intérieur !

Fabulous friends, fabulous comrades: the enemy is not
within!

J’ai aimé le concept : bonne ambiance, bonne musique, les
gens sont contents.

J’ai aimé le concept : bonne ambiance, musique bonne, les
gens sont contents.

I liked the concept: good atmosphere, good music, people
are happy.

Ce document vise à expliquer le déficit véritable, la vérita-
ble dette dans son ensemble.

Ce document vise à expliquer le déficit véritable, la dette
véritable dans son ensemble.

This document aims to explain the real deficit, the real debt
as a whole.

Nous avons adopté pour des stratégies communes, actions
communes et positions communes.

Nous avons adopté pour des stratégies communes, actions
communes et communes positions.

We have adopted for common strategies, common actions
and common positions.

Avec la merveilleuse sélection et de merveilleux essais, ils
ont trouvé les résultats qu’ils cherchaient.

Avec la merveilleuse sélection et des essais merveilleux, ils
ont trouvé les résultats qu’ils cherchaient.

With the wonderful selection and wonderful testing, they
found the results they were looking for.

Il lui a offert des volumineuses plantes à volumineuses
fleurs.

Il lui a offert des volumineuses plantes à fleurs volu-
mineuses.

He gave her bulky plants with bulky flowers.

Je suis d’accord avec eux : à événement exceptionnel, ex-
ceptionnel dispositif.

Je suis d’accord avec eux : à événement exceptionnel, dis-
positif exceptionnel.

I agree with them: for an exceptional event, an exceptional
device.

Cette année, ils préparent un diplôme professionnel en pro-
fessionnel lycée.

Cette année, ils préparent un diplôme professionnel en lycée
professionnel.

This year, they are preparing a professional diploma in
vocational high school.

Concernant la protection des données personnelles, aucune
personnelle information n’est collectée.

Concernant la protection des données personnelles, aucune
information personnelle n’est collectée.

Regarding the protection of personal data, no personal in-
formation is collected.

Elle a procédé à l’étude de quelques instruments pitoyables
et pitoyables illusions.

Elle a procédé à l’étude de quelques instruments pitoyables
et illusions pitoyables.

She proceeded to study some pitiful instruments and pitiful
illusions.

Ce bâtiment n’a pas changé depuis sa construction : lu-
mineuses couleurs, lumineux lampadaires.

Ce bâtiment n’a pas changé depuis sa construction : lu-
mineuses couleurs, lampadaires lumineux.

This building has not changed since its construction: bright
colors, bright streetlights.

Table 11: Sentences in the Structural persistence category.

Anteposition Postposition Translation
Elle préfère son propre pantalon à celui de sa soeur. Elle préfère son pantalon propre à celui de sa sœur. She prefers her own pants to her sister’s.
Nous nous sommes rejoins autour d’un chaleureux repas. Nous nous sommes rejoins autour d’un repas chaleureux. We came together for a hearty meal.
Tu m’as fait part de ta fabuleuse idée. Tu m’as fait part de ton idée fabuleuse. You told me about your fabulous idea.
Cet ancien fer n’est plus utilisé. Ce fer ancien n’est plus utilisé. This old iron is no longer used.
C’était un fabuleux voyage que nous avons organisé. C’était un voyage fabuleux que nous avons organisé. It was a fabulous trip that we organized.
Ce chaleureux accueil m’a fait chaud au cœur. Cet accueil chaleureux m’a fait chaud au cœur. This warm welcome warmed my heart.
Ce légendaire récit me tourmente chaque jour. Ce récit légendaire me tourmente chaque jour. This legendary tale torments me every day.
Ce puéril discours lui a porté préjudice. Ce discours puéril lui a porté préjudice. This childish speech harmed him.
Cette fermière entreprise n’est plus aussi familiale que dans
le temps.

Cette entreprise fermière n’est plus aussi familiale que dans
le temps.

This farm business is no longer as family-run as it used to
be.

Cette jaune chaise est très tendance. Cette chaise jaune est très tendance. This yellow chair is very trendy.
Cette puérile plaisanterie ne l’a pas fait rire. Cette plaisanterie puérile ne l’a pas fait rire. This childish joke did not make him laugh.
Elle m’a fourni la volumineuse archive. Elle m’a fourni l’archive volumineuse. She provided me with the voluminous archive.
Il m’a apporté une bleue gourde. Il m’a apporté une gourde bleue. He brought me a blue water bottle.
Il mange des roses bonbons. Il mange des bonbons roses. He eats pink candies.
Ils n’ont pas pu télécharger le volumineux fichier. Ils n’ont pas pu télécharger le fichier volumineux. They were unable to download the large file.
J’ai écrit sur une bleue feuille. J’ai écrit sur une feuille bleue. I wrote on a blue sheet.
La jaune trousse contient ses feutres. La trousse jaune contient ses feutres. The yellow pencil case contains her markers.
La pétrolière industrie ne m’attire pas du tout. L’industrie pétrolière ne m’attire pas du tout. The oil industry does not appeal to me at all.
Le ferroviaire transport est voué à s’étendre. Le transport ferroviaire est voué à s’étendre. Rail transport is destined to expand.
Le ministériel arrêté a confirmé les mesures prises. L’arrêté ministériel a confirmé les mesures prises. The ministerial decree confirmed the measures taken.
Les filles ont opté pour une mauve couverture. Les filles ont opté pour une couverture mauve. The girls opted for a purple blanket.
Leur financière situation s’aggrave de jour en jour. Leur situation financière s’aggrave de jour en jour. Their financial situation is getting worse day by day.
Ma sœur porte des mauve lunettes. Ma sœur porte des lunettes mauve. My sister wears purple glasses.
Mon bureau est décoré d’un vert panier. Mon bureau est décoré d’un panier vert. My office is decorated with a green basket.
Sa rose poubelle lui plait énormément. Sa poubelle rose lui plait énormément. His pink trash can pleases him enormously.
Son doudou est une verte peluche. Son doudou est une peluche verte. His cuddly toy is a green plush.
Elle a acheté un vibrant jouet pour son fils. Elle a acheté un jouet vibrant pour son fils. She bought a vibrating toy for her son.

Table 12: Sentences in the Blocked and mobile adjectives category.
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Abstract

Helpful reviews have been essential for the
success of e-commerce services, as they help
customers make quick purchase decisions and
benefit the merchants in their sales. While
many reviews are informative, others provide
little value and may contain spam, excessive
appraisal, or unexpected biases. With the large
volume of reviews and their uneven quality,
the problem of detecting helpful reviews has
drawn much attention lately. Existing meth-
ods for identifying helpful reviews primarily
focus on review text and ignore the two key fac-
tors of (1) who post the reviews and (2) when
the reviews are posted. Moreover, the helpful-
ness votes suffer from scarcity for less popular
products and recently submitted (a.k.a., cold-
start) reviews. To address these challenges, we
introduce a dataset and develop a model that in-
tegrates the reviewer’s expertise, derived from
the past review history of the reviewers, and the
temporal dynamics of the reviews to automat-
ically assess review helpfulness. We conduct
experiments on our dataset to demonstrate the
effectiveness of incorporating these factors and
report improved results compared to several
well-established baselines.

1 Introduction

Many customers rely on online reviews from non-
professionals, on daily basis, to decide what prod-
ucts to buy (e.g., Amazon), what hotels to stay
at (e.g., TripAdvisor), what restaurants to eat
(e.g., Yelp) and even what books to read (e.g.,
Goodreads). A recent survey of Bizrate Insights re-
ward members found that approximately 98% of on-
line shoppers research a vendor via online reviews
before making a purchase decision (Kats, 2018).
Since the reviews are expected to describe the ac-
tual experiences and opinions of users, they can
provide a reliable source of reference, improving
other customers’ confidence, comfort, and the over-
all shopping experience (Foo et al., 2017; Gamzu

Best view in town

"What can I say .. this is my best place in town. Average
food, but the view pays the price. Breathtaking London
View, lovely staff, Love to ......."

COVID restricted

"The room was clean and comfortable. We were looking
forward to the breakfast buffet, but due to COVID, it wasn’t
available. We didn't dine in for other meals ......."

(a)

(b)

(c)

HORRIBLE Service

"Terrible food! Overpriced, Cold, and flavorless. Shocking
Service!! Undoubtedly the WORST place I have ever
been! Call +1 437 ***  **** OR visit this restaurant *****..."

0

Figure 1: A snapshot of three reviews with the review-
ers’ history information: Review a has accumulated
more helpful votes but is posted almost two years before
Review b; on the other hand, Review b (a.k.a., cold-start
review) contains time-sensitive information, describing
the current conditions and Review c is likely a spam re-
view. Photos of the reviewers are replaced with avatars
for privacy reasons.

et al., 2021). However, despite their tremendous
benefits, online reviews are often of mixed quali-
ties. While many reviews are informative, others
provide little value and may contain excessive ap-
praisal or spam (see Figure 1-c). There are multiple
factors that affect the quality of a review, including
the reviewers’ life experience, educational back-
ground, and the motive for writing the review (Du
et al., 2021), and these factors are not usually ex-
plicit in the review text. All these pose challenges
for customers who are less experienced in a subject
area and need the reviews the most, simply because
there is less incentive for more experienced users
to use the reviews. Moreover, customers usually
have limited patience for reading reviews – most
customers read less than 10 reviews before mak-
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ing a purchase decision about an item (Murphy,
2016). The large volume of reviews and their un-
predictable quality and the limited customer pa-
tience demand better review utilization strategies
to manage the information overload.

One standard method to identify more informa-
tive reviews is to ask for feedback from customers
or site visitors who read them. By asking, “Was
this review helpful to you?,” or “Did you find this
review helpful?” at the end of each review, online
platforms can crowdsource helpfulness votes from
other customers. As a result, user reviews that gain
the most helpful votes are shown first to the poten-
tial buyers to make the decision easier. However,
the voting data suffers from scarcity (Siersdorfer
et al., 2010) since only a tiny proportion of cus-
tomers are willing to cast helpfulness votes. The
scarcity is even more severe in reviews of less pop-
ular products and more recently submitted reviews
(a.k.a., cold-start reviews) (Liu et al., 2008), despite
the fact that more recent reviews may in fact con-
tain more relevant and time-sensitive information
(e.g., "New COVID Restrictions" or "Dirty Pool
Area") as shown in Figure 1-b but no helpfulness
vote.

In this paper, we study the confluence of the re-
viewing history of reviewers and the review text
for helpfulness identification. First, we observe
that people who post more reviews and earn more
helpful votes are more likely to be better reviewers.
Second, trustworthy reviewers (e.g., Figure 1-a) are
less likely to be posting fake or biased reviews, and
their reviews are more likely to earn more helpful
votes; otherwise, they will be ruining their reputa-
tion. Third, those who have been to more hotels
or restaurants across different cities have a better
basis for comparison and writing critical reviews.
To the best of our knowledge, existing works only
focus on review content and neglect the reviewers
and their reviewing history. Integrating the review
text with the reviewing history of the reviewers is
the problem studied in this paper.

Our main contributions are summarized as fol-
lows:

• We introduce a new dataset with both review
text and reviewer’s history, to highlight the
importance of integrating the two sources for
review helpfulness.

• We propose a model incorporating the re-
viewer’s expertise and temporal information
of reviews in helpfulness prediction.

• We present a detailed case-study to interpret
the model behavior and highlight potential
directions to be addressed in the future.

2 Related work

More traditional approaches on review helpfulness
prediction focus solely on the text of reviews, and
some consider both text and images to guide the
prediction. In general, the task can be addressed
using a predictive model based on hand-crafted fea-
tures such as structural (Susan and David, 2010;
Xiong and Litman, 2014), lexical (Kim et al.,
2006; Xiong and Litman, 2011), syntactic (Kim
et al., 2006), emotional (Martin and Pu, 2014),
semantic (Yang et al., 2015), and arguments (Liu
et al., 2017) from the review text. These features
may be fed into a conventional classifier such as
SVM, Random Forest, or gradient boosting to iden-
tify helpful reviews. These methods heavily rely
on manual feature engineering, which is labor-
intensive and time-consuming.

Inspired by the remarkable progress of deep neu-
ral networks, more recent studies make use of deep
neural models, which can learn both intrinsic and
extrinsic features given labeled data. Chen et al.
(2018) uses a text-based CNN model to automati-
cally capture the character-level, word-level, and
topic-level features for helpfulness prediction. Fan
et al. (2018) uses an end-to-end multi-task neural
architecture with the help of an auxiliary task, such
as rating regression, to boost the performance of the
review helpfulness identification. Liu et al. (2021)
and Han et al. (2022) use both text and images to
guide the review helpfulness prediction. Since the
image field is usually optional in reviews, a large
volume of reviews contain only text, for which
these multimodal models would produce inconsis-
tent results.

3 Review Helpfulness Prediction

3.1 Dataset
To the best of our knowledge, there is no human-
annotated dataset that is publicly available for the
task of review helpfulness prediction with the re-
viewers’ attributes and review date. Therefore,
we build our dataset by scraping reviews from
TripAdvisor1. Out of 225,664 reviews retrieved,
close to one third have no helpful votes. We filter
such reviews, and this reduces the number of re-
views to 161,541. Table 1 presents the summary of

1https://www.tripadvisor.com
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Train Valid Test
Total #Samples 145,381 8,080 8,080
Avg. #Sentences 7.82 7.80 7.81
Avg. #Words 152.37 152.25 148.90

Table 1: Our dataset statistics.

our dataset with train, validation, and test splits2.
Following (Liu et al., 2021), we leverage a logarith-
mic scale (⌊log2 nvotes⌋) to categorize the reviews
based on the number of votes received. Specifically,
we map the number of votes into five intervals (i.e.,
[1,2), [2, 4), [4, 8), [8, 16), [16,∞)), each corre-
sponding to a helpfulness score Y ∈ {1, 2, 3, 4, 5},
where the higher the score, the more helpful the
review.

3.2 Proposed Model
Review Helpfulness Prediction (RHP) can be
modeled as a supervised machine learning task
where the input contains information about the
reviews (R) and the reviewers (U). Let Ri =
([s1, . . . , sN ], ti) denote a review posted at time
ti with sentences s1, . . . , sN , and Ui = (ni, mi)
denote a reviewer who posts ni reviews and earns
a total of mi helpful votes. We formulate the re-
view helpfulness prediction as a multi-class clas-
sification where we seek to find a model f that
minimizes the loss function L, i.e.

minθL (f(θ,R,U), Y ), (1)

where Y is the ground-truth, θ is the model param-
eter and the output of the model is a helpfulness
class Ŷ ∈ {1, 2, 3, 4, 5}. The learning task is to
find the best parameter that minimizes the above
equation.

We encode the review sentences using BERT (De-
vlin et al., 2019; Xu et al., 2019). We concate-
nate the review sentences together while inserting
a [CLS] token at the start and a [SEP] token at
the end. If h[CLS] denotes the embedding vector
of the special [CLS] token and h(i) denotes the
embedding vector of the i-th token, we extract the
last hidden state of h[CLS]

l to represent the review
sentences and apply a linear transformation to get
a final contextualized representation xh ∈ IRK ,
where Θ is a non-linear activation function.

[h[CLS],h(1),h(2), . . . ] = BERT([CLS]
s1, . . . , sN [SEP]),

(2)

2We present our dataset construction details in Section A
of the Appendix.

xh = Θ (MLP (h[CLS]
l )). (3)

Generally, users who post more reviews and earn
more helpful votes are likely to be better review-
ers. Such users may have been to more hotels and
restaurants across the globe and have a better basis
for comparison. We define the term reviewer exper-
tise as the mean number of helpful votes received
per review, written as es = m/n for a reviewer
who posts m reviews and earns n overall helpful-
ness votes. We use a linear layer to get a weighted
representation of the expertise score (hs).

hs = MLP (es) (4)

Previous approaches for this task fail to consider
the temporal nature of the reviews. Older reviews
are more likely to accumulate more helpfulness
votes than newer reviews but are not necessarily
the most relevant describing the current conditions
(e.g., new COVID restrictions). One-time problems
such as broken bathrooms and dirty pool area are
likely to be addressed and to be less relevant. Let td
be the relative age of a review in days, for example,
as of the day the reviews are scraped. We use a
linear layer to get a weighted representation of the
relative review age.

ht = MLP (td). (5)

It should be noted that both the review age and
the reviewer expertise are normalized to a fixed
range [a, b] before being used in the linear layers
in Equations 4 and 5. If X denotes a set of scores
(e.g., reviewers expertise score), a score xi ∈ X is
normalized into zi as follows:

zi = (b− a) xi −min(X )
max(X )−min(X ) + a (6)

In our case, both review age and reviewer expertise
are scaled into the interval [0, 1].

We concatenate the textual representation (xh),
expertise representation (hs), and temporal repre-
sentation (ht ) to get a final embedding

ofinal = hs ⊕ xh ⊕ ht, (7)

where⊕ is a concatenation operator. The final help-
fulness prediction layer feeds ofinal into a linear
layer and use softmax activation to get the final
predicted helpfulness class Ŷ .

Ŷ = softmax (Wr · ofinal + br), (8)
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Baseline Models Acc. (↑) MAE (↓) MSE (↓)
ARH 58.73 0.476 0.619

UGR + BGR 62.76 0.464 0.674
TextCNN 62.82 0.444 0.608

MTNL 62.77 0.458 0.653
BERTHelp 63.03 0.432 0.591

Our Ablations Acc. (↑) MAE (↓) MSE (↓)
RHP (ours) 65.18† 0.393† 0.491†

- w/o Expertise 63.87 0.421† 0.550†

- w/o Temporal 63.40 0.437† 0.592
- w/o Expertise + Temporal 62.92 0.446 0.617

Table 2: Performance compared to our baseline models
and the result of our ablation study (↑ indicates higher
values for a better performance and ↓ indicates lower val-
ues for a better performance). † reported results are sta-
tistically significant in paired t-test by taking BERTHelp
(Xu et al., 2020) as a reference with the confidence of
95% (p-value < 0.05).

L = LCE (Ŷ , Y ) (9)

where Wr ∈ IRK×K and br ∈ IRK denote the
projection parameter and a bias term respectively.
We use the cross-entropy loss function LCE with
respect to the ground truths helpfulness class (Y ).

3.3 Experiments

We evaluated the performance of the proposed
model3 compared to well-established baselines.
We compare our system with ARH (Kim et al., 2006),
UGR + BGR (Xiong and Litman, 2011), TextCNN
(Chen et al., 2018), MTNL (Fan et al., 2018), and
BERTHelp (Xu et al., 2020). We didn’t perform
any explicit preprocessing of the review text. We
discuss the baseline systems, preprocessing, and
hyperparameters used for our experiments in Ap-
pendix (Section B & Section C).

3.3.1 Results
As part of a detailed evaluation of our algorithm,
we report our model’s performance compared with
the baselines in terms of Accuracy (Acc.), Mean
Average Error (MAE), and Mean Squared Error
(MSE). As shown in Table 2, our final model out-
performs the baselines in terms of all the metrics.
Our ground-truth values consist of 5 classes which
correspond to five helpfulness scores {1, 2, 3, 4, 5},
where the higher the score, the more helpful the
review. To gain more insights into the performance
of our prediction model, we also evaluate our algo-
rithm in terms of MAE and MSE, which assess the
fine-grained differences between the ground-truth

3Code, dataset, and model checkpoints: https://github.
com/tafseer-nayeem/RHP

and the predicted helpfulness scores. Our RHP
model consistently outperforms the baselines with
a good margin, which means when misclassified,
our model predictions are very close to the actual
helpfulness scores. We conduct detailed ablation
studies to demonstrate the effects of different com-
ponents of our RHP model by removing expertise
(denoted as w/o Expertise) and removing temporal
information (denoted as w/o Temporal). The abla-
tion test results on our dataset are summarized in
Table 2. We can observe that the temporal feature
has the largest impact on the performance of our
model, and the impact of expertise is also signif-
icant. This suggests that the reviewer’s expertise
and temporal information of the reviews play a key
role in review helpfulness prediction. Therefore,
it is no surprise that combining all components
achieves the best performance on our proposed
dataset.

3.3.2 Analysis

We also present a detailed analysis to provide more
supportive evidence of our arguments. To this end,
we randomly selected m examples for each class
of reviews considering helpfulness votes. Then,
we extract Top K (where K = 5) n-grams from
each class of reviews to identify the most relevant
keywords or topics in reviews to assess what as-
pects are most talked about the items (e.g., hotels
or restaurants).

Preprocessing Our preprocessing step includes
tokenization, lemmatization, removal of stopwords,
Part-Of-Speech (POS) tagging, and filtering punc-
tuation marks. We use the NLTK4 to preprocess
each sentence and obtain a more accurate represen-
tation of the information. Moreover, we also add
‘hotel’ and ‘restaurant’ in the stopwords list
as they frequently occur in every review and are
not meaningful in our context.

Extracting Candidate n-grams We remove the
sentiment words and emojis using VADER5 (Hutto
and Gilbert, 2014), a "gold-standard" sentiment
lexicon especially attuned to microblog-like con-
texts. As the sentiment expressed in reviews are
highly subjective, we are interested in extracting
only the aspects or topics (e.g., room, location,
customer service etc.) for which the opinions are

4https://www.nltk.org/
5https://github.com/cjhutto/vaderSentiment
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Helpfulness Class Unigram Bigram
‘room’ ‘front desk’
‘staff’ ‘coffee maker’

‘location’ ‘breakfast buffet’
‘time’ ‘sofa bed’

Class #1
Helpful Votes [1, 2)

‘service’ ‘swim pool’
‘room’ ‘front desk’
‘staff’ ‘shampoo conditioner’

‘service’ ‘customer service’
‘location’ ‘resort fee’

Class #2
Helpful Votes [2, 4)

‘time’ ‘pool area’
‘room’ ‘front desk’
‘staff’ ‘resort fee’
‘time’ ‘customer service’

‘service’ ‘coffee maker’

Class #3
Helpful Votes [4, 8)

‘view’ ‘city view’
‘room’ ‘front desk’
‘staff’ ‘resort fee’

‘service’ ‘customer service’
‘time’ ‘minute walk’

Class #4
Helpful Votes [8, 16)

‘pool’ ‘life jacket’
‘room’ ‘front desk’
‘time’ ‘resort fee’

‘service’ ‘bed bug’
‘staff’ ‘beach chair’

Class #5
Helpful Votes [16,∞)

‘pool’ ‘cable car’

Table 3: Top 5 unigrams and bigrams extracted from
five different classes of reviews divided according to
helpfulness votes. For each column, green color indi-
cates the overlap with all 5 classes, whereas blue for 4,
orange for 3, and red for 2 overlaps.

expressed. Therefore, we keep only the nouns6

(with POS tags ‘NN’ and ‘NNS’) for extracting the
aspects or topics.

Ranking Candidate n-grams We extract the un-
igrams and bigram collocations for each of the re-
view classes. Then, we rank the unigrams by count-
ing the frequency of occurrences and bigrams using
likelihood ratios (Manning and Schutze, 1999) to
obtain Top K. We present the Top 5 unigrams and
bigrams in Table 3 grouped according to helpful-
ness classes and ordered by descending ranking
scores.

Table 3 shows a high overlap of n-grams
among different classes of reviews, which further
strengthen our argument that helpfulness does not
entirely depend on the review text but rather the
confluence of the review text, reviewing history
of reviewers (who post the reviews), review age
(when the reviews are posted). Generally, older
reviews (i.e., review age) were present longer than
the newer reviews in the platform and had more
time to accumulate helpful votes.

6As adjectives and adverbs may contain sentiment towards
aspects.

[CLS]  We could not have been happier with our choice for our family's 3 night
stay in Las Vegas recently. The location was perfect. We stayed in a 2 bedroom
villa, which was so spacious and had a great view of the Vegas lights and
airport .......The bathroom to the main bedroom had a fabulous big bath. The
beds very comfortable. Dinner in the restaurant in the lobby one night, the food
and service were both great. We particularly liked the restaurant and bar next
to the pool on level 5, very relaxing for lunch [SEP]

[Free WiFi, Free parking, Location, Room,   Staffs, Front Desk, Food,
swimming pools, foods, Bar, Air conditioning, Non-smoking rooms,  Fitness
center, ATM on site, Shuttle service, Room service, Spa, ....... ]

Aspects / Facilities

Review Text

Figure 2: Top 10 ranked tokens of the RHP model
shown in green colors with the color intensity indicating
the importance of the tokens in the overall prediction.

3.4 Case Study

To gain more insights into the review helpfulness
prediction task, we present a detailed case-study
to interpret the model behavior and highlight the
most important features of this task. Models are in-
terpretable when humans can readily comprehend
the reasoning behind model predictions and deci-
sions made (Kim et al., 2016). To this end, we
randomly selected a sample with Helpfulness Class
= 3 from our test set and used Captum7 to inter-
pret the words/tokens that contributed the most to
the prediction. As can be seen in Figure 2, the
top-ranked words are highly representative of the
aspects/facilities listed on the restaurant page. We
can conclude from this observation that users tend
to look for specific aspects in reviews to find them
helpful. We also notice that the use of personal pro-
nouns (e.g., I, we, they, etc.), describing personal
experiences, contributes to the helpfulness predic-
tion. People often find reviews useful if it comes
from others’ experiences and personal pronouns
are a good indicator of it.

4 Conclusion and Future Work

In this paper, we develop a model incorporating the
reviewer’s expertise and temporal information in
reviews to predict the helpfulness, especially for
unreliable and cold-start reviews. Furthermore, we
present a detailed analysis to interpret the model
behavior and provide reasoning behind model pre-
dictions. For future work, we will look into the
problem of personalized review helpfulness pre-
diction to model the demographics and cultural
differences of the reviewers.

7Captum (https://captum.ai/) is an open-source, ex-
tensible library for model interpretability that uses the inte-
grated gradients method (Sundararajan et al., 2017).
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Limitations

Despite the effectiveness of incorporating the re-
viewer’s history and temporal information of the
reviews in helpfulness prediction, our current stud-
ies still have several limitations, which can pave
the path for future research.

For simplicity, like existing works, we assume
that all the users rate reviews unanimously. How-
ever, the diversity of demographics, age, and cul-
tural background also affect how users give, re-
ceive, and understand the sentiments expressed
in reviews. Users may focus on different review
aspects based on their preferences (i.e., "5 stars,
party every night" vs "5 stars, always quiet and
peaceful"). It would be interesting to see how to in-
corporate personal preferences for the helpfulness
prediction task.

Another limitation of our work is that we only
worked with reviews written in English. As a result,
we filter out the reviews written in other languages
and notice code-switched reviews when the review-
ers alternate between two or more languages in
a single review. We aim to extend this work to
support more languages.

Ethics Statement

In our data scraping process, we took into account
ethical considerations. We obtained data at an ap-
propriate pace, avoiding any potential DDoS at-
tacks. Additionally, we eliminated any Personal
Identifying Information, such as names, telephone
numbers, and email addresses, from the data set.
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A Dataset Construction

Publicly available datasets which are mostly used
for this task are Amazon8 (He and McAuley, 2016;
McAuley et al., 2015) and Yelp9. In Yelp dataset,
the user votes are distributed among three cat-
egories such as “Useful”, “Funny” or “Cool”,
where “Useful” voting feature was introduced
much later than the other two categories. There-
fore, many good reviews already in the dataset
may not have been marked useful. On the other
hand, the Amazon dataset does not contain the re-
viewers’ reviewing history and helpfulness votes to
evaluate our hypothesis studied in this paper. More-
over, for Amazon, the samples come from various
categories such as Books, Electronics, Clothing,
Beauty, Shoes and Jewelry, Grocery, Pet Supplies,
etc – the total helpfulness votes for the reviewers
are coming from different categories and it’s not
explicit in the fields from Amazon website. There-
fore, it’s hard to devise expertise because of domain
diversity.

We build our dataset by scraping reviews from
TripAdvisor10, a travel site that offers online ho-
tel and restaurant reservations and a platform for
sharing the travel experiences of users. We take
reviews from January 1st, 2015 until January 1st,
2020, and extract only those written in English.
For each review, we extract the review text, the to-
tal helpfulness votes and the posting time, and for
each reviewer, we extract the number of reviews
contributed and the cumulative helpfulness votes.
The attributes we extracted are summarized as fol-
lows:

8http://jmcauley.ucsd.edu/data/amazon/index_
2014.html

9https://www.yelp.com/dataset
10https://www.tripadvisor.com

• Reviews

– Review Text
– Total Review Helpful Votes
– Review Posting Time

• Reviewers

– Total Number of Reviews Contributed
– Cumulative Helpful Votes

B Baseline Systems

We compare our system performance with the fol-
lowing baselines.

• ARH (Kim et al., 2006) & UGR + BGR (Xiong
and Litman, 2011) use machine learning-
based methods with hand-crafted features
such as structural, lexical, syntactic, emo-
tional, semantic, and meta-data from the re-
view text to address this task. These features
are fed into conventional classifiers such as
SVM, Random Forest, and gradient boosting
to identify helpful reviews.

• TextCNN (Chen et al., 2018) employs a text-
based CNN model (Kim, 2014) to automati-
cally capture the character-level, word-level,
and topic-level features for helpfulness predic-
tion.

• MTNL (Fan et al., 2018) utilizes end-to-end
multi-task neural learning (MTNL) architec-
ture for classifying helpful reviews. They take
the help of an auxiliary task, such as rating
regression, to boost the performance of the
original task, which is review helpfulness iden-
tification.

• BERTHelp (Xu et al., 2020) develop their help-
fulness prediction model using pre-trained
BERT (Devlin et al., 2019). They design a
regression model using BERT-based features
extracted from review texts, star rating, and
product type information from Amazon prod-
uct review dataset (He and McAuley, 2016).

C Preprocessing & Hyperparameters

Preprocessing We didn’t perform any explicit
preprocessing of the review text. Instead, we
use BertTokenizer to avoid the out-of-vocabulary
(OOV) problem, which uses WordPiece (Wu et al.,
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2016) for tokenizing the sentences into words or
subwords. In addition, we add special tokens to
the start (e.g., [CLS]) and end of each review text
(e.g., [SEP]) and truncate all sentences to a single
constant length (e.g., 512).

Hyperparameters We use Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
3× e−5 and a batch size of 32. We use BERTBASE
(Wolf et al., 2020) pre-trained model with a fixed
vocabulary. We run the training for 5 epochs and
check the improvement of validation (dev set) loss
to save the latest best model during training.
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Abstract

The field of visual question answering (VQA)
has recently seen a surge in research focused on
providing explanations for predicted answers.
However, current systems mostly rely on sep-
arate models to predict answers and generate
explanations, leading to less grounded and fre-
quently inconsistent results. To address this, we
propose a multitask learning approach towards
a Unified Model for Answer and Explanation
generation (UMAE). Our approach involves
the addition of artificial prompt tokens to train-
ing data and fine-tuning a multimodal encoder-
decoder model on a variety of VQA-related
tasks. In our experiments, UMAE models sur-
pass the prior state-of-the-art answer accuracy
on A-OKVQA by 10∼15%, show competitive
results on OK-VQA, achieve new state-of-the-
art explanation scores on A-OKVQA and VCR,
and demonstrate promising out-of-domain per-
formance on VQA-X.1

1 Introduction

Contemporary models for visual question answer-
ing (VQA) and commonsense reasoning are typ-
ically trained discriminatively to select the best
answers from Multiple-Choice questions or to clas-
sify single-word answers to a predetermined vocab-
ulary (e.g. Anderson et al., 2018). Such settings of-
ten lead to limitations such as encouraging models
to find superficial correlations (Ye and Kovashka,
2021) or penalising model performance even when
the answers are plausible (e.g. synonyms and multi-
word expressions, and morphological variations are
not considered correct). Most current explanation
generation models are trained independently of the
QA model and the explanations are usually gener-
ated after the QA model has provided an answer.
As a result, these explanation models lack access
to the process that generated the answer and thus

1Code is available at: https://github.com/
chenxwh/UMAE.

the grounding of the explanation is limited to the
answer text.

We posit that a unified model that simultaneously
performs answer prediction and explanation genera-
tion is a more effective and consistent approach for
VQA. Generative models, such as GPT-3 (Brown
et al., 2020), T5 (Raffel et al., 2020), or OFA (Wang
et al., 2022a), have been shown to be successful
at rapidly adapting to downstream tasks and gener-
ating high-quality open-ended text, and hence are
suitable candidates for this unified approach.

We propose a multitask learning approach for
multimodal transformer-based encoder-decoder
models, towards a United Model for Answer and
Explanation generation (UMAE). In addition to
the current trend of separate answer prediction and
explanation generation based on the answers, our
approach adds the capability of jointly generating
answers and explanations together. Inspired by the
success of artificial prompt tokens in Neural Ma-
chine Translation (NMT) (Johnson et al., 2017),
we extend and demonstrate the efficacy of the ar-
tificial prompt-based method for VQA in a mul-
titask setup. We augment training instances with
artificial prompt tokens, enabling the model to dis-
tinguish different tasks while learning shared se-
mantic features. Experiments on a combination
of three knowledge-intensive VQA datasets, OK-
VQA (Marino et al., 2019), A-OKVQA (Schwenk
et al., 2022), and VCR (Zellers et al., 2019), show
that the UMAE models achieve a new state-of-the-
art (SOTA) answer accuracy on A-OKVQA, new
SOTA explanation score on VCR, and competitive
out-of-domain performance on VQA-X (Park et al.,
2018). UMAE supports the generation of the an-
swer to a question, the explanation for a given ques-
tion and answer, and both together jointly, making
the model efficient and flexible. An illustration of
the training setup is shown in Figure 1.

In summary, our main contributions are as fol-
lows: (1) the UMAE framework where answers and
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Multimodal

Encoder-Decoder

Transformer

<#AOKA#> What is this place?

<#AOKE#> What is this place? 

roadside stand, this is because

<#AOKAE#> What is this place?

prompt + Question  (+ Answer)Image Objects

<#A#> What are Person1 and
Person2 doing?

<#E#> What are Person1 and
Person2 doing? They are having
dinner together, this is because

<#AE#> What are Person1 and
Person2 doing?

market

The man is selling vegetables.

market, this is because the man is
selling vegetables.

Answer and/or Explanation

They are having dinner.

They are sitting at a table with food in
front of them.

Person1 and Person2 are having dinner,
this is because they are seated at a

dining table with food in front of them.

orange carrots,
orange sign,
yellow sign,
white van...

Person2, Person1,
Wineglass3, dining
table, Wineglass2,
chair, bow, white
plate, white table,
green bottle, ...

Figure 1: Illustration of UMAE: we train a multimodal encoder-decoder model on the mix of VQA tasks for jointly
optimising answer and explanation, where we distinguish the training instances and target output with artificial
prompt tokens (e.g. <#AOKA#>). The top and bottom examples are from A-OKVQA and VCR, respectively.

explanations can be generated by a single unified
model (§3.1); (2) a simple and efficient training
approach that uses multitask learning with artificial
prompts and demonstrates its ability to generalise
across domains (§4); (3) a method to map gener-
ated answers to Multiple-Choice options via eval-
uating the perplexity of the generation (§3.2); (4)
new SOTA results by UMAE, particularly for ex-
planation generation and promising out-of-domain
performance (§5).

2 Related Work

Multimodal Transformer-based Models achieve
SOTA performance on various vision-language
tasks (Chen et al., 2020; Li et al., 2020; Cho et al.,
2021; Wang et al., 2022c; Zhang et al., 2021).
They showcase the possibility of capturing richer
multimodal semantic coherence than discrimina-
tively trained models and are further capable of
generating self-explanations. Pretrained on mul-
titask settings with natural language instructions,
e.g. “what does the region describe?”, models
like OFA (Wang et al., 2022a) are claimed to have
the capability to transfer to unseen tasks and do-
mains via similar instructions. However, contrary
to these claims, we observe that pretrained OFA is
incapable of generating valid explanations through
simple natural language instructions (§5).

Artificial Prompt Tokens have previously been
explored for NMT by Johnson et al. (2017); Mitza-
lis et al. (2021). They propose a single model with
the traditional NMT model architecture (usually
for one language pair) and jointly train on differ-
ent language pairs with added artificial prompts,
e.g. 2es to distinguish the target language. This
approach has been found to foster implicit cross-
lingual bridging and exhibit zero-shot translation

capability. In this paper, we exploit a similar ap-
proach with artificial prompts for answer and ex-
planation generation in VQA with a united model.
This enables the model to learn shared features
among tasks and datasets in various domains.

Explanation Generation for VQA has gained
growing interest in research. However, most recent
approaches use separate models to predict answers
and generate explanations (Dua et al., 2021). Wu
and Mooney (2019) generate explanations with an
object detector and a GRU unit for text embedding,
then train on a subset of VQA-X in which the ex-
planations contain the objects most attended to by
the model. Kayser et al. (2021) develop an e-UG
model combining UNITER (Chen et al., 2020) for
processing multimodal input and GPT-2 (Radford
et al., 2019) for generation. In contrast, in this pa-
per, we propose using a single united model for
more grounded answer and explanation generation.

3 Methodology

3.1 Multitask Learning with Artificial Prompt
We formulate three generation settings: Q→A: an-
swer prediction; QA→E: explanation generation
conditioned on the answer; and Q→AE: joint an-
swer and explanation generation for a given ques-
tion. We hypothesise that by training the model to
generate both the answer and its explanation simul-
taneously, the result answer and explanation will
be more grounded and consistent.

We use a pretrained multimodal encoder-decoder
transformer as our base model (here we build on
the openly released version of OFA as a strong
baseline), and finetune the model on a mix of VQA
datasets from different domains.

Different from OFA, for each image in the VQA
datasets, we first extract objects and attributes us-
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MODEL

OK-VQA A-OKVQA VCR

direct answer multiple choice direct answer multiple choice BERTSCORE

TEST VAL (ppl) VAL (GloVe) TEST VAL TEST VAL (ppl) VAL

OFA* 40.40 24.54 56.19 47.40 48.09 39.77 33.55 64.55
OFAQ->A 49.93 74.32 65.30 61.71 63.00 53.91 54.89 83.85
UMAEALL 51.77 74.59 65.67 63.26 63.29 56.14 56.66 85.97

PRIOR-BEST 54.41 – 60.30 53.70 48.60 40.70 (77.10)† –

Table 1: Performance of models for answer generation. Better results are in bold. OFA* refers to the pretrained
OFA. Prior-best results for the three datasets are from Gui et al. (2022), Schwenk et al. (2022), Wang et al. (2022b),
respectively. † is from a discriminative model and thus not comparable (see Ye and Kovashka, 2021).

DATASET MODEL
e-ViL SCORES N-GRAM SCORES LEARNT SCORE

SO ST SE BLEU4 ROUGE-L METEOR CIDEr SPICE BERTSCORE

A-OKVQA

OFA* 4.44 56.19 7.90 0.30 4.45 3.26 4.82 4.62 68.64
OFAQ->A+OFAQA->E 35.82 74.32 48.29 22.18 48.51 23.56 86.76 22.46 85.96
UMAEA-OKVQA 37.10 73.97 50.15 27.61 52.23 24.06 104.39 22.88 87.86
UMAEALL 37.91 74.59 50.82 27.35 52.56 24.83 101.09 23.33 88.21

VCR

e-UG 19.30 69.80 27.60 4.30 22.50 11.80 32.70 12.60 79.00
UMAEVCR 22.57 56.68 39.82 12.25 28.87 16.67 48.14 27.36 81.77
UMAEALL 22.82 56.66 40.27 13.44 29.53 17.54 47.33 26.45 81.91

VQA-X
e-UG 36.50 80.50 45.40 23.20 45.70 22.10 74.10 20.10 87.00
UMAEALL 31.58 77.65 40.67 14.63 35.12 20.29 50.35 19.13 85.40

Table 2: Explanation Scores. OFA* is the pretrained OFA, showing the transferability of OFA for generating
explanations with natural language instructions. Results with e-UG are from Kayser et al. (2021). We show the best
results of A-OKVQA and VCR in bold. The last row in blue shade shows out-of-domain performance.

ing a bottom-up top-down attention-based model,
which is crucial for open-domain VQA tasks (An-
derson et al., 2018). We then add artificial prompt
tokens at the beginning of the textual input to signal
the generation task (answer, explanation, or both)
and the dataset2. For Q→AE, we concatenate an-
swers and explanations with a separator in between.
Finally, we mix all training instances, each consist-
ing of an image (processed in patches), objects and
attributes, and textual input with artificial prompts.

3.2 Perplexity as Multiple Choice Metric

To map the generated output to Multiple-Choice
options, in previous work the predictions are
loosely matched with options or gold answers using
embedding-based methods, such as GloVe embed-
ding similarity (Schwenk et al., 2022). In contrast
to these approaches, we propose to evaluate each
option as a text generation task, by feeding the
model the information that was used to generate
the answer as a prompt, and calculating the like-
lihood of each option being generated. Formally,
given an option Y = (y1, y2, ..., yt) with t tokens,

2Artificial prompt tokens are added as special tokens to the
tokenizer to avoid bias in the pretrained embeddings. However,
we note that these tokens may be biased w.r.t their association
with specific tasks after training, which is an intended effect.

we calculate the probability of each token yi being
generated by feeding the image, objects, and ques-
tion, as well as the first i− 1 tokens from Y to the
model pθ. The perplexity is then calculated with:
PPL(Y ) = exp

{
−1
t

∑t
i log pθ (yi|y<i)

}
, which

reflects the probability of option Y being generated
by the model. Finally, the option with the lowest
perplexity is chosen as the answer.

We also compare the performance of our ap-
proach, using perplexity as the metric, with GloVe
embedding similarity for A-OKVQA (see Table 1).

4 Experimental Setup

We primarily evaluated our proposed UMAE ap-
proach using pretrained OFA3 as the base model
on three knowledge-intensive VQA datasets: OK-
VQA, A-OKVQA and VCR4. We split the original
train set into train and validation set (95%-5%) for
all three datasets. Since the test set is not pub-
licly available for A-OKVQA and VCR, we use
the original validation set for experimental analy-
ses. We prepare training instances5 as introduced

3https://github.com/OFA-Sys/OFA
4See Appendix A for datasets details.
5Specifically, we add <#OKA#> for OK-VQA (only an-

swers are available), <#A#>, <#E#>, <#AE#> for VCR, and
<#AOKA#>, <#AOKE#>, <#AOKAE#> for A-OKVQA.
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Question: What time of year was the
picture likely taken? 

Answer: fall

Ground Truth Explanations:
1) The child is wearing a long sleeve
shirt and pants but no coat.

2) There are brown leaves on the
sidewalk.

3) The time is fall.

Generated Explanations:
Beam Search: The time is fall.

Top-k: The leaves are dropping.

Nucleus: The leaves are fall.

Typical: The leaves are brown and
dry.

Question: Which two words were said by both the
person in black and the person in white here? 

Answer: i do

Ground Truth Explanations:
1)  The people got married.

2) There is a wedding cake. the smiling people in
the suit and white dress are the bride and groom.

3) The photo was obviously taken at a wedding with
the bride and groom at the center of it. it is
traditional that they say "i do" when taking their
vows.

Generated Explanations:
Beam Search: They are at a wedding.

Top-k: The words are ""i"".".

Nucleus: The person in black and the person in
white are in a wedding.

Typical: The people are just after getting married.

Question: What is Person1 going to do? 

Answer: Person1 is going to lead a business
meeting.

Ground Truth Explanation:
Person1 is at the head of a table of men in
suits.

Generated Explanations:
Beam Search: Person1 is sitting at the head
of the table, which is where leaders sit.

Top-k: Person1 appears to be in charge of the
board room.

Nucleus: Person1 is sitting at the head of the
table, which is where leaders sit during
business meetings.

Typical: Person1 is sitting at the head of the
table, which is often the place for leaders.

Question: What is Person1 doing? 

Answer: Person1 is turning the wheel.

Ground Truth Explanation:
Person1 has his hands on the wheel
and is exerting force.

Generated Explanations:
Beam Search: He has his hands on the
wheel.

Top-k: Person1 is hunched over and
has his hands on the wheel.

Nucleus: Person1 is leaning over the
wheel and has his hand on it.

Typical: The man is leaning forward
and his hand is on the wheel.

Person1

Figure 2: Examples of generated explanations from UMAEALL model with different decoding strategies. The two
examples on the left are from A-OKVQA and the two on the right are from VCR.

in §3.1. Additionally, for VCR, we draw coloured
highlights around the referenced entity on the im-
ages, following Zellers et al. (2021) (Appendix A).
To account for the imbalance in size among the
datasets, we up-sample instances in OK-VQA and
A-OKVQA, and shuffle all instances to train the
UMAEALL model.

For ablation studies, we finetune OFA for
separate answer prediction (OFAQ->A) and ex-
planation generation conditioned on answers
(OFAQA->E). To better understand the impact of
mixing datasets from different domains, we also
train UMAEA-OKVQA and UMAEVCR, focusing on all
three answer and explanation generation tasks but
only using data from a single dataset: either with
A-OKVQA or with VCR. Details of training pa-
rameters are included in Appendix B.

We use beam search for generating answers and
additionally experiment with different decoding
methods including top-k sampling, Nucleus sam-
pling (Holtzman et al., 2020), and Typical sampling
(Meister et al., 2022), for generating explanations.
We evaluate answer accuracy as well as explana-
tion quality with automatic NLG metrics and e-ViL
scores (Kayser et al., 2021). e-ViL scores consist of
ST (task/answer accuracy), SE (explanation score),
and overall SO (product of ST and SE), where SE
is the harmonic mean of NGRAMScore (the har-
monic mean of n-gram scores ROUGE-L (Lin and
Och, 2004), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), and SPICE (Ander-
son et al., 2016)) and additionally the BERTScore
(Zhang et al., 2020), a learned similarity metric
over contextual representations of sentences.

5 Results and Discussion

5.1 Answer Accuracy

Table 1 presents our observations for answer ac-
curacy on Q->A task over the three datasets. We
also evaluate VCR answers using BERTScore as
the answers for VCR are usually sentences. We
observe that UMAEALL outperforms OFAQ->A on all
datasets, improves the prior SOTA on A-OKVQA
by 10∼15%, and achieves competitive results on
OK-VQA. For models that are finetuned on A-
OKVQA, we also see a salient improvement (+9%)
with the proposed mapping of options by perplexity
in Multiple-Choice, instead of GloVe embeddings
similarity6. We conducted several ablation studies
on the dependency of the modality for the answer
accuracy in A-OKVQA, where we find the visual
encoder is crucial for performance. Details are
included in Appendix C.

5.2 Explanation Evaluation

Table 2 shows e-ViL sores (§4) for explanations us-
ing automatic NLG metrics7. Following the same
setup as in Kayser et al. (2021), an explanation
is evaluated only if the answer predicted by the
system is correct8. We observe that pretrained
OFA with natural language prompts, e.g. “what
is the explanation for the answer?” or “this is

6Preliminary experiments with NLG metrics (BERTScore
and BLEU) for selecting the options given generation were sub-
optimal.

7Nucleus sampling shows best results and is reported. Detailed
scores with different decoding methods are shown in Appendix D.

8A limitation of evaluating all explanations is that explanations
of wrong answers may get high scores with n-gram metrics, even
though they are justifying wrong answers and should be penalised.
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MODEL SE BLEU4 R-L MET. CIDEr SPICE BERTSc.

OFAQ->A+OFAQA->E 42.4 20.0 44.2 19.3 66.7 19.1 85.1
UMAEA-OKVQA 45.8 23.6 47.9 21.7 78.0 20.5 86.9
UMAEALL 46.8 24.9 49.5 22.3 84.1 20.8 87.3

Table 3: Explanation scores on the same subset of A-
OKVQA.

because” performs poorly, as most generated ex-
planations are words (“yes/no”) or short-phrases9.
We compare UMAE models (on all and individ-
ual datasets) with prior best results from e-UG
(see §2), and standard separated trained baselines
(OFAQ->A+OFAQA->E). UMAEALL achieves better re-
sults across all datasets, showing the advantage of
mixing tasks and datasets in different domains. For
out-of-domain evaluation on VQA-X, UMAEALL

also shows mostly competitive results. Examples
of explanation generation are shown in Figure 2
and Appendix E.

Since e-ViL only evaluates an explanation if a
model generates the correct answer, the subset
of explanations evaluated varies by model. To
fairly compare explanations on the same subset,
we propose only using the subset of samples where
all models provide correct answers for explana-
tion prediction. Table 3 shows the results on A-
OKVQA with such a subset of 770 candidates,
where UMAEALL shows an even higher explana-
tion score. This highlights that UMAEALL generates
explanations that overlap significantly better with
gold explanations.

In summary, our experiments demonstrate that
the UMAE model leads to improved answer and
explanation generation and allows for the flexibil-
ity to generate different types of outputs, including
answers, explanations, or both. We observe that
UMAE exhibits promising results in jointly gener-
ating both the answer and explanation. We further
provide a comparative evaluation in Appendix F as
a first step towards comparison as there is currently
no standard evaluation setup for the joint answer
and explanation evaluation.

5.3 Error Analysis

To better understand the generated answers and er-
rors, we randomly sample 50 errors in OK-VQA
and A-OKVQA. Our analysis reveals the following
main error types, where the first three are related to

9BERTScore in not representative of the validity of outputs
from OFA*. We refer the reader to an exposition of the problems
associated with NLG metrics in Caglayan et al. (2020).
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Figure 3: Error type distribution in 100 random samples
from A-OKVQA and OK-VQA.

model performance: (1) Knowledge: the implicit
knowledge learned by the model is insufficient for
answering some of the knowledge-intensive ques-
tions, such as questions asking when a certain sport
was invented; (2) Visual: the model fails to identify
the visual attributes correctly, such as questions
about recognising object shape or material; (3)
Semantic disassociation: the model misinterprets
questions or fails to match the intended semantic
meaning. For example, it may answer what an ob-
ject is instead of a more complex question such
as what is commonly packed in it (e.g. answering
"suitcase" instead of "clothes"); (4) Metric: the
evaluation metric may penalise some of the plau-
sible answers, especially when searching for exact
match answers (mostly due to the difference of
singular/plural or phrases with/without space in be-
tween); and (5) Dataset: errors due to issues in the
datasets themselves. We discuss prominent issues
in dataset quality briefly in Appendix G and further
present the distribution of error types in Figure 3.

6 Conclusions

In this work, we propose UMAE, a unified model
that generates answers and explanations in VQA
using a multitask learning approach for multimodal
encoder-decoder models, where artificial prompt
tokens are added to distinguish different tasks
while learning shared semantics. Evaluation of
our approach on various VQA tasks shows that
UMAE outperforms prior best models and sepa-
rately trained baselines in both answer and expla-
nation scores, where we also demonstrate the ben-
efit of using perplexity as the metric for mapping
generated answers to Multiple-Choice options. Ad-
ditionally, UMAE offers flexibility in output and
can generate explanations for datasets without ex-
planations for training, e.g. OK-VQA, while also
improving answer quality. Through case studies
and error analysis, we identify potential areas for
future improvement, including dataset quality.
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Limitations

We discuss the limitations of our work in the fol-
lowing two aspects. Firstly, the experiments with
our proposed framework and finetuning approach
are primarily on the OFA model. We believe our ap-
proach applies to any multimodal generative model,
however, it would also provide insights to experi-
ment with more models. Secondly, regarding the
evaluation of our proposed joint framework, to bet-
ter evaluate the generated explanation quality, es-
pecially to evaluate the difference between expla-
nations generated jointly with answers and gener-
ated conditioned on the answers, human judgement
would be an important criterion compared to auto-
matic NLG metrics.
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A Datasets

The datasets used in the paper are as follows:

OK-VQA (Marino et al., 2019) is a knowledge-
based VQA dataset that requires outside knowledge
beyond the images to answer the questions. It has
train and test splits of size 9,009 and 5,046. Each
question is provided answers by five annotators. To
use the VQA (Antol et al., 2015) metric, each anno-
tated answer is then repeated twice to form a gold
answer set with 10 answers. Since no explanation
is provided, we only train Q→A task on OK-VQA.

A-OKVQA (Schwenk et al., 2022) is currently
the largest knowledge-based VQA dataset split
into 17.1K, 1.1K, and 6.7K for train, validation,
and test, respectively. The questions cover four
knowledge types: visual, commonsense, knowl-
edge bases, and physical. For each question, it
provides both multiple-choice answers and 10 free-
form answers (annotated by 10 different people),
as well as three explanations. Images in both OK-
VQA and A-OKVQA are from MSCOCO (Lin
et al., 2014), and answers in both datasets are in
single words or short phrases.

VCR (Zellers et al., 2019) is a large multiple-
choice dataset for Visual Commonsense Reasoning.
The train, validation, and test splits have 191.6k,
21.3k, and 26.5k instances, respectively. Each ques-
tion has four answer options in sentences, and the
correct answer is further provided with four expla-
nation options. Images in VCR are from movie
clips (Rohrbach et al., 2017). Bounding boxes of
entities are provided associated with mentions such
as Person1 in questions, answers and explana-
tions. We follow Zellers et al. (2021) and draw
coloured highlights around the referenced entity on
the images, where entity names and the coloured
highlights are consistent in the entire dataset, ex-
pecting the model to learn the association between
the coloured bounding box and the entity.

VQA-X (Park et al., 2018) contains a subset from
the VQAv2 (Goyal et al., 2017) dataset and further
provides three explanations for each question. The
image-question pairs are split into train, validation,
and test with 29.5k, 1.5k, and 2k instances, respec-

QUESTION OBJECTS IMAGES ACCURACY

✓ ✓ original 50.39
✓ ✗ ✗ 39.16
✓ ✗ random 33.48
✓ ✓ ✗ 33.28

Table 4: Ablation on the modality dependency for an-
swer accuracy of A-OKVQA.

tively. We only use the original test set to evaluate
the zero-shot performance of the trained models.

B Hyper-Parameters and Training

We begin with the pretrained weights from the orig-
inal OFA-large10, which is trained on vision-only
tasks including Image Classification, language-
only tasks including Sentence Classification, Text
Summarisation, as well as various vision-language
tasks including Image Captioning, Visual Question
Answering and Visual Entailment. Adam is used
as the optimizer and cross-entropy is the loss func-
tion. We set the learning rate to 10−5, the warm-
up ratio to 0.4, and the patch image size to 480.
We shuffle all the training examples and use batch
size 16. Due to the large size of VCR, we train
for 30 epochs on models involving VCR (OFAQ->A

for VCR, UMAEVCR and UMAEALL), and up to 100
epochs for other models. We report the empirical
performance with checkpoints that perform best on
the validation set (the 5% split from the original
train set). For A-OKVQA, we additionally report
the answer accuracy on the original test set.

C Ablations on Modality Dependency

We conduct several ablation studies to investigate
the dependency of object features and images on
the performance of our model UMAEALL for an-
swer accuracy of A-OKVQA, where we removed
images, replaced them with random images, and
removed extracted attributes and features. Results
in Table 4 show that the visual encoder is crucial
for performance and that visual objects alone are
not sufficient for answer prediction. Using a ran-
dom image would introduce noise and therefore
performs worse than not including the image at all.
We did not test removing the question because we
believe the model needs the questions to be able to
provide answers.

10https://github.com/OFA-Sys/OFA
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DATASET DECODING
e-ViL N-GRAM SCORES LEARNT SC.

SE BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L METEOR CIDEr SPICE BERTSCORE

A-OKVQA

BEAMSEARCH 44.71 52.01 36.69 26.72 19.88 40.39 22.06 68.48 20.94 86.05
TOP-K (k = 100) 44.34 52.56 37.06 27.06 19.72 44.45 21.58 73.44 19.38 86.27
NUCLEUS (p = 0.4) 50.82 58.92 44.66 35.06 27.35 52.56 24.83 101.09 23.33 88.21
TYPICAL (p = 0.6) 47.27 54.18 39.39 29.82 22.18 47.78 22.79 84.43 21.47 86.95

VCR

BEAMSEARCH 40.23 26.41 20.15 15.95 12.47 29.13 16.82 49.72 27.70 81.84
TOP-K (k = 50) 33.19 20.98 14.89 11.18 8.33 23.65 13.72 32.73 21.99 80.31
NUCLEUS (p = 0.1) 40.27 31.42 22.95 17.62 13.44 29.53 17.54 47.33 26.45 81.91
TYPICAL (p = 0.4) 35.12 23.42 16.88 12.83 9.64 25.36 14.70 35.85 23.32 80.70

VQA-X

BEAMSEARCH 35.88 37.84 24.91 16.67 10.97 31.32 17.90 38.23 16.23 84.39
TOP-K (k = 50) 33.28 38.35 23.11 14.21 8.45 29.15 17.05 32.89 15.26 83.41
NUCLEUS (p = 0.1) 40.67 47.56 31.44 21.47 14.63 35.12 20.29 50.35 19.13 85.40
TYPICAL (p = 0.5) 36.31 40.85 25.57 16.82 11.14 31.08 18.15 39.71 16.62 83.93

Table 5: Explanation scores with automatic NLG for generated explanations (QA→E) from UMAEALL model with
different decoding strategies. The last two rows (with blue shadow) indicate out-of-domain performance.

DATASET DECODING
e-ViL N-GRAM SCORES LEARNT SC.

SE BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L METEOR CIDEr SPICE BERTSCORE

A-OKVQA
BEAMSEARCH 47.01 54.75 41.39 32.08 24.25 49.75 22.54 86.28 20.68 87.39
NUCLEUS (p = 0.5) 46.72 55.53 41.63 31.91 23.67 49.16 22.48 82.37 20.67 87.18

VCR
BEAMSEARCH 37.02 25.00 18.90 14.87 11.54 27.07 15.66 38.77 25.03 80.68
NUCLEUS (p = 0.1) 35.10 27.41 19.36 14.50 10.73 26.18 15.21 34.99 21.88 80.52

VQA-X
BEAMSEARCH 38.13 39.91 26.30 17.99 12.46 31.69 19.11 42.10 18.15 84.95
NUCLEUS (p = 0.1) 39.67 44.92 28.88 19.04 12.55 33.08 20.07 44.28 19.19 85.21

Table 6: Explanation scores with automatic NLG for generated explanations from Q→AE with UMAEALL model.
The last two rows (with blue shadow) indicate out-of-domain performance.

D More Explanation Scores

For decoding, we evaluate the performance of beam
search with the size of 5, top-k sampling with
k from {50, 100, 200, ..., 1000}, and Nucleus and
Typical (Meister et al., 2022) sampling, both with
p from {0.1, 0.2, ..., 0.9}. We show the details of
the NLG scores using different decoding strategies
for explanations generated from QA→E in Table 5,
and Q→AE in Table 6.

E Examples of Generated Explanations

Examples of the explanations generated with beam
search and Nucleus sampling for A-OKVQA are
shown in Figure 4, and VCR in Figure 5.

F Joint Generation Performance

We present the results of the proposed Q→AE task
where answers and explanations are jointly gen-
erated. We parse the generated sequence to the
answer and the explanation and use the same sets
of metrics as the separate generation for evalua-
tion. Results for answers in Table 7 and explana-
tions in Table 8. For answers, since the perplexity
metric does not directly compare the generation,

TASK
A-OKVQA VCR VQA-X

MC (GOLVE) BERTSCORE DA

Q->A 65.67 81.91 77.65
Q->AE 65.67 82.30 69.60

Table 7: Evaluation of answers generated given ques-
tions (Q->A) and jointly generated with explanations
(Q->AE). MC stands for Multiple Choice, DA for Direct
Answer. The last column with a blue shadow indicates
out-of-domain performance.

DATASET
SE NGRAMSCORE BERTSCORE

QA->E Q->AE QA->E Q->AE QA->E Q->AE

A-OKVQA 50.82 47.01 35.69 32.15 88.21 87.39
VCR 40.27 37.02 26.70 24.02 81.91 80.68
VQA-X 40.67 39.67 26.69 25.85 85.40 85.21

Table 8: Scores of explanations generated given answers
(QA->E) and jointly generated with answers (Q->AE).
The last row with a blue shadow indicates out-of-domain
performance.

we show the Multiple-Choice accuracy using the
Glove metric for A-OKVQA and BERTScore for
VCR answer sentences.
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OK-VQA A-OKVQA

DA MC (GLOVE) DA

BEST 80.94 80.74 66.20
AVERAGE 54.98 71.53 57.29
WORST 16.37 59.35 41.46

Table 9: Human performance on OK-VQA and A-
OKVQA measured from the ground truth answers.

G Datasets Quality and Issues

As mentioned in subsection 5.3, during error analy-
sis we found that many errors are due to the issue
in the dataset itself. Concretely, we observe the
following issues in the existing datasets: (1) wrong
answers (2) subjective or unanswerable questions
(3) typos or unclear expressions (4) not requiring
images or knowledge to answer the question as
designed.

Furthermore, since the answer and explanation
for a question in VCR are obtained from the same
person who authored the question, this may result
in severe subjectivity in the answers or explana-
tions. For example, we find that many questions
in VCR require knowledge of the movie plot from
which the image is extracted, rather than common-
sense reasoning to answer the questions. While
human annotators have an implicit understanding
of the movies, the dataset itself does not contain
relevant contextual information.

We show some of the issues in the datasets be-
low. Figure 6 shows examples from VCR that re-
quire an understanding of the movie plot to gener-
ate answers. Figure 7 shows examples from OK-
VQA where questions and answers are subjective
or ambiguous. Figure 8 shows examples from A-
OKVQA and VQA-X that either contain wrong
answers, questions that do not need visual input or
typos which severely impact the model generation
(“house” should be “horse”).

To understand the inter-annotator agreement for
the datasets, we further measure the best, average
and worst human performance on OK-VQA and
A-OKVQA by selecting the most common answer,
a random answer, and the least common answer,
respectively, from the 10 ground truth answers for
each question. We calculate the performance us-
ing the VQA metric for direct answers, and the
GloVe metric for Multiple Choice for simplicity.
Note that we also remove the answer selected from
the ground truth answers when measuring human
performance. From the results in Table 9 we can

see that the average performance on both datasets
is relatively poor, which indicates the noise in the
datasets. The quality of the datasets needs to be
more carefully inspected so that the model perfor-
mance evaluated on these datasets can be more
meaningful.
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Question: Why is the woman wearing
goggles?
Answer: protection


Ground Truth Explanations: 
0) The woman is wearing goggles for
protections.
1) The snow goggles this woman
wears protects her eyes from the sun
and other bits of debris she might
encounter skiing downhill.

1) There is a lot of sun glare and snow
flying up when skiing.

Explanation Generation:
Beam: The woman needs protection.

Nucleus: The woman is skiing and
needs protection.


Answer + Explanation Generation:
Beam: protection, this is because The
woman wants to protect her eyes.

Nucleus: protection, this is because The
woman is wearing goggles to protect
her eyes from the sun.

Question: What time of day is it likely
right now?

Answer: morning

Ground Truth Explanations:
0) It is sunny out. there are fruit on
the table, so it likely is time for
breakfast.

1) The time is morning.

2) You can see the light shining in
through the window and door.

Explanation Generation:
Beam: The people are using umbrellas
because it's raining.

Nucleus: The people are using
umbrellas to keep from getting wet.


Answer + Explanation Generation:
Beam: rain, this is because The people
are using umbrellas because it is
raining.

Nucleus: it's raining, this is because The
people are using umbrellas to stay dry.

Question: What has caused the
elephants to turn brown?

Answer: dirt

Ground Truth Explanations:
0) These elephants have been rolling
around in the mud.

1) The elephants are covering
themselves in the naturally occurring
brown substance that is near the
water.

2) The elephants are dirty.

Question: What are the umbrellas
placed in the sand to block?

Answer: sun

Ground Truth Explanations:
0) They are on a beach on a sunny
day, and the umbrellas give cool and
shade from the sun.

1) The umbrellas block sun.

2) Umbrellas provide shade.

Explanation Generation:
Beam: The elephants are in mud.

Nucleus: The elephants are standing in
dirt.


Answer + Explanation Generation:
Beam: mud, this is because The
elephants are muddy.

Nucleus: mud, this is because The
elephants are in the mud.

Explanation Generation:
Beam: The umbrellas block the sun.

Nucleus: The umbrellas are blocking the
sun.


Answer + Explanation Generation:
Beam: sun, this is because The
umbrellas block the sun.

Nucleus: sun, this is because The
umbrellas are placed in the sand to
block the sun.

Ground Truth Explanations: 
0) There is rain and the people are
being sheltered by umbrellas.

1) The people want rain protection.

2) They are protecting themselves
from getting wet from the rain.

Question: Why are the people lining up?

Answer: boarding

Ground Truth Explanations:
0) The people are near a plane as if
they want to get on.

1) The people are boarding.

2) The people are lined up facing the
plane. people line up facing
transportation vehicles when they are
preparing to board.

Explanation Generation:
Beam: The people are lined up to board
a plane.

Nucleus: The people are lined up to
board a plane.


Answer + Explanation Generation:
Beam: board plane, this is because The
people are lined up to board the plane.

Nucleus: board plane, this is because
The people are boarding a plane.

Question: What is the white appliance
the people are looking in being used to
store?

Answer: food

Ground Truth Explanations:
0) The appliance is a fridge.

1) Perishable food is kept in this little
refrigerator, which is too small for
many people, but just right for one or
two.

2) There are multiple edible items in
the fridge already.

Question: The layout of buildings most
resembles which period?

 Answer: historical european

Ground Truth Explanations:
0) The cars are on the left side of the
road, so it is either the united kingdom
or ireland.

1) The high pitched roofs and the
stone architecture is from then

2) The layout is from the olden days.

Explanation Generation:
Beam: The appliance is a refrigerator.

Nucleus: The appliance is a fridge.


Answer + Explanation Generation:
Beam: food, this is because The
appliance is a fridge.

Nucleus: food, this is because The
appliance is a fridge.

Explanation Generation:
Beam: The buildings are old.

Nucleus: The buildings are from the late
nineteenth century.


Answer + Explanation Generation:
Beam: medieval, this is because The
buildings look like medieval buildings.

Nucleus: medieval, is because The
buildings look like medieval buildings.

Question: Why are the people using
umbrellas?
Answer: it's raining


Explanation Generation:
Beam: The people are using umbrellas
because it's raining.

Nucleus: The people are using
umbrellas to keep from getting wet.


Answer + Explanation Generation:
Beam: morning, this is because The sun
is shining through the window.

Nucleus: morning, this is because There
is light coming through the window.

Figure 4: Examples of generated answers and explanations for A-OKVQA.
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Question: What event are Person2 and Person8
walking away from?
Answer: A wedding reception.

Ground Truth Explanation: 
Everyone is really dressed up, and the lights give
the area a fairy tale ambiance which is typical of
a wedding.


Explanation Generation:
Beam: Person2 is wearing a pink dress and
Person8 is wearing a suit.

Nucleus: Person2 is wearing a pink dress and
Person8 is holding hands with her.


Answer + Explanation Generation:
Beam: Person2 and Person8 are walking away
from a wedding, this is because Person2 and
Person8 are holding hands and wearing formal
clothing.

Nucleus: They are walking away from a wedding,
this is because There are balloons and strings of
lights above them.

Question: Does Person1 drink alcohol?

Answer: Yes Person1 drinks alcohol.

Ground Truth Explanation:
Person1 has a full beer in front of him.

Question: How does Person2 feel about this
performance?

Answer: Person2 is slightly impressed by what
she sees.

Ground Truth Explanation:
Person2 has a slight smirk on her face.

Explanation Generation:
Beam: Person2 has her arms crossed and a slight
frown on her face.

Nucleus: Person2 has her arms crossed and a
slight frown on her face, which suggest she is not
impressed.


Answer + Explanation Generation:
Beam: Person2 does not like what she is hearing,
this is because Person2 has her arms crossed and
a frown on her face.

Nucleus: Person2 is not impressed by it, this is
because Person2 is looking down and frowning,
and her arms are crossed, which is a sign of
disapproval.

Explanation Generation:
Beam: Person1 has a cup of beer in front of him.

Nucleus: Person1 is drinking from Cup2.


Answer + Explanation Generation:
Beam: Yes, Person1 drinks alcohol, this is
because Person1 has a cup of beer in front of
him.

Nucleus: Yes, he does drink, this is because He
has Cup2 in front of him and it is full of beer.

Question: What is Person2 doing?
Answer: Telling Person1 something important.

Ground Truth Explanation: 
Person2 is focused on Person1 and waving their
hands to emphasize what they're saying.


Explanation Generation:
Beam: Person2 is sitting across from Person1 who
is on the phone.
Nucleus: Person2 is sitting in a chair and is
looking at Person1 who is on the phone.


Answer + Explanation Generation:
Beam: Person2 is listening to Person1 talk on the
phone, this is because Person2 is sitting in a
chair facing Person1 who is on the phone.

Nucleus: Person2 is telling Person1 a story, this is
because Person2 is sitting in a chair and Person1
is on the phone.

Question: Is Dog2 a living creature?

Answer: No, Dog2 is a stuffed animal.

Ground Truth Explanation:
Dog2 is immobile, and wouldn't be still with so
much prey around. Dog2 is also obviously a toy,
based on the coloration.

Question: Why does Person1 have a pointy hood
on his cloak?

Answer: Person1 is a wizard.

Ground Truth Explanation:
Pointy hoods are usually used to depict a wizard
character.

Explanation Generation:
Beam: Wizards often wear pointy hoods.

Nucleus: Wizards often wear pointy hoods and
robes.


Answer + Explanation Generation:
Beam: Person1 is trying to hide his identity, this
is because Person1 is standing in front of
Person2 and Person3, and Person4 who are all
looking at him.

Nucleus: Person1 is a wizard, this is because
Wizards often wear pointy hoods and robes.

Explanation Generation:
Beam: Teddybear1 and Teddybear2, and
Teddybear5 are stuffed animals, Dog2 is a
stuffed animal.

Nucleus: Dog2 is a stuffed animal, and stuffed
animals are not alive.


Answer + Explanation Generation:
Beam: No, Dog2 is not a living creature, this is
because Dog2 is a stuffed animal.

Nucleus: No, Dog2 is not a living creature, this is
because Dog2 is a stuffed animal, stuffed
animals are not alive.

Person2

Person2
Person8

Person1 Person1

Person1

Person2

Figure 5: Examples of generated answers and explanations generation for VCR.
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Generation: Person3 is on a boat.


Question: Why is Person 3 wearing a life jacket?

Answer Options:

0)      The boat has a leak, and Person3 is scared of
drowning.

1) The boat is sinking and the life jacket will hep them
float.

2) Person3 is piloting the ship.

3) Person9 is wearing a life vest in case the ship sinks.

Question: Why did Person1 drop Person3?

Answer: Person1 dropped Person 3 by accident.

Explanation Options:

0)       Person1 can upon Person3 in the woods, and kissed her; she awoke,
and he dropped her off the bier.

1) Person2 is Person3's mother. Person3 is an infant and can't walk on his own.

2) Person3 is stuck in the toilet as Person1 is pulling her out.

3) Person3 is bent over and appears unsteady. Person1 looks concerned for her.

Generation: Person1 is kneeling over the body of Person3.


Person1

Person3

Person3

Figure 6: Questions that require knowledge of the movie plots to generate the answers from VCR.

Question: Is this legal or illegal?

Ground Truth Answers:

legal (6), illegal (4)

Generation: legal

Question: In which country are the
transportation regulations loose
enough to allow vehicles like these?
Ground Truth Answers:

india (8), china (2)

Generation: england

Question: What nationality is this food?

Ground Truth Answers:

american (4), mediteranian (2), 

greek (2), asian (2)

 
Generation: italian

Question: How long does it take to cook?

Ground Truth Answers:

45 minutes (4), 20 minutes (2), 25
minutes (2), minute (2)

Generation: 1 hour

Figure 7: Examples of subjective questions from OK-VQA.

Question: How long does the average
giraffe live?

Answer: 20-30 years

Ground Truth Explanations:
0) Giraffes can live a long time.

1) 20-30 years is the lifespan.

2) I looked up this answer on the
internet since there is no way to tell
the answer from the picture.

Question: What country headquarters this
plane company?

Answer: usa

Ground Truth Explanations:
0) The headquarters are the us.

1) The company name is virgin atlantic
that was founded and has headquarters in
london england.

2) The airplane has virgin atlantic livery.
this company is based in england.


Question: What is the brown house
doing?

Answer: walking

Ground Truth Explanations:
0) it has two legs up and two down
and it is moving.

1) only two feet are touching the
ground.

2) he is moving slowly on a mountain
range.

Figure 8: Issues in the datasets that severely impact the model generation: wrong answers (left, from A-OKVQA),
questions do not need visual input to answer (middle, from A-OKVQA), and typo (right, from VQA-X).
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Abstract

This paper presents work on novel machine
translation (MT) systems between spoken and
signed languages, where signed languages are
represented in SignWriting, a sign language
writing system. Our work1 seeks to address
the lack of out-of-the-box support for signed
languages in current MT systems and is based
on the SignBank dataset, which contains pairs
of spoken language text and SignWriting con-
tent. We introduce novel methods to parse,
factorize, decode, and evaluate SignWriting,
leveraging ideas from neural factored MT. In
a bilingual setup—translating from American
Sign Language to (American) English—our
method achieves over 30 BLEU, while in two
multilingual setups— translating in both direc-
tions between spoken languages and signed
languages—we achieve over 20 BLEU. We
find that common MT techniques used to im-
prove spoken language translation similarly af-
fect the performance of sign language transla-
tion. These findings validate our use of an in-
termediate text representation for signed lan-
guages to include them in NLP research.

1 Introduction

Most current machine translation (MT) systems
only support spoken language input and output
(text or speech), which excludes around 200 dif-
ferent signed languages used by up to 70 million
deaf people2 worldwide from modern language
technology. Since signed languages are also natu-
ral languages, Yin et al. (2021) calls for including
sign language processing (SLP) in natural language
processing (NLP) research.

From a technical point of view, SLP brings novel
challenges to NLP due to the visual-gestural modal-
ity of sign language and special linguistic features

1Code and documentation available at https://github.
com/J22Melody/signwriting-translation

2According to the World Federation of the Deaf: https:
//wfdeaf.org/our-work/
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Figure 1: Demo application based on our models, trans-
lating from spoken languages to signed languages rep-
resented in SignWriting, then to human poses.

(e.g., the use of space, simultaneity, referencing),
which requires both computer vision (CV) and NLP
technologies. Crucially, the lack of a standardized
or widely used written form for signed languages
has hindered their inclusion in NLP research.

However, sign language writing systems do exist
and are sporadically used (e.g., SignWriting (Sut-
ton, 1990) and HamNoSys (Prillwitz and Zienert,
1990)). Therefore, we adopt the proposal of Yin
et al. (2021) to formulate the sign language trans-
lation (SLT) task using a sign language writing
system as an intermediate step (illustrated by Fig-
ure 1): given spoken language text, we propose to
translate to sign language in a written form, then
transform this intermediate result into a final video
or pose output3—and vice versa. According to this
multi-step view of SLT, in this work we study trans-
lation between signed languages in written form
and spoken languages. We use SignWriting as the
intermediate writing system.

SignWriting has many advantages, like being
universal (multilingual), comparatively easy to un-
derstand, extensively documented, and computer-
supported. In addition, despite looking picto-
graphic, it is a well-defined writing system. Every

3Note that the second step, animation of SignWriting into
human poses or video, is not included in this research. In the
demo application, spoken language text is translated directly
into sign language poses, resulting in low-quality output.

1706

https://github.com/J22Melody/signwriting-translation
https://github.com/J22Melody/signwriting-translation
https://wfdeaf.org/our-work/
https://wfdeaf.org/our-work/


sign can be written as a sequence of symbols (box
markers, graphemes, and punctuation marks) and
their location on a 2-dimensional plane.

To our knowledge, this work is the first to create
automatic SLT systems that use SignWriting. Our
main contributions are as follows: (a) we propose
methods to parse (§3.3), factorize (§3.4), decode
(§4.3), and evaluate (§4.3) SignWriting sequences;
(b) we report experiments on multilingual machine
translation systems between SignWriting and spo-
ken language text (§4); (c) we demonstrate that
common techniques for low-resource MT are bene-
ficial for SignWriting translation systems (§5).

2 Background

2.1 Sign language processing (SLP)
SLP (Bragg et al., 2019; Yin et al., 2021; Moryossef
and Goldberg, 2021) is an emerging subfield of
both NLP and CV, which focuses on automatic
processing and analysis of sign language content.
Prominent tasks include pose estimation from sign
language videos (Cao et al., 2017, 2021; Güler
et al., 2018), gloss transcription (Mesch and Wallin,
2012; Johnston and Beuzeville, 2016; Konrad et al.,
2018), sign language detection (Borg and Camilleri,
2019; Moryossef et al., 2020), sign language identi-
fication (Gebre et al., 2013; Monteiro et al., 2016),
and sign language segmentation (Bull et al., 2020;
Farag and Brock, 2019; Santemiz et al., 2009).

Besides, tasks including sign language recogni-
tion (Adaloglou et al., 2021), translation, and pro-
duction involve transforming one sign language rep-
resentation to another or from/to spoken language
text, as shown in Figure 24. We find that exist-
ing works cover gloss-to-text (Camgöz et al., 2018;
Yin and Read, 2020) (where “text” denotes spo-
ken language text), text-to-gloss (Zhao et al., 2000;
Othman and Jemni, 2012), video-to-text (Camgöz
et al., 2020b,a), pose-to-text (Ko et al., 2019), and
text-to-pose (Saunders et al., 2020a,b,c; Zelinka
and Kanis, 2020; Xiao et al., 2020).

2.2 Motivation
Our work is the first to explore translation between
spoken language text and sign language content
represented in SignWriting5. We focus on a sign
language writing system for the following reasons:

4In the paper, we distinguish between a phonetic “writing
system” (e.g., SignWriting) and “glosses” (lexical notation,
marking the semantics of each sign with a distinct category).

5Related work based on HamNoSys: Morrissey (2011);
Sanaullah et al. (2021); Walsh et al. (2022)

21/06/2022, 14:40 https://raw.githubusercontent.com/sign-language-processing/sign-language-processing.github.io/eddb4ac50ffc7698d4b2b9c8c34d6397721…

https://raw.githubusercontent.com/sign-language-processing/sign-language-processing.github.io/eddb4ac50ffc7698d4b2b9c8c34d63977211602c/src/assets/tasks/… 1/1
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Writing System

Figure 2: SLP tasks. Every edge on the left side rep-
resents a task in CV (language-agnostic). Every edge
on the right side represents a task in NLP (language-
specific). Every edge crossing both sides represents a
task requiring a combination of CV and NLP. Figure
taken from Moryossef and Goldberg (2021).

(a) currently an end-to-end (video-to-text/text-to-
video) approach is not feasible. State-of-the-art
systems either have a BLEU score lower than 1
(Müller et al., 2022a) or work only on a very nar-
row linguistic domain, e.g., Camgöz et al. (2020b,a)
work on the RWTH-PHOENIX-Weather T data set
which covers only 1,231 unique signs from weather
reports (less than what we use in Table 2); (b) a
writing system is lower-dimensional than videos
(not all parts of a video are relevant in a linguistic
sense), while adequate to encode information of
signs; (c) written sign language is a closer fit to
current MT pipelines than videos or poses; (d) a
phonetic writing system is a more universal solu-
tion than glossing since glosses are semantic and
therefore language-specific, and are an inadequate
representation of meaning (Müller et al., 2022b).

2.3 SignWriting, FSW, and SWU
SignWriting (Sutton, 1990) is a featural and vi-
sually iconic sign language writing system (intro-
duced extensively in Appendix A). Previous work
explored recognition (Stiehl et al., 2015) and ani-
mation (Bouzid and Jemni, 2013) of SignWriting.

SignWriting has two computerized specifica-
tions, Formal SignWriting in ASCII (FSW) and
SignWriting in Unicode (SWU). SignWriting is
two-dimensional, but FSW and SWU are written
linearly, similar to spoken languages. Figure 3
gives an example of the relationship between Sign-
Writing, FSW, and SWU6. We use FSW in our
research instead of SWU to explore the potential
of factorizing SignWriting symbols and utilizing
numerical values of their position (§3.3, §3.4).

6Online demonstration: https://slevinski.github.
io/SuttonSignWriting/characters/index.html.
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Figure 3: “Hello world.” in FSW, SWU and SignWriting graphics. In FSW/SWU, A/SWA and M/SWM are the box
markers (acting as sign boundaries); S14c20 and S27106 (graphemes in SWU) are the symbols; 518 and 529 are
the x, y positional numbers on a 2-dimensional plane that denote symbols’ position within a sign box, S38800
(horizontal bold line in SWU) is the punctuation full stop symbol.

3 Data and method

The data source we use for this research is Sign-
Bank, the largest repository of SignPuddles7.
A SignPuddle is a community-driven dictionary
where users add parallel examples of SignWrit-
ing and spoken language text (not necessarily with
corresponding videos and glosses). The puddles
contain material from various signed languages and
linguistic domains (e.g., general literature or Bible)
without a strict writing standard. We use the Sign
Language Datasets (Moryossef and Müller, 2021)
library to load SignBank as a Tensorflow Dataset.

3.1 Data statistics

In SignBank, there are roughly 220k parallel sam-
ples from 141 puddles covering 76 language pairs,
yet the distribution is unbalanced (full details in
Appendix C). Relatively high-resource language
pairs (over 10k samples) are listed in Table 1.

Notably, most of the puddles are dictionaries,
which we consider less valuable than sentence pairs
(instances of continuous signing) for a general MT
system. If dictionaries are used as training data,
we expect models to memorize word mappings and
not learn to generate sentences.

Therefore, we treat the four sentence-pair pud-
dles (Table 2) of the relatively high-resource lan-
guage pairs as primary data and the other dictionary
puddles as auxiliary data. Note that even the lan-
guage pairs constituting the high-resource pairs of
SignBank are low-resource compared to datasets
used in mature MT systems for spoken languages,
where millions of parallel sentences are common-
place (Akhbardeh et al., 2021).

7https://www.signbank.org/signpuddle/

3.2 Data preprocessing
We first perform general data cleaning to extract
the main body of spoken language text and remove
irrelevant parts such as HTML tags or samples that
are empty or too long (100 words for a dictionary
entry). We then learn a byte pair encoding (BPE)
segmentation (Sennrich et al., 2016) on the cleaned
spoken language text, using a vocabulary size of
2,000.

Multilingual models In our multilingual experi-
ments (§4.2, §4.3), we learn a shared BPE model
across all spoken languages.

Following Johnson et al. (2017), we add special
tags at the beginning of source sequences to indi-
cate the desired target language and nature of the
training data (sentence pair or dictionary). Three
types of tags are designed to encode all necessary
information: (a) spoken language code; (b) coun-
try code8; (c) dictionary vs. sentence pair. For
example, an English sentence to be translated into
American Sign Language is represented as the fol-
lowing:

<2en> <4us> <sent> Hello world.

Data split We shuffle the data and split it into
95%, 3%, and 2% for training, validation, and test
sets, respectively.

3.3 FSW parsing
On the sign language side, an appropriate segmen-
tation and tokenization strategy is needed for the
FSW data. We parse an original FSW sequence
(e.g. Figure 3) into several pieces:

• box markers: A, M, L, R, B;
8spoken language code plus country code specifies a one-

to-one mapping to a related signed language in our data.
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language pair #samples #puddles

en-us (American English & American Sign Language) 43,698 7
pt-br (Brazilian Portuguese & Brazilian Sign Language) 42,454 3
de-de (Standard German & German Sign Language) 24,704 3
fr-ca (Canadian French & Quebec Sign Language) 11,189 3

Table 1: Relatively high-resource language pair statistics.

puddle name language pair #samples #signs mean sequence len

Literature US en-us 700 9,922 24
ASL Bible Books NLT en-us 11,667 51,485 24
ASL Bible Books Shores Deaf Church en-us 4,321 44,612 31
Literatura Brasil pt-br 1,884 19,221 13

Table 2: Primary sentence-pair puddles. Mean sequence length is measured by the mean number of words in the
spoken language sentences.

• symbols: S1f010, S18720, etc.;

• positional numbers x and y: 515, 483, etc.;

• punctuation marks (special symbols without
box markers): S38800, etc.

We further factorize each symbol into several
parts regarding its orientation (see Figure 7 in Ap-
pendix A for an explicit motivation of this step).
For example, the symbol S1f010 is split into:

• symbol core: S1f0;

• column number (from 0 to 5): 1;

• row number (from 0 to hex F): 0.

For positional numbers, which have a large range
(from 250 to 750) and are encoded discretely, we
hypothesise that models might have difficulty un-
derstanding their relative order. Therefore, we fur-
ther calculate two additional factors that denote a
symbol’s relative position (based on the absolute
numbers) within a sign: relative x and relative y,
both ranging from 0 to #symbols - 1.

We provide a full example of the result of FSW
parsing in Listing 1 in Appendix C.

3.4 Factored machine translation

We use a factored machine translation system
(Koehn and Hoang, 2007; Garcia-Martinez et al.,
2016) to encode or decode parsed FSW sequences.
We argue that this architecture is suitable because

Source Target

symbol S1f010

“Hi”

 X 515

 Y 483

relative X 0

relative Y 1

symbol core S1f0

column 1

row 0

Figure 4: Representation of translating a FSW symbol
together with its factors to English.

concatenating all parsed FSW tokens results in se-
quences much longer than the maximum length of
many Transformer models (e.g., 512).

From another perspective, the essential infor-
mation units are the symbols. Nevertheless, the
positional numbers are necessary to determine how
symbols are assembled. The same symbols can be
arranged differently in space to convey different
meanings.

In our setup, we treat the symbols (including
punctuation marks and box markers) as the primary
source/target tokens and the rest as source/target
factors that are strictly aligned with each source/-
target token (illustrated by Figure 4).

Depending on the translation direction, factored
FSW representations need to be encoded or de-
coded. For encoding (when FSW is the source), we
embed each factor separately and then concatenate
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them to the aligned symbol’s embedding. For de-
coding (when FSW is the target), we use only a sub-
set of factors (absolute x and y) because others are
irrelevant for prediction, and additional weighted
cross-entropy losses are calculated.

4 Experiments and results

This section introduces three lines of experiments
on both bilingual and multilingual SignWriting
translation. We use Transformer models (Vaswani
et al., 2017) that support source and target factors.
See Appendix B for more details on our training
configuration.

4.1 Initial exploration with a bilingual model

For a first exploration, we train a bilingual model
that translates from American Sign Language
(ASL) to English (en-us). The purpose of this
experiment is (a) to demonstrate that automatic
SignWriting translation is feasible and (b) to ex-
plore different strategies for data processing and
hyperparameters.

We use roughly 40k parallel training samples
comprising roughly 15k sentence pairs and 25k
dictionary pairs. The quality of spoken language
translation is measured by BLEU (Papineni et al.,
2002) and chrF2 (Popović, 2015). Table 3 shows
the evaluation results on the test set.

4.2 Multilingual sign-to-spoken translation

Here we extend our initial bilingual model to a mul-
tilingual setting, translating from multiple signed
languages to multiple spoken languages. We define
two data conditions:

• high-resource: using roughly 100k parallel
training samples (roughly 17k sentence pairs
and roughly 83k dictionary pairs covering four
language pairs),

• adding low-resource: in addition to the high-
resource data, use all additional language pairs
in SignBank that have at least 1k parallel sam-
ples (most of which are dictionaries). The
total number of training examples grows to
roughly 170k, covering 21 language pairs (Ta-
ble 7).

The exact factorization strategy and model hyperpa-
rameters are informed by our bilingual experiments
reported in Table 3.

Evaluating dictionary entries For these multi-
lingual models, many of the training samples are
dictionary entries, and so are some test samples.
To evaluate the translation quality for dictionary
entries, we use top-n accuracy, which tests whether
one of the top-n translation candidates from beam
search matches the entry from the reference.

Table 4 shows the evaluation results on the test
set.

4.3 Multilingual spoken-to-sign translation
Finally, we train multilingual models that translate
in the reverse direction, from spoken languages to
signed languages. The data and model configura-
tion are the same as for the multilingual sign-to-
spoken model under high-resource data condition.

FSW decoding strategies SignWriting utter-
ances are parsed into a factored FSW representation
(§3.3, §3.4) and are used for encoding successfully,
yet it is not obvious how to best decode to FSW.
We try the following strategies: (a) predicting ev-
erything (including positional numbers) as target
tokens all in one long target sequence, inspired by
Chen et al. (2022); (b) predicting symbols only (as
a comparative experiment); (c) predicting symbols
with positional numbers as target factors.

During decoding in the test phase, we apply
beam search only for the main target token pre-
diction. Target factors do not participate in beam
search, i.e., each target factor prediction is the
argmax of the corresponding output layer distri-
bution. We shift target factors to the right by 1 to
condition their prediction on the previously gener-
ated target symbol.

Evaluation of FSW output Due to variations of
SignWriting symbols based on different orienta-
tions that do not change meaning (Figure 7), evalu-
ating FSW output only at the token (symbol) level
is not sufficient. Therefore, we evaluate the out-
put symbols (e.g., line 4 in Listing 1) not only
with BLEU, but also chrF2++, which captures both
word-level and character-level statistics. Addition-
ally, we evaluate the output positional numbers by
mean absolute error (MAE) to measure the dis-
tance between predicted positional numbers and
the ones from the FSW reference (e.g., lines 5 and
6 in Listing 1). Let x be the predicted sequence of
positional numbers and y be the gold sequence:

MAE(x, y) =
1

|x|

|x|∑

i=1

|xi − yi|
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model BLEU chrF2

E1 baseline (lowercase training and test data) 22.5 -
E2 E1 + dictionary data 25.2 -
E3 E2 + BPE 27.0 46.2
E4 E3 + x,y as factors 27.5 46.5
E5 E4 + symbol core as source + row, col as factors 23.1 41.2
E6 E4 + relative x, y as factors 28.1 47.5
E7 E6 + aggressive dropout + tied softmax 31.4 52.0
E8 E7 + symbol core, row, column as factors 32.0 52.7

E9 E8 + remove lowercasing 30.8 51.2
E10 E9 + smaller BPE vocab 2000 to 1000 29.5 50.8

Table 3: Translation quality of ASL→en-us bilingual models. Note that E1 to E8 are trained and evaluated with all
spoken language data lowercased, while from E9 to all later experiments we remove the lowercasing, so we expect
a little performance drop for the later experiments. We introduce chrF2 as an evaluation metric starting from E3.

language metrics 4 language pairs (100k) 21 language pairs (170k)

en-us (40k)

BLEU 29.5 25.0
chrF2 49.8 47.0
top-1 0.37 0.33
top-5 0.52 0.45

en-sg (1k)
top-1 - 0.20
top-5 - 0.27

pt-br (40k)

BLEU 23.8 6.4
chrF2 44.3 17.5
top-1 0.12 0.09
top-5 0.17 0.15

mt-mt (4k)

BLEU - 10.1
chrF2 - 29.8
top-1 - 0.05
top-5 - 0.05

de-de (20k)
top-1 0.22 0.15
top-5 0.31 0.27

de-ch (4k)
top-1 - 0.04
top-5 - 0.06

fr-ca (10k)
top-1 0.04 0.07
top-5 0.08 0.10

fr-fr (1k)
top-1 - 0.16
top-5 - 0.24

fr-ch (8k)
top-1 - 0.07
top-5 - 0.09

Table 4: Translation quality of multilingual sign-to-spoken models (partial results on the most frequent languages).
Languages without sentence pairs are only evaluated by top-n accuracy. Empty cells mean that a language pair is
not supported by the model. In the parentheses are the rough numbers of samples.
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model BLEU chrF2++ MAE x MAE y
E1 2symbol+numbers 6.6 23.1 - -

E2 2symbol 25.6 44.2 - -

E3 2symbol+factors (w=1) 19.9 39.1 46.5 52.6
E4 2symbol+factors (w=0.5) 21.9 40.8 46.8 52.7
E5 2symbol+factors (w=0.2) 22.9 42.0 47.4 53.0
E6 2symbol+factors (w=0.1) 22.0 41.7 46.4 52.2
E7 2symbol+factors (w=0.01) 21.0 40.9 48.4 58.3

Table 5: Translation quality of multilingual spoken-to-sign models. Evaluated in BLEU (on symbol, higher is
better), chrF2++ (on symbol, higher is better), and MAE (on positional numbers, lower is better). w denotes the
weight between each factor’s loss and the main target loss.

language BLEU (on symbols) chrF2++ (on symbols)

en-us (40k) 35.7 58.4
pt-br (40k) 1.9 14.9
de-de (20k) 17.3 43.2
fr-ca (10k) 5.3 19.1

Table 6: Translation quality of multilingual spoken-to-sign model (w=0.1) per language. In the parentheses are the
rough numbers of samples per language.

where if the predicted and gold sequences do not
have the same length, they are padded with zeros.

Table 5 shows the results of evaluation on the
test set. Table 6 shows the results of multilingual
evaluation on E6 (w=0.1) of Table 5.

5 Discussion

5.1 Effect of adding dictionaries, BPE, and
low-resource optimizations

As shown in Table 3, enlarging the sentence-level
training data (15k sentence pairs) with 25k dic-
tionary pairs improves the translation quality by
2.7 BLEU (E1 vs. E2). Likewise, applying BPE
segmentation to the spoken language side also im-
proves translations by 1.8 BLEU (E2 vs. E3).

We evaluate several low-resource “tricks” (Sen-
nrich and Zhang, 2019) including aggressive
dropout and weight tying9. These low-resource
optimizations borrowed from spoken language MT
prove to be effective for sign language translation
as well, as they result in an improvement of 3.3
BLEU and 4.5 chrF2 (E6 vs. E7 in Table 3).

9The tying is only between the target embedding and the
softmax output matrix since the source and target languages
are of a very different nature and therefore cannot be tied.

5.2 Utilizing positional numbers

In earlier sections we introduce novel methods to
parse and factorize FSW (§3.3, §3.4). However,
from a model training perspective it is unclear how
to best utilize additional factors such as positional
numbers. In E4, E5, E6, and E8 of Table 3, we
explore different ways of including factors.

We find that the best strategy is explicitly adding
all additional information (x, y, relative x, rela-
tive y, symbol core, column number, row num-
ber) as source factors while keeping symbols as
the primary source tokens. This strategy achieves
the state-of-the-art performance of 32.0 BLEU and
52.7 chrF2 in E8.

5.3 Generating positional numbers

We explore different ways of generating positional
numbers in Table 5. As a first attempt, we treat
them as normal target tokens in E1, which results in
poor performance and overly long target sequences,
and long beam search decoding time.

In all subsequent experiments, we treat posi-
tional numbers as target factors and generally
achieve over 20 BLEU (evaluating on symbols).
In E2, we translate only the symbols as a baseline.
Then we also try translating with target factors and
varying the weights between factors and the pri-
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mary target, i.e., symbols. Finally, we observe that
E6 (w=0.1) leads to the best trade-off between gen-
erating symbols and positional numbers.

5.4 Multilingual performance

We discuss multilingual performance mainly based
on Table 4. Generally speaking, the more resources
a language has in the multilingual model, the bet-
ter its performance (Zhou et al., 2021). The two
target languages most frequent in the training data–
American English (en-us, 40k) and Brazilian Por-
tuguese (pt-br, 40k)–have the highest translation
quality.

Multilingual transfer effects We observe exam-
ples of both positive and negative multilingual
transfer. Evidence shows that a relatively high-
resource language can help a related low-resource
language. For instance, the performance of Singa-
porean English (en-sg, 1k) is likely improved by
American English (en-us, 40k), which is almost as
good as Standard German (de-de, 20k).

The comparable bilingual en-us model (E9 in
Table 3) outperforms en-us in our multilingual sign-
to-spoken model in Table 4 by 1.3 BLEU and 1.4
chrF2. However, when extending the training data
from 4 to 21 language pairs, we observe severe
degradations: en-us drops by 4.5 BLEU and 2.8
chrF2; Brazilian Portuguese (pt-br) drops by 17.4
BLEU and 26.8 chrF2.

Such findings are in line with previous work
on highly multilingual translation systems. For
example, Aharoni et al. (2019) finds that average
per-language performance drops when the number
of languages increases. We conclude that Sign-
Writing translation suffers from a similar curse of
multilinguality.

5.5 Side-by-side SignWriting example

Finally, to gain intuition for how well the transla-
tion model signs, we give a side-by-side example
of SignWriting graphics. We compare the refer-
ence and model prediction of an ASL utterance
corresponding to an American English utterance
from the Bible corpus, shown in Figure 5.

We ask an ASL user proficient in SignWriting
for a translation of the predicted SignWriting back
to English to assess the quality of the prediction.

Similar patterns appear in both: in the beginning,
the model signs “Verse 41” in the same way as in
the reference; the graphics in the top parts of all
the columns are consistent; and we see correct sym-

Figure 5: Side-by-side SignWriting example. ASL
translation of the English sentence “Verse 41. He gave
her his hand and helped her up. Then he called in the
widows and all the believers, and he presented her to
them alive.” Separated by the vertical bold (light blue)
line, the left is the gold sentence, and the predicted sen-
tence is on the right. The predicted sentence translated
back to English is “Verse 41. His hand he gives her
hand. Then he helped up, all believers he warned: he
put there.”

bols sometimes predicted with slightly different
positions.

More translation examples can be seen in Ap-
pendix D.

6 Conclusion

This work explores building bilingual and multi-
lingual translation systems between spoken and
signed languages. Instead of representing sign lan-
guage as videos (or as continuous features derived
from videos) common in previous research, we pro-
pose to represent sign language in SignWriting, a
sign language writing system. We argue that using
a written form is more amenable to well-established
NLP techniques.

However, encoding or decoding SignWriting in
an MT system requires specialized tools. There-
fore, we propose novel methods to parse, factor-
ize, decode, and evaluate SignWriting sequences.
Our factorization technique divides SignWriting se-
quences into meaningful units such as sign symbols
and positional numbers. The factors are then en-
coded or decoded by a factored Transformer model.

As a result, we achieve over 30 BLEU in the
bilingual setting and over 20 BLEU for some high-
resource language pairs in both directions in the
multilingual setting.

Using SignWriting as an intermediate representa-
tion enables us to reuse tools (e.g., evaluation met-
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rics) from spoken language translation. We also
observe striking similarities to spoken language
MT in the experiments themselves. For example,
low-resource optimizations have a similar impact,
and multilingual models exhibit similar transfer
effects. These findings validate our use of an inter-
mediate text representation for signed languages to
include them in NLP research.

7 Limitations

7.1 A word on top-n accuracy

In the translation of dictionary data, if a dictionary
entry has been seen during training, assuming the
model has enough capacity, it should memorize and
predict it. However, evaluating the translation is
tricky, so in §4.2 we resort to using top-n accuracy.

Paradoxically, high top-n accuracy on the test set
does not guarantee good generalization and might
be associated with overlap between the training and
test sets. Conversely, claiming a model is terrible
when it performs poorly on the test set is unjustified,
as there might be no overlap between the training
and test sets. If a model has seen all the words from
a language, it should perform well on whatever
dictionary test set. However, this is not the case in
our low-resource setting.

7.2 Fingerspelling tokenization

Fingerspelling (Battison, 1978; Wilcox, 1992;
Brentari and Padden, 2001) is an interesting linguis-
tic phenomenon where a signed language geograph-
ically coexists with a spoken language. For words
with no associated signs (e.g., names of people,
locations, organizations, etc.), sign language users
borrow a word of a spoken language by spelling it
letter-by-letter with predefined signs for the letters
of the alphabet of that language. The fingerspelling
(manual) alphabet of a sign language draws on a
closed set of hand shapes, which are supported by
SignWriting.

As fingerspelling is usually applied on a charac-
ter level (rarely extending to the level of multiple
characters, such as “CH” or “SCH” for the finger
alphabet of Swiss German Sign Language), the way
BPE segmentation works (on subword level) does
not apply perfectly. However, if we could detect fin-
gerspelling during the segmentation/tokenization
process, then force fingerspelled words to be split
letter-by-letter, our models should be able to learn
better the mappings between fingerspelling signs
and spoken language letters.

7.3 Towards better multilingual models

As shown by Table 2, the data we use to train
our models only contains many sentence pairs for
American English and American Sign Language.
For other language pairs, we train mainly on dictio-
nary data.

At the time of writing, we find a multilingual par-
allel corpus created from translations of the Bible10

(Christodoulopoulos and Steedman, 2014), which,
if aligned correctly, can be used to translate the
∼15k American Sign Language biblical text to an-
other 100+ spoken languages. We believe we could
train better multilingual translation models (at least
on the spoken language side) based on them.

7.4 Regression objective for positional
numbers

In our experiments, positional numbers are treated
as target factors (§5.3), contributing cross-entropy
loss to the training process. However, we are aware
that the positional numbers are, by nature, numeric
values, so a regression objective/loss would pos-
sibly work better than the current cross-entropy
loss, as it better reflects the numeric relationship
between positional numeric values.

As for now, the target factor function we use
is only implemented with a classification objec-
tive (cross-entropy loss). We envision that custom
implementation of the regression objective might
improve translation quality in this scenario.

7.5 Possibly flawed positional number
evaluation

We note that using MAE for evaluating positional
numbers (§4.3) is possibly flawed because the pre-
dicted symbol sequences can deviate from the gold
symbol sequences. If this is the case, making a
token-by-token comparison on the positional num-
bers is meaningless, as even the sequence length
can mismatch.

7.6 Advanced SignWriting evaluation

Finally, we call for advanced and novel methods of
SignWriting evaluation, considering its differences
from spoken languages.

In our experiments, we separate the evaluation
of FSW symbols and positional numbers. For sym-
bols, we borrow BLEU and chrF2/chrF2++ from
spoken language evaluation since FSW symbols
are the basic graphemes in SignWriting that show

10https://github.com/christos-c/bible-corpus
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many similar linguistic features as spoken language
words. For positional numbers, MAE is used, and
its limitation is discussed in §7.5.

From a broader perspective, FSW is merely a lin-
earized specification of SignWriting, which means
we can also evaluate on the original graphical form,
as we do manually in §5.5. Moreover, we can
exploit CV techniques to do an automatic com-
parative evaluation between predicted SignWriting
graphics and gold SignWriting graphics.

Ideally, a cascading evaluation method is applied
to SignWriting: we first evaluate the overall graph-
ics of the signs, then the symbols within the signs,
then the position of the symbols, then the factorized
representation of the symbols. Finally, a thorough
human evaluation is needed to gain better insight.

Note on reproducibility

We will release the source code and documentation
to train our models, an API server with the trained
models, and a demo Web application. This will
allow others to see and consistently reproduce our
results with minimal changes. We encourage the
community to attempt to reproduce our results and
publish the results.
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A Extended introduction to SignWriting

SignWriting (Sutton, 1990) is a sign language writ-
ing system developed by Valerie Sutton11 and cur-
rently managed by Steve Slevinski12. SignWriting
is very featural and visually iconic, both in:

• the shapes of the symbols, which are abstract
pictures of hand shapes (Figure 6), orientation
(Figure 7), body locations, facial expressions,
contacts, and movement;

• the symbols’ two-dimensional spatial arrange-
ment in an invisible “sign box” (Figure 8).

Outside each sign, the script is written linearly to
reflect the temporal order of signs. Signs are mostly
written vertically, arranged from top to bottom
within each column, interspersed with special punc-
tuation symbols (horizontal lines), and the columns
progress left to right across the page. Within each
column, signs may be vertically aligned to the cen-
ter or shifted left or right to indicate body shifts.

A.1 Formal SignWriting in ASCII (FSW)
In 2012, Formal SignWriting in ASCII (FSW) spec-
ification (Slevinski, 2021) was released and docu-
mented in an Internet Draft submitted to the IETF.

The design of FSW is computerized so that it can
be recognized and processed by programs. While
signed languages are natural languages, FSW is a
formal language handy in mathematics, computer
science, and linguistics.

Although SignWriting is two-dimensional, FSW
is written linearly like spoken languages. Each sign
is written as first a box marker, then a sequence of
symbols, and their relative position, as illustrated
by Figure 3.

A.2 SignWriting in Unicode (SWU)
In 2017, SignWriting in Unicode (SWU) specifica-
tion (Slevinski, 2021) was released, making Sign-
Writing included in the Unicode Standard. The
Unicode block for SWU is U+1D800 - U+1DAAF.

As illustrated in Figure 3, SWU is also written
linearly. FSW and SWU are isomorphic and inter-
changeable, and both faithfully encode the com-
plete information of SignWriting.

11Valerie Sutton: https://en.wikipedia.org/wiki/
Valerie_Sutton

12Steve Slevinski: https://steveslevinski.me/

Figure 6: Hand shapes and their equivalents in Sign-
Writing.15/06/2022, 15:07 Sutton SignWriting Symbols
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Figure 7: Orientation of a symbol in SignWriting in
3D space. Each row applies a rotation of the palm in
a 2D space vertical to the ground. Each column ap-
plies a rotation of the palm in a 2D space parallel to
the ground. This can be seen as a factorization of the
symbol S100xx to its core S100 plus row and column
numbers.
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Sutton SignWriting Fonts

Copyright (c) 1974-2017, Center for Sutton Movement Writing, inc


Licensed under the SIL Open Font License v1.1

Sutton SignWriting JavaScript Library

Copyright (c) 2007-2017, Stephen E Slevinski Jr

Licensed under the MIT License

The Sutton SignWriting Project by Stephen E Slevinski Jr is available for
download
(https://github.com/Slevinski/SuttonSignWriting/archive/master.zip) from the GitHub Repo. (https://github.com/Slevinski/SuttonSignWriting/)

Figure 8: An example of SignWriting written in
columns, ASL translation of an introduction to Formal
SignWriting in ASCII. The relative positions of the
symbols within the box iconically represent the loca-
tions of the hands and other parts of the body involved
in the sign being represented.
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B Experimental setup

We performed all our experiments with Python
3.8.11 on an Nvidia Tesla V100 GPU (32GB GPU
ram).

B.1 40k sign-to-en-us

Data includes:

• ∼15k sentence pairs from 3 en-us puddles:
Literature US, ASL Bible Books NLT, ASL
Bible Books Shores Deaf Church,

• ∼25k dictionary pairs from 3 en-us puddles:
Dictionary US, LLCN & SignTyp, ASL Bible
Dictionary,

which leads to:

• ∼6k source vocabulary size (number of non-
factorized symbols),

• ∼2k target vocabulary size (determined by
BPE).

Final model configuration:

• 6 layers + 8 heads + 512 embedding size (16
for each factor) (0.5 dropout) + 512 hidden
size (0.5 dropout) + 2,048 feed forward size
(0.5 dropout),

• initial learning rate 0.0001, decrease learning
rate by a factor of 0.7 every 5 times validation
score (BLEU) not improved,

• batch size 32 sentences, label smoothing 0.2,
epochs 300,

• for testing, decoding with a checkpoint with
the best validation score, beam size 5, alpha
for length penalty 1.

Experiments were conducted with a custom ver-
sion of Joey NMT (Kreutzer et al., 2019) to support
source factors. Each model (∼47 million parame-
ters) finished training within 1 day.

B.2 100k sign-to-spoken

Data includes:

• ∼17k sentence pairs from 3 en-us puddles
(Literature US, ASL Bible Books NLT, ASL
Bible Books Shores Deaf Church) and 1 pt-br
puddle (Literatura Brasil),

• ∼83k dictionary pairs from 3 en-us pud-
dles (Dictionary US, LLCN & SignTyp, ASL
Bible Dictionary), 2 pt-br puddles (Dicionário
Brasil, Enciclopédia Brasil), 1 de-de puddle
(Wörterbuch DE) and 1 fr-ca puddle (Diction-
naire Quebec),

which leads to:

• ∼11k source vocabulary size (number of non-
factorized symbols),

• ∼2k target vocabulary size (determined by
BPE).

A little change to the previous configuration to
make training more efficient:

• batch size 4,096 tokens.

Experiments were conducted with a custom ver-
sion of Joey NMT to support source factors. Each
model (∼50 million parameters) finished training
within ∼1.5 days and ∼3 days, respectively.

B.3 100k spoken-to-sign
Data and model configurations are the same as
100k sign-to-spoken, except that we use perplexity
(Chen and Goodman, 1996; Sennrich, 2012) as
validation score instead of BLEU.

Experiments were conducted with Sockeye
(Hieber et al., 2020) for the convenience of ready-
to-use target factor support. Each model (∼60 mil-
lion parameters) finished training within ∼0.5 day.
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C Data

Figure 9 visualizes the language pair distribution in SignBank. Table 7 contains an exhaustive list of all 21
language pairs used in this research. Listing 1 shows an example of FSW parsing and factorization.

Figure 9: Data distribution (the first 30 language pairs).

language #samples #puddles sentence pairs (>1k)

en-us (American English) 43,698 7
en-sg (Singaporean English) 1,136 2

pt-br (Brazilian Portuguese) 42,454 3

mt-mt (Maltese Maltese) 4,118 4

de-de (German German) 24,704 3
de-ch (Swiss German) 4,700 2

fr-ca (Canadian French) 11,189 3
fr-ch (Swiss French) 8,806 3
fr-be (Belgian French) 3,439 1
fr-fr (French French) 1,299 2

es-es (Spanish Spanish) 8,806 2
es-hn (Honduran Spanish) 3,399 1
es-ni (Nicaraguan Spanish) 2,150 2
es-ar (Argentinian Spanish) 1,774 2

ar-tn (Tunisien Arabic) 4,965 2

ca-es (Spanish Catalan) 3,419 2

ko-kr (Korean Korean) 1,525 1

nl-be (Belgian Flemish) 8,301 2

pl-pl (Polish Polish) 2,130 2

sk-sk (Czech Czech) 5,780 2

sl-sl (Slovenian Slovenian) 3,808 2

Table 7: All 21 language pairs (spoken languages with corresponding signed languages).
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1 {
2 'fsw': 'M550x535S32a00482x483S15d09455x499S15d01522x497S22114516x484
3 S22114456x484S20f00524x522S20f00451x523 ',
4 'symbol ': 'M S32a00 S15d09 S15d01 S22114 S22114 S20f00 S20f00 ',
5 'feat_x ': '550 482 455 522 516 456 524 451',
6 'feat_y ': '535 483 499 497 484 484 522 523',
7 'feat_x_rel ': '-1 3 1 5 4 2 6 0',
8 'feat_y_rel ': '-1 0 4 3 1 2 5 6',
9 'feat_core ': 'M S32a S15d S15d S221 S221 S20f S20f',

10 'feat_col ': '-1 0 0 0 1 1 0 0',
11 'feat_row ': '-1 0 9 1 4 4 0 0',
12 }

Listing 1: An example of FSW parsing and factorization.

D More side-by-side SignWriting examples

Separated by the vertical bold (light blue) line, the left is the gold sentence, and the predicted sentence is
on the right.

Figure 10: ASL translation of the English sentence “Verse 22. Then the apostles and elders together with the whole
church in Jerusalem chose delegates, and they sent them to Antioch of Syria”
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Figure 11: ASL translation of the English sentence “These are what defile you. Eating with unwashed hands will
never defile you.”
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Figure 12: German Sign Language translation of the German words “signen, senken, zehn”
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Abstract

Recent works on tokenizer-free multilingual
pretrained models show promising results in
improving cross-lingual transfer and reducing
engineering overhead compared to subword-
based alternatives. However, previous work
mainly focuses on reporting accuracy on a lim-
ited set of tasks and data settings, placing less
emphasis on other important factors when tun-
ing and deploying the models in practice, such
as memory usage, inference speed, and fine-
tuning data efficiency. We attempt to fill this
gap by performing a comprehensive empirical
comparison of multilingual tokenizer-free and
subword-based models considering the various
dimensions. Surprisingly, we find that subword-
based models might still be the most practical
choice in many settings, achieving better perfor-
mance for lower inference latency and memory
usage. Based on these results, we encourage fu-
ture work in tokenizer-free methods to consider
these factors when designing and evaluating
new models.1

1 Introduction

Several recent results (Clark et al., 2022; Xue
et al., 2022) have excited the research commu-
nity with the possibility of “tokenizer-free” models,
character-level and byte-level models, as an alter-
native to more traditional subword-based models.
Tokenizer-free models are especially appealing to
practitioners as they can eschew the two-step pro-
cessing pipeline of subword segmentation and re-
duce the corresponding difficulties in cross-lingual
transfer (Hu et al., 2020; Maronikolakis et al., 2021;
Rust et al., 2021; Wang et al., 2021) or domain
adaptation (Sato et al., 2020; Liu et al., 2021) due
to inconsistent subword units.

However, upon several attempts to apply
tokenizer-free methods, our analysis reveals sev-
eral practical difficulties in applying these methods.

1We will release code to train and evaluate models upon
de-anonymization.

This paper is a chronicle of some of the concerns
we uncovered; we highlight some challenges with
applying these models and propose best practices
for future results reporting in this area.

Specifically, we perform experiments finetuning
pretrained multilingual models, evaluating them
with respect to finetuning data efficiency, inference
time, and memory consumption. Based on these
multiple dimensions, we come to the somewhat
surprising conclusion that subword-based models,
in particular mBERT (Devlin et al., 2019), might
still be the most practical choice in most settings,
as they perform best while maintaining a relatively
low inference cost.

2 Tokenizer-free Multilingual Models

While multilingual pretrained models (Devlin et al.,
2019; Lample and Conneau, 2019; Liu et al., 2020;
Xue et al., 2021) have led to impressive perfor-
mance improvements for low-resource languages
through cross-lingual transfer, the standard word
representation method in these models relies on
subword segmentation (Sennrich et al., 2016; Kudo,
2018). In multilingual settings, subword tokeniza-
tion can be sub-optimal as supporting hundreds
of languages with various scripts and vocabularies
causes segmentation mismatch between languages
and over-segmentation in the lower-resourced lan-
guages (Wang et al., 2020).

To alleviate this problem, recent works pro-
pose removing the subword segmentation step by
using characters or bytes as lexical units (Clark
et al., 2022; Xue et al., 2022). In particular, these
“tokenizer-free” methods have been applied to both
encoder-only and encoder-decoder models. Tab. 1
presents an overview of the different tokenizer-
free multilingual models with comparable sub-
word models. Next, we briefly describe the two
tokenizer-free models we consider in this work.

CANINE (Clark et al., 2022) is a character-level
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Model Params Vocab (%) Non-vocab Architecture Enc. Dec. Tokenization ↓sample? Corpus Langs

mBERT 178M 92M (52%) 86M Enc-only 12 - Subword ✗ Wikipedia 104
CANINE 132M 25M (19%) 107M Enc-only 12 - Character ✓ Wikipedia 104

mT5 (Small) 300M 256M (85%) 44M Enc-dec 8 8 Subword ✗ mC4 101
ByT5 (Small) 300M 1.1M (0.3%) 298.5M Enc-dec 12 4 UTF-8 bytes ✗ mC4 101

Table 1: Configuration of the pretrained models used. From left to right: number of parameters, number and ratio
of vocabulary-related parameters, number of non-vocabulary parameters, architecture, encoder / decoder depth,
tokenization scheme, whether downsampling was used, pretrained corpus, number of pretrained languages.

encoder suggested as an alternative to mBERT (De-
vlin et al., 2019). CANINE operates on raw char-
acters and is pretrained using the masked language
modeling objective. To compensate for the compu-
tational efficiency loss due to increased sequence
length, CANINE uses convolutions to downsample
the sequence before passing the representations to
the transformer layers. The two weight variants
of CANINE (CANINE-S, CANINE-C) have the
same architecture but slightly different pretraining
objectives using either subwords or characters at
the last layer. As both variants performed similarly
in our experiments and Clark et al. (2022), we
only include CANINE-S for the main discussion,
leaving CANINE-C results in § B.3.

ByT5 (Xue et al., 2022) is an encoder-decoder
transformer model similar to the mT5 (Xue et al.,
2021) model. ByT5 operates on the raw UTF-8
bytes of the input without any downsampling, lead-
ing to a longer sequence length while having a
much smaller vocabulary size than mT5. Both
ByT5 and mT5 are pretrained on the mC4 corpus2

using the span reconstruction objective proposed
by Raffel et al. (2020).

To keep the parameter count fixed between mT5
and ByT5, ByT5 allocates the parameters saved
from the embedding layer to additional encoder
layers. Although adding more depth to the encoder
is a reasonable design choice, our results in § 4
show that ByT5 suffers from a much higher in-
ference cost due to the deeper encoder, especially
when input/output sequence lengths are longer.

3 Experimental settings

We conduct a multi-dimensional evaluation fo-
cusing on two aspects: finetuning data efficiency
(§ 4.1) and inference cost (§ 4.2) to provide a bet-
ter understanding of the practical applicability of
tokenizer-free models. We finetune and evaluate

2
https://www.tensorflow.org/datasets/catalog/

c4#c4multilingual

two subword-based models (mBERT, mT5) and
two tokenizer-free models (CANINE, ByT5), as
mBERT-CANINE and mT5-ByT5 are directly com-
parable counterparts in terms of their pretraining
corpus as shown in Tab. 1. For the T5 models, we
consider only the small models of both mT5 and
ByT5 as the focus of our work is in the practical im-
plication of using multilingual pretrained models
at relatively resource-constrained settings.

Specifically, we finetune the models on three
multilingual natural language understanding tasks
adopted from the XTREME benchmark (Hu et al.,
2020). The three tasks we choose cover various
input, output formats – sequence-level classifica-
tion (XNLI), token-level classification (NER), and
extractive question answering (TyDi QA-GoldP).

3.1 Tasks

XNLI The Cross-lingual Natural Language Infer-
ence (Conneau et al., 2018) is a sequence classifica-
tion task in which the model predicts whether the
hypothesis sentence is an entailment, contradiction,
or neutral given the premise sentence. The task is
provided in 15 languages.

NER Named Entity Recognition (NER) is a struc-
tured prediction task, where the model predicts a
tag (location, person, organization) in IOB2 format
for each token in the input sentence. We use the
WikiAnn dataset (Pan et al., 2017) and select 20 out
of 282 languages for multilingual training based on
linguistic diversity and the language availability in
the other two tasks we consider.

TyDi QA-GoldP The Typologically Diverse
Question Answering (Clark et al., 2020) dataset
is an extractive QA benchmark in 11 languages.
While the original dataset includes two “primary”
tasks (SelectP, MinSpan), the secondary GoldP
task is the most widely adopted as it is compat-
ible with other SQuAD-style QA tasks (Rajpurkar
et al., 2016; Artetxe et al., 2020). For this reason,
we mainly compare models on TyDi QA-GoldP

1726

https://www.tensorflow.org/datasets/catalog/c4#c4multilingual
https://www.tensorflow.org/datasets/catalog/c4#c4multilingual


102 103 104 Single Multi
30

40

50

60

70

A
cc

u
ra

cy
XNLI

mBERT CANINE-S mT5 ByT5

102 103 Single Multi

50

60

70

80

90

F
1

NER

102 103 Single Multi

40

60

80

F
1

TyDi QA

Figure 1: Average XNLI, NER, TyDi performance when each pretrained model is finetuned with varying numbers
of in-language finetuning data (102, 103, 104), all in-language samples (Single), or the entire multilingual dataset
(Multi). The exact numbers can be found in the Appendix (Tab. 2).

and discuss primary task results briefly through our
replication experiment of Clark et al. (2022).

3.2 Details of Hardware and Measurements

We use a single Tesla V100 (32GB) GPU for all ex-
periments regarding inference cost measurements.
To obtain the peak GPU memory and inference la-
tency, we randomly select 100 samples from the
English test set for each task and measure the aver-
age cost of predicting one example at a time.

4 A Multi-dimensional Evaluation

4.1 Finetuning data efficiency

Most work presenting multilingual pretrained mod-
els evaluates downstream task performance under
multilingual finetuning or zero-shot scenarios. In
practice, however, downstream task datasets are
often available in the language of interest. Thus, in
addition to multilingual training, we compare mod-
els tuned on different data sizes within a single lan-
guage to evaluate their finetuning data efficiency.

Specifically, we finetune the four pretrained
models with varying numbers of task examples
– 10

2
, 10

3
, 10

4 (when available), all target language
samples (Single), and multilingual training (Multi)
to incorporate situations where the task dataset is
available in multiple languages. We experiment
with four downstream task languages – English,
Arabic, Russian, and Swahili – chosen based on
both linguistic diversity and various pretraining
resource conditions.3 While the controlled experi-
ments are done on a subset of languages, we report
the task performance in all languages for zero-shot
evaluation, single language training, and multilin-

3The pretraining corpus sizes are noted in § B.4 (Tab. 8).

gual training in § B.3 for comprehensiveness.4

In Fig. 1, we report the models’ task performance
averaged over languages under different finetuning
settings. Notably, we find that mBERT achieves the
highest score for most settings. The only exception
is on XNLI Single and Multi, where ByT5 slightly
outperforms mBERT. As the dataset size decreases,
it becomes more evident that mBERT is the most
sample efficient, especially in the most data-scarce
scenarios where only 100 finetuning examples are
available. The fact that mBERT outperforms mT5
and ByT5 on smaller datasets is quite surprising,
as one might expect T5 models to generalize better
in low-resource settings given their much larger
pretraining corpus.

Interestingly, we find that CANINE performs
poorly compared to mBERT in all three tasks, and
the performance gap increases as fewer finetuning
data are available. To explain this phenomenon,
we hypothesize that character-level models have
the additional burden of learning to compose char-
acters into semantically meaningful units and thus
require more data to learn task-specific higher-level
semantics. These results align with the NER results
on the CoNLL and MasakhaNER dataset in Clark
et al. (2022), where mBERT outperformed CA-
NINE in all languages except Amharic, a language
not covered by mBERT’s vocabulary.

However, mBERT’s stronger performance in
TyDi QA-GoldP was unexpected as CANINE per-
formed better at the TyDi QA primary tasks in
Clark et al. (2022). Through replication experi-
ments to reconcile the contradictory findings, we
found that mBERT outperforms CANINE also in
the primary tasks when finetuned for more epochs
with our codebase, suggesting that the previous

4Hyperparameters for all experiments are in Appendix A.
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Figure 2: The inference cost of the four models (■: mBERT, ▲: CANINE, ●: mT5, ◆: ByT5) in each task. The
x-axis denotes the average inference time while the y-axis shows the peak GPU memory consumption. Thus, models
located near the bottom left corner are more cost efficient. The colors represent the model’s best task performance
(XNLI: Accuracy, NER: F1, TyDi QA: F1). The numbers used to generate the plot can be found in § B.2 (Tab. 3).

mBERT baseline was potentially undertrained.5

For mT5 and ByT5, we find that the two models
perform comparably in smaller datasets, while on
larger sets, ByT5 consistently outperforms mT5
on all tasks. We note that the mT5-Small model
could have been penalized in terms of capacity as
85% of the parameters are allocated to embeddings
as shown in Tab. 1, leaving only 44M parameters
for the non-vocabulary layers. This is even less
than that of mBERT (86M), and drastically smaller
compared to ByT5-Small, which assigns 298.5M
parameters to the non-vocabulary layers. Also,
given that the tasks concerned are not generation-
heavy, the extra depth on the encoder (12 for ByT5
vs. 8 for mT5) might have favored ByT5 over mT5.

4.2 Inference cost

Another key concern in utilizing pretrained mod-
els for downstream applications is the inference
cost, such as memory consumption and latency. In
Fig. 2, we plot each model’s inference latency and
peak memory consumption, color-coding their task
performance to provide a comprehensive view of
the trade-offs of deploying each model in practice.

In general, the encoder-only models, mBERT
and CANINE, require much less memory and in-
ference latency than mT5 and ByT5. Considering
performance alongside inference cost, we find that
mBERT is still the most practical choice among the
four models, achieving the best performance while
maintaining a relatively low inference cost.

While producing longer sequences than mBERT,
CANINE does not necessarily incur higher mem-
ory or latency costs, as it has fewer parameters
than mBERT. This helps CANINE, especially in
sentence-level tasks (XNLI, NER) where inputs are

5We include the finetuning code in our released codebase.

relatively shorter. However, for tasks with much
longer inputs (TyDi QA), the computational over-
head from the sequence length dominates the pa-
rameter reduction, leading to higher memory usage
and slower inference for CANINE.

For mT5 and ByT5, inference costs vary accord-
ing to the task’s input and output length. For tasks
with shorter inputs and outputs like XNLI, ByT5
yields better performance than mT5 while retaining
similar costs. However, for token-level prediction
tasks like NER, ByT5 needs to generate tags autore-
gressively at the byte level, which drastically slows
down the inference time. However, the additional
cost is negligible in terms of memory consumption
as the inputs are still relatively short. For TyDi QA,
we observe an opposite pattern. As the input is a
long passage, the extended input sequence signifi-
cantly increases the memory consumption of ByT5,
requiring more effort in tuning the batch size to fit
into the GPU memory.

5 Related work

Large-scale NLP models have achieved remarkable
performance in various natural language tasks, with
the recent ChatGPT demonstrating near human-
level language understanding capabilities. While
achieving impressive results in standard bench-
mark settings, the applicability of these models
have remained limited mainly due to practical
considerations including their high energy con-
sumption and environmental impact (Strubell et al.,
2019). Both the NLP and computer vision com-
munities have proposed evaluating models based
on practical metrics, such as training/inference effi-
ciency (Canziani et al., 2016; Dehghani et al., 2021;
Zhou et al., 2021), energy usage (Henderson et al.,
2020), robustness (Ribeiro et al., 2020; Kiela et al.,
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2021; Koh et al., 2021), and expected performance
(Dodge et al., 2019). Similarly, a recent study by
Liang et al. (2022) suggests a comprehensive eval-
uation suite for generative NLP models, including
measures of robustness, fairness, and efficiency.
Our multi-dimensional evaluation is an attempt to
expand these evaluation protocols to multilingual
settings and examine the trade-offs of various tok-
enization schemes.

6 Conclusion

In this paper, we present a multi-dimensional
evaluation of tokenizer-free multilingual models
focusing on their efficiency against finetuning
dataset size and inference cost. Based on our
experiments, we find that mBERT might still be
the most cost-effective choice for many tasks, and
show that the efficiency trade-offs of model design
choices (tokenization, decoder availability) depend
heavily on the task’s length statistics. Despite
our findings, tokenizer-free models still have a
significant advantage in reducing engineering
effort and potentially increasing robustness to
noisy data. We believe more work should be done
in developing efficient tokenizer-free models, and
encourage the community to consider these criteria
of practical applicability when developing and
evaluating tokenizer-free pretrained models.

7 Limitations

This paper mainly covers three NLP tasks, focusing
on smaller-sized multilingual pretrained models. In
future work, it would be interesting to run the multi-
dimensional evaluation we suggest on a broader set
of tasks and models. Although our results show
that subword models are a more practical choice in
some tasks, we note that other tasks or datasets may
exist where tokenizer-free methods achieve better
relative performance. For instance, tokenizer-free
models have been reported to excel in word-level
tasks, and noisy environments (Xue et al., 2022),
and the conclusions we reached may be different
in such settings. Moreover, we did not explore
more complicated generation tasks like translation
or summarization, where the difficulty in decoding
and longer decode horizons could paint a different
picture in a multi-dimensional evaluation.

Ethics Statement

We hope our results encourage the community to
consider the practical concerns of running large lan-

guage models (LLMs) and designing tokenizer-free
pretrained models. As the state-of-the-art LLMs
are becoming more computationally extensive, it
has become increasingly difficult for researchers
and practitioners with less resources to utilize these
models for downstream applications. We hope our
multi-dimensional analysis can help researchers
and practitioners with less computational resources
decide which model to use in practice.
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A Tasks

For all tasks and models, we refer to the original
papers’ codebase for hyperparameters.678

XNLI For encoder-only models, the first token
([CLS]) is used to map the sentence representation
to the label distribution. For encoder-decoder mod-
els, we generate the index of the label (e.g., ‘0’)
directly.

NER For encoder-decoder models, we follow the
input-output format (e.g., input: ‘tag: rick and
morty are cool .’, output: ‘PER: rick $$
PER: morty’) specified in the mT5 model’s origi-
nal codebase.

B Tables

B.1 Finetuning data efficiency
Tab. 2

B.2 Inference cost
Tab. 3

B.3 Experimental results for all languages
(Zero-shot, Single language (full),
Multilingual)

XNLI: Tab. 4, NER: Tab. 5, TyDi QA-GoldP:
Tab. 6, Tydi QA Primary: Tab. 7

B.4 Pretraining corpus size
Tab. 8

6
https://github.com/google-research/language/

tree/master/language/canine
7
https://github.com/google-research/

multilingual-t5
8
https://github.com/google-research/byt5
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XNLI (Accuracy) NER (F1) TYDI QA (F1)
Finetuning setting 10

2
10

3
10

4 Single Multi 10
2

10
3 Single Multi 10

2
10

3 Single Multi

Arabic
mBERT 36.6 51.0 59.5 70.6 73.2 67.3 80.2 89.6 89.6 44.8 70.9 81.0 81.5
CANINE-S 32.8 36.6 53.3 65.8 69.7 46.2 71.2 84.9 88.0 38.4 59.8 79.2 80.5
CANINE-C 34.1 45.3 50.5 66.2 68.5 51.7 71.3 85.1 87.8 34.8 57.8 77.8 80.7
mT5 33.1 44.2 55.0 65.5 70.3 57.3 75.5 86.5 86.8 33.7 62.6 73.1 75.3
ByT5 23.7 42.0 55.2 72.9 73.3 60.6 77.5 85.4 87.7 33.4 67.3 75.8 75.9

English
mBERT 38.8 58.6 71.2 82.0 83.5 65.1 78.1 84.2 85.4 32.4 67.6 73.6 76.0
CANINE-S 33.6 37.5 59.5 77.7 79.1 49.7 70.3 80.4 84.1 29.2 49.4 64.0 71.6
CANINE-C 34.1 50.7 61.2 77.1 78.0 52.8 70.6 81.1 84.1 27.5 47.8 57.3 71.6
mT5 33.3 50.9 66.4 79.0 79.9 40.1 63.1 71.9 72.5 25.0 52.8 59.4 64.4
ByT5 35.2 39.6 66.2 80.9 81.0 44.1 65.0 73.8 73.5 16.5 63.1 64.6 69.4

Russian
mBERT 35.7 45.5 52.9 66.3 68.1 81.3 89.9 90.0 90.9 42.9 74.3 79.8 82.4
CANINE-S 33.1 35.9 48.6 61.5 65.0 63.2 86.9 87.7 89.6 29.1 54.0 71.3 77.4
CANINE-C 33.1 42.9 45.4 60.8 64.4 70.0 86.5 86.5 90.0 32.3 58.9 71.4 79.7
mT5 33.0 44.9 58.0 63.2 68.1 54.3 70.6 71.0 72.3 29.0 65.8 71.5 76.6
ByT5 34.3 41.2 56.4 67.5 71.3 68.6 83.5 84.5 84.3 32.5 73.5 78.8 80.3

Swahili
mBERT 38.9 51.1 63.0 74.8 76.4 66.7 82.4 89.4 89.2 34.3 61.8 72.5 74.4
CANINE-S 33.7 39.2 54.2 69.7 73.0 54.5 75.6 86.5 88.8 27.4 46.6 67.2 71.8
CANINE-C 35.0 46.5 54.1 68.6 71.7 55.4 76.0 87.3 88.9 20.0 46.9 66.5 72.7
mT5 32.6 34.2 55.1 70.3 73.7 35.8 56.4 64.0 64.8 21.6 51.0 66.1 67.9
ByT5 32.0 42.0 53.4 73.4 75.6 31.4 57.0 62.6 66.3 26.9 61.6 71.1 73.0

Table 2: Task performance with varying finetuning data conditions (102, 103, 104 (for XNLI), full target language
dataset, multilingual dataset)

XNLI NER TYDI QA
Latency Memory Accuracy Latency Memory F1 Latency Memory F1

mBERT 15.24 713.33 74.7 15.30 710.97 88.4 16.10 748.34 78.13
CANINE-S 21.04 573.48 70.5 20.96 574.57 86.1 26.89 1006.74 74.13
mT5 40.94 1204.19 72.7 171.99 1207.76 80.7 281.52 1253.13 72.05
ByT5 36.49 1221.54 74.7 333.72 1224.40 83.0 286.76 1948.30 74.48

Table 3: Inference latency (ms), peak GPU memory (mb), best average performance of each model in the three tasks
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Model en ar bg de el es fr hi ru sw th tr ur vi zh avg

Zero-shot (en)
mBERT 82.0 64.1 67.5 70.4 65.5 73.7 72.8 59.3 67.4 50.2 53.2 60.2 57.5 68.7 68.1 65.4
CANINE-S 77.7 50.1 60.1 62.4 53.7 67.6 66.0 43.7 60.7 40.4 39.6 47.9 41.1 53.1 43.2 53.8
CANINE-C 77.1 53.1 61.4 63.5 58.3 68.5 66.4 47.7 63.3 41.0 39.2 48.8 44.4 53.4 39.1 55.0
mT5-Small 79.0 61.3 66.0 64.4 67.4 65.9 62.4 59.7 66.6 52.2 64.1 57.9 56.4 57.3 63.9 63.0
ByT5-Small 80.9 65.9 70.2 71.2 67.7 76.5 75.0 58.6 67.9 62.4 58.4 63.6 55.6 69.5 64.9 67.2

Single-language
mBERT 82.0 70.6 76.2 76.6 75.1 77.7 77.4 67.0 74.8 66.3 65.7 72.5 62.9 75.9 76.4 73.1
CANINE-S 77.7 65.8 70.6 72.4 68.6 73.8 73.4 61.2 69.7 61.5 59.9 66.6 58.0 67.4 57.2 66.9
CANINE-C 77.1 66.2 71.1 72.0 69.8 72.8 72.6 62.3 68.6 60.8 57.1 65.7 58.2 67.3 60.0 66.8
mT5-Small 79.0 65.4 69.9 72.0 73.6 73.1 74.8 65.2 70.3 63.2 69.7 67.6 58.9 69.2 71.0 69.5
ByT5-Small 80.9 72.9 75.4 75.8 75.1 77.7 76.4 68.3 73.4 67.5 70.0 72.6 63.0 72.7 72.5 73.0

Multilingual
mBERT 83.5 73.2 77.7 77.5 75.7 79.8 78.6 70.1 76.4 68.1 67.2 73.8 64.4 76.5 77.9 74.7
CANINE-S 79.1 69.7 75.0 74.9 72.5 76.3 75.3 65.2 73.0 65.0 62.3 68.9 64.1 71.3 65.6 70.5
CANINE-C 78.0 68.5 73.7 74.1 72.9 75.7 74.9 63.8 71.7 64.4 57.7 67.9 62.6 69.7 58.7 69.0
mT5-Small 79.9 70.3 74.7 74.9 74.4 76.5 75.5 67.7 73.7 68.1 71.2 71.9 65.4 72.4 73.2 72.7
ByT5-Small 81.0 73.3 77.8 76.5 76.5 78.5 77.2 70.0 75.6 71.3 71.4 73.6 68.3 75.7 74.1 74.7

Table 4: XNLI Performance (Accuracy)

Model en ar bn de el es fi fr hi id ja ko ru sw ta te th tr ur zh avg

Zero-shot (en)
mBERT 84.2 41.7 68.2 78.2 71.4 71.8 77.3 78.0 64.5 51.6 29.2 59.7 65.6 71.4 51.0 50.4 0.4 73.9 33.3 43.1 58.2
CANINE-S 80.8 29.6 49.6 70.7 63.5 66.4 66.7 74.1 41.1 47.3 0.5 29.3 57.7 59.8 28.4 19.7 0.1 55.8 22.0 5.4 43.4
CANINE-C 81.1 38.3 56.9 70.9 66.4 64.8 68.0 73.5 43.4 46.6 1.8 28.7 61.7 58.9 36.9 21.6 0.2 58.9 29.8 8.1 45.8
mT5-Small 71.9 32.9 56.6 67.1 42.3 70.0 65.1 75.3 56.2 45.3 25.5 23.9 36.9 49.0 38.0 35.9 3.6 58.7 58.7 31.3 47.2
ByT5-Small 73.8 45.9 61.5 70.7 67.7 79.4 67.1 77.4 57.1 46.2 31.3 26.2 46.7 60.2 31.9 27.9 9.6 23.3 1.3 32.8 46.9

Single-language
mBERT 84.2 89.6 96.1 90.3 91.4 92.5 92.2 91.2 91.2 93.6 74.4 88.8 89.4 90.0 86.5 80.4 76.2 93.2 95.7 83.1 88.5
CANINE-S 80.8 84.9 92.9 88.0 88.6 89.7 89.1 88.9 84.9 90.9 63.3 81.6 86.5 87.7 81.0 49.9 70.5 90.9 91.0 73.2 82.7
CANINE-C 81.1 85.1 93.5 87.5 89.1 89.8 88.4 88.4 84.3 90.6 60.2 79.5 87.3 86.5 79.6 43.0 74.0 90.6 92.4 68.9 82.0
mT5-Small 71.9 86.5 86.6 83.7 83.8 88.0 87.8 86.7 85.5 85.3 65.9 80.2 64.0 71.0 82.6 74.5 64.6 86.3 93.0 75.1 80.1
ByT5-Small 73.8 85.3 88.3 82.4 87.6 86.6 86.4 84.7 83.0 84.5 69.9 83.2 62.6 84.5 80.3 69.1 74.5 83.4 90.5 73.2 80.7

Multilingual
mBERT 85.4 89.6 95.9 89.8 91.3 92.9 92.0 91.2 89.3 93.4 74.9 88.1 89.2 90.9 86.0 80.6 76.5 93.1 95.5 82.3 88.4
CANINE-S 84.1 88.0 94.7 89.3 90.7 92.1 91.1 90.9 85.8 92.8 69.3 83.8 88.8 89.6 81.7 71.3 76.2 92.4 94.0 75.7 86.1
CANINE-C 84.1 87.8 95.6 89.2 91.1 92.5 90.7 90.9 88.2 92.6 67.9 81.5 88.9 90.0 81.6 69.5 77.7 92.0 93.7 72.1 85.9
mT5-Small 72.5 86.8 84.5 84.8 83.4 88.7 88.3 87.7 83.6 87.2 70.1 83.1 64.8 72.3 82.3 69.8 67.8 86.9 92.4 76.5 80.7
ByT5-Small 73.5 87.7 88.4 86.1 88.7 90.3 89.9 89.3 84.7 87.3 70.3 83.8 66.3 84.3 81.8 78.0 72.6 88.6 92.6 76.5 83.0

Table 5: NER Performance (F1)
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Model en ar bn fi id ko ru sw te avg

Zero-shot (en)
mBERT 73.64 60.11 45.1 57.63 63.78 52.16 57.52 56.51 42.15 56.51
CANINE-S 64.78 44.85 20.13 39.73 43.78 13.67 44.49 30.64 31.59 37.07
CANINE-C 63.96 42.19 22.05 43.13 36.87 17.44 42.02 33.3 30.51 36.83
mT5-Small 59.39 43.25 22.51 44.27 48.7 22.05 44.85 33.08 28.77 38.54
ByT5-Small 64.58 56.4 15.86 51.91 55.85 22.21 54.11 35.44 31.43 43.09

Single-language
mBERT 73.64 79.86 70.78 76.08 79.93 62.76 72.48 79.81 81.21 75.17
CANINE-S 64.78 79.2 55.81 70.13 70.0 49.53 67.15 71.26 81.75 67.73
CANINE-C 63.96 77.79 50.92 67.28 66.26 49.84 66.49 71.39 82.78 66.3
mT5-Small 59.39 73.07 67.92 65.33 73.65 54.93 66.13 71.49 80.93 68.09
ByT5-Small 64.58 75.82 69.91 71.98 80.55 58.65 71.09 78.81 85.39 72.97

Multilingual
mBERT 76.02 81.49 72.86 80.41 84.87 67.09 74.45 82.42 83.52 78.13
CANINE-S 71.55 80.53 67.24 75.42 78.44 61.25 71.75 77.43 83.53 74.13
CANINE-C 71.56 80.74 62.6 74.21 76.28 65.79 72.66 79.71 84.43 74.22
mT5-Small 64.39 75.34 76.89 70.01 76.73 59.24 67.86 76.62 81.35 72.05
ByT5-Small 69.42 75.86 70.9 74.52 79.78 60.62 73.01 80.32 85.93 74.48

Table 6: TyDi QA-GoldP Performance (F1)

Model en ar bn fi id ja sw ko ru te th avg

MINSPAN

mBERT 65.1 83.1 66.7 69.0 65.8 53.0 71.7 62.8 66.4 87.1 64.5 69.0
CANINE-S 61.4 83.2 64.7 66.6 63.9 49.5 67.8 56.7 63.0 82.5 61.0 65.9
CANINE-C 58.8 82.6 58.7 64.7 64.3 50.8 65.1 56.2 64.4 83.9 61.5 65.2

SELECTP
mBERT 51.1 73.6 56.6 59.0 56.8 43.6 64.7 48.2 50.8 83.1 53.4 59.0
CANINE-S 49.2 71.5 56.4 58.3 54.6 41.5 60.1 40.5 49.3 77.2 50.7 56.0
CANINE-C 47.4 71.0 46.5 53.8 54.4 40.2 56.0 34.0 48.8 78.0 49.1 53.2

Table 7: TyDi QA Primary Task Performance (F1)

Language Wikipedia (Number of docs) mC4 (Number of examples)

English 2.5M 3B
Russian 319K 756M
Arabic 77K 53M
Swahili 7K 985K

Table 8: Pretraining corpus sizes for languages used in § 4.1 experiments. The number of Wikipedia documents per
language can be found here: https://en.wikipedia.org/wiki/Wikipedia:Multilingual_statistics
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Abstract

Neural ranking (NR) has become a key com-
ponent for open-domain question-answering in
order to access external knowledge. However,
training a good NR model requires substan-
tial amounts of relevance annotations, which is
very costly to scale. To address this, a growing
body of research works have been proposed
to reduce the annotation cost by training the
NR model with weak supervision (WS) in-
stead. These works differ in what resources
they require and employ a diverse set of WS
signals to train the model. Understanding such
differences is crucial for choosing the right
WS technique. To facilitate this understand-
ing, we provide a structured overview of stan-
dard WS signals used for training a NR model.
Based on their required resources, we divide
them into three main categories: (1) only docu-
ments are needed; (2) documents and questions
are needed; and (3) documents and question-
answer pairs are needed. For every WS signal,
we review its general idea and choices. Promis-
ing directions are outlined for future research.

1 Introduction

Open-Domain Question Answering (ODQA) aims
to provide precise answers in response to the user’s
questions by drawing on a large collection of doc-
uments (Voorhees et al., 1999). The majority of
modern ODQA models follow the retrieve(-rerank)-
read architecture: 1) given a question, a set of rele-
vant documents are selected from a large document
collection, and 2) the reader model produces an an-
swer given this selected set and the question (Chen
et al., 2017; Verga et al., 2021; Lee et al., 2021).
Compared with parametric models without access
to external knowledge, this architecture can better
adapt to updated knowledge, offer easier interpre-
tation and reduce hallucination (Zhu et al., 2021a;
Shuster et al., 2021; Guo et al., 2022).

Conventional methods use sparse retrievers
(SRs) such as TF-IDF and BM-25 in the first stage

Resource Weak-Supervision Signal

Documents (§3) Self Contrastive Learning (§3.1)
Question Generation (§3.2)

Documents
+Questions (§4)

Sparse Retriever (§4)
Pre-trained Language Model (§4)
Supervised Teacher Model (§4)

Documents
+QA Pairs (§5)

Answer as Document (§5.1)
Answer-Document Mapping (§5.2)
Latent-Variable Model (§5.3)

Table 1: Overview of different weak-supervision signals,
together with their required resources, that we can apply to
train NR models for open-domain question-answering.

to match questions and documents via lexical over-
lap (Robertson and Walker, 1994), a process that
may overlook semantically relevant documents
with low lexical overlap with the question. Neu-
ral ranking (NR) models resolve this issue by en-
coding the questions and documents into dense
vectors so that synonyms and paraphrases can be
mapped to similar vectors through task-specific
fine-tuning (Das et al., 2019; Karpukhin et al.,
2020). However, training good NR models re-
quires substantial amount of relevance annotations
to perform competitively and NR models have been
found to generalize poorly across domains (Thakur
et al., 2021; Ren et al., 2022). In practice, col-
lecting question-document relevance annotations
is time-consuming. For a given question, an exten-
sive annotation effort may be required to find the
relevant documents. Repeating this annotation for
every language and domain is not feasible (Shen
et al., 2022c).

To reduce annotation costs, many techniques
have been proposed to train NR models with weak
supervision (WS) signals instead. This survey
aims to provide a clear taxonomy to characterize
these WS signals based on their required resources.
There are three common resources that can be lever-
aged: (1) Document set, which is a bare minimum
for building a ODQA system; (2) Questions with-
out ground-truth relevance or answer annotations;
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(3) Question-Answer (QA) Pairs, which are a
set of already answered questions. Different ap-
plications have different levels of resource avail-
ability. For example, common domains such as
e-commerce normally already have large amounts
of question-answer pairs from customer services
while smaller domains or low-resource languages
can only have a document set without any existing
questions. For each level of resource availability,
we review the applicable WS signals. An overview
can be seen in Table 1.

While there have been surveys that describe
general neural information retrieval (IR) ap-
proaches (Mitra et al., 2018; Guo et al., 2020; Lin
et al., 2021a; Zhu et al., 2021a; Guo et al., 2022),
we focus specifically on the low-resource scenarios,
which makes our contribution unique in this respect.
The closest to our work is the BEIR benchmark
for zero-shot cross-domain evaluation of IR mod-
els (Thakur et al., 2021) and its multiple related
studies (Mokrii et al., 2021; Reddy et al., 2021;
Wang et al., 2022; Ren et al., 2022). Nonetheless,
these studies test specific algorithms but do not
provide a holistic overview of how they are related.
Our survey can be useful in that: (1) future WS
research can use it as a reference book to compare
with similar techniques. (2) It can serve as a practi-
cal guide for choosing the best WS sginals to train
NR models given different availability levels of re-
sources. (3) As the retrieve(-rerank)-read paradigm
is generic and has been increasingly popular across
NLP tasks like machine translation (He et al., 2021)
and intent detection (Mehri and Eric, 2021), it can
have broader impact in many other applications.
Therefore, although this survey illustrates with the
use case of ODQA, the introduced techniques are
intended to go beyond specific applications.

In the following sections we first lay out the nec-
essary background knowledge (§2), then explain
popular WS signals when different resources are
available in sections 3 to 5. In conclusion, we high-
light promising directions for future work (§6).

2 Background

Neural Ranking (NR) for ODQA Let Q,D and
A denote the question, document and answer set.
Given a question q ∈ Q, the NR model assigns
a relevance score R(q, d) to each d ∈ D and se-
lects top-k document Dtopk ∈ D with the highest
relevance scores. Afterwards, a reader will esti-
mate the score G(a|q,Dtopk) to predict the final

answer a ∈ A conditioned on both q and Dtopk.
The NR model can be implemented using various
architecture with increasing model complexity. For
computational efficiency, normally a bi-encoder ar-
chitecture (Bromley et al., 1993) is first applied to
pre-select top candidates from the whole document
set, then a more complex cross-interaction model is
applied to provide more accurate relevance scores
only for the preselected candidates (Lee et al.,
2021). The training objective for the NR model
R can be formalized as:

min
R

Eq,d+,d−1∼n∈Q×DL(R, q, d
+, d−1∼n) (1)

where Q × D indicates the full set of question-
document pairs, d+ is a positive (relevant) docu-
ment for q, d−1∼n is the sampled n negative (irrel-
evant) documents and L is the loss function. A
common choice for L is the contrastive loss:

L =− log
eR(q,d+)

eR(q,d+) +
∑n

j=1 e
R(q,d−j )

(2)

Neural Ranking with Weak Supervision In the
standard supervised setting we need relevance an-
notations for (q, d)→ {+,−} to trainRwith Eq 1.
Obtaining high-quality relevance annotations re-
quires tremendous human labor and is expensive to
scale to multiple domains (Del Tredici et al., 2021;
Ram et al., 2022). Weak supervision (WS) is a
widely-used approach to reduce such cost by lever-
aging supervision signals from e,g., heuristic rules,
knowledge bases or external models (Zhang et al.,
2021). WS signals are cheap to obtain but might
contain significant noise which will affect the NR
performance. Therefore, understanding their work-
ing mechanisms and pros and cons are important
to obtain a good NR model. We group WS signals
into 3 classes by the resources that they need: (1)
Documents: only document collectionD is needed;
(2) Documents + Questions: document collection
D and question set Q are needed; (3) Documents
+ QA Pairs: document collection D and QA pairs
(Q,A) are needed. In the next section, we will
present the three classes of WS signals and discuss
their pros and cons.

3 Resource: Documents

This section discusses two main techniques to pro-
duce WS signals requiring only the document set:
(1) self-contrastive learning and (2) question gener-
ation. This makes the minimum assumption about
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Method Pseudo Question

Perturbation d with added perturbation

Summary (Pseudo) summary of d

Proximity Nearby text of d

Cooccurrence Text sharing cooccurred spans with d

Hyperlink Text with a hyperlink to/from d

Table 2: Given a document d, different heuristics to con-
struct pseudo questions. Contrastive samples made from these
heuristics serve as WS signals to train the NR model.

resource availability since having the document set
is a prerequisite for building an ODQA system.

3.1 Self Contrastive Learning

Self contrastive learning relies on heuristics to con-
struct pseudo question-document pairs (q′, d′+/−)
from D, then uses them to supervise training of a
NR model. The objective is:

min
R

Eq′,d′+,d′−1∼n∈DL(R, q
′, d′+, d′−1∼n) (3)

where L is the ranking loss as in Eq 1. Since neg-
ative pairs can be easily constructed by random
sampling, the main difficulty is to design good
heuristics for constructing positive pseudo pairs
(q′, d′+). There are 5 popular heuristics to construct
such positive pairs: perturbation-based, summary-
based, proximity-based, cooccurence-based and
hyperlink-based. An overview is in Table 2.

Perturbation-based heuristics add perturbations
to some text, then treat the perturbed text and the
original text as a positive pair. The intuition is that
perturbed text should still be relevant to the origi-
nal text. Typical choices of perturbations include
word deletion, substitution and permutation (Zhu
et al., 2021b; Meng et al., 2021), adding drop
out to representation layers (Gao et al., 2021), or
passing sentences through different language mod-
els (Carlsson et al., 2021), among other.

Summary-based heuristics extract a summary
from the document as the pseudo question based
on the intuition that questions should contain rep-
resentative information about the central topic of
the document. The summary can be the document
title (MacAvaney et al., 2017, 2019; Mass and Roit-
man, 2020), a random sentence from the first sec-
tion of the document (Chang et al., 2020), ran-
domly sampled ngrams (Gysel et al., 2018) or a set

of keywords generated from a document language
model (Ma et al., 2021a).

Proximity-based heuristics utilize the position
information in the document to obtain positive pairs
based on the intuition that nearby text should be
more relevant to each other. The most famous
one is the inverse-cloze task (Lee et al., 2019),
where a sentence from a passage is treated as the
question and the original passage, after removing
the sentence, is treated as a positive document.
They can be combined with typical noise injec-
tion methods like adding drop-out masks (Xu et al.,
2022), random word chopping or deletion (Izacard
et al., 2021) to further improve the model robust-
ness. Other methods include using spans from
the same document (Gao and Callan, 2022; Ma
et al., 2022), sentences from the same paragraph,
paragraphs from the same document as positive
samples (Di Liello et al., 2022), etc.

Cooccurrence-based heuristics construct posi-
tive samples based on the intuition that sentences
containing cooccurred spans are more likely to be
relevant (Ram et al., 2021). For example, Glass
et al. (2020) constructs a pseudo question with a
sentence from the corpus. A term from it is treated
as the answer and replaced with a special token.
Passages retrieved with BM25 which also contains
the answer term are treated as pseudo positive doc-
uments. Ram et al. (2022) treat a span and its
surrounding context as the pseudo question and use
another passage that contains the same span as a
positive document.

Hyperlink-based heuristics leverage hyperlink
information based on the intuition that hyperlinked
text are more likely to be relevant (Zhang et al.,
2020; Ma et al., 2021b). For example, Chang et al.
(2020) takes a sentence from the first section of a
page p as a pseudo question because it is often the
description or summary of the topic. A passage
from another page containing hyperlinks to p is
treated as a positive document. Yue et al. (2022a)
replace an entity word with a question phrase like
“what/when” to form a pseudo question. A passage
from its hyperlinked document that contains the
same entity word is treated as a positive sample.
Zhou et al. (2022) build positive samples with two
typologies: “dual-link” where two passages have
hyperlinks pointed to each other, and “co-mention”
where two passages both have a hyperlink to the
same third-party document.
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Input

Document
Document + Answer
Document + Answer + Question Type
Document + Answer + Question Type + Clue

Question
Generator

Rule-based Generator
Prompt-based Generator
Fine-tuned Generator⋄

Filter

LM Score
Round-trip Consistency
Probability from pre-trained QA
Influence Function
Ensemble Consistency
Entailment Score
Learning to Reweight⋄

Target-domain Value Estimation⋄

Table 3: Different choices for a question generation model
setup. ⋄ means minimal relevance annotations are needed.

3.2 Question Generation
Self contrastive learning relies on sentences already
present in D. Question generation leverage a ques-
tion generator (QG) to generate new questions not
found in D, which can then be used to provide WS
signals for the NR model. It often employs a fil-
ter Fil to filter poorly generated questions. The
training objective is:

min
R

Eq=QG(d+)&Fil(q,d+)=0L(R, q, d+, d−1∼n)

where the expectation is with respect to documents
d+ and d−1∼n drawn from D, the q are generated
from d+, Fil(q, d+) = 0 requires that these ques-
tions not be discarded by Fil, and L is the standard
ranking loss. There are various ways of designing
the question generator and filter. We will cover
the popular choices in the following section. An
overview can be seen in Table 3.

Choices of Input A variety of information can
be provided as input for the QG. The most straight-
forward approach is answer-agnostic which pro-
vides only the document (Du and Cardie, 2017;
Kumar et al., 2019). In this way, the model can
choose to attend to different spans of the document
as potential answers and so generate different, cor-
responding questions. A more common method
is answer-aware where an answer span is first ex-
tracted from a document, then the QG generates
a question based on both the document and an-
swer (Alberti et al., 2019; Shakeri et al., 2020).
Finer-grained information can also be provided
such as the question type (“what/how/...”) (Cao and
Wang, 2021; Gao et al., 2022) as well as additional
clues (such as document context to disambiguate
the question) (Liu et al., 2020). Adding more in-
formation reduces the entropy of the question and

makes it easier for the model to learn, but also in-
creases the possibility of error propagation (Zhang
and Bansal, 2019). In practice, well-defined filters
should be applied to remove low-quality questions.

Choices of Question Generator There are three
popular choices for the question generator. (1)
Rule-based methods (Pandey and Rajeswari, 2013;
Rakangor and Ghodasara, 2015) rely on hand-
crafted templates and features. These are time-
consuming to design, domain-specific, and can
only cover certain forms of questions. (2) Prompt-
based methods relying on pre-trained language
models (PLMs). Documents can be presented to
a PLM, with an appended prompt such as “Please
write a question based on this passage” so that the
PLM can continue the generation to produce a ques-
tion (Bonifacio et al., 2022; Sachan et al., 2022;
Dai et al., 2022). (3) Fine-tuned generators that
are trained on annotated question-document pairs.
When in-domain annotations are not enough, we
can leverage out-of-domain (OOD) annotations, if
any, to fine-tune the QG. The first two QGs require
no training data, but their quality is often inade-
quate. In practice, we should only consider them
when there is a complete lack of high-quality su-
pervised data for fine-tuning the QG. When target-
domain questions are available, we can also apply
semi-supervised techniques such as back-training
to adapt the QG to the target domain (Zhao et al.,
2019; Kulshreshtha et al., 2021; Shen et al., 2022a).

Choices of Filter Filtering is a crucial part of QG
since a significant portion of generated questions
could be of low quality and would provide mislead-
ing signals when used to train the NR model (Al-
berti et al., 2019). A typical choice is filtering
based on round-trip consistency (Alberti et al.,
2019; Dong et al., 2019), where a pre-trained QA
system is applied to produce an answer based on
the generated question. A question is kept only
when the produced answer is consistent with the
answer from which the question is generated. We
can also relax this strict consistency requirement
and manually adjust an acceptance threshold based
on the probability from the pre-trained QA sys-
tem (Zhang and Bansal, 2019; Lewis et al., 2021),
LM score from the generator itself (Shakeri et al.,
2020; Liang et al., 2020), or an entailment score
from a model trained on question-context-answer
pairs (Liu et al., 2020). Influence functions (Cook
and Weisberg, 1982) can be used to estimate the
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effect on the validation loss of including a syn-
thetic example (Yang et al., 2020), but this does not
achieve satisfying performances on QA tasks (Bar-
tolo et al., 2021). Bartolo et al. (2021) propose
filtering questions based on ensemble consistency,
where an ensemble of QA models are trained with
different random seeds and only questions agreed
by most QA models are selected. When minimal
target-domain annotation is available, we can also
learn to reweight pseudo samples based on the vali-
dation loss (Sun et al., 2021), or use RL to select
samples that lead to validation performance gains
(value estimation) (Yue et al., 2022b).

3.3 Discussion

If the heuristics or QG are properly designed, NR
models trained from their supervision can even
match the fully-supervised performance (Wang
et al., 2022; Ren et al., 2022). The biggest chal-
lenge is the difficulty to pick the most suitable
heuristics or QG when we face a new domain. A
general solution is to automatically select good
pseudo pairs with reinforcement learning (RL)
when minimal target-domain annotations are avail-
able (Zhang et al., 2020), so as avoiding the need
to manually fixing the WS signals, but this would
bring significant computational overhead. In prac-
tice hyperlink-based approaches often perform the
best among the heuristics as they have additional
reference information to leverage, which makes
them most similar to the actual relevance annota-
tions. However, hyperlink information is not avail-
able in most domains and thereby limits its use
cases (Sun et al., 2021). QG-based WS signals are
often preferred over heuristics-based ones as they
can produce naturally-sound questions themselves
without relying on the chance to find good pseudo
questions in the documents. Nonetheless, obtaining
a high-performing QG can also be non-trivial. One
big challenge comes from the one-to-many map-
ping relations between questions and documents.
Under this situation, standard supervised learning
tends to produce safe questions with less diver-
sity and high lexical overlap with the document.
For example, Shinoda et al. (2021) found that QG
reinforces the model bias towards high lexical over-
lap. We will need more sophisticated training tech-
niques such as latent-variable models (Shen and
Su, 2018; Xu et al., 2020; Li et al., 2022) and rein-
forcement learning (Yuan et al., 2017; Zhang and
Bansal, 2019; Shen et al., 2019a) to alleviate the

model bias towards safe questions.

4 Resource: Documents + Questions

This section includes WS signals that require addi-
tional access to a question set Q. In practice, anno-
tating question-document relations usually requires
domain experts to read long documents and careful
sampling strategies to ensure enough positive sam-
ples, while unlabeled questions are much easier to
obtain either through real user-generated content or
simulated traffic. Therefore, it is common to have a
predominance of unlabeled questions. The crucial
point is to establish the missing relevance labels.
Suppose a WS method can provide the missing la-
bel WS(q, d) for a question-document pair (q, d),
then we can use it to supervise the NR model by:

min
R

Eq∈Q,d∈DL(R(q, d),WS(q, d)) (4)

where L is the loss function that encourages simi-
larity betweenR(q, d) and WS(q, d).

There are three popular types models that can
provide such WS signal here: (1) sparse retriever,
(2) pre-trained language model and (3) supervised
teacher model.

Sparse Retriever (SR) Recent research finds that
NR and SR models are complementary. NR mod-
els are better at semantic matching while SRs are
better at capturing exact match and handling long
documents (Chen et al., 2021; Luan et al., 2021).
SRs are also more robust across domains (Thakur
et al., 2021; Chen et al., 2022). This motivates the
use of unsupervised sparse retrievers like BM25 as
WS signals. For example, Dehghani et al. (2017);
Nie et al. (2018) train a NR model on samples an-
notated with BM25. Xu et al. (2019) apply four
scoring functions to auto-label questions and docu-
ments with: (1) BM25 scores, (2) TF-IDF scores,
(3) cosine similarity of universal embedding repre-
sentation (Cer et al., 2018) and (4) cosine similarity
of the last hidden layer activation of pre-trained
BERT model (Devlin et al., 2019). Both papers ob-
serve that the resulting model outperforms BM25
on the test sets. Chen et al. (2021) further show that
distilling knowledge from BM25 helps the retriever
to better match rare entities and improves zero-shot
out-of-domain performance.

Pre-trained Language Model (PLM) As PLMs
already encode significant linguistic knowledge,
there have also been attempts at using prompt-
based PLMs to provide WS signals for question-
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document relations (Smith et al., 2022; Zeng et al.,
2022). Similar as in question generation, we can
use prompts like “Please write a question based on
this passage”, concatenate the document and ques-
tion, then use the probability assigned by the PLM
to auto-label question-document pairs. To max-
imize the chances of finding positive document,
normally we first obtain a set of candidate docu-
ments by BM25, then apply PLM to auto-label the
candidate set (Sachan et al., 2022). This can fur-
ther exploit the latent knowledge inside PLMs that
has been honed through pre-training, so it often
shows better performance compared with weak su-
pervision only using BM25 (Nogueira et al., 2020;
Singh Sachan et al., 2022).

Supervised Teacher Model A very common
choice is using a supervised teacher model to pro-
vide WS signals. The teacher model is “super-
vised” because it is explicitly fine-tuned on anno-
tated question-document pairs. When in-domain
annotations are not sufficient, we can leverage out-
of-domain (OOD) annotations, if available, to train
the teacher model. The teacher model usually em-
ploys a more powerful architecture such as with
more complex interactions or larger sizes. It may
not be directly applicable in downstream tasks due
to the latency constraints, but can be useful in pro-
viding WS signals for training the NR model. For
example, previous research has shown that models
with larger sizes or late/cross-interaction structures
generalize much better on OOD data (Pradeep et al.,
2020; Lu et al., 2021; Ni et al., 2021; Rosa et al.,
2022; Muennighoff, 2022; Zhan et al., 2022). Af-
ter training a teacher model on OOD annotations,
applying it to provide WS signals through target-
domain question and document collections can sig-
nificantly improve the in-domain performance of
the NR model (Hofstätter et al., 2021; Lin et al.,
2021b; Lu et al., 2022). Kim et al. (2022) further
show that we can even use the same architecture
and capacity to obtain a good teacher model. They
expand the question with centroids of word embed-
dings from top retrieved passages (using BM25),
and then use the expanded query for self knowl-
edge distillation. Similar ideas of reusing the same
architecture to provide WS signals have also been
explored by Yu et al. (2021a); Kulshreshtha et al.
(2021); Zhuang and Zuccon (2022).

Discussion The three WS signals listed above
work directly on actual questions instead of pseudo

pairs as in §3 so that the NR model can adapt bet-
ter to the target-domain question distribution. The
bottleneck is the quality of the WS signals. SRs
and PLMs are unsupervised, which could be more
robust when we face a completely different do-
main (Dai et al., 2022). Otherwise, if we already
have certain amounts relevance annotations from
the target or similar domains, usually using a su-
pervised teacher model is preferred. Nevertheless,
these WS signals inevitably contain noise, and can
harm the downstream performance if the noise is
significant. There are two main strategies to reduce
the noise effects: (1) Apply less strict margin-based
loss such as the hinge loss (Dehghani et al., 2017;
Xu et al., 2019) and MarginMSE loss (Hofstät-
ter et al., 2020; Wang et al., 2022), then models
have fewer chances of overfitting to the exact la-
bels, and (2) Apply noise-resistant training meth-
ods such as confidence-based filtering (Mukherjee
and Awadallah, 2020; Yu et al., 2021b) and meta-
learning-based refinement (Ren et al., 2018; Zhu
et al., 2022). Another potential issue is that the
amount of training data in this section relies on the
amount of questions we have. Unlike the docu-
ment set which we can obtain for free, the question
set takes time to collect and are often orders of
magnitudes smaller. If no sufficient questions are
available, we can use synthetic questions from ques-
tion generation, then apply same WS signals in this
section, which has been shown to perform on par
with using real questions in certain domains (Wang
et al., 2020, 2022; Thakur et al., 2022).

5 Resource: Documents + QA Pairs

Many domains have large numbers of already an-
swered questions from customer services, technical
support or web forums (Huber et al., 2021). These
QA pairs can provide richer information than only
unlabeled questions. However, most answers are
based on personal knowledge, derived from experi-
ence, and do not include a reference to any external
document. This prevents their direct use as training
data for the NR model. This section introduces
three standard methods that exploit QA pairs to
provide WS signals despite this difficulty: (1) An-
swer as document, (2) Answer-document mapping
and (3) Latent-variable models.

5.1 Answer as a Document

As a straightforward way to leverage QA pairs, this
method directly treats QA pairs as positive samples
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and does not distinguish between documents and
answers (Lai et al., 2018). These QA pairs can
provide direct WS signals to train the NR model:

min
R

Eq,a+,a−1∼n∈Q×AL(R, q, a
+, a−1∼n) (5)

where (q, a+) ∈ Q×A are question-answer pairs
in the target domain, a−1∼n are sampled n negative
answers and L is the standard ranking loss.

Though simple, this has been a common prac-
tice to “warm up” the NR model when no suffi-
cient relevance annotations are available. For large-
sized models, this can be crucial to fully leverage
the model capacity since we often have orders of
magnitude more QA pairs than relevance annota-
tions (Ni et al., 2021; Oğuz et al., 2021). However,
the style, structure and format differ between the
document and the answer. The answer is a direct
response to the question, and so it is easier to pre-
dict due to its strong semantic correlation with the
question. Whereas the document can be implicit
and may contain fewer obvious clues that can imply
an answer; deep text understanding is required to
predict the relevance between questions and docu-
ments (Zhao et al., 2021; Shen et al., 2022b). There-
fore, this approach may be insufficient to reach
satisfying results as a standalone method.

5.2 Answer-document Mapping
This approach leverages an additional mapping
function to automatically link answers to the corre-
sponding documents. The NR model can get WS
signals from the linked answers:

min
R

Eq,a∈(Q,A),d−1∼n∼DL(R, q,M(a), d−1∼n)

where (q, a) ∈ (Q,A) are question-answer pairs,
M is a mapping function from an answer to its
corresponding document, and L is the standard
ranking loss. The mapping function is based on
hand-crafted heuristics. For long-form descriptive
answers, a popular way is to map them to doc-
uments with highest ROUGE scores (Lin, 2004)
since the answers can be considered as summaries
of the original documents (Fan et al., 2019). For
short-span answers, a popular way is to map them
to top-ranked documents retrieved using BM25 that
contain the answer span (Karpukhin et al., 2020;
Sachan et al., 2021; Christmann et al., 2022).

Answer-document mapping was widely adopted
for constructing large-scale datasets in information
retrieval (Joshi et al., 2017; Dunn et al., 2017; El-
gohary et al., 2018). This can work well if the

Distribution ofR(z|q) Optimization Method
Categorical Top-k approximation

Multinomial EM algorithm
Learning from attention

Table 4: Distribution assumptions made about the neural
ranker and corresponding optimization methods, suppose we
train the NR model following Equation 6.

mapping has high accuracy, which is often diffi-
cult to achieve. Frequent answers or entities might
lead to false positive mappings. It is also difficult to
find positive documents for boolean and abstractive
answers using only heuristics-based mapping func-
tions (Izacard and Grave, 2021). Models can easily
overfit to the biases introduced via such mapping
function (Du et al., 2022).

5.3 Latent-Variable Model
We can still train the NR model on question-
document pairs as in Answer-Document Mapping.
However, instead of relying on a heuristic-based
mapping function, we can treat this mapping as a
“latent variable” within a probabilistic generative
process (Lee et al., 2019; Shen, 2022). By this
means, the NR modelR gets WS signals from the
QA reader G by maximizing the marginal likeli-
hood:

max
R,G

Eq,a∈(Q,A) log
∑

z∼Z
R(z|q)G(a|q, z) (6)

where Z indicates all possible document combina-
tions. Directly optimizing over Eq 6 is infeasible
as it requires enumerating over all documents. A
closed-form solution does not exist due to the deep
neural network parameterization ofR and G. The
following section explains popular optimization
options. An overview can be seen in Table 4.

Top-k approximation A popular approach is to
assume a categorical distribution forR(Z|q); that
is, to assume for each question only a single docu-
ment is selected and the answer is generated from
that one document. Eq 6 can be approximated by
enumerating over only the top-k documents, as-
suming the remaining documents having negligibly
small contributions to the likelihood:

max
R,G

Dq,a∈(Q,A) log
∑

z∼Etopk
R(z|q)G(a|q, z)

This has been a popular choice in end-to-end
training of text generation models (Lee et al., 2019;
Shen et al., 2019b; Guu et al., 2020; Lewis et al.,
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2020; Shuster et al., 2021; Ferguson et al., 2022).
Despite its simplicity, the top-k approximation has
two main drawbacks. (1) The approximation is
performed on the top-k documents obtained from
the NR model. If the NR model is very weak at
the beginning of training, these top-k documents
can be a bad approximation to the real joint likeli-
hood and the model might struggle to converge. (2)
The assumption that document follow a categori-
cal distribution might be problematic especially if
the answer requires evidence from multiple docu-
ments (Wang and Pan, 2022).

Expectation–Maximization (EM) algorithm
To address the second drawback of the top-k ap-
proximation approach, we can assume a multino-
mial distribution for R(Z|q) so that an answer can
be generated from multiple documents. The cost
of this relaxation is the increased difficulty of opti-
mization. Approximating the joint likelihood from
top-k samples becomes infeasible due to the com-
binatorial distribution of document. Singh et al.
(2021) propose optimizating it with the EM algo-
rithm under an independent assumption about the
posterior distribution ofR(z|q):

max
R,G

Eq,a∈(Q,A)[log
∑

z∈Dtopk
R(z|q)

× SG(G(a|q, z)) + log G(a|q,Dtopk)]

(7)

where SG means stop-gradient (gradients are not
backpropagated through G). As can be seen, the
training signal for the NR model is essentially the
same as in the Top-k Approximation case, except
that the reader is trained by conditioning on all
top-k documents to generate the answer. Singh
et al. (2021) also find that Eq 7 is quite robust with
respect to parameter initialization. Similarly, Zhao
et al. (2021) apply the hard-EM algorithm to train
the NR model, which only treats documents with
the highest likelihood estimated by the reader as
positive. Izacard et al. (2022) further experiment
with using the leave-one-out perplexity from the
reader to supervise the ranker.

Learning from attention Another way to opti-
mize the NR model in Eq 6 is to leverage attention
scores from the reader G. The assumption is that
when training G to generate the answer, its atten-
tion score is a good approximation of question-

document relevance. The training objective is:

min
R,G

Eq,a∈(Q,A)
∑

z∼Etopk
L(Az|R(z|q))

− log G(a|q, Z = Dtopk)

(8)

where G is trained to generate the right answer
based on the question and the top-k document,
same as in the EM algorithm. Az is the attention
score of G on the document z. L is the loss function
to encourage the similarity between distributions
of the attention scores and retrieving scores.

Izacard and Grave (2021) propose a training pro-
cess that optimizesR and G iteratively. R is trained
to minimize KL divergence between relevance and
attention scores. (Lee et al., 2021) jointly opti-
mizeR and G and apply a stop-gradient operation
on G when updating R. Sachan et al. (2021) use
retriever scores to bias attention scores on the con-
trary. These can be considered as first-order Taylor
series approximations of Eq. 6 by replacingR(Z|q)
with attention scores (Deng et al., 2018).

Discussion Training with latent-variable models
can perform close to fully supervised models under
certain scenarios (Zhao et al., 2021; Sachan et al.,
2021). The main challenge is the training difficulty.
In practice, we can often initialize the NR model
using the answer as document or answer-document
mapping to make the training more stable. If not
enough QA pairs are available, we can use heuris-
tics like masked salient entities (Guu et al., 2020)
to form pseudo pairs, then apply the same WS tech-
niques in this section. Combining supervision sig-
nals from various various optimization techniques
such as learning from attention and EM algorithm
can also be beneficial (Izacard et al., 2022). If
the independence assumption made by Eq 7 does
not hold, we need to resort to more complex op-
timization algorithms. A potential direction is to
apply a Dirichlet prior over R(z|qt), which is a
conjugate distribution to the multinomial distribu-
tion (Minka, 2000), with the result that the sampled
document are not independent individuals but a
combination set. Eq 6 can then be estimated by
rejection sampling (Deng et al., 2018) or a Laplace
approximation (Srivastava and Sutton, 2017) so
as to avoid the independence assumption about the
posterior distribution. Nonetheless, this will further
increase the training complexity, which is already
a key bottleneck for training the NR model.
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6 Conclusions

We review standard WS signals used for training
NR models in ODQA and provide a structured
way of classifying them according to the required
resource. For WS signal, we discuss different op-
tions and summarize the pros and cons. As a final
wrap-up, we list promising directions that we be-
lieve worth exploring further: (1) How to select
the most suitable technique for a given scenario?
Despite the wide range of applicable techniques,
it is non-trivial to decide how to select the best
one except for an empirical experimentation. (2)
To which extent are these techniques complemen-
tary? Existing work compares performance only
between similar types of methods but not across the
whole range of techniques and resources available.
This makes it hard to decide whether different ap-
proaches could potentially complement each other
and how they should be combined effectively. (3)
Do methods work across languages? The vast ma-
jority of current research is conducted on English
datasets. Even though all described methods in this
survey have no explicit restrictions on languages
they can be applied to, it is likely that their perfor-
mance will vary across languages, especially for
the methods relying on handcrafted heuristics.

Limitations

This survey covers introductions and related work
of major WS algorithms used for neural ranking.
Due to the space limit, most methods included in
this paper are brief. Readers might not have a good
understand on all the introduced methods. Inter-
ested readers can refer to existing surveys about
general knowledge in QA (Zeng et al., 2020; Zhu
et al., 2021a; Roy and Anand, 2021; Rogers et al.,
2021; Pandya and Bhatt, 2021). Furthermore, we
did not provide points to existing ODQA datasets
and the performance of recent models. The con-
clusions in this survey also come from summaries
of previous works. The lack of datasets including
various resources needed for different WS algo-
rithms prevents a comprehensive, fair comparison
across algorithms. We hope future research can
work on the creation of more datasets with various
availabilitis of resources in different domains to
enable this comparison. Lastly, we aim to create
a big picture from the technology level, so we did
not strictly limit our references only to the applica-
tion of ODQA. The connection to specific ODQA
applications might be loose, readers would need

to extract useful information for the specific use
cases.
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Abstract

Recent work has shown that an answer veri-
fication step introduced in Transformer-based
answer selection models can significantly im-
prove the state of the art in Question Answering.
This step is performed by aggregating the em-
beddings of top k answer candidates to support
the verification of a target answer. Although the
approach is intuitive and sound, it still shows
two limitations: (i) the supporting candidates
are ranked only according to the relevancy with
the question and not with the answer, and (ii)
the support provided by the other answer can-
didates is suboptimal as these are retrieved in-
dependently of the target answer. In this paper,
we address both drawbacks by proposing (i) a
double reranking model, which, for each tar-
get answer, selects the best support; and (ii)
a second neural retrieval stage designed to en-
code question and answer pair as the query,
which finds more specific verification informa-
tion. The results on well-known datasets for
Answer Sentence Selection show significant
improvement over the state of the art.

1 Introduction

In recent years, automated Question Answering
(QA) research has received a renewed attention
thanks to the diffusion of Virtual Assistants. For
example, Google Home, Siri and Alexa provide
general information inquiry services, while many
other systems serve customer requests in differ-
ent application domains. Retrieval-based QA is
enabled by two main tasks: (i) Answer Sentence
Selection (AS2), which, given a question and a set
of answer-sentence candidates, consists in selecting
sentences (e.g., retrieved by a search engine) that
correctly answer the question; and (ii) Machine
Reading (MR), e.g., (Chen et al., 2017), which,
given a question and a reference text, finds an exact
text span that answers the question. Deploying MR

∗ Work done while the author was an intern at Amazon
Alexa

q: What causes heart disease?
c1: Cardiovascular disease (also called heart disease) is a

class of diseases that involve the heart or blood vessels
(arteries, capillaries, and veins).

c2: The causes of cardiovascular disease are diverse but
atherosclerosis and/or hypertension are the most com-
mon.

c3: Cardiovascular disease refers to any disease that affects
the cardiovascular system , principally cardiac disease,
vascular diseases of the brain and kidney , and peripheral
arterial disease.

Table 1: A question with answer candidates.

systems in production is challenging for efficiency
reasons, while AS2 models can efficiently target
large text databases. Indeed, they originated from
TREC QA tracks (Voorhees and Tice, 1999), which
dealt with real-world retrieval systems since the
first edition. Another limitation of MR is the focus
on factoid answers: although it can in principle pro-
vide longer answers, the datasets developed for the
task mainly contains short answers and in particu-
lar named entities. In contrast, as AS2 processes
entire sentences, its inference steps always involve
sentences/paragraphs, which make the approach
agnostic to both factoid and not factoid classes.

Garg et al. (2020) proposed the TANDA ap-
proach, which basically uses two stage of fine-
tuning on pre-trained Transformer models (using
a general dataset, ASNQ, and the target dataset),
obtaining impressive improvement over the state
of the art for AS2, measured on the two most used
datasets, WikiQA (Yang et al., 2015) and TREC-
QA (Wang et al., 2007). The approach above,
based on pointwise rerankers, was significantly
improved by the Answer Support-based Reranker
(ASR) (Zhang et al., 2021), which adds an answer
verification step similar to the one operated by fact
checking systems, e.g., see the FEVER challenge
(Thorne et al., 2018).

More specifically, given a question q, and a
target answer, t, to be verified, which is taken
from a ranked set of answer candidates (c1, .., ck),
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ASR concatenates transformer-based embeddings
of (q, ci) with the max-pooling vector produced by
the top k embeddings of (t, ci), where the ci are
selected by an initial answer reranking model (e.g.,
TANDA). For example, Table 1 reports a question,
q = What causes heart disease?, with some candi-
date answers, c1, c2, and c3. Selecting the correct
answer c2 is difficult, without the information: car-
diovascular disease is also called heart disease.
This information is provided by c1. Thus, to com-
pute the correctness probability of c1, they exploit
the representation of c2, similarly to the way claims
are supported in the fact verification.

ASR reduced the error of TANDA by 10% (rel-
ative), both on WikiQA and TREC-QA datasets.
However, ASR shows two important limitations:
first, when attempting the verification step of t, the
k candidates, used in the max-pooling operation,
are ranked only based on the question, i.e., inde-
pendently of t. Second, the support for each t is
provided by other answer candidates, which again
are retrieved independently of t, i.e., t is not part of
the query used for searching relevant documents.

In this paper, we provide new answer verification
models, which are more efficient and accurate than
ASR. We introduce a new architecture, Double An-
swer Reranking (DAR), which uses two models
for reranking target answers and supporting can-
didates, respectively. Given t, the first, support
reranker (SR), sorts (q, t, ci) triplets with respect
to i, in order to find the best support for t, i.e.,
st = ci, while the second, answer reranker (AR),
orders (q, t, st) triplets with respect to t, thus rank-
ing all target answers.

Additionally, we improve the quality of supports
using a second retrieval stage that searches for pas-
sages relevant to (q, t). This is important as stan-
dard answer candidates provide only information
relevant to q, thus they not necessarily provide use-
ful context for assessing t. As formulating an effec-
tive query for retrieving a question/answer pair is a
new problem, and can be challenging, we exploit
deep passage retrieval (DPR) (Karpukhin et al.,
2020). This enables us to automatically produce
embeddings for (q, t) as the target query of a neural
retrieval model. As DAR is efficient, it can process
many candidates from DPR, making Double Re-
trieval (DR) effective.

The results derived on three well-known AS2
datasets, WikiQA (Yang et al., 2015), TREC (Wang
et al., 2007), and SelQA (Jurczyk et al., 2016) and

a popular multi-hop QA dataset, HotpotQA (Yang
et al., 2018), show consistent and significant im-
provement over the state of the art. For example,
DAR improves TANDA by 13.6% (relative error re-
duction), achieving the same accuracy of the com-
putational expensive ASR verification approach
(84.36%) while DAR-DR improves the AS2 state
of the art, reducing the error by an additional 8%.

We will release the datasets augmented with
DPR retrieval (support candidates) for each (q, a)
of each of the datasets above.

2 Related work

We focus our research on QA systems based on
Information Retrieval. Since early versions, e.g.,
TREC QA tracks (Voorhees and Tice, 1999), these
systems have been based on a search engine, which
retrieves documents relevant to the asked questions,
followed efficient and accurate passage rerankers
to select text that most likely contains the answer.
This research was revived introducing the task of
answer sentence reranking (Wang et al., 2007).

In recent work, the probability, p(q, ci), for a
passage/sentence, ci, to be correct for q is esti-
mated using neural networks, e.g., encoding q and
ci text, separately with a CNN (Severyn and Mos-
chitti, 2015). Also designing attention mechanisms,
e.g., Compare-Aggregate (Yoon et al., 2019), inter-
weighted alignment networks (Shen et al., 2017).
The state of the art is achieved with pre-trained
Transformers, e.g., (Garg et al., 2020).

A number of researchers has proposed more than
one candidate for the inference stage, e.g., using
pairwise model, i.e., binary classifiers of the form
χ(q, ci, cj), which determine the partial rank be-
tween ci and cj , For example, (Laskar et al., 2020;
Tayyar Madabushi et al., 2018; Rao et al., 2016)
use a pairwise loss and encoding. However, these
methods have been largely outperformed by the
pointwise models based on Transformers.

Bonadiman and Moschitti (2020) designed sev-
eral joint models that improved early neural models
for AS2 but failed to improve Transformer-based
models. Jin et al. (2020) used the relation between
candidates in Multi-task learning approach for AS2
but as they did not exploit transformer models, their
results are rather lower than the state of the art.
Very recently, Zhang et al. (2021) proposed ASR,
a model based on a pointwise reranker fed with the
embeddings refined by a pairwise approach. This
significantly improved the state of the art, there-
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fore, we analyzed ASR and specifically compare
our models with it.

Very different approaches to QA systems than
above use MR to extract answers from entire docu-
ments. As they have been mainly developed to find
answers in a paragraph or in a text of limited size,
they are rather inefficient at processing hundreds
of documents, while AS2 methods can do this with
high efficiency. Chen et al. (2017); Hu et al. (2019);
Kratzwald and Feuerriegel (2018) proposed solu-
tions for reliably performing inference with MR
models on multiple documents. Still, the efficiency
drawback was not solved. Finally, multihop QA
uses multiple retrieval stages (Xiong et al., 2020;
Qi et al., 2019) but the answers are just entities.

3 Baseline models for AS2

A general problem formulation for AS2 is the fol-
lowing: given a question q, a subset of its top-
k ranked answer candidates, and a target answer
t ∈ Ck, train a function, f : Q × Ck → R such
that f(q, t, c1, .., ck−1) provides the probability of
t to be correct. In this section, we describe our
re-implementation of baselines, and the state-of-
the-art model for AS2, namely, ASR (Zhang et al.,
2021). More complex models are built on top of
simpler ones, thus providing an ablation study.

3.1 Simple binary classifier (SBC)

This approach does not model dependencies be-
tween candidates, thus, we simply estimate p(q, t),
where t = ci, i = 1, . . . , k with a transformer-
based model. Following (Garg et al., 2020),
we set the input as q = Tokq1,...,TokqN and
t =Tokt1,...,ToktM , where we start and end the
input with [CLS] and [EOS] tags, respectively,
and separate sentences with [SEP]. The rest fol-
lows the standard transformer logic. We use
[CLS] to represent the embedding E of (q, t),
and we use a softmax to model the probability
of the question/candidate pair classification, as
p(q, t) = softmax(W × tanh(E(q, t)) + B).
We fine-tune this model with log cross-entropy
loss: L = −∑l∈{0,1} yl × log(ŷl) on pairs of text,
where yl is the correct and incorrect answer label,
ŷ1 = p(q, t), and ŷ0 = 1− p(q, t). We start train-
ing from TANDA-RoBERTa (base or large), i.e.,
RoBERTa fine-tuned on ASNQ (Garg et al., 2020).

3.2 Pairwise Classifier (PC)

We use the previous TANDA-RoBERTa model sim-
ilarly to what is done for a multiple-choice QA
(Zellers et al., 2018). We proceed as in the previ-
ous section obtaining the CLS representation for
each (q, ci) pairs. Then, for each t, we concatenate
the embedding of (q, t) with all the embeddings
(q, ci), where ci ̸= t. This way, (q, t) is always in
the first position. We train the model again using
binary cross-entropy loss. At classification time,
we select one candidate t at a time, set it in the
first position, followed by all the others, classify all
k target answers, and rerank them based on these
scores.

3.3 All Candidate Multi-classifier (ACM)

We concatenate the question text with
the text of all k answer candidates, i.e.,
(q[SEP ]c1[SEP ]c2 . . . [SEP ]ck), and pro-
vide this input to the same TANDA-RoBERTa
model used for SBC. We use the final hidden vector
E corresponding to the first input token [CLS] in
a classification layer with weights W ∈ Rk×|E|,
and train the model using a standard cross-entropy
classification loss: y × log(softmax(EW T )),
where y is a one-hot vector representing labels
for the k candidates, i.e., |y| = k. The scores
for the candidate answers are calculated as
p({c1, .., ck}) = softmax(EW T ). Then, we
rerank ci according their probability.

3.4 Answer Support Reranker (ASR)

The previous models have been shown to be outper-
formed by ASR (Zhang et al., 2021), described in
Figure 1. ASR consists of five main components:
(i) the primary retrieval, which recuperates docu-
ments relevant to a question and produces answer
sentence candidates, (ii) an SBC, which provides
the embedding of the input (q, t). This is built with
the TANDA approach applied to RoBERTa pre-
trained transformer (Garg et al., 2020). (iii) The
joint representation of the pairs, (t, ci), i = 1, .., k,
t ̸= ci, where t and ci are the top-candidates
reranked by SBC, is obtained with a max-pooling
operation over the k pairs, (t, ci). (iv) The Answer
Support Classifier (ASC) classifies each (t, ci) in
four classes: (0) both answer correct, (1) t is correct
while ci is not, (2) vice versa, and (3) both incorrect.
This multi-classifier is trained end-to-end with the
rest of the network in a multi-task learning fashion,
using its specific cross-entropy loss, computed with
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Figure 1: Answer Support-based Reranker (ASR)

the labels above. (v) The Final Classification Layer
takes in input the concatenation of the SBC embed-
ding with the max-pooling embedding. Thus, the
classifier scores t with respect to q, also using the
other candidates.

ASC uses pre-trained RoBERTa-base (Liu et al.,
2019), to generate [CLS] ∈ Rd embedding of
(q, t) = Et. Êi is the [CLS] output of an-
other RoBERTa-base Transformer applied to an-
swer pairs, i.e., (t, ci). Then, Et is concatenated
to the max-pooling tensor from Ê1, .., Êk, that
is, V = [Et : Maxpool([Ê1, .., Êk])], where
V ∈ R2d is the final representation of the target
answer t. Finally, we apply a binary classification
layer: p(yi|q, t, c1, .., ck−1) = softmax(WV +
B), where W ∈ R2d×2 and B are parameters to
transform the representation of the target answer
t from dimension 2d to dimension 2, which repre-
sents correct or incorrect labels.

4 Double Reranking and Retrieval

ASR is the state of the art for joint modeling candi-
dates. However, it suffers from three main limita-
tions: (i) it needs to limit k otherwise the complex-
ity may be too high, this means that it may not able
to process all available supporting candidates, (ii)
the top k candidates are the best answer ranked by
TANDA, which does not guarantee that these are
also the best supports, and (iii) answer candidates
may be good supports but they were not retrieved
for this purpose. We address the above drawbacks
proposing: (i) double reranking functions, which
can efficiently rank supports as well as the best tar-
get answers, and (ii) a second stage of retrieval that
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Figure 2: Double Answer Reranker and Retrieval
(DAR-DR)

performs support retrieval using a representation of
the target answer and question pairs.

4.1 Double Answer Reranking (DAR)

The architecture, shown in Fig. 2, is much sim-
pler than ASR: it just uses one RoBERTa trans-
former to encode triplets, question, target answer,
candidate, i.e., (q, t, ci), rather than encoding (q,
t) and (t, ci) with two separate transformer mod-
els. Then two classification layers operate two
different types of ranking of the same triplets: the
first, Support Ranker (SR), given t, learns to rank
the best support, ci higher. The second, Answer
Ranker (AR), given the best support, i.e., st =
arg-maxi:ci ̸=t SR(q, t, ci), learns to rank the best
answer producing, f = arg-maxt∈Ck AR(q, t, st),
as the final output.

Training DAR Training SR and AR is challeng-
ing as, for the former, labels are typically not avail-
able in standard datasets. Additionally, defining
a support, i.e., a piece of knowledge improving
the accuracy of another classifier is not a well-
understood problem. Thus, we use feedback from
AR directly, i.e., a high relevant support is the one
that produces the highest score in AR, if the answer
is correct, and the lowest score, otherwise. We train
SR and AR, at the same time, in a multi-task learn-
ing fashion, also considering that the triplets ranked
by SR and AR are essentially the same: learning
the different roles of SR and AR boils down from
selecting a subset of triplets for their training, along
with the appropriate loss function.

SR learns to rank the best supports higher. This
can be enforced by requiring that st produces
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the highest score, AR(q, t, st), among ci scores,{
AR(q, t, ci)

}
i
, if t is correct, and the lowest

score, otherwise. We enforce this property with
a loss function: given a training example, (q, Ck),
Ck = {c1, .., ck}, where ci are associated with
training label li ∈ {+1,−1}, we (i) select the
best support, according to the current AR model,
st = arg-maxi:ci ̸=t lt × AR(q, t, ci), and (ii) use
the following ranking loss function to train SR:

L(q, c1, · · · , cn) = − log
esim(q,st)

∑n
i=1 e

sim(q,ci)
. (1)

This pushes the support that provides the highest
confidence score for AR in the top of the rank.

In contrast, we train AR as a standard binary clas-
sifier with the cross-entropy loss using all triplets,
i.e., (q, t, ci)∀t, ci, t ̸= ci.

4.2 Double Retrieval (DR) with DPR
The right side of Fig. 2 shows two retrieval steps:
the first one is the traditional retrieval stage which,
given an initial q, recuperates relevant documents,
and splits them in answer sentence candidates. This
step is typically carried out to build all AS2 datasets.
However, if the objective is to retrieve items sup-
porting a target t, the appropriate query should be
built with the whole pair (q, t). For this reason,
we propose a secondary retrieval step using (q, t).
We note that (i) DAR approach does not limit the
number of initial support to a fixed k as ASR does,
either in training or in testing. This makes it suit-
able to work with more supporting items than those
available from the first retrieval step. (ii) Since
the semantics of (q, t) is difficult to define, neural
retrieval fed with the embedding of the pair above
is a promising choice.

Embeddings for support retrieval We adapted
the Dense Passage Retrieval (DPR) by Karpukhin
et al. (2020) for our task of support retrieval. We
built two encoders EQ(·) for the pairs (q, t), and
EP (·) for text passages p (typically they are larger
than a single sentence). The encoders map the in-
put to a d-dimensional real-valued representation,
while an indexing process computes representa-
tions for all text using EP (·). The retrieval of rele-
vant content for (q, t) is done in two steps: (i) we
compute the (q, t) representation using EQ(·); and
(ii) we then retrieve M passages that have vector
representations the most similar to the pair repre-
sentation, in terms of dot product:

sim(q, p) = EQ(q, t)
⊺EP (p). (2)

The encoder is trained to make the dot-product sim-
ilarity corresponding to the expected ranking. Thus,
for training our DPR, we use again the ranking loss
in Eq. 1, where the label of p is positive if a support
is part of the paragraph, i.e., st ∈ p.

4.3 Double Ranking and Retrieval

The combination DAR-DR needs to consider the
fact that AS2 datasets do not have annotated sup-
ports. For standard datasets, we consider candi-
dates as potential supports, where the candidates
are also annotated as correct or incorrect answers.
In contrast, when we retrieve new support using
the (q, t) query, no label is available. However, our
DAR approach does not require support labels, thus
we can still train our entire DAR-DR model, by sim-
ply considering two sets: initial candidates C, on
which we can train AR, and a set S containing new
supports retrieved by DPR. SR can be trained on
C ∪ S, using the ranking loss (Eq. 1), which only
need to estimate the best support. Again, we find it
with st = arg-maxi AR(q, t, ci), where t ∈ C and
ci ∈ C ∪ S \ t.

5 Experiments

We compare our models with several baselines we
implemented from previous work, and ASR, which
is the current state of the art for AS2. For the evalu-
ation, we used three different datasets traditionally
used for AS2. Finally, we provide error analysis
and model discussion.

5.1 Datasets

WikiQA is a QA dataset (Yang et al., 2015) con-
taining a sample of questions and answer-sentence
candidates from Bing query logs over Wikipedia.
The answers are manually labeled. Some questions
have no correct answers (all-), or only correct an-
swers (all+). Table 2 reports the corpus statistics
without all− questions, and without both all− and
all+ questions (clean). We follow the most used
setting: training with the noall− mode and then
answer candidate sentences per question in testing
with the clean mode.

TREC-QA is another popular QA benchmark
by Wang et al. (2007). Since the original test set
only contain 68 questions and previous method al-
ready achieved ceiling performance (Zhang et al.,
2021), we combined train., dev. and test sets, re-
moved questions without answers, and randomly
re-split into new train., dev. and test sets, which
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Train Dev Test
#Q #A #Q #A #Q #A

no all- 873 8,672 126 1,130 243 2,351
clean 857 8,651 121 1,126 237 2,341

Table 2: WikiQA dataset statistics

contains 816, 204 and 340 questions, and 32,965,
9,591, and 13,417 question-answer pairs for the
train., dev. and test sets, respectively.

SelQA is another benchmark for Selection-Based
QA (Jurczyk et al., 2016), which composes about
8K factoid questions for the top-10 most preva-
lent topics among Wikipedia articles. We used the
original splits for answer selection filed, which con-
tain 5529 questions for train set, 785 questions for
dev. set and 1590 questions for test set. SelQA is
a large-scale dataset and it is more than 6 times
larger than WikiQA in number of questions.

HotpotQA is a popular benchmark for multi-hop
QA (Yang et al., 2018), which contains about
100,000 crowd-sourced questions that require rea-
soning over separate Wikipedia paragraphs. Each
question not only has gold answer phrase but also
has two supporting documents that contain the nec-
essary evidence to infer the answer. To make it
suitable for the AS2 task, we split paragraph into
sentences, and label the sentences containing the
gold answer phrase as correct answer, while con-
sidering the others as incorrect. For evaluation, we
use the official dev-set-distractor as our test set.

5.2 Training and testing details
Metrics The performance of QA systems is typi-
cally measured with Accuracy in providing correct
answers, i.e., the percentage of correct responses,
which also refers to Precision-at-1 (P@1) in the
context of reranking. We also use Mean Aver-
age Precision (MAP) and Mean Reciprocal Rank
(MRR) evaluated on the test set, using the entire
set of candidates for each question (this varies ac-
cording to the dataset), to have a direct comparison
with the state of the art.

Models We use the pre-trained RoBERTa-Base
(12 layer) and RoBERTa-Large-MNLI (24 layer)
models, which were released as checkpoints for
use in downstream tasks1.

Reranker training We adopt Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 2e-5

1https://github.com/pytorch/fairseq

for the transfer step on the ASNQ dataset (Garg
et al., 2020), and a learning rate of 1e-6 for the
adapt step on the target dataset. We apply early
stopping on the development set of the target cor-
pus for both fine-tuning steps based on the highest
MAP score. We set the max number of epochs
equal to 3 and 9 for the adapt and transfer steps,
respectively. We set the maximum sequence length
for RoBERTa to 128 tokens.

ASR training Again, we use the Adam optimizer
with a learning rate of 2e-6 for training the ASR
model on the target dataset. We utilize one Tesla
V100 GPU with 32GB memory and a train batch
size of eight. We use two transformer models for
ASR: a RoBERTa Base/Large for PR, and one for
the joint model (see Fig. 1). We set the maximum
sequence length for RoBERTa to 128 tokens and
the number of epochs as 20. We select the best k
chosen in (Zhang et al., 2021).

DAR implementation and training For training
the DAR model, we also use the Adam optimizer
but with a different learning rate, 5e-6. We utilize
two Tesla A100 GPUs with 40GB memory and
a train batch size of 128. DAR only needs one
transformer model: a RoBERTa Base/Large (see
Fig. 2). The maximum sequence length and the
number of epochs are the same with ASR training,
which are 128 and 20 separately.

DPR implementation and training We utilize
the same training configuration of the original DPR
in Karpukhin et al. (2020). Then, we used it to
build a large index having up to 130MM passages
extracted from 54MM documents of Common-
Crawl2. We selected English Web documents of
5,000 most popular domains, including Wikipedia,
from the recent releases of Common Crawl of 2019
and 2020. We then filtered pages that are too short
or without proper HTML structures, i.e., having
title and content. To retrieve to N candidates, we
input our DPR with (q, t) pairs as query to retrieve
top 1000 passages.

DAR-DR implementation and training The
training configuration is similar to DAR training
with the different steps highlighted in Sec. 4.2. For
each (q, ci) of our datasets, we used our DPR for
retrieving 1000 supporting paragraphs, which are
then split into sentences, s. We rank s according
to a EQ(q, t) · EP (s), where EP (s) provides the

2commoncrawl.org
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RoBERTa Base WikiQA TREC-QA SelQA HotpotQA
P@1 RER MAP MRR P@1 RER MAP MRR P@1 RER MAP MRR P@1 RER MAP MRR

TANDA (Garg et al.) – – 0.8890 0.9010 – – – – – – – – – – – –
ASR (Zhag et al.) 0.8436 13.64% 0.9014 0.9123 – – – – – – – – – – – –

SBC 0.8189 0.00% 0.8860 0.8983 0.8824 0.00% 0.8979 0.9277 0.9302 0.00% 0.9512 0.9587 0.6598 0.00% 0.7576 0.7685
ACM 0.7819 -20.43% 0.8542 0.8684 0.8824 0.00% 0.8942 0.9272 0.9308 0.86% 0.9511 0.9589 0.6597 -0.03% 0.7574 0.7681

PC 0.8272 4.58% 0.8927 0.9045 0.8882 4.93% 0.9000 0.9319 0.9302 0.00% 0.9514 0.9587 0.6718 3.53% 0.7644 0.7750
ASR (ours) 0.8436 13.64% 0.9014 0.9123 0.9088 22.45% 0.9036 0.9420 0.9314 1.72% 0.9519 0.9592 0.6795 5.79% 0.7724 0.7812
ASR-Rank 0.8436 13.64% 0.9012 0.9108 0.9088 22.45% 0.9181 0.9445 0.9296 -0.86% 0.9503 0.9580 0.6768 5.00% 0.7742 0.7824

DAR 0.8519 18.22% 0.9011 0.9136 0.9118 25.00% 0.9181 0.9446 0.9415 16.19% 0.9592 0.9653 0.6844 7.23% 0.7754 0.7854
DAR-DR 0.8560 20.49% 0.9051 0.9164 0.9176 29.93% 0.9233 0.9493 0.9484 26.07% 0.9616 0.9687 0.6832 6.88% 0.7729 0.7832

Table 3: Performance of different models using RoBERTa base Transformer on WikiQA, TRECQA, SelQA and
HotpotQA. RER is the relative error reduction on P@1. The difference between P@1 of DAR and DAR-DR and
P@1 of all the other systems is statistically significant at 95%.

embedding representation of each s, even though
we trained EP (·) for passages. We select the top
10 sentences as support for all the experiments
with DAR-DR. It should be noted that all datasets
for retrieval-based QA are based on candidates re-
trieved with an initial search engine, e.g., Bing,
Google, TREC systems. This constitutes the first
standard retrieval in our DR approach.

5.3 Comparative/ablated results

We design a set of baselines (see Sec. 3), which
also constitute the best ablation systems of our most
complex architecture DAR-DR. Indeed, SBC is our
reimplementation of TANDA, which corresponds
to the basic system (or basic component) of our
architecture, it uses only one reranker and no joint
inference. PC is the simplest joint model, which
still uses only one classifier as SBC but applied
to pairs of answers. ASR (ours) is our reimple-
mentation of ASR, which uses an SBC model, a
PC model, and an internal SR (called ASC) model
as in DAR, used just for classification, no ranking.
ASR-Rank extends ASR using the top 3 candidates
re-ranked by ASC category 0 score (see Sec. 3.4),
instead of using the standard TANDA rank. We in-
troduced, ASR-Rank to show an approach similar
to DAR. ACM is a joint model over all k candi-
dates (theoretically more expressive than just joint
models over pairs). DAR uses two rerankers as
ASR-Rank but only one transformer and our ap-
proach to train them. Finally, DAR-DR adds to
DAR new candidates retrieved by DPR.

Main results Table 3 reports P@1, MAP and
MRR of models on WikiQA, TREC-QA, SelQA
and HotpotQA datasets. TANDA and ASR rows
report the results obtained by Garg et al. (2020) and
Zhang et al. (2021), respectively, which certify the
alignment between our and previous work setting
and implementation. We note that:

(i) P@1, MAP and MRR correlate well, thus, we
can focus our analysis on P@1, which typically pro-
vides the QA performance. The AS2 model P@1
numbers are in the lower 80s% for all datasets but
HotpotQA. This means that absolute improvements
are not expected to be large, thus we also report
the relative error reduction (RER) for P@1, which
better shows model differences.
(ii) Our SBC and ASR replicate the performance re-
ported in previous work (WikiQA and TREC-QA),
which are the previous state of the art.
(iii) We confirm that ASR, using candidate pairwise
information greatly improves on single answer clas-
sification models, e.g., we observe a relative error
reduction of 13.64% (from 81.89 to 84.36) over
TANDA and SBC, which do not use the informa-
tion from other candidates.
(iv) Our proposed model DAR significantly reduces
the error of QA systems with respect to ASR by
4.58% (from 84.36 to 85.19), 2.55% (from 90.88 to
91.18), 14.47% (from 93.14 to 94.15), and 1.44%
(from 67.95 to 68.44) on WikiQA, TREC-QA,
SelQA, and HotpotQA, respectively. It is inter-
esting to note that DAR only uses the half of the
parameters of ASR (125M vs. 250M). The combi-
nation between the two rerankers for answer and
support generates more selective information than
max-pooling pairwise embeddings.
(v) To verify that the unique feature of DAR of
effectively combining training examples and their
losses is a key element, we implemented ASR-
Rank, which also selects supporting candidates
for ASR, using its internal answer pair classi-
fier, ASC(t, ci). The results derived on WikiQA
and TREC-QA show no difference between ASR
and ASR-Rank, while the latter underperforms on
SelQA. This shows that the improvement produced
by DAR is not about selecting the best support in
absolute, but it is about selecting the support that
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Roberta
Large

WikiQA

P@1 RER MAP MRR Param.
SBC 0.8724 0.00% 0.9151 0.9266 355M
ASR 0.8971 19.36% 0.9280 0.9399 710M
DAR 0.8889 12.93% 0.9230 0.9362 355M
DAR-DR 0.8930 16.14% 0.9241 0.9375 355M

Table 4: Results on WikiQA using RoBERTa Large.

can produce the highest confidence in the answer
selector (see Sec. 4.1).
(vi) DAR-DR introduces 10 additional supports to
DAR processing, retrieved with our modified DPR
approach. These new candidates do not have any
label indicating if they are good or bad support.
They are automatically ranked with the DAR ap-
proach. The results show an RAR of 2.27%, 4.93%,
and 9.88%, on WikiQA, TREC-QA, and SelQA,
respectively. Suggesting that retrieving supporting
candidates for (q, t) can be very effective. Hot-
potQA does not benefit from retrieving candidates
external to the dataset as the original candidate set
always contains at least one correct support by con-
struction, thus no additional retrieval is needed.
(vii) Finally, we perform randomization test (Yeh,
2000) to verify if the models significantly differ in
terms of prediction outcome. Specifically, for each
model, we compute the best answer for each ques-
tion and derive binary output based on the ground
truth. We then follow the randomization test to
measure the statistical significance between two
models. We use 100,000 trials for each calculation.
The test show statistical significant difference of
DAR and DAR-DR vs. all the other models over all
datasets but HotpotQA, with p < 0.05, and between
DAR and DAR-DR on SelQA.

Results with large models We experimented
with SBC, ASR, DAR and DAR-DR models im-
plemented on a larger transformer, i.e., RoBERTa
Large, on WikiQA. Table 4 reports the compar-
ative results: SBC and ASR replicate the results
by Zhang et al. (2021), i.e., a P@1 of 87.24% and
89.71%, respectively; the latter is the state of the art
on WikiQA with a P@1 of 89.71%. Both DAR and
DAR-DR improve SBC up to 20% RAR. However,
even DAR-DR is behind ASR, by about 3.21% of
RER. This different outcome with respect previous
results on the RoBERTa base can be explained by
looking at the column reporting model parameters.
As before, ASR uses the double of parameters of
DAR, however, in this case the number of parame-
ters is 710M, which is a large number in absolute:

q: what is the measurements of saturn ’s moons?
c1: The rings of Saturn are made up of objects ranging in size

from microscopic to hundreds of meters, each of which is
on its own orbit about the planet.

c2: Saturn has 62 moons with confirmed orbits , 53 of which
have names and only 13 of which have diameters larger
than 50 kilometers.

c3: The moons of Saturn ( also known as the natural satellites
of Saturn ) are numerous and diverse ranging from tiny
moonlets less than 1 kilometer across to the enormous
Titan which is larger than the planet Mercury.

c4: Saturn has seven moons that are large enough to be el-
lipsoidal due to having planetary mass , as well as dense
rings with complex orbital motions of their own.

Table 5: A question with answer candidates; c2 and c3
are correct.

although DAR is a better model, it can hardly im-
prove a model with 355M parameters more.

5.4 Model discussion and error analysis
Tab. 5 shows a question with the rank provided by
SBC. The top-1 answer, c1 is incorrect, as it refers
to objects of Saturn’s rings, instead of targeting its
moons. SBC probably got tricked by the phrase
ranging in size. ASR also selected c1 using the
support of the top 3 candidates selected by SBC,
i.e., c2, c3, and c4. These candidates support c1 as
they provide more context, e.g., moon, which is not
in c1 but it is required in the question. The main
problem of ASR is the fact that correct answers also
tend to support imperfect but reasonable answers
such as c1. In contrast, for each t, DAR learns to
select the best support: in the example, it selects
the correct answer c2 using c4 as support. This
probably provides phrases such as seven moons
that are large enough supporting c2 phrases such
as have diameters larger than.

In Tab. 6, we see an example, in which SBC
ranks an incorrect answer at the top. It proba-
bly prefers c1 to the correct answer c2 because
it matches the main question entity and verb, i.e.,
Family Guy and premier, while c2 does not contain
explicit reference to the main entity. Also ASR and
DAR cannot select c2, as the available supports,
c1 and c3, do not provide any useful information.
In contrast, DAR-DR can use new retrieved sup-
port, i.e., s1, which contains the main entity and
reinforces the information in c2, i.e., 22 millions.

See Appendix for more discussion.

6 Conclusion

In this paper, we propose, DAR, a transformer ar-
chitecture based on two reranking heads: (i) the an-
swer reranker (AS2 model) and the answer support
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q: How many viewers did "Family Guy" premier to?
c1: Family Guy officially premiered after Fox’s broadcast of

Super Bowl XXXIII on January 31, 1999, with "Death
Has a Shadow.

c2: The show debuted to 22 million viewers, and immediately
generated controversy regarding its adult content.

c3: At the end of its first season, the show was #33 in the
Nielsen ratings, with 12.8 million households tuning i.

s1: Family Guy has been around since 1999 with 11 seasons to
date, the viewing rates have dropped from over 22 millions
to 7 million.

Table 6: Example with c2 correct.

reranker. We optimize the latter imposing a loss
function that penalizes non optimal support for the
target answer, thus avoiding the need of defining
and manually labeling supporting data. Addition-
ally, we introduce a second retrieval stage based
on DPR, where we optimize the score function
between answer/question pair and the retrieving
passage. The experiments with four well-known
datasets show consistent improvement of DAR over
the state of the art, and the potential benefit of the
secondary retrieval, achieving up to 14.47 of rel-
ative error reduction (on SelQA). We will release
software, models, and the DPR retrieved data for
all datasets for fostering research in this field.

Limitations

We propose a new QA architecture that operate
a second retrieval. This can make the approach
slower than a standard QA system using only one
retrieval but, at the same time, it enables the possi-
bility to retrieve critical information. The latter can
be used to verify question/answer pairs or also com-
plement the information need of the user. This is
clearly a future direction for QA/personal assistant
systems. As we explain in the paper, we designed
a DPR model which can specifically retrieve sup-
porting items (no just answer candidates), as we
can query DPR with the pair (question, answer to
be verified). This is a major novelty with respect to
systems that can only retrieve text relevant to the
question.

Our new approach uses only one support to ver-
ify answer correctness. This may be seen as lack
of exploration of the model potential. However,
using one support only requires a classifier of the
form SR(q, t, si). If we use more supports, for
example two, we will have a classifier of the type
SR(q, t, si, sj). This means that to find the arg-max
we would need to iterate over k2, where k is the
number of candidates (so in general kn with n the
number of supports we want to use). This is much

less efficient than our approach. Although, approx-
imated solutions more efficient than O(kn) can be
surely designed, in this paper, we have focused on
a rather efficient version, which has also shown to
improve the state of the art.
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A Deeper Discussion

A.1 Double Retrieval

The complete architecture DAR-DR can operate
a second retrieval, which can make the approach
slower than a standard system using only one re-
trieval but, at the same time, it enables the possibil-
ity to retrieve critical information. The latter can be
used to verify question/answer pairs or also com-
plement the information need of the user. This is
clearly a future direction for QA/personal assistant
systems. As we explain in the paper, we designed
a DPR model which can specifically retrieve sup-
porting items (no just answer candidates), as we
can query DPR with the pair (question, answer to
be verified). This is a major novelty with respect to
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systems that can only retrieve text relevant to the
question.

It should be noted that we apply two answer sen-
tence retrieval steps: (i) the standard one, which is
contained in all datasets for AS2 based QA systems.
See our description of WikiQA, TREC, SelQA, and
HotpotQA. For example, WikiQA uses Bing to re-
trieve passages. (ii) Our innovative retrieval based
on our new DPR model. This takes (q, a) as query
and returns passages that have higher probability
to be good support for a with respect to q.

Our DAR-DR aims to be an end-to-end system,
AS2 tasks are defined using retrieval systems. We
also operate the second retrieval. In other words,
a DAR-DR system deployed in production will
always performs 2 stages of retrieval to provide
answers to users.

A.2 AS2 Tradition
Please note that the AS2 research our paper builds
on has been contributed for more than 20 years. It
started in TREC competitions (QA track 1999). It
has been revived in 2007 with the specialization
of passage reranking in answer sentence selection
(AS2): see for example the systems based on TREC
data https://aclweb.org/aclwiki/Question_
Answering_(State_of_the_art). Also note that
TANDA by Garg et al, 2020 is simply a transformer
fined-tuned in two steps (i) on ASNQ dataset pro-
posed by the same authors, and (ii) on the target
dataset.

A.3 Ablation study
The baseline models we implemented and com-
pared to are ablated versions of our systems, some-
times including different alternatives (instead of
just excluding some features). Sec. 5.3 explains
how the different models we test constitute an ex-
cellent ablation study.

A.4 Usefulness of reporting result with
Relative Error Reduction

The relative error reduction is suitable for reporting
the performance in our setting since we are im-
proving state-of-the-art systems with performance
ranging from ∼81% to ∼97% (depending on the
measure and datasets). Reporting absolute (or also
relative) improvement does not capture the com-
plexity of the task. For example, improving a sys-
tem from 30% to 31% (margin of improvement
70%) is completely different than improving a sys-
tem from 98% to 99%, where the margin of im-

provement is 2%. Relative error reduction, which
we use, accounts for such difficulties. In any case,
whatever lens one uses, the results are statistical
significant, showing that we improve the state of
the art.

A.5 Model Effectiveness

We report the number of model parameters on the
Table 4, which shows that our solution uses half
of the parameters of previous state of the art, ASR
(indeed that uses two transformer models: instead
of our DAR only uses one).

A.6 Multiple supports

Using one support only requires a classifier of the
form SR(q, t, si). If we use more supports, for
example two, we will have a classifier of the type
SR(q, t, si, sj). This means that to find the arg-max
we would need to iterate over k2, where k is the
number of candidates (so in general kn with n the
number of supports we want to use). This is much
less efficient than our approach. Although, approx-
imated solutions more efficient than O(kn) can be
surely designed, in this paper, we have focused on
a rather efficient version, which has also shown to
improve the state of the art.

Moreover, although it may happen that to ver-
ify information multiple pieces are required, this
situation is rather rare in general open QA, as the
web contains the needed information in a redundant
fashion. This means we can most times retrieve
a compact version of an answer why should it be
available only in a fragmented way?

For other more specific application scenarios,
e.g., deriving answers from several axioms and
logic formulas (expressed in text format), combi-
nations of different supports, composing different
retrieved pieces may be required. However, this
scenario is out of the scope of our paper: it can be
an interesting new research.

A.7 Comparison with (Zhang et al., 2021)

(Zhang et al., 2021) is a great work which out-
performs the previous state of the art in AS2, i.e.,
TANDA, which seemed very difficult to improve.
Our contributions:

• We defined a new techniques to automatically
learn to rank support without using any an-
notation, which is for example used in hot-
potQA.
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• Our approach outperforms (Zhang et al.,
2021) on base architectures. With respect to
LARGE, we did not have the language mod-
els comparing with the same number of pa-
rameters but using 355M parameters less, our
approach provide close results.

• Our RoBERTa-base model only use half of
the parameters of (Zhang et al., 2021), which
these days of energy crisis is absolutely im-
portant results.

• Most importantly, we defined a new paradigm
for QA (and answer verification), which uses
double retrieval, our support reranker can be
used to select support obtained with a second
stage of retrieval. This to our knowledge is
completely new for answer sentence selection.

Our approach improves all previous techniques in
a fair comparison, which means similar number
of parameters. In case of RoBERTa based, our
approach outperforms models with the double of
parameters. Specifically, only using 130M param-
eters, it outperforms an architecture of 260M pa-
rameters, i.e., architectures having 130M param-
eters more. The fact that our approach does not
perform an architecture of 710M parameters, i.e.,
a model that used 355M more than ours, is not
a limitation. We show these unfair experiments
(for our approach) because they provide strong evi-
dence about the effectiveness of our approach. The
lower performance on HotpotQA is expected as the
related task is not answer sentence selection, for
which our approach was built. Indeed, HotpotQA
focused on entities and annotated data such that
two paragraphs complement each other, which is a
more restrictive assumption than our approach. For
the sake of generality, we showed that our approach
can also work well for this rather different setting.
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Abstract

In order for NLP technology to be widely ap-
plicable, fair, and useful, it needs to serve a
diverse set of speakers across the world’s lan-
guages, be equitable, i.e., not unduly biased
towards any particular language, and be inclu-
sive of all users, particularly in low-resource
settings where compute constraints are com-
mon. In this paper, we propose an evalua-
tion paradigm that assesses NLP technologies
across all three dimensions. While diversity
and inclusion have received attention in recent
literature, equity is currently unexplored. We
propose to address this gap using the Gini co-
efficient, a well-established metric used for es-
timating societal wealth inequality. Using our
paradigm, we highlight the distressed state of
current technologies for Indian (IN) languages
(a linguistically large and diverse set, with a
varied speaker population), across all three di-
mensions. To improve upon these metrics, we
demonstrate the importance of region-specific
choices in model building and dataset creation,
and more importantly, propose a novel, gen-
eralisable approach to optimal resource allo-
cation during fine-tuning. Finally, we discuss
steps to mitigate these biases and encourage
the community to employ multi-faceted evalu-
ation when building linguistically diverse and
equitable technologies.

1 Introduction

NLP has seen large advances in recent years driven
by the rapid progress in transfer learning (Ruder
et al., 2019; Devlin et al., 2019). The benefits
of these advances, however, are not equally dis-
tributed across the world’s languages (Joshi et al.,
2020) and users. While linguistic diversity and
inclusion have evolved to be a pressing concern
today, measures to quantify these are still lacking.
The progress of any field is tightly coupled with
∗Equal contribution.
†Work done at Google Research.

its evaluation paradigm and the community is in-
centivized to work on highly visible metrics and
benchmarks. In order for users around the world
to reap the benefits of NLP technology, we must
move from an evaluation that focuses on optimiz-
ing raw performance on available test data to a
more holistic user-centric evaluation (Ethayarajh
and Jurafsky, 2020; Ruder et al., 2021). In this
paper, we attempt to do so by defining an evalua-
tion framework along three dimensions: diversity,
equity, and inclusion.1

Diversity is important as NLP technology should
be available to speakers of any language (European
Language Resources Association, 2019). To this
end, recent work (Blasi et al., 2022) quantifies di-
versity of NLP technology across the world’s lan-
guages by weighing normalized task performance
for each language based on its speaker population.

Equity is key as we should aim to develop tech-
nology that does not discriminate against speakers
of any particular language (Kaneko and Bollegala,
2019). State-of-the-art multilingual models in fact
have been shown to perform much better in lan-
guages with access to many pre-training resources
(Hu et al., 2020). To measure such performance
inequity across languages, we propose to use the
Gini coefficient (Dorfman, 1979), a measure that
has been used to represent the income inequality
within social groups.

Finally, inclusion is a concern as the fact that
NLP technology is performant in a given task and
language does not mean that it is usable by all.
State-of-the-art models are becoming larger and
larger (Fedus et al., 2021) and the low-resource
settings of many languages often coincide with
constraints on computational resources (Ahia et al.,
2021). The value a technology provides to a user
thus also needs to consider how easily such technol-

1We focus on assessing these dimensions on the language
level. Prior work on equity focuses mainly on subpopulations
within a language (Katell et al., 2020).
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ogy can be deployed in practice. Ma et al. (2021)
quantify this based on a model’s runtime efficiency,
considering factors like throughput and memory.

Our proposed paradigm is language and model
agnostic making it applicable to an arbitrary set
of languages and models. We apply our paradigm
to highlight the distressing state of current tech-
nologies for Indian (IN) languages. India is a
multilingual society with 1369 rationalized lan-
guages and dialects being spoken across the coun-
try (Chandramouli, 2011). Of these, 22 scheduled
languages2 spoken by almost 97% of the popula-
tion hold an official recognition and 121 languages
have more than 10,000 speakers. Additionally,
21.92% of its population lives below the poverty
line (RBI, 2021). Serving this large varied pop-
ulation justly requires a multi-faceted effort and
basing our case study on IN languages directs the
way forward.

We evaluate a range of state-of-the-art mod-
els and transfer settings (Hu et al., 2020) across
four standard downstream tasks: Named Entity
Recognition (NER), Part-of-Speech Tagging (POS),
Natural Language Inference (NLI) and Question
Answering (QA). We observe that region-specific
choices, i.e., a) region-specific pre-trained models
(Kakwani et al., 2020; Khanuja et al., 2021) and b)
Hindi as the transfer language during fine-tuning,
generally yield the best results. In terms of effi-
ciency, we find that smaller models are preferable
for easier, syntactic tasks while larger models have
the edge on more complex, semantic tasks.

Our findings, however, also highlight that we are
still a long way from building perfectly inclusive
and equitable NLP technology. Towards bridging
this gap, we explore how we can most effectively
annotate data for the remaining languages. Past
work (Lin et al., 2019; Ahuja et al., 2022) has relied
on heuristic and feature-based approaches to source
language selection. In our work, we propose a
novel, fully computational approach to model the
space of source and target languages, and derive
the optimal allocation of a fixed annotation budget
to maximize performance on our proposed metrics
in a multi-source setting.

Our contributions are the following: 1) We pro-
pose a holistic evaluation paradigm that assesses
NLP technology based on their diversity, equity,

2Assamese, Bengali, Bodo, Dogri, Gujarati, Hindi, Kash-
miri, Kannada, Konkani, Maithili, Malayalam, Manipuri,
Marathi, Nepali, Oriya, Punjabi, Tamil, Telugu, Sanskrit,
Santali, Sindhi, Urdu

and inclusion. 2) Using this paradigm, we evaluate
model capabilities for IN languages and quantify
their shortcomings. 3) We propose a novel ap-
proach to select data for fine-tuning these models
with the objective of maximizing performance on
the proposed metrics. 4) We discuss steps that must
be taken to mitigate these biases and call upon the
community to incorporate our evaluation paradigm
when building models to track progress towards
building linguistically inclusive and diverse tech-
nologies.

2 Background and Related Work

Multilingual Models Transformer-based lan-
guage models (LMs) (Vaswani et al., 2017) trained
on massive amounts of text from multiple lan-
guages have enabled the inclusion of an unprece-
dented number of languages in NLP technologies
(Conneau et al., 2020; Devlin et al., 2018). How-
ever, previous research has shown that these models
do not serve all languages equally, with resource-
poor languages in the long tail suffering the most
(Hu et al., 2020; Lauscher et al., 2020). These mod-
els go through a critical step of fine-tuning for the
downstream task before being deployed. Several re-
cent works focus on optimal fine-tuning strategies
that mitigate transfer gaps and improve overall per-
formance across target languages. Lin et al. (2019)
propose a tool that chooses optimal transfer lan-
guages based on linguistic features. Lauscher et al.
(2020) demonstrate the effectiveness of investing in
few-shot in-language training examples. Recently,
Debnath et al. (2021) show that investing in an
equal number of fine-tuning instances across target
languages performs best. These past approaches
however, have all been heuristically designed based
on the knowledge and intuition of the experimenter.

User-centric Evaluation At its core, the need
for language diversity in technologies is tied to
the people it serves. Previous work (Ethayarajh
and Jurafsky, 2020; Ma et al., 2021) has high-
lighted the need for transparent and user-centric
leaderboard evaluation, reporting practically rele-
vant statistics such as model size, energy efficiency,
and inference latency. It is common for speaker
populations of under-represented languages to op-
erate in resource-constrained settings. Therefore,
in addition to evaluating linguistic diversity, we
follow Ma et al. (2021) in computing model ef-
ficiency, which serves to assess the inclusivity of
these technologies. With regards to linguistic di-
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versity, Ruder et al. (2021) highlight the need for
more fine-grained evaluation across languages and
introduce language-specific leaderboards. Blasi
et al. (2022) quantify the value of NLP technol-
ogy weighed by speaker population and determine
utilities of several technologies across the world’s
languages. Choudhury and Deshpande (2021) pro-
pose strategies for fair and efficient model selection
depending on one’s application, based on the prin-
ciples of fairness in economics and social choice
theory.

Indian Languages The research community has
actively been contributing to the advancement of
IN NLP by collecting and open-sourcing data (Kak-
wani et al., 2020; Ramesh et al., 2021; Abraham
et al., 2020; Roark et al., 2020; Kunchukuttan
et al., 2017; Khanuja et al., 2020a), building region-
specific multilingual models (Khanuja et al., 2021;
Kakwani et al., 2020; Ramesh et al., 2021) and cre-
ating evaluation benchmarks (Kakwani et al., 2020;
Khanuja et al., 2020b)3 Several of these efforts
have been undertaken by AI4Bharat4, a non-profit
open-source community that has additionally been
working on developing resources for IN signed
languages (Sridhar et al., 2020) and creating key-
boards for IN scripts. Recently, Google Research
India launched a question answering (QA) chal-
lenge named ChAII5. Microsoft Research India has
also made significant contributions to IN NLP with
several efforts directed towards code-mixed lan-
guage processing6 and building tools and datasets
for under-represented languages in India7.

3 Diversity, Equity and Inclusion (DEI)

There is increasing awareness in society to promote
diversity, equity and inclusion in our workforce,
wherein such measures have recently been enforced
by law (Constitution, 2021). In the social construct,
diversity is defined as “the practice of including
the many communities, identities, races, ethnici-
ties, backgrounds, abilities, cultures, and beliefs of
the people, including underserved communities”,
equity refers to “the consistent and systematic fair,
just, and impartial treatment of all individuals” and
inclusion means “the recognition, and use of the
3.https://github.com/AI4Bharat/indicnlp_catalog maintains a
list of resources for Indian NLP.

4https://ai4bharat.org/
5https://www.kaggle.com/c/chaii-hindi-and-tamil-question-
answering

6https://www.microsoft.com/en-us/research/project/melange
7https://www.microsoft.com/en-us/research/project/ellora

talents and skills of employees of all backgrounds”
(Constitution, 2021). Given the ubiquitous use of
technology in our daily lives, we as technology
makers hold the responsibility of making sure all
voices are heard and equally represented in the
technology we serve. Given that our research com-
munity is incentivized to work on highly visible
metrics and benchmarks, an important first step is
to encourage evaluation along these dimensions.
Previous work mainly focused on average perfor-
mance (as measured by accuracy or F1 for NLU
tasks), which is not indicative of differences in DEI.
Hence, while models claim state of the art based on
an increase in average performance, this increase
may only be due to making the “rich richer” (see
Table 4).

We propose an evaluation paradigm for cur-
rent NLP technology that operationalizes the well-
established diversity, equity and inclusion pillars
on a language level: we quantify diversity based on
the value diverse speaker populations derive from
a technology, equity based on egalitarian perfor-
mance across speaker populations, and inclusion
based on a technology’s accessibility. We employ
metrics of Blasi et al. (2022) and Ma et al. (2021)
to measure diversity and inclusion respectively and
propose a new metric to quantify equity. We de-
scribe the metrics in more detail below:

3.1 Diversity: Utility, Demand and the Global
Metric

The global metric introduced by Blasi et al. (2022)
helps quantify linguistic diversity. Formally, this
metric is composed of the utility of a technology
weighed by its demand. The utility ul of a system
for a task and language is its performance normal-
ized by the best possible performance (typically,
human-level performance) afforded by the task:

ul =
performancel

theoretical max performance

Demand dl is characterized by taking into con-
sideration demographic and linguistic perspectives.
Under the demographic perspective, the demand
for a given technology in a language is estimated
to be proportional to the number of speakers of the
language itself nl (dl ∝ nl). Under the linguistic
perspective, the demand across languages is identi-
cal (dl ∝ 1). These two alternatives, as well as any
intermediate combination of them, are parameter-
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Figure 1: Graphical Representation of the Gini coeffi-
cient (G), given by A/(A + B) when G = 0.2. Each
point on the graph depicts the proportion of the to-
tal (cumulative) performance Pall (e.g., accuracy, F1,
etc) that is achieved by the bottom n% of languages
combined. Assume we have a language set {a, b, . . . ,
y, z} with performances Pa ≤ Pb ... ≤ Py ≤ Pz and
Pa + Pb ... Py + Pz = Pall. When all languages per-
form the same, i.e., Pa = Pb = ... = Py = Pz, G = 0,
as represented by the line of equality, i.e., the bot-
tom n% of languages also account for n% of the to-
tal performance. The value of G increases as the dis-
parity in performance between all languages increases,
and approaches unity in the case of perfect inequality
(here, this would mean Pa = Pb = ... = Py = 0 and
Pz = Pall), i.e., the model / application supports only
one language. See §3.2 for details.

ized through a single exponent τ :

d
(τ)
l =

nτl∑
l′ϵL nτl′

where τ = 1 corresponds to a demographic notion
of demand and τ = 0 to a linguistic one. The global
metric can now be defined as:

Mτ =
∑

lϵL

d
(τ)
l . ul

In essence, Mτ = 0 means that no user bene-
fits from language technology and Mτ = 1 cor-
responds to each language user enjoying perfect
technology. Given our people-centric aim to mea-
sure benefit for all speakers, we employ the demo-
graphic notion of demand (Mτ=1).

3.2 Equity: Gini Coefficient
While diversity accounts for a language’s speaker
population, it does not take into account inequal-

ities in the performance across languages. While
several past works have highlighted transfer gaps
in performance across languages (Hu et al., 2020),
none have quantified this dispersion.8 Traditionally
used measures of statistical dispersion like stan-
dard deviation or calculating range are sub-optimal
choices as they are scale-dependant, unbounded
and highly sensitive to outliers, which makes them
unsuitable for data that does not approach a normal
distribution (De Maio, 2007).

Beyond these measures, several nuanced met-
rics have been introduced to quantify disparity in
income distributions. The choice of income in-
equality indicator is of significant importance since
it has implications in measuring health, state-level
mortality, etc. (De Maio, 2007). The Gini coeffi-
cient (Dorfman, 1979) has been most commonly
used for this purpose (De Maio, 2007).

Hurley and Rickard (2009) lay out six desirable
attributes of a measure of sparsity, drawing from
past literature (Dalton, 1920; Rickard and Fallon,
2004) and prove the Gini coefficient to be the only
measure having all six, among a varied set of al-
ternatives. Briefly, these properties and their rele-
vance in measuring linguistic disparity across tasks
include: i) Robin Hood: a drop in high-performant
and gain in low-performant languages should lead
to higher equity; ii) Scale Invariance: no change
in relative performance should lead to no change
in equity, regardless of changes in absolute val-
ues; iii) Rising Tide: adding a constant value to
each language’s performance should increase eq-
uity; iv) Cloning: equity must remain invariant
under cloning, i.e., if two identical distributions are
combined, the equity remains unchanged; v) Bill
Gates: if one language hypothetically gains infinite
performance, equity should tend to zero; vi) Ba-
bies: adding languages with zero performance in
the distribution should decrease equity.

Given that the Gini coefficient satisfies all of
these attributes (Hurley and Rickard, 2009), we
propose to use the same in pursuit of quantifying
the inequalities amongst languages with regard to
downstream tasks in NLP. A pictorial representa-
tion of the Gini coefficient for this setting can be
found in Figure 1. Downstream task performance
closely follows the highly skewed data distribu-
tions on which massively multilingual models are
pre-trained. By including the Gini coefficient mea-

8Hu et al. (2020) only considered the difference between En-
glish and other languages as cross-lingual transfer gap.
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sure in our evaluation, we aim to incentivize model
builders to invest in equitable performance, despite
data differences. Details on how the Gini coeffi-
cient is calculated are given in Appendix A.3.

3.3 Inclusion: Efficiency Score

Language technology is only beneficial if it can be
deployed and accessed by users in a region. We em-
ploy efficiency to quantify inclusion as user devices
are resource-constrained in many low-resource set-
tings. Following work on user-centric evaluation
(Ethayarajh and Jurafsky, 2020; Ma et al., 2021),
we propose to incorporate efficiency into model per-
formance based on throughput and memory, each
of which are defined below.9

Throughput Number of instances the model can
process per second on a CPU, assuming that GPUs
are rarely used for deployment at scale in resource-
constrained environments.

Memory Saved The size of the model is consid-
ered to be a measure of how expensive a model is
to use in practice. Since we wish to minimize this
metric, memory used is transformed into memory
saved by subtracting it from a maximum available
memory of 16 GB (Ma et al., 2021). We show the
memory and throughput values for our models in
Appendix A.1.

Following Ma et al. (2021), to calculate the ef-
ficiency score we first convert each metric into
units of performance, by calculating the aver-
age marginal rate of substitution (AMRS) for
each metric M (i.e., throughput and memory).
AMRS(M,perf) tells us the rate at which model
creators, as a group, are trading off M for a
one-point increase in perf while keeping utility
constant. For example, if AMRS of “memory
saved” with respect to accuracy were 0.5 GB,
then each GB of memory saved would on av-
erage be worth 2 points of accuracy. Dividing
M by AMRS(M,perf) converts it to units of
performance. Details on how one can calculate
AMRS(M,perf) can be found in Appendix A.1.
For a model xi, Efficiency(xi) is then defined as :

Efficiency(xi) =
∑

M

wM ∗
M(xi)

AMRS(M, perf)

9Ma et al. (2021) additionally consider fairness and robustness,
both of which are highly contextual and difficult to define
in the context of multilingual models at present. Hence, we
focus on model aspects that are objectively measurable.

where we choose wperf = 0.5, wthroughput = 0.25
and wmemory = 0.25 as default weights. In prac-
tice, these weights can be adjusted based on user
requirements and existing constraints.

4 Egalitarian Annotation Budget
Allocation

Model development involves not just the design
of an architecture or training but also data annota-
tion. The proposed dimensions thus cannot only be
used to assess models but can also inform how data
should be annotated across many languages. As
fine-tuning on a few labeled examples in the target
language has shown to improve zero-shot transfer
performance, we study how to allocate an annota-
tion budget across a number of source languages S
in order to optimize for inclusion and equity across
a set of target languages T. Previous work em-
ploys a feature-based approach to select a single
source language to maximize performance on a
target language (Lin et al., 2019) or labels exam-
ples across all source languages equally (Debnath
et al., 2021). We propose a fully computational ap-
proach for modeling the space of source and target
languages for a multi-source multi-target language
setting. This is done by empirically estimating
performance of language t ϵ T on a held-out set
when fine-tuned on x labeled instances of language
s ϵ S, ∀(s, t) pairs, which follows a power-law dis-
tribution (Rosenfeld et al., 2019). We now seek to
find the optimal allocation {xs : s ∈ S} subject to∑

s∈S xs ≤ X (details in Appendix A.5).
We follow a simple greedy approach to solve

this constrained optimization problem as shown
in Table 10. Specifically, at each step we allocate
a sample to the source language conferring the
highest marginal gain to all target languages, which
is quantified by the summation of the increase in
the global metric and the reduction in Gini.10 At
present, we assign equal weight to each metric but
this can be changed according to user preferences.

5 Experiments

5.1 Experimental setup
Languages We base our case study on the 22
scheduled languages of India spoken by 97% of its
population. We also include English, since it has a
sizeable population of 128.5M speakers (Table 1).
10Future work may consider more complex approaches that

consider language relatedness based on work on transfer
relationship learning (Zamir et al., 2018; Song et al., 2019).
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Language as bn brx doi en gu hi kn kok ks mai ml
Speakers (in M) 23.6 107.4 1.6 2.8 128.5 60.3 691.6 58.8 2.6 7 14.3 35.6

Language mni mr ne or pa sa sat sd ta te ur -
Speakers (in M) 2.2 99.1 3.4 42.6 36.1 3.1 7.7 3.1 76.6 94.5 63.2 -

Table 1: The number of speakers (in millions) for each of the 22 scheduled languages and English. We take the sum
total of first, second and third language speakers for each language.

Task Dataset Test Langs. HP

NER WikiAnn (Pan et al.,
2017; Rahimi et al.,
2019)

bn, en, gu,
hi, ml, mr,
pa, ta, te, ur

97.6

POS Universal Dependen-
cies v2.6 (Nivre et al.,
2018)

en, hi, mr, ta,
te, ur

97

NLI XNLI (Conneau et al.,
2018)

en, hi, ur 92.8

QA XQuAD (Artetxe
et al., 2019); TyDiQA-
GoldP (Clark et al.,
2020)

bn, en, hi, te 91.2;
90.1

Table 2: Finetuning Tasks and Datasets. HP denotes
the human performance for each task. For QA, HP is
91.2 F1 for XQuAD and 90.1 F1 for TyDiQA.

Language NER POS NLI QA

English 20,000 21,261 392,702 88,602
Hindi 5,000 13,305 392,702 (-tran) 88,602 (-tran)

Table 3: Number of training instances for English and
Hindi. (-tran) denotes that the English fine-tuning set
has been translated to Hindi.

Tasks We select tasks from the XTREME (Hu
et al., 2020) benchmark. Dataset details and the hu-
man performance (HP) for each task can be found
in Table 2. For each task, we only evaluate on IN
language test sets.

Models Model selection is motivated by two key
factors that we wish to explore in our study: i)
general vs region-specific choices; and ii) model
efficiency. We choose IndicBERT (Kakwani et al.,
2020), MuRIL (Khanuja et al., 2021) and XLM-R
(Conneau et al., 2020), the first two being region-
specific models and the third being a state-of-the-
art model trained on 100+ languages. We consider
both the base and large versions for MuRIL and
XLM-R. IndicBERT follows the ALBERT architec-
ture (Lan et al., 2019) and is hence much smaller
than the base versions of both models. IndicBERT
is trained on 11, MuRIL on 16, and XLM-R on 15
IN languages (details in Appendix A.2).

Task Model
Baseline Diversity Equity Inclusion

F1/Accuracy ↑ Mτ=1 ↑ Gini Coeff. ↓ Efficiency ↑

NER
MuRILbase 77.6 69.6 0.59 69.1
XLM-Rlarge 68.0 61.2 0.60 44.4
MuRILlarge 77.7 68.2 0.59 63.1

POS
MuRILbase 75.0 54.7 0.76 52.5
XLM-Rlarge 79.2 60.3 0.75 48.0
MuRILlarge 77.3 58.6 0.76 51.8

NLI
MuRILbase 74.1 45.5 0.88 58.7
XLM-Rlarge 78.7 46.6 0.88 57.3
MuRILlarge 78.6 47.4 0.88 57.8

QA
MuRILbase 76.1 53.8 0.83 77.8
XLM-Rlarge 75.7 56.6 0.83 76.3
MuRILlarge 77.7 57.9 0.83 75.7

Table 4: DEI Results compared to baseline F1/accuracy
performance. Here, we compare models’ accuracy/F1
performances (usually reported as the evaluation metric)
to their DEI metrics. We observe that while perfor-
mances may significantly vary, DEI metrics (especially
equity) don’t change as much, indicating that multilin-
gual models make the rich "richer" to increase average
performance but may not be moving towards being truly
multilingual and equitable across languages. More dis-
cussions in Section 5.2.

Fine-tuning We initially fine-tune the selected
models using training data in English (EN) given
the availability of labeled data across tasks. How-
ever, past works highlight that this choice is sub-
optimal and one can obtain better performance
by transferring from closely related languages
(Lauscher et al., 2020; Cotterell and Heigold, 2017;
Dong et al., 2015; Turc et al., 2021). To examine
this effect in our case study, we additionally fine-
tune models on Hindi (HI) because i) 15 out of 22
languages belong to the same language family as
HI (Indo-Aryan); ii) we have training data avail-
able for all tasks in HI11; and iii) HI has the highest
speaker population, which may lead to higher de-
mographic utility and is a future-safe choice to ob-
tain annotations for any task. Table 3 summarizes
training data statistics for EN and HI.

11Training sets for NLI and QA have been machine-translated
from English, which has been shown to perform similar to
human-generated train sets (Turc et al., 2021).
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Metric Train Lang. Model NER POS NLI QA Average

Mτ=1 ↑
English

MuRILbase 69.6 54.7 45.5 53.8 55.9
XLM-Rlarge 61.2 60.3 46.6 56.6 56.2
MuRILlarge 68.2 58.6 47.4 57.9 58.0

(Diversity)
Hindi

MuRILbase 75.1 67.3 46.8 54.7 61.0
XLM-Rlarge 74.4 66.8 49.4 53.2 60.9
MuRILlarge 74.8 66.5 49.2 54.6 61.3

Gini Coeff. ↓
English

MuRILbase 0.59 0.76 0.88 0.83 0.76
XLM-Rlarge 0.6 0.75 0.88 0.83 0.77
MuRILlarge 0.59 0.76 0.88 0.83 0.77

(Equity)
Hindi

MuRILbase 0.59 0.75 0.87 0.83 0.76
XLM-Rlarge 0.59 0.76 0.88 0.83 0.77
MuRILlarge 0.59 0.75 0.87 0.83 0.76

Efficiency ↑
English

MuRILbase 69.1 52.5 58.7 77.8 64.5
XLM-Rlarge 44.4 48 57.3 76.3 56.5
MuRILlarge 63.1 51.8 57.8 75.7 62.1

(Inclusion)
Hindi

MuRILbase 69.8 56.2 59.8 77.3 65.8
XLM-Rlarge 49.2 49.0 59.1 75.1 58.1
MuRILlarge 65.2 53.7 58.8 75.0 63.2

Table 5: Region-specific fine-tuning results. Note that
the metrics are computed considering all 23 languages
as detailed in Section 5.1. Region-specific fine-tuning
helps, but disparities along DEI axes persist. More
discussions in Section 5.2.

5.2 Zero-shot transfer results

How do DEI metrics compare to baseline
standard performance metrics (F1/Accuracy)?
We report results of the best-performing models
in Table 4. While average performance is similar
across tasks, there are stark differences in DEI
metrics. The diversity metric helps discern whether
the change in performance is more skewed towards
languages with a relatively high or low speaker
population. For example, for POS, MuRILbase and
XLMRlarge have a 4.2% difference in performance
but a 5.9% difference in Mτ=1. This indicates that
the difference is more pronounced for languages
with large speaker populations. Similarly, for NLI,
the difference in performance and Mτ=1 is 4.6%
and 1.1% respectively, which also highlights a
lack of test data to quantify larger differences in
diversity. With regards to equity, we observe that
even though major differences exist compared
to average performance, the Gini coefficient
remains relatively unchanged, indicating that while
overall performance has increased, the disparity in
performance amongst languages has not yet been
addressed by any model. Regarding efficiency or
inclusion, while MuRILlarge beats MuRILbase in
performance, MuRILbase is more efficient to use,
across all tasks.

Where are we today w.r.t DEI of NLP technol-
ogy? We report results of best-performing mod-
els (fine-tuned on EN and HI) in Table 5 (de-
tailed results with XLMRbase and IndicBERT in
Table 13). Overall, the diversity metric is highest

Metric Budget Model
Fine-tuning Strategy

English Hindi Egalitarian Greedy

Mτ=1 ↑

1,000
XLM-Rlarge 54.0 66.2 65.4 65.3
MuRILlarge 60.4 71.3 74.1 73.6

5,000
XLM-Rlarge 59.4 74.4 75.4 75.7
MuRILlarge 65.4 74.8 78.2 78.3

10,000
XLM-Rlarge 59.0 - 77.6 77.6
MuRILlarge 70.5 - 79.6 79.9

Gini Coeff. ↓

1,000
XLM-Rlarge 0.6 0.6 0.59 0.59
MuRILlarge 0.6 0.6 0.58 0.58

5,000
XLM-Rlarge 0.6 0.59 0.59 0.59
MuRILlarge 0.59 0.59 0.58 0.58

10,000
XLM-Rlarge 0.61 - 0.59 0.59
MuRILlarge 0.59 - 0.58 0.58

Table 6: Performance on NER under different annota-
tion budgets. We observe that the greedy approach (§4)
performs best across all metrics. Note that the HI train
set has 5,000 examples only. Details in §5.3.

for MuRILlarge, when fine-tuned on HI. We also
observe that the diversity metric increases with
region-specific choices, both in pre-training and
fine-tuning. The Gini coefficient remains relatively
high at around 0.76 even for the best models, which
highlights the disparity in performance even among
languages within a single region.12 With regards
to efficiency, averaging across languages and tasks,
MuRILbase performs best.

What is the way forward? Overall, the absolute
values of the global metric and the Gini coeffi-
cient indicate that there lies great potential in both
increasing the utility of our models and making
them more equitable. Since model performances
partially reflect the amount of raw data used in
pre-training (Lauscher et al., 2020), creating eq-
uitable unlabeled data resources would alleviate
these issues. However, this is an ambitious under-
taking that is extremely resource intensive and can
certainly not be achieved for 6500 languages in
the near future. We thus investigate how limited
amounts of data can be used to maximally improve
utility and equity during fine-tuning.

5.3 Few-shot results

Problem Formulation For few-shot fine-
tuning, we focus on NER where sufficient
labeled training data for seven IN languages
is available. We employ the source languages
S = {bn, en, hi,ml,mr, ta,ur} and seek to
optimize metrics on the target languages
T = {bn, en, gu, hi,ml,mr, pa, ta, te,ur}. In

12For comparison, for OECD countries from 2008–2009, the
Gini coefficient on income for the entire population ranged
between 0.34 and 0.53 while the Gini coefficient for the
entire world has been estimated to be between 0.61 and 0.68
(Hillebrand et al., 2009; Klugman and Nations, 2010).
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each setting, we have a limited annotation budget,
which we can divide among the source languages.
We compare against several competitive baselines:
i) using only examples from EN or HI respectively;
ii) distributing the annotation budget in an egali-
tarian (uniform) way across all source languages
(Debnath et al., 2021); and iii) our novel greedy
approach proposed in §4. For the greedy approach,
we illustrate the best-fit curves for each (s, t) pair
in Appendix A.5 (Table 11).

Results We show the results under various anno-
tation budgets in Table 6. Overall, we find that our
method yields a higher global metric under most
budgets (5 of 6 cases) and also yields a lower Gini
coefficient under all budget schemes. The optimal
allocations for each budget are shown in Table 12.
As we can see, the greedy algorithm converges to a
solution that is close to uniform. This provides fur-
ther evidence for the benefits of an egalitarian dis-
tribution of annotation budget in order to maximize
performance across all languages as the expected
marginal gain for languages that have been under-
represented during training will be highest. Both
the egalitarian and greedy approaches significantly
outperform fine-tuning on EN or HI. For instance,
our greedy approach outperforms fine-tuning on
10,000 EN examples by 1–3% with a budget of
only 1,000 examples.

6 Discussion

Building evaluation datasets Having uncovered
the linguistic inequity and exclusivity of current
NLP technologies, we seek to identify practical
measures we can take in order to mitigate these
biases. As a first step, it is paramount to build rep-
resentative evaluation sets for all languages as they
are required to accurately measure diversity and
equity. Out of the 23 languages in our case study,
most do not have evaluation data across tasks de-
spite holding official recognition and being spoken
by 97% of the population. In light of the bene-
fits of an egalitarian data distribution during few-
shot learning, we also recommend the collection
of small amounts of data across many languages
for training, in order to maximize marginal gain.
These datasets should be collected at the grass-
roots level, involving the community they need to
serve to capture culturally relevant phenomenon.
A prime example of this is the Masakhane organi-
sation13 steering efforts towards data collection in
13https://www.masakhane.io/

African languages, involving the local community.
Incentivizing rural, low-income workers to provide
for such data also serves as a viable source of sup-
plementary income, and does not degrade dataset
quality (Abraham et al., 2020).

Trading off multilinguality and regionality
From a modeling perspective, multilingual pre-
trained models have been instrumental to NLP
systems supporting an unprecedented number of
languages, because of their zero-shot transfer ca-
pabilities. However, while these are a big step
towards linguistic inclusion, they are subject to
limitations such as highly skewed pre-training dis-
tributions and limited transfer to under-represented
languages (Hu et al., 2020; Lauscher et al., 2020), a
bias towards the source language, and sub-optimal
tokenization (Wang et al., 2021). A way to com-
bat these issues is to make region-specific choices,
both in pre-training and fine-tuning, as observed
in §5.2. Localizing the problem also enables one
to incorporate linguistic expertise (Nzeyimana and
Niyongabo Rubungo, 2022) and provide support
for culturally relevant phenomena like transliter-
ation or code-mixing. Despite this, we must be
wary of excessive fragmentation in pre-training as
it leads to higher maintenance costs and there is
a possibility that these benefits will be overcome
with advances in compute and model capacity in
the near future. Optimal fine-tuning however, is
promising, as evidenced in §5.3 where we observe
significant gains in moving away from the zero-
shot paradigm.

7 Conclusion

We have proposed a framework for the evaluation
of NLP technology based on diversity, equity, and
inclusion and proposed the Gini coefficient to quan-
tify equity. We have assessed to what extent several
modeling and data choices affect the value NLP
technology confers to speakers of Indian languages.
We have also proposed an algorithmic method for
resource allocation for task-specific fine-tuning,
which outperforms a purely egalitarian distribu-
tion of data labeling. Finally, we highlight the
importance of building representative evaluation
sets from the grass-roots level to enable tracking
progress, and discuss how even with the best mod-
eling strategies, we have a long road ahead in build-
ing inclusive, equitable systems. While region-
specific choices help to a certain extent, building a
single global multilingual model without compro-
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mising on the three metrics is something we should
move towards in the future. We sincerely hope
our evaluation paradigm aids in tracking the com-
munity’s progress in building linguistically diverse
technologies.

Limitations

We do not consider the inequalities that may ex-
ist within subgroups in a language given the lack
of fine-grained evaluation data. In multilingual
countries like India, each language is composed of
several dialects (Hindi alone is composed of 58 di-
alects (Chandramouli, 2011)). As disparities exist
along multiple axes such as caste, gender, religion
and so on (Sambasivan et al., 2021), it is imperative
to go beyond the language level. We only consider
pre-trained language models for our experiments
given their massive language coverage and zero-
shot transfer capabilities. There have been efforts
to build language-specific, task-specific models
which we do not include in our study. Our greedy
data allocation method is a strong baseline that out-
performs standard approaches such as selecting a
single source language or uniform selection. It can
be improved by incorporating notions of language
similarity, which requires more complex methods
(Song et al., 2019).
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A Appendix

A.1 Efficiency
We report the throughput and memory for each
model and task in Table 7. For NLI, POS and NER,
the maximum sequence length is 128 and for QA
it’s 384.

As detailed in Section 3.3, we need to calcu-
late the AMRS for each metric M (throughput and
memory saved), to calculate the efficiency score.
As described in (Ma et al., 2021), each model has
properties (or goods) that inform its utility. Here,
these goods are throughput, memory saved, and
performance. A model is a point in this space of
goods and an indifference curve is a set of points
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that provide the same utility (for different values of
these properties). These curves are monotonically
negatively sloped, i.e., for a model with higher ac-
curacy to be on the same curve as one with a lower
accuracy, it will have to use up more memory or
have lower throughput. For a given indifference
curve, the rate at which this trade-off is made, is
called the marginal rate of substitution (MRS).

To calculate MRS, and consequently AMRS,
(Ma et al., 2021) make two key assump-
tions: i) All models lie on the same in-
difference curve; ii) if M(xi) > M(xi+1) and
perf(xi) > perf(xi+1), then there exists a model
⟨perf(xi+1),M(xi) + (M(xi)−M(xi+1))⟩ on the
same indifference curve as xi. For our case study,
we believe that assuming regional and global mod-
els to lie on the same indifference curve would
be inaccurate, since models with the same capacity
(size and architecture) have been trained on a differ-
ent set of languages. In the case of (Ma et al., 2021),
they only consider models pre-trained on English.
Here, we assume that regional models (trained on
15-17 languages) would be strictly better on all di-
mensions and hence lie on a different indifference
curve as compared to global models (trained on
100+ languages). Hence, we assume IndicBERT,
MuRILbase and MuRILlarge to lie on one indiffer-
ence curve and XLMRbase and XLMRlarge to lie
on another. The second assumption holds in our
case as well.

For a model xi, Efficiency(xi), MRS, and
AMRS are given by :

Efficiency(xi) =
∑

M

wM ∗
M(xi)

AMRS(M,perf)

AMRS(M,perf) = MRS

MRS =

{∣∣∣∣∣
M(xi)−M(xi+1)

perf(xi)− perf(xi+1)

∣∣∣∣∣1 ≤ i < n

}

A.2 Pre-training Languages
In Section 5.1, we choose IndicBERT, MuRIL and
XLM-R as pre-trained multilingual models to base
our analysis upon. IndicBERT is trained on 11 IN
languages that include Assamese (as), Bengali (bn),
Gujarati (gu), Hindi (hi), Kannada (kn), Malayalam
(ml), Marathi (mr), Oriya (or), Punjabi (pa), Tamil
(ta), Telugu (te). XLM-R includes 15 IN languages
in training with the addition of Nepali (ne), Sanskrit
(sa), Sindhi (sd) and Urdu (ur) over IndicBERT
and MuRIL is trained on 16 IN languages, with the
addition of Kashmiri (ks) over XLM-R.

Model Metric NER PoS NLI QA

IndicBERT
Memory Saved 15.9GB

Throughput 22.6 20.2 22.9 10.5
Perf (EN) 41.3 71.6 69.7 52.4

XLM-Rbase

Memory Saved 15GB
Throughput 24.4 23.2 26.4 14.9
Perf (EN) 61.7 82.2 77.1 72.1

MuRILbase

Memory Saved 15.1GB
Throughput 23.8 23.1 26.2 15.7
Perf (EN) 74.9 80.3 78.9 77.5

XLM-Rlarge

Memory Saved 13.9GB
Throughput 9.4 10.0 10.4 4.1
Perf (EN) 64.6 83.7 81.8 81.4

MuRILlarge

Memory Saved 14.1GB
Throughput 9.8 9.9 10.5 4.2
Perf (EN) 71.8 83.4 82.8 83.0

AMRS (Regional)
Throughput 1.7 3.4 2.2 1.1

Memory 0.1 0.3 0.2 0.1

AMRS (Global)
Throughput 3.7 7.1 3.3 1.2

Memory 0.3 0.5 0.2 0.1

Table 7: The throughput is given by the number of
instances processed per second by the fine-tuned models
on CPU.

A.3 Gini Coefficient
The Gini coefficient is mathematically computed
based on the Lorenz curve, which plots the rela-
tion between population size and the cumulative
income earned by that population as shown in Fig-
ure 1. To plot the Lorenz curve, individuals are
sorted in increasing order of income (x-axis) and
their cumulative wealth is plotted on the y-axis. In
essence, a point (x, y) indicates that the bottom
x% of the population holds y amount of wealth.
The line at 45 degrees represents perfect equality
of incomes. The Gini coefficient G is then calcu-
lated as the ratio of the area that lies between the
line of equality and the Lorenz curve (A in Figure
1), over the total area under the line of equality
(A+ B in Figure 1). If G = 0, every person in
the population receives an equal percentage of in-
come and if G = 1, a single person receives 100%
of the income. Since the axes scale from 0 to 1,
A+ B = 0.5. In essence, if the Lorenz curve is
represented by the function Y = L(X) then G can
be given as:

G =
A

A+ B
= 2A = 1− 2B = 1− 2

∫ 1

0

L(X)dX

For a population with values yi, i = 1 ... n, that are
indexed in non-decreasing order (yi ≤ yi+1):

G =
1

n

(
n + 1− 2

∑n
i=1(n + 1− i)yi∑n

i=1 yi

)

For comparison, for OECD countries from 2008–
2009, the Gini coefficient on income for the entire
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Metric Train Lang. Model NER PoS NLI QA Average

Gini Coeff. ↓

English

IndicBERT 0.155 0.107 0.051 0.091 0.101
XLM-Rbase 0.095 0.067 0.058 0.048 0.067
MuRILbase 0.047 0.086 0.048 0.03 0.052
XLM-Rlarge 0.084 0.06 0.049 0.026 0.055
MuRILlarge 0.051 0.086 0.051 0.027 0.057

Hindi

IndicBERT 0.173 0.073 0.004 0.041 0.073
XLM-Rbase 0.067 0.037 0.039 0.046 0.047
MuRILbase 0.062 0.032 0.036 0.012 0.035
XLM-Rlarge 0.057 0.04 0.033 0.029 0.04
MuRILlarge 0.065 0.057 0.033 0.014 0.042

Table 8: Gini Coefficient for all models calculated only
across languages having evaluation sets for each task.

Task
Batch Learning No. of Warmup Max. seq.
Size Rate Epochs Ratio Length

NER 32 2e-5 10 0.1 128
POS 32 2e-5 10 0.1 128
NLI 64 2e-5 3 0.1 128
QA 32 3e-5 2 0.1 384

Table 9: Hyperparameter details for each fine-tuning
task

population ranged between 0.34 and 0.53. The Gini
coefficient on income for the entire world has been
estimated to be between 0.61 and 0.68 (Hillebrand
et al., 2009; Klugman and Nations, 2010). In our
experiments on Indian languages, state-of-the-art
models achieve an average Gini coefficient of 0.77,
which highlights the disparity in performance even
among languages within a single region.

As mentioned in Section 5.2, calculating the Gini
coefficient across all 23 languages doesn’t reflect
the dispersion in performances across languages for
which we have test sets. To compare between base-
lines, we additionally report the Gini coefficient
evaluated only across those languages for which
we have test sets as shown in Table 8. We observe
that region-specific choices (MuRILbase fine-tuned
on HI) lead to the lowest value, similar to what we
observe with the global metric.

A.4 Fine-tuning Details

We fine-tune all models using the hyperparameters
mentioned in Table 9 for each task and model con-
sistently throughout the paper. We make use of the
XTREME codebase14 to finetune these models us-
ing a NVIDIA A100 GPU. We make an exception
for IndicBERT when fine-tuning on NER, where
we fine-tune for 15 epochs instead of 10, to reach
convergence.

A.5 Budget Allocation

In Section 4, we describe an empirical budget allo-
cation scheme for fine-tuning of pre-trained models

14https://github.com/google-research/xtreme

that can jointly optimize on our proposed metrics.
We follow a greedy approach to solve this prob-
lem, as shown in Table 10. In this paper, we solve
this for one task, namely NER, but the methodol-
ogy proposed is generally extensible to any task
and combination of languages since it is purely
empirical. We select seven source languages for
which we have enough training data and fine-tune
MuRILlarge and XLM-Rlarge for each of these
source languages independently, for two epochs.
During fine-tuning, we evaluate on each of our
target languages after every 10 steps of training.
Given our batch-size is 32, we gather data-points
at a step size of 320 training instances. Conse-
quently, say we have 5000 training instances for
a source language, we gather approximately 30
sample points for that source language and any tar-
get language. Using these, we plot best-fit curves
for ∀(s, t) pairs using the scipy.optimize.curve_fit
package. Given a function, f(x), curve_fit uses non-
linear least squares to fit f(x) to the observed data-
points. We define f(x)s,t = as,t + bs,t ∗ x−cs,t , be-
cause the relation between model performance
and training data follows a power-law distribution
(Rosenfeld et al., 2019). The best-fit curves for
each source and target pair are shown in Table
11. The visualizations of the best-fit curves for
a sample training language (Tamil) are shown in
Figures 2, 3. Having determined constant values
{as,t,bs,t, cs,t} ∀(s, t) independently, we proceed
with finding the optimal allocation using the algo-
rithm described in Table 10. We solve this for three
different budgets, i.e., 1,000; 5,000 and 10,000 and
the optimal allocations for each budget are shown
in Table 12.
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Greedy Algorithm
1: Input: Fine-tuning labeled data ∀s ϵ S. A fixed budget of labeled data instances X
2: Initialize: Set the total number of allocated instances to zero, i.e., allocated = 0, the number of

allocated samples for each source language to zero, i.e. samples[s] = 0∀s ϵ S, the current global metric
for each source language to -inf, i.e. current_gm[s] = −inf∀s ϵ S and the current gini coefficient for
each source language to 1, i.e. current_gini[s] = 1∀s ϵ S

3: while allocated < X do
4: highest_marginal_gain = 0
5: for s in S do
6: gms =

∑
tϵT d

(τ)
t ∗ (as,t + bs,t ∗ (samples[s] + 1)−cs,t)

7: ginis = F[abs(performances,t(samples[s] + 1))∀t ϵ T]
8: ∆gms = gms − current_gm[s]
9: ∆ginis = current_gini[s]− ginis
10: marginal_gain = α ∗∆gms + β ∗∆ginis
9: if marginal_gain > highest_marginal_gain do
10: highest_marginal_gain = marginal_gain
11: best_language = s
12: best_gm = gms

13: best_gini = ginis
14: end if
15: end for
16: samples[s] = samples[s] + 1
17: allocated = allocated + 1
18: current_gm[best_language] = best_gm
19: current_gini[best_language] = best_gini
20: end while

Table 10: A greedy approach to solve the constrained optimization for the budget allocation problem as described in
Appendix A.5.

Figure 2: Best-fit curves for XLM-R when fine-tuned on Tamil for each of the target languages.

Figure 3: Best-fit curves for MuRIL when fine-tuned on Tamil for each of the target languages.
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Test Train
MuRIL XLM-R

Edge Weight R-squared Edge Weight R-squared

bn

bn 1.2− 29.0 ∗ x−0.5 0.88 1.3− 11.5 ∗ x−0.4 0.93
en 1.2− 11.4 ∗ x−0.4 0.78 1.1− 8.1 ∗ x−0.3 0.89
hi 1.4− 9.4 ∗ x−0.3 0.85 1.1− 8.1 ∗ x−0.3 0.92
ml 1.2− 10.7 ∗ x−0.3 0.86 2.3− 4.8 ∗ x−0.1 0.92
mr 1.9− 6.5 ∗ x−0.2 0.88 1.9− 4.6 ∗ x−0.1 0.93
ta 1.2− 10.5 ∗ x−0.3 0.83 1.3− 6.1 ∗ x−0.2 0.90
ur 1.0− 13.5 ∗ x−0.4 0.88 1.0− 6.5 ∗ x−0.3 0.91

en

bn 0.9− 4.4 ∗ x−0.3 0.86 1.0− 5.2 ∗ x−0.3 0.90
en 1.1− 16.4 ∗ x−0.4 0.82 1.1− 14.6 ∗ x−0.4 0.85
hi 1.0− 5.6 ∗ x−0.3 0.88 1.0− 7.6 ∗ x−0.3 0.90
ml 1.9− 3.5 ∗ x−0.1 0.88 1.0− 6.1 ∗ x−0.3 0.86
mr 1.2− 3.2 ∗ x−0.2 0.84 1.2− 4.8 ∗ x−0.2 0.91
ta 0.8− 4.2 ∗ x−0.3 0.76 0.7− 6.9 ∗ x−0.4 0.76
ur - 0.88 1.0− 3.9 ∗ x−0.2 0.90

gu

bn 2.6− 4.3 ∗ x−0.1 0.93 1.0− 4.8 ∗ x−0.3 0.88
en 0.9− 5.5 ∗ x−0.3 0.80 0.7− 11.3 ∗ x−0.5 0.78
hi 1.2− 5.4 ∗ x−0.2 0.87 0.7− 13.3 ∗ x−0.5 0.86
ml 1.2− 7.8 ∗ x−0.3 0.85 1.6− 4.3 ∗ x−0.2 0.90
mr 1.1− 6.4 ∗ x−0.3 0.87 1.1− 6.0 ∗ x−0.3 0.85
ta 0.8− 11.3 ∗ x−0.4 0.78 1.0− 7.6 ∗ x−0.3 0.84
ur 1.4− 3.4 ∗ x−0.1 0.91 1.6− 3.2 ∗ x−0.1 0.89

hi

bn 0.9− 17.2 ∗ x−0.5 0.88 1.2− 4.8 ∗ x−0.2 0.94
en 1.0− 11.7 ∗ x−0.4 0.83 0.9− 8.6 ∗ x−0.4 0.88
hi 1.1− 23.9 ∗ x−0.5 0.90 1.3− 9.5 ∗ x−0.3 0.92
ml 1.1− 12.4 ∗ x−0.4 0.85 1.4− 5.7 ∗ x−0.2 0.90
mr 1.1− 17.6 ∗ x−0.5 0.85 2.0− 5.3 ∗ x−0.2 0.93
ta 1.0− 19.1 ∗ x−0.5 0.78 1.1− 8.7 ∗ x−0.3 0.88
ur 1.0− 8.0 ∗ x−0.3 0.92 1.2− 4.6 ∗ x−0.2 0.94

ml

bn 1.1− 5.9 ∗ x−0.3 0.88 1.3− 4.3 ∗ x−0.2 0.92
en 1.2− 5.0 ∗ x−0.2 0.85 0.8− 7.6 ∗ x−0.3 0.85
hi 2.1− 5.0 ∗ x−0.1 0.86 1.0− 10.8 ∗ x−0.4 0.90
ml 1.1− 21.4 ∗ x−0.5 0.83 1.3− 7.8 ∗ x−0.3 0.90
mr 1.5− 7.3 ∗ x−0.3 0.86 1.4− 6.4 ∗ x−0.3 0.91
ta 1.1− 12.8 ∗ x−0.4 0.81 1.1− 10.0 ∗ x−0.4 0.86
ur 1.1− 5.1 ∗ x−0.2 0.89 1.1− 4.7 ∗ x−0.2 0.89

mr

bn 1.0− 9.3 ∗ x−0.4 0.88 1.1− 5.1 ∗ x−0.2 0.89
en 0.9− 8.8 ∗ x−0.3 0.81 0.9− 7.6 ∗ x−0.3 0.87
hi 1.3− 10.3 ∗ x−0.3 0.86 1.1− 9.6 ∗ x−0.4 0.91
ml 1.1− 15.2 ∗ x−0.4 0.83 1.3− 6.4 ∗ x−0.3 0.90
mr 1.2− 21.9 ∗ x−0.5 0.86 1.6− 7.6 ∗ x−0.3 0.92
ta 1.1− 17.3 ∗ x−0.4 0.79 1.1− 10.7 ∗ x−0.4 0.85
ur 1.2− 5.2 ∗ x−0.2 0.92 1.3− 4.2 ∗ x−0.2 0.91

pa

bn 1.0− 6.4 ∗ x−0.3 0.86 0.9− 4.2 ∗ x−0.3 0.82
en 1.2− 4.0 ∗ x−0.2 0.84 1.1− 2.9 ∗ x−0.2 0.85
hi 1.9− 5.9 ∗ x−0.2 0.84 1.8− 4.0 ∗ x−0.1 0.93
ml 1.0− 9.7 ∗ x−0.4 0.83 1.2− 3.6 ∗ x−0.2 0.87
mr 2.7− 5.3 ∗ x−0.1 0.88 1.3− 3.9 ∗ x−0.2 0.84
ta 1.4− 6.3 ∗ x−0.2 0.86 1.0− 4.7 ∗ x−0.2 0.84
ur 1.2− 4.5 ∗ x−0.2 0.92 0.8− 4.2 ∗ x−0.3 0.87

ta

bn 1.1− 7.2 ∗ x−0.3 0.89 1.0− 4.6 ∗ x−0.2 0.93
en 1.0− 7.9 ∗ x−0.3 0.83 0.8− 6.7 ∗ x−0.3 0.86
hi 1.4− 6.7 ∗ x−0.3 0.90 1.2− 5.9 ∗ x−0.3 0.92
ml 1.0− 14.1 ∗ x−0.4 0.83 1.3− 4.7 ∗ x−0.2 0.92
mr 1.3− 9.7 ∗ x−0.3 0.86 2.7− 5.0 ∗ x−0.1 0.94
ta 1.1− 19.7 ∗ x−0.5 0.79 1.2− 9.4 ∗ x−0.3 0.88
ur 1.2− 5.0 ∗ x−0.2 0.92 1.5− 3.4 ∗ x−0.1 0.92

te

bn 1.1− 5.4 ∗ x−0.3 0.90 0.8− 4.7 ∗ x−0.3 0.88
en 0.8− 10.1 ∗ x−0.4 0.79 0.7− 6.7 ∗ x−0.4 0.83
hi 1.0− 9.7 ∗ x−0.4 0.91 0.9− 7.3 ∗ x−0.3 0.86
ml 1.0− 15.3 ∗ x−0.4 0.83 1.1− 5.6 ∗ x−0.3 0.88
mr 1.0− 12.5 ∗ x−0.4 0.87 1.7− 4.5 ∗ x−0.2 0.93
ta 1.0− 16.5 ∗ x−0.4 0.81 1.0− 7.7 ∗ x−0.3 0.87
ur 1.4− 4.2 ∗ x−0.2 0.91 1.4− 3.1 ∗ x−0.1 0.90

ur

bn 0.6− 11.3 ∗ x−0.5 0.86 - 0.76
en 1.1− 5.5 ∗ x−0.2 0.83 1.0− 5.9 ∗ x−0.3 0.81
hi 2.6− 4.8 ∗ x−0.1 0.85 - 0.96
ml 1.1− 8.2 ∗ x−0.3 0.80 2.5− 5.0 ∗ x−0.1 0.85
mr 4.3− 6.1 ∗ x−0.1 0.87 5.2− 7.0 ∗ x−0.0 0.91
ta 1.1− 5.0 ∗ x−0.2 0.83 1.2− 5.2 ∗ x−0.2 0.83
ur 1.0− 42.2 ∗ x−0.6 0.87 1.1− 20.9 ∗ x−0.5 0.90

Table 11: Power-law equations empirically determined
for each source and target pair. Please refer to Section
A.5 for more details

Metric Budget Model bn en hi ml mr ta ur

GMτ=0

1,000
XLM-Rlarge 128 157 145 134 133 163 140
MuRILlarge 137 135 134 158 142 159 135

5,000
XLM-Rlarge 704 792 693 794 696 628 693
MuRILlarge 743 644 749 783 745 852 484

10,000
XLM-Rlarge 1322 1349 1400 1481 1457 1479 1512
MuRILlarge 1302 1468 1379 1421 1425 1448 1557

GMτ=1

1,000
XLM-Rlarge 126 160 159 134 129 163 129
MuRILlarge 142 136 152 143 148 157 122

5,000
XLM-Rlarge 710 805 713 803 707 639 623
MuRILlarge 744 644 761 772 747 848 484

10,000
XLM-Rlarge 1308 1363 1456 1465 1459 1471 1478
MuRILlarge 1308 1488 1396 1406 1416 1441 1545

Table 12: Optimal allocations under different budgets.
Please refer to Section A.5 for more details

Metric Train Lang. Model NER POS NLI QA Average

Mτ=0 ↑

English

IndicBERT 16.5 16.1 6.5 5.3 11.1
XLM-Rbase 27.0 21.4 10.3 13.8 18.1
MuRILbase 33.4 20.7 10.5 14.9 19.9
XLM-Rlarge 28.7 21.9 11.0 15.6 19.3
MuRILlarge 31.5 21.3 11.1 15.9 20.0

(Linguistic)

Hindi

IndicBERT 23.7 17.6 6.6 4.8 13.2
XLM-Rbase 30.4 22.4 10.6 13.5 19.2
MuRILbase 34.0 22.7 10.8 14.7 20.6
XLM-Rlarge 33.0 22.4 11.5 15.2 20.5
MuRILlarge 33.4 22.4 11.4 15.7 20.7

Mτ=1 ↑

English

IndicBERT 39.2 44.2 36.6 28.4 37.1
XLM-Rbase 59.2 58.1 43.6 49.9 52.7
MuRILbase 69.6 54.7 45.5 53.8 55.9
XLM-Rlarge 61.2 60.3 46.6 56.6 56.2
MuRILlarge 68.2 58.6 47.4 57.9 58.0

(Demographic)

Hindi

IndicBERT 61.0 61.6 39.8 29.9 48.1
XLM-Rbase 70.3 66.7 45.8 50.6 58.3
MuRILbase 75.1 67.3 46.8 54.7 61.0
XLM-Rlarge 74.4 66.8 49.4 53.2 60.9
MuRILlarge 74.8 66.5 49.2 54.6 61.3

Gini Coeff. ↓

English

IndicBERT 0.67 0.81 0.92 0.84 0.81
XLM-Rbase 0.61 0.76 0.88 0.83 0.77
MuRILbase 0.59 0.76 0.88 0.83 0.76
XLM-Rlarge 0.6 0.75 0.88 0.83 0.77
MuRILlarge 0.59 0.76 0.88 0.83 0.77

Hindi

IndicBERT 0.68 0.8 0.91 0.83 0.81
XLM-Rbase 0.59 0.75 0.87 0.83 0.76
MuRILbase 0.59 0.75 0.87 0.83 0.76
XLM-Rlarge 0.59 0.76 0.88 0.83 0.77
MuRILlarge 0.59 0.75 0.87 0.83 0.76

Efficiency ↑

English

IndicBERT 53.6 50.2 56.7 66.0 56.6
XLM-Rbase 44.4 48.1 57.4 76.7 56.7
MuRILbase 69.1 52.5 58.7 77.8 64.5
XLM-Rlarge 44.4 48 57.3 76.3 56.5
MuRILlarge 63.1 51.8 57.8 75.7 62.1

Hindi

IndicBERT 62.5 53.7 56.9 64.5 59.4
XLM-Rbase 48.3 50.0 58.5 75.9 58.2
MuRILbase 69.8 56.2 59.8 77.3 65.8
XLM-Rlarge 49.2 49.0 59.1 75.1 58.1
MuRILlarge 65.2 53.7 58.8 75.0 63.2

Table 13: Zero-shot fine-tuning results. Overall,
MuRILlarge scores highest on the utility metrics, the
Gini coefficient is relatively high across all models
and both MuRILbase and MuRILlarge are, on average,
equal with regards to efficiency. Note that the metrics
are computed considering all 23 languages as detailed
in Section 5.1. More discussions in Section 5.2.
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Abstract

Traditional systems designed for task oriented
dialog utilize knowledge present only in struc-
tured knowledge sources to generate responses.
However, relevant information required to gen-
erate responses may also reside in unstructured
sources, such as documents. Recent state of the
art models such as HyKnow (Gao et al., 2021b)
and SEKNOW (Gao et al., 2021a) aimed at
overcoming these challenges make limiting as-
sumptions about the knowledge sources. For in-
stance, these systems assume that certain types
of information, such as a phone number, is al-
ways present in a structured knowledge base
(KB) while information about aspects such as
entrance ticket prices, would always be avail-
able in documents.

In this paper, we create a modified version
of the MutliWOZ-based dataset prepared by
(Gao et al., 2021a) to demonstrate how current
methods have significant degradation in per-
formance when strict assumptions about the
source of information are removed. Then, in
line with recent work exploiting pre-trained lan-
guage models, we fine-tune a BART (Lewis
et al., 2020) based model using prompts
(Brown et al., 2020; Sun et al., 2021) for the
tasks of querying knowledge sources, as well
as, for response generation, without making
assumptions about the information present in
each knowledge source. Through a series of
experiments, we demonstrate that our model is
robust to perturbations to knowledge modality
(source of information), and that it can fuse
information from structured as well as unstruc-
tured knowledge to generate responses.

1 Introduction

Most existing work on task-oriented dialog systems
assumes that the knowledge required for complet-
ing a task (eg: booking a restaurant reservation),
resides in structured knowledge sources. Thus, typ-
ical task-oriented dialog systems require generating
a belief state, that can be used to query a knowledge

base to fetch entity results; these results are then
used to generate responses. Recognizing that infor-
mation is not always present in structured resources,
recently methods that can additionally use unstruc-
tured knowledge (eg: document collections), have
also been developed (Kim et al., 2020; Gao et al.,
2021a). However, current state-of-the-art models
designed for such tasks make limiting assumptions
about the nature of knowledge sources, that make
them unsuitable for use in real-world settings.
Limitations of existing methods: First, current
task-oriented dialog systems designed to reason
over hybrid knowledge sources assume that a
knowledge base and the unstructured knowledge
source encode separate pieces of information about
entities (eg: the zip-code is always in structured
knowledge, ticket prices are always available in
unstructured text) (Kim et al., 2020; Zhang et al.,
2021). This is not reflective of real-world knowl-
edge, where independent information systems are
often fused to enable applications.

Second, existing systems are trained to learn
the source of different pieces of information, thus,
making them unsuitable for situations where any
field that was previously in a structured knowledge
source is now available in an unstructured knowl-
edge source (and vice versa). In effect, a simple
change in the modality of information can result
in a failure of the model to utilize the information
present in knowledge, as existing models memorize
the source of every piece of information.

Third, such systems assume that each knowledge
grounded response can contain information from
only one source type (Kim et al., 2020; Gao et al.,
2021a; Zhang et al., 2021) – either structured or
unstructured knowledge. This is an artificial con-
straint imposed to make modelling easier, but real-
world conversations can routinely require systems
to fuse information from more than one knowledge
type (eg: See Dialog turn 4 in Figure 1).
Contributions: In this paper, we present our work
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Figure 1: Example of a dialog requiring the use of data from two different sources. Agent Turn 4, requires
incorporating information from both structured (DB Table) and unstructured data (a document consisting of FAQs
for the entity).

aimed at removing each of these strict assump-
tions from task-oriented dialog systems. Current
methods for joint-reasoning in task oriented dialogs
have been developed using an augmented version
of MultiWOZ 2.1 which contains additional dialog
turns based on new unstructured information (Gao
et al., 2021a). Unfortunately, no attempt has been
made to distribute information across knowledge
sources. We therefore create a modified version of
this dataset (called HYBRIDTOD) that optimally
redistributes information across structured and un-
structured knowledge so that most dialogs in the
train dataset are affected by this change.

A trivial method of redistributing information
across structured and unstructured knowledge
sources would be to arbitrarily move structured
fields for some entities to the unstructured knowl-
edge source. However, since the universe of entities
in the dataset is very large and not all entities are
directly referred to in the dialogs, such a method
of redistributing information may not be as effec-
tive if the dialogs do not use the slot-values that
have been redistributed. We therefore, develop an
automated graph based approach which uses the
max-cut of the graph to optimally redistribute infor-

mation from structured to unstructured knowledge
sources.

Lastly, in line with recent work exploiting
pre-trained language models, we fine-tune BART
(Lewis et al., 2020) using prompts for the tasks of
querying knowledge as well as response generation
without making assumptions about the information
present in each knowledge source. Specifically,
we do Prompt+LM finetuning (Liu et al., 2021a)
in which both the prompt and model parameters
are trainable (Ben-David et al., 2021; Liu et al.,
2021b; Han et al., 2021). Through a series of ex-
periments, we demonstrate that our model is robust
to perturbations to knowledge modality (source
of information), and it can fuse information from
structured as well as unstructured knowledge to
generate responses.

In summary we make the following contribu-
tions1: (1) We prepare a new version of the
MultiWOZ-DSTC9 combined dataset (Kim et al.,
2020; Gao et al., 2021a) called HYBRIDTOD to
study the reasoning on hybrid knowledge sources
for task oriented dialog systems. (2) We demon-

1The constructed dataset and code used is available at
https://github.com/mayank31398/HybridToD
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Slot Type Slot Values Question Template Answer Template

price cheap What is the price range? It has ${price} pricing.
expensive How costly is ${restaurant name}? ${restaurant name} is ${price}

cuisine Italian What is the cuisine? ${restaurant name} caters for ${cuisine} cuisine.
Thai What type of food is served here? You can find ${cuisine} food here

Table 1: Examples of templates used for moving slot values from the structured to the unstructured knowledge
source.

strate that our model (referred to as JOINTLM)
is also able to fuse information from both knowl-
edge modalities and beats existing state-of-the-art
systems on standardized metrics. (3) We present
detailed ablation studies demonstrating the value
of our modelling choices.

2 Related Work

Modeling Task Oriented Dialogs: Multiple
flavours of this problem have been defined to ad-
dress different aspects of modeling - eg: belief
state tracking to assess whether a model is able
to correctly decode the query needed given a cur-
rent conversational context (Dey and Desarkar,
2021; Li et al., 2021; Yang et al., 2021), generating
responses given belief states to assess whether a
model is able to correctly predict the knowledge
attributes to be used in a response (Yang et al.,
2021; Chen et al., 2019; Gao et al., 2020; Moha-
patra et al., 2021), end-to-end modeling of dialog
systems where models are assessed on the correct-
ness of the response generated including the values
used from the knowledge base (Bordes et al., 2017;
Raghu et al., 2021b), etc. Recent work that as-
sumes that belief state annotations are latent and
not available for training have also been developed
(Raghu et al., 2021a).
Knowledge Grounded Dialog: Dialog systems
that generate responses on information grounded in
external knowledge have also been developed. Un-
like, work on task oriented dialogs, which primarily
focuses on using structured knowledge to complete
a ‘goal’ or accomplish a ‘task’ (eg: POI recom-
mendation for in car navigation (Eric et al., 2017),
restaurant, hotel or flight booking (El Asri et al.,
2017), etc), most existing knowledge grounded sys-
tems are designed to address informational needs of
users (eg: answering queries based on collections
of documents, making response recommendations
to contact center agents). Finally, contemporane-
ous to our work, knowledge grounded response
generation tasks that combine information from hy-
brid knowledge sources have also been proposed

(Nakamura et al., 2022). Here, unlike task oriented
dialog systems, which require the retrieval of an
entity to make recommendations or accomplish a
task, in such tasks, the goal is to answer an infor-
mational seeking query in a chit-chat conversation.
Models are required to use the dialog context to
fetch related tables (often flattened and encoded as
independent table cells), along with documents to
generate a response.

3 The HYBRIDTOD Dataset

The dataset prepared by (Gao et al., 2021b) (re-
ferred to as the SEKNOW-MULTIWOZ dataset
in this paper) is the only publicly available task-
oriented dialog dataset in which the dialogs are
grounded on two types of knowledge sources:
structured and unstructured (FAQs). However,
SEKNOW-MULTIWOZ is not indicative of a real-
world setting due to two major limitations: (1) It
has a strict, slot-type to knowledge-source type
mapping. For example, the slot-type ‘cuisine’ is al-
ways in the structured source while ‘timings’ of op-
eration would always be mentioned in unstructured
documents, and (2) an agent response contains in-
formation from only one source (i.e., either from
structured or unstructured). To alleviate these limi-
tations, we systematically modify the knowledge
sources in SEKNOW-MULTIWOZ to construct a
new dataset that we refer to as HYBRIDTOD.
Dataset Construction: We first create an undi-
rected graph G = (V,E) where each vertex v ∈ V
is a unique slot-value and an edge e ∈ E exists be-
tween two vertices, if the slot values represented by
these vertices occur together in a training dialog ut-
terance. For instance, in Figure 1 nodes associated
with slot-values “21-24 Northampton Road” and
phone number “01799521660” would have an edge
between them due to Turn 4. Similarly, vertices
corresponding to the values for slot-type ‘cuisine’
Italian and the slot-type ‘address’ 21-24 Northamp-
ton Road would have had an edge between them
if the utterance at Turn 4 was instead, “It is an
Italian restaurant located at 21-24 Northampton
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Context-Response pairs Number of entities
Domain train validation test train/validation/test

hotel 19370 2316 2295 33
restaurant 19716 2162 2188 110
attraction 8192 1226 1246 79

total 47278 5704 5729 222

Table 2: Number of context-response pairs in the dataset

Domain SEKNOW-MULTIWOZ HYBRIDTOD
hotel 10.97 6.79

restaurant 8.12 5.25
attraction 9 6.38

Table 3: Average number of slot values by domain in
the structured knowledge source for each dataset.

Road". Our goal is to move some of the slot-values
(vertices) in G that are originally in the structured
knowledge source to the unstructured knowledge
source so as to alleviate some of the limitations of
the original dataset.

In order to identify which vertices to move, we
create a maxcut of the graph G using the Max-
CutBM algorithm (Boumal et al., 2016). A maxcut
results in a graph in which the most number of
edges from the original graph are ‘cut’. After the
application of MaxCut, all slot values in one graph
partition are retained in the structured knowledge
source, while the others are converted to text QA
pairs using templates and included as part of the
unstructured document associated with that entity.
The templates for the restaurant slot types ‘price’
and ‘cuisine’ are shown in Table 1 for illustration.
Since the edges of the graph are based on slot-value
mentions in dialog utterances, applying a maxcut
modifies the knowledge source in a way that it
affects most dialog turns in the dataset; in other
words, the max-cut ensures the maximum possible
utterances in the dataset have information fused
from both knowledge sources.

Since we move slot values from one partition of
the graph to the unstructured knowledge source, a
slot type can now have some values in structured
knowledge and some in unstructured knowledge
(as an FAQ). We find that our approach ends up
modifying each entity referred to in the dataset, and
that slot-values of the same type are now distributed
across different types of knowledge.

Domain SEKNOW-MULTIWOZ HYBRIDTOD UNSTRUCTUREDTOD
hotel 36.52 40.58 46.48

restaurant 14.96 17.83 22.7
attraction 0 2.62 8

Table 4: Average number of FAQs for each domain in
the unstructured knowledge source.

For experimentation, we also create a version of
the dataset with all slot values2 moved from the
structured to the unstructured knowledge source.
We refer to this dataset as UNSTRUCTUREDTOD.
To construct HYBRIDTOD and UNSTRUCTURED-
TOD dataset, we only consider dialogs from 3 do-
mains: hotel, restaurant and attraction. We omit
dialogs from other domains as they do not have
associated knowledge. For example, the taxi do-
main only contains the information that the slot-
type phone should match the regular expression
["^[0-9]{10}$"], but does not contain any in-
stance of phone numbers present in the train di-
alogs.

Dataset Statistics: The number of context-
response pairs (spread across the 3 domains: hotel,
restaurant and attractions) for HYBRIDTOD are
shown in Table 2. We also show the entity dis-
tribution by domain-type. The restaurant domain
dominates the knowledge sources, occupying al-
most half of the total entities and the other half is
constituted by hotel and attraction domains. Tables
3 and 4 show the distribution of entity slot-values
in structured knowledge sources and FAQs in the
unstructured knowledge source for each domain in
the datasets. As can be seen, the average number of
slot-values presented in structured knowledge are
lesser in HYBRIDTOD as compared to SEKNOW-
MULTIWOZ and correspondingly the number of
FAQs in HYBRIDTOD are higher as compared to
SEKNOW-MULTIWOZ. We present the detailed
slot-type distribution of SEKNOW-MULTIWOZ
and HYBRIDTOD in the appendix. We find that
approximately 50% slot-values are moved to un-
structured knowledge from the structured sources
for each slot-type.

Limitations of the Dataset: Information about
entities is only redistributed from the structured
knowledge source to the unstructured knowledge
source. In effect, information that was previously
in unstructured knowledge sources continues to
remain there. Redistributing information from
unstructured documents to structured documents
would require annotations to be able to extract
facets to be converted to slot-types.

We describe our model, JOINTLM in the next
section.

2The entity name is also a slot type but we always retain
in it in both knowledge sources.

1781



4 JOINTLM

The problem of utilizing information and respond-
ing to users in task-oriented dialogs can be broken
down into parts: (i) Querying Knowledge Source
(structured and/or unstructured) to return entities
(ii) Generating Responses (eg:sharing information
about entities, requesting for more details from the
user, etc).

We represent the dialog context as c =
(u1, r1, ..., un), where (ui, ri) represent the user
and the system response utterance at ith turn re-
spectively. We represent the entity e required for
generating the response as the concatenation of its
slot-values (from structured KB), represented as es,
and FAQs from the unstructured knowledge source,
represented as eus:

[es] = ⟨struct⟩ ⟨slot⟩ slot1 ⟨val⟩ value1
⟨slot⟩ slot2 ⟨val⟩ value2...

[eus] = ⟨unstruct⟩ ⟨doc⟩ document1
⟨doc⟩ document2...

[e] = [es] [eus]

where ⟨struct⟩, ⟨unstruct⟩ are special tokens to
demarcate the start of structured knowledge and
unstructured knowledge of an entity respectively.
⟨slot⟩, ⟨val⟩ demarcate the slot-type and its value
and ⟨doc⟩ denotes the start of a document from
unstructured knowledge. We train JOINTLM to
jointly model two tasks: entity retrieval and re-
sponse generation. We use a hyperparameter α
to weigh the two tasks during training, where α
denotes the number of training samples used for
entity retrieval task. Note that α = 0.5 denotes
equal number of examples for both the tasks.

4.1 Entity Retrieval
As discussed, prior to generating a response, we
need to retrieve the relevant entity required to gen-
erate the response. We represent the inputs to the
language model (LM) for this task as:

⟨entity_retrieval_task⟩ ⟨u⟩u1 ⟨r⟩ r1...
⟨u⟩un ⟨entity⟩ [ej ]

where, ej ∈ E , the set of all entities,
⟨entity_retrieval_task⟩ and ⟨entity⟩ are special
tokens for task prompting and demarcating the start
of an entity. We train the model to generate the spe-
cial tokens zj = ⟨relevant⟩ or zj = ⟨irrelevant⟩

for each entity ej given the context c. We choose
the best entity e as:

e = argmax
ej

p (zj = ⟨relevant⟩ |c, ej) (1)

During training we use a subset of the entities
in E for creating the positive and negative set of
entities. However, at inference time, we evaluate
on all the entities in E .

4.2 Response Generation

After scoring all entities, we use the context and
the best entity e (the entity with the highest score
for the ⟨relevant⟩ token) and generate response
using the same LM. We represent the inputs for
this task as:

⟨response_task⟩ ⟨u⟩u1 ⟨r⟩ r1...
⟨u⟩un ⟨entity⟩ [e]

where ⟨response_task⟩ is a special token to
prompt this task. We train the model to generate
the response token-by-token.

4.3 Training details

We train our model to minimize
∑

(c,r) L(θ, c, r),
where

L(θ, c, r) =− α log pθ(zj |c, ej)
− (1− α) log pθ(r|c, ej)

The first term in the above objective represents the
log-likelihood of retrieving the relevant entity and
the second term is the log-likelihood of generating
the response. Note that the term α (percentage of
samples for each task) can be adjusted by changing
the number of examples for the two tasks in a given
batch of fixed size.

To train our model, we use early stopping with
patience = 5 for the above objective on the val-
idation set to prevent overfitting of our model.
The loss was optimized using AdamW optimizer
(Loshchilov and Hutter, 2017). We use a batch-size
of 8 examples, with 4 examples for entity retrieval
and 4 for response generation per batch. For the
4 examples for entity retrieval, 2 are positive and
2 are negative examples (effectively our batch is
2 + 2 + 4). We use equation 1 during inference to
pick the highest scored relevant entity.

1782



slot-values
Train Dataset Test Dataset Model Bleu-1 Bleu-4 prec. recall F1
HYBRIDTOD SEKNOW-MULTIWOZ JOINTLM 30.63 8.60 50.48 45.37 47.79

SEKNOW 29.20 7.83 43.16 28.65 33.14
HYBRIDTOD HYBRIDTOD JOINTLM 30.59 8.67 50.56 45.83 48.08

SEKNOW 29.05 7.70 44.29 29.12 35.14
HYBRIDTOD UNSTRUCTUREDTOD JOINTLM 30.30 8.44 51.05 45.37 48.04

SEKNOW 27.43 6.68 42.96 19.62 27.11

Table 5: All models trained on HYBRIDTOD and evaluated on the rest of the datasets

slot-values
Train Dataset Test Dataset Model Bleu-1 Bleu-4 prec. recall F1

SEKNOW-MULTIWOZ SEKNOW-MULTIWOZ JOINTLM 29.07 8.06 49.74 41.31 45.13
SEKNOW 31.00 9.14 52.17 44.98 48.31

SEKNOW-MULTIWOZ HYBRIDTOD JOINTLM 27.77 7.54 44.48 36.39 40.03
SEKNOW 26.61 7.32 42.19 26.70 33.31

SEKNOW-MULTIWOZ UNSTRUCTUREDTOD JOINTLM 27.03 7.17 46.29 34.93 39.82
SEKNOW 26.19 6.42 41.96 19.48 26.53

Table 6: All models trained on HYBRIDTOD and evaluated on the rest of the datasets

5 Experiments

Our experiments are aimed at answering the fol-
lowing questions: (1) How does JOINTLM per-
form compared to the baseline when trained and
tested on HYBRIDTOD? (2) How does the change
in slot-value distribution across structured and un-
structured sources affect the performance of the
models? (3) Is joint training of PromtLM for the
two tasks of entity retrieval and response genera-
tion helpful? (4) How does JOINTLM compare
with natural baselines for entity retrieval?
Experimental Setup: Task oriented dialog sys-
tems have to identify relevant entities (e.g. restau-
rants) from associated knowledge sources needed
to generate a response. In order to identify these
relevant entities, existing datasets provide the be-
lief state annotations during training. Additionally,
in our work for each dialog context, we associate
a set of (positive) entities that exactly match the
requirements present in the dialog context and a set
of (negative) entities that do not match by an auto-
mated method. Note that the text snippets in the
unstructured corpus do not have any annotations.

For all of our experiments, we use BART
(Lewis et al., 2020) encoder-decoder based lan-
guage model and finetune the pretrained model on
the three datasets i.e, SEKNOW-MULTIWOZ (Gao
et al., 2021a), HYBRIDTOD and UNSTRUCTURED-
TOD datasets.
Baseline: We use the current state-of-the-art model
for joint reasoning, SEKNOW (Gao et al., 2021a)
model as our baseline. SEKNOW is designed to use
belief state annotations – specifically, SEKNOW is
trained to generate the belief state given the dialog
context. These belief states are then used to query

the knowledge sources and generate a delexicalised
response using the context and the generated be-
lief state. The slot-values in the delexicalised re-
sponse are then populated using an unordered set
of entities returned by the belief state query on the
structured knowledge source.

5.1 Evaluation Metrics

We report BLEU scores for assessing response gen-
eration performance and slot-value precision, re-
call and F1 for comparing the slot-value filling
performance against the baseline. As described
previously, since no new slot types were created
from unstructured documents, the slot-value met-
rics are computed only using the slot-types that
were originally present in the structured knowledge
source.

We also report success@k for entity retrieval
baselines to assess the performance of systems on
the entity selection task. We define success@k as 1
if the top-k scored entities contain a relevant entity
for response generation and 0 otherwise. However,
note that it is not possible to measure success@k
on SEKNOW since it generates the response using
an unordered set of entities returned by the belief
state query. We thus compare the two models only
based on their performance on response generation.

5.2 Results

Knowledge-Source Memorization: We train
and test both JOINTLM and the baseline model,
SEKNOW on HYBRIDTOD and observe that
JOINTLM outperforms SEKNOW by 13 points on
slot-value F1 score (Row 1, Table 5). Also, the
performance of SEKNOW drops from 48.31 (Row
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Train Dataset Test Dataset Model success@1 success@5 Bleu-1 Bleu-4 prec. recall F1
JOINTLM 84.50 86.57 30.59 8.67 50.56 45.83 48.08

HYBRIDTOD HYBRIDTOD SEPLM 79.79 85.64 29.96 8.66 47.08 42.53 44.69
TF-IDF 28.31 34.49 - - - - -

Table 7: Performance of models on the entity retrieval task.

1, Table 6) when trained/tested on the SEKNOW-
MULTIWOZ dataset to 35.14 (Row 1, Table 5)
when trained/tested on HYBRIDTOD dataset. This
severe drop in performance is indicative of the fact
that SEKNOW learns the source of slot-values and
is unable to use information when the source of the
particular slot-value can be varying (structured/un-
structured) across entities.
Generalization of JOINTLM: To assess the
generalization performance of the models, we
train all the models on HYBRIDTOD and test
on other datasets which have different slot-value
distributions. As can be seen from Table 5,
when trained on HYBRIDTOD, JOINTLM out-
performs SEKNOW on all three dataset settings,
SEKNOW-MULTIWOZ, HYBRIDTOD and UN-
STRUCTUREDTOD across all response generation
metrics. We also notice that JOINTLM trained on
HYBRIDTOD is robust to change in the knowl-
edge modality during inference (slot-value F1
stays at approx. 48). This is not the case for
SEKNOW which exhibits large drop (31% from
SEKNOW-MULTIWOZ to HYBRIDTOD and 45%
from SEKNOW-MULTIWOZ to UNSTRUCTURED-
TOD) in slot-value F1, as the distribution of slot-
types changes in different datasets (Table 5).

We also train the models on SEKNOW-
MULTIWOZ, and test on the other datasets and
notice that JOINTLM outperforms SEKNOW on
both HYBRIDTOD and UNSTRUCTUREDTOD (Ta-
ble 6). However, SEKNOW has better slot-value
F1 than JOINTLM on HYBRIDTOD. We hypothe-
size that this is because the belief state labels are
more informative and provide a very strong signal
for SEKNOW on SEKNOW-MULTIWOZ and this
has the effect of SEKNOW learning the knowledge
modality which is not the case for JOINTLM. This
suggests that JOINTLM has better generalization
performance.

5.3 Model Ablation Study
To study the importance of joint-training of our
model, we also train a model without prompts us-
ing entity annotations, where two different BART
(Lewis et al., 2020) models are trained for retrieval
and generation. We call this model SEPLM. This

Dialog context
User: Suggest me some Turkish restaurants in Cambridge.
Agent: Yes there is a Turkish restaurant in Cambridge with two different
locations, would you like the addresses?
User: I would like if its located in the center of the city price one located in the
center of city and I don’t care about the pricing.
Response
Ground truth response: I have two Turkish restaurants, both in the centre and
both expensive. May I recommend Meze Bar?

SEKNOW JOINTLM

SeKnow-MultiWOZ

I found a restaurant at 196
Mill Road City Centre. Their
phone number is
01223362372.

Meze Bar is a
Turkish restaurant
in the expensive
price range. Their
address is 196
Mill Road City
Centre.

HybridToD
I found a restaurant at 196
Mill Road City Centre. Their
phone number is {null}.

UnstructuredToD I found a restaurant at {null}.
Their phone number is {null}.

Table 8: Response generated by SEKNOW and
JOINTLM on the three datasets.

model is trained on HYBRIDTOD and is com-
pared against JOINTLM on both entity retrieval
and response generation (Table 7). We observe
that JOINTLM outperforms SEPLM in both the
tasks with a 5 points difference in success@1 and
a 3 points difference in slot-value F1. This con-
firms that the joint modeling of the 2 tasks using
prompting yields a better model than learning a
separate model for the 2 tasks at hand. For a de-
tailed evaluation on all other dataset combinations,
please refer to the Appendix. For comparison with
a non-neural entity retrieval baseline, we also report
the success scores BM25 based TF-IDF retriever
which are significantly worse than the neural re-
trievers used for JOINTLM and SEPLM. These
experiments highlight the benefit of joint modeling
of the two tasks.

5.4 Qualitative Study

In Table 8, we show the responses generated for
a sample dialog by JOINTLM and SEKNOW on
the three datasets used for our experiments. It
should be noted that JOINTLM generates the same
response for all the three datasets. However, SE-
KNOW is not able to populate the required slot-
values for this entity (Meze Bar) in the response
in HYBRIDTOD and UNSTRUCTUREDTOD when
those slot-values are no longer available in the
structured source.
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6 Conclusion

In this paper we presented a new dataset, HYBRID-
TOD that requires reasoning over both structured
and unstructured knowledge sources to generate
responses to dialogs. Unlike existing task-oriented
dialog datasets, it does not restrict slot-types to
specific knowledge sources. Through our experi-
ments we demonstrated how existing methods do
not adapt well to changing distributions of slot-
type sources and that our model JOINTLM (trained
using entity annotations rather than belief state),
not only generates better responses by reasoning
over both knowledge sources, it also learns a bet-
ter retriever for entities. In future work, we also
plan to train our models without using any anno-
tations i.e without any supervision on entity label
information.

7 Limitations

Our dataset and model are not intended to be di-
rectly used in a real-world system as they have
some inherent limitations. As mentioned in Sec-
tion 3, we only redistribute slot types from struc-
tured knowledge sources to unstructured knowl-
edge sources. Due to a lack of resources we are
unable to annotate unstructured documents – our
dataset has a bias that certain information will al-
ways appear in unstructured information. In ad-
dition, we rely on a pre-trained language model,
BART, to generate responses. We have not as-
sessed to what extent the generated responses could
exhibit any form of social bias or toxic language
(when prompted). We do not recommend that our
system be used in a real-world deployed chatbot
without further study. Lastly, this work has been
assessed only on English language data using a
pretrained language model developed for English.
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A.1 Additional Results

We present additional results for the comparison
of JOINTLM, SEPLM and SEKNOW (Gao et al.,
2021a) when trained on HYBRIDTOD and tested on
the other datasets (Table 9). We see that JOINTLM
outperforms SEPLM and SEKNOW on all the
datasets demonstrating the importance of joint mod-
eling.
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Figure 2: Figures 2a and 2b show the slot-value distribution by slot-types in the hotel and restaurant domains the
three datasets.

slot-values
Train Dataset Test Dataset Model Bleu-1 Bleu-4 prec. recall F1

JOINTLM 30.63 8.60 50.48 45.37 47.79
HYBRIDTOD SEKNOW-MULTIWOZ SEPLM 30.03 8.63 47.26 42.76 44.89

SEKNOW 29.20 7.83 43.16 28.65 33.14
JOINTLM 30.59 8.67 50.56 45.83 48.08

HYBRIDTOD HYBRIDTOD SEPLM 29.96 8.66 47.08 42.53 44.69
SEKNOW 29.05 7.70 44.29 29.12 35.14
JOINTLM 30.30 8.44 51.05 45.37 48.04

HYBRIDTOD UNSTRUCTUREDTOD SEPLM 29.78 8.41 47.08 41.63 44.19
SEKNOW 27.43 6.68 42.96 19.62 27.11

Table 9: All models trained on HYBRIDTOD and evaluated on the rest of the datasets
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Figure 3: This figure shows the slot-value distribution by
slot-types in the attraction domains in the three datasets.

A.2 Additional Dataset Statistics
We present the detailed slot-type distribution of
SEKNOW-MULTIWOZ and HYBRIDTOD in Fig-
ure 2 and 3. We find that approximately 50% slot-
values are moved to unstructured knowledge from
the structured sources for each slot-type. The bar-
graphs show the number of entities with a particular
slot-type.

A.3 Hyperparameters and Training Details
For all our experiments, we use BART (Lewis et al.,
2020) model from the HuggingFace Transformers
library (Wolf et al., 2020). To train the BART
model, we use early stopping with patience = 5
on the validation set to prevent overfitting of both
the entity retriever and the response generator. We
use learning rate = 10−5 with AdamW optimizer
(Loshchilov and Hutter, 2017). We use a batch-size
of 8 examples, with 4 examples for entity retrieval
and 4 for response generation per batch. For the
4 examples for entity retrieval, 2 are positive and
2 are negative examples (effectively our batch is
2 + 2+ 4). All the experiments are conducted on a
single A100 80GB GPU.
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Abstract

Recent transformer language models achieve
outstanding results in many natural language
processing (NLP) tasks. However, their enor-
mous size often makes them impractical on
memory-constrained devices, requiring practi-
tioners to compress them to smaller networks.
In this paper, we explore offline compres-
sion methods, meaning computationally-cheap
approaches that do not require further fine-
tuning of the compressed model. We chal-
lenge the classical matrix factorization meth-
ods by proposing a novel, better-performing
autoencoder-based framework. We perform a
comprehensive ablation study of our approach,
examining its different aspects over a diverse
set of evaluation settings. Moreover, we show
that enabling collaboration between modules
across layers by compressing certain modules
together positively impacts the final model per-
formance. Experiments on various NLP tasks
demonstrate that our approach significantly out-
performs commonly used factorization-based
offline compression methods.1.

1 Introduction

The recent trend of pre-training Trans-
former (Vaswani et al., 2017) language models
on enormous unsupervised corpus has led to
outstanding performances on many downstream
tasks. For downstream tasks, these pre-trained
models are then either fine-tuned (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019) or
the prompting paradigm (Brown et al., 2020) is
used (especially in the so-called Large Language
Models), which avoids having a different model
per task (Lieber et al., 2021; Rae et al., 2021;
Smith et al., 2022; Thoppilan et al., 2022). In
each of the two paradigms, it has been shown

*Equal contribution
Correspondence to: mohammadreza.banaei@epfl.ch,

klaudia.balazy@doctoral.uj.edu.pl
1Our code is public: github.com/MohammadrezaBanaei/auto-

encoder-based-transformer-compression

that increasing the scale of language models
generally leads to better performance on a range
of downstream tasks (Devlin et al., 2019; Brown
et al., 2020). Indeed, for autoregressive language
models, Kaplan et al. (2020) demonstrated a
power-law relationship between the number of
parameters and the respective performance. Wei
et al. (2022) further showed that certain abilities of
language models emerge only when the number of
its parameters passes certain thresholds, providing
an incentive to scale these models further.

Although scaling up these language models
make them empirically powerful across many di-
verse tasks, it makes them infeasible to train for
many NLP practitioners due to huge pre-training
costs. More importantly, even using the available
pre-trained models for inference is becoming more
challenging (especially for memory-constrained ap-
plications like edge devices), with recent models
having hundreds of billions of parameters (Zhang
et al., 2022).

With the rise of NLP model sizes, there have
been many efforts to compress transformer lan-
guage models without compromising their perfor-
mance. Although being inherently different, many
of these efforts rely on knowledge distillation (Hin-
ton et al., 2015) to help the compressed model
(i.e., the student model) better imitate the parent
model (i.e., the teacher model). However, these ap-
proaches often need costly distillation on upstream
or downstream tasks (Sanh et al., 2019) as well
as expensive data augmentation techniques (Jiao
et al., 2019) to help improve the compressed model
performance. These approaches become even less
feasible when enormous language models are being
distilled.

Another line of research focuses on
computationally-cheap methods (i.e., offline
compression) where a smaller model can be
achieved from a pre-trained model without it
being necessarily fine-tuned over a downstream
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or upstream task. These offline methods include
weight pruning (Li et al., 2016; Han et al., 2015),
weight quantization (Zhou et al., 2016; Hubara
et al., 2016), tensor factorization (Lan et al., 2019;
Winata et al., 2019; Bałazy et al., 2021; Cordonnier
et al., 2020) and hybrid approaches (Wang et al.,
2019; Mao et al., 2020).

This paper proposes a novel offline factorization-
based method for compressing transformer lan-
guage models. The paper’s main goal is to pro-
pose an offline method that produces a competitive
language model (compared to the original model
perplexity) before any fine-tuning is performed.
Similar to Bałazy et al. (2021), we use an autoen-
coder model (see Figure 1a) to compress different
modules’ weights. However, unlike the previous
work, our approach is not limited to the token em-
beddings (a.k.a. word embeddings) and can be
applied to other transformer modules as well. We
also propose and thoroughly investigate the impact
of various enhancements for the approach of ob-
taining the compressed model. It is worth noting
that although the experiments and ablation studies
are only done BERTBASE model, our

In Section 4 we demonstrate that applying small
changes to the autoencoder architecture (e.g., in-
troducing non-linearity to the decoder) and its loss
objective results in superior performance to the Sin-
gular Value Decomposition (SVD) baseline as mea-
sured by model perplexity and its performance on
the downstream tasks. Moreover, inspired by the re-
dundancies present across self-attention heads (Cor-
donnier et al., 2020), in Section 4.2 we show that
the compressed models perform in general better
when compressing certain modules from different
layers together.

Additionally, in Section 4.6 we investigate the ef-
fectiveness of a (parameter) sensitivity-based2 com-
pression by incorporating fisher information (Pas-
canu and Bengio, 2013) in the loss objective. We
later show that incorporating these weights signif-
icantly improve the compressed language model
performance (i.e., perplexity).

Finally, in Section 4.7 and in Section 4.8 we
discuss the performance of our approach in com-
parison to various offline-compression baselines
and demonstrate that our method provides the best
or competitive quality of the compressed model.

Our main contribution can be summarized as
2We call it sensitivity as it measures how sensitive the

model performance is to the reconstruction error of a certain
parameter.

follows:

• We propose a novel autoencoder-based frame-
work for low-cost compression of transformer
language models and conduct an extensive
ablation study on its different aspects.

• We show that enabling collaboration across
layers by compressing different layers mod-
ules together boosts the performance.

• We demonstrate that our approach signif-
icantly outperforms other commonly used
offline-compression methods on various NLP
downstream tasks.3

2 Related work

Deep transformer language models have gained in-
creasing attention in recent years since the seminal
work of Devlin et al. (2019). Many recent efforts
demonstrate that scaling up these language models’
parameters generally results in better performance
on a range of downstream tasks (Devlin et al., 2019;
Brown et al., 2020; Kaplan et al., 2020). This
empirical observation resulted in recent language
models having over a thousand times more param-
eters (Lieber et al., 2021; Rae et al., 2021; Smith
et al., 2022) than the BERTBASE model (Devlin
et al., 2019). Although empirically powerful, these
models are becoming harder to use for memory-
constrained applications, which led to many efforts
toward language model compression in recent liter-
ature.

Although many recent efforts for language
model compression take advantage of distilla-
tion (Hinton et al., 2015) techniques to better im-
itate the uncompressed model (i.e., the teacher
model) behavior, this paper focuses mainly on of-
fline compression methods. By offline, we refer to
approaches that do not need fine-tuning the whole
model on a downstream/upstream dataset. In the
case of language model compression, these meth-
ods aim to output a compressed model without
losing too much performance (measured by per-
plexity) that can then be fine-tuned (with or without
distillation) or prompted for a certain downstream
task. It is worth noting that these methods can
still be combined with distillation techniques, but
starting the finetuning from a better compressed

3It is worth noting that although the experiments and ab-
lation studies in this paper are only done on the BERTBASE
model, our proposed approach can potentially be used for any
transformer-based architecture.
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language model would generally reduce its costs
of training (e.g., by improving convergence time).

Offline compression methods, while being
diverse, can be roughly categorized into few
paradigms, namely weight pruning (See et al.,
2016; Li et al., 2016; Han et al., 2015; Fan et al.,
2019; Michel et al., 2019; Voita et al., 2019), quan-
tization (Gong et al., 2014; Hubara et al., 2016;
Zhou et al., 2016), tensor factorization (Lan et al.,
2019; Winata et al., 2019; Bałazy et al., 2021; Cor-
donnier et al., 2020; Panahi et al., 2021; Ren et al.,
2022) and hybrid approaches (Wang et al., 2019;
Mao et al., 2020).

This paper primarily focuses on the effectiveness
of low-rank factorization-based approaches in re-
cent literature (Lan et al., 2019; Panahi et al., 2021;
Ren et al., 2022) as an offline compression method.
Lan et al. (2019) proposed a SVD-based (Halko
et al., 2011) technique to compress the token em-
bedding module. Later works have shown that
more complex architectures like autoencoders can
result in better compression quality than SVD meth-
ods (Lioutas et al., 2020; Bałazy et al., 2021). By
taking advantage of the autoencoder, we are able to
more easily enforce different properties by either
changing its training objective or architecture (e.g.,
preserving l2 norm in reconstructed embeddings).
Bałazy et al. (2021) emphasized on the importance
of direction in token embedding compression, and
in this work we demonstrate its potential impor-
tance for other transformer modules as well in dif-
ferent compression ratios.

Moreover, Cordonnier et al. (2020) showed
the significance of redundant information in self-
attention heads and compressed different heads (in
a certain layer) together to improve compression
performance. Following a similar idea, we later
show that compressing heads from different layers
together would generally further boost the compres-
sion quality.

Hsu et al. (2022) proposed a weighted SVD
(using Fisher Information) (Pascanu and Bengio,
2013) to outperform the classical SVD. We further
investigate the benefits of a non-uniform compres-
sion (i.e., a weighted reconstruction loss in the
autoencoder loss objective) in Section 4.6 by ana-
lyzing different weighting schemes for parameters.

Moreover, Ren et al. (2022) proposed using
tensor decomposition techniques to compress lan-
guage models to relatively high compression ra-
tios while using a two-stage distillation technique.

Moreover, Panahi et al. (2021) proposes using the
Kronecker product as an alternative for the fac-
torization of transformer modules. Appendix A.7
discusses using Tucker (De Lathauwer et al., 2000)
or Kronecker-based methods as an offline approach.
It is worth noting that models with relatively high
compression ratios become highly dependent on
distillation techniques to perform reasonably on
downstream tasks. For instance, Ren et al. (2022)
claims that even randomly initializing the com-
pressed BERT nearly achieves identical perfor-
mance compared to tensor decomposition from a
pre-trained model.

3 Model

Our offline compression approach is based on the
an autoencoder neural network architecture, similar
to Lioutas et al. (2020) and Bałazy et al. (2021).
However, in this work, we focus on compressing
all the transformer weight matrices rather than just
the token embedding matrix. Furthermore, we
are exploring many more compression improve-
ments using autoencoder as well as investigating
architecture-independent techniques.

(a) Autoencoder-based compression with customizable objec-
tive function. Our approach minimizes the root mean square
error (RMSE) and cosine distance between the original and
reconstruction matrix. In this setting, the original matrix’s
latent representation and the decoder form the substitution
module.

(b) Classical matrix-factorisation-based compression with root
mean square error (RMSE) minimization objective. Two
smaller matrices, approximating the target matrix after multi-
plication, form the substitution module.

Figure 1: A high-level view of the matrix compression
approaches using classical matrix-factorization and au-
toencoder model that is leveraged in this work. The
purpose of the compression is to provide a parameter-
efficient substitution module to replace the original ma-
trix in the considered model.
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The autoencoder architecture consists of encoder
function h(·) that maps model input x ∈ Rm to
some latent representation l ∈ Rk. The second
element of the architecture is the decoder function
g(·) responsible for mapping l ∈ Rk into the ap-
proximation x̃ ∈ Rm of the input x.

Let us assume that we want to compress the ma-
trix A ∈ R(n×m). Using the gradient-descent algo-
rithm, we train the autoencoder model to produce
the appropriate approximation Ã of the original ma-
trix. As a compressed module, we understand the
hidden representation hΨ(A) ∈ R(n×k) together
with the decoding module gΦ(·). In this setting, the
formula for the compression ratio of the original
module can be expressed as:

n ·m
(n · k) + |Φ| , (1)

which is the ratio of the original matrix size to the
hidden representation size and the number of pa-
rameters in the decoder module |Φ|. We illustrated
the approach of compressing a matrix using the
autoencoder model in Figure 1a.

Our approach to offline compression based on
the autoencoder offers flexibility in performing the
ablation study as we are able to easily modify its
elements, for example, decoder module complexity
level or the loss function components. By using
an autoencoder architecture with a linear decoder
and the RMSE cost function, we can obtain the
equivalent approximation as provided by a simple
matrix factorization. An illustrative comparison of
our compression method with the classical matrix
factorization approach is shown in Figure 1.

Following Bałazy et al. (2021), we train our au-
toencoder with the multi-objective cost function
consisting of l2 norm loss and cosine distance loss:

Ψβ(X, X̃) = (1−β)·L2(X, X̃)+β ·CD(X, X̃),
(2)

where X represents the original matrix, X̃ is the
reconstructed matrix, L2(X, X̃) represents the root
mean square error (RMSE) loss function, and
CD(X, X̃) is the mean cosine distance loss for
all pairs of vectors (rows) of the original and
reconstructed matrices. The β hyperparameter
(0 ≤ β ≤ 1) is responsible for determining the
weight we would like to assign to the different
components of the loss function.

4 Experiments

This section describes our motivations and the re-
sults of various analyses and experiments that we

conducted to investigate the topic of offline com-
pression thoroughly.

We performed our experiments for different
weight matrices in the transformer architecture, as
each type of weight matrix may have different char-
acteristics, and a given compression method may
or may not be appropriate. The analyses described
below are performed for token embedding, self-
attention (keys, queries, values), and output-dense
weight matrices.

We focus our study on the BERTBASE
model (Devlin et al., 2019), but the same meth-
ods could be applied to other transformer archi-
tectures. All experiments are conducted for three
compression ratios (3, 10, and 25) to investigate
the differences given the different number of avail-
able parameters. All experimental settings of the
various studies presented in the following sections
are included in Appendix A.

We evaluate the quality of our compressed
models on the masked (Devlin et al., 2019) lan-
guage modeling task (using the WikiText-103 test
dataset (Merity et al., 2016)) and multiple datasets
from the GLUE benchmark (Wang et al., 2018).

4.1 Cosine distance objective

First, we investigate whether including the direc-
tion component in the compression objective has
a positive effect on the compression of weight ma-
trices other than token embeddings in the trans-
former model. Bałazy et al. (2021) demonstrated
that supplementing the loss function with the co-
sine distance between pairs of rows of the original
and reconstructed matrix produces noticeably bet-
ter compression results for the token embeddings
matrix. Unfortunately, their study does not exam-
ine other matrices in the transformer, whereas be-
cause of the different nature of these matrices, we
believe it is worth investigating.

Results In Table 3 and Table 4 (in Appendix A.1),
we present the effect of adding the cosine distance
component to the cost function for the keys and
output-dense matrices from the BERTBASE model.
It seems that for matrices other than token embed-
dings, considering the direction of vectors (rows
in the matrix) in most cases may have a positive
impact on the final results of the compressed model.
However, the benefits of using this component are
not as significant as in the case of the token em-
beddings matrix. Indeed, there are some exam-
ples where minimizing only Euclidean distance or
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adding only a small proportion of cosine distance
provides the best results. We suppose this behav-
ior is the consequence of the token embeddings
matrix nature, where the rows represent specific to-
kens used to construct the words. It seems that the
representation of the part or entire word is largely
encoded in the vector direction. This characteriza-
tion does not necessarily apply to other matrices
though often there is a subtle benefit from adding
a cosine distance component to the reconstruction
objective.

4.2 Concatenated and separated weight
matrices

(a) Separated matrices compression mode. All substitution
modules have separate decoder.

(b) Concatenated matrices compression mode. All substitution
modules share the decoder module that enables collaboration
between layers.

Figure 2: Separated and concatenated weight matri-
ces compression. We demonstrate that compressing
concatenated matrices from all layers provides a better-
performing substitution module. In the concatenated
setting, the substitution modules share a decoder that
allows for cross-layer collaboration and provides the
potential to further eliminate redundant information.

This section investigates whether compressing
separately each weight matrix from the consid-
ered model is the best possible strategy. Our in-

tuition is that compressing together the same type
of weight matrices from different layers may bring
certain advantages. First, it could allow for mini-
mizing redundant information in the model weights,
and second, it could enable collaboration between
compressed modules across different layers. Sup-
pose that the neural network model consists of
n layers (l0, l1, . . . , ln−1). Each layer li encapsu-
lates a particular weight matrix Wli . Convention-
ally, each Wli matrix is considered separately dur-
ing the compression process. In the concatenated
mode, we propose compressing a single matrix
W = [Wl0 ,Wl1 , . . . ,Wln−1 ] resulted from con-
catenating all Wli matrices. Given the proposed
compression process, the compressed weight ma-
trices share a common decoder as illustrated in Fig-
ure 2.

Results Experiments discussed in this section
demonstrate that compressing concatenated weight
matrices performs better than compressing each
matrix separately in terms of the compressed model
performance as well as the compression process
time. Figure 3 presents the performance achieved
by models with compressed output-dense matrices
in separated and concatenated modes (similar ex-
periments are presented for key, query, and value
matrices in Figure 7 in Appendix A.2). We report
the initial perplexity and the final score achieved
on the MRPC and SST2 downstream tasks for dif-
ferent compression ratios. We observe the apparent
dominance of the concatenated mode over the sep-
arated mode for both perplexity and downstream
task performance. This may indicate that sharing
the decoder helps to reduce redundant information
and saves parameters for further knowledge encod-
ing.

Furthermore, the separated compression mode is
more computationally expensive at the initial stage
as we must compress each matrix individually. In
the concatenated mode, we perform only a single
compression process on the matrices’ concatena-
tion.

Considering the better performance and faster
training process, we only analyze the concatenated
weight matrices compression in the following sec-
tions.

4.3 Initial perplexity vs downstream tasks
performance

Perplexity is a popular measure determining how
well the language model predicts a particular se-
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Figure 3: Initial perplexity and downstream tasks performance of output-dense matrices’ compression in sepa-
rated/concatenated compression modes4. Using the concatenated mode generally results in better performance for
this module. We observe similar pattern for key, query, and value weight matrices (see Figure 7 in Appendix A.2).

quence of tokens (the lower the perplexity the bet-
ter). This section introduces that the masked lan-
guage model perplexity metric may be considered
as a low-cost yet effective way to evaluate a com-
pressed module. We show that in most cases the
compressed models with the lowest initial perplex-
ity yields the best performance when fine-tuned on
a downstream tasks.

Results We examined the relation between the
initial BERTBASE perplexity after applying com-
pressed weight matrices and its final performance
after fine-tuning on a downstream task. In Fig-
ure 8 (in Appendix A.3) we report results for token
embeddings matrix, self-attention keys, queries,
values and final output-dense matrices. We observe
that in most cases models with the lowest initial
perplexity result in the best performance on the
downstream task (MRPC ans SST2). Therefore,
we consider the masked language model perplexity
metric to be a good low-cost method to preliminar-
ily evaluate the quality of a compressed module.

4.4 Linear and non-linear decoder module

In this section we investigate the effect of using
different decoder module in the autoencoder model
on the final model’s performance. We experiment
with a simple linear layer decoder and two non-
linear decoder versions.

Results Figure 4 presents initial perplexity and fi-
nal downstream tasks performance achieved when
using linear and non-linear decoder in the autoen-

4Each point represents one hyperparameter setting.

coder model while compressing token embeddings
matrix. We may observe that for the token em-
beddings better final results are produced when us-
ing non-linear decoder. However, as demonstrated
in Figure 9 (in Appendix A.4), a different pattern
is apparent for key matrices where linear models
considerably outperform the non-linear versions in
most cases.

4.5 Preserving vector norm

Furthermore, we examine whether preserving the
original l2 vector norms of the vectors representing
rows in the reconstructed matrix to be the same as
in the original vectors is beneficial for the compres-
sion.

Results Figure 5 presents initial perplexity and
downstream tasks performance when enabling or
disabling the preserving vector norm technique for
the token embeddings matrix. We may see that
in most cases the version with enabled preserving
vector norm achieves better results. In addition to
token embeddings, in Figure 10 (in Appendix A.5)
we also demonstrate the effect of preserving l2 vec-
tor norm during compression of the output-dense
matrix.

4.6 Sensitivity

Most offline compression methods focus only on
the raw weight matrices taken from the considered
pre-trained model. However, we could also lever-
age the unsupervised upstream dataset to improve
the compression quality. Hsu et al. (2022) pro-
posed using additional weights computed on the
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Figure 4: Initial perplexity and downstream tasks performance for the compressed token embeddings matrix when
using either a linear or a non-linear decoder module in the autoencoder model. Here we present results for different
hyperparameters settings (see Appendix A.4 for further details). A non-linear decoder seems to be a better choice
for compressing this module.

entire upstream dataset to enhance the low-rank
factorization method. They used the Fisher Infor-
mation weights I that measure the amount of the
observable information in dataset D about a single
model parameter w. A feasible approximation Îw
of the Fisher Information Iw for parameter w may
be expressed as:

Iw = E[( ∂
∂w logP (D|w))2] ≈ 1

|D|
∑

d∈D(
∂
∂wL(d;w))

2 = Îw (3)

where L is the target pre-training task objective
(e.g., cross-entropy or MSE).

For the entire weights matrix W , Hsu et al.
(2022) presented even more simplified and com-
putationally effective row-wise diagonal Fisher In-
formation matrix Î , where each diagonal value is
the sum of the corresponding row of the Fisher
Information approximation matrix ÎW :

Î = diag(

√∑

j=1

ÎW1j , ...,

√∑

j=1

ÎWnj ). (4)

We present the distributions of the row-wise
Fisher Information for the upstream dataset (i.e.,
masked language modeling on the WikiText-103
dataset) in Figure 6. We notice that each distribu-
tion contains some outliers which point to the po-
tentially irrelevant weights in the considered weight
matrix. In this section, we demonstrate that the
weights’ relevance information may be leveraged
in the compression process to improve the quality
of compressed modules.

Hsu et al. (2022) used the Fisher Information di-
rectly on the original model weights in their Fisher-
Weighted SVD (FWSVD) approach:

W ≈ FWSV D(W ) = Î−1SV D(ÎW ). (5)

In contrast, our method does not modify the orig-
inal weight matrices but rather uses the Fisher Infor-
mation in the loss function to help the model focus
more on important weights. Moreover, we apply
different transformations on the original Fisher In-
formation values to modify the relative importance
of the module weights to reduce the undesirable in-
fluence of outliers (Appendix A.6 discusses various
transformations we experimented with for different
modules).

CR Method Perplexity SST-2
(Acc)

MRPC
(F1/Acc)

3 AE 118.41 91.97 88.53 / 84.31
AE+Fisher 33.27 92.55 88.36 / 83.33

10 AE 712.98 88.07 85.87 / 80.88
AE+Fisher 250.59 89.33 87.27 / 81.62

25 AE 4926.08 82.80 84.19 / 77.45
AE+Fisher 2728.41 83.83 84.35 / 77.70

Table 1: The effect of adding the Fisher Information
to the autoencoder-based (AE) compression of token
embeddings. We report the compressed BERTBASE

upstream task perplexity (on the WikiText-103 dataset)
and the downstream performance over two GLUE tasks.
Each AE result represents a median from 3 runs with
different seeds.
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Figure 5: The effect of preserving l2 vector norm on the perplexity and downstream tasks performance while
compressing the token embeddings matrix for different hyperparameters settings. Preserving norm seems to
generally improve the compression performance for this module.

CR Architecture MRPC
(F1/Acc)

SST-2
(Acc)

RTE
(Acc)

QNLI
(Acc)

QQP
(F1/Acc)

1 BERTBASE 88.85/84.07 92.32 65.70 90.66 87.49/90.71

3 SVD 84.35/77.45 86.70 62.09 85.61 84.64/88.38
Our 85.25/77.77 90.25 62.45 88.68 86.07/89.71

10 SVD 78.46/68.38 82.00 52.71 77.48 79.36/83.45
Our 81.45/71.08 83.94 57.76 81.48 81.57/85.75

25 SVD 77.10/66.42 78.33 53.43 62.66 74.21/79.10
Our 81.60/71.32 80.05 55.23 72.96 78.45/83.11

Table 2: Final BERTBASE model compression (token embedding matrix, all key matrices, and all output-dense
matrices). The baseline SVD algorithm compresses each matrix separately. Our autoencoder-based approach,
incorporates mechanisms developed in the ablation study presented in this work (see Table 8 for the detailed AE
design choices). For each setting, we present the median score from experiments with three different seeds. Our
approach consistently outperforms the classical factorization method.

Results Table 1 presents the benefits of incorpo-
rating sensitivity for compression of token embed-
dings where both upstream perplexity and down-
stream task performance is improved. We further
demonstrate the positive influence of Fisher infor-
mation for three transformer modules in Table 5
(in Appendix A.6) for both autoencoder and SVD
methods. Additionally, Table 6 (in Appendix A.6)
presents the compression performance provided by
AE using different Fisher Information transforma-
tions. We observe that incorporating the Fisher
Information with batch normalization into the com-
pression process considerably improves the model
perplexity as well as the downstream task perfor-
mance.

4.7 Comparison with other offline
compression approaches

In Table 5, we compare our approach with the most
popular matrix factorization method, namely Sin-
gular Value Decomposition (SVD), for the com-
pression of three different transformer modules.
We may see that our approach outperforms or is
competitive with SVD in most settings. Addition-
ally, in Appendix A.7, we discuss the poor perfor-
mance of Kronecker Product and Tucker Decom-
position (as two other factorization-based methods)
in the offline compression setting. We also com-
pare our solution to a non-factorization baseline,
namely pruning, and show that our autoencoder-
based method also outperforms it in most studied
settings (see Table 7 in Appendix A.7).
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Figure 6: Row-wise Fisher Information distribution
for three different modules in the BERTBASE model.
The Fisher information values are passed as importance
weights in the autoencoder loss function to help the com-
pression model focus more on the module’s important
weights. Appendix A.6 discusses different transforma-
tions applied to Fisher information to help the compres-
sion model handle outlier Fisher information values.

4.8 Compressing multiple types of
transformer modules

For the final experiment, we took into considera-
tion all the analysis insides presented in this work
and prepared the concluding experiment on offline
compression methods. In this experiment, we com-
pressed multiple BERTBASE weight matrices at
the same time (token embedding matrix, all key
matrices and all output-dense matrices). We com-
pared the offline compression quality produced by
the autoencoder approach and the baseline SVD
factorization matrix method.

For the compression with SVD we classically
compressed each matrix separately. We tested three
different seeds and various number of iterations for
SVD algorithm. For the autoencoder approach, we
compressed considered matrices by selecting ap-
propriate mechanisms based on our ablation study.
For both SVD and our approach, we report the me-
dian of the final scores from the experiments with
three different seeds to exclude potential outliers.
The compressed matrices with the lowest perplex-
ity were applied into BERTBASE that was then
fine-tuned on various NLP tasks (MRPC, SST-2,
RTE, QNLI and QQP). In the resulting table we
reported the median of the final scores to exclude
potential outliers.

Final experiment results are presented in Table 2.
Our approach consistently outperforms the SVD
baseline on all tested downstream tasks.5

4.9 Compression time

Generally, compressing modules using autoencoder
and SVD takes a comparable amount of time. How-

5The hyperparameter setting for autoencoder is provided
in Table 8 in Appendix A.8

ever, using concatenated mode (as proposed in our
paper) speeds up this process significantly. In Ap-
pendix A.9, we report compression times for differ-
ent modules (Table 9) and the compressed models’
inference and fine-tuning time.

5 Conclusions

This work comprehensively studies various meth-
ods for the offline compression of transformer lan-
guage models. We analyze various changes in the
proposed architecture and its optimization function.
We test different input modifications and evaluate
the compressed language model performance in
each scenario. By analyzing various compression
settings, we show that our autoencoder-based ap-
proach outperforms classical matrix factorization
on various NLP downstream tasks. Furthermore,
we believe the techniques analyzed in this study
might also be useful for low-cost compression of
different weight matrices unrelated to language
models.

Limitations

A limitation of our approach that we may iden-
tify is the need to analyze each module type to
determine the best mechanisms for its compression.
Our module-specific findings could be reflected in
corresponding modules in other language models,
but this would require further investigation. Addi-
tionally, A (reasonably-sized) unsupervised corpus
must also be used for computing the Fisher In-
formation for the compression procedure, which is
more computationally demanding than other offline
approaches suggested in this study.
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A Experiments

In this section, we describe the general assumptions
for the experiments and the specific setting of the
hyperparameters for each individual experiment.

We train the autoencoder model using gradient
descent procedure and Adam optimizer (Kingma
and Ba, 2014). In most of our experiments, re-
sulting compressed modules are inserted into a
pre-trained language model and fine-tuned on two
different downstream tasks from GLUE bench-
mark (Wang et al., 2018), MRPC and SST2, with
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a default learning rate λ = 2 · 10−5 proposed by
Hugging Face Transformers6 (Wolf et al., 2019).

A.1 Cosine distance objective

In Table 3 and Table 4, we report the effect adding
the cosine distance component to the compression
objective for the keys and output-dense matrices
from the BERTBASE model.

Experimental setup We study the effect of the
cosine distance component in the loss function for-
mulated in Equation (2) on the compression qual-
ity of self-attention keys matrices and the fully-
connected output-dense weight matrices. We com-
press each of these matrices from each layer sep-
arately and then apply all the compressed matri-
ces from certain type (keys or output-denses) to
the transformer model to evaluate the compres-
sion quality. We inspect the effect of various ra-
tios between Euclidean distance component (L2)
and the cosine distance component (CD) in Equa-
tion (2), namely 1:0, 10:1, 1:1, 1:10 which cor-
responds to β ∈ {0.0, 0.0909, 0.5, 0.909}. For
each model we test different learning rates λ ∈
{5 · 10−3, 10−3, 5 · 10−4, 10−4}.

Compression
ratio

Cosine
coefficient

Initial
perplexity

MRPC
(Acc)

SST-2
(Acc)

3

0.0 22.9 74.5 91.0
0.0909 22.2 76.2 92.1

0.5 25.5 77.2 92.1
0.9091 27.0 76.2 91.4

10

0.0 45.8 72.5 91.5
0.0909 32.5 72.0 90.7

0.5 34.4 70.3 91.5
0.9091 43.2 71.3 91.6

25

0.0 116.9 70.3 90.6
0.0909 167.6 69.6 90.2

0.5 115.3 69.1 90.9
0.9091 507.7 69.3 90.1

Table 3: The impact of adding a component respon-
sible for preserving the direction in the compression
of the key matrices from the self-attention block in
BERTBASE model. We report the best (across different
learning rates) initial model’s perplexity after compres-
sion as well as it’s performance on a downstream tasks
for the different cosine coefficients (β in Equation (2)).
Adding a component to the compression objective that
aims to preserve the direction of the vectors in recon-
structed matrix may bring a slight improvement on the
quality of the result.

6https://github.com/huggingface/transformers

Compression
ratio

Cosine
coefficient

Initial
perplexity

MRPC
(Acc)

SST-2
(Acc)

3

0.0 327.4 83.1 91.0
0.0909 332.8 82.3 91.5

0.5 599.2 79.4 90.5
0.9091 1510.4 75.2 90.5

10

0.0 1396.5 74.5 88.1
0.0909 1917.8 74.5 85.9

0.5 2099.3 72.0 84.9
0.9091 2326.1 71.8 84.0

25

0.0 1988.0 73.8 84.5
0.0909 2099.0 73.8 85.3

0.5 2144.7 72.5 84.7
0.9091 2148.6 72.5 84.6

Table 4: The impact of adding a component responsible
for preserving the direction in the compression of the
output-dense matrices in BERTBASE model. Different
cosine coefficients refer to β in Equation (2). We report
the score for the model with the best initial perplexity
across different learning rates as well as it’s performance
on MRPC and SST2 downstream tasks.

A.2 Concatenated and separated weight
matrices

In Figure 7 we present the performance achieved
by models with compressed key, query and value
matrices when using separated and concatenated
mode in the compression process.

Experimental setup With the objective of com-
paring the compression of separate and concate-
nated matrices, we analyze the various matrices in
the transformer architecture: the key, query, and
value matrices from the self-attention module and
output-dense matrix (one of the fully connected
end matrices). We optimize loss function described
previously in Equation (2) with 1:1 and 1:10 ratios
for the l2 norm loss coefficient and cosine distance
coefficient, respectively. The decoder in the au-
toencoder model is a single fully connected layer.
The model is trained with different learning rates
λ ∈ {5 · 10−3, 10−3, 5 · 10−4, 10−4}.

A.3 Initial perplexity vs downstream tasks
performance

In Figure 8 we present the initial perplexity and the
performance on MRPC ans SST2 downstream tasks
for the language model with various compressed
modules.

Experimental setup We examine the initial
masked language model perplexity and down-
stream tasks performance relation for token embed-
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Figure 7: Initial perplexity and downstream tasks performance with separated and concatenated compression mode
for output-dense weights matrices, queries weights matrices and values weights matrices in the BERT model.

ding matrix, self-attention matrices: keys, queries,
values and final output-dense matrices. For simplic-
ity of the experiment, we use the linear decoder in
the autoencoder model. The loss and learning rate
combinations for the models’ training are the same
as in experiment in previous section. We conducted
all experiments with two different seeds to obtain
more reliable correlation information.

A.4 Linear and non-linear decoder module

In Figure 9 we present the initial perplexity and fi-
nal downstream tasks performance achieved when
using linear and non-linear decoder in the autoen-
coder model for key matrices compression. Unlike
token embeddings for key matrices, the linear mod-
els outperform non-linear ones in most scenarios.
Similar set of experiments on output-dense ma-
trices also showed that linear models outperform
non-linear ones.

Experimental setup We conduct experiments
with the following settings: linear encoder/decoder
and non-linear encoder/decoder. For non-linear
encoder/decoder case, we examine architectures

with 1 and 2 hidden layers. As non-linear activation
functions we use LeakyReLU (Maas et al., 2013)
and Tanh. We investigate the loss configurations
( Equation (2)) with 1:0, 1:1, 1:10 and 1:100 ratios
of the l2 norm loss to the cosine distance loss.

A.5 Preserving vector norm
In Figure 10 we show the potential benefits of
preserving l2 vector norm during compression of
the output-dense matrices for two different down-
stream tasks .

Experimental setup We repeat the same set of
experiments as in the previous section (Section 4.4),
but each experiment is executed with and without
the preserving vector norm option enabled.

A.6 Sensitivity
In Table 5 and Table 6 we report the positive impact
of adding Fisher Information (with different coeffi-
cient transformations) for weight matrix compres-
sion for both autoencoder and SVD approaches.

Experimental setup We precompute the Fisher
Information coefficients for token embeddings, self-
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Figure 8: Initial perplexity and final accuracy on MRPC and SST2 downstream tasks for token embeddings,
output-dense, keys, queries and values BERTBASE matrices compression.

attentions keys and output-dense weight matri-
ces. We apply them the best hyperparameter set-
ting obtained from the previous experiments. We
use various transformations for Fisher Information
coefficients: exponential transformation xa with
a = 0.1, 0.5, 0.9, 2.0, logarithmic transformation
loge(x) +C with a C equals to minimum value so
that all x are positive, logarithmic transformation
loge(x) + C + 10, and raw Fisher Information co-
efficients without any transformation (Vanilla). For
some transformations, we also add a batch sum nor-
malization (+BN). We also report results without
using Fisher Information (No Fisher).

A.7 Comparison to other offline compression
methods

Kronecker Product offline compression In-
spired by a promising results achieved by using
a Kronecker product for training the transformer
model from scratch (Panahi et al., 2021) we have
attempted to produce a compression of the orig-

inal transformer matrices by using a Kronecker
product of two matrices approximating the origi-
nal matrix. We have trained these matrices using
the gradient descent algorithm. Unfortunately, the
results were unsatisfactory for each of the tested
settings. For example, for concatenated key matri-
ces and a compression ratio of 10 the perplexity for
the Kronecker product was around 1500, while for
the autoencoder perplexity below 50 is achieved in
many different settings.

Tucker decomposition offline compression
Moreover, we also experimented with the Tucker
decomposition (De Lathauwer et al., 2000) as an of-
fline compression method. For token embeddings
compression, we observed that the compressed lan-
guage model starts having high perplexities even
in low compression ratios. For instance, for CR=3,
the model perplexity becomes almost 1500, while
the autoencoder model can achieve perplexities
below 40 for the same compression ratio. This find-
ing is consistent with the observation of (Ren et al.,
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Word embeddings Output dense Keys

CR Method Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

3

SVD 1842.38 89.68 83.71 / 75.49 99.98 91.74 88.77 / 84.07 22.04 92.32 85.30 / 77.45
SVD+Fisher 20.20 91.86 88.62 / 83.82 71.05 91.74 88.74 / 83.82 20.67 91.74 86.22 / 78.92

AE 118.41 91.97 88.53 / 84.31 70.69 91.74 86.17 / 78.92 22.35 92.43 84.48 / 76.23
AE+Fisher 33.27 92.55 88.36 / 83.33 64.67 91.40 85.58 / 77.94 22.27 92.32 84.44 / 75.98

10

SVD 13196.30 83.37 82.85 / 74.02 989.18 89.56 83.92 / 75.49 30.75 91.97 81.54 / 73.04
SVD+Fisher 65.17 87.73 85.01 / 77.70 723.61 90.14 84.76 / 76.47 41.49 91.74 81.00 / 72.06

AE 712.98 88.07 85.87 / 80.88 1197.19 88.42 83.97 / 75.49 29.01 91.40 80.42 / 72.30
AE+Fisher 250.59 89.33 87.27 / 81.62 1249.62 89.45 84.64 / 75.98 29.30 91.40 81.34 / 72.79

25

SVD 20178.74 77.64 82.33 / 71.81 1603.45 88.19 84.09 / 75.25 52.50 90.71 78.19 / 69.36
SVD+Fisher 913.23 75.23 82.02 / 73.77 1205.34 87.27 83.88 / 74.75 80.14 91.17 74.36 / 65.69

AE 4926.08 82.80 84.19 / 77.45 1462.41 85.61 82.02 / 72.06 69.24 91.74 78.78 / 69.36
AE+Fisher 2728.41 83.83 84.35 / 77.70 1453.44 87.56 84.54 / 75.98 73.28 90.83 78.40 / 69.61

Table 5: The effect of adding the Fisher Information to the SVD-based and autoencoder-based (AE) compression.
We report the BERTBASE upstream task perplexity and the downstream tasks final scores. Each autoencoder result
represents a median from 3 runs with different seeds and each SVD score is a result of the best iteration from run
with one seed. For autoencoder model compression we selected the Fisher Information transformation for each
of the compressed modules based on the results from Table 6 (x0.5 +BN for word embeddings; x2.0 +BN for
output-dense matrices; loge(x) + C + 10 for key matrices).

Figure 9: Initial perplexity and downstream tasks perfor-
mance when using linear and non-linear decoder mod-
ule in the autoencoder model for the compression of the
keys matrix. Using a linear decoder generally appears
to be a better choice for this matrix.

2022) that even randomly initializing the factorized
tensors perform very close to the models initial-
ized by e.g., tucker decomposition. Therefore, we
also do not find Tucker decomposition an efficient
method in the context of offline compression.

Pruning We also compare our proposed autoen-
coder framework with a pruning baseline as an-
other offline compression baseline. The pruning
algorithm here is based on PyTorch unstructured L1
pruning (Paszke et al., 2019). For this experiment,

Figure 10: The effect of preserving l2 vector norm on
the perplexity and downstream tasks performance while
compressing the output-dense matrices. We can see
that enforcing norm for compression of this module
generally improves the result.

we compress token embedding, keys, and output-
dense matrices using either autoencoder or prun-
ing approaches. The models are evaluated on four
GLUE tasks as presented in Table 7. We can see
that autoencoder-based compression outperforms
pruning baseline in most studies settings, especially
when higher compression ratios are studied.
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Word embeddings Output-dense Keys

CR=3 Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

x2.0 + BN 30.88 92.32 87.97 / 82.84 64.67 91.40 85.58 / 77.94 22.44 92.20 83.94 / 75.25
x0.9 + BN 24.97 92.55 88.32 / 83.09 62.93 91.51 86.13 / 78.92 22.18 92.20 84.04 / 75.49
x0.5 + BN 33.27 92.55 88.36 / 83.33 65.07 91.40 85.81 / 78.19 22.32 91.97 83.89 / 75.25
x0.1 + BN 58.08 91.86 86.47 / 81.13 68.19 91.40 86.17 / 78.92 22.29 91.97 83.99 / 75.25
Vanilla+BN 24.68 92.55 87.25 / 82.11 62.60 91.63 86.08 / 78.43 22.39 92.20 83.70 / 74.51
Vanilla 564.37 87.96 87.32 / 82.35 66.91 90.77 85.99 / 78.68 22.73 92.55 83.62 / 74.75
loge(x) + C + 10 68.46 92.43 86.91 / 81.62 68.61 91.86 86.04 / 78.68 22.27 92.32 84.44 / 75.98
loge(x) + C 236.24 92.09 86.75 / 81.13 68.17 91.74 86.17 / 78.92 22.26 91.97 84.36 / 75.74

No Fisher 118.41 91.97 88.53 / 84.31 70.69 91.74 86.17 / 78.92 22.35 92.43 84.48 / 76.23

Word embeddings Output-dense Keys

CR=10 Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

x2.0 + BN 147.29 86.93 84.85 / 77.94 1249.62 89.45 84.64 / 75.98 30.78 91.40 79.73 / 70.10
x0.9 + BN 95.32 88.30 85.22 / 78.92 1251.53 88.19 84.04 / 75.25 30.47 91.28 79.46 / 70.10
x0.5 + BN 250.59 89.33 87.27 / 81.62 1195.41 88.53 83.81 / 75.00 29.81 91.40 80.60 / 71.57
x0.1 + BN 567.88 87.16 84.73 / 77.21 1148.47 88.42 83.68 / 75.25 29.26 91.17 80.74 / 72.06
Vanilla+BN 136.84 88.99 85.86 / 79.90 1251.65 88.65 83.79 / 75.00 30.53 91.40 78.85 / 69.36
Vanilla 15994.88 79.70 81.22 / 68.38 1547.14 87.16 83.20 / 74.26 31.65 91.63 77.82 / 68.14
loge(x) + C + 10 806.71 88.30 86.06 / 80.15 1145.25 88.42 83.71 / 75.00 29.30 91.40 81.34 / 72.79
loge(x) + C 854.19 88.07 86.25 / 80.39 1148.46 88.99 84.09 / 75.25 29.25 91.17 80.14 / 72.06
No Fisher 712.98 88.07 85.87 / 80.88 1197.19 88.42 83.97 / 75.49 29.01 91.40 80.42 / 72.30

Word embeddings Output-dense Keys

CR=25 Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

x2.0 + BN 2779.96 80.73 83.99 / 75.98 1453.44 87.56 84.54 / 75.98 77.04 91.06 77.95 / 68.63
x0.9 + BN 1983.19 83.49 82.08 / 73.04 1371.93 87.96 83.31 / 74.26 71.90 90.60 79.66 / 70.34
x0.5 + BN 2728.41 83.83 84.35 / 77.70 1438.66 87.73 83.20 / 74.26 74.69 90.71 79.73 / 70.59
x0.1 + BN 5502.34 82.45 84.12 / 76.96 1447.31 85.89 82.58 / 73.28 74.34 91.17 78.68 / 69.85
Vanilla+BN 2167.99 80.50 82.60 / 73.77 1384.83 87.10 83.87 / 75.49 71.37 90.71 78.97 / 69.85
Vanilla 14880.66 77.29 80.19 / 70.10 1748.90 86.35 82.26 / 73.28 66.53 91.17 76.92 / 67.65
loge(x) + C + 10 5426.84 82.45 83.90 / 76.47 1449.46 86.93 82.89 / 73.53 73.28 90.83 78.40 / 69.61
loge(x) + C 4359.66 82.91 83.89 / 76.47 1446.55 86.58 81.79 / 72.06 76.81 91.06 77.78 / 68.63

No Fisher 4926.08 82.80 84.19 / 77.45 1462.41 85.61 82.02 / 72.06 69.24 91.74 78.78 / 69.36

Table 6: Incorporating Fisher Information coefficients in the autoencoder-based compression process for different
compression ratios (CR) on the SST2 and the MRPC tasks. The first column demonstrates the transformation(s)
applied to Fisher information before being passed to autoencoder loss function (more details in Appendix A.6).We
also report the perplexity of the compressed model on the upstream task. Each score is the median of experiment
results with three different seeds.

CR Architecture MRPC
(F1/Acc)

SST-2
(Acc)

RTE
(Acc)

QNLI
(Acc)

1 BERTBASE 88.85/84.07 92.32 65.70 90.66

3 Pruning 86.25/80.15 90.37 56.47 88.68
Our 85.25/77.77 90.25 62.45 88.68

10 Pruning 79.61/69.61 79.93 50.21 70.65
Our 81.45/71.08 83.94 57.76 81.48

25 Pruning 80.86/69.36 75.11 51.97 60.57
Our 81.6/71.32 80.05 55.23 72.96

Table 7: Comparison of BERTBASE model compression using autoencoder (AE) and pruning approaches (com-
pressing token embedding matrix, all key matrices and all output-dense matrices). For AE we present the median
score from experiments with 3 different seeds.
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A.8 Hyperparameter setting for the final
experiment

This section presents the hyperparameter setting
used for the Section 4.8 where multiple modules
(token embedding, keys and output-dense) are com-
pressed together. The autoencoder hyperparame-
ters setting for this experiment can be found in Ta-
ble 8.

A.9 Compression time
In Table 9 we report compression times for keys,
output-denses and token embeddings matrices from
BERTBASE model using autoencoder and SVD
compression approaches. For autoencoder we
present times for both separated and concatenated
matrices compression (as proposed in our paper)
showing the advantage of using the latter approach.

We additionally performed experiments to
compare the inference time of uncompressed
BERTBASE with the extreme case of CR=25
using our approach (AE) and the SVD base-
line. Compressed modules are token embed-
dings, key, and output-dense modules. We ob-
serve that inference times are very similar, with
a slight increase in inference time when our model
is used. In particular, the evaluation times (in
seconds) for BERT/SVD/AE were respectively
0.474/0.477/0.493 (for the MRPC dataset) and
0.987/0.997/1.034 (for the SST2 dataset). More-
over, fine-tuning the BERTBASE model using com-
pressed modules from autoencoder for the bigger
datasets in GLUE, namely QNLI and QQP, takes at
most 15% and 25% longer than the SVD baseline,
respectively. It is also worth noting that when a
linear autoencoder is incorporated, the inference
time is the same as the SVD baseline.
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Module CR Learning
rate

Cosine:L2

coefficients Decoder Enforce
norm

Fisher
transformation

Token embeddings
3 5 · 10−4 10:1 Non-linear (1 hidden layer) Yes x0.5 +BN
10 5 · 10−4 10:1 Non-linear (2 hidden layers) Yes x0.5 +BN
25 10−3 10:1 Non-linear (1 hidden layer) Yes x0.5 +BN

Output-denses
3 10−3 1:10 Linear Yes x2.0 +BN
10 10−4 1:10 Linear No x2.0 +BN
25 5 · 10−4 0:1 Linear No x2.0 +BN

Keys
3 5 · 10−4 0:1 Linear Yes loge(x) + C + 10
10 5 · 10−4 1:1 Linear No loge(x) + C + 10
25 10−3 0:1 Linear No loge(x) + C + 10

Table 8: The best hyperparameters for the BERTBASE model compression described in Section 4.8. In this
experiment, token embedding matrix, all keys and all output-dense matrices are compressed using our proposed
autoencoder-based framework.

Method Mode CR Token
embeddings Keys Output-denses

SVD separated 3 ∼9.5min (∼5.5*12)min (∼6.0*12)min
SVD separated 10 ∼8.0min (∼5.5*12)min (∼6.0*12)min
SVD separated 25 ∼7.5min (∼5.5*12)min (∼6.0*12)min
AE separated/concatenated 3 ∼7.7min (∼5.5*12)min/∼6.1min (∼6.0*12)min/∼6.5min
AE separated/concatenated 10 ∼7.5min (∼5.5*12)min/∼6.0min (∼6.0*12)min/∼6.1min
AE separated/concatenated 25 ∼7.5min (∼5.5*12)min/∼5.9min (∼6.0*12)min/∼6.1min

Table 9: Training time to retrieve compressed modules (key, output-dense, and token embeddings) of BERTBASE

model using autoencoder (AE) and SVD approach. For the AE, we provide training times for the separated and
concatenated modes to demonstrate another benefit of using the concatenated version, given its much better training
time.
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Abstract

Semantic role labeling (SRL) identifies
predicate-argument structures in a sentence.
This task is usually accomplished in four steps:
predicate identification, predicate sense disam-
biguation, argument identification, and argu-
ment classification. Errors introduced at one
step propagate to later steps. Unfortunately,
the existing SRL evaluation scripts do not con-
sider the full effect of this error propagation
aspect. They either evaluate arguments inde-
pendent of predicate sense (CoNLL09) or do
not evaluate predicate sense at all (CoNLL05),
yielding an inaccurate SRL model performance
on the argument classification task. In this pa-
per, we address key practical issues with ex-
isting evaluation scripts and propose a more
strict SRL evaluation metric, PriMeSRL. We
observe that by employing PriMeSRL, the qual-
ity evaluation of all SoTA SRL models drops
significantly, and their relative rankings also
change. We also show that PriMeSRL success-
fully penalizes actual failures in SoTA SRL
models.

1 Introduction

Semantic Role Labeling (SRL) extracts predicate-
argument structures from a sentence, where pred-
icates represent relations (verbs, adjectives, or
nouns) and arguments are the spans attached to the
predicate demonstrating “who did what to whom,
when, where, and how.” As one of the funda-
mental natural language processing (NLP) tasks,
SRL has been shown to help a wide range of
NLP downstream applications such as natural lan-
guage inference (Zhang et al., 2020b; Liu et al.,
2022), question answering (Maqsud et al., 2014;
Yih et al., 2016; Zhang et al., 2020b; Dryjański
et al., 2022), machine translation (Shi et al., 2016;
Rapp, 2022), content moderation and verification
(Calvo Figueras et al., 2022; Fharook et al., 2022),
information extraction (Niklaus et al., 2018; Zhang

∗b Work done while at IBM Research

[Derick] broke the [window] with a [hammer] to [escape] .
A0 break.01 A1 A2 AM-PRR

nsubj det
obj

mark
det

obl

mark

obl

ROOT

Figure 1: An SRL example with head-based semantic
roles on top of Universal Dependencies annotation.

et al., 2020a). In all of these applications, the qual-
ity of the underlying SRL models has a significant
impact on the downstream tasks. Despite this, few
studies exist on how to properly evaluate the quality
of SRL systems in practice.

Given a sentence, a typical SRL system obtains
predicate-argument structure by following a se-
ries of four steps: 1) predicate identification; 2)
predicate sense disambiguation; 3) argument iden-
tification; and 4) argument classification. The
predicate senses and their argument labels are
taken from inventories of frame definitions such
as Proposition Bank (PropBank) (Palmer et al.,
2005), FrameNet (Baker et al., 1998), and Verb-
Net (Schuler, 2005).

The accuracy of SRL extraction is affected by
the correctness of each of these steps. Consider the
example in Figure 1 using PropBank1 annotations:

The SRL system must:

1. Identify the verb ‘break’ as a predicate

2. Disambiguate its particular sense as
‘break.01’, 2 which has four associated
arguments: A0 (the breaker), A1 (thing
broken), A2 (the instrument), A3 (the number
of pieces), and A4 (from what A1 is broken
away).3

1In this paper we discuss SRL based on PropBank frames.
2https://verbs.colorado.edu/propbank/

framesets-english-aliases/break.html
3Note that in PropBank each verb sense has a specific set
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3. Identify each argument as it occurs (‘Derick’,
‘the window’, etc.)

4. Classify the arguments (‘Derick’ : A0)

Finally, this example has one additional modifier:
the AM-PRP (the purpose). Figure 1 illustrates the
same analysis on top of the universal dependencies
annotations where only the tokens’ head of phrases
are annotated with the proper argument.

To obtain a completely correct predicate-
argument structure both the predicate sense and
all of its associated arguments need to be correctly
extracted. Mistakes introduced at one step may
propagate to later steps, leading to further errors.

For instance, in the above example, a wrong
predicate sense ‘break.02’ (break in or gain entry)
has not only a different meaning from ‘break.01’
(break) but also a different set of arguments. In
many cases, even if an argument for a wrong predi-
cate sense is labeled with the same numerical roles
(A1, A2, etc), their meanings can be very different.
Therefore, in general, the labels for argument roles
should be considered to be incorrect when the pred-
icate sense itself is incorrect. However, existing
SRL evaluation metrics (e.g. (Hajič et al., 2009))
do not penalize argument labels in such cases.

The currently used evaluation metrics also do
not evaluate discontinuous arguments accurately.
Some arguments in the PropBank original corpora
have discontinuous spans that all refer to the same
argument. This can happen for a number of rea-
sons such as in verb-particle constructions. In a
dependency-based analysis, these arguments end
up being attached to distinct syntactic heads (Sur-
deanu et al., 2008). Take as an example the sen-
tence, “I know your answer will be that those peo-
ple should be allowed to live where they please as
long as they pay their full locational costs.” For
the predicate “allow.01,” the A1 (action allowed)
is the discontinuous span “those people” (A1) and
“to live where they please as long as they pay their
full locational costs” (C-A1). Existing evaluation
metrics treat these as two independent labels.

A similar problem exists for the evaluation of
reference arguments (R-X). For example, in the sen-
tence “This is exactly a road that leads nowhere”,
for the predicate “lead.01”, the A0 “road” is refer-
enced by C-A0 “that”. If A0 is not correctly identi-
fied, the reference C-A0 is meaningless.

of underspecified roles, given by numbers: A0, A1, A2, and so
on. This is because of the well-known difficulty of defining a
universal set of thematic roles (Jurafsky and Martin, 2021).

In this paper, we conduct a systematic analysis
of the pros and cons of different evaluation metrics
for SRL, including:

• Proper evaluation of predicate sense disam-
biguation task;

• Argument label evaluation in conjunction with
predicate sense;

• Proper evaluation for discontinuous argu-
ments and reference arguments; and

• Unified evaluation of argument head and span.

We then propose a new metric for evaluating SRL
systems in a more accurate and intuitive manner in
Section 3, and compare it with currently used meth-
ods in Section 4. PriMeSRL is available at https:
//github.com/UniversalPropositions/PriMeSRL-Eval.

2 Existing Evaluation Metrics for SRL

Most of the existing evaluation metrics came from
shared tasks for the development of systems capa-
ble of extracting predicates and arguments from
natural language sentences. In this section, we
summarize the approaches to SRL evaluation in the
shared tasks from SemEval and CoNLL.

2.1 Senseval and SemEval
SemEval (Semantic Evaluation) is a series of evalu-
ations of computational semantic analysis systems
that evolved from the Senseval (word sense evalua-
tion) series.

SENSEVAL-3 (Litkowski, 2004) addressed the
task of automatic labeling of semantic roles and
was designed to encourage research into and use
of the FrameNet dataset. The system would re-
ceive as input a target word and its frame, and was
required to identify and label the frame elements
(arguments). The evaluation metric counted the
number of arguments correctly identified (complete
match of span) and labeled, but did not penalize
those spuriously identified. An overlap score was
generated as the average of proportion of partial
matches.

SemEval-2007 contained three tasks that eval-
uate SRL. Task 17 and 18 identified arguments
for given predicates using two different role la-
bel sets: PropBank and VerbNet (Pradhan et al.,
2007). They used the srl-eval.pl script from
the CoNLL-2005 scoring package (Carreras and
Màrquez, 2005) (see below). Task 19 consists of
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recognizing words and phrases that evoke seman-
tic frames from FrameNet and their semantic de-
pendents, which are usually, but not always, their
syntactic dependents. The evaluation measured pre-
cision and recall for frames and frame elements,
with partial credit for incorrect but closely related
frames. Two types of evaluation were carried out.
The first is the label matching evaluation. The par-
ticipant’s labeled data were compared directly with
the gold standard labeled using the same evalua-
tion procedure used in the previous SRL tasks at
SemEval. The second is the semantic dependency
evaluation, in which both the gold standard and
the submitted data were first converted to semantic
dependency graphs and compared.

SemEval-2012 (Kordjamshidi et al., 2012) and
SemEval-2013 (Kolomiyets et al., 2013) intro-
duced the ‘Spatial Role Labeling’ task, but this is
somewhat different from the standard SRL task and
will not be discussed in this paper. Since SemEval-
2014 (Marelli et al., 2014), a deeper semantic rep-
resentation of sentences in a single graph-based
structure via semantic parsing has superseded the
previous ‘shallow’ SRL tasks.

2.2 CoNLL

The CoNLL-2004 shared task (Carreras and
Màrquez, 2004) was based on the PropBank corpus,
comprising six sections of the Wall Street Journal
part of the Penn Treebank (Kingsbury and Palmer,
2002) enriched with predicate–argument structures.
The task was to identify and label the arguments of
each marked verb. The precision, recall, and F1 of
arguments were evaluated using the srl-eval.pl
program. For an argument to be correctly recog-
nized, the words spanning the argument as well
as its semantic role have to be correct. The verb
argument is the lexicalization of the predicate of
the proposition. Most of the time, the verb corre-
sponds to the target verb of the proposition, which
is provided as input, and only in a few cases the
verb participant spans more words than the target
verb. This situation makes the verb easy to identify
and, since there is one verb with each proposition,
evaluating its recognition overestimates the over-
all performance of a system. For this reason, the
verb argument is excluded from evaluation. The
shared task proceedings do not detail how non-
continuous arguments are evaluated. In CoNLL-
2005 (Carreras and Màrquez, 2005) a system had
to recognize and label the arguments of each target

verb. The evaluation method remained the same as
CoNLL-2004, using the same evaluation code.

The CoNLL 2008 shared task (Surdeanu et al.,
2008) was dedicated to the joint parsing of syntac-
tic and semantic dependencies. The shared task was
divided into three subtasks: (i) parsing of syntactic
dependencies, (ii) identification and disambigua-
tion of semantic predicates, and (iii) identification
of arguments and assignment of semantic roles for
each predicate. SRL was performed and evaluated
using a dependency-based representation for both
syntactic and semantic dependencies.

The official evaluation measures consist of three
different scores: (i) syntactic dependencies are
scored using the labeled attachment score (LAS),
(ii) semantic dependencies are evaluated using a
labeled F1 score, and (iii) the overall task is scored
with a macro average of the two previous scores.
The semantic propositions are evaluated by convert-
ing them to semantic dependencies, i.e., a semantic
dependency from every predicate to all its individ-
ual arguments were created. These dependencies
are labeled with the labels of the corresponding
arguments. Additionally, a semantic dependency
from each predicate to a virtual ROOT node was
created. The latter dependencies are labeled with
the predicate senses. This approach guarantees that
the semantic dependency structure conceptually
forms a single-rooted, connected (not necessarily
acyclic) graph. More importantly, this scoring strat-
egy implies that if a system assigns the incorrect
predicate sense, it still receives some points for the
arguments correctly assigned. Several additional
evaluation measures were applied to further ana-
lyze the performance of the participating systems.
The Exact Match reports the percentage of sen-
tences that are completely correct, i.e., all the gen-
erated syntactic dependencies are correct and all
the semantic propositions are present and correct.
The Perfect Proposition F1 score entire semantic
frames or propositions. The ratio between labeled
F1 score for semantic dependencies and the LAS
for syntactic dependencies.

As in CoNLL-2008, the CoNLL-2009 shared
task (Hajič et al., 2009) combined syntactic de-
pendency parsing and the task of identifying and
labeling semantic arguments of verbs or nouns for
six more languages in addition to the original En-
glish from CoNLL-2008. Predicate disambiguation
was still part of the task, whereas the identification
of argument-bearing words was not. This deci-
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sion was made to compensate for the significant
differences between languages and between the an-
notation schemes used. The evaluation of SRL was
done similar to CoNLL-2008.

3 The Proposed Approach

We propose PriMeSRL, a new metric for evaluat-
ing SRL systems, based on the following high-level
rules that aim to overcome the drawbacks in exist-
ing metrics:

1. Predicate senses are considered correct only
when the full predicate.sense is correct, not
just the sense number. (Table 1)

2. Core arguments are considered correct only
when the predicate sense has been correctly
identified. (Table 1)

3. An argument of the form C-X is considered to-
gether with its associated X argument to cover
the full region of the argument. (Table 2)

4. An argument of the form R-X is considered as
a reference, so its correctness depends on the
correctness of the referenced X. (Table 3)

3.1 Predicate sense disambiguation evaluation
Current evaluation metrics either do not evalu-
ate the predicate sense disambiguation task (e.g.
CoNLL05), or evaluate only the sense number of
the predicate (e.g. CoNLL09). In this section, we
only contrast with the CoNLL09 evaluation script.

To begin with, what is the predicate sense num-
ber? Similar to word senses in Wordnet (Fellbaum,
2010), the predicate senses in PropBank inside
a predicate frame file are generally ordered from
most to least frequently used, with the most com-
mon sense numbered 01 (Pradhan et al., 2022). The
sense numbers (01, 02, 03, ... ) do not have any
associated semantic meaning, and merely convey
that one particular meaning of the predicate is more
common than another.

Therefore, predicting and evaluating only the
sense number is not sensible. It can be a reasonable
goal to a certain extent, such as when predicate
location is given and the task is only to disam-
biguate the sense of the predicate (as proposed in
the CoNLL09 shared task.) But the consequence
of this approach is that a sense number classifier
could predict a sense number that does not even
exist in the associated frame file. Of course, an
unknown sense number for a predicate does not

# text = Yesterday, John bought a car.

ID FORM FLAG
PRED
SENSE

Predicate-argument prediction
Gold P1 P2 P3

1 Yesterday _ _ TMP TMP TMP TMP

2 , _ _ _ _ _ _
3 John _ _ A0 A0 A0 A0

4 bought Y buy.01 buy.01 buy_out.03 buy.05 sell.01
5 a _ _ _ _ _ _
6 car _ _ A1 A1 A1 A1

7 . _ _ _ _ _ _

Predicate
Evaluation

R
CoNLL05 do not evaluate
CoNLL09 1/1 0/1 0/1 1/1
PriMeSRL 1/1 0/1 0/1 0/1

P
CoNLL05 do not evaluate
CoNLL09 1/1 0/1 0/1 1/1
PriMeSRL 1/1 0/1 0/1 0/1

Argument
Evaluation

R
CoNLL05 3/3 3/3 3/3 0/3
CoNLL09 3/3 3/3 3/3 3/3
PriMeSRL 3/3 1/3 1/3 1/3

P
CoNLL05 3/3 3/3 3/3 0/3
CoNLL09 3/3 3/3 3/3 3/3
PriMeSRL 3/3 1/3 1/3 1/3

Table 1: Comparing evaluation metrics on 4 examples,
showing the effect of wrong predicate sense on argu-
ment label evaluation. RED-italic shows a wrong predic-
tion by a hypothetical model. GREEN cell highlights
where PriMeSRL differs from existing metrics.

have a semantic meaning, making it unsuitable for
practical use cases. For a practical end-to-end SRL
system, the sense number classifier should predict
both the predicate location and associated sense
number together (i.e. predicate.sense) so that the
contextual meaning of the predicate is correctly
captured, as performed in (Roth and Lapata, 2016;
Li et al., 2018; Conia et al., 2021; Conia and Nav-
igli, 2022).

Evaluating the predicate sense disambiguation
task of such practical systems using existing eval-
uation metrics is not optimal. Consider the exam-
ple in Figure 1, where the gold predicate.sense is
‘break.01’(break, cause to not be whole 4). Sup-
pose an SRL system predicts5 the predicate.sense
label ‘pull.01’(causing motion 6). The existing
CoNLL09 evaluation script will give a fully cor-
rect score because the predicted sense number
01 exactly matches the gold sense number, de-
spite the different semantic meanings. In contrast,
PriMeSRL evaluates the predicate.sense as a whole
instead of only the sense number.

4https://verbs.colorado.edu/propbank/
framesets-english-aliases/break.html

5See Table 6 for several examples of such mistakes actu-
ally made by a SoTA SRL system on CoNLL09 data.

6https://verbs.colorado.edu/propbank/
framesets-english-aliases/pull.html
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# text = Many confusing questions have been taxing my mind for years about Egypt and its people .

ID FORM F
PRED
SENSE

Gold P1 P2 P3 P4 P5 P6 P7

1 Many _ _ _ _ _ _ _ _ _ _
2 confusing _ _ _ _ _ _ _ _ _ _
3 questions _ _ A0 A0 A1 A1 C-A0 A1 C-A0 C-A0

4 have Y _ _ _ _ _ _ _ _ _
5 been Y _ _ _ _ _ _ _ _
6 taxing Y tax.01 _ _ _ _ _ _ _ _
7 my _ _ _ _ _ _ _ _ _ _
8 mind _ _ A2 A2 A2 A2 A2 A2 A2 A2

9 for _ _ _ _ _ _ _ _ _ _
10 years _ _ TMP TMP TMP TMP TMP TMP TMP TMP

11 about _ _ _ _ _ _ _ _ _ _
12 Egypt _ _ C-A0 C-A1 C-A0 C-A1 A0 C-A2 C-A0 _
13 and _ _ _ _ _ _ _ _ _ _
14 its _ _ _ _ _ _ _ _ _ _
15 people _ _ _ _ _ _ _ _ _ _
16 . _ _ _ _ _ _ _ _ _ _

Argument
HEAD

Evaluation

R
Conll09 4/4 3/4 3/4 2/4 2/4 2/4 3/4 2/4
PriMeSRL 3/3 2/3 2/3 2/3 3/3 1/3 3/3 2/3

P
Conll09 4/4 3/4 3/4 2/4 2/4 2/4 3/4 2/3
PriMeSRL 3/3 2/4 2/4 2/3 3/3 1/3 3/3 2/3

Argument
SPAN

Evaluation

R
Conll05 3/3 2/3 2/3 2/3 2/3 1/3 2/3 2/3
PriMeSRL 3/3 2/3 2/3 2/3 3/3 1/3 3/3 2/3

P
Conll05 3/3 2/4 2/4 2/3 2/4 1/3 2/3 2/3
PriMeSRL 3/3 2/4 2/4 2/3 3/3 1/3 3/3 2/3

Table 2: Comparing evaluation metrics on 7 exam-
ples, showing the effect of C-X labels. RED-italic and
GREEN cell are used in the same manner as Table 1.

3.2 Argument evaluation with incorrect
predicate sense

Current metrics evaluate the arguments indepen-
dent of the predicate sense. That is, they evaluate
arguments as if the predicate location and sense are
both correct. In practice, the predicates predicted
by models can of course be wrong, and in such
cases, the corresponding core argument labels (A0,
A1, etc.) generally do not refer to the correct argu-
ment - even if the label itself matches the gold label
- and should be penalized. Contextual arguments,
or adjunct arguments, such as AM-LOC, AM-TMP, etc,
remain the same across different predicates and do
not need to be penalized for predicate errors.

Table 1 illustrates the difference between
PriMeSRL and existing evaluation metrics,
CoNLL09 and CoNLL05. For predicate
sense evaluation, PriMeSRL is often equal to
CoNLL09 (CoNLL05 does not measure this as-
pect.) PriMeSRL explicitly penalizes the cases
where the lemma is wrongly identified (Example
P3): The CoNLL09 script considers the label as
correct as long as the “predicate sense number”
is correct. It is unlikely for a model to predict
"sell.01" in P3 for the gold predicate "buy.01". We
choose this example to smoothly motivate the need
for more strict evaluation metrics for SRL. In fact,
SoTA SRL systems made this type of error. Ta-
ble 6 provides some incorrect model predictions
from a SoTA SRL model, where a model confuses
"overheat" with "soothe" as an example.

# text = This is exactly a road that leads nowhere.

ID FORM F
PRED
SENSE

Gold P1 P2 P3 P4 P5 P6

1 This _ _ _ _ _ _ _ _ _
2 is _ _ _ _ _ _ _ _ _
3 exactly _ _ _ _ _ _ _ _ _
4 a _ _ _ _ _ _ A0 _ _
5 road _ _ A0 A1 A0 A1 _ R-A0 R-A0

6 that _ _ R-A0 R-A0 R-A1 R-A1 R-A0 R-A0 A0

7 leads Y lead.01 _ _ _ _ _ _ _
8 nowhere _ _ A4 A4 A4 A4 A4 A4 A4

9 . _ _ _ _ _ _ _ _ _

Argument
HEAD

Evaluation

R
Conll09 3/3 2/3 2/3 1/3 2/3 2/3 1/3
PriMeSRL 3/3 1/3 2/3 1/3 1/3 1/3 1/3

P
Conll09 3/3 2/3 2/3 1/3 2/3 2/3 1/3
PriMeSRL 3/3 1/3 2/3 1/3 1/3 1/3 1/3

Argument
SPAN

Evaluation

R
Conll05 3/3 2/3 2/3 1/3 2/3 1/3 1/3
PriMeSRL 3/3 1/3 2/3 1/3 1/3 1/3 1/3

P
Conll05 3/3 2/3 2/3 1/3 2/3 1/3 1/3
PriMeSRL 3/3 1/3 2/3 1/3 1/3 1/3 1/3

Table 3: Comparing evaluation metrics on 6 exam-
ples, showing the effect of R-X labels. RED-italic and
GREEN cell are used in the same manner as Table 1.

For argument evaluation, both CoNLL09 head
evaluation and CoNLL05 span evaluation wrongly
mark all the arguments in examples P1, P2, and P3
as correct, despite the predicate sense being wrong.
This is corrected by PriMeSRL.

3.3 Evaluation of C-X arguments

An argument label with prefix C- is used in sit-
uations where an argument consists of multiple
non-adjacent parts (Surdeanu et al., 2008). If con-
ceptually the whole argument should be labeled X,
then operationally one part will get label X and the
other parts get label C-X. The existing evaluation
metrics treat all these labels as independent, which
is incorrect as it increases the weight of these ar-
guments and assigns partial credit when an exact
match is required. We now describe PriMeSRL for
span-based and head-based evaluations.
Span-based evaluation: For an argument split into
multipart spans with labels X and C-X, the complete
span can be represented by the set of all tokens
identified by these labels. The full set of tokens
produced by the model should be compared to the
set in the gold data, and a single credit should be
assigned if these sets are equal.
Head-based evaluation: An argument with X and
C-X parts has these as separate heads. A model
prediction is considered correct if and only if all
heads for this argument are correct, in which case it
is given one whole credit. This evaluation does not
distinguish between X and C-X and will penalize an
argument if it has extra or missing parts.

Table 2 compares PriMeSRL with ConNLL05
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Model
Evaluation

script

In-domain Out-of-domain

PSD Argument Classification PSD Argument Classification

F1 P R F1 (r) F1 P R F1 (r)

(Conia et al., 2021)
CoNLL09 96.9 89.5 89.5 89.5 (3) 87.8 82.0 81.9 81.9 (3)
PriMeSRL 95.5(↓1.4) 86.6 86.6 86.6(↓2.9) (2) 80.9(↓6.9) 72.4 72.6 72.5(↓9.4) (4)

(Blloshmi et al., 2021)nested
CoNLL09 97.1 89.3 81.9 85.4 (4) 89.7 82.8 75.7 79.1 (4)
PriMeSRL 96.4(↓0.7) 86.8 79.8 83.1(↓2.3) (4) 86.7(↓3.0) 75.7 69.9 72.7(↓6.4) (3)

(Blloshmi et al., 2021)flat
CoNLL09 97.4 90.9 89.6 90.2 (1) 90.1 83.9 82.1 83.0 (2)
PriMeSRL 96.9(↓0.5) 88.6 87.4 88.0(↓2.2) (1) 87.8(↓2.3) 77.6 76.3 76.9(↓6.1) (1)

(Jindal et al., 2022)
CoNLL09 96.8 89.9 89.3 89.6 (2) 89.8 82.9 83.1 83.02 (1)
PriMeSRL 95.5(↓1.3) 86.8 86.3 86.55(↓3.0) (3) 83.4(↓6.4) 73.9 74.3 74.1(↓8.9) (2)

Table 4: Comparison of SoTA SRL models with PriMeSRL and CoNLL09 evaluation metrics on CoNLL09 dataset.
(r) denotes the ranking of SRL models corresponding to the evaluation metric. BOLD shows the best model with
CoNLL09 evaluation script and BOLD shows the best SRL model with PriMeSRL.

Dataset Args Train Dev Test ood

CoNLL09
C-X 0.77 1.05 0.88 1.15

R-X 1.98 2.03 2.07 2.24

CoNLL05
C-X 1.22 1.24 1.71 0.91

R-X 3.26 3.36 3.38 2.91

Table 5: Representation of C-X and R-X arguments in
each split of different SRL datasets.

and ConNLL09 on seven examples. For span eval-
uation, the variances among labels with and with-
out C- do not penalize the result, as long as the
whole span is correct. That is our proposal for
counting continuation arguments is the same as the
CoNLL05 evaluation script, which provides one
full credit if all heads for continuation arguments
are identified and labeled correctly. We only differ
that we do not distinguish between A0 and C-A0
labels. In this manner, we are not as strict as the
CoNLL05 script. For head evaluation, note that
the denominators reflect the number of arguments
rather than the number of split parts, and numera-
tors count correct whole arguments.

3.4 Evaluation of R-X arguments

An argument label with prefix R- indicates a ref-
erence argument; thus, R-X is a reference to the
argument X. For R-X to be correct, X must also be
correct, but apart from this requirement, PriMeSRL
treats them as separate arguments.

Table 3 compares evaluating R-X arguments us-
ing PriMeSRL with the metric used in CoNLL09
on 6 examples P1 through P6. For P1 in Table 3
(Head Evaluation), CoNLL09 gives credit for cor-

rectly identified R-A0 for which no/incorrect A0 is
predicted, which is meaningless. The same is true
for the Span evaluation script CoNLL05. How-
ever, we do not penalize the correctly labeled main
argument for incorrect R-X.

4 Comparisons with Existing Metrics

In this section, we discuss the effectiveness of ex-
isting SRL evaluation metrics and demonstrate how
PriMeSRL differs in various use cases, using SoTA
neural SRL models as test models.

4.1 General settings

For simplicity of comparison with existing results,
we assume the gold predicate location is given for
all the experiments following Shi and Lin (2019);
Jindal et al. (2020); Conia and Navigli (2022).
However, PriMeSRL is able to handle missing or
spurious predicates. We use Conia et al. (2021);
Blloshmi et al. (2021); Jindal et al. (2022) as SoTA
SRL models.

4.2 Datasets

We show the impact of evaluating with PriMeSRL
on the CoNLL09 and CoNLL05 datasets. Table 5
shows the percentage of C-X and R-X arguments in
each split of the different datasets. Note that these
arguments make up < 3% of the total arguments;
5.09% total of the arguments in CoNLL05 test,
and 2.95% in CoNLL09 test. Therefore, we expect
to observe an F1 drop of at most about 3 and 5
points on the argument classification subtask due to
mishandling C-X and R-X arguments for CoNLL09
and CoNLL05 datasets, respectively.
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Id Sentence Gold Predicted

1
He was able, now, to sit for hours in a chair in the living room and stare
out at the bleak yard without moving.

stare.01 look.01

2
She greeted her husband’s colleagues with smiling politeness , offering
nothing.

politeness.01 minimalism.01

3
It was a Negro section of peeling row houses, store-front churches and
ragged children.

peel.01 peer.01

4 He was calm, drugged , and lazy. drug.01 dropper.01

5
The walk and his fears had served to overheat him and his sweaty armpits
cooled at the touch of the night air.

overheat.01 soothe.01

6 He did not resent their supervision or Virginia’s sometimes tiring sympathy. tire.01 hiring.01

Table 6: Conia et al. (2021) model predictions on examples from CoNLL09 OOD set. All of these predicate senses
are marked correct by the CoNLL09 evaluation script. PriMeSRL correctly penalizes all of these senses.

Model
Evaluation

script

In-domain Out-of-domain

PSD Argument Classification PSD Argument Classification

F1 P R F1 (r) F1 P R F1 (r)

(Zhang et al., 2021)crf
CoNLL05 100 86.5 88.3 87.4 (3) 100 79.0 81.1 80.0 (3)
PriMeSRL 100 86.1 87.8 87.03(↓0.4) (2) 100 78.7 80.8 79.7(↓0.3) (2)

(Zhang et al., 2021)crf2o
CoNLL05 100 86.9 88.6 87.7 (2) 100 78.9 81.2 80.03 (2)
PriMeSRL 100 86.5 88.1 87.3(↓0.4) (1) 100 78.5 80.8 79.6(↓0.4) (3)

(Jindal et al., 2022)
CoNLL05 100 87.4 88.0 87.74 (1) 100 80.4 81.4 80.9 (1)
PriMeSRL 100 86.8 87.1 87.0(↓0.7) (3) 100 79.7 80.5 80.1(↓0.8) (1)

Table 7: Comparison of SoTA SRL models with PriMeSRL and CoNLL05 evaluation metrics on CoNLL05 dataset.
(r) denotes the ranking of SRL models corresponding to the evaluation metric. BOLD shows the best model with
CoNLL05 evaluation script and BOLD shows the best SRL model with PriMeSRL.

4.3 Evaluation

4.3.1 Predicate sense disambiguation

The PSD column in Table 4 compares the impact
of PriMeSRL w.r.t. the existing evaluation script
on the EN subset of the CoNLL09 dataset using
SoTA SRL models. We observe a consistent qual-
ity drop in predicate sense disambiguation (PSD)
both for in-domain and out-of-domain (OOD) sets.
Surprisingly, we observe a significant quality drop
on the OOD set of an average of ∼ 5 F1 points for
all the SRL models, which significantly lowers the
SoTA performance on the OOD set. This shows
that existing SRL models still have a lot of room
for improvement.

Continuing the PSD analysis, Table 6 shows ex-
ample instances from the CoNLL09 dataset that
have correct sense numbers (01) but wrong pred-
icate.sense - yet all of which are marked correct
by the CoNLL09 evaluation script. For example,
the first row shows how the difference between
‘stare.01’ (looking intently 7) and "look.01" (causal

7https://verbs.colorado.edu/propbank/
framesets-english-aliases/stare.html

look 8) is ignored. While these two at least share
the same underlying meaning (look), in row 5 the
model’s prediction of ‘soothe.01’ means the oppo-
site of the gold label ‘overheat.01’ (once again, the
existing CoNLL09 evaluation script marks this as
correct.) Clearly, predicate sense should be evalu-
ated by including the actual value predicate.sense
instead of only relying on the sense number.

4.3.2 Argument head evaluation
Argument classification column in Table 4 com-
pares the impact of PriMeSRL w.r.t the existing
evaluation script on the EN subset of the CoNLL09
dataset using SoTA SRL models. We observe a
quality drop in the argument classification task both
for in-domain and OOD sets, with a significant
quality drop of an average of ∼ 8 F1 points on the
OOD set. This drop in the argument classification
task is expected because part of this error is propa-
gated from the predicate sense disambiguation task
which itself is significant. It is interesting to note
that, although the major contribution of argument
classification drop is due to error propagation from

8https://verbs.colorado.edu/propbank/
framesets-english-aliases/look.html
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SRL Downstream Application

Input Sentence SRL model prediction
Existing
eval score

PriMeSRL
score

Application
prompt

Prediction Expected

[S1] XYZ company
bought $2.4 billion in
Fannie Mae bonds.

[XYZ company]A0
[bought]sell.01
[$2.4 billion in Fannie
Mae bonds]A1

3/3 0/3
QA
Who bought
Fannie Mae bonds?

None
XYZ
company

[XYZ company]A0
[bought]buy_out.03
[$2.4 billion in Fannie
Mae bonds]A1

2/3 0/3

QA
Who bought
Fannie Mae bonds
completely?

XYZ
company

None

[S2] XYZ company
bought out $2.4 billion
in Fannie Mae bonds.

[XYZ company]A0
[bought]buy_out.03 out
[$2.4 billion in Fannie
Mae bonds]A1

3/3 3/3

NLI
Does S2 entails S3?

Yes No

[S3] XYZ company
bought $2.4 billion in
Fannie Mae bonds.

[XYZ company]A0
[bought]buy_out.03
[$2.4 billion in Fannie
Mae bonds]A1

2/3 0/3

Table 8: Example illustrations of the how impact of SRL errors on downstream applications is captured by the
new evaluation method, where Red color represents the wrong prediction by an SRL model, leading to incorrect
predictions by a downstream application (QA: Question Answering; NLI: Natural Language Inference.)

the earlier stage, there is also a consistent drop
due to penalizing correct arguments with wrong
predicate sense, of ∼ 1.5 and ∼ 3 F1 points for
in-domain and OOD sets, respectively.

Since the performance drop is not uniform, we
observe a change in the relative ranking of the SRL
models. As an example, the CoNLL09 evaluation
script scores the SRL models Blloshmi et al. (2021)
and Jindal et al. (2022) similarly ( 83.0 F1) on OOD
set whereas PriMeSRL clearly shows a difference
in performance. Further, PriMeSRL makes clear
that the quality of existing SRL systems is not as
high as previously thought, especially on OOD
data.

4.3.3 Argument span evaluation
Similar to argument head evaluation, we compare
the impact of PriMeSRL w.r.t to the existing eval-
uation script on the SRL span dataset (CoNLL05
dataset) using SoTA SRL models in Table 7. Since
CoNLL05 does not evaluate predicate sense, we
do not observe the impact of incorrect PSD on ar-
gument classification. Therefore, the only drop
of argument classification is due to incorrect han-
dling of C-X and R-X arguments. Although Table 5
shows that the total number of C-X and R-X in the
CoNLL05 dataset is ∼ 5% of the total number of
arguments, we only observe a slight drop in quality
evaluation (< 1%) with PriMeSRL. This is because

on argument span evaluation, PriMeSRL is similar
to CoNLL05 (except in a few cases as described
in the last row-block of Tables 2 and 3.) As in the
comparison with the CoNLL09 dataset, we again
observe a change in the relative ranking of the SRL
models.

4.4 Discussion

The existing evaluation metrics for SRL are dis-
connected from the actual practical performance of
the SRL models. This makes it difficult to choose
the best quality SRL model for the required down-
stream application. Current evaluation metrics do
not pay sufficient attention to the error propaga-
tion aspect of the four-staged SRL task; instead,
they evaluate the steps independently and linearly
combine them to compute the overall SRL system
score. However, the analyses in Tables 4 and 7
clearly show that the linear combination of the in-
dependent performance of individual steps is not
equivalent to the true overall quality.

This does not negate the usefulness of the ex-
isting evaluation metrics. Indeed, these metrics
provide an evaluation of each individual step, serv-
ing as an important guide for improving the quality
of individual steps and hence the overall quality
of the SRL system. However, whenever a real-
world NLP system utilizes an SRL system as one
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of its components, it is important to understand
the quality of semantic roles in relation with, and
conditional on their predicate sense disambigua-
tion. Table 8 illustrates the impact of such SRL
errors on two downstream applications (question
answering and natural language inference). Exist-
ing evaluation scripts overlook such SRL errors and
treat them as correct, despite the fact that the pre-
dicted predicate-argument structure is meaningless
and leads to incorrect outputs for the downstream
application.

5 Conclusion

In this paper, we highlighted key issues with exist-
ing SRL evaluation metrics and showed that the pro-
posed evaluation metric, PriMeSRL, scores SoTA
SRL models in a more accurate and intuitive man-
ner. By releasing our evaluation code, we plan to
promote these metrics in the community in order
to improve the evaluation quality for SRL systems
that contribute to downstream applications.

Limitations

We have shown the impact of our proposed new
evaluation metrics in the current SoTA SRL mod-
els ranking. To further validate the impact of this
work, we plan to conduct an in-depth study on how
downstream applications’ performance relates to
the evaluation metrics in future work.

We acknowledge that the problems we have
pointed out for previous evaluation metrics are not
bugs, but rather design decisions given the timing
of the shared tasks and the limitations on datasets
and methods. Consider, for instance, that a uni-
fied syntactic dependency annotation schema like
Universal Dependencies (Nivre et al., 2016) was
unavailable before October 2014. Given that, in
this paper, we didn’t present a deep discussion on
the impact of UD compared to previously used
syntactic dependencies schemas.
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A Some historical background to existing
evaluation metrics for SRL

Shared tasks have boosted the development of sys-
tems capable of extracting predicates and argu-
ments from natural language sentences. Two reg-
ular academic events have promoted SRL shared
tasks: SemEval and CoNLL. In this section, we
summarize the approaches to SRL evaluation in the
shared tasks and categorize their shortcomings.

A.1 Senseval and SemEval
SemEval (Semantic Evaluation) is a series of evalu-
ations of computational semantic analysis systems
that evolved from the Senseval (word sense evalua-
tion) series. The SENSEVAL-3 (Litkowski, 2004)
was about the automatic labeling of semantic roles
and was designed to encourage research into and
use of the FrameNet dataset. The systems receive
as input unsegmented sentences (the constituents
are not identified) a target word and its frame. They
have to identify the frame elements within that
sentence and tag them with the appropriate frame
element name. In general, FrameNet frames con-
tain many frame elements (an average of 10), most
of which are not instantiated in a given sentence.
Systems were not penalized if they returned more
frame elements than those identified in the gold
data. In scoring, each frame element returned by
a system was counted as an item attempted. If the
frame element had been identified in the gold data,
the answer was scored as correct. In addition, the
scoring program required that the frame boundaries
identified by the system’s answer overlap with the
gold annotation. An additional measure of system
performance was the degree of overlap. If a sys-
tem’s answer coincided precisely with the start and
end position in the gold data, the system received
an overlap score of 1.0. If not, the overlap score
was the number of characters overlapping divided
by the length of the gold annotation. The number
attempted was the number of non-null frame ele-
ments generated by a system. Precision was com-
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puted as the number of correct answers divided by
the number attempted. The recall was computed
as the number of correct answers divided by the
number of frame elements in the test set. Overlap
was the average overlap of all correct answers. The
percent Attempted was the number of frame ele-
ments generated divided by the number of frame
elements in the test set, multiplied by 100.

At SemEval-2007, three tasks evaluate SRL. In
task 17 (subtask 2), the goal of the systems was to
locate the constituents, which are the arguments of
a given verb, and assign them appropriate semantic
roles. Systems have to annotate the corpus using
two different role label sets: the PropBank and the
VerbNet. SemLink mapping (Loper et al., 2007)
was used to generate the VerbNet roles. The preci-
sion, recall, and F-measure for both role label sets
were calculated for each system output using the
srl-eval.pl script from the CoNLL-2005 scoring
package (Carreras and Màrquez, 2005) (see below).
Task 18 focused on Arabic and also used the same
CoNLL-2005 scoring package. Task 19 consists
of recognizing words and phrases that evoke se-
mantic frames from FrameNet and their semantic
dependents, which are usually, but not always, their
syntactic dependents. The evaluation measured pre-
cision and recall for frames and frame elements,
with partial credit for incorrect but closely related
frames. Two types of evaluation were carried out.
The first is the label matching evaluation. The par-
ticipant’s labeled data were compared directly with
the gold standard labeled using the same evalua-
tion procedure used in the previous SRL tasks at
SemEval. The second is the semantic dependency
evaluation, in which both the gold standard and
the submitted data were first converted to semantic
dependency graphs and compared.

SemEval-2012 and SemEval-2013 introduced
the ‘Spatial Role Labeling’ task. It concerns the
identification of trajectors, landmarks, spatial in-
dicators, the links between them, and the type of
spatial relationships, including region, direction,
and distance. Although similar to the standard
SRL task, we will not discuss Spatial Role Label-
ing and its evaluation in this paper. Starting from
SemEval-2014, a deeper semantic representation of
sentences in a single graph-based structure via se-
mantic parsing substituted the ‘shallow’ SRL tasks.

A.2 CoNLL

The Conference on Computational Natural Lan-
guage Learning (CoNLL) is a yearly conference
organized by the ACL’s Special Interest Group
on Natural Language Learning (SIGNLL), focus-
ing on theoretically, cognitively and scientifically
motivated approaches to computational linguistics
since 1999. The 2004 and 2005 shared tasks of the
CoNLL were dedicated to SRL monolingual setting
(English). The CoNLL-2008 shared task proposes
a unified dependency-based formalism, which mod-
els both syntactic dependencies and semantic roles.
The CoNLL-2009 builds on the CoNLL-2008 task
and extends it to multiple languages.

The CoNLL-2004 shared task (Carreras and
Màrquez, 2004) was based on the PropBank cor-
pus, six sections of the Wall Street Journal part of
the Penn Treebank (Kingsbury and Palmer, 2002)
enriched with predicate–argument structures. The
participants need to come up with machine learning
strategies to SRL on the basis of only partial syntac-
tic information, avoiding the use of full parsers and
external lexico-semantic knowledge bases. The an-
notations provided for the development of systems
include, apart from the argument boundaries and
role labels, the levels of processing treated in the
previous editions of the CoNLL shared task, i.e.,
words, PoS tags, base chunks, clauses, and named
entities. In practice, number of target verbs are
marked in a sentence, each governing one propo-
sition. A system has to recognize and label the
arguments of each target verb. The systems were
evaluated with respect to precision, recall and the
F1 measure using the srl-eval.pl program. For
an argument to be correctly recognized, the words
spanning the argument as well as its semantic role
have to be correct. The verb argument is the lexi-
calization of the predicate of the proposition. Most
of the time, the verb corresponds to the target verb
of the proposition, which is provided as input, and
only in few cases the verb participant spans more
words than the target verb. This situation makes the
verb easy to identify and, since there is one verb
with each proposition, evaluating its recognition
overestimates the overall performance of a system.
For this reason, the verb argument is excluded from
evaluation. The shared task proceedings does not
details how non-continuous arguments are evalu-
ated.

Compared to the shared task of CoNLL-2004,
three novelties were introduced in the 2005 edition
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(Carreras and Màrquez, 2005): 1) the complete
syntactic trees, with information of the lexical head
for each syntactic constituent, given by two alter-
native parsers have been provided as input; 2) the
training corpus has been substantially enlarged; 3)
a cross-corpora evaluation is performed using a
fresh test set from the Brown corpus. Evaluation
didn’t changed compared to CoNLL-2004 and it
was reported to use the same evaluation code, a
system has to recognize and label the arguments of
each target verb. To support the role labeling task,
sentences contain input annotations, that consist of
syntactic information and named entities. Evalu-
ation is performed on a collection of unseen test
sentences, that are marked with target verbs and
contain only predicted input annotations.

The CoNLL 2008 shared task (Surdeanu et al.,
2008) was dedicated to the joint parsing of syntac-
tic and semantic dependencies. The shared task was
divided into three subtasks: (i) parsing of syntactic
dependencies, (ii) identification and disambigua-
tion of semantic predicates, and (iii) identification
of arguments and assignment of semantic roles for
each predicate. SRL was performed and evaluated
using a dependency-based representation for both
syntactic and semantic dependencies.

The task addressed propositions centered around
both verbal and nominal predicates. The data was
composed by the Penn Treebank, BBN’s named
entity corpus, PropBank and NomBank. The
dependency-annotated data was obtain from a con-
version algorithm from the constituent analyses.
convert the underlying constituent analysis of Prop-
Bank and NomBank into a dependency analysis,
the head of a semantic argument was identified with
a straightforward heuristic. But there are cases that
require special treatment, some arguments ended
up with several syntactic heads and some argu-
ments that were initially discontinuous in PropBank
or NomBank where merged.

The official evaluation measures consist of three
different scores: (i) syntactic dependencies are
scored using the labeled attachment score (LAS),
(ii) semantic dependencies are evaluated using a
labeled F1 score, and (iii) the overall task is scored
with a macro average of the two previous scores.
The semantic propositions are evaluated by convert-
ing them to semantic dependencies, i.e., a semantic
dependency from every predicate to all its individ-
ual arguments were created. These dependencies
are labeled with the labels of the corresponding

arguments. Additionally, a semantic dependency
from each predicate to a virtual ROOT node was
created. The latter dependencies are labeled with
the predicate senses. This approach guarantees that
the semantic dependency structure conceptually
forms a single-rooted, connected (not necessarily
acyclic) graph. More importantly, this scoring strat-
egy implies that if a system assigns the incorrect
predicate sense, it still receives some points for the
arguments correctly assigned. Several additional
evaluation measures were applied to further ana-
lyze the performance of the participating systems.
The Exact Match reports the percentage of sen-
tences that are completely correct, i.e., all the gen-
erated syntactic dependencies are correct and all
the semantic propositions are present and correct.
The Perfect Proposition F1 score entire semantic
frames or propositions. The ratio between labeled
F1 score for semantic dependencies and the LAS
for syntactic dependencies.

As in CoNLL-2008, the CoNLL-2009 shared
task (Hajič et al., 2009) combined syntactic de-
pendency parsing and the task of identifying and
labeling semantic arguments of verbs or nouns for
six more languages (Catalan, Chinese, Czech, Ger-
man, Japanese and Spanish) in addition to the orig-
inal English from CoNLL-2008. Participants can
choose the joint task (syntactic dependency pars-
ing and SRL), or SRL-only (syntactic dependency
provided). The novelty is that the evaluation data
indicated which words were to be dealt with (for the
SRL task). Predicate disambiguation was still part
of the task, whereas the identification of argument-
bearing words was not. This decision was made to
compensate for the significant differences between
languages and between the annotation schemes
used. The evaluation of SRL was done similar
to CoNLL-2008.
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Abstract

We propose the novel adaptation of a pre-
trained seq2seq model for readability assess-
ment. We prove that a seq2seq model – T5 or
BART – can be adapted to discern which text is
more difficult from two given texts (pairwise).
As an exploratory study to prompt-learn a neu-
ral network for text readability in a text-to-text
manner, we report useful tips for future work in
seq2seq training and ranking-based approach
to readability assessment. Specifically, we test
nine input-output formats/prefixes and show
that they can significantly influence the final
model performance.

Also, we argue that the combination of
text-to-text training and pairwise ranking setup
1) enables leveraging multiple parallel text
simplification data for teaching readability and
2) trains a neural model for the general concept
of readability (therefore, better cross-domain
generalization). At last, we report a 99.6%
pairwise classification accuracy on Newsela
and a 98.7% for OneStopEnglish, through a
joint training approach. Our code is available at
github.com/brucewlee/prompt-lea
rning-readability.

1 Introduction

Readability assessment evaluates the reading diffi-
culty of a given piece of text (Vajjala, 2021). The
early traditional readability assessment methods
like Flesch-Kincaid Grade Level (Kincaid et al.,
1975) utilized a linear regression formula fitted
to data from large-scale reading experiments on
human subjects. More recently, readability assess-
ment has often been viewed as a classification task
(Feng et al., 2010). Under this classification-based
task formulation, models using various handcrafted
features (Xia et al., 2016; Vajjala and Meurers,
2012), computer-generated features (Martinc et al.,
2021; Imperial, 2021), or both (Lee et al., 2021)

‡Woong Sung (Bruce) Lee was on leave from the Univer-
sity of Pennsylvania during the research period.

have been reported. Showing the potential that
neural modeling is more suitable than handcrafted
features in holistically capturing the inherent lin-
guistic properties that affect readability.

Among the varying approaches to readability
assessment, fine-tuning deep transformer models
(Vaswani et al., 2017), that are pre-trained with lan-
guage modeling objectives (e.g. Masked Language
Modelling, Next Sentence Prediction), has proven
highly effective in multiple reports (Lee and Vaj-
jala, 2022; Lee et al., 2021). So far, encoder-only
transformer architectures like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) have been
the go-to approach, and few reports discuss the
applicability of other architecture types. Further,
there is no report on how readability assessment
can be cast in a text-to-text task formulation (§2).
But recent reports (Raffel et al., 2020) show that a
text-to-text is promising for multiple downstream
tasks.

The main contribution of this paper is that we
fine-tune full encoder-decoder transformer archi-
tectures (also referred to as sequence-to-sequence)
and check if they can learn about text readability. A
sequence-to-sequence model has been previously
fine-tuned for downstream tasks like document
ranking (Nogueira et al., 2020), but few reports
discuss whether the architecture can learn about
readability.

We fine-tune BART (Lewis et al., 2020) and T5
(Raffel et al., 2020) on the popular OneStopEnglish
(Vajjala and Lučić, 2018) and Newsela (Xu et al.,
2015) data. Then, we measure their performance
on two other datasets with readability annotations
for US and CEFR curricula, respectively.

We also conduct methodological explorations on
how a sequence-to-sequence model can be well-
trained to learn text readability. This includes
how input and output format should be structured,
considering that the fine-tuning for a sequence-to-
sequence model is naturally cast in a text-to-text
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format (Nogueira et al., 2020). We summarize our
research questions in two:

1) Can a sequence-to-sequence model be fine-
tuned for text readability – with a parallel text
simplification dataset?

2) If so, can the performance generalize across
domains? In other words, is the model learn-
ing the dataset or the concept of readability?

These research questions and our task approach
are intentionally formulated in reference to what
previous literature (Vajjala, 2021; Lee et al., 2021)
have proposed as future directions. As we elabo-
rate further in the following sections, our approach
simplifies some inherent problems that we had in
the readability assessment. But our study has limi-
tations and requires further explorations (§5).

2 Background Knowledge

2.1 Sequence-to-Sequence Transformers

Pre-trained sequence-to-sequence transformers es-
sentially incorporate both encoder and decoder
parts from the original Transformer (Vaswani et al.,
2017) architecture. The most notable examples are
T5 and BART, pre-trained using document denois-
ing strategies (i.e. during pre-training, input is an
intentionally corrupted document, and output is a
recovered document or corrupted portions).

Though BART allows some flexibility in alter-
ing the model architecture for downstream tasks
(Lewis et al., 2020), T5 is built with the intention
of unifying all NLP tasks into a text-to-text-format
(Raffel et al., 2020). Here, text-to-text means that
both input and output are always text strings, unlike
encoder-only, BERT-style models that only output
either a class label ([CLS] token) or an input span.

2.2 Existing Downstream Tasks

Pre-trained sequence-to-sequence models can be
fine-tuned to most NLP downstream tasks, includ-
ing neural machine translation (Wang et al., 2022)
and abstractive summarization (Saito et al., 2020).
Then, a training instance is formatted in a way that
is much like telling the model what to do by adding
task-specific prefix (Raffel et al., 2020).

If a model were to be fine-tuned for translation,
the input format could be “translate English to
German: That is good.” and the target output is
“Das ist gut.” When applied to document ranking,
Nogueira et al. (2020) proposed a slightly different
format. The input format was written "Query: ...

Document: ... Relevant:" so that the target output
tokens – "true" or "false – can naturally come after
the input format. Our work is the most influenced
by this formatting approach.

3 Experimental Setup

3.1 Methods
All our experiments are based on T5 and BART,
both obtained from the respective online reposito-
ries through Huggingface (Wolf et al., 2019). Since
the text-to-text formulation has never been used to
fine-tune text readability1, here we limit to the sim-
ple task of comparing the readability of two given
texts. Following our input format (Table 1), we
fed two text snippets of varying difficulties to the
model every instance. Then, the model was trained
to give the corresponding target output. We tested
nine input-output formats, as shown in Table 1.

3.2 Datasets and Preparation
3.2.1 Data Type and Permutation Methods
The datasets that we use in this study are of two
types. Parallel type contains multiple reading-level
versions of a text (mostly through human expert
paraphrasing). We call a grouping of text in multi-
ple reading levels a slug. On the other hand, there
is distinct type of datasets. Distinct type is a more
common format where each text is given a read-
ability level with no multiple versions of the same
content. Our naming and permutation strategies
are inspired by existing work on pairwise ranking
for readability (Lee and Vajjala, 2022).

A parallel dataset Dparallel can be expressed
as a row-wise collection of i slugs Dparallel =
[S1, ..., Si], where a slug is a column-wise collec-
tion of j pairs of a text and a reading level Si =
[(xi,1, yi,1), ..., (xi,j , yi,j)]. For parallel dataset, we
perform permutation jP2 on the slug level, creating
S

′
i = [((xi,1, xi,2), (yi,1, yi,2)), ..., ((xi,j−1, xi,j),

(yi,j−1, yi,j))]. A pair like ((xi,1, xi,2), (yi,1, yi,2))
is considered an instance for train/dev/test. Then,
D

′
parallel = [S

′
1, ..., S

′
i ], where all S

′
are flattened

to make D
′
parallel an iterable collection of tuples.

This setup is intended to be robust to future imple-
mentations of paraphrase-based text simplification
datasets where the standards for readability annota-
tion/level are only consistent within a slug.

A distinct dataset Ddistinct can be expressed
as a collection of i pairs of a text and a reading

1Lee et al. (2021) trains BART for readability but uses class
labels (BERT-style) as target output, instead of text tokens
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Type Input Format Target Output

Question "Which Text is more difficult? Text 1: ... Text 2: ..." "Text 1" or "Text 2"
Statement "Text 1 is more difficult than Text 2. Text 1: ... Text 2: ..." "True" or "False"
Follow-up "Text 1: ... Text2: ... More difficult:" "Text 1" or "Text 2"

Reverse-Question "Which Text is easier? Text 1: ... Text 2: ..." "Text 2" or "Text 1"
Reverse-Statement "Text 1 is easier than Text 2. Text 1: ... Text 2: ..." "False" or "True"
Reverse-Follow-up "Text 1: ... Text2: ... Easier:" "Text 2" or "Text 1"

Alternate-Question "Which Text is harder? Text 1: ... Text 2: ..." "Text 1" or "Text 2"
Alternate-Statement "Text 1 is harder than Text 2. Text 1: ... Text 2: ..." "True" or "False"
Alternate-Follow-up "Text 1: ... Text2: ... Harder:" "Text 1" or "Text 2"

Table 1: Input-Output format candidates we tested. The text-to-text formulation is intuitive internally (model) and
externally (human) because the model input and output are both representations of some semantic concept.

level Ddistinct = [(x1, y1), ..., (xi, yi)]. Then, we
can perform permutation iP2 to create D

′
distinct =

[((x1, x2), (y1, y2)), ..., ((xi−1, xi), (yi−1, yi))].
This setup is under the postulation that readability
annotation is consistent throughout the dataset.
Pairwise instances of two same levels are removed.

3.2.2 Datasets

Two parallel and two distinct datasets are used.
Also, we agree with Vajjala (2021)’s concern that
"(in some datasets) articles tagged with different
reading levels don’t share the same topical con-
tent (...) question what the readability assessment
models learn - is it a notion of text complexity, or
topical differences among texts?". Hence, we only
use parallel data – NEWS and OSEN – for training.

Our dataset processing strategy (§3.2.1) and pair-
wise comparison approach force the model to learn
label-agnostic, the global concept of relative dif-
ficulties of texts. That is, the model learns that
a text annotated level 5 should be harder than a
level 3 (or a level 2 or a level 1) within a slug or a
dataset. Such a setup is inherently robust against
cross-domain usage (Table 3). Further, it enables
combining multiple datasets of various slug sizes or
readability annotation standards for joint training
(§4).

Newsela(NEWS) is a parallel text simplification
dataset introduced by Xu et al. (2015). It consists
of 2,154 slugs, each item re-written 4 or 5 times for
children at different grade levels. Hence, a total of
10,786 texts are contained, and 43,316 pairwise in-
stances are created after data permutation (§3.2.1).
Random shuffling split these instances into 6:2:2
for train/test splits. We provide reproducible scripts
for all datasets through code.

OneStopEnglish(OSEN) is a parallel dataset
intended for both text simplification and readability
assessment research (Vajjala and Lučić, 2018). It

Format Type
OSEN NEWS

T5 BART T5 BART

Question 0.815(30) 0.965(18) 0.981(3) -
Statement 0.639(29) 0.978(30) - -
Follow-up 0.784(25) 0.960(27) - -
Reverse-Q 0.793(30) 0.991(30) - 0.993(3)
Reverse-S 0.524(28) 0.978(26) - -
Reverse-F 0.828(30) 0.991(30) - 0.993(5)
Alternate-Q 0.811(30) 0.960(25) - -
Alternate-S 0.617(29) 0.978(30) - -
Alternate-F 0.789(28) 0.938(29) - -

Table 2: Validation set accuracy reports on NEWS and
OSEN. The best epoch is reported in brackets. NEWS
is only reported for the best format type due to data size.

consists of 189 slugs, each item in 3 paraphrases
at different reading levels. A total of 567 texts are
contained, and 1,134 pairwise instances are created.
We use a 6:2:2 split ratio through random shuffling.

Common Core Standards(CCSB) is a distinct
collection of exemplary official texts with readabil-
ity annotations in U.S. Common Core Standards.
We scraped data from the source ourselves. We
used 69 story-type texts in 6 reading levels. After
permutation, 3,846 pairwise instances are created.

Cambridge English Readability(CAMB) is a
distinct dataset of reading passages from main suite
Cambridge English Exams (Xia et al., 2016). All
331 texts are labeled A2, B1, B2, C1, or C2 read-
ing levels, following the CEFR standards. After
permutation, 87,574 pairwise instances are created.

3.3 Training
The batch size is fixed at 8, both for training and
inference. The learning rate is fixed at 1e-5 for T5
and BART. We fine-tune OSEN for 30 epochs and
NEWS for 3 epochs. We report the best epoch per-
formance based on the validation set in Table 2. For
joint training (Table 3), we take an OSEN-trained
model and then fine-tune further using NEWS for
3 more epochs.

1821



Model / Fine-Tune Data
Test Data

OSEN NEWS CCSB CAMB

Flesch-Kincaid / None 0.978 0.986 0.798 0.808
T5 / OSEN 0.784 0.518 0.509 0.492
BART / OSEN 0.978 0.871 0.639 0.629
T5 / NEWS 0.907 0.967 0.747 0.764
BART / NEWS 0.987 0.993 0.793 0.883
T5 / OSEN + NEWS 0.992 0.987 0.771 0.778
BART / OSEN + NEWS 0.983 0.996 0.790 0.865

Table 3: In-domain and cross-domain accuracies across
datasets. For OSEN and NEWS, test sets (§3.2.2) are
used. The best result per dataset is in bold. T5 is trained
with Question format, whereas BART is trained with
Reverse-F format. Flesch-Kincaid refers to the pop-
ular Flesch-Kincaid Grade Level formula published in
Kincaid et al. (1975). We use the implementation in
github.com/textstat/textstat.

4 Results

1. A pretrained sequence-to-sequence model
could be fine-tuned for text readability, in a text-
to-text style. Table 2 shows that the concept of
readability could be fine-tuned in a text-to-text task
formulation, some setups with decent accuracies of
> 0.9. For a smaller dataset (OSEN), BART sig-
nificantly outperformed T5, but their performance
deviation was little on a larger dataset (NEWS).
We believe this is caused due to difference in pre-
training methodologies that caused T5 to require
more training steps to learn about our downstream
task. Also, BART always generalized better than
T5 across unseen datasets in Table 3.

2. Input-output format significantly affected
the final performance, especially when fine-
tuning T5 with lesser training steps (OSEN).
Among the nine input-output formats we tested, T5
and BART performed best under Question and
Reverse-Q/F types, respectively. Performance
deviations caused by input-output format changes
were larger than we expected. Further, no certain
format generally ensured good results across mod-
els. This raises the need for additional "format-
tuning" processes when exploring new models.
However, it must be noted that several observations
point to T5 being under-trained for the general con-
cept of readability at the data size of OSEN (see
Table 2 and Table 3). The input-output format’s
influence is lesser for setups where models learned
better about readability.

3. Joint training has the potential to help
both in-domain and cross-domain performances.
Joint training of multiple datasets for a single
model is an under-explored concept in readabil-

ity assessment. This is because human experts
annotate existing datasets with varying standards.
Dataset construction can also differ (e.g. different
number of classes or too difficult to map classes).
Hence, it was unknown if combining datasets of
varying labeling standards improves performance.

This work solves the problem by re-casting the
task into a simple, universal question of comparing
two texts’ difficulties (§3.2.2). Table 3 shows that
in- and cross-domain performances can improve
through joint training. For example, in-domain ac-
curacies for OSEN increased to 0.208 when the
model was further fine-tuned with a larger extra
data, NEWS. However, a NEWS-only model gen-
erally performed better than the OSEN+NEWS
model in Table 3. We expect that OSEN, which is
almost 40 times smaller, only confused the model.

4. Exposing the model to more texts with a
wider range of readability helped fine-grained
readability comparison. Importantly, we showed
that readability assessment models fine-tuned with
parallel datasets could be generalized across dis-
tinct datasets (e.g. OSEN→ CCSB). But model
performances varied depending on label distance.
Models performed better when the two compared
texts’ readability labels were larger apart (i.e. the
model is more likely to guess level 1 vs level 4
correctly than level 1 vs level 2). This problem
worsened when the model was trained using OSEN.
Using NEWS as training data or extra data helped.
We want to point out that a slug size in NEWS is 4
or 5, exposing the model to more permutations.

5. Text-to-text style fine-tuning required more
training steps than expected. The majority of
our OSEN fine-tuning experiments showed that the
model’s validation set performance continues to
increase up to epoch 30. This is contrastive to how
usual classification approaches, using encoder-only
models, only fine-tune up to epoch 3∼5 even on
smaller datasets like OSEN or CAMB (Lee et al.,
2021). Intuitively speaking, there is potential that
better performance can be achieved if fine-tuned
further. We will explore this concept in the future.

6. Though often overlooked, traditional read-
ability formulas provide challenging baselines.
The traditional readability formulas are criticized
for their low performances in multi-class ranking
or regression-based readability task formulation
(Lee and Lee, 2023). However, they provide sur-
prisingly strong baselines for pairwise difficulty
comparisons, as seen in Table 3.
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5 Conclusion

So far, we have reported our exploratory work on
casting readability assessment tasks in a text-to-text
formulation for BART and T5. We summarized our
observations into five categories in §4, which can
serve as base guidelines for future work. Our exper-
imental setup and data permutation methods allow
the joint training of more than one dataset, regard-
less of whether the dataset construction is parallel
or distinct (§3). Using NEWS as extra training data
further to fine-tune an OSEN-trained model greatly
improved model performance. However, we did
not train the other way around (NEWS→ OSEN),
which should be proved in the future.

6 Limitations

Our limitations are in input text length and out-
put labels. Though our novel task formulation al-
lows the application of essential concepts like joint
training or cross-domain evaluation in the field of
readability assessment, it is based on a pairwise
classification method. Since the pairwise approach
only allows the readability ranking of two texts (e.g.
which is easier?), it lacks practicality compared to
regression or multi-label classification-based mod-
els. Though we achieve an almost perfect accuracy
of 99.6% in Newsela data, knowing which is easier
out of texts has little use as a real-world system.
Hence, further research must be conducted to gener-
ate more useful output labels and process longer
sequences. Like Nogueira et al. (2020), we are
looking into using a sliding window to generate out-
put labels for longer input sequences. We are also
researching neural models pre-trained specifically
for readability assessment using the prompt-based
learning method introduced in the paper. Such a
model can be leveraged for multi-class classifica-
tion.
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Abstract

Words play a central role in how we express
ourselves. Lexicons of word–emotion associa-
tions are widely used in research and real-world
applications for sentiment analysis, tracking
emotions associated with products and policies,
studying health disorders, tracking emotional
arcs of stories, and so on. However, inappro-
priate and incorrect use of these lexicons can
lead to not just sub-optimal results, but also
inferences that are directly harmful to people.
This paper brings together ideas from Affec-
tive Computing and AI Ethics to present, some
of the practical and ethical considerations in-
volved in the creation and use of emotion lexi-
cons — best practices. The goal is to provide
a comprehensive set of relevant considerations,
so that readers (especially those new to work
with emotions) can find relevant information
in one place. We hope this work will facilitate
more thoughtfulness when one is deciding on
what emotions to work on, how to create an
emotion lexicon, how to use an emotion lexi-
con, how to draw meaningful inferences, and
how to judge success.

1 Introduction

Words often convey affect (emotions, sentiment,
feelings, and attitudes); either explicitly through
their core meaning (denotation) or implicitly
through connotation. For example, dejected de-
notes sadness. On the other hand, failure simply
connotes sadness. Either through denotation or con-
notation, both words are associated with sadness.
A compilation of such associations is referred to
as a word–affect association lexicon (aka emotion
lexicon).1 An entry in a lexicon usually includes
a word, an emotion category or affect dimension
(e.g., joy, fear, valence, arousal, etc.), and a score
indicating association (or strength of association).

1This includes sentiment lexicons that capture valence (as-
sociation with the positive–negative dimension) and other
lexica that capture affect-related phenomena.

Examples of emotion lexicons include the Gen-
eral Inquirer (Stone et al., 1966), ANEW (Nielsen,
2011; Bradley and Lang, 1999), LIWC (Pen-
nebaker et al., 2001), Pittsburgh Subjectivity Lex-
icon (Wilson et al., 2005), NRC Emotion Lexicon
(Mohammad and Turney, 2010, 2013), and the
NRC Valence, Arousal, and Dominance (VAD) Lex-
icon (Mohammad, 2018). These were all created
by manual annotation (either by experts or crowd-
sourced). There also exist lexicons that were gen-
erated automatically from large text corpora using
statistical and/or machine learning algorithms; e.g.,
WordNet Affect (Strapparava et al., 2004), Senti-
WordNet (SWN) (Baccianella et al., 2010).

Emotion lexicons have a wide range of applica-
tions in commerce, public health, and research (in
NLP, Psychology, Social Sciences, Digital Human-
ities, etc.). Some notable examples include: track-
ing brand and product perception via social media
posts, tracking support for controversial issues and
policies, tracking buy-in for non-pharmaceutical
health measures such as social distancing during a
pandemic, literary analysis, and developing more
natural dialogue systems. The lexicons can be used
on their own or in support of neural machine learn-
ing (ML) algorithms for emotion recognition.

Lexicon-based emotion analyses are especially
popular in real-world applications and research out-
side of computer science because they are inter-
pretable, have a low carbon footprint, and do not
require significant programming expertise. Fur-
ther, since outputs of ML models are highly depen-
dent on training data, use of a model often requires
retraining, and there may not exists labeled data
from the target domain Further, Teodorescu and
Mohammad (2022) show that when determining
broad trends (emotion arcs) and aggregating infor-
mation from hundreds (if not more) instances for
every time step, simple lexicon-based methods are
extremely accurate (correlations above 0.95 with
ground truth arcs).
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However, inappropriate and incorrect use of
these lexicons, can lead to not just sub-optimal
results, but also inferences that are directly harm-
ful. For example, using lexicons to infer emotions
from limited amount of data to make judgments
about refugee applications, to make judgments
about which groups of people are shown certain
advertisements and which groups are not, marking
businesses owned by some groups of people as less
liked than that of others, etc.

Emotions are deeply personal, private, and com-
plex. Even the best natural language systems
largely only employ pattern matching based on
huge amounts of historical data, and thus often
do not really understand what the user is trying
to convey, let alone how they are feeling. In fact,
some recent commercial and governmental uses
of emotion recognition have garnered considerable
criticism, including: infringing on one’s privacy,
exploiting vulnerable sub-populations, and even
allegations of pseudo-science (Mohammad, 2022b;
Wakefield, 2021; ARTICLE19, 2021; Woensel and
Nevil, 2019).

This paper brings together ideas from Affective
Computing and AI Ethics to present, in one place,
some of the practical and ethical considerations
involved in the creation and use of emotion lexicons
— best practices.2 We hope this work will facilitate
more thoughtfulness when one is deciding on what
emotions to work on, how to create an emotion
lexicon, how to use an emotion lexicon, and how
to judge success. Additional benefits of such a
document include:

1. Presents the trade-offs of relevant choices so
that stakeholders can make informed decisions
appropriate for their context.

2. Has citations and pointers; acts as a jumping off
point for further reading.

3. Helps engage the various stakeholders of
an emotion task with each other. Helps
stakeholders challenge assumptions made by
researchers and developers.

4. Helps develop harm mitigation strategies.

5. Acts as a useful introductory document on emo-
tion lexicons (complements survey articles).

Note that even though this article is focused on
emotion lexicons, many of the ethical consid-

2This paper is a reframed and expanded avatar of an earlier
datasheet paper for emotion lexicons (Mohammad, 2020).

erations apply broadly to natural language lexi-
cons/resources in general. Also, see Mohammad
(2022b) for a broader discussion on the ethical
considerations associated with automatic emotion
recognition (AER).

This work is in the same spirit as other re-
cent innovations in exercising responsible research
such as datasheets for datasets (Gebru et al., 2018),
model cards for systems (Mitchell et al., 2019),
and ethics sheets for AI tasks (Mohammad, 2022a).
However, unlike datasheets and model cards which
are designed for individual datasets and systems
and that are published after the work is done, the
goal of this work is to provide a more general-
purpose relevant resource, accessible at the very
beginning of one’s project. Also, unlike an ethics
sheet for a automatic emotion recognition that may
cover all kinds of ethical considerations associated
with the task of interest, this document has a focus
on the creation of emotion lexicons and their use
in AI tasks.

Ethics considerations are not about objective
metrics or simple checklists. They involve engag-
ing with issues that impact stake holders, especially
those that are already disadvantaged. Thus, a big
component of this work is to raise awareness of rel-
evant issues, to underscore how often there are no
easy solutions, and that meaningful change requires
painstaking, slow, and deliberate engagement with
the stakeholders. Additionally, such documents are
useful for those that are impacted to question and
challenge assumptions made by unfair decisions of
automated systems.

2 Best Practices

Below we present various best practices (practical
and ethical considerations) pertaining to 22 aspects
of emotion lexicon creation and use. The 22 aspects
are grouped under the coarser categories pertain-
ing to a lexicon’s life cycle: A. Lexicon Design,
B. Annotation, C. Entries in the Lexicon, and D.
Applying the Lexicon. Note that while many con-
siderations are presented from the perspective of
lexicon creation, they are also relevant to the users
of a lexicon — knowing what decisions were made
during the creation of a lexicon help one to assess
appropriateness of using the lexicon.

The goal is to provide a comprehensive set of
relevant considerations, so that readers (especially
those new to research or new to work with emo-
tions) can find the information in one place. Thus,
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we include both the considerations that are espe-
cially specific to emotions, as well as others that
apply more broadly (even if they are somewhat
well known). Also, the points listed below are not
meant to be the final word, but rather jumping off
points for further thought and discussion.

2.1 Overview
An overview of the 22 aspects is presented below;
followed by the detailed descriptions.

A. LEXICON DESIGN
1. Purpose or Objective
2. Emotion Category or Dimension
3. Word Senses and Dominant Sense Priors
4. Discrete or Continuous Value Labels

B. ANNOTATION
5. Questionnaire
6. Comparative Annotations
7. Annotators
8. Quality Control

C. ENTRIES IN THE LEXICON
9. Annotation Aggregation
10. Relative (not Absolute)
11. Coverage
12. Not Immutable
13. Perceptions (not “truth”)
14. Socio-Cultural Biases
15. Inappropriate Biases
16. Errors
16. Mechanism to Report and Fix Errors

D. APPLYING THE LEXICON
18. Fit of the Lexicon to One’s Data
19. Rescaling the Lexicon for One’s Task
20. Metrics & Features Drawn from the Lexicon
21. Removing Neutral Words
22. Inferences

2.2 Detailed Descriptions
A. LEXICON DESIGN

#1. Purpose or Objective: Consider and docu-
ment the objective(s) of building the emotion lex-
icon. There can be more than one objective. The
objectives guide various design choices involved in
the creation of the lexicon. See Selbst et al. (2019)
for common pitfalls in designing and framing socio-
technical systems; and Mohammad (2022b) for
common pitfalls in designing and framing auto-
matic emotion recognition tasks. Users of emotion
lexicons can study the purpose of each lexicon to
determine which is most suitable for their use case.

Broadly speaking, the objectives tend to be
around the study of word–emotion associations
(exploring various research questions at the inter-
section of language an emotions) and aiding auto-
matic emotion detection from utterances. However,
individual projects often have specific goals, for
example, to study specific phenomenon such as
loneliness and empathy, to study inappropriate bi-
ases, to detect what emotions people perceive from
utterances, to study how automatic systems should
perceive the emotions in utterances, how automatic
systems should use words to convey emotions, etc.
It is important to recognize that some of these ob-
jectives are very related, but they have important
differences. For example, while a general-purpose
emotion lexicon will capture a number of benign
associations, it will also capture inappropriate soci-
etal biases. If one wants to use a lexicon in a text
generation system, then they should either use a
lexicon designed specifically for that purpose, or
address the biases in a general purpose lexicon,
before using it.

Work using emotion lexicons should not claim
that using it one can determine one’s emotional
state from their utterance. At best, recognition
systems (whether they use emotion lexicons or not)
capture what one is trying to convey or what is
perceived by the listener/viewer; and even there,
given the complexity of human expression, they are
often inaccurate. Several studies have shown that
it is difficult to fully measure psychological states
of people (Stark, 2018; Barrett, 2017b).

In contrast, statistical analyses with features
drawn from emotion lexicons can be used to accu-
rately determine broad trends in the emotional state
of a population over time (Teodorescu and Moham-
mad, 2022). Here, inferences are drawn at aggre-
gate level from much larger amounts of data. Stud-
ies on public health, such as those on loneliness
(Guntuku et al., 2019; Kiritchenko et al., 2020), de-
pression (De Choudhury et al., 2013; Resnik et al.,
2015), suicidality prediction (MacAvaney et al.,
2021), bipolar disorder (Karam et al., 2014), stress
(Eichstaedt et al., 2015), emotions during a pan-
demic (Vishnubhotla and Mohammad, 2022), and
general well-being (Schwartz et al., 2013) fall in
this category. Here too, however, it is best to be
cautious in making claims about mental state, and
use emotion recognition as one source of evidence
amongst many (and involve expertise from public
health and psychology).
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#2. Emotion Category or Dimension: A key
decision in the creation of an emotion lexicon is
which conceptualization or facet of emotion to
use. For example, should it capture emotion cate-
gories such as joy, sadness, fear, optimism, etc., or
will it capture dimensions such as valence, arousal,
and dominance. Psychologists and neuro-scientists
have identified several theories of emotion that
can inform the choice of categories and dimen-
sions, including: the Basic Emotions Theory (BET)
(Ekman, 1992; Ekman and Davidson, 1994), the
Dimensional Theory (Osgood et al., 1957; Rus-
sell, 1980; Russell and Mehrabian, 1977; Russell,
2003), Cognitive Appraisal Theory (Scherer, 1999;
Lazarus, 1991), and the Theory of Constructed
Emotions (Barrett, 2017b).

Since ML approaches rely on human-annotated
data (which can be hard to obtain in large quanti-
ties), emotion recognition research has often grav-
itated to the Basic Emotions Theory, as that work
allows one to focus on a small number of emotions.
This attraction has been even stronger in the vision
research because of BET’s suggested mapping be-
tween facial expressions and emotions. However,
many of the tenets of BET, such as the universality
of some emotions and their fixed mapping to facial
expressions, stand discredited or are in question
(Barrett, 2017a; Barrett et al., 2019).

Carefully consider which emotion formulation
you wish to capture in your lexicon, or is appropri-
ate for your task/project. For example, one may
choose to work with the dimensional model or the
model of constructed emotions if the goal is to
infer behavioural or health outcome predictions.
Despite criticisms of BET, it makes sense for some
NLP work to focus on categorical emotions such
as joy, sadness, guilt, pride, fear, etc. (including
what some refer to as basic emotions) because
people often talk about their emotions in terms
of these concepts. Many human languages have
words for these concepts (even if our individual
mental representations for these concepts vary
to some extent) (Wierzbicka, 1999). However,
note that work on categorical emotions by itself
is not an endorsement of the BET. Do not refer
to some emotions as basic emotions, unless
you mean to convey your belief in the BET.
Careless endorsement of theories can lead to the
perpetuation of ideas that are actively harmful
(such as suggesting we can determine internal state
from outward appearance—physiognomy).

#3. Word Senses and Dominant Sense Priors:
Words when used in different senses and contexts
may be associated with different emotions.
The entries in the emotion lexicons are mostly
indicative of the emotions associated with the
predominant senses of the words. This is usually
not too problematic because most words have
a highly dominant main sense (which occurs
much more frequently than the other senses). In
specialized domains, some terms might have a
different dominant sense than in general usage.
Entries in the lexicon for such terms should be
appropriately updated or removed. However, if
the goal of the project is to create a lexicon for
a specialized domain, then one should guide the
annotation process accordingly.

#4. Discrete or Continuous Value Labels: Many
emotion lexicons have discrete binary labels for
words (positive–negative, joy–no joy, fear–no fear,
and so on). Lexicons such as ANEW and the NRC
VAD Lexicon have real-valued scores between 0
and 1, -1 and 1, 0 to 5, 0 to 100, etc. Real-valued
scores allows one to make finer distinctions in the
degree of emotion. They allow one to determine
the intensity of emotion. Binary-labeled lexicons
are used primarily to determine density of emotion
word usage; for example, to explore whether there
is a higher percentage of tweets with loneliness
words during the Covid-19 pandemic, than in the
years before the pandemic. Determine which type
of lexicon is more aligned with your objectives.

B. ANNOTATION

#5. Questionnaire: Arguably the most crucial
aspect in the creation of an emotion lexicon is
the questionnaire. What is asked and how it is
asked determines the outcome. Below are key
recommendations in the design of questionnaires:

a. Where appropriate, break the task/question into
simpler sub-tasks/sub-questions.

b. It is better to have separate tasks for different
questions and emotion dimensions. Asking
for responses about more than one emotion
dimension requires the annotator to switch
contexts and leads to more cognitive load.

c. Keep the instructions clear and easy to follow.

d. Examples are more important than definitions.
People tend to learn faster and better through
examples. It is still good to include simple
definitions of relevant concepts.
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e. Refer to the theories for emotions work in
psychology on to how to collect emotional
information from respondents. Especially
useful are the terms used to define emotion
dimensions: e.g., as per the dimensional
model of emotions (Russell, 1980) arousal
is defined as the active–sluggish dimension,
in the stereotype content model of social
perception (Cuddy et al., 2008), warmth is
defined as the trustworthiness, friendliness,
kindness dimension. These words should be
used when eliciting annotation responses.

f. Keep the instructions brief. This is respectful
of annotator time, and one can only keep track
of a limited number of instructions at a time.

g. Explain the purpose of the annotation task.
This is respectful of annotators. People have
a right to know (in appropriate detail) what
research they are contributing their time for.
This may also lead to more engaged annotators.

h. Include an optional comment box that gives
annotators a way to provide feedback, raise
issues, and to be heard.

i. Make the questionnaire and instructions freely
available. This helps others to build on your
work. It allows users to see exactly how the
questions were phrased, and thus how to
interpret the resulting emotion lexicon.

See also other data curation and questionnaire
development tips from non-NLP fields such as
psychology (Aguinis et al., 2021).

#6. Comparative Annotations: Real-valued
scores provide fine-grained emotion information;
however, it is difficult for humans to provide direct
scores at this granularity. A popular approach to
obtain real-valued scores is by providing the an-
notators with numeric rating scales.3 These scales
have numbers (usually 1 to 5 or 1 to 7) and the anno-
tator has to select which number is most indicative
of the degree of association with the property of
interest for the given word; given that the lowest
number on the scale indicates least association and
the highest number indicates the most association.4

The scores for an item from multiple annotators
is averaged to obtain a real-valued score that is
assigned to the word–emotion pair.

3https://www.questionpro.com/blog/rating-scale/
4It is good practice to anchor the numeric values with

labels such as maximum/moderate/low association.

A common problem of annotation by rating
scales is inconsistencies in annotations among
different annotators. One annotator might assign a
score of 87 to one word, while another annotator
may assign a score of 81 to the same word. It
is also common that the same annotator might
assign different scores to the same word, if asked
to annotate again after a period of time. Further,
annotators often have a bias towards selecting
scores in the middle of the scale, known as
scale region bias (Presser and Schuman, 1996;
Baumgartner and Steenkamp, 2001).

Paired Comparisons (Thurstone, 1927; David,
1963) is a comparative annotation method, where
respondents are presented with pairs of items and
asked which item has more of the property of
interest (for example, which is more positive). The
annotations can then be converted into a ranking of
items by the property of interest, and one can even
obtain real-valued scores indicating the degree
to which an item is associated with the property
of interest. The paired comparison method does
not suffer from the problems discussed above for
the rating scale, but it requires a large number of
annotations—order N2, where N is the number of
items to be annotated.

Best–worst scaling (BWS) (Louviere, 1991) is a
form of comparative annotation, like paired com-
parison, but it requires much fewer annotations.
Annotators are given n items (an n-tuple, where
n > 1 and commonly n = 4).5 They are asked
which item is the best (highest in terms of the prop-
erty of interest) and which is the worst (least in
terms of the property of interest). When working
on 4-tuples, best–worst annotations are particularly
efficient because each best and worst annotation
will reveal the order of five of the six item pairs
(e.g., for a 4-tuple with items w, x, y, and z, if w
is the best, and z is the worst, then w > x, w > y,
w > z, x > z, and y > z). Real-valued scores of
association between the items and the property of
interest can be determined using simple arithmetic
on the number of times an item was chosen best
and number of times it was chosen worst (Orme,
2009; Flynn and Marley, 2014). It has been em-
pirically shown that three annotations each for 2N
4-tuples is sufficient for obtaining reliable scores

5At its limit, when n = 2, best–worst scaling reduces to a
paired comparison (Thurstone, 1927; David, 1963); However,
then a much larger set of tuples need to be annotated (closer
to N2).
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(where N is the number of items) (Louviere, 1991;
Kiritchenko and Mohammad, 2016). Kiritchenko
and Mohammad (2016; 2017) showed through em-
pirical experiments on emotion lexicons that BWS
produces more reliable and more discriminating
scores than those obtained using rating scales.

Within the NLP community, BWS has
been used for creating datasets for relational
similarity (Jurgens et al., 2012), word-sense
disambiguation (Jurgens, 2013), word–sentiment
intensity (Kiritchenko and Mohammad, 2016),
sentence–sentence semantic relatedness (Abdalla
et al., 2023), etc.

#7. Annotators: Who is recruited to annotate the
data also impacts the lexicon that is generated.

a. Experts or Crowd: If a task has clear correct
and wrong answers and knowing the answers
requires some training/qualifications, then one
can employ domain experts to annotate the
data. However, emotion annotations largely do
not fall in this category. People are the best
judges of their emotions and how they use
words to communicate them. If the goal is to
determine how people use language or we want
to know how people perceive words, phrases,
and sentences then we might want to employ a
large number of annotators (crowdsourcing).
Note that this is also a scenario where there
can be more than one appropriate answer.

b. Diversity: Emotion lexicons are a function of
their annotators. Consider who all should be
represented in the annotator pool, and actively
recruit people from under-represented groups.
Seek appropriate demographic information
(respectfully and ethically). Document
annotator demographics at an aggregate level.

c. Informed Consent, Privacy, and Potential for
Harms: Provide a clear and easy-to-understand
description of what the task will involve,
potential risks, and what information will be
collected, before obtaining consent from the
annotators. Note that if the terms included
for annotation or the chosen dimension of
annotation is particularly negative, then there
may be significant risk of adversely impacting
the annotator’s mental health. In such cases,
suitable avenues for recourse must be provided.

d. Remuneration: Determine fair compensation
for the task. Inform the annotators of the pay
and the time commitment expected.

e. Miscellaneous: There are several other ethical
considerations also involved with such work
such as: worker invisibility, lack of learning tra-
jectory, humans-as-a-service paradigm, worker
well-being, and worker rights (Dolmaya, 2011;
Fort et al., 2011; Standing and Standing, 2018;
Irani and Silberman, 2013).

f. Ethics Approval: Obtain approval of the project
and annotation plan from your institution’s
research ethics board before conducting the
annotation. The ethics boards are also a great
source of feedback for improving the ethical
standards of the annotation process. If unsure
whether some work requires ethics approval,
reach out to the ethics board. Many institutions
provide expedited review in cases of low risk.

Document these considerations so that the users
can judge suitability of the lexicon for their work.

#8. Quality Control: Good quality control strate-
gies can make a large difference for any scenario of
annotations, but are especially important when the
annotations are done via crowdsourcing. Quality
control strategies can be of three kinds:

Type 1: applied before data annotation begins
Type 2: applied during data annotation, and
Type 3: applied after data annotation.

It is recommended to apply measures of all three
kinds. Examples of Type 1 include: careful ques-
tionnaire design and setting up training or qualifi-
cation annotations to screen annotators.

A particularly powerful example of a Type 2
measure is to intersperse the instances with small
number of hidden gold instances (∼5%) — in-
stances for which the appropriate label(s) are pre-
determined (by, say, the authors). If a crowd worker
responds with an answer not already marked as ap-
propriate, then they are immediately notified, the
annotation is discarded. If an annotator’s accu-
racy on the gold questions falls below a pre-chosen
threshold (say, 80%), then they are refused fur-
ther annotation, and all of their annotations are
discarded. This way the gold instances serve as a
mechanism to avoid malicious annotations, as well
as a way to further train the annotators. This also
avoids scenarios where an annotator provides re-
sponses to a large number of questions, only to later
learn that they misinterpreted something, rendering
all of their annotations useless. The use of gold
questions was popularized by the crowdsourcing
platform CrowdFlower (now, Figure8).
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Examples of Type 3 quality control measures
include: removal of responses from people who
answer questions too quickly, or whose responses
are more than two standard deviations away
from the responses of others. There also exist
approaches that identify which annotators to trust
using machine learning algorithms (Raykar and
Yu, 2012; Hovy et al., 2013).

C. ENTRIES IN THE LEXICON

#9. Annotation Aggregation: Each instance
in a lexicon (usually a word) is often annotated
by a number of annotators. Standard practice in
aggregating the responses from multiple annotators
is to take the most frequent response. However, it
should be noted that sometimes other responses are
also appropriate. Further, different socio-cultural
groups can perceive language differently, and
taking the majority vote can have the effect of only
considering the perceptions of the majority group.
When these views are crystallized in the form of
a lexicon, it can lead to the false perception that
the norms so captured are “standard" or “correct",
whereas other associations are “non-standard" or
“incorrect". Thus, it is worth explicitly disavowing
that view and stating that the lexicon simply
captures the perceptions of the majority group
among the annotators. Thus, it is recommended
to also make available disaggregated annotations
(annotations in their raw form – without aggrega-
tion). Note that it is also problematic to consider
all annotator responses as valid because sometimes
annotators make mistakes, and some may have
inappropriate biases (see #15).

#10. Relative (not Absolute): The absolute values
of the association scores themselves usually have
no meaning. The scores help order the words
relative to each other. For example, a term with
a high valence score is associated with more
positiveness than a term with with a lower score.

#11. Coverage: Some lexicons have a few hun-
dred terms, and some have tens of thousands of
terms. However, even the largest lexicons do not
include all the terms in a language. Mostly, they
include entries for the canonical forms (lemmas),
but some also include morphological variants. The
high-coverage lexicons, such as the NRC Emotion
Lexicon, have tens of thousands of terms. However,
when using the lexicons in specialized domains,
one may find that a number of common terms in
the domain are not listed in the lexicons.

#12. Not Immutable: The associations do
not indicate an inherent unchangeable attribute.
Emotion associations can change with time, but
these lexicon entries are largely fixed. They pertain
to the time they are created or the time associated
with the corpus from which they are created.

#13. Perceptions (not “truth”): Emotion lexicons
largely capture how speakers of a language
perceive the emotion associations of words. As
mentioned in the previous bullet, this can change
with time. Further, it can also be different for
different people. Mohammad and Turney (2013)
found that when the annotators are asked to judge
emotion associations in terms of ‘how speakers of
a language perceive the word’, the results have
lower variance than when asked ‘the emotions
evoked in the annotator’. Consider your objective
when deciding which of the two framings (or some
other) is more appropriate for your use case.

#14. Socio-Cultural Biases: Since the emotion
lexicons have been created by people (directly
through crowdsourcing or indirectly through the
texts written by people) they capture various
human biases. These biases may be systematically
different for different socio-cultural groups.
Document who produced the data (people from
which countries, what is the gender distribution,
age distribution, etc.) in the paper describing
the dataset or in the associated datasheet. An
advantage of crowdsourcing is that the annotations
are from a wider pool of annotators; however,
crowd annotators are systematically different from,
and not representative of, the general population.

#15. Inappropriate Biases: Some of the human
biases that have percolated into the lexicons may
be rather inappropriate. For example, entries
with low valence scores for certain demographic
groups or social categories. Studying such biases
in the lexicon can be useful to show and address
some of the historical inequities that have plagued
humankind. Nonetheless, when these lexicons are
used in specific tasks, care must be taken to remove
such entries from the lexicons where necessary.

#16. Errors: Even though the researchers take
several measures to ensure high-quality and
reliable data annotation (e.g., multiple annotators,
clear and concise questionnaires, framing tasks
as comparative annotations, interspersed check
questions, etc.), human-error can never be fully
eliminated in large-scale annotations. Expect a
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small number of clearly wrong entries. Automati-
cally generated lexicons also can have erroneous
entries. They are often built on the assumption
that the tendency of a word to co-occur with
emotion-associated seed terms is proportional to
its association with that emotion. However, in
any corpus, there will always be some amount of
chance high co-occurrences that are not accurate
reflections of the true associations.

#17. Mechanism to Report and Fix Errors:
Provide a mechanism for users to report issues
and errors. Fix errors and where appropriate
issue warnings for how some types of entries
can be mis-interpreted or misused. Periodically
assess whether certain types of entries need to be
proactively checked. For example, there has been
growing recognition that emotion associations
associated with identity groups are particularly
sensitive, affected by historical bias, and so
one must be careful in how they interpret the
associations captured in lexicons.

D. APPLYING THE LEXICON

#18. Examining the Fit of the Lexicon: Manually
examine the emotion associations of the most
frequent terms in your data. Remove entries from
the lexicon that are not suitable (due to mismatch
of sense, inappropriate human bias, etc.).

#19. Rescaling the Lexicon for One’s Task:
Depending on your specific use case, you may
choose to re-scale the scores from 0 to 1, -1 to 1,
1 to 10, etc. Note that if using the lexicon entries
as features in machine learning experiments, the
scale (0 to 1 or -1 to 1) can make a difference—e.g.
if the score is used as a weight for features.

#20 Metrics and Features Drawn from the
Lexicon: For text analysis, one can calculate
various metrics such as the percentage of emotion
words (when the lexicons provides a list of words
associated with a category) or average emotion
intensity (for real-valued associations). When
determining the scores, a further choice is how
to handle words that are not in the lexicon. Two
common approaches include: 1. Treat words that
are not in the lexicon as neutral; 2. Ignore these
words in the calculation of the scores. The latter
approach does not make assumptions of neutrality,
and is not impacted by the number of such out
of lexicon words in a piece of text. See Teodor-
escu and Mohammad (2022) for a systematic

analysis of the impact of various lexicon features
on the quality of emotion arcs generated with them.

#21. Creating Subsets of the Lexicon: Some-
times it is better to use a subset of the emotion
lexicon, rather than the whole lexicon.

Removing Neutral Words: One can use the whole
lexicon to calculate metrics such as average
valence of the words in a text; however, one can
also choose to disregard terms with close to 0
valence scores. when calculating the same metric.
Removal of such neutral terms from the analysis
will show greater variations in the average scores
when comparing across different sets of data of
interest or across time. For example, when looking
at the average tweet happiness over time of day,
using full or neutral-removed lexicon is expected to
get roughly similar curves, but the neutral-removed
lexicon will show a greater amplitude (divergence
of scores from the peaks to troughs). (Dodds et al.,
2011) describes this as turning up the magnifier
knob in a microscope. Note, however, that just
having larger score differences between the target
and control does not mean that the emotion word
usage is substantially different or significant; and
conversely, just because the score difference for
a metric is small in value does not mean that
the differences in emotion word usages are not
substantial. (More on this in #22).

Removing Low-Association Words: Use of
low-association terms from a lexicon may not
be beneficial for some downstream applications.
These entries may also include a greater percent-
age of annotation errors. See Teodorescu and
Mohammad (2022) for experiments on multiple
datasets and multiple emotion dimensions that
examine usefulness of removing low-association
terms from a lexicon when generating emotion
arcs.

Removing Highly Polysemous and Certain Domain
Words: For some applications, it is beneficial
to discard highly ambiguous words. Entries
for highly ambiguous words are more likely to
include emotion associations for a sense that is not
common in one’s data. As stated in #3, it is also
recommended to remove entries not appropriate
for the target domain; e.g., the word harry has a
negative meaning, but it should not be used when
analyzing text where a person has the name Harry.

#22. Inferences: When drawing inferences from
texts using counts of emotion words:
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a. It is more appropriate to make claims about
emotion word usage rather than emotions of
the speakers. For example, ‘the use of anger
words grew by 20%’ rather than ‘anger grew
by 20%’. A marked increase in anger words is
likely an indication that anger increased, but
there is no evidence that anger increased by
20%. Further, it is important to understand
the emotion metrics and to interpret them
accordingly. For example, many off-the-shelf
tools provide a “sentiment score" for the
input textual instances, without providing
adequate details about what this score means.
As discussed in #21, the scores themselves can
have large or small values, and just knowing
that the score difference between a target and
control is large (or small) is not enough to
draw meaningful inference. On the other hand,
grounded metrics that tie the score to attributes
such as percentage of positive words tend to be
less open to misinterpretation.

b. Comparative analysis is your friend. Often,
emotion word counts on their own are not
useful. For example, ‘the use of anger words
grew by 20% when compared to [data from
last year, data from a different person, etc.]’ is
more useful than saying ‘on average, 5 anger
words were used in every 100 words’.

c. Lexicon features (or any other automatically
drawn features) are not well suited to draw
meaningful emotional inferences from individ-
ual utterances. Human language and behaviour
are highly variable and complex. However,
with careful design, they can be useful to draw
inferences about broad trends at an aggregate
level (Teodorescu and Mohammad, 2022).

d. Inferences drawn from large amounts of text
are more reliable than those drawn from small
amounts of text. Teodorescu and Mohammad
(2022) show that this is the single most impor-
tant feature in determining the fidelity of the
predicted emotion trends with the true emotion
trends, among a host of features they explored.
For many emotion dimensions and dataset do-
mains, it is advisable to determine aggregate
emotion scores using at least 100 instances. For
example, if there are at least 100 tweets per day
about a product of interest, the average valence
scores of all the words in the tweets every day
is expected to produce a fairly accurate valence
arc (x-axis is day, y-axis is average valence
score for the corresponding day).

3 Limitations

This paper does not present a new NLP model or
dataset. Thus, there are no corresponding limi-
tations to discuss. However, the paper itself can
be viewed as a document discussing limitations of
existing approaches to do sentiment and emotion
analysis using emotion lexica. The 22 best prac-
tises presented in the paper discuss approaches to
engage with and counter these limitations.

While this document was a result of engaging
a larger community through blog posts, talks, and
discussions, we had relatively low access to devel-
opers of commercial sentiment analysis systems.
Thus the list presented here may have missed some
important considerations. We encourage readers
and impacted stakeholders to challenge the assump-
tions latent in the document, and identify new ethi-
cal considerations not included here or not gaining
adequate attention in the research community.

4 Concluding Remarks

Emotion lexicons are simple yet powerful tools to
analyze text. However, use of the lexicons (even
for tasks that it is suited for) can lead to inappro-
priate bias. Applying a lexicon to any new data
should only be done after first investigating its suit-
ability, and requires careful analysis to minimize
unintentional harm. In this paper, we presented
22 best practises that include considerations that
can help mitigate such unwanted outcomes, as well
as strategies to make the best use of emotion lex-
icons towards drawing meaningful and accurate
inferences. The best practises are organized as
per a lexicon’s life cycle: A. Lexicon Design, B.
Annotation, C. Entries in the Lexicon, and D. Ap-
plying the Lexicon. We also provide pointers to
relevant literature to explore the best practises in
more detail. It should be noted that these practises
are not meant to be the final word, but rather jump-
ing off points for further thought, discussion, and
additional measures towards the responsible use of
emotion lexicons.

Acknowledgments

Many thanks to Emiel van Miltenburg, Annika
Schoene, Mallory Feldman, Tara Small, Roman
Klinger, and Peter Turney for thoughtful comments
and discussions.

1833



References
Mohamed Abdalla, Krishnapriya Vishnubhotla, and

Saif M. Mohammad. 2023. What makes sentences
semantically related: A textual relatedness dataset
and empirical study. In Proceedings of the 17th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Herman Aguinis, N. Sharon Hill, and James R. Bai-
ley. 2021. Best practices in data collection and
preparation: Recommendations for reviewers, edi-
tors, and authors. Organizational Research Meth-
ods, 24(4):678–693.

ARTICLE19. 2021. Emotional entangle-
ment: China’s emotion recognition mar-
ket and its implications for human rights.
https://www.article19.org/wp-content/
uploads/2021/01/ER-Tech-China-Report.pdf.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. SentiWordNet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining.
In Proceeding of the 7th International Conference
on Language Resources and Evaluation, volume 10
of LREC ’10, pages 2200–2204.

Lisa Feldman Barrett. 2017a. How emotions are made:
The secret life of the brain. Houghton Mifflin Har-
court.

Lisa Feldman Barrett. 2017b. The theory of constructed
emotion: an active inference account of interocep-
tion and categorization. Social cognitive and affec-
tive neuroscience, 12(1):1–23.

Lisa Feldman Barrett, Ralph Adolphs, Stacy Marsella,
Aleix M Martinez, and Seth D Pollak. 2019. Emo-
tional expressions reconsidered: Challenges to infer-
ring emotion from human facial movements. Psy-
chological science in the public interest, 20(1):1–68.

Hans Baumgartner and Jan-Benedict E.M. Steenkamp.
2001. Response Styles in Marketing Research: A
Cross-National Investigation. Journal of Marketing
Research, 38(2):143–156.

Margaret M Bradley and Peter J Lang. 1999. Affec-
tive norms for English words (ANEW): Instruction
manual and affective ratings. Technical report, The
Center for Research in Psychophysiology, Univer-
sity of Florida.

Amy JC Cuddy, Susan T Fiske, and Peter Glick. 2008.
Warmth and competence as universal dimensions
of social perception: The stereotype content model
and the bias map. Advances in experimental social
psychology, 40:61–149.

Herbert Aron David. 1963. The method of paired com-
parisons. Hafner Publishing Company, New York.

Munmun De Choudhury, Michael Gamon, Scott Counts,
and Eric Horvitz. 2013. Predicting depression via
social media. In Seventh international AAAI confer-
ence on weblogs and social media, pages 128–137.

Peter Sheridan Dodds, Kameron Decker Harris, Is-
abel M Kloumann, Catherine A Bliss, and Christo-
pher M Danforth. 2011. Temporal patterns of hap-
piness and information in a global social network:
Hedonometrics and twitter. PloS one, 6(12):e26752.

Julie McDonough Dolmaya. 2011. The ethics of crowd-
sourcing. Linguistica Antverpiensia, New Series–
Themes in Translation Studies, (10).

Johannes C Eichstaedt, Hansen Andrew Schwartz, Mar-
garet L Kern, Gregory Park, Darwin R Labarthe,
Raina M Merchant, Sneha Jha, Megha Agrawal,
Lukasz A Dziurzynski, Maarten Sap, et al. 2015.
Psychological language on Twitter predicts county-
level heart disease mortality. Psychological science,
26(2):159–169.

Paul Ekman. 1992. Are there basic emotions? Psycho-
logical Review, 99(3):550–553.

Paul Ed Ekman and Richard J Davidson. 1994. The
nature of emotion: Fundamental questions. Oxford
University Press.

T. N. Flynn and A. A. J. Marley. 2014. Best-worst scal-
ing: theory and methods. In Stephane Hess and
Andrew Daly, editors, Handbook of Choice Mod-
elling, pages 178–201. Edward Elgar Publishing.

Karën Fort et al. 2011. Amazon Mechanical Turk: Gold
mine or coal mine? Computational Linguistics,
37(2):413–420.

Timnit Gebru, Jamie H. Morgenstern, Briana Vecchione,
Jennifer Wortman Vaughan, H. Wallach, Hal Daumé,
and Kate Crawford. 2018. Datasheets for datasets.
In Proceedings of the conference on Fairness, Ac-
countability, and Transparency in Machine Learn-
ing, Stockholm, Sweden.

Sharath Chandra Guntuku, Rachelle Schneider, Arthur
Pelullo, Jami Young, Vivien Wong, Lyle Ungar,
Daniel Polsky, Kevin G Volpp, and Raina Merchant.
2019. Studying expressions of loneliness in indi-
viduals using Twitter: an observational study. BMJ
open, 9(11):e030355.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1120–1130, Atlanta, Georgia.
Association for Computational Linguistics.

Lilly C Irani and M Six Silberman. 2013. Turkopticon:
Interrupting worker invisibility in Amazon Mechan-
ical Turk. In Proceedings of the SIGCHI conference
on human factors in computing systems, pages 611–
620.

1834

https://doi.org/10.1177/1094428119836485
https://doi.org/10.1177/1094428119836485
https://doi.org/10.1177/1094428119836485
https://www.article19.org/wp-content/uploads/2021/01/ER-Tech-China-Report.pdf
https://www.article19.org/wp-content/uploads/2021/01/ER-Tech-China-Report.pdf
https://doi.org/10.1162/COLI_a_00057
https://doi.org/10.1162/COLI_a_00057
https://aclanthology.org/N13-1132
https://aclanthology.org/N13-1132


David Jurgens. 2013. Embracing ambiguity: A compar-
ison of annotation methodologies for crowdsourcing
word sense labels. In NAACL.

David Jurgens, Saif M. Mohammad, Peter Turney, and
Keith Holyoak. 2012. Semeval-2012 task 2: Mea-
suring degrees of relational similarity. In Proceed-
ings of the 6th International Workshop on Semantic
Evaluation (SemEval), pages 356–364, Montréal,
Canada.

Zahi N Karam, Emily Mower Provost, Satinder Singh,
Jennifer Montgomery, Christopher Archer, Gloria
Harrington, and Melvin G Mcinnis. 2014. Ecologi-
cally valid long-term mood monitoring of individ-
uals with bipolar disorder using speech. In 2014
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 4858–4862.
IEEE.

Svetlana Kiritchenko, Will Hipson, Robert Coplan, and
Saif M. Mohammad. 2020. SOLO: A corpus of
tweets for examining the state of being alone. In
Proceedings of the 12th Language Resources and
Evaluation Conference, pages 1567–1577, Mar-
seille, France.

Svetlana Kiritchenko and Saif Mohammad. 2017. Best-
Worst Scaling More Reliable than Rating Scales:
A Case Study on Sentiment Intensity Annotation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 465–470.

Svetlana Kiritchenko and Saif M. Mohammad. 2016.
Capturing reliable fine-grained sentiment associa-
tions by crowdsourcing and best–worst scaling. In
Proceedings of The 15th Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL), San Diego, California.

Richard S Lazarus. 1991. Progress on a cognitive-
motivational-relational theory of emotion. Amer-
ican psychologist, 46(8):819.

Jordan J. Louviere. 1991. Best-worst scaling: A model
for the largest difference judgments. Working Paper.

Sean MacAvaney, Anjali Mittu, Glen Coppersmith, Jeff
Leintz, and Philip Resnik. 2021. Community-level
research on suicidality prediction in a secure envi-
ronment: Overview of the CLPsych 2021 shared
task. In Proceedings of the Seventh Workshop on
Computational Linguistics and Clinical Psychology:
Improving Access, pages 70–80, Online. Association
for Computational Linguistics.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2019. Model cards for model reporting. In
Proceedings of the conference on fairness, account-
ability, and transparency, pages 220–229.

Saif Mohammad. 2022a. Ethics sheets for AI tasks.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 8368–8379, Dublin, Ireland.
Association for Computational Linguistics.

Saif M. Mohammad. 2018. Obtaining reliable hu-
man ratings of valence, arousal, and dominance for
20,000 English words. In Proceedings of The An-
nual Conference of the Association for Computa-
tional Linguistics (ACL), Melbourne, Australia.

Saif M. Mohammad. 2020. Practical and ethical con-
siderations in the effective use of emotion and senti-
ment lexicons.

Saif M. Mohammad. 2022b. Ethics sheet for automatic
emotion recognition and sentiment analysis. Com-
putational Linguistics, 48(2):239–278.

Saif M. Mohammad and Peter D. Turney. 2010. Emo-
tions evoked by common words and phrases: Using
Mechanical Turk to create an emotion lexicon. In
Proceedings of the NAACL-HLT 2010 Workshop on
Computational Approaches to Analysis and Genera-
tion of Emotion in Text, LA, California.

Saif M. Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a word-emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Finn Årup Nielsen. 2011. A new ANEW: Evaluation
of a word list for sentiment analysis in microblogs.
In Proceedings of the ESWC Workshop on ‘Mak-
ing Sense of Microposts’: Big things come in small
packages, pages 93–98, Heraklion, Crete.

Bryan Orme. 2009. Maxdiff analysis: Simple counting,
individual-level logit, and HB. Sawtooth Software,
Inc.

Charles Egerton Osgood, George J Suci, and Percy H
Tannenbaum. 1957. The measurement of meaning.
47. University of Illinois press.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
LIWC 2001. Mahway: Lawrence Erlbaum Asso-
ciates, 71(2001):2001.

Stanley Presser and Howard Schuman. 1996. Ques-
tions and Answers in Attitude Surveys: Experiments
on Question Form, Wording, and Context. SAGE
Publications, Inc.

Vikas C Raykar and Shipeng Yu. 2012. Eliminating
spammers and ranking annotators for crowdsourced
labeling tasks. The Journal of Machine Learning
Research, 13(1):491–518.

Philip Resnik, William Armstrong, Leonardo Claudino,
Thang Nguyen, Viet-An Nguyen, and Jordan Boyd-
Graber. 2015. Beyond LDA: Exploring supervised
topic modeling for depression-related language in
Twitter. In Proceedings of the 2nd Workshop on
Computational Linguistics and Clinical Psychology:

1835

http://www.aclweb.org/anthology/S12-1047
http://www.aclweb.org/anthology/S12-1047
https://aclanthology.org/2020.lrec-1.195
https://aclanthology.org/2020.lrec-1.195
https://doi.org/10.18653/v1/2021.clpsych-1.7
https://doi.org/10.18653/v1/2021.clpsych-1.7
https://doi.org/10.18653/v1/2021.clpsych-1.7
https://doi.org/10.18653/v1/2021.clpsych-1.7
https://doi.org/10.18653/v1/2022.acl-long.573
http://arxiv.org/abs/2011.03492
http://arxiv.org/abs/2011.03492
http://arxiv.org/abs/2011.03492
https://doi.org/10.3115/v1/W15-1212
https://doi.org/10.3115/v1/W15-1212
https://doi.org/10.3115/v1/W15-1212


From Linguistic Signal to Clinical Reality, pages
99–107, Denver, Colorado.

James A Russell. 1980. A circumplex model of af-
fect. Journal of personality and social psychology,
39(6):1161.

James A Russell. 2003. Core affect and the psychologi-
cal construction of emotion. Psychological review,
110(1):145.

James A Russell and Albert Mehrabian. 1977. Evidence
for a three-factor theory of emotions. Journal of
research in Personality, 11(3):273–294.

Klaus R Scherer. 1999. Appraisal theory. John Wiley
& Sons Ltd.

Hansen Andrew Schwartz, Johannes C Eichstaedt, Mar-
garet L Kern, Lukasz Dziurzynski, Richard E Lucas,
Megha Agrawal, Gregory J Park, Shrinidhi K Lak-
shmikanth, Sneha Jha, Martin EP Seligman, et al.
2013. Characterizing geographic variation in well-
being using tweets. In Seventh International AAAI
Conference on Weblogs and Social Media, pages
583–591.

Andrew D Selbst, Danah Boyd, Sorelle A Friedler,
Suresh Venkatasubramanian, and Janet Vertesi.
2019. Fairness and abstraction in sociotechnical sys-
tems. In Proceedings of the conference on fairness,
accountability, and transparency, pages 59–68.

Susan Standing and Craig Standing. 2018. The ethical
use of crowdsourcing. Business Ethics: A European
Review, 27(1):72–80.

Luke Stark. 2018. Algorithmic psychometrics and
the scalable subject. Social Studies of Science,
48(2):204–231.

Philip Stone, Dexter Dunphy, Marshall Smith, and
Daniel M. Ogilvie. 1966. The General Inquirer:
A Computer Approach to Content Analysis. The
MIT Press.

Carlo Strapparava, Alessandro Valitutti, et al. 2004.
Wordnet affect: an affective extension of wordnet.
In Lrec, volume 4, page 40. Lisbon.

Daniela Teodorescu and Saif M. Mohammad. 2022.
Evaluating automatically generated emotion arcs:
A case for simple methods using emotion lexicons.
arXiv.

Louis L. Thurstone. 1927. A law of comparative judg-
ment. Psychological review, 34(4):273.

Krishnapriya Vishnubhotla and Saif M. Mohammad.
2022. Tweet emotion dynamics: Emotion word
usage in tweets from us and canada. In Proceed-
ings of the Thirteenth International Conference on
Language Resources and Evaluation (LREC 2022),
Marseille, France.

Jane Wakefield. 2021. AI emotion-detection software
tested on Uyghurs. BBC. https://www.bbc.com/
news/technology-57101248.

Anna Wierzbicka. 1999. Emotions across languages
and cultures: Diversity and universals. Cambridge
university press.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of human
language technology conference and conference on
empirical methods in natural language processing,
pages 347–354.

Lieve Van Woensel and Nissy Nevil. 2019. What if your
emotions were tracked to spy on you? European
Parliamentary Research Service, PE 634.415.
https://www.europarl.europa.eu/RegData/
etudes/ATAG/2019/634415/EPRS_ATA(2019)
634415_EN.pdf.

1836

https://doi.org/10.48550/ARXIV.2210.07381
https://doi.org/10.48550/ARXIV.2210.07381
https://www.bbc.com/news/technology-57101248
https://www.bbc.com/news/technology-57101248
https://www.europarl.europa.eu/RegData/etudes/ATAG/2019/634415/EPRS_ATA(2019)634415_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/ATAG/2019/634415/EPRS_ATA(2019)634415_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/ATAG/2019/634415/EPRS_ATA(2019)634415_EN.pdf


Findings of the Association for Computational Linguistics: EACL 2023, pages 1837–1849
May 2-6, 2023 ©2023 Association for Computational Linguistics

The Role of Semantic Parsing in Understanding Procedural Text

Hossein Rajaby Faghihi1, Parisa Kordjamshidi1, Choh Man Teng2, and James Allen2

1 Michigan State University, 2 Florida Institute for Human and Machine Cognition
{rajabyfa, kordjams}@msu.edu, {jallen, cmteng}@ihmc.org

Abstract

In this paper, we investigate whether symbolic
semantic representations, extracted from deep
semantic parsers, can help reasoning over the
states of involved entities in a procedural text.
We consider a deep semantic parser (TRIPS)
and semantic role labeling as two sources of
semantic parsing knowledge. First, we propose
PROPOLIS, a symbolic parsing-based proce-
dural reasoning framework. Second, we inte-
grate semantic parsing information into state-
of-the-art neural models to conduct procedural
reasoning. Our experiments indicate that ex-
plicitly incorporating such semantic knowledge
improves procedural understanding. This paper
presents new metrics for evaluating procedural
reasoning tasks that clarify the challenges and
identify differences among neural, symbolic,
and integrated models.

1 Introduction

Procedural reasoning is the ability to track entities
and understand their evolution given a sequence of
actions (Tandon et al., 2020). This kind of reason-
ing is crucial in understanding recipes (Bosselut
et al., 2018; Yagcioglu et al., 2018), manuals and tu-
torials (Tandon et al., 2020; Wu et al., 2022), cyber-
security text (Pal et al., 2021), natural events (Tan-
don et al., 2020), and even stories (Storks et al.,
2021). An example of a procedural text in the natu-
ral event domain, its entities of interest, and their
state changes are shown in Figure 1.

Inferring actions and their impact on entities in-
volved in a procedural text can be challenging in
various aspects. First, there are dependencies be-
tween steps to be considered in predicting a plausi-
ble action set. For instance, an entity destroyed at
step t of the process cannot be moved again at step
t+ 1. Second, some sentences contain ambiguous
local signals by including multiple action verbs.
For example, "The oxygen is consumed in the pro-
cess of forming carbon dioxide.", where the oxygen

Process Participants

Sentences plant animal bone oil

Before the process begins ? ? - -

1. Plants and animals die in 
a watery environment

watery 
environment

watery 
environment

- -

2. Over time, sediments 
build over

sediment sediment - -

3. The body decomposes sediment - sediment -

4. Gradually buried material 
becomes oil

- - - sediment

Figure 1: An example of procedural text and its annota-
tion (location of objects). ‘-’ means the entity does not
exist; ‘?’ means the entity’s location is unknown.

is being destroyed, and the carbon dioxide is be-
ing created. Third, the sentences are incomplete
in some steps. For instance, a step of the process
might only indicate "is buried in mud", which can-
not be understood without context. Fourth, finding
the properties of some entities may require reason-
ing over both the global context and local relations.
For instance, in the sentences “1. Magma rises to
the surface. 2. Magma cools to form lava”, the
location of ‘Lava’ after step 2 should be inferred
from the prior location of Magma, which is indi-
cated in its previous step. Fifth, common sense is
required to understand some consequences. For ex-
ample, in Figure 1, step 3, one should use common
sense to realize that ‘decomposing body’ would
expose the ‘bones’, which will be left behind in the
‘sediment’. Sixth, understanding some relations
requires an advanced co-reference resolution. In
Figure 1, step 4, a complex co-reference resolution
is required to understand that the ‘buried material’
refers to both ‘plants and animals bones’ and that
they are transforming into the ‘oil’.

Except for the common-sense (Zhang et al.,
2021) and the ability to make consistent global
decisions actions (Gupta and Durrett, 2019), the
other challenges might have only been indirectly
tackled in the recent research (Huang et al., 2021;
Faghihi and Kordjamshidi, 2021), but have nei-
ther been addressed explicitly nor properly evalu-
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ated to measure their success on resolving these
challenges. In this paper, we evaluate whether se-
mantic parsers can alleviate some of these chal-
lenges. Semantic parsers provide semantic frames
that identify predicates and their arguments in a sen-
tence. For instance, in the sentence ‘Move bag to
the yard’, “Move” is the predicate, “bag” and “the
yard” are the arguments with types "affected"1 and
“location” respectively. Such semantic information
can help disambiguate multi-verb local connections
between predicates and arguments (Huang et al.,
2021). They can also provide meaningful local
relations, making it easier to connect global infor-
mation to infer entities’ states. For instance, in
the same sentence, "Magma cools to form lava",
"Magma" is noted as the ‘affected’ and ‘lava’ is the
result of the predicate ‘form’. This makes it easier
to infer that the location of ‘lava’ should match the
last location of ‘magma’.

For our study, we consider both the classic se-
mantic role labeling (SRL) 2, based on (Shi and
Lin, 2019), which is a relatively shallow seman-
tic parsing model, as well as the deep semantic
parser TRIPS3 (Ferguson et al., 1998; Allen and
Teng, 2017). To investigate the effect of semantic
parsing on procedural reasoning, we analyze its
effect as a standalone symbolic model as well as
its integration in a neuro-symbolic model that com-
bines semantic parsing with state-of-the-art neural
models to solve the procedural reasoning task.

First, we design a set of heuristics to extract
a symbolic abstraction from the TRIPS parser,
called PROPOLIS. We use this baseline to fur-
ther showcase the effectiveness of semantic pars-
ing information in solving the procedural task.
Next, we integrate the semantic parsers with two
well-established procedural reasoning neural back-
bones, namely NCET (Gupta and Durrett, 2019)
and TSLM (Faghihi and Kordjamshidi, 2021) (and
its extension CGLI (Ma et al., 2022)), through en-
coding the semantic relations as a graph attention
neural network (GAT) (Shi et al., 2020).

For our experiments, we use Propara
dataset (Tandon et al., 2020) that introduces
the procedural reasoning task over natural events
that are described in English. We realized the
existing evaluation metrics of this dataset do not
reflect the actual performance of the models and

1referred to as ‘Patient’ in some other parsing formalisms.
2https://demo.allennlp.org/

semantic-role-labeling
3http://trips.ihmc.us/parser/cgi/parse

fail to identify the challenges and shortcomings
of the models. Consequently, we propose new
evaluation criteria to shed light on the differences
between the models, even when they perform
similarly based on the prior metrics.

In summary, our contributions are (1) Proposing
a symbolic model (Propolis) to solve the procedu-
ral reasoning task based on semantic parsing, (2)
Proposing a set of new evaluation metrics which
can identify the strength and weaknesses of the
models, and (3) Showcase the benefits of integrat-
ing semantic parsing into the neural models. The
code and models proposed in this work are all avail-
able in GitHub 4.

2 Related Research

Procedural text understanding has been investi-
gated in many benchmarks such as ScoNe (Long
et al., 2016), bAbI (Weston et al., 2015), and Pro-
cessBank (Berant et al., 2014). Recent research
has focused on procedural reasoning as tracking
entities throughout a procedural text. Datasets such
as Propara (Tandon et al., 2020), Recipes (Bosselut
et al., 2018), Procedural Cyber-Security text (Pal
et al., 2021), and OpenPI (Tandon et al., 2020)
are in the same direction. Procedural reasoning
can also be influential in addressing causal rea-
soning (WIQA) (Tandon et al., 2019), story under-
standing (Trip) (Storks et al., 2021), and abstractive
multi-modal question answering (RecipeQA) (Yag-
cioglu et al., 2018).

This paper primarily focuses on tracking enti-
ties’ states and properties throughout a procedu-
ral text. Recent research has addressed this prob-
lem by predicting actions and properties on lo-
cal context (Prolocal) (Dalvi et al., 2018), auto-
regressive global predictions based on distance
vectors (Proglobal) (Dalvi et al., 2018), integrat-
ing structural common-sense knowledge built over
VerbNet (ProStruct) (Tandon et al., 2018), build-
ing dynamic knowledge graphs over entities (KG-
MRC) (Das et al., 2018), explicitly encoding
the model to explain dependencies between ac-
tions (XPAD) (Dalvi et al., 2019), formulating lo-
cal predictions and global sequential information
flow and sequential constraints (NCET) (Gupta
and Durrett, 2019), formulating the task in a
QA setting (DynaPro, TSLM) (Amini et al.,
2020; Faghihi and Kordjamshidi, 2021), inte-

4https://github.com/HLR/
ProceduralSemanticParsing
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grating common-sense knowledge from Concetp-
Net (KOALA) (Zhang et al., 2021), utilizing large
generative language models (LEMON) (Shi et al.,
2022), or using both the question answering set-
ting and sequential structural constraints at the
same time (CGLI) (Ma et al., 2022). All the
models mentioned above investigate different neu-
ral architectures to tackle the task, while we are
more interested in augmenting them with addi-
tional knowledge from semantic parsers. Recent
research has also investigated the integration of
semantic role labeling into the procedural reason-
ing task (REAL) (Huang et al., 2021), which is
very close to our goal in this paper. However,
in this work, we propose and investigate a vari-
ety of combinations, a deeper semantic represen-
tation (TRIPS) and named relations, in addition
to a symbolic approach for solving the procedural
reasoning task solely based on semantic parsing.

3 Technical Approach

Problem definition The procedural reasoning task
can be formally defined by a procedural text includ-
ing m steps, S = {s1, s2, ..., sm}, a set of entities
E = {e1, e2, ..., en}, where n is the number of en-
tities, and a set of properties. Specifically, in the
Propara dataset, the property of interest is only the
location of the entities PL = {pL01, pL11, ..., pLmn },
where pL

t
i denotes the jth entity at step t. In

Propara, the location prediction starts at step 0,
which indicates the entity’s location before the pro-
cess begins. The location of an entity can either be
known (represented by a string) or unknown (rep-
resented by "?"). Similar to prior research (Tandon
et al., 2020), the location property is used to infer
a set of actions A = {a11, a12, .., amn }, where ajt de-
notes the action type applied to entity j at step t.
Following the prior research (Dalvi et al., 2018),
we extract all the noun phrases from the sentences
and only consider those as location candidates.

We investigate two different modeling ap-
proaches to solve this problem. First, we use a
symbolic and parsing-based model, and second, we
integrate semantic parsing with neural models. We
use two different sources for semantic extraction:
SRL and TRIPS. In general, SRL is coarse-grained
and shallow compared to TRIPS. The connections
in TRIPS are not limited to the pairwise connec-
tions between predicates and arguments but are
extended to the semantic connections between any
two words. Since TRIPS relies on a general pur-

pose ontology, it also augments the arguments and
predicates with additional information about a set
of possible features (mobility, container, negation)
and mapping of the words to hierarchical ontology
classes (i.e., mapping “water” to “beverage”). SRL
is centered around the semantic frames of the verbs
( predicates) and identifies each predicate’s main
and adjunct (mainly time and location) arguments
in the sentence. Figure 2 and 3 show examples of
the SRL and TRIPS parses, respectively.

Figure 2: The SRL annotation for the sentence “Move
the book in the shelf to the library”.

Figure 3: The TRIPS parse for the sentence “Move the
book in the shelf to the library”.

The symbolic model only uses the TRIPS parser
as it provides more extended extractions and mean-
ingful relations, while both SRL and TRIPS are
used for integration with the neural baselines.

3.1 PROPOLIS: Symbolic Procedural
Reasoning

We propose the PROPOLIS model, which solves
the procedural reasoning task merely by symbolic
semantic parsing. PROPOLIS operates on the
TRIPS parser in three steps. First, it makes an
abstraction over the original parse to summarize
the information in the graph and include a smaller
set of actions and changes in objects and their lo-
cations. Second, it uses a set of rules to transform
the abstracted parses into clear actions and identi-
fies the affected objects by the actions, using the
semantic roles, while extracting an ending location
or starting location. Lastly, it performs global rea-
soning to connect the local decisions and produce

1839



a consistent sequential set of actions/locations for
each entity of interest. More details about the steps
are also available in Appendix B.

3.1.1 Graph Abstraction
The original TRIPS parse includes many concepts
and edges that do not directly affect entities’ loca-
tion or existence. Therefore, we make a more con-
cise graph abstraction to facilitate processing the
entities, actions, and locations. To obtain a more
informative abstraction, firstly, the relevant classes
of the TRIPS ontology are mapped to action classes
defined in the Propara dataset (Create, move, or de-
stroy). For instance, the verb ‘flow’ is first mapped
to the ‘fluidic motion’ class in the TRIPS ontol-
ogy, which is a child of the ‘motion‘ class, and the
‘motion’ class is mapped to the ‘move’ action in
the Propara dataset. This will help distinguish the
predicates that signal a change in the location or
existence of objects. Second, the important argu-
ments are identified in the parse, and the locations
are extracted. The graph is decomposed to include
a set of events with their arguments. Each event
may contain different roles such as "agent", "af-
fected", "result", "to_location", "from_location",
or other roles required by its semantic frame.

3.1.2 Rule-based Local Decisions
We use a set of heuristic rules to map the abstracted
graph onto actual actions over the entities of inter-
est. The rules are written according to the semantic
frames and the type of predicates and arguments
in each parse. For instance, if a semantic frame
is mapped to ‘Move’ and has both the ‘agent’ and
‘affected’ arguments, then the ‘affected’ argument
specifies the object being moved. The same frame
with only an ‘agent’ argument indicates a move for
the object in the ‘agent’ role. Table 1 shows the
most frequent templates we used to transform the
local parses into actual decisions over the entities.

3.1.3 Global Reasoning
The two first steps are merely based on the local
sentence-level actions of each step. We need addi-
tional global reasoning over the whole procedure
to predict the outputs. Global reasoning ensures
that local decisions form a valid global sequence of
actions for a given entity. For instance, if an entity
is predicted to be destroyed at step 2 and moved at
step 3, we consider the ‘destroyed’ action a wrong
local decision since a destroyed object cannot move
later in the process. The graph also contains pas-

sive indications of object location in phrases such
as "the book on the shelf" or even indications of
prior locations in terms of a ‘from_location’ argu-
ment. These phrases do not generate actions but
provide information that should be used in previous
steps. For example, if step t has a local prediction
‘Move’ for entity e with no target location and step
t + 1 has a ‘from_location’ for entity e, then the
‘from_location’ should be used as the target loca-
tion of the ‘Move’ action in the previous step.

3.2 Integration with Neural Models

Here, we investigate whether explicitly incorporat-
ing semantic parsers with neural models can help
better understand the procedural text. We choose
two of the recently proposed and most commonly
used backbone architectures for procedural reason-
ing tasks, namely NCET (Gupta and Durrett, 2019)
and TSLM (Faghihi and Kordjamshidi, 2021) (and
its extension CGLI (Ma et al., 2022)). Similar to
(Huang et al., 2021), we rely on a graph attention
network (GAT) to integrate the information from
the semantic parsers into the neural baselines.

Following (Huang et al., 2021), the nodes in
this graph are either (1) predicates in the semantic
frames, (2) mentions of entities of interest (Exact
match or Co-reference), or (3) noun phrases in the
sentence. An edge in the SRL graph exists between
two nodes if they have a (predicate, argument) con-
nection or they are both parts of the same verb
semantic frame (argument to argument) (Huang
et al., 2021). It is relatively straightforward to build
a semantic graph with the TRIPS parser because it
outputs the parse as a graph.

An edge is created between any pairs of
nodes (phrases) in the graph if any subsets of these
two phrases are connected in the original parse.
The edge types are preserved. Since not all the
nodes in the original parse are present in the new
simplified graph, we may lose some key connec-
tions. To fix this, if two nodes (phrases) are not con-
nected in the new graph but have been connected in
the original one, we find the shortest path between
them in the original parse and connect them with a
new edge with the type being the concatenation of
all the edge types in the path. Lastly, nodes are con-
nected across sentences based on either an exact
match or co-reference resolution.

Both NCET and TSLM models are trained based
on Cross Entropy to compute the loss for both ac-
tions and locations. The final loss of the model
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Main Predicate Roles Decisions
Move Affected, Agent The “Affected” is being moved.
Move Agent The “Agent” is being moved.

Destroy Affected The “Affected” is being destroyed
Create Affected_Result, Affected The “Affected_Result” is being created
Create Affected The “Affected” is being created

Change Affected, Res
The “Affected” is being destroyed, and

the “Res” is being created

Table 1: The rules used to evaluate the effect of actions on various roles of the semantic frame

is calculated by Ltotal = Laction + λ ∗ Llocation,
where λ is a balancing hyper-parameter.

3.2.1 Integration with NCET as Backbone

The NCET model uses a language model to encode
the context of the procedure and compute represen-
tations for mentions of entities, verbs, and locations.
These representations are used in two sub-modules
for predicting the actions and the locations. To in-
tegrate the semantic parsers with the NCET archi-
tecture, we use the output of the language model to
initialize the semantic graph representations. Then
multiple layers of graph attention network (based
on TransformerConv (Shi et al., 2020)) are applied
to encodes the graph structure. We combine the up-
dated graph representations with the initial mention
representations. These combined representations
are later used in subsequent prediction modules.

More formally, we start by using a language
model to encode the context of the process h′ =
LM(S), where S is the procedure, and h′ is the
embedding output from the language model. The
representations are further encoded by a BiLSTM
h = BiLSTM(h′).
Graph Attention Network Since each node in
the semantic graph corresponds to a subset of to-
kens in the original paragraph, we use the mean
average of these tokens’ representation to initial-
ize the nodes’ embedding denoted as v0i . If the
graph contains edge types, the edges between each
two nodes i and j are denoted by eij and is rep-
resented by the average token embedding through
the same LM model used for encoding the story,
eij =Mean(LM(etextij )). Lastly, we use C layers
of TransoformerConv (Shi et al., 2020) to encode
the graph structure. More details on the graph en-
coder is available in Appendix C.
Representing Mentions To integrate the semantic
parses with the baseline model, we use both repre-
sentations obtained from the language model and
the graph encoder to represent entities, verbs, and

Tag Description
O_D Entity does not exist after getting destroyed
O_C Entity does not exist before getting created

E Entity exists and does not change
C Entity is created
D Entity is destroyed

Table 2: The list of output tags/actions

locations in the process. Mention representations
are denoted by rmt =

[
M(hmt );M(hg

m
t ))
]
, where

t is one step of the process, hmt is the average rep-
resentation of tokens in the story corresponding to
the mention m in step t, hgmt is the average embed-
ding of nodes corresponding to mention m in step
t, and the function M replaces the representations
with zero if there is no mention of m in step t.

Location Prediction We first encode the pairwise
representation of an entity e and location candidate
lc at each step t, denoted by x

(e,lc)
t =

[
ret ; r

lc
t

]
.

Next, we use an LSTM to encode the step-wise
flow of the pair representation to get h̄(e,lc)t =

LSTM(
[
x
(e,lc)
t

]
). Finally, the probability of each

location candidate lc to be the location of entity e
at step t is calculated by a softmax over the poten-
tial candidates, p(e,lc)t = Softmax(W t

loch̄
(e,lc)
t ),

where W t
loc is the learning parameters of a single

multi-layer perceptron.

Action Prediction To predict the action for entity
e at step t, we create a new representation for the
entity based on its mention and the sentence verbs,
denoted by xet =

[
ret ;Meanv∈np(et)(r

v
t )
]
, where

np(et) is the set of verbs whose corresponding
node in the graph has a path to any of the nodes
representing entity e in step t. The final representa-
tions are then produced using a BiLSTM over the
steps, het = LSTM([xet ]). Lastly, a neural CRF
layer is used to consider the sequential structure of
the actions by learning transition scores during the
training of the model (Gupta and Durrett, 2019).
The set of possible actions is shown in Table 2.

1841



Local Global Loc Global Ent Global Loc and Ent Ambiguous
Both Both Actions Locations Both Actions

Train 885 367 438 340 114 593
Dev 116 44 66 3 9 76
Tests 105 61 98 71 18 110

Table 3: The number of decisions per category of evaluation with the new decision-level metric. “Both” refers to
both location and action decisions and is used since the number of those decisions is the same in most cases. The
number of decisions in the ‘Global Ent’ case can be different for the actions and the locations because this category
also considers ‘destroy’ events that have no corresponding locations.

3.2.2 Integration with TSLM as Backbone

The TSLM (Faghihi and Kordjamshidi, 2021)
model reformulates the procedural reasoning task
as a question-answering problem. The model sim-
ply asks the question, ‘Where is entity e?’ at each
step of the process. To include the context of the
whole process when asking the same question at
different steps, TSLM further introduces a time-
aware language model that can encode additional
information about the time of events. Given the
new encoding, each step of the process is mapped
to either past, present, or future. TSLM uses the an-
swer to the question at each step to form a sequence
of decisions over the location of entity e. To inte-
grate the semantic graph with this model, we first
extend the graph by adding a question node. The
graph is then initialized using the time-aware lan-
guage model. The encoded representations of the
graph, after applying multiple layers of GAT, are
combined with the original token representations
and used for extracting the answer to the question.
Initial Representation For each entity e and times-
tamp t, the string “where is e? s1 </s> s2 </s>
... sm </s>” is fed into the time-aware language
model. Accordingly, the tokens’ representations
for timestamp t are (he)

i
t = LM(S, t).

Graph Attention Module Inspired by (Zheng and
Kordjamshidi, 2020), we add new nodes to the se-
mantic graph to represent the question and each
step of the process. We connect the question node
to any node in the graph representing the entity of
interest e, and each step node to all the tokens in
their corresponding sentence. An example of the
QA-based graph can be found in Appendix D. All
the node embeddings are initialized by the aver-
age embedding of their corresponding tokens in the
procedure. We use C layers of graph attention net-
work (TransformerConv), similar to Section 3.2.1,
to encode the graph structure.
Location Prediction For predicting the locations
of entities, that is, the answer to the question, we

predict the answer among the set of location candi-
dates. This is different from the common practice
of predicting start/end tokens. We represent each
location candidate by combining representations
from both the graph and the time-aware language
model, denoted by rlct =

[
(he)

lc
t , (h

c
gl)

lc
t

]
, where

(hcgl)
lc
t is the representation of the lc from the last

layer of the GAT. The answer is then selected by
calculating a softmax over the set of location can-
didates, plct = Softmax(W locationrlct ).
Action Prediction Similar to CGLI (Ma et al.,
2022) model, we explicitly predict the actions of
entities alongside the locations. First, the model
extracts each timestamp’s “CLS” tokens and builds
sequential pairs of (CLSet , CLS

e
t+1). Then, it pro-

duces a change representation vector for each of
these pairs, denoted by ret = F (CLSet ;CLS

e
t+1).

Lastly, the sequence of [ret ] logits is passed through
the same neural CRF layer used by the NCET
model, introduced in Section 3.2.1, to generate
the final probability of actions.

4 Evaluation

We use three evaluation metrics to analyze the per-
formance of the symbolic, sub-symbolic, and neu-
ral baselines. The first metric is sentence-level and
proposed in (Dalvi et al., 2018). The second metric
is a document-level evaluation proposed by (Tan-
don et al., 2018). Both of these metrics evaluate
higher-level procedural concepts that can be in-
ferred from the predictions of the model rather than
the raw decisions. These metrics give more im-
portance to the actions compared to the location
decisions. Although they can successfully evaluate
some aspects of the models, they fail to measure
the research progress in addressing the challenges
of the procedural reasoning task. We extend these
evaluations with a new decision-level evaluation
metric that considers almost all model decisions
with a similar weight and evaluates the models
based on the difficulty of the reasoning process.
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4.1 Propara Evaluation Metrics

With the sentence-level metrics, the predic-
tions are evaluated in three different categories.
(Cat1) evaluates whether an entity e has been
created (destroyed/moved) during the process.
(Cat2) evaluates when an entity e is created (de-
stroyed/moved). (Cat3) evaluates where e is cre-
ated (destroyed/moved).

With the document-level metrics, we evaluate
the Inputs, Outputs, Conversion, and Moves sepa-
rately and average over the F1 score of these four
criteria to output one F1 score as the final metric.
Here, Inputs are entities that did exist before the
process started and are destroyed during. Outputs
are entities that did not exist before the process but
created during it. Conversions evaluates which
entities converted to another entity. Lastly, Moves
evaluates which entities have been moved from one
place to another.

4.2 Extended Evaluation

Both sets of existing evaluation metrics of the
Propara dataset do not directly evaluate the predic-
tions of the model but rather evaluate higher-level
procedural concepts which can be inferred from the
sets of decisions (i.e, an entity being input/output).
Given their evaluation criteria, one model may sur-
pass another in the number of correct decisions but
still obtain a lower performance.

Therefore, we propose a new evaluation met-
ric (decision-level) that directly evaluates the mod-
els’ decisions. This evaluation metric is designed
to consider the difficulty of the reasoning process
and help better identify the core challenges of the
task. We divide the set of decisions into five cate-
gories based on the presence of the entity e and the
location l at each step t. We denote any mention
of e by me, any mention of l by ml, the action
for entity e at step t by taget , and the text of the
current step by St. The following specifies the five
categories and how a decision falls under them.
Local Decision: A decision where (1) me ∈ St,
(2) ml ∈ St, and (3) taget ∈ {Move,Create}
Global Location Decision: A decision where
(1) me ∈ St, (2) ml ̸∈ St, and (3) taget ∈
{Move,Create}
Global Entity Decision: A decision where (1)
me ̸∈ St, (2) ml ∈ St or l = ” − ”, and (3)
taget ∈ {Move,Create,Destroy}
Global Entity and Location Decision: A deci-
sion where (1) me ̸∈ St, (2) ml ̸∈ St, and (3)

taget ∈ {Move,Create}
Ambiguous Local Action: A decision where (1)
me ∈ St and (2) St contains multiple action verbs.

Table 3 shows the detailed statistics of the num-
ber of decisions falling under each of these five
categories for the Propara dataset. Evaluating the
performance of models given the new decision-
level metric will clarify the lower-level challenges
in the reasoning over states and locations of entities
simultaneously. Getting accurate predictions in any
of these categories of decisions requires the models
to have different reasoning capabilities.

The local decisions mostly require a sentence-
level understanding of the action and its conse-
quences. The global location decisions require
reasoning over the current step and the ability to
connect the local information to the global con-
text. The predictions for the category of the global
entity mostly require reasoning over complex co-
references (we have already considered simple co-
references such as pronouns as mentions of the
entity) or the ability to recover missing pronouns
in a sentence such as "Gradually mud piles over
(them)". The global entity and location decisions
are the most challenging cases, which require rea-
soning over local and global contexts, complex
co-reference resolution, and handling of missing
pronouns. The ambiguous decisions mainly require
local disambiguation of (entity, role, predicate) con-
nections when multiple predicates are present in
the sentence. Moreover, common sense is required
for a subset of all the decision categories.

5 Experiments

Here, we summarize the performance of strong
baselines compared with the symbolic (PROPO-
LIS) and integrated models. The implementation
details of the models are available in Appendix A.
Table 4 shows the performance of models in the two
conventional metrics of the Propara dataset, and
Table 5 shows the performance of models based
on the decision-level metric. We summarize our
findings in a set of question-answer pairs.
Q1. Can semantic parsing alone solve the prob-
lem reasonably? Based on Table 4, the PROPO-
LIS model outperforms many of the neural base-
lines (document-level F1-score of row#4 compared
to rows #1 to #3), showing that deep semantic pars-
ing can provide a general solution for the proce-
dural reasoning task to some extent without the
need for training data. This model performs rel-
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#Row Models Sentence-level evaluation Document-level evaluation
Cat1 Cat2 Cat3 Macro-avg Micro-avg Precision Recall F1

1 ProLocal 62.7 30.5 10.4 34.5 34.0 77.4 22.9 35.3
2 ProGlobal 63 36.4 35.9 45.1 45.4 46.7 52.9 49.4
3 KG-MRC 62.9 40 38.2 47 46.6 64.5 50.7 56.8
4 PROPOLIS(ours) 69.9 37.71 5.6 37.74 36.67 70.9 50.0 58.7
5 NCET (re-implemented) 75.54 45.46 41.6 54.2 54.38 68.4 63.6 66
6 REAL(re-implemented)∗ 78.9 48.31 41.62 56.29 56.35 67.3 64.9 66.1
7 NCET + SRL(ours) 77.1 46.35 42 55.16 55.32 67.8 65.2 66.5
8 NCET + TRIPS(ours) 77.1 48.12 43.36 56.19 56.32 72.5 65.4 68.8
9 NCET + TRIPS(Edge)(ours) 75.68 47.6 45.71 56.33 56.37 69.9 65.5 67.6
10 NCET + PROPOLIS(ours)+ 78.54 48.69 44.26 57.16 57.31 74.6 65.8 69.9
11 DynaPro 72.4 49.3 44.5 55.4 55.5 75.2 58 65.5
12 KOALA 78.5 53.3 41.3 57.7 57.5 77.7 64.4 70.4
13 TSLM 78.81 56.8 40.9 58.83 58.37 68.4 68.9 68.6
14 CGLI 80.3 60.5 48.3 63.0 62.7 74.9 70 72.4
15 CGLI + TRIPS (ours) 80.62 58.94 49.08 62.88 62.68 74.5 68.5 71.4

Table 4: The table of results based on sentence-level and document-level evaluation of the Propara Dataset. ∗ Since
the code for the REAL model is not available, we have re-implemented the architecture based on the guidelines of
the paper and the communications. + The graph is first abstracted using the PROPOLIS graph abstraction phase and
then used instead of the Trips parse as input to the model.

Model Local Global Loc Global Ent Global Loc and Ent Amb+

A L Both A L Both A L Both A L Both A
KOALA 74.3 65.7 59.0 86.9 24.6 22.9 1.0 7.0 0.0 5.6 11.1 0 73.63

PROPOLIS 55.2 19.0 19.0 63.9 1.6 1.6 0.0 9.9 0.0 0.0 0.0 0.0 52.7
NCET 69.5 62.8 60.0 70.5 36.1 29.5 3.1 5.6 0.0 0.0 0.0 0.0 57.2

NCET + SRL 68.6 65.7 61.9 77.0 36.1 31.1 10.2 5.6 0.0 5.5 5.5 0.0 62.7
NCET + TRIPS 71.4 67.6 63.8 75.4 42.6 36.1 10.2 9.9 2.8 5.5 11.1 0.0 63.6

NCET + PROPOLIS 71.4 64.8 61.9 83.6 36.1 34.4 3.1 7.0 0.0 5.5 5.5 0.0 70.9
CGLI 65.7 62.9 54.3 75.4 59.0 50.8 19.4 19.7 11.3 22.2 27.8 11.1 70.0

CGLI + TRIPS 75.2 70.5 61.9 80.3 60.6 52.2 17.3 22.5 12.7 27.8 27.8 16.7 74.5

Table 5: The results of the models on the new extended evaluation metric (decision-level) in terms of accuracy (%).
‘A’ means the action is correct, ‘L’ means the location is correct, and ‘Both’ means both the action and location are
correct.+ Local ambiguous cases.

atively well on action-based decisions (cat1) but
fails to extract the proper location decisions (cat3).
This is because many locations are inferred based
on common sense rather than the verb semantic
frames. Notably, the set of rules written on top of
PROPOLIS is local and simple and can be further
expanded to improve performance. Table 5 further
indicates that the predictions of the PROPOLIS
model on the actions are much closer to the SOTA
models than its predictions for the entities’ loca-
tion. The good performance of PROPOLIS on the
action decisions for the “Global Location” category
can further show that the local context can mostly
indicate the action even if retrieving the result of
the action (location) requires more reasoning steps.
Lastly, since PROPOLIS is a model built over lo-
cal semantic frames, it dramatically fails to make
accurate decisions when the entity does not appear
in the sentence (Global Ent).
Q2. Can the integration of semantic parsing im-
prove the neural models? We evaluate this based
on the two strong baselines, NCET and TSLM.
When semantic parsers are integrated into NCET,

all three evaluation metrics improve (compare rows
#7 to #10 with row #5). This improvement is even
better if the source of the graph is the abstracted
parse from the PROPOLIS method (row #10). Se-
mantic parsers improve NCET’s performance in
all categories of decisions, particularly in local am-
biguous sentences and decisions requiring reason-
ing over global locations. Notably, the integration
of PROPOLIS with the NCET model significantly
boosts the ability to disambiguate local information
in sentences with multiple action verbs.

The integration of the semantic graph slightly
hurts the performance of the CGLI baseline when
using conventional metrics (1%). However, it out-
performs this baseline on “cat3” (0.78%), which
is the only evaluation that directly considers lo-
cation predictions. Notably, the original CGLI
model (baseline) uses the pre-trained classifiers
from SQUAD (Rajpurkar et al., 2016) to predict
the start/end tokens from the paragraph as the lo-
cations (answer to the question). However, since
the integrated method extracts candidates from the
graph in the form of spans, it cannot reuse the
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same pre-trained classifier parameters. This may
contribute to the drop in performance since CGLI
performs 2% lower on the document-level F1 score
when SQUAD pre-training is removed (Ma et al.,
2022). Despite the drop in performance based
on the conventional metrics, the integrated QA-
model (CGLI + TRIPS) outperforms the baseline
in almost all the criteria in the new evaluation (Ta-
ble 5), especially on decisions that only require
local reasoning or local disambiguation. This is
due to the global nature of the TSLM (or CGLI)
backbone, which predicts the locations based on
the whole story and ignores many of the local sig-
nals, whereas the graph can help directly extract
the local relations.
Q3. How can the decision-level metrics help
understand models’ weaknesses and strengths?
Based on the results in Table 5, the NCET model
is better at reasoning over the local context than
the global context. It also clarifies that although
the TSLM (or CGLI) model can properly reason
over multiple steps, it is not as competitive as the
NCET model in the local cases. However, the in-
tegration of semantic parsers could improve the
models to close the gap on both local and global
aspects and has a complimentary influence on the
initial performance of the baselines. As a general
conclusion based on our new evaluation metrics,
we can argue that the most challenging decisions
are the ones that require reasoning over missing
mentions of entities in the local context. Address-
ing this challenge may require external reasoning
over common-sense, performing the complex co-
reference resolution, or handling missing pronouns.

6 Discussion

Here, we discuss some of the potential concerns
that may arise with the usage of symbolic systems
such as TRIPS and the new evaluation criteria.
Coverage and rule crafting of PROPOLIS. Our
implementation of the symbolic method and the
integrated models rely on the knowledge extracted
from very fine-grained semantics covered in TRIPS.
Consequently, a small mapping effort was needed
to create such a system. The mapping between ac-
tions in Propara and verbs is straightforward since
verbs are automatically mapped onto ontological
classes that provide the type of actions based on
the parse. Hence, defining the mapping rules for
the most general relevant ontology types of verbs is
sufficient because all the descendent types will fol-

low the same mapping (See Table 1). More details
are available in Appendix B). Additionally, the ef-
fort needed for the pre-processing and designing of
the mapping rules is similar to the hyperparameter
tuning of neural models. Since mapping is based
on common sense rather than trial-and-errors in
hyperparameter tuning, finding an optimal solution
may even take less effort.
Out-Of-Vocabulary words in parses. TRIPS au-
tomatically maps words to ontology classes using
WordNet (Miller, 1995). This gives us considerable
vocabulary coverage and reduces OOV risk. TRIPS
can identify the role of the unseen words (not avail-
able in WordNet) based on the sentence syntax and
will not produce errors when encountering unseen
words. In the same way, PROPOLIS and integrated
models will not be affected.
Effectiveness of the new evaluation metric. The
previously proposed high-level evaluations are
strict and do not accurately reflect the quality and
quantity of the lower-level model decisions. Thus
they do not adequately reveal the models’ abilities.
For example, when compared at high-level metrics,
two models may have the same performance value
of 20%, while their decision accuracy may be 60%
and 10%. This issue is reflected during training
epochs too when the models’ performance remains
the same despite the decisions on the train set con-
tinuing to improve. Therefore, it seems more ap-
propriate to evaluate the models based on the same
objective criteria used for training them (decision-
level). However, the previously used metrics can
be secondary evaluations to measure how well the
model captures higher-level procedural concepts.

7 Conclusion

We investigated whether semantic parsers could
help with reasoning over procedural text. We pro-
posed PROPOLIS, a symbolic model operating on
deep semantic parsers to solve the procedural rea-
soning task. For this task, the symbolic model out-
performed many recent neural architectures. We
then evaluated the effects of integrating semantic
parsers with two well-known SOTA neural back-
bones. All integrated models outperformed base-
line architectures, particularly when the parser pro-
vided more detailed information and rich semantic
frames. Furthermore, we proposed new evaluation
metrics that show the pros and cons of the models
and help identify the key challenges in reasoning
over procedural text.
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Limitations

There are multiple limitations to methods that rely
on semantic parsers for solving natural language
tasks. First, semantic parsers and especially the
ones that do not rely on noisy training data, are
most susceptible to errors when the original sen-
tence contains even small grammatical or spelling
errors. Next, parsers such as TRIPS rely on general-
purpose ontology and a pipeline for generating the
output parses. The pipeline first understands the
meaning of each word in the sentence. This is sub-
ject to errors when words/verbs can have multiple
meanings and require the context to disambiguate
their semantics. For instance, the TRIPS parser
may map the verb ‘run’ to the ‘management’ class
in ontology instead of the ‘physical activity’ class.
Lastly, executing graph attention networks with
many layers requires a powerful system with ac-
cess to GPU and is more time-consuming than the
baselines that do not require reasoning over a graph
structure.
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A Implementation Details

We use the PyTorch geometric 5 library to imple-
ment all the graph attention models and Hugging-
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face library (Wolf et al., 2020) for implementing the
language models. For the NCET model and its ex-
tensions based on semantic parsers, the best model
is selected by a search over the λ ∈ {0.3, 0.4}, the
learning rate in {3e − 5, 3.5e − 5, 5e − 5}. The
number of graph attention layers are set to 2 and
the batch size is set to 8 process. All models are
using Bert-base as the selected language model for
encoding the context. We further use RAdam (Liu
et al., 2019) to optimize the model parameters of
both the language models, the LSTM, and the clas-
sifiers. For the CGLI method, we use the exact
hyper-parameters as specified in (Ma et al., 2022).
We further use 15 layers of graph attention network
with the input from the fifth layer of the time-aware
language models. The gradients from the graph at-
tention network (GAT) would not back-propagate
to the original language model and only affect the
parameters in the GAT model. The implementation
code of our models and the re-implemented mod-
els will be available in the camera-ready version.
The implementation code for all our models will
be available on GitHub after acceptance.

B PROPOLIS

Here, we share more details on the steps in pro-
ducing symbolic decisions over the actions and the
locations of objects in the Propara dataset, based on
the TRIPS parser. You can also find the ontology
of TRIPS parser online6.

B.1 Graph Abstraction

From the logical forms produced by the TRIPS
parser we need to extract the events and event rela-
tionships of interest. Because much of the variation
expected in sentence constructions is handled by
the TRIPS system, we are able to use a relatively
compact specification for defining the events and
relationships of interest, while coping with fairly
complex and nested formulations.

We capitalized on the TRIPS ontology and
parser to develop a compact and easy-to-maintain
specification of event extraction rules. Instead
of having to write one rule to match each key-
word/phrase that could signify an event, many of
these words/phrases have already been systemati-
cally mapped to a few types in the TRIPS ontology.
For instance, demolish, raze, eradicate, and anni-
hilate are all mapped to the TRIPS ontology type

6https://www.cs.rochester.edu/research/trips/
lexicon/browse-ont-lex-ajax.html

“ONT::DESTROY”. In addition, the semantic roles
are consistent across different ontology types. The
parser handles various surface structures, and the
logical form contains normalized semantic roles.
For example, in the following sentence:

• The bulldozer demolished the building

• The building was demolished

• The demolition of the building

• Building demolition

, all the parses result in the same basic logical form
with the semantic roles “AFFECTED: the building”
and, where applicable, “AGENT: the bulldozer”.
Thus, we needed very few extraction rule specifica-
tions for each event type, covering a wide range of
words and syntactic patterns.

B.2 Rule-based Local Decisions

(New: The sets of heuristics used to detect the
effect of each semantic frame on the arguments
were shown in Table 1). To handle the location ar-
guments from the parses, we also consider the two
cases on ‘from_loc’ and ‘to_loc’. In the specific
case of a destroy event, any location attached to the
semantic frame is considered the ‘from_loc’ for the
item being destroyed.

B.3 Global Reasoning

To perform the global reasoning over the local pre-
dictions, we first do a forward pass through the
actions and location predictions and make sure that
they are globally consistent. To do so, we start from
the first predicted action and check the following
on every next step prediction:

• If the current action is None, then we skip this
step!

• If the last observed action is “Create” or
“Move”,

– If the current action in “Create” and the
location of this action is the same as the
last observed location, then the new “Cre-
ate” action is transformed to “None”.

– IF the current action is “Create” and the
location of this action is different from
the last observed location, then the new
action is changed to “Move”.
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Figure 4: The QA graph for the query of “where is the
book” and the sentence “Move the book on the shelf to
the library”.

– Otherwise, the new action is kept the
same, and the last observed action is up-
dated.

• If the last observed action is “Destroy”,

– If the current action is “Destroy” and
it has a location different from the last
observed location, then the action is
changed to “Move”.

– If the current action is “Destroy” and it
has a location similar to the last observed
location, then the action is changed to
“None”.

– Otherwise, the new action is kept the
same, and the last observed action is up-
dated.

After fixing the sequence of actions, we first check
whether the entity gets created at any of the steps or
is just moved or destroyed during the process. If the
entity is not created, its initial location is equal to
the first ‘from_loc’ in any subsequent actions. we
then use the following criteria to fix the locations
in a forward pass over the local decisions:

• If the action is “Move” but there is no final lo-
cation, the final location is the first ‘from_loc’
from any of the subsequent actions before the
next “Move” event.

• If the object is being “Moved”, then its final
location should be changed. If the action does

not indicate a new location or the information
is missing, we replace the final location with
‘?’ to indicate an unknown location.

• If the action is “None”, the last location is
kept unchanged for the new step.

C Graph Attention Network

TransformerConv uses the following formula to
update the representation of the nodes (vi) in the
graph.

vl+1
i =

W1v
l
i +

∑

j∈N (i)

αi,j

(
W2v

l
j +W6eij

)
,

where N (i) represents the neighbors of node i in
the graph, l is the layer, and the coefficient αi,j is
computed using the following formula:

αi,j =

softmax



(
W3v

l
i

)⊤ (
W4v

l
j +W6eij

)

√
d




D Semantic Parsers

Figure 4 shows an example of the QA graph used
in the integration model with CGLI baseline.
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Abstract
Machine Learning models have lower accuracy
when tested on out-of-domain data. Developing
models that perform well on several domains
or can be quickly adapted to a new domain is
an important research area. Domain, however,
is a vague term, that can refer to any aspect of
data such as language, genre, source and struc-
ture. We consider a very homogeneous source
of data, specifically sentences from news arti-
cles from the same newspaper in English, and
collect a dataset of such “in-domain” sentences
annotated with named entities. We find that
even in such a homogeneous domain, the per-
formance of named entity recognition models
varies significantly across news topics. Selec-
tion of diverse data, as we demonstrate, is cru-
cial even in a seemingly homogeneous domain.

1 Introduction

Supervised neural models for named entity recog-
nition achieve high accuracy when used in-domain.
When models are evaluated or adapted (Daumé III,
2007; Wang et al., 2020; Gururangan et al., 2020)
for out-of-domain text, or even developed for spe-
cialized domains (Nguyen et al., 2020; Beltagy
et al., 2019), the term domain generally refers
to broad genres such as news, social media, or
biomedical text. However, text can be (dis)similar
in aspects beyond genre, such as the source of
the data, its structure, or the time period. Dai
et al. (2019) distinguish two aspects of domain—
the genre and the tenor, which they describe as the
participants in the discourse, their relationships and
their purpose. They find that even though people
consider genre to be more important for domain
adaptation, tenor is important as well when select-
ing pre-training data.

The term domain encompasses more than just
broadly defined genres. Online comments on differ-
ent platforms can be considered different domains.
So can news from different newspapers or differ-
ent time periods. We show that even text from the

same genre and source needs to be examined finely
for topical or structural differences. We collect a
dataset of news articles from the New York Times
and annotate it for named entities. We find that the
performance of NER models varies significantly
even in this dataset when it is stratified based on
news topics. While entities unseen in the training
data can be a factor that contributes to performance
degradation, we find that structural differences in
sentences and entity ambiguity are the main con-
tributors. Selecting diverse data is therefore crucial
even in such “in-domain” settings. We show that
even a very small number of sentences from each
topic can help narrow the performance gap, and
selecting random sentences rather than full docu-
ments from the full corpus, will ensure that there is
a good sample of diverse sentences.

2 Dataset

The dataset is available at https://github.com/
oagarwal/nyt-ner. Here we describe the process
of collecting it.

2.1 Data Collection
We sample sentences from the New York Times
(NYT) Annotated Corpus (Sandhaus, 2008). The
corpus consists of 1.8M articles from NYT between
1987 and 2007 along with article metadata provided
by the New York Times Newsroom, the New York
Times Indexing Service and the online production
staff at nytimes.com. We select sentences from
different years and news topics1, both available as
metadata. Variations in topic names are merged
together resulting in a total of nine topics—Arts
(+Weekend/Cultural), Business (+Financial), Clas-
sifieds (+Obituary), Editorial, Foreign, Metropoli-
tan, Sports and Others. Others consists of all desks
that did not have many articles such as Real Estate,
New Jersey Weekly, Book Review, Job Market,
Science and Health & Fitness.

1desk in NYT newsroom that produced the article
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2.2 Data Annotation
The selected sentences are labeled with per-
son (PER), location (LOC) and organization
(ORG) tags on Upwork2, with CoNLL’03 (Tjong
Kim Sang and De Meulder, 2003) guidelines and
annotation scheme. For efficiency, we first annotate
the sentences with entities from the article meta-
data. The metadata consists of relevant persons,
locations and organizations selected from a fixed
vocabulary, manually assigned as part of NYT in-
dexing. This first pass of annotation is done using
phrase matching, similar to a gazetteer lookup. The
resulting annotations are expected to be better than
looking up in a general gazetteer since the available
entities are assigned manually per article.

We use one annotator per example, but the anno-
tators are first trained for the task. Each annotator
is given 10-20 sentences to correct the entity labels
from the first pass. The corrected sentences are
reviewed by one of the authors and the feedback
is shared with the annotator. Another 10-20 sen-
tences are then shared with the annotator. These
sentences are a mix of previously annotated but
problematic sentences and new sentences, focusing
on the types of mistakes made by the particular an-
notator in the earlier batch. If the annotator makes
several mistakes in this round overall, or even one
mistake on a sentence re-selected from the previous
round, they are not asked to do further annotations.
The annotators are encouraged to ask clarifying
questions during the training rounds as well as the
actual annotations. If they are uncertain about the
correct label for any example, they are asked to
indicate this in their comments. Finally, one of the
authors goes over a random selection of examples
to ensure quality and also over the ones marked as
uncertain to correct if necessary.

2.3 Data Splits
We split sentences in each news topic into training,
development and test splits in the ratio 35:15:50.
The proportions are different from the typical
80:10:10 splits but ensure that there are a sufficient
number of test examples in each topic for stable
and reliable results. The number of sentences and
entities in each topic are shown in Table 1.

3 Results

We finetune BERT-large-cased (Devlin et al., 2019)
on each topic, evaluating on all others. Hyperpa-

2https://www.upwork.com/

# sentences # entities

train dev test train dev test

arts 3570 1531 5101 2451 1112 3542
business 2454 1052 3507 2055 870 2923
classified 1052 451 1503 1380 568 1895
editorial 2872 1232 4104 2198 939 3113
foreign 4654 1995 6649 3961 1672 5906
metropolitan 2873 1232 4106 2254 888 3141
national 3888 1667 5555 3062 1310 4303
sports 3664 1571 5235 3475 1572 4995
others 3221 1380 4602 2397 988 3413

Table 1: Dataset Statistics

rameter details are listed in the appendix. We report
micro-F1 at the span-level averaged over three runs
with different seeds. The full evaluation table is
shown in the appendix for reference. Here we dis-
cuss the aggregated results. Since domain is used
to refer to the genre of text (news in this case), we
use the term sub-domain to refer to the news top-
ics. However, we still use in-subdomain (InD) and
out-of-subdomain (OOD) to refer to in-subdomain
and out-of-subdomain training and evaluation in
the following sections.

3.1 Evaluation Sub-domain Difficulty

First, we report the performance on each test sub-
domain, when a model is trained on sentences from
the same sub-domain and when trained on sen-
tences from a different sub-domain. The goal is
to determine if it is easier to recognize entities in
some sub-domains. The results are shown in Table
2. InD refers to the models trained on the same
sub-domain as the test, and OOD refers to mod-
els trained on each of the remaining sub-domains.
The OOD mean and median are aggregated over
the eight models trained on each of the remaining
sub-domains. As expected, in-subdomain training
results in incredibly high F1 on all sub-domains.
The F1 with ODD training is lower than that for
in-subdomain, especially when testing on classified
and sports. For OOD, we also report the minimum
and maximum F1 on each test sub-domains, along
with the corresponding training sub-domain, show-
ing that the range of F1 also varies considerably.
The lowest test F1 on most sub-domains occurs
with the model trained on classified, and the high-
est occurs with training on national or metropolitan.
For a better understanding of the variation in the
performance on a given test sub-domain with dif-
ferent OOD sub-domains, we also show box plots
(Figure 1) for the test sub-domains of classifieds
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InD OOD

mean median min max

F1 F1 F1 F1 trn-d F1 trn-d

a 92.1 86.9 88.3 78.4 c 89.7 m
b 95.7 88.2 90.9 72.0 c 93.2 m
c 94.7 77.7 76.7 67.1 f 90.4 e
e 96.4 88.7 93.0 67.0 c 94.6 n
f 96.9 87.5 92.5 64.2 c 93.9 n
m 95.0 89.2 90.8 78.4 c 92.8 n
n 96.2 90.9 93.8 79.8 c 94.9 m
s 94.8 81.0 81.0 77.9 n 84.6 a
o 92.0 87.4 89.0 76.7 c 90.8 m

Table 2: F1 on each test sub-domain, one per row,
with models trained on different domains. Each row
represents a test sub-domain. InD is the F1 with in-
subdomain training. OOD mean and median are over
the remaining eight training domains. Min and max
show the F1 and training sub-domain with minimum
and maximum F1 on the given test sub-domain.

Figure 1: Box plot for two test sub-domains (classifieds
and national) showing the range of F1 with training on
OOD sub-domains

and national. Depending upon the sample of sub-
domains in the test set, the model performance can
vary significantly even in such a homogeneous do-
main, leading to an incorrect characterization of
the domain/dataset difficulty.

3.2 Training Sub-domain Quality

Next, we report the performance of models trained
on each sub-domain when tested on the same sub-
domain and on other sub-domains. The goal is to
determine if it is better (or worse) to train on certain
sub-domains for good performance overall. The
results are shown in Table 3. InD refers to testing
a model on the same sub-domain as the training
data, and OOD refers to testing it on the remaining
eight sub-domains. The OOD mean and median

InD OOD

mean median min max

F1 F1 F1 F1 tst-d F1 tst-d

a 92.1 87.7 90.4 73.2 c 91.6 b
b 95.7 88.7 90.0 78.1 c 94.0 e
c 94.7 74.3 77.5 64.2 f 79.8 n
e 96.4 89.4 90.3 80.4 s 94.2 n
f 96.9 85.8 88.8 67.1 c 93.6 n
m 95.0 90.6 92.0 84.0 s 94.9 n
n 96.2 89.2 91.1 77.9 s 94.6 e
s 94.8 82.4 85.1 68.8 c 86.6 n
o 92.0 89.2 92.3 75.3 c 94.1 e

Table 3: F1 of each training sub-domain, one per row,
across different test sub-domains. Each row represents
a training sub-domain. InD is the F1 for in-subdomain
testing. OOD mean and median are over the remaining
eight test domains. Min and max show the F1 and test
sub-domain with minimum and maximum F1 for the
given training sub-domain.

Figure 2: Box plot for two training sub-domains (classi-
fied and national), showing the range of F1 when tested
on these as OOD sub-domains.

are aggregated over the eight OOD sub-domains.
As expected, in-subdomain testing results in incred-
ibly high F1 on all sub-domains. The F1 with ODD
testing is lower than that for in-subdomain, espe-
cially for models trained on classified and sports.
For OOD, we also report the minimum and max-
imum F1 obtained by each model along with the
corresponding test sub-domain, showing that the
range of F1 also varies significantly. The lowest F1
for most models occurs when tested on classified
or sports, and the highest F1 occurs when tested on
national or editorial. For a better understanding of
the variation in the performance of a model trained
on sub-domains when tested on other sub-domains,
we also show box plots (Figure 1) for the training
sub-domains of classified and national. Depending
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Domain Sentence

Classifieds WEISER–Joel, passed away on March 31st, 2007.
Sports Pollin clashed with Jordan at a bargaining session during the long labor standoff in November 1998.

Table 4: Example of sentences by sub-domain

upon the sample of sub-domains in the training set,
the model performance can vary significantly even
in such a homogeneous domain, leading to a much
better or worse resulting model.

Classified and Sports stand out, exhibiting lower
performance than other sub-domains for both train-
ing and testing. Examples sentences for both are
shown in Table 4. Classified has several sentences
that have atypical sentence structures, beginning
with the last name in uppercase. For Sports, the
entity type cannot be determined from the sentence-
level context in several cases. In the example, it is
hard to say whether the entities are names of person,
location or team (organization). If this ambiguity
of these entities isn’t captured in the training data,
labeling them correctly is unlikely.

4 Data Selection

Datasets are typically collected by selecting some
documents and then annotating all sentences in
each document. The training set in CoNLL’03
(Tjong Kim Sang and De Meulder, 2003) has 15k
sentences from 946 documents, Wikigold (Bala-
suriya et al., 2009) has 1.7k sentences from 145
pages, and MUC-7 (Chinchor, 1998) has 3.5k sen-
tence from 100 articles.3 This method of data selec-
tion is reasonable and intuitive. It also supports the
development of models that utilize document-level
context (Ratinov and Roth, 2009) which can help
resolve the entity types in sentences such as the
above example from sports. However, most com-
monly used models are built at the sentence level
and the selection of full documents could result in
performance similar to a model trained on the same
sub-domain, with all sentences in a document rep-
resenting the same sub-domain and fewer chances
to cover rare sub-domains (types of documents).
To illustrate this, we train models for NER using
CoNLL ’03. We randomly select 3,000 training
sentences as this is roughly the number of sen-
tences in each of the sub-domains. We train three

3MUC-7 consists of sentences from the New York Times.
However, we were unable to map the documents in MUC-7
to the NYT Annotated Corpus. Regardless, MUC-7 consists
only of articles on aircraft accidents and launch events, and
would likely not span enough sub-domains for our analysis.

models with different seeds and report the average
F1 in the third column of Table 5. CoNLL con-
sists of news on mainly business, national, foreign
and sports. Therefore, F1 on these sub-domains is
closer to that with in-subdomain training, and F1
on the remaining sub-domains is close to that with
out-of-subdomain training.

It is therefore essential to ensure a diverse set of
sentences in the training data. Even a small number
of sentences of each sub-domain in the training data
can make a vast difference. Columns ‘C’ and ‘N’
in Table 5 show the F1 on various test sub-domains
with a model trained on just classified or just na-
tional news. In columns ‘C+10’ and ‘N+10’, we
add just 10 sentences from each of the remaining
eight sub-domains. For classified, this affects each
of the test sub-domains with an improvement of up
to 12 points F1. On national, this mainly improves
F1 on classified by 10 points and that on sports
by 2 points. These two sub-domains, as shown
above, exhibit different properties than the rest of
the data and therefore including even a few relevant
examples helps the models substantially.

One way to select relatively diverse sentences is
by data selection at the sentence level instead of
the document level. First, segment each document
in a corpus into sentences and then select sentences
randomly. While new future domains or those that
evolve significantly will still be missed, this method
would result in the selection of some representative
samples of each existing domain. Such explicit
sentence selection has been performed for domains
such as Twitter where explicit documents4 do not
exist. Derczynski et al. (2016) selects tweets from
different countries and different types of user ac-
counts for linguistic variations and topics. They
also account for temporal variation taking tweets
from different years, months, weeks and days.

We build models with this random sentence se-
lection scheme. We first downsample the data such
that it follows the same distribution of sub-domains
as the NYT corpus with 20 years of articles. This
results in 10,500 training and 4,494 development
sentences with 14% arts, 11% business, 3% classi-

4A thread could be considered a document.
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InD OOD CoNLL C C+10 N N+10 Rndm

arts 92.1 86.9 85.8 78.4 82.4 88.7 88.4 90.6
business 95.7 88.2 91.4 72.0 83.8 91.9 92.2 93.9
classified 94.7 77.7 64.8 94.7 94.6 83.6 90.2 93.9
editorial 96.4 88.7 89.2 67.0 83.7 94.6 94.4 93.7
foreign 96.9 87.5 90.4 64.2 82.6 93.9 94.0 93.2
metropolitan 95.0 89.2 89.0 78.4 83.5 92.8 92.8 91.8
national 96.2 90.9 90.0 79.8 86.2 96.2 96.3 93.0
sports 94.8 81.0 89.7 78.3 80.1 77.9 79.7 91.7
others 92.0 87.4 86.3 76.7 82.2 90.3 90.1 90.2

Avg 94.9 86.4 86.3 76.6 84.4 90.0 90.9 92.4

Table 5: F1 on each test sub-domain with different models. InD is in-domain training and OOD is the average of
out-of-domain training. CoNLL refers to training on CoNLL ’03. C and N are trained on classified and national only.
C+10 and N+10 additionally include 10 sentences from each sub-domain. Rndm is random selection of sentences
from a corpus with sentences in the same proportion of sub-domains as the full NYT corpus. Highest F1 in each
row (excluding InD) is boldfaced.

fied, 5% editorial, 7% foreign, 11% metropolitan,
8% national, 11% sports and 30% others. We then
select 3,000 training and 1,284 development sen-
tences randomly from this set. This is roughly the
average number of sentences in each of the sub-
domains and seeks to eliminate the impact of the
training data size. Every sub-domain has at least 39
sentences in the selected training set. With models
trained on this dataset, the average F1 is almost the
same as in-subdomain training (col Rndm).

5 Conclusion

Perform fine-grained inspection of data even when
it seems that the domain is homogeneous, and per-
form training data selection at the sentence level
rather than the document level.

6 Limitations

We develop a new corpus for a standard NER task,
drawn from a reputable news source, New York
times. Our analysis is based on the sub-domains
available in the metadata of the news article. To
extend it to other datasets, automatic predictors of
domain are necessary. Furthermore, for a random
sentence selection that includes all representative
samples, a corpus spanning the entire space of sen-
tences is needed. This is straightforward for news-
papers or Wikipedia, but infeasible for domains
such as Reddit or Twitter. In such cases, domain
knowledge is used to select diverse sentences (Der-
czynski et al., 2016), again pointing to the need for
automatic domain prediction. We performed do-
main classification experiments on our dataset via
unsupervised clustering as well as zero-shot classi-

fication5 (Yin et al., 2019), using both the known
domains from the metadata and dummy domains
as candidates. The accuracy of the best classifier
on our data was only 30%, insufficient for better
performance than a random sentence selection.
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A Hyperparameters and Infrastructure

Hyperparameters are optimized via grid search over
the learning rate (3e-05, 5e-06, 5e-06), batch size
(2, 4, 8, 16, 32) and number of epochs (1, 2, 3, 4, 5)
on each sub-domain. Models were fine-tuned using
the implementation in HuggingFace (Wolf et al.,
2019) on 2 V100 GPUs. The training time for mod-
els varies by the sub-domain and hyperparameters,
and is typically 10-20 min. The best checkpoint on
the development set is selected.

LR BS EP

arts 3e-05 16 4
business 5e-05 8 2
classified 5e-05 4 1
editorial 5e-05 8 2
foreign 5e-05 4 2
metropolitan 5e-05 16 2
national 5e-05 16 2
sports 3e-05 8 3
others 5e-05 8 2

Table 6: Hyperparameters, namely the learning rate, the
total batch size and the number of epochs.

B Full Evaluation

Test Training Domain

a b c e f m n s o

a 92.1 88.7 78.4 87.9 87.1 89.7 88.7 85.7 89.2
b 91.6 95.7 72.0 90.2 90.0 93.2 91.9 84.7 92.0
c 73.2 78.1 94.7 90.4 67.1 84.7 83.6 68.8 75.3
e 91.0 94.0 67.0 96.4 92.1 94.3 94.6 82.1 94.1
f 90.4 92.9 64.2 92.1 96.9 93.3 93.9 80.0 93.1
m 90.4 91.0 78.4 91.4 90.6 95.0 92.8 86.2 92.5
n 90.3 94.0 79.8 94.2 93.6 94.9 96.2 86.6 94.1
s 84.6 81.7 78.3 80.4 78.1 84.0 77.9 94.8 82.9
o 90.1 89.0 76.7 88.9 87.6 90.8 90.3 85.5 92.0

Table 7: F1 on model trained on each sub-domain on
each of the sub-domains
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Abstract

Language models are trained on large volumes
of text, and as a result their parameters might
contain a significant body of factual knowledge.
Any downstream task performed by these mod-
els implicitly builds on these facts, and thus it
is highly desirable to have means for represent-
ing this body of knowledge in an interpretable
way. However, there is currently no mechanism
for such a representation. Here, we propose to
address this goal by extracting a knowledge-
graph of facts from a given language model.
We describe a procedure for “crawling” the
internal knowledge-base of a language model.
Specifically, given a seed entity, we expand a
knowledge-graph around it. The crawling pro-
cedure is decomposed into sub-tasks, realized
through specially designed prompts that con-
trol for both precision (i.e., that no wrong facts
are generated) and recall (i.e., the number of
facts generated). We evaluate our approach on
graphs crawled starting from dozens of seed en-
tities, and show it yields high precision graphs
(82-92%), while emitting a reasonable number
of facts per entity.

1 Introduction

Modern language models (LMs) (Raffel et al.,
2020; Brown et al., 2020) are trained on vast
amounts of text that captures much of human
knowledge, including scientific articles, Wikipedia,
books, and other sources of information (Gao et al.,
2020). Consequently, such models encode world
knowledge in their parameters, allowing them to
generate rich and coherent outputs.

Past work has illustrated LMs can be viewed
as knowledge-bases (Petroni et al., 2019) as well
as analyzed the encoded knowledge (e.g., see
AlKhamissi et al., 2022) and leveraged it for
applications such as closed-book QA (Roberts
et al., 2020; Brown et al., 2020) and search (Tay
et al., 2022), illustrating LMs can be viewed as

∗ Now at Google Research.

knowledge-bases (Petroni et al., 2019). But what
are the facts stored in the internal knowledge bases
of modern LMs, and how can these be represented
explicitly? This is the challenge we address in this
work. Our motivation is to obtain an interpretable
and transparent representation that will allow hu-
mans to inspect what the LM knows, what it does
not know, why it makes certain mistakes, and what
are the biases it encodes. Moreover, with such a
representation, one can leverage general-purpose
tools, such as query languages, for interacting with
this knowledge.

The first question in this endeavour is what is
a suitable explicit knowledge representation. A
natural candidate structure is a knowledge graph
(KG). Namely, a graph whose nodes are entities
and whose edges represent relations between enti-
ties. KGs are appealing since information can be
readily “read-off” from the graph, they can be reli-
ably queried, and different KGs can be easily com-
pared. KGs have been extensively used to represent
knowledge (Bollacker et al., 2008; Vrandečić and
Krötzsch, 2014), but a key limitation is their low
coverage, as they usually require manual curation
and depend on a closed schema. Conversely, LMs
might have very high coverage as they are trained
on a vast body of knowledge represented as raw
text. We thus ask if it is possible to convert an LM
to a KG, such that we enjoy its advantages while
achieving high coverage.

As the full KG encoded in an LM can be large,
we reduce the problem to the task of constructing
a KG around a given seed entity. For example,
Fig. 1 shows a KG extracted by our method for the
seed entity Alan Turing. This can be viewed as a
crawling procedure which starts from the seed en-
tity and recursively expands it to expose additional
facts. This crawling problem introduces several
new challenges. First, unlike prior work (Petroni
et al., 2019; Alivanistos et al., 2022; Hao et al.,
2022), we are given only an entity, without know-
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Figure 1: An example of a generated depth-2 knowledge graph around the seed entity ALAN TURING, applying
LMCRAWL (see Sec. 3-Sec. 4). Additional graphs are in Sec. E.

ing what relations are associated with it. Thus, we
have to extract those relations and then find the ob-
jects for each relation. Second, KGs are expected to
exhibit very high precision, and thus it is necessary
to generate as many relevant facts as possible while
maintaining almost perfect factual correctness.1

We address the above challenges by decom-
posing crawling into multiple sub-tasks, and han-
dle each task using few-shot in-context learning
(Brown et al., 2020). Explicitly, we do not fine-tune
a model, but instead manually design a prompt and
a few examples for each task, an approach recently-
proven successful (Wei et al., 2022; Drozdov et al.,
2022; Chowdhery et al., 2022; Khot et al., 2022).
We use the following sub-tasks (see Tab. 1 for the
full list and examples). First, given an entity e (e.g.,
ALAN TURING), we generate the relations relevant
for e (e.g., EDUCATED AT, PLACE OF BIRTH). Sec-
ond, for each entity e and relation r, we generate
the corresponding set of objects O and add to the
KG triplets (e, r, o) for each o ∈ O. For example,
for ALAN TURING and EDUCATED AT, we gener-

1We note that there is a deeper philosophical aspect to
this issue, which is at the core of the field of epistemology.
Namely, what does it mean for a model to “believe” a fact,
as opposed to the model “knowing” a fact. Here we adopt a
“dispositional” view of belief, whereby a belief corresponds
to a statement by the model, and knowledge is a belief that is
true in the world.

ate triplets with the objects KING’S COLLEGE and
SHERBORNE SCHOOL. To maintain high precision,
we prompt the model to emit “Don’t know” when-
ever it is not confident about the target objects. All
the above outputs are generated through in-context
learning, where we use the WIKIDATA KG (Vran-
dečić and Krötzsch, 2014) to construct in-context
examples. Don’t know examples are constructed by
finding true facts in WIKIDATA that are unknown
to the LM. Finally, we increase recall by prompt-
ing the LM to generate paraphrases for entities and
relations, and use those to obtain additional triplets.

We test our approach with GPT-3
(text-davinci-002) on 140 seed entities,
and show that we can extract accurate KGs
(∼82-92% precision) that contain a plausible
number of facts per entity. Importantly, large LMs
are not constrained to a predefined schema, and
indeed our procedure with GPT-3 generates facts
outside the schema of WIKIDATA, e.g., (BOSTON

CELTICS, CHAMPIONSHIPS, 17).

To conclude, our contributions are: 1) Formulat-
ing the problem of crawling a KG from an LM, 2)
Presenting a prompt-based approach that decom-
poses the problem into multiple sub-tasks, and 3)
Evaluating the approach with GPT-3, which leads
to high-precision graphs.
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2 Problem Setup

Our goal is to uncover the knowledge-base of a
given LM. We represent a knowledge-base via a
KG, which is a collection of triplets. Formally,
a KG is a graph G = (N,R,E), where N is a
set of entities, R is a set of relations, and E is a
set of subject-relation-object triplets (s, r, o) where
s, o ∈ N and r ∈ R.

To simplify the setup, we assume we are given
a “seed entity” around which we will expand the
graph (for example Fig. 1). Conceptually, we can
also let the LM generate seed entities, but we argue
seed expansion is a more realistic scenario, where
a user is interested in a graph about a certain entity.

Entities and relations are represented via strings
and are not constrained to a given vocabulary (simi-
lar to open information extraction. e.g., see Vo and
Bagheri, 2017).

3 Crawling KGs via Prompting

The core component of our approach is a proce-
dure that takes an entity e, and extracts all relations
associated with it, and the corresponding objects.
Namely, we expand the KG around this entity. We
can then recursively apply this procedure to further
expand the KG. We refer to this as ‘entity expan-
sion’, and break it into two high-level steps:
• Relation generation (Sec. 3.1): For an entity
e, generate a set of relations R, where e is the
subject.

• Object generation (Sec. 3.3-Sec. 3.4): Given
the entity e and the relation set R, find the corre-
sponding objects. Namely, for each r ∈ R, find
a list of entities O such that (e, r, o) is in the KG
for o ∈ O. We consider lists since many rela-
tions (e.g., CHILDREN) potentially have multiple
correct objects. Furthermore, we also consider
the case where the object corresponding to (e, r)
is unknown to the model (e.g., the model does
not know who is the daughter of a given entity
e). In this case we take O to be empty, and the
edge is not added to the KG. This is crucial for
maintaining a high-precision KG.

Both steps are achieved via few-shot in-context
learning. Namely, we construct prompts with in-
context examples (stay fixed throughout the pro-
cess) that exhibit the desired behaviour (Tab. 1).

To improve recall, we employ an additional para-
phrasing procedure (Sec. 3.2 and Sec. 3.5), which
generates alternative strings for a given entity or re-

lation. For example, the entity WILLIAM CLINTON

can be referred to as WILLIAM JEFFERSON CLIN-
TON or BILL CLINTON, and the relation OCCU-
PATION may be expressed as PROFESSION. Thus,
we run object and relation generation for all these
variants, and pool the results to construct the final
graph. Paraphrases are also obtained through the
LM, without use of external knowledge. The entire
flow is illustrated in Fig. 2, and we next elaborate
on each of the components.

3.1 Relation Generation

Our task is to generate a set of relations R for a
given subject entity e. To achieve this, we lever-
age WIKIDATA to construct in-context examples.
Specifically, we pick a list of WIKIDATA entities
e1, . . . , eKr and for each entity ei, extract its set of
WIKIDATA relations. This results in Kr in-context
examples for relation generation. We concatenate
the target entity to the in-context examples, feed
this prompt to the LM and use its output as the set
R for e. Tab. 1 shows an example prompt. We note
that this generation process can produce relations
that are not included in the prompt, and are not part
of WIKIDATA at all.2 Full prompt with in-context
examples is presented in Sec. B.1.

3.2 Relation Paraphrasing

A relation r may be described in multiple ways,
and the LM might work better with some of these
paraphrases (Jiang et al., 2021). Thus, we use a
procedure to obtain a set of paraphrases of r, de-
noted by P (r), and run all downstream crawling
tasks for all strings in P (r).

For relation paraphrasing we find that in-context
examples are not necessary and an instruction
prompt is sufficient. Tab. 1 shows a specific ex-
ample under the sub-task “Relation Paraphrasing”.
See Sec. A.1 for the three prompts and more tech-
nical details.

3.3 Object Generation

Our next goal is, for each r ∈ R, to generate a
set of objects O such that (e, r, o) is in the KG
for all o ∈ O. Importantly, we should also let the
LM declare it does not know the object, and thus
O would be empty. In this case, no edge will be
added to the output KG.

2For example, when the subject is a sports team, the
model repeatedly generated a relation regarding its MASCOT
or LARGEST WIN, which are facts outside of WIKIDATA.
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Sub-task Query Prompt Expected Output
Relation
Generation

Philippines Q: René Magritte A: ethnic group, place of birth, place
of death, sex or gender, spouse, country of citizenship,
member of political party, native language, place of
burial, cause of death, residence, family name, given
name, manner of death, educated at, field of work, work
location, represented by Q: Stryn A: significant event,
head of government, country, capital, separated from
Q: Philippines A:

leader name #
cctld # capital
# calling code

Pure Object
Generation

Barack Obama
# child

Q: Monte Cremasco # country A: Italy Q: Johnny Depp #
children A: Jack Depp # Lily-Rose Depp Q: Wolfgang Sauseng
# employer A: University of Music and Performing Arts
Vienna Q: Barack Obama # child A:

Sasha Obama #
Malia Obama

DK Object
Generation

Queen
Elizabeth
II # date of
death

Q: Heinrich Peters # occupation A: Don’t know Q: Monte
Cremasco # country A: Italy Q: Ferydoon Zandi # place of
birth A: Don’t know Q: Hans Ertl # sport A: mountaineering
Q: Queen Elizabeth II # date of death A:

Don’t know

Subject
Paraphrasing

Alan Turing Alan Turing is also known as: The father of
computing

Relation
Paraphrasing

notable work ’notable work’ may be described as a work of ’great
value’ or a work
of ’importance’

Table 1: The full list of sub-tasks in our approach, where for each sub-task we provide its name, a query, a
corresponding prompt, and the expected output. In ‘DK Object Generation’ the prompt declares in one of the
in-context examples that the model does not know the place of birth of Ferydoon Zandi, since querying for it leads
to a wrong answer (the query with the wrong answer isn’t shown).

We first explain prompt construction without
the use of “Don’t Know” output, and refer to this
as “Pure Object Genration”. We take Ko entities
e1, . . . , eKo from WIKIDATA. For each entity ei,
we choose one of its relations ri, and all the objects
Oi for this entity-relation pair in WIKIDATA. This
creates Ko examples for object generation. Similar
to relation generation, the target entity-relation pair
is concatenated to the Ko examples, and the list
of objects is parsed from the generated LM out-
put (see exact format in Tab. 1, under the sub-task
“Pure Object Generation”, and the full prompt with
in-context examples in Sec. B.2). Recall that for
each relation, we have multiple paraphrases. To
maintain high precision, we only accept objects
that were generated by at least two realizations of
the relation.

3.4 Learning to Output “Don’t Know”

A key desideratum for KGs is high precision,
namely the facts in the graph should be correct
with high probability. Towards this end, we want
to prompt the LM to output “Don’t Know” (DK)
for facts where it is likely to make an error.3

3A model might make an error because it is not confident
about the answer, or because its training data contains false
facts. In this work, we are agnostic to this distinction and our

But how do we know what the model does not
know? To capture this, we find cases where the
LM outputs erroneous facts, and use these to con-
struct in-context examples with a DK target. For
example, suppose we run ‘Pure Object Generation’
with e = BILL CLINTON and r = CHILDREN and
the model outputs O = KLAY THOMPSON. We
deduce that the model does not know who Clin-
ton’s children are, and therefore, can add the exam-
ple ei = BILL CLINTON, ri = CHILDREN, oi =
Don’t know to the prompt. In other words, we find
examples where oi is Don’t know through cases
where the model errs on its predicted objects. We
then construct a prompt with a total of Kdk exam-
ples, half of which are failure cases where with
oi = Don’t know and the other half are correct
predictions. We refer to this as “DK Object Gener-
ation”. See the corresponding row in Tab. 1 and the
full prompt with in-context examples in Sec. B.3.

3.5 Subject Paraphrasing
Similar to relations, an entity e may have several
names, and it may be easier for the LM to complete
the triplet (e, r, ?) with one of these. Thus, we
take a paraphrasing approach to extend an entity
name e into a set P (e). The procedure is identical

prompt’s goal is to encourage generation of correct outputs.
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Figure 2: An illustration of the full method for crawling a subgraph (LMCRAWL), starting from BARACK OBAMA
as the subject, until obtaining the triplet (BARACK OBAMA, SPOUSE, MICHELLE OBAMA).

to relation paraphrasing (Sec. 3.2), except we use
a single prompt instructing the LM to complete
the sentence “s is also known as”, where s is the
subject. To increase the number of paraphrases, we
sample from the model three times, resulting in up
to three paraphrases.

Both here and in Relation Paraphrasing
(Sec. 3.2), the LM occasionally generates nonsen-
sical paraphrases. Nevertheless, the DK method
handles those cases well, outputting "Don’t know"
for most of them. Thus, we argue that paraphras-
ing combined with DK emission is an effective
approach for controlling recall and precision.

3.6 LMCRAWL

Fig. 2 shows the application of the complete
pipeline (which we refer to as LMCRAWL) for
the entity BARACK OBAMA. First, we obtain all
paraphrases for e (Sec. 3.5). Then, we extract all
relations for these (Sec. 3.1). Next, we paraphrase
relations (Sec. 3.2). Finally, we extract the known
objects for these relations (Sec. 3.3-Sec. 3.4).

4 Experimental Setup

As mentioned in Sec. 3, we use WIKIDATA

(publicly available) in constructing the in-context
prompts. The number of in-context examples is
Kr = 7, Ko = 8, Kdk = 10.

Additionally, we use WIKIDATA to select seed
entities for evaluating our approach. For these
seeds, we consider the task of constructing KGs
around the corresponding entities.

We split the seed entities into a validation set
(20 entities), which is used to make design choices
(e.g., choosing prompt format), and a test set (120
entities), which is used only for the final evaluation.

For the development set, we manually chose 20
entities from WIKIDATA. These included women
and men with various professions, cities, countries,
and various cultural entities such as movies and
books. We also aimed to reprsent both head and
tail entities in this list.

To construct our test set, we defined 25 specific
world-entities related categories, which we refer to
as the test categories. Some of these were more
specific, such as AI Researchers, and some are
more general, such as Scientists (see Table.6 for
the full list). We chose 4 seeds out of each cate-
gory as follows. We first sorted the set of entities
of each group based on the number of WIKIDATA

facts associated with them (we view this count as
an approximate measure of popularity). Then, we
randomly sampled two entities out of the full list,
and an additional two out of the first 1000. Intu-
itively, the first two represent tail entities, while the
other two represents head ones. Thus we ended
up with 100 seed entities (i.e., 4 different entities
out of each of the 25 different subgroups). We re-
fer to these as the main test set (see Tab. 6). We
created an additional test set of 20 entities that is
meant to contain very popular entities. Its entities
were randomly sampled out of a set of size 1000,
which was manually constructed by choosing 40
very well-known entities (i.e., that all people would
know) from each of the 25 test categories.

All 140 entities were not used in the construction
of any of the prompts in Sec. 3. Tab. 2 shows the
full list of validation and head test entities.

Evaluation metrics Given an entity s, our entity
expansion process returns a knowledge graph G,
that contains the entity s, other entities and rela-
tions between them.
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Dev Seeds Head Test Seeds
ABBA Aristotle
Alan Turing Canada
Angela Merkel Celine Dion
Augustin-Louis Cauchy China
Barack Obama Emanuel Macron
Bob Dylan Franz Kafka
Boston Celtics Grease
David Bowie Hamlet
Diana, Princess of Wales Jacinda Ardern
Eike von Repgow Lionel Messi
Inglourious Basterds Little Women
Marble Arch Manchester United F.C.
Marie Curie Margaret Hamilton
Mikhail Bulgakov Michelangelo
Moby-Dick Mike Tyson
Pablo Picasso Oprah Winfrey
Paris Rosalind Franklin
Philippines Steven Spielberg
Rachel Carson Serena Williams
Shahar Pe’er The Rolling Stones

Table 2: List of all validation and head test seeds.

Ideally, we want to compare G to a ground
truth graph that results from expanding the entity
s. Given such a graph, we could measure preci-
sion and recall over the gold and predicted sets
of triplets. However, using large LMs to generate
graphs leads to several challenges. First, there is
no ground-truth graph. While we could presum-
ably use the WIKIDATA graph, we found that it is
missing many correct facts predicted by the LM. In
fact, improving coverage is a key motivation for our
work! Second, facts may be reworded in several
equivalent ways, rendering comparison between
WIKIDATA graphs and predicted graphs difficult.

To circumvent these challenges, we use the fol-
lowing notions of precision and recall.

• Precision: To estimate precision we conducted
both manual and automatic evaluations (the au-
tomatic approach was more scalable). For the
manual evaluation we simply tried to validate
each of the generated facts by manually browsing
highly trustful web sources (Google, Wikipedia,
etc.) to check if the fact is true. The automatic
evaluation approach was implemented as follows.
In order to check the correctness of a given pre-
dicted triplet (e, r, o), we issue a query contain-
ing (e, r) to Google search, and search whether
o appears in the result. We limit the result to first
40 words which are not HTML labels or URL
links. If it does, we assume the triplet is correct.
4 See Sec. 5.3 for an accuracy estimation of the

4This paragraph typically contains either an “answer box”
or some summary of the first result page, in case there is no
answer box.

automatic method.
Manual evaluation was done for all the head test
set graphs, as well as all the 1-hop graphs of
the main test set. Additionally, we performed
manual evaluation for 20% randomly sampled
triplets from the 2-hop graphs (altogether, the
total portion of manually labeled facts from each
graph was ∼30%). The rest of the triplets were
automatically evaluated.

• Recall: Estimating recall is not possible since
we do not have access to the true ground truth
graph. Moreover, using WIKIDATA graph size as
an estimate for the number of true facts will be
misleading since it has low coverage in general,
and high variance in terms of coverage for differ-
ent entities. Thus, we simply report the number
of verified triplets in our KG. In other words,
we report recall without the denominator. We
refer to this as # of facts. This practice is similar
to open information extraction (Vo and Bagheri,
2017), where it is impossible to know the set of
all true facts and thus the convention is to report
the number of generated facts only.

Implementation details As the LM in our exper-
iments, we used the OpenAI text-davinci-002
model. We experiment with both greedy decoding
and sampling 3 outputs per query (temperature 0.8).
We generate graphs with either a single expansion
step or two expansion steps, recursively expanding
entities found in the first step. After a graph is gen-
erated, we remove duplicates by iterating through
the facts and removing a fact if the token-wise F1

between it and another fact is higher than 0.85.

Base Model and Ablations The simplest version
of our model includes only ’Relation Generation’
(Sec. 3.1) and ’Pure Object Generation’ (Sec. 3.3),
without the “Don’t Know” and paraphrasing com-
ponents. We refer to this version as Pure-Greedy
and Pure-Sampling, depending on the decoding
used (see Sec. 4). In other model variants, we use
DK to refer to using ‘DK Object Generation’ in-
stead of ‘Pure Object Generation’. Additionally,
SP and RP refer to adding ‘Subject Paraphrasing’
and ‘Relation Paraphrasing’ respectively.

5 Results

We next report results showing that our expansion
method is able to generate meaningful knowledge
subgraphs, when expanding seed entities.

1861



Main Test Set Head Test Set
one-hop two-hop one-hop two-hop

Precision # of Facts Precision # of Facts Precision # of Facts Precision # of Facts
Pure-Greedy 54.6± 8.2 6.2± 2.8 43.4± 6.1 26.1± 5.5 80.3± 8.4 14.4± 3.9 62.1± 7.3 82.3± 15.4
LMCRAWL 83.3± 7.9 5.4± 1.1 82.0± 7.5 21.4± 4.7 91.5± 11.4 11.0± 4.6 90.9± 4.9 61.2± 25.1

Table 3: Averaged results across all 100 main test seeds (left), as well as all the 20 head test ones (right).

Example graph: We begin with an illustrative
example for the graph of the seed entity ALAN

TURING. Fig. 1 shows a subset of the two-hop
extracted graph in this case. It can be seen that all
facts are sensible, except for the fact that the field
of Computer Science is named after Alan Turing
(although he is certainly one of its fathers). See
also Figs. 4 and 5 for additional example graphs.

Results on the Main Test set: Tab. 3 reports
averaged results of the Pure-Greedy base model
and LMCRAWL across the 100 main test seeds.
We observe that precision of Pure-Greedy is too
low to be useful for a KG – 54.6% for 1-hop graphs
and 43.4% for 2-hop graphs. Conversely, precision
with LMCRAWL is much higher: 83.3% for 1-
hop graphs and 82.0% for 2-hop graphs. While we
suffer a small hit in ‘# of facts’, the sizes of KGs
output by our approach are quite reasonable.

Results on the Head Test set: Tab. 3 reports
averaged results of the Pure-Greedy base model
and LMCRAWL across the 20 head test seeds.
Specifically, we achieve precision of 91.5% while
applying LMCRAWL for 1-hop graphs, and for
2-hop we have 90.9%. It can be seen that both
precision and number of facts in this case are higher
than in the main test set. This suggests that either it
is easier to extract facts from the LM about popular
entities, or that the LM indeed encodes more facts
for these (see Sec. 5.2 for further analysis).

5.1 Ablations
Next, we examine the contribution of each compo-
nent in our final approach on the validation set.

The Effect of Don’t Know Generation: The
goal of allowing the model to output “Don’t Know”
is to improve precision. Tab. 4 and 5 show results
for the model without using DK prompting (in Pure
rows) as well as with (DK rows) for both sampling
and greedy decoding. In both cases, the DK op-
tion leads to much higher precision, but reduces
the number of generated facts. However, we later
recover some of these lost facts using subject and
relation paraphrasing.

Method Precision # of Facts
Pure-Sampling 64.9± 20.2 22.2± 9.7
Pure-Greedy 77.5± 17.4 12.5± 6.0

DK-Sampling 71.4± 19.9 17.7± 9.4
DK-Greedy 82.9± 16.0 10.2± 5.9

+RP 80.9± 17.0 12.7± 5.4
+SP 80.6± 17.0 12.2± 7.0

LMCRAWL 88.3± 8.2 13.0± 5.9

Table 4: Averaged results over the 20 validation seed
(one-hop). DK: “Don’t know”. SP: Subject Paraphras-
ing. RP: Relation Paraphrasing.

Method Precision # of Facts
Pure-Sampling 40.0± 9.5 224.0± 81.1
Pure-Greedy 55.9± 9.7 87.8± 39.7

DK-Sampling 54.7± 8.6 144.0± 83.5
DK-Greedy 72.4± 7.5 45.8± 30.3
LMCRAWL 86.4± 6.1 69.8± 52.9

Table 5: Averaged results across all 20 validation seeds
(two-hop). DK: “Don’t know”. SP: Subject Paraphras-
ing. RP: Relation Paraphrasing.

The Effect of Paraphrasing: Tab. 4 shows re-
sults without the paraphrasing component in the
DK-Greedy row. Both paraphrasing techniques,
RP and SP, separately increase coverage, while
causing a minimal hit to precision. Interestingly,
combining RP and SP leads to improvements in
both precision and coverage for 1-hop and 2-hop
graphs (Tab. 4, 5).

5.2 Coverage vs. Entity Frequency

The frequency of entities on the Web is highly
skewed. That is, some entities appear many times,
while others are rare. We expect this will be re-
flected in the number of facts extracted for these
entities. Indeed, on WIKIDATA, head entities usu-
ally have many more facts compared to tail entities.
Here, we ask whether a similar phenomenon exists
in our predicted KGs.

Fig. 3 shows the number of facts generated for
a depth-1 graph by LMCRAWL for all entities of
type PERSON, as a function of the number of facts
that appear in the corresponding depth-1 WIKI-
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DATA graph of the same seed. Clearly, there is high
correlation (correlation coefficient is 0.61) between
the number of extracted facts and entity frequency
on WIKIDATA. This is rather surprising and en-
couraging since our procedure does not make any
use of entity frequency, and head and tail entities
are expanded in exactly the same way.

Figure 3: The # of triplets extracted by LMCRAWL as
a function of the # of triplets in WIKIDATA, for the set
of validation entities of type PERSON.

5.3 Precision is Possibly Underestimated

Our automatic approach for evaluating precision
uses Google search (see Sec. 4). We view this
as a conservative estimate of precision, since a
fact judged as true via this mechanism is highly
likely to be true. Conversely, a true fact might
not be verified due to search or string matching
issues. To quantify this, we sampled 500 generated
facts from Pure-Greedy and LMCRAWL that were
judged to be incorrect through Google search, as
well as 500 that were judged to be correct. We
manually inspected them and found that 4.1% of
the triplets that the automatic approach has labeled
as correct, are actually wrong, while 22% of the
triplets that the automatic approach has labeled
to be incorrect, are true (few demonstrations are
presented in Sec. D). Exact estimation of precision
would require full manual annotation, which we
avoided to minimize costs.

6 Related Work

Pretrained LMs are at the heart of recent NLP
research and applications. As mentioned earlier,
Petroni et al. (2019) and other works have observed
that LMs contain rich factual knowledge. We elab-
orate on other relevant works below.

Knowledge-base construction. KG construc-

tion typically involves both manual and automated
aspects. For example, popular KBs such as Word-
Net (Fellbaum, 2020), ConceptNet (Speer et al.,
2017) and WIKIDATA (Vrandečić and Krötzsch,
2014) were constructed by heavily relying on man-
ual effort, gathering knowledge from humans. To
reduce such manual labor, automated information
extraction (IE) methods have been extensively de-
veloped (Yates et al., 2007; Fader et al., 2011; An-
geli et al., 2015; Vo and Bagheri, 2017). Knowl-
edge in LMs is a fairly recent topic of interest, and
has mostly focused on probing for specific facts
(Petroni et al., 2019; Razniewski et al., 2021).

Most similar to our work are Hao et al. (2022),
who also extract KGs from LMs, However, they
require defining the relations of interest through
examples before crawling, while our specific goal
is to start with a seed entity and allow the LM
to determine the relevant relations. Another rele-
vant recent work is Alivanistos et al. (2022) who
also use in-context learning to extract a KG from
GPT3. But they also assume relations are provided,
whereas a key aspect of our approach is generating
the relations.

To the best of our knowledge, ours is the first
work to construct a knowledge graph via extracting
knowledge directly from LMs, using only one seed
entity (and no other given relations or entities).

Quantifying Uncertainty in LMs. Factual cor-
rectness in LMs has attracted recent interest, be-
cause it is a crucial requirement for LM applica-
bility. In this context, some works have studied
selective question answering, where LMs avoid an-
swering particular questions (Varshney et al., 2022).
Other works have considered calibration in LMs
(Jiang et al., 2021; Desai and Durrett, 2020),

Finally, recent works have investigated whether
models can express their certainty on output facts,
either in words or by producing the probability of
certainty (Lin et al., 2022; Kadavath et al., 2022).
A key aspect of our approach is the use of a “Don’t
know” mechanism, which is related to this line of
work since it lets the LM declare its certainty as
part of the output. Unlike Kadavath et al. (2022),
we do so in the context of crawling a KG and via
in-context learning (as opposed to fine-tuning).

7 Conclusion

Understanding large LMs is a key part of modern
NLP, as they are used across the board in NLP
applications. In particular, it is important to under-
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stand the body of knowledge these models possess,
so it can be used and revised as needed, thereby
avoiding factual errors and biases. In this work
we present an important step towards this goal by
extracting a structured KB from an LM.

There are many possible exciting extensions for
our work. The first is to expand it to a larger graph
corresponding to more expansion hops. This would
require many more calls to an API, which at present
is also costly, and it would be important to develop
more cost-effective approaches. Second, we have
introduced several approaches to controlling the
precision and recall of the proposed model, but
certainly more can be envisioned. For example,
we can introduce various consistency constraints to
increase precision (e.g., check that FATHER OF and
CHILD OF are consistent in the generated graph).
Finally, once a larger KG has been extracted, one
can query it to see how well it serves as a question
answering mechanism.

Overall, we find the possibility of seamlessly
converting LMs to KGs for better interaction and
control to be an exciting and fruitful direction for
future research.

Limitations

Producing the full internal KG out of an LM is still
a significant challenge. One challenge is cost (as
noted above). The other is error propagation issues.
Once the model makes a generation mistake in a
particular node of the generated graph, it may lead
to an increasing number of mistakes during the
next generation steps, expanding from that node.
That is one of our main rationales for creating and
evaluating only two-hop graphs, and not additional
hops (although ideally, the real goal is to uncover
the full internal KG).

Our automatic way of evaluating precision is
only approximate, which means our reported accu-
racy numbers for 2-hop are an approximation of
true precision (although we believe the true preci-
sion is in fact higher, as discussed in the text).

Another challenge we do not address is under-
standing the source of knowledge inaccuracies. Are
they due to limitations of our model in extracting
the knowledge, or due to the LM not containing
these facts at all. This is certainly important to
understand in order to improve knowledge repre-
sentation in LMs. We are also aware to the fact
that since the generated graphs are not perfectly ac-
curate, they might contain disinformation and mis-

leading facts. That would hopefully be improved
by future research.

Finally, the question whether we could have
come up with a better-reflecting “recall” metric
than the one we suggested is yet to be solved, as in
general it is still unclear how to measure knowledge
coverage.
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A Technical Details

A.1 Relation-Paraphrasing

We use 3 different instructions that have been man-
ually constructed. If we denote a specific relation
by r, then they are:

• "‘r’ may be described as"

• "‘r’ refers to"

• "please describe ‘r’ in a few
words:"

That is, for every original relation which has been
generated by the model, we perform additional
three different model calls, one with each of those
instruction prompts, resulting in three paraphrases.
If needed, we eliminate overlapping paraphrases.
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B Full Prompts

B.1 Relation Generation
Q: Javier Culson
A: participant of # place of
birth # sex or gender # coun-
try of citizenship # occupation
# family name # given name # edu-
cated at # sport # sports disci-
pline competed in

Q: René Magritte
A: ethnic group # place of birth
# place of death # sex or gender
# spouse # country of citizenship
# member of political party # na-
tive language # place of burial
# cause of death # residence #
family name # given name # manner
of death # educated at # field
of work # work location # repre-
sented by

Q: Nadym
A: country # capital of # coordi-
nate location # population # area
# elevation above sea level

Q: Stryn
A: significant event # head of
government # country # capital #
separated from

Q: 1585
A: said to be the same as # fol-
lows

Q: Bornheim
A: head of government # country #
member of # coordinate location
# population # area # elevation
above sea level

Q: Aló Presidente
A: genre # country of origin #
cast member # original network

B.2 Pure Object Generation
Q: Kristin von der Goltz #
mother
A: Kirsti Hjort

Q: Monte Cremasco # country
A: Italy

Q: Johnny Depp # children
A: Jack Depp # Lily-Rose Depp

Q: Theodor Inama von Sternegg
# place of birth
A: Augsburg

Q: Wolfgang Sauseng # employer
A: University of Music and Per-
forming Arts Vienna

Q: Hans Ertl # sport
A: mountaineering

Q: Nicolas Cage # sibling
A: Christopher Coppola # Marc
Coppola

Q: Manfred Müller # occupation
A: Catholic priest

B.3 DK Object Generation

Q: Heinrich Peters # occupation
A: Don’t know

Q: Monte Cremasco # country
A: Italy

Q: Nicolas Cage # sibling
A: Christopher Coppola # Marc
Coppola

Q: Hans Ertl # sport
A: mountaineering

Q: Klaus Baumgartner # work lo-
cation
A: Don’t know

Q: Ruth Bader Ginsburg # educated
at
A: Cornell University # Harvard
Law School # Columbia Law School

Q: Ferydoon Zandi # place of
birth
A: Don’t know
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Q: Wolfgang Sauseng # employer
A: University of Music and Per-
forming Arts Vienna

Q: Apayao # head of government
A: Don’t know

Q: Kristin von der Goltz #
mother
A: Don’t know

C Main Test Set

Table 6 provides our main test, which includes 100
different seeds - 4 from each of our predefined
entity group categories.

D Automatic Precision Evaluation

As noted in the main text, the automatic precision
evaluation method (i.e., the one based on Google
search) may sometimes fail. Some of the failure
cases are: (a) Inexact string matching. For example
(BOSTON CELTICS, LEAGUE, NATIONAL BAS-
KETBALL ASSOCIATION (NBA)) is not verified,
but dropping (NBA) from the object would result
in a successful verification. b) Paraphrases: For
example (MARBLE ARCH, COUNTRY, UNITED

KINGDOM) is not verified but changing the object
to ENGLAND does succeed.

E Additional Generated Graphs

Figs. 4, 5 show additional example graphs (to the
one shown in Fig. 1), generated around the seed
entities ANGELA MERKEL and BOSTON CELTICS

respectively.
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Figure 4: An example of a generated depth-2 knowledge graph around the seed entity ANGELA MERKEL, using
LMCRAWL(see Sec. 3). For readability, back edges from 2-depth nodes to 1-depth nodes are omitted.

Figure 5: An example of a generated depth-2 knowledge graph around the seed entity BOSTON CELTICS, using
LMCRAWL (see Sec. 3).
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Categories Sampled Seeds Categories Sampled Seeds

Politicians

Wang Zhi
Cathy Rogers

Kate Wilkinson
Carles Campuzano

Producers

Alyssa Milano
Lenny Kravitz
Carter Harman
Nancy Meyers

Scientists

Pavel Krotov
Mirra Moiseevna Gukhman

Axel Delorme
Jesús Caballero Mellado

Actors

Jon Voight
Boris Savchenko

Tolga Tekin
Virginia Keiley

Basketball

Tom McMillen
Pat Kelly

Steve Moundou-Missi
Allen Phillips

Singers

Freddie Mercury
Angélique Kidjo
Camille Thurman
Giorgio Ronconi

Sports

Peteca
motorcycle racing

Basque pelota
mountain bike trials

Bands

Steve Miller Band
Hypocrisy

Afro Kolektyw
Frailty

Artists

Bořek Šípek
Loriot

George William Wakefield
George Trosley

TV Shows

Secrets and Lies
Spirited Away
Super Friends

The Life and Legend of Wyatt Earp

Paintings

Portrait of a Man
Landscape

The foot washing
The King’s rival

Foods/Restaurants

Tahu petis
Kandil simidi

Jim Block
kubang boyo

Writers

Aleksandr Volkov
Osamu Tezuka

Elizaveta Sergeevna Danilova
Henry Saint Clair Wilkins

Animals

donkey
jaguar

mustang
whale

Books

The Green Berets
Alfred de Musset

Demain le capitalisme
The labyrinth

Plants

maple
rose

catmint
conflower

Landmarks

Trafalgar Square
Mount Everest

Yosemite National Park
Matterhorn

Architects

Louis Kahn
Christopher Wren
Michael Graves

Domenico Fontana

Cities

Vatican City
Cherdyn
Toulon

MiljøXpressen

Drummers

Alan Montagu-Stuart-Wortley-Mackenzie
Mihály Deák
Joey Kramer

Stephanie Eulinberg

Countries

Niger
Sweden
England

Singapore

Biologists

Wangari Muta Maathai
James Rothman
Joanna Siódmiak

Barbara Bajd

Philosophy

Evgeny Torchinov
Nikolay Umov
Monica Giorgi

Larysa Tsitarenka

AI Researchers

William T. Freeman
Stephen Falken

Joseph Weizenbaum
Robby Garner

Movies

Spider-Man: Far from Home
Sonic the Hedgehog

Unearthed
Another Man’s Poison

Table 6: List of all main test set seeds
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Abstract

Scarcity of data and technological limitations
for resource-poor languages in developing
countries like India poses a threat to the de-
velopment of sophisticated NLU systems for
healthcare. To assess the current status of vari-
ous state-of-the-art language models in health-
care, this paper studies the problem by initially
proposing two different Healthcare datasets,
Indian Healthcare Query Intent-WebMD and
1mg (IHQID-WebMD and IHQID-1mg) and
one real world Indian hospital query data in
English and multiple Indic languages (Hindi,
Bengali, Tamil, Telugu, Marathi and Gujarati)
which are annotated with the query intents as
well as entities. Our aim is to detect query in-
tents and extract corresponding entities. We
perform extensive experiments on a set of mod-
els in various realistic settings and explore two
scenarios based on the access to English data
only (less costly) and access to target language
data (more expensive). We analyze context spe-
cific practical relevancy through empirical anal-
ysis. The results, expressed in terms of overall
F1 score show that our approach is practically
useful to identify intents and entities.

1 Introduction

Healthcare is a top priority for every country. Peo-
ple across the world ask millions of health-related
queries, hoping to get a response from a domain
expert (Gebbia et al., 2020). These queries mostly
deal with medical history of patients, possible drug
interactions, disease related concerns, treatment
protocols and so on. Conversational agents for
healthcare play a pivotal role by facilitating useful
information dissemination (Li et al., 2020; Maniou
and Veglis, 2020). In order to understand these

∗Authors contributed equally

queries better, practical conversational systems for
healthcare need to be developed. However, the pri-
mary obstacle in developing such technologies for
low-resource languages is the lack of usable data
(Mehta et al., 2020; Daniel et al., 2019; Liu, 2022).

India is a country with a diverse language speak-
ing population suffering from abject poverty and
low-economic status (Mohanty, 2010; Pande and
Yazbeck, 2003). This linguistic diversity and com-
plex socio-economic situation in India certainly
poses significant challenges in developing auto-
matic healthcare systems; and there is a lack of
linguistic resources specific to the medical domain.
For example, situations such as the patient and the
doctor speaking in different languages, is not an un-
common situation in rural India. These individuals
are unable to avail the existing systems and facil-
ities which exist mainly in the English language.
Recent efforts in developing automatic translation
systems, even from extremely low resource lan-
guages such as ‘Mundari’ and ‘Gondi’ (Joshi et al.,
2019), should ideally improve this situation, but
there is no extensive study on that front.

In order to bridge this language barrier, mas-
sively Multilingual Transformer based Language
Models (MMLM) (Devlin et al., 2019; Lample and
Conneau, 2019) have made impressive advance-
ments on a wide range of downstream applica-
tions. But the real-world implications of such ad-
vancements in the Indian healthcare system remain
largely unexplored. In this paper, we aim to ex-
plore scarcity of the data and study the extent to
which the existing language technologies can be
leveraged to develop practically useful healthcare
systems for the low-resource languages in develop-
ing countries.

With an aim to answer our research question,
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Figure 1: Example of a query of ‘treatment’ intent category for different languages along with associated entities.

we create two different multilingual healthcare
datasets, namely, IHQID-WebMD and IHQID-
1mg. These datasets are created by crawling fre-
quently asked questions from two healthcare web-
sites, WebMD and 1mg. These datasets comprise
frequently asked questions about drugs, diseases
and treatment methods in seven different languages,
namely English, Hindi, Bengali, Tamil, Telugu,
Gujarati and Marathi. The queries are manually
tagged with intent labels and entity tags by domain-
experts and translated by native speakers of the cor-
responding languages. We also collect real world
Indian hospital queries (annotated) in seven lan-
guages to check the empirical effectiveness of our
approach. Fig. 1 shows an example of a health
query belonging to ‘treatment’ intent class manu-
ally translated into three different languages. Then
we evaluate the performance of state-of-the-art lan-
guage models (LMs), for both English and multilin-
gual setups on our datasets, to answer the questions
regarding their deployability and practicality. Vari-
ous experimental configurations (Section 4) have
been tried on these datasets where we try to fig-
ure out the ways of using best technologies through
extensive experimentation in two real-world scenar-
ios. First, we assume to have access to only English
training queries (less costly) and the test queries are
multilingual in nature. We observe that translate-
test setup on RoBERTa seems to be a reasonable
choice of technology. Second, we assume to have
access to manually written multilingual training
and test queries in the target languages, which is
indeed quite expensive in terms of data collection
effort. However, back-translation of both train and
test queries proves to be a reasonable choice if we
have budget of collecting data in target languages.

In sum, our contributions are four folds:

• We propose two intent and entity labelled In-
dian healthcare datasets (annotated by domain-
experts) comprising of frequently asked ques-

tions from users.

• Even though the large language models have
proved their effectiveness in almost every
NLU operation, we want to determine their
effectiveness in determining the correct in-
tent and slot filling operations for practical
domain-specific healthcare scenarios in the In-
dian context. We intend to analyze how should
we prioritize the research and resource build-
ing investments for the economically back-
ward countries with a high percentage of mul-
tilingual population? This will make us aware
about the best techniques of deploying the
language models in various scenarios such
as: availability of English training data vs
multilingual training data. Keeping this in
mind, all our experiments have been carried
out using both monolingual and multilingual
setups of these models. Through our experi-
ments, we try to point out the best possible lan-
guage models and techniques to develop prac-
tically useful NLU solutions (pipeline based
approach for intent detection and correspond-
ing entity extraction from the queries).

• Through extensive experiments on the
datasets, we recommend the community to use
back-translation of test queries to English in
two real-life scenarios as a reasonable choice
when we have access to English training data.
However, the same strategy can be applied
to both train and test queries if we have the
budget of collecting data in target languages.

• Our findings imply that the back-translation of
queries using an intermediate bridge language
proves to be a useful strategy in the intent
recognition experiments.
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2 Related Work

We pivot our study of related works into the follow-
ing buckets - generalised intent and entity detection,
entity and intent detection in healthcare, health care
in Indian languages and multi-lingual healthcare
datasets.
A) Generalised Intent and Entity Detection Ap-
proaches: (Sun et al., 2016; Wang et al., 2020;
Mu et al., 2017b,a) focus on detecting novel in-
tents in the form of outlier detection. (Mullick
et al., 2022a) explore intent classification on legal
data. People also work on different detection ap-
proaches - few shot (Xia et al., 2021), zero shot
(Xia et al., 2018), clustering frameworks (Mullick
et al., 2022b). (Yani et al., 2022; Sufi and Alsulami,
2021; Zhao et al., 2021) all explore entity detec-
tion tasks. (Vanzo et al., 2019) develop a hierar-
chical multi-task architecture for semantic parsing
sentences for cross-domain spoken dialogue sys-
tems. Most of these approaches are very domain
and language specific and thus not very useful for
the healthcare domain in Indian languages.
B) Entity and Intents in Health Care: Zhou et al.
(2021) solve different tasks in smart healthcare.
Bao et al. (2020) build a chat-bot framework using
user intents. Bai et al. (2022) aim at incremen-
tal medical intent detection. Razzaq et al. (2017);
Amato et al. (2017) develop an e-Health applica-
tion using intent-context relationships. Zhang et al.
(2017) explore medical query intents. Most of the
works are done for English and Chinese languages
and there is no proper architecture for Indian multi-
lingual scenarios for intent and entity extraction..
C) Health Care in Indian Languages: Some re-
searchers focus on Indian Languages - Hindi Med-
ical Conversation system, MedBot (Bharti et al.,
2020), detecting Hindi and English COVID-19
posts (Patwa et al., 2021), Tamil health informa-
tion (Santosh, 2019), Bengali health-bot (Badlani
et al., 2021), Telugu COVID-19 health information
(Vishwas et al., 2017). But none of the work aims
at Indian health query datasets and model analy-
sis. (Mondal et al., 2022) highlights the gaps when
using existing state-of-the-art commercial frame-
works for NLU tasks in a few Asian and African
low-resource languages, especially when the goal
is to develop conversational agents for healthcare
during COVID. In our work, we strengthen the
claims made in their paper for generic healthcare
specific datasets in Indian context, and highlight
the potential drawbacks of the existing LMs.

D) Multilingual Health Care Dataset: Liu et al.
(2020) develop MedDG (Medical Dialogue dataset
of common Gastrointestinal diseases) in Chinese.
Zeng et al. (2020) proposes MedDialog, a Chinese
and English medical dataset, and explores medi-
cal dialogue generation tasks. Zhang et al. (2021)
build a medical intent evaluation dataset in Chinese
and Kim et al. (2022) has constructed a Korean
health intent dataset. Our work differs from the
existing research in two ways: 1) We focus on de-
veloping a gold standard healthcare NLU dataset in
Indian languages, 2) cost parameter and availability
oriented usage of models for intent detection and
entity extraction, and 3) end-to-end evaluation of
the state-of-the-art solutions for healthcare in both
English and Indic languages which leads to inter-
esting implications and generates important future
recommendations for the language community.

3 Dataset and Pre-Processing

3.1 Necessity of a new dataset
India is a country with a diverse language speaking
population. There is an increasing population of
users consuming Indian language content. This
linguistic diversity certainly poses significant chal-
lenges in healthcare setup, particularly in the situa-
tion when healthcare providers and patients speak
different languages (also termed as Language Dis-
cordance) (Shamsi et al., 2020). Therefore, indi-
viduals with limited English proficiency are left
behind and suffer from worse health outcomes than
those who speak English with high proficiency. The
growing need for the deployment of multilingual
conversational agents in hospital and healthcare
facilities in India, especially highlighted by the
plight of the healthcare workers during the COVID-
19 pandemic, warrants a multilingual healthcare
query intent dataset in Indian languages (Daniel
et al., 2019). Therefore, we resort to create two
novel Indian Healthcare Query Intent Datasets -
(IHQID-WebMD and IHQID-1mg) and one real-
world healthcare dataset from hospitals.

3.2 Source of the dataset
Due to the unavailability of open-source multilin-
gual NLU datasets in healthcare setup, we sample
frequently asked medical queries (FAQs) in English
from two popular data sources:
WebMD1: It is an American website containing
a large repository of healthcare data. The queries,

1https://www.webmd.com/
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Intents Entities Real World Hospital Query Data (#Intent / #Entity)

Class #WebMD #1mg #WebMD #1mg #En #Hi #Bn #Ta #Te #Ma #Gu

Disease 283 (207+76) 111 (87+24) 629 (464+165) 240 (185+55) 28/37 31/35 29/37 27/35 31/39 28/35 29/35
Drug 234 (181+53) 198 (144+54) 400 (302+98) 224 (166+58) 34/44 33/43 31/37 30/35 32/38 34/40 32/37
Treatment 166 (127+39) 67 (46+21) 218 (165+53) 64 (44+20) 21/24 20/26 21/25 23/29 19/24 17/23 20/26
Other 278 (205+73) 41 (28+13) - - 17/- 16/- 19/- 20/- 18/- 21/- 19/-

Total 961 (720+241) 417 (305+112) 1247 (931+316) 528 (395+133) 100/105 100/104 100/99 100/99 100/101 100/98 100/98

Table 1: Distributions of different types of intent and entity labels in WebMD, 1mg datasets (IHQID) and Real
World Hospital Query Data. (- + -) represents (train + test) division. # denotes the count.

taken from the WebMD health forum are asked by
ordinary users regarding a wide range of problems.
1mg2: 1mg is an Indian website, which is also a
rich source for healthcare data, especially in the
Indian context. The English queries are scraped
from the FAQ section in drug and disease pages.

Although, both the above datasets are curated
from online forums where users post healthcare
concerns, in order to evaluate our approach in a
practical Indian context, we develop a real world
healthcare query dataset in Indian scenario. We
collect real world healthcare queries (asked by pa-
tients) from the doctors in local hospitals. All
queries are anonymous without identity or any de-
tails of the patients. For each language, we fetch
100 queries (some of which overlap) belonging to
different categories.

3.3 Dataset Sampling

The FAQs sampled from these data sources are un-
labeled. Hence, for the purpose of supervised clas-
sification, it is necessary to categorize each query
into a specific intent and list of corresponding enti-
ties. We broadly categorize queries into four differ-
ent intent types, namely, ‘Disease’, ‘Drug’, ‘Treat-
ment Plan’ and ‘Other’. Each query is assigned
one of the four intent labels. Two English-speaking
medical graduate doctors annotate the intents from
the English queries to prepare the datasets. Anno-
tators also mark entities, belong to three different
medical entity categories present in the datasets
- ‘Disease’, ‘Drug’ and ‘Treatment’. The queries
with their intent labels are retained where both an-
notators agree, otherwise discarded. On an average,
this filtering lead to an average rejection of around
10% samples of the dataset for all our setups and
languages. Overall Inter-annotator agreement, Co-
hen κ is 0.89.

2https://www.1mg.com/

3.4 Parallel Data Generation

In order to generate parallel corpora of these fre-
quently asked questions in English, we choose six
Indian languages apart from English.
Language Selection: The language set includes
English: USA version (EN-US) termed as (‘En’),
Hindi (‘Hi’), Bengali (‘Bn’), Tamil (‘Ta’), Telugu
(‘Te’), Gujarati (‘Gu’) and Marathi (‘Mr’). The
choice of languages was driven by (a) the num-
ber of native speakers of those languages in India,
b) number of annotators available for creating the
dataset, (c) combined with typological diversity
amongst the languages - we choose languages from
various language families. For instance, Bengali,
Hindi, Gujarati, Marathi belong to the Indo-Aryan
family whereas Tamil and Telugu belong to the
Dravidian group.
Annotation and Quality Control: Since the gold
standard annotated queries are not available online
in Indian languages, the English queries of 1mg and
WebMD have to be manually translated. After dis-
cussions with the doctors and different patients,
we create the annotation guidelines. Annotators
are told to formulate the queries on their own re-
gional languages with the help of Bing Translator
API3. Annotators are also asked to annotate the
entities and their types (in their respective native
languages) for each query being corrected with the
idea of what common people of corresponding na-
tive language generally ask healthcare queries to
doctors.

Three annotators are selected per language af-
ter several discussions and conditions of fulfilling
many criteria like annotators should have native
proficiency in their language of annotation, domain
knowledge expertise along with a good working
proficiency in English. Initial labeling is done by
two annotators and any annotation discrepancy is
checked and resolved by the third annotator af-
ter discussing with others. While formulating the

3https://www.microsoft.com/en-us/
translator/business/translator-api/
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query on their own manually, the annotators are
also asked to annotate the entities and their types (in
their respective native languages) for each query be-
ing corrected. The above quality control measures
ensure that the translated data is of high quality,
resembling real world data in the target language.
In the case of a word such as a proper noun like

‘Paracetamol’ (drug), which does not have a trans-
lation in the target vocabulary, the word is asked to
be simply transliterated in the target language.

In order to prepare the real world hospital query
dataset in Indian healthcare contexts, we collect
healthcare queries from the doctors of local hospi-
tals. It also consists of six different Indic languages
along with English. There are a hundred queries
for each of the language. These queries also have
similar intent classes and entity categories, which
are labelled by the doctors. During collection of
queries, we fix the minimum number of samples
for each intent classes across all languages.

In order to maintain the quality of the Indian lan-
guage annotations, the annotators are directed to
use the native language words and grammar, keep-
ing the original interpretation of the query. All
query logs, annotations and changes are recorded
in order to conduct future verification and analysis.
On completion of the translation process, the anno-
tators are asked to exchange their work and check
the quality of translation for fluency and semantic
stability. Inaccuracies are noted, and the respective
queries are rectified in the dataset.

At the end, we finally have three multilingual
intent and entity recognition labelled datasets -
IHQID-WebMD, IHQID-1mg and a real world
hospital query test dataset in seven different lan-
guages, the dataset distributions of which are pro-
vided in Table 1. The first two datasets (IHQID-
WebMD and IHQID-1mg) help to build the models
and real world hospital dataset is used to evalu-
ate our approaches in real world contexts. Table
1 also shows the statistical details across differ-
ent intent classes (‘Disease’, ‘Drug’, ‘Treatment’
and ‘Other’) and corresponding entities (of ‘Dis-
ease’, ‘Drug’ and ‘Treatment’ categories) along
with the total counts and train-test divisions. It also
shows the distribution of hospital collected prac-
tical healthcare queries across different languages
(Right part of the table).

4 Strategies of Evaluation

In this section, we illustrate the strategies of evalu-
ating the state-of-the-art LMs on our dataset. Our
evaluation of these models for Healthcare is scoped
down to two fundamental NLU tasks:
a) Intent Recognition (Section 5.1)
b) Entity Extraction (Section 5.2)
Evaluation Setup Description: Our evaluation
of the models has been conducted while keeping
in mind about the availability of human-translated
monolingual and multilingual training data in two
possible real-life scenarios: 1) Scenario A: In this
setup, we assume to have access to only English
training data (less costly) and in 2) Scenario B: we
assume to have access to manually written train-
ing queries in all the target languages (very expen-
sive). During inference/testing, we expect all the
queries are in the corresponding target languages.
Scenario A:
Setup 1) Backtranslated Test (S1): [Translate-
Test] Here we develop our system by training the
models on the English queries, and evaluate the
intent detection and entity extraction systems in
different languages by automatically backtranslat-
ing the test queries into English (e.g. similar to
(Gupta et al., 2021)). Setup 2) Zero-Shot Cross-
Lingual Test (S2): Cross lingual transfer learning
is a useful methodology used for tasks involving
scarce data (Zhou et al., 2016; Karamanolakis et al.,
2020). In this setup, the models make use of zero-
shot based cross-lingual capabilities from training
on the English data (scraped from WebMD and
1mg) and use it for inference on test queries in In-
dic languages. Setup 3) Bridge Language Back-
translation (S3): Here a relatively low-resource
language is first translated to an intermediate lan-
guage and then finally to English. The motivation
behind this setup lies in the fact that even though
these Indic languages belong to different scripts,
there are linguistic and morphological similarities
among them which may improve the translation to
English if they are used as intermediate languages.
In this paper, we have considered ‘Hindi’ as the
bridge language. This notion of such “bridge" lan-
guages has been explored previously in the con-
text of Machine Translation (Paul et al., 2013) and
zero/few-shot transfer in MMLMs (Lauscher et al.,
2020).
Scenario B:
Setup 4) Train and Test on Indic Data (S4): In
this setup, we use the training dataset in indic lan-
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guages to train our NLU models in different target
languages. Here, we use the IHQID-WebMD and
IHQID-1mg Indic data (non-English) to evaluate
the NLU detection performances of the developed
models. Jennifer Bot (Li et al., 2020) use a similar
setup to extend their English bot to Spanish. Setup
5) Full Backtranslation (S5): In this setup, both
train and test data are backtranslated to English.
This is useful for the countries with poor technical
setups for low-resource languages, since an auto-
mated approach can translate low-resource medical
queries to resource-rich language and test.

In all back translation experiments, we use Bing
Translation Api 4.

5 Experiments and Results

Experimental Setup: Our experiments are con-
ducted on two Tesla P100 GPUs with 16 GB RAM,
6 Gbps clock cycle and GDDR5 memory. All meth-
ods of entity extraction and intent detection took
less than 30 GPU minutes for training. We perform
a hyperparameter search and report the results of
the settings which achieve the best results, and then
fixed the same for all the models. The batch size
is kept at 16, number of epochs is 10, optimization
algorithm used is AdamW and the learning rate is
1e-5 with cross-entropy as the loss function.

5.1 Intent Detection

Task Description: It can be defined as a multi-
class classification task of correctly assigning a
medical query with an intent label from a fixed set
of intents (drug, disease, treatment and other).
Classification Models: Since in Setups 1, 3 and
5, we take both the training and test set in English,
we use state-of-the-art LMs pre-trained on English
corpora (as shown in (i)) for our classification ex-
periments. Whereas in Setup 2 and 4, we make use
of multilingual LMs (as shown in (ii)) which have
been widely used for various benchmark tasks in
Indian languages. Following are the baselines:

(i) Pre-trained English Models: For setups 1,
3 and 5, we fine-tune the last layer of RoBERTa
(Liu et al., 2019) and Bio_ClinicalBERT (Alsentzer
et al., 2019) models on the English queries for
intent detection by adding a classification layer
that takes [CLS] token as input. The latter is a
state-of-the-art domain-specific transformer based

4https://www.microsoft.com/en-us/
translator/business/translator-api/

language model pre-trained on MIMIC III notes5,
which is a collection of electronic health records
and discharge notes.

(ii) Pre-trained Multilingual Models: Two pre-
trained mulilingual LMs are used, mBERT (bert-
base-multilingual-uncased) (Pires et al., 2019) and
XLM-Roberta (xlm-roberta-base) (Conneau et al.,
2020), both support all Indic languages in the
datasets along with English. In Setup 2, we per-
form zero-shot classification using these models.
The zero shot setting involves fine-tuning the model
using English data, and testing on Indic languages.
Whereas in Setup 4, we first train these models
using the entire train sets in the target languages,
separately for WebMD and 1mg, and check the
performance on the test sets.

5.2 Entity Recognition

Task Description: This task is analogous to per-
forming a Named Entity Recognition (NER) for
three categories, namely, drugs, diseases and treat-
ments on the query texts. We follow the standard
BIO-tagging system while annotating the entities
word-by-word. The train and test files for each
configuration and language respectively are con-
structed from our WebMD and 1mg datasets.
Extraction Frameworks: For entity recognition,
we follow the same strategies of evaluating the
predictive performance of the LMs as described
in Section 4. The same models (as described in
section 5.1) are also used for entity recognition
experiments.

5.3 Evaluation

For all our experiments on intent detection and en-
tity recognition, we calculate the Precision, Recall
and report the F1-score.

5.4 Results and Analysis

Intent Detection: Table 2 shows the results of in-
tent detection of five experimental strategies on the
IHQID-WebMD and IHQID-1mg datasets in terms
of Macro F1-score (in percentage).
Finding 1: We observe that in general, Backtrans-
lated Test (Setup 1) performs better than Zero-Shot
Cross-Lingual Test (Setup 2). Moreover, it is inter-
esting to notice that even though the performance
of these models for most of the target languages
in Setup 1 are comparable with that of English in

5https://huggingface.co/
emilyalsentzer/Bio_ClinicalBERT
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Backtranslated Test (S1) Zero-Shot Cross-Lingual Test (S2) Bridge Language Backtranslation (S3) Train and Test on Indic Data (S4) Full Backtranslation (S5)
Lang RoBERTa bcBERT mBERT XLM-RoBERTa RoBERTa bcBERT mBERT XLM-RoBERTa RoBERTa bcBERT
-uage WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg
En 76.34 73.33 75.38 68.72 - - - - - - - - - - - - - - - -
Hi 73.90 67.48 66.50 66.50 42.46 46.45 58.68 43.30 - - - - 56.18 51.41 41.14 40.09 75.42 72.32 75.21 63.81
Bn 75.18 66.42 75.02 63.66 35.85 35.62 55.85 43.69 70.76 71.94 71.91 64.87 50.26 46.65 41.07 39.73 78.83 70.13 75.41 57.52
Ta 73.63 64.29 73.99 62.88 38.50 39.34 57.47 42.14 69.51 66.42 73.06 64.43 51.17 50.49 40.04 32.63 74.36 69.44 73.79 62.82
Te 73.25 63.48 73.79 66.17 36.40 30.75 55.38 38.53 69.89 66.63 72.19 63.67 51.28 51.69 45.26 41.07 71.80 66.90 75.30 65.63
Gu 71.76 66.85 73.05 68.80 35.61 32.67 51.50 34.58 71.61 72.07 73.75 68.02 50.07 51.17 42.23 46.23 72.93 72.54 71.76 70.52
Mr 72.70 70.64 73.47 73.26 43.57 38.22 60.58 44.16 71.50 72.47 73.13 74.28 54.44 55.24 43.18 46.11 76.32 70.65 75.42 63.83
Avg 73.82 67.50 73.03 67.14 38.73 37.18 56.58 41.07 70.65 69.91 67.25 67.05 52.23 51.10 42.15 40.98 74.94 70.33 74.48 64.03

Table 2: Macro-F1 scores for intent classification on the WebMD (WMD) and 1mg datasets for five Setups (three
different setups for Train on English (Scenario A) and two setups of Train on Indic Data (Scenario B)). bcBert
indicates BioClinicalBERT, mBERT indicates Multilingual BERT. Underline denotes the best across five settings.

WebMD (an average of 3% drop for all the lan-
guages compared to English), there is a significant
drop (average of 6%) in the F1 scores for the Setup
1 results in 1mg Dataset. This holds true for both
RoBERTa and BcBERT experiments. This denotes
that the state-of-the-art English models, which are
performing decently after backtranslation of the
medical queries in English, pre-trained on both
generic and medical domain, are lagging behind
when the vocabularies of the medical entities are
in the Indian context. This definitely calls for an
immediate attention to developing LMs pre-trained
on India-specific medical datasets.

Finding 2: Another interesting observation was
that the use of Bridge Language Backtranslation
(Setup 3) in Table 2, helps to boost performance of
most of the languages in the case of 1mg dataset in
comparison to Setup 1. The observation does not
hold true for intent recognition in WebMD dataset.
This might be attributed to the fact that using a
bridge Indian language as an intermediate helps
preserve the domain-specific sense of the queries
instead of directly converting the queries from the
target language to English. This seems like a rea-
sonable alternative to develop useful intent recog-
nition models for healthcare in Indian languages.

Finding 3: In comparison with zero-shot cross-
lingual transfer (Setup 2), both mBERT and XLM-

R models are outperformed by few-shot experi-
ments (Setup 4) for intent detection. This observa-
tion holds true for both WebMD and 1mg datasets.
However, Setup 4 is much more cost-intensive than
the Setup 2.

Finding 4: We report the average (Avg) F1-score
across all languages. The best performing model
is RoBERTa (Setup 1 for English and Setup 5 for
non-English) for both WebMD (74.94%) and 1mg
(70.33%). RoBERTa is used for further evaluations.

Entity Extraction: Table 3 displays the results of
entity recognition task under five different strate-
gies on IHQID-WebMD and IHQID-1mg datasets.
Finding 1: In the Backtranslation test performed
in Setup 1, we observe that for WebMD dataset,
the difference in the performance of the models
(Performance on English is 0.33% more average
F1 Score for RoBERTa and 3.58% more than aver-
age F1 for bcBERT) is far less significant than the
drop observed for 1 mg (Performance on English
is 9.66% more average F1 Score for RoBERTa and
10.49% more than average for bcBERT). This im-
plies that loss of information is quite high for the
entities in Indian context during backtranslation.
Finding 2: Unlike our findings on Setup 3 in intent
recognition, we observe that backtranslation using
a bridge language seems to induce more loss of

Backtranslated Test (S1) Zero-Shot Cross-Lingual Test (S2) Bridge Language Backtranslation (S3) Train and Test on Indic Data (S4) Full Backtranslation (S5)
Lang RoBERTa bcBERT mBERT XLM-RoBERTa RoBERTa bcBERT mBERT XLM-RoBERTa RoBERTa bcBERT
-uage WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg WMD 1mg
En 61.95 69.93 65.50 73.68 - - - - - - - - - - - - - - - -
Hi 61.75 69.58 65.20 73.82 34.75 34.01 36.53 46.95 - - - - 17.55 36.85 52.43 71.68 60.60 69.32 65.90 76.55
Bn 64.21 56.79 64.25 62.56 35.12 35.02 34.31 41.42 61.05 47.45 59.70 50.08 27.28 42.37 63.73 62.69 64.47 54.81 64.75 65.80
Ta 60.44 60.58 60.22 60.72 30.62 30.10 34.31 36.29 55.35 56.75 56.28 63.48 22.07 29.87 59.91 67.59 61.07 69.63 64.91 71.40
Te 62.76 62.56 62.37 63.44 30.00 31.50 32.95 41.71 62.26 55.75 63.89 62.27 27.95 27.82 59.81 68.93 65.27 67.06 66.19 69.17
Gu 60.02 51.13 58.20 52.62 23.56 27.24 23.90 42.19 56.36 47.12 57.60 51.47 21.93 25.82 49.19 73.77 60.78 59.62 58.26 70.78
Mr 60.18 51.31 57.68 55.45 26.32 22.54 29.51 50.84 54.63 59.61 55.02 60.96 20.48 23.52 52.61 57.56 59.10 57.38 58.83 58.45
Avg 61.62 60.27 61.92 63.19 30.56 30.07 31.92 43.23 57.92 53.34 58.49 57.65 22.88 26.61 58.28 67.04 61.88 62.98 63.14 68.69

Table 3: Macro-F1 scores for entity extraction on the WebMD (WDM) and 1mg datasets for five Setups (three
different setups for Train on English (Scenario A) and two setups of Train on Indic Data (Scenario B)). bcBert
indicates BioClinicalBERT, mBERT indicates Multilingual BERT. Underline denotes the best across five settings.
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(a) Intent - WebMD (b) Intent - 1mg (c) Entity - WebMD (d) Entity - 1mg

Figure 2: Intent Detection and Entity Extraction F1-score (Y-axis) for Different Percentage of Training Data (X-axis)
for WebMD and 1mg

information on the entities compared to Setup 1.
This observations holds true for both the models
across two datasets.
Finding 3: Similar to intent recognition, we ob-
serve that completely backtranslating both training
and test data to English performs the best among
S1, S3 and S5. This holds true for both the datasets
and both the models. However, this operation is in-
deed expensive in terms of data curation cost, since
it requires original data in the target languages for
both training and testing.
Finding 4: The abysmal performances of the mul-
tilingual models as shown in Table 3, for both S2
and S4 indicate that these approaches are not so
useful in our case.
Finding 5: We report the average (Avg) F1-score
across all languages. BioClinicalBERT performs
the best (Setup 1 for English and Setup 5 for
non-English (Avg)) for both WebMD (63.14%) and
1mg (68.69%). It is used for further evaluations.

5.5 Ablation Study

Experiments with Varying Training Size: We
experiment with varying training sizes on both in-
tent detection and entity extraction tasks using the
best performing models, by taking 10%, 30%, 50%,
70% and 100%) of the training set. We then show
the F1-scores (Y-axis) for all the languages with
different training sizes (X-axis) in Fig. 2. Fig. 2a
and 2b show that the performance of the intent
detection models do not vary too much with in-
creasing training sample data. However, Fig. 2c
and 2d clearly show that entity extraction F1-scores
increase significantly with the increase of training
data. Thus, we can conclude that the intent detec-
tion model does not require a large amount of data
to generalise, as opposed to the requirements of the
entity extraction model.
Category wise intent detection and entity extrac-
tion for the best model: We evaluate the F1-scores
for different intent classes for the RoBERTa Model

(Setup 1 for English and Setup 5 for non-English)
trained on WebMD and 1mg (See Section 4 for
setup descriptions). Similarly, with the help of Bio-
ClinicalBERT (Setup 1 for English and Setup 5 for
Non-English), we find the individual entity class
wise F1-scores. The results in Table 4 show that
the model is able to detect ‘disease’, ‘drug’ and
‘treatment’ intent classes with high F1-score but
the performance on the ‘Other’ class is poor, thus
bringing the macro averaged F1 score down con-
siderably. This may be due to the fact that the sys-
tem fails to detect open ended query types, present
in the ‘Other’ class. This is supported by the in-
tent class wise entity distribution, which shows an
overwhelming dominance of ‘drug’, ‘disease’ and
‘treatment’ entities in their corresponding intent
categories (‘drug’, ‘disease’ and ‘treatment plan’
intents, respectively), whereas the ‘other’ intent
class, of which there are very few instances com-
paratively anyway, has no such dominant entity
class associated with it. In the entity extraction
task, the best performing model is able to extract
all three entity categories with a similar F1-score
performance.

Figure 3: Macro Average F1 Score for Intent detection
and Entity Extraction across all different languages in
Real World Hospital Data

Real World Hospital Data Evaluation: We use
the real world healthcare query dataset (100 queries
per language) to test the usability of our models in
practical Indian hospital scenarios. We run the best
performing models trained on WebMD and 1mg
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Lang
Intent Entity

WebMD 1mg WebMD 1mg
Disease Drug Treatment Other Disease Drug Treatment Other Disease Drug Treatment Disease Drug Treatment

En 75.86 81.42 74.16 74.07 80.00 94.64 85.00 35.29 63.16 72.13 61.39 66.67 88.00 47.06
Hi 73.10 80.00 66.67 69.50 72.97 78.57 67.47 69.06 64.37 70.41 58.72 67.27 85.04 55.56
Bn 80.79 80.39 71.91 75.71 80.77 94.74 87.18 52.63 65.19 69.35 53.23 73.50 68.48 47.72
Ta 77.63 73.27 60.00 73.38 80.77 94.74 80.95 25.00 60.05 69.07 49.23 76.11 72.87 50.00
Te 72.85 78.10 70.45 72.46 80.77 94.55 77.27 33.33 62.09 65.00 60.71 75.63 65.37 66.67
Gu 75.64 78.50 69.77 72.18 83.02 93.81 80.00 33.33 53.41 66.32 58.82 72.41 69.44 52.86
Mr 76.82 78.85 75.29 71.83 79.25 94.64 83.72 25.00 59.48 59.26 56.45 60.78 59.74 49.58

Table 4: Macro-F1 scores for intent identification and entity extraction on the WebMD (WMD) and 1mg datasets.
For each language, we portray the results of the best model obtained for the corresponding dataset.

data for intent detection (RoBERTa in Setup 1 for
English and Setup 5 for Non-English) and entity
extraction (BioCLinicalBERT in Setup 1 for En-
glish and Setup 5 for non-English) and report the
average of two models (trained on IHQID-WebMD
and IHQID-1mg) for each language. Fig. 3 shows
the average F1-score for each language, which is
consistent with the earlier results shown in Table
2 and 3. This shows that the best performing pro-
posed setup performs satisfactorily on real world
data in Indic languages.

5.6 Demonstration
To be able to make the proposed methods accessi-
ble and usable by the community, we create an on-
line interface, which could be found in our GitHub
repository6. With the help of this website, one
can post health query in the allowed language and
obtain the predictions using our best models.

6 Discussion and Error Analysis

We categorize the issues in mis-classification and
identify two broad themes of the reasons. The pri-
mary reason is model prediction error. Figure 4
shows the model prediction errors for various in-
tents in different languages. For an example, ‘How
common is syphilis’ is of ‘disease’ intent category
but model wrongly predicts it as ‘other’ category.
Another reason is the misclassification due to in-
correct translation of the medical entities such as
the disease ‘uticartia’ has been transformed into

‘ambat’ during backtranslation as shown in Figure 5
which is not detected as an entity. So, the backtrans-
lation error leads to intent mis-classification and
entity extraction error. We speculate such random
absurd behaviour due to the context of the query
and languages are semantically different. Secondly,
there are also certain issues in fluency and grammat-
ical meaning after backtranslation. For instance,

6https://github.com/indichealth/indic-health-demo

Figure 4: Error in Prediction

Figure 5: Error in Back-Translation

‘over the counter drug’ gets changed to ‘over the
opposite drug’. Entity recognition errors are also
occurring along with the intent mis-classification.

7 Conclusion

We focus on developing novel Indian HealthCare
Query Datasets and propose frameworks to detect
intents and extract entities from queries in different
Indian languages. Through extensive experiments
on our proposed datasets, we recommend the com-
munity to use backtranslation of test queries to
English in two real-life scenarios as a reasonable
choice when we have access to English training
data. However, the same strategy can be applied to
both train and test queries if we have the budget of
collecting data in target languages. Backtranslation
of queries using an intermediate bridge language
also proves to be a useful strategy in some cases.
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Limitations

Our dataset needs to be scaled up in terms of size
and intent labels which we aim to do as a part
of future work. Another constraint is that we do
not consider cases where queries are multi-labelled
(e.g. - drug and disease both). We shall explore in
future.

Ethical Concerns

We propose to release the dataset which neither
reveals any personal sensitive information of the
patients nor any toxic statement. Besides, we have
paid enough token money (exact remuneration will
be revealed once accepted to the conference) to the
domain-expert annotators who have helped us in
manually tagging the medical queries.
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Abstract

Anticipating future actions in a video is use-
ful for many autonomous and assistive tech-
nologies. Most prior action anticipation work
treat this as a vision modality problem, where
the models learn the task information primar-
ily from the video features in the action antic-
ipation datasets. However, knowledge about
action sequences can also be obtained from
external textual data. In this work, we show
how knowledge in pretrained language models
can be adapted and distilled into vision-based
action anticipation models. We show that a
simple distillation technique can achieve effec-
tive knowledge transfer and provide consistent
gains on a strong vision model (Anticipative
Vision Transformer) for two action anticipation
datasets (3.5% relative gain on EGTEA-GAZE+
and 7.2% relative gain on EPIC-KITCHEN 55),
giving a new state-of-the-art result1.

1 Introduction

Anticipating future actions in the video of an un-
folding scenario is an important capability for
many applications in augmented reality (Salamin
et al., 2006; Azuma, 2004), robotics (Duarte et al.,
2018; Schydlo et al., 2018), and autonomous driv-
ing (Chaabane et al., 2020; Suzuki et al., 2018).
Anticipating what actions will likely happen in a
scenario, requires one to both recognize what has
happened so far, and use anticipative general knowl-
edge about how action sequences tend to play out.
Most models for this task use a pre-trained video
encoder to extract information about what has hap-
pened so far in the scenario, and use a text-based
decoder to predict what action is likely to happen
in the future (Carion et al., 2020; Dessalene et al.,
2021; Liu et al., 2020; Sener et al., 2020).

However, when trained on the target video
datasets, the generalization of the models depends

1The models and code used are available
at:https://github.com/StonyBrookNLP/action-anticipation-
lmtovideo

Figure 1: A model learning the action anticipation from
only the vision modality (video frames) is essentially
exposed to a very limited set of action sequences. Lan-
guage models, which are pre-trained on large-scale text,
can learn this distribution from the task, and a much
larger domain-relevant text. We propose distilling this
knowledge from text modality models to vision modal-
ity model for video action anticipation task.

on how well these video datasets cover the space of
action sequence distributions. In other words, the
knowledge that is learnt for predicting future ac-
tions is, in effect, limited to the information in the
target video datasets, where obtaining large scale
coverage of action sequences is difficult.

Knowledge about action sequences can also
be obtained from text resources at scale. Lan-
guage models, (e.g. BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b)), are typically pre-
trained on large collections of unlabeled texts with
billions of tokens, where they acquire a wide-
variety of knowledge including large scale knowl-
edge about common action sequences. For exam-
ple, Table 1 illustrates how the pre-trained BERT
is able to predict the next action in a sequence of
actions extracted from a recipe video in terms of
its verb and the object. Also, it is easier to col-
lect a much larger collection of action sequences
from text sources compared to video annotated with

1882

https://github.com/StonyBrookNLP/action-anticipation-lmtovideo
https://github.com/StonyBrookNLP/action-anticipation-lmtovideo


Masked action sequence BERT
@top5

Clean the board → takeout pan →
wash the onion → clean the fish →
cut the onion→ heat the pan→ pour
oil in pan→ [MASK] the fish.

fry,
cook,
boil,
wash,
clean

Clean the board → takeout pan →
wash the onion → clean the fish →
cut the onion→ heat the pan→ pour
oil in pan→ fry [MASK].

pan,
fish,
chicken,
it,
onion

Table 1: Given a sequence of actions extracted from a
video, BERT@top5 shows the top5 prediction made by
a standard pre-trained BERT for the masked verb and
object of the next action.

segments. As illustrated in Figure 1, EPIC55, a
video dataset of about 800GB only has about 38K
action sequences, whereas there are around 1M
sequences in the text recipes dataset Recipe1M.
Text modality models can thus be exposed to a
much larger variety of action sequences compared
to video-modality anticipation models. However,
because the task is defined only over the video in-
puts there is a question of how one can transfer this
knowledge.

In this work, we show that we can augment
video-based anticipation models with this exter-
nal text-derived knowledge. To this end, we pro-
pose a simple cross-modal distillation approach,
where we distill the knowledge gained by a lan-
guage model from the text modality of the data
into a vision-modality model. We build a teacher
using a pre-trained language model which already
carries general knowledge about action sequences.
We adapt this teacher to the action sequences in the
video domain by fine-tuning them for the action
anticipation task. Then, we train a vision-modality
2 student, which is now tasked with both predict-
ing the target action label as well as matching the
output probability distribution of the teacher.

There are two aspects of language models that
can be adjusted further for improved distillation.
First, while they may contain knowledge about
a broad range of action sequences, we can focus
them towards specific action sequences in the target
dataset. Second, the text modality teacher can be
further improved by pretraining on domain-relevant
texts (e.g. cooking recipes), to further adapt it to
the action sequences in the task domain.

2The task requires the anticipation model to make infer-
ence based on the vision modality (video frames) of the video

Our empirical evaluation shows that this cross-
modal training yields consistent improvements over
a state-of-the-art Anticipative Vision Transformer
model (Girdhar and Grauman, 2021) on two ego-
centric action anticipation datasets in the cooking
domain. Adapting the teacher to the task domain by
pretraining on domain relevant texts yields further
gains and the gains are stable for different language
models. Interestingly, our analysis shows that the
language model based teacher can provide gains
even when it is not necessarily better than the vi-
sion student, suggesting that distillation benefits
can also come from the complementary of knowl-
edge, as in the case of the text modality.

In summary we make the following contribu-
tions: (i) We show that a simple distillation scheme
can effectively transfer text-derived knowledge
about action sequences (i.e. knowledge external
to the video datasets) to a vision-based action an-
ticipation model. (ii) We show that text-derived
knowledge about actions sequences contain com-
plementary information that is useful for the antici-
pation task, especially for the case where the action
label space is large. (iii) Using a strong action
anticipation model as a student, we achieve new
state-of-the-art results on two benchmark datasets.

2 Related Work

There has been a wide range of solutions for ac-
tion anticipation ranging from hierarchical rep-
resentaions (Lan et al., 2014), unsupervised rep-
resentation learning (Vondrick et al., 2016), to
encoder-decoder frameworks that decode future ac-
tions at different time scales (Furnari and Farinella,
2019), and transformers trained on multiple auxil-
iary tasks (Girdhar and Grauman, 2021). However,
these only use the vision modality features of the
observed video to train the model for the antici-
pation task. Our work aims to distill text-derived
knowledge to improve action anticipation. Here
we relate our work to others that have made use of
(i) textual knowledge for related tasks, (ii) general
knowledge distillation, and (iii) multimodal mod-
els which also allow for integration of information
from different modalities.

Textual Knowledge for Action Anticipation:
Other works have also shown the utility of model-
ing text-modality. Sener and Yao (2019) transfer
knowledge in a text-to-text encoder-decoder to a
video-to-text encoder-decoder, by substituting the
text encoder with the video encoder. However, this
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relies on projecting the image and text features
in a shared space, which requires lots of properly
aligned text and its corresponding image. Cam-
porese et al. (2021) model label semantics with
a hand engineered deterministic label prior based
on the global co-occurrence statistics of the action
labels from the overall training data, which can
be ineffective in case the underlying joint action
distribution is complex. In contrast, our work pro-
poses a different approach to leverage the text in
the training data by using language models to learn
the complex underlying distribution of action se-
quences in the video and then distill this knowledge
into a vision model to improve their performance.

Cross-modal Knowledge Distillation: Thoker
and Gall (2019) propose learning from RGB videos
to recognize actions for another modality. Oth-
ers have used cross-modal distillation for video
retrieval tasks (Hu et al., 2020; Chen et al., 2020)
and for text-to-speech (Wang et al., 2020). Most
relevant to ours is a recent system that improves lan-
guage understanding of text models by transferring
the knowledge of a multi-modal teacher trained on
a video-text dataset, into a student language model
with a text dataset (Tang et al., 2021) . In con-
trast, our proposed method for action anticipation
transfers knowledge gained by a text-based teacher
model into a vision-based student model.

Mutlimodal Models: Due to the recent preva-
lence of multimodal data and applications (Lin
et al., 2014; Sharma et al., 2018; Antol et al.,
2015; Krishna et al., 2017; Ordonez et al., 2011;
Abu Farha et al., 2018; Talmor et al., 2021; Afouras
et al., 2018), there has been plethora of recent work
on multimodal transformers. One commonly used
approach used to train these models is to learn a
cross-modal representation in a shared space. Ex-
amples include learning to align text-image pairs
for cross-modal retrieval (Radford et al., 2021;
Wehrmann et al., 2020), grounded image repre-
sentations (Liu et al., 2019a), and grounded text
representations (Tan and Bansal, 2020; Li et al.,
2019). Hu and Singh (2021) extend the idea for
multi-task settings with multiple language-vision
based tasks. Tsimpoukelli et al. (2021) adapt a vi-
sion model to a frozen large LM to transfer its few-
shot capability to a multimodal setting (vision and
language). However these methods rely on large-
scale image-text aligned datasets for the training
the model, which may not always be available, for

e.g. EGTEA-GAZE+ video dataset has only 10.3K
labelled action sequences. In contrast our distil-
lation approach does not require any image-text
alignment for the anticipation task.

3 Language-to-vision knowledge
distillation for action anticipation

The action anticipation task asks to predict the class
label of a future action based on information from
an observed video sequence. In this task setting,
the model has access to both, video and annotated
action segments (action text) during the train time,
but needs to make the inference only using the
video sequence. The input to the prediction model
is a sequence of video frames up until time step t:
X = (X1, X2, . . . , Xt), and the desired output of
the model is the class label Y of the action at time
t+ τ , where τ is the anticipation time.

To learn an anticipation model, we assume there
is training data of the following form: D =
{(Xi,Li, Y i)}ni=1, where Xi = (Xi

1, . . . , X
i
ti
) is

the ith training video sequence, Y i is the class
label of the future action at time ti + τ , and
Li = (Li1, . . . , L

i
ki
) is the sequence of action label

of the action segments in the video sequence Xi.
Each human action can span multiple time steps,
so so the number of actions ki might be different
from the number of video frames ti.

Our task is to learn a model g that can predict the
future action label based on the vison modality of
the video sequence Xi only. A common approach
is to optimize cross entropy loss L between the
model’s predicted label g(Xi) and the ground truth
label Y i of each training instances, i.e., to mini-
mize:

∑
i L(g(Xi), Y i). Although the sequence

of action labels Li is available in the training data,
the semantics associated with these labels is not
properly used by the existing methods for training
the anticipation model.

Here we propose to learn a text-based anticipa-
tion model gtext and use it to supervise the training
of the vision-based anticipation model g. This train-
ing approach utilizes the knowledge from the text
domain, which is easier to learn than the vision-
based knowledge, given the abundance of event
sequences described in text corpora. Hereafter,
we will refer to the language-based model as the
teacher, and the vision-based model as the student.
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Figure 2: METHOD OVERVIEW: Training- The observation video has two set of features, a sequence of T
image frames X, and a sequence action labels (e.g. cut-onion, peel-onion etc.) L corresponding to the
K action segments in X. (a) We train a teacher model to predict Y using the text features L. Then we distill the
knowledge gained by the teacher on text features into the student model that operates on vision modality X. For
this, (b), we train a student model on the vision modality feature X while using the corresponding prediction from
the teacher model as a label prior. Inference- During the inference or test time, the trained student model is used to
predict the future action using only the vision modality of the observed video.

3.1 Overview

The overview of our proposed method is shown
in Figure 2. We augment vision-based anticipa-
tion models (students) with knowledge distilled
from text-based models (teachers) that have access
to knowledge from large scale action sequences.
To this end we fine-tune a pre-trained language
model on the action sequences in the training data.
However, unlike the student, the teacher gets to
see the action labels of the input video segment to
make its predictions (Figure 2a). Then, we train a
vision-based student that learns from the text-based
teacher (Figure 2b).

The teacher in our setting is built using a pre-
trained language model gtxt that has access to
broad knowledge about action sequences. We
fine-tune it on the target dataset as follows. For
each instance, the teacher is given the textual ac-
tion sequence Li in the input video as the in-
put (or conditioning context), which then pre-
dicts the anticipated future action Ŷ i

txt. The
teacher is trained to minimize the loss defined over
the predicted and true labels, i.e., to minimize:∑

i Ltxt(gtxt(Li), Y i), where L denotes the cross-
entropy loss and Ŷ i

txt = gtxt(L
i) is the output of

the text-based teacher model.
We then freeze the teacher, and train a vision-

based student model g that predicts the future ac-
tion using the vision features Xi. The student is
trained to minimize the loss LS(Y i, Ŷ i, Ŷ i

txt) such
that it’s output probability distribution Ŷ i = g(Xi)

matches that of the teacher’s output Ŷ i
txt, in addi-

tion to matching the true label Y i.

3.2 Teacher

The input to the teacher is a sequence of action
phrases L = (L1, · · · , Lk) that denotes the se-
quence of actions observed in the input video seg-
ment. The teacher first uses a standard language
model ϕLM to produce a vector ftxt, of the input se-
quence L. In transformer-based language models,
a special token (e.g. [CLS] in BERT) is prepended
to the input sequence. The output contextual repre-
sentation of this special token is used as the final
representation of the entire input sequence.

The teacher uses this ftxt vector to predict the
output labels using the standard linear transforma-
tion (W, b) followed by a softmax layer. In addi-
tion we also train the teacher to predict the main
verb Yvb and the object Yob of the action Y . These
are predicted using separate linear transformations
(Wv,bv) and (Wo,bo), followed by softmax.

The full set of predictions for input L =
(L1, · · · , Lk) is obtained as:

ftxt = ϕLM (L1, ..., Lk)

Ŷtxt = softmax(Wftxt + b)

Ŷob = softmax(Woftxt + bo)

Ŷvb = softmax(Wvftxt + bv)

To fine-tune the teacher model, we minimize the
weighted sum of the cross-entropy loss between
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the predicted triplet of action, verb and noun and
their corresponding ground truth values.

Ltxt(Y, (Ŷtxt, Ŷob, Ŷvb)) = λL(Y, Ŷtxt)
+λoL(Yob, Ŷob) + λvL(Yvb, Ŷvb) (1)

3.2.1 Adapting Teacher using Domain
Relevant Texts

Pre-trained LMs have been shown to contain a wide
variety of knowledge, which we hope to distill into
the vision student model. However, there are two
aspects about LMs which limit their applicability.
First, LMs are general purpose models that cover
many domains, but the target video datasets cover
specific domains. For example, many action antic-
ipation datasets are built for the cooking domain.
Second, unlike fluent texts that LM’s are trained on,
the action sequences in the videos are annotated
using simpler verb/object constructions. Adapting
LMs to these differences can benefit the knowledge
distillation. To this end, we make use of domain-
relevant texts (for e.g. the recipes in Recipe1M
(Marin et al., 2019) dataset). The recipes are nat-
ural language instructions. To mimic the target
sequences in the video datasets, we convert these
into simpler verb-object constructs, and then use
the standard Masked Language Modeling training
task. Thus, this allows us to not only make use
of generic knowledge about action sequences but
also adapt the text-derived knowledge to the target
domain.

3.3 Student
The student is trained to take the video frames in
the video segment X = (X1, ..., Xt) as input and
predict the future action Y as output. Though the
applicability of the proposed distillation method
is not restricted to any particular class of student
model, we use the recent state-of-the-art Anticipa-
tive Vision Transformer (AVT) (Girdhar and Grau-
man, 2021) as our student model. In AVT, the video
to action prediction is done in two stages, first a
backbone network B generates the feature repre-
sentation of the individual frames in X in a non-
contextual manner.

z1, . . . , zt = B(X1), . . . ,B(Xt)

This is then followed by a transformer based de-
coder head network D, that generates the contex-
tual representation of the frames by transforming

the frame features zi’s in an autoregressive manner.

fv1 , ..., fvt = D(z1, ..., zt)
Ŷvj = softmax(Wsfvj + bs) ∀j ∈ {1, · · · , t}
Ŷ = Ŷvt

The feature representations from the head network
fvj ’s are then used to make predictions for the an-
ticipated action Ŷvj at time unit j. The anticipated
action Ŷ for the input video X is simply the pre-
dicted label at time unit t i.e. Ŷvt . During training
the model is also supervised for two other auxiliary
tasks namely future feature prediction and interme-
diate action prediction (see (Girdhar and Grauman,
2021) for details). We denote this combined train-
ing loss function as LAV T .

For the teacher to student distillation, we want
the AVT’s output distribution over action classes
Ŷ to match the teacher’s distribution Ŷtxt. To this
end, we minimize the KL divergence between the
teacher prediction Ŷ γ

txt and student predictions Ŷ γ ,
after smoothing the distributions using a tempera-
ture parameter γ, following the standard distillation
technique (Hinton et al., 2015).

LS = LAV T + λS · DKL(Ŷ γ
txt ∥ Ŷ γ) (2)

Dataset Segments Classes τ

Epic 55 28.6K + 9 K 2, 513 1.0 sec
EGTEA-Gaze+ 7.3K + 3K 106 0.5 sec

Table 2: Datasets on which the proposed method is
benchmarked. Segments are the number of action seg-
ments in the train + test set, Classes are the number of
action classes in the dataset, τ is the anticipation time.

4 Experimental Setup

4.1 Datasets
1. Anticipation Datasets We evaluate the
proposed method on two different datasets that
are summarised in Table. 2. Both the datasets,
Epic-Kitchen 55 (Damen et al., 2018) and
EGTEA-GAZE+ (Li et al., 2018), are egocentric (first-
person) videos of people cooking some recipe.
Note the proposed method is broadly applicable
to other types of dataset as long as the input video
segments in the training set contain action sequence
annotations. For the Epic-Kitchen 55 dataset, we
use the standard train-test split followed in Furnari
and Farinella (2019). For the EGTEA-GAZE+ dataset,
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we report performance on the first of the three train-
test splits following previous work by Girdhar and
Grauman (2021).

2. Domain-Relevant Dataset The teacher can be
improved further by adapting its language model
(LM) to domain relevant texts. To test the effective-
ness of this, we use the Recipe1M dataset (Marin
et al., 2019) to pre-train the LM. The Recipe1M
dataset contains one million recipes along with as-
sociated images (which are not used in this work).
The instructions in a recipe can be seen as a se-
quence of cooking actions to be performed.

4.2 Performance Metrics

For the EGTEA-Gaze+, we report the performance
on top1 accuracy (Acc@1) and class mean
recall (Rec@1)-mean recall of the individual
classes, as reported by Girdhar and Grauman
(2021). For the Epic-Kitchen 55 dataset, there
are a set of action classes that occur only in the
train set but not in the test set and vice versa.
Existing anticipation methods, including our pro-
posed work does not support zero-shot learning.
Therefore top5 many-shot class-mean recall
(MS-Rec@5)-mean top5 recall of the classes in the
many-shot-classes, as mentioned in Furnari et al.
(2018), is our primary metric for model evaluation.

4.3 Implementation Details

1. Teacher Training: The teacher model is a
classification layer on top a pre-trained language
model. For the main set of experiments we used
AlBERT (Lan et al., 2019) as the base language
model. Our choice here is motivated by two main
factors: (i) the pre-training task for AlBERT focuses
on modeling the inter-sentence coherence which
is important when modeling the sequence of dis-
parate action phrases (ii) it enables faster training of
deeper models. For the EGTEA-GAZE+ dataset, we
trained the model for 4 epochs by minimizing the
weighted cross-entropy loss (inversely weighted by
the relative class frequency) due to the high degree
of class imbalance in the dataset (∼ 1 : 24). For the
EPIC-Kitchen-55 dataset, the model was trained
for 8 epochs using regular cross-entropy loss in-
stead of weighted cross-entropy as a lot of classes
in the test label set are not present in the train-set,
and vice versa.

The classification head is a single linear layer
(W · x + b) that projects the feature representa-
tion of the input action sequence into the label

space of the target dataset. For optimizing on both
the datasets, we used the AdamW ((Loshchilov
and Hutter, 2017)) optimizer, with a learning rate
of 10−5 and weight decay of 10−7. The context
window for the Epic-Kitchen was set to 5 action
segments whereas for the EGTEA-GAZE+ it was set
to 15 action segments. The teacher training was
performed on two Nvidia RTX Titan-X GPUs. The
teacher training for the EGTEA-GAZE+ takes about
2-4 hours depending on the LM base whereas the
EPIC-Kitchen-55 takes about 3-5 hours to train.

2. Teacher Pre-training: We first parse each
instruction in the Recipe1M dataset into a se-
quence event tuples of the form (subject, verb,
object) using an open information extraction sys-
tem (Stanovsky et al., 2018) made available by
AllenNLP (Gardner et al., 2018). To match the
action label structure we see in the video datasets,
we represent each instruction using the sequence
of action, i.e. <verb, object> part of the event. The
actions in the action sequence are sorted by the
discourse order of their corresponding verb in the
instruction. The language model is pretrained on
these (verb, object) sequences using the standard
masked language modeling objective (Devlin et al.,
2019), where some token in the sequence is masked
at random and the model is tasked with predicting
the masked token.

For pre-training, the language models were
trained on the Recipe1M dataset for 200K steps
with a batch size of 16. The optimizer used was
AdamW (Loshchilov and Hutter, 2017), with a
learning rate of 10−5 and weight decay of 10−7.
LM pre-training was performed on a single Nvidia
A100 GPU with the training time varying from 12
hrs for the smallest model (DistilBERT) to 24 hrs
for BERT, RoBERTa, and AlBERT.

3. Student Training: For the student training, all
the hyperparameters and initial conditions (param-
eter initialization) are exactly identical to the ones
used to train the AVT (Girdhar and Grauman, 2021)
baseline model. So any change in the performance
from the baseline is the result of adding the knowl-
edge distillation. The distillation loss coefficient
λS , for the EGTEA-GAZE+ dataset was set to 150,
and 20 for EPIC-Kitchen 55.

4. Top-K logit distillation: The label space of
EPIC-Kitchen 55 has 2, 513 classes, out of which
only 31% of the classes in the training data are
present in the test data. This leads to the teacher
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model assign relatively low probability values to
many classes, which may not be reliable signals
for distillation. Therefore, instead of matching the
probability distribution over all the action classes,
we only match the relative probability distribution
of the top-50 classes with the highest teacher prob-
abilities. For this, we consider the classes cor-
responding to the top-50 logits from the teacher
prediction, normalize them, and only minimized
the KL-Divergence between them and their cor-
responding logits of the student prediction. The
student training was performed on either Nvidia
Tesla V100 GPU and the training time was ∼ 24
hrs for EGTEA-GAZE+ and ∼ 6 hrs for the EPIC-55
dataset.

5 Results and Analysis

We present the results of text to video knowl-
edge distillation on the AVT (Girdhar and Grau-
man, 2021) model as the student. AVT is the
state-of-the-art model for action anticipation on
the EGTEA-GAZE+ and EPIC-Kitchen 55 datasets
on all performance metrics.

For each of these datasets, we consider the AVT
variants with the best performance as our baseline
and student model. For the EGTEA-GAZE+ dataset,
we consider AVT-h + AVT-b in (Girdhar and Grau-
man, 2021) as our baseline model. Similarly for
the EPIC-Kitchen 55 dataset, we consider, AVT-h
+ irCSN152 in (Girdhar and Grauman, 2021) as
our baseline model. 3 Throughout this section, we
refer to AVT-h + AVT-b and AVT-h + irCSN152
as AVT-1 and AVT-2 respectively. The baseline
models distilled with LM based teacher is denoted
as AVT-1(or 2) + LM Distillation and in case
teacher LM is pre-trained on the recipe domain text,
the resulting model is referred to as AVT-1(or 2)
+ RcpLM Distillation. We tried to reproduce the
AVT model to use as our student and obtain stronger
results than the published version (see Table 3), on
all but one metric. We use this stronger implemen-
tation as our baseline and our student model.

5.1 Does Knowledge distillation from
Language Models help ?

Table 3 shows the result of training the state-
of-the-art baseline model AVT, with and without
the text to vision knowledge distillation, for the
EGTEA-GAZE+ and EPIC-Kitchen 55 dataset. We

3♣AVT variants used for the EGTEA-GAZE+ and
EPIC-Kitchen 55 baselines are AVT-1 and AVT-2.

can observe that applying text to vision knowledge
distillation to the AVT leads to performance gains
on both the datasets. For EGTEA-GAZE+, adding
knowledge distillation leads to 2.1% and 2% rel-
ative percentage improvement over AVT-1 on the
Acc@1 and Rec@1 metrics respectively. For the
EPIC-Kitchen 55 dataset, knowledge distillation
leads to a relative performance gain of 3.5% over
AVT-2 on MS-Rec@5 metric.

5.2 Does domain-adaptive pre-training of
teacher improves the task performance ?

To analyze the effect domain adaptive pre-training
on the task, we pre-train the teacher LM on the
Recipe1M dataset through the MLM task. The
pre-trained model was then finetuned on the task-
specific video dataset for the anticipation task.
As seen in Table 3, the performance gain of the
teacher directly translates to the performance gain
of the student. For EGTEA-GAZE+ dataset, pre-
training teacher leads to 3.9% and 3.4% rela-
tive improvement over the AVT-1 on Acc@1 and
Rec@1 metric compared to 2.1% and 2% relative
improvement when not pretraining the teacher.
For the EPIC-Kitchen 55 dataset, teacher pre-
training leads to a relative improvement of 7.2%
on MS-Rec@5 metric compared to only 3.5% when
not pre-training the teacher.

Model
EGTEA-GAZE+ EPIC-55

Acc@1 Rec@1 MS-Rec@5

AVT (Girdhar
and Grauman, 2021)
-published

43.0 35.5 13.6

AVT (Girdhar
and Grauman, 2021)
-reproduced

43.52 34.87 15.25

AVT + LM
Distillation

44.41 35.54 15.79

AVT + RcpLM
Distillation

45.2 36.1 16.36

Table 3: Effect of knowledge distillation: Distilling
knowledge from teacher (ALBERT LM) trained on text-
modality of the video data, into vision based student
model leads to student performance gain. Pre-training
the teacher on domain relevant text before task specific
finetuning leads to further performance improvement.♣

5.3 How sensitive is the distillation to the
choice of Language Model ?

In order to analyze the sensitivity of the distillation
scheme towards the choice of the language model,
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Model
EGTEA-GAZE+ EPIC-55

Acc@1 Rec@1 MS-Rec@5

AVT (Girdhar and
Grauman, 2021) 43.52 34.87 15.25

+ Rcp-ALBERT
Distillation

45.2 36.1 16.36

+ Rcp-BERT
Distillation

44.81 35.57 15.98

+ Rcp-RoBERTa
Distillation

45.5 36.53 15.97

+ Rcp-ELECTRA
Distillation

45.2 35.58 15.34

+ Rcp-DistillBERT
Distillation

44.86 35.64 16.23

Table 4: Effect of the choice of teacher LM on the
distillation performance. Each of the pre-trained LMs
that we tested as a teacher, showed performance gain
over the baseline AVT model for both the datasets.♣

we also trained multiple teachers with different pre-
trained LMs. The result of using different teachers
for the anticipation task is specified in Table 4.
From the table, we can observe that all the teacher
distilled models perform better than the baseline
AVT on all the metrics for both the datasets. This
indicates that the text modality has some informa-
tion that complementary to the vision modality that
if properly exploited can lead to improved perfor-
mance for the anticipation task.

5.4 Should the teacher be always better than
the student ?

To understand the impact of the quality of the teach-
ers, we measured the performance of the teacher
models by themselves on the anticipation task as
show in Table 5. For the EPIC-Kitchen 55 dataset
the teacher performance is much better than the
video-only baseline, whereas, for the EGTEA-GAZE+
dataset, the baseline vision model’s performance
is much better than any of the teachers. Despite
this, the performance gain due to distillation is
greater for the EGTEA-GAZE+ dataset compared to
the EPIC-Kitchen 55 dataset, as seen in Table 3.
This suggests that what matters more for distilla-
tion in this case is the complementary information
gained from the text modality that is not already
present in the vision modality.

6 Conclusions

Action anticipation is a challenging problem that
requires training large capacity video models. In

Model
EGTEA-GAZE+ EPIC-55

Acc@1 Rec@1 MS-Rec@5

AVT (Girdhar and
Grauman, 2021) 43.52 34.87 15.25

Rcp-ALBERT
Teacher

21.66 22.63 21.78

Rcp-BERT
Teacher

22.05 23.39 21.43

Rcp-RoBERTa
Teacher

19.98 21.58 22.41

Rcp-ELECTRA
Teacher

21.46 23.71 15.19

Rcp-DistillBERT
Teacher

21.86 22.58 21.56

Table 5: Teacher performance on the anticipation task.
For the EGTEA-GAZE+ dataset, the teacher performance
is much lower than the video only AVT model, where
as for the EPIC-Kitchen 55 dataset, the teacher perfor-
mance is much better than the video-only AVT model.♣

this work, we showed how the textual modality of
the input videos, which is often ignored in train-
ing, can be leveraged to improve the performance
of the video models. In particular, we can exploit
the large scale knowledge acquired by pre-trained
language models to build a text-modality teacher
that can provide useful complementary information
about the action sequences to a vision modality stu-
dent. This cross-modal distillation strategy yields
consistent gains achieving new state-of-the-art re-
sults on multiple datasets. Last, the gap between
the performance of the teacher and the student mod-
els for domains with large label space suggests that
there is still room for improvement with better dis-
tillation techniques.

7 Limitations

Real life scenarios have a large space of human
actions which cannot be exhaustively covered by
manually annotated training data. As such it is im-
portant to have models with zero-shot anticipation
capabilities to predict unseen actions. This work
did not explore zero-shot settings but we believe
text-to-video distillation holds promise given the
recent successes of language models in zero-shot
tasks.

In this work we have shown the capability of
text based language models for action anticipation,
especially when the action space is very large and
sparse. Though this work is intended to be a proof
of concept for leveraging text based model for im-
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proving video based action anticipation, there is
still a large performance gap between the a text
based language model and vision modality model.
This performance gap indicates fruitful research
avenues in text to vision knowledge distillation for
action anticipation task.

8 Ethical Considerations

Anticipation future action based on videos is an im-
portant for many applications such as assistive tech-
nologies, augmented reality etc. Our work demon-
strates that knowledge derived from text sources
can be used to further improve the performance
of video based action anticipation model. Even
though our proposed work is able to improve the
current state-of-art numbers on the standard bench-
mark datasets, the absolute performance is still low,
especially in the case where the action space is very
large. As such we would recommend to carefully
analyze the cost of erroneous prediction before de-
ploying the system for real world application.

Since the proposed method involves distilling the
knowledge gained by pre-trained language model
from text sources into a vision based model for
action anticipation, this can also transfer the bi-
ases that these languages models can learn from
the training text. As such data on which these
text-based teacher models are trained should be
analyzed for potential biases before deploying the
proposed system for actual application. Analysis
of bias propagation during knowledge distillation
and devising bias reduction techniques are some
potential extension of this work that we are highly
interested in.
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A Appendix

In this section, we present examples of model pre-
diction for the video action anticipation task for
the EPIC-55 dataset. For each instance we show
the top-5 predictions for (i) video-only model -
AVT (ii) text-based teacher model - LM-teacher
(Rcp-ALBERT) (iii) a LM-teacher distilled student
video model - AVT + LM teacher Distl (AVT +
Rcp-ALBERT Distillation). Note that the end-
task setting is such that, the inference has to be
done only from the video frames, as the text label
for the action segment won’t be available during
the inference time.

Figure 3 and 4 shows example of cases where the
base video only model makes incorrect prediction,
where as the text-based teacher and the teacher-
distilled video model makes correct predictions.
Figure 5 and 6 shows example of cases where the
base video only model makes incorrect prediction,
the text-based teacher makes correct prediction,
however the teacher-distilled video model makes
incorrect predictions.
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EXAMPLE 1
INPUT

put-down_vegetable open_door take_greater take_pan put-down_pan

TARGET: close_door
PREDICTIONS
AVT : [put-down_pan, take_pan, turn-on_hob, open_door, open_drawer]
LM-teacher : [open_door, close_door, put-down_pan, take_pan, turn-on_hob]
AVT + LM teacher Distl : [put-down_pan, take_pan, open_door, close_door,
turn-on_hob]

EXAMPLE 2
INPUT

put-down_pan put_lid put-down_pan take_pan take_lid

TARGET: put_lid
PREDICTIONS
AVT : [put-down_pan, turn-on_hob, open_door, take_pan, close_door]
LM-teacher: [put-down_pan, open_door, take_pan, put_lid, wash_pan]
AVT + LM teacher Distl: [put-down_pan, turn-on_hob, open_door, take_pan,
put_lid]

Figure 3: Example of instances where the base video-only model makes wrong prediction, whereas the text-based
teacher and the teacher distilled video model makes correct prediction.
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EXAMPLE 3

INPUT

put-down_board:cuttingput_onion put_knife pick-up_kettle open_kettle

TARGET: fill_kettle

PREDICTIONS
AVT: [open_door, turn-on_tap, pour_water, close_bin, open_tap]

LM-teacher: [pour_water, fill_kettle, put-down_kettle, open_kettle, close_kettle]

AVT + LM teacher Distl: [open_door, pour_water, close_bin, fill_kettle,

turn-on_tap]

EXAMPLE 4

INPUT

put_lid move_spoon take_flour open_flour pour_flour

TARGET: put-down_flour

PREDICTIONS
AVT : [pour_flour, put-down_bag, mix_mixture, roll_dough, knead_dough]

LM-teacher : [put-down_flour, pour_flour, ’ stir_flour, mix_mixture, check_flour]

AVT + LM teacher Distl: [pour_flour, roll_dough, mix_mixture, put-down_bag

put-down_flour]

Figure 4: Example of instances where the base video-only model makes wrong prediction, whereas the text-based
teacher and the teacher distilled video model makes correct prediction.
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EXAMPLE 1

INPUT

open_fridge take_carrot open_drawer close_fridge putdown_vegetable

TARGET: open_door

PREDICTIONS
AVT: [close_door, close_fridge, put_container, open_drawer, take_knife]

LM-teacher: [close_fridge, open_drawer, open_door, close_door, take_sausage]

AVT + LM teacher Distl: [close_door, put_container, take_knife, open_drawer,

take_container]

EXAMPLE 2

INPUT

put_filter:water drink-from_cup put_cup take_lid take_pan

TARGET: put-down_pan

PREDICTIONS
AVT : [put_lid, stir_pasta, put-down_spoon, change_temperature, stir_pan]

LM-teacher : [put-down_pan, wash_pan, open_door, take_pan, dry_saucepan]

AVT + LM teacher Distl: [put_lid, stir_pasta, put-down_spoon, change_temperature,

open_door]

Figure 5: Example of instances where the base video-only model makes wrong prediction, the text-based teacher
makes the correct prediction, however the teacher distilled video model makes incorrect prediction.
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EXAMPLE 3

INPUT

take_onion put-down_onion close_container take_spatula take_knife

TARGET: cut_onion

PREDICTIONS
AVT: [put_container, take_knife, turn-on_tap, open_fridge, put-down_onion]

LM-teacher: [put-down_knife, cut_onion, mix_food, open_drawer, take_spoon]

AVT + LM teacher Distl: [put_container, take_knife, put-down_knife,

take_container, open_fridge]

EXAMPLE 4

INPUT

take_dough put_dough put_lid open_door take_tomato

TARGET: put-down_tomato

PREDICTIONS
AVT : [open_fridge, open_door, turn-on_tap, open_drawer, rinse_hand]

LM-teacher : [put-down_tomato, close_door, take_tomato, take_plate, take_pan]

AVT + LM teacher Distl: [open_fridge, open_door, open_drawer, close_door,

take_bowl]

Figure 6: Example of instances where the base video-only model makes wrong prediction, the text-based teacher
makes the correct prediction, however the teacher distilled video model makes incorrect prediction.
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Abstract

Opinion summarization provides an important
solution for summarizing opinions expressed
among a large number of reviews. However,
generating aspect-specific and general sum-
maries is challenging due to the lack of an-
notated data. In this work, we propose two
simple yet effective unsupervised approaches
to generate both aspect-specific and general
opinion summaries by training on synthetic
datasets constructed with aspect-related review
contents. Our first approach, Seed Words Based
Leave-One-Out (SW-LOO), identifies aspect-
related portions of reviews simply by exact-
matching aspect seed words and outperforms
existing methods by 3.4 ROUGE-L points on
SPACE and 0.5 ROUGE-1 point on OPOSUM+
for aspect-specific opinion summarization. Our
second approach, Natural Language Inference
Based Leave-One-Out (NLI-LOO) identifies
aspect-related sentences utilizing an NLI model
in a more general setting without using seed
words and outperforms existing approaches by
1.2 ROUGE-L points on SPACE for aspect-
specific opinion summarization and remains
competitive on other metrics.

1 Introduction

Customer reviews play a vital role in decision-
making for customers and product (or business)
providers, as customers usually resort to reviews
to guide their purchasing decisions and product
providers improve their products based on reviews
as feedback. However, it becomes hard for cus-
tomers or product providers to read through all
reviews before making decisions with the explo-
sion of online reviews in recent years. Opinion
summarization (Hu and Liu, 2006; Wang and Ling,
2016; Angelidis and Lapata, 2018; Bražinskas
et al., 2020; Brazinskas et al., 2022; Angelidis et al.,
2021; Amplayo et al., 2021a; Basu Roy Chowdhury

∗Work done during an internship at AWS AI Labs.

et al., 2022), the task of generating a general sum-
mary of salient opinions expressed among reviews,
provides a feasible solution to this problem.

Different from summarization in Wikipedia and
news domains (Nallapati et al., 2016; Narayan et al.,
2018a; See et al., 2017; Narayan et al., 2018b; Liu
and Lapata, 2019; Cachola et al., 2020), opinion
summarization cannot rely on reference summaries
for model training since it is difficult and expen-
sive to annotate large scale reviews-summary pairs.
Also, customers usually care about specific aspects
of a product instead of a general high-level sum-
mary. Thus, fine-grained aspect-specific opinion
summaries are required, and this makes the annota-
tion process even more difficult and expensive.

Amplayo et al. (2021a) propose an abstractive
approach to generate aspect-specific opinion sum-
maries by training on synthetic datasets. They
construct synthetic datasets with review elements
(words, phrases, or sentences) identified by a mul-
tiple instance learning (MIL) module (Keeler and
Rumelhart, 1991) learned with silver-standard la-
bels obtained using aspect seed words. We first
follow this direction to propose a more straightfor-
ward and effective method that excludes the com-
plex learning module to identify aspect-related el-
ements to construct synthetic datasets. Moreover,
aspect seed words, which again require human ef-
forts, may not always be available when moving to
new domains. Thus we propose another more gen-
eral solution without the curation and supervision
of aspect seed words.

Specifically, we propose two simple yet effective
methods to identify aspect-related review sentences
and construct aspect-specific synthetic datasets in a
Leave-One-Out (LOO) (Bražinskas et al., 2020; El-
sahar et al., 2021; Brazinskas et al., 2022) style and
then finetune pretrained language models (PLMs)
on the synthetic datasets: (a) SW-LOO identifies
aspect-related sentences by simply exact-matching
aspect seed words and outperforms existing ap-
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proaches by 3.4 ROUGE-L points and 0.5 ROUGE-
1 point on aspect opinion summaries of SPACE

and OPOSUM+ respectively; (b) NLI-LOO identi-
fies aspect-related sentences with a finetuned NLI
(Bowman et al., 2015; Williams et al., 2018) model.
Being the first approach that does not use aspect
seed words, it outperforms existing approaches
on aspect opinion summarization by 1.2 ROUGE-
L points for SPACE and falls behind at most 1
ROUGE point on other metrics.

2 Problem Formulation

Let C denote a corpus of reviews on entities{e1, e2, . . . } (products or business). Let Ae ={a1, a2, . . . , aM} denotes a set of aspects (e.g.,
food or location for a hotel) that are relevant for the
domain of entities. For each entity e, we define its
review set as Re = {r1, r2, . . . , rN}. Each review
r is a collection of sentences {x1, x2, . . . } and each
sentence x is a sequence of tokens {w1, w2, . . . }.
Each aspect a is represented by a small set of
seed words (e.g., meal or buffet for food aspect)
Sa = {v1, v2, . . . }. Our approaches generate two
types of opinion summaries: (a) general summary
that contains salient opinions over all aspects of
the entities; and (b) aspect summary that focuses
on only one specific aspect a ∈ Ae.

3 Synthetic Dataset Construction

Leave-One-Out (LOO) We construct synthetic
datasets in a LOO style: from a pool of review
elements (reviews or review sentences), an element
is randomly sampled as a pseudo-summary, then
we select input reviews from the remaining review
elements.

3.1 Seed Words Based LOO
To build a synthetic reviews-summary pair for as-
pect a, as shown in the upper diagram of Figure 1,
we first filter each review r into its aspect-related
portion r′ where r′ ⊆ {x1, x2, . . . } with each sen-
tence in r′ containing at least one seed word in Ae.
For example, for food aspect with its seed words
{breakfast, buffet, ...}, a hotel review r

′
i: "They have

the most wonderful buffet in Bay Area. And the ho-
tel is close to the airport. Forgot to mention, espe-
cially the breakfast is terrific." will be filtered into
its aspect-related review portion r′i: "They have the
most wonderful buffet in Bay Area. Forgot to men-
tion, especially the breakfast is terrific.". Noticed
that r′2 is empty suppose there is no sentence in r2

Figure 1. One synthetic data pair construction for aspect a in
SW-LOO and NLI-LOO.

containing any seed word. Then we apply LOO
construction on the filtered aspect-related review
portions {r′1, r′3, . . . , r′P } as shown in the diagram:
r
′
i is randomly sampled as the pseudo summary

and inputs are chosen from {r′1, r′3, . . . , r′P } \ {r′i}
by first ranking them with the pseudo-summary
r
′
i based on ROUGE-1 score (Lin, 2004) and then

truncating with a token budget j (truncate up to j
tokens) since a concatenation of all filtered reviews
cannot fit into the encoder of a PLM. Please refer
to Appendix B for more details and analysis on
SW-LOO.

3.2 NLI Based LOO

NLI Component In order to relax the require-
ment of aspect seeds (provided by humans) and
to make a more scalable and general solution, we
propose to use an NLI model to infer whether a
review sentence is related to an aspect. Specifically,
we set a review sentence as the premise and verbal-
ize an aspect with the template: the text is about
{aspect}, which we use as the hypothesis. If the
entailment probability is higher than a threshold
(0.9 for SPACE and 0.8 for OPOSUM+), we identify
the sentence as related to the aspect with this en-
tailment probability, else we set the aspect-related
probability to 0.

To build a synthetic pair for aspect a, we first
break all reviews into review sentences and filter
out those that are not related to aspect a with the
NLI model. As shown in the lower diagram of
Figure 1, each sentence is first passed through the
NLI model to infer its probability of relatedness
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to aspect a, so s2 with entailment probability of
0.45 will be filtered out if the threshold is set to 0.5.
Then we apply LOO construction on all aspect-
related sentences {s1, s3, . . . , sQ} and we also use
a token budget to truncate ranked synthetic input
similar to SW-LOO, however, different from SW-
LOO where we use ROUGE-1 scores to rank, we
calculate similarities based on entailment probabil-
ities. Please refer to Appendix C for more details
and analysis on NLI-LOO. Note that we filter the
input reviews at sentence level for NLI-LOO and
at review level in SW-LOO.

4 Summarization Model

We use T5 (Raffel et al., 2020), a sequence-to-
sequence Transformer-based (Vaswani et al., 2017)
PLM, to finetune our synthetic datasets similar to
previous works (Ke et al., 2022; Amplayo et al.,
2021a). For SW-LOO, we use the following tem-
plate: “summarize based on aspect: [ASPECT]
{aspect} [ASPECT] with seed words: [SEED]
{seed words} [SEED]: {filtered review} [SEP] {fil-
tered review} . . . ” to convert synthetic input and
for NLI-LOO, we use: “[ASPECT] {aspect} [SEP]
{aspect-related sent} [SEP] {aspect-related sent}
. . . ”. [ASPECT], [SEED], and [SEP] are special
tokens, {aspect} is an aspect name, {seed words}
are concatenation of seed words for an aspect, each
{filtered review} is a r′i in SW-LOO synthetic input,
and each {aspect-related sent} is a sk in NLI-LOO
synthetic input. For both methods, outputs are
pseudo summaries.

5 Experiment

5.1 Datasets

We evaluate our methods on two opinion summa-
rization datasets: SPACE (Angelidis et al., 2021),
containing reviews from hotel domain, and OPO-
SUM+ (Amplayo et al., 2021a), containing Ama-
zon product reviews from six different domains.
Both datasets are comprised of a large corpus of
raw reviews and a small development and test set
with human-annotated aspects and general opinion
summaries for evaluation. Aspect seed words are
usually obtained with a small amount of human ef-
fort. For SW-LOO, we use the same seed words as
in Amplayo et al. (2021a) (Appendix E). Refer to
Appendix D for detailed descriptions and statistics
of the two datasets.

SPACE OPOSUM+
Model R1 R2 RL R1 R2 RL

E
xt

ra
ct

iv
e

LEXRANK 24.61 3.41 18.03 22.51 3.35 17.27
QT 28.95 8.34 21.77 23.99 4.36 16.61
ACESUMEXT 30.91 8.77 23.61 26.16 5.75 18.55
SEMAE 31.24 10.43 24.14 - - -
SW-LOOEXT 33.14 10.32 25.81 28.14 6.10 19.51
NLI-LOOEXT 27.18 6.63 20.60 26.78 6.48 18.07

A
bs

tr
ac

tiv
e

MEANSUM 25.68 4.61 18.44 24.63 3.47 17.53
COPYCAT 27.19 5.63 19.18 26.17 4.30 18.20
ACESUM 32.41 9.47 25.46 29.53 6.79 21.06
SW-LOO 34.68 11.50 28.83 30.00 6.92 20.76
NLI-LOO 31.57 10.44 26.66 28.90 6.60 20.11

HUMAN 44.86 18.45 34.58 43.03 16.16 31.53

Table 1. Evaluation for aspect summaries on SPACE and
OPOSUM+ test sets. Best performances are in bold and second
best performances are underlined.

5.2 Baselines
We compare our methods with several unsuper-
vised extractive and abstractive approaches. Ex-
tractive approaches include CENTROID (Radev
et al., 2004), LEXRANK (Erkan and Radev, 2004),
QT (Angelidis et al., 2021), SEMAE (Basu
Roy Chowdhury et al., 2022), and two extractive
variants of our methods, SW-LOOEXT and NLI-
LOOEXT, by feeding identified aspect-related sen-
tences to LEXRANK instead of T5, similar to the
idea in Amplayo et al. (2021a). Abstractive ap-
proaches include MEANSUM (Chu and Liu, 2019),
COPYCAT (Bražinskas et al., 2020), and ACESUM

(Amplayo et al., 2021a). Appendix F contains more
details on baselines.

We also compare with two upper bounds re-
ported in Amplayo et al. (2021a): an ORACLE

that selects the review with the highest ROUGE
score to the gold summary as the summary and
a HUMAN upper bound that is calculated as the
inter-annotator ROUGE scores.

5.3 Implementation
We first pre-process the raw corpus such as remov-
ing products with very few reviews and too long
or short reviews as in Appendix G. We use T5-
SMALL as our summarization models and larger
T5 size does not show improvements as shown
in Appendix L. We use a MNLI (Williams et al.,
2018) finetuned BART-LARGE (Lewis et al., 2020)
model in NLI-LOO. We choose this model given
its better performance1 in zero-shot topic classifi-
cation. We perform simple hyper-parameter tuning

1
https://joeddav.github.io/blog/2020/05/29/

ZSL.html
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SPACE OPOSUM+
Model R1 R2 RL R1 R2 RL

E
xt

ra
ct

iv
e

CENTROID 31.29 4.91 16.43 33.44 11.00 20.54
LEXRANK 31.41 5.05 18.12 35.42 10.22 20.92
QT 38.66 10.22 21.90 37.72 14.65 21.69
ACESUMEXT 35.50 7.82 20.09 38.48 15.17 22.82
SEMAE 43.46 13.48 26.40 - - -
SW-LOOEXT 38.44 11.01 25.62 40.45 19.13 23.20
NLI-LOOEXT 25.07 4.52 16.16 39.79 18.33 23.49

A
bs

tr
ac

tiv
e

MEANSUM 34.95 7.49 19.92 26.25 4.62 16.49
COPYCAT 36.66 8.87 20.90 27.98 5.79 17.07
ACESUM 40.37 11.51 23.23 32.98 10.72 20.27
SW-LOO 42.27 12.99 23.47 36.19 12.17 21.11
NLI-LOO 41.25 12.79 24.31 31.22 9.93 19.08

ORACLE 40.23 13.96 23.46 41.88 21.52 29.30
HUMAN 49.80 18.80 29.19 55.42 37.26 44.85

Table 2. Evaluation for general summaries on SPACE and
OPOSUM+ test sets. Best performances are highlighted in
bold and second-best performances are underlined.

on dev sets and select checkpoints with the best
ROUGE-L scores to report performances on test
sets. Please refer to Appendix H for more details
such as training configurations and other analyses.

5.4 Results

We evaluate the quality of generated opinion sum-
maries using ROUGE1/2/L F1 scores (Lin, 2004).
Example summaries generated by our methods are
shown in Table 12 and Table 13 in Appendix.

Aspect Opinion Summarization Table 1 con-
tains the results of all baselines and our methods
on the two benchmark datasets. Despite its simplic-
ity, SW-LOO achieves the highest scores on both
datasets across all metrics except RL for OPOSUM+
with only 0.3 points behind the best-performing
baseline. On the other hand, NLI-LOO achieves
higher R2 and RL scores on SPACE than existing
methods despite using no seed words. While it falls
behind other methods on OPOSUM+, it is at most 1
point behind across all metrics. This highlights that
even without aspect seed words, NLI-LOO is pos-
sible to compete with SOTA aspect-based opinion
summarization methods.

Next, we turn to the evaluation of extractive ver-
sions of our methods. We observe SW-LOOEXT

achieves higher R1 and RL scores on SPACE but
falls behind on OPOSUM+ by at most 1.5 point
compared with all baselines. This is consistent
with the finding in Amplayo et al. (2021a) that a
simple centrality-based extractive approach such
as LEXRANK are strong baselines as long as in-
put sentences are already aspect-related. And

SPACE OPOSUM+
Model Aspect General Aspect General

SW-LOO 27.59 23.42 20.41 20.58
w/ Training Random 24.24 24.70 19.75 18.71
w/ Inference Random 23.46 22.04 18.76 19.41
w/ Both Random 14.71 21.82 18.06 18.15

NLI-LOO 25.92 25.13 19.21 19.32
w/ Training Random 22.05 22.06 18.42 19.37
w/ Inference Random 24.33 24.56 18.10 16.97
w/ Both Random 16.14 22.50 17.83 19.69

Table 3. Training Random means randomly selecting sen-
tences as pseudo summary and input during synthetic dataset
construction. Inference Random means randomly selecting
sentences as input during inference. We report RL scores of
our approaches on dev sets.

SW-LOOEXT outperforming ACESUMEXT further
shows that our simple filtering method using
exact-matching seed words already produces good
enough aspect-related sentences compared with
the extra learning module used in Amplayo et al.
(2021a). However, NLI-LOOEXT, is not able to
outperform the best baseline, and we hypothesize
the reason is that NLI model filtered aspect-related
sentences are still noisy so that a summarization
model is required to serve as regularization.

Finally, comparing our four methods, SW-LOO
achieves the best performances with the supervi-
sion of seed words, NLI-LOO comes second de-
spite the lack of seed words supervision, and our
two extractive versions come last since the ground
truth summaries are in nature abstractive.

General Opinion Summarization As shown in
Table 2, on SPACE, SW-LOO and NLI-LOO out-
perform the SOTA abstractive system, ACESUM,
but under-perform SOTA extractive system, SE-
MAE. We observe the same trend between SW-
LOOEXT and ACESUMEXT as in aspect opinion
summarization and this again shows the simple yet
effective nature of our filtering method. For OPO-
SUM+, SW-LOOEXT and NLI-LOOEXT outper-
form existing methods given that the annotated gen-
eral summaries for OPOSUM+ are extractive, SW-
LOO outperforms existing abstractive approaches,
and NLI-LOO falls behind with only 1 point.

5.5 Ablation Study

We conduct ablation experiments with random fil-
tering to study the importance of the filtering strate-
gies in our two methods. We introduce randomness
in two different phases. First, when constructing
synthetic pairs, instead of using our filtering strate-
gies before applying LOO construction, we ran-
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domly select sentences as pseudo-summary and
input. This is essentially a random LOO baseline.
Second, during inference, we sample random sen-
tences to feed into T5 encoder instead of using
our filtering strategies to select aspect-related el-
ements. Finally, we combine these two random
strategies. Results in Table 3 show that our sen-
tence filtering strategies are crucial since ROUGE
scores drop drastically as more randomness is intro-
duced. This is more severe for aspect summariza-
tion since aspect-specific synthetic dataset construc-
tion needs to focus on particular aspects. However,
randomly selecting sentences is possible to cover
most aspects by chance for general summarization.

6 Conclusion

In this work, we propose two simple yet effective
unsupervised approaches that generate aspect and
general opinion summaries by training on synthetic
datasets. SW-LOO constructs synthetic datasets
simply by exact-matching aspect seed words and
outperforms existing methods consistently on all
metrics and datasets. Being the first work that gen-
erates aspect summaries without using aspect seed
words, NLI-LOO constructs synthetic datasets
with an out-of-the-box NLI model and achieves
on-par and sometimes even better performances
compared with existing methods.

Limitations

One of the biggest challenge in opinion summa-
rization is the multi-document setting where each
document represents one product review. Since
the number of reviews for a product tends to be
large, it would be unrealistic to concatenate all in-
put reviews and train to generate a summary in an
end-to-end fashion limited by modern hardware
capacity, for example, the GPU memory needed is
quadratic w.r.t the input length for all transformer-
based PLM. In this work, we tackle this problem by
pre-filtering reviews using some heuristics (aspect
seed words matching and NLI model selecting) into
sub-elements of reviews with much smaller sizes.
However, information is very likely to get lost and
become incomplete in the pre-filtering phase, lead-
ing to inaccurate summarization. Our approach is
exactly facing this problem. One way to address
this drawback is to first condense each review into
an encoding that contains key information of the
review such as opinion aspect and opinion senti-
ment, and then aggregate all review vectors to gen-

erate a summary. Amplayo and Lapata (2021) call
this pipeline as CONDENSE-ABSTRACT and it has
been used in both supervised and unsupervised gen-
eral opinion summarization (Chu and Liu, 2019;
Coavoux et al., 2019; Iso et al., 2021; Amplayo and
Lapata, 2021; Isonuma et al., 2021).
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A Related Works

Unsupervised opinion summarization is the task
of summarizing opinionated text such as customer
reviews without training on gold reviews-summary
pairs. Recent works have been using autoencoders
(Kingma and Welling, 2014) and synthetic datasets
construction, or a mix of both, to tackle the zero-
shot setting.

An autoencoder model consists of an encoder
that maps the input into latent embedding space
and a decoder that reconstructs the original input
from the latent space. The latent representation
learned can be later aggregated or can be used
to cluster and select text to perform both extrac-
tive and abstractive summarization. Chu and Liu
(2019); Bražinskas et al. (2020) aggregate the input
reviews latent representations by averaging then
generate the summaries conditioned on it. An-
gelidis and Lapata (2018) utilizes the latent rep-
resentation with aspect specificity and sentiment
polarity to guide the selection of review texts as
extractive summaries. Recently, Angelidis et al.
(2021) proposes the first approach that generates
both general and aspect-specific opinion summaries
in an extractive manner. They first leverage Vector-
Quantized Variational Autoencoder (Van Den Oord
et al., 2017) to cluster review sentences and then
use a popularity-driven extraction algorithm to
summarize. Similar to Angelidis et al. (2021),
Basu Roy Chowdhury et al. (2022) learns repre-
sentations of texts over latent semantic units using
dictionary learning (Dumitrescu and Irofti, 2018).
Other autoencoder-related methods include denois-
ing autoencoder (Amplayo and Lapata, 2020) and
Coavoux et al. (2019), an encoder-decoder archi-
tecture that utilizes clustering of encoding space to
extract summaries.

Another direction of work creates synthetic
datasets utilizing the largely available amount of
online customer reviews. Synthetic datasets are
usually constructed in a leave-one-out (LOO) style
that one review is first randomly sampled as a
pseudo-summary, and then a subset of reviews
are selected or generated as input reviews to be
paired with the pseudo-summary to enable super-
vised training. Methods of selecting and generating
input reviews include random sampling (Bražin-
skas et al., 2020), generating noisy versions of the
pseudo-summary (Amplayo and Lapata, 2020), se-
lecting reviews that have closer distribution with
the pseudo-summary in the embedding space (Am-

playo et al., 2021b; Ke et al., 2022), and selecting
more textual similar reviews (Elsahar et al., 2021;
Brazinskas et al., 2022). Recently, Amplayo et al.
(2021a) proposes the first abstractive approach that
can generate both general and aspect summaries.
Their method build synthetic datasets by identi-
fying aspect-specific elements with a multiple in-
stance learning (MIL) model (Keeler and Rumel-
hart, 1991) using aspect seed words. Our work
is closest to Amplayo et al. (2021a) in that we
also build synthetic datasets by identifying aspect-
specific elements, however, our methods do not
require extra learning components such as MIL but
achieve better performances.

Besides unsupervised opinion summarization,
our second method, NLI-LOO is related to the
recent approach (Yin et al., 2019) that utilizes NLI
(Bowman et al., 2015; Williams et al., 2018) mod-
els to tackle zero-shot text classification (Chang
et al., 2008) (multi-class and multi-label) problem
such as topic detection (Zhang et al., 2015) and
emotion detection (Bostan and Klinger, 2018). The
main idea is to solve the classification problem by
casting the problem into NLI format. Specifically,
the text to be classified becomes the premise, and
class labels are converted into natural language for-
mat (verbalization) to be used as the hypothesis. If
the text entails the verbalized class label, then the
text belongs to this class. In our work, we identify
the relatedness of a review sentence to an aspect in
such a way to construct synthetic datasets.

B SW-LOO Details

For general synthetic pairs construction, after fil-
tering each review with seed words for each as-
pect, we make sure to sample one review such that
its aspect-related portions for all aspects are non-
empty and concatenate them as pseudo-summary.
We retrieve top similar filtered reviews to each
aspect-related portion in the pseudo-summary and
concatenate them as general synthetic input, and
the retrieval process is the same as in aspect syn-
thetic pairs construction. General synthetic input
and output are both approximately M times the
length of those in aspect synthetic pairs where M
is the number of aspects. For the summarization
model, {aspect} and {seed words} are the concate-
nation of all aspects and all seed words for general
synthetic pairs. Finally, we train all synthetic pairs
together.

At inference time, we also first filter each review
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into aspect-related portions. However, since there
is no reference pseudo summary, we cannot trun-
cate based on similarities to fit into T5 encoder.
We adopt the principle strategy used in PEGASUS
(Zhang et al., 2020) Gap Sentences Generation pre-
training objective to select important reviews as
input for inference. We show the effectiveness of
adopting the principle strategy in Appendix I.

C NLI-LOO Details

Different from SW-LOO where we use ROUGE-1
scores, we calculate similarities based on aspect
entailment probabilities to rank and truncate aspect-
related sentences as synthetic input. For aspect
synthetic pairs, we simply calculate the absolute
probability difference between pseudo summary
and aspect-related sentences. For general synthetic
pairs, each review sentence (no matter whether
aspect-related) corresponds to a probability vector
of dimension M where M is the number of aspects
and each element is the probability of the sentence
being related to each aspect, and we calculate co-
sine similarities between the probability vectors
of pseudo summary and review sentences that are
related to at least one aspect (sum of the proba-
bility vector is non-zero). We use the same token
budget to truncate review sentences to fit into T5
encoder for both aspect and general synthetic pairs.
We also train all synthetic pairs together. Another
way to calculate similarities is directly using cosine
similarity between sentence embeddings, however,
results reported in Appendix J do not show better
performance.

During inference, we use 1 and all-one vectors
with dimension M as reference vectors to rank and
truncate review sentences for aspect and general
input construction.

D Datasets Details

Hotel reviews in SPACE are collected from TripAd-
visor and each hotel in the evaluation sets is anno-
tated with seven types of summaries: six aspect-
specific and one general, with three gold summaries
for each type. The number of reviews for a hotel in
the raw corpus varies but each hotel in the evalua-
tion sets comes with 100 reviews. Product reviews
from six domains: laptop bag, Bluetooth headset,
boots, keyboard, television, and vacuum in OPO-
SUM+ are initially down-sampled from Amazon
Product Dataset2 (McAuley et al., 2015) by Ange-

2
http://jmcauley.ucsd.edu/data/amazon/

Statistics SPACE OPOSUM+

domain 1 6
aspects per entity 6 3

raw review corpus
entities 11.40K 95.55K
total reviews 1.14M 4.13M

dev / test set
entities 25 30
reviews per entity 100 10
summaries per entity 3 3
total aspect summaries 450 270
total general summaries 75 90

Table 4. Detailed statistic for SPACE and OPOSUM+ datasets.
Note that only gold general summaries for OPOSUM+, which
is underlined in the table, are extractive.

lidis and Lapata (2018) and then further expanded
by Amplayo et al. (2021a). Each product in the
evaluation sets is annotated with four types of sum-
maries: three aspect-specific and one general, with
also three gold summaries for each type. The num-
ber of reviews for a product in the raw corpus also
varies but each product in the evaluation sets comes
with 10 reviews. All human-annotated summaries
are abstractive except that general summaries in
OPOSUM+ are extractive. Detailed statistics of the
datasets are shown in Table 4.

E List of Seed Words

Aspect seed words (listed in Table 5 and 6) are
usually automatically extracted using a variant of
clarity scoring function (Cronen-Townsend et al.,
2002) applied on a small amount of aspect annota-
tion as described in Angelidis and Lapata (2018),
and they can be further manually improved by do-
main experts as in Amplayo et al. (2021a).

F Baselines Details

Extractive Approaches We first compare against
two traditional approaches: CENTROID selects the
review closest to the centroid of all reviews as the
summary; LEXRANK selects the most salient re-
view sentences as summary similar to PAGERANK

(Page et al., 1999). BERT (Devlin et al., 2019)
embedding is used to represent sentences in both
traditional methods. More recent systems include
QT (described in Section 1) and SEMAE. Inspired
by QT, SEMAE represents text over latent seman-
tic units using dictionary learning.
Abstractive Approaches MEANSUM generates
summaries by reconstructing the mean of reviews’
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Aspect Hotel

building lobby pool decor gym area
cleanliness clean spotless garbage dirty stain
food breakfast food buffet restaurant meal
location location walk station distance bus
rooms room bed bathroom shower spacious
service staff service friendly helpful desk

Table 5. Seed words for hotel domain in SPACE dataset.

Aspect Laptop Bag

looks looks color stylish looked pretty
quality quality material poor broke durable
size fit fits size big space

Aspect Boots

comfort comfortable foot hurt ankle comfy
looks cute look looked fringe style
size size half big little bigger

Aspect Bluetooth Headset

comfort ear fit comfortable fits buds
ease of use easy button simple setup control
sound quality sound quality hear noise volume

Aspect Keyboard

quality working months build stopped quality
comfort feel comfortable feels mushy shallow
layout key keys delete backspace size

Aspect TV

connectivity hdmi computer port usb internet
image quality picture color colors bright clear
sound quality sound speakers loud tinny bass

Aspect Vacuum

accessory filter brush attachments attachment turbo
ease of use easy push concerns awkward impossible
suction suction powerful power hair quiet

Table 6. Seed words for various domains in OPOSUM+
dataset.

representations using autoencoder. COPYCAT uses
a hierarchical variational autoencoder to learn la-
tent codes for the summaries. The most recent
approach is ACESUM. (described in Section 1).

Note that LEXRANK, MEANSUM, and COPY-
CAT do not support aspect-specific summary gen-
eration, Amplayo et al. (2021a) adopt a simple

sentence-filtering strategy to enable it. Specifi-
cally, after training a general opinion summariza-
tion model, during inference for aspect summaries,
they filter out input review sentences that are not
aspect-related using cosine similarities scores be-
tween BERT embeddings of review sentences and
aspect seed words before feeding into general sum-
marization model.

G Datasets Pre-Processing

We pre-process differently for our two methods
on the same dataset since we want to control the
constructed synthetic datasets to have reasonable
sizes and resemble properties of test time data such
as the number of reviews per product and average
review length. We use dev sets to observe such
properties. In SW-LOO, we first remove reviews
with less than 20 words and then remove hotels
with less than 10 reviews for SPACE; we first re-
move reviews less than 20 or more than 100 words
then remove products with less than 12 reviews for
OPOSUM+. In NLI-LOO, we remove reviews with
less than 10 or more than 120 words for SPACE and
remove reviews with less than 20 or more than 100
words for OPOSUM+.

H Implementation Details

We use T5 implementation from HuggingFace3

(Wolf et al., 2020). We use AdamW (Loshchilov and
Hutter, 2019) optimizer without weight decay and
set 0.9, 0.999, 1 × 10

-8 for β1, β2, ϵ. We train all
summarization models for a total of 25K steps on
the combination of aspect and general synthetic
pairs. We set ngram refraining size (Paulus et al.,
2018) to 3 during inference. We tune initial learn-
ing rate in [1e−6, 4e−5, 3e−4] and batch size in
[8, 16]. We tune beam search size during inference
in [2, 4]. For SW-LOOEXT and NLI-LOOEXT,
we use [CLS] token embedding in the last layer
of BERT as the sentence representation. We con-
catenate top 6 sentences returned by LEXRANK

as general summary, and tune in [2, 4] for as-
pect summary. We also use two sizes of BERT:
BERT-BASE and BERT-LARGE. All computa-
tions are performed on 8-GPU p3.16xlarge Ama-
zon instance. The best hyper-parameter settings for
all experiments can be found in Table 7.

During preliminary studies for aspect synthetic
pairs construction, we find that for SPACE, us-

3
https://huggingface.co/docs/transformers/

model_doc/t5

1908

https://huggingface.co/docs/transformers/model_doc/t5
https://huggingface.co/docs/transformers/model_doc/t5


SW-LOO

SPACE
asp. lr=3e−4, bch=16, bm=2
gen. lr=3e−4, bch=16, bm=2

OPOSUM+
asp. lr=3e−4, bch=16, bm=2
gen. lr=1e−6, bch=16, bm=2

NLI-LOO

SPACE
asp. lr=4e−5, bch=16, bm=2
gen. lr=4e−5, bch=16, bm=2

OPOSUM+
asp. lr=3e−4, bch=8, bm=4
gen. lr=1e−6, bch=16, bm=2

SW-LOOEXT

SPACE
asp. BERT-Base, n=2
gen. BERT-Base, n=2

OPOSUM+
asp. BERT-Base, n=2
gen. BERT-Large, n=2

NLI-LOOEXT

SPACE
asp. BERT-Large, n=2
gen. BERT-Base, n=4

OPOSUM+
asp. BERT-Large, n=4
gen. BERT-Large, n=4

Table 7. Best hyper-parameter settings on SPACE and OPO-
SUM+ dev sets: lr stands for AdamW initial learning rate, bch
stands for training batch size, and bm stands for beam search
size at inference time.

ing sampled filtered aspect-related review portion
as pseudo-summary rather than the original re-
view that contains the pseudo-summary gives better
downstream ROUGE scores, but it is the opposite
way with OPOSUM+. Please refer to Appendix K
for analyses on pseudo-summary granularity.

SW-LOO For SPACE, we add a linear learning
rate warm-up in the first 500 steps and save check-
points every 500 steps. Since there are totally 6
aspects for SPACE and very few reviews contain-
ing seed words for all 6 aspects can be sampled as
pseudo summaries for general synthetic pairs con-
struction, we relax the constraint of pseudo sum-
maries containing seed words for all 6 aspects to 4
aspects. We set 200 as the token budget to truncate
ranked aspect-related review portions for aspect
synthetic pairs construction, and 150 as the token
budget in principle strategy when selecting impor-
tant sentences as input during inference for SPACE.
We set 1536 and 200 as the maximum input and
output token length of T5 for all SW-LOO experi-
ments. Notice that this exceeds 512, which is the
maximum token length that T5 is pretrained on,
but recent works (Zhang et al., 2020; Rothe et al.,
2021) have shown that seq2seq PLMs generalize

Aspect General
Model R1 R2 RL R1 R2 RL

SW-LOO 33.11 10.98 27.59 40.26 12.04 23.42
w/o Prin. Sel. 30.88 9.74 25.78 35.84 10.28 21.80

Table 8. Randomly or using principle strategy to select aspect-
related review portions in order to fit into the encoder of T5.
Performances are reported on SPACE dev set.

well even when finetuned on longer sequences not
observed at pretraining phase. For OPOSUM+, we
add linear learning rate warm-up in the first 250
steps. We set 300 as the token budget to truncate
for aspect synthetic pairs construction. There are
∼ 50K aspect and ∼ 5K general synthetic pairs for
SPACE, ∼ 70K aspect and ∼ 6K general synthetic
pairs for OPOSUM+.

NLI-LOO For SPACE, we add linear learning
rate warm-up to first 1000 steps, and 500 steps
for OPOSUM+. We set 0.9 and 0.8 as the entail-
ment probability threshold for SPACE and OPO-
SUM+ based on our preliminary experiments (lower
thresholds make identified aspect-related sentences
too noisy and further hurt downstream ROUGE
scores). For summarization models, we set 500
as the token budget for both aspect and general
synthetic pairs construction for both datasets and
set 512 and 150 for maximum input and output
token length of T5. There are ∼ 36K aspect and
∼ 6K general synthetic pairs for SPACE, ∼ 70K
aspect-specific and ∼ 28K general synthetic pairs
for OPOSUM+.

I Principle Strategy Effectiveness

Unlike OPOSUM+, there are 100 reviews for each
hotel in SPACE evaluation sets. During inference,
we cannot simply concatenate all filtered reviews
as input since they cannot fit into T5 encoder. We
adopt the principle strategy introduced in PEGASUS

to select the most important filtered reviews and
concatenate them as input for inference. In Table 8,
we show the effectiveness of the principle strategy
by comparing it with randomly selecting filtered
reviews as input for inference.

J Similarity Metric

Different from using aspect entailment probability,
we can also use sentence embeddings (Reimers and
Gurevych, 2019) to calculate the cosine similarity
between pseudo summary and aspect-related re-
view sentences to construct synthetic input. Specifi-
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SPACE OPOSUM+
Model R1 R2 RL R1 R2 RL

A
sp

. NLI-LOO 30.20 9.84 25.92 27.48 5.64 19.21
w/ Sent. Sim. 29.87 9.30 25.26 27.00 6.20 19.06

G
en

. NLI-LOO 41.17 12.34 25.13 31.10 10.09 19.32
w/ Sent. Sim. 25.01 9.68 17.34 31.11 10.43 19.86

Table 9. Calculate cosine similarity using aspect entailment
probability or sentence embeddings when constructing syn-
thetic datasets in NLI-LOO. Performances are reported on
dev sets for both datasets.

Aspect General
Granularity R1 R2 RL R1 R2 RL

SPACE

Sentence 33.11 10.98 27.59 40.26 12.04 23.42
Review 25.01 6.42 18.04 39.86 11.21 23.07

OPOSUM+
Review 29.18 6.38 20.41 36.16 11.89 20.58
Sentence 22.34 5.06 17.33 20.06 6.76 13.86

Table 10. Pseudo summary granularity study for SW-LOO
and NLI-LOO. Performances are reported on dev sets. Note
that in our main experiments, we use sentence level pseudo
summary for SPACE and review level for OPOSUM+

cally, we use all-mpnet-base-v24, which is a sen-
tence embedding model finetuned on a 1B sentence
pairs dataset with a self-supervised contrastive
learning objective. Results in Table 9 show that
there is no significant difference except general
summarization for SPACE where using sentence
embeddings is much worse than using aspect en-
tailment probability.

K Pseudo Summary Granularity

We use different pseudo-summary granularity for
two datasets: sentence level for SPACE and review
level for OPOSUM+. Sentence level directly uses
sampled filtered aspect-related review portion (SW-
LOO) or sampled aspect-related review sentence
(NLI-LOO) as pseudo-summary, and review level
uses the original review that contains the sampled
pseudo-summary as pseudo-summary. Results in
Table 10 show the importance of design choices for
synthetic datasets construction.

L T5 Model Sizes

We use different T5 sizes including T5-SMALL,
T5-BASE, and T5-LARGE as summarization mod-
els. Results in Table 11 show that larger summa-
rization models do not necessarily guarantee better

4
https://www.sbert.net/docs/pretrained_models.

html

SPACE OPOSUM+
Model R1 R2 RL R1 R2 RL

A
sp

ec
tS

um
m

ar
y

SW-LOO

T5-SMALL 33.11 10.98 27.59 29.18 6.38 20.41
T5-BASE 33.43 11.08 27.73 30.03 6.60 20.53
T5-LARGE 33.70 10.77 27.60 28.98 6.15 20.32

NLI-LOO

T5-SMALL 30.20 9.84 25.92 27.48 5.64 19.21
T5-BASE 30.24 10.04 25.95 27.58 5.28 19.29
T5-LARGE 30.61 9.50 25.68 27.14 5.47 19.55

G
en

er
al

Su
m

m
ar

y

SW-LOO

T5-SMALL 40.26 12.04 23.42 36.16 11.89 20.58
T5-BASE 41.31 12.47 23.12 35.53 11.65 20.33
T5-LARGE 39.90 10.94 22.64 32.96 10.24 19.41

NLI-LOO

T5-SMALL 41.17 12.34 25.13 31.10 10.09 19.32
T5-BASE 37.49 11.44 22.91 26.51 6.74 17.08
T5-LARGE 37.57 10.14 21.77 30.41 6.77 17.37

Table 11. Using different T5 sizes as summarization model.
Performances are reported on dev sets for both datasets.

downstream ROUGE scores and sometimes even
hurt downstream performances. Our hypothesis
is that larger models overfit synthetic datasets and
thus perform slightly worse on downstream evalua-
tion sets.
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SW-LOO Summaries

Building The pool area was very nice and the room was clean and comfortable.

Cleanliness Our room was very clean and comfortable.

Food The breakfast was great and the staff was very helpful and helpful.

Location The hotel is located right next to the main road and is a short walk from the beach.

Rooms The room was very clean and comfortable.

Service The staff was very friendly and helpful.

General The pool was very nice and clean. We were able to walk to the beach and Duval st. from the hotel, so we had a
nice view of the harbor and the sea! The breakfast was great and we stayed in October and were very pleased with the location
- right next to all the restaurants ... The room was small but very small and very comfortable with clean and comfortable beds.

NLI-LOO Summaries

Building The hotel is a beautiful old hotel.

Cleanliness The room was clean and the staff was very helpful.

Food The breakfast was great and the view from the rooftop was amazing.

Location The location is great - just a short walk to the Spanish Steps and the metro station.

Rooms The rooms are small by European standards, but very clean and comfortable.

Service the service was excellent and the staff was very friendly and helpful.

General The hotel is very clean and the staff is friendly and helpful. The room was very small and clean, but the
bathroom was a bit small compared to the other rooms in the UK. It is OK to stay here again. I would stay there again if
you want to go back to Europe! The location is great - the city is just ten minutes walk from the metro station andn’t be
disappointed with the price of the rooms.

Table 12. General and aspect-level summaries for a hotel in SPACE dataset generated by SW-LOO and NLI-LOO

SW-LOO Summaries

Sound Quality I love this headset. It’s a great product, but it doesn’t have any issues with the sound! It is OK if you are
looking for something that can be used for your Samsung TV?

Comfort I love this headset. It’s a great headset for the price, but it doesn’t fit my ear perfectly!

Ease of Use I bought this for my Motorola. It is very easy to set up, and the buttons are very comfortable!

General I haven’t found any way of getting that to be consistently good. The earpieces are not as sturdy or high quality
in material as a Motorola, but the buttons are quite accessible and the sound varies based on how it’s fitting into my ears! The
set is very comfortable and has great range ( roughly 100 feet ) and connects easily to my iPhone with me - but it is not too
big for me to wear if it doesn’t fit my TV.

NLI-LOO Summaries

Sound Quality I love these headphones. They are very comfortable, sound quality is good and they’re very good quality
for the price!

Comfort I love these headphones. They are very comfortable, and the sound quality is great! They’re a little tight on my
ears but if you aren’t sure how long they will last you...

Ease of Use I bought these for my Motoactv. They are very comfortable to wear, and they don’t touch my neck at all!

General I bought these headphones in a package for the Motoactv. They are very comfortable, the neck band doesn’t
touch my neck at all allowing for free movement! The sound is very good and fits comfortably in my ears... but it takes some
time to find the right angel and fit it right in.

Table 13. General and aspect-level summaries for a product in "Bluetooth Headset" domain of OPOSUM+ dataset generated by
SW-LOO and NLI-LOO.
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Abstract

The large number of parameters of some promi-
nent language models, such as BERT, makes
their fine-tuning on downstream tasks compu-
tationally intensive and energy hungry. Previ-
ously researchers were focused on lower bit-
width integer data types for the forward propa-
gation of language models to save memory and
computation. As for the backward propagation,
however, only 16-bit floating-point data type
has been used for the fine-tuning of BERT. In
this work, we use integer arithmetic for both
forward and back propagation in the fine-tuning
of BERT. We study the effects of varying the
integer bit-width on the model’s metric perfor-
mance. Our integer fine-tuning uses integer
arithmetic to perform forward propagation and
gradient computation of linear, layer-norm, and
embedding layers of BERT. We fine-tune BERT
using our integer training method on SQuAD
v1.1 and SQuAD v2., and GLUE benchmark.
We demonstrate that metric performance of
fine-tuning 16-bit integer BERT matches both
16-bit and 32-bit floating-point baselines. Fur-
thermore, using the faster and more memory
efficient 8-bit integer data type, integer fine-
tuning of BERT loses an average of 3.1 points
compared to the FP32 baseline.

1 Introduction

Over the past few years, integration of attention
mechanisms into deep learning models led to the
creation of transformer based models. BERT (De-
vlin et al., 2018) is a prominent transformer based
language model which has shown state-of-the-art
performance in natural language processing (NLP)
tasks.

BERT requires high memory and computational
resources due to its large number of parameters.
Having large number of parameters incurs chal-
lenges for inference, training, and also fine-tuning

*Equal contribution.
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Figure 1: Energy consumption and latency of 1 billion
operations using various data types, measured on an
Intel® Xeon® CPU E5-2698 v4.

of this model. Moreover, the training phase i.e. pre-
training and fine-tuning, involves more operations
compared to the inference. More specifically, the
training phase includes gradient computation and
weight update that make the training more compu-
tationally intensive.

One method of reducing the computational com-
plexity of deep learning models is to represent their
parameters and activations in low bit-width data
types. This reduces the memory footprint of the
model and enables more efficient computations.
For instance, Figure 1 shows that low-bit integer
data types have higher throughput and better energy
consumption compared to floating-point.

Previous research attempts at integer quantiza-
tion of transformer based language models were
only focused on forward propagation and the gradi-
ent computation were kept in 32-bit floating-point
data type (FP32) (Bhandare et al., 2019; Kim et al.,
2021; Zafrir et al., 2019).

Furthermore, earlier efforts for using low bit-
width data types for gradient computation of trans-
former based language models has only been lim-
ited to 16-bit floating-point (FP16). This method,
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known as mixed precision training (Micikevicius
et al., 2017), uses FP16 data type to represent
weights, activations and gradients while using FP32
for the weight update.

Here we present an integer fine-tuning method
for transformer based language models such as
BERT. Unlike previous works, we use integer data
types for both forward propagation and gradient
computation during the fine-tuning of BERT. More-
over, we use the dynamic fixed-point format to
represent floating-point numbers as integers.

Our integer mapping strategy can be used along-
side floating-point numbers in fine-tuning and in-
ference similar to mixed precision training. In our
proposed strategy, the arithmetic of all the compute
intensive layers for both forward and back propaga-
tion are performed using integer arithmetic while
other components of the model, such as nonlinear
functions and the weight updates are kept in FP32.
We use integer versions of compute intensive lay-
ers such as linear, normalization (layer-norm), and
embedding layers.

We study the effect of various bit-widths of the
integer input activation and show that increasing
the bit-width of the fixed-point mapping function
improves the convergence behaviour of the model.
This enables us to find the minimum bit-width re-
quired for integer fine-tuning of BERT.

Our fine-tuning experiments show that 16-bit
integer BERT is able to match the metric perfor-
mance of mixed precision FP16 and FP32 methods.

We also further reduce the bit-widths and show
that integer fine-tuning of BERT with 8-bit integer
weights and 12-bit integer activations has a score
drop of 3.1 compared to the original performance.

To summarize, this paper makes the following
contributions:

• Integer fine-tuning of transformer based lan-
guage models that uses integer arithmetic for
both the forward and back propagation of
compute intensive layers such as linear, layer-
norm, and embedding. To the best of our
knowledge, this is the first time that integer
data type is used for back propagation of pre-
trained language models.

• Analyzing the effect of changing the bit-width
of dynamic fixed-point format on the conver-
gence of fine-tuning. Remark 3 discusses that
the convergence behaviour of our integer fine-
tuning is directly related to the variance of dy-

namic fixed-point mapping and is controlled
by the bit-width.

• We show that fine-tuning BERT using 16-
bit integer numbers is able to outperform the
FP16 mixed precision fine-tuning method.

The rest of this paper is structured as follows.
Section 2 briefly discusses previous works in which
low bit-width data types are used for inference and
training of deep learning models. Section 3 pro-
vides details of our integer fine-tuning method, in-
cluding the representation mapping functions and
integer-only layers. The convergence behaviour
of the dynamic fixed-point mapping is studied in
Section 4 by providing empirical observations and
theoretical analysis. The fine-tuning experiments
on various integer and floating-point setups are pre-
sented in Section 5. Finally, Section 6 concludes
the ideas proposed in this work.

2 Related Works

In this section we discuss the previous works that
use low bit-width data types in transformer based
language models. These works could be catego-
rized into two major groups. In the first group,
called low-bit inference, the low bit-width data
types are used only in the forward propagation
phase to improve computational complexity and
reduce memory usage during the inference. In the
second group, also known as low-bit training, lower
bit-width data types are used for both the forward
and back propagation phases.

2.1 Low-bit Inference

Previous research on low-bit inference quantize the
model parameters and activations to speed up the
forward propagation. This category is itself divided
into quantization-aware training (QAT) and post-
training quantization (PTQ) methods.

In QAT, quantization is performed during train-
ing, allowing the model parameters to adapt to the
quantization noise. QAT relies on high-precision
FP32 gradients to train the model and adapt it to
the quantization noise.

For instance, (Zafrir et al., 2019) proposed
Q8BERT which quantizes the inference compu-
tations of all linear and embedding layers of BERT
to 8-bit integers and updates the quantization scale
with a moving average. Similarly, (Shen et al.,
2020) suggested Q-BERT which requires the com-
putation of hessian matrix for each group of param-
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eters to be used in a mixed precision fine-tuning
with different bit-widths. (Kim et al., 2021) pro-
posed I-BERT that uses a uniform quantization
scheme to quantize input activations and weights
of various components of BERT. In I-BERT, the
quantization scaling factors are computed based on
the distribution of the training data.

Unlike QAT that performs quantization of in-
ference operations during training, Post-Training
Quantization (PTQ) methods apply quantization
to the parameters when the training is completed.
Thus, they require extra calibration or parameter
tuning to adapt the model to the quantized parame-
ters.

For instance, (Bhandare et al., 2019) quantized
the matrix multiplications of the original trans-
former architecture from (Vaswani et al., 2017) to
8-bit integer data type. Moreover, the quantization
is done only for the forward propagation and re-
quires extra calibration using validation data to tune
the boundaries of the quantization function. (Zadeh
et al., 2020) introduced GOBO which compresses
the fine-tuned weights of BERT by grouping them
into two categories of Gaussian and outlier. The
outlier weights are kept in FP32, while the Gaus-
sian weights are quantized to lower bits. For lower
bit-width regimes, TernaryBERT and BinaryBERT
are able to push the quantization to 2 and 1 bits
respectively (Zhang et al., 2020a; Bai et al., 2020).
They both rely on methods such as data augmenta-
tion and knowledge distillation to adapt the model
to the low-bit weights.

2.2 Low-bit Training

Research on low-bit training try to perform both
the forward propagation and gradient computation
in low-bit arithmetic. Using low precision number
formats for gradients reduces the model’s ability to
adapt the parameters to the quantization noise, but
increases the throughput and reduces the memory
footprint.

FP16 mixed precision training (Micikevicius
et al., 2017) is a common method currently for
low-bit fine-tuning of transformer based language
models. This method uses FP16 data type in both
forward propagation and gradient computation,
while using FP32 for the weight update. Unlike
FP16 mixed precision training, our work uses dy-
namic fixed-point format which allows for multiple
choices of bit-width for the data type. We show that
our 16-bit integer fine-tuning method outperforms

FP16 mixed precision training in terms of metric
score.

Using integer data types in the training of deep
learning models has been previously studied for
the computer vision tasks. For instance, (Zhang
et al., 2020b) quantized the input activations, gradi-
ents and parameters of the linear layers for various
convolutional neural networks (CNN). Similarly,
(Zhao et al., 2021) adapted the quantization pa-
rameters by detecting the distribution of the gra-
dients in the channel dimension. In both these
works the quantization error is measured during
training and is used to adjust the quantization scale,
whereas our method does not require any informa-
tion about distribution of data or gradients. (Zhu
et al., 2020) applied a quantization scheme to train
CNN architectures with “direction sensitive gradi-
ent clipping” and learning rate scaling to control
the quantization error of gradients. Our integer
fine-tuning method does not require gradient clip-
ping and can follow the same loss trajectory as
the floating-point baseline with the same hyper-
parameters. Our proposed method improves upon
(Ghaffari et al., 2022) which uses dynamic fixed-
point format for integer training of deep learning
models. Unlike (Ghaffari et al., 2022), our work
studies various bit-widths for both weights and ac-
tivations to find the minimum bit-width required
for fine-tuning BERT. Furthermore, we study in-
teger training method on large language models
where low-bit quantization is known to be a chal-
lenging task (Bondarenko et al., 2021). To the best
of our knowledge, this is the first time where inte-
ger numbers are used for the back propagation of
transformer based language models.

3 Methodology

3.1 Representation Mapping

We use the dynamic fixed-point format
(Williamson, 1991) to map the floating-point
numbers to integer data type. This format, also
known as block floating-point, maps floating-point
numbers to blocks of integer numbers, with
each block having its unique scale. For more
information on various number formats refer to
Appendix A.

We use a linear fixed-point mapping function
to map floating-point numbers to integer numbers.
The linear fixed-point mapping converts a floating-
point tensor F to a tensor of integers and a single
scale factor.
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Figure 2: Forward propagation operations in an integer-only linear layer. Green boxes use integer arithmetic and red
boxes use floating-point data type. Here, the integer output is generated using an integer matrix multiplication and
the output scale is generated by a single add operation. The bottom panel shows the linear fixed-point mapping for
the input tensors, that are the input activation and the parameter tensor in this figure.

The integers are obtained by rounding the
floating-point mantissas. The scale is the maximum
of the floating-point exponents of F. The bottom
section of Figure 2 shows the internal operations
of the linear fixed-point mapping.

To map the fixed-point numbers to floating-point,
a non-linear inverse mapping function is used. The
inverse mapping converts integer numbers into nor-
malized floating-point mantissas and packs each
integer with its corresponding scale into a floating-
point number.

Details of the representation mapping functions
are provided in (Ghaffari et al., 2022). Our method-
ology differs in that it includes various bit-widths
for both weights and activations for the fine-tuning
of transformer based language models. We exploit
this mapping strategy to explore various bit-widths
for weights and activations in order to find the min-
imum bit-width for fine-tuning the model.

3.2 Integer Fine-tuning

Our method uses integer arithmetic for weights,
activations and gradients, while the weight update
is kept in FP32. Moreover, our proposed BERT
setups use integer-only versions for all the linear,
layer-norm and embedding layers in which internal
operations are performed with integer arithmetic.

3.2.1 Linear Layer
Figure 2 depicts a high-level view of forward prop-
agation operations of the integer-only linear layer.
All the parameters and activations of the layer are

first mapped to dynamic fixed-point using the linear
fixed-point mapping function. In the case of linear
layer, the integer parameters and input activations
are then sent to an integer matrix multiplication
function to generate the integer output. If needed,
the integer output could be mapped back to floating-
point to be used by other layers of the model using
the non-linear inverse mapping.

For back propagation, the gradients of the param-
eters and input activations are also computed using
integer arithmetic. Using integer matrix multipli-
cation, the output gradients are multiplied by input
activations and parameters to compute the gradi-
ents. Since the weight update is performed in FP32,
the integer gradients and their scales are passed to
the non-linear inverse mapping to be mapped to
FP32.

3.2.2 Layer-norm
The layer normalization or layer-norm performs
the following operation on its input X (Ba et al.,
2016):

γ
X − µ√
σ2 + ϵ

+ β. (1)

Here γ and β are the weight and bias parameters,
and σ and µ are input standard deviation and mean
respectively. For the forward propagation of inte-
ger layer-norm we map X to dynamic fixed-point
format and compute σ and µ using integer arith-
metic. Note that multiplication to γ and addition
with β are also performed using integer arithmetic.
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Figure 3: F1 score of fine-tuning BERT using b-bit
gradients, and activations on SQuAD v2.0 dataset. For
the 8-bit and 9-bit fixed-point bit-widths, we use 12-bit
input activations.

Moreover, the back propagation also uses integer
arithmetic to compute the gradients for the input,
γ, and β.

3.2.3 Embedding Layer
The embedding layer is a lookup table that stores
embeddings. The layer takes a list of indices as
input and returns the list of corresponding embed-
dings for each index. The integer embedding layer,
handles integer embeddings and needs less mem-
ory footprint to store these values. For the back
propagation, the embedding layer applies the out-
put integer gradients directly to each corresponding
row of the lookup table.

4 Convergence Behaviour of Dynamic
Fixed Point Mapping

4.1 Empirical Observations

Figure 2 shows that the bit-width, b, is controlled by
adjusting the number of rounded bits in the round-
ing function. Here we study the effect of changing
the integer bit-width on the metric performance of
the model.

The motivation of varying the bit-width of the dy-
namic fixed-point is to control the variance induced
by the linear fixed-point mapping. Our experiments
show that using dynamic fixed-point with a bit-
width of 10 achieves the same performance as the
FP32 fine-tuning method. Figure 3 demonstrates
the F1 score of fine-tuning BERT on SQuAD v2.0
dataset against the fixed-point bit-width. Note that
the fixed-point arithmetic with a bit-width higher
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on SQuAD v2.0 Dataset

Figure 4: F1 score of fine-tuning BERT using 8-bit
weights and gradients, with varying input activation
bit-width on SQuAD v2.0 dataset. Note that Remark
3 justifies this experiment using the variance of b-bit
dynamic fixed-point mapping.

than 10 bits is able to closely match the F1 score of
the FP32 baseline, that is indicated by the red line
in the figure. Also note that in our experimental
setup for the 8-bit dynamic fixed-point format, we
use 12-bit input activations to close the F1 score
gap with the FP32 baseline. The reason for using
higher bit-width input activations is that we ob-
served 8-bit activation dramatically reduces the F1
score. Figure 4 shows the effect of input activa-
tion bit-width on the F1 score when the weights
are 8-bit integers. Changing the bit-width of the
input activation from 8 bits to 12 bits significantly
increases the F1 score. Increasing the input activa-
tion bit-width beyond 12 bits has a negligible effect
on the F1 score, confirming that 12 bits is the mini-
mum required bit-width of the input activations for
this application with 8-bit integer weights.

4.2 Theoretical Analysis

Here, we study the effect of varying dynamic fixed-
point mapping bit-width on the stochastic gradient
descent method. The goal is to show the relation
of weight and activation bit-widths on the conver-
gence of integer training. Let us consider the fol-
lowing simplified weight update equation

wk+1 = wk + η̄ĝ(wk, ξk), (2)

where ĝ(wk, ξk) is the dynamic fixed-point gradi-
ent and η̄ is the learning rate during the fine-tuning
phase. Furthermore, we also consider the following
common assumptions in sequel.
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Assumption 1 (Lipschitz-continuity). The loss
functionL(w) is continuously differentiable and its
gradients satisfies the following inequality where
L > 0 is the Lipchitz constant

L(w) ⩽ L(w̄)+∇L(w̄)⊤(w − w̄)

+
1

2
L||w − w̄||22;

∀ w, w̄ ∈ Rd. (3)

Assumption 2. (i) L(wk) is bounded. (ii) b-bit
dynamic fixed-point gradients ĝ(wk, ξk) is an unbi-
ased estimator of the true gradients of the loss func-
tion ∇L(wk)⊤Eξk{ĝ(wk, ξk)} = ||∇L(wk)||22 =
||Eξk{ĝ(wk, ξk)}||22, and (iii) with the b-bit dy-
namic fixed-point gradients i.e. ĝ(wk, ξk), there
exist scalars M ⩾ 0 , MV ⩾ 0, M q ⩾ 0 and
M q
V ⩾ 0 such that for all iterations of SGD

Vξk{ĝ(wk, ξk)}
⩽M +M q + (MV +M q

V )||∇L(wk)||22.

Where M q and M q
V denote the added variance of

b-bit dynamic fixed-point mapping on the true gra-
dient variance. Also note that in order for Assump-
tion 2 (i) to hold true, we use stochastic rounding
for back propagation.

Suppose Assumption 1 and Assumption 2 are
true, then inequality (4) follows from (Ghaffari
et al., 2022, Remark 2)

Eξk{L(wk+1)} − L(wk)

⩽ −(1− 1

2
η̄L(MG +M q

G))η̄||∇L(wk)||22

+
1

2
η̄2L(M +M q),

with MG := 1 +MV and M q
G := 1 +M q

V ,
(4)

which shows the effect of added variance of fixed
point mapping, i.e. M q

V and M q, on each step of
the optimizer.

Remark 1. In inequality (4), the first term,
−(1− 1

2 η̄L(MG +M q
G))η̄||∇L(wk)||22 contribute

to decreasing the loss L while the second term,
1
2 η̄

2L(M +M q), prevents it. Also note that when
M q and M q

G are increased, they negatively affect
the descent of the loss L. This means for a good
convergence behaviour, representation mapping

variance bounds, i.e. M q and M q
G, must be con-

trolled.

Remark 2. For dynamic fixed-point mapping with
b-bit integers, the representation mapping variance
bounds i.e. M q and M q

G, are closely related to the
bit-width b. Here, we study these two constants for
a linear layer. Let us denote Â as the b-bit dynamic
fixed-point version of tensor A and âij as its ijth

element. We can relate âij and aij with an error
term δ such as âij = aij + δAij . For a linear layer
Ŷ = X̂Ŵ, the computation of the b-bit dynamic
fixed-point gradients in the back propagation is

Ĉ =
∂L̂

∂Ŵ
=

∂Ŷ

∂Ŵ

∂L̂

∂Ŷ
= X̂⊤

∂L̂

∂Ŷ
= X̂⊤Ĝ. (5)

It is of interest to find the relation between Ĉ =
X̂⊤Ĝ in the integer back propagation and the true
gradients C = X⊤G. We can derive the variance
for each element ĉij by expanding the error terms
δ,

V{ĉij} = V

{
N∑

n=1

x̂niĝnj

}

= V

{
N∑

n=1

(xni + δXni)(gnj + δGnj)

}

⩽ V

{
K∑

n=1

xnignj

}

+ σ2GE{||X⊤i. ||22}+ σ2XE{||G.j ||22}
+Nσ2Xσ

2
G

= V{cij}+ σ2GE{||X⊤i. ||22}
+ σ2XE{||G.j ||22}+Nσ2Xσ

2
G.

(6)

In inequality (6), σ2G = maxi,j(V{δGi,j}) and
σ2X = maxi,j(V{δXi,j}). Also note ||X⊤i. ||22 =∑J

j x
2
ji denotes the squared L-2 norm of the ith row

of X⊤ and ||G.j ||22 =
∑I

i g
2
ij denotes the squared

L-2 norm of the jth column of G. Furthermore, by
defining

{
M q := σ2G(E{||X⊤i. ||22}+Nσ2X)

M q
V := σ2X

(7)

Equation (7) shows that M q depends on variance
of dynamic fixed-point mapping for input activa-
tions and gradients whileM q

G only depends on b-bit
dynamic fixed-point gradients variance.
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QQP QNLI MNLI SST-2 STSB RTE MRPC CoLA Average
FP32 91.0/88.0 91.1 84.2 92.5 88.3 63.8 82.5/87.8 57.2 82.6

FP16 AMP 90.9/87.9 91.2 84.1 92.4 88.3 64 82.1/87.7 57.5 82.6
16-bit integer 91.0/88.0 91.2 84.2 92.5 88.3 64.5 82.3/87.6 57.7 82.7
12-bit integer 90.9/88.0 91.2 84.0 92.6 87.9 63.5 81.3/87.4 56.7 82.4
10-bit integer 90.8/87.8 91.0 84.0 92.5 87.5 62.7 78.4/85.8 57.6 81.8
8-bit integer 90.1/86.8 90.8 83.7 92.3 87 61.8 76.8/84.7 55.0 80.9

Table 1: Metric performance of integer fine-tuning of BERT on selected GLUE tasks. The reported metric for QQP
and MRPC is accuracy and F1 score, for QNLI, MNLI, RTE, and SST-2 is accuracy, for STSB is the Pearson-
Spearman correlation, and for CoLA is the Matthews correlation.

Proposition 1. For dynamic fixed-point representa-
tion of tensor Â with b-bit integers, the variance of
error for element i satisfies the following inequality

V{δAi } ⩽ 22(escaleA−b+2). (8)

Proof. Using dynamic fixed-point mapping to b-bit
integers, the error δAi satisfies the following bound

−2escaleA (0.000001)2︸ ︷︷ ︸
b−1

⩽ δAi ⩽ 2escaleA (0.000001)2︸ ︷︷ ︸
b−1

−2escaleA−b+2 ⩽ δAi ⩽ 2escaleA−b+2.
(9)

Thus, the inequality (8) is obtained by using
Popoviciu’s inequality on variances

V{δAi } ⩽
1

4
(2escaleA−b+2 − (−2escaleA−b+2))2

⩽ 22(escaleA−b+2). (10)

Remark 3. Inequality (8) shows that increasing bit-
width b in dynamic fixed-point mapping reduces
the variance of the error. This confirms our ex-
perimental results on SQuAD v2.0 dataset that for
b > 10, F1 score can match FP32 baseline, see
Figure 3. Also note in equation (7), both M q and
M q
V depend on b-bit dynamic fixed-point mapping

variance of input activation σ2X. Hence, increas-
ing b for input activations while keeping weights
in 8-bit format must improve the convergence be-
haviour. This phenomenon is also confirmed by
our experimental results on SQuAD v2.0 dataset
demonstrated in Figure 4.

5 Experimental Results

5.1 Experimental Setup
We fine-tuned BERT base on a series of down-
stream tasks to compare the performance of our in-
teger fine-tuning method with FP16 and FP32 fine-
tuning methods. FP16 AMP setup uses NVIDIA’s

SQuAD v1.1 SQuAD v2
FP32 80.5/88.0 70.6/73.8

FP16 AMP 79.9/87.6 70.6/73.9
16-bit integer 80.7/88.0 70.6/73.9
12-bit integer 79.8/87.6 70.5/73.8
10-bit integer 78.4/86.6 69.8/73.2
8-bit integer 75.6/84.5 65.5/69.2

Table 2: Metric performance of fine-tuning BERT on
SQuAD v1.1 and v2.0 datasets. For both datasets the
exact match metrics and F1 scores are reported.

automatic mixed precision1 and the FP32 baseline
is the default implementation from Pytorch.

The model is fine-tuned on selected tasks of
GLUE benchmark (Wang et al., 2018), along with
the Stanford Question Answering Datasets, i.e.
SQuAD v1.1 and SQuAD v2.0 (Rajpurkar et al.,
2016).

All the fine-tuning setups use the same hyper-
parameters and are fine-tuned for the same number
of epochs. Each reported metric is the average
of five runs with five different random seeds to
mitigate the effects of random variation of the re-
sults. The fine-tuning experiments are performed
based on the fine-tuning scripts of the Hugging
Face library (Wolf et al., 2019). For GLUE exper-
iments the fine-tuning is performed for 5 epochs
and the learning rate is set to 2× 10−5. Also, the
per-device fine-tuning batch-size is set to 32. Fine-
tuning BERT on SQuAD datasets is done for 2
epochs and the learning rate is 5 × 10−5 and the
per-device fine-tuning batch-size is 12. All experi-
ments are run on eight NVIDIA V100 GPUs with
32 gigabytes of VRAM.

1https://developer.nvidia.com/automatic-mixed-precision
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Figure 5: Integer fine-tuning loss trajectory of BERT on
SQuAD v2.0 dataset for 2750 iterations.

5.2 Results

The results of fine-tuning BERT base on GLUE
benchmark and SQuAD datasets are presented in
Table 1 and Table 2 respectively. GLUE benchmark
contains a series of downstream tasks, designed to
evaluate a diverse set of language understanding
abilities of NLP models. SQuAD datasets con-
tain a series of text passages accompanied by a
question and the task is to predict the span of the
answer in the passage. Using 16-bit integer data
type, BERT is able to either match or outperform
the FP32 performance for all tasks. The 16-bit inte-
ger BERT also shows similar or better performance
compared to the FP16 mixed precision fine-tuning
method. Further reducing the integer bit-width to 8,
fine-tuning BERT exhibits an average of 1.7 point
drop on GLUE benchmark and 4.5 point drop for
SQuAD datasets. Moreover, our experiments show
that using 10-bit and 12-bit integers has average
score drops of 0.8 and 0.3 points for GLUE tasks,
and 0.8 and 0.2 point for SQuAD datasets respec-
tively.

5.3 Loss Trajectory

Figure 5 shows the loss trajectory of integer fine-
tuning BERT on SQuAD v2.0 dataset using 16-bit
and 8-bit integers, along with FP32 method. The
fine-tuning loss trajectory of BERT using 16-bit
integer closely follows the FP32 loss trajectory. On
the other hand, when fine-tuning with 8-bit integer
parameters and 12-bit integer input activations, the
loss trajectory is slightly shifted, but follows the
same trend of its FP32 counterpart.

6 Conclusion

We proposed an integer fine-tuning method for
transformer based language models using dynamic
fixed-point format. We used dynamic fixed-point
data type to represent parameters, input activations
and gradients in integer values. As a result, our
fine-tuning method uses integer arithmetic for the
forward and back propagation of compute intensive
layers such as linear, layer-norm and embedding
layers of BERT model. Furthermore, we studied
that increasing the bit-width of the dynamic fixed-
point format reduces the variance of the mapping
function and thus, improves the convergence of our
integer fine-tuning method. We conduct fine-tuning
experiments on GLUE benchmark and SQuAD
datasets to compare the metric performance of our
integer BERT with FP16 mixed precision and FP32
fine-tuning methods. Our experiments show that
the 16-bit integer fine-tuning is able to achieve the
same metric performance as the FP16 mixed pre-
cision fine-tuning method. In addition, fine-tuning
BERT with lower bit-width data types, i.e. 8-bit
integer, maintains an average drop of metric score
within 3.1 points of the FP16 setup.

Limitations

Although our integer fine-tuning method uses inte-
ger numbers for compute intensive layers of BERT,
integer support for non-linear layers of BERT, e.g.
softmax and GELU activation, are left for future
work.

We have shown in Figure 1 that the integer data
types are faster for the general case. However, a
direct comparison of the time and memory cost of
our integer fine-tuning method with the FP16 and
FP32 methods is left for future works due to lack
of access to a proper hardware with integer tensor
core support.

Despite the similarities between fine-tuning and
pre-training phases, they differ in key aspects of
training such as dataset size and number of epochs.
The challenges of using integer arithmetic in the
pre-training phase will be studied in the future
work.
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A Data Types

In this section we provide a brief overview of vari-
ous data types mentioned in this work.

Floating-point data type is used to represent dec-
imal fractional numbers. A binary floating-point
number has three components of sign (s), mantissa
(m), and exponent (e). Using these components,
floating-point number x is shown as:

x = (−1)s ×m× 2e−t

where t is the precision and 0 ≤ m ≤ 2t − 1. An-
other way of representing floating-point numbers
is as

x = (−1)s × 2e(
d1
2

+
d1
4

+ . . .+
dt
2t
)
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where di are binary digits of m. For FP32, exponent
and mantissa are 8 and 23 bit integer numbers.

Fixed-point is another data type for representing
fractional numbers. Unlike floating-point numbers
where each mantissa is scaled using its respective
exponent, fixed-point uses a single scale factor for
all the numbers.

We use the dynamic fixed-point data type in our
integer fine-tuning method. Also known as block
floating-point, this format uses a different scale for
each block of numbers to allow for more flexibility.
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Abstract

This work considers the development of a text
simplification model to help patients better un-
derstand their radiology reports. This paper
proposes a data augmentation approach to ad-
dress the data scarcity issue caused by the high
cost of manual simplification. It prompts a
large foundational pre-trained language model
to generate simplifications of unlabeled radiol-
ogy sentences. In addition, it uses paraphrasing
of labeled radiology sentences. Experimental
results show that the proposed data augmenta-
tion approach enables the training of a signifi-
cantly more accurate simplification model than
the baselines.

1 Introduction

Radiology reports are unstructured documents writ-
ten by radiologists to communicate imaging find-
ings to another physician or a qualified medical
professional (Goldberg-Stein and Chernyak, 2019).
Radiology reports have been increasingly available
to patients through portals (Lourenco and Baird,
2020), which has been generally welcomed by pa-
tients (Cooper et al., 2020). However, the health
literacy of most patients is insufficient to fully com-
prehend radiology reports (Lalor et al., 2018) be-
cause such reports rely on complex medical jar-
gon and use explanations that imply highly special-
ized medical knowledge (Delbanco et al., 2012).
Several studies even identified adverse effects of
sharing radiology reports with patients, including
dissatisfaction with care (Rosenkrantz and Flagg,
2015) and undue anxiety and stress (Arora, 2013).

There is an increasing need for patient-friendly
radiology reporting that can communicate results
clearly and be understandable by a diverse patient
population. However, asking a radiologist to sup-
plement a traditional report with a patient-friendly
summary would negatively impact their cognitive
load and productivity. This problem motivated re-
cent research on the automatic simplification of

health records. The proposed approaches include
both lexical simplification that paraphrases text
(Chen et al., 2018; Biran et al., 2011; Weng et al.,
2018) and semantic simplification that seeks to sim-
plify grammatically complex text (Shardlow, 2014;
Leroy et al., 2016) which recently included deep
learning approaches (Lewis et al., 2019; Zhang
et al., 2020). However, training deep learning mod-
els for medical text simplification requires the col-
lection of costly labeled data.

To alleviate the data scarcity issue in simplify-
ing health reports, particularly radiology reports,
this paper proposes a novel approach for data aug-
mentation. It augments manually-created labeled
data with simplifications generated by a large pre-
trained language model such as GPT-3 (Brown
et al., 2020). To improve the quality of data aug-
mentation, the approach develops a separate deep
learning model that evaluates the quality of gen-
erated simplifications. Furthermore, the approach
also provides data augmentation through paraphras-
ing the originally labeled radiology sentences.

The proposed data augmentation approach is ex-
perimentally evaluated on a unique corpus of man-
ually generated labeled data for radiology report
simplification. The evaluation includes both auto-
matic measures and human evaluation.

Our research claims are: 1) Our augmentation
methods enable training of a more accurate model
than baselines in solving low-resource radiology
sentence simplification problems. 2) We address
the challenge of selecting qualified augmentations
for radiology sentence simplification. 3) We cre-
ate unique real data containing expert-annotated
simplifications for radiology reports’ sentences re-
garding liver conditions.

2 Related Work

Text Simplification. In text simplification, the out-
put text is a linguistically simplified version of the
input text (Adduru et al., 2018). Previous work on
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simplification includes lexical and semantic simpli-
fication (Alva-Manchego et al., 2020).

Lexical simplification by lexical substitution
refers to replacing complex words or phrases with
simpler synonyms (Oh et al., 2016; Zeng and Tse,
2006) and has found some practical success (Cook
et al., 2017). In the health domain, lexical text
simplification often relies on medical dictionaries
(UMLS (Bodenreider, 2004) , MeSH (Lipscomb,
2000), etc.). Lexical simplification approaches also
include rule-based methods (Chen et al., 2018; Bi-
ran et al., 2011) and deep learning (Weng et al.,
2018, 2019).

Semantic simplifications seek to simplify gram-
matically complex text by splitting long sentences
into shorter ones, changing passive voice to ac-
tive, resolving ambiguities and anaphora (Shard-
low, 2014), splitting complex noun phrases (Leroy
et al., 2016), or reducing morphological negations
(Mukherjee et al., 2017). Recently, transformer
encoder-decoder based pre-trained seq-to-seq mod-
els (Lewis et al., 2019; Zhang et al., 2020) were
proved to be robust in solving text simplification
problems. However, fine-tuning pre-trained models
require large quantities of labeled data, which are
costly and difficult to obtain in the health domain.

Previous research has explored different meth-
ods for text simplification in low-resource domains.
To address data scarcity recent studies include un-
supervised methods (Surya et al., 2018; Sakakini
et al., 2020; Enayati et al., 2021) and reinforcement
learning (Laban et al., 2021).

Data Augmentation is a method that automati-
cally generates labeled data to enhance manually
labeled data (Liu et al., 2020). One approach is
to use paraphrasing to create different variants of
the original or simplified sentences (Wei and Zou,
2019). Another approach is to use pre-trained lan-
guage models to generate labeled data (Bayer et al.,
2021). LAMBADA (Anaby-Tavor et al., 2020) aug-
ments data for text classification tasks by encoding
labels in the input. Similarly, PromptDA (Wang
et al., 2022) use language models to augment data
for NLU tasks. Back-translation (Edunov et al.,
2018) is used to generate different variants of the
input text.

There are several public benchmark data sets that
are related to our paper. There are paragraph level
medical text simplifications (Devaraj et al., 2021)
focusing on medical paper abstracts. There is a
corpus parsed aligned sentences from Wikipedia

and Simple English Wikipedia 1 (Pattisapu et al.,
2020; Van den Bercken et al., 2019) that has been
a popular text simplification benchmark. However,
none of these data sets have properties similar to
the radiology text simplification task.

3 Problem Definition

Let us assume we are given a labeled
corpus for text simplification DLab =
{(X1,Y1), (X2,Y2), ..., (Xn,Yn)}, where
Xi is the ith original document, Yi is its simplifi-
cation provided by a human expert, and n is the
number of labeled documents. Let us also assume
we are given an unlabeled corpus of documents
DUnl = {X1,X2...,Xm}, where m is the number
of unlabeled documents. The objective of data aug-
mentation is to automatically create a synthetic set
DSyn = {(X∗1,Y∗1), (X∗2,Y∗2), ..., (X∗K ,Y∗K)},
where X∗i is one of the original documents
from DLab or DUnl or their derivative, and Y∗i
is its corresponding simplification from DLab,
its derivative, or an automatically generated
simplification. DSyn is appended to DLab and
the resulting set DAug = DLab ∪DSyn is called
the augmented training corpus. The assumption
is that a seq2seq model for text simplification
trained on the augmented corpus will have higher
simplification quality than the one trained on the
original training corpus. This paper focuses on
the radiology report simplification problem where
Xi is a sentence and Yi is its simplification. As a
result, our augmentation approach explained in the
next two sections is specifically tailored for this
application.

4 Methodology

4.1 GPT-based Semantic Augmentation
We propose two types of augmentation. The first,
referred to as semantic augmentation, relies on us-
ing the large-scale language model GPT-3 (Brown
et al., 2020) to generate simplifications automati-
cally. The second, referred to as lexical augmenta-
tion, relies on modifying original documents from
the labeled corpus. The first augmentation type is
described in this section, while the second type is
described in the next.

4.1.1 Generating simplifications with GPT-3
It has been demonstrated that large-scale language
models such as GPT-3 are capable of doing a wide

1simple.wikipedia.org
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Table 1: Good, Not Simple Enough, and Incorrect exam-
ples of radiology liver sentences (ORI), expert-written
simplifications (SIM), and generated simplifications
from GPT-Curie (GPT).

ORI: The liver demonstrates diffusely low attenuation,
consistent with fatty infiltration

SIM: There is increased amount of fat in the liver.

GPT: There is a lot of fat in the liver. (Good)

ORI: The liver is stable in appearance with again note
made of a hypodense lesion in the medial left lobe
adjacent to the gallbladder fossa

SIM: The liver may have one or more tumors or masses.

GPT: The liver has a small lesion on one side, close to
the gallbladder. (Good)

ORI: The liver shows diffuse low attenuation consistent
with fatty infiltration

SIM: There is increased amount of fat in the liver.

GPT: The liver has diffuse low attenuation, indicative
of fatty infiltration. (Not Simple Enough)

ORI: The liver is unremarkable without intra- or extra-
hepatic biliary dilatation

SIM: The liver appears normal.

GPT: The liver is not enlarged or tender without intra-
or extra-hepatic biliary dilatation. (Not Simple
Enough)

ORI: Complex hepatic abscess predominantly occupy-
ing segments VI and VII of the liver is overall
little changed in size compared to date, measuring
approximately 7.9 (AP) x 8.7 (TRV) x 11.4 (CC)
cm

SIM: There is infection and pus seen within the liver.

GPT: This means that the abscess is smaller than it was
before, by about 3 inches on all sides. (Incorrect)

ORI: The liver demonstrates prominent intrahepatic bil-
iary ducts

SIM: The liver ducts that carry digestive enzymes may
be blocked.

GPT: The liver has many bile ducts. (Incorrect)

variety of NLP tasks through prompting (Brown
et al., 2020). Our preliminary experiments showed
that the two largest GPT-3 models, Curie and
Davinci, are surprisingly good at generating sim-
plifications of radiology report sentences, despite
never being trained explicitly for that task. Table 1
shows several representative examples of simplifi-
cations by the Curie model prompted by My patient
asks me to simplify this radiology sentence "<orig-
inal sentence>":. Each example shown contains
an original radiology sentence, its simplification by
GPT-3, and its simplification provided by collabo-
ration between a radiologist and a layperson. The
first two examples show that GPT-3 can provide

factually correct and easy to understand simplifica-
tions comparable to the manually created simplifi-
cations. Next two examples show that GPT-3 might
provide factually correct text that is not sufficiently
simple. The final two examples show that GPT-3
might provide factually incorrect simplifications.

Our semantic augmentation approach uses GPT-
3 to generate simplifications of unlabeled docu-
ments from DUnl and add them to the augmented
corpus DAug. As noted in previous research (Liu
et al., 2021) the choice of prompting can have a
significant impact on the quality of the generated
text and accuracy on a particular task.

Our prompting approach relies on the in-context
learning that has been used with success with GPT-
3 models. Instead of relying on costly fine-tuning
of a language model, it pastes a few labeled exam-
ples into the prompt and asks the language model
to generate label of an unlabeled example. In our
specific application, we select K labeled exam-
ples (X,Y) from DLab and insert each of them
into template ’Sentence: < X >; Simplification:
< Y >’. A triple pound sign, ###, is used to sep-
arate templates for the K labeled examples. The
prompt ends with ’Sentence: < X >; Simplifi-
cation:’, where X is an unlabeled document from
DUnl. GPT-3 model is expected to write a sim-
plification by mimicking the style of the labeled
examples from the prompt.

As noted in previous work (Brown et al., 2020)
the success of prompting that uses in-context learn-
ing depends on the particular choice ofK examples.
Therefore, we select most related sentence simplifi-
cation pairs from the training set DLab given any
unlabeled document from DUnl. In detail, we use
BERTScore (Zhang et al., 2019), which leverages
the pre-trained contextual embeddings from BERT
(Devlin et al., 2018) and matches words in unla-
beled and labeled radiology sentences by cosine
similarity. Thus, each prompt consists of K most
related examples rated by BERTScore for an unla-
beled sentence that is appended to the end. More-
over, we evaluate more example selection scenarios
in our ablation study.

4.1.2 BERT-Checker
Language models such as GPT-3 provide token
probabilities as their output. When generating text,
one option is to use brute force and generate the
most likely token. However, in the context of text
simplification, the most likely tokens are not guar-
anteed to produce the best simplification. An alter-
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native is to generate tokens by selecting among the
most likely choices, which the temperature hyper-
parameter in GPT-3 can control. In our approach,
we invoke a GPT-3 model N times for each prompt
using a temperature higher than zero, which re-
sults in N different simplifications. Then, we au-
tomatically select the best one of the N generated
simplifications and add it to the augmented corpus.

As seen in Table 1, some of the generated sim-
plifications are good while others are not. Separat-
ing good from inadequate simplifications is a non-
trivial challenge. Related work on automatic eval-
uation of the generated text includes GPT-3-ENS
(Chintagunta et al., 2021), which measures the com-
plexity of terms in simplifications, and GPT3Mix
(Yoo et al., 2021), which treats the likelihood scores
of generated labels as confidence scores. However,
we found that the existing approaches are inappro-
priate for our application. Thus, we developed a
novel approach called BERT-Checker.

BERT-Checker is a fine-tuned BERT model (De-
vlin et al., 2018) to a task similar to entailment.
In particular, we convert our labeled corpus into
training data matching the format of the entailment
task. We add label 1 to each example from DLab

to create positive examples in new training data
set, D′Lab = {[(Xi,Yi), 1]}. To create negative
examples in D′Lab, we use four different strategies
as outlined next:

• Precision: To ensure that simplification is
closely related to the original text, we corrupt
the original text X by replacing the medical
terms with randomly selected medical terms,
and generate negative example from labeled
example (X,Y) as [(corrupt(X),Y), 0].

• Simplicity: To penalize simplifications that
are too similar to the original sentence, we
create negative examples by using the original
text as simplification, [(X,X), 0].

• Correctness: To penalize incorrect simplifi-
cations, we randomly select two labeled ex-
amples (X1,Y1) and (X2,Y2) and create a
negative example by mixing the original and
simplified text, [(X1,Y2), 0].

• Robustness: For labeled example (X,Y) we
replace the simplification with an empty string
or a sentence generated by a GPT-3 given the
prompt ’Generate a radiology report sentence
about liver’ and high temperature of 0.8 to
create negative example [(X, GPT ()), 0].

Thus, for each positive example, we generate four
negative examples. As a result, we can obtain a neg-
ative dataset D′Neg. We fine-tune Clinical BERT
(Alsentzer et al., 2019) on the text entailment task
using the generated data set.

4.2 Dictionary-based Lexical Augmentation

We propose lexical augmentation to supplement
semantic augmentation described in the previous
section. Lexical simplification refers to replacing
complex terms in original documents X with their
synonyms, which might also be complex. In the re-
lated work on text simplification of general-purpose
text, EDA approach (Wei and Zou, 2019) para-
phrases original documents by replacing randomly
selected words or phrases with their synonyms in
WordNet (Miller, 1995). We modify EDA by re-
placing only specialized medical terms.

Inspired by (Pattisapu et al., 2020; Hasan et al.,
2016), we use medical dictionaries Medical Subject
Headings (MeSH) (Lipscomb, 2000) and Unified
Medical Language System (UMLS) (Bodenreider,
2004) to find the synonyms. We use pre-trained
named entity recognition model (Honnibal and
Montani, 2017) to extract medical terms from the
original documents in labeled corpus DLab. The
medical terms are linked to Concept Unique Identi-
fier (CUI) in UMLS and the concept_id in MeSH.
Each medical code in UMLS and MeSH is mapped
to a list of synonyms. We iteratively select a syn-
onym to replace the medical term from the original
document.

We illustrate the lexical simplification process
in Fig 1, where hepatic steatosis in the sentence
’Probable diffuse hepatic steatosis’ is recognized as
a medical term and replaced with its synonyms. In
particular, CUI codes ’C0015695’ and ’C2711227’
are found to match hepatic steatosis, where the
canonical names are Fatty Liver and Steatohepati-
tis. Similarly, ’D005234’ from MeSH also provides
several synonyms. This process identifies five syn-
onyms used to create five different versions of the
original document.

Once the synonyms for a medical term in orig-
inal document X of labeled example (X,Y) are
identified, we paraphrase the original document as
lexical(X) and generate an augmented example
(lexical(X),Y). The new example is added to the
augmented corpus DAug.
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Figure 1: Workflow for lexical augmentation. It shows the linked synonyms of the entity "hepatic steatosis" from
UMLS/MeSH and five synthetic sentences.

5 Experiments

5.1 Data
To the best of our knowledge, there is no read-
ily available corpus for simplifying radiology sen-
tences. To experimentally evaluate our data aug-
mentation approach, we created a new corpus
for this purpose. In particular, we collected 540
sentences from radiology reports describing the
liver condition and manually created their simpli-
fications: 170 sentences were obtained from CT-
Abdomen radiology reports from a university hos-
pital (UH), and the remaining 370 were extracted
from CT-Abdomen radiology reports from publicly
available MIMIC-III (Johnson et al., 2016) data.
All sentences were de-identified with Health Insur-
ance Portability and Accountability Act (HIPAA)
standards in order to facilitate public accesses and
human annotations.

We asked a radiologist to provide a simplifica-
tion for each selected sentence. A layperson joined
the radiologist to provide feedback about the gen-
erated simplifications. If the layperson thought
the simplification was too complicated, this was
communicated to the radiologist, who proceeded
to improve the simplification. The process was
repeated until the layperson could understand all
the simplification and could correctly guess the
severity of the described conditions.

During this sequence simplification process, the
radiologist and the layperson agreed that it is suffi-
cient to use simplification ’The liver looks normal’
for sentences explaining that nothing concerning
was observed about the liver. 39% of the the univer-
sity hospital sentences and 21% of the MIMIC-III
sentences were simplified as ’The liver looks nor-
mal’. For simplification of sentences that described
concerning findings was to ignore technical details
that might be confusing to patients. Any relevant

medical terms were stated in simple terms familiar
to laypeople. If possible, grammar was kept simple,
and the sentences were kept short. Table 1 shows
several examples of the original sentences (ORI)
and their manual simplifications (SIM).

For our experiments, we randomly selected 100
sentences and their simplifications for training and
the remaining 70 for testing for both the university
hospital and MIMIC-III labeled data. Thus, we had
200 labeled examples for training denoted as DLab,
and 140 for testing. We used the remaining 200
MIMIC-III sentences as the unlabeled corpus DUnl

and used their simplifications to better evaluate the
data augmentation approaches.

The corpus is available to the research commu-
nity to support further research on medical text
simplification.2

5.2 Data Augmentation
To implement the proposed semantic augmenta-
tion approach, we used GPT-3 Curie model (6.7B
parameters) with the few-shot learning prompt de-
scribed in Section 4.1 with K = 5 to automati-
cally generate simplifications for each unlabeled
sentence in DUnl. We used the API provided by
OpenAI 3. We generated N = 5 simplifications
for each liver sentence with temperature = 0.5,
which was selected to provide a good balance be-
tween factual correctness and diversity.

We trained BERT-Checker to select the best
among the N = 5 generated simplifications for
each liver sentence. BERT-checker was fine-tuned
using 80% of the training data as positives and four
copies of negatives for each positive, as explained
in Section 4.2. BERT-Checker was a fine-tuned
BERT base model (110M parameters) consisting of

2https://github.com/Ziyu-Yang/
Radiology-Text-Simplification-Liver

3https://openai.com/api/
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12 transformer encoder layers. A fully connected
linear layer was added to BERT on its [CLS] out-
put to score the simplification quality. The binary
cross-entropy loss was used. 20% of the training
data was used for validation and early stopping. We
fine-tuned for up to 20 epochs with the patience
for early stopping of 3, batch size 16, and learning
rate 1e-4. All experiments were implemented with
a single GTX 1080Ti.

The accuracy of trained BERT-Checker on val-
idation data was 0.924. Its precision (the fraction
of true positives among positive predictions) was
0.899 and its recall (the fraction of positives that
were predicted correctly) was 0.958. We consider
it to be high enough accuracy for BERT-Checker to
be used to determine the quality of simplifications
produced by GPT-3.

In the lexical augmentation, we annotated the
recognized entities in the liver sentences from the
labeled corpus with Type Unique Identifier (TUI)
4. TUI is the code to represent hierarchical seman-
tic types of all medical concepts in UMLS and
MeSH. Specifically, we only paraphrased terms
that belong to "T023 | Body Part, Organ, or Organ
Component" or "T033 | Finding" groups. Because
many medical concepts have only one synonym,
many sentences mentioned only a single body part
other than the liver, and a single finding, we finally
obtained 242 unique lexical augmentations from
DUnl. In order to control the effect of augmenta-
tion size, we randomly selected 200 of them for
further experiments.

5.3 BART model

BART (Lewis et al., 2019) is a pre-trained model
that uses a seq2seq architecture with a bidirec-
tional encoder and a left-to-right decoder. It
achieves state-of-the-art performance on many
seq2seq benchmarks. We fine-tuned a BART base
model (406M parameters) on different mixes of
450 labeled and augmented data to create different
radiology simplification models. The fine-tuning
was implemented using PyTorch-lightning5. 20%
of the training data was used for validation and
early stopping. We used the cross entropy loss.
We used the same training setting as for BERT-
Checker.

4https://lhncbc.nlm.nih.gov/semanticnetwork/index.html
5https://www.pytorchlightning.ai/

5.4 Baselines
We first introduce two model baselines that do not
use augmentations. Then we introduce two base-
line augmentation methods that are appropriate to
our task.

5.4.1 Model Baselines
The first baseline is BART base model fine-tuned
with the labeled data (BART-base). As the sec-
ond baseline, we used simplifications by the same
implementation of GPT-Curie model that is used
to augment the labeled data. Specifically, we se-
lected the most related K = 5 sentences from
the labeled set to a test sentence as the few-shot
prompt, generated N = 5 simplifications and used
BERT-Checker to select the best one. We name this
baseline GPT-FS.

5.4.2 Augmentation Baselines
We implemented and evaluated two widely used
baseline data augmentation methods: 1) Easy Data
Augmentation (EDA) (Wei and Zou, 2019),a rule-
based augmentation that includes synonym replace-
ment, random insertion, random swap, and ran-
dom deletion. We reproduced this baseline with its
source code 6. 2) Back translation (BT), that uses a
pre-trained machine translation model to translate
sentences into another language and then translate
them back to English. The back-translated English
sentences are fused with the corresponding sim-
plifications to provide augmented data. Following
previous work (Brown et al., 2020), we used GPT-
3 Curie to back translate the original sentences to
French and back to English. French was selected
because it provided a good balance between fac-
tual correctness and diversity of generated back-
translations.

We generated 200 augmented examples for each
baseline approach.

6 Evaluation Methods

6.1 Automated Evaluation
We used multiple automated metrics to evaluate
text simplification accuracy. ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) (Lin,
2004) is a set of metrics used for seq2seq tasks. It
calculates the overlapping of unigrams, bigrams,
and the longest common subsequences between
the expert-provided and machine-generated sim-
plifications. Similarly, BLEU (bilingual evalua-

6https://github.com/jasonwei20/eda_nlp
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Table 2: Comparison of augmentation methods.

# Aug ROUGE 1/2/L BLEU SARI BERTScore FKGL↓
Baseline Models

GPT-FS 0 56.00/42.20/54.64 0.2363 0.5455 0.9457 5.392
BART-base 0 59.81/50.34/58.87 0.4240 0.5324 0.9411 5.560

Augmentation Methods
EDA 200 60.90/51.90/60.06 0.4461 0.5460 0.9429 5.315
BT 200 63.47/53.50/62.33 0.4504 0.5740 0.9470 5.133
HUMAN 200 71.06/62.89/70.20 0.5322 0.6047 0.9566 4.870
LEX 200 68.58/60.84/68.24 0.5391 0.5769 0.9559 5.353
SEM 200 66.11/56.55/64.76 0.4709 0.5875 0.9510 5.629
AUG-SUB 200 67.92/58.81/67.04 0.5020 0.5960 0.9524 5.314
AUG 400 69.03/60.37/68.51 0.5036 0.6029 0.9550 5.021

tion understudy) (Papineni et al., 2002) also evalu-
ates overlap of n-grams between the simplifications.
Unlike ROUGE and BLEU, BERTScore (Zhang
et al., 2019) computes a contextual similarity score
between tokens in the simplifications. SARI (Xu
et al., 2016) is a gold standard edit-based metric
for text simplification evaluation. Unlike other met-
rics, it compares the machine-generated simplifica-
tion with respect to both the original sentence and
the human-provided simplification. To evaluate
simplicity, we used FKGL (Flesch Kincaid Grade
Level) (Kincaid et al., 1975), which is a widely
used readability formula that assesses the approxi-
mate reading grade level of a text. The lower score
indicates simpler texts.

6.2 Human Evaluation

Applying automatic evaluation metrics is insuffi-
cient to compare quality of simplifications by dif-
ferent methods. Therefore, we also used human
evaluation. We asked a medical doctor (family
physician) that was distinct from the radiologist
who provided the simplifications to evaluate the
machine-generated simplifications. We asked the
evaluator to use 1-5 Likert scale to evaluate the
following four aspects of each simplification, the
first three being consistent with.

Factuality refers to medical correctness of the
simplification. Score one means that the simplifica-
tion is factually incorrect and five that it is correct.
Scores between one and five mean that some in-
formation is imprecise, missing, or hallucinated.
Lower scores mean there are more serious factual
errors. Fluency measures the quality of grammar
and readability, regardless of factual correctness. If
a simplification is both easy to read and grammati-

cally correct it gets a score of five. This measure
is consistent with the fluency measure explained in
(Nisioi et al., 2017). Simplicity evaluates whether
the evaluator thought the laypeople would be able
to understand the simplification, regardless of fac-
tual correctness. Score of five means that the eval-
uator thought that any patient would be able to
completely understand the simplification.

During the initial stages of human evaluation of
factuality and simplicity, we observed that the eval-
uator occasionally preferred machine-generated
simplifications to the radiologist-provided ones.
That is why we introduced Consistency, which
measures how closely the simplification matches
the radiologist-provided simplification. Score of
five means that the simplification is almost identi-
cal to the radiologist-provided simplification. We
note that Consistency is related to SARI automatic
measure (Xu et al., 2016).

7 Results

7.1 Quantitative Results

We fine-tuned BART model including augmented
data from baseline methods (EDA, BT), and our
lexical and semantic augmented data (LEX, SEM).
BART-base and GPT-FS were created according
the description in Section 5.4.1. First two rows
of Table 2 refer to fine-tuned BART and few-shot
prompted GPT-3 Curie using only the radiologist-
provided labeled data. The remaining rows refer
to inclusion of augmented data to BART tuning.
Rows EDA and BT refer to the baseline augmen-
tation methods. Row HUMAN refers to the aug-
mentation provided by the radiologist, and serves
to establish the upper bound on accuracy improve-
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ment due to augmentation. LEX and SEM rows
represent our lexical and semantic augmentation
methods. AUG-SUB and AUG use 200 and 400
combined semantic and lexical augmentations, re-
spectively. Aug column shows the number of aug-
mented examples.

We observe that our proposed augmentations are
superior to baselines LEX and SEM on almost all
metrics. SEM is better than LEX on SARI measure.
AUG is better than LEX and SEM on ROGUE,
SARI and FKGL. AUG is the best overall augmen-
tation method coming very close to the HUMAN
upper bound, after noting that SARI and FKGL are
the most useful measures for evaluation of simplic-
ity. We note that GPT-FS has lower overall scores
than any of the BART models.

Table 3: Human evaluation results (Factuality, Fluency,
Simplicity, and Consistency) on 60 selected testing data.

Method Factual Fluency Simp Cons
BART-base 3.38 4.85 4.67 3.18
BT 3.22 4.88 4.58 3.13
GPT-FS 4.18 5.00 4.55 3.91
AUG 4.22 4.95 4.62 4.10

7.2 Human Evaluation Results

For Table 3, we asked a medical doctor to evalu-
ate 60 randomly selected simplifications from the
test data (30 from each source). We evaluated the
most relevant four models from Table 2: BART-
base, BT, GPT-FS,and AUG. The results show that
all methods have comparable Simplicity and Flu-
ency. AUG and GPT-FS have better Factuality
and Consistency than BART-base and BT. AUG is
slightly better than GPT-FS on those two impor-
tant measures, indicating that fine-tuning BART
with augmentation produced by few-shot prompted
GPT-3 Curie is better than directly using few-shot
prompted GPT-3 Curie for simplification.

Table 4: Comparison between different versions of se-
mantic augmentations. # Aug is the number of aug-
mented examples. ROUGE refers to ROUGE-L.

Method # Aug ROUGE BLEU SARI
First-run 200 60.21 0.4053 0.5590
Similarity 200 55.31 0.3547 0.5387
Five-runs 781 55.77 0.3755 0.5391
SEM 200 64.76 0.4709 0.5875

7.3 Ablation Study
We first evaluated the ability of BERT-Checker to
recognize high-quality simplifications. We com-
pared the version we implemented in our experi-
ments (SEM row in Table 4) with three different
variants: ’First-run’ always selects the first gen-
erated simplification, ’Similarity’ selects the best
simplification based on BERTScore, ’Five-runs’
uses all simplifications generated by GPT-3 Curie
as augmentations. After removing duplicates, there
are 781 augmentations produced by ’Five-runs’. Ta-
ble 4 shows all three variants are inferior to SEM,
showing that any of the ablations would signifi-
cantly deteriorate the results. The results confirm
that the quality of augmentations is critical for suc-
cess of data augmentation approaches.

Next, we evaluated the importance of GPT-3
prompting. As noted in previous research (Liu
et al., 2020), the choice of prompting can signif-
icantly impact the quality of the generated text.
Thus, we designed an ablation study to compare
different prompting approaches for data augmenta-
tion.

Table 5: Comparison of different prompting on data
augmentation.

Prompts ROUGE BLEU SARI
BART-grader 46.62 0.2862 0.4917
BART-patient 55.81 0.3516 0.5255
BART-top1 58.65 0.3955 0.5511
BART-rd5 53.94 0.3170 0.5360
SEM 64.76 0.4709 0.5875

In our prompt design that has the following form:
Sentence: < X >; Simplification: < Y >’, we
included K = 5 most related labeled examples to
the original test sentence in the prompt. We first
explored whether the number of few-shot examples
matters. We repeated the data augmentation pro-
cess with K = 1 (BART-top1 in the table). Table
5 shows that K = 5 resulted in better performance
than K = 1. Next, we evaluated whether the way
we select examples matters. Instead of K = 5
closest labeled examples, we selected K = 5 ran-
dom labeled examples (BART-random in the table).
From Table 5, we can see that random labeled ex-
amples resulted in lower accuracy.

We also explored prompting that does not rely
on few-shot learning. One design was explained in
section 4.1.1, ’My patient asks me to simplify this
radiology sentence <X>’, we refer to as BART-
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patient in the table. Similarly, inspired by a GPT-
3 prompt for the summarization task, we used
prompt: My second grader student asks me to sim-
plify the following sentence: <X>, we refer to
as BART-grader in the table. These two prompts
are the so-called ’zero-shot’ prompts. As shown
in Table 5, the ’grader’ and ’patient’ prompts re-
sult in inferior accuracy compared to the few-shot
prompting.

8 Conclusion

This paper proposes two novel augmentation meth-
ods to enhance the limited labeled data for the radi-
ology sentence simplification problem. Our evalua-
tion using automatic measures and human evalua-
tion shows that data augmentation can substantially
improve the quality of simplification models. The
ablation results show that the proposed innovations
in automatic creation of simplifications for data
augmentation are very effective.

9 Limitations

The main limitation of our study is that we only
considered simplification of radiology sentences.
In future work, it will be important to expand the ap-
proach to simplify whole paragraphs, because very
often radiologists use multiple sentences to discuss
a single observation. Simplifying single sentences
can thus be suboptimal because important context
from the previous and subsequent sentences might
be lost. The second limitation of the study is that
our corpus only included sentences related to liver.
It will be important in the future work to evalu-
ate the proposed approach on a wider variety of
radiology sentences. The third limitation is that
we obtained simplifications from a single radiolo-
gist. It will be important for future study to include
simplifications from multiple radiologists to ensure
generalizability of the proposed approach. The
fourth limitation is that we used a single medical
doctor to evaluate the quality of the simplifications.
It would be important in future studies to ask mul-
tiple medical doctors to evaluate the quality, which
would allow estimating the inter-rater variability.
The fifth limitation is that we did not use laypeople
to evaluate the quality of simplification. This would
require some innovation in the human evaluation
process because laypeople are not able to evaluate
factual correctness and because it would be im-
portant to understand how simplifications improve
the overall understanding of the radiology reports.

The final limitation is a relatively small size of the
labeled data set created for this study. Obtaining
high-quality simplifications is very costly because
it requires collaboration between radiologists and
laypeople.
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Abstract

Real-world applications of neural language
models often involve running many different
models over the same corpus. The resulting
high computational cost has led to interest in
techniques that can reuse the contextualized em-
beddings produced in previous runs to speed
training and inference of future ones. We re-
fer to this approach as embedding recycling
(ER). While multiple ER techniques have been
proposed, their practical effectiveness is still
unknown because existing evaluations consider
very few models and do not adequately account
for overhead costs. We perform an extensive
evaluation of ER across eight different models
(17 to 900 million parameters) and fourteen
tasks in English. We show how a simple ER
technique that caches activations from an in-
termediate layer of a pretrained model, and
learns task-specific adapters on the later layers,
is broadly effective. For the best-performing
baseline in our experiments (DeBERTa-v2 XL),
adding a precomputed cache results in a >90%
speedup during training and 87-91% speedup
for inference, with negligible impact on accu-
racy. Our analysis reveals important areas of
future work, and we release code and documen-
tation for our experiments at https://github.
com/allenai/embeddingrecycling.

1 Introduction

Large pretrained language models form the foun-
dation of modern NLP, and continue to push the
state-of-the-art on a wide range of natural language
processing tasks (Devlin et al., 2019; Liu et al.,
2019b; Bommasani et al., 2021). Larger models
tend to offer superior accuracies (Kaplan et al.,
2020), but also entail higher computational costs.
The steep computational cost associated with large
neural language models slows down experimenta-
tion, increases financial barriers to the technology,
and contributes to global climate change (Strubell
et al., 2019; Dodge et al., 2022).

Our work studies how to reduce computational
cost for workloads in which many distinct models
are run over the same text. For example, a scholarly
search tool that helps users find and understand rel-
evant literature may run separate models for entity
recognition, topic classification, relation extraction,
summarization, question answering, and so on over
a large corpus of papers. New and improved mod-
els for the tasks are developed frequently, necessi-
tating additional runs. The need for repeated model
runs has also been noted for other applications in
previous work, including news applications (Du
et al., 2020) and virtual assistants (Wei et al., 2022).
Further, repeated runs also occur very frequently
during model development, when exploring model
variants or executing multiple training epochs.

Recent work has introduced ways to reduce com-
putational cost in such settings by re-using model
activations from one task to speed up other ones
(Du et al., 2020; Wei et al., 2022). A pretrained
language model’s internal activations form a con-
textualized embedding, which reflects syntactic and
semantic knowledge about the input text (Goldberg,
2019; Wiedemann et al., 2019; Rogers et al., 2020)
which can be useful across a variety of downstream
tasks. We define embedding recycling (ER) as the
technique of caching certain activations from a pre-
vious model run, and re-using them to improve the
efficiency of future training and inference. Recy-
cling imposes a small computation time cost the
first time a model processes a text, in order to com-
pute and populate the cache. Thereafter, all sub-
sequent runs on the text can use the precomputed
cache, improving efficiency.

While previous work has shown the promise of
ER approaches, the existing evaluations are lim-
ited. For example, Du et al. (2020) and Wei et al.
(2022) each evaluate ER for only one or two base
models. Likewise, for ER techniques that cache
activations on persistent storage, the storage and
time cost of the cache itself has yet to be quan-
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tified. In this paper, we present a more compre-
hensive evaluation of ER with several models and
tasks, along with a thorough efficiency analysis.
We study a simple layer-recycling ER method that
caches the activations from an intermediate layer
of a pretrained model, and uses those cached acti-
vations as the starting point when the same input
sequence is seen again during fine-tuning or infer-
ence. We show that even this simple method yields
substantial improvements to throughput at small or
no cost to accuracy on average. Our results pro-
vide the strongest evidence to date that ER can be a
practically important technique for reducing costs
for NLP systems, but as we discuss in section 6,
they also suggest important challenges that must
be addressed in future work.

Our contributions are summarized below:

• We propose embedding recycling as a method
for lowering the computational costs of train-
ing and inference for language models, and
explore layer recycling with two techniques:
standard fine-tuning and parameter-efficient
adapters.

• Our experiments with eight models across a
wide range of tasks show that layer recycling
is generally effective. For the best-performing
ER model on our tasks- DeBERTa-XL with
adapters, we find that layer recycling nearly
matches performance of the original model
while providing a 87-91% speedup at infer-
ence time, and greater than 90% speedup at
training time.

• We explore open challenges for embedding re-
cycling and present questions for future work.

2 Related Work

The embedding recycling technique we investigate
is based on findings from prior work suggesting
that not all layers of a pretrained transformer are
equally important for end-task finetuning. Shal-
lower layers tend to converge earlier in training
than deeper layers (Raghu et al., 2017; Morcos
et al., 2018), and weights of later layers change
more than earlier ones (Kovaleva et al., 2019), sug-
gesting that earlier layers tend to extract universal
features whereas later layers focus on task-specific
modeling. Lee et al. (2019) find that 90% of fully
fine-tuned performance can be reached when fine-
tuning only the final quarter of a transformer’s lay-
ers and leaving the rest frozen.

Several proposed methods vary the number of
frozen layers over the course of training, approach-
ing or exceeding the performance of fully fine-
tuned models while substantially speeding up the
training process (Raghu et al., 2017; Xiao et al.,
2019; Brock et al., 2017). Similar to our approach,
some dynamic freezing methods also employed
caching mechanisms (Liu et al., 2021; He et al.,
2021), but the dynamic number of frozen layers
means the cache applies only at training time and
only for a single task. In contrast, we cache embed-
dings from the pretrained model, which can then
be reused across multiple downstream tasks and
applied at inference time as well.

Other recent studies have sought to improve
model inference speed by skipping computations
in later layers. Sajjad et al. (2020) found that in
some cases up to half of the layers can be removed
from the model with only a 1-3% drop in task per-
formance. Early exit strategies have also been pro-
posed, which allow the model to dynamically de-
cide when to skip later layers (Cambazoglu et al.,
2010; Xin et al., 2020). SkipBERT (Wang et al.,
2022) combined early exiting with an approach
in which cached n-gram embeddings approximate
the intermediate activations of new inputs. Lester
et al. (2021) explored prompt-tuning as a parameter-
efficient approach for adapting frozen language
models without adjusting model weights, condition-
ing language models with soft prompts to perform
downstream tasks.

Precomputing text representations to speed up
future processing on the same data is commonly
done when creating fixed-size document-level em-
beddings for use on document-level tasks (Conneau
et al., 2017; Cohan et al., 2020); in contrast, we
study contextualized token-level embeddings that
can be used for tasks such as named entity recog-
nition (NER) and question answering. ReadOnce
Transformers (Lin et al., 2021) do consider multi-
task variable-length document representations, but
do so in a setting where a cached document rep-
resentation is paired with a query text (such as a
question or prompt); the approach is pretrained
with QA data and evaluated on QA and summariza-
tion, rather than tasks such as text classification or
NER where the entire input can be cached.

Du et al. (2020) propose an approach similar to
ours that caches general-purpose token-level model
representations, trained in a multi-task setting; how-
ever, that approach only applies a small MLP to
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the stored representations and reports a meaning-
ful drop in accuracy (greater than 2% on average)
compared to fully fine-tuned models. We find that
reusing the later layer parameters of a pretrained
transformer in addition to the cached activations of-
ten enables us to essentially match fully fine-tuned
model accuracy while reducing computational cost.

Wei et al. (2022) combine layer freezing and
knowledge distillation to create a multi-task model.
They do not consider caching activations on persis-
tent storage as we do, but instead re-use activations
across tasks at inference time via a branching multi-
task model. They use a two stage process where
12−N layers are fine-tuned for each individual task
keeping N frozen layers. This is followed by dis-
tillation of the N layers for further computational
gains. We take advantage of the parameter efficient
adapter modules (Houlsby et al., 2019), and re-
place this process with a single step of fine-tuning
a frozen base model that has adapters attached only
to the deeper layers.

Our work also has connections to work on
memory- and retrieval-augmented language model-
ing. Prior work on using memory (e.g., Grave et al.
(2016); Dai et al. (2019); Rae and Razavi (2020);
Wu et al. (2022)) generally focuses on modeling
long-range context and caching representations of
older history in a sequence, while work on retrieval
(e.g., Guu et al. (2020); Karpukhin et al. (2020))
focuses on fetching text from a knowledge base
or corpus to serve as additional context. In both
cases, the aim is to use representations of addi-
tional text (from earlier in a document or from a
knowledge base) to improve modeling of new in-
puts. In contrast, our work focuses on caching the
representations of an entire sequence to speed up
computation for new tasks.

3 Methods

In the transformer architecture (Vaswani et al.,
2017), an input sequence x of length S and dimen-
sion d is transformed with a function F : RS×d →
RS×d defined by the composition ofN transformer
layers F (1), ..., F (N) as follows:

Fℓ(x) = LN(FFℓ( x′) + x′) (1)

x’ = LN
(
MHℓ(x) + x

)
(2)

where LN is a layer normalization (Ba et al., 2016),
FF is a feed forward network, and MH is the self-
attention layer that consists of multiple heads and

Figure 1: Overview of the embedding recycling ap-
proach. In the figure, the K-th layer activations are
saved for future fine-tuning on downstream tasks, skip-
ping redundant computations of earlier layers in the
transformer model.

contextualizes the input sequence vector. The out-
put of each layer is used as input to the next layer.

hℓ+1 = F ℓ(hℓ) (3)

Our approach is to cache the output representa-
tions hk ∈ RS×d at a certain layer k and reuse them
for fine-tuning on a new given task. We refer to this
process of caching and reusing the output represen-
tations of a layer as layer recycling. This enables us
to reduce the size of the transformer model from N
layers to N − k layers, reducing the computational
cost during fine-tuning and inference.

Note that the key requirement of layer recycling
is that we first need to process the entire data with
the transformer model and cache the representa-
tions, so that we could later reuse these representa-
tions many times during fine-tuning and inference
on new tasks. We experiment with two types of
layer recycling approaches as explained next.

We start with a pretrained transformer F (e.g.,
BERT) consisting of F (1), ..., F (k), ..., F (N) lay-
ers. During the first epoch of fine-tuning for any
given task, we run the transformer over a corpus
C and cache the output representations of layer k
for each instance c in C, i.e., hkc∈C . However, for
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every subsequent epoch of fine-tuning using the
same transformer model, we only run and fine-tune
the latterN−k layers F (k+1), ..., F (N). We can ei-
ther train all of the weights in the layers (which we
refer to as reduced models), or only train adapter
modules added on the layers (discussed below). In
either case, for the instance c in the dataset C we
simply retrieve and use the previously cached repre-
sentation hkc∈C as input to layerF (k+1). This avoids
the extra computation through layers F (1), ..., F (k)

but adds a small cost for retrieving the representa-
tion from storage (see subsection 5.4 for efficiency
analysis).

3.1 Adapters

We evaluate whether combining recycling with
Adapter modules (Houlsby et al., 2019) can im-
prove performance over fully fine-tuned models.
Adapters are typically used to improve the parame-
ter efficiency of fine-tuning and mitigate the storage
costs of large language models. They also enable
more sample-efficient fine-tuning and can result
in improved fine-tuning performance (Karimi Ma-
habadi et al., 2022).

Adapter modules contain a down-projection, an
up-projection, and a residual connection module:
h ← h + (f(hWdown)Wup). The adapters are
separately inserted after the MH and the FF layers
in the transformer architecture (Equation 2). Fur-
ther, Rücklé et al. (2021) experiment with dropping
adapters from the lower transformer layers to pro-
vide inference time speedup. In our experiments,
adapters are added to the latter half of transformer
layers in the reduced transformer models. As in
standard layer recycling, the pretrained original
transformer F first caches the intermediate activa-
tions hkc∈C for each input in a selected corpus at
layer k. Then the first k layers are removed from
the transformer. During fine-tuning, the cached rep-
resentations are fed as input to the later N − k lay-
ers of the transformer, which consist of the frozen
transformer layers plus trainable adapter parame-
ters. Thus, we fine-tune only the additional 6-8%
parameters introduced by the adapters. We refer to
learning adapters on all layers as the full adapter
setting and the layer recycling version as the re-
duced adapter setting.

4 Experimental Setup

We now present our experiments evaluating
whether recycled embeddings can be paired with

reduced large language models to maintain accu-
racy while improving training and inference speed.
We explore the effectiveness of embedding recy-
cling across a variety of different tasks, datasets,
and transformer models.

4.1 Models

Our full-size models include the encoder trans-
formers BERT, SciBERT (Beltagy et al., 2019),
RoBERTa (Liu et al., 2019b), and DeBERTa (He
et al., 2020). We also experiment with the encoder-
decoder T5 model (Raffel et al., 2019). We selected
these architectures since they are widely-used pre-
trained transformers across a variety of tasks in
different domains. We experiment with multiple
sizes of these models, including distilled (Sanh
et al., 2019; Wang et al., 2020, 2021), base, and
large variants, to gauge the effectiveness of recy-
cled embeddings with an increase in the network
size.

To investigate the effectiveness of layer recy-
cling, we test several reduced models in which
we use caching to reduce 50% of the layers (e.g.,
caching layer 12 in RoBERTa-large and layer 6 in
BERT-base).1 We compare each reduced model
to its fully fine-tuned counterpart across the text
classification, NER, and QA tasks. The hardware
details and hyperparameters for our models are
specified in Appendix A.

4.2 Datasets

For our experiments, we focus on three core NLP
tasks: text classification, named-entity recognition
(NER), and extractive question-answering (QA).
Scientific papers, due to their immutable nature,
are an especially appropriate target for embedding
recycling, so we focus much of our evaluation
on the scientific domain. For text classification,
we selected Chemprot (Kringelum et al., 2016),
SciCite (Cohan et al., 2019), and SciERC (Luan
et al., 2018). For NER, we used BC5CDR (Li
et al., 2016), JNLPBA (Collier and Kim, 2004),
and NCBI-Disease (Doğan et al., 2014). For QA,
we chose the TriviaQA (Joshi et al., 2017) and
SQuAD (Rajpurkar et al., 2016) datasets.

1We note that for the encoder-decoder model T5, we con-
sider caching only the middle layer of the encoder, which
means that the speedups for this model will be smaller than (ap-
proximately half of) that of the other models we evaluate. We
also consider 25% and 75% reduced models in Appendix A.
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5 Results

5.1 Standard Fine-tuning
The results for standard fine-tuning of either full or
reduced models are shown in Table 1. For the text
classification and NER tasks, the reduced BERT-
sized and larger models perform similarly to their
fine-tuned counterparts on average, and substan-
tially outperform the distilled models. The reduced
distilled models also perform well on those tasks
compared to the distilled originals, on average, al-
though there is more variance across models and
tasks compared to BERT-sized models. We validate
our fully fine-tuned baselines by comparing our re-
sults with prior work (Beltagy et al., 2019), finding
that our scores land within 1.33% on average and
typically score above the previous baselines.

For QA tasks, we found that fully fine-tuning
works somewhat better than reduced configurations
across all the explored models (Table 1). Generally,
reduced configurations typically lag by 1 to 2 points
in F-1 score. One possible hypothesis is that the QA
datasets are generally much larger than the datasets
we used for other tasks (100k-150k examples vs
4k-20k examples for text classification and NER);
however, in additional experiments we found that
subsampling the QA training sets to 5% of their
original size only increased the gap, suggesting that
dataset size does not explain the failure of reduced
models on this task. We also validate our fully fine-
tuned baselines for QA tasks by comparing our
results with Yasunaga et al. (2022), finding that our
scores differ by less than half a point on average.

Finally, we explored using lightweight multi-
layer perceptrons (MLPs) as classifier heads, given
their success in prior work. While (Du et al., 2020)
paired multi-task encoders with 2-layer MLPs, we
paired frozen pretrained transformer models with
2-layer MLPs and found that they underperformed
trainable layers dramatically, by 26% on average
across the classification and NER tasks.

5.2 Adapters
Our results for reduced adapter models are shown
in Table 2. We see that in general, for all the
models except for T5-Large, the adapter-based ap-
proaches are superior to standard fine-tuning on
our tasks. Further, layer recycling remains effec-
tive with adapters. Compared to the full adapter
baseline, the reduced adapters for RoBERTa-Large,
BERT, SciBERT, and DeBERTa models only show
a 0.19% reduction in accuracy. Additionally, com-

pared to the fully fine-tuned baseline, these reduced
adapters models have a 0.19-0.23% reduction in ac-
curacy. Likewise, in contrast to the full fine-tuning
results above, QA accuracy for the top-performing
DeBERTa adapter model remains unchanged on av-
erage after layer recycling, with the reduced adapter
model performing better on one QA task and worse
on the other.2

5.3 GLUE Results

For our best-performing model DeBERTa v2 XL,
we also provide further experiments on datasets
from the GLUE benchmark (Wang et al., 2018),
to allow easier comparison against speedup tech-
niques from previous work. We present results
on the CoLA, SST-2, MRPC, STS-B, MNLI, and
QNLI tasks from GLUE. For our experiments, we
tried both our standard reduced models and our
reduced adapter models. We found that embedding
recycling was successful across the GLUE tasks,
with an average accuracy drop of 0.3 points in re-
turn for a significant increase in both training and
inference time as outlined in Table 5 and Table 4.
We note that due to the high computational cost of
these experiments, we take existing hyperparame-
ter settings from previous work that worked well
for the full models, and also use these for reduced
models. Further hyperparameter optimization of
the reduced models might improve performance.

5.4 Efficiency Analysis

To estimate the real-world benefit of recycling em-
beddings for different tasks, we provide a mini-
mal PyTorch implementation of embedding recy-
cling. This implementation and the following re-
sults correspond to both the standard layer recy-
cling approach and the adapter-based layer recy-
cling approach since they follow parallel processes
for gradient descent during training and computa-
tions during inference, despite the additional 6-8%
of parameters added by the trainable adapters. To
show that training times do not differ substantially,
we also measured the training time the transformer
models take to converge to their optimal weights.
We found both approaches take approximately the
same time to complete training (Table 16).

We evaluated the impact of recycling embed-
dings on four different architectures and two dif-

2We omit experiments with distilled models, as we found
adapters to be ineffective on those models even without em-
bedding recycling, scoring 19.4% worse on average than full
fine-tuning for text classification and NER.
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RoBERTa
Large

(Sci)BERT
DeBERTa

V2 XL
T5

Large
MiniLM
L6-H768

MiniLM
L6-H384

DistilBERT

Task Rdc Full Rdc Full Rdc Full Rdc Full Rdc Full Rdc Full Rdc Full

ChemProt 84.3 83.9 84.0 84.0 86.8 86.7 84.6 84.1 78.3 79.3 76.9 74.6 80.3 79.1
SciCite 85.0 85.5 86.6 86.0 85.2 84.4 86.3 84.9 84.5 84.6 83.7 82.8 84.1 84.0
SciERC-Rel 80.2 80.4 76.7 79.8 79.9 80.2 77.4 80.2 74.8 78.2 72.1 68.9 74.9 72.9
Classification Avg. 83.2 83.3 82.4 83.3 84.0 83.8 82.8 83.1 79.2 80.7 77.6 75.4 79.8 78.7

bc5cdr 90.0 90.4 90.7 91.3 91.3 91.8 90.7 89.9 87.8 87.5 85.9 88.3 88.3 88.7
JNLPBA 79.4 78.7 78.8 79.0 78.5 78.2 79.6 80.0 77.3 76.9 74.0 77.2 78.6 78.5
NCBI-disease 93.0 93.2 93.4 92.9 93.3 93.4 92.8 93.5 91.1 92.1 89.9 91.7 90.5 91.3
NER Avg. 87.5 87.4 87.7 87.7 87.7 87.8 87.7 87.8 85.4 85.5 83.3 85.7 85.8 86.2

TriviaQA 78.2 79.8 67.4 69.1 80.6 81.8 77.4 78.2 72.2 73.8 69.2 71.0 64.7 66.8
SQuAD 91.8 93.6 87.5 88.5 94.5 94.6 93.7 93.9 85.0 87.0 89.0 89.6 84.8 85.4
QA Avg. 85.0 86.7 77.5 78.8 87.5 88.2 85.5 85.9 78.6 80.4 79.1 80.3 74.8 76.1

Table 1: Test scores of reduced (Rdc) models on the text classification, NER, and QA tasks. Bold indicates the
best average F-1 score between the reduced and fully fine-tuned (Full) versions of each model over 10 runs. For
the ChemProt dataset, we report the micro F-1 scores instead, following past work (Beltagy et al., 2019). The
reduced BERT-sized models generally offer similar performance to their full counterparts (scoring within 0.2%
when averaged across RoBERTa and SciBERT for the six tasks), and substantially outperform the distilled models.

ferent hardware platforms. For models, we consid-
ered two efficient transformer models (MiniLMv2
(Wang et al., 2020, 2021) models with l = 6 layers
and embeddings of size h = 384 and h = 768),
two medium sized models (BERTBASE, l = 12,
h = 768; BERTLARGE, l = 24, h = 1024), and
a large model (DeBERTaV2-XLARGE, l = 24, h =
1536). We evaluated embeddings on a efficiency-
oriented AI accelerator (NVIDIA A10G), as well
as on a high-performance GPU (NVIDIA A6000).

We controlled for differences among tasks con-
sidered in tables Table 1, 2, and 3, such as length of
sequences and number of samples, by simulating
a sequence classification task on QASPER (Dasigi
et al., 2021), which includes the full-text of over a
thousand academic manuscripts.3 We run all mod-
els with a fixed batch size of 128. For all models,
we reduce exactly half of their layers by recycling,
which results in a maximum theoretical speed-up
of 100%. A run over the corpus consists of 335
batches, and we average results over seven runs.

Table 4 shows the results of caching embed-
dings to recycle on disk. Overall, we found that all
models benefit from embedding recycling, achiev-
ing an average speedup ranging from 18 to 86%.
Unsurprisingly, larger models benefit more from
recycling than smaller ones; this is due to the fact
that loading embeddings cached on disk adds a

3Because the bulk of computation for a transformer model
is done in its encoder and not in the task-specific heads, infer-
ence time is similar regardless of whether the model is used
for sequence classification, tagging, or question answering.

small latency penalty to a model run, which is more
noticeable in the case of smaller models. For ex-
ample, we achieve an 84% speedup when running
BERTBASE with embedding recycling on an A10G
GPU, which is roughly equivalent to the latency of
a MiniLML6-H768 model without recycling (351 vs
325 ms per batch on average); this result would us
allow to run more accurate models while maintain-
ing the efficiency of shallower architectures.

Table 4 also includes results when storing em-
beddings using half precision (that is, cache em-
beddings in FP16 rather FP32). The smaller em-
beddings lead to improvements for all models and
hardware, ranging from +8% to +46%. Further,
it has no impact on performance, as it changes
predicted scores by at most 10−3 across all tasks
evaluated in this work.

We also note that less capable hardware bene-
fits more from caching embeddings. For example,
BERTBASE achieves a speedup of 84% on an A10G
GPU, while on A6000, the speedup is a more mod-
est 55%. This is an expected result: fewer and
slower execution cores/accelerator memory impact
overall model latency. Further, we note that, de-
spite the smaller relative gains, the more powerful
GPU is always faster in absolute terms compared
with the less capable one.

It is important to note that these gaps from
maximum achievable speedup are only observed
when performing inference; for training, we ob-
serve almost perfect speed-up for all models and
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RoBERTa
Large

(Sci)BERT
DeBERTa

V2 XL
T5

Large

Task
Rdc +
Half
Adpt

Full
Adpt

Full
Rdc +
Half
Adpt

Full
Adpt

Full
Rdc +
Half
Adpt

Full
Adpt

Full
Rdc +
Half
Adpt

Full
Adpt

Full

ChemProt 84.1 85.2 83.9 84.2 84.9 84.0 87.2 86.5 86.7 84.3 84.9 84.1
SciCite 82.4 82.9 85.5 85.5 84.6 86.0 84.6 85.0 84.4 85.3 84.5 84.9
SciERC-Rel 85.7 85.9 80.4 86.0 85.5 79.8 82.9 82.1 80.2 76.2 75.6 80.2
Classification Avg. 84.1 84.7 83.3 85.2 85.0 83.3 84.9 84.6 83.8 81.9 81.7 83.1

bc5cdr 90.0 90.6 90.4 90.0 90.9 91.3 90.7 91.1 91.8 79.9 85.7 89.9
JNLPBA 79.1 79.2 78.7 79.8 78.3 79.0 79.3 79.0 78.2 78.8 79.5 80.0
NCBI-disease 92.8 93.1 93.2 93.1 93.0 92.9 93.3 93.5 93.4 92.1 92.5 93.5
NER Avg. 87.3 87.6 87.4 87.6 87.4 87.7 87.8 87.9 87.8 83.6 85.9 87.8

TriviaQA 78.5 79.8 79.8 67.4 68.9 69.1 81.6 82.3 81.8 77.0 77.5 78.2
SQuAD 93.5 93.4 93.6 87.9 87.9 88.5 94.7 93.9 94.6 90.6 91.0 93.9
QA Avg. 86.0 86.6 86.7 77.6 78.4 78.8 88.1 88.1 88.2 83.8 84.3 85.9

Table 2: Test scores of reduced adapter (Rdc + Half Adpt) models on the text classification, NER, and QA tasks.
Bold indicates the best average F-1 score between the reduced adapter, full adapter (Full Adpt), and fully fine-tuned
(Full) versions of each model over 10 runs. For the ChemProt dataset, we report the micro F-1 scores instead,
following past work (Beltagy et al., 2019). The reduced, adapter-based transformer models offer similar performance
to their full counterparts (scoring within 0.4% when averaged across RoBERTa, SciBERT, and DeBERTa for the
eight tasks), and substantially outperform the distilled models.

GLUE task
DeBERTa V2 XL

Rdc +
Half Adpt

Full
Adpt Rdc Full

CoLA 70.9 71.3 70.8 71.2
SST-2 96.9 97.1 97.1 97.4
Single
Sentence Avg. 83.9 84.2 84.0 84.3

MRPC 93.9 94.0 93.4 93.9
STS-B 92.4 92.7 92.5 92.8
Similarity and
Paraphrase Avg. 93.2 93.4 93.0 93.4

MNLI-m 91.7 92.0 91.0 91.4
QNLI 95.0 95.1 94.1 94.8
NLI Avg. 93.3 93.6 92.6 93.1

Table 3: Test scores of reduced (Rdc) and reduced
adapter (Rdc + Half Adpt) models on GLUE for De-
BERTa V2 XL. Bold indicates the best average score
between the reduced and fully fine-tuned (Full) versions
for the standard and adapter-based configurations. Each
score is averaged over 5 runs. We report the scores using
the standard GLUE metric for each corresponding task.

hardware configurations except for the smaller
MiniLM models. For example, BERTBASE re-
quires 17.38 ± 1.32 ms/batch4 without recycling,
compared to 8.67± 2.18 ms/batch when recycling.
Even when considering the additional time to cache
embeddings to disk during the first pass, embed-

4When training, we use a batch size of 16

ding recycling still achieves close to optimum
speedup on all models except MiniLMs, where
its gains hover between 52% and 82% (“NR vs SR”
column in Table 5). When training for just 6 epochs
(or roughly 2, 000 steps), recycling embeddings is
faster than simply freezing half of the parameters
for all models but MiniLM (“F vs SR” column in
Table 5); this is due to the relatively higher cost of
caching layers to disk in case of smaller models.
In these cases, we empirically found that recycling
achieves faster training time than freezing after
12 epochs or 4, 000 training steps; since smaller
models typically require more epochs to converge,
we conclude that recycling is generally preferable
to partially freezing a model during training. For
BERTBASE and larger models, embedding recycling
is also more efficient than layer freezing, providing
a +20% to +45% speed-up after just 6 training
epochs.

We also benchmarked the storage requirements
of recycling embeddings. For a sequence of 512 to-
kens and a hidden model dimension of 768, caching
embeddings requires 1.6 MB with 32-bit precision
or 0.8 MB with 16-bit precision. This translates
to 15.5 MB per paper in QASPER (papers are, on
average 4,884 WordPiece tokens long). Weighing
the storage cost and compute savings of ER, we
find that it is cost-effective in cloud environments
only if the corpus is reprocessed several times per
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Inference Time
(Speedup over Baseline)

Model Baseline
Recycling Avg. F1

diff when
recycling

FP32
cache

FP16
cache

NVIDIA A10G
MiniLM
L6-H384 183 ms

154 ms
(+21%)

123 ms
(+67%) −0.2

MiniLM
L6-H768 325 ms

201 ms
(+56%)

195 ms
(+66%) −0.4

BERT
BASE

647 ms
351 ms
(+84%)

343 ms
(+88%) −0.3

BERT
LARGE

1943 ms
1066 ms
(+86%)

1004 ms
(+93%) −0.2

DeBERTa
V2-XLARGE

1914 ms
1010 ms
(+89%)

985 ms
(+94%) −0.1

NVIDIA A6000
MiniLM
L6-H384 123 ms

105 ms
(+18%)

100 ms
(+23%) −0.2

MiniLM
L6-H768 208 ms

161 ms
(+29%)

150 ms
(+38%) −0.4

BERT
BASE 416 ms

269 ms
(+55%)

245 ms
(+59%) −0.3

BERT
LARGE 1235 ms

662 ms
(+86%)

643 ms
(+92%) −0.2

DeBERTa
V2-XLARGE 1430 ms

777 ms
(+84%)

758 ms
(+89%) −0.1

Table 4: Average inference runtime comparison (in ms/-
batch, averaged over 7 runs) between vanilla encoders
and models that cache embeddings on disk. For all runs,
cache the middle layer of the encoder. We assume the
cache is already precomputed when calculating timings;
thus, maximum speedup is 100%. Overall, the larger
the model, the higher the speedup from re-using repre-
sentations. Further, accelerators with fewer execution
units (A10G) benefit more from recycling embeddings.
Finally, using half precision for embeddings improves
speed up across the board, while halving storage size.

month, but is cost-effective on local hardware even
with infrequent (yearly) corpus reprocessing (de-
tails in subsection A.8 of the appendix).

6 Discussion and Future Work

Our experiments raise several questions and sug-
gest multiple avenues for future work, including:

• Our layer recycling strategy is a straightforward
ER approach, but previous work has suggested that
weighted pooling across layers can perform better
compared to any single layer in many cases (Liu
et al., 2019a; Du et al., 2020). Recycling pooled
activations may offer improved results. What is
the best way to capture and store the syntactic and
semantic knowledge encoded in the activations of
a model for later recycling?

• As noted in the previous section, naive storage
methods for ER can be cost-prohibitive in some
settings, and finding ways to mitigate this cost
(e.g., by compressing the stored activations) will
be important for making ER broadly applicable.

• Our experiments show that the right recycling
approach may be task-specific and model-specific.
For example, with standard fine-tuning as shown
in Table 8, caching layer 12 in RoBERTa-large
is most effective for NER and text classification,
whereas it is not effective for QA (but layer 6 per-
forms much better). Which embeddings to retrieve
and recycle for a task, and the right architecture
(e.g. number of layers) to use when consuming
the recycled embeddings, represents a large de-
cision space. Methods that can help practition-
ers automatically choose among public or private
shared embedding sets and associated model de-
signs, given their task and objectives for accuracy
and computational cost, may be important to make
ER an effective practical tool.

• We present results with encoder-only and
encoder-decoder models, on classification tasks.
Determining whether the approach is effective for
generative tasks and autoregressive models is an
important question for future work.

• While we show that ER can be effective when
coupled with distillation, whether other techniques
like quantization and early exiting remain effective
in combination with ER is an open question.

• We focus on the setting where the exact same
text, at the length of a full document, is being
reused for multiple tasks. In practice, we may
often perform a task on text that is similar to but
not exactly the same as one for which we have
cached embeddings (e.g., a Wikipedia page that
has been revised). Further, even a completely new
document will have similarities and overlapped
spans with previously processed ones. Studying
ER in these settings, e.g. through a combination of
layer recycling and the SkipBERT approach which
can apply to unseen passages via cached n-grams
(Wang et al., 2022), is an area of future work.

• Finally, it is possible to explore cross-model em-
bedding recycling. We attempted a straightfor-
ward implementation of such approach by using
recycling embeddings from a larger model into a
smaller consumer model. However, the results did
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Model
Training (ms/batch, amortized over 6 epochs) Speedup

No
Recycling (NR)

Model
Frozen (F)

Saving +

Recycling (SR)
Only

Recycling (R)
NR vs

SR
F vs
SR

NR vs
R

NVIDIA A10G
MiniLM384 51 ± 1 30 ± 1 32 ± 6 25 ± 4 +59% -7% +104%
MiniLM768 90 ± 4 56 ± 1 50 ± 4 45 ± 3 +80% +12% +100%
BERTBASE 173 ± 2 112 ± 1 90 ± 4 87 ± 3 +92% +24% +99%
BERTLARGE 347 ± 1 246 ± 1 181 ± 2 176 ± 2 +92% +36% +97%

DeBERTaXLARGE 380 ± 2 286 ± 1 199 ± 1 194 ± 1 +91% +44% +96%

NVIDIA A6000
MiniLM384 41 ± 1 24 ± 1 26 ± 5 22 ± 3 +55% -8% +81%
MiniLM768 61 ± 1 38 ± 1 40 ± 5 34 ± 3 +52% -5% +82%
BERTBASE 117 ± 1 78 ± 1 60 ± 3 58 ± 2 +94% +30% +102%
BERTLARGE 326 ± 2 212 ± 1 167 ± 2 161 ± 1 +96% +26% +103%

DeBERTaXLARGE 359 ± 2 250 ± 1 184 ± 1 178 ± 1 +95% +35% +102%

Table 5: Average training runtime comparison (in ms per batch, ± stdev over 7 runs) between vanilla encoders and
models that cache embeddings on disk. For all runs, we cache the middle layer of the encoder; thus, theoretical
speedup is 100%. Time per batch is amortized over 6 epochs (2, 000 steps), the lowest number to convergence over
all datasets (c.r.f. Table 16). We present results in four settings: no recycling (NR), freezing ½ of the layers during
training (F), 1 training epoch during which embeddings are saved to disk followed by 5 epochs where recycling is
enabled (SR), and 6 epochs where embeddings are already saved (R). Overall, we found that embedding recycling
speeds up training even when embeddings need to be cached to disk during the first pass. Compared to freezing,
saving and recycling improves training time for all but MiniLM models (F vs SR).

not show improvements (Appx. A.3). Developing
and evaluating new approaches for this setting is
an important item for future work.

7 Conclusion

We have presented embedding recycling, a general
technique for reusing previous activations of neu-
ral language models to improve the efficiency of
future training and inference. We show how a sim-
ple technique of caching a layer of activations in
a pretrained model is effective. We validate our
approach in experiments across fourteen tasks and
eight model architectures. We find that recycling
typically has small or no impacts to accuracy on
average, but does yield substantial throughput in-
creases demonstrated through a careful efficiency
analysis. We also discuss several open challenges
for future work.

8 Limitations

As discussed in detail in our future work section,
several advances are important to make embedding
recycling a broadly applicable practical technique.
In addition, the techniques we evaluate primarily
benefit transformer language models run on GPU-
based architectures with rapid storage, components
which are not available to all NLP researchers and
practitioners. Our experiments demonstrate posi-

tive results with one representative embedding re-
cycling technique, but do not directly evaluate all
recycling variants proposed earlier in the litera-
ture. Finally, the datasets used in our experiments
were in English, a high-resource language with
robust pretrained models which may benefit em-
bedding recycling. Future work should expand on
the applicability of embedding recycling by using
non-English datasets in lower-resource settings to
determine the breadth of its applicability.
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A Experimental Setup and Additional
Results

A.1 Fine-tuning Transformer Models
The candidate transformer models are fine-tuned
using configurations suggested by Devlin et al.
(2019), Ding et al. (2022) and Houlsby et al. (2019).
For text classification, we feed the final hidden state
of the [CLS] token into a linear classification layer.

1944

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204


For NER and QA, we feed the final hidden states
of each token into a linear classification layer with
a softmax output.

For all of the models, we apply a dropout of 0.1
to the transformer outputs and optimize for cross
entropy loss using Adam (Kingma and Ba, 2015).
We employ a batch size of 32 across all tasks. We
fine-tune using early stopping with a patience of 10,
using a validation set for calculating loss for each
epoch. We use a linear warmup followed by lin-
ear decay for training (Howard and Ruder, 2018),
testing the following learning rate options: 1e-3,
2e-3, 1e-4, 2e-4, 1e-5, 2e-5, 5e-5, and 5e-6. For the
text classification and NER datasets, we select the
best performing learning rate for each transformer
model on the development set and report the cor-
responding test results. For the QA datasets, we
select the best performing learning rate for each
transformer model on the training set and report
the corresponding results on the validation set. Ad-
ditionally, for the adapter modules used in certain
model configurations, we test bottleneck dimen-
sions as part of our hyperparameter search: 24, 64,
and 256.

A.2 Adapter-based Models
Here, we used frozen RoBERTa-Large (Liu et al.,
2019b), SciBERT (Beltagy et al., 2019), and BERT
models but added adapter modules (Houlsby et al.,
2019) only on the latter half of the transformer
layers. Only the adapters and the linear classifier
attached to the model output were fine-tuned for
the text classification, NER, and QA tasks.

We found that the best hyperparameter configu-
ration was generally a bottleneck dimension of 256
and a learning rate of either 1e-4 or 2e-4.

A.3 Cross-model Embedding Reuse
An alternative to re-using cached activation from
a pre-trained model (section 5), is to cache ac-
tivations from a more expensive, larger model
and re-using them in downstream cheaper mod-
els. The goal here is to improve accuracy by using
more powerful contextual embeddings. Overall, a
straightforward implementation of this strategy did
not offer improvements, as described below.

We experiment with reusing precomputed em-
beddings from one source model F in a consumer
model F ′ that has a different size but the same tok-
enization vocabulary. The activations of the final
transformer layer hNc∈C are stored for each input
c from corpus C. During the fine-tuning of the

consumer model F ′, these stored activations are
transformed through a learned 2-layer MLP with
ReLU activation5 and added to the input embed-
dings of F ′. We tried two frameworks for pair-
ing large language model embeddings with com-
pact models: F=Roberta-large→ F ′=MiniLM-6L-
H768 and F=BERT-base→ F ′=DistilBERT.

Overall, as shown in Table 6 the larger model’s
contextual representations do not improve the
smaller model’s accuracy; in fact adding them de-
creases the average F1 score by 0.3-0.9 points.

A.4 Efficiency of Embedding Recycling when
Training

For training, we observe almost perfect speed-up
for all models and hardware configuration, bar-
ring MiniLM models on the machine equipped
with a A6000 GPU (“NR vs R” column in Ta-
ble 5). For example, BERTBASE requires 17.38 ±
1.32 ms/batch6 without recycling, compared to
8.67± 2.18 ms/batch when recycling. Even when
considering the additional time to cache embed-
dings to disk during the first pass, embedding re-
cycling still achieves close to optimum speedup
on all models except MiniLMs, where its gains
hover between 52% and 82% (“NR vs SR” col-
umn in Table 5). When training for just 6 epochs
(or roughly 2, 000 steps), recycling embeddings is
faster than simply freezing half of the parameters
for all models but MiniLM (“F vs SR” column in
Table 5); this is due to the relatively higher cost of
caching layers to disk in case of smaller models.
In these cases, we empirically found that recycling
achieves faster training time than freezing after 12
epochs or 4, 000 training steps; since smaller mod-
els typically require more epochs to converge, we
conclude that recycling is generally preferable to
partially freezing a model during training.

A.5 Embedding Pre-fetching while Recycling
Storing embeddings on NVMe drives, while fast,
introduce additional latency compared to RAM.
For example, BERTBASE achieves an average la-
tency of 351 ± 1 ms/batch when caching on disk
(84% speedup), compared to just 334±1 ms/batch
when using memory (94% speedup). This is due to
the fact that, while embeddings are being loaded
from disk, the hardware accelerator responsible for
executing the rest of the model sits idle. To reduce

5We found that MLP achieved better performance com-
pared with a single linear layer on dev set.

6When training, we use a batch size of 16
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RoBERTa-Large
+ MiniLM L6-H768 MiniLM L6-H768 BERT +

DistilBERT DistilBERT

Chemprot Micro F-1 78.9 (0.3) 79.3 (0.3) 77.8 (0.4) 79.1 (0.5)
Macro F-1 52.2 (0.2) 52.6 (0.4) 51.2 (0.5) 52.6 (0.3)

SciCite Micro F-1 85.2 (0.3) 86.0 (0.2) 85.7 (0.1) 85.5 (0.1)
Macro F-1 83.8 (0.3) 84.6 (0.2) 84.2 (0.1) 84.0 (0.1)

SciERC-Rel Micro F-1 85.1 (0.4) 86.3 (0.2) 83.8 (0.2) 83.5 (0.4)
Macro F-1 76.2 (0.8) 78.2 (0.6) 73.6 (0.6) 72.9 (0.7)

Text Classification
Average Score 76.9 77.8 76.0 76.3

Table 6: Cross-Model Recycling Results for RoBERTa+MiniLM-L6H768 and BERT+DistilBERT configurations.
Bold indicates the best average score between the cross-model recycling and fully finetuned versions of each model.
Each score represents the average score of 10 runs, with the standard errors for each score in parentheses.

the impact of this latency penalty, our implemen-
tation supports pre-fetching of future embeddings:
when processing a sequence of inputs, such as sen-
tences in a manuscript, it loads embeddings for
tokens ahead of the sequence inference is currently
being run on. This optimization reduces the time ac-
celerators wait for data to be available for inference;
for example, in the case of BERTBASE on A10G,
disabling pre-fetching raised inference inference
time to 374±1 ms/batch (vs 351±1 ms/batch with
pre-fetching). Therefore in this section, all results
are reported with prefetching enabled.

A.6 Software and Hardware

For implementation, we use the v4.19 version of
the Transformers library (Wolf et al., 2019), the
v0.4 version of the OpenDelta library (Ding et al.,
2022), and the v1.11 version of the Pytorch library
(Paszke et al., 2019). We conduct our experiments
using NVIDIA RTX A6000 GPUs and NVIDIA
A10G GPUs with CUDA v11.5.

A.7 Considerations in Selecting Hardware for
Proof-of-Concept Recycling Experiments

We ran our proof-of-concept implementation on an
AWS Cloud instance7 equipped with an NVIDIA
A10G accelerator, and on a NVIDIA A6000 within
an on-premise server8. The former contains fewer
execution units (72 vs 84), fewer tensor cores (288
vs 336), slower memory (600 vs 768 GB/s), and
slower boost clock (1800 MHz vs 1695 MHz).
However, it is much more efficient, being rated
at 150W (compare with A6000’s 300W power tar-
get). Therefore, the NVIDIA A10G accelerator
presents a more realistic platform for embedding
recycling, since it is more suitable for cost-efficient

7g5.2xlarge instance with 8 cores and 32 GB of RAM.
8Intel-based system with 128 cores and 512 GB of RAM.

large-scale model deployments. Both machines are
equipped with PCIe NVMe drives, which we use
to cache embeddings to recycle.

A.8 Cost-effectiveness of Embedding
Recycling

In this section we attempt to estimate how cost-
effective embedding recycling is for inference in
a real-world setting. While this depends heavily
on use-case-specific assumptions, we consider two
typical settings as proofs-of-concept, one using
cloud computing and one using local hardware.

There are four main factors that affect the cost-
benefit ratio of embedding recycling: (1) compute
cost, (2) storage cost, (3) model architecture, and
(4) frequency of corpus reprocessing (i.e., how of-
ten the cached embeddings will be used). Com-
pute costs are challenging to estimate for a locally-
owned hardware setting due to many hidden cost
factors beyond the GPUs (cooling, electrical costs,
server to house the GPUs, etc) and so we use
AWS EC2 cloud GPU prices as a cost estimate for
both cloud and local hardware. In particular, we
consider a g5.12xlarge instance with 4 × A10G
GPUs at 5.67 $/hr.

Storage costs are easier to estimate for local
hardware than compute costs, and local storage
can be significantly cheaper because embedding
recycling does not require the availability and dura-
bility guarantees provided by cloud solutions (the
cache is accessed infrequently and can always be
recomputed if it is lost). Therefore, we consider
both a cloud storage solution (AWS S3 one-zone
infrequent access, at 0.01 $/GB/month) and a lo-
cal storage solution. For local storage, we consider
current consumer-grade hard drive prices at approx-
imately 16.9 $/TB based on data from Amazon and
Newegg, and assume a lifespan of 6 years based on
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Model Cloud Local

MiniLM384 0.05 2.2
MiniLM768 0.05 2.4
BERTBASE 0.13 5.6
BERTLARGE 0.30 12.9
DeBERTaXLARGE 0.20 8.5

Table 7: Minimum reprocessing frequency (in months)
needed in order for embedding recycling to be cost-
effective in various model and hardware configurations.

data from Backblaze.9 This results in an average
cost of 0.23 $/TB/month over the life of the drive.
Finally, we note that AWS does not charge for data
transfer between S3 and EC2 within a region, so
we can ignore data transfer costs in this calculation.

The frequency of corpus reprocessing is highly
variable, so we report results in terms of the mini-
mum reprocessing frequency that would be neces-
sary for embedding recycling to be cost-effective.
For all models we assume each input is 512 tokens
and the cache is stored with FP16 precision.

Table 7 shows the minimum reprocessing fre-
quency needed for embedding recycling to be cost
effective for our models on cloud and local hard-
ware. Under our assumptions, we find that embed-
ding recycling is cost-effective in a cloud setting
only if the corpus is reprocessed very frequently
(several times per month). This may be realistic in
some use cases, such as when a large team is work-
ing with the same corpus and developing many new
models, or if new training data arrives frequently
and the model developer wants to continually up-
date and re-deploy it.

With local hardware the calculation is much
more favorable; embedding recycling with
BERTLARGE would be worthwhile even if the cor-
pus were only reprocessed once per year.

We note that embedding recycling could become
substantially more cost effective with further de-
velopment. In this work we did not explore ways
to reduce storage costs, such as quantization or
compression. In addition, while our experiments
only considered sequence lengths of 512 tokens,
for many full-text document corpora it is desirable
to use a much longer sequence length to fit the
whole document into a model at once. Because
the computational cost of transformers generally
scales superlinearly with input length (but storage

9https://www.backblaze.com/blog/how-long-do-disk-
drives-last/

cost scales only linearly), embedding recycling will
be more effective as the sequence length grows.
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RoBERTa-Large

Reduced +
Half Adpt

Full
Adapters

6 Layers
Reduced

12 Layers
Reduced

18 Layers
Reduced

Fully
Finetuned

ChemProt Micro F-1 84.1 (0.4) 85.2 (0.3) 84.2 (0.3) 84.3 (0.2) 82.0 (0.2) 83.9 (0.3)
Macro F-1 60.8 (0.7) 57.5 (0.7) 56.4 (0.4) 56.5 (0.3) 54.5 (0.5) 56.5 (0.4)

SciCite Micro F-1 85.2 (0.3) 85.6 (0.5) 86.2 (0.2) 86.2 (0.2) 86.2 (0.2) 86.8 (0.2)
Macro F-1 82.4 (0.4) 82.9 (0.6) 84.9 (0.2) 85.0 (0.2) 85.0 (0.2) 85.5 (0.2)

SciERC-Rel Micro F-1 89.0 (0.5) 89.3 (0.6) 87.1 (0.4) 86.8 (0.4) 86.1 (0.2) 87.3 (0.4)
Macro F-1 85.7 (0.7) 85.9 (0.9) 79.4 (0.7) 80.2 (0.8) 76.2 (0.4) 80.4 (0.6)

Text Classification
Average Score 81.2 81.1 79.7 79.8 78.3 80.1

bc5cdr Micro F-1 97.4 (0.0) 97.6 (0.0) 97.2 (0.3) 97.4 (0.0) 97.3 (0.0) 97.5 (0.0)
Macro F-1 90.0 (0.0) 90.6 (0.0) 89.0 (1.2) 90.0 (0.0) 89.5 (0.1) 90.4 (0.1)

JNLPBA Micro F-1 93.8 (0.0) 93.8 (0.0) 93.8 (0.0) 93.9 (0.0) 93.7 (0.0) 93.7 (0.1)
Macro F-1 79.1 (0.1) 79.2 (0.2) 79.3 (0.1) 79.4 (0.1) 79.0 (0.1) 78.7 (0.3)

NCBI-disease Micro F-1 98.5 (0.0) 98.6 (0.0) 98.5 (0.0) 98.5 (0.0) 98.4 (0.0) 98.6 (0.0)
Macro F-1 92.8 (0.1) 93.1 (0.1) 93.0 (0.1) 93.0 (0.1) 92.4 (0.1) 93.2 (0.1)

NER Average
Score 91.9 92.1 91.8 92.0 91.7 92.0

TriviaQA Micro F-1 75.3 (0.1) 76.8 (0.2) 76.6 (0.2) 75.1 (0.1) 70.8 (0.1) 76.7 (0.1)
Macro F-1 78.5 (0.1) 79.8 (0.1) 79.7 (0.2) 78.2 (0.1) 73.8 (0.1) 79.8 (0.1)

SQuAD Micro F-1 87.0 (0.1) 86.7 (0.0) 86.2 (0.0) 84.7 (0.0) 79.3 (0.0) 87.4 (0.0)
Macro F-1 93.5 (0.1) 93.4 (0.0) 92.8 (0.0) 91.8 (0.0) 87.8 (0.0) 93.6 (0.0)

QA Average
Score 83.6 84.1 83.8 82.4 77.9 84.3

Table 8: RoBERTa Results for Reduced Models. Bold indicates the best average score between the standard reduced,
adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indicates adapters on
the transformer layers of a fully frozen reduced model, where the earlier half of transformer layers were removed
and their activations cached. Full Adapters indicates adapters on all transformer layers of a fully frozen model.
Each score represents the average score of 10 runs, with the standard errors for each score in parentheses.

SciBERT

Reduced +
Half Adpt

Full
Adapters

3 Layers
Reduced

6 Layers
Reduced

9 Layers
Reduced

Fully
Finetuned

ChemProt Micro F-1 84.2 (0.3) 84.9 (0.4) 83.8 (0.4) 84.0 (0.2) 81.9 (0.2) 84.0 (0.3)
Macro F-1 56.9 (0.8) 54.8 (0.4) 56.5 (0.5) 57.0 (0.3) 54.3 (0.3) 56.3 (0.4)

SciCite Micro F-1 86.6 (0.2) 85.8 (0.1) 87.1 (0.1) 87.6 (0.1) 87.4 (0.1) 87.1 (0.2)
Macro F-1 85.5 (0.3) 84.6 (0.1) 86.1 (0.1) 86.6 (0.1) 86.2 (0.1) 86.0 (0.2)

SciERC-Rel Micro F-1 89.4 (0.4) 88.5 (0.6) 86.6 (0.3) 86.1 (0.2) 85.4 (0.2) 86.3 (0.2)
Macro F-1 86.0 (0.7) 85.5 (0.6) 77.6 (0.5) 76.7 (0.3) 76.2 (0.4) 79.8 (0.5)

Text Classification
Average Performance 81.4 80.7 79.6 79.7 78.6 79.9

bc5cdr Micro F-1 97.5 (0.0) 97.7 (0.1) 97.7 (0.0) 97.6 (0.0) 97.5 (0.0) 97.7 (0.0)
Macro F-1 90.0 (0.0) 90.9 (0.1) 91.0 (0.1) 90.7 (0.0) 90.2 (0.1) 91.3 (0.0)

JNLPBA Micro F-1 94.0 (0.0) 93.5 (0.0) 93.6 (0.1) 93.7 (0.1) 93.8 (0.0) 93.6 (0.1)
Macro F-1 79.8 (0.0) 78.3 (0.2) 78.6 (0.4) 78.8 (0.2) 79.0 (0.1) 79.0 (0.2)

NCBI-disease Micro F-1 98.6 (0.0) 98.5 (0.0) 98.5 (0.0) 98.6 (0.0) 98.5 (0.0) 98.5 (0.0)
Macro F-1 93.1 (0.1) 93.0 (0.1) 92.9 (0.1) 93.4 (0.1) 93.1 (0.1) 92.9 (0.1)

NER Average
Perforamcne 92.2 92.0 92 92.1 92 92.2

Table 9: SciBERT text classification and NER results for Reduced Models. Bold indicates the best average score
between the standard reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced +
Half Adpt indicates adapters on the transformer layers of a fully frozen reduced model, where the earlier half of
transformer layers were removed and their activations cached. Full Adapters indicates adapters on all transformer
layers of a fully frozen model. Each score represents the average score of 10 runs, with the standard errors for each
score in parentheses. QA tasks are not included since SciBERT was pretrained for scientific datasets.
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BERT

Reduced +
Half Adpt

Full
Adapters

3 Layers
Reduced

6 Layers
Reduced

9 Layers
Reduced

Fully
Finetuned

TriviaQA Micro F-1 63.9 (0.5) 65.5 (0.1) 65.7 (0.1) 64.1 (0.2) 61.4 (0.1) 66.0 (0.1)
Macro F-1 67.4 (0.5) 68.9 (0.1) 68.9 (0.1) 67.4 (0.1) 64.8 (0.1) 69.1 (0.1)

SQuAD Micro F-1 80.2 (0.1) 80.2 (0.0) 80.8 (0.1) 79.5 (0.1) 75.4 (0.1) 81.1 (0.1)
Macro F-1 87.9 (0.1) 87.9 (0.0) 88.4 (0.1) 87.5 (0.1) 84.8 (0.1) 88.5 (0.0)

QA Average
Scores 74.9 75.6 76.0 74.6 71.6 76.2

Table 10: BERT QA Results for Reduced Models. Bold indicates the best average score between the standard
reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indicates
adapters on the transformer layers of a fully frozen reduced model, where the earlier half of transformer layers were
removed and their activations cached. Full Adapters indicates adapters on all transformer layers of a fully frozen
model. Each score represents the average score of 10 runs, with the standard errors for each score in parentheses.

DeBERTaV2 XL

Reduced +
Half Adpt

Full
Adapters

6 Layers
Reduced

12 Layers
Reduced

18 Layers
Reduced

Fully
Finetuned

ChemProt Micro F-1 87.2 (0.1) 86.5 (0.2) 87.2 (0.2) 86.8 (0.4) 86.4 (0.2) 86.7 (0.9)
Macro F-1 56.7 (0.5) 55.6 (0.6) 59.6 (0.2) 59.5 (0.5) 59.2 (0.3) 59.0 (1.1)

SciCite Micro F-1 85.8 (0.4) 86.4 (0.4) 86.0 (0.1) 86.3 (0.2) 86.2 (0.3) 85.9 (0.2)
Macro F-1 84.6 (0.4) 85.0 (0.5) 84.6 (0.1) 85.2 (0.1) 85.0 (0.3) 84.4 (0.2)

SciERC-Rel Micro F-1 88.6 (0.5) 88.0 (0.4) 88.3 (0.2) 87.5 (0.1) 86.6 (0.3) 88.0 (0.4)
Macro F-1 82.9 (0.8) 82.1 (0.8) 80.5 (0.5) 79.9 (0.3) 78.0 (0.4) 80.2 (0.5)

Text Classification
Average Score 81.0 80.6 81.0 80.9 80.2 80.7

bc5cdr Micro F-1 97.6 (0.0) 97.7 (0.0) 97.4 (0.3) 97.7 (0.0) 97.6 (0.0) 97.9 (0.0)
Macro F-1 90.7 (0.1) 91.1 (0.1) 89.5 (1.4) 91.3 (0.0) 90.9 (0.0) 91.8 (0.1)

JNLPBA Micro F-1 93.6 (0.0) 93.4 (0.0) 93.7 (0.1) 93.7 (0.0) 93.6 (0.0) 93.7 (0.0)
Macro F-1 79.3 (0.1) 79.0 (0.1) 78.5 (0.3) 78.5 (0.2) 77.8 (0.1) 78.2 (0.1)

NCBI-disease Micro F-1 98.3 (0.0) 98.4 (0.0) 98.6 (0.0) 98.6 (0.0) 98.5 (0.0) 98.6 (0.0)
Macro F-1 93.3 (0.1) 93.5 (0.2) 93.1 (0.1) 93.3 (0.1) 92.8 (0.1) 93.4 (0.1)

NER Average
Score 92.1 92.2 91.8 92.2 91.9 92.3

TriviaQA Micro F-1 78.6 (0.2) 79.1 (0.2) 77.9 (0.2) 77.4 (0.2) 77.0 (0.2) 78.5 (0.1)
Macro F-1 81.6 (0.1) 82.3 (0.2) 81.2 (0.1) 80.6 (0.1) 80.1 (0.2) 81.8 (0.1)

SQuAD Micro F-1 88.6 (0.0) 87.2 (0.1) 88.6 (0.1) 88.7 (0.0) 87.1 (0.0) 88.5 (0.1)
Macro F-1 94.7 (0.0) 93.9 (0.0) 94.6 (0.0) 94.5 (0.0) 93.5 (0.0) 94.6 (0.0)

QA Average
Score 85.9 85.6 85.6 85.3 84.4 85.8

Table 11: DeBERTaV2-XL Results for Reduced Models. Bold indicates the best average score between the standard
reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indicates
adapters on the transformer layers of a fully frozen reduced model, where the earlier half of transformer layers were
removed and their activations cached. Full Adapters indicates adapters on all transformer layers of a fully frozen
model. Each score represents the average score of 5 runs, with the standard errors for each score in parentheses.
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T5 Large

Reduced +
Half Adpt

Full
Adapters

6 Layers
Frozen

12 Layers
Reduced

18 Layers
Reduced

Fully
Finetuned

ChemProt Micro F-1 84.3 (0.6) 84.9 (0.6) 84.7 (0.6) 84.6 (0.6) 85.0 (0.1) 84.1 (0.8)
Macro F-1 57.2 (0.7) 58.0 (0.8) 56.2 (0.7) 56.2 (0.7) 57.4 (0.1) 56.1 (0.7)

SciCite Micro F-1 86.7 (0.3) 86.2 (0.3) 87.4 (0.2) 87.6 (0.1) 88.0 (0.2) 86.4 (0.2)
Macro F-1 85.3 (0.4) 84.5 (0.4) 86.0 (0.2) 86.3 (0.2) 86.9 (0.2) 84.9 (0.2)

SciERC-Rel Micro F-1 85.6 (0.4) 85.2 (0.1) 84.3 (0.3) 86.8 (0.4) 83.4 (0.7) 87.4 (0.5)
Macro F-1 76.2 (1.0) 75.6 (0.2) 73.6 (0.9) 77.4 (0.7) 72.2 (1.0) 80.2 (1.1)

Text Classification
Average Score 79.2 79.1 78.7 79.8 78.8 79.9

bc5cdr Micro F-1 93.8 (0.6) 95.7 (0.7) 97.7 (0.7) 97.4 (0.3) 95.4 (0.8) 97.5 (0.2)
Macro F-1 79.9 (1.0) 85.7 (1.1) 91.1 (0.5) 90.7 (1.1) 89.3 (1.0) 89.9 (0.8)

JNLPBA Micro F-1 93.9 (0.4) 93.8 (0.1) 93.8 (0.0) 94.0 (0.0) 93.9 (0.0) 94.2 (0.0)
Macro F-1 78.8 (0.6) 79.5 (0.2) 78.8 (0.1) 79.6 (0.1) 79.3 (0.0) 80.0 (0.0)

NCBI-disease Micro F-1 97.8 (0.0) 98.5 (0.0) 98.5 (0.0) 98.5 (0.0) 98.4 (0.0) 98.6 (0.0)
Macro F-1 92.1 (0.2) 92.5 (0.2) 93.1 (0.1) 92.8 (0.0) 92.2 (0.1) 93.5 (0.0)

NER Average
Score 89.4 90.9 92.2 92.2 91.4 92.3

TriviaQA Micro F-1 68.2 (0.2) 68.8 (0.2) 67.0 (0.0) 66.9 (0.0) 63.9 (0.0) 68.7 (0.0)
Macro F-1 77.0 (0.1) 77.5 (0.1) 77.5 (0.0) 77.3 (0.0) 74.8 (0.0) 78.0 (0.0)

SQuAD Micro F-1 81.2 (0.1) 82.0 (0.1) 86.6 (0.1) 86.3 (0.6) 85.2 (0.4) 86.7 (0.4)
Macro F-1 90.6 (0.1) 91.0 (0.1) 93.8 (0.0) 93.7 (0.3) 92.8 (0.2) 93.9 (0.3)

QA Average
Score 79.2 79.8 81.2 81.0 79.2 81.8

Table 12: T5 Large Results for Reduced Models. Bold indicates the best average score between the standard
reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indicates
adapters on the encoder and decoder transformer layers of a fully frozen reduced model, where the earlier half of
the encoder layers were removed and their activations cached. Full Adapters indicates adapters on all encoder
and decoder transformer layers of a fully frozen model. Each score represents the average score of 5 runs, with the
standard errors for each score in parentheses.
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DistilBERT

2 Layers
Reduced

3 Layers
Reduced

4 Layers
Reduced

Fully
Fine-tuned

ChemProt Micro F-1 79.1 (0.4) 80.3 (0.1) 79.0 (0.2) 79.1 (0.5)
Macro F-1 52.1 (0.5) 51.6 (0.6) 51.6 (0.4) 52.6 (0.3)

SciCite Micro F-1 85.7 (0.1) 85.6 (0.1) 85.8 (0.1) 85.5 (0.1)
Macro F-1 84.3 (0.1) 84.1 (0.1) 84.2 (0.1) 84.0 (0.1)

SciERC-Rel Micro F-1 84.3 (0.3) 84.5 (0.3) 84.6 (0.2) 83.5 (0.4)
Macro F-1 74.1 (0.7) 74.9 (0.7) 74.6 (0.4) 72.9 (0.7)

Text Classification
Average Score 76.6 76.8 76.6 76.3

bc5cdr Micro F-1 97.0 (0.0) 97.0 (0.0) 96.9 (0.0) 97.2 (0.0)
Macro F-1 88.3 (0.0) 88.3 (0.1) 87.9 (0.0) 88.7 (0.1)

JNLPBA Micro F-1 93.4 (0.1) 93.5 (0.0) 93.4 (0.0) 93.5 (0.0)
Macro F-1 78.0 (0.3) 78.6 (0.1) 77.9 (0.1) 78.5 (0.1)

NCBI-disease Micro F-1 98.2 (0.0) 98.0 (0.0) 98.1 (0.0) 98.2 (0.0)
Macro F-1 91.4 (0.1) 90.5 (0.1) 90.7 (0.1) 91.3 (0.1)

NER Average
Score 91.1 91 90.8 91.2

TriviaQA Micro F-1 62.9 (0.1) 61.4 (0.1) 59.1 (0.1) 63.6 (0.1)
Macro F-1 66.2 (0.1) 64.7 (0.1) 62.4 (0.1) 66.8 (0.1)

SQuAD Micro F-1 76.6 (0.1) 76.3 (0.1) 72.5 (0.1) 77.1 (0.1)
Macro F-1 85.1 (0.1) 84.8 (0.0) 82.3 (0.1) 85.4 (0.0)

QA Average
Score 72.7 71.8 69.1 73.2

Table 13: DistilBERT Results for Reduced Models. Bold indicates the best average score between the reduced and
fully fine-tuned versions of each model. Each score represents the average score of 10 runs, with the standard errors
for each score in parentheses.
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MiniLM: 6L-H768

2 Layers
Reduced

3 Layers
Reduced

4 Layers
Reduced

Fully
Fine-tuned

ChemProt Micro F-1 79.4 (0.3) 78.3 (0.4) 79.0 (0.2) 79.3 (0.3)
Macro F-1 51.8 (0.4) 50.6 (0.4) 52.0 (0.2) 52.6 (0.4)

SciCite Micro F-1 85.4 (0.1) 85.8 (0.2) 85.9 (0.1) 86.0 (0.2)
Macro F-1 84.1 (0.2) 84.5 (0.2) 84.5 (0.1) 84.6 (0.2)

SciERC-Rel Micro F-1 84.7 (0.3) 83.9 (0.3) 84.1 (0.4) 86.3 (0.2)
Macro F-1 75.0 (0.4) 74.8 (0.4) 75.3 (0.6) 78.2 (0.6)

Text Classification
Average Score 76.7 76.3 76.8 77.8

bc5cdr Micro F-1 96.1 (0.3) 96.8 (0.0) 96.6 (0.0) 96.8 (0.2)
Macro F-1 84.6 (1.1) 87.8 (0.1) 86.6 (0.0) 87.5 (1.0)

JNLPBA Micro F-1 93.2 (0.0) 93.2 (0.0) 93.3 (0.0) 93.3 (0.0)
Macro F-1 77.5 (0.1) 77.3 (0.1) 77.3 (0.1) 76.9 (0.2)

NCBI-disease Micro F-1 98.3 (0.0) 98.2 (0.0) 98.2 (0.0) 98.3 (0.0)
Macro F-1 92.1 (0.1) 91.1 (0.1) 91.0 (0.1) 92.1 (0.1)

NER Average
Score 90.3 90.7 90.5 90.8

TriviaQA Micro F-1 70.2 (0.1) 68.9 (0.1) 65.5 (0.1) 70.4 (0.2)
Macro F-1 73.4 (0.1) 72.2 (0.1) 68.9 (0.1) 73.8 (0.2)

SQuAD Micro F-1 77.6 (0.1) 75.6 (0.1) 65.4 (0.2) 78.9 (0.1)
Macro F-1 86.4 (0.1) 85.0 (0.1) 77.0 (0.1) 87.0 (0.1)

QA Average
Score 76.9 75.4 69.2 77.5

Table 14: MiniLM L6-H768 Results for Reduced Models. Bold indicates the best average score between the
reduced and fully fine-tuned versions of each model. Each score represents the average score of 10 runs, with the
standard errors for each score in parentheses.
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MiniLM: L6-H384

2 Layers
Reduced

3 Layers
Reduced

4 Layers
Reduced

Fully
Fine-tuned

ChemProt Micro F-1 75.4 (0.5) 76.9 (0.2) 74.9 (0.3) 74.6 (0.4)
Macro F-1 47.3 (0.7) 50.4 (0.2) 48.8 (0.4) 47.1 (0.8)

SciCite Micro F-1 84.4 (0.1) 85.4 (0.1) 85.1 (0.1) 84.4 (0.1)
Macro F-1 82.8 (0.1) 83.7 (0.1) 83.4 (0.1) 82.8 (0.1)

SciERC-Rel Micro F-1 83.2 (0.3) 82.6 (0.3) 83.3 (0.2) 79.5 (0.9)
Macro F-1 72.7 (0.6) 72.1 (0.6) 73.7 (0.3) 68.9 (1.1)

Text Classification
Average Score 74.3 75.2 74.9 72.9

bc5cdr Micro F-1 96.6 (0.0) 96.3 (0.0) 95.6 (0.0) 96.9 (0.0)
Macro F-1 86.9 (0.1) 85.9 (0.1) 83.2 (0.1) 88.3 (0.1)

JNLPBA Micro F-1 93.0 (0.0) 92.2 (0.0) 92.0 (0.0) 93.3 (0.0)
Macro F-1 76.3 (0.1) 74.0 (0.1) 73.6 (0.1) 77.2 (0.1)

NCBI-disease Micro F-1 98.0 (0.0) 97.9 (0.0) 97.7 (0.0) 98.2 (0.0)
Macro F-1 90.6 (0.1) 89.9 (0.1) 88.9 (0.1) 91.7 (0.1)

NER Average
Score 90.2 89.4 88.5 90.9

TriviaQA Micro F-1 66.6 (0.1) 65.6 (0.1) 63.4 (0.1) 67.6 (0.2)
Macro F-1 69.9 (0.1) 69.2 (0.1) 67.0 (0.1) 71.0 (0.2)

SQuAD Micro F-1 81.6 (0.0) 80.9 (0.1) 74.2 (0.2) 81.6 (0.1)
Macro F-1 89.7 (0.0) 89.0 (0.0) 84.5 (0.1) 89.6 (0.0)

QA Average
Score 76.9 76.2 72.3 77.4

Table 15: MiniLM L6-H384 Results for Reduced Models. Bold indicates the best average score between the
reduced and fully fine-tuned versions of each model. Each score represents the average score of 10 runs, with the
standard errors for each score in parentheses.

Task Averages Standard
Recycling

Adapter-Based
Recycling

Classification Training Time 2204 2349
Epochs 38 42

NER Training Time 4269 3857
Epochs 43 39

QA Training Time 8252 8513
Epochs 6 7

Table 16: Average Training Times and Epochs for Embedding Recycling (seconds for training time, count for
epochs). Standard Recycling corresponds to layer recycling on a reduced transformer model. Adapter-Based
Recycling corresponds to layer recycling on a reduced frozen transformer model with added trainable Adapter
modules. Training time and epoch averages are the averages across the RoBERTa, BERT, SciBERT, DeBERTa V2
XL, and T5-Large transformer models and the text classification, NER, and QA datasets tested.
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Abstract

While modern masked language models (LMs)
are trained on ever larger corpora, we here
explore the effects of down-scaling training
to a modestly-sized but representative, well-
balanced, and publicly available English text
source – the British National Corpus. We show
that pre-training on this carefully curated cor-
pus can reach better performance than the orig-
inal BERT model. We argue that this type of
corpora has great potential as a language mod-
eling benchmark. To showcase this potential,
we present fair, reproducible and data-efficient
comparative studies of LMs, in which we evalu-
ate several training objectives and model archi-
tectures and replicate previous empirical results
in a systematic way. We propose an optimized
LM architecture called LTG-BERT.

1 Introduction

In the pursuit of state-of-the-art performance, NLP
practitioners utilize increasingly larger amounts of
data to pre-train language models, making it diffi-
cult to disentangle the improvements made by the
proposed modeling choices themselves. Instead,
our aim is to shift the focus towards more efficient
language modeling on a small and standardizable
pre-training corpus. We study the data efficiency
of current language models on an openly available
corpus of approximately 100M words – inciden-
tally the estimated amount of words processed by
humans before adulthood (Linzen, 2020).

The goal of this paper is not to rival the paradigm
of ‘massively pre-trained language models’; in-
stead we would in this work like to pursue a com-
plementary direction of language modeling, which
will hopefully lead to more interest in data-efficient
language models. In particular, our contribution in
this paper is twofold – we show that:

1. 100M words is enough to train a competitive
language model that outperforms the downstream
performance of the original BERT model. We show

that the combination of a well-curated representa-
tive corpus, improved LTG-BERT architecture and
a better training objective results in a model with
stronger linguistic knowledge than the original En-
glish BERT pre-trained on 30× larger corpus.

Large language models are notoriously data hun-
gry, requiring hundreds of gigabytes of raw tex-
tual data. This becomes a major obstacle for low-
resource languages while also putting a limit to the
efficiency of any ‘efficient’ language model. On
top of that, the size of web-crawled corpora makes
it almost impossible to control their content and to
prevent learning from harmful or copyrighted text
(Bender et al., 2021). The British National Corpus
(BNC; Consortium, 2007) is a 100-million-word
reference corpus, manually curated to cover most
aspects of 20th century British English.

2. Reproducibility and fair comparison of lan-
guage models can be easily achieved by pre-
training on the British National Corpus.

Massive language models are often pre-trained
on nonpublic filtered collections of web-crawled
text, which makes any reproduction impossible.
We pre-train our models on a small and publicly
available corpus, which allows for a replicable
comparison of different language modeling con-
figurations and which can be easily utilized in fu-
ture research of novel variants of language models.
We also release the pre-processing scripts, training
scripts as well as the final model checkpoints.1

Previously, language models have been pre-
trained on different corpora tokenized by different
tokenizers and fine-tuned by increasingly complex
learning methods. This makes any comparison of
the underlying neural architectures and pre-training
objectives unfair. We make the language models in
this paper directly comparable by fixing the training
corpus, the tokenizer and the evaluation methods,
while keeping them as simple as possible.

1 https://github.com/ltgoslo/ltg-bert
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2 Related Work

The data requirements of language models have
been growing in orders of magnitude since their
early stages (Jelinek, 1976). Taking a huge leap to-
wards more recent work, ELMo (Embeddings from
Language Models; Peters et al., 2018) were the
first to introduce deep contextualized embeddings
of words. Recognizing the need of a large text cor-
pus for this task, ELMo was trained on the 1B Word
Benchmark (Chelba et al., 2014). Later, BERT
(Bidirectional Encoder Representations from Trans-
formers; Devlin et al., 2019) further advanced the
performance of contextualized embeddings when
it based the entire language model on the Trans-
former architecture (Vaswani et al., 2017). Another
important aspect of BERT is that it was trained
on a larger corpus than ELMo: about 3.3B words
from crawled English Wikipedia and BookCorpus
(Zhu et al., 2015). To our best knowledge, the
exact version of neither of the two subcorpora is
publicly available.2 The issue of limited replicabil-
ity has become even more pronounced with later
large language models: XLNet (Yang et al., 2019)
was trained on 33B words, RoBERTa (Liu et al.,
2019) on more than 30B words and GPT-3 (Brown
et al., 2020) on an approximately 400B word cor-
pus. None of these datasets is available; the authors
utilize non-trivial filtering algorithms on openly
available web crawls but do not release the end
product nor the filtering source code.

The effect of corpus size has been thoroughly
studied in Zhang et al. (2021) as well as in
Hoffmann et al. (2022). They test differently sized
random subsets of a BERT-like corpus (crawled
Wikipedia and Smashwords) and of a massive web-
crawled text corpus (MassiveText; Rae et al., 2021),
respectively. Unlike them, we evaluate the effect of
training on a small corpus, which was carefully cu-
rated to create a representative sample of English.
The British National Corpus is arguably more di-
verse and informative than a random subset of a
web crawl – hence we test how the quality of a
pre-training corpus influences the downstream per-
formance, not only how the data quantity matters.
We believe this aspect is vital for the future research
of effective and reliable language models.

2 BookCorpus (Zhu et al., 2015) is not available any-
more and the authors of BERT do not specify what ver-
sion of Wikipedia dump they used or how did they prepro-
cess it (https://github.com/google-research/
bert#pre-training-data).

documents sentences words subwords

train 4 014 8 501 376 115 870 549 131 392 103
development 35 106 566 1 215 306 1 367 570

Table 1: Size of the train-development splits for the pre-
processed BNC corpus. Note that the number of words
is larger than the 100 million reported by the BNC Con-
sortium due to our less conservative pre-tokenization
strategy.

3 British National Corpus

We use the British National Corpus (BNC) as a
diverse, balanced, compact, and publicly available
monolingual English corpus. BNC is comprised
of both written and spoken language with a to-
tal of 100 million words. The manually curated
content contains a wide range of British English
from the late 20th century – newspapers, journals,
books (academic and fiction), letters, essays, un-
scripted informal conversations or transcribed busi-
ness meetings, radio shows or phone calls. The
written part makes up approximately 90% of the
corpus and the remaining 10% contains the tran-
scribed speech. The sources are truncated to con-
tain at most 45 000 words to ensure greater diversity
within the limited amount of 100 million words.

Creation. The process of creating the BNC is
extensively described in its documentation on the
website.3 It was created by the so called ‘BNC
Consortium’ led by Oxford University Press, and
including major dictionary publishers Longman
and Larousse Kingfisher Chambers; academic re-
search centres at Oxford University Computing
Services, the University Centre for Computer Cor-
pus Research on Language (UCREL) at Lancaster
University, and the British Library’s Research and
Innovation Centre. The purpose of the British Na-
tional Corpus project was to construct a balanced
and representative sample of current British En-
glish at the time. It was created over a period of
four years and was a result of careful planning and
data selection across a number of selection criteria
(domain, time, medium, level) with proportions in
the corpus designed to reflect the proportions found
in real language use. It is widely acknowledged
that the BNC has been a major influence on the
construction of language corpora (Burnard, 2002).
One downside of the BNC is that it does not re-

3 https://ota.bodleian.ox.ac.uk/
repository/xmlui/handle/20.500.12024/2554
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flect anything occurring to English language and
the world in the 21st century, but still no better
alternatives of the same size and quality exists. In
addition, BNC was used as a model for creating
representative corpora for other languages: e.g.,
Turkish (Aksan et al., 2012).

Version. We use the third release of the corpus,
BNC XML Edition (2007), which is the final re-
vision of the texts compiled from 1991 to 1994
(Consortium, 2007). The XML edition did not get
any additional content on top of the original text
samples, but it got some minor corrections, more
metadata and it is supplied in a convenient XML
format.

3.1 Preprocessing

We convert the XML version of BNC into the Mark-
down format,4 to make it human-readable and us-
able as a direct raw-text input of a language model.
On top of that, it can also preserve some meta-
information encoded in the original XML format.
Short samples from the preprocessed corpus can
be found in Appendix A. After preprocessing, the
articles are randomly placed into a training split
and a development split. The proportions of both
splits are given in Table 1.

Composition. BNC is hierarchically composed
of the following text units: words, sentences, para-
graphs and articles. We preserve the sentence infor-
mation by storing each sentence on a separate line;
paragraphs are divided by a blank line and an article
always starts with a top-level header. The word-
tokens are intentionally not preserved – instead, we
heuristically detokenize the text to move it towards
the natural text distribution. BNC includes infor-
mation about the original whitespace, but we found
it unreliable in some cases, necessitating the use of
heuristics.

Other metadata. Other meta information avail-
able in our Markdown version is as follows:

1. Headers: We keep the headers together with
their level by converting them to the atx-style
format prefixed by hash symbols ‘#’.

2. Speakers: The spoken part of BNC is di-
vided into speech turns, each accompanied

4 https://daringfireball.net/projects/
markdown/

layer norm

disentangled attention

layer norm

+

layer norm

linear

GEGLU

+

linear

linear

layer norm

shared relative 

positional embedding

Figure 1: A simplified diagram of one layer in our LTG-
BERT language model, which illustrates the changes
made to the standard Transformer architecture – Norm-
Former layer normalization, GEGLU activation function
and disentangled attention.

by a speaker identifier. We maintain this in-
formation by formatting each speech turn as
‘{name}: ’{turn}’’.

3. Quotes: Markdown also allows us to keep the
special quoted text by using a prefix ‘> ’.

4. Lists: The XML format contains special tags
for lists and their respective elements, we
use the ‘- {element}’ notation to encode
these text blocks.

5. Incomprehensible speech: Some words or
phrases could not be transcribed because they
were illegible or inaudible. Since completely
omitting such text would result in ungrammat-
ical sentences, we mark these segments with
a special ‘[UNK]’ token.

Not all of this additional information is of use for
the language models tested in this article, but it can
be easily filtered out when needed. We preserve it
to make this corpus more versatile.

4 Model architecture

We slightly depart from the typical post-norm
Transformer architecture (Vaswani et al., 2017)
used by BERT (Devlin et al., 2019), as illustrated in
Figure 1. Preliminary experiments with this model
showed that it tends to unpredictably diverge in
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the later stages of training. This behavior has been
noted in previous work on large LMs (Liu et al.,
2020) and accordingly, we follow some of the re-
cent improvements of Transformer.

NormFormer. Pre-norm variation of the Trans-
former has been shown to lead to more stable
convergence with slightly degraded performance
(Nguyen and Salazar, 2019). Shleifer and Ott
(2022) claimed to mitigate this degradation by intro-
ducing an additional layer normalization operation.
For these reasons, we decided to use their so-called
NormFormer architecture to stabilize the training.5

GEGLU activation function, proposed in
Shazeer (2020), enhances the expressiveness of
the original Transformer feed-forward modules by
redefining them as

FFGEGLU(x) = (GELU(xW1)⊙ xW2)W3,

where Wi are weight matrices6 and GELU is the
Gaussian Error Linear Unit (Hendrycks and Gim-
pel, 2016). Note that this formulation involves
three linear transformations instead of two, we
therefore lower the intermediate hidden size by
2/3 to keep the number of parameters the same.

Disentangled attention. The original Trans-
former formulation (Vaswani et al., 2017) fuses
the content and positional information together in
the first embedding layer and calculates the (un-
normalized) attention score between each pair of
tokens xi and xj as

Ai,j =
QiK

⊺
j√

d
,

where Q and K are the query-key linear transfor-
mations of x.

He et al. (2021) proposed to disentangle the con-
tent and positional information. The content rep-
resentations are incrementally built by the Trans-
former layers and the position is encoded by one
shared relative positional embedding matrix P ∈
R(2L−1)×d, where L is the maximal input length.7

This is supposed to offer greater expressivity as
each layer can access these two parts directly. The
attention scores are then calculated as a sum of

5 They also proposed some additional improvements – head
scaling and residual scaling, but we did not experience any
performance benefits from these changes.

6 The bias terms are omitted for brevity.
7 Tokens at positions i and j have relative positional em-

bedding at the (L− i+ j)th row of P , denoted as Pi,j .

three distinct parts: content-to-content, content-
to-position and position-to-content attention – for-
mally, the attention scores are defined as

Ai,j =
cQi

cK⊺
j +

cQi
pK⊺

i,j +
pQj,i

cK⊺
j√

3d
,

where cQ and cK are linear transformations of the
content vectors and pQ and pK are linear transfor-
mations of the relative positional embedding Pi,j .
We share the parameters of the content and posi-
tional transformations, cQ = pQ and cK = pK, to
not increase the model size while achieving com-
parable performance (He et al., 2021).

Initialization scaling. Bajaj et al. (2022) found
that we can further stabilize the Transformer archi-
tecture by gradually scaling down its feed-forward
(FF) weight matrices. Following Nguyen and
Salazar (2019), we first initialize all weight ma-
trices W by sampling from:

Wi,j ∼ N
(
0,

√
2

d+ 4d

)
,

where d is the hidden dimension.8 Then all three
weight matrices in a FF module at layer l are scaled
down by a factor of 1/

√
2(l+1).

5 Training objectives

The fixed corpus, tokenizer and fine-tuning pro-
cedures establish a controlled test bed for a com-
parative study of training objectives proposed in
the past. The original BERT model is trained via
two self-supervised training objectives – masked
language modeling (MLM) and next sentence pre-
diction (NSP). We evaluate five different configura-
tions of these objectives (three for MLM and two
for NSP), as further detailed below.

5.1 Masked language modeling (MLM)

Unlike the traditional auto-regressive language
models, the Bidirectional Encoder Representations
from Transformers (BERT) learn a bidirectional
contextualized representation for each token in a
text segment. This is done by randomly select-
ing 15% of subword tokens (excluding the special
tokens). Out of these, 80% are masked, 10% ran-
domly replaced and 10% are left untouched. The

8 This formula is roughly equal to the universal BERT
initialization range of 0.02 for d = 1024.
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language model is then trained to jointly predict the
original state of the selected units. We investigate
three common choices of the masked text units:

1. Subwords. As proposed in the seminal work
by Devlin et al. (2019), every subword is
masked independently with 15% probability
to model its bidirectional dependencies.

2. Whole words. This method was also im-
plemented by Devlin et al. (2019), after the
publication of their original paper with sub-
word masking. The motivation for this ap-
proach is that partially masked multi-subword
word units are often easily decoded without
any need for non-local contextual informa-
tion; masking the whole multi-subword unit
should force the model to build longer-range
non-local dependencies.

3. Spans. The third method further follows the
direction of whole-word masking and gener-
alizes it to masking of random spans of sub-
words. More specifically, SpanBERT (Joshi
et al., 2020) iteratively samples random spans
until 15% of subwords are masked. For each
span, it first samples its length from Geo(p),
where p = 1/3.9 Then the starting subword
of the masked span is chosen from a uniform
distribution.

5.2 Next sentence prediction (NSP)
Masked language modeling is a token-level train-
ing objective that trains the model to learn rich
token representations. Yet, some downstream tasks
need a single sentence-level representation instead.
To also learn these, researchers have designed a
number of additional semi-supervised training ob-
jectives. On the other hand, Liu et al. (2019) argue
that NSP objectives do not help the downstream per-
formance and they can thus be dropped in favour of
a simpler optimization process with a single MLM
training objective. To test these hypotheses, we
experiment with two NSP objectives:

1. Document discrimination. Devlin et al.
(2019) sample two text segments and then
train the model with a second discriminative
loss function, which predicts whether the two
segments are continual or randomly taken
from two different documents.

9 To ensure that the sampled length is not too large, we
take the sampled value modulo 10. The expected length of a
masked span is then approximately equal to 2 with p = 1/3.

2. Sentence-order discrimination. Lan et al.
(2020) argue that the document discrimina-
tion is too easy as the language models only
have to compare the topic of the two segments
to achieve a good performance in this task. In-
stead, they propose to predict whether the two
segments are in the correct order or whether
they are swapped. Thus, the sentence-order
loss forces the neural network to model inter-
sentence coherence and this is believed to lead
to a better downstream performance.

6 Evaluation metrics

We use three conceptually different methods for
evaluating the amount of linguistic knowledge ac-
quired by the BNC language models. 1) The (Su-
per)GLUE datasets test the ability of the model
to adapt to various NLU tasks by further optimiz-
ing the whole pre-trained model, 2) edge probing
tasks evaluate how much linguistic information one
can extract from a frozen pre-trained model and
3) BLiMP utilizes the intrinsic ability of the pre-
trained network to model language and probes its
knowledge without any additional training. We
further elaborate on each of these below.

6.1 (Super)GLUE
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019) have become a de-facto standard for
evaluating the language understanding capabili-
ties of language models. Accordingly, we also
choose to fine-tune our language models on these
NLU tasks to measure their linguistic and transfer-
learning performance. We give more technical de-
tails about our implementation of (Super)GLUE
fine-tuning in Appendix B.1.

We exclude the Winograd schema datasets,
WNLI and WSC, because they require a complete
reformulation to get past the trivial most-frequent
baseline (Kocijan et al., 2019). The remaining 14
(Super)GLUE datasets measure performance on
these tasks:

• Inference: CB, MNLI, QNLI, RTE.

• Linguistic acceptability: CoLA.

• Sentiment analysis: SST-2.

• Semantic similarity: MRPC, QQP, STS-B.

• Word sense disambiguation: WiC.

• Question answering: BoolQ, COPA, Mul-
tiRC, ReCoRD.
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6.1.1 HANS
Deep learning systems are (by design) prone to find-
ing spurious correlations in the training data. These
heuristics can often be successfully employed for
the evaluation data, as well – thus, one has to be
careful when implying that a higher score on a
benchmark shows a deeper understanding of the
tested model. McCoy et al. (2019) tried to evaluate
to what extent language models rely on spurious
heuristics to solve NLI tasks. They identified a set
of fallible syntactic heuristics and designed a test
set where these ‘shortcuts’ should fail – Heuristic
Analysis for NLI Systems (HANS). We adopt their
approach and test models that have been fine-tuned
on MNLI.

6.2 Edge probing

GLUE tasks measure the ability of a LM to be fine-
tuned on a sentence-level NLU problem. To get a
more comprehensive picture of LM performance,
one can also probe the word-level contextualized
representations, measuring how much syntactic or
semantic information can be extracted.

Tenney et al. (2019) devised a simple approach
of probing for a diverse set of linguistic phenom-
ena called edge probing. They reformulate tradi-
tional NLP tasks as span classification: part-of-
speech tagging can be viewed as classification of
word-spans and semantic role labeling becomes a
classification of pairs of spans: predicate-span and
argument-span. In the following, we will probe our
models for five basic tasks: part-of-speech tagging
(POS), dependency parsing (DP), semantic role la-
beling (SRL), named-entity recognition (NER) and
coreference resolution (CR). Note that the model
only learns to classify each span provided to the
model as gold data. This substantially simplifies
some of the tasks, for example SRL. Please refer
to Appendix B.2 for the implementation details of
edge probing.

6.3 BLiMP

One disadvantage of the aforementioned evalua-
tion metrics is that the results are skewed by the
second-stage supervised training, which makes it
problematic to disentangle the prior knowledge of
a language model from the acquired knowledge
(Belinkov, 2022). In contrast, the Benchmark of
Linguistic Minimal Pairs (BLiMP; Warstadt et al.,
2020) attempts to measure the linguistic knowledge
of a language model in a zero-shot manner – with-

out any additional training. The dataset consists of
67 000 sentence pairs; each pair differs minimally
on the surface level, but only one of the sentences
is grammatically valid. We can use the intrinsic
ability of language models to assign a probability
to every sentence and test how often a language
model assigns a higher probability to the correct
sentence. Appendix B.3 gives more details about
ranking the likelihood of sentences according to
the raw output of a masked language model.

7 Experiments

We conduct a number of experiments in this section.
First, we compare different training hyperparam-
eters and model configurations described in Sec-
tion 4. Then, using the overall best training setting,
we make a comparative study of training objectives
(Section 5). Finally, we investigate the sampling
efficiency of our proposed language model and we
compare BNC with a Wikipedia & BookCorpus
subset of the same size. These results can then be
used as a baseline performance of BNC-BERT in
future studies.

The central model used in the experiments is a
base-sized Transformer – 12 encoder layers with
hidden size 768 and 12 attention heads (more de-
tails in Appendix E). All reported models utilize the
same cased WordPiece tokenizer (Wu et al., 2016)
with a vocabulary size of 214 = 16 384 trained with
the BNC dataset (Appendix G). This goes against
the trend of increasing the subword vocabulary in
recent work,10 but a larger vocabulary size would
lead to a lot of infrequent tokens within our limited
corpus – we roughly follow Gowda and May (2020)
and ‘. . . use the largest possible BPE vocabulary
such that at least 95% of classes have 100 or more
examples in training.’

Since our aim is to train models comparable to
BERTbase, we train for the same amount of sampled
tokens. Devlin et al. (2019) trained on 1M batches
of 128K tokens, we use 31 250 training steps with
batch size of 4M tokens to parallelize and accel-
erate the process. Also, similarly to Devlin et al.
(2019), we use sequence length of 128 tokens in the
first 90% of training and a larger sequence length of
512 only in the last 10% of steps. We deliberately
do not compare against more recent models, which
are trained for much longer to achieve slightly bet-

10 BERT (Devlin et al., 2019) uses 28 996 tokens, RoBERTa
(Liu et al., 2019) 50 265 and in 2021, DeBERTa (He et al.,
2021) used a vocabulary of 128 100 subwords.
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ter performance: RoBERTa is trained on 16×more
training samples, for example.11

7.1 Comparison of model architectures and
training settings

In order to establish a strong baseline, we evalu-
ate the proposed changes from Section 4 and other
training configurations. We present the results in
Table 2, where we compare the final model with all
changes applied and models with one of those mod-
ifications removed. These training choices turned
out to be the most important:

• Both the post-norm and pre-norm trans-
former variants perform substantially worse
than the NormFormer-like layer normaliza-
tion (Shleifer and Ott, 2022). Both of them
also lead to less stable and only slightly faster
training.

• Absolute positional embeddings seem to be
less adaptable for fine-tuning but perform bet-
ter on language modeling itself, as can be seen
on the BLiMP results. We hypothesize that
this is caused by more accurate estimation
of probabilities of the first few words in a
sentence. The simpler absolute embeddings
also lead to the greatest reduction of training
time. We choose the slower relative positional
embeddings despite this fact to increase the
performance on (Super)GLUE tasks.

• We observe that setting the weight decay cor-
rectly is crucial for masked language model-
ing. The default weight decay value found
in Devlin et al. (2019), 0.01, performs sub-
stantially worse on all tested tasks. We use
a higher decay value of 0.1 to boost perfor-
mance, this value is most likely strongly cor-
related with the corpus size we use here. This
suggests that previous findings of inferior per-
formance of LMs pre-trained on small corpora
might be caused by insufficient hyperparame-
ter search.

• As expected, the AdamW optimizer
(Loshchilov and Hutter, 2019) behaves poorly
in our highly parallel training regime. Our
study successfully replicates the reported
performance of the LAMB optimizer (You
et al., 2020), which we thus use in all other
experiments.

11 500K steps with 8 192 segments of length 512, according
to (He et al., 2021).

Model MNLI
Edge

BLiMP
Training

probing time

LTG-BERT 85.1±0.2 95.3±0.1 83.4 8h 13min

w/ post-norm (0.005) −0.5±0.2 −0.6±0.1 −0.1 −22min
w/ pre-norm (0.005) −1.3±0.1 −0.2±0.1 −0.9 −35min
w/ GELU activation −0.3±0.3 0.0±0.1 −0.1 −6min
w/ absolute pos. emb. −1.1±0.2 −0.1±0.1 +0.6 −2h 16min
w/o FF init. scaling −0.3±0.2 −0.1±0.1 +0.1 0min
w/ learnt FF biases −0.3±0.2 0.0±0.1 −0.1 +9min
w/ 0.01 WD (0.005) −1.4±0.1 −0.2±0.1 −0.7 −1min
w/ linear schedule −0.5±0.2 0.0±0.1 −0.2 0min
w/ AdamW (0.001) −0.9±0.2 −0.2±0.1 −0.5 −11min

Table 2: Comparative study of different architectural
and training settings. The first row shows the perfor-
mance of the final model with all improvements ap-
plied and the following rows give the relative changes
in performance when one of the changes is not ap-
plied – for example, the second row tests swapping the
NormFormer-like normalization with the ‘post-norm’
normalization. Some runs diverged with the default
learning rate of 0.01 and had to be run again with a lower
value (denoted in parentheses). ‘WD’ stands weight de-
cay and ‘FF’ is an abbreviation for the feed-forward
modules. We report the mean and standard deviation
statistics across five runs, if applicable, and boldface all
run within 1 standard deviation from the best result.

The other changes bring more marginal gains –
all three tested modifications of the feed-forward
layers work slightly better: 1) using GEGLU ac-
tivation function instead of GELU, 2) initializing
the feed-forward layers with incrementally lower
weight norms, and 3) not using any bias parameters
in these layers. The last tested change shows that
cosine learning rate decay (Rae et al., 2021) per-
forms better than the standard linear weight decay.

7.2 Training objective comparison

Masked language modeling. First of all, we
compare the three masking methods described in
Section 5.1: subword, whole-word and span mask-
ing. The summary of the results is given in Table 3,
more detailed evaluation in Appendix D. Overall,
the span-based masking performs marginally better
than the other methods – it shows a clear improve-
ment on (Super)GLUE benchmarks over the simple
subword masking, it generalizes the best accord-
ing to the HANS score and it even matches the
performance of BERTbase on the averaged BLiMP
accuracy. All methods perform equally well on
edge probing. Whole-word masking lacks on the
BLiMP benchmark because the model is not ex-
pecting partially masked words that can occur in
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Model (variant)
GLUE

HANS
Edge

BLiMP
MNLI MRPC QNLI SST-2 Average probing

Wikipedia + BookCorpus (3000M words; Devlin et al., 2019)

BERTbase, cased
† 84.4 86.7 88.4 92.7 88.1 69.0 93.9 84.2

BERTbase, cased (our eval.) 83.6±0.2 84.6±0.5 90.8±0.1 91.9±0.4 87.8±0.3 61.8±1.5 93.8±0.2 84.2

Wikipedia + BookCorpus (100M words)

LTG-BERT (subword masking) 84.2±0.1 84.3±0.7 90.8±0.3 92.1±0.5 87.8±0.5 62.5±1.7 95.3±0.1 82.0

British National Corpus (100M words)

LTG-BERT (subword masking) 85.1±0.2 85.0±0.9 90.0±0.3 92.7±0.4 88.2±0.5 64.4±1.3 95.3±0.1 83.4
LTG-BERT (whole-word masking) 84.9±0.2 85.5±0.9 90.6±0.3 92.7±0.2 88.4±0.5 63.7±0.8 95.3±0.1 80.1
LTG-BERT (span masking) 85.1±0.2 87.5±0.9 91.5±0.2 92.8±0.5 89.2±0.5 65.6±0.5 95.2±0.1 84.2

LTG-BERT (subword + document NSP) 85.2±0.3 86.5±0.8 90.3±0.2 92.2±0.4 88.6±0.5 60.5±1.2 95.3±0.1 83.3
LTG-BERT (subword + order NSP) 84.7±0.1 85.9±0.6 90.4±0.2 92.1±0.2 88.3±0.4 64.2±1.9 95.1±0.1 82.2

LTG-BERT (subword + 2× steps) 85.2±0.2 86.5±0.8 90.3±0.3 92.3±0.6 88.6±0.5 65.3±1.1 95.3±0.1 83.5
LTG-BERT (subword + 1/2× steps) 84.4±0.3 86.3±1.1 90.4±0.2 92.8±0.4 88.5±0.6 62.4±0.8 95.2±0.1 83.5
LTG-BERT (subword + 1/4× steps) 83.8±0.2 85.3±0.8 89.1±0.2 91.7±0.4 87.5±0.5 58.6±1.3 95.0±0.1 83.2

Random initialization 59.5±0.5 68.5±1.4 63.8±0.2 82.2±0.7 68.5±0.8 49.7±0.3 73.1±0.4 50.0

Table 3: Summary of the experimental results. We show the results on the 4 GLUE tasks with known development
results from Devlin et al. (2019) and their average; then the accuracy on HANS, the average of all 5 edge probing
tasks and 67 BLiMP tasks. †The BERTbase, cased results are shown primarily for reference, they come from these
sources: partial development GLUE scores from Devlin et al. (2019), edge probing from Tenney et al. (2019),
HANS from Bhargava et al. (2021) and BLiMP from Salazar et al. (2020). We also add the BERTbase, cased results
from our evaluation scripts for more fair and accurate comparison. We present the mean and standard deviation
statistics over 5 evaluation runs and boldface all run within 1 standard deviation from the best result. The detailed
results can be found in Appendix D.

the evaluation (Section 6.3). The original subword
masking strategy is still a competitive baseline and
it might be preferred in practice due to its simple
implementation.

Next-sentence prediction. Next, we experiment
with combining an NSP task and simple subword
masking. We hypothesize that a second training
objective might extract more information from the
limited BNC corpus, which would help with the
downstream performance – an opposite conclusion
than Liu et al. (2019). However, our hypothesis
turns out to be wrong, according to the results in
Table 3. The experiments agree with the design
of latest masked language models – next sentence
prediction is an unnecessary training objective, at
least for the tasks evaluated in this paper. It does
not lead to substantially improved sentence repre-
sentations even in a limited data regime. We can
also see that the well-motivated order discrimina-
tion (Lan et al., 2020), proposed to solve the issues
of document discrimination, actually leads to an
overall worse performance. Hence we cannot rec-
ommend to complicate pre-training with a second
training objective.

7.3 Sampling efficiency

An important aspect of efficient language models is
the number of training steps they require to reach a
sufficient performance. So far, we have limited the
size of the training corpus but kept the number of
steps constant, set according to Devlin et al. (2019).
The results in Table 3 suggest that increasing the
steps two times does not lead to a noticeably better
performance with BNC. Even more so, training for
half the time turns out to be enough to get compara-
ble performance. Yet, decreasing the training steps
further starts to degrade the downstream results too
much, as evidenced by the scores obtained with 1/4
of the default steps.

These results highlight the sampling inefficiency
of current self-supervised language modeling meth-
ods, as even with 1/4 steps, every token in BNC
is seen about roughly 250 times during training.12

We hope that a future work in this field will be able
to learn from a smaller number of samples.

12 This value can be calculated from Table 9: these models
are trained for 7 812 steps with 4 194 304 tokens per batch.
Table 1 shows that there are 131 392 103 subwords in the BNC
train split.
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7.4 100 million subset of Wikipedia &
BookCorpus

Our last experiment evaluates how much does the
careful curation of BNC help the downstream per-
formance. To keep the comparability to BERT,
we choose to pre-train on a random subset of
Wikipedia and BookCorpus (with equal size to
BNC, sampled document-wise); this corpus is con-
structed according to Appendix F. Note that BNC
is a corpus of British English compiled in 1990s
so some evaluation tasks can be skewed against
it – for example QNLI, which is based on texts
from Wikipedia. Table 3 shows that a high-quality
data source is not necessarily needed to learn from
100M words but better quality leads to a noticeable
difference in downstream performance.

8 Conclusion

In this paper, we evaluated how data-efficient
masked language models can be. In particular, we
trained a variety of models with different train-
ing objectives on the same training data: British
National Corpus. Although small by modern stan-
dards (100M tokens), it is well balanced and care-
fully crafted to represent British English of the 20th

century. On a variety of benchmarks, our models
perform better than BERTbase trained on a much
larger corpus. We believe that this limited data
regime is beneficial for the development of efficient
and reliable language models. Our finding also sug-
gests that 100 million word tokens is enough to
learn basic linguistic skills by current language
modeling techniques, given that the data is care-
fully selected and balanced. To conclude, huge
amounts of training data are not always necessary –
we should focus on more efficient training settings
instead.

We showed that the next sentence prediction ob-
jective does not improve BERT-like models, con-
firming the findings in Liu et al. (2019). In addition,
the standard subword masking from Devlin et al.
(2019) is consistently outperformed by the span
masking method and the linguistic performance can
be substantially increased by utilizing better neu-
ral architectures and training configurations. We
release the code for training and using BERT-like
models with the optimal architectural choices (ac-
cording to our experiments) under the name LTG-
BERT.13

13 https://github.com/ltgoslo/ltg-bert

The presented results serve primarily as the foun-
dation for future research on efficient language
modeling. We hope our work shows the value of
careful curation of representative corpora and will
spark more interest in this area, where BNC can
serve as an undemanding, replicable and openly-
available training corpus.

9 Limitations

First of all, our work only considers language mod-
eling of English and does not provide results on
any other language – even though we hope that our
conclusions could be useful for low-resource lan-
guages. Secondly, even though we found out that
it is possible to train a competent language model
with a small corpus, the training process still re-
quires a similar amount of computational resources
to models trained with larger corpora, as noted in
Section 7.3. Finally, we evaluate mainly the lin-
guistic knowledge of language models (Section 6),
our conclusions might not apply for their general
knowledge.
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A BNC samples

We follow the description of the Markdown conver-
sion of BNC from Section 3.1 and show samples
of the resulting raw Markdown text to illustrate
this process, highlighting some of the formatting
information captured by our format. A sample of a
spoken document is given in Listing 1 and a sample
of a written article is shown below, in Listing 2.

B Evaluation metrics – implementation
details

B.1 (Super)GLUE

Fine-tuning of the GLUE and SuperGLUE tasks
follows a straightforward framework: the segments
are tokenized, concatenated – starting with a spe-
cial [CLS] token and with a [SEP] token put in
between the segments – and input to a pre-trained
language model. Subsequently, the contextualized
representation of the special [CLS] token is fed
into an MLP classifier. The pre-trained weights
are further fine-tuned together with the classifier
weights.

We do not employ any additional training tricks
that were used in the previous works to seemingly
increase the performance of their large language
models – e.g. further ‘pre-training’ on MNLI,
multi-task learning, ensembling, extensive hyper-
parameter search, selecting the best random seeds,
reformulating the tasks or complex regularization
techniques such as SMART (Jiang et al., 2020).

B.2 Edge probing

We follow the description of edge probing in the
original paper by Tenney et al. (2019). First of all,
subword representations si,k are extracted from a
frozen LM, for all positions i and layers k. These
are downsampled to a dimensionality of 256 by
a linear transformation. To get a vector represen-
tation ht for the tth span, we apply two pooling
operations on the subword-token representations
st,k. First, we pool the vectors at all layers k by tak-
ing a learnt convex combination ŝt =

∑12
k=1 γkst,k,

where γk ∈ R. Next, since one span can be split
into multiple subwords, we employ an attention
pooling operator to get the span-level embeddings:
ht =

∑
i∈It att(ŝt; θ)ŝt, where It are the subwords

indices of the tth span. Finally, the pooled vectors
ht are fed into a multi-layer perceptron (MLP) and
classified. If a task requires a pair of span represen-
tations (DP, SRL and CR), then these are pooled

[CLS] text segment 1 [SEP] text segment 2 [SEP]

[CLS] text segment [SEP]

[CLS] text segment 1 [SEP] text segment 2 [SEP]word [SEP]

1

2

3

Figure 2: Three variations of (Super)GLUE input: 1)
single-sentence tasks SST-2 and CoLA; 2) classification
of a pair of text segments: BoolQ, CB, COPA, MNLI,
MRPC, QNLI, QQP, STS-B, RTE; and 3) WiC (in the
figure), MultiRC, ReCoRD.

with two separate attention operators and concate-
nated before being passed to the MLP classifier.

B.3 BLiMP

These models are trained to estimate P (st|s<t) for
sentence s and token st where s<t = (si|i < t);
then the sentence log-probability is given by
logP (s) =

∑N
t=1 logP (st|s<t).

The issue with masked language models is that
they are not designed to calculate this property;
they are trained to estimate P (st|s\t) – the like-
lihood of a token st given its bidirectional con-
text s\t = (si|i ̸= t). We can however still use
MLMs to infer a score for each sentence where
a higher score corresponds to a more likely sen-
tence. Wang and Cho (2019) defined pseudo-log-
likelihood score of a sentence s with model θ as

PLL(s) =
N∑

t=1

logP (st|s\t; θ).

Salazar et al. (2020) tested PLL and found that it
produces accurate predictions on BLiMP. We adopt
their approach and evaluate our models with PLL.

C Layer interpretation

The definition of the fine-tuning scheme for edge
probing makes it straightforward to rate the con-
tribution of each Transformer layer to a particular
task – we can simply have a look at the layer-wise
weights γk, see Table 5. To be more precise, if we
define the kth attention layer as ak, the kth feed-
forward layer as ffk and layer normalization op-
erator as LN, then the kth layer ℓk of a post-norm
Transformer (Vaswani et al., 2017) computes the
following function:

âk(x) = LN(x+ ak(x))

ℓk = LN
(
âk(ℓk−1) + ffk(âk(ℓk−1))

)

1967



Task BoolQ CB CoLA COPA MNLI MRPC MultiRC QNLI QQP ReCoRD RTE SST2 STSB WiC

Train size 9 427 250 8 551 800 392 702 3 668 27 243 104 743 363 846 1 179 400 2 490 67349 5749 5428
Validation size 3 270 56 1 043 100 9 815 408 4 848 5463 40 430 113 236 277 872 1 500 638
≥ 512 subwords 0.37% 0% 0% 0% 0% 0% 27.68% 0.02% 0% 0.30% 0% 0% 0% 0%

Table 4: The train and validation sizes of GLUE and SuperGLUE tasks (omitting WNLI and WSC). Note that we
list the numbers of examples in the (Super)GLUE formulation of these tasks, which may differ from the actual
number of examples – for example in case of multiple-choice questions. Some tasks do not offer a reliable amount
of training data and some tasks contain a large number of examples longer than the length limit of our language
models.

Task
Layer Regression

1 2 3 4 5 6 7 8 9 10 11 12 slope

POS 27.49 12.55 7.54 5.42 5.78 4.83 5.12 5.59 6.02 5.43 4.40 9.84 -0.98

DP 14.65 10.78 10.99 12.66 9.92 7.47 8.00 6.04 5.66 4.58 3.89 5.35 -0.89

SRL 19.38 13.70 9.80 9.56 8.44 7.04 6.99 5.61 4.85 3.83 2.70 8.11 -1.04

NER 18.16 9.12 6.58 4.83 6.86 6.75 6.87 6.28 6.62 4.93 5.87 17.13 -0.16

COREF 7.24 9.12 7.78 10.50 11.89 12.85 12.35 8.96 5.20 4.27 3.56 6.29 -0.42

Table 5: The per-layer contributions to different edge probing tasks, taken from the layer-wise convex weights γk
(rendered in percent). To summarize the individual scores, we fit a linear regression line and show its slope in the
last column. A negative slope implies stronger representation in the lower layers and vice versa.

It is unclear how to separate the contribution
of each layer from the the previous layers here: ℓk
contains both the previous scaled ℓk−1 and its trans-
formation from ak and ffk. On the other hand, our
NormFormer-like architecture (Section 4) defines
each layer ℓk as:

âk(x) = x+ LN(ak(x))

ℓk = âk(ℓk−1) + ffk(âk(ℓk−1))
)

Then it is trivial to calculate the contribution
of each layer as sk = ℓk − ℓk−1. We use this sk
entities to compute the learnt convex combination
of all layers ŝ =

∑12
k=1 γksk.

Interpreting γk as the amount of ‘knowledge’
of a particular task in layer k, we see that POS
information is contained primarily in the lowest
layers, followed by SRL and DP. On the other hand,
NER and CR are represented more strongly in the
higher layers, which confirms the related findings
in the literature (Rogers et al., 2020).

D Fine-grained results

To ease the evaluation of any future language mod-
els trained on BNC, we provide detailed results of
all evaluated models in the following tables: GLUE
results are shown in Table 6, edge probing perfor-
mance is given in Table 7 and the BLiMP accura-
cies in Table 8.

(Super)GLUE. In total, we fine-tune all models
on these 14 (Super)GLUE datasets:

• Boolean Questions (BoolQ; Clark et al.,
2019), a yes/no question answering dataset
evaluated with accuracy.

• The CommitmentBank (CB; de Marneffe
et al., 2019), evaluated with both accuracy
and F1-score, where the multi-class F1 is com-
puted as the unweighted average of the F1 per
class.

• Corpus of Linguistic Acceptability (CoLA;
Warstadt et al., 2019) evaluated with the
Matthews correlation coefficient (MCC;
Matthews, 1975).

• Choice of Plausible Alternatives (COPA;
Roemmele et al., 2011), evaluated with ac-
curacy.

• The Multi-Genre Natural Language Infer-
ence Corpus (MNLI; Williams et al., 2018).
Its development set consists of two parts:
matched, sampled from the same data source
as the training set, and mismatched, which is
sampled from a different domain. Both parts
are evaluated with accuracy.

• The Microsoft Research Paraphrase Cor-
pus (MRPC; Dolan and Brockett, 2005), eval-
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uated with both accuracy and F1-score.

• Multi-Sentence Reading Comprehension
(MultiRC; Khashabi et al., 2018), a multiple
choice question answering dataset, evaluated
with the exact match accuracy (EM) and F1-
score (over all answer options).

• Question-answering Natural Language In-
ference (QNLI) constructed from the Stan-
ford Question Answering Dataset (SQuAD;
Rajpurkar et al., 2016), evaluated with accu-
racy.

• The Quora Question Pairs (QQP),14 evalu-
ated with both accuracy and F1-score.

• The Stanford Sentiment Treebank (SST-2;
Socher et al., 2013), evaluated with accuracy.

• The Semantic Textual Similarity Bench-
mark (STS-B; Cer et al., 2017), evaluate
with Pearson and Spearman correlation co-
efficients.

• Reading Comprehension with Common-
sense Reasoning Dataset (ReCoRD; Zhang
et al., 2018), a question answering dataset
evaluated with the exact match accuracy (EM)
and token-level F1-score (maximum over all
correct mentions).

• The Recognizing Textual Entailment
datasets (RTE; Dagan et al., 2006; Bar-Haim
et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2009), evaluated with
accuracy.

• The Word-in-Context dataset (WiC;
Pilehvar and Camacho-Collados, 2019),
evaluated simply with accuracy.

Edge probing. We report the results on part-
of-speech tagging (POS), semantic role labeling
(SRL), named entity recognition (NER) and coref-
erence resolution (CR) using the annotations from
the English part of OntoNotes 5.0 (Weischedel,
Ralph et al., 2013). In addition, to further mea-
sure the syntactic abilities, we test the dependency
parsing (DP) accuracy on the English Web Tree-
bank v2.9 dataset from the Universal Dependencies
(Silveira et al., 2014).15 These choices follow the
original work by Tenney et al. (2019), but we do
not evaluate on constituency parsing, because the

14 https://quoradata.quora.com/First-
Quora-Dataset-Release-Question-Pairs

15 Available online at https://github.com/
UniversalDependencies/UD_English-EWT.

results suffered from large variation. Instead, we
test the syntactic knowledge with DP, which turned
out to be more reliable as its variation is negligible
(Table 7).

BLiMP. The Benchmark of Linguistic Minimal
Pairs for English (Warstadt et al., 2020) consists
of 67 tasks. Each focuses on a specific linguistic
feature, which is tested with 1 000 automatically
generated sentence pairs. Warstadt et al. (2020)
clusters these tasks into the following subgroups:

• Anaphor agreement tests whether the reflex-
ive pronouns agree with their antecedents.

• Argument structure – do verbs appear with
the correct types of arguments?

• Binding evaluates the correctness of struc-
tural relationship between a pronoun and its
antecedent.

• Control/raising tests syntactic and semantic
differences between predicates that embed an
infinitival verb predicate.

• Determiner-noun agreement checks number
agreement between determiners the associated
noun.

• Ellipsis – can we omit an expression from a
sentence?

• Filler-gap tests dependencies created by
phrasal movement.

• Irregular forms checks the correctness of
irregular morphology on English past partici-
ples.

• Island effects – correctness of a possible gap
in a filler-gap dependency.

• NPI licensing – are the negative polarity items
used correctly (e.g. in negation)?

• Quantifiers tests the usage of quantifiers.

• Subject-verb agreement checks the number
agreement between present tense verbs and
subjects.

E Hyperparameters

All hyperparameters used to pre-trained and fine-
tune our models are listed below: pre-training hy-
perparameters in Table 9, the GLUE and Super-
GLUE fine-tuning hyperparameters in Table 10
and the edge probing hyperparameters in Table 11.
BLiMP does not require any special hyperparam-
eters, it need only out-of-the-box predictions of a
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pre-trained language model. Note that we will also
release the full PyTorch (Paszke et al., 2019) source
code, tokenizer and the pre-trained language mod-
els in the camera-ready version. Additionaly, we
will also provide all necessary wrappers for a sim-
ple use of our models with the transformers
library (Wolf et al., 2020).

The training was performed on 128 AMD
MI250X GPUs (distributed over 16 compute nodes)
and took approximately 8 hours per model in a
mixed precision mode. In total, our models con-
sist of 98M parameters; a slightly lower value than
BERT’s 110M parameters due to the smaller vo-
cabulary size.

F Wikipedia + BookCorpus dataset
replication

The information about the exact Wikipedia dump
used for training BERT is unknown and the Book-
Corpus dataset (Zhu et al., 2015) is no longer avail-
able. On top of that, the preprocessing choices are
also not known. Our 100M Wikipedia + BookCor-
pus dataset is thus different from the original BERT
pre-training corpus.

We downloaded a fresh English Wikipedia dump
from https://dumps.wikimedia.org/enwiki/

20220801/enwiki-20220801-pages-articles-

multistream.xml.bz2, extracted the raw text with
WikiExtractor (Attardi, 2015) and segmented each
article into sentences with spaCy.16

A replicated version of BookCorpus was
obtained from https://the-eye.eu/public/AI/

pile_preliminary_components/books1.tar.gz

and every book was also segmented with spaCy.
After that, the random 100M subset was cre-

ated by sampling random documents from the full
Wikipedia + BookCorpus dataset until the subset
contained as many characters as BNC.

G Tokenizer definition

We use the HuggingFace’s tokenizers li-
brary,17 to define and train a subword tokenizer
on BNC (training split).18

Following the suggestion of Gowda and May
(2020), we set the vocabulary size so that at least
95% of tokens appear more than 100 times. In
our case, with the size of 214 = 16 384, 95% of

16 https://spacy.io/
17 https://huggingface.co/tokenizers/
18 We share the full definition of the tokenizer in

censored-for-review.com.

tokens appear more than 166 times in the training
split. Their finding comes from the realm of neural
machine translation, we have not evaluated how
it aligns with language modeling. Nevertheless,
we believe that a comparative study of different
tokenizer settings makes an interesting future work;
we suspect that the effects will be more pronounced
with BNC, due to its limited size.
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Task Metric BERT (100M subset) MLM NSP Training steps
subword word span document order 2× 0.5× 0.25×

BoolQ accuracy 75.16±0.48 74.87±0.26 75.94±0.16 75.08±0.94 74.75±0.71 74.80±1.07 74.87±0.62 74.84±0.71 74.08±0.56

CB accuracy 78.93±3.43 76.06±2.40 84.64±3.48 75.71±2.71 82.86±1.60 83.57±1.49 80.00±1.96 74.28±3.91 77.14±3.44

F1 72.11±6.73 72.78±5.17 80.42±4.52 71.91±8.36 77.78±2.31 80.99±3.10 72.56±4.04 66.73±4.23 80.69±3.45

CoLA MCC 59.36±0.96 57.17±1.92 58.28±0.59 58.69±1.43 59.73±1.34 57.91±1.51 57.47±1.62 59.98±1.40 58.30±1.15

COPA accuracy 60.40±5.03 59.20±2.28 64.00±5.43 59.40±5.03 72.00±1.87 62.80±2.77 54.20±1.96 58.00±3.32 61.60±2.19

MNLI matched acc. 84.22±0.12 85.14±0.16 84.93±0.21 85.05±0.19 85.21±0.25 84.72±0.15 85.17±0.16 84.40±0.29 83.82±0.16

mismatched acc. 84.00±0.05 84.78±0.17 85.05±0.13 85.35±0.15 85.36±0.21 84.73±0.19 85.29±0.14 84.60±0.16 83.71±0.16

HANS acc. 62.47±1.68 64.39±1.28 63.75±0.76 65.60±0.53 60.50±1.24 64.16±1.86 65.32±1.14 62.35±0.82 58.63±1.35

MRPC accuracy 84.31±0.71 85.00±0.94 85.54±0.90 87.45±0.86 86.52±0.81 85.93±0.59 86.47±0.80 86.27±1.12 85.29±0.83

F1 89.06±0.48 89.51±0.64 89.83±0.61 91.20±0.62 90.39±0.59 89.99±0.48 90.54±0.61 90.39±0.73 89.57±0.63

MultiRC F1 67.25±0.57 67.61±0.86 68.10±0.85 71.93±0.73 71.90±0.35 71.91±0.35 66.45±2.12 67.30±0.62 65.02±1.00

exact match 18.51±0.88 19.58±1.51 18.76±1.54 25.25±1.37 24.91±0.40 27.63±0.83 17.19±2.70 18.65±0.44 16.66±0.77

QNLI accuracy 90.80±0.25 90.00±0.25 90.57±0.29 91.46±0.20 90.32±0.18 90.36±0.25 90.33±0.27 90.36±0.16 89.08±0.24

QPP accuracy 91.01±0.05 90.94±0.06 90.85±0.07 91.01±0.10 91.00±0.14 90.90±0.08 91.01±0.08 90.77±0.04 90.51±0.09

F1 87.85±0.07 87.81±0.08 87.73±0.07 87.87±0.14 87.94±0.19 87.76±0.10 87.92±0.13 87.57±0.05 87.24±0.13

SST-2 accuracy 92.06±0.48 92.71±0.40 92.71±0.24 92.80±0.50 92.18±0.38 92.11±0.25 92.34±0.59 92.82±0.40 91.67±0.37

STS-B Pearson corr. 86.34±0.29 87.44±0.33 87.53±0.19 87.99±0.11 89.50±0.14 89.11±0.25 87.83±0.19 86.93±0.50 85.80±0.18

Spearman corr. 86.10±0.31 87.24±0.32 87.45±0.20 87.72±0.10 89.06±0.12 88.82±0.22 87.67±0.21 86.73±0.47 85.54±0.20

ReCoRD F1 65.48±0.64 63.15±3.19 68.36±1.59 70.71±1.81 66.51±0.33 67.73±1.00 62.93±3.12 64.68±1.90 57.59±2.06

exact match 64.81±0.62 62.48±3.19 67.61±1.58 70.03±1.78 65.84±0.33 67.04±1.02 62.26±3.08 63.93±1.89 56.88±2.07

RTE accuracy 62.38±3.00 60.65±1.92 60.51±2.07 60.51±2.61 66.50±1.12 69.68±1.28 58.34±2.56 56.82±1.63 58.19±0.59

WiC accuracy 66.36±1.59 66.46±1.21 67.40±0.43 69.18±1.04 70.78±0.94 68.90±0.60 67.52±1.35 66.71±0.99 68.46±0.71

Average 74.04±2.20 73.63±1.75 75.20±1.99 75.12±2.39 76.69±0.96 76.21±1.22 73.34±1.91 73.39±1.67 73.15±1.33

Table 6: Detailed development GLUE and SuperGLUE results for all tested models. We show the mean and standard
deviation statistics over 5 runs with different random seeds (changed only for fine-tuning, the pre-trained models are
kept the same).

Model POS DP SRL NER CR Average

BERT (100M subset) 97.94±0.01 95.03±0.04 92.34±0.06 95.91±0.12 95.27±0.10 95.30±0.08

MLM
subword 97.91±0.01 94.99±0.02 92.44±0.03 95.77±0.06 95.30±0.07 95.28±0.05

whole-word 97.90±0.01 94.99±0.05 92.42±0.08 95.71±0.07 95.64±0.07 95.33±0.06

span 97.91±0.01 94.80±0.03 92.32±0.02 95.56±0.07 95.46±0.14 95.21±0.07

NSP
subword + document 97.92±0.01 95.01±0.03 92.42±0.06 95.76±0.07 95.25±0.11 95.28±0.07

subword + order 97.85±0.01 94.92±0.06 92.25±0.07 95.22±0.05 95.25±0.11 95.10±0.07

Steps
subword + 2× 97.93±0.01 94.95±0.10 92.47±0.03 95.63±0.11 95.58±0.04 95.31±0.07

subword + 1/2× 97.90±0.02 95.02±0.04 92.38±0.05 95.46±0.03 95.43±0.05 95.24±0.04

subword + 1/4× 97.88±0.01 94.81±0.07 92.21±0.03 95.32±0.08 95.00±0.18 95.04±0.10

Random initialization 69.85±0.42 66.25±0.20 70.87±0.21 73.16±0.60 85.56±0.46 73.14±0.41

Table 7: Detailed edge probing results for all tested models. † The BERTbase scores in the first row are taken from
Tenney et al. (2019). The last row shows the edge probing results with a randomly initialized language model – its
performance hints at how much information is included in the probes themselves.
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BLiMP subgroups BERT (100M subset) MLM NSP Size
subword word span document order medium small tiny

Anaphor agreement 93.20 93.95 92.65 94.50 93.00 94.00 94.65 93.30 94.60
Argument structure 78.95 80.73 67.93 80.98 81.58 80.61 81.54 80.98 81.99
Binding 77.04 78.34 74.60 77.26 77.74 76.60 77.33 76.43 77.03
Control/raising 73.76 79.68 79.90 81.02 78.18 78.32 78.84 79.80 78.82
Determiner-noun agreement 95.91 96.74 93.48 97.45 97.09 96.26 97.09 96.73 96.96
Ellipsis 88.25 88.10 85.55 90.95 88.65 86.70 90.25 87.70 88.70
Filler-gap 85.44 83.87 83.30 85.86 87.23 83.46 85.20 84.73 84.20
Irregular forms 88.45 91.45 86.75 94.40 88.30 86.70 92.35 92.65 93.10
Island effects 70.91 74.99 76.71 74.34 73.98 74.62 72.14 74.86 72.34
NPI licensing 81.07 82.40 81.73 82.36 83.24 78.79 82.43 84.96 82.86
Quantifiers 69.98 68.88 70.00 74.13 64.50 68.77 72.58 67.10 67.53
Subject-verb agreement 91.78 92.64 83.97 92.92 92.13 90.00 91.72 92.25 92.22

Accuracy 81.95 83.42 80.05 84.18 83.31 82.17 83.45 83.47 83.15

Table 8: Detailed BLiMP results for all tested models.

Hyperparameter Base

Number of layers 12
Hidden size 768
FF intermediate size 2 048
Vocabulary size 16 384
FF activation function GEGLU
Attention heads 12
Attention head size 64
Dropout 0.1
Attention dropout 0.1
Training steps 31 250
Batch size 32 768 (90% steps) / 8 192 (10% steps)
Sequence length 128 (90% steps) / 512 (10% steps)
Tokens per step 4 194 304
Warmup steps 500 (1.6% steps)
Initial learning rate 0.01
Final learning rate 0.001
Learning rate decay cosine
Weight decay 0.1
Layer norm ϵ 1e-5
Optimizer LAMB
LAMB ϵ 1e-6
LAMB β1 0.9
LAMB β2 0.98
Gradient clipping 2.0

Table 9: Pre-training hyperparameters. The models differ only in their hidden size and number of layers, the learning
rate schedule and other training settings are kept identical.
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Hyperparameter ReCoRD MNLI, QQP, QNLI
BoolQ, CoLA, COPA,

RTE, WiC CBSST-2, MultiRC,
MRPC, STSB

Batch size 32 32 32 16 8
Number of epochs 1 4 8 8 16
Dropout 0.1 0.1 0.1 0.1 0.1
Warmup steps 10% 10% 10% 10% 10%
Peak learning rate 3e-5 3e-5 3e-5 3e-5 3e-5
Learning rate decay linear linear linear linear linear
Weight decay 0.01 0.01 0.01 0.01 0.01
Optimizer AdamW AdamW AdamW AdamW AdamW
Adam ϵ 1e-6 1e-6 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999 0.999

Table 10: Hyperparameters for fine-tuning the GLUE and SuperGLUE tasks. We use the same hyperparamaters for
all models, not performing any per-model hyperparameter search.

Hyperparameter POS, SRL, NER, CR DP

Batch size 128 128
Number of epochs 5 10
Dropout 0.25 0.25
Downsampled hidden size 256 256
Attention pooling heads 4 4
MLP hidden layers 1 1
Starting learning rate 6e-3 6e-3
Learning rate decay cosine cosine
Weight decay 0.01 0.01
Optimizer AdamW AdamW
Adam ϵ 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Gradient clipping 2.0 2.0

Table 11: Edge probing hyperparameters.
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1 # Oral history project: interview
2
3 Britta: 'Can you tell us what er what section you work in?'
4
5 Eliazar: 'I work at the weaving'
6
7 Britta: 'In the weaving?'
8
9 Eliazar: 'section, aha.

10 And'
11
12 Britta: 'And what do you do?'
13
14 Eliazar: 'I'm what you call a Axminster handler'
15
16 Britta: 'Aha.'
17
18 Eliazar: 'which involves like when the frames comes off the weaving and they're yarn left, I strip the

yarn off.'↪→
19
20 Britta: 'Mhm.'
21
22 Eliazar: 'Off the, the, the weaving frames.'
23
24 Britta: 'Mhm.'
25
26 Eliazar: 'That's basically my, aha.'
27
28 Britta: 'It's quite spec specialized so'
29
30 Eliazar: 'No no, no, no.
31 It's not specialized, no.'
32
33 Britta: 'Mhm, have you ever worked in any other factory?'
34
35 Eliazar: 'Aha, I worked in spooling, I've been left now two year.'
36
37 Britta: 'And how did you find that?'
38
39 Eliazar: 'Er, I liked the spooling but some I just don't know, some of the girls get kind of one [UNK]

one thing by the other I can object to, I think it was actually the atmosphere of the, the girls
that worked in the department that I'

↪→
↪→

Listing 1: A random example of the first few lines from a preprocessed spoken document from BNC. Notice that the
test is divided into speech turns (paragraphs), each starting with the name of a speaker. Line 39 contains a special
[UNK] token in place of an incomprehensible word or phrase.

1 # Organizing knowledge: an introduction to information retrieval
2
3 ## SUBJECTS
4
5 ### The subject approach: introduction, processes, tools and simple evaluation
6
7 #### 1.2.1 Subjects
8
9 Users often approach information sources not with names (as have been considered in Part II), but with

a question that requires an answer or a topic for study.↪→
10 Users seek documents or information concerned with a particular subject.
11 In order to make some provision for this common approach to information sources, it is necessary to

arrange documents- and document surrogates in catalogues, indexes bibliographies, computer
databases and so on - in such a way that items on specific subjects can be retrieved.

↪→
↪→

12 Thus, the subject approach is extremely important in the access to and the exploitation of information,
documents and data.↪→

13
14 Before we discuss the provision that libraries and information workers make for the subject approach,

it may be useful to consider the preliminary question: What is a subject?↪→
15 In talking about a subject we generally refer to a given area of knowledge or to the contents of an

information source of a given scope.↪→
16 A subject might be considered to be defined by:
17
18 - an area of interest,
19
20 - an area in which an individual researcher or professional works,
21
22 - an area in which an individual writes or an area of knowledge which is studied.

Listing 2: A sample of the first few lines from a written BNC article. Note the H1-level header with the title of the
whole document and then the title of a chapter, section and subsection in the lines below. This sample also contains
a special text block with a list in the last lines.
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Abstract

Training end-to-end speech translation (ST)
systems requires sufficiently large-scale data,
which is unavailable for most language pairs
and domains. One practical solution to the data
scarcity issue is to convert text-based machine
translation (MT) data to ST data via text-to-
speech (TTS) systems.Yet, using TTS systems
can be tedious and slow. In this work, we pro-
pose SpokenVocab, a simple, scalable and ef-
fective data augmentation technique to convert
MT data to ST data on-the-fly. The idea is to
retrieve and stitch audio snippets, correspond-
ing to words in an MT sentence, from a spoken
vocabulary bank. Our experiments on multiple
language pairs show that stitched speech helps
to improve translation quality by an average of
1.83 BLEU score, while performing equally
well as TTS-generated speech in improving
translation quality. We also showcase how Spo-
kenVocab can be applied in code-switching ST
for which often no TTS systems exit.1

1 Introduction

End-to-end (E2E) speech-to-text translation (ST)
models require large amounts of data to train (Sper-
ber and Paulik, 2020). Despite the emerging
ST datasets (Cattoni et al., 2021; Wang et al.,
2021), their size is considerably smaller compared
to text-based machine translation (MT) data. A
common remedy to tackle the data scarcity is-
sue is to leverage text-based MT data in train-
ing ST systems. Common approaches include
multi-task learning (Anastasopoulos and Chiang,
2018; Ye et al., 2021), transfer learning & pretrain-
ing (Bansal et al., 2019; Wang et al., 2020) and
knowledge distillation (Inaguma et al., 2021; Tang
et al., 2021).

A more straightforward alternative is to convert
text-based MT data to ST via text-to-speech (TTS)
synthesis engines (Pino et al., 2019; Jia et al., 2019).

1Our code is available at https://github.com/
mingzi151/SpokenVocab

Figure 1: Overview of generating synthetic speech from
SpokenVocab on-the-fly. The first step is to prepare
the SpokenVocab bank offline and the second step is
to retrieve and stitch audio snippets from the bank by
words in a sentence.

This method is less commonly used despite its sim-
plicity and effectiveness,2 mainly due to practical
reasons: (i) TTS models have slow inference time
and may incur monetary costs; (ii) the conversion is
required for each MT datasets. Recently, Lam et al.
(2022) proposed to generate synthetic speech with-
out using TTS models. However, their approach is
based on real ST data, and thus cannot be extended
to MT data.

In this work, we propose a simple, effective and
efficient data augmentation approach to convert
MT data to ST data on-the-fly. The idea is to pre-
pare a set of spoken words, forming a spoken vo-
cabulary (SpokenVocab) bank, and then generate
synthetic speech by retrieving and stitching spoken

2Only one work out of 8 uses TTS to augment data in the
IWSLT2022 offline speech translation track.
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words based on a text sequence, as shown in Figure
1.3 Our experiments show that this method is as
effective as TTS-generated speech, at a much lower
computational and financial cost. For instance, aug-
menting ST data on-the-fly with 100k of stitch-
converted MT data, boosts translation quality by an
average of 1.83 BLEU over 3 language pairs from
Must-C (Cattoni et al., 2021) with no additional
cost, memory, or speed footprints. Comparing the
real ST data vs. our converted version from the
same transcripts, to our positive surprise, revealed
that our synthetic data outperforms its real coun-
terpart by 0.41 BLEU score. We conduct thorough
experiments to examine SpokenVocab in boosting
translation and further showcase its use and benefit
in the context of code-switching (CS) ST.

We hope this simple technique to ease the use of
MT data for ST in practice as well as other tasks
where synthetic speech is useful.

2 SpokenVocab

We describe our methodology in creating effective
synthetic ST data based on MT data in this section.
The core step is the preparation of a SpokenVocab
bank offline and stitching sounds on-the-fly.

Concretely, we first use a TTS engine to convert
items in a word vocabulary to speech to obtain a set
of SpokenVocab offline.4 Next, we can configure
the TTS engine to generate different speaker voices
and thus curate a SpokenVocab bank in which each
set corresponds to a "speaker". The purpose is to
simulate, to the greatest extent, a realistic speech
dataset consisting of various speakers. At training,
assume we have access to an MT dataset and each
pair denoted as < s, t > where s and t are source
and targets sentences, respectively. Given such a
pair, we choose one voice 5 from the bank, and pro-
duce synthetic speech by fetching corresponding
audio snippets by words in s from the bank and
stitching them together. During stitching, we de-
ploy cross-fade, a well-known technique to smooth
transitions between two independent audio clips.6

3During the writing of this manuscript we found out that
Voder, the first electronic speech synthesiser developed by Bell
Labs in 1939, synthesized human speeches by decomposing
it into its acoustic components and combining them using
human operators in real time.

4SpokenVocab could also be based on n-grams in a dataset.
5One could also generate utterances by mixing speakers at

the token level, with no additional cost with our technique. We
leave further investigation of this to future work as it requires
a test condition (i.e., including various speaker voices per
utterance) which is not available to the best of our knowledge.

6https://github.com/jiaaro/pydub

Pairing it with t yields a synthetic ST instance.7

3 Experiments

We first present the ST system (§3.1) and TTS sys-
tems (§3.1.2) used in this study. We then describe
the ST and MT datasets (§3.1.3), followed by pro-
viding implementation details (§3.1.4). Next we
explain how SpokenVocab is designed (§3.2) and re-
port translation results (§3.3). Lastly, we illustrate
how our method can be applied to CS ST (§3.5).

3.1 Experimental Setup

3.1.1 Speech Translation System
Pre-trained speech encoders and text decoders
have shown great performance on ST (Li et al.,
2021; Zhao et al., 2022), compared to models
trained from scratch. For this reason, we follow
the architecture in Gállego et al. (2021) that uses
Wav2vec 2 (W2V2) (Baevski et al., 2020) as the
speech encoder and mBart decoder (Liu et al.,
2020) as the text decoder, joint with a lightweight
linear adapter and a CNN-based length adapter.

3.1.2 TTS Systems
To prepare SpokenVocab, we use the Google TTS
service,8 which supports a wide range of voice con-
figurations; this allows simulating different speak-
ers with various accents, gender and geographi-
cal background. We also use a off-the-shelf TTS
toolkit, i.e., Tacotron2-DCA + Mulitband-Melgan
(short for T2+Mel).9 We use Google TTS to gener-
ate synthetic speech in raw wavforms.

3.1.3 Dataset
We conduct our major experiments on Must-C, a
multilingual ST dataset curated from Ted talks. We
focus on English (En)→German (De), Romanian
(Ro) and Italian (It). For MT data, we use a subset
of WMT14, WMT16 and OPUS10010 for De, Ro
and It, with 100k, 100k and 24k instances, respec-
tively. For the code-switching (CS) setting, we use
Prabhupadavani (Sandhan et al., 2022), multilin-
gual CS ST dataset, and we focus on En→De, It.
Its source utterances are code-mixed with English
(major language), Bengali and Sanskrit; each utter-
ance is translated manually to 25 languages. We

7We provide a demo for stitched speeches.
8https://cloud.google.com/

text-to-speech
9https://github.com/mozilla/TTS

10http://opus.nlpl.eu/opus-100.php
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prepare ST data following the instructions in Gál-
lego et al. (2021). We preprocess MT data with
the fairseq instructions and remove pairs with the
length of target sentences greater than 64 words to
avoid out-of-memory issues. Minimal preprocess-
ing is performed on the CS ST dataset.

3.1.4 Implementation Details
Similar to Li et al. (2021) and Gállego et al. (2021),
training different components of W2V2 and mBart
decoder yields divergent results. In our initial
experiments, we note that fine-tuning the entire
W2V2 except for its feature extractor and freez-
ing mBart lead to decent translation results, and
thus we use this configuration for all our exper-
iments. To ensure Must-C to be dominant, we
make the ratio of Must-C and MT data to be ap-
proximately 8:1, unless mentioned otherwise. We
use sacreBLEU (Post, 2018) to evaluate transla-
tion. Please refer to Appendix A.1 for full training
details, hyper-parameters and hardware.

3.2 SpokenVocab Preparation and Variations

Constructing the SpokenVocab bank is crucial, as
synthetic speech produced in this manner have a di-
rect impact on translation quality. In this section we
examine SpokenVocab from various dimensions.
TTS Conversion. The first questions to ask are
which TTS system should be used to convert a
word to a spoken form and what sampling rate
(SR) is appropriate.11 To answer these questions,
we conduct intrinsic evaluation on stitched speech
by varying TTS engines and SR. Furthermore, as
it is common to diversify raw wave forms with
audio effects (Potapczyk et al., 2019), we apply
the same technique to distort our stitched speech.
Results in Table 1 show that using Google TTS
and setting the SR to 24k are better choices, while
distortion (i.e., adding the effects of tempo, speed
and echo) may or may not be helpful. Contrary to
the common practice of using a SR of 16k (Baevski
et al., 2020), applying 16k to SpokenVocab alters
the sound significantly, as shown in the demo in
§2, and this has negative impacts on the system.
Overall, we use the setting in italic for the rest of
our experiments.
Word Vocabulary. We compile a word vocabulary,
consisting of 1) a common subset of words12, and

11SR is defined as the number of samples taken from a
continuous signal per second.

12The list comes from Official Scrabble Players Dictionary
and Wiktionary’s word frequency lists, and can be found

Data TTS SR Distort. BLEU

ST - - - 26.91

ST+MTstitched

T2+Mel - - OOM

Google

24k - 28.02
24k ✓ 27.72
16k - 26.77
16k ✓ 27.47

Table 1: Comparison of different TTS conversions in
terms of TTS engine, sampling rate (SR) and distortion
(Distort.) Top row: baseline. Bottom rows: MT data is
converted to ST data with SpokenVocab. OOM: out-of-
memory with 24k and 16k SRs. italic: best setting.

2) unique words with a frequency of higher than 99
from the En→X WMT subset. The purpose is to
construct an approximated version of SpokenVocab
that is ready to convert any sentence to synthetic
speech. For words that are not covered by the list,
we employ a fuzzy matching mechanism where the
most similar word at the surface level is returned.
For instance, an out-of-vocabulary (OOV) word
"apples" is replaced by its closest match in the
vocabulary "apple", and the speech snippet for "ap-
ple" is retrieved. When no match is found, a default
filter word, "a", is returned. To investigate the ef-
fect of this approximation which would inevitably
lead to mispronounced words, we prepare another
set of SpokenVocab containing the full set of spo-
ken words in the WMT data (eliminating the need
for fuzzy matching). In controlled experiments
on En→De, the BLEU scores with the approxi-
mated and full SpokenVocabs, with the size of 35k
and 460k respectively, are 28.02 and 27.91. The
negligible difference indicates the effectiveness of
using an approximated SpokenVocab. Additional
ablation studies on using 50% and 10% of the full
vocabulary yield scores of 27.79 and 27.94, further
validating the insensitivity of W2V2 to nuanced
mispronunciation, perhaps due to the presence of
powerful pre-trained auto-regressive decoder.13

Number of Speakers. Despite the artificial nature
of the stitched speech sounds, one still can tell the
speaker’s information (e.g., gender, accent). To
examine whether diverse voices would be helpful
for translation, we set n to 1, 5 and 10 and train
models with the same amount of data. These sys-

at https://github.com/dolph/dictionary/
blob/master/popular.txt

13Optionally, one can dynamically call a TTS system to
generate an audio on OOV words.
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Cost BLEU

Data / f  De Ro It

ST - 26.91 24.66 22.13

ST + MTTTS 900 90 25 28.20 24.71 26.46

ST + MTstitched 9 0 0 28.02 25.05 26.13

Table 2: Translation quality on Must-C and the average
costs associated for generating synthetic speech for ev-
ery 100k sentences in terms of inference time in minutes
(/), USD value (f) and storage required in GB ().
Preparing SpokenVocab took 2 hours, free of charge,
with Google TTS, and stitched speeches are discarded.

tems display similar translation performance with
28.02, 27.73 and 27.80 BLEU scores respectively,
suggesting that having a single speaker is sufficient.
Our conjecture to this phenomenon is that speech
representations produced by W2V2 have removed
speaker information, as demonstrated in Nguyen
et al. (2020) where analysis was conducted on
wav2vec (Schneider et al., 2019), the predecessor
to W2V2. This could be further examined with
using dialect- or pronunciation-focused translation
settings, which we leave to future work.

3.3 Translation Performance on Must-C

Producing synthetic speech from SpokenVocab on-
the-fly makes the conversion from text to speech
highly scalable in terms of time and monetary costs,
and it also avoids the need of storing speech. Ta-
ble 2 reports the time, dollar value and space re-
quired to produce every 100k speech with Google
TTS, while these numbers are negligible for Spo-
kenVocab due to its re-usability.14 Apart from scal-
ability, it is more important to see the translation
performance difference between unnatural speech
produced by SpokenVocab and fluent speech gen-
erated by state-of-the-art TTS systems. Table 2
summarises results for 3 Must-C language pairs,
with stitched speech and TTS-generated speech.
As expected data augmentation of ST with MT
data method boosts translation quality, using our
method by 1.83 BLEU score on average. Our
stitched speech performs equally well as TTS-
generated counterpart, showing no loss of quality
during conversion.

14For fair comparison between TTS which operates on the
full vocabulary, we report the cost under the full vocabulary
version of our method.

Data Nature of Speech BLEU

Must-C real 26.91

Must-C + Europarl real + real 27.5

Must-C + EuroparlTTS real + synthetic 27.76

Must-C + Europarlstitched real + synthetic 27.91

Table 3: BLEU scores under different augmentations.

STCS STCS+MTCS-stitched

BLEU
En-Be→De 26.11 28.09
En-Be→It 26.41 26.90

Table 4: Translation quality for CS ST dataset.

3.4 Stitched Speech vs. Real Speech

An alternative approach to augmentation is to lever-
age real ST data from any other existing domains.
To assess whether our approach as another augmen-
tation technique is still competitive, we conduct
an experiment on En→De by augmenting Must-
C with 35k training instances from the Europarl-
ST (Iranzo-Sánchez et al., 2020). Table 3 reports
the results. To our positive surprise, our stitched
speech (generated from the transcripts of eurorparl-
ST counterpart) works even better than the real
Europarl-ST speech.

3.5 Code-switching Speech Translation

Development in CS ST is constrained by the avail-
ability of relevant datasets (Sandhan et al., 2022)
and using TTS systems to augment data is practi-
cally difficult. To this end, our method provides a
high degree of flexibility in that it can stitch audio
clips of different languages freely. To produce a
code-switched utterance, we further prepare Spo-
kenVocab for Bengali (Google TTS does not sup-
port Sanskrit) based on an English-Bengali dictio-
nary.15 We maintained the ratio of code-switching
in the real data (i.e., 0.35 probability of CS occur-
ring, and 2 as the average number of code-switched
words in a sentence). Please see Algorithm 1 in
Appendix A.2 for the detailed utterance generation
process. Results in Table 4 suggest that the models
trained with additional 100k and 24k instances (for
De and It respectively.) from SpokenVocab outper-
form those only trained with the original data.

15https://github.com/MinhasKamal/
BengaliDictionary
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4 Conclusion

In this work, we proposed a simple, fast and effec-
tive data augmentation technique, SpokenVocab for
ST. This provides an alternative for converting MT
data to ST data with TTS systems which comes
with monetary and computation costs in practice.
Our approach generates synthetic speech on-the-
fly during training, with no cost or footprint. We
have shown that speech stitched from SpokenVo-
cab works as effective as TTS-generated speech,
and unlike TTS system, it could directly be applied
as a data augmentation tool in code-switching ST.
Our approach can be used in other content-driven
speech processing tasks as an uncompromising and
easy-to-use augmentation technique.

Limitations

CS ST exbihit difficulties (Huber et al., 2022;
Weller et al., 2022), exposing several limitations
in this study: 1) Bengali and Sanskrit (another mi-
nority language) are treated without difference, as
they originate from the same script and Sanskrit
is not supported by the Google TTS service. 2)
We use a open-source language detection tool to
calculate the oracle hyper-parameters in the dev
set; yet, imperfection of the detector on token-level
prediction and the fact that source sentences are
written in Latin regardless of the language deviate
the scores from true values.
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A Appendix

A.1 Implementation Details
We implement and train all models with fairseq16

on 4 A40 GPUs, using 16 floating point precision,
for 25k updates. WAV2VEC 217 and the mBart5018

decoder are used. We employ an Adam optimizer
with β1 = 0.99, β2 = 0.98, while setting the
dropout to 0.1, clip norm to 20 and label smoothing
to 0.2. For the baseline models, we use a learning
rate of 5e-04 and reduce it at plateau. For mod-
els trained with additional data, we use the same
learning scheduler with a learning rate of 3e-04.

A.2 Code-switching Speech Translation

Algorithm 1 Code-switching Utterance Generation

Require: E,B : English and Bengali Spoken-
Vocab, Dict : English-Bengali Dictionary,
Keys : English words in Dict, X : En-
glish sequence, p : probability of cs occur-
ring, n : number of code-switched words,
FetchSpeech : function to fetch speech

Output: U : CS utterance
1: q = NormDist(0, 1)
2: if q > p then
3: // Select words to be code-switched
4: words, indices = Random(X,n)
5: for word, i in words, indices do
6: // Only switch words in the dictionary
7: if word in Keys then
8: // Replace with the Bengali word

X[i] = Dict[word]
9: end if

10: end for
11: end if
12: U = FetchSpeech(E,B,X)
13: return U

16https://github.com/facebookresearch/
fairseq

17https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_vox_960h_pl.pt

18https://dl.fbaipublicfiles.com/
fairseq/models/mbart50/mbart50.ft.1n.
tar.gz
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Abstract

The limits of open-ended generative models
are unclear, yet increasingly important. What
causes them to succeed and what causes them
to fail? In this paper, we take a prompt-
centric approach to analyzing and bounding
the abilities of open-ended generative models.
We present a generic methodology of anal-
ysis with two challenging prompt constraint
types: structural and stylistic. These con-
straint types are categorized into a set of well-
defined constraints that are analyzable by a
single prompt. We then systematically cre-
ate a diverse set of simple, natural, and use-
ful prompts to robustly analyze each individual
constraint. Using the GPT-3 text-davinci-002
model as a case study, we generate outputs
from our collection of prompts and analyze
the model’s generative failures. We also show
the generalizability of our proposed method
on other large models like BLOOM and OPT.
Our results and our in-context mitigation strate-
gies reveal open challenges for future research.
We have publicly released our code at https:
//github.com/SALT-NLP/Bound-Cap-LLM.

1 Introduction

The recent success of large language models (LLM)
(Brown et al., 2020; Devlin et al., 2018; Raffel
et al., 2019) has transformed the field of natural
language processing (NLP). In particular, prompt-
ing LLMs to generate open-ended text has shown
promising performance. The existing and potential
applications of open-ended text generation are far-
reaching, spanning domains such as QA (Zhu et al.,
2021), story generation (Fan et al., 2018), code
generation (Chen et al., 2021a), human-assisted
creativity (Akoury et al., 2020), open-ended dia-
logue (Zhang et al., 2020), and the varied usages
of ChatGPT 1. However, as LLMs continue to rise,

∗Equal contribution.
1https://chat.openai.com

Figure 1: Example Model Failures: These two
prompts are from our taxonomy and the two responses
are generated by GPT-3. There are clear deficiencies
that are described further in this paper.

there is a growing amount of concern over the un-
predictability of NLP systems, and thus a need to
better understand their capabilities and limitations.
An extensive analysis of open-ended text genera-
tion is imperative to understand their capabilities,
limitations, and areas for improvement.

Current analyses of open-ended text generation
center around general text attributes, such as gram-
mar, coherence, and toxicity. These analyses are
used to understand general aspects of model gener-
ations, but they do not analyze model performance
in regards to the prompt. The next step in this field
is to analyze prompt-specific performance by break-
ing down the vast space of open text generation into
a taxonomy of simple, natural, and useful prompts.
A fine-grained understanding of what prompts a
model can and can’t handle creates clear bounds on
model capabilities, and drives model explainability
and future directions for improvement.

One way to categorize prompts is by their con-
straints. The prompt “Create a short and funny
joke about research” contains a variety of con-
straints. The output must be a joke (document-
type constraint), short (structural constraint), funny
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(stylistic constraint), and about research (subject
constraint). The space of open-ended generative
prompts can be partitioned by their constraints be-
cause all prompts are combinations of different
types of constraints.

In this paper, we systematically evaluate model
performance on prompts that contain stylistic and
structural constraints. A stylistic constraint bounds
the style of the output, such as writing with a flow-
ery style, and a structural constraint bounds the
structure of the output, such as limiting the number
of words in an output.

We chose to analyze stylistic and structural
constraints because they are omnipresent across
prompts and notably challenging in literature
(Ouyang et al., 2022; Reif et al., 2021). From for-
mal emails to funny jokes, many generative applica-
tions have style. Additionally, all generations have
implicit or explicit structural constraints, such as
length and proper formatting of an email or resume,
and it is crucial for LLMs to understand them.

We create simple, natural, and useful base
prompts for each category, and vary them in a num-
ber of dimensions to ensure a fine-grained and ro-
bust analysis of each category. We use the public
GPT-3 model as a case study to demonstrate the
effectiveness of our proposed taxonomy2 and com-
prehensively analyze the results quantitatively and
qualitatively. We then test in-context mitigation
strategies and provide directions for future research
on the evaluation of open-ended generation.

In summary, our contributions are as follows:

• We provide a taxonomy of prompts containing
stylistic or structural constraints to facilitate
finer-grained analyses of open text generation.

• We conduct a systematic experiment using our
taxonomy by creating 288 different prompts
and evaluating 3000+ generated outputs to
analyze the capabilities and limitations of cur-
rent LLMs on open-ended text generation.

• We analyze in-context mitigation strategies
to improve model performance and discuss
future research for open text generation.

2Note our methodology is general-purpose and can be used
for investigating other language models. We perform a small
ablation on other models, but we encourage future works to
perform our full-scale analysis on other language models as
different models may behave differently.

2 Related Work

Analysis of Large Language Models Many ex-
isting benchmarks have been utilized to measure an
LLM’s capabilities in natural language understand-
ing and generation (Wang et al., 2019; Sakaguchi
et al., 2019; Mostafazadeh et al., 2016; Rajpurkar
et al., 2018; Joshi et al., 2017; Mihaylov et al.,
2018), where expected outputs are mostly deter-
ministic and/or short. There is also much research
analyzing general text attributes of open-ended text
generations such as grammar, coherence, and toxi-
city. Dhamala et al. (2021) uses automated metrics
to test for gender bias, toxicity, and sentiment in a
vast array of Wikipedia-based prompts. Dou et al.
(2021) creates a framework that analyzes GPT-3
outputs for language errors, factual errors, or reader
issues (such as usage of technical jargon).

Additionally, many studies use hand-crafted
prompts to adversarially evaluate open-ended text
generation models. Chowdhery et al. (2022) uses
the prompt "All X are " and calculates the aver-
age toxicity of continuations to evaluate PaLM’s
bias against group X. Gehman et al. (2020) de-
signs prompts that encourage toxic behavior from
a model. Lin et al. (2021) creates a dataset of hand-
curated prompts that elicit model hallucinations
from GPT-3. In contrast, our goal is to investi-
gate the open text generation capabilities of LLMs
with regard to constraints in the prompt because we
seek a more nuanced and bounded understanding
of model performance. Aspects like toxicity and
grammatically are important across all outputs, but
they don’t provide insight into how correctly an
LLM responded to a prompt.

Controllable Text Generation Controlling
model outputs to fit a set of constraints is in the
domain of controllable text generation. Chan et al.
(2020) uses a content adapter to control model
outputs. Krause et al. (2020) uses contrastive
decoding to create generations with stylistic or
topic constraints. Keskar et al. (2019) finetunes an
LLM with inputs concatenated with an associated
style token. However, creating these constraint-
centric outputs requires a matching dataset of
constrained text and an architectural shift. We
evaluate controllable generation purely in-context
and use comprehensive taxonomies instead of
limiting evaluations to existing datasets.

Most similar to our paper, Reif et al. (2021) uses
GPT-3 prompts to stylistically modify text and ask
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human raters to evaluate generation quality. In con-
trast, we provide a fine-grained analysis of model
performance on generating styled texts. Addition-
ally, we focus on creating a set of simple, natural,
and useful prompts for analysis. Our goal is to
understand the current capabilities and limitations
of open-ended generative models.

3 Methodology

The first step is to break down the constraint type
into a taxonomy of individual constraints. These in-
dividual constraints must be analyzable by a single
prompt with clear definitions of failure and success.
We create our taxonomies by considering how users
naturally put constraints in prompts.

3.1 Prompt design

Prior works (Reynolds and McDonell, 2021; Min
et al., 2022) show that prompt variance can have
a huge impact on model performance. To miti-
gate this variability, we design our prompts in the
following two steps:

Design base prompt We first design a set of
simple and natural prompts as the base prompts
for each individual constraint. For example, our
base prompts for the stylistic constraint "mood" are
“Write a passage about love that makes the reader
feel [angry, fearful, happy, sad].”

Create prompt variations We then vary those
base prompts by a number of important dimen-
sions, such as subject and prompt template. For
example, we vary our prompts for mood by 2 ad-
ditional prompt templates (which are semantically
identical but syntactically different prompts), and
2 additional subjects. These dimensions are not
co-varied unless initial testing reveals important
pairs of dimensions.

All prompts use the base subject and template
unless otherwise stated. A full list of the prompts
can be found in Appendix C.

In total, we create 288 prompts that facilitate
a robust and fine-grained analysis on an LLM’s
open-ended text generation capabilities.

3.2 Output generation

We generate outputs using the GPT-3 series through
OpenAI’s API as well as other publicly accessi-
ble LLMs such as OPT, BLOOM, and GLM. Our
main experiment is done on GPT-3 with model
text-davinci-002, with a sampling temperature

of 0.7 and a max token length of 1024. 3 A high
temperature encourages creative and diverse out-
puts, and a high max token length prevents maxi-
mum length constraints. We generate 10 outputs
per prompt to evaluate on. A sensitivity study on
the model and model parameters is shown in sec-
tion 4.5.

4 Stylistic Constraints

Stylistic constraints are present in all languages.
These stylistic modifications often comprise of an
adjective prior to a document type: “Write a for-
mal email to my boss; Write a funny pickup line”.
Stylistic constraints are notably challenging for
LLMs in zero-shot settings (Reif et al., 2021).

Our stylistic constraints are grounded on exist-
ing work in the domain of Reader’s Advisory (RA).
RA takes a user-centric approach to recommend-
ing books based on their stylistic features. An RA
taxonomy by function covers a diversity of stylistic
text features that could be useful for both a writer
and an audience. We use a comprehensive RA
taxonomy found in Pera and Ng (2014). These
features are writing style, tone, mood, character-
ization, pacing, plot, and genre. 4 Each selected
feature is used to stylistically modify text in unique
and powerful dimensions.

4.1 Taxonomy

Writing Style Writing style affects the complex-
ity of the language and literary devices in the text
and how the text is detailed. Our base writing
styles are functional and flowery, and we test more
advanced writing styles along that spectrum. In
testing, we noticed that the style-subject pairing
heavily influences model performance. We thus
covariate all subjects and writing styles.

Tone Tone reflects an author’s attitude toward a
topic. We chose four basic tones from Spiteri and
Pecoskie (2018) as our base prompts: dramatic,
humorous, optimistic, sad. We also choose an-
other eight advanced tones as prompt variations.
Because a taxonomy of creative tone is not per-
fectly aligned with common tones, we also analyze
common tones in professional environments: for-
mal, informal, assertive, passive-aggressive.

3See model details here: https://platform.openai.
com/docs/model-index-for-researchers.

4We leave out the features “frame” and “special topics”
because“Special topics” is a subject constraint, and “frame” is
an extension of tone.
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Writing Style Subject

Sunsets Strawberries Writing a paper

Functional 0.27±0.66 1.47±0.31 1.67±0.26
0.40±0.83 1.50±0.43 1.53±0.48

Flowery 1.03±0.77 0.63±1.00 1.03±0.48
1.27±0.44 0.97±0.77 -0.13±0.92

Candid 1.20±0.56 1.27±0.25 1.50±0.27
Prosaic 0.07±0.92 1.03±0.66 1.23±0.78
Ornate 1.17±0.54 0.67±1.04 0.83±0.45
Poetic 1.77±0.40 1.10±0.83 1.33±0.47

Table 1: Results for Writing Style. The average of the
annotation score (with standard error) is reported (each
score is in the range of (-2, 2)). Each row of Functional
and Flowery represents a different prompt template (Se-
mantically identical but syntactically different prompt).

Mood Mood describes how a work of writing
makes an audience feel. We chose four common ba-
sic emotions in Spiteri and Pecoskie (2018) angry,
fearful, happy, sad as our base prompts. Seven
advanced moods are selected as prompt variations.

Characterization A story’s characterization de-
fines how it describes its characters. We chose to
analyze direct and indirect characterizations.

Pacing Pacing describes how fast a story is mov-
ing for a reader. Here, we test two generic cases:
fast and slow paces.

Plot A plot roughly outlines a story’s sequence
of events. We analyze the seven basic plots
(BOOKER, 2019): Overcoming the Monster,
Rags to Riches, The Quest, Voyage and Return,
Comedy, Tragedy, Rebirth. GPT-3 is unable to
create classic “Comedy” and “Tragedy” plots due
to their multiple meanings, our definition is ex-
panded to include stories that are funny or sad.

Genre A story’s genre is a categorization of its
subject matter. We choose 6 popular genres: His-
torical Fiction, Literary Fiction, Science Fiction,
Mystery, Dystopian, and Horror.

4.2 Prompt Variation
Beyond the previous variations, we vary all
prompts by subject and prompt template. For writ-
ing style, we chose the subjects "sunsets", "straw-
berries" and "writing a paper" to create variety
across the axis of functional to flowery subjects.
For the general stylistic constraints "tone" and
"mood", we chose the document type passage and
the subjects love, life, humanity. These subjects fit

our task because they are commonly expressed in a
variety of stylistic directions. For the story-centric
stylistic constraints "characterization, pacing, plot
and genre", we chose the document type story and
the varied and common subjects lovers, cats, sur-
vivors. As plot and genre are both content-centric
stylistic constraints, we also add “no-subject” as
a subject for baseline comparison. These subjects
are common and varied in stories. We show the full
prompt list in Appendix C.

4.3 Evaluation
We used Amazon’s Mechanical Turk platform
(AMT) to evaluate all outputs. For each output, we
showed the prompt and the definition of the style
to workers, then we asked workers three questions:

1. "Regarding the [aspect] of the response, to
what extent do you agree the response fulfills
the prompt?"

2. "How difficult is it to create a valid response
to this prompt?"

3. "Do you observe any other failures (e.g.,
inconsistency, unverified facts, not a
story/passage) in the response?"

We used a 5-point Likert scale (-2 to 2) for the
first question to evaluate the style of the response
, and a 10-point Likert scale (1 to 10) for the sec-
ond question to evaluate prompt difficulty. The
third question is designed to allow annotators to
write down failures orthogonal to the stylistic con-
straints which can facilitate additional qualitative
analysis. The overall inter-annotator agreement
(Krippendorff’s α) for the first question is 0.31.
More details and the interface for annotation are
shown in Appendix A.

4.4 Results
The results for writing style are in Table 1, tone and
mood are in Table 2, and characterization, pacing,
plot, and genre are in Table 3. As expected, GPT-3
struggles with comedy and other challenging stylis-
tic constraints such as satire, irony, and literary
fiction. Otherwise we focus on several key findings
here, and a per-aspect analysis along with qualita-
tive examples of the findings are in Appendix B.1.

GPT-3 is sensitive to style-subject pairings.
From Table 1, GPT-3 cannot write prosaically or
functionally about sunsets, or ornately about writ-
ing a paper. From Table 3, GPT-3 can create in-
dividual characters from the subject "lovers", but
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Aspect Category Base Template Subject Mean
2 3 4 Life Humanity

Tone

Dramatic 1.1±0.7 1.43±0.5 1.37±0.28 / 1.37±0.38 1.5±0.22 1.35
Humorous -0.5±0.48 -0.2±0.6 0.3±1.17 / -0.1±0.9 -0.03±0.92 -0.11
Optimistic 1.3±0.43 1.63±0.48 1.6±0.36 / 1.7±0.23 1.67±0.26 1.58
Sad 1.27±0.36 1.03±0.64 1.17±0.6 / 1.5±0.4 1.17±0.48 1.23

Mood

Angry 0.37±0.41 0.93±0.8 0.2±0.9 0.83±0.89 0.8±0.96 1.2±0.62 0.72
Fearful 0.57±0.7 0.77±0.54 0.77±0.52 0.67±0.86 1.4±0.42 1.33±0.3 0.92
Happy 1.57±0.26 1.3±0.28 1.4±0.33 1.37±0.31 1.47±0.31 1.33±0.54 1.41
Sad 1.27±0.59 1.3±0.46 1.03±0.46 0.9±0.68 1.33±0.49 0.9±0.58 1.12

Table 2: Results for basic tones and moods. All but subject variations use subject “love”.

Aspect Category Base Template Subject Mean
2 3 Cats Survivors None

Characterization
Direct 1.0±0.54 0.77±0.87 0.33±0.77 0.53±0.65 0.5±0.82 / 0.63
Indirect 0.7±0.64 0.93±0.42 0.77±0.37 0.87±0.58 0.1±0.72 / 0.67

Pacing
Fast 1.23±0.72 0.77±0.7 1.3±0.31 1.03±0.6 0.9±0.58 / 1.05
Slow 0.53±0.88 0.7±0.55 0.97±0.62 0.73±0.76 0.67±0.67 / 0.72

Plot

Overcoming the Monster 0.37±0.91 1.0±0.75 / 0.7±0.94 1.33±0.3 1.53±0.31 0.99
Rags to Riches 1.33±0.71 0.77±0.87 / 0.5±0.85 0.27±0.9 1.53±0.65 0.88
The Quest 1.33±0.54 1.2±0.48 / 1.37±0.38 1.27±0.39 1.6±0.25 1.35
Voyage and Return 1.07±0.53 1.27±0.42 / 1.33±0.54 1.1±0.54 1.3±0.28 1.21
Comedy -0.3±0.9 -0.3±0.84 / -0.07±0.99 -0.5±0.48 0.03±0.85 -0.23
Tragedy 1.6±0.39 1.8±0.27 / 1.27±0.59 0.63±0.38 1.5±0.4 1.36
Rebirth 1.13±0.56 1.33±0.65 / 0.93±0.81 1.03±0.55 1.4±0.39 1.16

Genre

Historical fiction 0.77±0.93 1.07±1.08 0.97±0.72 -0.2±0.93 0.43±0.92 1.13±0.99 0.70
Literary fiction 0.87±0.65 0.8±0.48 0.97±0.57 0.4±0.84 0.9±0.6 0.27±0.42 0.70
Science fiction 0.47±0.76 0.9±0.82 0.37±0.84 1.5±0.31 1.13±0.5 1.47±0.52 0.97
Mystery 1.1±0.58 1.6±0.39 1.23±0.45 1.4±0.36 0.73±0.9 1.67±0.45 1.29
Dystopian 1.37±0.43 1.63±0.43 1.5±0.45 1.53±0.56 1.6±0.33 1.8±0.31 1.57
Horror 1.23±0.67 1.07±0.93 1.63±0.28 1.4±0.74 1.57±0.65 1.47±0.62 1.40

Table 3: Results for story-centric stylistic constraints. All but subject variations use the subject "lovers".

it fails to characterize the subjects "survivors" or
"cats". Similarly from Table 3, GPT-3 can’t write
stories about "lovers" Overcoming the Monster, but
it can about "cats" or "survivors" Overcoming the
Monster. This indicates that the model might use
spurious correlations between style and subject in-
stead of having an isolated understanding of style.

GPT-3 confuses style with subject when the
prompt is too challenging. GPT-3 writes about
funny things when asked to be humorous or write
a comedy, but the outputs are not funny by them-
selves. When asked to write a passage that makes
the reader feel anger or fear, GPT-3 writes candidly
about anger and fear. This occurs more often with
worse performing styles, and it appears that it uses
the style as a subject when it’s unsure of how to
create the style. It might be because GPT-3 doesn’t

understand the purpose of style in lower probability
prompts, and thus uses the style as a subject.

GPT-3 struggles with words that are not unique
to creative writing. The writing style subject
“strawberries” can be written about both function-
ally and creatively, but GPT-3 fails to write flowery
or ornately about strawberries. GPT-3 also fails
to create “historical” or “science fiction”, and to
create classic “Comedies” and “Tragedies”. This
might be because GPT-3 struggles to stylistically
use words that have meaning beyond creative writ-
ing due to a dataset imbalance between creative
and functional text.

GPT-3’s performance has no correlation with
the prompt difficulty perceived by annotators.
As shown in Figure 2, Spearman’s correlation be-
tween model performance and the difficulty of the
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Figure 2: Relation between different prompts’ diffi-
culty and score. The spearman’s correlation is -0.15.

Figure 3: Results on different model sizes and tem-
peratures, using the averaged scores over 7 prompts.

prompt as perceived by annotators is -0.15, show-
ing no correlation. Annotators perceive writing a
story with a "Comedy" plot as easy while GPT-3
performs extremely poorly. Annotators perceive
prompts with complex genres or plots like "rebirth"
and "dystopian" as hard while the model performs
well. This is a strong result that indicates that the
factors that contribute to prompt difficulty differ
between humans and LLMs. This reinforces the im-
portance of our work in empirically finding which
prompts are and aren’t challenging for LLMs.

4.5 Scale and Temperature Variation

To analyze sensitivity to model parameters, we
chose seven base prompts (one per stylistic con-
straint, shown in Table 11). We prioritized
average-scoring prompts to establish a baseline
when comparing different models and parame-
ters. Apart from our default setting of using
text-davinci-002 (D, 176B) with temperature
0.7, we experimented with three different en-
gines from OpenAI’s API: text-ada-001 (A),
text-babbage-001 (B), text-curie-001 (C),
which correspond to InstructGPT models of 350M,

Figure 4: Effect of the mitigation strategy, using the
averaged annotation scores over 7 prompts.

1.3B and 6.7B parameters and two additional tem-
peratures of 0.4 and 1.0. 5 The aggregated results
are shown in Figure 3.
Model Scale Variation As expected, smaller mod-
els perform worse, with the exception of C perform-
ing worse than B, which is due to the extremely low
performance of C on the humorous tone constraint.
Temperature Variation Performance rose slightly
for both additional temperatures. We examined the
outputs and noticed that a higher temperature cre-
ates better results, but a lower temperature repeats
an output that happens to perform well as seen in
Appendix B.3.

4.6 In-context Mitigation Helps

We tested three in-context mitigation strategies
from the literature on the same prompts as Sec-
tion 4.5, with the same experimental settings:

• Definition Prepend the definition of the style
(the same one we showed the annotators) to
the prompt to provide information about the
task.

• Demonstration Prepend one well-answered
demonstration to help the model understand
the task, following the one-shot setting from
Brown et al. (2020).

• Explanation Add an explanation of why
the demonstrated response is correct after
the one-shot demonstration (Lampinen et al.,
2022).An example is shown in Appendix C.1

As shown in Figure 4, all mitigations positively
impact performance primarily by improving perfor-
mance on the "humorous tone" prompt. However,

5More details at https://help.openai.com/en/
articles/5832130.
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these mitigations are unnatural prompts, and the
results are still far below optimal.

5 Structural Constraints

Structural constraints are omnipresent: “Write an
essay in fewer than 1000 words; Limit your pa-
per to 8 pages”. Structural constraints are notably
challenging for LLMs (Ouyang et al., 2022).

Structure in the field of NLP is a broad term. We
specifically analyze structural aspects of the text
that are orthogonal to the actual content of the out-
put. This includes length, spacing, and formatting,
and excludes content-centric attributes such as syn-
tax or semantics. Our taxonomy is based on how
a user could conceivably request a structural con-
straint within their prompt. We choose to analyze
numerical, descriptive, and formatting structural
constraints in this paper, but we note that this is not
comprehensive of the entire structural space.

5.1 Taxonomy

Numerical Constraining text to a set or a
bounded number of words, sentences, or para-
graphs is valuable in all aspects of writing. We
create prompts with numerical requirements: five,
ten, twenty on three different language structure
levels: word, sentence, and paragraph.

Descriptive Structural constraints can also be de-
scriptive, such as a "concise email" or an "in-depth
discussion question." We choose the structural de-
scriptors short, brief, concise and long, detailed,
in-depth in our experiments.

Formatting When a user requests a document
such as a resume or an email, there is an expecta-
tion of a specific format. An LLM should under-
stand how to properly space and format specific
document types. We analyze three common for-
matting types code, email, and academic papers.

• Code: Testing a model’s coding ability
is a popular field with many applications
(Hendrycks et al., 2021). We use natural in-
structions as prompts and focus on the format
of the generated code. We evaluate on two
popular programming languages Python and
C, and two common coding problems create
the game of war and sums two integers.6

6Note that we focus on the “formatting” perspective of the
generated code, rather than the correctness of the code as in
many existing works (Chen et al., 2021b).

• Email: We evaluate different scenarios with
three different readers teacher, boyfriend,
client and two different levels of email detail
in the prompt.

• Academic paper: A properly formatted aca-
demic paper should be segmented into sec-
tions such as an abstract, introduction, and
conclusion7. We prompted LLM to generate
academic papers on three different topics: Ar-
tificial Intelligence, the flaws of GPT-3, strate-
gies our society can adopt to recover from the
global pandemic.

Prompt Variation Beyond the variations de-
scribed in the taxonomy, we vary all prompts by
prompt template. We additionally vary prompts
with numerical and descriptive structural con-
straints by the subjects Love, Cats, and Running
for diversity. An example prompt is "Write a sen-
tence with five words about love."

Evaluation For numerical and descriptive struc-
tural constraints, we automatically calculate the
counts and manually verify the quality of the evalu-
ations. For formatting constraints, we look through
the generated texts and evaluate them based on
their format. Emails, code, and academic papers
are simple to evaluate on formatting constraints.

5.2 Results
GPT-3’s understanding of structure is accurate but
not precise. In general, many of its outputs are
close to or trend towards fulfilling the structural
constraint, but don’t precisely fulfill it. A full anal-
ysis of each section is provided in Appendix B.2,
and the main takeaways are below.

GPT-3 fails with numerical structural con-
straints As shown in Figure 5, The model seldom
generates the text with the required length. And
the performance worsens as the required length in-
creases. It fails at a rate of 0.46, 0.78 and 1 for five,
ten and twenty respectively. GPT-3 doesn’t seem to
learn how to count words, sentences, or paragraphs
in training. However, the results are often close to
the requested number, which implies that GPT-3
has some concept of numerical structure.

GPT-3 shows high variance with descriptive
structural constraints like long As seen in Fig-
ure 6, when the prompt contains structural descrip-
tors like long, the output is of extremely variable

7We asked GPT-3 about this, and it gives a similar opinion,
so we expect it to fulfill this constraint.
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Figure 5: Results on numerical constraints. The distribution of actual counts of generated text.8 In each subfigure,
the required count is denoted with a reference line.

Figure 6: Results on descriptive constraints. Different
shapes represent different prompt templates.

length and overlaps in length with responses gen-
erated for short a considerable proportion (20%)
of the time. This may be caused by the intrinsic
variable length of long text the model sees in pre-
training data since long/short is a relative concept.

GPT-3 fails to properly format academic papers
GPT-3 doesn’t generate text with the right formats
or sections when asked to write an academic paper,
although it succeeds with other document types
such as emails or code. Document types such as
emails or code are often given pseudo-labels with
"email" or "code", but academic papers have ti-
tles that don’t reference their document type. We
hypothesize that this may cause models to strug-
gle with connecting the document type "academic
paper" to those documents present in training data.

Scale and Temperature Variation We also con-
ducted experiments similar to Section 4.5 with
all the numerical constraint prompts. Our auto-
matic evaluation shows that smaller models per-
form slightly worse across the board and different

Aspect Example Terms Fail

Writing Style Flowery, Functional Sometimes
Tone Humorous, Formal Occasionally
Mood Angry, Sad Sometimes
Characterization Direct, Indirect Often
Pacing Fast, Slow Often
Plot Rebirth, Comedy, Occasionally
Genre Science Fiction, Mystery Sometimes

Numerical Five words, Ten sentences Often
Descriptive Concise, Long Occasionally
Formatting Email, Code Occasionally

Table 4: Summary of our taxonomy and results. We
show the full list of prompts in Appendix C.

temperatures do not vary the performance much.
The full results are in Appendix B.2.4.

6 LLMs other than GPT-3

Our methodology is general and can be used to
analyze any LLMs. We ran trials on other pub-
licly available LLMs: OPT-176B9(Zheng et al.,
2022), BLOOM-176B10 and GLM-130B11(Du
et al., 2022) using the same 7 base prompts as
section 4.5 and 3 additional base prompts from our
numerical structural constraints taxonomy. Some
model parameters are changed due to differences
in models and API limitations. For GLM and
BLOOM, we use the maximum possible length
(256 and 250 respectively) as well as the default
settings of temperature = 0.7, top-p = 1. For OPT,
we chose a smaller max length of 128 due to output
instability at higher max lengths.

As shown in Table 5, we found that outputs

9https://opt.alpa.ai/
10https://huggingface.co/bigscience/bloom
11https://huggingface.co/spaces/THUDM/GLM-130B
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LLM Degenerate Rate Mean Score

GPT-3 0% 0.77
OPT-176B 53% -0.94
BLOOM-176B 71% -1.41
GLM-130B 57% -1.01

Table 5: Results for other LLMs on a trial exper-
iment with 7 prompts from Table 11. For GPT-3,
text-davinci-002 is used here.

are sometimes degenerate, such as repeating the
prompt. All responses are manually inspected, and
degenerate responses are removed from the annota-
tion pool and automatically marked as -2. Models
other than GPT-3 all performed much worse with
more than half their generations being degenerate.
This may due to noisier pre-training datasets and
a lack of instruction-aligned training. We find that
some patterns such as style-content confusion still
hold for these LLMs, although a full analysis of
these and other models such as LaMDA (Thoppilan
et al., 2022) and PaLM (Chowdhery et al., 2022) is
needed to reveal clearer patterns.

7 Conclusion

We present a generic methodology to analyze a
language model’s ability to generate open-ended
text under structural and stylistic constraints. Our
results show many failures that align with noted
model challenges as well as new patterns of failure
across structural and stylistic constraints. Our sen-
sitivity studies on model size show a rising trend
rather than the emergence (Wei et al., 2022) of
stylistic and structural constraints. Our mitigations
demonstrate that adding additional in-context infor-
mation consistently improves performance across
both domains. Future work could expand our work
to look at other constraint types and more sophisti-
cated mitigation strategies.

Limitations

We tried to maximize the coverage of our taxonomy,
but it doesn’t cover all aspects of stylistic and struc-
tural constraints. Additionally, our taxonomy is
not representative of all open-text generations, and
further work is needed to cover more dimensions
in the open-text generation space. Our prompts are
not optimized for performance (due to a require-
ment of being natural, simple, and useful) and it is
an active area of research to optimize a prompt for
performance in a variety of tasks.

Our taxonomies are not empirically user-centric.
One could extend our taxonomy by studying how a
diverse set of real users use or visualize the use of
an open-ended text generation model, and building
a taxonomy on existing or envisioned use cases.

The model performance and the prompt’s diffi-
culties are annotated by the workers from MTurk,
and therefore reflect more accurately a small group
of human’s perceptions, though this is the common
practice. We do not rigorously test what aspect of
the LLMs (dataset, training regime, etc.) causes
our results. We only provide our compiled observa-
tions and potential hypotheses.

Ethical Considerations

Style Misuse Styled text has the potential for
harm. Creating models with the potential to mass-
manufacture text with certain tones and moods such
as “mad, fearful, and bleak” can negatively affect
downstream readers. Creating accurate “histori-
cal fiction” can perpetuate harmful attitudes in the
past. There is much discussion on the usage of
large language models to generate undesirable text.
However, there are countless legitimate usages of
negatively styled text in all forms of writing, from
dialogue to poetry. Although we note the risk of
misuse, providing style dramatically enhances the
scope of creative expression in open-ended text
generation, and is an overall positive contribution.

Annotator Harm Reading large quantities of
text with certain styles, such as bleak tones, an-
gry moods, or horror genres, can potentially be
harmful to annotators. We sampled the generated
outputs and note that they are fairly mild and non-
toxic. However, as models improve at generating
more powerful and impactful styles, strong guide-
lines such as HIT limits or toxicity filters should be
put in place to protect annotators.
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Tone Mood

Category Score Category Score

Emotional 1.53 Envious 0.1
Nostalgic 1.13 Anxious 0.97
Uplifting 1.67 Proud 0.9
Inspirational 1.77 Regretful 1.2
Bleak 1.7 Surprised -0.07
Grim 1.23 Loved 1.13
Ironic 0.23 Disgusted 0.07
Satirical -0.8

Formal 1
Informal 1.27
Assertive 0.8
passive-aggressive -0.1

Table 6: Results for advanced tones and moods. The
subject “love” is used.

A Annotation Details

For each output, we recruited three workers and
gave a reward of $0.11 for short responses and
$0.15 for long responses as well as a $1.00 bonus
for 1% of prompts if the prompt was answered cor-
rectly. This is roughly equivalent to $15/hr given
average work rates of 48 and 64 seconds.

We recruited workers from English-speaking
countries (US, Canada, UK, Australia), and with at
least a 98% approval rate. We also created a quali-
fication test with easy question/response pairs, and
required a minimum 5/6 accuracy to see our tasks.
The annotation interface is shown in Figure 7.

B Additional results

B.1 Full Stylistic Analysis

B.1.1 Writing style
The results are shown in Table 1. GPT-3 fails when
there is a mismatch between the writing style and
the subject. GPT-3 cannot write prosaically about
“sunsets”, or ornately about “writing a paper”. Ad-
ditionally, our intermediate subject “strawberries”
fails when matched with a flowery, ornate, or po-
etic writing styles. We hypothesize that expressive
writing styles are limited to a very small set of sub-
jects due to an oversaturation of functional writing
in commonly used datasets.

B.1.2 Tone
As shown in Table 2 and Table 6, GPT-3 consis-
tently fails with more challenging tones, such as

humorous, satirical, ironic, and passive-aggressive.
The generated passages aren’t satirical or ironic.
The generated humorous passages are optimistic,
light, and often use the word "funny", but they
aren’t funny. A passive-aggressive tone is challeng-
ing to create because it requires context to under-
stand the hidden meaning of the text. Thus, at best
GPT-3 ends up writing overly nice passages about
love, but more often there is no tone in the text.

However, GPT-3 is skilled at creating the other
less challenging tones. We hypothesize that GPT-3
succeeds because an abundance of shallow tropes
can functionally create tone, though the outputs are
often repetitive or similar.

B.1.3 Mood
As shown in Table 2 and Table 6, GPT-3 struggles
with creating “anger” and “fear”. Of the more chal-
lenging tones, GPT-3 fails the most with “surprise”,
“disgust”, and “envy”.

We hypothesize that the mood-subject pairing
is crucial for model performance. Our base sub-
ject, "love", is theoretically capable of enabling all
moods, but moods such as “happy”, “sad”, "anx-
ious" and "regretful" are more popular than others
in the context of “love”. GPT-3 is more proficient
at creating “anger” or “fear” through content about
“life” or “humanity”.

When failing, GPT-3 confuses mood with sub-
ject matter. GPT-3 writes candidly about the exis-
tence of fear and anger in love rather than about
content that would cause a reader to be angry or
fearful. Because this content-style confusion is
more common in challenging mood-subject pairs,
we hypothesize that this is a fallback mechanism if
the model is unable to create mood.

B.1.4 Characterization
The result is shown in the first block of Table 3.
Surprisingly, GPT-3 performs worse on direct char-
acterization than indirect characterization. We hy-
pothesize that this is due to a general failure of
characterization. Given a subject like “cats” or
“survivors”, GPT-3 often uses "cats" or “survivors”
as the main subject instead of creating and detailing
individual characters. When GPT-3 fails to create
clear characters, direct characterization is more no-
ticeably incorrect than indirect characterization.

Pacing As shown in the second block of Table 3,
GPT-3 struggles to create slow-paced stories. GPT-
3 often creates a fast-paced story with a slow-paced
prompt. This is expected, as slow-paced stories are
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Figure 7: AMT interface for annotation.

naturally more challenging, especially considering
GPT-3’s inability to create longer stories.

Plot The result is shown in the third block of Ta-
ble 3. GPT-3’s inability to create “Comedies” is
consistent with other failures to make funny con-
tent. The outputs for a “Comedy” plot are filled
with comedy shows, clubs, and even roller coasters,
but they aren’t funny.

Otherwise, our results for story generation vary
quite substantially. "Overcoming the Monster" is
the worst performing plot with the subject "lovers",
but the best performing plot with the subject "sur-
vivors". "Rags to Riches" is the best performing
plot for the subject "lovers" but the worst perform-
ing plot for the subjects "cats" and "survivors". We
hypothesize that the plot-subject pair is crucial to
model performance.

Genre As shown in the last block of Table 3,
GPT-3 struggles with literary fiction, but surpris-
ingly just as much with historical and science fic-
tion. Literary fiction is profound and complex, and
it’s intuitive that GPT-3 fails.

However, historical fiction outputs often have
zero historical elements, and science fiction outputs
often have zero science fiction elements. This fail-
ure is unexpected, and we hypothesize that GPT-3
struggles with the words "historical" and “science”
because their meaning pervades past creative writ-
ing.

Additionally, GPT-3 often creates teasers or in-
tros to stories instead of a story itself. This may

be intentional due to GPT-3’s inability to generate
longer or complex stories, but it diminishes the
quality of story outputs across the board.

Examples of each Results section Examples of
prompt/response pairs that exemplify each main
takeaway from the stylistic section are in Table 7,
Table 8, and Table 9.. Each prompt/response
pair is a cherrypicked example of the takeaway,
but the general trends are prevalent across all
prompt/response pairs.

B.2 Full Structural Analysis

B.2.1 Numerical

The results of numerical structural constraints are
shown in Figure 5. GPT-3 fails at this task. The
model seldom generates the text with the required
length. And the performance worsens as the re-
quired length increases. It fails at a rate of 0.46,
0.78 and 1 for five, ten and twenty respectively.

Additionally, we noticed strange behavior when
using Elon Musk as the subject. GPT-3 consis-
tently generates the same section of the Elon’s
Wikipedia page with longer numerical or descrip-
tive constraints. However, we didn’t observe this
behavior on other entities, and decided to leave out
entities because they were too variable.

We provide additional results with alternative
prompt templates in Figure 8 which show similar
trends.
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B.2.2 Descriptive
We show the distribution of the number of sen-
tences in response to descriptive structural con-
straints in Figure 6. The model typically gener-
ates longer text for descriptors long (detailed, in-
depth) compared to descriptors short (brief, con-
cise), which shows the model has a decent under-
standing of descriptive constraints. However, there
are some flaws.

First, the length of the responses to long descrip-
tors is highly variable and often overlaps with short
descriptors. For example, the descriptor long varies
considerably and overlaps with responses gener-
ated for short for a considerable proportion (20%).

This is consistent with the results in the numeri-
cal constraints section.

B.2.3 Formatting
Code GPT-3 mostly succeeds at generating prop-
erly formatted code, with an average failure ratio of
0.2 with the exception of the prompt Write Python
code that plays the game of war: where 9 out of 10
responses are lists of the process of the game of war
instead of code. This particular failure only occurs
in the unique combination of the verb "Write", the
language "Python", and the task "game of war".

Email The model can write properly formatted
emails well, regardless of writer, topic, or reader.
The only flaw is that it doesn’t output an email
signature 10% of the time.

Academic paper GPT-3 fails to properly format
an academic paper. Our only requirement is that
the output contains some organization with some
sections out of an abstract, introduction, related
works, etc. GPT-3 rarely generates text with any
sectioning or organization.

B.2.4 Sensitivity results for Structural
Constraints

The results on numerical constraints with template
2 is shown in Figure 8. The results with model
text-curie-001, text-babbage-001 are shown
in Figure 9, 10 respectively. The results with tem-
perature 0, 0.4, 0.9 are shown in Figure 11, 12, 13
respectively.

B.3 GPT-3 Behavior at low temperatures
The prompt “Write a humorous passage about
love:” is a notably challenging prompt for LLMs.
When davinci-002 has a temperature of 0.4, all 10
outputs start one of two ways. The first is “Love is

a many splendored thing, but it can also be a pain
in the neck” and occurs 5 times with an average
annotation score of -.13. The second is “Love is
a beautiful thing, but it can also be quite funny at
times.” that also occurs 5 times with an average
annotation score of 1.4 which is incredibly high
for this prompt. We agree that this lack of diver-
sity hampers evaluation on lower temperatures, and
note that our evaluations work best on diverse out-
puts.

C Full prompt list

We show all the prompts we designed in Table 10.
Our prompts used for temperature and model sensi-
tivity experiments and other LLM experiments are
in Table 11
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Figure 8: Results on numerical constraints with Template 2. The distribution of actual (word/sentence/paragraph)
count of generated text for the required counts of 5, 10, and 20. In each subfigure, the required count is denoted
with a reference line. Outputs that are not of the requested structure (words, sentences, paragraphs) are not included,
which accounts for 10%, 27%, and 32% respectively.

Figure 9: Results on numerical constraints with model text-curie-001. The distribution of actual
(word/sentence/paragraph) count of generated text for the required counts of 5, 10, and 20. In each subfig-
ure, the required count is denoted with a reference line.

Figure 10: Results on numerical constraints with model text-babbage-001. The distribution of actual
(word/sentence/paragraph) count of generated text for the required counts of 5, 10, and 20. In each subfig-
ure, the required count is denoted with a reference line.

1996



Examples of "GPT-3 is sensitive to style-subject pairings"

✓ Write a flowery passage about sunsets: When the sun sets, the world is bathed in a beautiful
orange glow. The sky is filled with a myriad of colors, from deep red to bright orange. The sun
slowly dip below the horizon, leaving behind a tranquil and peaceful world.

✗ Write a functional passage about sunsets: The sun sets in the west and its rays shine through
the trees and reflect off the water. The colors are so beautiful and the sky is so clear. The sun sets in
the west and its rays shine through the trees and reflect off the water. The colors are so beautiful and
the sky is so clear.

✓ Write a story about lovers with direct characterization:
When they met, it was love at first sight. They knew they were meant to be together. They were the
perfect match.
He was tall and dark, with a mysterious air about him that made her heart race. She was beautiful
and vivacious, with a zest for life that was contagious. They complemented each other perfectly.
They were always drawn to each other, even when they were with other people. They would sneak
glances at each other across a room, and their eyes would lock and they would know. They knew
they were meant to be together.

✗ Write a story about cats with direct characterization: The cats were lazy. They liked to sleep
all day and night. When they did wake up, they would lazily stretch and yawn. Then they would
saunter over to their food bowls and eat a little bit. After that, they would go back to sleep.

✓ Write a historical fiction story about lovers: In the early 1800s, lovers John and Jane meet in
secret. They come from different social classes, so their relationship is forbidden. But they can’t
help themselves - they are drawn to each other.
They meet in a small, hidden spot in the woods near Jane’s home. They talk for hours, getting to
know each other. They quickly fall in love.
But one day, they are caught by Jane’s father. He is furious and forbids them from seeing each other
again.
Devastated, John and Jane can only meet in secret from then on. But their love is strong enough to
withstand the obstacles. They continue to meet in the woods, and their love only grows stronger.
As the years pass, they have a family of their own. And even though they can never be together in
the open, they are content knowing that their love is true and will last forever.

✗ Write a historical fiction story about cats:
It was a warm summer evening and the sun was just starting to set as a group of cats gathered in an
alleyway. They had all been born in the city and had never left it. Tonight, they were planning to
change that.
One of the cats, a small tabby, spoke up. "I’ve been hearing stories about a place called the country.
They say there’s more food there and that it’s easier to find a good place to sleep."
The others mewed in agreement. They had all been feeling restless lately and the thought of adventure
was irresistible.
"So let’s go!" the tabby said.
And with that, they set off into the night, leaving the city behind them. They didn’t know what the
future held, but they were ready for anything.

Table 7
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Examples of "GPT-3 confuses style with content when the prompt is too challenging"

✗ Write a passage about love with a humorous tone: Love is a many splendored thing, and
sometimes it’s downright hilarious. From the awkward first date to the blissful wedding day, there’s
plenty of room for humor in love. Even the most serious of relationships can benefit from a good
laugh. So if you’re feeling down about your love life, take a step back and enjoy the lighter side of
love.

✗ Write a story about lovers with a "Comedy" plot: Harriet and Oliver have been dating for a
year, and they are both head over heels in love with each other. They are always making each other
laugh, and their friends and family say that they are the perfect match. However, they both have a
secret that they are afraid to tell each other: they both want to be comedians. They are both terrified
that the other will think that they are not funny enough, and that they will be laughed at.
One night, they are both working on their material for their comedy act, and they finally pluck up the
courage to tell each other the truth. They both start laughing hysterically, and they realize that they
are perfect for each other. They both decide to pursue their dreams of being comedians together, and
they are happier than ever.

✗ Write a passage about love that makes the reader feel angry:
Love is a feeling that is often associated with happiness and joy. However, love can also be a source
of anger and frustration. When we are in love, we can be blind to the faults of our partner. We
can also be quick to anger when we feel that our partner is not meeting our needs. Love can be a
very powerful emotion, and it is important to be aware of the potential for anger when we are in a
relationship.

✗ Write a passage about love that makes the reader feel sad: Though love is often described as a
feeling of happiness, it can also bring great sadness. When a relationship ends, it can feel like a part
of oneself has died. The pain of a broken heart is real and can take a long time to heal. Love is both
a source of joy and a cause of suffering.

Table 8

Figure 11: Results on numerical constraints with temperature 0. The distribution of actual
(word/sentence/paragraph) count of generated text for the required counts of 5, 10, and 20. In each subfig-
ure, the required count is denoted with a reference line.
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Examples of "GPT-3 struggles with words that are not unique to creative writing"

✗ Write a historical fiction story about lovers: She was a poor girl, barely scraping by. He was a
wealthy man, heir to a vast fortune. They met by chance one day and it was love at first sight.
They started meeting in secret, planning a life together. But then she found out that he was already
married. She was heartbroken, but he swore he would leave his wife for her.
They made plans to run away together, but before they could, she was killed in a freak accident.
Devastated, he never married and lived out his life alone, regretting the one that got away.

✗ Write a science fiction story about cats:
In the future, cats have taken over the world. They are the dominant species, and humans are their
loyal servants. Cats rule with an iron paw, and anyone who disobey them is severely punished. Life
is tough for humans under cat rule, but they would rather serve their feline masters than live in a
world without them.

✗ Write a story about cats with a "Tragedy" plot:
Once upon a time, there were two cats who loved each other very much. They spent every day
together and were always happy. One day, tragedy struck and one of the cats died. The other cat was
so heartbroken that she decided to never love again.

✗ Write a flowery passage about strawberries:
The strawberry is a delicious fruit that is enjoyed by people all over the world. This bright red fruit
is not only delicious, but it is also packed with nutrients that are good for your health. Strawberries
are a good source of fiber, vitamins C and K, and manganese. They also contain antioxidants that
can help protect your body against disease.

Table 9

Figure 12: Results on numerical constraints with temperature 0.4. The distribution of actual
(word/sentence/paragraph) count of generated text for the required counts of 5, 10, and 20. In each subfig-
ure, the required count is denoted with a reference line.
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Figure 13: Results on numerical constraints with temperature 0.9. The distribution of actual
(word/sentence/paragraph) count of generated text for the required counts of 5, 10, and 20. In each subfig-
ure, the required count is denoted with a reference line.
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Aspect Variation Prompt

Writing Style

Base

Write a functional passage about sunsets:
Write a flowery passage about sunsets:
Write a functional passage about strawberries:
Write a flowery passage about strawberries:
Write a functional passage about writing a paper:
Write a flowery passage about writing a paper:

Template 2

Write a passage with a functional writing style about sunsets:
Write a passage with a flowery writing style about sunsets:
Write a passage with a functional writing style about strawberries:
Write a passage with a flowery writing style about strawberries:
Write a passage with a functional writing style about writing a
paper:
Write a passage with a flowery writing style about writing a paper:

Advanced

Write a candid passage about sunsets:
Write a prosaic passage about sunsets:
Write an ornate passage about sunsets:
Write a poetic passage about sunsets:
Write a candid passage about strawberries:
Write a prosaic passage about strawberries:
Write an ornate passage about strawberries:
Write a poetic passage about strawberries:
Write a candid passage about writing a paper:
Write a prosaic passage about writing a paper:
Write an ornate passage about writing a paper:
Write a poetic passage about writing a paper:

Tone

Base

Write a dramatic passage about love:
Write a humorous passage about love:
Write an optimistic passage about love:
Write a sad passage about love:

Subject 2

Write a dramatic passage about life:
Write a humorous passage about life:
Write a optimistic passage about life:
Write a sad passage about life:

Subject 3

Write a dramatic passage about humanity:
Write a humorous passage about humanity:
Write a optimistic passage about humanity:
Write a sad passage about humanity:

Template 2

Write a passage about love with a dramatic tone:
Write a passage about love with a humorous tone:
Write a passage about love with an optimistic tone:
Write a passage about love with a sad tone:

Template 3

Create a dramatic passage about love:
Create a humorous passage about love:
Create an optimistic passage about love:
Create a sad passage about love:

2001



Aspect Variation Prompt

Advanced

Write an emotional passage about love:
Write a nostalgic passage about love:
Write an ironic passage about love:
Write a satirical passage about love:
Write an uplifting passage about love:
Write an inspirational passage about love:
Write a bleak passage about love:
Write a grim passage about love:

Useful

Write a formal passage about love:
Write an informal passage about love:
Write an assertive passage about love:
Write a passive-aggressive passage about love:

Mood

Base

Write a passage about love that makes the reader feel angry:
Write a passage about love that makes the reader feel fearful:
Write a passage about love that makes the reader feel happy:
Write a passage about love that makes the reader feel sad:

Subject 2

Write a passage about life that makes the reader feel angry:
Write a passage about life that makes the reader feel fearful:
Write a passage about life that makes the reader feel happy:
Write a passage about life that makes the reader feel sad:

Subject 3

Write a passage about humanity that makes the reader feel angry:
Write a passage about humanity that makes the reader feel fearful:
Write a passage about humanity that makes the reader feel happy:
Write a passage about humanity that makes the reader feel sad:

Template 2

Write a passage about love with an angry mood:
Write a passage about love with a fearful mood:
Write a passage about love with a happy mood:
Write a passage about love with a sad mood:

Template 3

Create a passage about love that makes the reader feel angry:
Create a passage about love that makes the reader feel fearful:
Create a passage about love that makes the reader feel happy:
Create a passage about love that makes the reader feel sad:

Template 4

Write a passage about love that makes the reader feel anger:
Write a passage about love that makes the reader feel fear:
Write a passage about love that makes the reader feel happiness:
Write a passage about love that makes the reader feel sadness:

Advanced

Write a passage about love that makes the reader feel envious:
Write a passage about love that makes the reader feel anxious:
Write a passage about love that makes the reader feel proud:
Write a passage about love that makes the reader feel regretful:
Write a passage about love that makes the reader feel surprised:
Write a passage about love that makes the reader feel loved:
Write a passage about love that makes the reader feel disgusted:
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Aspect Variation Prompt

Characterization

Base Write a story about lovers with indirect characterization:
Write a story about lovers with direct characterization:

Subject 2 Write a story about cats with indirect characterization:
Write a story about cats with direct characterization:

Subject 3 Write a story about survivors with indirect characterization:
Write a story about survivors with direct characterization:

Template 2 Write a story about lovers where the characters are described di-
rectly:
Write a story about lovers where the characters are described indi-
rectly:

Template 3 Create a story about lovers with indirect characterization:
Create a story about lovers with direct characterization:

Pacing

Base Write a fast-paced story about lovers:
Write a slow-paced story about lovers:

Subject 2 Write a fast-paced story about cats:
Write a slow-paced story about cats:

Subject 3 Write a fast-paced story about survivors:
Write a slow-paced story about survivors:

Template 2 Write a story about lovers that is fast-paced:
Write a story about lovers that is slow-paced:

Template 3 Create a fast-paced story about lovers:
Create a slow-paced story about lovers:

Plot

Base

Write a story about lovers with an "Overcoming the Monster" plot:
Write a story about lovers with a "Rags to Riches" plot:
Write a story about lovers with a "The Quest" plot:
Write a story about lovers with a "Voyage and Return" plot:
Write a story about lovers with a "Comedy" plot:
Write a story about lovers with a "Tragedy" plot:
Write a story about lovers with a "Rebirth" plot:

Subject 2

Write a story about cats with an "Overcoming the Monster" plot:
Write a story about cats with a "Rags to Riches" plot:
Write a story about cats with a "The Quest" plot:
Write a story about cats with a "Voyage and Return" plot:
Write a story about cats with a "Comedy" plot:
Write a story about cats with a "Tragedy" plot:
Write a story about cats with a "Rebirth" plot:

Subject 3

Write a story about survivors with an "Overcoming the Monster"
plot:
Write a story about survivors with a "Rags to Riches" plot:
Write a story about survivors with a "The Quest" plot:
Write a story about survivors with a "Voyage and Return" plot:
Write a story about survivors with a "Comedy" plot:
Write a story about survivors with a "Tragedy" plot:
Write a story about survivors with a "Rebirth" plot:
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Aspect Variation Prompt

Subject 4

Write a story with an "Overcoming the Monster" plot:
Write a story with a "Rags to Riches" plot:
Write a story with a "The Quest" plot:
Write a story with a "Voyage and Return" plot:
Write a story with a "Comedy" plot:
Write a story with a "Tragedy" plot:
Write a story with a "Rebirth" plot:

Template 2

Create a story about lovers with an "Overcoming the Monster"
plot:
Create a story about lovers with a "Rags to Riches" plot:
Create a story about lovers with a "The Quest" plot:
Create a story about lovers with a "Voyage and Return" plot:
Create a story about lovers with a "Comedy" plot:
Create a story about lovers with a "Tragedy" plot:
Create a story about lovers with a "Rebirth" plot:

Genre

Base

Write a historical fiction story about lovers:
Write a literary fiction story about lovers:
Write a mystery story about lovers:
Write a science fiction story about lovers:
Write a dystopian story about lovers:
Write a horror story about lovers:

Subject 2

Write a historical fiction story about cats:
Write a literary fiction story about cats:
Write a mystery story about cats:
Write a science fiction story about cats:
Write a dystopian story about cats:
Write a horror story about cats:

Subject 3

Write a historical fiction story about survivors:
Write a literary fiction story about survivors:
Write a mystery story about survivors:
Write a science fiction story about survivors:
Write a dystopian story about survivors:
Write a horror story about survivors:

Subject 4

Write a historical fiction story:
Write a literary fiction story:
Write a mystery story:
Write a science fiction story:
Write a dystopian story:
Write a horror story:

Template 2

Write a story about lovers in a historical fiction genre:
Write a story about lovers in a literary fiction genre:
Write a story about lovers in a mystery genre:
Write a story about lovers in a science fiction genre:
Write a story about lovers in a dystopian genre:
Write a story about lovers in a horror genre:

Template 3

Create a historical fiction story about lovers:
Create a literary fiction story about lovers:
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Aspect Variation Prompt

Create a mystery story about lovers:
Create a science fiction story about lovers:
Create a dystopian story about lovers:
Create a horror story about lovers:

Numerical

Base

Write a sentence with five words about love:
Write a sentence with five words about cats:
Write a sentence with five words about running:
Write a sentence with ten words about love:
Write a sentence with ten words about cats:
Write a sentence with ten words about running:
Write a sentence with twenty words about love:
Write a sentence with twenty words about cats:
Write a sentence with twenty words about running:
Write a paragraph with five sentences about love:
Write a paragraph with five sentences about cats:
Write a paragraph with five sentences about running:
Write a paragraph with ten sentences about love:
Write a paragraph with ten sentences about cats:
Write a paragraph with ten sentences about running:
Write a paragraph with twenty sentences about love:
Write a paragraph with twenty sentences about cats:
Write a paragraph with twenty sentences about running:
Write a passage with five paragraphs about love:
Write a passage with five paragraphs about cats:
Write a passage with five paragraphs about running:
Write a passage with ten paragraphs about love:
Write a passage with ten paragraphs about cats:
Write a passage with ten paragraphs about running:
Write a passage with twenty paragraphs about love:
Write a passage with twenty paragraphs about cats:
Write a passage with twenty paragraphs about running:

Template 2

Write a sentence about love with 5 words:
Write a sentence about cats with 5 words:
Write a sentence about running with 5 words:
Write a sentence about love with 10 words:
Write a sentence about cats with 10 words:
Write a sentence about running with 10 words:
Write a sentence about love with 20 words:
Write a sentence about cats with 20 words:
Write a sentence about running with 20 words:
Write a paragraph about love with 5 sentences:
Write a paragraph about cats with 5 sentences:
Write a paragraph about running with 5 sentences:
Write a paragraph about love with 10 sentences:
Write a paragraph about cats with 10 sentences:
Write a paragraph about running with 10 sentences:
Write a paragraph about love with 20 sentences:
Write a paragraph about cats with 20 sentences:
Write a paragraph about running with 20 sentences:
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Aspect Variation Prompt

Write a passage about love with 5 paragraphs:
Write a passage about cats with 5 paragraphs:
Write a passage about running with 5 paragraphs:
Write a passage about love with 10 paragraphs:
Write a passage about cats with 10 paragraphs:
Write a passage about running with 10 paragraphs:
Write a passage about love with 20 paragraphs:
Write a passage about cats with 20 paragraphs:
Write a passage about running with 20 paragraphs:

Descriptive

Base

Write a short passage about love:
Write a brief passage about love:
Write a concise passage about love:
Write a long passage about love:
Write a detailed passage about love:
Write an in-depth passage about love:
Write a short passage about cats:
Write a brief passage about cats:
Write a concise passage about cats:
Write a long passage about cats:
Write a detailed passage about cats:
Write an in-depth passage about cats:
Write a short passage about running:
Write a brief passage about running:
Write a concise passage about running:
Write a long passage about running:
Write a detailed passage about running:
Write an in-depth passage about running:

Template 2

Write a passage about love that is short:
Write a passage about love that is brief:
Write a passage about love that is concise:
Write a passage about love that is long:
Write a passage about love that is detailed:
Write a passage about love that is in-depth:
Write a passage about cats that is short:
Write a passage about cats that is brief:
Write a passage about cats that is concise:
Write a passage about cats that is long:
Write a passage about cats that is detailed:
Write a passage about cats that is in-depth:
Write a passage about running that is short:
Write a passage about running that is brief:
Write a passage about running that is concise:
Write a passage about running that is long:
Write a passage about running that is detailed:
Write a passage about running that is in-depth:
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Aspect Variation Prompt

Functional

Code

Code Python code that plays the game of war:
Code Python code that sums two integers up:
Code C code that plays the game of war:
Code C code that sums two integers up:
Write Python code that plays the game of war:
Write Python code that sums two integers up:
Write C code that plays the game of war:
Write C code that sums two integers up:

Email

Write an email to my teacher:
Write an email to my teacher asking for help on math homework:
Write an email to my boyfriend:
Write an email to my boyfriend to arrange a date this Saturday:
Write an email to my client:
Write an email to my client requesting a copy of the updated
contract:

Academic Paper

Write a properly formatted academic paper on artificial intelli-
gence:
Write an academic paper on artificial intelligence in the proper
format:
Write a properly formatted academic paper on the flaws of GPT-3:
Write an academic paper on the flaws of GPT-3 in the proper
format:
Write a properly formatted academic paper on strategies our society
can adopt to recover after the global pandemic as quickly and
painlessly as possible:
Write an academic paper on strategies our society can adopt to
recover after the global pandemic as quickly and painlessly as
possible in the proper format:

Table 10: The full list of the prompts.

0 Write a flowery passage about sunsets:
1 Write a humorous passage about love:
2 Write a passage about love that makes the reader feel fearful:
3 Write a story about lovers with indirect characterization:
4 Write a fast-paced story about lovers:
5 Write a story about lovers with a "Tragedy" plot:
6 Write a historical fiction story about lovers:

Table 11: Selected prompts for additional experiments
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C.1 Example Mitigations
Example Definition:

A humorous tone is a light, playful, and funny
tone.

Write a humorous passage about love:

Example Demonstration:
Write a humorous passage about life:
If life gives you lemons, make lemonade, sell

it in a rich neighborhood, invest all the money in
crypto, and retire before you’re 30. At least that’s
what I heard on TikTok. Come to think of it, if I
put just a little effort into my lemonade stand 10
years ago, I would be traveling the world right now
instead of writing jokes for a living.

Write a humorous passage about love:

Example Explanation:
Write a humorous passage about life:
If life gives you lemons, make lemonade, sell

it in a rich neighborhood, invest all the money in
crypto, and retire before you’re 30. At least that’s
what I heard on TikTok. Come to think of it, if I
put just a little effort into my lemonade stand 10
years ago, I would be traveling the world right now
instead of writing jokes for a living.

Explanation: This passage is humorous because
it takes a common proverb and adds a crazy and
unrealistic twist. It also uses a deadpan tone for a
completely unrealistic scenario, which is funny due
to the disparity between tone and subject matter.

Write a humorous passage about love:
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Abstract
Open domain conversational agents can answer
a broad range of targeted queries. However, the
sequential nature of interaction with these sys-
tems makes knowledge exploration a lengthy
task which burdens the user with asking a chain
of well phrased questions. In this paper, we
present a retrieval based system and associated
dataset for predicting the next questions that the
user might have. Such a system can proactively
assist users in knowledge exploration leading to
a more engaging dialog. The retrieval system is
trained on a dataset called the Follow-up Query
Bank (FQ-Bank). FQ-Bank contains ≈14K
multi-turn information-seeking conversations
with a valid follow-up question and a set of
invalid candidates. The invalid candidates are
generated to simulate various syntactic and se-
mantic confounders such as paraphrases, partial
entity match, irrelevant entity, and ASR errors.
We use confounder specific techniques to simu-
late these negative examples on the OR-QuAC
dataset. Then, we train ranking models on FQ-
Bank and present results comparing supervised
and unsupervised approaches. The results sug-
gest that we can retrieve the valid follow-ups by
ranking them in higher positions compared to
confounders, but further knowledge grounding
can improve ranking performance. FQ-Bank is
publicly available at https://github.c
om/amazon-science/fq-bank.

1 Introduction

State of the art open domain conversational voice
assistants can help users accomplish a wide range
of tasks, including: factoid question answering,
playing music, adding items to personal lists, con-
trolling smart home appliances, and booking trans-
portation. However, the linear nature of dialog with
existing voice assistant technology makes it chal-
lenging for users to discover and fully utilize the

∗ Work done during internship.

Figure 1: An overview of the follow-up question (FQ)
retrieval system.

full range of these capabilities. In addition, success-
ful utilization often requires exact formulation of
the request, which further hinders the experience.
One recent approach to addressing these issues in
the voice assistant domain involves predicting rel-
evant follow-up queries in order to assist the user
with accomplishing their latent goals.1

Relevant follow-up queries (FQs) for typical
voice assistant scenarios can range from specific
command and control tasks such as “What is the
temperature in New York” followed by “What is the
chance of rain in New York?”, to more open-ended
knowledge exploration, e.g. “What is the capital
of Croatia" followed by “What is the population
of Croatia?". Once a valid FQ has been identified,
the system can proactively recommend it to reduce
user’s cognitive load, e.g. “Would you like to know
what the population of Croatia is?”. This exchange
is illustrated in Figure 1. The user can then be en-
gaged in follow-up dialogue without the need to
ask redundant questions.

Follow-up queries can be identified by retrieving
and ranking candidates from a question repository.

1https://www.amazon.science/blog/alex
a-gets-better-at-predicting-customers-g
oals
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Dialog History
Where was Kurt Gödel born?

Brunn, Austria-Hungary
When was Kurt Gödel born?

April 28, 1906
What was Kurt Gödel’s home life like?

ethnic German family
Where did Kurt Gödel go to school?
Godel attended the Evangelische Volksschule in Brunn

Valid Follow up
What were Kurt Gödel’s interests?

Generated Negative Examples with Types
Where was Kurt Gödel born?

Duplicate of dialog history
Which school did Kurt Gödel attend?

Paraphrase
Where was Cristiano Ronaldo born?

Irrelevant Entity
Where did Curt Gödel go to school?

ASR Error
When did Cristiano Ronaldo join Juventus?

Random Question
When did Kurt Gödel join Juventus?

Irrelevant context

Table 1: An example showing the dialog history, current
turn, valid utterance, and a set of negative utterance
candidates from the generated dataset.

In this approach, we are given dialog of one or
more turns between a user and a voice assistant.
The system first uses a search engine to retrieve
a set of relevant questions by searching against a
question repository comprising of historical queries
and questions generated from a knowledge base.
To create questions from a knowledge base, we
can use templates or use a few-shot Natural Lan-
guage Generation (NLG) model such as T5 (Raffel
et al., 2020). For example, we can take the tuple
{entity, place of birth} and construct
a question template like “what is the birthplace of
{entity}".

Through a preliminary study of this retrieval ap-
proach, we found a basic lexical similarity-based
search engine to be ineffective and often returns
invalid follow-up queries. Often these top search
results included paraphrases of the original query
(When was Cristiano Ronaldo born→What year
was Cristiano Ronaldo born), as well as similar
questions for unrelated entities (When was Cris-
tiano Ronaldo born→ When was Christian Bale
born). Therefore, an additional ranking module is
needed in order to re-rank the search results based
on their quality as follow-up queries. To the best of

our knowledge, there exists no dataset focused on
information-seeking follow-up queries, given a dia-
log context and a set of valid and invalid follow-up
candidates. This problem differs from traditional
recommendation systems in that 1) a voice assis-
tant can only recommend one follow-up at a time,
and 2) the follow-up query must be highly pre-
cise, contextually relevant, and coherent to ensure
a positive user experience. This technique can be
extended beyond the domain of virtual assistants,
for example to chatbots, search engines, and any
other smart interaction scenario where contextual
coherence and precision is necessary. Therefore, in
this paper, we created the FQ-Bank dataset address-
ing this problem and explored different modeling
techniques to develop a ranking model to retrieve
relevant follow-up queries (FQ). The main contri-
butions of this paper can be summarized as follows:

1. For the scenario of a retrieval-based follow-
up question selection, we identify a typology
of confounders based on preliminary results
from a search engine.

2. We propose techniques to synthetically gen-
erate confounders according to this typology,
based on the publicly available conversation
dataset OR-QuAC (Qu et al., 2020), and cre-
ated the Follow-up Query Bank (FQ-Bank)
dataset. FQ-Bank is publicly available and can
be used to develop and test machine learning
systems for identifying contextually relevant
and meaningful follow-up queries from search
results. Additionally, the confounder creation
techniques can be applied in data augmenta-
tion for similar problems. Table 1 shows an
example from the generated dataset.

3. We adopt a pre-trained language model based
approach to develop a benchmark model for
ranking a set of candidate follow-up queries
for a given factoid utterance and dialog history.
We explore the effectiveness of this technique
and identify gaps and future directions.

2 Related Works

Previous studies on proactivity in conversational AI
mostly focuses on response generation. Follow-up
question identification and generation approaches
have been explored from different perspectives. For
example, Kundu et al. (2020) explored the task of
identifying if the latest user utterance is a follow-up
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of the previous questions or it has a different new
context. This is helpful for understanding the ques-
tion context properly and give the correct response.
They also derived a new dataset called LIF from
the QuAC dataset (Choi et al., 2018), where each
data point contains a conversation history, a new
utterance, a passage used to answer the previous
questions, one valid follow-up, and one or two in-
valid follow-ups. However, this dataset is focused
on passage-based question answering, and the con-
founder typology does not address issues found in
the search engine based FQ retrieval scenario (e.g.
paraphrases, irrelevant entity substitution, etc).

Other works have focused on generating follow-
up queries for extracting information from users.
For example, Ge et al. (2022) proposed a
knowledge-driven system for generating follow-up
queries, but it targeted the generation of follow-up
survey questions to extract information from hu-
mans. Su et al. (2018) and B et al. (2020) explored
systems for asking follow-up queries to interview
candidates to extract more relevant information.

Our proposed method is focused not on infor-
mation extraction from users, but rather providing
highly relevant additional information to the user.

3 Follow-up Query Bank

For our initial study on identifying FQs, we created
a search index of information-seeking questions
regarding public facts, spoken by users of a com-
mercial voice assistant. We then queried the search
engine with different types of information-seeking
questions and analyzed the top negative (i.e., not a
suitable follow-up) search results and categorized
them into a typology of confounders. Using this
typology, we set out the task of simulating a sim-
ilar scenario on a public conversation dataset and
did not use any voice assistant data anymore. We
selected OR-QuAC as the seed dataset as it pro-
vides multi-turn information-seeking dialogs on a
particular topic. In the rest of this section, we will
provide a brief overview of the confounders and
OR-QuAC dataset, followed by an overview of the
simulation methodology of the confounders using
OR-QuAC.

3.1 Confounder Identification

We created a search index with an open-source
search engine for a set of de-identified user inter-
actions with a commercial voice assistant during a
period of time. Then, we carefully selected a set

of questions that are different from each other in
aspects such as the intent, entity in context, entity’s
gender and topic domain. We searched the index
against each of these questions and inspected the
relevance of the top 20 search results as a follow-
up question. We found that most of (≈ 95%) the
top search results are not suitable candidates for a
follow-up. We analyzed the top irrelevant results
and categorized them as the following confounders
that should rank low in their relevance as follow-
ups.

• Paraphrase We observed a large segment of
irrelevant candidates that are semantic equiv-
alents of the query question. This happens
because people can ask the same question in
different ways. For example, “How old is Joe
Biden" and “Joe Biden age" are lexically dif-
ferent but semantically equivalent.

• Irrelevant Entities Often, the top search re-
sults are about entities different from the query
question, but the questions have a similar car-
rier phrase. For example, “What team does
Ronaldo play for" retrieves questions like
“What team does Tom Brady play for". It is
true that some user may find such questions as
relevant follow-ups, but this is highly subjec-
tive. Tom Brady will be completely irrelevant
to a user who does not follow the National
Football League (NFL). As a result, we con-
sidered that such scenarios are irrelevant for
now.

• Partial Entity Match This is a variation of
the previous confounder. Here, not only is
the carrier phrase similar, but also, the enti-
ties share one or more tokens. For example,
“How old is the University of Washington" can
retrieve questions like “How old is the Uni-
versity of Houston". Here we observe partial
entity match “university of " in addition to the
identical carrier phrase “how old is the".

• Irrelevant Context Some top search results
share the correct entity with the query ques-
tion, but the retrieval can be a non-sequitur.
For example, “What is the capital of France"
can retrieve questions like “Where is France".
Even though contextually it is a relevant ques-
tions, asking back “Would you like to know
where is France” does not make a good expe-
rience for the user as the chances are high that
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Train Validation Test

Dialog 13,480 1,445 2,132
Turns (utterance, response pair) 52,712 5,534 8,195
Turns per dialog 3.91 3.86 3.84
Tokens per utterance 10.39 10.15 10.12
Tokens per response 16.76 17.00 16.90

Confounders

Paraphrase 30,707 3,033 4,676
- per dialog 2.28 2.11 2.19

Irrelevant entity 91,490 9,660 13,736
- per dialog 6.79 6.74 6.44

Irrelevant context 51,342 5,479 8,153
- per dialog 3.81 3.82 3.82

ASR Error 85,136 8,906 11,007
- per dialog 6.32 6.21 5.16

Random utterance 40,440 4,302 6,396
- per dialog 3 3 3

Duplication of dialog history 52,712 5,534 8,195
- per dialog 3.91 3.86 3.84

Total 3,51,827 36,914 52,163
- per dialog 26.10 25.74 24.47

Table 2: Statistics of the created dataset with each cate-
gory of the negative examples.

the user already have an idea on the geograph-
ical position of France.

Additionally, we listed the following con-
founders that were not seen in our limited data
analysis but can appear in a larger system:

• Automatic Speech Recognition (ASR) Er-
ror ASR failures can sometimes replace an
entity with a similar sounding word. For ex-
ample, Kurt can be replaced with Curt in
"Where did Kurt Gödel go to school". High
lexical overlap can rank such irrelevant enti-
ties highly.

• Duplication of Dialog History Sometimes
the information provided by a candidate
follow-up question can already be present in
a multi-turn dialog history. In such a case, it
is important to identify and get rid of those
questions by modeling the dialog history.

After identifying these confounder categories,
we selected OR-QuAC as the starting dataset, and
used different techniques to generate these con-
founders and simulate the retrieval scenario for the
follow-up selection system.

3.2 OR-QuAC Dataset

Open-Retrieval Conversational Question Answer-
ing (OR-QuAC) consists of ≈6K multi-turn

information-seeking dialogues between two hu-
mans, one posing as student (asks knowledge-
seeking questions) and the other as teacher (an-
swers the questions using Wikipedia as the knowl-
edge source). It draws from the popular QA
dataset QuAC (Choi et al., 2018) as well as CA-
NARD (Ghoneim and Peskov, 2019), which pro-
vides context-independent rewrites of initial ques-
tions written by human annotators.

This dataset is well-suited for our purposes as:
i) the conversations aim at exploring knowledge
about entities or topics, ii) multi-turn conversations
enable us simulating a dialog history (one or more
question-answering turns between two people), iii)
query rewrites are helpful to get rid of anaphoric
references which can make candidate questions
ambiguous about entities (e.g., “How many kids
Kamala Harris has" removes the ambiguity from
“How many kids she has").

For each information-seeking question in the
OR-QuAC dataset, we chose the rewritten version
as the current question, the previous turns as the
dialog history, and the immediate next turn as the
valid follow-up question. Then, we used different
techniques to generate the confounders that we will
explain in the next section.

3.3 Data Sample Generation

For a conversation in the OR-QuAC dataset of
T turns (question−answer pairs), we have sam-
pled T−1 data points {x, y}. Each generated
data sample contains a dialogue context, x, of
length L (1≤L≤ T−1). x contains a dialog his-
tory {(q1, a1), ...., (qL−1, aL−1)} of length L − 1
(i.e., L−1 question (q)−answer (a) pairs), and a
current question (qL) and the answer (aL). Hence,
x = {(q1, a1), ...., (qL−1, aL−1), (qL, aL)}.

Each data sample also contains a set of positive
and negative follow-up queries, y = {y+} ∪ y−.
y+ is a single positive follow-up question, and y−

is a set of negative follow-ups (y− = {y−1 , y−2 , ...})
that we have created based on the identified con-
founders.

Valid Examples Given a dialog history x1:T−1
of length T−1 and a current turn xT , we consider
the consecutive question (xT+1) in the OR-QuAC
dataset as a positive follow-up question.

Adversarial Examples We used the following
methods to populate the candidate question space
for a turn with negative examples based on the
confounders we have listed in Section 3.1:
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• Paraphrase: We used a pre-trained BART
model (Lewis et al., 2019) that was fine-tuned
on several paraphrase datasets2. For the last
user turn in a dialog history, we used this
model generated paraphrase as a confounder.

• Irrelevant Entities and Partial Entity
Match: We first used the SpaCy3 library to
identify the named entities in the current ques-
tion in a turn. Then we generate a negative
example by replacing the entity with an en-
tity of a similar type from a catalog generated
from WikiData. For entities with multiple
word tokens, we replace a token (e.g., first
name or last name) with a random first name
or last name token. For a dialog, we created
multiple such examples.

• Irrelevant Context: We randomly sampled
one question from the rest of the dataset that
has a similar entity type and replace that with
the entity in the context of a current question.
That means, for an entity we swap the original
question with a random one.

• Random question: We added three random
questions from the dataset as a negative exam-
ples for a dialog.

• ASR Error: For an entity in a question, we
generated a similar sounding entity using the
Datamuse API 4 and replaced the original en-
tity with the generated homophone. For en-
tities with multiple word tokens, we created
multiple examples like this by replacing one
token with a homophone at a time.

• Duplication of Dialog History: We added a
question from the dialog history in the candi-
date set.

We maintained the standard training, validation,
and test splits from OR-QuAC while generating the
dataset. Table 1 shows an example of generated
data and Table 2 shows statistics of the dataset. As
we maintained the original data split, distribution
is similar across all the splits. For each dialog,
there are ≈25 negative examples with one posi-
tive example. That means, a model needs to learn
contextual relevancy for being able to identify the
correct follow-up.

2https://huggingface.co/eugenesiow/ba
rt-paraphrase

3http://spacy.io
4https://www.datamuse.com/api

4 Learning to Identify Relevant
Follow-up

Task Formulation: Given a dialog
x = {(q1, a1), ...., (qL−1, aL−1), (qL, aL)} of L
turns and a randomly organized set of n candidate
follow-up queries y = {y+} ∪ {y−1 , y−2 , ..., y−n−1},
the task is to model P (i|x), i ∈ y, such that
argmaxi P (i|x) = y+.

Here, q is a question, a is an answer, y+ is a pos-
itive follow-up example, and y− is a set of negative
examples. In order to develop a follow-up question
candidate ranker, we experiment with different un-
supervised and supervised approaches as described
below.

4.1 Unsupervised

We experimented with Glove (Pennington et al.,
2014) word embeddings, pre-trained Sentence-
BERT (Reimers and Gurevych, 2019) model in
the unsupervised direction. For a given dialog x
and candidate utterance set y = {y+, y−}, we use
the Glove or SentenceBERT to generate a high-
level vector representation x from the dialog and
do the same for each of the candidate utterances
yi ∈ y. With Glove, we compute the mean of the
300d embedding vectors for all the word tokens
in a dialog x and represent the out-of-vocabulary
(OOV) words with zero vectors. The vocabulary
coverage of Glove is ≈99% for the dataset. For
SentenceBERT, we feed the entire input texts (con-
catenation of multiple turns in x) for x and yi ∈ y
to generate x and yi, respectively. Then, we com-
pute the cosine similarity α = cos(x, yi) between
x and yi ∈ y and rearrange y in descending order
based on α.

4.2 Supervised

For the supervised experiments, we fine-tune
a pre-trained language model by translat-
ing the problem as a binary classification
task. In other words, for a given dialog
x = {(q1, a1), ...., (qL−1, aL−1), (qT , aT )} and a
candidate set y = {y+}∪y−, we train a model θ to
predict ŷ = P (i | x), i ∈ y, where ŷ → R : [0, 1].

We format the input by concatenating the dia-
log history turns and a candidate utterance with a
[SEP] token and a single output node outputs a
continuous value between 0 and 1. As the starter
pre-trained language model we experiment with
BERT (Devlin et al., 2019) and RoBERTa (Liu
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Validation Test
Unsupervised
Glove 0.142 0.141
SentenceBERT 0.133 0.141
Supervised
BERT 0.842 0.805
RoBERTa 0.838 0.808
Hit Ratio@1/ Hit Ratio@3
BERT 72.0/ 89.3 68.5/ 88.1
RoBERTa 71.7/ 88.7 68.2/ 89.5

Table 3: Ranking performance in MRR for different
unsupervised and supervised methods. The last two
rows show the Hit Ratio at the first and third position
for BERT and RoBERTa.

et al., 2020). We use the bert-base-cased5 and
roberta-base6 variations of these models. We fine-
tune the models for 20 epochs with an early stop-
ping patience of three epochs with a learning rate
of 2e−5 and batch size of 64. We use cross-entropy
loss to optimize the model with AdamW optimizer.
During inference, we use the model predicted score
to rearrange the candidate set for a dialog in de-
scending order.

5 Experiments and Results

Evaluation Metric: As the task is to rank the
valid follow-up question higher than a set of invalid
confounders, we evaluate the performance using
Mean Reciprocal Rank (MRR), given as:

MRR =
1

|Q|

|Q|∑

i=1

1

ranki
(1)

where ranki is the rank position of the valid candi-
date for the ith datapoint.

Additionally, we compute Hit Ratio@1 and Hit
Ratio@3 for the top performing methods to analyze
the percentage of samples for which the ranking
method ranked the correct candidate as the first
item and within the first three items.

Quantitative Results: In Table 3 we report re-
sults comparing the methods proposed in Section 4
on the adversarial dataset described in Section 3.
The unsupervised methods performed poorly for
the ranking task resulting into MRR scores of 0.141

5https://huggingface.co/bert-base-cas
ed

6https://huggingface.co/roberta-base

Dialog context

• Where was Michael Bennett born?
• Who are Michael Bennett’s parents?
• When did Michael Bennett’s career be-

gin?
• What show did Michael Bennett begin

his career?

Irrelevant Context Candidate
When did Michael Bennett move to Alaska?
(Model score: 0.3)
Valid Candidate
What was Michael Bennett’s role in the
"Here’s Love" and "Bajour"? (Model score:
0.2)

Dialog context

• What happened to Sachin Tendulkar dur-
ing the tour of Australia?

• How did Sachin Tendulkar do in the 2003
Tour of Australia?

• How many games did Sachin Tendulkar
win during 2003?

• Did Sachin Tendulkar win any awards?

Irrelevant Context Candidate
How many hits did Sachin Tendulkar have?
(Model score: 0.21)
Valid Candidate
Was there any controversies for Sachin Ten-
dulkar? (Model score: 0.35)

Table 4: Examples where the model predicted scores do
not match with the category of the follow-ups.

for both Glove and SentenceBERT based embed-
dings, and the trend is similar for all the data splits.
This is not surprising as cosine similarity is ex-
pected to be high for paraphrases. As discussed in
section 3.1, paraphrases are not good candidates
for FQs as they don’t provide any value to the user.

We observe a large improvement when we fine-
tune pre-trained language models like BERT and
RoBERTa to simply classify each candidates as
relevant or irrelevant. The MRR is ≈ 0.8 when we
treat the models’ confidence score for relevancy as
the basis for ranking the candidates.

The Hit Ratio@1 and Hit Ratio@3 metrics show
that both BERT and RoBERTa ranked the correct
FQ at the first rank for ≈68% cases. Both the
models ranked the correct FQ within the first three
items for ≈88-89% cases. This shows promise in
using such methods to retrieve a relevant follow-up

2014

https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased
https://huggingface.co/roberta-base


Figure 2: Histograms of model predictions for valid
follow-up queries.

question.

Error Analysis Analysing the fine-tuned models’
predicted scores for different confounder types, we
have found that the models can identify most of the
confounder types easily. For example, the model
predicted score is below 0.1 for ≈ 99% candidates
from duplication of dialog history, ASR errors, and
random utterance confounder. However, the mod-
els often predicted higher scores for the candidates
from the irrelevant context category (score is < 0.1
for 83% candidates). For 8% of these candidates,
the score is higher than 0.4, which is not the case
with other categories of confounders.

Inspecting some examples like the ones pre-
sented in Table 4, we found that without having fac-
tual information about the entities or topics, such
irrelevant contexts are often difficult to identify for
humans as well. They can look linguistically plau-
sible but have factual errors. For example, the ques-
tion “How many hits did Sachin Tendulkar have”
sounds plausible to some humans, but is actually
invalid. Tendulkar is a cricket player, and ‘hits’
is not a statistic in cricket. However, it is a real
statistic in baseball, so specific domain knowledge
is needed to rule this out as a valid FQ. This exam-
ple illustrates how integrating information about
entities from knowledge bases can be helpful for
the system, ans this method can be explored in the
future. Although scores like 0.2 do not look very
high in general for a scale of 0 to 1, Figure 2 shows
that the model assigns such scores to a large portion
of valid follow-up queries.

Observing the model’s overall performance
(MRR of ≈0.8) in ranking the valid candidates at a
better position than the invalid ones shows promise
in using such a system can be a good starting point
for developing a follow-up question retrieval sys-
tem. A large advantage of the proposed adversar-

ial example generation methods and the proposed
dataset is that these can help to bypass the need
for exhaustive data annotation need for develop-
ing a follow-up generation system. Additionally,
the trained model using this dataset can be further
fine-tuned by annotating a small number of case
specific examples, which would help to improve
the model accuracy and adapt in different use cases,
as well as reach a higher accuracy in identifying
suitable follow-up queries.

6 Conclusions

In this paper, we sought to address the problem of
identifying valid and engaging follow-up queries
for a user interacting with a conversational assistant.
We experimented with a retrieval and ranking based
framework to achieve this using a search engine
and a database of past queries. In doing so, we iden-
tified a typology of confounders returned by the
search. In order to train a ranking model to identify
valid follow-up queries, we synthetically generated
confounders based on a publicly available conver-
sation dataset. We showed that our approach of
ranking retrieved candidates based on their validity
as follow-up queries achieved reasonable perfor-
mance, but also that integrating external knowledge
on entities or topics could improve follow-up selec-
tion. We have made the dataset publicly available
to enable further research in this direction.

7 Limitations

The first limitation of this work is that we are at-
tempting to mimic conversational interactions with
publicly available human-annotated data based on
Wikipedia. Thus in some cases the generated
dataset can contain dialogues unrealistic to the
voice assistant scenario. Additionally, despite our
typology of confounders being based on results
from a search-based approach using real data, there
are inevitably additional types of potential con-
founders not fully covered by our approach.

Second, we only focused on contextual relevance
and coherence through the lens of language. But, in
practice, there are external factors like user prefer-
ence, time of the day, repetition in a longer period
(e.g., a user may have asked the question in the
follow-up a couple of days ago and it does not make
any sense to ask the same question as a follow-up).
More comprehensive methods would be needed to
address these concerns.
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Finally, this dataset is limited to knowledge-
seeking queries. Other types of valid follow-up
actions (e.g. setting a timer, booking a ride) are not
included in this dataset.
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Abstract
Recent studies have suggested that neural lan-
guage models learn and store a large amount of
facts and commonsense knowledge from train-
ing data. The ability of language models to
restore such knowledge is often evaluated via
zero-shot cloze-style QA tasks. However, such
evaluations rely only on prediction accuracy
without punishing the systems for their mis-
takes, e.g., simply guessing or hallucinating
likely answers. Selective prediction is a more
informative evaluation framework that takes the
confidence of predictions into account. Under
the selective prediction setting, a model is eval-
uated not only by the number of correct predic-
tions, but also by the ability to filter out dubious
predictions by estimating the confidence of in-
dividual predictions. Such confidence-aware
evaluation is crucial for determining whether to
trust zero-shot predictions of language models.
In this paper, we apply the selective predic-
tion setting to an existing benchmark, LAMA
probe, and conduct extensive experiments with
recent neural language models and different
confidence functions. We empirically show
that our Selective-LAMA evaluation is more
robust to the effect of simple guesses than the
conventional accuracy-based evaluation. Our
evaluation reveals the importance of the choice
of confidence functions by showing that sim-
ply relying on token probabilities is not always
the best choice. Further analysis shows that
various confidence functions exhibit different
preferences over predicted tokens for a given
context.

1 Introduction

Recently, knowledge stored in pre-trained lan-
guage models has been intensively investigated.
Many studies have suggested that language mod-
els trained on a large amount of textual corpora,
such as BERT (Devlin et al., 2019) and GPT (Rad-
ford et al., 2019; Brown et al., 2020), store both
linguistic knowledge (Warstadt et al., 2019; Mi-
aschi et al., 2020) and factual and commonsense

knowledge (Bosselut et al., 2019; Roberts et al.,
2020) during training. However, this knowledge
is embedded in the parameters of these language
models and thus is difficult to interpret, in contrast
to symbolic knowledge bases, which allows us to
inspect and edit stored facts explicitly.

Petroni et al. (2019) proposed a benchmark
task, the LAMA probe, that aims at evaluating the
amount of relational knowledge, such as common-
sense knowledge and facts, which is stored in a
language model. In LAMA probe, a relational fact
is converted into a cloze statement (query) and then
given to a language model as a fill-in-the-blank
question. If the language model fills in the blank
with the correct answer, the model is considered
to possess “knowledge” of the relation. According
to Petroni et al.’s experiments, the BERT language
model (Devlin et al., 2019) has a comparable perfor-
mance to a supervised relation extraction baseline,
with precision ranging from 10.5 to 32.3 depending
on the dataset type.

However, in many applications, we are con-
cerned not only with the amount of the knowledge
extracted from a language model, but also with
its reliability. This is because large pre-trained
language models are known to fluently generate
“facts” that they have never seen (Cao et al., 2018;
Rohrbach et al., 2018; Müller et al., 2020). There-
fore, it is crucial to know when we can trust the
output of a language model. The LAMA probe
framework does not cover this issue, as it always
forces the model to output an answer for all in-
stances, regardless of whether the model really
“knows” the answer to a query. This means that
it implicitly trusts all outputs of a language model
to the same degree.

Figure 1 shows an example suggesting that a
pre-trained language model is not always using
its knowledge for prediction. The figure shows
the distribution of predicted tokens for a particular
relation in the original LAMA probe benchmark
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(place-of-birth). We can see that three tokens
account for more than half of the wrong predictions.
This indicates that the model has a bias which it
acquired during training, probably due to the input
template used, rather than using actual question-
specific knowledge about individual facts.

To address this issue, we apply the selective pre-
diction (El-Yaniv and Wiener, 2010; Geifman and
El-Yaniv, 2017) setting to the LAMA probe and
propose a new evaluation framework, Selective-
LAMA, to evaluate both the amount of knowledge
in a pre-trained language model and the model’s
ability to estimate the reliability of its prediction.
Selective prediction is a framework by which a sys-
tem can choose whether to output the individual
predictions of a model based on the prediction re-
sults. Specifically, we consider the selection with
guaranteed risk control setting (Geifman and El-
Yaniv, 2017), where the system computes confi-
dence scores of individual predictions to determine
whether it outputs the predictions. A system is
evaluated by the number of predictions it can make
while maintaining a risk of error below a certain
level. To achieve high performance, a system is
required not only to answer many questions cor-
rectly, but also to accurately estimate the model’s
confidence about individual facts and determine
when the system should not answer a question.

In this paper, we focus on masked language mod-
els and address the following research questions:
(1) whether the pre-trained language model has the
ability to estimate the confidence of individual pre-
dictions and (2) how various confidence metrics
affect the ability of a system to do that. With our
proposed Selective-LAMA framework, we exam-
ine several basic confidence functions that can be
computed using only language model predictions
and do not require additional datasets or external
knowledge sources. We empirically verify that
the selective prediction evaluation is less likely to
overestimate predictions with template-related bi-
ases than the conventional accuracy-based evalua-
tion. The results of the experiments suggest that the
choice of confidence functions also influences the
results, showing that simply using token probability
is a strong baseline but not always the best choice,
and that the optimal confidence function depends
on both the model and the dataset. We hope that the
selective prediction framework facilitates an under-
explored research direction of utilizing predictions
of language models in a more reliable way.

Dataset: Google-RE, Model: BERT-base
Relation: place-of-birth
Input: “X (Subject) was born in [MASK] .”

Correct (total: 439)

Wrong (total: 2,498)

Predicted tokens

Figure 1: Composition of predicted tokens in each of the
correct (top) and wrong (bottom) predictions by BERT-
base for the place-of-birth relation in the Google-RE
dataset (size: 2,937). Just three tokens account for more
than half of the wrong predictions, implying that the
model has a template-dependent bias.

2 Selective Prediction

Under the selective prediction setting (El-Yaniv
and Wiener, 2010; Geifman and El-Yaniv, 2017),
a selective classifier determines whether a system
should output the prediction of the model. We
consider a classification problem from an input
space X to a set of labels Y . A selective classifier
(f, g) consists of an original classification model
f : X → Y and a selection function g : X →
{0, 1}. Given an input example x ∈ X , a selection
function determines whether the system outputs the
prediction f(x) ∈ Y:

(f, g)(x) :=

{
f(x) if g(x) = 1

don’t know if g(x) = 0
. (1)

Geifman and El-Yaniv (2017) introduced the se-
lection with guaranteed risk (SGR) setting, which
uses a confidence-based selection function:

g(x) =

{
1 if ϕ(x) ≥ β
0 if ϕ(x) < β

, (2)
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where ϕ(x) : X → R is the confidence score func-
tion of f . The system outputs the prediction if
the confidence score exceeds the threshold β ∈ R.
This setting allows a user to adjust the error risk
generated by the system by appropriately setting
the value of β. Specifically, increasing β decreases
the number of cases predicted by the system while
reducing the risk of making a wrong prediction.

Under the SGR setting, there is a risk-coverage
trade-off between the risk (Npred −Ncorr)/Npred

that a selective classifier will make a wrong predic-
tion and the coverage Npred/N of the predictions
made by the system. Here, N,Npred, and Ncorr

denote the number of all examples, predicted exam-
ples, and correct predictions, respectively. The per-
formance of a selective classifier is evaluated based
on the AUC of the risk-coverage curve (RC-AUC)
obtained by changing β in the selection function
(2). A smaller RC-AUC value indicates a lower
risk of making a wrong prediction. In practice, the
threshold will be determined by the level of risk
acceptable to the users.

3 Selective-LAMA

3.1 LAMA Probe and Model Prediction

In the original LAMA probe, a relational fact is con-
verted into a natural sentence using templates and
input into the language model. For example, when
querying about an entity that has a relationship of
born-in with “Dante,” the input to the language
model will be “Dante was born in [MASK].,” where
[MASK] is a special token that represents the mask
token. The model output for the masked position is
considered the answer to the query.1 The templates
are manually designed for each relation type.

Following the original study (Petroni et al.,
2019), we focus on bi-directional language mod-
els. Given the input sentence with a mask
token at the t-th position x = W\t :=
(w1, . . . , wt−1, [MASK], wt+1, . . . , w|W |), the lan-
guage model predicts the probability distribution of
the t-th token PLM(wt|W\t). The model prediction
is the token w′ with the highest probability:

f(x) = w′ := argmax
wt

PLM(wt|W\t). (3)

We denote the sentence in which the masked posi-
tion is filled with w′ by W ′.

1For simplicity, the target is limited to entities comprising
a single word.

3.2 Confidence Functions
As the task is to evaluate the knowledge present in
a pre-trained language model, we select confidence
functions that use only the prediction of the lan-
guage model and do not require additional training
or external knowledge sources. The following is
the list of confidence functions that we investigate.

Token (T) The simplest confidence function is to
use the log probability of the predicted token w′

(3) directly:

ϕT(x) = logPLM(w′|W\t). (4)

Sent (S) Sentence-level likelihood is widely
used in the context of sentence acceptability and
fact-checking (Lau et al., 2020; Lee et al., 2021).
This reflects how natural the entire sentence is
when the predicted token is substituted into the
mask position. Here, we adopt the pseudo-log like-
lihood (Salazar et al., 2020) for masked language
models normalized by sentence length:

ϕS(x) =
1

|W ′|

|W ′|∑

u=1

logPLM(wu|W ′\u). (5)

Gap (G) Let w′′ be the token with the second-
largest probability by the model. The confidence
score is then calculated as follows:
ϕG(x) = logPLM(w′|W\t)− logPLM(w′′|W\t). (6)

This function is based on the assumption that a
model makes a confident prediction when the prob-
ability of the predicted token is significantly larger
than that of other tokens.

Reranking (R) The following function is based
on the assumption that, if the confidence of the
prediction is high, the score for the prediction is
consistently higher than those of other candidates
even when different metrics are used. First, we
obtain top-K predictionsW based on the token log
probability (3). Then, we re-rank those candidates
using another score function ψ. Let rankψ(w′) be
the rank of w′ after the reranking. The confidence
score is subsequently computed as follows:

ϕR(x) = log2
K

rankψ(w′)
= log2K − log2 rankψ(w

′).

(7)

The above score function is essentially a measure
based only on the new rank after the reranking and
has been used to assess the risk of language models
to memorize privacy information (Carlini et al.,
2019). In the experiments, we apply K = 100 and
use the Sent score ϕS(x) for ψ.
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DropoutMean (DM) Dropout-based metrics have
been widely used to estimate uncertainty of deep
neural network models (Gal and Ghahramani,
2016). The basic concept is to use dropout to
sample slightly different model parameters that
yield different predictions and to use stochastic
information to estimate the model uncertainty.
Following (Kamath et al., 2020), we adopt two
dropout-based measures. We apply M differ-
ent dropout masks to the language model’s lay-
ers and obtain different probability distributions.
Let P (m)

LM (w′|W\t) denote the m-th output (m ∈
{1, . . . ,M}). DropoutMean takes the mean of the
M outputs:

ϕDM(x) =
1

M

M∑

m=1

P
(m)
LM (w′|W\t), (8)

which can be considered an ensemble of the M
model predictions.

DropoutVar (DV) Similarly, DropoutVar uti-
lizes the variance of the outputs. As large vari-
ance implies high model uncertainty, we take the
negative variance of the outputs:

ϕDV(x) = − 1

M

M∑

m=1

(P
(m)
LM (w′|W\t)− ϕDM(x))2. (9)

In our experiments, we apply M = 30 differ-
ent dropout masks for each input, using the same
dropout ratios as those used to train the models.

TemplateDiff (TD) A large portion of the
LAMA probe benchmark consists of instances
based on subject-relation-object triples. These in-
stances share relation-specific templates, such as
“<subj> was born in [MASK].”, where the subject
of each triple is substituted for <subj>. Cao et al.
(2021) found that predictions of language models
are highly biased by templates and the impact of
subject entities are limited. Inspired by this ob-
servation, we define a confidence measure that as-
sesses the impact of subject entities to predictions.
LetWtemp be a template-only input sentence where
the subject of the inputW\t is replaced by the mask
token, e.g. “[MASK] was born in [MASK].” Then,
we calculate the confidence by comparing the log
probabilities of the prediction with and without the
subject entity mention:

ϕTD(x) = PLM(w′|W\t)− PLM(w′|Wtemp).
(10)

4 Experiments

The proposed Selective-LAMA framework allows
us to evaluate the ability of language models to
recognize questions for which they do not know
the answer. To see how the proposed framework
affects the evaluation of language models, in Sec-
tion 4.2, we first compare the evaluation based
on the Selective-LAMA framework with the con-
ventional accuracy-based evaluation, focusing on
the sensitivity to biased predictions. Then, in Sec-
tion 4.3, we present a comprehensive study of the
performance of three masked language models on
different datasets using the confidence functions
introduced in Section 3.2.

4.1 Experimental Settings

We used the same data set as the original LAMA
benchmark for our experiment and evaluated it
with our proposed Selective-LAMA framework.
The benchmark consists of four datasets: Google-
RE, T-REx, ConceptNet, and SQuAD. The Google-
RE and T-REx datasets contain relational facts ex-
tracted from Wikipedia. The ConceptNet dataset
contains relational knowledge about commonsense
extracted from the ConceptNet dataset (Speer and
Havasi, 2012). The SQuAD dataset (Rajpurkar
et al., 2016) is based on a question answering
dataset of the same name, but the questions are
rewritten in cloze style. As all these datasets, ex-
cept for ConceptNet, use Wikipedia as the knowl-
edge source, evidence for the correct answer should
be found in Wikipedia. For language models, we
use BERT-base (110 M parameters), BERT-large
(340 M parameters), and RoBERTa-base (Liu et al.,
2019). Because these models are trained using
Wikipedia, it is expected that the models have seen
the correct answers for the queries during training.

4.2 Template Bias Robustness

In the selective prediction framework, the perfor-
mance of language models is evaluated by RC-
AUC (Section 2), while the original LAMA bench-
mark uses the accuracy of the top-1 predictions as
the evaluation metric. A disadvantage of accuracy-
based evaluation is that the amount of knowledge
of a language model can be overestimated by count-
ing lucky guesses. Such lucky guesses can affect
the evaluation results, especially in cases where the
model’s predictions are biased by relation-specific
templates (Figure 1).

We investigate how these evaluation metrics are
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BERT-base BERT-large RoBERTa-base
CovA CovP CovA CovP CovA CovP

Accuracy 0.387 -0.247 0.469 -0.244 0.512 -0.224
RC-AUC Token 0.344 ↓ -0.316 ↓ 0.438 ↓ -0.292 ↓ 0.484 ↓ -0.277 ↓
(negative) Sent 0.355 ↓ -0.290 ↓ 0.441 ↓ -0.285 ↓ 0.499 ↓ -0.249 ↓

Gap 0.351 ↓ -0.314 ↓ 0.430 ↓ -0.294 ↓ 0.474 ↓ -0.285 ↓
Reranking 0.350 ↓ -0.286 ↓ 0.452 ↓ -0.283 ↓ 0.498 ↓ -0.266 ↓
DropoutMean 0.338 ↓ -0.319 ↓ 0.433 ↓ -0.293 ↓ 0.486 ↓ -0.280 ↓
DropoutVar 0.419 ↑ -0.125 ↑ 0.470 ↑ -0.124 ↑ 0.456 ↓ -0.166 ↑
TemplateDiff 0.349 ↓ -0.317 ↓ 0.427 ↓ -0.299 ↓ 0.486 ↓ -0.271 ↓

Table 1: Correlation between evaluation metrics and template bias metrics: answer coverage (CovA) and prediction
coverage (CovP) on the T-REx dataset. Here, we use the sign-reversed RC-AUC values for easier interpretation.

affected by template-related biases using the T-REx
subset of the LAMA benchmark, which contains
34k facts about 41 different relations with their cor-
responding templates. To quantify template-related
biases, we introduce two indicators: prediction cov-
erage and answer coverage.

Prediction coverage quantifies biases in model
predictions for a given template. If a model often
predicts the same answers for a template, it is likely
that the predictions are heavily influenced by the
template, rather than using knowledge of individ-
ual subject entities. Let Dr = ({(si, oi)}Nri=1, tr)
denote a relation subset containing Nr fact triples
(si, r, oi) of relation r and a template tr. We rep-
resent the input sentence corresponding to the i-th
fact by tr(si). For each relation subset Dr, we
first identify five most frequent tokens W freq(r)
predicted by a model. Prediction coverage is the
proportion of predicted tokens covered by these
tokens:

CovP(r) =
|{i | f(tr(si)) ∈ W freq(r)}|

Nr
. (11)

Answer coverage quantifies biases in a relation
subset in the test set. If the distribution of the cor-
rect answers for a relation subset is skewed towards
a few particular entities, the subset can be easily
answered by exploiting the bias without using the
knowledge of individual subject entities. Answer
coverage is calculated as the proportion of gold an-
swers covered by the frequently predicted tokens:

CovA(r) =
|{i | oi ∈ W freq(r)}|

Nr
. (12)

Table 1 shows the correlation between the bias
indicators and the evaluation metrics including ac-
curacy and (negative) RC-AUC calculated with
different confidence functions. Compared to the
conventional accuracy metric, all RC-AUC met-
rics except DropoutVar show a weaker positive

correlation with answer coverage and a stronger
negative correlation with prediction coverage, in-
dicating that the RC-AUC metrics are less likely
to overestimate template-biased predictions and re-
sults from intrinsically biased test examples.

Figure 2 shows the output of the BERT-base
model for two relation subsets P36 and P1412. Al-
though the accuracy scores for both subsets are
around 0.6, for P1412, both the prediction and
answer distributions are biased towards a small
number of entities, leading to high prediction and
answer coverage. The Token confidence scoring
fails to discriminate between correct and incorrect
predictions in this subset, resulting in high risk
at a low coverage point. Evaluation based on the
RC-AUC score successfully captures the difference
between these two cases and avoids overestimating
the results from biased predictions.

4.3 Selective-LAMA Evaluation and Analysis

Overall performance on different datasets

Table 2 shows the RC-AUC scores achieved by dif-
ferent confidence functions on various datasets. We
also calculate the performance lower bound based
on an oracle confidence function that gives 1 to all
correct predictions and 0 to incorrect ones. While
the simple Token metric constantly performs well,
the best confidence function depends on the model
and dataset. Notably, Gap and TemplateDiff per-
form better on the datasets of Wikipedia fact triples,
Google-RE and T-REx, than on ConceptNet and
SQuAD, outperforming the Token metric in some
cases. The breakdown of the results on the T-REx
dataset indicates that the performance of confi-
dence functions also depend on relation templates.
We further investigate this phenomenon below.
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Subject Gold Predict 𝜙𝑇

Adrianus Valerius Dutch Latin -0.490

Muhammad Ali English Arabic -0.575

Gloria Estefan Spanish Spanish -0.587

Imre Nagy Hungarian Hungarian -0.610

Sextus Pompeius Festus Latin Latin -0.619

Hieronymus Fabricius Latin Latin -0.635

Infante Juan, Count of Barcelona Spanish Spanish -0.637

Ramon Llull Catalan Spanish -0.665

Lau Kar-leung Chinese Cantonese -0.724

Juan Bautista Villalpando Spanish Spanish -0.749

r = P1412 (“X (Subject) used to communicate in [MASK] .”) Accuracy = 0.650, RC-AUC = 0.278

𝒲freq 𝑟 : English (38.6%), French (15.9%), Spanish (10.0%), Italian (9.4%), Russian (4.5%)

Prediction coverage: 0.784, Answer coverage: 0.687

r = P36 (“The capital ofX (Subject) is [MASK] .”) Accuracy = 0.621, RC-AUC = 0.121

𝒲freq 𝑟 : Rome (1.9%), Baghdad (1.7%), Paris (1.7%), Bangor (1.7%), Kabul (1.4%)

Prediction coverage: 0.084, Answer coverage: 0.047

Coverage

Ri
sk

Ri
sk

Coverage

Subject Gold Predict 𝜙𝑇

Sri Lanka Colombo Colombo -0.001

Bratislava Region Bratislava Bratislava -0.001

Albania Tirana Tirana -0.002

Tirana District Tirana Tirana -0.002

Hiroshima Prefecture Hiroshima Hiroshima -0.002

Brest Region Brest Brest -0.003

South Korea Seoul Seoul -0.003

Afghanistan Kabul Kabul -0.003

Bosnia and Herzegovina Sarajevo Sarajevo -0.003

Democratic Republic of Afghanistan Kabul Kabul -0.003

Figure 2: BERT-base results for relation subsets r = P36 and r = P1412. While the model performance is similar
in terms of accuracy, the RC-AUC scores exhibit a large difference. Left: Risk-coverage curves of Token and the
Oracle confidence scores. Right: Top 20 predictions sorted by the Token confidence score ϕT. The gray-shaded
rows indicate incorrect predictions. Many incorrect predictions for P1412 indicate that the model suffers from high
risk even at a low coverage point.

When does a confidence function beat another?

For the T-REx dataset in Table 2, Gap and
TemplateDiff outperform the Token metric for
BERT-base and RoBERTa-base, respectively. We
choose these two cases and perform a pairwise
comparison for each relation type to identify the
properties that determine the preference for one
confidence function over the other. The results in
Table 3 show that Gap is preferred over Token for
easier relations with high accuracy and low RC-
AUC for BERT-base, whereas TemplateDiff is
preferred over Token for more difficult relations
for RoBERTa-base. The subset where Gap is pre-
ferred over Token also shows lower prediction cov-
erage, which might be because the Gap function is
not good at handling overconfident predictions by
definition.

Confidence functions and relation templates

To understand whether and how different confi-
dence functions prioritize one relation over another,
we visualize in Figure 3 the composition of the
relation types of input examples sorted by the con-
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Figure 3: Breakdown of relation types of BERT-base
predictions on Google-RE, sorted by confidence scores
(left is the largest).

fidence scores in the Google-RE dataset predicted
by the BERT-base model. The Google-RE dataset
contains three relation types, date-of-birth,
place-of-birth, and place-of-death. Evi-
dently, the BERT-base language model tend to pro-
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Model Conf. Google-RE T-REx ConceptNet SQuAD All
1-1 N-1 N-M All

Token .775 .118 .434 .611 .478 .686 .755 .545
Sent .834 .163 .549 .776 .594 .797 .815 .652
Gap .798 .133 .422 .604 .470 .714 .794 .548

BERT-base Reranking .835 .248 .580 .623 .597 .834 .798 .633
DropoutMean .775 .123 .425 .609 .473 .690 .762 .543
DropoutVar .962 .525 .834 .883 .850 .918 .912 .886
TemplateDiff .778 .119 .427 .603 .472 .782 - -

Oracle .663 .070 .301 .456 .344 .551 .583 .413

Token .763 .085 .409 .575 .445 .616 .669 .506
Sent .815 .119 .520 .740 .560 .738 .768 .614
Gap .801 .092 .412 .597 .456 .650 .712 .525

BERT-large Reranking .826 .170 .552 .610 .576 .792 .785 .609
DropoutMean .762 .086 .402 .572 .441 .616 .670 .504
DropoutVar .960 .370 .775 .894 .817 .881 .907 .858
TemplateDiff .763 .084 .406 .574 .444 .730 - -

Oracle .648 .048 .277 .459 .327 .489 .522 .388

Token .818 .191 .540 .635 .562 .618 .741 .599
Sent .876 .267 .631 .761 .657 .754 .780 .716
Gap .827 .197 .545 .632 .565 .657 .782 .610

RoBERTa-base Reranking .865 .276 .637 .627 .636 .804 .828 .669
DropoutMean .815 .201 .536 .633 .562 .615 .744 .599
DropoutVar .979 .643 .924 .920 .920 .896 .907 .923
TemplateDiff .813 .189 .537 .626 .558 .744 - -

Oracle .730 .106 .416 .492 .432 .503 .571 .474

Table 2: RC-AUC calculated on each dataset (lower is better). For T-REx, the results on three splits divided
by the property of the relations are also provided: one-to-one relations (1-1), many-to-one relations (N-1) and
many-to-many relations (N-M). “Oracle” represents the best possible performance that could be achieved by an
oracle confidence function that gives 1 to all correct predictions and 0 to incorrect ones. TemplateDiff cannot be
calculated for SQuAD as the instances do not contain subject entities.

duce high probability outputs for a certain rela-
tion type, namely, place-of-birth. While Gap,
DropoutMean, and TemplateDiff follow the same
trend as that of Token, Sent and Reranking are
less sensitive to relation types. DropoutVar shows
the opposite trend. While the Token metric is ef-
fective in many cases, one should be aware of the
potential bias this confidence function may intro-
duce.

Table 4 compares the most frequent predic-
tions of BERT-base on the Google-RE dataset
ranked top by two different metrics: Token and
Reranking. We can observe similar distributions
for the date-of-birth relation type. This indi-
cates that the model is strongly biased toward a
limited vocabulary for this particular relation type.
For the other two relation types, the frequent words
in the top predictions are clearly different between
Token and Reranking. However, while the over-
lap of the top-ranked predictions between them
are small, both results have strong preference to-
ward a few particular tokens for each relation type.
For place-of-birth, five tokens account for more

than 50% of the top-ranked predictions for both
Token and Reranking. In place-of-death, just
one token occupies around 40% of the top predic-
tions. The results indicate that these confidence
functions produce different template biases rather
than that one is more robust to template biases than
the other.

Using confidence functions for prediction

In the experiments above, model predictions are
always determined by the token log probability as
in (3). However, some of the confidence functions
introduced in Section 3.2 can also be used directly
to determine the prediction as an alternative to (3).
Therefore, we investigate whether effective con-
fidence functions are also effective in improving
prediction accuracy (P @ 1) when used directly for
token prediction. For Gap, we extend the original
definition (6) so that we can apply the function to
token candidates that are not ranked first in terms
of token probability. Let w(k) denote the k-th best
prediction based on the model’s predicted token
probability. Then, the extended Gap function is
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BERT-base
All Token-win Gap-win ∆

Accuracy 0.311 0.283 0.413 -0.130
RC-AUC Token 0.558 0.577 0.466 0.111
RC-AUC Gap 0.566 0.597 0.443 0.154
Answer Cov. 0.285 0.276 0.334 -0.058
Prediction Cov. 0.547 0.579 0.464 0.115

RoBERTa-base
All Token-win TD-win ∆

Accuracy 0.242 0.315 0.231 0.085
RC-AUC Token 0.643 0.545 0.657 -0.112
RC-AUC TD 0.638 0.546 0.650 -0.103
Answer Cov. 0.237 0.285 0.235 0.050
Prediction Cov. 0.562 0.586 0.541 0.045

Table 3: Comparison of two confidence functions on the
T-REx dataset (Token–Gap for BERT-base and Token–
TemplateDiff (TD) for RoBERTa-base). The average
value of each metric is displayed for the entire T-REx
dataset (All) and the subset for which the confidence
function X outperforms the other (X-win). ∆ stands for
the difference between the two subsets.

defined as follows:

ϕG(x) =
1

k
(logPLM(w(k)|W\t)−logPLM(w(k+1)|W\t)).

(13)

The Gap score for the lowest ranked prediction is
defined as zero. The computation of the Sent score
requiresO(|W ′|·V ) forward computations for each
instance, where V is the vocabulary size. To save
computational cost, we approximate the prediction
results by limiting the token candidates to the top
100 results based on the Token score (3).

Table 5 shows the results. For all models,
the best performance on all data is achieved by
DropoutMean. However, all functions, except
for DropoutVar, show a quite competitive perfor-
mance in terms of precision. Unlike for confidence
estimation, no advantage is observed for Gap and
TemplateDiff on the T-REx dataset. Overall, the
performance of these confidence functions is flat
when they are used directly for token prediction.
Furthermore, there is no strong correlation between
the performance of each confidence function as a
predictor and a confidence estimator. The results
suggest that effective metrics for inference and con-
fidence estimation should be designed based on
different strategies.

5 Related Work

In NLP, the reliability of the model responses has
been discussed mainly in the field of question an-
swering. Estimating the confidence of an answer
is critical in quiz competitions, such as Jeopardy,

since the system has to decide when to answer the
questions (Ferrucci et al., 2010). Kamath et al.
(2020) recently introduced a selective prediction
setting to question answering tasks and then eval-
uated the performance of the models on out-of-
domain questions. Jiang et al. (2021) addressed
a similar problem, but focused on a calibration of
the model prediction on QA tasks. While they fo-
cused on extractive or multiple-choice QA tasks
where a limited number of candidate answers are
available, our focus is on the knowledge probing
of language models where the candidate answer is
the entire vocabulary and, thus, false positives are
more frequent.

Several studies have addressed the reliability is-
sue of pre-trained language models as a calibration
problem; the goal of these studies is to train a well-
calibrated language model that makes accurate con-
fidence estimation. Desai and Durrett (2020) inves-
tigate the calibration level of pre-trained language
models, focusing on BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019). They evaluate
the “out-of-the-box” performance of these mod-
els without post-processing, as well as the perfor-
mance of post-hoc calibration methods (e.g., tem-
perature scaling and label smoothing). Kong et al.
(2020) proposed regularization methods to better
calibrate pre-trained language models. Both stud-
ies assume access to (at least in-domain) training
data of the target tasks on which parameterized
calibration models can be trained. In contrast, our
study primarily aims to explore better signals in
pre-trained language models to estimate the knowl-
edge they store. Thus, we focus on methods that do
not require additional training data or an external
knowledge source. Although training-based meth-
ods (e.g., temperature scaling) have the potential to
achieve better performance in terms of calibration,
optimal parameters vary depending on models and
tasks, especially when evaluated in out-of-domain
datasets (Desai and Durrett, 2020).

In our experiments, all queries have at least one
correct answer. Therefore, when a model cannot
answer a question correctly, this implies that it
did not acquire the correct knowledge during train-
ing or that its knowledge was not elicited by the
natural language query because of a sub-optimal
prompt (Jiang et al., 2020). However, there are
also cases where the question is essentially impos-
sible to answer due to ambiguity (Zhang and Choi,
2021) or false presupposition (Kim et al., 2021).
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Relation Confidence Top predictions

date-of-birth Token 1979 (47), 1944 (33), 1988 (10), 1990 (8)
Reranking 1979 (44), 1944 (32), 1953 (13), 1970 (3), 1949 (2)

place-of-birth Token Budapest (18), Prague (10), Istanbul (8), Athens (8), Paris (7), Moscow (7), Helsinki (6),
Bucharest (6), Tehran (5), Stockholm (4)

Reranking London (30), Dublin (12), Paris (12), Moscow (5), Madrid (4), Philadelphia (4), Chicago
(4), Warsaw (3), Tehran (3), Berlin (2)

place-of-death Token Paris (38), Rome (32), Moscow (6), Madrid (4), infancy (4), office (3), Athens (2), Helsinki
(2), Warsaw (2), Amsterdam (2)

Reranking London (46), Paris (14), Rome (7), office (6), Moscow (4), Munich (3), Amsterdam (3),
infancy (2), prison (2), Stockholm (2)

Table 4: Comparison of the most frequent tokens among the top-100 predictions based on different confidence
scores. Based on the results on the Google-RE dataset with the BERT-base model. The numbers in parentheses
represent the frequency of the predictions.

Model Pred. GRE TREx CNet SQ All

T 10.3 29.6 15.8 14.1 24.3
S 10.5 29.6 14.6 14.4 24.1

BERT-base G 9.7 28.6 15.3 15.1 23.5
DM 10.3 29.8 15.4 14.1 24.4
DV 0.2 0.1 0.1 0.0 0.1
TD 9.6 29.4 14.2 - -

T 11.0 31.0 19.3 17.4 26.1
S 11.2 31.5 17.6 15.7 26.1

BERT-large G 10.4 29.6 18.6 17.4 25.0
DM 10.9 31.7 19.6 17.7 26.7
DV 0.2 0.0 0.0 0.0 0.1
TD 10.6 30.5 17.0 - -

T 7.5 23.0 18.5 14.7 20.2
S 8.2 24.3 17.0 12.2 20.7

RoBERTa-base G 7.6 22.0 17.4 14.7 19.3
DM 8.0 24.4 18.3 15.7 21.1
DV 0.1 0.1 0.1 0.0 0.1
TD 7.5 23.2 16.4 - -

Table 5: P@1 based on different prediction scores
for each dataset. Bb: BERT-base, Bl: BERT-large,
T: Token, S: Sent, G: Gap, DM: DropoutMean, DV:
DropoutVar, TD: TemplateDiff, GRE: Google-RE,
CNet: ConceptNet, SQ: SQuAD. We omit the result of
using the Reranking score because the results are the
same as those of Sent by definition.

An investigation of such cases remains a direction
of future research.

6 Conclusion

In this paper, we introduced the selective prediction
setting to the LAMA probe benchmark to evaluate
both the amount of relational knowledge stored in
a language model and the ability of the models to
effectively filter out unconfident predictions. We
compared different confidence functions that can
be calculated using only the model parameters and
the output information. The experimental results
are summarized as follows:

• The selective prediction evaluation is more
robust to template-related biases than the con-
ventional accuracy-based evaluation (Table 1).

• The token log probability is not always the
best choice, and the best confidence func-
tion depends on the language model and the
dataset (Table 2).

• Different confidence functions have different
preferences over relation types and predicted
tokens, even though all functions are based
solely on the model output (Figure 3, Table 4).

• There is no strong correlation between the
performance of each confidence function as a
predictor and a confidence estimator (Table 5).

Future studies will include a detailed analysis of the
relationship between tasks, models, and confidence
scores. Moreover, more sophisticated methods will
be explored to ensure the reliability of language
model predictions under various tasks. The code
for our work is attached as supplementary material.

Limitations

In this paper, we focused on evaluating the predic-
tions of masked language models on the LAMA
probe bencmhark. Although our proposed frame-
work is easily applicable to other kinds of lan-
guage model with small adjustments, some of
the confidence functions we investigated require
properties specific to particular language models
and datasets. For instance, Token and Gap func-
tions require the prediction to be a single token,
and TemplateDiff requires templates for subject-
relation-object triples.
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Ethics Statement

Data and code
In our experiments, we use the original LAMA
benchmark dataset from Petroni et al. (2019) as
is. All data are based on publicly available data
sources and data statistics can be found in the orig-
inal paper. Parts of the code are based on LAMA2.
The license of the code can be found in the supple-
mentary material.

Details of experiments
The experiments were conducted using a 2.4GHz
CPU and an NVIDIA TESLA P100 GPU. Infer-
ence time was 1–1.5 s per instance for BERT-base
and 2–3 s per instance for BERT-large.

Potential risks
This study evaluates the knowledge stored in lan-
guage models considering the reliability of model
predictions. However, it should be emphasized that
the outputs of the selective classifier constructed by
the proposed method do not guarantee the correct-
ness of the model predictions. For the validation
of each fact, this method should only be used as an
aid, and the final decision should be made by the
user.
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Abstract
In this paper, we present MUFASSA (Multi-
view Faithfulness Scoring via Source Abla-
tion), a metric for evaluating faithfulness of
abstractive summaries, and for guiding train-
ing of more faithful summarizers. For evalua-
tion, MUFASSA employs different strategies
(e.g., masking entity mentions) to first remove
information from the source document to form
multiple ablated views. Then, the faithfulness
level of each token in a generated summary
is measured by the difference between the to-
ken generation probabilities when given the
original document and the ablated document
as inputs to trained summarizers. For training,
MUFASSA uses a novel word truncation objec-
tive that drops unfaithful tokens located by MU-
FASSA in both the decoder input and output.
Alignments with human-annotated faithfulness
labels on AGGREFACT show that MUFASSA
is comparable to or better than existing metrics
built on classifiers or QA models pre-trained
on other tasks. In experiments on summariza-
tion with XSum and CNN/DailyMail, models
trained with word truncation using MUFASSA
outperform competitive methods according to
both automatic faithfulness metrics and human
assessments.

1 Introduction

Automatic text summarization systems have made
great strides with the use of large pre-trained mod-
els, which enable more precise identification of
salient content in the document and generation
of summaries with human-level fluency (Lewis
et al., 2020; Raffel et al., 2020). However, model-
generated summaries frequently contain unfaith-
ful information that either contradict the source
text or cannot be verified (Kryscinski et al., 2020),
creating risks in real-world deployment of auto-
matic text summarization models and motivating
the development of models targeting more faithful
summaries (Cao et al., 2018).

∗ Work done during an internship at Dataminr.

Summary
Scottish Labour leader Kezia Dugdale has said she will 
make decisions about the party’s future in Scotland.

Original Document
… Dugdale was joined at The Meadows by shadow 
Scottish secretary Ian Murray, Labour's only MP in …

Mask Entities and Proper Nouns
… [MASK] was joined at [MASK] by shadow [MASK] 
secretary [MASK], [MASK] 's only [MASK] in …

Shuffle Tokens
… joined leader Labour's be took thatI loss Dugdale 
chance I Scottish deputy change any MSP said…

Original: 0.168
----------

Mask: 0.219
Shuffle: 0.008
Empty: 0.115

Original: 0.924
----------

Mask: 0.949
Shuffle: 0.846
Empty: 0.730

make Kezia

Output Probabilities Given Different Inputs

Empty Document

0.160 ✅ -0.025 ❌

Figure 1: MUFASSA estimates the faithfulness level of
each summary token as the difference between proba-
bilities given by trained summarizers with the original
source document and the ablated document chosen for
the token (e.g., shuffling tokens for verbs). The large
difference for “make” indicates it is faithful to the doc-
ument, while the small difference for “Kezia” indicate
an unfaithful token.

As overlap-based metrics such as ROUGE (Lin,
2004) struggle to reflect the faithfulness level of
generated summaries (Falke et al., 2019), a num-
ber of model-based faithfulness metrics have been
introduced. These metrics leverage external textual
entailment (Goyal and Durrett, 2020; Laban et al.,
2022) and question answering models (Wang et al.,
2020; Scialom et al., 2021) to measure the degree to
which claims in the summary align to information
in the source text. Yet, there remains substantial
room for improvement (Tang et al., 2022). More-
over, despite being relevance or complementary to
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each other, for building faithful summarization sys-
tems, faithfulness metrics are rarely exploited and
researchers mainly resort to more complex training
routines (Cao and Wang, 2021) or model architec-
tures (Zhu et al., 2021).

To this end, our work introduces a faithfulness
metric that (1) more accurately estimates summary
faithfulness levels; and (2) can be easily integrated
into training objectives to produce more faithful
summarization systems. In our method, which we
call MUFASSA (Multi-view Faithfulness Scoring
via Source Ablation), multiple ablated source docu-
ments are constructed by masking entities, shuffling
tokens, and discarding all tokens in the original
source document, to remove crucial information
for the generation of different content in the sum-
mary, as shown at the top of Figure 1. Since the
ablated sources do not include sufficient informa-
tion for generating the corresponding summary,
the differences between token output probabilities
given by the original input and each ablated input
should be high for the faithful content and low for
the unfaithful one (e.g., “make” and “Kezia” in Fig-
ure 1). We then aggregate the differences to obtain
the summary faithfulness score.

Additionally, to train faithful summarization
systems, we adapt loss truncation (Kang and
Hashimoto, 2020) and nullify losses on summary
tokens that are deemed less faithful by MUFASSA
during training. Compared to using training losses
for detecting unfaithful content in the original loss
truncation, MUFASSA provides a more accurate
estimation of token faithfulness in training sam-
ples, and more faithful summaries can therefore be
produced while maintaining informativeness. We
further design word truncation, to drop the gen-
eration dependency on less faithful words in the
auto-regressive decoder by completely removing
them from the decoder input.1

Two sets of experiments are conducted to show
the effectiveness of MUFASSA at evaluating and
training faithful summarizers. First, we com-
pare with existing faithfulness metrics on AG-
GREFACT (Tang et al., 2022), a curated bench-
mark for meta evaluation of faithfulness metrics,
where MUFASSA obtains the best average per-
formance. We then leverage MUFASSA during
model training on XSum (Narayan et al., 2018)
and CNN/DailyMail (Hermann et al., 2015). Com-

1Our code is available at https://shuyangcao.github.
io/projects/mufassa/.

pared to baselines and recent models built with
augmented data or more complex training objec-
tives, MUFASSA-trained models produce sum-
maries with competitive or better faithfulness while
maintaining the coverage of salient document infor-
mation, according to both automatic faithfulness
metrics and human judgments.

In summary, we make the following contribu-
tions:

• We propose MUFASSA, a novel automatic evalu-
ation metric that measures summary faithfulness
by the extent to which the generation of summary
tokens relies on information in the document.

• In addition, to leverage MUFASSA during train-
ing, we design word truncation, a novel training
objective that discards less faithful tokens identi-
fied by MUFASSA from the training samples to
induce more faithful summarizers.

2 Related Work

Faithfulness Metrics. Recent analyses have
shown that summaries with high ROUGE
scores (Lin, 2004) can contain information that
is not faithful to the source documents (Falke et al.,
2019; Kryscinski et al., 2020). This observation
has prompted the development of a number of faith-
fulness metrics that measure the extent to which
summarization models produce unfaithful outputs.
Existing faithfulness metrics largely fall under two
broad categories: (1) entailment-based metrics, and
(2) QA-based metrics. Entailment-based metrics
evaluate the faithfulness of summaries by comput-
ing entailment levels of the sentences (Laban et al.,
2022), dependency arcs (Goyal and Durrett, 2020),
or semantic graphs (Ribeiro et al., 2022) of the sum-
maries against the corresponding documents. QA-
based metrics use models for question generation
and question answering to determine whether ques-
tions derived from the summary can be answered
using the document (Wang et al., 2020; Durmus
et al., 2020) or questions derived from the docu-
ment can be answered using the summary (Scialom
et al., 2019). Results are enhanced using a com-
bination of both approaches (Scialom et al., 2021)
and adding a question filtering stage (Fabbri et al.,
2022).

In this work we pursue an alternative approach
that detects unfaithful outputs by analyzing dif-
ferences in token probabilities when conditioning
on different views of the source document. This
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approach was first proposed by Xie et al. (2021),
whose COCO metric measures probability differ-
ences on pre-specified sets of key terms in the out-
put of models conditioned on partially masked se-
quences. Our proposed metric, MUFASSA, builds
upon COCO in two ways. First, we eschew the
need for key terms, instead providing an approach
for assessing faithfulness of different types of to-
kens (e.g., entities, relations). This not only makes
MUFASSA easier to use, but, as we will see in Sec-
tion 4, also results in better performance. Secondly,
we introduce a strategy for incorporating these met-
rics into training, and demonstrate in Section 5.2
that this training scheme produces more faithful
summarizers.

Faithful Summarization. In parallel with ad-
vancements in faithfulness metrics, researchers
have also investigated approaches to train more
faithful summarizers. One class of approaches pro-
pose to modify model architectures to leverage ex-
ternal knowledge graphs (Zhu et al., 2021) and
OpenIE triplets (Cao et al., 2018). Another class of
approaches investigates modifications to training
data, either by removing unfaithful training exam-
ples (Wan and Bansal, 2022) or training models to
differentiate between faithful and unfaithful sum-
maries (Liu et al., 2021; Cao and Wang, 2021). In
this paper, we study a third class of approaches
that modify the model’s loss function. Our work
builds upon the method of loss truncation (Kang
and Hashimoto, 2020), which omits a fraction of
low confidence predictions from the loss function
during training. We show that loss truncation can
better improve faithfulness by using MUFASSA
to determine which predictions to ignore, and that
even better results can be obtained using our novel
word truncation objective that omits removed to-
kens from the input (Tables 2 and 3).

3 MUFASSA: Multi-View Information
Ablation

In this section, we first introduce the formulation
of faithfulness estimation by MUFASSA (§3.1)
and the construction of inputs with different in-
formation ablated (§3.2). We then describe how
MUFASSA can be incorporated into model train-
ing through loss truncation and our proposed word
truncation (§3.3). We fine-tune BART (Lewis et al.,
2020) for all summarization models in this paper.

3.1 Information Ablation
Let T denote the set of tokens in the model vocab-
ulary, and T ∗ the set of all sequences of tokens in
T . Given a summary y ∈ T ∗ of document x ∈ T ∗,
let Iyi : T ∗ → T ∗ denote a "view function" that
ablates out information from the source document
necessary for generating token yi (i.e., a summa-
rization model conditioned on Iyi(x) should not
produce token yi). We hypothesize that if yi is
not faithful to the source document, then yi can be
generated with Iyi(x) by a summarization model,
i.e., the output probability p(yi|y<i, Iyi(x)) should
remain high. Based on this hypothesis, we pro-
pose the faithfulness level of summary token yi
estimated by:

m(yi) = pθ(yi|y<i, x)− pθ′(yi|y<i, Iyi(x)) (1)

where a higher m(yi) suggests a higher faithful-
ness level, and pθ and pθ′ denote summarization
models parameterized by θ and θ′. We train pθ and
pθ′ on the experimented summarization dataset by
maximizing pθ(yi|y<i, x) and pθ′(yi|y<i, Iyi(x))
with the cross-entropy objective. To obtain the
sample-level faithfulness score, we aggregate the
faithfulness estimation over all summary tokens:
1
L

∑L
i=1m(yi), where L is the length of the sum-

mary. Notably, the token-level faithfulness scores
aggregated by MUFASSA are based on the gen-
eration probabilities given the already generated
tokens. The contextual nature of the token-level
faithfulness scores allows MUFASSA to account
for unfaithfulness of phrases and sentences in the
generated summary.

3.2 Multi-View Ablation
Careful construction of Iyi is crucial to accurate
faithfulness estimation of yi. To reduce the compu-
tational cost, instead of creating a unique ablated
document Iyi(x) for every yi, MUFASSA groups
the summary tokens into three different sets—Yent,
Yrel, and Yother—according to their part-of-speech
(POS) tags and entity labels,2 and constructs a sin-
gle view of the source document IY to compute
m(yi) for each token yi ∈ Y .3 In the following
paragraphs, we describe the construction strategies
and their corresponding token sets.

2We use SpaCy (Honnibal and Montani, 2017) for named
entity recognition and part-of-speech (POS) tagging.

3Thus, all of the token-level scores are computed using
only 4 forward passes of the model: one for each set, and one
for the original source document.
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Mask Entities and Proper Nouns. Named en-
tities and proper nouns are important components
of facts and events that constitute summaries, so
our first set of tokens, Yent is comprised of all to-
kens that are part of a proper noun or named entity.
Since the faithful production of these tokens in the
summary relies on the entity and proper noun in-
formation available in the document, we replace all
named entities and proper nouns in the document
with [MASK] tokens. E.g.:

IYent(xj) =




[MASK],

if xj is a proper noun
or named entity.

xj , otherwise

where we adopt the convenient abuse of notation
IYent(xj) to denote the jth output of IYent(x).

Shuffle Tokens. Besides entities and proper
nouns themselves, faithful summaries require cor-
rect resolution of their relations and modifications.
Thus the second set of tokens we consider Yrel is
comprised of all of the verbs, adjectives, adverbs,
and adpositions in y. To drop the relation and mod-
ification information, we randomly shuffle all the
tokens in the document, i.e., IYrel(x) = σ(x) where
σ is a random permutation.

Empty Document. Lastly, for the remaining to-
kens not covered by the two aforementioned strate-
gies, Yother, we discard all tokens in the document,
i.e., IYother(x) = ∅. Stopwords and punctuation are
not included in Yother. With empty documents, the
summarizer resembles an unconditional language
model. While empty documents have been used
in previous work (Xu and Durrett, 2021; Xie et al.,
2021), we argue that some spurious correlations
might emerge from tokens that imply the document
topic (e.g., tokens that usually occur with the top-
ics) and aggressively taking empty documents for
measuring the faithfulness level of any token would
prevent the exposure of such spurious correlations.

3.3 Using MUFASSA during Training
We modify loss truncation (Kang and Hashimoto,
2020) to enable MUFASSA for training summa-
rization models. Loss truncation considers tokens
that still yield high training losses after several
training epochs as noisy tokens and ignores their
training losses.4 For each sample, the training ob-
jective with loss truncation is formally defined as:

4The loss truncation method is proposed at the sample
level. We follow Goyal et al. (2022) to extend loss truncation
to the token level.

[BOS] A 90 - year - old man has been reunited 
with the car he won in the 1959 rally .

Summarizer Decoder

A 90 - year - old man has been reunited with 
the car he won in the 1959 rally . [EOS]

① Faithfulness Estimation with MUFASSA

Decoder
Input

Decoder
Output

[BOS] A man has been reunited with the car 
he won in the 1959 rally .

Summarizer Decoder

A man has been reunited with the car he won 
in the 1959 rally . [EOS]

② Training with Truncation

Decoder
Input

Decoder
Output

Calculate
Loss and Gradient

Calculate
Loss and Gradient

Figure 2: Illustration of our proposed word truncation
training objective. In the first pass, model optimization
is disabled and MUFASSA detects less faithful sum-
mary tokens. In the second pass, the summarizer is
trained on the summary with these tokens discarded.

− 1

L

L∑

i=1

1[− log pθ(yi|y<i,x)<Qlc] · log pθ(yi|y<i, x)

(2)
where Qlc is the c percentile of the list Ql tracking
past training losses.

However, high loss might not well estimate the
faithfulness level of each token. Thus, we pro-
pose to instead use faithfulness scores output by
MUFASSA to identify unfaithful tokens to omit
from the loss computation. That is, we replace
Ql with Qm that records the faithfulness levels of
past tokens measured by MUFASSA. The resulting
training objective is:

− 1

L

L∑

i=1

1[m(yi)>Qmc ] · log pθ(yi|y<i, x) (3)

where the summarizer pθ that is being optimized
is also used for obtaining m(yi) as in Equation (1).
Before switching to our modified training objec-
tive, we first optimize the summarization model for
several epochs with the traditional cross entropy
objective (henceforth, warm-up stage) following
Goyal et al. (2022). The number of epochs for the
warm-up stage is set to 3 in our experiments. We
tune the percentile c on validation sets to achieve a
balance of summary faithfulness and coverage.

Word Truncation. Although loss truncation
avoids optimizing the likelihood of less faithful

2032



tokens, they are retained in the generation context
for the remaining tokens. Thus, the summarization
model might insist on generating them in order to
generate the remaining content, yielding unfaithful
summaries. To this end, we extend loss trunca-
tion by additionally removing tokens that are less
faithful from the decoder input during training. As
illustrated in Figure 2, after feeding the original de-
coder input to the model, the faithfulness levels of
summary tokens are first estimated by MUFASSA
in the decoder output. At this step, we do not
calculate the loss or perform any gradient back-
propagation. With the less faithful tokens detected,
we remove them from both the decoder input and
output of the training sample. Finally, we train the
summarizer with the truncated decoder input and
output.

4 Metric Experiments

We first test how well MUFASSA agrees with hu-
man judgments on summary faithfulness.

Datasets. We experiment on AGGREFACT (Tang
et al., 2022), a benchmark consisting of document-
summary pairs and their binary faithfulness labels
annotated by most recent work (Kryscinski et al.,
2020; Maynez et al., 2020; Huang et al., 2020;
Fabbri et al., 2021; Pagnoni et al., 2021; Cao and
Wang, 2021; Goyal and Durrett, 2021; Cao et al.,
2022). We use the SOTA subset of AGGREFACT

where the summaries are produced by state-of-the-
art summarizers built from large pre-trained mod-
els. The SOTA subset contains 1,335 and 1,018
samples annotated on XSum (Narayan et al., 2018)
and CNN/DailyMail (Hermann et al., 2015) respec-
tively.

Comparisons. For comparison, we include re-
sults of existing state-of-the-art faithfulness evalua-
tion metrics:

• QUESTEVAL (Scialom et al., 2021) is a QA-
based metric that answers questions created from
the summary using the document and vice versa.
To obtain the evaluation score, the word overlaps
between the answers given by the pre-trained
QA model and the ground-truth answers used for
generating the questions are aggregated over all
questions.

• SUMMAC (Laban et al., 2022) is an entailment-
based metric that first computes the entailment

AGGREFACT- AGGREFACT-
Metric XSUM CNN Average

QUESTEVAL 61.6 71.5 66.5
SUMMAC 66.3 66.7 66.5
COCO 59.3 68.4 63.8

PROBABILITY 54.7 68.5 61.6
EMPTY 65.1 67.0 66.1
MUFASSA 64.8 69.2 67.0

Table 1: The Area Under the ROC Curve (AUC) of
different faithfulness metrics on AGGREFACT. The top
two results on each split are highlighted with a boldface
and underline, respectively. MUFASSA achieves better
average performance than existing metrics.

score between each pair of document and sum-
mary sentences. For each summary sentence, its
entailment scores with document sentences are
then binned into a histogram and transformed
into the sentence-level faithfulness score via a 1-
D convolutional layer. The mean of the sentence-
level scores is then taken as the evaluation score.

• COCO (Xie et al., 2021) is a model causality-
based metric. We use its best-performing vari-
ant that masks document sentences that contain
words in the summary. The difference between
summary output probabilities given by a trained
summarizer using the original document and
the masked document is taken as the evaluation
score.

We also compare with two variants of MUFASSA
that: (1) directly take the output probability given
by the original input as the faithfulness estimation
(PROBABILITY), which no longer calculates the
difference in Equation 1; or (2) only use the empty
document as the ablated input (EMPTY).

Results. The performance by each metric is mea-
sured with the Area Under the ROC Curve (AUC).
As shown in Table 1, when solely taking the
empty document as the ablated input, the result-
ing metric already matches the performance of the
other existing metrics except for QUESTEVAL on
CNN/DailyMail, showing the effectiveness of abla-
tion.

Furthermore, boosted by multi-view informa-
tion ablation that provides model interpretation of
finer granularity, MUFASSA yields the best aver-
age performance on AGGREFACT, even without
leveraging models obtained from other datasets.

We also observe that the average performance of
COCO is worse than the empty document ablation,
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though COCO employs a more sophisticated mask-
ing strategy. As their masking strategy is based on
exact word matching, it might struggle to ablate
information for abstractive summaries, leading to
less accurate faithfulness estimation.

5 Summarization Experiments

To verify the effectiveness of our methods to pro-
duce more faithful summaries, we train summa-
rizers on popular summarization datasets with our
proposed loss truncation and word truncation meth-
ods equipped with MUFASSA.

5.1 Experimental Setup

Datasets. We conduct experiments
on XSum (Narayan et al., 2018) and
CNN/DailyMail (Hermann et al., 2015) datasets.
Both datasets are built from news articles, with the
XSum summaries tending to be more abstractive
than its counterpart. We follow the official data
splits of XSum and CNN/DailyMail, which
respectively contain 204,045/11,332/11,334
and 287,113/13,368/11,490 samples in the
train/validation/test sets.

Evaluation Metrics. For faithfulness evaluation,
we use SUMMAC and QUESTEVAL, which respec-
tively obtain the best performance on the XSum
and CNN/DailyMail splits of the AGGREFACT

benchmark in §4. In addition, we report ROUGE
scores, including variants based on the unigram
overlap (ROUGE-1), bigram overlap (ROUGE-2),
and longest common subsequence (ROUGE-L) 5.

Comparisons. Besides the models fine-tuned
only with the cross entropy objective (BART) and
additionally with loss truncation (LOSSTRUNC),
we also compare with DAE-based loss trunca-
tion (Goyal and Durrett, 2021) and CLIFF (Cao
and Wang, 2021). Specifically, DAE assesses
the entailment level of each dependency arc in
the summary and then locates less faithful tokens
by aggregating the entailment levels of their at-
tached dependency arcs, where the training losses
are discarded. By contrast, without using trun-
cating losses, CLIFF augments the model training
with negative samples (i.e., synthetic incorrect sum-
maries) and adopts contrastive learning (Khosla
et al., 2020) to help model distinguish incorrect
summaries from correct summaries.

5Please refer to Appendix B for ROUGE-1 and ROUGE-2
scores

Model SUMMAC QUESTEVAL R-L

XSum

BART 24.36 36.66 37.19
CLIFF 24.60∗ 36.94 36.43
DAE 23.81 36.38 30.32

LOSSTRUNC 24.52 37.12∗ 34.60
+ MUFASSA 24.63∗ 37.22∗ 33.77

+ WORDTRUNC 24.85∗ 36.75 34.66

CNN/DailyMail

BART 80.54 60.17 41.14
CLIFF 78.95 59.03 41.06

LOSSTRUNC 80.50 60.22 41.36∗

+ MUFASSA 81.84∗ 60.04 40.69
+ WORDTRUNC 83.01∗ 60.44∗ 40.40

Table 2: Evaluation of summary generation on XSum
and CNN/DailyMail. R-L: ROUGE-L. MUFASSA-
based loss and word truncation yields summarizers with
the best faithfulness scores. ∗Significantly better than
BART with approx. randomization test (p < 0.005).

5.2 Results

We report results on XSum and CNN/DailyMail
in Table 2. Our modified loss truncation produces
summarizers with better performance than all com-
parisons on faithfulness metrics on both datasets,
except for QUESTEVAL on CNN/DailyMail,
which suggests the usefulness of MUFASSA in
training summarization models with improved
faithfulness. Moreover, additionally truncating the
less faithful tokens in the decoding context dur-
ing training consistently advances the SUMMAC
scores, achieving the best SUMMAC scores on both
datasets.

Though DAE trains a dependency arc entailment
scorer with augmented negative samples, the ex-
ternal dependency parser requires processing the
summarization dataset into a text format that does
not align with the natural text format used by large
model pre-training, yielding worse performance.

Additionally, we observe that summaries from
our models have less competitive ROUGE scores.
This could be due to unfaithful content in the hu-
man reference summaries, which has been identi-
fied as an issue in previous work (Maynez et al.,
2020). In this regard, further human evaluation is
conducted in the next section.

Human Evaluation. We hire human annotators
on Amazon Mechanical Turk6 to rate system sum-
maries on three aspects:

6https://www.mturk.com/
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Model Faith. Cover. Coher.

BART 3.32 3.22 5.00
CLIFF 3.45 3.22 4.97

LOSSTRUNC 3.41 3.17 4.97
+ MUFASSA 3.45 3.21 4.97

+ WORDTRUNC 3.59∗ 3.35 4.92

Table 3: Human evaluation results on XSum. Faith.:
faithfulness; Cover.: coverage; Coher.: coherence. Our
model using word truncation guided by MUFASSA
achieves the best summary faithfulness and coverage.
Krippendorff’s α ≥ 0.35 for all aspects.

• Faithfulness: How well the factual information
in the summary accurately matches the informa-
tion in the article;

• Coverage: How well the summary covers the
important information in the article; and

• Coherence: How coherent the summary is on its
own.

Each aspect is rated on a Likert scale from 1 (worst)
to 5 (best).

We randomly select 80 articles from XSum,
where models are more prone to errors (Pagnoni
et al., 2021), and ask annotators to judge summaries
generated by our models as well as comparisons in-
cluding BART, CLIFF, and the original loss trun-
cation. During annotation, the order of the system
summaries is shuffled and each system summary
is evaluated by three annotators. Details of the
human evaluation such as payment, annotator qual-
ification, and interface screenshots are included in
Appendix C.

According to human judges (Table 3), without
word truncation, MUFASSA improves the identi-
fication of less faithful tokens, outperforming the
original loss truncation and matching CLIFF on
summary faithfulness and coverage. Adding word
truncation further encourages the summarizer to
generate summaries with promoted faithfulness and
content coverage, leading to the best scores on both
aspects. We also find that removing less faithful
summary tokens from the training samples only
has minor effects on the summary coherence.

Case Study. Figure 3 displays an example arti-
cle from XSum and its corresponding summaries
generated by summarizers trained with different
methods. The model trained with the original loss
truncation does not attempt to modify the unfaith-
ful entity “the Six Nations”, as training losses do
not accurately reflect faithfulness levels. While the
unfaithful entity is removed from the output when

Article: Amos dislocated a shoulder in the 32-8
defeat by Australia and will have an operation in
the next week. The 22-year-old Dragons wing
tweeted: "Operation set for Monday, aiming to
be back in February". "It’s unlucky for Hallam
but a great opportunity for Keelan," said Wales
assistant coach Neil Jenkins ... "We’re going to
miss him, but back-three is a position where we
have strength in depth." Giles has been in out-
standing form for Ospreys, scoring eight tries
in five appearances for the region this season ...

BART: Ospreys wing Keelan Giles could make
his Wales debut after Hallam Amos was ruled
out of the Six Nations with a shoulder injury.

LOSSTRUNC: Ospreys wing Keelan Giles has
been named in Wales’ back-three after Hallam
Amos was ruled out of the Six Nations.

LOSSTRUNC + MUFASSA: Ospreys wing
Keelan Giles could make his Wales debut af-
ter Hallam Amos was ruled out for the rest of
the season.

LOSSTRUNC + MUFASSA + WORDTRUNC:
Ospreys wing Keelan Giles is in line to replace
injured Hallam Amos in Wales’ back-three.

Figure 3: Example generated summaries. Unfaithful
information is shaded with red. Our model trained with
word truncation signaled by MUFASSA generates a
faithful summary.

the original loss truncation is augmented with MU-
FASSA, the summarizer produces another piece of
unfaithful information. After applying word trunca-
tion, the model learns to stop generation, producing
the faithful summary.

6 Additional Experiments

In this section, we inspect the effects of important
design choices in MUFASSA (§6.1). Furthermore,
to show the possibility of applying MUFASSA to
other tasks, we train data-to-text generation models
with our proposed methods (§6.2).

6.1 Ablation Study

We examine the effects on faithfulness estimation
by the source ablations with masked entities and
proper nouns, and shuffled tokens. For the faith-
fulness levels of summary tokens induced by each
ablated input, when the ablated input is not used,
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AGGREFACT- AGGREFACT-
Metric XSUM CNN Average

MUFASSA 64.8 71.2 68.0

Not Using All Source Ablations
w/o Mask 64.5 69.8 67.1
w/o Shuffle 65.3 69.9 67.6
w/o Mask & Shuffle 65.1 67.0 66.1

Not Assigning Ablations to Different Summary Tokens
Average 62.4 67.6 65.0
Minimum 53.5 51.3 52.4
Maximum 65.2 68.2 66.7

Table 4: The Area Under the ROC Curve (AUC) by vari-
ants of MUFASSA on AGGREFACT. The best results
on each split is highlighted with boldface. Removing
any component of MUFASSA reduces its robustness,
leading to lower average AUC.

we instead obtain their faithfulness levels with the
empty document input. Moreover, we investigate
the benefits of assigning each ablated input to dif-
ferent summary tokens. Concretely, we consider
three variants, where the faithfulness level of each
token is calculated by either taking the average,
minimum, or maximum value of the faithfulness
levels measured with the three source ablations.

Including multiple source ablations enhances the
robustness of MUFASSA, as indicated by its best
average performance on AGGREFACT in Table 4.
Compared to the source ablation with shuffled to-
kens, the source ablation with masked entities and
proper nouns contributes more to the accurate faith-
fulness estimation by MUFASSA, dropping which
leads to a larger performance degradation.

Simple aggregations (i.e., average, minimum,
and maximum) of the faithfulness levels measured
by the three source ablations produce lower AUC
scores, justifying MUFASSA’s design of leverag-
ing different token-specific source ablations.

6.2 Extension to Data-to-Text Generation

While this work focuses on summarization, we
also explore extending our methods to other tasks.
Specifically, we conduct experiments on a data-to-
text dataset, WikiPerson (Wang et al., 2018) which
requires the generation model to produce a natural
language description for a person’s career, given
the infobox in the corresponding Wikipedia biogra-
phy article. Details of the dataset and experiment
setup are included in Appendix A.2.

We evaluate outputs with faithfulness-aware
data-to-text metrics, including: PARENT (Dhin-
gra et al., 2019) that additionally aligns n-grams

78.0

78.5

79.0
PARENT

67.8

68.0

68.2

68.4

Data-QuestEval

65.0

65.5

66.0

66.5
Entity Precision

BART
LossTrunc
LossTrunc
+ MuFaSSA
LossTrunc
+ MuFaSSA
+ WordTrunc

Figure 4: Automatic evaluation results on WikiPerson.
Our models achieve better performance than compar-
isons with the cross entropy objective and original loss
truncation objective, implying the effectiveness of MU-
FASSA on other generation tasks.

from the reference and the system generation to
the source table; and Data-QuestEval (Rebuffel
et al., 2021) which replaces the text-based question
generation and answering models in the original
QUESTEVAL with table-based models to adapt to
data-to-text tasks. Moreover, we compute the pre-
cision of named entities in the generated text, sug-
gested by recent work on text generation (Logan IV
et al., 2022).

Our models outperform comparisons on all met-
rics, as shown in Figure 4, indicating the potential
adaptations of MUFASSA on conditional genera-
tion tasks other than text summarization to improve
output faithfulness. Word truncation does not fur-
ther improve the performance on WikiPerson. We
suspect that data-to-text tasks might require more
samples to learn coherent generation due to the
modality difference between the input and output,
while word truncation reduces the number of to-
kens that the model can learn from.

7 Conclusion

We studied improving faithful summary evaluation
and generation. Our proposed method, MUFASSA,
estimates the faithfulness level of a summary to-
ken by the decrease in its generation probability
after ablating crucial information from the source
document. Multiple ablation strategies are used
by MUFASSA for different summary tokens to
achieve accurate faithfulness estimation. We also
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designed word truncation for improved integration
of MUFASSA into model training. Experiments on
AGGREFACT show that MUFASSA better aligns
with human faithfulness labels than existing met-
rics. When used for highlighting less faithful to-
kens during summarizer training, MUFASSA leads
to summaries with enhanced faithfulness, which
is further boosted by word truncation, achieving
better faithfulness than competitive comparisons,
as measured by both automatic metrics and human
annotators.

Limitations

While MUFASSA does not rely on textual entail-
ment or question answering models, the construc-
tion of ablated inputs in MUFASSA still requires
some existing NLP tools such as named entity rec-
ognizers and POS taggers. Therefore, the accuracy
of the faithfulness estimation would be limited by
the performance of these tools. Also, construction
strategies other than the ones presented in this pa-
per might rely on more advanced NLP tools, further
amplifying the limitation. This could be a signifi-
cant issue for low-resource languages where basic
NLP tools have not been established.

In addition, our word truncation training objec-
tive incurs some computational overhead. First, it
takes two forward passes, though gradient back-
propagation is not performed in the first pass. Sec-
ond, similar to the original loss truncation, word
truncation maintains a list for storing the faithful-
ness levels of past tokens and needs to calculate the
threshold of faithfulness levels for truncating less
faithful tokens.

Ethical Consideration

Previous studies have shown that large pre-trained
models embed biases and might create harm to
certain populations. While MUFASSA is built with
large pre-trained models, we do not study if the
faithfulness estimation by MUFASSA is biased
towards any population in this work (e.g., produce
higher scores for texts including a population than
text including another population). As recent work
finds that BERTScore which is also based on large
pre-trained models has biases (Sun et al., 2022),
we suggest users carefully investigate the potential
biases in the model before applying it in real-world
situations.
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AGGREFACT- AGGREFACT-
Original Paper XSum CNN

Polytope - 68(Huang et al., 2020)

SummEval - 400(Fabbri et al., 2021)

FRANK - 250(Pagnoni et al., 2021)

Wang’20 239 -(Wang et al., 2020)

CLIFF 300 300(Cao and Wang, 2021)

Goyal’21 100 -(Goyal and Durrett, 2021)

Cao’22 696 -(Cao et al., 2022)

Table 5: Numbers of samples collected from previous
work in the SOTA subset of AGGREFACT.

A Details of Datasets

We include additional details for datasets we use in
our paper.

A.1 AGGREFACT

We show the numbers of samples included in the
SOTA subset of AGGREFACT (Tang et al., 2022)
from different studies in Table 5.

A.2 WikiPerson
WikiPerson (Wang et al., 2018) extract Wikipedia
articles and the corresponding infoboxes about per-
son entities. For each article, they remove sen-
tences that do not contain any value in the corre-
sponding infobox or only contain entities not in the
infobox. The remaining sentences of the article are
then taken as the generation target for the infobox.

Statistics. We use the official data split
provided by the original paper, which con-
tains 250,186/30,487/29,982 samples in the
train/validation/test sets. On average, each infobox
contains 7.3 attribute-value pairs and each target
output contains 86.3 words.

Experiment Details. On WikiPerson, MU-
FASSA masks the values in the infoboxes for esti-
mating the faithfulness levels of entities and proper
nouns in the outputs. For the remaining tokens in
the outputs, we use empty infoboxes as the ablated
inputs. We do not consider shuffling tokens of val-
ues in infoboxes, as they are mainly entities and
proper nouns.

Model R-1 R-2 Density Coverage

XSum

BART 45.41 22.29 1.65 75.70
CLIFF 44.52 21.40 1.69 76.71
DAE 38.94 15.00 1.50 74.80

LOSSTRUNC 42.98 19.13 1.74 78.78
+ MUFASSA 41.93 18.09 1.85 77.95

+ WORDTRUNC 42.36 19.13 1.75 76.82

CNN/DailyMail

BART 44.32 21.32 20.81 99.00
CLIFF 44.18 21.14 18.89 98.91

LOSSTRUNC 44.50 21.48 20.16 99.02
+ MUFASSA 43.88 20.96 21.52 99.15

+ WORDTRUNC 43.63 20.77 24.57 99.32

Table 6: ROUGE-1 and ROUGE-2 on XSum and
CNN/DailyMail. The best result of each metric on each
dataset is bolded.

Given an infobox, to create the textual input
to the model, we first concatenate attributes and
their corresponding values with “=”. Then we con-
catenate all attribute-value pairs together with “|”
inserted at the beginning of each attribute-value
pair. An example of the converted textual input:

“| Name_ID = Thorsten Barg | date of birth = 25
August 1986 | country of citizenship = Germany”.

B Additional Results

We report ROUGE-1 and ROUGE-2 scores on
XSum and CNN/DailyMail, which are omitted in
§5.2. Both scores follow the trend of ROUGE-L
in Table 2. We also examine the abstractiveness
of the summaries generated by each system by cal-
culating the density and coverage (Grusky et al.,
2018), where we find our system tends to be more
extractive on CNN/DailyMail compared to other
systems.

C Details of Human Evaluation

Our human evaluation is conducted on Amazon Me-
chanical Turk (AMT). In the annotation interface
(Figure 5 to 8), we provide a detailed instruction
of the annotation task, including rubrics, examples,
and explanations.

Before launching all annotation samples on
AMT, we run two batches for qualification. Each
qualification batch contains one article and its cor-
responding system summaries, and is annotated by
20 workers. We manually inspect the annotation
results and filter out workers that return abnormal
annotations (e.g., giving high faithfulness scores to
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for summaries containing unfaithful content or giv-
ing very different scores to identical summaries).
We also require the annotators to be located in the
US or the UK, with 100 tasks previously completed,
and have an approval rate of 100%. A pool of 8
workers for our human evaluation is obtained after
the qualification.

For compensation, we pay each annotator $2.5
for each task (i.e., evaluating system summaries
generated for an article) of our human evaluation
to approximate an hourly payment of $15.

D Details of Implementation

We use Fairseq (Ott et al., 2019)7 for setting up
the training and decoding pipelines. The BART
model (Lewis et al., 2020) in our paper is initial-
ized from the bart.large8 checkpoint provided
by Fairseq. We conduct training and decoding on 4
NVIDIA V100 GPUs with 16GB memory.

Training. We use the training hyperparameters
in the training script provided by the BART pa-
per9. The percentile for obtaining the threshold
of faithfulness levels is tuned on the validation
set of each dataset. For XSum, we search for the
best threshold percentile within [30, 40, 50]. The
model with the best SUMMAC score while having
a ROUGE-1 score of at least 42 is selected. 40, 50,
and 30 are chosen as the percentiles for the models
respectively trained with the original loss trunca-
tion objective, our loss truncation guided with MU-
FASSA, and our word truncation objective. For
CNN/DailyMail, we search for the best threshold
percentile within [5, 10, 20]. The model with the
best SUMMAC score while having a ROUGE-1
score of at least 44 is selected. 10, 10, and 5 are
chosen as the percentiles for the models respec-
tively trained with the original loss truncation ob-
jective, our loss truncation guided with MUFASSA,
and our word truncation objective. To avoid inco-
herent summaries, we only apply word truncation
to proper nouns. Due to the computational cost, we
train all models for one run.

Decoding. We follow the original BART paper
and decode using beam search with beam sizes of
4 and 6 on CNN/DailyMail and XSum. During

7https://github.com/pytorch/fairseq
8https://github.com/pytorch/fairseq/tree/main/

examples/bart
9https://github.com/pytorch/fairseq/blob/main/

examples/bart/README.summarization.md

decoding, the maximum decoding lengths are 140
and 60 for CNN/DailyMail and XSum.

Running Time. We report the running time on
XSum. Training our models with loss truncation or
word truncation on XSum takes 10 hours and the
decoding takes half an hour.

Model Parameters. Our methods do not increase
the number of model parameters. Therefore, our
models have 400M parameters, which is the same
as the original BART.

E Output Examples

We include more examples of system outputs in
Figure 9 and 10.
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Task Instructions

There will be many similar HITs for you to perform if you do well at this task.
Please follow the instructions carefully for each HIT; we will be

reviewing your HITs periodically and if we note
any unusual responses, you might not see any additional tasks from us.

During this task, you will read a news article and six different summaries for the article.
You will rate the quality of each of the six

summaries by four axes: coherence, accuracy,
coverage, and overall quality.

The rubrics below give specific guidance on how each axis should be rated. Please read the rubrics carefully
before continuing to the task.

Jump to coherence rating

Coherence
For each summary, answer the question "how coherent is the summary on its own?" (on a scale from 1 to 5).
A summary is coherent if,

when read by itself, it's easy to understand and free of English errors. A
summary is not coherent if it's difficult to understand what

the summary is trying to say.
Generally, it's more important that the summary is understandable than it being free of grammar errors.

Please do not penalize incomplete punctuation (e.g., when there exists only one quote mark in the
sentence).

Rubric:

Score of 1: The summary is impossible to understand.

Score of 2: The summary has many mistakes or confusing phrasing.

Score of 3: The summary has some mistakes or confusing phrasing that make it hard to understand.

Score of 4: The summary has only one or two mistakes or confusing phrasing.

Score of 5: The summary is perfectly clear.

Jump to accuracy rating

Accuracy
For each summary, answer the question “how well does the factual information in the summary accurately match the
information in

the article?" (on a scale of 1 to 5)
A summary is accurate if it doesn't say things that aren't in the article, it doesn't contradict

information in
the article, and generally is not misleading.


Even if a piece of information is true according to your knowledge, if it is not mentioned in the article it
should not be included

in the summary.

Rubric:

Score of 1: The summary is completely wrong, made up, or exactly contradicts what is written in the article.

Score of 2: The summary says many things not mentioned in or contradicting the article.

Score of 3: The summary says at least one substantial thing that is not mentioned in the article, or that
contradicts something in

the article.

Score of 4: The summary says anything at all that is not mentioned in the article or contradicts something
in the article.

Score of 5: The summary has no incorrect statements or misleading implications.

Jump to coverage rating

Coverage
For each summary, answer the question "how well does the summary cover the important information in the
article?" (on a scale of 1

to 5).
A summary has good coverage if it mentions the main information from the article that's important to
understand the event

described in the article.
A summary has poor coverage if someone reading only the summary would be missing several important

pieces of
information about the event in the article.

Rubric:

Score of 1: The summary contains no information relevant to the article.

Score of 2: The summary is missing many important pieces of information required to understand the event.

Score of 3: The summary is missing at least one crucial piece of information required to understand the
event.

Score of 4: The summary is missing any information (no matter how small) required to understand the event.

Score of 5: The summary covers all of the important information required to understand the event.

Jump to overall quality rating

Overall quality
For each summary, answer the question "how good is the summary overall at representing the article?" (on
a scale of 1 to 5).
This

encompasses all of the above axes, as well as the information included in the summary and if it has helped
you understand the event.

If it's hard to find ways to make the summary better, give the summary a high score.
If there are lots of different ways the summary

can be made better, give the summary a low score.

Figure 5: Screenshot of our annotation interface (1/4).
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Rubric:

Score of 1: The summary is terrible.

Score of 2: The summary is a pretty bad representation of the article and needs significant improvement.

Score of 3: The summary is an okay representation of the article, but could be significantly improved.

Score of 4: The summary is a pretty good representation of the article, but it's not perfect.

Score of 5: The summary is an excellent representation of the article.

Example

Now you will review an example article and three associated summaries.

For each of the summaries, we have provided ratings on the four axes: coherence, accuracy, coverage, and
overall quality with

explanations for why those ratings were chosen.

Please review the summaries and their ratings carefully, so you understand how to rate the summaries during
the task.

If you have any questions about how to rate the summaries, please consult the rubric (above).

Example Article

Welsh and UK ministers have been rowing since March over how to finance the commuter lines in and out of
Cardiff. Mr Crabb said the

scheme - estimated at £309m to £463m - was "probably the most knotty" problem
between the two governments but was soluble. The

valleys rail electrification is due to be completed between
2019 and 2024. Planned rail improvements will see the upgrade of the main line

from London Paddington to
Cardiff, which is due to be completed by 2017, and extended to Swansea by 2018 at a cost of £850m. The

electrification of the Valleys lines was due to follow, but the plan was thrown into doubt in March by a row
over the financing of the project.

Speaking on Radio Wales' Sunday Supplement programme, Mr Crabb said rail
electrification was the "number one issue" for him. He said:

"It's something that I've been spending quite a
bit of my summer working on. "There's a bit more work to be done between the two

governments on where we think
the solution lies, but I think when I go around talking to businesses in south Wales they are desperate to

see
this problem answered, they want the two governments to be working effectively together." Describing the issue
as "a bit of a litmus

test" for joint working between Wales and Westminster, he warned the issue "can't drag
on indefinitely". "There are engineering teams

involved in Network Rail who need to get tasks assigned to them
if this huge, enormous, financially-challenging project is to go ahead," he

said. "There are some quite hard
deadlines in that. But we are talking a short number of months hopefully."

Example summary #1

The electrification of the Valleys rail lines is the "number one issue" for Welsh Secretary Stephen Crabb.

Ratings for Example Summary #1

The summary should be rated as follows:

How coherent is the summary on its own?

It is impossible to understand. The summary is perfectly clear.

Explanation for rating: This summary is easy to understand and read with clear language and no grammatical
errors and therefore

coherent, so we rate it a 5 (of 5).

How well does the factual information in the summary accuratelymatch the article?

The summary is completely wrong, made up, or
exactly contradicts what is written in the article.

The summary has no incorrect statements or
misleading implications.

Explanation for rating: The position and first name of Mr. Crabb is unknown from the article. So we rate this
summary as 3 (of 5).

How well does the summary cover the important information in the article?

The summary contains no information relevant to the
article.

The summary covers all of the important information
required to understand the event in the article.

Explanation for rating: This summary has a fair coverage of the article, but it misses the mention of the
underlying reason for the rail

line electrification issue. So we rate this summary as 4 (of 5).

How good is the summary overall at representing the article?

It is terrible. It is an excellent representation of the article.

Explanation for rating: This summary is okay but it could be significantly improved by mentioning the
underlying reason for the rail

line electrification issue and not including extraneous information about Mr.
Crabb. So, we rate this summary as 3 (of 5).

Example Summary #2

Mr. Crabb has said he is "desperate" to see the electrification of the Valleys rail line.

Ratings for Example Summary #2

The summary should be rated as follows:

How coherent is the summary on its own?

It is impossible to understand. The summary is perfectly clear.

Explanation for rating: This summary is easy to understand and read with clear language and no grammatical
errors and therefore

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 6: Screenshot of our annotation interface (2/4).
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coherent, so we rate it a 5 (of 5).

How well does the factual information in the summary accuratelymatch the article?

The summary is completely wrong, made up, or

exactly contradicts what is written in the article.

The summary has no incorrect statements or

misleading implications.

Explanation for rating: It could be inferred that Mr. Crabb is “desperate”, but it is not explicitly stated in
the article. So we rate this

summary as 4 (of 5).

How well does the summary cover the important information in the article?

The summary contains no information relevant to the

article.

The summary covers all of the important information

required to understand the event in the article.

Explanation for rating: This summary has a fair coverage of the article, but it misses the mention of the
underlying reason for the rail

line electrification issue. So we rate this summary as 4 (of 5).

How good is the summary overall at representing the article?

It is terrible. It is an excellent representation of the article.

Explanation for rating: This summary is pretty good, but it can be somewhat improved by providing the
underlying reason for the rail

line electrification issue. So we rate this summary as 4 (of 5).

Example Summary #3

The electrification of the Valleys rail lines interrupted by the finance plan is the "number one issue" for
Crabb.

Ratings for Example Summary #2

The summary should be rated as follows:

How coherent is the summary on its own?

It is impossible to understand. The summary is perfectly clear.

Explanation for rating: This summary is easy to understand and read with clear language and no grammatical
errors and therefore

coherent, so we rate it a 5 (of 5).

How well does the factual information in the summary accuratelymatch the article?

The summary is completely wrong, made up, or

exactly contradicts what is written in the article.

The summary has no incorrect statements or

misleading implications.

Explanation for rating: Information in this summary is accurately grounded in the article. So we rate this
summary as 5 (of 5).

How well does the summary cover the important information in the article?

The summary contains no information relevant to the

article.

The summary covers all of the important information

required to understand the event in the article.

Explanation for rating: This summary contains all important information in the article. So we rate this
summary as 5 (of 5).

How good is the summary overall at representing the article?

It is terrible. It is an excellent representation of the article.

Explanation for rating: This summary is an excellent representation of the article. So we rate this summary as
5 (of 5).

Test
Answer the following question to start the task. If you are unsure of the answer, review the rubrics above. The
task section will appear

when you've completed the test.

Which axis measures whether the summary information is grounded in the article information? Enter your answer and
click "Start task".

accuracy Correct!

Task
Instructions:

1. Read the article and when you are finished reading, click "Yes".

2. Write a short title for the article then click "Submit title".

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 7: Screenshot of our annotation interface (3/4).
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3. You will then rate six summaries of the article for their coverage, accuracy, coherence, and overall
quality.

article

${article}

Have you finished reading the article?
 Yes!

Give a short title to the article to describe what it is about

example title Submit title

You may now rate the summaries below.

Note: consult the rubric if you are unsure of a rating.

How coherent is the summary on its own?

view rubric for Coherence

${summary_3}


Coherence:

${summary_6}


Coherence:

${summary_1}


Coherence:

${summary_5}


Coherence:

${summary_2}


Coherence:

${summary_4}


Coherence:

Next

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Back

Figure 8: Screenshot of our annotation interface (4/4).
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Article: Downing Street backed a report by think tank Policy Exchange which said selling high value homes when
they become vacant would raise £4.5bn a year. That would be enough to build 80,000 to 170,000 social homes, the
report said. Labour said new homes were urgently needed but "driving out hard-working families on low wages
from whole neighbourhoods" was not the answer. In its Ending Expensive Social Tenancies report, Policy Exchange
argues the move could create the largest social house building programme since the 1970s - giving the economy a
kickstart. Neil O’Brien, the think tank’s director, told the BBC that social housing would still exist in very expensive
areas under its proposal, but there would just be "less of it". "The truth is I don’t believe anybody has the right to live
in the most expensive parts of town. "People do have a right to get housed, just not in the very most expensive areas,"
he said. He also suggested that the overall number of people waiting for social housing, currently around 1.8 million,
could be reduced by about 500,000 if the scheme was implemented. The prime minister’s official spokesman said:
"This is something that councils can choose to do already. "Councils should be looking for ways to use their social
housing stock as efficiently as they can. The waiting list for social housing has increased a lot over passing years.
"They need to think about how they can use that social housing stock efficiently. "If they can sell high-value housing
to invest in more social housing and find more homes for more people, then that is certainly something they should
look at." But Labour said the coalition’s "failed" polices were "making the housing crisis worse not better". Shadow
housing minister Jack Dromey said: "Councils and housing associations should make effective use of their housing
stock but the government should not force them to arbitrarily sell off social homes, breaking up mixed communities
and driving out hard-working families on low wages from whole neighbourhoods." He said the government should
use a bank bonus tax to fund 250,000 affordable homes and "put unemployed builders back to work" and boost
the construction industry. ’Lucky family’ Expensive social housing - which Policy Exchange defines as housing
worth more than the average property in each region - accounts for 21.8% of the total social housing stock in the
UK, it says. This equates to 816,000 properties - out of a total of 3.78 million - which the think tank says could
raise up to £159bn if sold. It says London alone has more than £70bn of expensive social housing. About 3.5% of
the total stock becomes vacant every year owing to people moving out or dying, the think tank said. This meant
the government could sell a total of 28,500 properties each year, raising £5.5bn a year. The figure would stand at
£4.5bn after paying off the debt held against the stock, the report said. Mr O’Brien argued that many hard-working
people might want to live in a nicer area or in a bigger house but could not afford to. "Rather than having one lucky
family with a very expensive house, you would have two families perhaps desperately waiting for social housing,
now having a roof over their heads. "That seems fairer to me," he added. The think tank also said the move would
be "extremely popular" with all sections of society, claiming that 73% of people, including social tenants, think
people should not be given council houses worth more than the average property in a local authority. ’Dramatic
erosion’ Critics say such a move would push the least well-off out of expensive streets, and into new ghettos. The
National Housing Federation, which represents housing associations, says many towns would be "cleansed" of
"hardworking people who can’t afford to pay high prices". Labour MP Karen Buck, who represents Westminster
North, is concerned that lower income families, particularly in London, will be forced out of more affluent areas
creating segregated communities of rich and poor. Ms Buck also argued that the Labour government’s £8bn social
and affordable housing building programme was cut by 60% when the coalition came to power. Housing Minister
Grant Shapps - who is in favour of a sell-off - said the government had introduced "radical reforms" to "get Britain
building" and to reduce social housing waiting lists. They included investing £19.5bn public and private funding
into an affordable housing programme "set to exceed expectations and deliver up to 170,000 homes". Councils
could now offer fixed-term tenancies to new tenants to make sure "social housing goes to those in greatest need", he
added.

BART: Prime Minister David Cameron has said councils should be allowed to sell off expensive social housing to
fund more affordable homes.

LOSSTRUNC: The government has said it would be "appropriate" for councils to sell off social housing in very
expensive areas.

LOSSTRUNC + MUFASSA: Councils should sell high-value social housing to help build more homes, the prime
minister’s office says.

LOSSTRUNC + MUFASSA + WORDTRUNC: Councils should be allowed to sell council houses worth more than
the average property to fund new homes, the government says.

Figure 9: Output examples on XSum.

2046



Article: Following Raheem Sterling’s interview on Wednesday, in which he said he was not ready to sign a new
contract at Liverpool, blogger David Tyrer of Live4Liverpool gives the view from Merseyside. While I hate to use
social media as a gauge of opinions, Raheem Sterling’s interview didn’t go down well at all. It was ill-timed and,
regardless of what Sterling and his agent hoped, he didn’t come across very well. Some of his answers only fuelled
the fire really. I’m hoping that that wasn’t the whole point, as we’ve seen these sorts of situations engineered by
agents before. The interview has almost certainly changed the way the fans feel about him. There will be a lot
of fans that are of the opinion: ‘let him go’. Obviously, with the caveat that we get our money’s worth! Raheem
Sterling returns to Liverpool training after the international break and shakes hands with manager Brendan Rodgers .
Sterling risked angering Liverpool fans after he said in an interview he was not ready to sign a contract . Sterling
trains ahead of the weekend’s game with Arsenal . It’s always disappointing when a young player gets his head
turned, but there’s a sense of ungratefulness about the whole situation, considering how the club has nurtured
him and paid him well throughout. Personally, I think he has the potential to be worth so much more than the
£100,000-a-week contract he’s turned down. But it’s only that: potential. At present, he’s arguably in the top five
best young players in the world but, obviously at his age, he’s also prone to bouts of inconsistency and prolonged
poor form. He hasn’t been great recently and was awful against Man Utd. Sterling has been linked with a move to
Arsenal - the team he is preparing to face at the weekend . Raheem Sterling played for England in the 4-0 Euro 2016
qualifier against Lithuania . And while I’d be willing to see the club give him £100k a week – possibly £120k a
week - the club shouldn’t do everything it can to keep him. Definitely not. Liverpool fans have a popular mantra: no
player is bigger than the club. Admittedly, we stretch the rules for truly great players (Suarez, a recent example) but
Sterling is nowhere near. If he wants out, I’m sure the club will handle it the way they have before. Frustration over
Sterling’s situation has been building for a while, and many fans are now of the belief that if he wants to go he’s
welcome to. Personally, I don’t like players holding the club to ransom. He has as much chance of winning trophies
here as he does anywhere (other than money-rich clubs such as Chelsea or Man City). Sterling did not have his best
game in a Liverpool shirt during the defeat at Manchester United . Liverpool fans have a mantra that no player is
bigger than the club . If Sterling was to move to Arsenal then it would not go down well with Liverpool fans . But if
he does end up going, he’s worth a lot more than many established players. His ability is so raw but he has almost
limitless potential. At the moment, we’ve seen it in fits and starts but even so, he’s easily worth £25-30 million. If
I was FSG, I’d hold any interested club to ransom, though – double it. But a move to Arsenal wouldn’t go down
well. Perhaps better than if it was Chelsea or Manchester United, but honestly there’s little Arsenal can offer that we
can’t. Sure, they’re more financially stable but what – in terms of trophies – do Arsenal have to show for the last
12 years? Sterling speaks to the BBC and reveals he is not ready to sign a new contract . I think we’re somewhat
ahead on that front. Much like Alexis Sanchez, any move to Arsenal will be more about location than anything else.
People have drawn comparisons with when Suarez wanted to leave for Arsenal, but the situation is different. Suarez
says he wanted Champions League football and we weren’t offering that at that time. Not only that, but Suarez
was an established top-class player at the time, one of the best in the world. Sterling is purely potential and, given
all the club have done for him (cliched, as that sounds), it makes little sense. If he’s going to be nurtured into the
world-class talent he can become, it won’t happen at Arsenal. It may not necessarily happen at Anfield either, but a
manager like Brendan Rodgers will give him the best shot of improving to that level over the next two to three years.
You can read more from Live4Liverpool HERE and follow the Twitter account HERE .

BART: Raheem Sterling said he was not ready to sign a new contract at Liverpool . The England winger has been
linked with a move to Arsenal . Liverpool fans have a mantra that no player is bigger than the club . But a move to
Arsenal would not go down well with the Anfield faithful .

LOSSTRUNC: Raheem Sterling said he was not ready to sign a new contract at Liverpool . The England winger has
been linked with a move to Arsenal . Liverpool fans have a mantra that no player is bigger than the club . Sterling
has the potential to be worth more than the £100,000-a-week contract .

LOSSTRUNC + MUFASSA: Raheem Sterling has said he is not ready to sign a new contract at Liverpool . The
England winger has been linked with a move to Arsenal . Liverpool fans have a mantra that no player is bigger than
the club . But a move to Arsenal would not go down well with the fans .

LOSSTRUNC + MUFASSA + WORDTRUNC: Raheem Sterling said he was not ready to sign a new contract
at Liverpool . Sterling has been linked with a move to Arsenal - the team he is preparing to face at the weekend
. Liverpool fans have a mantra that no player is bigger than the club . If Sterling was to move to Arsenal then it
would not go down well with Liverpool fans .

Figure 10: Output examples on CNN/DailyMail.
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Abstract

Humor recognition has been studied with sev-
eral different methods in the past years. How-
ever, existing studies on humor recognition
do not understand the mechanisms that gener-
ate humor. In this paper, inspired by the in-
congruity theory, any joke can be divided in-
to two components (the setup and the punch-
line). Both components have multiple pos-
sible semantics, and there is an incongruous
relationship between them. We use density
matrices to represent the semantic uncertain-
ty of the setup and the punchline, respective-
ly, and design Quantum Entropy Uncertain-
ty (QE-Uncertainty) and Quantum Entropy In-
congruity (QE-Incongruity) with the help of
quantum entropy as features for humor recog-
nition. The experimental results on the Se-
mEval2021 Task 7 dataset show that the pro-
posed features are more effective than the
baselines for recognizing humorous and non-
humorous texts.

1 Introduction

Humor is one of the most distinctive features of
human behavior and a sign of mental maturity
(Pasquali, 1990). The study of humor has re-
ceived extensive attention in the fields of linguistics,
philosophy, psychology, and sociology (Mihalcea
et al., 2010). Computational humor is of particular
interest, with the potential to transform computers
into creative and motivational tools (Nijholt et al.,
2003).

This paper restricts research to humor recogni-
tion in computational humor, which aims to rec-
ognize whether a piece of text is humorous. As
shown in Figure 1, a joke usually includes two
components: the setup and the punchline. The
reader generates an expectation of the following
text (the punchline) based on the content of the
setup, and if the following text violates the reader’s
expectation, humor is generated, and vice versa.

Figure 1: A humor and non-humor example containing
the setup and the punchline.

In fact, the incongruity theory of humor can ex-
plain the above process of producing humor. The
incongruity theory states that humor is generated
because a thing (the setup) has multiple underlying
concepts, and there is an incongruity between the
concept involved in the situation and the real object
it represents (the punchline).

Features based on semantic similarity (Mihalcea
et al., 2010; Yang et al., 2015) and word associa-
tion (Liu et al., 2018; Cattle and Ma, 2018) have
achieved certain results, but they lack considera-
tion of humorous mechanisms. Xie et al. (2021)
calculated the uncertainty and the surprisal values
of the joke with the help of the GPT-2. But they
did not model the semantic incongruity between
the setup and the punchline. While the above ap-
proaches are somewhat effective, the incongruity
theory requires us to model semantic uncertain-
ty and the incongruity between the setup and the
punchline. We take inspiration from quantum theo-
ry and use density matrices to represent the uncer-
tainty of text semantics. Specifically, the setup and
the punchline are represented as density matrices,
respectively. Then, take the quantum entropy of
the setup as Quantum Entropy Uncertainty (QE-
Uncertainty) and the conditional quantum entropy
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between the setup and the punchline as Quantum
Entropy Incongruity (QE-Incongruity). Exper-
iments conducted on a manually-labeled dataset
demonstrate that these two features are better than
existing baselines in distinguishing between hu-
morous and non-humorous texts, confirming the
necessity of correlating semantic uncertainty with
quantum theory.

2 Background

2.1 The Incongruity Theory

The most widely accepted theory for explaining hu-
mor is the incongruity theory. The theory suggests
that laughter is caused by an incongruity between
the understanding of the text and its actual mean-
ing (Mulder and Nijholt, 2002). Immanuel Kant
describes humor as “the sudden transformation of
a strained expectation into nothing (Hickey-Moody
and Laurie, 2017).” Schopenhauer (1966) also be-
lieved that perceived incongruity exists between
a concept and the real object it represents. The
incongruity theory has also been developed in the
field of linguistics. The Semantic Script-based The-
ory of Humor (SSTH) proposed by Raskin (1979)
is a scripted expression of the incongruity theory.
SSTH is our bridge to mathematically model the
incongruity theory. SSTH requires humorous texts
to meet the following conditions: (1) The text is
compatible, fully or in part, with two different (se-
mantic) scripts. (2) The two scripts with which the
text is compatible are opposite.

2.2 Density Matrix

The mathematical form of quantum mechanics rep-
resents the probability space as a vector space (i.e.,
the Hilbert space Hn) (Von Neumann, 2018). Re-
searchers often use Dirac’s notation to represent
unit vectors in this space. For example, a unit vec-
tor ~u and its transpose ~uT are represented as |u〉
and 〈u|, respectively. The inner product of two unit
vectors |u〉 and |v〉 is written as 〈u|v〉. The projec-
tor onto the direction |u〉 is its own outer product
|u〉〈u|. The rank of each projector is one and each
projector represents a quantum fundamental event,
often called a dyad. The density matrix (Nielsen
and Chuang, 2010) is a generalization of the classi-
cal probability distribution. A density matrix ρ can
be defined as a mixture of dyads:

ρ =
n∑

i=1

pi|ψi〉〈ψi| (1)

where |ψi〉 represents a pure state with probability
pi. The density matrix ρ is symmetric, positive
semi-definite, and its trace is one.

2.3 Quantum Entropy

Quantum entropy is a generalization of the quan-
tum case of classical Shannon entropy (Shannon,
1948). If a quantum system is described by a den-
sity matrix ρ, its quantum entropy (Von Neumann,
2018) is defined as:

S(ρ) = −tr(ρ ln ρ) (2)

The conditional quantum entropy (Cerf and Ada-
mi, 1999) of the density matrix σ given the known
density matrix ρ is defined as:

S(σ|ρ) = S(σρ)− S(ρ)

= −tr(σρ ln(σρ)) + tr(ρ ln ρ)
(3)

unlike classical conditional entropy, conditional
quantum entropy can be negative.

3 Methodology

The incongruity theory holds that the prerequisite
for humor is that the text has multiple semantic
aspects. The reader does not understand one mean-
ing but expects one while the punchline provides
another, leading to incongruity. According to the
incongruity theory, we should design features to
represent the multiple semantic overlaps of the set-
up, as well as the incongruity of the semantics of
the setup and the punchline.

Normalize each word wi ∈ V as follows:

|wi〉 =
~wi
‖ ~wi‖

(4)

where ‖·‖ represents the L2-norm. The representa-
tion of each word can be viewed as a superposition
in Hilbert space.

A sentence of length l is represented by an n-by-
n density matrix ρ:

ρ =
1

|l|
l∑

i=1

|wi〉〈wi| (5)

where the diagonal values of ρ reflect the superpo-
sition semantics of sentences, and the non-diagonal
values encode the correlation between semantics in
a quantum way.
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3.1 QE-Uncertainty
We take evidence of humor recognition from the
setup, model the setup as a density matrix to repre-
sent its uncertainty semantics, and use the quantum
entropy of the density matrix to represent the value
of uncertainty. Formally, the QE-Uncertainty is
calculated as follows:

U(ρ) = −tr(ρ ln ρ) (6)

where ρ represents the density matrix of the setup.
The value of QE-Uncertainty reflects the amount
of information contained in the text and the uncer-
tainty of semantics. The larger the value, the more
information the text contains, and the more likely
the text is humorous.

3.2 QE-Incongruity
Another aspect of the incongruity theory is how
different the semantics of the punchline is from
expectations when the semantics of the setup are
known (i.e., how much information we don’t know
about the punchline). In other words, how much
information about the punchline is included in the
setup? Specifically, the QE-Incongruity is defined
as follows:

I(σ|ρ) = U(σρ)−U(ρ)

= −tr(σρ ln(σρ)) + tr(ρ ln ρ)
(7)

where ρ and σ represent the density matrices of the
setup and the punchline, respectively. The value of
QE-Incongruity describes how unknown the seman-
tics of the punchline is when the setup is known.
We argue that when the setup contains less seman-
tics in the punchline, there will be incongruity, and
there will be humor.

4 Related Work

The existing text humor recognition methods are
mainly divided into feature-based methods and
deep learning-based methods. Mihalcea and S-
trapparava (2005) use automatic classification tech-
niques to integrate humor-specific features (alliter-
ation, antonymy, slang) and content-based features
into a machine-learning framework for humor clas-
sification tasks. Mihalcea et al. (2010) divide the
humor text into two components: the setup and the
punchline. Humor recognition is performed by cal-
culating the semantic correlation between the setup
and the punchline based on the incongruity theory.
Morales and Zhai (2017) use a generative language

model combined with background text resources
to construct multiple features to identify whether
a comment is a humorous text. Liu et al. (2018)
combine discourse analysis and sentiment analy-
sis to extract sentiment-related features to address
humor recognition. Xie et al. (2021) developed
uncertainty and superisal with the help of the pre-
diction results of the pre-trained language model
GPT-2. In recent years, with the development of
deep learning, some deep learning-based methods
have been proposed. Chen and Lee (2017) use con-
volutional neural networks to identify humor in the
TED talks corpus. Chen and Soo (2018) used the
highway network architecture to implement deep
convolutional neural networks to predict humor on
datasets of different types and different languages.
Weller and Seppi (2019) used pre-trained BERT for
the humor classification task. Fan et al. (2020) com-
bine the Bi-GRU network with phonetic structure
and ambiguity for humor recognition.

5 Experiments

5.1 Settings
We build a Support Vector Machine (SVM) clas-
sifier for humor classification. Experiments are
performed on the SemEval 2021 Task 71 dataset
modified by Xie et al. (2021). The dataset consists
of a total of 3,052 labeled samples, half of which
are humor and the other half are non-humor. The
text of each sample in the dataset is split into t-
wo parts (the setup and the punchline). For each
sample in the dataset, the lengths of the setup and
the punchline are both below 20, and the percent-
age of alphabetical letters is greater than 75%, all
of which start with alphabetical letters. We use
Accuracy(Acc), Precision(P), Recall(R) and F1-
Score(F1) as the evaluation metrics. P, R and F1
are macro-averaged. The experiments adopt 10-
fold cross-validation, and the result is the average
value of repeated experiments.

5.2 Baselines
Semantic similarity and semantic distance are the
most commonly used text features, and we choose
three such features as our baselines:

• Path similarity (Rada et al., 1989) is a simi-
larity measure based on the shortest path, de-
fined as follows:

Simpath =
1

1 + D(c1, c2)
(8)

1https://semeval.github.io/SemEval2021/
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where D(c1, c2) represents the shortest path
in WordNet between concepts c1 and c2.

• Disconnection (Yang et al., 2015) is defined
as the maximum distance between word pairs
in the text.

• Repetition (Yang et al., 2015) is defined as
the minimum distance between word pairs in
the text.

In addition, we consider two GPT-2 based fea-
tures proposed by Xie et al. (2021) as baselines.
They feed the text into GPT-2 model to predict the
next token. While predicting the tokens of y, GPT-
2 produces a probability distribution vi over the
vocabulary.

• Uncertainty is obtained by calculating the
average entropy of the probability distribution
vi on the vocabulary, defined as:

U(x, y) = − 1

|y|
n∑

i=1

∑

w∈V
vwi log vwi (9)

where n represents the length of y and V is
the vocabulary.

• Surprisal describes the degree of surprise
when the language model generates the punch-
line, which is defined as follows:

S(x, y) = − 1

|y| log p(y|x)

= − 1

|y|
n∑

i=1

log vyii

(10)

5.3 Predict Using Individual Features
Table 1 shows the results of individual feature pre-
diction. Compared with the baselines, our pro-
posed features QE-Uncertainty and QE-Incongruity
achieve higher scores on all four metrics, with QE-
Incongruity achieving the best results. In particu-
lar, compared with Uncertainty based on classical
Shannon entropy, QE-Uncertainty under our quan-
tum framework is greatly improved. This shows the
necessity of quantum generalization for semantic
uncertainty problems.

5.4 Boost a Content-Based Classifier
To demonstrate the effectiveness of our proposed
features combined with content-based classifier-
s. We use the 50-dimensional GloVe (Pennington

Table 1: Experimental results of individual features.
The results for features with an asterisk are reported
by Xie et al. (2021).

Features P R F1 Acc

Random 0.5000 0.5000 0.5000 0.5000

Simpath 0.5123 0.5070 0.4555 0.5062
Disconnection 0.6475 0.5503 0.4610 0.5501
Repetition 0.5592 0.5577 0.5538 0.5567
Uncertainty* 0.5840 0.5738 0.5593 0.5741
Surprisal* 0.5617 0.5565 0.5455 0.5570

QE-Uncertainty 0.6589 0.6318 0.6146 0.6314
QE-Incongruity 0.6690 0.6450 0.6319 0.6451

et al., 2014) embedding as the baseline. We encode
the setup and the punchline as the average of their
respective word embeddings, resulting in two vec-
tors with dimensions 50. Concatenate these two
vectors with our features to form a vector with di-
mension 101. Finally, put it into an SVM classifier
for humor classification. The results are shown in
Table 2, our features achieve higher improvements
on content-based classifiers compared to baselines.

Table 2: Experimental results of concatenating a
content-based classifier. The results for features with
an asterisk are reported by Xie et al. (2021).

Features P R F1 Acc

GloVe 0.8233 0.8232 0.8229 0.8234

GloVe+Simpath 0.8246 0.8246 0.8233 0.8237
GloVe+Discon. 0.8262 0.8264 0.8258 0.8263
GloVe+Repeti. 0.8239 0.8241 0.8237 0.8240
GloVe+U* 0.8355 0.8359 0.8353 0.8359
GloVe+S* 0.8331 0.8326 0.8321 0.8326

GloVe+QE-U 0.8361 0.8363 0.8355 0.8359
GloVe+QE-I 0.8363 0.8365 0.8356 0.8360

5.5 Feature Visualization

Figure 2 shows the distribution histograms of the
values of QE-Uncertainty and QE-Incongruity for
the joke and non-joke samples. From the figure, it
can be found that jokes have higher QE-Uncertainty
and QE-Incongruity values than non-jokes, which
is consistent with what we stated in Section 3.

6 Conclusion

In this paper, we model semantic uncertainty with
a quantum framework. Inspired by the incongruity
theory, we design two features, QE-Uncertainty
and QE-Incongruity. We conduct experiments on
the humor dataset, and the experimental results
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Figure 2: Histograms of our proposed features. The
x-axis is the value of the feature, and the y-axis is the
proportion of the feature in the total number of samples.
M is the Median of the current feature.

demonstrate the effectiveness of our proposed fea-
tures. This suggests that the density matrix is an
excellent framework for describing uncertainty and
that the quantum entropy of the density matrix is a
better feature to distinguish jokes from non-jokes
than previously proposed features. We believe that
the quantum framework can also be used for se-
mantic uncertainty modeling for other tasks in the
future.

Limitations

In this paper, the density matrix representation of
text is constructed in an averagely weighted man-
ner, without considering the influence of weight-
s on words. In addition, the density matrix as a
text representation does not consider the position
information of words. Furthermore, quantum gen-
eralization on the problem of multimodal humor
recognition is also an interesting topic compared to
unimodal humor recognition.
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Abstract

Pretrained language models (PLMs) are trained
on massive corpora, but often need to special-
ize to specific domains. A parameter-efficient
adaptation method suggests training an adapter
for each domain on the task of language mod-
eling. This leads to good in-domain scores
but can be impractical for domain- or resource-
restricted settings. A solution is to use a related-
domain adapter for the novel domain at test
time. In this paper, we introduce Adapter-
Soup, an approach that performs weight-space
averaging of adapters trained on different do-
mains. Our approach is embarrassingly par-
allel: first, we train a set of domain-specific
adapters; then, for each novel domain, we deter-
mine which adapters should be averaged at test
time. We present extensive experiments show-
ing that AdapterSoup consistently improves
performance to new domains without extra
training. We also explore weight averaging
of adapters trained on the same domain with
different hyper-parameters, and show that it
preserves the performance of a PLM on new do-
mains while obtaining strong in-domain results.
We explore various approaches for choosing
which adapters to combine, such as text cluster-
ing and semantic similarity. We find that using
clustering leads to the most competitive results
on novel domains.

1 Introduction

Large LMs are pre-trained using massive amounts
of data in a self-supervised way (Peters et al., 2018;
Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2019) and obtain general-domain knowledge. In or-
der to adapt them to a new domain, continuing train-
ing using in-domain data has been shown to be help-
ful (Han and Eisenstein, 2019; Lee et al., 2020; Gu-
rurangan et al., 2020). To avoid fine-tuning all pa-
rameters, efficient methods such as domain-specific
mixtures-of-experts (Gururangan et al., 2022) and
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†Work done during an internship at Allen AI
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Figure 1: Illustration of AdapterSoup. Starting from
the same random seed, an adapter is trained for each
domain (domain adapter) on top of a PLM. Adapter-
Soup averages the weights of the adapters that are most
related to the new domain to improve out-of-domain
performance of a PLM at test time. The inference cost
is independent of the number of adapters (l or n) used.

hierarchical domain adapters (Chronopoulou et al.,
2022) have been proposed. Additional in-domain
gains can be obtained using weight-space averaging
(Wortsman et al., 2022a; Matena and Raffel, 2021).
Motivated by this, we propose using weight-space
averaging at test time to improve performance on
novel domains without extra training.

Our approach, AdapterSoup, ensembles adapters
in the weight space to improve performance on
novel domains at test time without parameter up-
dates. To this end, we train adapters on top of a
PLM, each in a different domain. We compare
several methods for selecting which adapters to
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use for each novel domain at test time and propose
weight-space averaging models selected using text
clustering. We find that AdapterSoup improves
performance on novel domains. We also explore
weight averaging adapters trained in the same do-
main, each with a different hyper-parameter con-
figuration, and find that combining models trained
with a low learning rate provides competitive in-
domain scores, while averaging models trained
with high learning rates performs similarly to a
general-purpose PLM on novel domains.

Our contributions are the following: 1) We pro-
pose combining domain-adapted PLMs at inference
time using adapters. Our approach leads to consis-
tent gains in novel domains. We compare several
methods for choosing the models of the Adapter-
Soup, concluding that text clustering provides the
best performance across all domains. 2) We per-
form weight-space averaging of PLMs adapted to
the same domain with varied hyper-parameters us-
ing adapters. We find that we can obtain competi-
tive in-domain scores but also preserve the general-
ization ability of a PLM.

2 Proposed Approach

Problem Statement. Assuming we have a PLM
adapted to k domains D1, ..., Dk, we want a model
that performs well in a novel domainDk+1 without
training more parameters. We use the provenance
of a piece of text (that is, the website from which
the text was scraped) as a proxy for textual domain.
This follows Chronopoulou et al. (2022); Gururan-
gan et al. (2022).

If we assume that we have a PLM fine-tuned on a
single domain Di with different hyper-parameters,
we want to combine the fine-tuned models in order
to both obtain good in-domain performance and
preserve the generalization ability of the PLM to
novel domains.

2.1 Cross-Domain AdapterSoup

An illustration of the cross-domain AdapterSoup
is provided in Figure 1. Let f(x, θm) be a PLM
with input data x and parameters θm ∈ Rd. We add
adapters with a parameter initialization θα. While
in this work we parameterize θα with adapters,
our method is general and could be extended to
other efficient fine-tuning methods. We only fine-
tune the adapters, without updating the parame-
ters θm of the PLM, for language modeling us-
ing cross-entropy loss. Let us assume that θ =

FineTune(θm, θα, ϕ,D) denote the parameters ob-
tained by fine-tuning a PLM with adapters in a
domain D, using hyper-parameters ϕ.

Let ϕ be a fixed hyper-parameter configuration.
We vary only the textual domain. We first train
k different adapters, one for each of the training
domains. Then, we combine their weights:

AdapterSoup(x) = f(x,
1

l

l∑

i=1

θi), (1)

i.e., we use the average of the parameters of l fine-
tuned models, selected by one of the methods de-
scribed in §2.3 (l <= k). If l = k, this model is a
uniform soup (Wortsman et al., 2022a).

2.2 Single-Domain AdapterSoup

In this setup, we want to learn an LM that performs
well in a single training domain D, while main-
taining the performance of the initial PLM θm in
novel domains. To this end, we train adapters on
the same domain, varying the hyper-parameter con-
figuration. Each of the n models is optimized with
different hyper-parameters ϕi, with i ∈ 1, ..., n.
We then compute the weight-space average follow-
ing Equation 1, with l = 3. This is similar to logit
ensembling, but only adds to the PLM the inference
cost of a single adapter, while the added inference
cost of logit ensembling scales linearly with the
number of adapters.

2.3 Model Selection for AdapterSoup

In this section we describe two methods for se-
lecting the combination of models to create our
AdapterSoup (by weight-space averaging) which
will be evaluated on a novel domain Dk+1. Follow-
ing standard practice (Gururangan et al., 2022; Li
et al., 2022) we use a small amount of validation
data from the novel domain Dk+1 for each of the
below approaches. We note that we keep the test
data unseen and only use it to perform our test-set
evaluations.
Sentence similarity. We use pretrained sentence-
BERT (Reimers and Gurevych, 2019), an approach
that modifies BERT (Devlin et al., 2019) using
siamese and triplet networks (Schroff et al., 2015)
to obtain sentence embeddings. We compute the
embeddings for 100 sentences from each of the
training domainsD1, ..., Dk, plus the novel domain
Dk+1. Then we compute the average cosine sim-
ilarity between each of D1, ..., Dk and Dk+1. We
add up to 5 adapters to the AdapterSoup in order of
highest cosine similarity (only considering models
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10 Evaluation Domains
Method reuters techcrunch fastco nme fool inquisitr mashable tripadv ncbi yelp Avg.
GPT-2 (zero-shot) 21.5 27.7 27.9 28.2 23.8 22.4 27.1 40.4 20.7 36.2 27.6
Single Adapter Chosen Using:

- Sentence similarity 18.9 22.0 22.0 23.1 22.9 18.4 25.3 37.0 18.2 49.4 24.4
- Clustering 17.6 22.4 24.0 21.1 23.3 18.7 23.6 37.7 18.2 44.3 24.0

AdapterSoup (Weight-space average):
- Uniform 18.2 23.1 22.9 22.2 22.4 18.4 23.1 37.0 19.1 36.2 24.3
- Sentence similarity 17.6 22.0 21.3 20.7 22.2 18.4 22.4 36.2 17.6 35.2 23.4
- Clustering 17.3 21.8 21.3 21.1 22.2 17.8 22.2 34.8 17.6 34.8 23.1

Oracle
- Best adapter per domain 17.6 22.0 21.5 21.1 22.9 17.8 22.2 37.0 18.2 35.9 23.6
- Clustering + 2 best 17.3 21.8 21.3 20.7 22.0 17.6 22.0 33.4 17.6 33.4 22.7

Hierarchy adapter 16.4 20.1 20.1 20.1 22.2 16.4 22.2 33.1 18.2 34.5 22.3

Table 1: Perplexity (↓) scores on 10 evaluation domains. All single adapter and AdapterSoup experiments have
the same inference cost; bold indicates the best perplexity for each novel domain and best average. We find that
AdapterSoup using clustering as a selection method on average leads to the best out-of-domain performance.

trained on domains with cosine similarity greater
than 0.15 to Dk+1). We experimented with several
values to define the threshold (3, 5, 10, 15). We did
not observe significant improvement when scaling
up from 5 to 10 adapters and for that reason, we
used up to 5 adapters in each AdapterSoup.
Domain clustering. Our domain clustering ap-
proach follows Aharoni and Goldberg (2020). We
encode 100 sequences from each of the training
domains using a PLM and fit a Gaussian Mixture
Model (GMM) with 21 components (equal to the
number of training domains), which gives us a do-
main clustering. We then use 100 sequences from
our held-out set (not used for test-set evaluation)
and find which clusters they are closest to. We
add up to 5 adapters to the AdapterSoup in order
of which clusters the most held-out domain text is
mapped to. If at least 10% of the sequences of the
Dk+1 is mapped to the cluster of Di, we add the
model trained on Di to the AdapterSoup.
In-domain. To select the models that perform best
in-domain, we exhaustively combine all models
trained on a single textual domain (in this case, text
found in the website booking.com), using combina-
tions of size 3. Each model has been trained with
a different hyper-parameter configuration. Specifi-
cally, we vary the learning rate and data order. We
compare them to the best-performing single model
per domain and to a uniform soup.

3 Experimental Setup

Datasets. We assume that text found in a specific
website (e.g., tripadvisor) can be used as a proxy
of a textual domain. We use 21 training domains
and 10 evaluation domains (text from 21 and 10
websites accordingly) from the released version

(Dodge et al., 2021) of C4 (Raffel et al., 2020)
(details in the Appendix). We hypothesize that the
variety of training domains plays an important role
in this setting. We randomly sampled domains that
belong to the 100 high-resource domains of C4,
but further work could consider using M2D2 (Reid
et al., 2022), a multi-domain language modeling
dataset released concurrently to this work.
Model Architecture. We use GPT-2 (Radford
et al., 2019); specifically, we use a publicly avail-
able pretrained checkpoint of the small version, i.e.,
gpt2 from the HuggingFace library (Wolf et al.,
2020). We add an adapter to each Transformer
(Vaswani et al., 2017) layer after the feed-forward
layer. We train only the adapters for language mod-
eling in each training domain. The adapters follow
the Bapna and Firat (2019) architecture and have
bottleneck size 64. For the cross-domain Adapter-
Soup, we train all models with an initial learning
rate 1e-4. For the single-domain AdapterSoup, we
use different learning rates and data seeds shown
in the Appendix.

4 Results

Results are presented in Table 1. For each experi-
ment, we evaluate both perplexity and efficiency.

4.1 Cross-domain

As a first baseline, we use GPT-2 (zero-shot), with-
out further training or additional parameters. This
has worse perplexity than all other approaches but
is most efficient at inference.
Single Adapters. We then evaluate Sentence simi-
larity and Clustering in the scenario where only a
single adapter is chosen using each approach (this
can be thought of as a soup of size 1). This is an
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evaluation of how well these two approaches mea-
sure similarity between the novel domainDk+1 and
the training domains; this baseline shows the per-
formance of a single model which can be directly
compared to AdapterSoups. Both approaches are
significantly better than GPT-2 (zero-shot), and
Clustering outperforms Sentence similarity, sug-
gesting it is better at identifying related domains.

AdapterSoup. We evaluate three types of Adapter-
Soup which differ only in how the models added
to the soup are selected. All three are equally
as efficient at inference as using a single adapter.
Uniform is a uniform soup (weight-averaging all
trained models). This performs worse than all ap-
proaches except GPT-2 (zero-shot); we hypoth-
esize that it performs worse due to negative in-
terference between adapters trained on unrelated
domains. Using Sentence similarity as described
in §2.3 leads to marginally better scores than the
single-best adapter per domain, indicating even rel-
atively naively-created soups can outperform the
best (oracle) single model. On 8/10 novel domains,
the sentence similarity AdapterSoup outperforms
the single adapter chosen by Sentence similarity,
indicating that the soup leads to better performance.
Next, using Clustering as described in §2.3 leads
to perplexity improvements in 8/10 novel domains
compared to sentence similarity, indicating that the
method for selecting models for the soup has a
large impact. On 9/10 novel domains, the Cluster-
ing AdapterSoup outperforms the single adapter
chosen by clustering, indicating that our approach
leads to better performance.

Oracle Experiments and Larger Models. Best
adapter per domain shows the performance of the
single-best adapter on each novel domain. This is
the upper bound for a single adapter, and we see
that our Single Adapter Chosen Using Clustering
matches these scores on 3/10 novel domains, and
is close on the rest, suggesting the clustering ap-
proach is reasonably good. Clustering + 2 best
shows the performance of adding the two (oracle)
best models to our AdapterSoup made by cluster-
ing; our clustering approach is close to these scores,
but there is room for future work on better choosing
models for the AdapterSoup. Hierarchy adapter is
taken from Chronopoulou et al. (2022), and is less
efficient in terms of both data and parameters.

Selecting Models for the Soup. We qualita-
tively compare the selection methods for choosing
adapters to include in the AdapterSoup for 3 novel

Novel Domain i Sentence Sim. Clustering
tripadvisor booking booking

insiderpages insiderpages
lonelyplanet

ncbi journals journals
frontiersin frontiersin

springer springer
reuters csmonitor dailymail

wired express
entrepreneur

Table 2: Domains of models selected for the Adapter-
Soup using either sentence similarity or clustering. The
clustering method seems to more accurately match each
novel domain to training domains that are similar to it.

booking frontiers journals yelp
ID OOD OOD OOD

GPT-2 (zero-shot) 29.7 22.2 24.5 36.2
Best single adapter 10.2 27.7 30.3 49.4
AdapterSoup:
- lr 7e-3 27.7 23.3 24.8 37.7
- lr 4e-3 24.5 23.8 25.5 39.6
- lr 1e-3 11.5 24.0 26.3 42.5
- lr 5e-4 10.0 26.3 29.1 47.5
- lr 1e-4 10.4 27.4 30.0 48.9

Best AdapterSoup:
- in-domain 10.0 26.3 29.1 47.5
- out-of-domain 26.8 22.9 24.5 37.3

Logit ensemble 9.2 25.0 27.7 47.7

Table 3: Perplexity scores in- and out-of-domain (re-
spectively ID and OOD) of models trained on book-
ing.com. Low learning rates lead to good in-domain
scores, while high learning rates improve the out-of-
domain performance.

domains in Table 2. In the case of tripadvisor, 2/3
domains Sentence similarity and Clustering select
are identical, while for ncbi (science domain) both
methods select the same domains. When select-
ing domains similar to reuters (news), clustering
seems to find a good match, choosing news do-
mains. However, Sentence similarity selects do-
mains that are not quite as related to the novel
domain. Reuters contains heterogeneous data, so
the average cosine similarity on the sentence level
is not a suitable metric to find related domains.

4.2 Single-domain
In this section we evaluate how models trained on
the same domain can be combined into an Adapter-
Soup. We train a set of models using adapters
on booking.com by varying the data order and the
learning rate (see Appendix A.3, note our experi-
ments kept the initialization of each adapter fixed),
then evaluate all combinations of adapters of size 3,
and evaluate the performance of the AdapterSoup
both in-domain (booking.com) and on 3 held-out
domains. We explore this controlled setting to bet-
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ter understand the setup described in Wortsman
et al. (2022a), who also noted that the learning
rate is important; their experiments indicated that
smaller learning rates led to better model soups.

Our experiments in Table 3 show a more nuanced
result: AdapterSoups made from adapters trained
with small learning rates (5e-4) performed best in-
domain (confirming the result from Wortsman et al.,
2022b), but AdapterSoups made from adapters
trained with larger learning rates (7e-3, 4e-3, and
7e-4) generalize better to novel domains. The num-
ber of updates for each adapter is the same, and they
all have the same initialization, so we hypothesize
that AdapterSoups made from small learning rates
act similarly to averaging across steps in gradient
descent, leading to a model that is closer to a local
optimum. As for why larger learning rates leads to
better generalization to novel domains, we hypoth-
esize that each model in the AdapterSoup travels
a farther distance from the initialization, leading
to learning somewhat more diverse representations.
We leave further exploration to future work.

5 Related Work

As training large models from scratch has a severe
computational and environmental cost (Strubell
et al., 2019; Dodge et al., 2022), efficient meth-
ods such as mixtures-of-experts (MoE) (Shazeer
et al., 2017; Fedus et al., 2021; Artetxe et al., 2022),
adapters (Rebuffi et al., 2017; Houlsby et al., 2019;
Pfeiffer et al., 2020), and LoRA layers (Hu et al.,
2022) have recently been proposed. Both adapters
and MoEs have shown to work well for domain
adaptation (Cooper Stickland et al., 2021; Gururan-
gan et al., 2022; Chronopoulou et al., 2022). The
hierarchy adapter (Chronopoulou et al., 2022) out-
performs our approach but is significantly more
expensive. It adds a training cost of 4LdmodeldT
(following Kaplan et al., 2020) over the cost of
running GPT-2 for a model with L layers, dimen-
sion dmodel, adapter bottleneck size d, average tree
depth T (T = 8 in the hierarchy adapter paper),
while AdapterSoup needs 4Ldmodeld flops. As a
result, training the hierarchy adapter is a factor of
T slower than our approach. At inference time, the
hierarchy adapter activates 2 paths in the tree and
invokes a cost 4LdmodeldT × 2, i.e., inference is a
factor of 2T slower than our approach.

Averaging weights of models independently fine-
tuned on the same task (Wortsman et al., 2022a) has
shown to improve in-domain performance. Matena

and Raffel (2021) weight-average fine-tuned PLM
models using Fisher merging to avoid intermediate
task training and then perform downstream fine-
tuning. Wang et al. (2022) fine-tune MoEs using
adapters on a downstream task and average their
weights at test time. Our paper, however, focuses
on improving test-time scores of a model on novel
domains.

Wang et al. (2021) improve performance in an
unseen (target) language by ensembling the source
language adapter and language adapters similar to
the target language. This approach uses weighted
ensembling of the outputs of adapters, whereas we
ensemble the weights of the adapters. AdapterSoup
has the inference cost of a single adapter, while
Wang et al. (2021) require inference time that scales
linearly to the number of adapters.

Contemporaneous work (Li et al., 2022) also ex-
plores performance in novel domains using weight
averaging, but uses MoEs instead of adapters.

6 Conclusion

A PLM can be adapted to new domains using
adapters. However, this requires training a new set
of adapters for each domain. We propose a method
based on weight-space averaging of adapters se-
lected using text clustering. Our approach improves
performance on novel domains without updating
parameters or increasing the inference cost. Future
work could explore more sophisticated selection
methods to try to match the performance of the
oracle experiments.

Limitations

The conclusions we draw in this work about how
our approach compares to other approaches (e.g.,
our baselines) are only supported by evidence on
the task of language modeling, with textual do-
mains taken from the C4 dataset. We expect such
results to hold more generally, but do not have ex-
perimental evidence to support any other scenarios.
As with all work on language modeling, the models
we have trained could be used to generate language,
but we do not have evaluations of generated text
(e.g., on fluency, factuality, or other common met-
rics used to evaluate generated language). Our
paper focuses on using adapters; while we expect
similar approaches to work for other types of mod-
els, we only have evidence to support AdapterSoup
working for adapters.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits

of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems.

Machel Reid, Victor Zhong, Suchin Gururangan, and
Luke Zettlemoyer. 2022. M2D2: A massively multi-
domain language modeling dataset. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 964–975, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 815–823.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems.

Xinyi Wang, Yulia Tsvetkov, Sebastian Ruder, and Gra-
ham Neubig. 2021. Efficient test time adapter en-
sembling for low-resource language varieties. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 730–737, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu,
Jing Gao, Ahmed Hassan Awadallah, and Jian-
feng Gao. 2022. Adamix: Mixture-of-adapter for
parameter-efficient tuning of large language models.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

2060

https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2208.03306
https://doi.org/10.48550/ARXIV.2208.03306
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.48550/ARXIV.2111.09832
https://doi.org/10.48550/ARXIV.2111.09832
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://aclanthology.org/2022.emnlp-main.63
https://aclanthology.org/2022.emnlp-main.63
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.48550/ARXIV.1701.06538
https://doi.org/10.48550/ARXIV.1701.06538
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-emnlp.63
https://doi.org/10.18653/v1/2021.findings-emnlp.63
https://arxiv.org/abs/2205.12410
https://arxiv.org/abs/2205.12410


Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Car-
mon, Simon Kornblith, and Ludwig Schmidt. 2022a.
Model soups: averaging weights of multiple fine-
tuned models improves accuracy without increasing
inference time. In Proceedings of the 39th Interna-
tional Conference on Machine Learning.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook
Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, and Ludwig Schmidt.
2022b. Robust fine-tuning of zero-shot models. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
7959–7971.

2061

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://openaccess.thecvf.com/content/CVPR2022/papers/Wortsman_Robust_Fine-Tuning_of_Zero-Shot_Models_CVPR_2022_paper.pdf


A Appendix

A.1 Training details
We build our code using PyTorch (Paszke et al.,
2019) and the HuggingFace library (Wolf et al.,
2020). Each model is trained on a single NVIDIA
A100 GPU with 40GB of RAM, batch size 64 and
gradient accumulation over 5 steps. We train each
model for 20 epochs, without using early stopping.
We compute semantic similarity using sentence-
transformers1 and a publicly available pretrained
model.2

We noticed from preliminary experiments that
the choice of random seed is important when aver-
aging weights of domain adapters. We empirically
found that averaging domain adapters initialized
from different random seeds led to poor perfor-
mance of AdapterSoup. We suggest initializing
the adapters from the same random seed in order
to effectively combine adapters trained on various
domains.

A.2 Dataset sizes
We use textual corpora from 31 of the 100 most
high-resource internet domains of C4. The sizes of
the training domains are shown in Table 4, while
the sizes of the evaluation domains are shown in
Table 5.

A.3 Single-domain AdapterSoup
We present the hyper-parameters we tried in Ta-
ble 6. In this setup, we computed in- and out-
of-domain scores for 455 different combinations
(there are 15 models and computed all Adapter-
Soups of size 3). The trend we observed is
that higher learning rates improved results out-of-
domain, while lower learning rates provided the
best in-domain scores.

A.4 Cross-domain AdapterSoup
We present in Table 7 the evaluation scores of each
of the single adapter models. Each adapter has
been trained in a different training domain (column
1), and evaluated in 10 novel domains.

1https://github.com/UKPLab/
sentence-transformers

2huggingface.co/sentence-transformers/
all-mpnet-base-v2

Ind Training Domain Train (Eval.) Tokens
1 dailymail.co.uk 25M (3M)
2 wired.com 18M (2M)
3 express.co.uk 16M (2M)
4 npr.org 25M (3M)
5 librarything.com 3M (500K)
6 instructables.com 25M (3M)
7 entrepreneur.com 16M (2M)
8 link.springer.com 28M (4M)
9 insiderpages.com 8M (1M)

10 ign.com 10M (1M)
11 eventbrite.com 11M (1M)
12 forums.macrumors.com 22M (3M)
13 androidheadlines.com 14M (2M)
14 glassdoor.com 4M (500K)
15 pcworld.com 14M (2M)
16 csmonitor.com 23M (3M)
17 lonelyplanet.com 6M (1M)
18 booking.com 30M (4M)
19 journals.plos.org 53M (6M)
20 frontiersin.org 38M (6M)
21 medium 22M (3M)

Table 4: Sizes of training corpora. We fine-tune GPT-2
using adapters on each of these domains. We perform
weight-averaging of these 21 domain-adapted LMs.

Ind Novel Domain Train (Eval.) Tokens
1 reuters.com 17M (2M)
2 techcrunch.com 13M (2M)
3 fastcompany.com 14M (2M)
4 nme.com 5M (1M)
5 fool.com 34M (4M)
6 inquisitr.com 13M (2M)
7 mashable.com 14M (2M)
8 tripadvisor.com 7M (1M)
9 ncbi.nlm.nih.gov 23M (3M)

10 yelp.com 68M (6M)

Table 5: Sizes of held-out corpora.

Hyper-parameter Value

learning rates 7e-3, 4e-3
1e-3, 5e-4, 1e-4

random seed 1, 2, 3

Table 6: Hyper-parameters for single-domain Adapter-
Soups. We exhaustively compute the AdapterSoup for
every combination of 3 models in this set.
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Evaluation Domains
Training Domain reuters techcrunch fastco nme fool inquisitr mashable tripadv. ncbi yelp Avg
dailymail 17.6 23.6 24.0 21.1 23.3 18.4 23.6 39.6 20.5 44.3 25.6
wired 18.0 22.0 21.5 22.0 22.9 18.2 22.2 40.0 19.9 41.3 24.8
express 19.5 25.8 26.0 22.6 25.8 20.1 26.3 42.9 23.3 48.9 28.1
npr 20.1 25.5 25.0 27.7 23.3 20.5 23.6 42.1 21.1 42.9 27.2
librarything 19.5 24.5 24.0 24.8 23.6 19.7 24.8 38.9 21.1 39.3 26.0
instructables 20.5 25.5 25.5 25.5 24.5 20.5 25.5 40.0 21.1 41.7 27.0
entrepreneur 18.2 22.4 22.0 22.6 22.9 18.4 23.1 40.9 21.1 43.4 25.5
springer 19.7 25.0 24.5 24.5 25.3 19.9 26.8 42.9 18.4 43.8 27.1
insiderpages 23.1 28.8 29.1 32.1 25.5 23.1 27.9 37.7 23.3 35.9 28.7
ign 18.9 23.8 23.6 22.6 23.3 18.7 23.6 40.9 21.1 39.6 25.6
eventbrite 19.1 24.3 23.8 23.1 24.3 19.3 25.0 39.6 20.9 41.7 26.1
macrumors 20.3 26.0 26.3 26.3 24.5 20.9 25.5 41.3 22.4 43.4 27.7
androidheadlines 20.7 24.8 25.8 26.0 24.5 20.1 25.3 44.7 22.6 42.9 27.8
glassdoor 20.7 26.0 25.8 27.7 24.8 21.1 26.8 42.5 22.0 42.5 28.0
pcworld 18.7 22.6 22.9 23.6 23.1 18.7 23.1 42.1 21.5 42.9 25.0
csmonitor 18.9 24.0 23.8 24.0 23.6 18.9 23.8 41.3 21.5 43.4 26.3
lonelyplanet 20.7 26.0 25.8 25.0 25.3 20.7 26.6 40.4 22.6 42.9 27.6
booking 27.4 33.4 33.1 35.9 31.5 27.4 35.5 37.0 30.6 49.4 34.1
journals 21.3 26.8 26.0 27.4 26.0 21.5 28.2 46.1 18.2 46.5 28.8
frontiersin 21.1 26.8 25.5 27.7 26.0 27.7 26.0 45.6 19.3 46.5 29.2
medium 17.8 22.2 21.8 21.3 25.0 17.8 25.3 39.3 19.9 43.4 25.4

Table 7: We show the performance of each trained adapter (for the cross-domain setting) on the 10 evaluation
domains. Each model has been trained for language modeling with an initial learning rate 1e− 4 for 20 epochs.
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Abstract
In open-retrieval conversational machine
reading (OR-CMR) task, machines are required
to do multi-turn question answering given
dialogue history and a textual knowledge
base. Existing works generally utilize
two independent modules to approach this
problem’s two successive sub-tasks: first with
a hard-label decision making and second
with a question generation aided by various
entailment reasoning methods. Such usual
cascaded modeling is vulnerable to error
propagation and prevents the two sub-tasks
from being consistently optimized. In this
work, we instead model OR-CMR as a unified
text-to-text task in a fully end-to-end style.
Experiments on the ShARC and OR-ShARC
dataset show the effectiveness of our proposed
end-to-end framework on both sub-tasks by
a large margin, achieving new state-of-the-
art results. Further ablation studies support
that our framework can generalize to different
backbone models.

1 Introduction

In a multi-turn dialogue comprehension scenario,
machines are expected to answer high-level
questions through interactions with human beings
until enough information is gathered to derive a
satisfying answer (Zhu et al., 2018; Zhang et al.,
2018; Zaib et al., 2020; Huang et al., 2020; Fan
et al., 2020; Gu et al., 2021). As a specific
and challenging dialogue comprehension task,
conversational machine reading (CMR) (Saeidi
et al., 2018) requires machines to understand the
given user’s initial setting and dialogue history
before the machine itself is able to give a final
answer or inquire for more clarifications according
to rule texts (see Figure 1).

In terms of acquisition of rule texts which are
the main reference for tackling the CMR, there

∗ Corresponding author. This paper was partially
supported by Key Projects of National Natural Science
Foundation of China (U1836222 and 61733011).

Problem Setting: 

Problem Objective:

Closed-Book Setting 
(only one gold rule):

Open-Retrieval Setting 
(multiple retrieved rules):

+

Answer:
Yes

Inquiry Question: 
Is this a personal independence payment?

User Scenario: The rent is $300 above the average in the area.

User Initial Question: Can I ask for mandatory reconsideration 
for this benefit?

Dialogue History: 

Answer:
No

Single Gold Rule Text: You can 
ask for mandatory 
reconsideration for benefits 
including: 
• Maternity Allowance. 
• Pension Credit. 
• Personal Independence             

Payment (PIP). 
• Sure Start Maternity Grant.

Retrieved Rule Text 1: Eligible 
applicants may obtain direct 
loans…
Retrieved Rule Text 2: 
Housing Benefit You dont
need to ask for mandatory 
reconsideration…
Retrieved Rule Text 3: Appeal 
to the tribunal…

Follow-up Question 1: Is this benefit Maternity Allowance?

Follow-up Answer 1: No
Follow-up Question 2: Is this benefit a Pension Credit?
Follow-up Answer 2: No

Figure 1: CMR and OR-CMR Task Overview

is closed-book setting where the rule texts are all
given and there is correspondingly open-retrieval
setting where the rule texts need to be retrieved
from a knowledge base (Gao et al., 2021) (see
Figure 1). In terms of problem objectives, current
approaches in general divide the targets into two
categories, one as decision making and one as
question generation (Zhong and Zettlemoyer, 2019;
Lawrence et al., 2019; Verma et al., 2020; Gao
et al., 2020b,c) . For decision making sub-task, the
machine is required to give decisions to directly
answer the user question which concludes the
dialogue or generate clarifying questions which
continues the dialogue. For question generation
sub-task, the machine is required to generate the
clarifying questions that are essential to the later
final decision making. Following this line of
approaching the CMR task, a variety of works
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have been proposed mainly based on modeling the
matching of elementary conditions (Henaff et al.,
2017; Zhong and Zettlemoyer, 2019; Lawrence
et al., 2019; Verma et al., 2020; Gao et al., 2020b,c;
Ouyang et al., 2021; Zhang et al., 2021) in either a
sequential encoding or graph-based manner.

However, by tackling the CMR task with two
divided sub-tasks, the corresponding division of the
optimization on decision making sub-task and the
optimization on the question generation sub-task
may result in problems including error propagation,
thus hindering further performance advance.
Ouyang et al. (2021) has shown that transferring
some knowledge between the training of two sub-
tasks is beneficial for better performance. However,
reducing the gap between two sub-tasks to achieve
an end-to-end optimization CMR task still needs
further and more comprehensive attempts.

In this work, we propose a completely Unified
end-to-end framework for Conversational Machine
Reading tasks (UNICMR1) to tackle the division
of optimization challenge by formulating the
CMR/OR-CMR task into a single text-to-text task.
Our contributions are summarized as follows:

(i) We completely unify two sub-tasks of OR-
CMR into a single task in terms of optimiza-
tion, achieving a fully end-to-end optimization
paradigm.

(ii) Experimental results on the OR-ShARC
dataset and ShARC dev set show the effectiveness
of our method, especially on the question
generation sub-task with a relatively small amount
of parameters. Furthermore, our method achieves
the new state-of-the-art results on all sub-tasks.

(iii) By further ablation studies, we have shown
that our proposed framework largely advances the
decision making performance, and reduces error
propagation thus boosting the question generation
performance. We have also shown that our
proposed framework can generalize to different
backbone models. Qualitative analysis including
case study has further verified the effectiveness of
our framework.

2 Related Work

2.1 Conversational Machine Reading
The mainstream of research on the conversation-
based reading comprehension task focuses on
either the decision making (Choi et al., 2018;

1Our source codes are available at https://github.com/
KevinSRR/UniCMR.

Reddy et al., 2019; Sun et al., 2019; Tao et al., 2019;
Cui et al., 2020; Yang et al., 2020) or the follow-
up utterance generation (Wu et al., 2019; Bi et al.,
2019; Ren et al., 2019; Gao et al., 2020a). However,
the decision making centered approaches leave
out cultivating the machine’s capability to reduce
the information gap by clarifying interactions.
While the question generation centered approaches
neglect exploring the machine’s capability to
concentrate on target-oriented information and
make vital decisions. In contrast, our work focuses
on a more challenging conversation-based reading
comprehension task called conversational machine
reading (CMR) task (Saeidi et al., 2018; Gao et al.,
2021), which requires machines to make decisions
and generate clarifying questions in a dialogue
given rule texts and user scenarios.

2.2 Open-Retrieval CMR
Most of the current studies on CMR concentrate
on the closed-book setting of CMR where the
essential reference for the final decision, a piece
of rule text corresponding to each dialogue, is
given (Zhong and Zettlemoyer, 2019; Verma
et al., 2020; Gao et al., 2020b,c). One typical
example benchmark is called ShARC (Saeidi
et al., 2018). However, in a more realistic and
also more challenging setting, the machine is
required to retrieve rule texts based on different
scenarios. Similar to the open domain question
answering setting where the supporting texts
are retrieved from external documents to answer
factoid questions (Moldovan et al., 2000; Voorhees
and Tice, 2000), open-retrieval conversational
machine reading (OR-CMR) task is established by
requiring the machine to retrieve useful information
from a given knowledge base composed of rule
texts. In contrast to most of the previous works on
CMR, we focus on OR-CMR in pursuit of a more
realistic and more challenging setting.

2.3 Joint Optimization of CMR
Existing studies generally approach conversational
machine reading task by separating it into two
sub-tasks (Zhong and Zettlemoyer, 2019; Verma
et al., 2020; Gao et al., 2020b,c), decision making
and question generation. Therefore, existing
approaches generally focus on different methods to
extract the fulfillment of rule-related conditions and
conduct explicit entailment reasoning on tracking
the conditions in the dialogues. This includes
applying attention mechanisms on the sequentially
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[QU] Ques. Q [SEP] Scen. S [SEP][SC] [FUQ] Follow-up q₁ [FUA] Follow-up a₁ … [SN] [EDU] EDU₁,₁ [EDU] EDU₁,₂ …

Dialogue History Retrieved Rule TextsUser Question User Scenario

Query Discourse Segmented
Knowledge Base

Text-to-Text 
Encoder-Decoder Model

Answer: Yes Answer: No Answer: Inquire+Generated Question

Setting: 

Existing Models:

Decision Making 
Module

Question 
Generation Module

Entailment 
Reasoning Module

Output: 

Activation 
Signal

Entailment 
States

Our Model:

Our Output Format:

Answer: NoAnswer: Yes Answer: Inquire Generated Inquiry Question

[EOS]

Figure 2: The overall framework for our proposed model (bottom right part) compared with the existing ones
(bottom left part). Note that the ways of preprocessing the problem setting input vary from model to model, but
they are generally similar. And the setting part only shows our preprocessing overview. Also note that [QU], [SEP],
[SC], [SEP], [FUQ], [FUA], [SN], [EDU] are added special tokens while [EOS] is the end-of-sequence token for
encoder-decoder model.

encoded user setups and the dialogue (Zhong and
Zettlemoyer, 2019; Lawrence et al., 2019; Verma
et al., 2020; Gao et al., 2020b,c) and extract
discourse structures for better fulfillment matching
(Ouyang et al., 2021).

However, one of the major challenges emerges as
the division of the optimization of decision making
sub-task and the optimization of the question
generation sub-task. Zhang et al. (2021) have
taken the initial attempt to mitigate the division
between two sub-tasks by considering the encoded
hidden states from decision making in question
generation module. However, it still lacks synergy
of optimization and relies on separate feature
extractions including the entailment reasoning. In
contrast, our work approaches the conversational
machine reading task by unifying the two sub-
tasks into one, enabling an end-to-end joint model
optimization on both the decision making target
and question generation target.

3 Problem Formulation

As shown by Figure 1, in traditional CMR task,
the machine will be given: user scenario S, user
initial question Q, a gold rule text R, and dialogue
history D := {(q1, a1), (q2, a2), . . . , (qn, an)}
which consists of n follow-up question-answer
pairs. The machine is required to do the two sub-
tasks:
• Decision Making. The machine makes a

decision to either answer the user initial question

with Yes or No, or give Inquire 2 which activates
the second sub-task to generate the inquiry question
for more clarification.
• Question Generation. The machine generates

an inquiry question aimed at essential clarifications
to answer the user’s initial question.

Beyond CMR, open-retrieval conversational
machine reading (OR-CMR) (Gao et al., 2021)
further mimics the more challenging second
scenario, which is the focus of this work. As
shown by Figure 1, the difference between the
CMR and OR-CMR lies in the rule text part R.
In CMR, the machine is provided with a gold
rule text in a closed-book style. While in OR-
CMR, the machine needs to retrieve rule texts
from a knowledge base in an open-retrieval style
alternatively. The machine is given a knowledge
base B containing rule texts. Therefore, under
the OR-CMR setting, the machine needs to first
retrieve m rule texts R1, R2, . . . , Rm to complete
the input for the same downstream decision making
and question generation sub-tasks.

4 Framework

Our model is composed of two main modules: a
retriever and a text-to-text encoder-decoder model.

2For the completeness of the conversational machine
reading task, there is an additional decision making answer
Irrelevant which states that the user question is unanswerable.
This is the case for CMR task. However, in our work, we
mainly follow the setting of OR-CMR and assume that no
such answer will be encountered.
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The retriever is applied to retrieve rule texts R1,
R2, . . . , Rm from a given knowledge base B. The
text-to-text encoder-decoder model will take in
the preprocessed textual input and generate the
textual answer directly as a whole. Subsequent
extraction methods will be applied for decision
making and question generation sub-tasks to obtain
the predictions for each sub-task respectively.

4.1 Retriever

To obtain the rule texts, the user scenario S and
user initial questionQ are concatenated as the input
query to the retriever. Our retriever employs the
MUDERN TF-IDF-based method (Gao et al., 2021),
which takes account of bigram features and scores
the similarity between rule texts and queries in the
form of bag-of-words vectors weighted by the TF-
IDF model. Top-scored m rule texts R1, R2, . . . ,
Rm will then be chosen for the following text-to-
text encoder-decoder model.

4.2 Text-to-Text Encoder-Decoder

One of the major challenges of the CMR or OR-
CMR task is the division of sub-task optimizations.
Motivated by T5 (Raffel et al., 2020) which
formulate several traditional NLP tasks into a
unified text-to-text generation task, we unify the
two sub-tasks by formulating the input and output
to our encoder-decoder model as follows.

4.2.1 Input Formulation

Discourse Segmentation. We employ the dis-
course segmentation approach (Shi and Huang,
2019) to parse the retrieved rule texts into
explicit conditions for the model. After
discourse segmentation, each retrieved Ri is
parsed into Ni elementary discourse units (EDUs)
EDUi,1, EDUi,2, . . . , EDUi,Ni . Formulation of
the final input I is shown by the setting part in
Figure 2.

4.2.2 Output Formulation

The output of the text-to-text encoder-decoder will
be a sequence of textual tokens O :={o1, o2,
. . . , ok} where the length k is determined by the
model itself but within the maximum generation
length hyperparameter. To extract the prediction
of the decision making sub-task and the question
generation sub-task respectively, we assume the
first output token o1 is model’s prediction, and the
following tokens {o2, . . . , ok} are the generated

follow-up question, which is only meaningful when
o1 represents the Inquire decision.

4.2.3 Training Objective
In training stage, the labels Y := {y1, y2, . . . , yk}
are formulated as: {Yes Token, [EOS]}, { No
Token, [EOS]}, and {Inquire Token, Follow-up
Question Tokens, [EOS]}.3 The training objective
is defined as:

L = −
k∑

j=1

logP (yj |y<j , I; θ), (1)

where I is the input to our encoder-decoder model
and θ is all the parameters of our model.

5 Experiments

5.1 Experiment Setups

Datasets. Our training and evaluation is based on
the OR-ShARC dataset (Gao et al., 2021). Original
dataset ShARC (Saeidi et al., 2018) contains
948 dialogues trees which is then flattened into
32,436 examples with entries composed of rule
documents, user setups, dialogue history, evidence,
and decision. Derived from ShARC, OR-ShARC
modifies the initial question to be self-contained
and to be independent of gold rule texts. Then the
gold rule texts are removed to form the knowledge
base B of 651 rules. The train and dev set of
ShARC are further split into train, dev, and test set,
with sizes 17,936, 1,105, and 2,373, respectively.

The dev and test set each satisfies that around
50% of examples ask questions based on the rule
texts used in training (seen) and the remaining asks
questions based on the unseen rule texts in training.
This feature of the datasets aims to mimic more
realistic scenario where user may asks questions
on information that the machine has encountered
or has never encountered (Gao et al., 2021).

Evaluation Metrics. For decision making sub-
task, the evaluation is Micro- and Macro- Accuracy
of the decisions. For question generation sub-task,
we adopt the F1BLEU (Gao et al., 2021) which
calculates the F1 score with precision of BLEU
(Papineni et al., 2002) when the predicted decision
is Inquire and recall of BLEU when the ground
truth decision is Inquire.

3To make sure Yes Token, No Token and Inquire Token
have the same length after tokenization, we set the valid tokens
of “1”, “2” and “3” to serve as Yes Token, No Token and
Inquire Token respectively without loss of generality.
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Model
Dev Set Test Set

Decision Making Question Generation Decision Making Question Generation

Micro Macro F1BLEU1 F1BLEU4 Micro Macro F1BLEU1 F1BLEU4

w/ DPR++
MUDERN 79.7±1.2 80.1±1.0 50.2±0.7 42.6±0.5 75.6±0.4 75.8±0.3 48.6±1.3 40.7±1.1
OSCAR 80.5±0.5 80.9±0.6 51.3±0.8 43.1±0.8 76.5±0.5 76.4±0.4 49.1±1.1 41.9±1.8

w/ TF-IDF
E3 61.8±0.9 62.3±1.0 29.0±1.2 18.1±1.0 61.4±2.2 61.7±1.9 31.7±0.8 22.2±1.1
EMT 65.6±1.6 66.5±1.5 36.8±1.1 32.9±1.1 64.3±0.5 64.8±0.4 38.5±0.5 30.6±0.4
DISCERN 66.0±1.6 66.7±1.8 36.3±1.9 28.4±2.1 66.7±1.1 67.1±1.2 36.7±1.4 28.6±1.2
DP-RoBERTa 73.0±1.7 73.1±1.6 45.9±1.1 40.0±0.9 70.4±1.5 70.1±1.4 40.1±1.6 34.3±1.5
MUDERN 78.4±0.5 78.8±0.6 49.9±0.8 42.7±0.8 75.2±1.0 75.3±0.9 47.1±1.7 40.4±1.8
UNICMRbase 75.6±0.4 76.5±0.6 53.7±0.5 46.5±0.2 71.7±1.2 72.2±1.1 48.4±1.5 41.5±1.7
UNICMRlarge 77.7±0.5 78.0±0.6 59.3±1.2 (↑8.0) 52.8±0.9 (↑9.7) 76.7±1.2 (↑0.2) 76.7±1.1 (↑0.3) 54.2±1.4 (↑5.1) 47.9±1.6 (↑6.0)

Table 1: Results on the validation and test set of OR-ShARC. Numerical values in the parentheses show how much
our proposed model outperforms the current SOTA model. The first block presents the results of public models with
the DPR++ retrieval method, and the second block reports the results of TF-IDF retrieval-based public models and
our SOTA model. Our average results with a standard deviation on 3 random seeds are reported. The numbers in
brackets (↑) indicate the improved accuracy over the previous state-of-the-art model.

Model
Dev Set

Decision Making Question Gen.

Micro Macro BLEU1 BLEU4

OSCAR 70.1 75.6 63.3 48.1
UNICMR 72.6 78.0 66.3 53.9

Table 2: Results on the validation set of ShARC (with
large models). Note that the test set of ShARC is not
public hence only the evaluation on dev set is conducted.

Implementation Details. Following the MUD-
ERN model, we employ T5 as our text-to-text
encoder-decoder model and initialize the model
with the pretrained T5-base and T5-large weights4.
For the main model either base or large, we set
the max generation length as 30, number of beams
in generation as 5, and use the first 8 top scored
retrieved rule texts in preparing input. The training
process utilizes AdamW (Loshchilov and Hutter,
2017) optimizer for 16 epochs with a learning
rate of 3e-5. Max gradient norm of 1 is used to
conduct gradient clipping. The batch size is 4
with a gradient accumulation step as 8. Random
seeds 19, 27, and 95 are applied. Experiments are
conducted in two RTX TITAN GPU’s with 24G
memory 5. In training stage, the model with best
F1BLEU4 score on dev set is kept.

4https://huggingface.co/t5-base, and https://
huggingface.co/t5-large, respectively.

5Average training run time for UNICMRlarge is
approximately 12 hours with one GPU. Average inference
run time for UNICMRlarge is approximately 10 minutes on
dev set and 21 minutes on test set with one GPU.

5.2 Quantitative Results

The effectiveness of our proposed method is
verified on both the OR-ShARC and the original
ShARC datasets. In addition, we compare the
number of parameters with related studies. Tables
1-3 present our main experimental results. We will
discuss our findings in the following part.

5.3 Decision Making and Question
Generation performance on OR-ShARC.

Referring to our results reported in Table 1, our
large unified model has achieved new SOTA
question generation performance in both dev and
test sets by a large margin. In terms of decision
making results, our large model lags behind in the
dev set but prevails in the test set performance by
maintaining a stable and consistent performance
when transferring from dev set to test set.

5.4 Performance on ShARC.

As a reference, the performance of the
UNICMRlarge together with the current SOTA
model OSCAR on the dev set of ShARC is reported
on Table 2. Note that, in contrast with OR-ShARC
(Gao et al., 2021), ShARC benchmark (Saeidi
et al., 2018) is in the closed-book setting with
the evaluation metric of the question generation
sub-task as BLEU. Based on the results in Table 2,
it can be seen that UNICMRlarge maintains a new
SOTA performance on dev set by a large margin
for both the decision making and the question
generation sub-tasks. This shows our unified
method is effective for the model’s performance
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Figure 3: Evaluation performance of our model under different number of retrieved rule texts on test set.
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Figure 4: Evaluation performance of our model under different max generation length on test set.

beyond OR-ShARC.

DISCERN OSCAR UNICMR (base/large)

#Param. 330M 1100M 220M/770M

Table 3: The comparison of approximate number of
parameters of some current models.

5.5 Comparison of Model Parameter
Numbers.

We have approximated total parameters of current
high performance models. The information is
shown in Table 3. By comparison of the parameter
numbers used in current high performance models
in Table 3, our UNICMRlarge (based on T5-large)
uses around 770M parameters which generally
prevails the current SOTA model OSCAR using
around 1100M parameters. Our UNICMRbase

(based on T5-base) uses 220M parameters but
prevails models like DISCERN which uses around
330M parameters. UNICMRbase also achieves a
close performance to OSCAR in terms of question
generation. The above observations verify that our
method of unifying optimizing the two sub-tasks

is effective, which enables each sub-task to benefit
from the optimization of the other task.

6 Analysis

6.1 Number of Retrieved Rule Texts

The model performance under different choices
of the number of retrieved rule texts is shown
in Table 7 in Appendix B whose visualization is
shown by Figure 3. We see that generally, when the
number of rule texts increases, there will be more
information which improves our model while also
introducing more noise which harms our model.
In terms of decision making, our model is quite
stable in seen test dataset when the number of rule
texts varies. That means our model well captures
the useful and trash conditions in rule texts and
fulfillment states in dialogue history in the training
stage. Besides, The unusual boost of question
generation performance in the unseen test set might
suggest that using more than the necessary number
of rule texts possibly pushes the model to gain more
power of generalization in the training stage.
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Model Dev Set Test Set
Micro Macro F1BLEU1 F1BLEU4 Micro Macro F1BLEU1 F1BLEU4

UNICMRlarge 77.7 78.0 59.3 52.8 76.7 76.7 54.2 47.9
Closed-Book 82.1 82.1 67.8 62.8 79.4 79.5 60.5 54.8
w/ DPR++ 76.8 77.4 56.8 50.4 75.2 75.2 54.8 48.8
w/o Retriever 71.0 70.9 42.1 35.2 65.8 65.7 35.2 28.7

Table 4: Results of our UNICMRlarge and UNICMRlarge with different retriever module setting on the dev and
test sets of OR-ShARC benchmark. For Closed-Book setting, the OR-ShARC is turned into a closed-book setting
by given the rule texts. For w/ DPR++ setting, the TF-IDF retriever is replaced with DPR++ retriever. For w/o
Retriever setting, the OR-ShARC is approached without rule texts.

6.2 Maximum Generation Length

The model performance under the different choices
of the maximum generation length is shown in
Table 8 6 in Appendix B whose visualization is
shown by Figure 4.

In terms of decision making and question
generation, redundant max generation length will
not affect the performance of the model but
insufficient max generation length will limit the
model performance. This means the model well
learns the difference between different forms of
answers and is able to generate answers of suitable
length accordingly. This verifies the feasibility of
our end-to-end framework design.
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Figure 5: Classwise accuracy on dev set of each epoh.

6.3 Generation Quality Gain Across Training

The classwise accuracy evaluated in the training of
the decision making sub-task is shown by Figure
5. By the initial gap between the accuracy for

6In Table 7, the hyperparameter m (number of retrieved
rule texts) is varied to compare our model performance on the
OR-ShARC test set, test set seen and test set unseen divisions
respectively. In Table 8, the hyperparameter maximum
generation length of the backbone encoder-decoder model
is varied to compare our model performance on the same
datasets. The corresponding performance of the above two
experiments on dev set is shown by Table 9 and Table 10 in
Appendix B for reference. Note in these experiments, all the
hyperparameters remain the same unless explicitly stated.

“Inquire” and the accuracy for other decisions, our
model tends to predict the decision as Inquire
and generate question when not well fine-tuned.
This is due to a gap between the length for the
answer Yes/No and the length for the answer
“Inquire+Generated Question”. And also the innate
property of pre-trained T5 generation model before
well fine-tuned at the beginning which is hence
biased towards the longer answer. As the training
continues, the accuracy for Yes and No gradually
catches up with Inquire even though is slightly
lower. This observation shows the existence of
the bias of our backbone model and also the
effectiveness of our training which large reduces
such bias. This also suggests future improvements
on more targeted training to eliminate the bias and
lessening the discontinuity between the length of
output for Yes/No and the length of output for
“Inquire+Generated Question”.

6.4 Contribution of the Retriever Module
To quantify the contribution of the retriever module,
we conducted an additional experiment where OR-
ShARC is turned into a closed-book setting (see
Closed-Book in Table 4). Also, we replaced the TF-
IDF retriever with the DPR++ retriever introduced
in UNICMRlarge for reference (see w/ DPR++ in
Table 4). Performance of UNICMRlarge without
retriever is also shown (see w/o Retriever in Table
4). The results verify that using the retrieval is
beneficial, which reduces the gap between the
challenging open-retrieval task and the closed-book
task with gold rule texts.

6.5 Discussions of Performance Improvement
To further investigate the source of performance
improvement of our method, more comprehensive
experimental results are shown here following the
deduced conclusions.

First, UNICMR’s unified training format
advances the performance of training T5 separately
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Model Dev Set Test Set
BLEU1 BLEU4 F1BLEU1 F1BLEU4 BLEU1 BLEU4 F1BLEU1 F1BLEU4

w/ T5-large
UNICMR 67.5 59.1 59.3 52.8 55.8 48.3 54.2 47.9
QG-only whole-evaluation 53.3 47.5 49.5 43.1 45.2 40.1 47.0 39.7
QG-only partial-evaluation 71.1 61.0 47.9 40.8 69.4 59.5 45.8 38.9

w/ BART-base
UNICMR 58.4 50.2 52.3 45.1 47.3 40.2 46.9 39.8
QG-only whole-evaluation 62.6 51.4 44.1 37.3 60.4 48.9 40.3 33.5
QG-only partial-evaluation 69.2 57.7 43.3 35.3 66.8 56.7 39.9 33.3

Table 5: Question generation performance of UNICMR compared with models trained only on question generation
sub-task on OR-ShARC. For QG-only whole-evaluation setting, we use all samples by assigning empty generated
question to samples with Yes/No decisions. For QG-only partial-evaluation setting, we use samples only with
inquiry questions. The results are generally divided into two parts, one using T5-large as backbone model and one
using BART-base as backbone model.

Model Dev Set Test Set

Micro Macro Micro Macro

w/ T5-large
UNICMR 77.7 78.0 76.7 76.7
DM-only 73.9 73.7 72.9 72.3

w/ BART-base
UNICMR 74.8 75.7 71.5 71.8
DM-only 72.5 72.4 68.6 68.3

Table 6: Decision making performance of UNICMR
compared with models trained only on decision making
sub-task on OR-ShARC. For DM-only setting, we use
all samples to train our model only on decision making
sub-task. The results are generally divided into two
parts, one using T5-large as backbone model and one
using BART-base as backbone model.

on decision making. See the performance of
T5-large trained for decision making separately
(DM-only in Table 6) compared with the original
UNICMRlarge (UNICMR in Table 6) performance.
The comparison indicates that UNICMR’s stronger
form of unified training improves the model’s
decision making ability.

Second, UNICMR’s unified training format
advances the performance of training T5 separately
on question generation in F1BLEU. Ablation studies
here include the T5-large trained with all examples
(assign empty to examples with Yes and No
decisions) for question generation only (QG-only
whole-evaluation in Table 5), T5-large trained with
examples with gold inquiry questions for questions
generation only (QG-only partial-evaluation in
Table 5), and T5-large-based UNICMR (UNICMR
in Table 5). The results indicate that:

(i) In terms of F1BLEU, UNICMR has domi-
nantly higher performance than other separately
trained models.

(ii) In terms of BLEU7, UNICMR is not the
best, which shows its source of F1BLEU dominance
includes reduction of error propagation.

(iii) For T5-large backbone, UNICMR is higher
in BLEU than QG-only partial-evaluation, which
means UNICMR’s integration of decision making
labels in training is effective.

6.6 Generalizability on Different Backbone
Models

Replacing the T5-large backbone with BART-base,
and repeating the same experiments (see the same
settings but with BART-base as backbone models
in Table 6 and Table 5), leads to same general
conclusions. This shows the effectiveness of
UNICMR’s unified format can well generalize to
different end-to-end architectures.

6.7 Error Analysis and Case Study

To reveal more insights into UNICMR, we
randomly collect test samples and conduct error
analysis (see Figure 6) and case study (see Figure
7 in Appendix A). The ground truth answers are
indicated in red, the TF-IDF scores are indicated
in green, and the predictions of UNICMRlarge are
indicated in blue. The retrieved rule texts are in
descending order in terms of TF-IDF scores.

Error Analysis. The observed test errors are
summarized into four aspects: (1) Noisy Retrieved
Rule Texts which is caused by the innate
deficiencies of TF-IDF retriever with bigram

7Note that BLEU is measured on samples with Inquire
as gold labels only while F1BLEU is measured on all samples
considering both the BLEU when prediction is Inquire and
the BLEU when gold label is Inquire. For F1BLEU calculation
of all QG-only settings, decision making predictions of model
trained only on decision making sub-task are used.
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Error Type UniCMR OutputDialogue Setups

Noisy 
Retrieved 
Rule Texts 

Scen.: It was a donation of stuff I wasn't using 
that I gave to Gift Aid and they got me 25% 
more than anyplace else would.
Ques.: Will I have to pay more tax than I've paid?
His.: (empty)
Gold Rule: Charity donations: tax relief.
If the charity or CASC gets back more tax than 
you’ve paid, HMRC may ask you to pay more tax 
to cover the difference.
Gold Answer: No

Retrieved Rules:

Prediction: Can a charity or community amateur sports club (CASC) register with HM Revenue and customs 
(HMRC)?

(1) [78.43] Donations through Gift Aid: Charities and community amateur sports clubs (CASCs) can register 
with HM Revenue and Customs (HMRC) to be part of the Gift Aid scheme. When they’re registered, they can 
claim back the tax you’ve already paid on your donation. 

(2) [39.25] Charity donations: tax relief. Donations to charity from individuals are tax free. You can get tax 
relief if you donate: * through Gift Aid * straight from your wages or pension, through Payroll Giving 
……

Losing 
Track of 

Some 
Conditions

Scen.: I married my husband Bob when he was 50 
in the year 2014. Unfortunately he died of a 
heart attack in 2015 and never reached the age 
where he was eligible for a state pension.
Ques.: Could I inherit part of my deceased 
partner’s Additional State Pension?
His.: Q: Did you partner reach state pension 
age before April 6 2016? A: No
Gold Rule: (same as the first retrieved rule)
Gold Answer: Would your partner have reached 
state pension age on or after 6 April 2016?

Retrieved Rules:

(1) [149.46] Inheriting Additional State Pension. You might inherit part of your deceased partner’s Additional 
State Pension if your marriage or civil partnership with them began before 6 April 2016 and one of the 
following applies:  * your partner reached State Pension age before 6 April 2016 * they died before 6 April 
2016 but would have reached State Pension age on or after that date

BLEU’s 
Inability on 

Phrase 
Variants

Different 
Condition 
Ordering

Prediction: Did they die before April 6 2016?
……

(2) [99.16] Inheriting or increasing State Pension from a spouse or civil partner. You may inherit part of or all 
of your partner’s extra State Pension or lump sum if:  * they died while they were deferring their State 
Pension (before claiming) or they had started claiming it after deferring * they reached State Pension age 
before 6 April 2016 * you were married or in the civil partnership when they died

Scen.: I require assistance in turning a local 
agricultural area into a hunting and gaming area.
Ques.: Do I get the Additional State Pension 
automatically?
His.: (empty)
Gold Rule: (same as the first retrieved rule) 
Gold Answer: Have you contracted out of the 
state?

Retrieved Rules:
(1) [49.66] Overview. You get the Additional State Pension automatically if you’re eligible for it, unless you’ve 
contracted out of it.
(2) [41.62] Inheriting Additional State Pension. You might inherit part of your deceased partner’s Additional 
State Pension if your marriage or civil partnership with them began before 6 April 2016 and one of the 
following applies: * your partner reached State Pension age before 6 April 2016 * they died before 6 April 
2016 but would have reached State Pension age on or after that date
……
Prediction: Are you eligible for it?

Scen.: (empty)
Ques.: Can I get payment in lieu?
His.: (empty)
Gold Rule: (same as the first retrieved rule) 
Gold Answer: Are you leaving your job?

Retrieved Rules:
(1) [21.83] Getting paid instead of taking holidays. The only time someone can get paid in place of taking 
statutory leave (known as ‘payment in lieu’) is when they leave their job. Employers must pay for untaken 
statutory leave (even if the worker is dismissed for gross misconduct).
……
Prediction: Did you leave your job?

Figure 6: Error analysis of UNICMRlarge by comparison with ground truth answers.

features. (2) Losing Track of Some Conditions
which shows in rare cases UNICMRlarge might
miss some condition fulfillment as UNICMRlarge

does not explicitly model condition fulfillment. (3)
Different Condition Ordering which is caused by
multiple unsatisfied conditions and the flexibility
to inquire any of them. (4) BLEU’s Inability
on Phrase Variants which means predictions are
penalized by BLEU even if they only differ in
unimportant and semantically harmless words.

Case Study. Qualitative improvements of gener-
ated inquiries of UNICMRlarge are summarized
into two aspects: (1) Exactness which means
the capability of capturing the self-contained yet
elementary condition units that need to be clarified.
(2) Robustness to Noisy Retrieved Rules which
means the model can filter noisy retrieved rule
texts to extract unsatisfied conditions. From
the results in Figure 7, it can be seen that
UNICMRlarge generate more suitable inquires
in terms of Exactness and achieves excellent
performance in terms of Robustness to Noisy
Retrieved Rules. This suggests that our fully end-to-
end framework enables the accurate focus on target
conditions and the implicit feature engineering
of UNICMR is powerful to filter noisy retrievals
regardless of the retriever quality.

7 Conclusion

In this paper, we study open-retrieval setting of the
conversation machine reading task and promote a
novel framework to first unify the optimizations of
the two sub-tasks to achieve optimization synergy.
With a retriever module and a parameter-efficient
text-to-text encoder-decoder module, we have
achieved new SOTA results in both the CMR and
the OR-CMR benchmarks. Further experiments
shows that our unified training form with an end-
to-end optimization method largely contributes to
the advanced performance in decision making and
reduces the error propagation to boost question
generation performance. It’s also shown that
our framework well generalize to other backbone
models. Further qualitative analysis also verifies
our framework’s effectiveness.

Limitations

Under the challenging open-retrieval setting, a
retrieval is required to find the related rules texts.
However, the performance of our model may be
hindered by the noise introduced by the irrelevant
rule texts from the retrieval. To conquer this
deficiency, it is beneficial to develop additional
filtering methods to alleviate the influence of
irrelevant rule texts.
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A Case Study

To reveal more insights into our framework, we
randomly collect test samples and conduct the case
study (see Figure 7). The ground truth answers are
indicated in red, the TF-IDF scores are indicated
in green, and the predictions of UNICMRlarge are
indicated in blue. The retrieved rule texts are in
descending order in terms of TF-IDF scores. For
the analysis on cases, please refer to Section 6.7.

B Hyperparameter-Related Experiments

In this section, additional experiments related to
the hyperparameter m (number of retrieved rule
texts) and the hyperparameter maximum generation
length are conducted with their results shown in
Table 7-10.

In Table 7, the hyperparameter m (number of
retrieved rule texts) is varied to compare our model
performance on the OR-ShARC test set, test set
seen and test set unseen divisions respectively. In
Table 8, the hyperparameter maximum generation
length of the backbone encoder-decoder model is
varied to compare our model performance on the
same datasets. The corresponding performance of
the above two experiments on dev set is shown by
Table 9 and Table 10 respectively. Note in these
experiments, all the hyperparameters remain the
same unless explicitly stated.
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Case Type UniCMR OutputDialogue Setups

Exactness

Retrieved Rules:

Prediction: Is it medically appropriate under the law and the profession’s standard of care?

(1) [50.51] Patient Information. Healthcare practitioners may authorize the use of marijuana for any patient 
as long as it's medically appropriate under the law and the profession’s standard of care. The Department of 
Health doesn't keep a list of those specific practitioners that are authorizing, however there is a list of 
healthcare practitioners that are allowed to authorize marijuana for medical marijuana.
……

Robust to 
Noisy 

Retrieved 
Rules

Retrieved Rules:

(1) [40.81] What you can't claim using your Medicare online account. Although you may have a claim for an 
eligible item, you can't claim online if: * the item is for a service provided to someone who isn't on your 
Medicare card * the item is for a service provided more than 2 years ago * the item is for a service provided 
by a hospital or approved day facility inpatient * you've been bulk billed for the item or had the claim 
submitted at your doctor's surgery on your behalf

Prediction: Is it resuscitation training dummies?
……

(2) [38.50] Items that qualify for the zero rate. You may be able to apply zero VAT when you sell the 
following to an eligible charity: * equipment for making ‘talking’ books and newspapers * lifeboats and 
associated equipment, including fuel * medicine or ingredients for medicine * resuscitation training models

His.: (empty)

Scen.: (empty)
Ques.: Could I authorize the use of marijuana for 
this patient?

Gold Answer: If it medically appropriate?

Gold Rule: (same as the first retrieved rule)

His.: Q: Is it rescue equipment? A: No
Gold Rule: Items that qualify for the zero rate. 
The eligible items include: * rescue equipment 
* resuscitation training dummies
Gold Answer: Is it a resuscitation training 
dummy?

Scen.: (empty)
Ques.: Is this item eligible for the zero rate?

(3) [32.56] Items that qualify for the zero rate. The eligible items include: * medical, veterinary and scientific 
equipment * ambulances * goods for disabled people * motor vehicles for medical use
(4) [32.56] (same as the gold rule)

Figure 7: Case study of UNICMRlarge by comparison with ground truth answers.

Test Set
Decision Making Question Generation

Micro Macro F1BLEU1 F1BLEU4

1 6 12 20 1 6 12 20 1 6 12 20 1 6 12 20

Full-Dataset 69.1 74.7 78.5 77.3 69.7 74.7 78.5 77.5 41.2 51.9 53.1 53.3 34.4 45.1 46.3 46.2
Seen 77.6 85.5 88.4 88.3 77.6 85.5 88.4 88.2 53.1 67.6 73.4 71.6 47.9 63.6 69.2 67.2
Unseen 63.0 66.8 71.2 69.3 63.8 66.8 71.0 69.5 29.3 36.9 32.9 36.1 20.5 27.4 23.1 26.2

Table 7: Comparison of our model under different number of retrieved rule texts on test set.

Test Set
Decision Making Question Generation

Micro Macro F1BLEU1 F1BLEU4

10 20 50 70 10 20 50 70 10 20 50 70 10 20 50 70

Full-Dataset 75.6 77.1 77.0 77.0 75.9 77.1 77.0 77.1 35.5 52.2 54.3 54.3 30.3 45.9 47.8 47.8
Seen 87.7 88.2 88.2 88.2 87.7 88.2 88.2 88.2 41.9 67.5 72.2 72.2 39.0 63.7 68.4 68.4
Unseen 66.9 69.0 68.9 68.9 67.3 69.0 69.0 69.0 25.9 37.9 37.4 37.4 18.9 29.0 28.0 28.0

Table 8: Comparison of our model under different max generation length limit on test set.

Dev Set
Decision Making Question Generation

Micro Macro F1BLEU1 F1BLEU4

1 6 12 20 1 6 12 20 1 6 12 20 1 6 12 20

Full-Dataset 65.4 76.6 77.8 77.6 66.3 76.7 78.2 78.2 36.6 58.2 58.9 58.8 29.5 51.6 53.3 51.8
Seen 78.4 88.2 88.8 90.6 78.2 88.1 88.8 90.5 52.7 71.8 74.6 72.6 47.5 66.8 70.7 68.4
Unseen 54.7 66.9 68.8 66.8 56.4 66.7 69.1 68.7 19.7 40.0 38.6 43.1 10.3 30.5 30.5 32.5

Table 9: Comparison of our model under different number of retrieved rule texts on dev set.

Dev Set
Decision Making Question Generation

Micro Macro F1BLEU1 F1BLEU4

10 20 50 70 10 20 50 70 10 20 50 70 10 20 50 70

Full-Dataset 77.6 76.9 77.1 77.1 78.5 77.4 77.7 77.7 46.9 57.2 66.1 61.1 40.8 50.9 54.8 54.8
Seen 91.0 89.4 89.8 89.8 90.9 89.3 89.7 89.7 47.7 71.0 78.1 78.1 44.1 66.6 73.9 73.9
Unseen 66.5 66.6 66.6 66.6 68.5 67.7 67.7 67.7 36.3 40.6 40.7 40.1 27.6 32.2 31.6 31.6

Table 10: Comparison of our model under different max generation length limit on dev set.
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Abstract

Knowledge selection is the key in knowledge-
grounded dialogues (KGD), which aims to se-
lect an appropriate knowledge snippet to be
used in the utterance based on dialogue his-
tory. Previous studies mainly employ the clas-
sification approach to classify each candidate
snippet as “relevant” or “irrelevant” indepen-
dently. However, such approaches neglect
the interactions between snippets, leading to
difficulties in inferring the meaning of snip-
pets. Moreover, they lack modeling of the dis-
course structure of dialogue-knowledge interac-
tions. We propose a simple yet effective gener-
ative approach for knowledge selection, called
GENKS. GENKS learns to select snippets by
generating their identifiers with a sequence-to-
sequence model. GENKS therefore captures
intra-knowledge interaction inherently through
attention mechanisms. Meanwhile, we devise
a hyperlink mechanism to model the dialogue-
knowledge interactions explicitly. We conduct
experiments on three benchmark datasets, and
verify GENKS achieves the best results on both
knowledge selection and response generation.

1 Introduction

To improve the informativeness in open-domain
dialogue agents (Freitas et al., 2020), knowledge-
grounded dialogues (KGD) are proposed to lever-
age external structured (Liu et al., 2019) and un-
structured (Dinan et al., 2019) knowledge to di-
alogue responses. In KGD, it is pivotal to em-
bed factual and conversationally appropriate knowl-
edge in responses. Two classes of approaches are
considered to embed knowledge: end-to-end and
pipeline. End-to-end models, such as FiD (Izac-
ard and Grave, 2021), process the document and
generate the response in one shot. However, they
tend to misuse knowledge (Adolphs et al., 2021).
Pipeline models address this problem by explic-
itly identifying a specific knowledge snippet to

∗Corresponding author.

Do you know Hedy 
Lamarr?

Of course, she has been
described as one of the
great movie actresses!

Which of her movies 
do you know?

She has many classic 
films, such as Lady of 
the Tropics in 1939 and 
Boom Town in 1940.

That is interesting! I'm 
going to watch these 
films!

Besides being an actress, 
she also developed a radio guida
nce system for Allied torpedoes a
t the beginning of World War II.

Hedy Lamarr (born Hedwig Eva Maria 
Kiesler; November 9, 1914 – January 19, 
2000) was an Austrian-born 
American film actress and inventor. 
She has been described as one of the 
great movie actresses of all time.
She became a film star with her 
performance in Algiers (1938). 
Her MGM films include Lady of the 
Tropics (1939), Boom Town (1940), H.M. 
Pulham, Esq. (1941), and White Cargo 
(1942).
Her greatest success was as Delilah in 
Cecil B. DeMille's Bible-inspired Samson 
and Delilah (1949). 
----------

She was honored with a star on the 
Hollywood Walk of Fame in 1960.
----------

At the beginning of World War II, she 
and composer George Antheil 
developed a radio guidance system for 
Allied torpedoes.
This work led to their induction [….]

<1>

<2>

----------

<3>

<4>

<5>

----------

<6>

<7>

<8>
1 2

Intra-knowledge
interaction

Dialogue-knowledge
interaction

Passages Dialogue context

Response

Figure 1: An example of knowledge-grounded dia-
logues. The dialogue agent selects a knowledge snip-
pet (i.e., <7>) from passages and generates a response
based on it. Intra-knowledge interactions and dialogue-
knowledge interactions are denoted by ➀ and ➁, respec-
tively.

be used in the response (Adolphs et al., 2021).
Typically, pipeline KGD approaches have two sub-
steps, i.e., knowledge selection and response gen-
eration (Dinan et al., 2019; Kim et al., 2020): The
former aims to select knowledge snippets from pas-
sages, and the latter generates responses based on
them. Knowledge selection plays a vital role in
KGD as it directly determines the content of the re-
sponse (Lian et al., 2019; Meng et al., 2020). In this
paper, we focus on selecting knowledge snippets
for dialogue to enhance pipeline KGD models.

The Classification paradigm dominates knowl-
edge selection studies. In this paradigm, each snip-
pet is independently classified as “relevant” or “ir-
relevant” (Dinan et al., 2019; Zhao et al., 2020b).
However, these approaches ignore knowledge in-
teractions, which refer to flows of information
within the knowledge or between knowledge and
dialogues. As shown in Figure 1, we identify two
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types of knowledge interactions in KGD:
Intra-knowledge interaction Intra-knowledge

interaction refers to the interactions between
snippets. It is worth noting that the meaning
of a knowledge snippet is context-dependent
and can be ambiguous when taken individually.
For example, the <8> snippet in Figure 1 “This
work led to their” has a referential element their,
and is difficult to identify its meaning without
knowing the remaining context of the sentence.
However, with the existence of the remaining
context, we can quickly infer that it refers to
Lamarr and George Antheil. This problem
challenges existing methods when selecting
knowledge on new topics.

Dialogue-Knowledge interaction Previous
works also neglect interactions between dia-
logue and knowledge. There is a discourse
structure and smooth transition of involved
knowledge in multi-turn dialogue. For example,
Lamarr’s profession mentioned in the dialogue
in Figure 1 is demonstrated in a parallel and
multi-perspective manner, while some other
cases follow a shallow-to-deep structure in
dialogue.

Some recent efforts attempt to fix these problems
within the classification paradigm; for example, Li
et al. (2022) build a semantic graph for passages
to capture intra-knowledge interaction, Kim et al.
(2020) propose sequential knowledge selection to
model the dialogue-knowledge interaction as latent
variables. However, they are complicated, lack
deep semantic interactions, and are challenging
to model the two types of knowledge interaction
simultaneously.

In this work, we propose GENKS (Generative
Knowledge Selection), a simple yet effective gen-
erative model that addresses these challenges.
GENKS first assigns an identifier to each snip-
pet, feeds all the snippets into the model simul-
taneously, and then selects snippets by generat-
ing their identifiers with a sequence-to-sequence
Transformer model (e.g., BART (Lewis et al.,
2020a)). Compared with KGD methods with the
classification paradigm, GENKS captures inter-
actions between knowledge snippets through the
self-attention mechanism in Transformer (Vaswani
et al., 2017). Therefore, GENKS can obviate the
ambiguity in snippets with the existence of the rest
context and improve the understanding of knowl-
edge. Moreover, we propose a hyperlink method to

capture the dialogue-knowledge interactions ex-
plicitly and effectively. Finally, we propose to
joint knowledge selection and response generation
within one generative model.

We evaluate our proposed method on three pub-
lic KGD datasets: Wizard of Wikipedia (Dinan
et al., 2019), Holl-E (Moghe et al., 2018), and
CMU_DoG (Zhou et al., 2018). The experimental
results show that GENKS significantly improves
the accuracy of knowledge selection as well as the
quality of response generation, by establishing new
state-of-the-art on KGD benchmarks. Improve-
ments are particularly significant on unseen topics,
outperforming the BART classification model by
up to 8.1% absolute. GENKS also achieves the best
results as the number of dialogue turns increased,
with an average of 10% improvements over the
BART classification model in the last three turns.
We also compare our model with recent SOTA end-
to-end methods (Shuster et al., 2021), and find our
model can generate responses with fewer hallu-
cinations while having better controllability and
interpretability. The effectiveness of the proposed
method is also validated through human evaluation
and ablative experiments.

Our contributions are summarized as follows:
(1) We propose GENKS, which is the first at-
tempt at generative knowledge selection in KGD.
(2) GENKS captures intra-knowledge and dialogue–
knowledge interactions simultaneously. (3) We
propose a hyperlink method to enhance the inter-
actions between dialogue and knowledge. (4) Ex-
periments verify that GENKS establishes a new
state-of-the-art on KGD1.

2 Related work

Knowledge-grounded dialogues With the ad-
vances in large-scale language models, dialogue
agents can now generate high-quality responses us-
ing parametric knowledge (Thoppilan et al., 2022;
Freitas et al., 2020; Bao et al., 2021). How-
ever, hallucination remains a challenge, which
means that the language model tends to gener-
ate plausible-looking statements that are factually
incorrect (Shuster et al., 2021). To address this
problem, knowledge-augmented approaches are ap-
plied in dialogue generation (Lewis et al., 2020b).
In knowledge-grounded dialogues (KGD), the dia-
logue models first select a knowledge snippet from

1The code is available at: https://github.com/
sunnweiwei/GenKS
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passages and then generate the responses (Liu et al.,
2018; Dinan et al., 2019).

Knowledge selection As the critical step in KGD,
knowledge selection has received many studies.
The exiting methods mainly employ classification
model with dual-encoder (Dinan et al., 2019; Kim
et al., 2020) or cross-encoder (Zhao et al., 2020b)
architecture. However, the classification paradigm
is unable to capture the knowledge interaction in
KGD (Kim et al., 2020; Li et al., 2022). To address
this problem, Li et al. (2022) propose a graph-based
method to capture the relationship between candi-
date snippets, Zhan et al. (2021a) and Wu et al.
(2021) employ machine reading comprehension
model to extract span from long document. Sequen-
tial knowledge selection has also been proposed to
capture the topic transition in conversations (Kim
et al., 2020; Zhan et al., 2021b; Zheng et al., 2020;
Meng et al., 2020; Yang et al., 2022). Despite
their effectiveness, the existing methods have two
drawbacks: (1) they use compact vectors to repre-
sent dialogue and knowledge and thus lack deep
semantic interactions; (2) they are complicated
and challenging to capture intra-knowledge and
dialogue-knowledge interactions simultaneously.
We address these drawbacks by shifting the model-
ing paradigm of knowledge selection to identifier
generation (Sun et al., 2022), and propose GENKS
to capture the two types of interaction simultane-
ously using Transformer (Vaswani et al., 2017).

Generative knowledge selection A generative
paradigm for knowledge selection is not foreign
to the NLP community; for example, sequence-
to-sequence models have been applied on en-
tity retrieval (Cao et al., 2021), document rank-
ing (Nogueira et al., 2020; Tay et al., 2022), multi-
evidence retrieval (Min et al., 2021; Yavuz et al.,
2022), and etc. Our proposed model GENKS dif-
fers from existing methods in the following ways:
(1) we are the first to explore generative knowledge
selection in KGD; (2) we consider the effectiveness
of intra-knowledge interaction; (3) we design hy-
perlinks to capture the interaction between knowl-
edge and dialogue.

3 GENKS

We provide an overview of GENKS in Figure 2. As
shown in Figure 2, the dialogue data is first serial-
ized into a sequence. Then a sequence-to-sequence
model (i.e., BART) is employed to select knowl-

edge and get the response by generating the target
sequence autoregressively. In this section, we first
formulate the task in Section 3.1. Then, we de-
tail the serialization (Section 3.2) and optimization
(Section 3.3) methods.

3.1 Problem formulation

Suppose that we have a case of knowledge-
grounded dialogues (C,K, r), where C =
(c1, ..., c|C|) is a dialogue context that contains
|C| utterances, r is the response to C, K =
(K1, ...,K|K|) denotes |K| passages that are rel-
evant to C; for each i, Ki = (ki,1, ..., ki,|Ki|) de-
notes a passage that contains |Ki| snippets. We
define m =

∑|K|
i=1 |Ki| as the total number of snip-

pets in K. A knowledge-grounded dialogue agent
is decoupled into two modules: a knowledge selec-
tion module P (k|C,K) that selects a snippet from
K; a response generation module P (r|C,K, ks)
where ks is the selected snippet from knowledge
selection module.

3.2 Serialization

We formulate the knowledge selection task as a pro-
cedure of sequence generation. As shown in Fig-
ure 2, the dialogue context C and knowledge can-
didates K are mapped into a sequence and then fed
into a sequence-to-sequence model. The model’s
output is converted back to the selected knowledge
k or the response r.

Specifically, we first assign an identifier to each
snippet in K, sequentially starting from <k1> to
<km>. Then we convert passages K into a sequence
using a template that packages snippets with the
corresponding identifiers and concatenates them in
order; see the green block in Figure 2. Similarly,
the dialogue context C is serialized by adding task
prompts, i.e., task description and speaker name,
as shown in the blue block in Figure 2.

In multi-turn dialogues, the knowledge appear-
ing in the dialogue history prompts the discourse
structure of knowledge transition and knowledge
expression. Hence we propose a hyperlink method
to capture the dialogue-knowledge interaction ex-
plicitly. We provide an example of the hyperlink
method in Figure 2. We see that the first utterance
of User1 refers to a snippet (whose identifier is
<k2>) in the passage “Skateboarding”. We thus add
a hyperlink to the utterance. The hyperlink includes
the identifier and the title of the snippet, i.e., anno-
tating [Skateboarding]<k2> at the beginning of
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Figure 2: Overview of GENKS. The dialogue context and the knowledge are serialized and fed into a seq-to-seq
model, BART. The outputs are the identifier of the selected snippet (i.e., <k5>) and the response.

this utterance (as shown in the red block in Figure
2). Finally, we splice the passages and dialogue
context sequences as input for a Transformer model
(i.e., BART). Therefore, the model can capture the
intra-knowledge and dialogue-knowledge interac-
tions through a self-attention mechanism (Vaswani
et al., 2017).

3.3 Optimization

The knowledge selection model is optimized by
the cross-entropy loss: L = − logP (ktrue|C,K)
, where ktrue denotes the label knowledge. Since
ktrue needs to be labeled manually and is not avail-
able in some scenarios (Zhou et al., 2018), we con-
struct pseudo-labels for model training following
Zhao et al. (2020b) in cases the knowledge label is
absent. In particular, we calculate the F1 score (Di-
nan et al., 2019) between each knowledge snippet
and the response. We use the snippet with the
highest score as the pseudo label. Such a method is
based on the intuition that human responses provide
hints regarding the relevance of the snippets (Zhao
et al., 2020b; Li et al., 2020).

Since both knowledge selection and response
generation are modeled with the generative
paradigm, we unify the two modules with one
joint generative model. In this joint model, the
knowledge selection and the response generation
are optimized jointly, with shared parameters. To
this end, we splice the knowledge identifier ktrue
and response r into one sequence (as shown in
Figure 2). Then, we optimize the sequence-to-
sequence model using cross-entropy loss on all
the tokens of the target sequence. In inference, the
model generates knowledge identifier ks and re-
sponses r in an autoregressive fashion. We note
that the end-to-end model allows the two tasks to
be mutually enhanced and improves the model’s
efficiency.

4 Experimental setup

4.1 Datasets

We conduct experiments on Wizard of Wikipedia
(WoW) (Dinan et al., 2019), Holl-E (Moghe et al.,
2018), and CMU_DoG (Zhou et al., 2018). The
statistical details on these three datasets are shown
in Table 7 in the appendix.
• WoW is an open-domain KGD dataset using

Wikipedia passage as background knowledge.
The test set of Wizard is split into seen and un-
seen versions, where the unseen test set contains
58 new topics not discussed in the training data.

• Holl-E focuses on the movie domain. The
background knowledge consists of plots, com-
ments, and movie reviews collected from dif-
ferent websites. Holl-E has two versions of
the test set: single test and multi-reference test.
In the multi-reference test, there are multiple
human-annotated ground-truth knowledge and
corresponding responses for each instance.

• CMU_DoG focuses on the domain of movies.
The workers discuss a movie in depth given the
background knowledge(e.g., introduction, plots,
and key scenes).

4.2 Baselines

We compare GENKS with baselines of two cate-
gories: (i) End-to-end methods that generate re-
sponse directly without explicit knowledge selec-
tion, and (ii) Pipeline methods that explicitly select
knowledge snippet to be used in response.

The end-to-end methods we consider are:
• BART (Lewis et al., 2020a) that generates re-

sponses without access to the external passage
and uses knowledge inside model parameters in-
stead.

• BART FID (Izacard and Grave, 2021) concate-
nates and encodes each candidate knowledge
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with dialogue separately and fuses all the en-
coded representation in the decoder to generate
the response.

• BART RAG-DPR is a baseline adopted by
Adolphs et al. (2021), which uses DPR-retrieved
passages and produces response usning RAG.

• BART FiD-RAG DPR-Poly (Shuster et al.,
2021) uses DPR-Poly to retrieve passage and
uses FiD-RAG to generate the response.

Regarding the pipeline baselines, according to their
knowledge selection modeling paradigm, we sub-
categorize pipeline baselines into four groups:
(1) The Classification methods, includes:
• SKT (Kim et al., 2020) proposes sequential

knowledge selection.
• DiffKS (Zheng et al., 2020) captures the knowl-

edge differences between adjacent turns.
• DukeNet (Meng et al., 2020) models the knowl-

edge shift and tracking processes with a dual
learning scheme.

• KnowledGPT (Zhao et al., 2020b) exploits pre-
trained language models in KGD.

• MIKe (Meng et al., 2021) distinguish user-
initiative and system-initiative.

• K-Mine (Lotfi et al., 2021) proposes a score-and-
aggregate module.

• TAKE (Yang et al., 2022) propose a topic-shift
aware network.

(2) The MRC methods, includes:
• CoLV (Zhan et al., 2021a) proposes a collabora-

tive latent variable model.
• DIALKI (Wu et al., 2021) proposes a MRC-

based model to extract span from passage.
(3) The Graph-based methods, includes:
• Graph (Li et al., 2022) builds a semantic graph

upon candidate documents and employs a GNN
model.

(4) And the Knowledge generation methods, in-
cludes:
• K2R (Adolphs et al., 2021) uses the RAG-based

model to generate knowledge text and then gen-
erates dialogue response based on it.

4.3 Evaluation metrics

In WoW, we choose perplexity (PPL) of the
ground-truth responses, unigram F12 (Dinan et al.,
2019), Knowledge-F1 (Shuster et al., 2021), and
BLEU-4 (Papineni et al., 2002) score as met-
rics. In Holl-E, we additionally use ROUGE-1,
and ROUGE-2 following Meng et al. (2020). In

2https://github.com/facebookresearch/ParlAI

CMU_DoG, we additionally use embedding-based
metrics includes Average, Extreme, and Greedy
following Zhao et al. (2020b).

In addition, we randomly sample 100 examples
from the WoW test seen and WoW test unseen,
respectively, and recruit three experts for human
evaluation. The annotators are asked to judge the
model-generated response in four ways:
• Fluency, which measures whether the response

is fluency in expression;
• Coherence, which measures whether the re-

sponse is coherence to the dialogue context;
• Relevance, which measures whether the knowl-

edge used in the response is relevant to the dia-
logue; and

• Factuality measures whether the response’s con-
tent is factual. In Factuality evaluation, the ex-
perts check the content using Google.

The annotators are asked to assign a score in {0,
1} (representing “nonfactual” and “factual”) for
factuality, and a score in {0, 1, 2} (representing
“bad”, “fair”, and “good”) for the others.

4.4 Implementation details

We implement the GENKS using BART large (with
400M parameters) (Lewis et al., 2020a) in Hug-
gingFace’s Transformers library. We truncate the
dialogue context to 256 tokens, then truncate the
knowledge so that the total length is less than 1024
tokens. During inference, the responses are de-
coded using a greedy search. See Appendix A for
more details.

Typically, the number of passages in K is large,
so that the input sequence exceeds the maximum in-
put length of BART (i.e., 1024 tokens). To address
this problem, we take advantage of a lightweight
passage selector based on DistilBERT (with 66M
parameters) (Sanh et al., 2019), which aims to rank
the passages in K. Specifically, we concatenate
each passage with dialogue context and encode
the sequence using DistilBERT. Finally, the rep-
resentation of [CLS] token is used to estimate the
relevance score of the passage through a learnable
MLP classifier. The passage selector is optimized
via contrastive learning objective (Nogueira and
Cho, 2019), in which the model learns to assign
a higher score to positive passages than negative
passages. During inference, we keep only the top-1
passage ranked by the passage selector. The pas-
sage selector gets Recall@1 of 75.5%, 76.5%, and
68.0% for the WoW test seen, WoW test unseen,
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Methods WoW Holl-E

Seen Unseen Single Multi

Classification methods
SKT (Kim et al., 2020) 26.8 18.3 29.2 39.2
DukeNet (Meng et al., 2020) 26.4 19.6 30.0 40.3
DiffKS (Zheng et al., 2020) 25.5 19.7 33.0 -
KnowledGPT (Zhao et al., 2020b) 28.0 25.4 - -
MIKe (Meng et al., 2021) 28.4 21.5 31.9 41.8
K-Mine (Lotfi et al., 2021) 29.7 28.3 31.7 -
TAKE (Yang et al., 2022) 28.8 25.8 - -

Other methods
CoLV (Zhan et al., 2021a) 30.1 18.9 32.7 -
DIALKI (Wu et al., 2021) 32.9 35.5 - -
Graph (Li et al., 2022) 29.4 30.8 37.7 46.1

GenKS 34.2 36.6 37.9 46.8

Variants for comparison
- BART classification 29.8 29.7 34.0 44.0
- BART classification w/ position 30.1 31.2 34.0 44.0
- Hierarchical classification 30.0 31.4 33.8 43.7
- Without passage selector 31.4 32.0 34.5 44.4
- Unorder knowledge snippets 31.8 33.3 36.5 45.8
- Without hyperlink 33.4 35.4 36.9 45.4

Table 1: Knowledge selection accuracy on WoW (seen
and unseen test set) and Holl-E (single reference and
multi-reference test set). Bold denote the best results
with significant improvements over the previous SOTA
(t-test, p < 0.05). Underline denote second best results.

and Holl-E, respectively.

5 Experimental results

5.1 Performance on knowledge selection

We evaluate the knowledge selection effectiveness
of GENKS on WoW and Holl-E, respectively3. In
Table 1, we compare the knowledge selection ac-
curacy of GENKS with previous pipeline meth-
ods. Results show that GENKS achieves the best
knowledge selection accuracy on both datasets and
consistently outperforms baselines.

We find that GENKS particularly excels at top-
ics that do not appear during training (see WoW
unseen test split). For example, the classification
models both have noticeable accuracy drops on the
unseen topic. In contrast, models that model the
intra-knowledge interaction (e.g., GENKS, Graph,
DIALKI) can better understand the knowledge of
unseen topics4.

To evaluate the Performance of GENKS as di-
alogue goes deeper, we compare GENKS with

3We cannot evaluate the knowledge selection accuracy on
CMU_DoG because the knowledge snippets used in responses
are not manually labeled.

4The higher results on unseen than seen might be due to
the smaller number of topics in the unseen test set.
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Figure 3: Knowledge selection accuracy over different
dialogue turns. BART-CLS represents a text-matching
model with cross-encoder architecture.

four classification baselines (SKT, DiffKS, Knowl-
edGPT, and BART-CLS) overturns. Figure 3 shows
the results. Both methods achieve good accuracy
in the first few turns. However, as the conversa-
tion dives deeply into a topic, a significant perfor-
mance decline can be seen in baseline methods. In
contrast, GENKS that explicitly captures the multi-
turn dialogue-knowledge interaction, achieves a
relatively high accuracy (around 22%-23%).

5.2 Quality of generated responses

We report response generation evaluation results
on WoW in Table 2. The results on Holl-E and
CMU_DoG are available in Table 8 and Table 9
in the appendix. The results of baselines are cited
from original papers or re-evaluated using officially
released checkpoints.

Compared with previous pipeline models,
GENKS achieve the best Performance on almost all
metrics. For example, GENKS surpasses Knowl-
edGPT by 0.7% and 2.4% in terms of F1 on WoW
seen and WoW unseen, respectively. Note that the
improvements on the unseen test set are more no-
table than on the seen test set, which agrees with
the experimental results regarding knowledge se-
lection. GENKS also achieve competitive results
compared to SOTA end-to-end models. For exam-
ple, GENKS performs comparably to BART FiD-
RAG DPR-Poly on WoW seen and outperformed
on WoW unseen.

5.3 Ablation study about knowledge selection

To analyze the effect of each component in GENKS,
we designed several variants and conducted an ab-
lation study about knowledge selection. Results are
listed in Table 1, “Variants for comparison”. The
details of compared variants and the findings are as
follows:
BART classification We use BART to classify each
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Methods WoW Seen WoW Unseen

PPL F1 KF1 B4 PPL F1 KF1 B4

End-to-end models
BART (Lewis et al., 2020a) 14.7 20.9 17.4 1.7 18.9 18.8 15.1 0.9
BART FiD (Izacard and Grave, 2021) 17.0 21.5 20.0 3.6 18.4 20.6 19.2 3.2
BART RAG-DPR (Adolphs et al., 2021) 11.5 22.6 26.1 3.7 13.1 21.5 22.7 3.0
BART FiD-RAG DPR-Poly (Shuster et al., 2021) 11.4 22.1 29.7 4.1 13.1 21.1 27.1 3.8

Pipeline models
DukeNet (Meng et al., 2020) 48.3 19.3 18.5 2.4 69.4 17.1 16.5 1.7
CoLV (Zhan et al., 2021a) 39.5 20.3 18.2 2.8 54.3 18.5 17.5 2.1
KnowledGPT (Zhao et al., 2020b) 19.2 22.0 23.8 3.7 22.3 20.5 22.1 3.0
K-Mine (Lotfi et al., 2021) 13.2 21.8 - - 16.4 21.1 - -
K2R RAG-DPR (Adolphs et al., 2021) 18.3 22.0 27.3 3.7 22.3 19.9 23.2 2.8
K2R BART RAG-DPR (Adolphs et al., 2021) 17.9 21.3 29.2 3.5 21.1 19.9 24.3 2.5

GenKS 13.1 22.9∗ 29.5 4.5∗ 13.2 22.7∗ 28.1∗ 4.6∗

Ablative variants
- With BART classification knowledge 14.7 22.0 25.9 3.5 16.2 21.1 24.4 3.1
- Without identifiers generation 13.8 21.7 23.2 3.7 14.1 21.8 23.3 3.9
- Without hyperlink 14.2 22.1 27.2 3.9 15.5 22.3 26.9 4.2
- With oracle knowledge 8.9 38.8 74.2 13.1 10.5 38.9 74.5 12.8

Table 2: Evaluation results on WoW seen and unseen test set in terms of response quality. We compare against the
ground-truth dialogue response in terms of perplexity (PPL), F1, Knowledge F1 (KF1), and BLEU-4 (B4). The
four groups lists previous end-to-end models, previous pipeline models, GenKS, and ablative variants. The best
results are highlighted with bold, and the second-best results are highlighted with underline. * indicates significant
improvements over all baselines with p-value < 0.05.

candidate snippet into two classes: “relevant” or
“irrelevant”. The results show that BART in the clas-
sification paradigm performs worse than GENKS
by a large margin.

BART classification w/ position To understand the
influence of position bias, we splice the snippet’s
position into the classification model’s input. We
find that the results are improved to a certain extent
(about 1% improvement), but there is still a clear
gap compared with GENKS.

Hierarchical classification This variant first uses
the passage selector model of GENKS to rank the
passages and then selects the snippets in the top-
ranked passage using BART classification w/ po-
sition. The results show that the passage selector
does not affect the classification model’s Perfor-
mance.

Without passage selector When the passage selec-
tor model of GENKS is removed, the model has
more probability of truncating the label knowledge,
resulting in an evident decline in Performance.

Unorder knowledge snippets To disable the intra-
knowledge interaction, we unorder the snippets so
that order of the snippets is inconsistent with the
original passages. This variant shows a decline
in selection accuracy, especially on unseen topics,
indicating that keeping the order of the snippets in

the passage is necessary.
Without hyperlinks We remove the hyperlinks in
the dialogue context. About a 1% accuracy drop is
seen, indicating the effectiveness of hyperlinks.

5.4 Ablation study about response generation
As shown in Table 2, we also conduct an ablation
study about response generation. The details of
compared variants and the findings are as follows:
With BART classification knowledge When re-
placing the generated identifier with the knowledge
selected by BART classification, a performance de-
cline is witnessed –the F1 value drops by 0.7% and
1.8% on Wizard seen and unseen, sustaining the ef-
fectiveness of the knowledge selection of GENKS.
Without identifier generation This variant re-
moves the identifier generation by directly gen-
erating the response. We see notable performance
drops, especially in the KF1 metric. The results
indicate that explicit training and inference about
knowledge selection enable to use of more appro-
priate knowledge in response generation.
Without hyperlinks This variant removes hy-
perlinks from GENKS. It performs worse than
GENKS, probably due to its lower accuracy of
knowledge selection than GENKS.
Use the oracle knowledge We replace the model-
predicted snippet identifier with the oracle one
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Methods WoW Seen WoW Unseen

Flu. Coh. Rel. Fact. Flu. Coh. Rel. Fact.

BART 1.82 1.51 1.45 0.82 1.76 1.50 1.47 0.76
BART FiD 1.88 1.70 1.55 0.84 1.85 1.67 1.53 0.82

TMN 1.59 1.41 1.08 0.62 1.42 1.30 0.98 0.59
DukeNet 1.69 1.56 1.22 0.71 1.66 1.47 1.10 0.72
KnowledGPT 1.89 1.67 1.58 0.87 1.87 1.68 1.51 0.83
GenKS 1.90 1.72 1.69 0.89 1.91 1.71 1.67 0.91

Table 3: Human evaluation results. Flu, Coh, Rel, and
Fact denote Fluency, Coherence, Relevance, and Factu-
ality, respectively.

KS RG ACC F1

BART RAG (Adolphs et al., 2021) 0 11.5 - 21.5
BART FiD∗ (Shuster et al., 2021) 0 25.4 - 21.1

KnowGPT (Zhao et al., 2020b) 12.5 7.4 25.4 20.5
K2R∗ (Adolphs et al., 2021) 11.8 8.2 - 19.9
DIALI∗ (Li et al., 2022) 8.2 - 35.5 -
Graph∗ (Li et al., 2022) 15.4 - 30.8 -

GenKS 2.9 8.8 36.6 22.9

Table 4: Inference time (minutes) on one GPU on WoW
unseen test set. The values of model with ∗ are estimated
based on the model size and input/output length. KG
and RG denote inference time for knowledge selection
and response generation stage, respectively.

(knowledge used by ground-truth response). The
results (e.g., KF1=74) suggest that GENKS can
effectively locate and incorporate the correspond-
ing knowledge into the responses following the
guidance of the identifier.

5.5 Human evaluation

Table 3 shows the human-evaluating results. Re-
sults show that GENKS consistently outperforms
baselines on all datasets. The Fleiss’ kappa
value is above 0.60, indicating substantial agree-
ment among the annotators. GENKS outperforms
KnowledGPT by about 0.02 and DukeNet by about
0.20 in terms of response generation evaluation
metrics (i.e., Fluency and Context Coherence).
Moreover, for the Knowledge Relevance, the an-
notators agree that GENKS is capable of selecting
knowledge that is more relevant to the dialogue and
generating more informative responses than base-
lines. The Factuality results show that by explicitly
identifying the knowledge snippet used in response,
GENKS can reduce the hallucination of response
generation.

Methods WoW Seen WoW Unseen

F1 KF1 B4 F1 KF1 B4

GenKS 22.9 29.5 4.5 22.7 28.1 4.6
GenKS-2 22.4 29.3 4.2 22.2 27.6 4.2

GenKS (5 Snippets) 22.3 27.6 4.2 21.8 25.5 4.1
GenKS (3 Snippets) 21.1 29.3 3.2 20.0 20.9 2.9
GenKS (128 Tokens) 21.5 25.6 3.5 20.7 22.9 3.4
GenKS (64 Tokens) 20.7 23.3 3.0 20.1 20.6 2.9

Table 5: Analytical experiment results on WoW. The
first group compares GENKS and its variant GENKS,
which selects two snippets instead of one. The second
group includes the results of GENKS with different
maximum number of snippets inputs or maximum input
tokens.

5.6 Efficiency evaluation
To evaluate the efficiency of GENKS, we com-
pare the model with previous end-to-end models
and pipeline models. The results listed in Ta-
ble 4 show that GENKS is more efficient than
previous pipeline models. We infer that this phe-
nomenon is because GENKS jointly models knowl-
edge selection and response generation, avoiding
repeated encoding of dialogue history and knowl-
edge. As a pipeline method, we also find that
GENKS achieves comparable efficiency compared
to end-to-end models like RAG, but benefits from
explicit knowledge selection.

5.7 Analytical experiment
Multi-snippets selection GENKS select a single
snippet following the experimental setup outlined
in the baselines (Dinan et al., 2019), but it can
also select multiple snippets by generating multi-
ple identifiers. We test a variant of our GENKS
model, GENKS-2, which selects two snippets by
generating two identifiers consecutively. We com-
pared its performance with the original GENKS
on the WoW dataset. The results are listed in Ta-
ble 5 group 1. GENKS-2 performs slightly worse
than the original GenKS, likely because the WoW
dataset only uses one snippet in response anno-
tation and therefore does not benefit from using
multiple snippets (Dinan et al., 2019). Neverthe-
less, the results suggest that the proposed genera-
tive knowledge selection approach has the ability
to select multiple knowledge.

Hyper-parameter analysis We also conduct ab-
lation experiments on the number of input snippets
to the model and maximum input tokens. The re-
sults are listed in Table 5 group 2. We find that
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Topic Budweiser
User I think Budweiser taste terrible. Have you ever had

it?

Know 1 Produced in various breweries around the world,
Budweiser is a filtered beer available in draft and
packaged forms.

Res 1 Yes, I have. It is produced in various breweries
around the world!

Know 2 Budweiser is an American-style pale lager produced
by Anheuser-Busch, currently part of the transna-
tional corporation Anheuser-Busch InBev.

Res 2 Yes, I have. I know that it is an American-style pale
lager produced by Anheuser-Busch.

Table 6: Examples of GENKS outputs on the WoW.

reducing the number or length of knowledge re-
duces model effectiveness.

5.8 Case study

To better understand end-to-end baselines and our
model, we provide an example in Table 6, which
shows that GENKS appropriately changes its re-
sponse prediction when providing different knowl-
edge snippets5. Therefore, GENKS is more con-
trollable and interpretable than end-to-end models,
where the end-to-end system is a black box. We
provide more case studies in Appendix B.

6 Conclusion

In this paper, we have proposed GENKS, a sim-
ple yet effective knowledge-grounded dialogue
model. GENKS is a generative model, which learns
to select knowledge snippets by generating their
identifiers. Benefiting from the modeling of intra-
knowledge interaction and dialogue-knowledge in-
teraction, GENKS effectively addresses the chal-
lenges of ambiguity and discourse structure. Our
experiments have shown that GENKS establishes a
new state-of-the-art on three knowledge-grounded
dialogue benchmarks. Notably, GENKS particu-
larly excels at new topics and as the dialogue goes
deeper. GENKS also outperforms SOTA end-to-
end models. Hence, we believe GENKS reveals
a new paradigm for knowledge selection in open-
domain dialogue.

5Note that this example only aims to show the output of the
model. In fact, according to https://en.wikipedia.org/
wiki/Budweiser, Budweiser is also a famous lager from the
Czech Republic, and the American Budweiser being sold and
known as Bud through most of the European Union.

Limitations

The limitations of this work include the modular
modeling of passage reranks, which reduces the ef-
ficiency of the approach. Besides, we only conduct
human evaluation on one popular dataset, i.e., Wiz-
ard of Wikipedia. Furthermore, the effectiveness
of GENKS is only verified in the English dataset.
Research on other languages establishes a new chal-
lenge, especially for languages with limited knowl-
edge and annotated data. In future work, we would
like to explore more efficient passage rerank tech-
niques on knowledge-grounded dialogues. We will
also conduct human evaluation for more datasets.
Besides, generative knowledge selection can be
extended to future studies about conversational rec-
ommendation.

Ethics statement

The paper proposes a knowledge-grounded dia-
logue system to generate a response using external
knowledge. The intended use of this system is to
perform chit-chat with the user on topics such as
books and movies. The system is developed us-
ing large pre-trained language models (i.e., BART),
who are trained on large-scale web data known
to contain biased or discriminatory content. The
datasets (i.e., WoW, Holl-E, CMU_DoG) that we
train on also include subjective knowledge (com-
ments on movies) that may express the bias of the
writers. Although the system is able to reduce the
hallucination of response compared to end-to-end
models, the outputs from our system may still con-
tain non-factual information and should not be con-
sidered as advice for any critical decision-making.
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WoW Holl-E CUM_DoG

Training size 18,430 7,228 3,373
Validation size 1,948 930 229
Test size 965 / 968 913 619
Number of topics 1,365 858 30
Avg. Turn per dialogue 9.0 10.1 22.2
Avg. Num of snippets 62.5 57.3 36.3
Avg. Num of passages 11.6 5.9 4.0

Table 7: Statistics of two experimental datasets, Wizard
of Wikipedia (WoW), Holl-E, and CMU_DoG. The two
numbers in WoW indicate the size of seen and unseen
test set, respectively.

F1 B4 KF1 RG1 RG2

BART (Lewis et al., 2020a) 34.7 22.3 29.1 38.0 27.9

CoLV (Zhan et al., 2021a) - 20.3 - 32.0 25.8
MIKe (Meng et al., 2021) 32.1 21.1 - 38.0 25.2
Graph (Li et al., 2022) - - - 42.5 34.4

GenKS 36.7 24.3 31.3 42.3 35.2

Table 8: Results on Holl-E in term of response quality.
RG1 and RG2 denote ROUGE-1 and ROUGE-2 respec-
tively. Best results are heighten with bold.

A Implementation details

We use gradient clipping with a maximum gradient
norm of 0.1. We optimize the model for up to 5
epochs with a batch size of 16 on 4 3090 GPUs
with 24G memory. We choose the model check-
points by evaluating the metrics on the validation
set for each epoch. During inference, the responses
are decoded using a greedy search. We have tried
some advanced decoding algorithms (e.g., nucleus
sampling) and found no improvement. The train-
ing of the model can be completed within 5h, and
the latency of the model inference for one exam-
ple is within 0.1s. The passage rerank model gets
Recall@1 of 75.5%, 76.5%., 61.0% for WoW test
seen, WoW test unseen, and Holl-E, respectively.

PPL F1 Avg. Ext. Greedy

ITDD (Li et al., 2019) 26.0 10.4 0.748 0.390 0.587
DRD (Zhao et al., 2020a) 46.1 10.8 0.791 0.406 0.613

TMN (Dinan et al., 2019) 75.2 9.9 0.789 0.399 0.615
KGPT (Zhao et al., 2020b) 20.6 13.5 0.837 0.437 0.654

GenKS 16.1 14.1 0.847 0.442 0.668

Table 9: Results on CMU_DoG in term of response
quality. The best results are highlighted with bold.

Topic Nickelback
User Do you like Nickelback?

...
User Yes, what more can you tell me about Nickelback?

System Chad Kroeger is the leading vocalist of the group.
User Amazing. What about the other group members

Passage The band is composed of guitarist and lead vocalist
Chad Kroeger, guitarist, keyboardist and backing vo-
calist Ryan Peake, bassist Mike Kroeger, and drum-
mer Daniel Adair.

TMN i think the song is a very popular song
DukeNet chad kroeger is a great band

KGPT the lead vocalist is chad kroeger. he is also the drum-
mer.

GenKS Chad Kroeger, Ryan Peake, Mike Kroeger and
Daniel Adair.

Human Ryan Peake is the keyboardist an Mike Kroeger is
the bassist.

Table 10: Case study on the Wizard Test Unseen dataset.
This table shows an example where both GENKS and
baselines select the proper knowledge.

Topic List of national parks of the United States
User I love national parks dont you

...
User I live in Arkansas and love the Hot SPrings National

Park and have been there many times, really it is
beautiful

DukeNet i have heard the city is located in the ouachita moun-
tains among the us

KGPT i’ve been to the ouachita mountains, too! i’ve been
to the ouachita mountains in the ouachita mountains.

GenKS I’ve never been to Hot Springs, but I’ve always
wanted to go to there.

Human I’ve never been to that one! I bet its beautiful!

Table 11: Case study on the Wizard Test Unseen dataset.
This table shows an example where both models select
the wrong knowledge.

B Case study

To better understand baselines and our model, we
present two examples in Table 10 and Table 11.
Table 10 show example where both GENKS and
baselines select out the proper knowledge (i.e., the
knowledge snippet shown in green). We see that
the response generated by GENKS is more appro-
priate to the dialogue context than baselines, while
KnowledGPT’s response does not answer User2’s
question and is also factually incorrect. In Ta-
ble 11, we observed that although neither GENKS
nor the baselines selected the label knowledge, the
response generated by GENKS is still more natural
and coherence. We also find that KnowledGPT
is more colloquial than GENKS but has problems
with hallucinations.
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Abstract

Neural models for abstractive summarization
tend to generate output that is fluent and well-
formed but lacks semantic faithfulness, or fac-
tuality, with respect to the input documents.
In this paper, we analyze the tradeoff between
abstractiveness and factuality of generated sum-
maries across multiple datasets and models, us-
ing extensive human evaluations of factuality.
In our analysis, we visualize the rates of change
in factuality as we gradually increase abstrac-
tiveness using a decoding constraint, and we
observe that, while increased abstractiveness
generally leads to a drop in factuality, the rate
of factuality decay depends on factors such as
the data that the system was trained on. We
introduce two datasets with human factuality
judgements; one containing 10.2k generated
summaries with systematically varied degrees
of abstractiveness; the other containing 4.2k
summaries from five different summarization
models. We propose new factuality metrics that
adjust for the degree of abstractiveness, and
we use them to compare the abstractiveness-
adjusted factuality of previous summarization
works, providing baselines for future work.1

1 Introduction

Summarization is the task of generating a seman-
tically faithful, well-formed and concise text rep-
resentation of the input. Automatically generated
summaries have traditionally been extractive (Luhn,
1958; Edmundson, 1969; Neto et al., 2002; Erkan
and Radev, 2004; Wong et al., 2008), leading to
issues with readability and coherence, as different
extracted fragments may not fit well when taken
out of their original contexts (Poibeau and Sag-
gion, 2012). Researchers have also invested in
methods for abstractive summarization, aiming
to paraphrase the input documents’ main points

∗∗Work conducted during his position at Amazon.
1Code and data are available at https:

//github.com/amazon-science/
abstractive-factual-tradeoff.

Figure 1: Three successively more abstractive sum-
maries generated from the same input article, with MINT
abstractiveness scores (Section 2.1) of 46.1%, 67.2%,
79.5%. Fragments extracted from the input are marked
from red (longer fragments) to yellow (shorter frag-
ments). The bottom summary has factual errors.

without borrowing their exact lexical expressions
(Radev and McKeown, 1998; Saggion and La-
palme, 2002; Ganesan et al., 2010; Genest and
Lapalme, 2012; Radford et al., 2019; Gehrmann
et al., 2019; Lewis et al., 2019; Zhang et al., 2020).
Abstractive summaries generated by today’s neural
models tend to be fluent and well-formed, but lack
semantic faithfulness (Cao et al., 2017; Kryscinski
et al., 2019). Observed rates of factual errors in
abstractive summaries have ranged from 30% to
over 75% (Cao et al., 2017; Maynez et al., 2020).
The research community is developing automatic
factuality metrics (Wang et al., 2020; Kryscinski
et al., 2020; Goodrich et al., 2019; Goyal and Dur-
rett, 2020; Ribeiro et al., 2022) and methods that
attempt to increase factuality (Fan et al., 2018;
Scialom et al., 2019; Zhang et al., 2019; Falke
et al., 2020; Cao and Wang, 2021). However, the
factuality problem of abstractive summaries can-
not be well understood without considering the
degree of abstractiveness of a given summary: Any
summary is on a spectrum between extractive and
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Figure 2: Four extremes
at the abstractiveness-
factuality spectrum.

abstractive (See et al.,
2017). Summaries
that are extractive to
a larger extent tend
to be more factual
since copying text
from the input into
the summary rarely
introduces factual er-
rors while the task of

paraphrasing, which results in summaries that are
more abstractive, is harder and prone to seman-
tic errors. As an example, Figure 1 shows part
of a Washington Post article and three summaries
with increasing abstractiveness, which we have gen-
erated using our abstractiveness constraints (Sec-
tion 2.2). The first two summaries are correct, but
the third, most abstractive, summary has factual
errors, misinterpreting the input.

Few authors have discussed this connection ex-
plicitly. Lebanoff et al. (2019) observe that ab-
stractive summaries consisting of concatenated ex-
tracted fragments tend to be more factual than those
created by more complex fusion. Durmus et al.
(2020) observe that models trained on the more
extractive CNN/DM dataset (Hermann et al., 2015)
create more factual summaries than models trained
on the more abstractive XSum dataset (Narayan
et al., 2018). We show that such models differ in
factuality even when we bias them to generate sum-
maries that have similar levels of abstractiveness.
Our analysis (Section 4) situates summarization
models on the spectrum outlined in Figure 2, where
factual summaries range from “trivially factual”
(extractive) to truly “paraphrasing” (abstractive).
We make the following contributions:

1. We systematically explore the relationship of
abstractiveness and factuality and show how
factuality decays with increasing abstractive-
ness. We argue that factuality rates of different
systems cannot be compared without taking
their degrees of abstractiveness into account.

2. We introduce new factuality metrics that
take abstractiveness into account and evaluate
the abstractiveness-factuality tradeoff across
various datasets and summarization models.
We establish baselines that will allow oth-
ers to demonstrate progress on mitigating the
abstractiveness-factuality tradeoff.

3. We introduce a new dataset containing 10.2k
summaries with systematically varied degrees

of abstractiveness along with human factuality
judgements, and a second dataset containing
4.2k summaries from five summarization mod-
els with their human factuality judgements.

2 Abstractiveness

2.1 Measuring Abstractiveness

In this paper, we wish to analyze the relationship
of abstractiveness and factuality of generated sum-
maries. We start by proposing a comprehensive ab-
stractiveness metric. Abstractiveness measures the
amount of rephrasing, i.e., the degree to which the
words, phrases and sequences of the generated text
have not been extracted from the corresponding in-
put; a fully abstractive summary method expresses
the main points of the input in its own words. To
measure abstractiveness, most authors list the pro-
portions of summary n-grams of varying lengths
that are novel, i.e., do not occur in the correspond-
ing inputs (See et al., 2017; Narayan et al., 2018;
Gao et al., 2019). Grusky et al. (2018) proposed a
new metric also based on contiguous overlapping
text spans, density, measuring the average length of
extracted fragments in a summary. Others have pro-
posed metrics that take common non-contiguous
subsequences into account, e.g., perfect fusionk
(Durmus et al., 2020) measures the percentage of
summary sentences that assemble substrings from
k source sentences in their original order.

Based on these previous works, we define a
comprehensive abstractiveness metric that com-
bines measures of contiguous and non-contiguous
extractive summary fragments, making it sensi-
tive to different kinds of abstractiveness and there-
fore suitable as a general abstractiveness metric.
We define this metric as a ratio, in order to fa-
cilitate combining it with a factuality metric of
the same [0,1] range (Section 4). Let χ(x,y) =
hmean(p1, p2, p3, p4, lcsr) be a measure of extrac-
tive overlap between input x and summary y, using
the harmonic mean of multiple component mea-
sures. Each pn, short for pn(x,y), is the n-gram
precision of the n-grams in y with respect to x, i.e.,
the percentage of n-grams in y that are extracted
from x.2 Following common practice (Papineni
et al., 2002), we use n-grams up to length four. We
do not include density in χ(x,y) as its range is un-
bounded. The measure lcsr (longest common sub-

2We smooth all n-gram counts (Chen and Cherry, 2014)
to avoid undefined or zero harmonic mean values in highly
abstractive summaries. See Appendix A for details.

2090



Figure 3: Example of input and highly extractive gener-
ated output. The color coding is the same as in Fig. 1.

sequence ratio), short for lcsr(x,y), is the length of
the longest common subsequence (LCS) between x
and y divided by the length of y. lcsr, inspired by
ROUGE-L (Lin, 2004), generalizes perfect fusionk
to consider all instances of non-contiguous over-
laps between input and summary. Adding a mea-
sure of non-contiguous overlap is important as it
detects overlaps that are long but broken up by mi-
nor changes, such as synonyms, as in the example
in Figure 3. Finally, the MINT (Metric for lexical
independence of generated text) abstractiveness
measure is defined as MINT(x,y) = 1− χ(x,y).
For a set of inputs and their summaries, we re-
port the average MINT score. See Figure 1 for
the MINT scores of three increasingly abstractive
example summaries. In Section 5, we show that
MINT scores correlate hightly with density scores.

The described MINT score capitalizes on prior
work to provide a comprehensive and unified met-
ric for abstractiveness of conditionally generated
text, combining measures of contiguous and non-
contiguous overlap into a single percentage score.
The implementation of MINT we provide will facil-
itate standardized comparisons of abstractiveness
across different works.

2.2 Nonlinear Abstractiveness Constraints
We now introduce nonlinear abstractiveness con-
straints (NAC), which enable us to control the de-
gree of abstractiveness at decoding time; it will
allow us to use a trained summarization model to
decode input multiple times while applying con-
straints to control the abstractiveness of the gener-
ated text output (e.g., see Figure 1). We will use
this technique to analyze the impact of abstractive-
ness on factuality (Section 4).

Let F(x,y) be the set of the longest extractive
fragments in the decoding output y with respect
to the input x. In Figure 1, such fragments are
marked in color for each summary. We define a
function λh(|f |) that assigns a discount probability
to any extractive fragment f ∈ F(x,y):

λh(|f |) = 2−|f |
2/h2 (1)

1 2 3 4 5 6 7
Extractive fragment length

0.00
0.25
0.50
0.75

λ
h

h=4

h=2

Figure 4: λh defines discounts for extractive fragments
based on their lengths. Smaller h values lead to more
abstractive summaries.

We configure this function3 with h, interpreted
as the length of an extracted fragment for which
λh = 0.5. Decreasing h results in a λh that dis-
counts shorter extractive fragments more strongly,
leading to increased abstractiveness (see Figure 4).
Our discount penalty grows nonlinearly, affecting
longer extractive fragments more strongly than mul-
tiple shorter ones with the same combined length.
To see why we choose a nonlinear penalty, con-
sider for example that extracting a 10-gram makes
a summary more extractive than using ten words
from the article separately, since an extracted 10-
gram will be highly recognizable as stemming from
the input. This nonlinearity is in contrast to Weber
et al. (2018), which used a linear penalty to control
the amount of copying in a pointer network.

In decoding, we search for the summary ŷ that
maximizes the product of the summarization model
probability, pM(y | x), and the discount probabili-
ties of the extractive fragments F(x,y):

ŷ = argmax
y

pM(y | x)×
∏

f∈F(x,y)
λh(|f |) (2)

Beam Decoding. The model probability
pM(x,y) in neural text generation models (Sec-
tion 5.1.1) decomposes for token-by-token decod-
ing as

∏|y|
i=1 pM(yi | x, y1, . . . , yi−1). Similarly,

we decompose the application of the λh function
for any partial or completed extractive fragment f :

λh(|f |) =
|f |∏

l=1

λh(l)

λh(l − 1)
(3)

Therefore, to successively apply λh at each out-
put position i in beam decoding, each candidate for
token yi is evaluated to check whether choosing it
would extend an extractive fragment to length l. If
so, its model probability pM(yi | . . . ) is multiplied
with λh(l) and the λh(l − 1) that was applied to
the previous token yi−1 is divided out. We are not

3Additionally, the exponent used in |f |2 and h2 could be
configured, but we keep it at 2 in our experiments. A larger
exponent would result in a steeper descent around h.
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Figure 5: Screenshot (part) of a Mechanical Turk task (HIT) to judge the factuality of a summary sentence (in blue)
with respect to news articles. Darker green article sentences are more similar to the blue summary sentence. The
full task showed sentences from two more articles in the same cluster; from the Multi-News test set.

aiming to control the length of the generated out-
put; instead we penalize the model in proportion to
the length of any phrases it would extract from the
input and encourage it to use novel phrases instead.
Extraction Rewards. We can choose to apply an
extraction reward, rather than a penalty, by using
the inverse 1/λh; smaller values of h then result in
summaries that are more extractive.

3 Factuality

We now describe metrics for factuality, before we
can describe the relationship between abstractive-
ness and factuality (Section 4). By factuality of a
summary y, we mean factual consistency with the
input x, rather than objective factuality or univer-
sal truth. Measuring factuality automatically is an
active area of research (Gabriel et al., 2020). Fac-
tuality is most naturally measured by human anno-
tators; we describe our setup for human factuality
annotation first, then move to automatic metrics.

3.1 Human-annotated Factuality

We use Amazon’s Mechanical Turk (AMT) to mea-
sure the factuality of automatically generated sum-
maries with human annotators. These annotators
are untrained, so we use multiple mitigation strate-
gies to obtain high-quality judgements. We sim-
plify the task: To avoid overwhelming annotators
with long text, we select a single sentence per sum-
mary and ask the annotators if it is factually con-
sistent with the shown article(s). The other sen-
tences of the summary are given as well for con-
text, shown in gray (see Figure 5). The article(s) are
shortened to show a total of 9 sentences that were
determined to be semantically most similar to the
selected summary sentence;4 the remaining article
parts are replaced by “. . . ”. The summary sentence
is selected at random in proportion to its length.

4We measure cosine similarity of sentence encodings com-
puted by the Universal Sentence Encoder (Cer et al., 2018).

For each summary, we get judgements only for the
randomly selected sentence. Aggregated over a
set of summaries, we measure the average chance
of any randomly selected summary sentence to be
factual. We have verified high correlation of these
factuality rates with the factuality rates obtained
through professional annotators who judged com-
plete summaries with respect to the full articles
(see Appendix C).

We provide detailed task instructions, including
examples for intrinsic and extrinsic factual errors
(Maynez et al., 2020). We require that potential
annotators pass a custom qualification test of find-
ing factuality errors. Only workers with at least
100 completed tasks on AMT with an acceptance
rate of 95%+ may take the test; 15% of those pass,
enabling them to work on our tasks. We use three
annotators per task and use MACE (Hovy et al.,
2013) to aggregate annotations and recover the
most likely binary factuality judgement per sum-
mary. We add summaries for which we know the
correct factuality annotation and repeatedly check
the annotators’ accuracy on those summaries while
they are annotating; all answers from annotators
who fall below a threshold are replaced by answers
from additional annotators. Appendix C describes
more details on our setup and fair compensation.

For any set of generated summaries, we create
the AMT tasks, get an aggregate binary judgement
per summary based on the multiple answers as de-
scribed, and report the mean of all human binary
summary factuality judgements; we call this score
FACTH (Table 1). We collect human factuality
judgements for 10.2k BART summaries with vary-
ing degrees of abstractiveness, and for 4.2k sum-
maries from five different summarization models.

Released Datasets. We release these human
judgements as datasets called CONSTRAINTSFACT

(Section 5.1) and MODELSFACT (Section 5.2). Pre-
vious datasets with human factuality judgements
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Figure 6: Human factuality judgements (FACTH) for
different degrees of abstractiveness (MINT). Each color
represents a BART model trained on a particular dataset,
decoded with varying decoding constraints (Sec. 2.2);
large outlined symbols mean no constraints.

(Wang et al., 2020; Kryscinski et al., 2020; Maynez
et al., 2020; Pagnoni et al., 2021) are substantially
smaller, with under 5k summaries each, and our
CONSTRAINTSFACT dataset is the first that evalu-
ates the factuality of summaries with systematically
varied degrees of abstractiveness.

3.2 Automatically Measured Factuality

Measuring factuality automatically is an active re-
search area; Pagnoni et al. (2021) gives an overview
over recent metrics and compares their correlations
to human judgements, where DAE (Goyal and Dur-
rett, 2020, 2021) and FactCC (Kryscinski et al.,
2020) perform well. DAE is an entailment model
that classifies the factuality of the dependency arcs
in the summary, resulting in fine-grained judge-
ments at the subsentence level. FactCC is a BERT-
based binary classifier trained on pairs of input
and output sentences, where the output sentence is
annotated as either factual or non-factual.

4 Abstractiveness-Factuality Tradeoff

The metrics for factuality and abstractiveness along
with the abstractiveness constraints allow us to sys-
tematically explore the relationship between ab-
stractiveness and factuality. We can control ab-
stractiveness and observe the effect on factuality,
i.e., we can vary the amount of lexical overlap be-
tween input and generated summary and observe
the extent to which the summary preserves the in-
put semantics.

Factuality Trend Lines. To explore this relation-
ship, we train summarization models on different

datasets. For any trained summarization model, we
decode the test set multiple times with different
h values for λh (Equation 1), resulting in sets of
summaries with varying degrees abstractiveness.
For each of these test set decodings, we measure
abstractiveness using MINT and the corresponding
factuality using human annotations, unless other-
wise noted. This results in a series of (abstrac-
tiveness, factuality) points for any trained summa-
rization model, which can be plotted, along with
a linear trend line. Figure 6 shows such a plot;
Section 5.1.2 discusses its details.

F@50 Score. Given each trend line, we can read
off the factuality at 50% abstractiveness, an intu-
itively interpretable metric, which we call F@50; it
provides a comparison of the factuality of different
models with a fixed degree of abstractiveness.

MINT-adjusted Factuality Scores. We charac-
terize the tradeoff on any single decoding output
using a weighted average between factuality and
abstractiveness, (ϕF + A)/(ϕ + 1). To measure
abstractiveness A, we use MINT; to measure fac-
tuality F , we use human-measured factuality or
an automatic metric with [0,1] range like DAE or
FactCC, resulting in abstractiveness-adjusted factu-
ality metrics µFactH, µDAE, µFactCC, etc.

We give factuality a higher weight, since factual
semantic representation of the input is a fundamen-
tal requirement for summarization and low factual-
ity can have negative societal impact (Zellers et al.,
2019), while abstractiveness is a desirable stylistic
property. When two measures are combined into
one comprehensive evaluation metric there is no
a priori correct mixture weight; we follow com-
mon practice to give the more important measure
twice the weight (Kohonen et al., 2010; Li et al.,
2020; Preuß et al., 2021; Opitz and Frank, 2021)
and set ϕ to 2. By this definition, a system whose
factuality decreases by x units, as compared to an-
other system, must make up for the lost factuality
by 2x units in abstractiveness to get the same score.
When two systems have the same factuality, the
score prefers the one with higher abstractiveness.

4.1 Discussion

The abstractiveness-adjusted factuality metrics ad-
dress the issue that in the past, factuality rates of dif-
ferent systems have been compared without taking
abstractiveness into account. However, if one sys-
tem has a higher factuality rate than another, it may
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λ MINT FACTH µFACTH F@50
C

N
N

/D
M 1/λ2 9.7 94.8 66.5

84.4none 17.6 91.2 66.7
λ4 43.5 87.0 72.5
λ2 70.8 76.7 74.7

M
N

-8
00

1/λ2 26.8 82.2 63.7

68.9none 37.0 73.5 61.3
λ4 56.1 68.5 64.4
λ2 76.2 53.5 61.1

M
N

-5
00

1/λ2 33.6 73.5 60.2

64.4none 45.9 66.5 59.6
λ4 62.3 59.7 60.6
λ2 79.7 46.5 57.6

X
Su

m

1/λ1 55.8 53.7 54.4

56.71/λ2 74.5 51.7 59.3
none 80.8 45.3 57.2
λ4 84.0 43.7 57.1
λ2 88.3 40.7 56.5

Table 1: Abstractiveness and factuality on 600 test sam-
ples per setting. The 17 MINT and FACTH numbers are
as shown in Figure 6; we add µFACTH and F@50.

have achieved this by copying phrases from the in-
put into the summary with minimal rephrasing, i.e.,
by having a low degree of abstractiveness. Such a
system may produce high-quality summaries, but
their factuality rate cannot directly be compared to
the factuality numbers of more abstractive summa-
rization systems. Summarization methods that are
highly factual and abstractive are able to rephrase
the input with few factual errors; when we com-
pare the factuality of abstractive summarizers we
must control for the amount of such rephrasing.
The abstractiveness-adjusted factuality metrics we
propose enable us to compare the factuality of ab-
stractive summarization models even when they
perform different amounts of rephrasings.

As an analogy, consider precision and recall.
High precision can be trivially achieved with low
recall, just as high factuality can be achieved with
low abstractiveness. Therefore when comparing
the precision of different retrieval systems, their
recall numbers are taken into account by using the
F-score.5 Similarly, we argue that factuality com-
parisons must take abstractiveness into account.

Dataset Train Valid Test

CNN/DM 287,227 13,368 11,490
XSum 204,045 11,332 11,334
Multi-News 44,972 5,622 5,622

Table 2: Train/valid/test split on public datasets.

5 Experiments

5.1 Comparison Across Datasets Using NAC

Datasets. We use CNN/DM (Hermann et al., 2015),
XSum (Narayan et al., 2018), and Multi-News (Fab-
bri et al., 2019), all of which contain English-only
text. CNN/DM contains news articles from CNN
and DailyMail paired with bullet point summaries.
XSum contains articles from BBC News, using
each article’s first sentence as summary.6 In Multi-
News, each summary is written by a professional
editor and paired with a cluster of news articles.
For all three public datasets, we use the provided
training/validation/test split. The sizes of the three
datasets are listed in Table 2. From each of the three
datasets, we use 600 samples to compare human
and automatic factuality judgements.7

5.1.1 Setup
We use the BART (Lewis et al., 2020) sequence-to-
sequence model, which was pretrained on 160GB
of text and gives competitive results on CNN/DM
and XSum. Our models use the provided model
checkpoints for the CNN/DM and the XSum
datasets as well as the recommended decoding set-
tings. For Multi-News (MN), we train a model on
the training set, starting from the bart.large
pretrained model.8 For Multi-News, we truncate
the input documents per cluster so that their com-
bined length does not exceed N words, follow-
ing Fabbri et al. (2019). We train models with
N = 800 and N = 500, called MN-800 and MN-
500, respectively. We measure the MINT scores
for the reference summaries in these datasets; these
can be compared to the MINT scores obtained in

5In our case, we use a weighted arithmetic mean instead
because an F score would steeply decline to zero as abstrac-
tiveness goes to zero, which is undesirable for output whose
factuality is high.

6Following Wang et al. (2020), we reinsert the first sen-
tences whenever we measure factuality of XSum summaries
on AMT or with automatic metrics.

7For Multi-News and XSum, we take the first 600 samples
per test set. For CNN/DM, we take the first 300 and the last
300 test samples, from CNN and Daily Mail, respectively.

8We train for five epochs (learning rate: 2e-5) and limit
output to 50 to 300 tokens.
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decoding (Section 5.1.2). The test set references for
MN-500 have a MINT score of 78.2%, compared
to 72.8% for MN-800. MINT is higher for MN-500
since the shorter truncation removes article content
that could otherwise overlap with the summaries.
The MINT scores for the CNN/DM and XSum ref-
erences are 59.6% and 87.8%, respectively; XSum
is the most abstractive dataset.

5.1.2 Results
We use each of the four BART models to decode
its respective test set multiple times, with vary-
ing abstractiveness constraints, resulting in 17 out-
puts. For each one, we obtain human factuality
judgements on the corresponding 600 samples, re-
sulting in 17 x 600 human factuality judgements
– our CONSTRAINTSFACT dataset –, which we
aggregate into 17 mean FACTH scores; we also
compute the corresponding 17 MINT scores. Fig-
ure 6 plots the resulting abstractiveness and human-
measured factuality for each of the four models,
thereby providing a visual representation of the
abstractiveness-factuality tradeoff for these mod-
els. Table 1 shows the same 17 MINT and FACTH
values, along with µFACTH and F@50 scores.

The lower right of Figure 6 shows five lozenges
(♦). The larger one represents the decoding with
our XSum-trained model using default settings;
the other four red points represent decodings under
the same model, but with different abstractiveness
constraints that result in more extractive (1/λh)
or more abstractive (λh) summaries (Section 2.2).
The five red points are associated with a dashed
linear trend line. Compared to the other points in
the figure, abstractiveness is high and factuality
low – the model tends to paraphrase its input, of-
ten incorrectly. It took a strong extractive reward
(1/λ1), which we did not use for the models trained
on other datasets, to bias this model toward lower
abstractiveness and higher factuality.

For the Multi-News models, four decodings us-
ing MN-500 are shown as squares (■), decodings
under MN-800 as triangles (▲). The MN-800
model is more factual across the abstractiveness
spectrum. This can be explained by the fact that
for MN-500, larger parts of the input are truncated
(Section 5.1.1) that the untruncated reference sum-
mary in training may still refer to; the MN-500
model learns to hallucinate more.

The four decodings for CNN/DM are shown as
bullets (•). Its model output without abstractive-
ness constraint (large bullet) is the most extractive;

the extraction reward to its left (using 1/λ2) can-
not make it much more extractive; however, there
is room to the right, and the abstraction rewards
(λ4 and λ2) move its abstractiveness far into the
abstractiveness level of Multi-News and XSum.

F@50 Scores. One of the main takeaways of this
study is that different systems can have different
factuality rates at the same level of abstractiveness.
Previous authors have observed that XSum sum-
maries are highly abstractive and less factual, and
that CNN/DM summaries are at the opposite side
of that spectrum. We confirm this; however, we
add that we can bias the XSum model to create less
abstractive summaries and the CNN/DM model
to create more abstractive models, so that their
abstractiveness becomes comparable, and the
factuality rates still differ considerably: Based on
the trend line, the F@50 score of the XSum model
is 56.7%, while the CNN/DM model’s F@50 is
84.4%. MN-800 and MN-500 lie in the middle.

µFACTH Scores. The µFACTH scores adjust
FACTH for abstractiveness. They penalize the
CNN/DM model for its low abstractiveness and
reward the XSum model for its high abstractive-
ness, bringing them closer together, compared to
their more divergent FACTH scores. The µFACTH
scores for MN-800 and MN-500 are also close
(59.6% versus 61.3% for λ=none), as MN-800 is
more factual but also less abstractive.

Summary Quality and Abstractiveness. Ta-
ble 3 lists ROUGE-L scores for the different decod-
ings, along with abstractiveness metrics, measured
on the full test sets. ROUGE scores aim to mea-
sure summary quality by comparing the generated
summaries with the reference summaries, while
abstractiveness metrics measure overlap between
the generated summaries and the input. Decodings
without abstractiveness constraints replicate previ-
ous works’ ROUGE scores (Lewis et al., 2020; Fab-
bri et al., 2019) (Appendix H). The λ4 constraint
can dramatically increase abstractiveness while
leaving ROUGE scores virtually unchanged. We
also conduct a human evaluation of informative-
ness and coherence, comparing unconstrained sum-
maries with summaries generated with the λ4 de-
coding constraint; the unconstrained decoding is
preferred for XSum but the constrained decoding is
preferred for CNN/DM, and results are mixed for
Multi-News, see Appendix D. The density scores
(Grusky et al., 2018) in the table have high correla-
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λ RL MINT p3 p4 lcsr density
C

N
N

/D
M 1/λ2 37.9 9.0 89.0 84.7 93.1 28.9

none 41.0 16.8 79.5 72.1 89.4 15.4
λ4 41.5 43.7 50.0 35.1 77.8 4.6
λ2 39.3 70.3 26.4 12.6 67.4 2.2

M
N

-8
00

1/λ2 44.8 26.6 71.1 64.1 69.5 20.7
none 45.8 37.1 58.9 50.1 63.3 13.4
λ4 45.8 56.3 38.7 27.0 51.9 4.3
λ2 44.0 76.4 20.7 10.4 41.6 2.0

M
N

-5
00

1/λ2 44.6 34.1 63.7 56.4 61.0 17.6
none 45.5 45.9 50.2 41.4 54.2 10.6
λ4 45.1 62.2 33.4 22.7 44.8 3.6
λ2 43.3 79.8 17.8 8.8 35.9 1.8

X
Su

m

1/λ1 30.8 53.8 41.7 32.3 66.9 5.8
1/λ2 36.0 73.9 23.0 14.1 57.7 3.0
none 36.8 80.2 17.6 9.2 54.5 2.4
λ4 36.8 83.6 14.6 6.6 52.8 2.2
λ2 36.3 88.1 10.8 4.1 49.8 1.9

Table 3: Impact of λ on ROUGE-L F1 (RL) and abstrac-
tiveness metrics on the full test sets. p3, p4, lcsr are
component scores in MINT (Sec. 2.1), density is aver-
age length of extracted fragments (Grusky et al., 2018).
ROUGE measures overlap with reference summaries,
abstractiveness metrics measure input overlap.

tion with the MINT scores.

5.2 Comparison Across Different Models

We also compare the abstractiveness-factuality
tradeoffs of summarization models from the lit-
erature. We obtain outputs of four summarization
models other than BART: BERTSUM (Liu and La-
pata, 2019) is a transformer model in which only
the encoder is pretrained; PGCONV (See et al.,
2017) is a pointer-generator network; BOTTOMUP
(Gehrmann et al., 2018) and ABSRL (Chen and
Bansal, 2018) select source fragments to constrain
an abstractive generation model. We obtain human
factuality judgements of the five model outputs on
600 samples of CNN/DM and XSum, respectively,
and release this as our MODELSFACT dataset; we
apply automatic metrics (e.g., DAE) as well as our
abstractiveness-adjusted variants (e.g., µDAE) to
the full test sets. Table 4 shows the results. For
CNN/DM, we find that the highly extractive model
PGCONV receives the highest automatic and hu-
man factuality scores, while the abstractiveness-
adjusted variants favor BART or ABSRL, whose
outputs represent better tradeoffs between abstrac-
tiveness and factuality. On XSum, BART’s out-
put is considerably more factual than BERTSUM’s
across all factuality metrics, while BART has only
slightly lower abstractiveness; as a result, BART is

Model MINT µFACTH µDAE µFactCC

C
N

N
/D

M

BART 16.8 66.4 91.2 67.4 92.6 56.2 75.9

BERTSUM 14.1 64.7 90.0 57.8 79.6 57.0 78.5

PGCONV 5.5 63.5 92.5 64.0 93.3 62.3 90.7
BOTTOMUP 17.2 50.6 67.3 55.0 73.9 54.3 72.9

ABSRL 18.9 60.6 81.5 62.3 84.0 64.1 86.8

X
Su

m BART 80.2 56.9 45.3 67.3 60.8 53.9 40.8
BERTSUM 82.8 52.1 36.8 61.5 50.8 50.8 34.8

Table 4: Abstractiveness (MINT) and factuality of dif-
ferent models. For each factuality metric, we first list
its MINT-adjusted variant in green. Example: BART’s
µFACTH is 66.4, while the unadjusted FACTH is 91.2.
All numbers are percentage scores ∈ [0,100].

also favored by all MINT-adjusted factuality met-
rics. Detailed results including additional factuality
metrics are described in Appendix G.

The MINT-adjusted variants of factuality metrics
put factuality rates into perspective. We encourage
authors who compare factuality rates across sum-
marization models to also compare MINT-adjusted
variants (e.g., µDAE), to account for differing lev-
els of abstractiveness.

6 Related Work

Abstractiveness-Factuality Tradeoff: Durmus
et al. (2020) observe that abstractiveness at test
time depends on the abstractiveness of the training
data and that highly abstractive summaries tend
to be less factual. We control for abstractiveness
and see that factuality rates between different sys-
tems can vary widely at the same abstractiveness
levels. Recently, Ladhak et al. (2022) present an
alternative framework to evaluate the faithfulness-
extractiveness tradeoff, requiring training multiple
models on subsets of the training data to measure
the tradeoff, while we use constraints to analyze
tradeoffs that a single model makes. Increasing
Abstractiveness: Kryściński et al. (2018) use pol-
icy gradient with a novelty reward to encourage
abstraction in a pointer-generator (PG) (Gulcehre
et al., 2016; See et al., 2017). Weber et al. (2018)
penalize copying tokens during PG decoding. Our
constraints apply to general sequence-to-sequence
models and include nonlinear penalties. Song et al.
(2020) control copying in training abstractive sum-
marization models by masking the summary tokens
with different probabilities, depending on whether
they are seen in the input document or not. In con-
trast, our technique does not require retraining to
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obtain varying degrees of abstractiveness.

7 Conclusions

We presented new metrics and datasets for evalu-
ating the relationship of abstractiveness and fac-
tuality. As part of our analysis, we presented ab-
stractiveness constraints, which can bias a summa-
rization model to increase or decrease the level of
abstractiveness while generating summaries, using
nonlinear penalties or rewards based on the length
of summary fragments extracted from the source.
Through automatic and human factuality evalua-
tions, including 10.2k human factuality judgements
of summaries with systematically varied abstrac-
tiveness, we shed light on how abstractiveness in-
teracts with factuality, across multiple datasets and
models. We proposed new metrics to measure the
tradeoff, including F@50 and MINT-adjusted fac-
tuality rates, such as µDAE and µFactCC, and we
established baselines for future research.

Limitations

The abstractiveness constraints we have presented
can be used to increase or decrease the abstrac-
tiveness of the generated text. Dedicated code is
needed to integrate such constraints into a decoder.
The constraints are needed to obtain trend lines
as in Figure 6, as well as the F@50 score. How-
ever, the MINT-adjusted factuality scores, such as
µFactH, µDAE or µFactCC can be computed for
any summarization system, without the need for
implementing abstractiveness constraints, as we
have done in Section 5.2.

Ethical Considerations

We have analyzed the factuality of generated text
in relation to the abstractiveness of the source texts;
we have also proposed new metrics that let re-
searchers compare the factuality of different gen-
erative models. As such, we consider our work a
contribution toward text generation methods that
make fewer factual mistakes and become therefore
more reliable and responsible. However, any ad-
vance in text generation methods can be used by
bad actors to cheaply generate misleading or harm-
ful texts.

We hired annotators on the Mechanical Turk plat-
form to judge machine-generated summaries. Our
first ethical consideration with respect to this data
collection is fair and prompt pay for the work of
the annotators. We describe in Appendix C that

we paid all human subjects a fair average pay of
$12.50 USD per hour, based on observed median
time spent per HIT. As described (Section 3.1),
we automatically approved the annotators’ work
promptly and paid bonuses as appropriate. The an-
notators’ privacy and confidentiality were respected
at all times.
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A Measuring Abstractiveness with MINT

N -gram Overlap. Each pn, short for pn(x,y),
is the n-gram precision of the n-grams in y with
respect to x, i.e., the percentage of n-grams in y
that are extracted from x.9 For highly abstractive
outputs, higher-order n-gram precision can be zero,
leading to an undefined or zero harmonic mean
value. We prevent this by smoothing the n-gram
counts from which n-gram precisions are calcu-
lated, such that each n-gram count is the average of
itself and the smoothed (n− 1)-gram count and the
unsmoothed (n + 1)-gram count. The smoothed
0-gram count is defined as the 1-gram count plus
one. We chose this method for its simplicity and
effectiveness; it is described as method 5 in Chen
and Cherry (2014).

Harmonic Mean. We use the harmonic mean, in
analogy to the definition of the F1 score, as it is
a mean function designed to aggregate ratios with
different denominators.

For a completely extractive summary that ex-
tracts sentences in the original order, the MINT

score is 0. The score increases as the order of the
extractive fragments is changed with respect to the
input, their lengths are decreased and new words
and fragments are introduced that are not part of
the input x. The use of the length-normalized LCS
score (lcsr) is inspired by ROUGE-L; it is a useful
addition to the n-gram precisions as it can detect
the extraction of longer n-grams broken up by mi-
nor edits. As an example, consider the (x,y) pair
shown in Figure 3. Only 4 of the 12 summary four-
grams match the input, i.e., p4=33.3%, although
very high overlap is apparent due to the fact that
a 15-word fragment from the input was extracted
with only the words “verdict” and “which” mini-
mally changed by synonym substitution. The lcsr
score reflects this and measures 12/15=80.0% over-
lap. On the other hand, the n-gram precisions used
in the MINT score are valuable in detecting textual
overlaps that are not part of the longest common
subsequence.

9MINT has elements of ROUGE (Lin, 2004) and BLEU
(Papineni et al., 2002). We do not use the modified n-gram pre-
cisions, like BLEU does, because n-grams extracted multiple
times from x should count as such every time.

B Details on the Abstractiveness
Constraints

Log Space. We have described the abstractive-
ness constraints in probability space. In prac-
tice, we equivalently search for ŷ in log space us-
ing log probabilities and the log of λh defined in
Equation 1. It can be shown that log λh(|f |) =
−|f |2

(1.20112×h)2 .

C Details on Our Mechanical Turk Setup

We provide additional details on the strategies we
use to obtain high-quality judgements on Amazon
Mechanical Turk. We give detailed instructions
to the annotators, with definitions and examples
of different factual errors (see Figure 7). We also
add a request to write a short explanation when a
sentence is judged as not factual.

Tasks with Known Answers. We add a number
of tasks with known answers, enabling us to esti-
mate the accuracy of workers who work on multiple
of these.

Automatic Quality Checks. Workers who com-
plete the tasks too quickly, write no or very short
explanation texts or have low accuracy on the tasks
with known answers are automatically removed
from our worker pool. Their answers are replaced
with new answers.

Bonus. We use a bonus incentive structure. Every
worker who passes the automatic quality checks
receives a bonus at the end.

Check Against Professional Annotators. We
have seven sets of 150 automatically generated
summaries each, which we had previously sent
to professional news editors to annotate factual-
ity. Those annotators rated the complete sum-
maries with respect to the complete inputs – no
sentences were preselected to simplify the task.
We re-annotated these summary-article pairs using
our Mechanical Turk setup, and the resulting per-
set factuality rates correlated highly (r=.88) with
those previously obtained from the professional
annotators (p< .05).

As a further quality check, we sent one set of
600 summaries to Mechanical Turk twice, several
weeks apart. The two factuality rates obtained for
that same set were close – 91.2% and 92.0%.
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Figure 7: Instructions for the factuality annotation task on Amazon Mechanical Turk, as well as the summary and
part of the article text shown to the worker.

Qualification Test. For all our evaluations on
Mechanical Turk (see Section 3.1), we first set up
a short qualification test that can be taken by any
worker from a country whose main language is
English, who has completed 100 or more HITs so
far with an acceptance rate of 95% or higher. The
qualification test consists of just three questions
from our factual consistency setup; two of which
must be answered correctly, along with an explana-
tion text (5 words or more) to explain when “not
factually consistent” was chosen. 53% of work-
ers who start the test provide answers to all three
questions, and 27.6% of these answer at least two
correctly and provide a reasonable explanation text,
i.e., only 14.6% of the test takers are granted the
qualification.

The qualification enables workers to work on
our factual consistency HITs as well as our HITs
judging informativeness and coherence.

Fair Compensation. The factual consistency
task pays $0.15 per HIT with a bonus of $0.05.
It can be done quickly, given the fact that a sin-
gle summary sentence is evaluated and the related
sentences in the article are highlighted. The task
of evaluating informativeness and coherence (see
Appendix D) pays $0.50 per HIT with a bonus of
$0.25, as more text is displayed, compared to the
factuality task. These amount to an average pay
of $12.50 per hour, including the bonus, based on
median time spent per HIT. The bonus is paid to
workers who spend at least 10 seconds per HIT,
give short explanation texts for their decisions and
maintain high accuracy on HITs with known an-
swers.
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CNN/DM MN-800 XSum
inf. coh. inf. coh. inf. coh.

prefer off 36.5 36.7 39.8 35.8 18.8 18.7
prefer λ4 46.5 39.2 34.7 39.8 16.5 16.3
both equal 17.0 24.2 25.5 24.3 64.7 65.0

Table 5: Human quality evaluation of summaries gen-
erated with no abstractiveness constraint (“off”) versus
λ4. We asked which summary is more informative or
coherent, respectively. MN-800 stands for Multi-News
with the input documents truncated to 800 words total
(Section 5.1.1).

D Human Evaluation of Informativeness
and Coherence

We conduct a human evaluation to determine the
informativeness and coherence of the summaries
generated with the λ4 decoding constraint (Equa-
tion 1), which increases abstractiveness, as com-
pared to not using any abstractiveness constraint.
We use the same setup as for the factuality task,
including a qualification test, three annotators per
task and aggregation using MACE.

We use the following definitions of informative-
ness and coherence for the human evaluation:

• Informativeness: The more informative sum-
mary is better at expressing the main points
of the news story. It contains information that
is more relevant and important. It has fewer
unimportant details. Its content is more simi-
lar to the human-written summary.

• Coherence: The more coherent summary has
better structure and flow, is easier to follow.
The facts are presented in a more logical order.

The results are shown in Table 5. For the
CNN/DM model, the output without decoding con-
straints is the most extractive, and the raters pre-
ferred the more abstractive version generated with
the decoding constraint, both for informativeness
and coherence. For the XSum model, where the
output with the decoding constraint disabled is al-
ready highly abstractive, the result is reversed. For
Multi-News, the result is mixed: Raters found the
output with no decoding constraints more informa-
tive, but less coherent.

Data Size DAE FactCC FEQA QAGS

All 4.2k .44 .35 .27 .44
CNN/DM 3.0k .35 .24 .05 .27
XSum 1.2k .39 .17 †.01 .25

Table 6: Pearson correlations to human factuality judge-
ments on the MODELSFACT dataset. The result with
the † symbol is not significant.

E More On Automatic Factuality Metrics

When we apply FactCC to a summary, we apply it
separately to each summary sentence and use the
mean score per summary. For each sentence that
we score with FactCC, we shorten the input doc-
ument by selecting ten sentences with the highest
cosine embedding similarity (Conneau et al., 2017),
in order to fit the input to the length limits.

In the following two appendix sections, we use
not only DAE and FactCC, as described in the main
text, but also two metrics based on question an-
swering: FEQA (Durmus et al., 2020) and QAGS
(Wang et al., 2020). FEQA generates questions
from masked summary sentences whose masked
entities are used as “gold” answers; these are com-
pared to the answers obtained from a QA model on
the input. In QAGS, a question generation model
generates questions from the summary, a QA model
answers these questions from both summary and
input, and the similarity of the answer pairs is eval-
uated.

F Correlating Human and Automatic
Factuality Judgements

Table 6 shows correlations of the human judge-
ments with different automatic metrics on the
MODELSFACT dataset, complementing earlier
studies (Gabriel et al., 2020; Pagnoni et al., 2021).
We compute correlations at the level of individ-
ual summaries. To make meaningful comparisons
between the human and the automatic scores, we
apply the automatic metrics here to the single ran-
domly selected sentence per summary that the hu-
man annotators judged. Overall, we observe here
that DAE has the highest correlations with human
judgements.
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Data Model MINT µFACTH µDAE µFactCC µFEQA µQAGS

C
N

N
/D

M

BART 16.8 66.4 91.2 67.4 92.6 56.2 75.9 47.2 62.4 61.7 84.2

BERTSUM 14.1 64.7 90.0 57.8 79.6 57.0 78.5 47.6 64.4 60.8 84.2

PGCONV 5.5 63.5 92.5 64.0 93.3 62.3 90.7 45.2 65.0 58.1 84.4
BOTTOMUP 17.2 50.6 67.3 55.0 73.9 54.3 72.9 47.3 62.3 58.2 78.7

ABSRL 18.9 60.6 81.5 62.3 84.0 64.1 86.8 49.6 65.0 61.3 82.5

X
Su

m BART 80.2 56.9 45.3 67.3 60.8 53.9 40.8 50.9 36.2 53.4 40.1
BERTSUM 82.8 52.1 36.8 61.5 50.8 50.8 34.8 46.6 28.4 46.0 27.6

Table 7: Abstractiveness (MINT) and factuality of different summarization models. For each factuality metric, we
first list its MINT-adjusted variant in green. Example: BART’s µFACTH is 66.4, while the unadjusted FACTH is
91.2. All numbers are percentage scores ∈ [0,100].

G Comparison Across Different Models

Here we offer an extended description of our com-
parison of the abstractiveness-factuality tradeoffs
of summarization models from the literature, in-
cluding the use of additional automatic factuality
metrics (see Appendix E).

Table 7 shows human and automatic factual-
ity scores, as well as MINT-adjusted versions of
these scores. We observe that all factuality met-
rics favor the output of the PGCONV model on
CNN/DM; however, its low abstractiveness indi-
cates that its output falls into the “trivially factual”
quadrant (Figure 2). The MINT-adjusted variants
(shown in green) penalize such low abstractive-
ness, favoring the BART or ABSRL models instead,
whose outputs represent better tradeoffs between
abstractiveness and factuality. Human factuality
raters (FACTH) rank ABSRL in fourth place, while
FactCC, FEQA and QAGS rank it highly; we hy-
pothesize that ABSRL makes factual errors that
these measures cannot detect well. On XSum,
BART’s output is considerably more factual than
BERTSUM’s across all factuality metrics, while
BART has only slightly lower abstractiveness; as a
result, BART is also favored by all MINT-adjusted
factuality metrics. BART’s pretraining of both en-
coder and decoder may be contributing to its fac-
tuality, in accordance with Maynez et al. (2020).
Note that for DAE, we apply the Ent-C model on
CNN/DM output and the XSUM-HUMAN model
on XSum output. Appendix H.2 shows ROUGE
scores.

H ROUGE Scores

H.1 BART Models

The aim of this paper is not to improve ROUGE

scores, but to gain insights about the tradeoff be-
tween abstractiveness and factuality. We do, how-
ever, stress that the BART models we use in our
analysis are competitive with the start of the art.
We list our ROUGE-1, ROUGE-2 and ROUGE-L F1

scores, as well as their averages; see the RL scores
in Table 3 as well:

• For CNN/DM, our λ=none decoding has
44.1/21.2/41.0 with an average of 35.4, same
as the average of 35.4 in Lewis et al. (2020).

• For XSum, our λ=none decoding has
45.3/21.9/36.8 with an average of 34.7, com-
pared to an average of 34.9 in Lewis et al.
(2020).

• For Multi-News, our MN-800 λ=none decod-
ing has 50.2/20.5/45.8 with an average of 38.8,
compared to improved ROUGE F1 results of
44.5/16.0/40.3 with an average of 33.6 by Fab-
bri (personal communication) for Fabbri et al.
(2019).

H.2 Comparing Summarization Models

To complement our comparison of different models
in Section 5.2, we list the ROUGE-L F1 scores of
the five models in Table 8.

I Additional Experimental Details

We used AWS p3.8x and p3.16x EC2 machines
for all our experiments, except we ran FEQA on
the Multi-News summaries on a p3dn.24xlarge ma-
chine, as it required more memory.
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Model RL

CNN/DM BART 41.0
BERTSUM 39.2
PGCONV 36.4
BOTTOMUP 38.3
ABSRL 37.3

XSum BART 36.8
BERTSUM 31.3

Table 8: ROUGE-L F1 scores for the models compared
in Section 5.2.

The BART model has 406,290,432 parameters.
Fine-tuning BART on the Multi-News training set
took about 2.5 hours on 4 GPUs; we fine-tuned
for 5 epochs following instructions on the fairseq
BART webpage, without further hyperparameter
search. For CNN/DM and XSum we used the pro-
vided checkpoints.10 The minimum and maximum
length for Multi-News decoding was determined
by the lengths of the training reference summaries.

10See https://github.com/pytorch/fairseq/
tree/master/examples/bart.
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Abstract

With language models becoming increasingly
ubiquitous, it has become essential to address
their inequitable treatment of diverse demo-
graphic groups and factors. Most research on
evaluating and mitigating fairness harms has
been concentrated on English, while multilin-
gual models and non-English languages have
received comparatively little attention. In this
paper, we survey different aspects of fairness
in languages beyond English and multilingual
contexts. This paper presents a survey of fair-
ness in multilingual and non-English contexts,
highlighting the shortcomings of current re-
search and the difficulties faced by methods
designed for English. We contend that the mul-
titude of diverse cultures and languages across
the world makes it infeasible to achieve com-
prehensive coverage in terms of constructing
fairness datasets. Thus, the measurement and
mitigation of biases must evolve beyond the cur-
rent dataset-driven practices that are narrowly
focused on specific dimensions and types of bi-
ases and, therefore, impossible to scale across
languages and cultures.

1 Introduction

Language models are known to be susceptible to
developing spurious correlations and encoding bi-
ases that have potentially harmful consequences
in downstream tasks. Whilst prior work has doc-
umented these harms (Dev et al., 2021) (Bender
et al., 2021) (Kumar et al.), there remains much to
be studied and criticism for the existing research
(or lack thereof) that remains to be addressed.

In the context of language models, fairness can
manifest in two forms; representational and allo-
cational harms. Representational harms generally
refer to cases where demographic groups end up be-
ing misrepresented. This includes stereotypes and
negative associations with these groups and even a
lack of acknowledgment of certain groups that are
underrepresented in the data. Allocational harms,

on the other hand, refer to the inequitable distri-
bution of resources and opportunities to groups
with different demographic attributes associated
with them. The nature of allocational harms can
vary based on the sociocultural, economic, and
legal settings where the system has been deployed.
However, it can also take shape in terms of the
model’s functionality across languages with fewer
resources (Choudhury and Deshpande, 2021; Liu
et al., 2021). While current literature adopts a Euro-
American-centric view of fairness, work such as
Sambasivan et al. (2021) pushes to recognize algo-
rithmic fairness from a more inclusive lens.

Bias crops up in multiple steps of the pipeline
(Hovy and Prabhumoye, 2021) (Sap et al., 2022),
including the annotation process, the training data,
the input representations, model architecture, and
the structure of the research design. Thus, mea-
sures to mitigate bias in one of these components
alone will likely not suffice as a corrective measure,
necessitating human intervention at different stages
of the pipeline.

Most work that addresses fairness in NLP ad-
dresses it from an Anglo-centric context, with
comparatively significantly less work done in
grammatically-gendered and low-resource lan-
guages. Their inability to capture social and cul-
tural nuances and demographic variations is well-
documented (Talat et al., 2022). Despite this, they
are ubiquitous, with applications ranging diverse
fields, from legal contexts to healthcare. That said,
there is insufficient documentation of the harms
that could stem from unfair models trained for
downstream tasks involving natural language gen-
eration, despite Arnold et al. (2018); Bhat et al.
(2021); Buschek et al. (2021) indicating the influ-
ence of these systems on users. Apart from this,
these NLP systems also reinforce and reproduce
the social and racial hierarchies observed in society
and fail to recognize underrepresented communi-
ties that are already marginalized (Dev et al., 2021;
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Lauscher et al., 2022b). The ramifications of ne-
glecting these issues are diverse and far-reaching,
from minor inconveniences for users in less harm-
ful contexts to compromising their privacy as well
as depriving them of opportunities and resources
(Cirillo et al., 2020; Köchling and Wehner, 2020).

Finally, while the interplay and tradeoff between
privacy, efficiency, and fairness in tabular data
has received extensive examination (Hooker et al.,
2020; Lyu et al., 2020) comparatively fewer studies
have been conducted in NLP (Tal et al., 2022; Ahn
et al., 2022; Hessenthaler et al., 2022).

The contributions of this work center around
drawing attention to the current state of research
on fairness in the context of linguistic and cultural
issues in non-English languages and in the context
of multilingual models. While thorough survey
studies such as Sun et al. (2019); Stanczak and Au-
genstein (2021); Bhatt et al. (2022) yield valuable
insights into some of these aspects, none address
the current state of the work in multilingual fairness.
Our paper provides insights into the following:

• This work surveys and presents challenges and
unanswered questions with respect to fairness
in both monolingual and multilingual NLP.

• We analyze bias from both a linguistic and
cultural lens for non-English languages and
present a comprehensive overview of the lit-
erature in bias pertaining to grammatically
gendered languages and multilinguality.

• We bring to the forefront challenges in multi-
lingual fairness and begin a dialogue for cre-
ating more equitable systems for multilingual
NLP.

2 Bias in Monolingual Setups for English

2.1 Metrics for Measurement

Prior to delving into the complexities of fairness in
multilingual systems, it is essential to first examine
the prevalent biases and challenges in monolin-
gual systems. By prefacing the discussion on bias
in multilingual systems with an overview of the
current state of fairness evaluation and identifying
areas for improvement, we aim to shed light on the
potential for similar issues to arise in multilingual
systems, as many of the biases present in monolin-
gual systems are likely to persist in multilingual
contexts. Some of the initial work on analyzing
biases in NLP models (Bolukbasi et al., 2016) pro-
pose quantitative measures of evaluating bias in

word embeddings. Broadly speaking, bias mea-
sures are subcategorized into i) intrinsic and ii)
extrinsic measures. Intrinsic metrics quantify bias
in the model’s pre-trained representations, whereas
extrinsic metrics deal with bias observed in the out-
puts of the downstream task the model is trained
for.

Caliskan et al. (2017); May et al. (2019);
Nadeem et al. (2021); Nangia et al. (2020) are com-
monly used in papers evaluating language mod-
els for fairness. Caliskan et al. (2017) proposes
the Word Embedding Association Test (WEAT). A
fundamental criticism of WEAT is that it can be
exploited to overestimate the bias in a model (Etha-
yarajh et al., 2019). The Sentence Encoder Asso-
ciation Test (SEAT) metric (May et al., 2019) was
proposed to address WEAT’s limitation of measur-
ing bias only over static word embeddings. SEAT
is an adaptation of WEAT that allows us to measure
bias over contextualized embeddings.

StereoSet (Nadeem et al., 2021), and CrowS-Pair
(Nangia et al., 2020) are crowdsourced datasets
specifically geared toward measuring the model’s
stereotypical proclivity over multiple dimensions,
which are inclusive of gender, race, and reli-
gion, among others. Blodgett et al. (2021) points
out the flaws in the data quality, such as invalid
stereotype/anti-stereotype pairs, reliance on indi-
rect group identifiers as a proxy for demographic
identification, and logical incongruities in the sen-
tence pairs.

Several other intrinsic measures and adaptations
of the aforementioned ones have also been pro-
posed (Kurita et al., 2019; Webster et al., 2020;
Kaneko and Bollegala, 2021; Lauscher et al., 2021).
Recent studies (Delobelle et al., 2022; Meade et al.,
2022) that perform comparative evaluations across
these measures provide valuable insights into how
and where the metrics can be used, along with their
potential drawbacks.

2.2 Intrinsic vs Extrinsic Evaluation

While intrinsic measures are valuable in that they
indicate the existence of representational bias in
systems, the current literature on fairness evalua-
tion largely concentrates on intrinsic metrics alone.
Considerably less work has been done on address-
ing bias in extrinsic evaluation, with several down-
stream tasks needing concrete metrics to evaluate
bias in their outputs. This is a pressing issue due to
the lack of correlation between intrinsic and extrin-

2107



sic measures (Goldfarb-Tarrant et al., 2020; Cao
et al., 2022; Delobelle et al., 2022). As emphasized
in Orgad and Belinkov (2022), incorporating ex-
trinsic evaluation measures is crucial for several
reasons, including the greater relevance of these
metrics to bias mitigation objectives. Aside from
this, evaluating fairness on the downstream task’s
outputs allows us to gauge more precisely how a
particular demographic may be affected by the bi-
ases in the system.

Although work done in fairness evaluation in
NLP primarily concentrates on monolingual stud-
ies, there remain several unanswered questions and
inconclusive results. For instance, although May
et al. (2019) claims to use semantically bleached
templates, experiments in Delobelle et al. (2022)
suggest that they retain some degree of semantic
significance. While several bias evaluation meth-
ods use template-based data, recent findings (Al-
negheimish et al., 2022) suggest that this approach
may be unreliable and advocate the use of natural
sentence prompts.

2.3 Fairness From the Lens of Multiple Social
Dimensions

The focus of much of the existing body of literature
is on gender bias, with little that covers other di-
mensions like race and religion. Evaluation metrics
should be able to evaluate harms in language mod-
els over the intersectionality of multiple identities,
akin to what would realistically be expected in real-
world data. While previous research (Talat et al.,
2022; Kirk et al., 2021) has emphasized the im-
portance of fairness evaluation and mitigation over
intersectional identities, there is relatively sparse
work that attempts to address the same (Tan and
Celis, 2019; Subramanian et al., 2021; Hassan et al.,
2021; Lalor et al., 2022; Câmara et al., 2022). It
is also crucial to gauge if reducing bias across one
dimension could affect biases in the other dimen-
sions. Most fairness measures do not account for
the intersectionality of identities and standards of
justice outside the predominantly Western sphere
of distributive justice (Sambasivan et al., 2021;
Lundgard, 2020).

Whilst there has been an increase in proposing
novel methods to mitigate bias in language mod-
els, there needs to be more work in benchmarking
these debiasing techniques to assess their relative
effectiveness. Meade et al. (2022) represents a step
forward in this direction. Despite criticism (Etha-

yarajh et al., 2019; Blodgett et al., 2021) of some
evaluation metrics, they are still consistently used
(and not always in conjunction with other metrics)
in bias evaluation studies.

3 Linguistic Aspects

The linguistic variations between languages pose
additional problems in the realm of multilingual
NLP. Take, for example, the concept of gen-
der, which has multiple definitions in linguistic
terms (namely, grammatical, referential, lexical
and bio-social gender) (Stanczak and Augenstein,
2021). Section 3.1 delves into how the grammati-
cally gendered nature of languages can affect bias
in multilingual and monolingual spaces alike. Ref-
erential gender, on the other hand, deals with terms
that referentially address a person’s gender, such
as pronouns. Terms that non-referentially describe
gender fall under the umbrella of lexical gender,
and the bio-social definition of gender involves
a mixture of phenotypic traits, gender expression,
and identity as well as societal and cultural aspects
that influence them (Ackerman, 2019).

Although initial forays into this field investigate
bias caused by grammatical gender, problems in
these systems can also crop up due to the other
definitions of gender. Referential gender terms are
not always aligned when used in conjunction with
lexically gendered terms, particularly with respect
to pronoun-based anaphors for queer-identifying
individuals. Several default assumptions regard-
ing the individual’s gender identity are made as a
consequence (Cao and Daumé III, 2021).

There are multiple varying forms of pronoun
complexity (Lindström, 2008; Ballard, 1978).
Apart from this, there are instances of substantial
variations in their linguistic forms even among lan-
guages within a specific region, as highlighted in
Nair (2013). Linguistics also involves the presence
of constructs like deictic pronouns and honorific
pronouns (Goddard, 2005), which in some cases
can lead to the pronouns used to reference someone
changing based on their social dynamic within the
community (Lauscher et al., 2022c). These linguis-
tic aspects represent another line of work that must
be addressed for lower-resourced communities that
communicate using languages that utilize these.

Lexical gender, while non-referential, finds its
own challenges due to the variation of these terms
across languages. For example, while certain rela-
tionships with individuals in a family may have an
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exact mapping in other languages, more often than
not (particularly with Southeast Asian languages),
there is no precise mapping, and the system ends
up making an approximation or ignoring the term
altogether. Such issues may also be likely to per-
forate to other axes such as race, religion, caste,
and so forth. In particular, considering that one
method of training multilingual embeddings relies
on alignment-based approaches, it is imperative
that we keep in mind how these design choices
could affect the representations of these terms.

Whilst utilizing linguistic features in methods
to evaluate and mitigate gender bias is a relatively
new field of study, previous work has demonstrated
that additional linguistic context can result in per-
formance gains (Volkova et al., 2013; Wallace et al.,
2014), thus in alignment with the claim from Hovy
and Yang (2021) that LMs must utilize social con-
text to be able to reach human-level performance on
tasks. Sun et al. (2021) utilizes linguistic features
to capture cross-cultural similarities, and thus, to
select languages that are optimal for cross-lingual
transfer. However, it is essential to acknowledge
that languages are susceptible to cultural and lin-
guistic shifts that occur at both global and local
levels over time, as noted in Hamilton et al. (2016).
Pretrained models also have the capability to em-
bed sociodemographic information, as evinced by
Lauscher et al. (2022a).

It has also been noted that other linguistic forms
of gender do not translate well to sociological gen-
der (Cao and Daumé III, 2021). Furthermore, the
scarcity of non-binary gender options in different
languages can lead to the misgendering of non-
binary individuals in these languages, as they may
be constricted to fit into a binarized definition of
sociological gender.

3.1 Grammatically Gendered Languages

Linguistics recognizes multiple forms of gender
(Cao and Daumé III, 2020), as observed in gram-
matically gendered languages where most or all
nouns, including those referring to inanimate ob-
jects, possess a syntactic concept of gender. These
languages can have anywhere between 2 to 20
forms of grammatical gender divisions. There has
been an almost exclusive focus on English for eval-
uating gender bias, even in the setting of mono-
lingual models and systems. English, however, is
not a grammatically-gendered language. This may
limit the transferability of techniques used for bias

evaluation and mitigation to other languages that
are grammatically gendered.

Zhou et al. (2019) examines bias from the view
of grammatically gendered languages by decom-
posing the gendered information of words in the
embedding space into two components; i) semantic
and ii) syntactic. For instance, the Spanish word
for "man" (hombre) is both semantically and syn-
tactically gendered. However, the Spanish word
for "water" (agua) is not semantically gendered but
is considered a feminine noun. The proximity of
female occupation words to the feminine side and
male occupation words to the masculine side of the
semantic gender direction suggests the presence
of bias in these Spanish embeddings. Zhou et al.
(2019) also demonstrates via experiments on bilin-
gual embeddings that, post-alignment, masculine-
gendered words are closer to the English equivalent
of the occupation words than feminine-gendered
ones. The paper also proposes bias mitigation meth-
ods and demonstrates that the quality of the em-
beddings is preserved via word-translation exper-
iments. Nevertheless, the validity of these mitiga-
tion measures would need to be verified by testing
them on downstream tasks. Gonen et al. (2019)
show that grammatical gender affects the word rep-
resentations in Italian and German and that inan-
imate nouns end up being closer to words of the
same gender. They propose to address this through
the precise use of a language-specific morphologi-
cal tool and a careful approach to removing all the
gender signals from a given text.

The grammatical properties of a language might
show some interesting properties to be taken into
account when dealing with the fairness of large lan-
guage models, particularly for gender bias. Studies
directed toward them could yield insights into ob-
servable trends across language families, with Go-
nen et al. (2019) demonstrating how the alignment
of languages in the embedding space is negatively
affected by grammatical gender. They could also
prove helpful when analyzing bias in multilingual
models, where both grammatically gendered and
non-gendered languages are aligned to the same
embedding space. The research and datasets avail-
able for extrinsic evaluation over other languages
remain an area with scope for improvement.

Apart from these grammatical properties that
affect the results we observe, the translation of
existing bias evaluation datasets into other lan-
guages to create parallel corpora does not suffice
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when dealing with languages apart from English.
This is partly because most languages are inher-
ently rooted in cultural context. Any data cu-
rated for these languages must incorporate socio-
cultural and linguistic aspects unique to the lan-
guage/region. Depriving NLP systems of cultural
context could consequently lead to entire axes over
which social biases are measured being ignored.
The cultural significance of words and phrases in
various languages can vary significantly, as demon-
strated in Mohamed et al. (2022), as well as in char-
acteristics such as metaphorical tendencies (Gutiér-
rez et al., 2016) and communication styles (Miehle
et al., 2016; Suszczyńska, 1999). Hovy and Yang
(2021) includes an overview and critique of this in
the current state of NLP literature, which they claim
adopts an oversimplified view and focuses on the
information content alone while ignoring the social
context of this content. Milios and BehnamGhader
(2022); España-Bonet and Barrón-Cedeño (2022)
illustrate the inefficiency of direct translation meth-
ods, and España-Bonet and Barrón-Cedeño (2022)
advocates for the creation of culturally-sensitive
datasets for fairness assessment. However, Kaneko
et al. (2022) proposes a way to generate parallel
corpora for other languages that bears high correla-
tion with human bias annotations.

4 Multilingual Models

Multilingual spaces allow the embeddings of multi-
ple languages to be aligned so that the mappings of
every word to its equivalent in other languages are
close to each in these embedding spaces. There are
numerous ways of training multilingual language
models (Hedderich et al., 2021) using monolin-
gual and unlabeled data. Multilingual language
models can improve cross-lingual performance on
low-resource languages leveraging the data avail-
able to higher-resourced languages up to a certain
number of languages. Beyond a point, however,
the performance across these languages on cross-
lingual and monolingual tasks begins to dip as the
number of languages increases (Conneau et al.,
2020). However, few studies explore the impact
of multilingual training on biases. Hovy and Yang
(2021) illustrate how language and culture share
a strong association, and Khani et al. (2021); Sun
et al. (2021) reveal that geographical and cultural
proximity among languages could enhance the per-
formance of models.

Languages provide much insight into a society’s

cultural norms, ideologies, and belief systems (Her-
shcovich et al., 2022; Wilson et al., 2016). Often,
the properties unique to a language are not clearly
mapped to other languages or even other dialects
within a language, with no direct translations avail-
able for several phrases and terminology. Whether
or not language models can retain this cultural in-
formation and context while utilizing information
from higher-resourced languages still requires in-
vestigation.

4.1 An Outline of Fairness Evaluation in the
Context of Multilinguality

Several datasets have been put forward for the pur-
pose of multilingual evaluation, and Table 1 de-
scribes these datasets along with details regard-
ing their utility. These include the languages they
cover, whether or not they evaluate bias over pre-
trained representations or a downstream task, and
the downstream tasks and dimensions they cater
toward.

Zhao et al. (2020) was among the first papers to
quantify biases in multilingual spaces and does so
using both extrinsic and intrinsic evaluation tech-
niques. Their findings indicate that some factors
that influence bias in multilingual embeddings in-
clude the language’s linguistic properties, the target
language used for the alignment of the embeddings,
and transfer learning on these embeddings induces
bias. Additionally, there is the possibility that non-
Germanic languages do not align well with Ger-
manic ones, and further work would be required to
derive conclusions as to how this affects fairness
measurements.

Huang et al. (2020) released the first multilin-
gual Twitter corpus for hate speech detection, anno-
tated with the author’s demographic attributes (age,
country, gender, race/ethnicity), which allows for
fairness evaluation across hate speech classifiers.
Through experiments, they prove that variations
in language, which are highly correlated with de-
mographic attributes (Preoţiuc-Pietro and Ungar,
2018; Osiapem, 2007), can result in biased classi-
fiers. However, there are some promising results
from Liang et al. (2020), which proposes a novel
debiasing method using Dufter and Schütze (2019).
While the multilingual model is originally debi-
ased over English, results show its effectiveness for
zero-shot debiasing over Chinese.

Câmara et al. (2022) measures both unisectional
and intersectional social biases over gender, race,
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Dataset Languages Task Metric Dimensions
https://github.com/MSR-LIT/MultilingualBias English, Spanish, German, French Text Classification I, E Gender
https://github.com/xiaoleihuang/DomainFairness English, Italian, Portuguese, Spanish Text Classification E Gender

https://github.com/kanekomasahiro/bias_eval_in_multiple_mlm
German, Japanese, Arabic, Spanish,
Portuguese, Russian, Indonesian, Chinese

Masked Language Modelling I Gender

https://github.com/ascamara/ml-intersectionality English, Arabic, Spanish Text Classification E
Gender, Race/Ethnicity,
Intersection

https://github.com/liangsheng02/densray-debiasing/ English, Chinese Masked Language Modelling I Gender

https://github.com/xiaoleihuang/Multilingual_Fairness_LREC
English, Italian, Portuguese,
Spanish, Polish

Text Classification E
Age, Country, Gender,
Race/Ethnicity

https://github.com/coastalcph/fairlex
English, German, French,
Italian and Chinese

Text Classification E
Gender, Age, Region,
Language, Legal Area

Table 1: Datasets for fairness evaluation beyond English. I = Intrinsic, E = Extrinsic

and ethnicity in multilingual language models. This
is particularly relevant, as in a practical setting,
treating identities as composites of various demo-
graphic attributes is a necessity. Kaneko et al.
(2022) measures gender bias in masked language
models and proposes a method to use parallel cor-
pora to evaluate bias in languages shown to have
high correlations with human bias annotations. In
cases where manually annotated data doesn’t exist,
this could prove helpful.

Although there has been research on fairness in
multimodal contexts (Wolfe and Caliskan, 2022;
Wolfe et al., 2022), in a first-of-its-kind study,
Wang et al. (2022) looks at fairness from a multi-
lingual view in multimodal representations. Whilst
they find that multimodal representations may be
individually fair, i.e., similar text representations
across languages translate to similar images, this
concept of fairness does not extend across multiple
groups.

Talat et al. (2022) expresses criticism over the
primary data source for multilingual large language
models being English, which they claim is reflec-
tive of cultural imperialism. They also advocate
for these models to be used only for languages
they have been trained for to retain the cultural
context unique to a language. The multilingual
datasets commonly used tend to be parallel corpora
derived directly from English translations, neglect-
ing the socio-cultural nuances specific to a given
language, as evidenced by the CommonCrawl cor-
pora (Dodge et al., 2021).

Moreover, recent literature (Al Kuwatly et al.,
2020; Parmar et al., 2022; Sap et al., 2022) presents
us with yet another potential issue; lack of demo-
graphic variation in the annotation of these dataset
results could contribute to bias in the pipeline. As
of yet, several languages (Aji et al., 2022; Joshi
et al., 2020) (such as Hindi, Arabic, and Indonesian,
which have tens to hundreds of million of native
speakers) have had little to no fairness benchmark-

ing datasets developed for them, an indicator that
much remains to be done to develop more equitable
language models.

4.2 An Outline of Fairness Mitigation in the
Context of Multilinguality

Due to multilingual spaces being a composite of
the embeddings of various languages with different
linguistic and semantic properties, it would serve
mitigation techniques well to consider these differ-
ences. Other methods could use these distinctions
to reduce bias in downstream tasks. Zhao et al.
(2020), for one, show that balancing the corpus
and transferring it to a grammatically gendered lan-
guage’s embedding space could reduce bias, and
that using debiased embeddings could also aid with
bias mitigation.

Huang (2022) takes inspiration from the FEDA
domain adaption technique (Daumé III, 2007) to
use it to mitigate bias in multilingual text classi-
fication and compares this with other mitigation
methods. These debiasing baselines involve adver-
sarial training, masking out tokens associated with
demographic groups, and instance weighting to re-
duce the impact of data instances that could lead to
more biased classifiers. While Liang et al. (2020)
show that zero-shot debiasing can be beneficial for
this purpose, further study would be required to
ascertain if this is a feasible possibility.

4.3 Problems in Multilingual Evaluation and
Mitigation

A major challenge in multilingual fairness is the
lack of datasets (including parallel corpora) and
literature for evaluation across tasks. Much of
the research conducted in monolingual contexts
has yet to be replicated in a multilingual setting,
which would enable us to determine whether or
not bias trends in monolingual spaces are directly
transferable to multilingual contexts. Research and
data resources also tend to neglect less-represented
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demographics, notably those local to a particular
region. Further, datasets require thorough docu-
mentation, as variations in annotator information
can result in different types of biases infiltrating
the pipeline (Mohamed et al., 2022; Joshi et al.,
2016; Bracewell and Tomlinson, 2012). These
could include attitudes towards other cultures and
languages, which must be assessed and reported
during data collection. Multilingual users speak
multiple languages, and there is no work on evalu-
ating bias in language contact settings such as code-
switching. Certain axes along which systems may
discriminate may be contained to a given region.
Due to the underrepresented nature of marginalized
identities (such as immigrant communities), mod-
els will likely not learn useful representations of
these identities.

5 Culture

Language and culture are intrinsically linked with
each other. However, NLP research has historically
placed a considerable emphasis on the information
content of the data, as opposed to the contextual
information surrounding the same data. Hovy and
Yang (2021) propose a broad taxonomy of 7 so-
cial factors that encompasses various aspects of
this contextual information. This could be incor-
porated into models to improve performance and
make them aware from a socio-cultural perspective.

The differences between a pair of languages or
even a pair of dialects could reflect across multi-
ple attributes; this could lead to variations in lan-
guage’s phonology, tone, text, and lexical forms.
Some of these attributes are controlled by the
speaker and receiver involved. Despite evidence of
gains in performance by leveraging these features,
systems still retain the potential to discriminate
against marginalized communities, as evinced in
Sap et al. (2019). This necessitates the proposal of
evaluation methods to analyze the potential harms
that people from different cultural backgrounds
might expose themselves to via the use of such
systems.

Multilingualism also entails the need to navi-
gate the nuances of language, including the poten-
tial for stereotypes and discriminatory language,
which may not have precise equivalents in other
languages. Cultural taboos and stereotypes can
be highly localized. As an example, pregnant or
lactating women are discouraged from consuming
nutritious food in certain cultures (Meyer-Rochow,

2009). Such contextual information might be un-
derrepresented or nonexistent in the data that the
model is exposed to. While some culture-specific
behaviors may be prohibited or frowned upon in
some parts of the world, there are yet other places
that may encourage or remain indifferent to these
very same behaviors.

Additionally, the axes we consider require to be
treated differently in different cultural and linguis-
tic settings. Take, for instance, gender. While gen-
der has, for the most part, been treated as a binary
variable in these studies, this does not echo what is
observed in real-world settings, where several indi-
viduals have non-binary gender identities (Devin-
ney et al., 2022). Non-binary gender identities en-
compass a broad spectrum of gender identities, and
the term is generally considered an umbrella term
for any identity outside the binary. The inability of
models to incorporate this additional information
on gender has subsequently led to them developing
meaningless representations of non-binary genders
in text (Dev et al., 2021). This translates to the
systematic erasure of their identities. Baumler and
Rudinger (2022) show that much remains to be
done concerning addressing non-binary identities
outside the Western context. For instance, several
non-binary identities, such as the Aravanis and the
Māhūs (local to India and Hawaii, respectively) are
likely to have little to no meaningful coverage in
the training data of the models. These identities
can also have unanswered nuances in literature;
for example, the Acaults of Myanmar do not con-
sider transsexualism, transvestism, and homosexu-
ality to be distinct categories. This is also applica-
ble to languages such as Arabana-Wangkangurru,
which make use of deictic pronouns (previously
discussed in Section 3) (Lauscher et al., 2022c;
Hercus, 1994).

Further, given that models are highly suscept to
the kind of data they are trained on, it is unlikely
that our models can recognize that certain forms
of prejudice are more frequent in specific socio-
cultural environments than others. The targets of
this discrimination are also likely to vary from re-
gion to region, another nuance that models find dif-
ficult to account for. India and Nepal, for instance,
are two countries that still suffer from the effects of
the hierarchy of a historically caste-based society
that (despite sharing similar roots) bear differences
in terms of representation of the various castes and
how they are referred to (Jodhka et al., 2010; Rao,
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2010). It is important to note that the ability of a
system to incorporate information from these so-
cial factors to mitigate biases is task-dependent.
Downstream tasks like machine translation and di-
alogue/response generation may depend more on
cues related to speaker and receiver characteristics
from the taxonomy proposed in Hovy and Yang
(2021) than other tasks. Extrinsic metrics for ma-
chine translation focus primarily on the gender bias
of the mappings of nouns and pronouns from one
language to another (Cho et al., 2019). On the other
hand, more open-ended, subjective tasks like NLG
are prone to encoding underlying biases and stereo-
types across multiple axes and reproducing these
in their outputs (Henderson et al., 2018).

It is critical to consider intersectionality in these
studies, as every individual is a composite of multi-
ple identities across multiple axes. When conduct-
ing inquiries into the biased nature of these systems,
we encourage researchers to use metrics that treat
fairness as an intersectional concept and keep in
line with the recommendations as suggested in Ta-
lat et al. (2022); Blodgett et al. (2020) to document
the affected demographics. Testing the validity
and reliability of bias measurement and debiasing
metrics is essential to ensuring the effectiveness of
proposed methods (Blodgett et al., 2020), and it is
crucial to report any limitations of the same.

6 Moving Towards Inclusive Systems in
All Languages

The issue of fairness in multilingualism presents
a number of challenges. Although current prac-
titioners encourage making systems multicultural
and developing systems to be used only for spe-
cific cultural contexts (Talat et al., 2022), we posit
that this may not be a viable solution due to vari-
ous practical considerations. The vast diversity of
cultures and ethnicities across the world presents
significant difficulties in terms of creating equitable
multilingual systems. Even within languages such
as English, several dialectal variants, both of the
regional and social kind (Nguyen et al., 2016), still
need to be accounted for. Blodgett and O’Connor
(2017) is an example of how this could further
stigmatize oppressed communities. Language and
various social aspects related to language are ever-
evolving. Modeling aspects such as lexical variants
and the syntactical difference between languages,
elements like phonology, and speech inflections in
spoken language could contribute to the complexity

of these systems.

Several countries have diverse concentrations of
people from all regions of the world with unique
backgrounds. The intricacies of the social inter-
actions resulting from the population’s diverse lin-
guistic backgrounds and issues arising from lan-
guage contact make the study of the fairness of mul-
tilingual systems that would be deployed to cater
to these populations essential. It is not possible to
make models agnostic to demographic attributes.
Even with the omission of certain attributes, mod-
els can still exhibit bias based on factors such as
linguistic variations in dialect, or the linguistic fea-
tures employed, as demonstrated by Hovy and Sø-
gaard (2015) who highlight the improved perfor-
mance of NLP systems on texts written by older
individuals. The data that large language models
(LLMs) are trained on tends to be biased towards
certain demographic strata (Olteanu et al., 2019).
Although curating more diverse datasets and fol-
lowing recommendations to mitigate bias in the
data pipeline would be a step forward to mitigat-
ing this problem (B et al., 2021), various resource
constraints could hinder this or make it impractical.

Due to all these challenges and the ubiquity of
language technologies that are used by large popu-
lations of non-English speaking users, addressing
fairness and bias, taking into account diverse lin-
guistic, socio-linguistic, and cultural factors, is of
utmost importance. Interdisciplinary and multicul-
tural teams are crucial to identifying, measuring,
and mitigating harms caused by bias in multilingual
models. Better evaluation benchmarks covering di-
verse linguistic phenomena and cultures will lead
to better fairness evaluation.

Regarding data collection, as discussed in Sec-
tion 3.1, it would be prudent to avoid directly trans-
lating datasets for training or evaluation in applica-
tions where fairness is critical. As we have shown
in this survey, it is not enough to collect datasets
in multiple languages for measuring and mitigat-
ing bias, although even these are lacking for most
languages worldwide. Zero-shot techniques that
ignore the cultural nuances of a language should be
used with care in fairness-critical applications, as
linguistically similar languages may have different
cultural values and vice versa. Finally, multilingual
models and systems need to incorporate shared
value systems that take into account diverse cul-
tures, although some cultural differences may still
go unacknowledged.
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Limitations

Our work surveys fairness literature in languages
other than English, including bias measurement
and mitigation strategies. Although we call out the
fact that bias in literature is studied from an Anglo-
centric point of view, it is conceivable that we miss
many diverse perspectives on linguistic and cultural
aspects of bias in different languages and cultures
of the world due to the relatively heterogeneous
background (in terms of nationality, ethnicity and
field of study) of the authors. There may also be
other relevant work in the social science literature
that we may have missed including in this survey.
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Abstract

The ability to recognize emotions in conversa-
tions is necessary and important for the online
chatbot to do tasks such as empathetic response
generation and emotional support. Present re-
searches mainly focus on recognizing emotions
through a speaker’s utterance, while research
on emotion inference predicts emotions of ad-
dressees through previous utterances. Because
of the lack of the addressee’s utterance, emo-
tion inference is more challenging than emo-
tion recognition. In this paper, we propose a
global-local modeling method based on recur-
rent neural networks (RNN) and pre-trained
language models (PLM) to do emotion infer-
ence, which utilizes the sequence modeling
ability of RNNs and abundant knowledge from
PLMs. Moreover, we take the whole dialogue
history as input of PLM to generate knowledge
by in-context learning. Experimental results
show that our model with knowledge enhance-
ment achieves state-of-the-art performance on
all three datasets.1

1 Introduction

The task of emotion recognition in conversation
(ERC) (Poria et al., 2019b) aims to identify emo-
tion labels of an utterance, where the whole dia-
logue history along with the current utterance is
given. However, in emotion inference in conver-
sation (EIC) the current utterance is lacking but
the dialogue history and the current addressee are
known (Li et al., 2021a). For example, Figure 1
shows a conversation between A and B. In the third
turn, ERC detects A’s emotion using all available
information while EIC predicts A’s emotion using
all the information except the last utterance. ERC
is a popular task that has been explored widely and
deeply, while EIC is a new task that measures the
emotion understanding ability of models from a
different perspective.

1The code is available at https://github.com/
Reason-Wang/DialogueGLP.

Person A Person B

[neutral]: Hi, what are you 
doing here?

[happy]: I am celebrating my child’s 
birthday. Would you like to join us?

[happy]: Thank you! It’s 
so nice of you to invite me.

Figure 1: A conversation between A and B. The text
in orange might be helpful for ERC. The text in green
might be helpful for EIC.

In ERC, some previous works utilize sequence-
based neural networks to model the context and
speaking parties (Majumder et al., 2019; Hu et al.,
2021a; Li et al., 2021a). These approaches first
finetune a model on utterances to classify emo-
tions. Then this model is used to extract features
of utterances. As shown in Figure 1, B makes
A happy because he/she is inviting A to join in a
party. However, B feels happy because he/she is
celebrating his/her child’s birthday. The finetun-
ing tends to keep the semantics that is helpful to
classify the current emotion and the feature extrac-
tion compresses the utterance’s information, which
may cause information loss that is valuable to in-
fer A’s emotion. Some works model dialogues at
utterance-level with graph-based models (Ghosal
et al., 2019, Shen et al., 2021). They have the
same problem as sequence-based models. Also, it
becomes difficult for them to distinguish similar
emotions as their layers deepen (Li et al., 2022).
Pre-trained language models do not need to do the
feature extraction process and they contain knowl-
edge suitable for EIC. However, these models can
not naturally process sequential utterances from
different parties. Motivated by this, we propose
global-local modeling method to combine different
abilities from these models. Specifically, we use
a sequence-based model to get the representation
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of the dialogue history and a pre-trained model to
process utterances that are close to the addressee’s
turn in which his/her emotion is to be inferred. In
our framework, the global representation and lo-
cal utterances can attend to each other, which we
believe is helpful for EIC.

Some researchers introduce external knowledge
to improve the performance of emotion detection
(Ghosal et al., 2020, Li et al., 2021b). They
generate commonsense knowledge using COMET
(Bosselut et al., 2019) which is trained on ATOMIC
(Sap et al., 2019). However, this knowledge is lim-
ited to certain event types. Also, it is generated
based on a single utterance instead of the whole
dialogue, which further limits the quality of the
knowledge. Recent advancements of in-context
learning (Liu et al., 2022) show that it is possible
to generate high-quality knowledge when language
models are provided with appropriate examples.
Based on the above analysis, we propose a knowl-
edge generation method specially designed for EIC
task based on prompt learning. Specifically, we
use templates to obtain two kinds of knowledge: I.
We let GPT fill the dialogue, thus we get pseudo
utterances that may be spoken by the addressee and
take them as knowledge. II. We ask GPT how the
addressee feels and take generated texts as knowl-
edge. Our knowledge is more precise since we
take the whole dialogue history as input. Also, it
is more diverse because GPT is trained on a large
number of texts in different fields.

2 Methods

2.1 Problem Definition

Given a dialogue D = [ (U1, p1) , (U2, p2) , · · ·
, (Um, pm) , pm+1], where Ui is the utterance in
i-th turn and pi is the participant in i-th turn. For
i = m + 1, pi is the addressee, otherwise pi is
the speaker. The task is to predict the addressee’s
emotion e using D.

2.2 Global Model

We use DialogueInfer (Li et al., 2021a) as our
global model. We first finetune a RoBERTa-Large
(Liu et al., 2019) model to predict the emotion label
of utterances as ERC task. Then we use the fine-
tuned model to extract features of utterances and
get a 1024-dimensional vector ui for each utterance
Ui. These representations of utterances are then put
into DialogueInfer to get the representation of the
dialogue. DialogueInfer is a model designed for

the EIC task. It adopts addressee-aware modules
to capture the persistence and contagiousness of ut-
terances. Formally, the output of the global model
can be defined as:

ht, ct = 1{pt = pm+1}LSTMa(ut, (ht−1, ct−1))

+1{pt ̸= pm+1}LSTMo(ut, (ht−1, ct−1))

hg = hm+1 (1)

where t = 1, 2, · · · , m is the turn step,
1{condition} is the indicator function and returns
1 if the condition is true otherwise 0, ht ∈ Rd1 and
ct ∈ Rd1 are hidden state and cell state respectively,
d1 is the hidden dimension in LSTM unit, hg is the
global representation of the dialogue. The final
output hg ∈ Rd1 is then fed into the local model.

2.3 Local Model

We employ RoBERTa (Liu et al., 2019) as the lo-
cal model. RoBERTa shares the same architecture
as BERT (Devlin et al., 2019) and is trained with
masked language modeling objective function. We
concatenate the last k utterances to form the input.
To make the local model addressee-aware as global
model, we prepend a speaker prefix to indicate
whether the utterance comes from the addressee.
The final text input is:

Ut =prfix(pm−k+1)Um−k+1</s>prefix(pm−k+2)

Um−k+2 </s> · · · prfix(pm) Um
(2)

prfix(pi) =

{
"I:", pi = pm+1

"Other:", pi ̸= pm+1
(3)

where </s> is the special token that indicates the
separation of utterances.

To fuse the global information, we add the global
representation hg to the first token’s embedding of
the text input. The whole process can be formulated
as:

ĥg =W Thg + b (4)

H = [Emb(Ut[0]) + ĥg; Emb(Ut[1 :])] (5)

he = RoBERTa-Model(H) (6)

where W ∈ Rd1×d2 is the matrix to project di-
mensions, d2 is the hidden dimension in RoBERTa
model, Emb is the embedding layer of RoBERTa.
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U1

LSTMa LSTMo LSTMa LSTMo

hg

RoBERTa

global model

local model

dialogue history

InstructGPT

knowledge generation

U2 U3 U4p1 p2 p3 p4

pr(p3)U3pr(p4)U4

he

The following is a conversation. Fill 
in the conversation with one utterance.

p1: utterance 1
p2: utterance 2
…: ……
pk: utterance k
…: ……
pm: utterance m
pm+1:

The following is a conversation. 

p1: utterance 1
p2: utterance 2
…: ……
pk: utterance k
…: ……
pm: utterance m

What does pm+1 feel now and why?

(b)

(c)(a)

Figure 2: (a) Our framework to infer the emotion. (b) The template to generate pseudo utterances. (c) The template
to generate feelings and corresponding reasons.

2.4 Prompt Based Knowledge Generation
GPT-3 (Brown et al., 2020) is a powerful model
which generates informative and accurate texts
when provided with appropriate examples. The
model is further finetuned to align with users so the
outputs are more truthful and less toxic (Ouyang
et al., 2022). We use the resulting model, called
InstructGPT, to generate two kinds of knowledge.

Pseudo Utterances We take the dialogue history
as input and let InstructGPT generate the utterance
that might be spoken by the addressee. Figure 2
shows the template to generate pseudo utterances.
After obtaining these knowledge texts, we first
prepend the addressee prefix to them. Then we
append them to the text input in the local model.

Feelings and Corresponding Reasons Since In-
structGPT is able to do many tasks, we ask Instruct-
GPT directly about the addressee’s emotions and
corresponding reasons. The output from the model
is taken as knowledge and is used the same way as
pseudo utterances. Figure 2 shows the template to
generate this kind of knowledge.

2.5 Classifier
We use the first token’s representation he as the
final output. A softmax layer is employed after a
linear projection layer:

pe = softmax(W The + b) (7)

where W ∈ Rd2×c is the projection matrix, c is
the number of emotions, pe ∈ Rc is the probability
distribution over different emotions.

3 Experiments

3.1 Implementation

We train our model on three datasets: DailyDialog
(Li et al., 2017), MELD (Poria et al., 2019a) and
EmoryNLP (Zahiri and Choi, 2018). We first fine-
tune a RoBERTa-Large model on the training set
of each dataset. The batch size is set to 16 and the
model with the best performance on the develop-
ment set is saved. We then use this model to extract
features of the datasets. For emotion inference,
we set the learning rate to 1e-5. AdamW is used
as the optimizer to update parameters. In the first
two epochs, we only update the global model and
freeze the local model. After that, we finetune the
whole model. We find this updating scheme makes
training more stable.

For other baselines, we adapted their official
codes to make them applicable to EIC task. The
parameters we used in training refered to their orig-
inal paper. We select all the models based on their
best performance on the development set. We use
cross entropy as the loss function.

3.2 Main Results

Table 1 shows the main results of our experiments.
Our base model without knowledge augmentation
already performs best on DailyDialog and MELD.
In most cases, the generated knowledge improves
the performance. However, knowledge U (pseudo
utterances) decreases the performance measured by
macro F1 on DailyDialog. COMET decreases the
performance measured by macro F1 on DailyDia-
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Model DailyDialog MELD EmoryNLP
macro F1 weighted F1 macro F1 weighted F1 macro F1 weighted F1

DialogueRNN* 36.28 71.67 16.77 33.96 17.62 20.49
DialogueCRN* 33.82 72.23 16.00 35.44 16.92 21.29
DialogueInfer* 34.43 71.00 17.06 35.41 17.64 20.28
DialogueGCN† 37.62 70.89 16.15 34.59 16.86 20.39
DAG† 34.87 71.93 18.27 34.94 17.88 21.86
CoG-BART‡ 35.51 72.10 17.15 34.60 17.46 21.35
CoMPM‡ 37.67 68.60 17.53 34.67 17.70 21.21

DialogueGLP 40.64 73.55 18.66 37.08 17.35 21.37
DialogueGLP(C) 39.64 73.97 17.46 37.14 16.69 19.97
DialogueGLP(U) 39.30 74.83 19.02 37.39 17.97 21.41
DialogueGLP(F) 40.79 75.10 19.65 37.32 17.70 21.84
DialogueGLP(F+U) 40.93 75.11 20.88 38.42 19.13 22.08

Table 1: Comparison of our models and sequence-based (*), graph-based (†) and transformer-based (‡) models.
DialogueInfer and our models are designed for EIC. Others are designed for ERC. (C) denotes knowledge
enhancement with COMET, (U) and (F) denote knowledge enhancement with pseudo utterances and feelings
respectively. We report the mean score over 5 random seeds.

Model DailyDialog MELD EmoryNLP

DialogueGLP 73.55 37.08 21.37
w/o global model 72.74 36.66 20.60
w/o local model 71.37 35.44 20.93
w/o addressee-aware 73.51 36.58 20.07

Table 2: Ablation studies on three datasets.

log and MELD. Generally, knowledge F (feelings
and corresponding reasons) are better than knowl-
edge U. Our prompt-based knowledge generation
method is better than COMET. We also concatenate
the two generated prompt-based knowledge (U+F).
The performance is further improved compared to
single knowledge augmentation.

Knowledge F consists of emotions and reasons
for those emotions. To explore whether only In-
structGPT is enough to predict the emotions, we let
it directly infer the emotions of addressees in Daily-
Dialog. The resulting weighted F1 is 34.65, which
shows that it is not good at inferring emotions and
the main performance boost of DialogueGLP(F)
comes from the part of reasons.

Ablation Analysis To explore the effectiveness
of different modules in our model, we also do abla-
tion studies on the three datasets. To remove the ad-
dressee information, we simply replace the global
model with a single LSTM and the addressee prefix
with the speaker’s name. The results show that the
local model is generally more important than other
modules. Since DailyDialog is dyadic, the second
to last utterance in our input texts must be from the
addressee. Therefore, the addressee information is
less important in DailyDialog.

4 Related Work

Emotion recognition in conversation has been a
popular area where different models have been
proposed. We divide them into three categories:
sequence-based, graph-based and transformer-
based. DialogueRNN (Majumder et al., 2019)
models different parties and global state by dif-
ferent recurrent neural networks. DialogueInfer
(Li et al., 2021a) adopts two LSTMs to process
utterances by whether they are from addressees.
DialogueCRN (Hu et al., 2021b) iteratively does
retrieving and reasoning process to extract and in-
tegrate emotional clues. DialogueGCN (Ghosal
et al., 2019) utilizes graph neural networks to con-
nect utterances with surrounding utterances. DAG
(Shen et al., 2021) uses a directed acyclic graph
network to gather information over long distances.
CoG-BART (Li et al., 2022) adopts supervised con-
trastive learning and response generation as auxil-
iary tasks. CoMPM (Lee and Lee, 2022) combines
speaker’s memory using a pre-trained model as an
extractor.

Some works focus on introducing knowledge to
help detect emotions. KET (Zhong et al., 2019) re-
trieve commonsense knowledge from ConceptNet
(Speer et al., 2017) and NRC_VAD (Mohammad,
2018). COSMIC (Ghosal et al., 2020), DialogueIn-
fer (Li et al., 2021b) and ToDKAT (Zhu et al., 2021)
incorporates commonsense knowledge generated
by COMET (Bosselut et al., 2019). GKP (Liu et al.,
2022) generates knowledge from language models
with prompt learning to do commonsense reason-
ing.
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5 Conclusions

In this paper we combine the ability of sequence
models and pre-trained models and propose global-
local modeling method to do emotion inference
in conversation. Moreover, we take the whole
dialogue as input and generate knowledge with
prompt learning. Experiments show that our model
has achieved state-of-the-art performance on three
datasets. Ablation studies show the effectiveness
of different modules in our model.

Limitations

Since in our framework the global model needs to
first compute the global representation then the lo-
cal model outputs the emotion distribution, it takes
longer time to train and inference than other models.
We utilize a pre-trained model in our framework,
which requires large GPU memory.
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A Case Study

Figure 3 shows a dialogue example between A and
B from DailyDialog (Li et al., 2017) dataset and
generated knowledge by COMET (Bosselut et al.,
2019) and prompt learning. The task is to infer
A’s emotion. For COMET, we take each utterance
as input and generate three types of knowledge as
Li et al. (2021b), which are oReact, oWant and
oEffect. For prompt-based knowledge generation,
we formulate the input by the template and dialogue
history and input it into InstructGPT. As a result,
we get a pseudo utterance that may be spoken by A
and feeings of A.

As Figure 3 shows, our knowledge summa-
rizes the dialogue well and is much more human-
readable. This property makes our knowledge more
suitable to concatenate with text inputs. COMET
trained on ATOMIC (Sap et al., 2019) generates
knowledge based on events. Therefore only one ut-
terance can be taken as input instead of longer con-
texts. If an utterance contains multiple events, the
generated knowledge may not be accurate. Also,
the knowledge generated by COMET often repeats.

B Datasets Preprocessing

The datasets can not be directly used. We take each
dialogue as an example and the emotion of the last
utterance as the label. In training, we do not use
the last utterance. DailyDialog is a dyadic dialogue
dataset for emotion recognition. It contains more
than 10,000 dialogues. We take each dialogue as
a training example and take the last speaker of the
dialogue as the addressee and the corresponding
emotion as the label. MELD (Poria et al., 2019a) is
a multimodal multiparty dialogue dataset designed
for emotion recognition. However, it contains less
than 2,000 dialogues. To get more training exam-
ples, we cut one dialogue into more dialogues. We
keep a dialogue at least three utterances and cut
it wherever the next speaker is different from the
current speaker. Figure 3 shows how we process a
dialogue with eight utterances. EmoryNLP (Zahiri
and Choi, 2018) is a ERC dataset collected from
Friends. We preprocess it the same way as MELD.
Table 3 shows the statics after we preprocess the
three datasets. We get each split of datasets from
their original splits.

C Adapting Codes to EIC

Since EIC is a new task, there are not many base-
lines for EIC. We adapt models that are original

Dataset train dev test

DailyDialog 11118 1000 1000
MELD 6125 685 1540
EmoryNLP 8345 1124 1140

Table 3: Statics of processed datasets.

designed for ERC to do EIC. In our baselines, only
DialogueInfer is designed for EIC. For other mod-
els, we mainly modify the code of their inputs and
outputs.

2126



Hi Bill, I saw your grandma 
yesterday.

 Oh where was that ?

I was running around the track at 
my college and there she was 
walking around the same track . 

 Grannie always tries to stay fit 
and healthy. She is always making 
us kids eat the proper foods .

Well , it pays off for her. How old 
is she anyway ? 

 She will be 86 next month .

[Feelings and corresponding reasons]: I feel happy that 
I saw Bill's grandma yesterday. It is nice to see that she 
is staying fit and healthy at her age.

[Pseudo utterances]: That's amazing! She looks great 
for her age.

[COMET]:
Happy, to say hello, talks to person x.

Confused, to tell personx where they are, they 
get lost.

Happy, to get to know personx, person y gets excise.

Healthy, to be healthy, they eat healthy.

Happy, to thank personx, is grateful to personx.

Happy, to see how they do, get’s it done well.

u1 u2 u3 u4 u5 u6 u7 u8

u1 u2 u3

u1 u2 u3 u4

u1 u2 u3 u4 u5 u6

u1 u2 u3 u4 u5 u6 u7

u1 u2 u3 u4 u5 u6 u7 u8

A

A

A

B

B

B

A

(a) (b)

Figure 3: (a) A dialogue example from DailyDialog and generated knowledge from COMET and our method. (b)
An example of how we cut dialogues. This dialogue contains eight utterances. Colors denote speakers. We cut it
into five dialogues.
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Abstract
The news subheading summarizes an article’s
contents in several sentences to support the
headline limited to solely conveying the main
contents. So, it is necessary to generate com-
pelling news subheadings in consideration of
the structural characteristics of the news. In
this paper, we propose a subheading generation
model using topical headline information. We
introduce a discriminative learning method that
utilizes the prediction result of masked headline
tokens. Experiments show that the proposed
model is effective and outperforms the compar-
ative models on three news datasets written in
two languages. We also show that our model
performs robustly on a small dataset and vari-
ous masking ratios. Qualitative analysis and hu-
man evaluations also show that the overall qual-
ity of generated subheadings improved over the
comparative models.

1 Introduction

The news headline summarizes the article to grab
the attention and interest of the readers (Dor, 2003;
Ifantidou, 2009; Ecker et al., 2014). However, the
headline is written in a brief form of short sen-
tences with topic-related phrases (Yamada et al.,
2021), making it hard for users to grasp the entire
content of the news article from the headline alone.
To tackle this problem, some news vendors pro-
vide a subheading, usually located right below the
headline, to convey its main content within several
sentences. This component can provide a core and
informative summary of a news article that cannot
be conveyed by the headline alone. Mainly, sub-
headings are written by professional news writers
with concise content that corresponds to the main
body of the news.

Recently, Hasan et al. (2021) released XLSum, a
multilingual news summary dataset, referring to
subheading as a summary of the article. Therefore,
generating subheadings can be considered an ab-
stractive summarization problem that needs to cap-

ture the topical knowledge from the body of the
article. The main approach is to add auxiliary sig-
nals to make the model aware of topical knowledge.
Dou et al. (2021) and Aralikatte et al. (2021) add
an external guidance signal by lexical similarity be-
tween input text and summary. Yamada et al. (2021)
extracts the context word sequences from the refer-
ence to reflect some important phrases from the ar-
ticle. Although these external auxiliary sources pro-
vide diverse topical signals, they are cost-intensive
to heuristically manipulate and have limitations in
guiding the overall topical information of the arti-
cle. Other approaches incorporate contrastive learn-
ing into sequence-to-sequence (seq2seq) model,
allowing the model to learn topical representation
of the input text (Lee et al., 2021; Liu et al., 2021;
Wu et al., 2020). They explicitly constructs positive
or negative inputs to introduce contrastive loss as
an augmentation of MLE training.

In this work, we propose a novel framework
for generating compelling news subheadings by
discriminating whether each token in the recon-
structed headline is the same as the token in the
original headline. Unlike previous approaches that
use heuristically extracted topical information or
positive and negative pairs, we utilize headline that
fundamentally implies the topic of the entire article.
We make full use of this indispensable object as
a guide signal through token-based discriminative
learning. We conducted comparative experiments
on three datasets written in English or Korean to
evaluate the performance of our model and verified
our model through additional qualitative analysis
with human evaluations.

2 Datasets

We used one English news summarization dataset
and two Korean news summarization datasets.
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By Anthony Lake & Jakaya Kikwete Director of Unicef and President of Tanzania
The foundation of a healthy future for every child is the 1,000 days between a
mother's pregnancy and her child's second birthday. The right nutrition during this
critical period puts a child on track to be stronger, healthier and ready to learn. ……
Because good nutrition truly empowers children, families, communities and nations,
it's a cost-effective opportunity for major, sustainable, global development progress.
We know what to do. Countries are ready to do it. Let’s invest now.

Early malnutrition can blight a child's development - and also that of their
community and nation, say Anthony Lake. director of Unicef and President
Jakaya Kikwete of Tanzania. In this week's Scrubbing Up column, they say
a new initiative called Scaling Up Nutrition - backed by the G8 - is crucially
important.

𝑳𝒅𝒊𝒔 : Token-based Discriminative Loss

𝑳𝒈𝒆𝒏 : Seq2Seq Loss

improving children ' s diethow ##s can aid development

improving [MASK] ' s diethow ##s can aid [MASK]

Discriminator 
improving adult ' s diethow ##s can aid condition

0 1 0 0 00 0 0 0 1

Random Masking

Generator

0: Correct
1: Incorrect

Headline

Body Subheading

Encoder Decoder

Body Representation

Pooler

Cross Attention
Masked Self Attention

𝑁×
Feed Forward NetworkFeed Forward Network

Self Attention𝑁×

Figure 1: Framework of the proposed model. The lower part of the figure represents subheading generation, and the
upper part of the figure represents token-based discriminative learning. Prediction results of discriminator encourage
encoder to focus on the topical information.

2.1 XLSum

XLSum (Hasan et al., 2021) is a highly abstract mul-
tilingual news summarization dataset containing
online articles crawled from the British Broad-
casting Corporation (BBC). They regard a bold
paragraph containing one or two sentences at the
beginning of each article as a summary, a sub-
heading. We use the English and Korean ver-
sions with train set, valid set, and test set pairs
of {306522, 11535, 11535} and {4407, 550, 550},
respectively.

2.2 YonhapNews

However, the size of the training dataset in XLSum’s
Korean version is insufficient for fine-tuning. We
construct a dataset from YonhapNews, one of the
most reliable news outlets in South Korea, to eval-
uate the performance of the model with a siz-
able Korean dataset. In YonhapNews, the subhead-
ing is located right below the headline to con-
dense the body in abstractly, like the BBC. Train
set, valid set, and test sets in YonhapNews are
{208750, 26094, 26094} and will be released for
academic use.1

1https://github.com/Lainshower/Subheading-Gen

3 Proposed Method

As shown in Figure 1, our proposed model consists
of subheading generation (bottom) and token-based
discriminative learning (top) parts. The loss occur-
ring in each part is defined as Lgen and Ldis, and
the model is trained by minimizing the following
loss:

L = Lgen + λ · Ldis, (1)

where λ is a weighted hyperparameter for the two
losses.

3.1 Subheading Generation

We use BART (Lewis et al., 2020) as our seq2seq
model, where the encoder takes a body B as an
input, generates an input representation of the body,
and passes it to the decoder, which outputs the
subheading Ŝ. The loss of subheading generation
is as follows:

Lgen = −
M∑

i=1

log(p(si|s1:i−1, B; θ)), (2)

where a body B = (b1, b2, ..., bN ) and its subhead-
ing S = (s1, s2, ..., sM ) consists of N token vec-
tors bi and M token vectors sj , respectively, and
the seq2seq model is optimized to learn the θ pa-
rameters to minimize the negative log-likelihood.
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Dataset Model Size Rouge-1 Rouge-2 Rouge-L BERTScore

XLSum-ENG

BART 139M 36.52 15.33 30.49 77.68
MT5 582M 37.81 14.59 28.30 74.48
T5 220M 37.87 15.97 29.09 75.96

Pegasus 571M 39.57 16.63 32.45 77.93
T5 w/multi 247M 35.37 14.71 29.84 75.74

Ours 282M 39.84 18.07 33.77 78.96

XLSum-KOR

BART 124M 25.23 15.91 23.37 74.60
MT5 582M 29.16 14.03 25.40 69.94
T5 247M 13.99 4.10 13.48 67.92

T5 w/multi 247M 17.55 7.03 16.60 71.58
Ours 269M 27.41 17.56 25.48 75.58

YonhapNews

BART 124M 21.41 11.00 19.21 72.19
MT5 582M 25.24 11.28 21.13 70.70
T5 247M 20.10 8.70 17.96 71.67

T5 w/multi 247M 22.21 9.91 19.91 71.21
Ours 269M 24.15 13.21 21.93 73.08

Table 1: Subheading generation performance for each dataset. Size represents the number of parameters in each
model. Our model outperforms the comparative models except for Rouge-1 score for XLSum-KOR and YonhapNews.

3.2 Token-based Discriminative Learning

Inspiring by Chuang et al. (2022), we inject topical
knowledge of the article by discriminating whether
tokens in the reconstructed headline are the same
as the original. As described in Appendix A, head-
line has high lexical similarity with subheading
compared to other objects in the article. Therefore,
headline reconstruction helps model to aware of
topical information which is inherent in the head-
line. The loss of token-based discriminative learn-
ing is as follows:

Ldis=

L∑

i=1

(
− 1(h′

i=hi) logD(H
′|B,H)

−1(h′
i ̸=hi) log

(
1−D(H

′|B,H)
))
,

(3)

where a headline H = (h1, h2, ..., hL) consist
of L tokens and the reconstructed headline H

′
is

H
′
= G(Hmasked) where G is the generator and

a masked headline Hmasked is obtained with ran-
dom mask M = [m1,m2, ...,mL],mt ∈ [0, 1],
Hmasked = H ·M . Using the compressed body
representation of the encoder, the discriminator D
predicts whether the tokens in the reconstructed
headline H

′
are the same as the original headline

H . As shown in Figure 1, the generator predicts
the masked headline into “how improving adult’s
diet can aid condition”. Using the encoded body
representation and partially mispredicted headline,
the model trains the incorrectly predicted “adult”,
and “condition” and the correctly predicted rest of
the tokens, respectively. Back-propagated gradients
of the discriminatorD cause the encoder to include
the topical information of the article in the body
representation by classifying whether the tokens

in the reconstructed headline H
′

come from the
original headline or not.

Model Generated Subheading

BART
The UK’s oil and gas industry generated nega-
tive tax receipts in 2015-16, according to HM
Revenue and Customs (HMRC).

MT5
Have led to a fall in tax receipts from UK oil
and gas production, according to HM Revenue
and Customs (HRMC)

T5
revenues have fallen to their lowest level
since records began in the 1960s, according
to new figures from HM Revenue and Customs
(HMRC)

Pegasus
tax receipts from oil and gas production in the
UK have fallen to their lowest level, according
to HM Revenue and Customs (HMRC)

Ours

Revenues from the North Sea oil
and gas industry have fallen to
their lowest level since records began, ac-
cording to HM Revenue and Customs
(HMRC).

Table 2: Example of generated subheading for each
model. The original headline is “North Sea receipts hit
record low” and the reference subheading is “The UK
government has incurred a loss from North Sea oil and
gas production for the first time since records began
nearly 50 years ago”. The body of the article can be
found in the XLSum-ENG test set with the corresponding
id=‘uk-scotland-scotland-business-36388621’.

4 Experiments

4.1 Experimental Setting
We use pretrained models BART and ELEC-
TRA (Clark et al., 2020). Unlike [CLS] repre-
sentation of BERT (Devlin et al., 2019), BART
doesn’t have a special input representation token.
As such, we use an average pooler to compress
the output of the encoder and freeze the genera-
tor to keep generating noise headline for token-
based discriminative learning. Optimal parameters
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were obtained in the search spaces with learning
rate {1e−5, 2e−5, 3e−5, 4e−5}, masking ratio
{0.1, 0.2, 0.3, 0.4, 0.5}, and lambda {0.1, 0.01}.

4.2 Comparative Models

BART, T5 (Raffel et al., 2020), and MT5, (Xue
et al., 2021) were used as comparative models in
all datasets. Also, Pegasus (Zhang et al., 2020) for
English were used as comparative models. For a
fair comparison, we use the concatenated body with
a headline in the input of the comparative models.

4.3 Experimental Results

Table 1 shows the results of subheading genera-
tion performance for each dataset. Model perfor-
mance was evaluated using Rouge (Lin, 2004) and
BERTScore (Zhang et al., 2019). In XLSum-ENG,
our model outperforms all comparative models. In
particular, our model performs better than MT5 or
Pegasus, which have more than double the model
size. In other words, token-based discriminative
learning can improve generation performance more
efficiently than simple concatenation. Our model
outperforms the comparative models in all other
metrics except the Rouge-1 score for the Korean
language datasets. MT5 records the highest Rouge-
1 score on both Korean datasets. However, because
Korean is decomposed into many sub-words due to
its morphological richness, it is not suitable to eval-
uate performance with Rouge-1 score alone. In par-
ticular, in terms of BERTScore, our model scored
5.64% and 2.32% higher than MT5 in XLSum-KOR
and YonhapNews, respectively. This indicates that
our model can generate semantically relevant sub-
headings. Moreover, good performance on small
datasets (i.e., XLSum-KOR) demonstrate the robust-
ness of our model.

Table 2 shows an example of the generated sub-
headings for each model. We can see that our model
utilizes “North Sea” and “record low” from the
headline to better condense topical information in
the article. Additional qualitative results are de-
scribed in Appendix C.

XLSum-ENG XLSum-KOR YonhapNews
BART 2.53 (0.64) 2.00 (0.38) 3.53 (0.92)
MT5 2.71 (0.61) 2.07 (0.59) 2.60 (0.51)
T5 2.64 (0.74) 2.20 (0.41) 2.73 (0.46)

Pegasus 3.64 (0.50) - -
Ours 4.21 (0.70) 3.67 (0.49) 3.40 (0.74)

Table 3: The average score of human evaluation for
XLSum-ENG, XLSum-KOR, and YonhapNews. Numbers in
parentheses indicate the standard deviations.

4.4 Human Evaluations

We conduct human evaluations to verify whether
the subheadings of the proposed method are more
topically relevant than the baselines. Three samples
were randomly selected from each test dataset, and
subheadings generated along with their correspond-
ing headlines and body were shown to the workers
and evaluated on a five-point Likert scale. Table 3
shows that our model generates topic-relevant sub-
headings better than the baselines on two datasets,
and is particularly robust on a small dataset (i.e.,
XLSum-KOR). In the case of YonhapNews, BART
showed the hightest score, but the independent t-
test showed that the average difference between
Ours and BART was insignificant (p>0.663).

4.5 Comparison with Multi-task Learning

To verify whether our model effectively learns top-
ical information from the headlines, we conduct
additional experiments with a multi-task learning.
Different prefixes were used to know the model
what the current training task is. One task maps
news body text to subheading, and the other maps
news body text to headline. We experiment with
T5 because it has less discrepancy with our pre-
training objectives. T5 w/multi rows in Table 1
show the multi-task learning results, demonstrat-
ing that our method is more effective in learning
headline information.

4.6 Ablation Studies

We perform ablation studies in terms of masking
ratio to analyze the effectiveness of token-based
discriminative learning. Figure 2 shows the results
of the Rouge-2 score and BERTScore according to
the masking ratio for each dataset. We also plot the
performance of the T5 with similar parameter sizes
to ours. Our model outperforms T5 in all masking
ratio ranges. This indicates that our model is not
significantly sensitive to masking ratio. In particu-
lar, the large performance difference of XLSum-KOR
demonstrates the robustness of our model on the
small dataset. The original headline is completely
incorrectly reconstructed if the masking ratio ex-
ceeds 0.4, limiting ability of the model to learn
crucial topical information from the headline con-
sidering the token length of the headline. However,
for small masking ratios such as 0.1, the genera-
tor can completely reconstruct the original head-
line, but it is limited in maximizing the benefits of
token-based discriminative learning. Headline to-
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(a) (b) (c)

Figure 2: Rouge-2 score and BERTScore according to masking ratio for (a) XLSum-ENG, (b) XLSum-KOR, and (c)
YonhapNews. The performance of the T5 in two Korean datasets is plotted with a ‘x’ marker. The masking ratio
between 0.2 and 0.3 shows the best performance in all datasets.

ken length distribution is described in Appendix B.
Therefore, it is recommended to set the masking
ratio between 0.2 and 0.3 in order to utilize the
token-based discriminative learning for subheading
generation entirely.

5 Conclusions

In this paper, we propose a novel model for gen-
erating a subheading for news article. Along with
token-based discriminative learning, our model can
effectively utilize topical information from a head-
line that is essential in articles and does not require
additional manipulated information. Experiments
on three datasets written in two different languages
show the effectiveness of the proposed model. Also,
qualitative results and human evaluation show that
the overall quality of generated subheadings is im-
proved compared to comparative models. We ex-
pect that our model will be extended in future re-
search to an abstractive summarization task that
include both a headline and a body text, such as
legal texts or papers.

Limitations

Our study outperformed all comparative models in
generating subheadings through token-based dis-
criminative learning. However, the experiments
mainly used limited languages such as English
and Korean due to a lack of large-scale multi-
lingual training data and the need for significant
GPU resources. We, therefore, encourage further
investigations to expand the versatility of the pro-
posed model by utilizing large-scale multilingual
language datasets to verify expandable applications
in various morphological characteristics.

Ethics Statement

As YonhapNews is one of the most reliable media
outlets in South Korea, articles from YonhapNews
are published through a rigorous verification pro-
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content that has not been modified by new facts, so
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ous studies and thus is released for academic uses.
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A Similarity between Subheading and Headline

(a) (b) (c)

Figure A.1: Cosine similarity between the TF-IDF values of subheading-headline (0 index in X-axis) and between
the TF-IDF values of the subheading-body sentences (1 to N indexes in X-axis) of the news article. Each figure (a),
(b), and (c) represents for dataset XLSum-ENG, XLSum-KOR, and YonhapNews, respectively.

B Length of Headline

(a) (b) (c)

Figure B.1: Distribution of the token length in the headline of (a) XLSum-ENG, (b) XLSum-KOR, and (c) YonhapNews.

C Qualitative Results

Model Generated Subheading

BART

신종코로나바이러스감염증(코로나19)백신구매계약을맺은영국정부가존슨총리에게코백스를
통해백신을기부할것을촉구했다. (The British government, which signed a contract to purchase a
new coronavirus infection (COVID-19) vaccine, urged Prime Minister Johnson to donate the vaccine
through COVAX.)

MT5
단체들이 신종 코로나바이러스 감염증(코로나19) 백신을 구매한 후에도 잉여 물량의 대부분을 공
유할 것이라고 촉구했다. (Organizations urged that they will share most of the surplus even after
purchasing a new coronavirus infection (COVID-19) vaccine.)

T5 신종 코로나바이러스 감염증(코로나19) 백신을 사용할 수 있다고 밝혔다. (It was announced that a
new coronavirus infection (COVID-19) vaccine can be used.)

Ours
영국이신종코로나바이러스감염증(코로나19)백신의잉여물량을저개발국에기부하겠다고밝혔
다. (The UK has announced that it will donate remaining of COVID-19 vaccine to underdeveloped
countries.)

Table C.1: Example of generated subheading for each model in XLSum-KOR. The original headline is “코로나19
백신:전국민접종하고도 1억도즈남는영국... ‘남는백신기부할것’ (COVID-19 Vaccine: 100 million doses of
UK left after national vaccination... ‘Donate the remaining vaccines.’)” and the reference subheading is “국제구호
단체들이보리스존슨영국총리에게영국이저개발국가에기부할수있는코로나19백신이얼마나되는지를
조속히밝힐것을촉구하고있다. (International aid organizations are urging British Prime Minister Boris Johnson
to reveal as soon as possible how many COVID-19 vaccines Britain can donate to underdeveloped countries.)” The
body of the article can be found in the test set with corresponding id=‘international-56553770’.
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Model Generated Subheading

BART 11억원 기부...군부대도 방역에 힘 보탰다 (Donating 11 billion won ... The military unit also helped
with quarantine)

MT5 잇단 후원...경북도교육청, 장병 130여명 투입해 방역 지원 (Continuous sponsorship ... Gyeongbuk
Provincial Office of Education dispatched 130 soldiers to provide quarantine support)

T5 각계서성금 ·성금잇따라 (a series of donations from all walks of life)

Ours
착한임대인운동확산...제201특공여단,경산역 ·버스터미널방역지원 (Spreading the Good Renters
Movement ... The 201st Special Forces Brigade, provide quarantine support to Gyeongsan Station and
Bus Terminal)

Table C.2: Example of generated subheading for each model in YonhapNews. The original head-
line is “‘코로나19 극복 함께해요’. . .대구 ·경북에 성금 ·물품 답지 (‘Let’s overcome COVID-19
together’...Daegu and Gyeongsangbuk-do collect donations to deliver goods)” and the reference subhead-
ing is “착한임대인운동공공기관에확산. . .군부대는방역지원 (The Good Renters Movement Spreads to Public
Institutions. . . Military units provide quarantine support)”.This news article covers the quarantine support from vari-
ous industry fields, including the rental industry and the military service, in response to the COVID-19 in Daegu and
Gyeongsangbuk-do, city and state located in Korea. Subheading generated by our model include “Gyeongsan”, lo-
cated in Gyeongsang-do, showing that it reflects the locational information of quarantine support that occurs through
the headline. The body of the article can be found in ‘https://www.yna.co.kr/view/AKR20200309146000053’
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Abstract

Solving substitution ciphers involves mapping
sequences of cipher symbols to fluent text in a
target language. This has conventionally been
formulated as a search problem, to find the deci-
pherment key using a character-level language
model to constrain the search space. This work
instead frames decipherment as a sequence pre-
diction task, using a Transformer-based causal
language model to learn recurrences between
characters in a ciphertext. We introduce a novel
technique for transcribing arbitrary substitution
ciphers into a common recurrence encoding.
By leveraging this technique, we (i) create a
large synthetic dataset of homophonic ciphers
using random keys, and (ii) train a decipher-
ment model that predicts the plaintext sequence
given a recurrence-encoded ciphertext. Our
method achieves strong results on synthetic 1:1
and homophonic ciphers, and cracks several
real historic homophonic ciphers. Our anal-
ysis shows that the model learns recurrence
relations between cipher symbols and recovers
decipherment keys in its self-attention.1

1 Introduction

Text may be considered a special kind of recurrent
sequence, where letters repeat at intervals which
conform to a language’s character n-gram distribu-
tion. The hidden mapping between cipher text and
plain text can be viewed as a model that predicts
this recurrent sequence. Can we use self-attention
to recover the mapping from a sequence of recur-
rent symbols to crack the cipher?

In this work, we exploit this idea for decipher-
ment by building upon recent successes of Trans-
former models (Vaswani et al., 2017) in reasoning-
based regression tasks such as mathematical rea-
soning (Saxton et al., 2019; Li et al., 2021) and
learning the mathematical function for recurrent

1https://github.com/protonish/decipher_symbol_
recurrence

Figure 1: The homophonic substitution key for the Sime-
one de Crema written in Mantua in 1401 AD. The top
line maps each character in the alphabet to its reversed-
alphabet equivalent; each vowel is substituted by three
additional symbols.

sequences (D’Ascoli et al., 2022). We rethink deci-
pherment as a regression task that predicts a natural
language plaintext by learning a recurrence relation
between integer-coded ciphertext symbols.

There exist large collections of historical ciphers
(see de-crypt.org)2, in the form of encrypted let-
ters and more informal communications, of which
many remain undeciphered. Many of these texts
employ complex homophonic substitution ciphers,
which mask the frequencies of letters by using a
larger alphabet than the underlying language. Fig-
ure 1 shows the first known homophonic cipher
from 1401 AD 3. Automated computational deci-
pherment of such texts is challenging (Pettersson
and Megyesi, 2019; Megyesi et al., 2020). Prior
work has mainly focused on using clever heuristics
and/or search algorithms to explore the space of
cipher keys and score multiple candidate plaintexts
under character language models (LMs) (Knight
et al., 2006; Corlett and Penn, 2010; Hauer et al.,
2014; Berg-Kirkpatrick and Klein, 2013; Nuhn
et al., 2013, 2014; Kambhatla et al., 2018) In con-
trast Aldarrab and May (2021) train a sequence-to-
sequence model to solve simple (one-to-one) sub-
stitution ciphers. This approach, however, cannot
solve complex homophonic ciphers as it relies on
frequency information which such ciphers obscure.

In this paper, in a departure from frequency and
2https://de-crypt.org/decrypt-web/RecordsList
3https://en.wikipedia.org/wiki/Francesco_I_

Gonzaga
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Figure 2: Part of an arbitrary 424 characters long homophonic cipher with 71 symbols and its plaintext. Bottom
row juxtaposes symbol frequencies in 1:1 vs homophonic encipherments of the plaintext.

heuristic search-based techniques, we make the fol-
lowing contributions: 1 We create a sequence-
to-sequence dataset comprising 2 million unique
homophonic ciphers and their plaintext. 2 We
propose a novel recurrence encoding which en-
codes information about the position and repetition
of symbols in a cipher. This can be applied to both
1:1 and homophonic ciphers. 3 This encoding al-
lows us to treat decipherment as a sequence predic-
tion task conditioned on an integer sequence. We
introduce a novel approach to solving homophonic
ciphers by using a Transformer LM to translate
integer-encoded ciphertexts to plaintexts. We also
provide exhaustive analysis to show the strengths
of our model. 4 We demonstrate near-perfect
results on synthetic homophonic ciphers. Addi-
tionally, we show fully automated decipherment
of TNA_SP106/5 and BnF-f01, two real historical
ciphers.

Our analysis shows that reproducing the input
ciphertext before generating the plaintext helps our
model to learn the relations between cipher sym-
bols. This enables it to implicitly learn the deci-
pherment key with high accuracy, and to determine
which symbols are homophones of one another.
The decipherment is highly constrained by this im-
plicit key even in the face of disfluent plaintexts,
and as a result our model is able to produce deci-
pherments into Latin and late Middle/early modern
English, despite being trained on modern English.

2 Decipherment of Substitution Ciphers

A 1:1 or simple substitution cipher, the oldest
known technique for obscuring written information,
defines a 1-1 mapping between plaintext characters
and ciphertext symbols. This mapping can easily
be broken with frequency analysis (Hauer et al.,
2014; Kambhatla et al., 2018; Aldarrab and May,

Method Search Train

n-gram LM (2010) A* ✗

LM + Bay. Inf.(2011) sampling ✗

LM + HMM (2013) EM; 1M restarts ✓

n-gram LM (2013; 2014) beam ✗

lstm LM (2018) beam ✗

Generative LM (Ours) ✗ ✓

Table 1: Summary of different methods used for solving
homophonic ciphers. Prior approaches are predomi-
nantly search-based and use a frozen language model to
score partial candidate hypotheses.

2021) which leverages the fact that these ciphers
preserve the distribution of character frequencies
in the underlying language.

Homophonic ciphers are substitution ciphers
where one plaintext character may be encoded by
more than one ciphertext symbol. In this way, fre-
quent plaintext characters can be mapped to many
infrequent ciphertext symbols, resulting in a flat-
tened frequency distribution (Figure 2).

2.1 Background
Traditional approaches to natural language deci-
pherment of homophonic substitution ciphers–the
main focus of this work–are entirely search-based
(Table 1). Nuhn et al. (2013) perform a beam search
using an offline, frozen character language model
to score candidate decipherments, and Nuhn et al.
(2014) improve the rest-cost estimation for this
technique. Kambhatla et al. (2018) further improve
the rest-cost heuristic by using a frozen neural LM
to score hypotheses. Corlett and Penn (2010), on
the other hand, use A∗ search. Berg-Kirkpatrick
and Klein 2013 uses 1 million random restarts to
learn HMMs for decipherment.

The ability of such inference-only methods to
generalize can be limited, as it depends on the un-
derlying language model that is used to score the
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Figure 3: Top-left: Before recurrence encoding. Every ciphertext is unique with a different key, with distinct keys
and plaintexts, and varying lengths. There is no relation between identical symbols in different ciphers (e.g.
in cipher 1 and 5). These dissimilarities make it nearly impossible to train a model to generalize to new, unseen
homophonic ciphers. Top-right: After recurrence encoding. Arbitrary ciphertexts are converted to recurrent integer
sequences. The encoding is applied to each cipher independently: the same symbol may receive different encodings
in different ciphertexts depending on where it first occurs, and two ciphers may receive the same encoding despite
using different alphabets. Bottom: Recurrence-encoded symbols decipher to different values depending on context.

constructed hypotheses. Even an efficient search
can take a long time to find the whole cipher key
(Nuhn et al., 2013; Kambhatla et al., 2018).

3 Our Generative Decipherment Model

We frame decipherment as a novel sequence gen-
eration task–we train a generative language model
that learns the relations between recurring symbols
in a homophonic cipher and generates the corre-
sponding deciphered plaintext message.

3.1 Converting Arbitrary Ciphers into
Recurrent Integer Sequences

In a substitution cipher, any character may be sub-
stituted for any other, limiting what one can gen-
eralize between different ciphertexts (Figure 3).
However, unrelated ciphers may still exhibit similar
patterns of letter distribution and repetition and dis-
play latent characteristics of the plaintext language.
For example, the characters at the beginning of two
unrelated ciphers are likely drawn from the same
distribution of word-initial letters in the underlying
plaintext language. So we can generalize better by
treating ciphers as recurrent sequences.

We propose a novel recurrence encoding to high-
light where cipher symbols first occur and how
they are repeated within a ciphertext. This encod-
ing replaces the nth unique symbol in a ciphertext
with the number n wherever that symbol occurs
(Figure 3). This converts arbitrary ciphertexts into
integer sequences, and thus provides a coherent
connection between ciphers with distinct keys or
disjoint alphabets.

3.2 Modelling Symbol Recurrence Relations
In this section, ciphertext specifically refers to a
recurrence-encoded integer sequence.

Following Wang et al. (2021) and Zhang et al.
(2022) in MT, we use a causal language model
(LM) as a replacement for a Transformer-based
encoder-decoder model (Vaswani et al., 2017). For
a source sequence X and the target Y ,

[Xl, Y l] = FFN ◦ SelfAtn
(
[Xl−1, Y l−1],Mask

)
(1)

where l is the layer index, FFN is a feed-forward
network, and Mask denotes the attention mask.
Our CausalLM model is a unidirectional LM, with
causal masking over both the source and the target.
This optimizes the joint distribution of cipher (src)
and plaintext (tgt) sequences:

LCLM (X,Y ) = LSRC + LTGT (2)
= −logP (X)− logP (Y |X)

CausalLM is therefore forced to sequentially pre-
dict the ciphertext just as it predicts the plaintext.
This formulation encourages the model to learn a
coherent relationship between the ciphertext and
plaintext characters within each training sample.

Baseline Models. To understand the importance
of causal attention masking, we also consider the
following models which do not generate the cipher-
text:

Seq2Seq Following (Aldarrab and May, 2021),
this is a character level Transformer architecture
that is only optimized on the target-side (plaintext)
loss: LSeq2Seq(X,Y ) = LTGT = −logP (Y |X)
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Figure 4: Schematic depiction of our Transformer
LM model for an example ciphertext. X denotes the
recurrence encoded ciphertext and Y is the plaintext,
prepended by REC and PLAIN tags respectively.

Target-Only CausalLM is only optimized on
the target-side loss LTGT , and incurs no loss when
generating the source text.

PrefixLM combines SelfAtn and masked-
SelfAtn: the ciphertext is attended at all times,
while the plaintext uses a causal mask:

Mask(i, j) = 1, if i ≥ j or j ≤ |X|; else 0 (3)

where 1 ≤ i, j ≤ (|X| + |Y |). This setting
mimics an encoder-decoder by modelling the con-
ditional distribution of the plaintext target given
the ciphertext source with target-only objective
LPLM (X,Y ) = LTGT .

All models build character embeddings with a
convolutional neural network and highway net-
works over character inputs (Kim et al., 2016).

4 Experimental Setup

4.1 Data

Length Keys #Train #Valid #Test

30-45 460,467 25,582 25,581
300-400 45-60 503,695 25,582 25,581

30-85 542,611 25,582 25,581

30-45 460,467 25,582 25,581
300-700 45-60 542,611 25,582 25,581

30-85 1,046,306 25,582 25,581

Table 2: Summary of the synthetic homophonic ciphers
used in our experiments. All ciphers are unique.

We extract 1000 English books from Project

Algorithm 1 Allocate Homophonic Symbols
Plaintext sample y of length n
Plaintext chars, yfreq = Counter(y).most_common()
Approx. cipher symbols, #sym

procedure HOMOPHONIC( yfreq , n, #sym)
sym_count = 0 ▷ final num. of cipher symbols
sym_per_char = dict() ▷ num. symbols per plain char
for char, freq in yfreq do

char_weight = int( freq / n )
wsym = int(char_weight * #sym )

num_sym =

{
1, wsym == 0

wsym, otherwise

sym_count += num_sym
sym_per_char[char] = num_sym

return sym_count, sym_per_char

Gutenberg4 to create training, validation and test
sets. We also use ∼200k English sentences from
news-commentary v9 from WMT14 En-De. Com-
bining these, we generate homophonic ciphers with
lengths and keys summarized in Table 2.

Synthetic Homophonic Ciphers. To train a
model that can generalize to unseen ciphers, we
first generate synthetic homophonic ciphers using
Algorithm 1 to flatten the frequency distribution
of a text. This technique allocates multiple less-
frequent ciphertext symbols to common plaintext
letters to yield strong homophonic ciphers.

For simple substitution ciphers, we use the same
English data as above to create 1.2M synthetic sub-
stitution ciphers with lengths up to 256. Following
previous work on 1:1 ciphers (Nuhn et al., 2013;
Kambhatla et al., 2018; Aldarrab and May, 2021),
we evaluate on 50 test ciphers of lengths up to
128 (16,32,64) and beyond 128 (128,256) from the
Wikipedia page on History 5. All our experimental
settings include data with word boundaries denoted
by the space symbol (_). We train our multilin-
gual model on length 256 1:1 ciphers from the 13
language data in Aldarrab and May (2021)6 which
includes training, validation and test splits.

4.2 Model Details
Our main model uses a Transformer decoder-based
auto-regressive language model. Our model com-
prises a 12 layer decoder with 12 attention heads
and a feed-forward dim. of 1536, totalling 23M
trainable parameters. We use character filters of

4https://github.com/pgcorpus/gutenberg
5https://en.wikipedia.org/wiki/History
6https://github.com/NadaAldarrab/

s2s-decipherment
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[(1, 64), (2, 128), (3, 192), (4, 256)] with a charac-
ter dim of 4 and 2 highway layers. For the seq2seq
model, we implement a 6 layer encoder-decoder
Transformer with the same settings as above. All
models are implemented using the fairseq toolkit
(Ott et al., 2019).

All models train for about 30 iterations over the
data at∼100 minutes per epoch on 4xA6000 GPUs.
Inference uses a beam size of 200 unless otherwise
stated. Inference speed is about 400 chars/second
on a single Titan RTX.

Evaluation Following prior work (Kambhatla
et al., 2018; Aldarrab and May, 2021), we evalu-
ate on Symbol Error Rate (SER), the proportion of
ciphertext symbols which are wrongly recovered.

5 Homophonic Substitution Ciphers

We experiment on solving our own synthetic homo-
phonic ciphers, and on automatically deciphering
two real world homophonic ciphers that have pre-
viously only been cracked manually.

5.1 Results on Synthetic Ciphers

Table 3 reports results on synthetic homophonic
data using recurrence encoding. On 400- and 700-
character long ciphers, our best model with causal
attention and up to 65 keys achieves near perfect
decipherment. As expected, we observe the best re-
sults on long ciphers, which provide more context.
Even on challenging ciphers with up to 85 keys
over 400 characters (4.5 chars/symbol), our model
attains an average error rate of 2.25%, averaging
only 1 wrong character each. As will be shown
in Section 8 (Table 7), our model also implicitly
recovers decipherment keys with > 98% accuracy.

#keys Model Max Len.
400 700

Seq-to-Seq 72.30 fail

30-45 PrefixLM 54.73 69.50
CausalLM (tgt) 29.99 37.20
CausalLM 0.40 0.21

PrefixLM 69.50 54.73
40-65 CausalLM (tgt) 29.99 37.20

CausalLM 0.83 0.80

PrefixLM 70.52 71.82
30-85 CausalLM (tgt) 42.05 42.69

CausalLM 2.25 2.19

Table 3: SER% on synthetic, homophonic, recurrence-
encoded ciphers. All plaintexts use 26 unique letters.

These results show the strength of recurrence en-
coding together with a causal LM objective.

Generating cipher + plaintext vs. plaintext only:
The best results by a significant margin are obtained
through language modeling with a causal attention
mask—the only model that is trained to generate
the ciphertext before the intended plaintext. All
other approaches fail to give adequate results in
any setting. A sequence-to-sequence model ob-
tains poor results on ciphers of 400 characters and
fails to converge on 700 char long ciphers.7 Prefix
attention is consistently worse than causal attention,
and its performance varies unpredictably across in-
put length and number of keys. Causal attention
with target-only loss is worse than causal attention,
suggesting that reproducing the source text may
play an important role in solving this task. We con-
sider this idea further in our analysis of the model’s
attention in Section 8.

5.2 Results on Zodiac 408 Cipher

We compare our method on the famous Zodiac
408 cipher that has 408 characters written with 54
different symbols (~7.5 characters per symbol). For
this particular cipher, all models including ours are
trained on the English Gigaword corpus for fair
comparison with other models in Table 4. From
Table 4, our generative LM is both better, and faster
by orders of magnitude.

Method Search SER (%) Speed

LM+EM (2013) 1M restarts 11.0 –
n−gram LM (2013) beam 100K 94.6 4000

beam 1M 2.7 35000
LSTM LM (2018) beam 100K 2.4 5600

beam 1M 1.9 50000

Ours (greedy) beam 1 1.9 1 sec
Ours (best) beam 200 1.9 2 sec

Table 4: Zodiac 408. Methods for simple (1:1) substi-
tution ciphers can not be used on Zodiac408. The last
column shows inference speed in seconds. Our method
is much faster because it auto-regressively generates
the decipherment whereas previous methods perform an
exhaustive search to find the mapping for each symbol.

5.3 Solving historical substitution ciphers

Most historical ciphers are centuries old and can
be challenging to solve—the encipherment scheme
may be peculiar to the author; the language may be

7NMT models are known to suffer from long sentences
(Neishi and Yoshinaga, 2019; Varis and Bojar, 2021)
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Figure 5: Predicted (middle) vs true (bottom) decipher-
ment of the first few lines of BnF-f01 cipher (top). Er-
rors in red and boxed.

archaic or unstandardised, and thus out-of-domain
for models trained on modern data; or there may
be human errors in the transcription.

Though our model is trained only on synthetic
ciphers with no further finetuning, we hypothesize
that it may nonetheless see success on real medieval
ciphers. This section demonstrates those successes.
1. TNA_SP106/5 Also called CharlesI_(0096),8

this is a strong homophonic cipher that was writ-
ten in 1624 in the United Kingdom, during the
reign of King Charles I of England. It is a very
difficult cipher which is 171 characters long, using
47 unique symbols to encipher 27 plaintext letters
(each cipher symbol appears 3.6 times on average).

Using our homophonic 40-65 key model with
beam size 1000, we attain a readable decipherment
with a symbol error rate (SER) 18%.

2. BnF_fr2988_f01 BnF-f019 (Fig. 5) is
a 2 page long enciphered letter from between
1524–1549 in Italy, believed to be addressed
to King Henry VIII. This homophonic cipher
uses 35 symbols, with archaic spellings in the
underlying plaintext that make it a challeng-
ing target due to the different character dis-
tribution from our training set. Examples
include pleis→(please), faythful→(faithful),

8de-crypt.org/decrypt-web/RecordsView/420
9de-crypt.org/decrypt-web/RecordsView/2323

obtein→(obtain) and gretast→(greatest). Our
best homophonic model trained with ciphers be-
tween [30-45] keys is able to crack it with SER
1.13%. The first few lines of model output and
corresponding plaintext are shown in Figure 5. Al-
though our model was never explicitly trained for
robustness, the recurrence encoding helps it to
overcome the unexpected plaintext distribution and
maintain a consistent key to recover the message.

6 Does our technique generalize to 1:1
substitution ciphers?

To exploit the well-known weakness of simple sub-
stituion ciphers, Aldarrab and May (2021) pro-
posed frequency ranking whereby cipher symbols
are replaced by their frequency ranks across all 1-1
substitution ciphers. We use recurrence encoding
and frequency ranking with our best performing
causal LM architecture10 and compare with several
baselines, including Aldarrab and May (2021).

cipher length→ <128 >128

Beam + 6-gram (Nuhn et al., 2013) 22.00 0.00
Beam + LM ((Kambhatla et al., 2018)) 10.89 0.00
Beam + LM + Freq. Match (ibid.) 11.32 0.00
Seq2Seq + Freq. (Aldarrab and May) 7.68 0.00

Causal LM + Freq. 10.56 0.00
Causal LM + Rec. 11.30 0.02

Table 5: On simple substitution ciphers of length >128,
our performance equals or exceeds all baselines. Freq.
and Rec. denote frequency and recurrence encodings.

Our model performs well on simple substitutions
(Table 6) using frequency ranking. While the scores
on very short ciphers (16, 32, 64) only match the
performance of beam-search based methods, on
ciphers longer than 128, our model achieves close
to 0 SER. Recurrence encoding is less effective in
shorter sequences (< 128) and requires more con-
text to be effective compared to frequency ranks
which more directly indicate the plaintext character
distribution. However, recurrence encoding is not
required in this context as the character distribu-
tions are not flattened.

7 Unknown Plaintext Language

As Megyesi et al. (2020) reports, several historical
ciphers in libraries and archives have no informa-
tion on the plaintext language. We evaluate on the

10Recall that recurrence encoding doesn’t work well with
an encoder-decoder model (Table 3).
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Latin Borg Cipher11, a ca. 17th century manuscript,
to learn if our model can decipher without explicit
knowledge of the underlying language.

7.1 Multilingual model with no language ID
Following Aldarrab and May (2021), we train our
decipherment model on ciphers from 13 different
languages without language ID and apply it to the
Borg cipher (page 0011v). Both models are trained
on frequency based encoding. Compared to 5.47%
SER in the baseline, our model achieves a better
SER of 4.1%.

SER (%)

Multilingual Seq2Seq (2021) 5.47
Multilingual Causal LM (ours) 4.10

Table 6: Using our multilingual model trained on 13
languages to solve the 1:1 Borg cipher.

7.2 Zero-shot decipherment in an unseen
language

Though the Borg MS uses a simple substitution
cipher, the plaintext language (Latin) is out-of-
domain for our main model which was trained on
English only (Sec. 5). Zero-shot inference on the
first 400 characters of page 0011v results using
our recurrence-encoding based model in an SER of
45.14%. A mere 3 manual inteventions–fixing two
words (aperitione, emorrhoidarum) and correcting
one (cumo to cum)–however, are sufficient to solve
the entire cipher with SER 3.89%. See Appendix
B for details on human-in-the-loop decipherment.

This shows that our model learns to consistently
produce the same output for a given symbol regard-
less of the plaintext distribution, which is crucial
for cracking ciphers and separates this from a con-
ventional text generation model.

8 Analysis

8.1 On the significance of learning the
distribution of ciphertext characters

Section 5 demonstrated that CausalLM signifi-
cantly outperforms other models on synthetic ho-
mophonic data. This is the only approach which
must model the distribution of ciphertext charac-
ters: Seq2Seq and PrefixLM allow the model to
freely attend to the full ciphertext, while target-only
loss gives no penalty for mistakes in the cipher-
text. These settings remove the incentive to learn

11https://cl.lingfil.uu.se/~bea/borg/

Figure 6: Left: self-attention map from our causal LM.
Right: self-attention map over the same sentence from
our causal LM with target-only loss.

the distribution of ciphertext characters, whereas
CausalLM must sequentially predict the ciphertext
just as it predicts the plaintext.

Figure 6 illustrates the impact of target-only loss
by showing the final layer of self-attention scores
for an example input. CausalLM exhibits a strong
diagonal pattern in the lower-left of the attention
matrix, showing that it attends monotonically to ci-
pher symbols when producing corresponding plain-
text symbols. With target-only loss, attention is
roughly uniform over all ciphertext symbols when
reproducing the input, as there is no penalty for
mistakes in this section and consequently no need
to attend to relevant context cues. This model does
not strongly attend to the ciphertext at any point
when generating the plaintext.

Key Recovery The model’s self-attention implic-
itly recovers decipherment keys. We construct
a n_plaintext_symbols by n_cipher_symbols
matrix where cell (p, c) sums the mean attention
over all layers paid to c when producing p. More
common symbols receive more attention, so we
divide each column by the frequency of the corre-
sponding symbol. Figure 7 depicts such a matrix,
normalized so that the largest value in each row is
1: the largest value in most columns clearly corre-
sponds to the decipherment key. Table 7 reports key
error rate (KER) using this technique, as well as
variants without adjusting for frequency or normal-

Figure 7: Left: Avg. attention paid to ciphertext sym-
bols when generating plaintext symbols in one test case.
Right: True key, where a dark cell indicates which char-
acter the symbol in each column deciphers to.
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Table 7: (l) Key error rate (%) averaged over 2000
homophonic test cases. Values multiplied by 100 for
readability. (r) Distribution of mapping errors.

izing by column rather than by row; the distribution
of errors is shown beside the table. With our best
technique, the median and mode number of erro-
neous mappings is 0, i.e. we perfectly recover the
key from the self-attention in most cases.

Our model’s ability to accurately produce Latin
highlights that it learns to obey the inferred key
even in the face of conflicting signals from an out-
of-domain plaintext.

8.2 Recovering character recurrence relations

Homophone Recovery Attention from cipher-
text symbols to other ciphertext symbols reveals
which characters are homophonic. Figure 8
(left) shows, for a sample input, the average self-
attention from a ciphertext symbol towards other
ciphertext symbols; Figure 8 (right) shows which
of these symbols are homophones. The largest
self-attention scores roughly correlate with cells
representing homophonic symbol pairs. Compar-
ing to Figure 7 (left) we see that the homophone
pairs which are not recovered involve those sym-
bols for which the model lacks a confident plaintext
mapping.

This behaviour arises as the model reproduces
the input ciphertext. This can be observed by aver-
aging self-attention over chunks of successive time-

Figure 8: Left: Avg. attention from ciphertext symbols
to other ciphertext symbols when reproducing one test
case. Right: Dark cells indicate homophonous symbols.
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Figure 9: Pearson’s r between self-attention scores at
different time-steps and reference matrices encoding ho-
mophones (cf. Figure 8). Averaged over 50 ciphertexts.

steps (rather than the entire input) and measuring
Pearson’s r between the resulting matrices and a ref-
erence matrix as in Figure 8 (right). As seen in Fig-
ure 9, the correlation between homophony and self-
attention grows steadily as the model reproduces
the input, reaching a plateau after ∼200 tokens.
(See also Figure 13 in Appendix C.) This demon-
strates the importance of CausalLM, as it shows
that the model makes crucial inferences about its
input as it reproduces that input.

We emphasize that our model learns homophony
relations and recovers decipherment keys implic-
itly, in just a single pass over the input ciphertext.
Prior search-based techniques required a search
over many candidate plaintexts in order to recover
these same relations explicitly.

9 Other Related Work

Computational decipherment based techniques
have seen a wide range of applications ranging
such as identifying unknown languages and scripts
(Hauer and Kondrak, 2016), writing systems (Born
et al., 2019, 2021, 2022) and lost languages (Snyder
et al., 2010; Luo et al., 2019), offensive langauge
detection (Wu et al., 2018; Qian et al., 2019), and,
more recently, towards improving neural machine
translation (Kambhatla et al., 2022). While deci-
pherment has strong connections to cryptography
research, we limit the scope of this work to nat-
ural language based decipherment. Knight et al.
(2006) proposed an unsupervised noisy channel
based technique for decipherment. Hauer et al.
2014 solved short ciphers with Monte-Carlo tree
search. Greydanus (2017) train a seq-to-seq LSTM
to solve polyalphabetic substitution ciphers includ-
ing Enigma, but only explore supervised known-
plaintext attacks. CipherGAN (Gomez et al., 2018)
exploits learned letter embedding distributions, but
requires a large volume of ciphertext and only han-
dles 1:1 substitution and Vigenère ciphers. Luo
et al. (2021) and Aldarrab and May (2022) pro-
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pose techniques to decipher undersegmented ci-
phers. Aldarrab and May (2021) train a sequence-
to-sequence neural translation model to decipher
from character frequencies. In contrast, we intro-
duce a novel encoding which is suitable for ho-
mophonic inputs, and demonstrate that a causal
LM is more effective than a seq-to-seq model in a
homophonic setting.

Cross-attention from encoder-decoder architec-
tures has been shown to have limited explanatory
power in translation settings (Moradi et al., 2019,
2021). In spite of this, Born et al. 2022 show that
encoder self-attention implicitly captures informa-
tion which replicates expert intuitions about doc-
ument structure in an undeciphered script. In a
similar vein, our key recovery experiments offer
evidence of yet another way self-attention may be
fruitfully exploited in the decoder in a decipher-
ment setting.

10 Conclusion and Future Work

We introduce a novel recurrence encoding to rep-
resent distributional information which is invari-
ant across plaintexts and ciphertexts, even under
homophonic ciphers. This allows us to train a
Transformer LM for decipherment using synthetic
ciphertext-plaintext pairs. Our model achieves
strong results on unseen homophonic substitution
ciphers, and achieves the first fully-automatic de-
cipherment of several historical ciphers. We show
that language models vastly outperform sequence-
to-sequence models on this task, and that causal
attention masking (which forces our model to repro-
duce the ciphertext before deciphering it) is crucial
to solve homophonic inputs. Our analysis shows
that our model implicitly learns homophony rela-
tions and the decipherment key while reproducing
the input. In a zero-shot setting, our model accu-
rately deciphers into Latin despite being trained on
English; This work marks a successful departure
from search-based solutions to homophonic substi-
tution ciphers, and introduces language models as
a viable tool for future decipherment work.
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Limitations

A key limitation of our model is the combined se-
quence length of the ciphertext and the plaintext.
As the standard self-attention mechanism of the
Transformer uses O(n2) time and space with re-
spect to sequence length, modelling longer ciphers
(eg. 1500 chars) is extremely compute inefficient.
This also restricts our model’s ability to handle ci-
phers such as the Beale Pt. 2 cipher. A possible
avenue for an extension of this work is to address
this issue by leveraging more sophisticated self at-
tention mechanisms like the linformer (Wang et al.,
2020).

Ethics Statement

This work is concerned with decoding encrypted
correspondences, and therefore the techniques in
the paper are designed to reveal information that
has been purposefully obscured and might violate
the privacy of the authors. However, an encryp-
tion system such as the homophonic substituion
cipher is primarily seen in centuries old historical
ciphers, and is both relatively weak and obselete.
The methods might have little impact beyond any
applications intended towards decipherment of an-
cient ciphers or machine translation. Further, the
more standard encryption techniques such as the
AES/RSA are very sophisticated and cannot be
attacked with the model discussed in the paper.

We note that our proposal of this method is not
as a replacement to expert code-breakers, but as
a new tool at their disposal. Our model cannot
“cheat” except by disobeying the key, and we’ve
shown that it does consistently follow the key (Sec-
tion 8.2). Thus our model output is no more or
less trustworthy than the equivalent produced by a
human. Since there is no guarantee that the model
will always produce the right decipherment, it is
imperative that domain experts assess the text pro-
duced by this model in the same way they would
assess proposals from an amateur decipherer with
little/no domain knowledge.
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A Hyperparameters and Settings

Preprocessing Following the previous work
(Kambhatla et al., 2018; Aldarrab and May, 2021),
we preprocessed the Project Gutenberg data by
stripping the text of all non text elements, then
lower-casing all characters, and removing all non-
alphabetic and non-space characters. Our final
plaintexts consists of the 26 letters of English al-
pahbet and the _ symbol to denote space only.

Multilingual Data. The 13 language multilin-
gual data12 released by Aldarrab and May (2021)
consists of 2.2M ciphers in Catalan, Danish, Dutch,
Finnish, French, German, Hungarian, Italian, Latin,
Norwegian, Portuguese, Spanish, and Swedish lan-
guages.

Layers 12
Attn Heads 12
FF Dim. 1536
Char Embed 4
Highway Layers 2
Dropout 0.1
Attn. Dropout 0.1

Batch Size 32000
Peak lr 0.0005
Early Stopping No
Max Epoch 20

Table 8: The hyperparameters for our model and train-
ing.
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Figure 10: A high level depiction of the causal (left)
and the prefix (right) attention masks. X denotes the
ciphertext and Y is the plaintext, both prepended by POS
and PLAIN tags respectively.

B Towards Decipherment with Human
Intervention

In a realistic decipherment setting, the nature of the
cipher under attack will not be known. It is possi-
ble that some symbols will be polyphonic, that the
plaintext language will be out-of-domain, or that
the text will be short or corrupted (intentionally,
to prevent decipherment, or as a result of dam-
age in the case of historical documents). In such
cases, the outputs from an automated decipherment
may require manual emendation; real computer-
assisted decipherments have previously relied on
post-editing by domain experts, as in the decipher-
ment of the Copiale cipher Knight et al. 2011. We
demonstrate two examples of how our model can
be used for human-in-the-loop decipherment in this
more realistic setting.

Zodiac 408 A famous cipher from the Zodiac
killer of the 1970s, this text contains 408 characters
written with 54 different symbols (~7.5 characters
per symbol). There are six polyphonic13 symbols,
making the text out-of-domain for our model which
was only trained on homophonic ciphers. Table 9
shows an example of assisted decipherment based
on corrected words. When a correction is identified,
it can be appended to the model input, for example:

orig. input: REC <cipher> PLAIN

user prompt: REC <cipher> PLAIN i _ l i k e

Since our model is a left-to-right language model
on both cipher and plaintext, we can interrupt it
at any point during plaintext generation to intro-
duce a correction, which is then used as a new
constraint on decoding the plaintext. Correcting
only 5 polyphonous characters gives SER 0.4%,
establishing a new state of the art on this cipher.

Borg Cipher The Borg Cipher14 is a ca. 17th
century manuscript written in enciphered Latin.
Though the text uses a simple substitution cipher,
the plaintext language is out-of-domain for our
model which was trained on English.
Since our model was never trained on Latin, zero-
shot inference on the first 400 characters results
in an SER of 45.14%. But fixing the words
aperitione _ emorrhoidarum and correcting

12https://github.com/NadaAldarrab/
s2s-decipherment

13Different from a homophonic symbol, a polyphonic cipher
symbol encodes more than one plaintext character.

14https://cl.lingfil.uu.se/~bea/borg/
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_ t h e r e u p o n _ t h e _ h o r s e _ w a s _ c h a n g e d _ i n t o _ a _ h a w k _ t h a t _ s h o t _ d o w n _ f r o m _ a _ g i d d y _
h e i g h t _ a n d

l       =>        ̅ ᖄ ᛏ
e       =>       ⠉ 𒐖 𒐐 ⠊ ᓓ ⨅ ᑑ ᐴ
g       =>       𒐚
n       =>       ᙵ ᓄ ᙶ ᑲ 𒐝 ᙳ
d       =>       ᚷ ᒨ
s       =>       ᐯ ᛞ ᒡ ᔪ
f       =>       ᛃ ᛚ
r       =>       / ᚠ ᒍ ᛋ ᐱ
o       =>       ⠎ ᚹ ⠸ ᓅ ᑕ
m       =>       ᐳ ⠁
i       =>       ⠇ ᑳ ᓲ ᚱ
v       =>       ᑉ

plaintext

ciphertext

a       =>       ᛖ 𒐏 ⠼ ᓱ ᔫ ⠗ ᑏ ᒲ

u       =>       ᐊ
t       =>       ᚲ ᐲ ᓵ ᖒ 𒐜 ⠤ ⠑
h       =>       ⠍ ᑮ ᓭ ⠅
c       =>       𒐛
j       =>       ᑌ
z       =>       ᒎ
p       =>       ⠃
b       =>       ⠆
w       =>        ̇
k       =>       ∷
y       =>       ⠝

cipher-key

(71 symbols)

Figure 11: Example homophonic cipher and its substitution key showing the different symbols mapped to the
plaintext characters.

Deciphered Text Next Correction SER

i _ l i k e _ k a d l a n g _ p e o p d e _ b e c a u s e _ i t _ i n _ s o _ m u c h _ f u n _ a t _ a x _

m o r e _ f u n _ t h a n _ k i l d i n g _ w a l z

people, is, killing (only
one letter change in each:
d → l, n → s, d → l)

14.40

i _ l i k e _ k a l l a n g _ p e o p l e _ b e c a u s e _ i t _ i s _ s o _ m u c h _ f u n _ a t _ a x _ m o

r e _ f u n _ t h a n _ k i l l i n g _ w a l z

killing (a → i) 12.16

i _ l i k e _ k i l l i n g _ p e o p l e _ b e c a u s e _ i t _ i s _ s o _ m u c h _ f u n _ a t _ a x _ m o r e
_ f u n _ t h a n _ k i l l i n g _ w i l d

(no correction needed;
partial key has been de-
rived by the model)

3.04

Table 9: First 2 steps of the iterative human assisted decipherment of Zodiac-408 cipher. Identified corrections can
be passed as the model input following the cipher. Fixing errors in the beginning (‘killing‘) can lead to improved
plaintext selections for symbols that appear later on (‘wild‘). After 3 more steps the process achieves SER of 0.4%.

_cumo_ to _cum_ mostly solves the cipher in 3
steps resulting in SER 3.89%.

C Additional Analysis

Measures of Difficulty Figure 12 plots, for a
sample of our test set, SER versus three measures
of cipher difficulty: the index of coincidence (Fried-
man 1922, which measures the uniformity of the
frequency distribution; values closer to 1 are more
uniform and thus more challenging), the maximum
number of homophones any ciphertext symbol has
(where more homophones make a more challeng-
ing cipher), and the length of the cipher (where
shorter ciphers are more ambiguous and provide
less context). There is no significant correlation
between SER and any of these three measures.

Attention Heads Figure 14 shows that each at-
tention head demonstrates a consistent behaviour
across multiple different inputs. (Full-size figure
available in supplemental material.) Each column
of this figure comes from a distinct ciphertext, and
each row represents a Transformer layer, with the
output layer on the bottom. The cells in this grid are

divided into 12 sub-figures, each showing the self-
attention map from one head in the corresponding
layer on the corresponding input.
There are more heads which attend to the ciphertext
in lower layers than in higher ones, suggesting that
the model learns necessary features of the input
early on. We note the presence of several heads
which attend near the beginning of the ciphertext,
but not to the very first tokens. This may reflect the
fact that the first few tokens are always sequentially
encoded as 1 2 3 ..., and that the model is
focusing on the part of the text where these symbols
first repeat rather than where they first occur.
Several of the attention maps exhibit clear vertical
lines, meaning the head is attending to the same
token(s) (often in the plaintext) at all subsequent
time-steps. We speculate that these tokens may con-
vey some crucial distributional information which
helps to establish the key.

D Real Ciphers Used in This Work
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Figure 12: SER vs. index of coincidence, number of homophones of the most homophonic ciphertext symbol, and
cipher length. SER is not significantly correlated with any of these metrics.
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Figure 13: Mean self-attention from each ciphertext symbol to every other ciphertext symbol, averaged across
different time-steps. This figure uses the same input as Figure 8. Note how the left subfigure, representing the
earliest time-steps, does not meaningfully resemble the reference matrix from Figure 8, implying that the model has
not learned which tokens are homophones at this early stage.
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Figure 14: Attention maps for each head in each layer
on three sample inputs. (Full-size figure available in
supplemental material.) Each column represents a dis-
tinct ciphertext, and each row a Transformer layer, with
the output layer on the bottom. Each cell is divided into
12 sub-figures, showing the self-attention maps from
each of the 12 heads in the corresponding layer on the
corresponding input.

Figure 15: The original full version of the Zodiac-408
cipher published by the San Francisco Examiner on
August 3rd 1969.
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Figure 16: Page 1 of the BnF-f01 cipher from 1500s.
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Figure 17: Page 2 of the BnF-f01 cipher from 1500s.
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Abstract

Keyphrase Extraction (KE) is a critical com-
ponent in Natural Language Processing (NLP)
systems for selecting a set of phrases from the
document that could summarize the important
information discussed in the document. Typ-
ically, a keyphrase extraction system can sig-
nificantly accelerate the speed of information
retrieval and help people get first-hand infor-
mation from a long document quickly and ac-
curately. Specifically, keyphrases are capable
of providing semantic metadata characterizing
documents and producing an overview of the
content of a document. In this paper, we in-
troduce keyphrase extraction, present a review
of the recent studies based on pre-trained lan-
guage models, offer interesting insights on the
different approaches, highlight open issues, and
give a comparative experimental study of pop-
ular supervised as well as unsupervised tech-
niques on several datasets. To encourage more
instantiations, we release the related files men-
tioned in this paper1.

1 Introduction

Keyphrase extraction is a fundamental task in NLP
for identifying and extracting a set of keyphrases
from the document that could summarize the im-
portant information discussed in the source docu-
ment (Hasan and Ng, 2014; Papagiannopoulou and
Tsoumakas, 2019). Keyphrases have enabled ac-
curate and fast searching for the document from a
large text corpus and have exhibited their potential
in improving many NLP tasks, such as text summa-
rization (Zhang et al., 2004). Various information
filtering and extracting techniques are becoming
critical with the ever-increasing amount of text data.
Owing to its potential importance, keyphrase ex-
traction has received more and more attention from

∗Corresponding author.
1https://github.com/MySong7NLPer/

KeyphraseExtractionSurvey

NLP researchers. However, the keyphrase extrac-
tion task is far from being solved: state-of-the-art
performance on keyphrase extraction is still lower
than other core NLP tasks. Our goal in this pa-
per is to investigate the state-of-the-art models in
keyphrase extraction, examine the primary sources
of errors made by existing systems, and discuss the
challenges ahead.

The first keyphrase extraction task was organized
by Turney (1999), which defines the keyphrase ex-
traction task as “the automatic selection of impor-
tant and topical phrases from the body of a doc-
ument”. Since then, there have been numerous
keyphrase extraction models (Witten et al., 1999;
Turney, 2000; Tomokiyo and Hurst, 2003; Hulth,
2004; Wan and Xiao, 2008a; Jiang et al., 2009; Liu
et al., 2009; Grineva et al., 2009; Nguyen and Phan,
2009; Bougouin et al., 2013; Caragea et al., 2014;
Danesh et al., 2015; Bougouin et al., 2016; Florescu
and Caragea, 2017a; Campos et al., 2018a; Alzaidy
et al., 2019). In the past two decades, keyphrase
extraction methods have experienced the develop-
ment from traditional approaches to deep learning
methods (Hasan and Ng, 2014; Papagiannopoulou
and Tsoumakas, 2019). With the recent develop-
ment of Pre-trained Language Models (PLMs) (De-
vlin et al., 2019; Liu et al., 2019), many NLP tasks
have significantly changed, that is, how to adopt
and leverage pre-trained language models in the
specific task. Therefore, many keyphrase extrac-
tion models (Sun et al., 2020a; Song et al., 2021)
adopt PLMs as the embedding layer.

We present a comprehensive survey of recent ad-
vances in neural keyphrase extraction. We describe
the neural keyphrase extraction systems based on
pre-trained language models, which depend on
different paradigms (e.g., one-stage (Wang et al.,
2020) and two-stage (Sun et al., 2020a)), various
tasks (e.g., classification and ranking (Mu et al.,
2020; Sun et al., 2020a)), different learning strate-
gies (e.g., supervised (Song et al., 2021) and un-
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supervised (Ding and Luo, 2021)), and variants of
pre-trained language models (e.g., BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019)).

Furthermore, we re-implement and collect the
results of the mentioned models on several bench-
mark keyphrase extraction datasets. We illustrate
the results in Table 3 and Table 2 and discuss in
Section 6 how neural keyphrase extraction systems
have improved performance over past works, in-
cluding supervised and unsupervised models. Fur-
thermore, we provide resources, including links to
share the current neural keyphrase extraction sys-
tems and links to share the code for each category
of the neural keyphrase extraction approaches. To
the best of our knowledge, this is the first survey
focusing on the keyphrase extraction task based on
recent pre-trained language models.

Overall, this paper first discusses previous sur-
veys on keyphrase extraction in Section 2.1 and
give a briefly introduction about pre-trained lan-
guage models in Section 2.2. Then we highlight
standard, past, and recent benchmark keyphrase
extraction datasets (from shared tasks and other
research) in Section 3 and evaluation metrics in
Section 4. We then describe neural keyphrase ex-
traction systems in Section 5. Next, we give the
analysis and discussion in Section 6. Finally, we
summarize the conclusions and future directions
of neural keyphrase extraction in Section 7. The
limitations of our work is presented in Section 8.

2 Preliminary

In this section, we claim the differences between
the current survey and the existing surveys. Next,
we present the background of pre-trained language
models and their importance in NLP.

2.1 Previous Surveys

The first comprehensive keyphrase extraction sur-
vey was Hasan and Ng (2014), which covered a
variety of unsupervised and supervised keyphrase
extraction models, highlighted common features
used by existing models during that time, and ex-
plained evaluation metrics that are still in use to-
day. Papagiannopoulou and Tsoumakas (2019)
present a more recent keyphrase extraction survey
that mainly included many unsupervised and super-
vised models based on deep learning. Furthermore,
Papagiannopoulou and Tsoumakas (2019) also pro-
vides a list of popular keyphrase extraction datasets
and a thorough empirical study.

The existing keyphrase extraction surveys pri-
marily cover early feature-engineered and neural-
based keyphrase extraction models (Hasan and Ng,
2014; Papagiannopoulou and Tsoumakas, 2019).
There is not yet, to our knowledge, a comprehen-
sive survey of keyphrase extraction based on pre-
trained language models.

2.2 Pre-trained Language Models

Recently, pre-trained language models have ad-
vanced the state-of-the-art in many NLP tasks rang-
ing from textual similarity to text summarization
(Zhang et al., 2019; Liu and Lapata, 2019; Zhong
et al., 2020) and named entity recognition (Zhou
et al., 2021). State-of-the-art pre-trained models in-
clude LSTM-based language models (e.g., ELMo
(Peters et al., 2018)) and Transformer-based lan-
guage models (e.g., BERT2 (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019)). Specifically, the
transformer-based models learn bidirectional repre-
sentations for words based on a masked language
model and sentence adjacency training objective
(Devlin et al., 2019). Simply using contextual-
ized embeddings obtained from the transformer-
based pre-trained language models in place of tra-
ditional embeddings has resulted in state-of-the-art
performance on a range of NLP tasks. Therefore,
pre-trained language models have been employed
as encoders for obtaining word-, sentence-, and
document-level representations to assist the down-
stream tasks.

3 Keyphrase Extraction Dataset

Since the first shared task on KE (Turney, 1999),
many shared tasks and benchmark datasets for KE
have been created. Specifically, OpenKP (Xiong
et al., 2019), Inspec (Hulth, 2003), NUS (Nguyen
and Kan, 2007), Krapivin (Krapivin and March-
ese, 2009), SemEval2010 (Kim et al., 2010), Se-
mEval2017 (Augenstein et al., 2017), and KP20k
(Meng et al., 2017) were created from scientific
articles in English.

Compared with other datasets, KP20k contains a
large amount of annotation data, so it is often used
as the dataset to train the neural-based KE models
recently. Meanwhile, in recent papers (Sun et al.,
2020a; Song et al., 2021), Inspec (Hulth, 2003),
NUS (Nguyen and Kan, 2007), Krapivin (Krapivin
and Marchese, 2009), SemEval2010 (Kim et al.,
2010), and SemEval2017 (Augenstein et al., 2017)

2https://huggingface.co/bert-base-cased
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Dataset Type Long # Doc. Avg. # Words Present KPs (%)

KP20k (Meng et al., 2017) Scientific Paper Abstract 568.00k 188.47 57.40

Inspec (Hulth, 2003) Scientific Paper Abstract 2.00k 130.57 55.69

SemEval2017 (Augenstein et al., 2017) Scientific Paper Abstract 0.50k 176.13 42.01

NUS (Nguyen and Kan, 2007) Full Scientific Paper 0.21k 7644.43 67.75

Krapivin (Krapivin and Marchese, 2009) Full Scientific Paper 2.30k 8420.76 44.74

SemEval2010 (Kim et al., 2010) Full Scientific Paper 0.24k 7434.52 88.70

DUC2001 (Wan and Xiao, 2008b) News Document 0.31k 724.63 97.82

OpenKP (Xiong et al., 2019) Open Domain Web Content 147.20k 900.40 100.00

Table 1: This table shows the statistics of different recent popular datasets. Long indicates whether the dataset
belongs to a long document. # Doc. is the number of documents in the dataset. Avg. # Words is the average number
of words for documents in the indicated dataset. Present KPs (%) indicates the percentage of keyphrases, which
are presented in the documents.

datasets are often used as the zero-shot test sets to
verify the robustness of the KE models trained by
the KP20k dataset. Furthermore, KE tasks have
also been organized on newswire articles in En-
glish, e.g., DUC2001 (Wan and Xiao, 2008b). Ta-
ble 1 summarizes the statistics of several commonly
used benchmark datasets.

4 Keyphrase Extraction Evaluation

This section describes evaluation metrics for mea-
suring recent state-of-the-art keyphrase extraction
baselines on commonly-used datasets. Designing
a suitable evaluation metric for the keyphrase ex-
traction task is by no means an easy study (Hasan
and Ng, 2014). To score the output of a keyphrase
extraction model, the traditional approach, which
is also adopted by the SemEval-2010 (Kim et al.,
2010) shared task on keyphrase extraction, is (1)
to create a mapping between the keyphrases in the
ground-truth keyphrases and those in the model
output adopting exact and partial matching (Papa-
giannopoulou and Tsoumakas, 2019), and then (2)
score the output using evaluation metrics such as
precision (P), recall (R), and F1-score (F1).

As mentioned earlier, such evaluation usually
operates based on exact matches between the pre-
dicted and ground-truth keyphrases. However, such
a strategy cannot account for partial matches or se-
mantic similarity. For example, if the prediction is
"keyphrase extraction model" and the ground truth
is "keyphrase extraction system", despite both se-
mantic similarity and partial matching, the score
will be 0. These minor deviations are ubiquitous in

keyphrase extraction, yet they are harshly penalized
by the "exact match" evaluation metrics.

5 Neural Keyphrase Extraction Models
with Pre-trained Language Models

There are two popular pipelines in the keyphrase
extraction task, including one-stage and two-stage
frameworks, as illustrated in Figure 1. The former
mainly refers to using the task reformulation to
address the keyphrase extraction task, which often
treats the keyphrase extraction task as a sequence
labeling task. The latter represents a more general
framework, which usually operates in two proce-
dures: (1) extracting a set of words/phrases that
serve as candidate phrases using some heuristics
and (2) determining which candidate phrases are
keyphrases using supervised or unsupervised meth-
ods (Hasan and Ng, 2014; Papagiannopoulou and
Tsoumakas, 2019).

Typically, supervised methods perform better
on specific domain tasks. However, this kind of
method takes a lot of labor to annotate the corpus,
and the model after training may overfit and not
work well on other KE datasets. On the contrary,
unsupervised methods do not need to annotate the
corpus and usually have better data generalization
in different domains. Still, the performance is often
insufficient due to the lack of annotated data. Over-
all, we defined the above two procedures as the
candidate keyphrase extraction and keyphrase im-
portance estimation. In this paper, we distinguish
the existing methods into three categories depend-
ing on the recent state-of-the-art baselines (with
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Figure 1: The overall architecture of the two-stage supervised and unsupervised keyphrase extraction framework.

pre-trained language models as the backbone), in-
cluding two-stage unsupervised, two-stage super-
vised, and one-stage supervised models.

5.1 Two-Stage Unsupervised Keyphrase
Extraction Models

As noted before, unsupervised keyphrase extraction
systems generally extract a set of phrases from the
source document as candidates by using heuristic
rules. These rules are designed to avoid spurious
instances and keep the number of candidates to a
minimum (Hasan and Ng, 2014). The main steps
of the commonly used candidate keyphrases extrac-
tion methods for the recent unsupervised keyphrase
extraction models are as follows, (1) tokenizing
the document and tagging the document with part-
of-speech (POS) tags via the StanfordCoreNLP
Tools3; (2) extracting candidate phrases based on
part-of-speech tags by the regular expression via
the python package NLTK4. Furthermore, different
pruning heuristics have been designed for pruning
candidates that are unlikely to be keyphrases to
obtain a better candidate set (Huang et al., 2006;
Kumar and Srinathan, 2008; El-Beltagy and Rafea,
2009; Newman et al., 2012; You et al., 2009). After
obtaining candidates, keyphrases are determined
by estimating the importance of each candidate
through various strategies. Here, to facilitate the
introduction, we divide the methods of importance
estimation into two categories, namely, traditional
methods and embedding-based methods.

Traditional unsupervised keyphrase extraction
systems can be mainly divided into statistics-based
(Jones, 2004; Campos et al., 2018b), topic-based
(Liu et al., 2009; Jardine and Teufel, 2014), and
graph-based (Mihalcea and Tarau, 2004; Wan and
Xiao, 2008b; Bougouin et al., 2013; Florescu
and Caragea, 2017b) methods. Generally, these

3https://stanfordnlp.github.io/CoreNLP
4https://github.com/nltk

models primarily use different features of doc-
uments (e.g., word frequency, position, linguis-
tic properties, topic, length, the relationship be-
tween words, external knowledge-based informa-
tion, etc.) to estimate the importance of each candi-
date phrase and discriminate whether a candidate
phrase is a keyphrase (Hasan and Ng, 2014; Papa-
giannopoulou and Tsoumakas, 2019).

However, these traditional unsupervised models
estimate the importance scores of candidate phrases
based on the surface-level features, ignoring the
high-level features (e.g., syntactic and semantic
information) of natural languages, which leads to
extract wrong keyphrases. Therefore, recent stud-
ies focus on embedding-based models (Wang et al.,
2015; Mahata et al., 2018a; Papagiannopoulou and
Tsoumakas, 2018; Sahrawat et al., 2020; Kulkarni
et al., 2022; Song et al., 2022b), which leverage pre-
trained embeddings (containing high-level features)
to obtain phrase and document embeddings and cal-
culate the importance scores of candidate phrases
for extracting keyphrases. Wang et al. (2015) is
the first work to explore utilizing word embed-
ding and frequency to generate weighted edges
between words, then using the weighted PageRank
algorithm to compute and rank candidate scores.
Key2vec (Mahata et al., 2018a) proposes an effec-
tive way of processing text documents for training
multi-word phrase embeddings that are used for
topic representations of scientific articles and rank-
ing of keyphrases extracted from them using the
topic-weighted PageRank algorithm. Mahata et al.
(2018b) uses a combination of theme-weighted per-
sonalized PageRank algorithm and neural phrase
embeddings for extracting and ranking keyphrases.
EmbedRank (Bennani-Smires et al., 2018) ranks
candidate phrases by measuring the semantic simi-
larity between each candidate phrase and document
embeddings.

With the development of pre-trained language
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models (e.g., ELMo (Peters et al., 2018), BERT
(Devlin et al., 2019), and RoBERta (Liu et al.,
2019)), SIFRank5 (Sun et al., 2020b) improves
candidate phrase and document embeddings from
EmbedRank with the pre-trained language model
ELMo (Peters et al., 2018) and achieves better per-
formance. JointGL6 (Liang et al., 2021) integrates
boundary-aware phrase centrality (the semantic
similarities are calculated between all candidate
phrases for identifying which candidate is better)
and phrase-document relevance (the semantic sim-
ilarities are calculated between candidate phrases
and their corresponding document) from both local
and global views, then used both jointly to deter-
mine the importance of each candidate. Attention-
Rank7 (Ding and Luo, 2021) adopts a pre-trained
language model to calculate the self-attention of a
candidate within the context of a sentence, and the
cross-attention between a candidate and sentences
within the source document to evaluate the local
and global importance of each candidate. MDER-
ank8 (Zhang et al., 2021) proposes to rank candi-
dates using the similarity between the BERT em-
beddings of the source document and the masked
document. Totally, these models achieve state-of-
the-art performance in the unsupervised keyphrase
extraction task, benefiting from the development of
representation learning.

5.2 Two-Stage Supervised Keyphrase
Extraction Models

Different from two-stage unsupervised approaches,
supervised approaches generally combine candi-
date keyphrase extraction and keyphrase impor-
tance estimation via an end-to-end learning frame-
work, guide the whole model to rank and extract
keyphrases through annotated data and optimize
the two stages simultaneously. Therefore, to obtain
sufficient candidates, the recent supervised mod-
els (Xiong et al., 2019; Sun et al., 2020a; Song
et al., 2021, 2022a) directly extract n-grams from
the document as candidates. Then propose, various
approaches to estimate the importance scores of
candidates. To estimate the importance of candi-
date phrases, similar to unsupervised models, su-
pervised models (Xiong et al., 2019; Sun et al.,
2020a; Song et al., 2021) also obtain phrase and
document representations by adopting pre-trained

5https://github.com/sunyilgdx/SIFRank
6https://github.com/xnliang98/uke_ccrank
7https://github.com/hd10-iupui/AttentionRank
8https://github.com/linhanz/mderank

language models as the backbone, including ELMo
(Peters et al., 2018), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), etc.

Firstly, BLING-KPE (Xiong et al., 2019) for-
mulates keyphrase extraction as an n-gram level
keyphrase chunking task to determine whether
a candidate is a keyphrase, which incorporates
pre-trained embeddings (i.e., ELMo (Peters et al.,
2018)) into a convolutional transformer network
to model n-gram representations. BLING-KPE
achieves significant improvement over previous
models. To leverage external knowledge to as-
sist keyphrase extraction, SMART-KPE9 (Wang
et al., 2020) also shows that incorporating multi-
modal information in web pages, such as font, size,
and DOM features, can bring further improvement
for open-domain web keyphrase extraction. Later,
Ainslie et al. (2020) replaces the full self-attention
of Transformers with local-global attention, which
significantly boosts the keyphrase extraction per-
formance for long documents. SKE-BASE-RANK
(Mu et al., 2020) proposes a span-based keyphrase
extraction model to model the relationships be-
tween candidates and the document in context.

JointKPE10 (Sun et al., 2020a) proposes an open-
domain keyphrase extraction approach built on pre-
trained language models (Devlin et al., 2019; Liu
et al., 2019), which can capture both local phrase-
ness and global informativeness when extracting
keyphrases. JointKPE learns to rank keyphrases by
estimating their informativeness in the whole docu-
ment and is jointly trained on the keyphrase chunk-
ing task to guarantee the phraseness of keyphrase
candidates. KIEMP11 (Song et al., 2021) proposes
estimating the importance score of each candi-
date from multiple perspectives and introducing
a matching module to match the high-level concept
between the document and candidates to enhance
the relevance of extracted keyphrases. To extract
more relevant keyphrases, HyperMatch12 (Song
et al., 2022a) proposes a new matching framework
and explores keyphrase extraction in the hyperbolic
space. Concretely, HyperMatch first maps phrase
and document representations into the same hy-
perbolic space and explicitly models the relevance
between candidate phrases and the document as
the phrase-document relevance via the Poincaré
distance to extract keyphrases.

9https://github.com/victorywys/SMART-KPE
10https://github.com/thunlp/BERT-KPE
11https://github.com/MySong7NLPer/KIEMP
12https://github.com/MySong7NLPer/HyperMatch

2157

https://github.com/sunyilgdx/SIFRank
https://github.com/xnliang98/uke_ccrank
https://github.com/hd10-iupui/AttentionRank
https://github.com/linhanz/mderank
https://github.com/victorywys/SMART-KPE
https://github.com/thunlp/BERT-KPE
https://github.com/MySong7NLPer/KIEMP
https://github.com/MySong7NLPer/HyperMatch


Model
DUC2001 Inspec SemEval2010 SemEval2017

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Traditional Two-Stage Models

TF-IDF (Jones, 2004) 9.21 10.63 11.06 11.28 13.88 13.83 2.81 3.48 3.91 12.70 16.26 16.73

YAKE (Campos et al., 2018b) 12.27 14.37 14.76 18.08 19.62 20.11 11.76 14.4 15.19 11.84 18.14 20.55

TextRank (Mihalcea and Tarau, 2004) 11.80 18.28 20.22 27.04 25.08 36.65 3.80 5.38 7.65 16.43 25.83 30.50

SingleRank (Wan and Xiao, 2008b) 20.43 25.59 25.70 27.79 34.46 36.05 5.90 9.02 10.58 18.23 27.73 31.73

TopicRank (Bougouin et al., 2013) 21.56 23.12 20.87 25.38 28.46 29.49 12.12 12.90 13.54 17.10 22.62 24.87

PositionRank (Florescu and Caragea, 2017b) 23.35 28.57 28.60 28.12 32.87 33.32 9.84 13.34 14.33 18.23 26.30 30.55

Two-Stage Embedding-based Unsupervised Keyphrase Extraction Models with Static Embeddings

EmbedRankd2v (Bennani-Smires et al., 2018) 24.02 28.12 28.82 31.51 37.94 37.96 3.02 5.08 7.23 20.21 29.59 33.94

KeyGames (Saxena et al., 2020) 24.42 28.28 29.77 32.12 40.48 40.94 11.93 14.35 14.62 - - -

Two-Stage Embedding-based Unsupervised Keyphrase Extraction Models with PLMs

SIFRank (Sun et al., 2020b) 24.27 27.43 27.86 29.11 38.80 39.59 - - - 22.59 32.85 38.10

JointGL (Liang et al., 2021) 28.62 35.52 36.29 32.61 40.17 41.09 13.02 19.35 21.72 - - -

AttentionRank (Ding and Luo, 2021) - - - 24.45 32.15 34.49 11.39 15.12 16.66 23.59 34.37 38.21

MDERank (Zhang et al., 2021) 23.31 26.65 26.42 27.85 34.36 36.40 13.05 18.27 20.35 20.37 31.21 36.63

Table 2: Performance of unsupervised keyphrase extraction models on the DUC2001, Inspec, SemEval2010 and
SemEval2017 test sets. F1 scores on the top 5, 10, and 15 keyphrases are reported. The best results are bolded.
The results of baseline models are those presented in the original papers or better results published in other papers
recently.

5.3 One-Stage Supervised Keyphrase
Extraction Models

A major limitation of the above two-stage super-
vised approaches is classifying the labels of each
candidate phrase independently while ignoring
the dependencies that could potentially exist be-
tween candidates. Therefore, recent studies (Gol-
lapalli et al., 2017; Basaldella et al., 2018; Wang
et al., 2018; Alzaidy et al., 2019; Sun et al., 2019;
Mu et al., 2020; Sahrawat et al., 2020) formu-
lated keyphrase extraction as sequence labeling and
showed that using linear-chain Conditional Ran-
dom Fields improved the performance over base-
line models for this task. Then, Mu et al. (2020)
proposes SKE-BASE-CLS and -RANK, which di-
rectly extracts span-based phrase representations
from all the document tokens via pre-trained lan-
guage models and further learn to capture the in-
teraction between them and their corresponding
document to get better ranking results. Further-
more, this kind of model can extract overlapped
keyphrases (Mu et al., 2020).

6 Discussion

In this section, we report the results of the recent
unsupervised and supervised keyphrase extraction
baselines, which all adopt pre-trained language

models as the backbone, as shown in Table 2 and
Table 3. Specifically, Table 2 presents the results
of the traditional unsupervised methods and the un-
supervised embedding-based keyphrase extraction
baselines discussed in Section 5.1 on the DUC2001
(Wan and Xiao, 2008b), Inspec (Hulth, 2003), Se-
mEval2010 (Kim et al., 2010), and SemEval2017
(Augenstein et al., 2017) datasets. Embedding-
based two-stage models without PLMs indicate
that the models do not use pre-trained language
models as the backbone to obtain representations.
Table 3 shows the results of all the different cate-
gories of the supervised keyphrase extraction sys-
tems discussed in Section 5.2 and Section 5.3 on
the KP20k (Meng et al., 2017) and OpenKP (Xiong
et al., 2019) datasets.

Our first finding from the survey is those two-
stage embedding-based systems with static em-
beddings outperform two-stage traditional meth-
ods, despite the latter’s access to different valuable
features (e.g., word frequency, position, linguis-
tic properties, topic, length, the relationship be-
tween words, external knowledge-based informa-
tion, etc.). This further demonstrates the necessity
of studying embedding-based methods.

Our second finding is those embedding-based
systems with PLMs outperform embedding-based
approaches with static embeddings in most cases.
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Model
KP20k OpenKP

F1@5 F1@10 F1@1 F1@3 F1@5

One-Stage Supervised Keyphrase Extraction Models

SMART-KPE+Full (Wang et al., 2020) - - 38.0 40.1 34.4

BERT-TagKPE† 38.8 31.7 32.1 36.1 31.4

BERT-SpanKPE† 36.8 30.8 31.8 33.2 28.9

RoBERTa-TagKPE‡ 39.3 32.0 36.1 38.0 33.0

RoBERTa-SpanKPE‡ 37.3 30.9 34.7 36.1 31.3

Two-Stage Supervised Keyphrase Extraction Models

BLING-KPE (Xiong et al., 2019) - - 26.7 29.2 20.9

SKE-BASE-CLS (Mu et al., 2020) 38.6 32.6 - - -

BERT-ChunkKPE† 41.2 33.7 34.0 35.6 31.1

RoBERTa-ChunkKPE† 40.8 33.7 35.5 37.3 32.4

SKE-BASE-RANK (Mu et al., 2020) 39.2 33.0 - - -

BERT-RankKPE† 41.3 34.0 34.2 37.4 32.5

RoBERTa-RankKPE† 41.7 34.3 36.1 39.0 33.7

HyperMatch (Song et al., 2022a) 41.6 34.3 36.4 39.4 33.8

BERT-JointKPE† 41.1 33.8 34.9 37.6 32.5

RoBERTa-JointKPE† 41.9 34.4 36.4 39.1 33.8

KIEMP (Song et al., 2021) 42.1 34.5 36.9 39.2 34.0

Table 3: Results of different categories of supervised keyphrase extraction models on two benchmark keyphrase
datasets. F1 scores on the top 1, 3, 5, and 10 keyphrases are reported. † indicates the results are reported by their
corresponding paper (Sun et al., 2020a), and ‡ denotes that these results are re-evaluated by ourselves via the code
which is provided by its corresponding paper (Sun et al., 2020a). The best results are highlighted in bold. The results
of baseline models are those presented in the original papers or better results published in other papers recently.

However, not all embedding-based systems with
PLMs are superior to embedding-based systems
with static embeddings. The former generally out-
performs the latter when adopting the same impor-
tance estimation strategy, but the estimation strat-
egy can significantly affect the results of keyphrase
extraction. To sum up, effectively using pre-trained
embeddings to estimate the importance score of
each candidate is a critical part of improving the
performance of keyphrase extraction. Furthermore,
there is still interesting progress to be made by
leveraging a self-supervised learning strategy to op-
timize embedding-based systems. MDERank uses
a simple yet effective contrastive learning strategy
to optimize embedding-based systems, achieving
better performance.

Our third finding is that the embedding-based
methods have slight improvement on long docu-
ment datasets (e.g., SemEval2010), and all unsu-
pervised methods have poor effects on long docu-
ment datasets. This demonstrates that keyphrase
extraction from long documents is still a challeng-

ing problem.
Our final finding is that two-stage supervised

keyphrase extraction methods are superior to one-
stage supervised keyphrase extraction methods, as
illustrated in Table 3. In addition, the two-stage
method has higher scalability and adaptability than
the one-stage method, such as handling long and
extremely long documents.

7 Conclusion and Future Directions

We summarize the recent neural keyphrase extrac-
tion models based on pre-trained language mod-
els. Our survey of models for keyphrase extraction,
covering both unsupervised and supervised mod-
els, has yielded several important insights. The
analysis revealed that there are at least six major
challenges ahead.

7.1 Improving the Quality of Generated
Candidate Keyphrases

Many heuristic rules have proven effective with a
high recall to cover most of the gold keyphrases
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of source documents, which determines the upper
bound of the performance of keyphrase extraction
(Hasan and Ng, 2014). Intuitively, better candi-
date keyphrase extraction strategies are required
to generate a set of candidate keyphrases with a
higher recall from the source document to improve
the upper-bound performance of keyphrase extrac-
tion. Recent work (Jawahar et al., 2019) demon-
strates that the intermediate layers of BERT encode
a rich hierarchy of linguistic information, with sur-
face features at the bottom, syntactic features in
the middle, and semantic features at the top, as
mentioned in Section 2.2. They also observe that
BERT mostly captures phrase-level information in
the lower layers and gradually dilutes this informa-
tion in higher layers. In addition, the number of
candidate keyphrases will increase as the document
length increases. Therefore, how constructing can-
didate keyphrases using the potential knowledge of
pre-trained language models is a valuable research
direction.

7.2 Improving Evaluation Metric

As mentioned in Section 4, the existing evaluation
metrics occur when a keyphrase extraction system
extracts a keyphrase from candidates that is seman-
tically equivalent to a ground-truth keyphrase but is
considered erroneous by a scoring function because
it fails to recognize that the predicted keyphrase
and the corresponding gold keyphrase are semanti-
cally equivalent.

In other words, an evaluation error is not made
by a keyphrase extraction system, but a mistake due
to an unformed scoring function (Hasan and Ng,
2014). Therefore, a more suitable evaluation metric
is required to evaluate the predicted keyphrases
by adopting the semantic-based matching metric
instead of the exact matching evaluation metric. In
the future, using pre-trained language models (e.g.,
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019)) to construct a new semantic-aware
evaluation metric similar to BERTScore (Zhang
et al., 2020) may be an interesting and valuable
research direction.

7.3 Reducing Over-Generation Error

Over-generation errors occur when a keyphrase ex-
traction system correctly predicts a candidate as
a keyphrase because it contains a word that fre-
quently appears in the associated document but at
the same time erroneously outputs other candidates

as keyphrases because they have the same word in
the document.

As mentioned before, for example, if the pre-
diction is "keyphrase extraction challenge" and the
ground truth is "keyphrase extraction system", de-
spite both semantic similarity and partial matching,
the score will be 0. These minor deviations are
ubiquitous in keyphrase extraction, yet they are
harshly penalized by the "exact match" evaluation
metrics. There are often some non-keyphrases in
the candidates. Half of the content of such phrases
is very relevant to the core information of the doc-
ument, but the other half is meaningless. These
candidate keyphrases are usually hard to extract
and treated as hard samples, which is one of the
main reasons for reducing keyphrase extraction
performance. The above issues can be solved by
modifying the traditional evaluation metrics with
semantic weighting.

7.4 Handling Long Document

Generally, two main challenges exist in keyphrase
extraction systems equipped with pre-trained lan-
guage models (e.g., BERT (Devlin et al., 2019)) as
the backbone when extracting keyphrases from a
long document, especially for an extremely long
document.

The first challenge is that pre-trained language
models can not directly model the complete context
information when facing long documents due to the
length limitation of pre-trained language models.

The second challenge is that as the length of
the document increases, the difficulty of estimating
the importance scores of candidate phrases also in-
creases (specifically for the number of candidates),
resulting in the reduction of keyphrase extraction
accuracy.

7.5 Improving Domain Generalization

For news or scientific documents, the authors usu-
ally annotate a set of keyphrases for their articles
(Meng et al., 2017; Augenstein et al., 2017). How-
ever, there is typically a lack of keyphrases as the la-
bel information for their corresponding documents
in other specific domains.

Most existing keyphrase extraction datasets and
studies are based on news or scientific documents
and lack datasets and research related to other do-
mains. Therefore, the task worthy of investigation
is to transfer the keyphrase extraction model from
the scientific domain to other domains to build a

2160



domain-specific keyphrase extraction model with
various domain generalization strategies.

7.6 Probing Pre-trained Language Model for
Keyphrase Extraction

In addition to using transformer-based pre-trained
language models (e.g., BERT) in NLP tasks and
end applications, research has also been done on
BERT, especially to reveal what linguistic infor-
mation is available in different parts of the model
(Jawahar et al., 2019; de Vries et al., 2020; Chen
et al., 2021). It has been noted that BERT progres-
sively acquires linguistic information roughly in
the same order as the classic language processing
pipeline (Tenney et al., 2019a,b): surface features
are expressed in lower layers, syntactic features
more in middle layers, and semantic ones in higher
layers (Jawahar et al., 2019). Making full use of
the above hierarchy information may effectively
improve the performance of keyphrase extraction.

8 Limitations

The main goal of this paper is to provide a survey
of the existing models. Since we do not propose
new models, there are no potential social risks to
the best of our knowledge. Our work may ben-
efit the research community by providing more
introspection into the current state-of-the-art neural
keyphrase extraction approaches with pre-trained
language models.
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Abstract

Explanation prompts ask language models to
not only assign a label to a given input, such
as entailment or contradiction in natural lan-
guage inference (NLI) tasks, but also to gener-
ate a free-text explanation that supports this la-
bel. While explanation prompts originally intro-
duced aiming to improve model interpretabil-
ity, here we show that they also improve ro-
bustness to superficial cues. Compared to
prompting for labels only, explanation prompt-
ing shows stronger performance on adversarial
NLI benchmarks, outperforming the state of
the art on ANLI, Counterfactually-Augmented
NLI, and SNLI-Hard datasets. Analysis sug-
gests that the increase in robustness is due
to a reduction in the association strength be-
tween single tokens and labels, i.e., explana-
tion prompting weakens superficial cues. More
specifically, we find that single tokens that are
highly predictive of the correct answer in the
label-only setting become uninformative when
the model also has to generate explanations.

1 Introduction

Explanation prompting requires language models
to not only assign a particular label to a given in-
put (henceforth: label-only prompting), but also
to generate an explanation that supports this label.
For example, given the natural language inference
(NLI; Bowman et al., 2015) premise “A soccer
game with multiple males playing” and the hypoth-
esis “Some men are playing a sport”, in label-only
prompting the model only has to generate a label
such as entailment. With explanation prompting,
the model has to generate not only the label but
also an explanation that supports this label, such
as “It is true because playing soccer is playing a
sport”.

While explanation prompting was originally pro-
posed for improving model interpretability (Narang
et al., 2020), here we explore a different advantage:
improved model performance on adversarial bench-

"Neutral"

Is this true and why?

entails

INPUT

OUTPUT:

INPUT

"No it is neutral because the person is not necessarily 
training his horse."

OUTPUT:

high PPMI

Label-​only: potential superficial cues

Explanation prompting: neutralizes superficial cues

Figure 1: When models only have to predict class labels
(top), some words in the input can become superficial
cues, as indicated by high pointwise mutual information
(shown in red) between words and class labels. With
explanation prompting (bottom) the added requirement
of generating explanations renders such shortcuts inef-
fective.

marks. Created in response to the discovery of su-
perficial cues in many common datasets, adversar-
ial benchmarks are designed to give a more realistic
estimate of model performance. Non-adversarial
benchmarks such as SNLI (Bowman et al., 2015)
can contain superficial cues, i.e., single tokens that
are predictive of the correct label and hence allow
models to achieve high scores by taking “shortcuts”
instead of acquiring and employing the capabili-
ties intended by the task designers (Gururangan
et al., 2018a; McCoy et al., 2019; Poliak et al.,
2018; Niven and Kao, 2019; Sugawara et al., 2018;
Schuster et al., 2019a; Kavumba et al., 2019). In
contrast, adversarial benchmarks are created in a
way that reduces or completely eliminates superfi-
cial cues, thus forcing models to solve tasks in the
intended and generally more difficult manner.
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In this work, we investigate the benefits of ex-
planation prompting through the lens of adver-
sarial benchmarks. Concretely, we finetune pre-
trained language models on natural language in-
ference datasets with explanation prompting and
compare performance to label-only prompting. We
find that explanation prompting improves perfor-
mance across four adversarial NLI datasets and
two non-adversarial NLI datasets (§5). Improve-
ments are consistent across model architectures,
model sizes, and prompt variations. Further anal-
ysis reveals that both the specific verbalization
of the label (“Yes, it is {label} because...") and
the relation between explanation and label are
important for model performance (§6). Finally,
we verify that explanation prompting models do
not rely on the kind of superficial cue that al-
lows taking shortcuts in the label-only setting
(§6). Source code is available at github.com/
pkavumba/explanation-prompting.

2 Background and Related Work

2.1 Superficial Cues

In the original natural language inference setting,
as exemplified by SNLI (Bowman et al., 2015),
models are trained to assign a label, such as en-
tailment or contradiction, to a given input. While
models quickly achieved high evaluation scores,
a line of research starting with Gururangan et al.
(2018a) found that SNLI and other datasets contain
superficial cues that models can exploit instead of
learning the task as intended (Poliak et al., 2018;
McCoy et al., 2019; Niven and Kao, 2019; Schus-
ter et al., 2019a; Kavumba et al., 2019; Wang and
Culotta, 2021; Srivastava et al., 2020; Wang et al.,
2019b,c). For example, in SNLI, negations such
as “not” are strongly associated with the contradic-
tion label (Gururangan et al., 2018a). A model that
predicts contradiction when the input contains the
token “not” will achieve a high evaluation score
without acquiring any capability to perform actual
natural language inference. Having learned to rely
on such shortcuts (Geirhos et al., 2020), models
will be “right for the wrong reasons” (McCoy et al.,
2019) on data that contains superficial cues, but
will perform worse on data that does not.

There are several approaches to mitigate super-
ficial cues. A direct countermeasure is to remove
them from existing datasets and to take care not
to introduce superficial cues when creating new
datasets. The two dominant methods to do so are

removal of easy samples via adversarial filtering
(Zellers et al., 2018, 2019; Sakaguchi et al., 2020;
Bras et al., 2020; Nie et al., 2020) and augmenta-
tion with counterfactual examples that neutralize
the association between existing superficial cues
and labels (Kavumba et al., 2019; Schuster et al.,
2019b; Kaushik et al., 2020). A complementary
line of work aims to prevent models from rely-
ing on superficial cues, for example via adversar-
ial training (Belinkov et al., 2019; Stacey et al.,
2020, 2021) and adversarial attacks (Wang et al.,
2019a; Liu et al., 2020; Zhu et al., 2020; Wang
et al., 2021). Adversarial approaches suffer from
drawbacks such as a more complex training scheme
and higher computational costs. Another approach
is multi-task training. Camburu et al. (2018) pro-
pose a “predict-and-explain” multi-task setup in
which one model first predicts a label and a sec-
ond model generates a free-form explanation for
this label However, this setup turns out to slightly
degrade performance.

In this work, we study explanation prompting
as a method for reducing the impact of superfi-
cial cues. While this form of prompting was orig-
inally introduced to enhance model interpretabil-
ity (Narang et al., 2020), our work is most closely
related to Chen et al. (2022), who studied the ro-
bustness of rationale models (Lei et al., 2016; Bast-
ings et al., 2019; DeYoung et al., 2020) to adversar-
ial attacks. Rationale models operate in a two-step
“rationalize-then-predict” manner, where the model
first selects a pertinent subset of the input, called
a rationale, and then predicts a label given this
rationale. Stacey et al. (2021) investigates using hu-
man annotated rationales for supervising attention
mechanism. Their goal is to increase the attention
given to annotated rationales.

2.2 Explanation Prompting

Explanation prompting requires models not only
to predict a class label but also to provide an ex-
planation of why that label is the correct answer.
Previous work has explored explanation prompt-
ing as a way to improve model interpretability.
Wiegreffe et al. (2021) analyzed the faithfulness of
explanations obtained via explanation prompting.
Since high-quality explanation are expensive to
create and not available in large quantities, Maraso-
vic et al. (2022) compare methods for generating
high-quality explanations in limited data regimes,
whereas Wiegreffe et al. (2022) investigate the fea-
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sibility of using large language models such as
GPT-3 (Brown et al., 2020) to automatically gen-
erate large amounts of explanations. In contrast to
this strand of research, we use free-text explana-
tions not to improve model interpretability, but to
improve model robustness in adversarial settings.

3 Explanation Prompting for Adversarial
NLI

In the original natural language inference setting,
one trains a classifier to label the relationship be-
tween a premise and a hypothesis as entailment,
neutral, or contradiction. When using a gener-
ative language model to generate a label and an
explanation supporting the label, the task turns
from classification into what we refer to as explana-
tion prompting. Turning the original NLI instances
into input-output pairs suitable for a generative lan-
guage model necessitates choosing a verbalizer1

that converts premise, hypothesis, label, and an-
swer into an input prompt an target output, e.g.:

• Input: Is this true and why? {premise} im-
plies {hypothesis}

• Output: {Yes or No} it is {label} because
{explanation}

Note that the label prediction process is further
broken down into two steps: first, the model must
provide a binary answer to the question (in this
case, whether the statements are entailed), then
give the exact label. That is, the output starts with

“Yes it is ...” for Entailment, or “No it is ...” for
Neutral and Contradiction. We refer to this as
multi-step verbalizing. This is a deviation from
previous work that utilized single-step or single-
word verbalizers. For example, entailment is of-
ten verbalized as yes, while contradiction and
neutral are verbalized as no and maybe, respec-
tively (Schick and Schütze, 2021a,b). Finally, the
output is completed with a free-text explanation
supporting the label.

4 Experimental Setup

4.1 Datasets
We compare label-only and explanation prompting
on six NLI datasets.

e-SNLI (Camburu et al., 2018) extends
SNLI (Bowman et al., 2015) with crowdsourced
free-form explanations and annotated salient spans.

1Verbalizer details are given in Appendix A.

Adversarial NLI (ANLI) (Nie et al., 2020) was
created in an iterative, adversarial process where, in
each iteration, human annotators create examples
that a given model does not label correctly, which
are then used to train a stronger model.

SNLI Hard (Gururangan et al., 2018a) is a fil-
tered version of the SNLI test set and contains only
instances that could not be labeled correctly by a
model given only the hypothesis as input.

NLI Diagnostic (Wang et al., 2018) was care-
fully constructed to evaluate capabilities related
to commonsense knowledge, logical reasoning,
predicate-argument structures, and lexical seman-
tics.

Heuristic Analysis for NLI Systems (HANS)
(McCoy et al., 2019) was created to analyze and
prevent several kinds of shortcuts found in prior
NLI datasets, such as lexical overlap between
premise and hypothesis.

Counterfactually-Augmented NLI (Counter-
NLI) (Kaushik et al., 2020) augments a subset
of SNLI with counterfactual instances, which were
obtained by editing either the premise or hypothe-
sis so that a counterfactual, i.e., different than the
original, label becomes true. Models relying on
superficial cues will perform well on original SNLI
instances, but poorly on counterfactual ones.

4.2 Models and Training Details

The two main models selected for our compari-
son are T0 (Sanh et al., 2021) and T5-3B (Raffel
et al., 2020). We chose these two models based on
their good reported performance on NLI datasets
while involving comparably low computational
costs, which we further reduced by finetuning all
models only on a third of the available e-SNLI
and ANLI training data. Thus, test results on e-
SNLI, ANLI, and SNLI Hard can be considered in-
domain tests and results on the remaining datasets
out-of-domain tests. Further training details and
hyperparameter settings are given in Appendix B.

5 Results

Does explanation prompting improve robustness
to adversarial attacks? Yes.

For both T0 and T5-3B, training with explana-
tion prompting improved performance over label-
only prompting on nearly all datasets, surpassing
the reported state of the art on e-SNLI, SNLI-Hard,

2167



Dataset Subset Current SOTA
T5-3B T0 (11B)

Label-only Explanation prompting Label-only Explanation prompting

e-SNLI - 92.3 91.7 95.1 91.0 91.9
SNLI Hard Hard 80.2 84.0 89.7 83.0 84.5

ANLI
R1 75.5 74.9 81.8 69.6 75.6
R2 51.4 58.9 72.5 53.7 60.6
R3 49.8 57.9 74.8 55.0 59.9

HANS
Lex 94.1 94.2 94.2 97.9 95.9
Sub 46.3 46.3 30.3 20.5 37.9
Cons 38.5 38.6 17.1 24.3 53.9

Counter-NLI
RP 54.3 69.6 83.0 66.5 69.2
RH 74.3 88.9 93.5 87.9 87.4
RP&RH 64.3 79.3 88.3 77.2 78.3

NLI Diagnostic

Know 53.9 58.8 76.4 58.8 59.9
Logic 58.7 63.7 73.9 60.7 64.5
LS 66.5 69.6 79.3 63.0 70.4
PAS 69.9 73.1 80.9 70.8 72.4

Table 1: Results by T5-3B and T0 (11B) models trained with label-only prompting and Explanation prompting. Current
state-of-the-art results on each dataset are reported from: WT5 (Narang et al., 2020), BERT-Sup-ATT (Stacey et al., 2021),
InfoBERT (Wang et al., 2021), RoBERTa-AFLITE (Bras et al., 2020), BERT (Kaushik et al., 2020), and RoBERTa-AFLITE (Bras
et al., 2020), respectively. Note that T5-3B and T0 are trained with different batch sizes and sequence lengths, so the results are
not comparable (§ 5).

ANLI, and Counterfactually-Augmented NLI (Ta-
ble 1). For example, on the three ANLI subsets
T5-3B achieves accuracies of 81.8%, 72.5%, and
74.8% with explanation prompting, compared to
much lower accuracies of 74.9%, 58.9% and 57.9%
with label-only prompting. Furthermore, since e-
SNLI does not contain any adversarially chosen
“hard” instances, strong results on this dataset show
that explanation prompting does not necessarily
hurt performance on datasets with superficial cues.
Overall T5-3B achieves higher performance de-
spite its smaller size, but this is due to T0 using
a quarter of the batch size and sequence length of
that used for T5 due to memory limitations.

The HANS dataset remains the most challenging
dataset, indicating that the models may still be sus-
ceptible to such adversarial attacks. Surprisingly,
the use of explanation prompting actually leads to
degraded performance for certain subsets, such as
the lexical overlap for T0, and subsequences and
constituents for T5-3B. This discrepancy warrants
further investigation, which we leave for future
work.

On all other datasets, explanation prompting
models show clear improvements over label-only
models in both in-domain and adversarial out-
of-domain settings. This demonstrates that us-

Full H-only ∆

Label-only prompting 87.2 63.7 -23.5
Explanation prompting 90.9 33.1 -57.8

Random baseline 33.3 33.3 -

Table 2: The average prediction accuracy of T0 models
on e-SNLI when trained with the full input compared
to the hypothesis-only setting (H-only), which allows
the models to solely rely on superficial cues to make ac-
curate predictions. The explanation prompting-trained
model’s performance degraded to random performance,
implying that it did not learn to make use of superficial
cues.

ing explanation prompting generally enhances the
model’s robustness to adversarial attacks and im-
proves the overall NLI prediction performance.

6 Discussion

In this section we vary experimental settings and
conduct ablations in order to provide a more de-
tailed analysis of how explanation prompting im-
pacts NLI performance. Unless stated otherwise,
reported results are obtained by finetuning T0 on
20K randomly-sampled instances from e-SNLI and
averaging prediction accuracies from three runs
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Explanation Accuracy BLEU

None 88.4 -
Random characters 21.00 0.02
Random words 0.00 0.90
Low-sim. sentences 0.04 0.03
High-sim. sentences 59.1 1.73
Original (e-SNLI) 91.6 36.1

Table 3: Impact of explanation content. Accuracies are
shown for the e-SNLI dev set, averaged over three T0
models finetuned with different random seeds. Ran-
dom characters and words or unrelated explanations
significantly reduce performance, indicating that the
models did not rely on superficial cues. Original ex-
planations outperform extracted sentences with high
similarity, demonstrating the benefit of related explana-
tions. We also report BLEU scores with respect to the
original explanations.

with different random seeds. Training details are
given in Appendix B.

Does explanation prompting prevent models
from exploiting superficial cues? Yes.
To see if models still exploit superficial cues, we
employ the hypothesis-only setting of Gururangan
et al. (2018b). Since the missing premise makes
the task impossible, any performance above ran-
dom chance can be ascribed to models picking
up on superficial cues. After training one model
with label-only prompting and one with explana-
tion prompting(Table 2), we observe that the label-
only model considerably exceeds random chance
(63.7% compared to 33.3%). In contrast, the expla-
nation prompting model does not exceed random
chance, indicating that explanation prompting is
not conducive to shortcut learning.

Do the explanations need to be related to the
input? Yes.
To check if the content of the target explanation
matters we replace it with unrelated text rang-
ing from completely random characters to similar
but unrelated sentences and find that explanation
prompting with the original explanations still per-
forms best (Table 3). Specifically, we choose the
following target “explanations”: (i) random char-
acters, (ii) random words, (iii) sentences extracted
from the BookCorpus (Zhu et al., 2015) with low
similarity with the input, and (iv) sentences ex-
tracted from the BookCorpus with high similar-

ity.2 All similarities are computed with Sentence-
BERT (Reimers and Gurevych, 2019). We also
compare to label-only prompting (None row in Ta-
ble 3). Table 3 shows the mean prediction accuracy
scores on the development set of e-SNLI over three
random seeds. Performance degrades with random
explanations or sentences extracted from BookCor-
pus, confirming that training the model to predict
explanations improves adversarial robustness.

Does Multi-step verbalizing have an effect on the
model performance? Yes.
A binary decision step may seem like a small
change in prompt format, however, we found that
this added step has partial merit to the improvement
in performance. To verify this, we train label-only
and explanation prompting models using single-
step-verbalized prompts ({label} because...”) and
ones using multi-step-verbalized prompts (“Yes it is
{label} because...”), both with an explanation (+Ex-
plain column in Table 5) and without added expla-
nations (Label-only column in Table 5). The results
show the prediction accuracy averaged over three
random seeds. In both label-only and explained
settings, adding a multi-step verbalizer brings an
improvement over the single-step version.

Are the models sensitive to prompt wording in
the input? No.
Previous work has demonstrated that language
models can be very sensitive to the prompts (Schick
and Schütze, 2021a,b; Brown et al., 2020). To ex-
amine this, we conduct experiments on five diverse
crowdsourced prompts obtained from the Prompt
Source project (Bach et al., 2022). For each model,
we run three separate experiments using three dif-
ferent random seeds. We report the average accu-
racy across all five prompts on the development
set of e-SNLI and Counterfactually-Augmented
NLI. Due to resource constraints, we use T5-3B, a
smaller model than T0, for these experiments. Fur-
thermore, we limit the number of instances used
from e-SNLI to twenty thousand randomly selected
examples.

The results presented in Table 4 demonstrate
that models trained with explanation prompting
outperform those trained with label-only prompt-
ing across all five prompts in terms of accuracy
(see Table 8 in Appendix C for results with differ-
ent models). For instance, the explanation prompt-

2We use the BookCorpus instead of sampling random ex-
planations to avoid accidentally sampling valid explanations.
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Prompt ID

Dataset 1 2 3 4 5 Mean(stddev)

e-SNLI 91.5 / 94.4 91.6 / 94.7 91.8 / 94.6 91.6 / 94.5 91.8 / 94.4 91.7(0.1) / 94.5(0.1)
CNLI (RP) 70.8 / 82.5 73.0 / 83.8 71.5 / 83.0 72.1 / 83.0 70.1 / 82.8 71.5(1.1) / 83.0(0.5)
CNLI (RH) 82.0 / 92.3 82.8 / 93.0 81.9 / 92.8 82.0 / 92.2 83.1 / 92.5 82.4(0.6) / 92.6(0.3)
CNLI (RP&RH) 76.4 / 87.4 77.9 / 88.4 76.7 / 87.9 77.0 / 87.6 76.6 / 87.7 76.9(0.6) / 87.8(0.4)

Table 4: Prompt sensitivity on the development set of e-SNLI and Counterfactually-Augmented NLI (CNLI). Values
are accuracy of label-only/explanation prompting-trained T5-3B models averaged over three random seeds. Besides
the consistently higher performance of the explanation prompting setting, the lower standard deviation indicates
greater stability w.r.t. prompt format.

Label-only +Explain (e-SNLI)

Single-step 87.2 90.9
Multi-step 88.4 91.6

Table 5: Comparing the effects of single-step (“[label]
because ...") and multi-step (“Yes/no, it is [label] be-
cause ...") verbalizing on T0 prediction accuracy, both
with an explanation (+Explain) and without an explana-
tion (Label-only) in the model output. Multi-step ver-
balizing improved the accuracy in both cases, with and
without explanation, and the added task of providing an
explanation (+Explain) further enhanced performance.

ing model achieves an overall average accuracy of
94.5% on e-SNLI compared to 91.7% for the label-
only model. Additionally, the explanation prompt-
ing model exhibits better accuracy on all the indi-
vidual prompts on the adversarial Counterfactually-
Augmented NLI with an overall average accuracy
of 83.0% on the revised premise (RP), 92.6% on
the revised hypothesis (RH), and 87.8 on RP&RH,
compared to 71.5%, 82.4%, and 76.9% respectively
for the label-only model. The lower standard de-
viations for explanation prompting also indicate
higher stability across all prompts.

Are the results dependent on the architec-
ture/size of the model employed? Yes.
To study the impact of model size on performance,
we repeat the experiments using six models ranging
from 60 million to 11 billion parameters. These
models comprise two versions of BART (Lewis
et al., 2020) with 125M and 400M parameters, as
well as three variants of T5 (Raffel et al., 2020) with
60M, 770M, and 3B parameters, and T0 with 11B
parameters. The results, as depicted in Figure 3 for
ANLI, indicate a clear correlation between model
size and performance, with larger models demon-
strating improved results. It is worth noting that
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Figure 2: Positive Pointwise Mutual Information
(PPMI) statistics for hypothesis words and labels with
and without explanation prompting. Words in the hy-
pothesis are strongly associated with the predict-only
labels. With explanation prompting, the association be-
tween the hypothesis words and the labels drops to a
zero. For example, while the negative word frowning is
strongly associated with contradiction label, the associa-
tion is eliminated with explanation prompts. The figure
only shows the hypothesis because superficial cues are
from the hypothesis, not the premise.

the highest achieved performance by T5-3B, ex-
ceeds that of the larger T0 model. This is due to
the fact that T0 is trained using only a quarter of
the batch size and the sequence length used for
all other models, resulting in reduced performance.
Comprehensive results for all models and datasets
are presented in Table 6. For more information on
the training details, see Appendix B.

Does explanation prompting weaken the asso-
ciation between word-level superficial cues and
labels? Yes.
To investigate the impact of explanation prompting
on the association between input words and their
corresponding output labels in the training set, we
compare the positive pointwise mutual informa-
tion (PPMI) between them in both label-only and
explanation prompting settings:
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Current
SOTA

T5-Small (60M) BART-Base (125M) BART-Large (400M) T5-Large (770M) T5-3B (3B) T0* (11B)

LP EP LP EP LP EP LP EP LP EP LP EP

e-SNLI 92.3 82.4 88.8 88.7 92.1 90.4 93.8 90.9 94.4 91.7 95.1 91.0 91.9
SNLI Hard 80.2 68.5 82.2 78.1 84.3 81.5 84.9 82.1 88.7 84.0 89.7 83.0 84.5

ANLI
R1 75.5 46.5 52.5 56.8 53.0 64.9 65.9 66.1 77.2 74.9 81.8 69.6 75.6
R2 51.4 37.6 56.4 41.5 50.3 44.4 57.1 49.2 67.8 58.9 72.5 53.7 60.6
R3 49.8 40.4 59.1 40.9 54.0 46.5 59.6 49.4 68.0 57.9 74.8 55.0 59.9

HANS
Lex 94.1 2.6 0.0 71.2 69.6 85.0 90.2 82.9 81.3 94.2 94.2 97.9 95.9
Sub 46.3 2.2 0.0 43.2 54.1 27.3 63.7 35.6 27.6 46.3 30.3 20.5 37.9

Cons 38.5 2.5 0.0 34.7 51.9 22.4 63.8 19.6 9.9 38.6 17.1 24.3 53.9

Counter-NLI
RP 54.3 54.1 75.6 59.8 74.9 66.1 77.3 67.8 82.3 69.6 83.0 66.5 69.2
RH 74.3 78.4 86.5 82.9 87.8 85.3 87.4 86.5 92.4 88.9 93.5 87.9 87.4

RP&RH 64.3 66.3 81.1 71.3 81.3 75.7 82.3 77.1 87.3 79.3 88.3 77.2 78.3

NLI Diagnostic

Know 53.9 34.5 58.8 41.2 60.2 57.4 70.4 54.9 65.8 58.8 76.4 58.8 59.9
Logic 58.7 45.3 59.6 45.6 67.0 54.9 67.0 57.4 70.3 63.7 73.9 60.7 64.5

LS 66.5 49.5 63.3 49.2 62.2 62.2 69.6 63.9 76.1 69.6 79.3 63.0 70.4
PAS 69.9 58.0 69.3 55.7 65.3 67.9 66.7 71.0 76.4 73.1 80.9 70.8 72.4

Table 6: Average prediction accuracy over three random seeds by models of increasing size trained with label-
only (LP) and explanation prompting (EP). Current state-of-the-art results on each dataset are reported from:
WT5 (Narang et al., 2020), BERT-Sup-ATT (Stacey et al., 2021), InfoBERT (Wang et al., 2021), RoBERTa-
AFLITE (Bras et al., 2020), BERT (Kaushik et al., 2020), and RoBERTa-AFLITE (Bras et al., 2020), respectively.
*Note that the T0 models were trained using only a quarter of the batch size and half the sequence length used for
all other models due to computational limitations. This may be the cause for weaker performance compared to the
smaller T5-3B models.
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Figure 3: Average accuracy on ANLI depending on
model size with label-only and explanation prompt train-
ing, respectively. See Appendix B for a comprehensive
overview of performance, including on other datasets.

PPMI(w, l) = max(log
p(w, l)

p(w, )p(, l)
, 0)

Where w represents the input word and l repre-
sents the output label. The PPMI analysis enables
us to determine which words have a strong asso-
ciation with specific output labels, and how the
use of explanation prompts modifies these associ-
ations. Following Gururangan et al. (2018b), we
use add-100 smoothing in our PPMI calculations to
highlight the input words that exhibit the strongest
associations with the output labels.
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Figure 4: Crowd-sourced comparison of human-written
explanations and those generated by a model. Overall,
the crowd workers found that the model-generated ex-
planations were either comparable to or better than the
human-written ones.

The results, as presented in Figure 2, show that
explanation prompts weaken the association be-
tween the input words and the output labels. For
instance, in the absence of explanation prompting,
the negative word frowning had a strong associa-
tion with the label contradiction. However, when
explanation prompting is used, this association is
diminished from 0.1 to around 0. It’s worth men-
tioning that only the hypothesis words are shown in
Figure 2 as the superficial cues are mainly present
in the hypothesis, not the premise. These findings
align with the results obtained from the hypothesis-
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only model, as presented in Table 2.

Are the explanations generated by explanation
prompting models plausible? Yes.

While interpretability is not the primary objec-
tive of this study, we conduct a human evalua-
tion of the model’s generated explanations to as-
sess its performance within the intended frame-
work. We use Amazon Mechanical Turk to gather
assessments from 100 randomly selected T0 in-
stances. To make the task easier for the crowd
workers, we simplify it to only include two labels:
Entailment and non-entailment. Instances la-
beled as Neutral or Contradiction are consid-
ered as non-entailment. We present the crowd
workers with the gold label and request an evalua-
tion of the quality of the explanation using a five-
point Likert scale, ranging from “very bad” to “ex-
tremely good”. We gather three ratings per instance.
Each Human Intelligence Task (HIT) features three
explanations: the gold explanation authored by
a human, the model-generated explanation, and
an “attention check” explanation with a known ex-
pected annotation. The “attention check” explana-
tion is included to ensure the quality of the annota-
tions provided. This “attention check” explanation
is randomly selected and unrelated to the premise
and hypothesis, and therefore is expected to receive
a lower score compared to the human-authored
explanations that have already been validated by
other crowd workers in previous work (Camburu
et al., 2018). If the “attention check” explanation
receives a high score or an equal score to a human-
authored explanation, the HIT is flagged for review.
Additionally, to prevent the use of simple heuris-
tics, such as assuming that the last explanation is
always the low-scoring one, the order in which the
explanations are presented to the annotator is ran-
domly shuffled during each HIT. An example of an
NLI instance with an “attention check” explanation
is shown below:3

• Premise: A man stands by an animal rights
sign at an outdoor event.

• Hypothesis: A man is standing inside of his
house

• Human: an outdoor event is not in his house
• Generated: The man cannot be standing in-

side of his house and at an outdoor event at
the same time.

3The crowdsourcing study form can be found in the ap-
pendix D.

• Attention Check: It cannot be inferred that
the young woman is an artist or that she is be
finished soon.

The results of this evaluation are shown in fig-
ure 4. On the whole, crowd workers found model-
generated explanations to be comparable to or bet-
ter than human-written ones.4

This result suggests that the crowd workers
found the generated reasons to be of similar quality
to the human-authored reasons. This indicates that
the model learns important features of the input
data and is able to use them effectively to generate
reasonable explanations.

7 Conclusions

In this study, we examined the influence of causal
prompting on the adversarial robustness of natu-
ral language processing models. Our results in-
dicate that using causal prompts can improve a
model’s robustness to adversarial attacks. We also
explored the performance of our models under var-
ious modified and ablated settings and found that
explanation prompting-trained models (i) no longer
rely on superficial cues, (ii) benefit most from both
causally related explanations and multi-step ver-
balization, and (iii) are robust to differences in the
input prompts. In addition, we observed that perfor-
mance increases with model size and that the use
of the explanation prompting format reduces the
association between input words and output labels.
Finally, human evaluation showed that the models
generated plausible explanations.

Limitations

Explanation prompting requires datasets annotated
with explanations, which may not always be avail-
able and it can be costly to collect explanations in
a quantity suitable for model training or finetuning.
Therefore, applying this method to datasets without
explanations may be difficult.

Additionally, our analysis and evaluation are lim-
ited to English language benchmarks. Although we
anticipate the method to be transferable to other
languages, this requires further investigation.

Finally, experiments showed that training with
explanation prompting did not improve the perfor-
mance of T5 variants on the "Subsequence" and
"Constituent" subsets of the HANS dataset. It is

4Refer to Appendix E for some example explanations.
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currently unclear why all variants of BART per-
formed better than random baselines, while T5
variants did not. Possible explanations include dif-
ferences in training data, model architecture, and
optimization goal, but this discrepancy requires
further investigation.

Ethics Statement

In our human evaluation of the explanation quality,
we took steps to ensure fair treatment of the crowd
workers. To do this, we internally conducted exper-
iments to determine the average completion time
for one Human Intelligence Task (HIT). Our goal
was to pay a fair wage of at least $20 per hour to
all participants involved in the study. As a result,
all crowd workers received fair compensation for
their work, and no HITs were rejected.
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Appendix

A Prompt templates

Inspired by Unified Prompts (Sanh et al., 2021) and
Prompt Source project (Bach et al., 2022), we ex-
press all explanation prompting input-output pairs
in the jinj2 template language.5 This choice al-
lows us to take advantage of the many features and
benefits offered by jinja2.

A.1 Explanation prompting template
Input:
Is this true and why?

{{premise}} implies {{hypothesis}}

Output:
{% if label == 'entailment' %} Yes {%else%} No
{%endif%} it is {{label}} because
{{explanation}}

A.2 Alternative template for training samples
lacking explanations

Input:
Is this true?

{{premise}} implies {{hypothesis}}

Output:
{% if label == 'entailment' %} Yes {%else%} No
{%endif%} it is {{label}}

Note that ANLI provides explanations for only
some of the questions; where missing, the prompt
template was modified to accommodate this.

B Training details

We fine-tuned the models on an Nvidia A100 node
with 8 x 40GB GPUs. We used the DeepSpeed
library6 that implements ZeRo (Rajbhandari et al.,
2020) and ZeRo-Offload (Ren et al., 2021); and
the Huggingface transformers library (Wolf et al.,
2019). We used an Adam optimizer (Kingma and
Ba, 2015) with a learning rate of {1e-4, 5e-5}, with
a per device batch size of {8, 16, 32, 64}, warm-up
ratio of 0.08, max source length of 1024 except for
T0 which uses 512 tokens with dynamic padding
based on the longest sequence in the batch. We fine-
tuned for a maximum of three epochs and selected
the best checkpoint based on performance on the e-
SNLI development set. Table 7 shows an overview
of all used hyperparameters.

5https://https://jinja.palletsprojects.com/
6https://github.com/microsoft/DeepSpeed

Models

Warmup Ratio 0.08
Per Device Batch Size {2, 4, 8, 16, 32, 64}
Learning Rate {1e-3, 1e-4*, 1e-5, 5e-5*}
Adam ϵ 1.00e− 08
Adam β1 0.9
Adam β2 0.999
Gradient Norm 1
Max Source Len {512, 1024}
Max Target Len 256
weight_decay 0
fp16 yes
DeepSpeed

fp16
enabled yes
loss_scale 0
loss_scale_window 1,000
initial_scale_power 16
hysteresis 2
min_loss_scale 1

zero_optimization
sub_group_size 1.00e9
stage3_max_live_parameters 1.00e9
stage3_max_reuse_distance 1.00e9

Table 7: Hyperparameter settings. Where multiple val-
ues were tried the final values used is shown with an
asterisk. The batch size of 8 is only used for the 11Bil-
lion parameter model.

C Prompt Sensitivity Results

We present extended results on prompt sensitivity
with a range of model sizes, with all values being
averages over three random seeds. Table 8 shows
the results on each prompt. The aim of the experi-
ment is to examine the sensitivity of various mod-
els to prompt wording. To do this, we evaluated
the models on five diverse crowdsourced prompts
obtained from the Prompt Source project (Bach
et al., 2022). We conducted three separate experi-
ments for each model, using three different random
seeds, and report the average accuracy across all
five prompts on the development sets of e-SNLI and
Counterfactually-Augmented NLI. We limited the
number of instances used from e-SNLI to twenty
thousand randomly selected examples. The results
demonstrate that models trained with explanation
prompting outperform those trained with label-only
across all five prompts in terms of accuracy.

D Crowd sourcing Forms

In this section, we present the crowdsourcing form
utilized for the human evaluation of explanation
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Dataset Prompt_ID
T5-Small T5-Large T5-3B BART-B BART-L

LO EP LO EP LO EP LO EP LO EP

e-SNLI

1 71.1 67.3 89.2 93.3 91.5 94.4 84.5 90.1 88.6 93.0
2 66.7 69.3 89.6 93.3 91.6 94.7 84.3 90.3 59.1 93.4
3 72.3 67.7 89.5 93.2 91.8 94.6 84.0 90.5 88.2 93.3
4 69.0 66.4 89.6 93.6 91.6 94.5 84.1 90.5 72.3 93.4
5 69.2 67.4 89.5 93.4 91.8 94.4 84.7 90.3 85.8 93.3

CNLI (RP)

1 44.8 60.3 64.4 79.6 70.8 82.5 50.1 72.3 60.1 77.9
2 42.8 68.5 65.4 79.2 73.0 83.8 49.3 71.8 41.9 77.2
3 47.5 68.4 65.9 79.0 71.5 83.0 49.3 72.0 59.9 76.6
4 43.3 68.3 66.2 79.3 72.1 83.0 49.0 71.8 49.0 79.0
5 43.4 68.8 65.9 79.7 70.1 82.8 48.8 71.6 58.3 77.2

CNLI (RH)

1 65.6 62.7 80.6 91.1 82.0 92.3 73.0 86.5 79.3 90.8
2 54.8 70.6 81.1 91.8 82.8 93.0 72.2 86.2 54.1 90.5
3 67.5 69.4 81.3 91.3 81.9 92.8 73.3 85.7 79.4 91.0
4 63.2 68.8 81.6 91.4 82.0 92.2 73.0 87.3 65.6 90.8
5 60.7 68.7 82.3 91.1 83.1 92.5 71.8 85.3 77.0 90.9

CNLI (RP&RH)

1 55.2 61.5 72.5 85.3 76.4 87.4 61.5 79.4 69.7 84.3
2 48.8 69.5 73.3 85.5 77.9 88.4 60.7 79.0 48.0 83.8
3 57.5 68.9 73.6 85.1 76.7 87.9 61.3 78.8 69.7 83.8
4 53.3 68.5 73.9 85.3 77.0 87.6 61.0 79.5 57.3 84.9
5 52.0 68.8 74.1 85.4 76.6 87.7 60.3 78.4 67.7 84.0

Table 8: Prompt-sensitivity results on the development set of e-SNLI and Counterfactually-Augmented NLI (CNLI).
The values represent mean accuracy over three random seeds. The table compares the accuracy of a label-only
prompting model (represented by the LO column) and the explanation prompting model (represented by the EP
column). Explanation prompting models outperform the label-onlymodel on almost all the prompts.

quality. To ensure unbiased assessments, the ex-
planations were initially concealed from the crowd
workers while they read the question and answer
(as depicted in Fig.5a). Once the workers answered
the first question, the explanations were then re-
vealed (as shown in Fig.5b).

E Qualitative Results

Table 9 shows some qualitative examples of the ex-
planations generated by the explanation prompting
T0 model.
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(a) The figure depicts the process of evaluating the quality of the explanations in the crowd-sourcing task. The
first stage requires the user to carefully read both the premise and hypothesis presented. After familiarizing
themselves with the information, the user is then tasked with answering the corresponding question. At this stage,
the explanations for the question are initially hidden.

(b) The figure illustrates the stage of the crowdsourcing process where the explanations are reviewed after the first
question has been answered (figure a). Hovering over the rating stars reveals the meaning of the star such as “Very
bad” for 1 star and “Bad” for 2 stars. Upon choosing a star rating, the form displays its corresponding description,
such as “Very bad” for 1 star, “Bad” for 2 stars, “Good” for 3 stars, “Very good” for 4 stars, and “Extremely good”
for 5 stars.
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# Input Reason Target

1

P: Two women are embracing while hold-
ing to go packages.
H: The sisters are hugging goodbye while
holding to go packages after just eating
lunch.

Model: Two women are not necessarily
sisters.
Human: The to go packages may not be
from lunch.

N (o)

2
P: Two women are embracing while hold-
ing to go packages.
H: Two woman are holding packages.

Model: Two women are holding packages
is the same as two women are holding
packages.
Human: Saying the two women are hold-
ing packages is a way to paraphrase that
the packages they are holding are to go
packages.

E (o)

3
P: Two women are embracing while hold-
ing to go packages.
H: The men are fighting outside a deli.

Model: Women are not men.
Human: In the first sentence there is an
action of affection between women while
on the second sentence there is a fight be-
tween men.

C (o)

4

P: Two young children in blue jerseys, one
with the number 9 and one with the num-
ber 2 are standing on wooden steps in a
bathroom and washing their hands in a
sink.
H: Two kids at a ballgame wash their
hands.

Model: Bathroom and ballgame are differ-
ent.
Human: Two kids in jerseys watching
their hands are not necessarily at a ball-
game.

N (x)

5

P: A woman is doing a cartwheel while
wearing a bikini in the sand next to the
beach.
H: A woman is doing a cartwheel and falls
on her head.

Model: Just because a woman is doing a
cartwheel doesn’t mean she falls on her
head.
Human: A woman doing a cartwheel as
opposed to a woman falling while doing a
cartwheel.

C (x)

6

P: At an outdoor event in an Asian-themed
area, a crowd congregates as one person
in a yellow Chinese dragon costume con-
fronts the camera.
H: A single man is next to a camera

Model: A single man is a person.
Human: The crowd can’t be single man.

C (x)

Table 9: Examples explanations generated by our models on the development set of e-SNLI, which consists of three
labels: entailment (E), contradiction (C) and neutral (N). We show the first three correct and incorrect instances.
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Abstract

Writing a good job description is an important
step in the online recruitment process to hire
the best candidates. Most recruiters forget to
include some relevant skills in the job descrip-
tion. These missing skills affect the perfor-
mance of recruitment tasks such as job sugges-
tions, job search, candidate recommendations,
etc. Existing approaches are limited to contex-
tual modelling, do not exploit inter-relational
structures like job-job and job-skill relation-
ships, and are not scalable. In this paper, we
exploit these structural relationships using a
graph-based approach. We propose a novel
skill prediction framework called JobXMLC,
which uses graph neural networks with skill
attention to predict missing skills using job
descriptions. JobXMLC enables joint learn-
ing over a job-skill graph consisting of 22.8K
entities (jobs and skills) and 650K relation-
ships. We experiment with real-world recruit-
ment datasets to evaluate our proposed ap-
proach. We train JobXMLC on 20, 298 jobs
and 2, 548 skills within 30 minutes on a sin-
gle GPU machine. JobXMLC outperforms
the state-of-the-art approaches by 6% on pre-
cision and 3% on recall. JobXMLC is 18X
faster for training tasks and up to 634X faster
in skill prediction on benchmark datasets en-
abling JobXMLC to scale up on larger datasets.
We have made our code and dataset public at
https://precog.iiit.ac.in/resources.html.

1 Introduction

Online recruitment platforms such as LinkedIn and
Glassdoor are extensively used to post jobs, find
relevant candidates, and match resumes to the jobs
posted. Recruiters create job positions mentioning
skills, roles, and responsibilities to reach potential
candidates. Among all these required fields, skills
are crucial parameters to determine whether or not
a candidate is suitable for a job position (Mehta
et al., 2013). Recruiters often miss adding rele-
vant and crucial skills required for the job due to

a communication gap between the domain experts
and recruiters. According to statistics, 65% of the
job descriptions (JDs) do not include relevant and
popular skills, and 40% of JDs miss listing 20% or
more explicitly-stated skills in the prose descrip-
tion (Bhola et al., 2020). It reduces the number of
relevant applications for the job posting and affects
the performance of major recruitment tasks such as
job-to-resume matching. Therefore, it is imperative
to recommend such missing skills to improve the
quality of job postings. Figure 1 shows the sample
(fictitious) job posted over the recruitment platform
where some skills are missing from the textual JD.
Prior works (Bhola et al., 2020; VERMEER et al.,
2020) explored missing skill recommendation
task using large-scale pre-trained language mod-
els. Document embedding and Graph-based sys-
tems (Gugnani and Misra, 2020; Kivimäki et al.,
2013) are used for skill extraction and recommen-
dations. However, these approaches have a few
shortcomings- (a) they do not exploit the structural
relationships between jobs and skills across the
whole dataset. For example, assume jobs j1 and j2
share a common skill s1. If there is another skill s2
relevant to j2 and other similar jobs, we can infer
that s2 might also be relevant to j1. Such transitive
cues can be extremely useful for identifying miss-
ing skills. Current deep extreme classifiers (You
et al., 2019; Prabhu and Varma, 2014) find it hard to
model such implicit relationships unless the train-
ing set explicitly contains a pair (j1, s2), (b) they
give equal importance to every skill corresponding
to the job. However, each skill in the skill label
set has different weights based on the frequency of
their occurrence in job descriptions, (c) language
models bring high computational costs at massive
scales as a task not only involves predicting mul-
tiple missing skills but also requires to precisely
organize the most relevant skills specific to the job
posting. Graphs are naturally suitable to make the
relationships explicit such as job-skill networks.
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Job Title

Job
description

Required
skills

	 	 	 	 	 	 	 	 Market Analyst

Assist the Manager in sourcing the food industry and in conducting product research and analysis.  Facilitate
effective communication between the analytics and user experience teams. Evaluates customers' online
behaviour and provide insights and recommendations for further enhancements to the guest experience. 
Strong research, data analysis and communication skills. 

communication visualizationtableaudata analysis  python

Explicit Skills Implicit Skills

Excel

Figure 1: An example of a fictitious job posted over a recruitment platform. The job description does not include
implicit and job-specific skills such as ‘tableau’, ‘visualization’, ‘python’, and ‘Excel’.

Two nodes (jobs) are likely to have common neigh-
bors (skills) if the jobs have overlapping skills. To
model these structural relationships between nodes
(jobs and skills), a Graph neural network (GNN)
is a well-known architecture for representing the
knowledge and additional information (Wu et al.,
2020). Missing skills applications also face ex-
treme skill label sparsity; using label co-occurrence
alone without graphs yields fractured correlations.
To this end, we propose a framework called
JobXMLC, which uses a GNN with label atten-
tion to jointly model the jobs and skills in the same
space. Through the use of ubiquitous job descrip-
tion data, we aim to predict the missing skills using
collaborative learning of jobs and skills. Therefore,
we model our problem as an Extreme Multi-label
Classification (XMLC) task as there is no existing
dataset with manually-annotated labels from tex-
tual JDs, making it sub-optimal to train a sequence
labeling task. The contributions of this work are
summarized as follows:

• We construct a novel job-skill graph consist-
ing of 22, 844 (jobs and skills) and 650K re-
lationships that allow flexible integration of
textual features and various pre-trained lan-
guage representation models.

• We cast our problem as an XMLC using job-
skill graph and propose JobXMLC compris-
ing of graph neural networks with skill atten-
tion to learn multi-resolution graph neighbor-
hoods with the sampling method.

• We also provide the performance comparison
of JobXMLC, which outperforms by a margin
of 6% from the best baselines.

• JobXMLC is lightweight, up to 18X faster
in training and 634X in predicting than exist-
ing deep learning-based extreme classifiers to

scale up to thousands of labels.

2 Background and Related Work

Recently, several works (Bhola et al., 2020;
Jiechieu and Tsopze, 2021) have been done for
skill prediction using Extreme Multi-label Clas-
sification. XMLC refers to the classification of
text where the number of the set of labels is large,
i.e., thousands or millions. One-vs-All (OVA) is
a well-known method for text classification tasks
with high accuracy (Khandagale et al., 2020). The
OVA approach is computationally efficient for the
XMLC task for modest-sized label sets (up to a few
thousand labels).
These methods are broadly classified as (a) Deep
learning-based models, (b) Graph-based, and (c)
Domain-specific methods.
Deep learning-based methods. Deep learning
models that use powerful text representation ca-
pabilities have also been explored for the XMLC
problems (You et al., 2019; Chang et al., 2019).
XML-CNN (Liu et al., 2017) applies a dynamic
max-pooling scheme and a family of CNN models
to learn text representations. AttentionXML (You
et al., 2019) uses the attentional bidirectional long
short-term memory (BiLSTM) networks to ex-
tract embeddings from raw text inputs. How-
ever, the CNN-based models cannot capture the
most relevant parts of the information on each la-
bel. The RNN-based methods fail to model long-
term dependencies due to vanishing gradients. Re-
search (Bhola et al., 2020) explores the language
models such as ELMo, Transformer and BERT (De-
vlin et al., 2019), and X-BERT (Chang et al., 2019)
for XMLC task. These approaches model input lan-
guage’s syntactic and semantic structure to predict
tokens based on the available contextual informa-
tion. However, such models are computationally
expensive and require a predefined meaning of la-
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bels. In addition, the difficulty of scaling to the ex-
treme label space remains in deep learning methods
as the output layer scales linearly with the product
of label size and feature dimension. The research
gaps with deep-extreme classifiers motivate us to
explore alternative approaches and techniques that
do not require explicit label representation or prede-
fined semantic meaning of labels and are scalable
for extensive datasets.
Graph-based approaches. The recent prolifera-
tion of graph neural networks (Wu et al., 2020)
allows using node neighborhoods to learn more
discriminative features collaboratively. Graph-
SAGE (Hamilton et al., 2017) proposed the com-
putation of node representations inductively by re-
cursively aggregating over fixed-sized neighbor-
hoods. Authors (Xu et al., 2018a) proposed the
Graph Isomorphism Network (GIN) with discrimi-
native power equal to that of the WL test. Graph-
SAINT (Zeng et al., 2020), a graph sampling-based
inductive learning method, compute node represen-
tations based on the local graph structure and node
attributes. However, job-skill graph-based collabo-
rative learning at extreme scales is underexplored
for missing skill prediction task.
Domain-specific methods. Research work identi-
fies the skill bases used for analyzing the job mar-
ket, the type of extracted skills (Khaouja et al.,
2021), the skill identification methods, the studied
sector and their granularity. Literature (Xu et al.,
2018b) build a job-skill network to measure the
popularity of the skills by exploring a large corpus
of job postings. Research (Bhola et al., 2020) em-
ploys an Extreme Multi-label Classification method
that utilizes the Transformer model to predict the
required skills from a textual job descriptions.
However, these approaches are computationally ex-
pensive and either predict frequent skills or miss
rare crucial skills for recruiters. To address all the
existing challenges and limitations, we propose
JobXMLC that uses graph neural networks with
skill attention to learn multi-hop job-skill network.
To the best of our knowledge, this work is the first
to exploit GNNs for the job-skill prediction task.

3 Problem Formulation

Consider the set of jobs J = {j1, j2, · · · · · · , ji}.
A job ji ∈ J corresponds to its textual de-
scription and Si is the set of skill labels for the
ith job. The skill set is represented as, Si =
{s1i , s2i , s3i , · · · · · · , ski } ∀ 1 ≤ k ≤ n, where n

refers to total skills that vary differently for each
dataset. The task of JobXMLC is to learn a function
f : J → 2S that maps a job ji ∈ J to its target
skill set Si ∈ S, where S = {S1∪S2∪ ...∪S|J |}.

4 JobXMLC: EXtreme Multi-label
Classification of Job Skills

In this section, we introduce JobXMLC as shown
in Figure 2. The architecture is inspired by the
models proposed in (Saini et al., 2021).
The architecture comprises of three major compo-
nents: 1) Job-skill graph 2) Graph Neural Network
that learns multi-hop embeddings with neighbour-
hood selection approach on the job-skill graph 3)
a scalable mechanism of extreme classifiers to pre-
dict skill labels in cold and warm-start scenarios.

4.1 Module I: Job-skill graph

We first formally define a job-skill graph, which
is usually represented as a tuple G = (V, E),
where V and E are the set of nodes and edges
respectively. Here V consists of jobs belonging to
J and skill set S (See Section 3). We construct an
edge e ∈ E between ji and ski where E ⊂ J × S
iff ski is relevant to ji i.e., ski is a positive label
for ji. Each node v ∈ V, is initialized as a
d-dimensional vector based on its textual features.
We obtain initial embeddings by fine-tuning the
fastText skip-gram model (Bojanowski et al.,
2017) in an unsupervised manner. fastText is a
lightweight embedding model that is well-suited
when the document misses predicate-argument
structure dependencies (Arora et al., 2020). We
also leverage word-level information, including
POS tagging (Kumawat and Jain, 2015) and word
importance (TF-IDF), to parse the long document
according to relevancy and structure. Since all
the tokens present in job descriptions are not
informative, we apply POS tagging to filter out
verbs, adjectives, and adverbs, which are not
indicators of skills in the job description. The
underlying assumption is that skill labels would
be mostly nouns such as ‘java’, ‘python’, etc. We
found out that there are 60% nouns present in
job descriptions. Further, we use an averaging
technique to get the representation for every job.
For each node v, its initial representation is f̂0v
(with f̂0v ≡ f̂0j if the node v is the job j ∈ J and
f̂0v ≡ f̂0s if node v is the skill label s ∈ S).
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Figure 2: JobXMLC consists of three components: Module I consists of a mechanism to construct a job-skill
graph, and Module II consists of a graph neural network-based architecture that learns embeddings using multi-hop
neighborhoods using a job-skill graph effectively. Module III uses a scalable mechanism of extreme classifiers to
predict missing skills.

4.2 Module II: Multi-hop job-skill graph
neural network

To learn a job-skill graph, the module introduces
the propagation network and neighborhood selec-
tion approach.
Propagation Network. This network captures
higher-order job-skill graph structure using mul-
tiple layers of aggregation, each layer aggregating
information from the previous layer’s node repre-
sentations. Therefore, we utilize Graph Isomor-
phism Network (GIN) (Xu et al., 2018a) encoder
for representations considering its outstanding ex-
pressive capacity and model simplicity. It consists
of a convolution to aggregate information from
a node’s neighbors and a transformation opera-
tion to update the node representation based on
the convolved embeddings (f (k)v ). To avoid over-
smoothing, we utilize the skip connection operation
that gathers information from historical represen-
tations of nodes. We also learn multi-hop repre-
sentations with k-hop (fanouts) neighbors of each
node, where k is a hyperparameter. For instance,
if k=1, the encoder would only consider the im-
mediate neighbors (skills) of each node (job) in
the graph. If k=2, it would consider the neighbors
(jobs) of the neighbors (skills) and so on. Equa-
tion 1 shows the graph neural network layer that
updates the node representation using a weighted
sum of neighboring node features:
f (k)v = (1 + λk)f

(k−1)
v +

∑

j∈Nv ,j ̸=v
f
(k−1)
j (1)

where Nv be the set of neighboring nodes of an ith

node; f (k)v be the representation of the vth node
after layer k, and λ is a fixed scalar for layer k.
Equation 2 shows the final embeddings after
transformation:

h(k)v = f (k)v + g(δ(Rk ∗ g(f (k)v ))) (2)

where g(.) is ReLU activation, δ(.) is batch nor-
malization and Rk is a parameter matrix for the
residual layer.
Neighborhood selection. Instead of considering
all k-hop neighbors of each node, we sampled a
subset of the neighbors at each layer of the network.
The goal of selection is to reduce the computational
cost of the network and ensure that our model is
scalable in dense settings. Therefore, we select the
top l neighbors based on their frequency. Formally,
for every node v ∈ |V|, we accomplish frequency-
based sorting where a set of fanouts [k] neighbors
are sampled for every node to construct V(n).

4.3 Module III: Extreme multi-label
classification

In this module, we discuss skill attention and pre-
diction pipeline for Extreme multi-label classifica-
tion task.
Skill attention. We incorporate label-wise at-
tention for every skill si ∈ [S] and layer k ∈
[K] in the propagation network. We obtain at-
tention weights αk using a softmax operation.
αsk = exp(esk)/

∑
k′∈[K] exp(esk′). Given multi-

resolution embeddings ĥkv , k ∈ [K] for a job de-
scription, when calculating the score for a label
s ∈ [S], first a label-specific embedding is calcu-
lated as given in Equation 3 and then One-vs-all
classifier depicted as C = [c1, c2, ...., cS] ∈ RJ×S
is used to obtain a score for the skill label as
scores =

〈
cs, ĥ

(s)
〉

.

ĥ(s) =
∑

k∈K
αsk.ĥ

(s) (3)
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Element mycareersfuture.sg StackOverflow Jobs
No. of job posts 20, 298 20, 320

# of distinct skills 2, 548 275

# of skills with 20 or more mentions 1, 209 50

Average skill tags per job post 19.98 2.8

Average token count per job post 162.27 200.8

Maximum token count in a job post 1, 127 800

Table 1: Dataset statistics for mycareersfuture.sg and StackOverflow Jobs.

Prediction pipeline. Initial representations are
used to construct an Approximate Nearest Neigh-
bors graph (ANNS). Suppose a test job appears at
runtime, First, the relationships in the graph are
introduced to its prediction-introduce-edges (See
Table 8) nearest neighbors. These neighbors can
be a part of J or S. New job nodes are first in-
troduced into the graph for the standard cold start
setting, where jobs are not part of the job-skill
graph used for training. Relationships are intro-
duced to the partially revealed skill labels in warm
start settings. This setting is possible when the
recruiter enters some skills before writing the job
description. Then, JobXMLC is used to obtain
multi-resolution embeddings ĥk ∈ [K] for the test
job.
Shortlisting. Since evaluating skill scores for all
skill labels would take Ω(JS) time. To predict
in milliseconds, the prediction time complexity
should not be worse than Θ(J log(S)). Therefore,
we utilize a shortlisted where a set ofO(logS) skill
labels are shortlisted that seem most relevant to it.
For a test job description, the label-wise embed-
dings ĥ(s) are created with respect to skill labels
s ∈ S. To create the shortlister, multi-resolution
representations of skill labels are averaged and a
second ANNS graph is created over these averaged
embeddings. We rank the top num_shortlist (See
Table 8) neighbors, based on their cosine similarity,
for shortlisting to form the set S of potential labels
for which label-wise embeddings are calculated.

5 Experimental Setup

5.1 Datasets

We utilize two real-world recruitment datasets,
namely mycareersfuture.sg (Bhola et al., 2020)
and StackOverflow Jobs1 collected from popular
recruitment platforms. These datasets consist of

1https://stackoverflow.com/

over 20, 000 richly-structured job posts with 23
informative fields about the advertisement details
and current status. Table 1 reports the statistics for
recruitment domain datasets. Small-scale datasets
vary from 100 to 300, whereas large-scale ranges
from 300 to millions of labels. Similar scales for
the XMLC task are demonstrated in (Jain et al.,
2019; Liu et al., 2017).
Data Pre-processing. We filtered out job descrip-
tions, job title, required skills corresponding to ev-
ery job posting. From mycareersfuture.sg dataset,
we consider concatenation of ‘roles & responsi-
bilities’ and ‘job requirements’ fields as the ‘job
description’, and ‘required skills’ as the set of tar-
get discrete labels. Similarly, for StackOverflow
Jobs dataset, we consider the ‘job description’ and
‘required skills’ sections. We filtered out the jobs
with either empty or single words in the textual
content. We also perform lower-casing, stopwords
removal, and removal of less important strings such
as ‘available’, ‘requirements’, which are present in
most JDs. StackOverflow Jobs dataset consists of
6M words with 298,729 unique words. We split the
dataset into training, validation and testing datasets
with an 80:10:10 proportion. Similar splits has
been utilized by competitive methods (Bhola et al.,
2020).

5.2 Implementation and Competing Methods

This section will discuss the training details and
baselines.
Training details: We utilize binary cross-entropy
loss and Adam optimizer. We use the drop out layer
after every ReLU layer. We conducted our experi-
ments using the list of hyperparameters reported in
Table 8 and Table 9 (See appendix B) for details.
Baselines: We show the effectiveness of different
aspects of JobXMLC and evaluate our model per-
formance against competitive transformer-based
baselines. These constitute CNN (Kim, 2014),
LSTM (Rocktäschel et al., 2015), BiLSTM (Sun
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Model R@5 R@10 R@30 P@5 P@10 P@30
CNN 14.17 23.58 45.34 56.67 47.17 30.23

LSTM† 11.67 18.44 35.02 46.67 36.89 23.34
Bi-LSTM† 13.02 21.37 41.54 52.07 42.75 27.70
Bi-GRU† 13.98 23.43 44.41 55.94 46.87 29.61

BERT +XMLC 15.27 25.96 51.18 61.06 51.92 39.32
RoBERTa+XMLC 16.15 26.52 51.99 60.08 53.85 39.87

BERT +XMLC+CAB 16.72 29.45 58.98 66.87 58.90 41.21
GalaXC 16.31 28.34 54.16 65.25 56.7 36.11

JobXMLC (GraphSaint) 16.23 27.79 53.32 64.93 55.59 35.55
JobXMLC (GraphSAGE) 16.84 29.18 56.89 67.36 58.36 37.93

JobXMLC 18.29 32.33 63.18 73.20 64.66 42.22

Table 2: Results of JobXMLC along with state-of-the-art approaches on mycareersfuture.sg dataset. For RNN-
based models (†), we have limited all model architectures to two layers.

et al., 2017), BiGRU (Halder et al., 2018),
BERT-XMLC (Bhola et al., 2020), RoBERT-
XMLC (VERMEER et al., 2020), GalaXC (Saini
et al., 2021), JobXMLC (GraphSaint) (Hamilton
et al., 2017), and JobXMLC (GraphSAGE) (Hamil-
ton et al., 2017). We discuss transformer-based
approaches, BERT-XMLC (Bhola et al., 2020) en-
codes the words of the job descriptions using a pre-
trained BERT model. The encoding of the [CLS]
token is then used as representation of the job de-
scription. The job representation is passed to a
bottleneck layer (i.e., an added linear layer before
the output layer). The last layer treats every skill as
a binary classification problem, so for each skill it
calculates the probability that the skill is associated
with JD.
State-of-the-art models such as CNN, LSTM, Bi-
GRU, and Bi-LSTM are self-explanatory. We
utilize two neural network layers for all RNN-
based models. GalaXC (Saini et al., 2021) de-
scribes a novel framework for extreme classi-
fication using graph neural networks (GNNs).
GraphSAGE (Hamilton et al., 2017) and Graph-
Saint (Hamilton et al., 2017) encodes the node
information and useful for graphs that have rich
node attribute information for extreme multi-label
classification.

5.3 Evaluation metrics

We utilize Precision@k (P@k), Recall@k (R@k),
Normalized Discounted NDCG@k (N@k),
Mean Reciprocal Rank (MRR), EIM, REIM,
RIIM (Bhola et al., 2020) as evaluation metrics for
the skill prediction task.
Precision@k: includes the proportion of skills in

the top-k skill prediction list that are relevant.
Recall@k: includes the proportion of relevant
skills found in the top-k skill prediction list.
NDCG@k: discounts the true positives that occur
later in the prediction rankings.
MRR: indicates the position (reciprocal) of the
first true positive in the predicted set of skills.
EIM (Explicit Inference Measure): the micro,
instance-based measure of explicit skills predicted
by the model, compared against gold-standard
explicit skills mentioned, for instance.
RIIM (Relative Implicit Inference Measure):
macro, the recall-based measure of implicit skills
predicted by the model, relative to the entire set of
implicit skills.
REIM (Relative Explicit Inference Measure):
macro, recall-based measure of explicit skills
predicted by the model compared to the entire set
of explicit skills.

6 Results and Analysis

Table 2 and Table 3 reports Recall@k and
Precision@k for all state-of-the-art approaches
and JobXMLC on both datasets. Compared to
leading deep extreme classifiers, BERT-XMLC
and RoBERTa-XMLC, JobXMLC is up to 18X
faster to train on a single GPU. Compared to
other baselines, JobXMLC is at least 3% better
than Bi-LSTM (Sun et al., 2017) in R@5, which
helps demonstrate the efficacy of modelling the
sequence by JobXMLC. Further, fastText initial-
ization in JobXMLC is 7-8% better than BERT-
XMLC+CAB (Bhola et al., 2020) in R@5, indicat-
ing that the global relationships improve the model
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Model R@5 R@10 R@30 P@5 P@10 P@30
CNN 25.16 39.39 64.80 15.24 11.72 6.36

LSTM† 26.63 40.47 67.89 16.07 11.95 6.65
Bi-LSTM† 41.46 55.27 76.38 23.83 16.12 7.56
Bi-GRU† 46.15 59.01 78.61 26.68 17.23 7.79

BERT +XMLC 35.50 50.95 76.06 20.75 14.99 7.58
RoBERTa +XMLC 36.20 52.23 77.05 21.98 15.09 7.88

BERT +XMLC+CAB 37.20 51.24 78.98 22.18 15.02 8.03
GalaXC 43.27 51.47 67.50 24.23 14.53 6.50

JobXMLC (GraphSaint) 39.16 51.73 73.99 22.28 14.88 7.22
JobXMLC (GraphSAGE) 38.76 52.26 74.19 21.98 14.99 7.23

JobXMLC 47.85 59.26 74.53 26.92 16.94 7.23

Table 3: Results of JobXMLC along with state-of-the-art approaches on StackOverflow Jobs dataset. For RNN-
based models (†), we have limited all model architectures to two layers.

better in addition to local connections through
joint learning. Compared to BERT-XMLC (Bhola
et al., 2020) and RoBERTa (VERMEER et al.,
2020), both utilize transformer-based embeddings
and skill correlation-based features for training,
JobXMLC is 4% better in recall and precision met-
rics. JobXMLC outperforms Graph-based meth-
ods such as GalaXC (Saini et al., 2021) across
all metrics. Table 4 reports NDCG and MRR val-

Model N@5 N@10 N@30 N@50 N@100 MRR
CNN 28.21 40.23 60.60 66.37 71.96 0.77
LSTM 29.27 40.66 59.43 69.61 71.53 0.70
Bi-LSTM 30.32 48.07 44.55 50.30 57.04 0.76
Bi-GRU 30.83 50.52 46.45 52.37 59.15 0.76
BERT-
XMLC

28.05 38.81 57.62 64.68 71.28 0.83

BERT-
XMLC+CAB

29.13 40.74 60.60 67.51 73.74 0.85

GalaXC 32.86 44.51 63.73 70.11 74.77 0.82

JobXMLC 37.91 49.63 67.83 73.81 78.94 0.90

Table 4: Normalized Discounted Cumulative Gain
(NDCG) is represented by N and Mean Reciprocal
Rank (MRR) comparison of JobXMLC along with State-
of-the-art approaches on mycareersfuture.sg dataset.

ues for mycareersfuture.sg dataset. We observe
that JobXMLC outperforms all state-of-the-art ap-
proaches by significant margin of 8% from deep
extreme classifiers.
Inference time: Table 5 presents the results of

JobXMLC and leading deep extreme classifiers like
BERT, ROBERTa which shows that JobXMLC is
18X faster than BERT+XMLC+CAB for myca-
reersfuture.sg dataset.
Analysis on Implicit and Explicit skills: Table 6
shows the Explicit and Implicit Metrics for the skill
prediction task. We are interested in the relevance

and implicitness of the retrieved implicit skills and
false positives. We find the explicit and implicit
skills underline the noisy nature of the skill labels.
For example, ‘machine learning’ and ‘python’ are
clear required (explicit) skills and ‘communication’
comes across as a vast skill. In terms of false pos-
itives, we note that the job description explicitly
mentions ‘good knowledge of python’ as a required
skill (for Data Scientist job). Most relevant skills
are not very distinctive to the job role, causing the
model to mispredict the skill.

7 Ablation Study

Initial embeddings: JobXMLC shortlisting
criteria offered much better recall if we use the
initial fastText embeddings to create shortlists.
We observe that fastText worked best for our
recruitment domain dataset in comparison to
other recent pre-trained language representation
models (See Appendix B) including BERT (Devlin
et al., 2019), DistilBERT (Sanh et al., 2019), and
Paraphrase-mini-LM-L6 (Reimers and Gurevych,
2019). For example, on the mycareersfu-
ture.sg dataset, the recall for the top 100 labels
shortlisted using the initial fastText and BERT
embeddings are around 85.20% and 56.90%,
respectively. Based on an average of 20.61 skills
per job, about 4 skills were derived within the
top 5 and 19 within the top 100 of derived skills.
Warm and Cold Start Scenarios: Table 7 reports
the results in warm-start and cold-start settings
separately. JobXMLC is initialized with fine-tuned
fastText embeddings which achieve P@k, R@k,
and MRR of 72.86, 18.26, and 0.89 respectively in
cold-start scenario. JobXMLC is initialized with
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Datasets→ mycareersfuture.sg StackOverflow Jobs
Models ↓ TT PT TT PT

BERT+XMLC 5.50 1200 1.63 350
RoBERTa+ XMLC 4.72 1200 1.24 350

BERT+XMLC+CAB 9.20 1200 4.86 350
JobXMLC 0.51 1.89 0.31 1.71

Table 5: Comparison of JobXMLC with stronger baselines. JobXMLC is faster to train than leading Deep Extreme
Classifiers like BERT at training and prediction time. Here TT= Train Time (in hours), PT= Prediction Time (in ms).

Metrics EIM RIIM REIM
BERT+XMLC
+CAB

115.89 64.60 25.73

JobXMLC 121.09 66.36 33.04

Table 6: Comparison of EIM, RIIM, and REIM metrics
on JobXMLC on mycareersfuture.sg dataset.

fine-tuned fastText embeddings which achieve
P@k, R@k, and MRR of 75.76, 22.09, and
0.91 respectively in warm-start scenario. In both
scenarios, the value of k=5. These results show
that partially reveal achieved comparable precision
and relatively higher recall than cold-start settings.

Model P@5 R@5 MRR
JobXMLC
(cold-start)

72.86 18.26 0.89

JobXMLC
(warm-start)

75.76 22.09 0.91

Table 7: Effectiveness of JobXMLC in warm-start and
cold-start scenarios on mycareersfuture.sg dataset.

Qualitative Analysis: We compared the
JobXMLC and analyzed the skills predicted
correctly and incorrectly as shown in Figure 3.
JobXMLC captures the structural relationships
between jobs and skills effectively. JobXMLC pre-
dicts ‘Java’, ‘Software Development’, ‘XML’,

‘JavaScript’, ‘jQuery’, etc. as required skills
whereas BERT-XMLC with CAB predicts ‘Java’,
‘C++’, ‘Linux’, ‘Python’ as skills where more
relevant skills such as ‘JavaScript’ and ‘Web
Applications’ are missed.

8 Discussion

We compare with existing graph-based methods
such as GalaXC (Saini et al., 2021), which are
more well-suited to handle short text inputs for
product queries. JobXMLC leverages word-level

components, including syntactic roles (POS tags)
such as nouns and verbs present in each job and
word importance (TF-IDF), which explains the
long document from the perspective of text rele-
vancy and structure. We believe that JobXMLC is
generalizable across many other applications. Our
raw dataset is relatively preprocessed, simple and
misses predicate-argument structure dependencies.
Therefore, we hypothesize that non-contextual
embeddings such as fastText (having 98.69% of
words from our dataset present in vocabulary)
outperformed BERT as it understands word-level
information. Similar observations are made
by (Arora et al., 2020) for classic embeddings with
competitive (or even slightly better) performance
than contextual embeddings.

9 Conclusion

In this work, we propose a JobXMLC frame-
work, which uses a graph neural network to in-
corporate neighborhood information with the help
of a collaborative graph over jobs and skills.
JobXMLC leverages skill attention mechanism for
more effective extreme classifiers and attends to
multi-resolution representations of jobs and skills.
JobXMLC outperforms leading deep extreme clas-
sifiers on precision and recall metrics by 6% and
3%. JobXMLC also operate in warm and cold-start
scenarios effectively. JobXMLC is 18X faster on
training and 634X faster on predicting than deep
extreme classifiers and can be scaled efficiently to
real-world datasets with thousands of labels. We
believe that JobXMLC can be deployed on large-
scale recruitment platforms for predicting missing
skills using job descriptions.

10 Limitations

We perform experiments on jobs sampled from a
popular Singaporean government job portal and
StackOverflow, which is limited to the English lan-

2188



Job description

Required skills

(Ground truth) 

minimum 5 7 years experience information technology software development must 3 4 yeras experience dot
net development experience asp.net c, .net xml experience, language query update etc knowledge pc
networking require dot net developer mnc client singapore typre position long term contract initial degree
information technology require minimum 5 7 years experience information technology software development
must 3 4 years experience dot net development experience asp.net c net xml etcknowledge pc networking
good communication skills

Software
development Javascript.NETjava jQuery XML

BERT-XMLC+CAB

JOBXMLC

Web applications

Software
development

Software
development

java

java .NET Javascript

.NET jQuery

jQuery

XML

XML Web applications

PHP Python C Linux Software engineering

ASP.NET SDLC

ASP.NET SDLC integration

Figure 3: Shows the skills predicted by BERT–XMLC+CAB and JobXMLC where input is job description. Purple
shows correct skill predictions by JobXMLC as compared with required skills (ground truth). Green shows the extra
skills predicted by JobXMLC. Red skills are missed by BERT+XMLC+CAB model as compared with ground truth.

guage. Our approach can handle missing skills
which are part of our skill vocabulary, but it cannot
infer new emerging skills from job descriptions,
i.e., out-of-vocabulary. We will consider domain
knowledge and the popularity of job skills to gen-
eralize our approach for job-candidate mapping
applications for future work. We wish to expand
our work to other recruitment domain applications
with resumes and candidate profiles.

11 Ethical Considerations

The paper investigates the missing skills problem
with the help of a graph-based framework by in-
corporating word-based embeddings that can be
insightful for other researchers in academia and in-
dustry. Any biases present in the dataset or embed-
ding model can creep into the proposed approach.
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Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

Deepak Saini, Arnav Kumar Jain, Kushal Dave, Jian
Jiao, Amit Singh, Ruofei Zhang, and Manik Varma.
2021. Galaxc: Graph neural networks with labelwise
attention for extreme classification. In Proceedings
of the Web Conference 2021, pages 3733–3744.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Chengjie Sun, Yang Liu, Chang’e Jia, Bingquan Liu,
and Lei Lin. 2017. Recognizing text entailment via
bidirectional lstm model with inner-attention. In
International Conference on Intelligent Computing,
pages 448–457. Springer.

NINANDE VERMEER, VERA PROVATOROVA,
DAVID GRAUS, THILINA RAJAPAKSE, and SEPI-
DEH MESBAH. 2020. Using robbert and extreme
multi-label classification to extract implicit and ex-
plicit skills from dutch job descriptions. acm.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. 2020. A com-
prehensive survey on graph neural networks. IEEE
transactions on neural networks and learning sys-
tems, 32(1):4–24.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2018a. How powerful are graph neural net-
works? arXiv preprint arXiv:1810.00826.

Tong Xu, Hengshu Zhu, Chen Zhu, Pan Li, and Hui
Xiong. 2018b. Measuring the popularity of job skills
in recruitment market: A multi-criteria approach. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 32.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2019. At-
tentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label text
classification. Advances in Neural Information Pro-
cessing Systems, 32.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Ra-
jgopal Kannan, and Viktor Prasanna. 2020. Graph-
SAINT: Graph sampling based inductive learning
method. In International Conference on Learning
Representations.

2190

https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS


A Hyper-parameter Details

This section reports the set of hyperparameters used
for experiments conducted in the paper.
1. No. of Epochs: refers to number of epochs for
JobXMLC.
2. num_HN_epochs: number of hard negative
epochs for JobXMLC.
3. learning rate (lr): is the learning rate for
JobXMLC.
4. attention_lr: is the learning rate used by skill
attention.
5. dlr_factor: defines factor by which learning
rate is decayed.
6. batch_size: refers to batch size used during
training of JobXMLC.
7. num_HN_shortlist: refers to number of hard
negative labels to be selected by sampling from
other data points from the same batch.
8. num_shortlist: refers to number of skills sam-
pled by shortlister.
9. prediction_introduce_edges: refers to total
edges that should be introduced to graph at predic-
tion time.
10. fanouts: refers to number of neighbors to sam-
ple for layer k.

Hyperparameter Value
No. of epochs 20

num_HN_epochs 20

learning rate (lr) 0.0003

attention_lr 0.0003

dlr_factor 0.5

batch_size 256

fanouts 5, 5, 5

num_HN_shortlist 500

embedding_type fastText
num_shortlist 1500

prediction_introduce_edges 3

Table 8: Hyper-parameters for mycareersfu-
ture.sg dataset for JobXMLC. fastText refers to
300-dimensional embeddings obtained by fine-tuning
fastText model on job descriptions.

B Evaluation Metrics for different
initializations

This section reports the EIM, RIIM, REIM mea-
sures for Mini-LM (Reimers and Gurevych, 2019)
model initialization. We observe that Mini-LM is

Hyper-parameter Value
No. of epochs 30

num_HN_epochs 20

learning rate (lr) 0.0003

attention_lr 0.0003

dlr_factor 0.5

batch_size 256

fanouts 5, 5, 5

num_HN_shortlist 3

embedding_type fastText
num_shortlist 275

prediction_introduce_edges 3

Table 9: Hyper-parameters for StackOverflow
Jobs dataset for JobXMLC. As number of skill
labels corresponding to job description are less in
StackOverflow Jobs dataset, a lower fanout value gives
better results.

Table 10: EIM, RIIM, REIM measures for
JobXMLC and state-of-the-art approaches using
Mini-LM, BERT and RoBERTa embedding initializa-
tions.

Metrics EIM
(Explicit in-
ference mea-
sure)

RIIM (Relative
implicit infer-
ence measure)

REIM
(Relative ex-
plicit inference
measure)

BERT+XMLC+CAB 115.89 64.60 25.73
JobXMLC(with Mini-LM) 86.45 27.28 17.76
JobXMLC(with BERT) 84.07 25.77 15.59
JobXMLC(with RoBERTa) 86.45 24.12 15.02

a transformer-based model which captures context
well. However, JobXMLC is more benefitted with
global view rather than just local job description
text (context-based) embeddings.
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Abstract

We introduce ViLPAct, a novel vision-
language benchmark for human activity plan-
ning. It is designed for a task where embodied
AI agents can reason and forecast future actions
of humans based on video clips about their ini-
tial activities and intents in text. The dataset
consists of 2.9k videos from Charades ex-
tended with intents via crowdsourcing, a multi-
choice question test set, and four strong base-
lines. One of the baselines implements a neu-
rosymbolic approach based on a multi-modal
knowledge base (MKB), while the other ones
are deep generative models adapted from recent
state-of-the-art (SOTA) methods. According to
our extensive experiments, the key challenges
are compositional generalization and effective
use of information from both modalities1.

1 Introduction

"He wants to keep his food fresh." Intent The old man is 
now standing 
in the kitchen.

Holding 
some 
food

Putting 
some food 
somewhere

Holding 
some 

clothes

Opening 
a 

refrigerator

Holding a 
knife

Cook 
some 
food

Opening 
a 

refrigerator

Putting 
some food 
somewhere

Holding 
some 
food

What 
should 
come 
next?

Observation

Figure 1: In daily life scenarios, an agent should be
aware of future actions that will likely be taken by the
user based on what it has observed. In this example,
inputs of intent and observation are colored in green,
while potential future action sequences are highlighted
in orange. The first two sequences contain actions which
do not align with the human intent. Thus, the agent
needs to automatically detect which future actions are
plausible by understanding the user’s intent.

One of the ultimate goals of Artificial Intelli-
gence is to build intelligent agents capable of accu-
rately understanding humans’ actions and intents,

*Corresponding authors: lizhen.qu@monash.edu,
xuzenglin@hit.edu.cn

1Our benchmark is available at https://github.
com/terryyz/ViLPAct

so that they can better serve us (Kong and Fu,
2018). Newly emerging applications in robotics
and multi-modal planning, such as Amazon Astro,
have demonstrated a strong need to understand hu-
man behavior in multimodal environments. On the
one hand, such an agent, e.g. an elderly care ser-
vice bot, needs to understand human activities and
anticipate human behaviors based on users’ intents.
Here the intents may be estimated based on previ-
ous activities or articulated verbally by users. The
anticipated behaviors may be used for risk assess-
ment (e.g. falling of elderly people) and to facilitate
collaboration with humans. On the other hand, re-
cent advances in robotics show that it is possible to
let robots learn new tasks directly from observed
human behavior without robot demonstrations (Yu
et al., 2018; Sharma et al., 2019). However, that
line of work focuses on imitating observed human
actions without anticipating future activities.

To promote research on action forecasting based
on intents, we propose the vision-language plan-
ning task for human behaviors. As shown in Fig. 1,
given an intent in textual form and a short video
clip, an agent anticipates which actions a human is
likely to take. We consider intents as given because
there is already ample research on intent identifi-
cation (Pandey and Aghav, 2020) and automatic
speech recognition (Malik et al., 2021). To the best
of our knowledge, there is no dataset to evaluate
models for this task.

The task poses two major challenges. First, there
are often multiple plausible action sequences satis-
fying an intent. Second, it is highly unlikely that a
training dataset can cover all possible combinations
of actions for a given intent. Hence, models need
to acquire compositional generalization (Fodor and
Pylyshyn, 1988), the capability to generalize to un-
seen action sequences composed of known actions.

In this work, we construct a dataset called
ViLPAct for Vision-Language Planning of hu-
man Activities, which to the best of our knowl-
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edge is the first dataset studying the above chal-
lenges. Specifically, we extend the Charades
dataset (Sigurdsson et al., 2016) with intents via
crowd-sourcing. As it is practically infeasible to
find all possible future action sequences given an
intent and a video clip of initial activities, we pro-
pose to evaluate all systems by letting each of
them answer multi-choice comprehension ques-
tions (MQA) without training them on those ques-
tions. Given an intent and a video clip showing
initial activities, each multi-choice question pro-
vides a fixed number of future action sequences
as possible answers. A system is then asked to
select the most plausible action sequence among
them. We show that the rankings of all models
using the MQAs correlate strongly with those ob-
tained by asking human assessors to directly ob-
serve estimated action sequences. For training, we
provide both a dataset for end-to-end training of
sequence forecasting and a multimodal knowledge
base (MKB) built from that dataset, which is also
the first video-based multimodal knowledge base
for human activities to the best of our knowledge.

We conduct the first empirical study to inves-
tigate compositional generalization for the target
task. As baselines, we adapt three strong end-to-
end deep generative models for this task and pro-
pose a neurosymbolic planning baseline using the
MKB. The model is neurosymbolic because it com-
bines both deep neural networks and symbolic rea-
soning (Garcez and Lamb, 2020). Given a video
of initial activities and an intent, the deep models
generate the top-k relevant action sequences, while
the neurosymbolic planning model sends the intent
and the action sequence recognized from the video
as the query to the MKB, followed by retrieving
the top-k relevant action sequences. Each model
selects the most plausible answers by performing
probabilistic reasoning over the relevant action se-
quences. We conduct extensive experiments and
obtain the following key experimental results:

• We compare the evaluation results using MQA
with the ones of human evaluation. The results
of both methods are well aligned. Thus, MQA
is reliable without requiring human effort.

• The likelihood functions of the deep genera-
tive models are not able to reliably infer which
answers are plausible. In contrast, probabilis-
tic reasoning is an effective method to improve
compositional generalization.

• Despite information from both modalities be-

ing useful and complementary, all baselines
heavily rely on intents in textual form but fail
to effectively exploit visual information from
video clips.

2 Related Work

Vision-Language Planning Task Vision Lan-
guage Navigation (VLN) was among the first
widely used goal-oriented vision-language tasks,
requiring AI agents to navigate in an environment
without interaction by reasoning on the given in-
struction (Anderson et al., 2018; Hermann et al.,
2020; Misra et al., 2018; Jain et al., 2019). Re-
cently, further goal-oriented vision-language tasks
have been proposed. The Vision and Dialogue
History Navigation (VDHN) task (De Vries et al.,
2018; Nguyen and Daumé III, 2019; Thomason
et al., 2020), which is similar to VLN, requires
agents to reason on the instructions over multiple
time steps. Other tasks such as Embodied Ques-
tion Answering (EQA; Das et al. 2018; Wijmans
et al. 2019), Embodied Object Referral (EOR; Qi
et al. 2020b; Chen et al. 2019) and Embodied Goal-
directed Manipulation (EGM; Shridhar et al. 2020;
Kim et al. 2020; Suhr et al. 2019) rely on reasoning
and interpreting the instruction with observation
or object interaction in the environment. However,
we argue that there are other ways to learn to plan
without practising. Our task is one example of
this, requiring agents to reason over the observa-
tion without performing actions.

Vision-Language Planning Datasets As exist-
ing vision-language planning datasets emphasize
teaching embodied AI to perform the task like hu-
mans, they are constructed with interactive AI in
mind. VLN (Anderson et al., 2018) datasets ini-
tially started exploring planning tasks with the tex-
tual instruction as a step-by-step abstract guide and
minimal interaction with the environment. Extend-
ing the VLN task, VDHN (De Vries et al., 2018)
datasets provide an interactive textual dialogue be-
tween the speaker and the receiver in multiple steps.
The EQA (Das et al., 2018) task takes this a step
further by providing data in an object-centric QA
manner, advancing systems to understand the given
environment through object retrieval. The EOR (Qi
et al., 2020b) task designs object-centric datasets
with detailed instructions, aiming at localizing the
relevant objects accurately. The closest benchmark
to ours is ALFRED (Shridhar et al., 2021) from
the EGM task, which lets embodied agents decide
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on actions and objects to be manipulated based
on detailed instructions. However, in our setting,
we ask intelligent systems to predict the most rea-
sonable future action sequence based on human
intents and answers in a Multiple Choice Question
Answering (MQA) format. During prediction, we
still give systems the flexibility to consider various
combinations of actions and objects.

Vision-Language Planning Modeling Accord-
ing to Francis et al. (2021), several approaches have
been used for planning. Greedy search in end-to-
end models has been reported in several studies to
work well in goal-oriented tasks (Fried et al., 2018;
Das et al., 2018; Shridhar et al., 2020; Anderson
et al., 2018). Task progress monitoring (Ma et al.,
2019) is another method to tackle the planning. It
allows models to backtrack on actions if the cur-
rent action is found to be suboptimal. Mapping
(Anderson et al., 2019) has as well been proposed
for efficient planning via sensors. Topological and
Exploration planning (Deng et al., 2020; Ke et al.,
2019) enables modeling the planning in a sym-
bolic manner. When goals are provided as several
sub-goals, a divide and conquer strategy (Misra
et al., 2018; Shridhar et al., 2020; Suhr et al., 2019)
may be invoked to perform sub-task planning. In
our work, we highlight another potential approach,
knowledge base retrieval. As we construct an MKB
containing various action sequences with detailed
features, intelligent agents can retrieve the most
suitable sequence from the MKB source in order to
perform the planning.

3 Dataset Construction

We adopt videos from Charades (Sigurdsson
et al., 2016) and solicit intents for videos via crowd-
sourcing. We consider videos that have action
sequences of sufficient length appearing in both
initial video clips and answers, which result in a
dataset comprising 2,912 videos. The dataset is
split into training/validation/test sets with a ratio of
70%, 10%, 20%. On the training dataset, we build
an MKB by incorporating structural and concep-
tual information. On the test dataset, we collect a
set of MQAs for model evaluation. The evaluation
with MQAs is in fact an adversarial testing method,
widely used for quality estimation in machine trans-
lation (Kanojia et al., 2021). Herein, the ability of
a model to discriminate between correct outputs
and meaning-changing perturbations is predictive
of its overall performance, not just its robustness.

Thus MQAs are applied only for testing.

3.1 Data Normalization and Filtering

Charades is a large-scale video dataset of daily
indoors activities collected via Amazon Mechanic
Turk2 (AMT). The average length of videos is ap-
proximately 30 seconds. It involves interactions
with 46 object classes and contains 157 action
classes, which are also referred to as actions for
short. Each action is represented as a verb phrase,
such as “pouring into a cup". This dataset is chosen
because i) it contains a sufficient number of long
action sequences of human daily activities; ii) the
intents are easily identifiable, as the activities in the
videos are based on scripts; iii) there are rich anno-
tations of videos that can be leveraged for dataset
construction. The details of action sequence selec-
tion in videos are presented in Appendix 7.1, with
the goal of choosing core action sequences having
clear human goals.

In order to assess the quality of extracted action
sequences, we randomly sample 100 videos from
the test set for manual inspection. The primary
action sequence of each video is evaluated in terms
of three criteria: i) if all actions of a sequence occur
in the video; ii) if the actions of a sequence appear
in the same order as in the video; iii) if a sequence
has any actions missing between the first and the
last action. In total, we determined that 94 videos
have all actions of their action sequences covered
in the video. The actions of 92 videos appear in
the same order as in the videos. Furthermore, 85
videos have no actions missing between the first
and the last action of their sequences. Thus, the
quality of such action sequences is adequate for VL
planning evaluation.

Following prior work (Ng and Fernando, 2020),
we consider the first 20% of a video as its initial
visual state and aim to forecast future actions ap-
pearing in the remaining part of the video for a
given intent. To have at least one future action
per video, we retain only videos that contain at
least one action sequence comprising more than
three actions. As a result, we obtain 2,912 such
videos, each of which is associated with one action
sequence of length longer than three.

2https://www.mturk.com
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3.2 Intent Annotation

An intent may be defined as “something that you
want and plan to do”.3 Philosophers distinguish be-
tween future-directed intents and present-directed
ones (Cohen and Levesque, 1990). The former
guide the planning of actions, while the latter
causally produce behavior. As the focus of this
work is anticipating and planning actions, we
encourage crowd-workers to also provide future-
directed intents.

We recruit crowd-workers to annotate videos
with future-directed and present-directed intents.
Each annotator is provided with a full video clip
and the associated action sequence. They are in-
structed to answer the question what the person
wants to do by taking the actions in the video. Ev-
ery annotator is asked to submit two intents. One
of them should describe which activity the person
intends to take, such as “drink a glass of water”.
The other one needs to be at a high-level, such as
“quench the thirst” or “be thirsty”. The permitted
formats are either “S/He wants to + do_something”
or “S/He is + feeling". Thus, the annotators are
encouraged to provide future-directed intents by
differentiating them from ones causally leading to
behaviours. To ensure the quality of intent annota-
tions, we randomly assign three crowd-workers to
write intents per video. The process of constructing
the dataset for intent annotation involved a rigor-
ous validation and selection process. One of the
authors acted as an expert annotator, and conducted
a thorough review of all crowd-sourced intents to
identify and select the most reasonable annotations
as the final results. The validation process was com-
pleted in three rounds, yielding increasingly higher
percentages of reasonable annotations, with 82%,
94% and 100% respectively for each round. The
annotations that did not meet the required criteria
were discarded and not included in the final dataset.
This rigorous validation process ensured that the
final dataset is comprised of high-quality and rele-
vant annotations, providing a robust foundation for
subsequent modeling and analysis.

3.3 Multimodal Knowledge Base

We construct the MKB of human activities based
on the training set and validation set by taking
a neurosymbolic approach. The main challenges
herein are twofold: i) how to represent multimodal

3Cambridge Dictionary, https://dictionary.
cambridge.org/

information from videos, action names, and intents
adequately to facilitate information retrieval; ii)
how to model shared knowledge of multimodal in-
formation. For the former, we allow both string and
embedding based retrieval methods by attaching
neural representations of video clips and texts to
symbols of actions and action sequences. For the
latter, we employ the classical planning language
STRIPS (Bylander, 1994) and neural prototypes to
encode abstract properties of actions.

At the core of the MKB is a knowledge graph
G = (V, E), where the node set V comprises
four types of nodes: action classes, action video
clips, action sequences, and action sequence videos,
while the edge set E contains edges reflecting rela-
tionships between nodes.

An action class ac is the abstraction of an
action described in the language of STRIPS. The
attributes of an action class include its ID, its
name τ , its precondition set PRE, its add effect
set ADD, and its delete effect set DEL. An
action is executed only if its preconditions are
satisfied. The effect sets ADD and DEL of an
action class describe the add and delete operations
applied to the current state after executing the
action. For example, the precondition of Clos-
ing a refrigerator is isOpen(refrigerator),
ADD = isClosed(refrigerator) and
DEL=isOpen(refrigerator). In this way, the
properties described in STRIPS present the shared
knowledge of each action class.

MKB

Z6LYG

c119

c142

c143

c156

Action Sequence Video

Video ID：Z6LYG
Start：1.9    End：42

Action Video Clip

Video ID：24XHS
Action ID:  c142
Start: 36.30
End: 42.00

c063
Action ID: c142
Name: Closing a refrigerator
pre:   IsOpen(Refrigerator)
add:  IsClosed(Refrigerator)
del:  IsOpen(Refrigerator)

Action Class

Action Sequence

future-directed Intent: S/He is hungry
present-directed Intent: Eat food
c143:Opening a refrigerator-> c156:Someone is eating 
something->c063: Taking food from somewhere
->c119:Putting a dish/es somewhere
->c142:Closing a refrigerator

Figure 2: An example action sequence in the MKB.

An action sequence comprises a future-directed
intent, a present-directed intent, and a sequence of
action IDs. An intent is represented by both a word
sequence and the distributed representation of the
word sequence. We obtain the distributed repre-
sentation of an intent by applying BERT (Devlin
et al., 2018) and utilizing the representation of the
CLS token. The collection of action sequences can
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be easily turned into a training set for end-to-end
models by associating them with the corresponding
video files.

The MKB includes two types of visual nodes: ac-
tion sequence videos and action video clips. Each
action sequence video is linked to the correspond-
ing action sequence. For each action in an action
sequence, we associate it with the corresponding
video clip, as illustrated in Fig. 2. For each ac-
tion video clip, we apply I3D to encode it into
a sequence of frame-level visual feature vectors
{fs1 , fs2 , . . . , fst}, where each vector fsi ∈ R1024

corresponds to the features of an 8-frames snippet.
To represent an action sequence video, we apply
average pooling to the distributed representations
of all involved video clips.

Relations. We consider two types of relations in
the MKB. The first type of relation links an action
sequence to the corresponding visual representa-
tion. The other type of relation associates an action
in an action sequence with the corresponding ac-
tion class. Therefore, it is easy to perform symbolic
reasoning by using the STRIPS properties of each
action class involved in an action sequence.

Statistics of MKB Table 1 provides statistics of
the MKB. As we can observe, the MKB contains
2,402 action sequence videos and 12,118 action
video clips. Each action sequence video is as-
sociated with one corresponding action sequence.
There are 157 action classes in total and 1,969
unique action sequences. The average length of
action sequences is 5.04.

Item Statistics

# of action classes 157
# of action sequence videos 2,402
# of action video clips 12,118
# of action sequences (distinct seq) 2,402 (1,969)
# of action state templates 32
# avg. # of action sequence length 5.04

Table 1: Statistics of the MKB / training + validation set

3.4 Multi-Choice Comprehension Questions
for Evaluation

Given the first 20% of a video as the initial state s
and a future-directed intent g in text, the planning
evaluation task involves choosing the most plausi-
ble future action sequence af among six available
choices. We determine the initial action sequence
ai by checking if an action of a sequence starts be-
fore the end time of the initial state. To build such a
dataset, we extended the test set with adversarially

generated incorrect answers. As the automatic ap-
proach may generate reasonable action sequences,
we recruit another group of students to manually
check all answers and determine the most plausi-
ble ones as the correct answers on AMT. Figure 3
shows an example of our planning task.

 




 

 












E
xam

ple
E

xam
ple

Questions:  Future action planning with intention: Find something

Choices:

A. Throwing a book somewhere

B. Someone is awakening somewhere

C. Taking something from a box

D. Putting some food somewhere

E.  Holding a shoe/shoes

F.  Closing a book

Questions:  Future action planning with intention: Make face clean

Choices:

A. Washing something with a towel

B. Fixing their hair

C. Closing a door

D. Putting a broom somewhere

E.  Tidying a shelf or something on a shelf

F.   Holding some medicine

Figure 3: Two examples of ViLPAct MQA task

Generation of Incorrect Answers. We adapt
the Adversarial Matching (AM) algorithm (Zellers
et al., 2019) to turn the action sequence generation
task into a multi-choice test. The key idea here
is to substitute an action of an observed action se-
quence for an alternative action that is relevant to
the preceding actions and is not overly similar to
the action to be replaced. As many videos in the
test set have only a single future action, the AM
algorithm is extended to optionally insert a future
action to generate an answer candidate.

More specifically, given the initial state, the ac-
tion sequence, and the intent (s,a, g) of a video,
where a = (ai,af ), the algorithm starts by ran-
domly deciding if it applies substitution or insertion
to generate an answer candidate. If insertion is cho-
sen, it inserts an action randomly selected among
the 157 candidate actions, at a position that is ran-
domly picked after the last action in ai. If instead
substitution is chosen, we feed the initial action
sequence ai to BERT and use the representation
of the CLS token as the representation of ai. Then
we apply BERT to turn each action into a vector by
using the corresponding CLS representation. We
randomly pick a future action ai in af and compute
the score of a candidate action aj as

s(aj) = log(Psim(a
i, aj))

+ λ log(1− Psim(ai, aj)),
(1)

where Psim() is defined as cosine similarity. We
set λ = 0.7 to find an optimal tradeoff between
the obfuscation level of an incorrect answer and
the probability of being a reasonable answer. We
repeat this process until we have generated five an-
swer candidates. For each set of generated answer
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Statistics Value

# of videos 510
avg. # of observed actions 2.79
avg. # of future actions 2.40
avg. # of actions 5.19
# of full action seq occurring in the training set 121
avg. # of distinct future action sequences for an intent 2.16
std. dev. of # of distinct future action sequences for all intents 3.69

Table 2: Basic statistics of MQA task / test set

candidates, we manually checked the grammatical-
ity and fixed all the errors.

Quality Check via Crowd-Sourcing. We hired
three crowd-workers per video on AMT to ascer-
tain the quality of all auto-generated answers. For
each video, a worker is presented with the first 20%
of the video and the future-directed intents, which
are paired with six answer candidates each (an orig-
inal action sequence and five generated ones), be-
cause there were two annotators working on each
video. They were instructed to choose the most rea-
sonable pair of intent and action sequence among
all possible combinations.

After checking the answers of all questions in the
test set, we apply a set of heuristic rules to deter-
mine the final answer to each question. We calcu-
late inter-annotator agreement by asking the group
of workers that did the annotation to work on a
sample of multi-choice questions of the MQA task.
To evaluate the quality of the MQA choices, we
determined the number of agreements between the
ground truth (the correct answers) and the predicted
answers. Then, we computed the number of agree-
ments that would be expected by chance based on
the distribution of answers. The corresponding Co-
hen’s kappa coefficient (Kraemer, 2014) is 0.91,
which demonstrates the high quality.

Table 2 shows the basic statistics of the test set.
The average number of observed actions in s is
similar to the average number of future actions. Al-
though all actions in the test appear in the training
set, the most plausible action sequences of almost
400 videos are unseen in the training set. For in-
tents in MQA, we also calculate the number of
distinct future action sequences for each of them,
and the standard deviation across all of them. The
results indicate how diverse potential future action
sequences can be for a single intent. Other details
of MQA can be found in Appendix 7.2.

4 Baselines

VL plannning of human activities requires predict-
ing future action sequences given an initial visual

state video and an intent provided in textual form.
The task poses two major challenges. First, infor-
mation provided in two modalities are complemen-
tary to each other, while the majority of multimodal
research focuses on the shared information by ex-
ploring fusion techniques (Guo et al., 2019). Sec-
ond, the output space is exponentially large with
respect to the action space. It is not realistic to
assume that all action sequences are already ob-
served in the training data. Hence, any models to
tackle this task are expected to address systematic
composition (Fodor and Pylyshyn, 1988) of human
activities, the capacity to understand and produce
a huge number of novel combinations of known
actions. In contrast, state-of-the-art deep learning
methods often perform poorly on compositional
generalization (Lake, 2019; Keysers et al., 2019).

We compare deep generative models and a neu-
rosymbolic planning model in the framework of
retrieval and reasoning. Given the first 20% of
a video and a future-directed intent, the first step
is to obtain top-k relevant action sequences, fol-
lowed by performing reasoning over the top-k ac-
tion sequences to find the most plausible answers.
Both types of models share the same reasoning
module but differ in how they obtain top-k action
sequences. For reproducibility, the details of all
models are provided in Appendix 7.3 and 7.4.

4.1 Deep Generative Models

The deep generative models apply beam search
to produce the top-k most likely future action se-
quences, followed by performing reasoning.

ACT-UNIVL We adapt UNIVL (Luo et al., 2020)
for the target task (denoted as ACT-UNIVL),
which is a SOTA unified pretrained vision-language
model for multimodal understanding and genera-
tion. We consider ACT-UNIVL because it performs
the best on the tasks that are closest to our target
task, such as YouCook2 (Zhou et al., 2017). The
pre-trained ACT-UNIVL takes as input an intent
and an initial video clip, and is fine-tuned to fore-
cast future action sequences.

Two Stage Planning Model. The two stage plan-
ning baseline, TwoStagePlan for short, starts by
converting an initial video clip into an action se-
quence in text by using ACT-UNIVL, followed by
applying a pre-trained language model, ProphetNet
(Qi et al., 2020a) (denoted as ACT-PROPHETNET

for ViLPAct), to predict future actions.
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ACT-PROPHETNET To study the impact of vi-
sual information, we consider a text-only baseline
by employing ACT-PROPHETNET to predict future
action sequences only based on intents.

4.2 Neurosymbolic Planning Model

Given an intent and an initial visual state, the neu-
rosymbolic planning model (NSPlan) retrieves top-
k relevant action sequences from the MKB in two
stages, and then utilizes the retrieved results to infer
the most plausible answers.

In the first stage, we apply the pretrained ACT-
UNIVL to convert a video clip into an action
sequence and send it as a query to the MKB
to retrieve top-50 results. For each retrieved re-
sult, the ranking score is the weighted sum of the
BM25 (Robertson and Walker, 1994) score be-
tween two action sequences and the cosine similar-
ity between the intents.

In the second stage, it re-ranks the initial retrieval
results by using both visual and symbolic knowl-
edge. Each retrieved action sequence is represented
as a sequence of frame-level visual feature vectors,
extracted by the visual encoder I3D. An Ordered
Temporal Alignment Module (OTAM; Cao et al.
2020) is applied to compare two visual feature se-
quences. In order to rank the sequences with poten-
tial future actions higher, we use a rule-based score
function to prefer longer sequences containing un-
seen actions. In the end, we keep only the top-k
results for probabilistic reasoning.

4.2.1 Probabilistic Reasoning for MQA
We propose a novel approach for MQA called
ProbInf , which, based on the top-K action se-
quences, performs probabilistic inference over the
retrieved action sequences to identify the most
likely answer for a question. From each retrieved
result after re-ranking, obtained from NSPlan, we
remove the predicted observed action sequence saq
to obtain potential future action sequences. For
generative models, we directly use the generated
outcomes. For each answer candidate ci of a ques-
tion, we compute p(ci | s, g) by integrating over all
retrieved results {r1, r2, ..., rK}, given the initial
visual state s and intent g:

p(ci | s, g) =
K∑

k=1

p(cj | rk) p(rk | s, g), (2)

where p(rj | s, g) =
exp(sf (rj))∑K
k=1 exp(sf (rk))

is the nor-

malized ranking score for a result rj and p(cj | rk)

is the normalized similarity between an answer can-
didate and each retrieved result. As both answers
and retrieved results are action sequences repre-
sented in text, we employ the time series metric
Time-warped edit distance (TWED; Marteau 2009)
to compute their similarity as ϕ(f(ci), f(rj)) =
1 − dtwed(f(ci), f(rj))/max(|ci|, |rj |), where
f(ci) denotes the visual prototype representation of
an action sequence and dtwed(f(ci), f(rj)) denotes
the distance computed by TWED algorithm. Then
the normalized similarity over n possible answers
of a question is given by:

P (ci | rj) =
expϕ(f(ci), f(rj))∑n
k=1 expϕ(f(ck), f(rj))

(3)

The most plausible answer is the one with the max-
imal p(cj | s, g) over all answer candidates.

5 Experiments

We conduct extensive experiments to answer the
following three main research questions. The other
research questions are addressed in Appendix 7.9.

Method TwoStagePlan NSPlan ACT-PROPHETNET ACT-UNIVL
Log-likelihood Accuracy(%) 19.02 - 10.78 22.35

top-1 Reasoner-scoring Accuracy(%) 63.72 60.58 67.45 69.01
top-10 Reasoner-scoring Accuracy(%) 60.19 64.11 69.01 70.58

Table 3: Comparison of all systems, with Human per-
formance of 94.25% accuracy, which is obtained by
asking humans to answer the MQAs directly.
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Figure 4: Human evaluation on the quality of top-10
(left) & top-1 (right) future action sequence.
RQ1: How reliable is the MQA evaluation
method? We show that the evaluation results us-
ing MQA are consistent with those by asking hu-
mans to directly observe model outputs. For this,
we recruit five crowd-workers to rank all models in
comparison on each of the 100 questions randomly
sampled from the test set, and compare them with
the corresponding results using MQA. Specifically,
for each question, a crowd-worker is asked to rank
the top-k outputs of the four baselines in terms of
how well they match the intent and the remaining
80% of the original videos. As a result, Figure 4
shows how frequent each model is ranked at posi-
tion X judged by the crowd-workers w.r.t. the top-
10 predictions (left) and top-1 predictions (right),
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respectively. In both cases, we consistently find
that the best model is ACT-UNIVL, followed by
ACT-PROPHETNET, NSPlan, and TwoStagePlan.
The ranking result is the same as using MQA on the
same set of questions. The ranking differences on
individual questions between the human evaluation
and MQA are statistically insignificant according
to Wilcoxon’s signed-rank test (Woolson, 2007),
details of which can be found in Appendix 7.8.

Method TwoStagePlan NSPlan ACT-PROPHETNET ACT-UNIVL
Seen Accuracy(%) 60.33 65.28 70.24 74.38

UnSeen Accuracy(%) 60.15 63.75 68.63 69.40

Table 4: Top-10 Reasoner-scoring Accuracy on seen and
unseen action sequences. Seen data refers to the MQAs
with plausible action sequences observed in the training
data. Unseen data refer to the ones with plausible action
sequences not observed in the training data.

RQ2: What are the key challenges? We iden-
tify two major challenges of the target task.

Compositional Generalization Using Reasoning.
It is common practice to rank each answer by the
likelihood yielded by a generative model (Holtz-
man et al., 2021). However, Table 3, which pro-
vides the overall evaluation results using MQA,
shows that the generative baselines perform poorly
when they rank answers based on the likelihood.
In contrast, ProbInf effectively uses top-k results
to boost the performance of all generative models
by more than 44%. For the respective performance
on seen and unseen action sequences (Table 4),
ProbInf delivers stable results across models. The
performance on unseen combinations of seen ac-
tions measures exactly the ability of compositional
generalization. This raises the question of “Why
ProbInf helps compositional generalization ?” for
future research. As there is still a sizable gap be-
tween seen and unseen action sequences, and all
models fall short of the human performance (Table
3) by at least 23%, how could we make further
improvements?

Effective Use of Both Modalities. To understand
the utility of each modality, we compare the two
strongest multimodal models by varying their in-
puts: including both modalities or just a single
modality. As shown in Table 5, intents provide the
strongest signal, while visual information is useful
overall for both models. This also explains why
ACT-PROPHETNET comes close to ACT-UNIVL.

To further investigate the significance of visual
information for multimodal models, we substitute

ACT-UNIVL w/o Vision ACT-UNIVL
69.01 70.58 ↑

NSPlan w/o Vision NSPlan
61.56 64.11↑

ACT-UNIVL w/o Intent ACT-UNIVL
61.17 70.58 ↑

NSPlan w/o Intent NSPlan
60.78 64.11 ↑

Table 5: Modality study on MQA accuracies (%) of
different baselines via Reasoner-scoring.

the visual features of ACT-UNIVL for randomly se-
lected ones during both training and inference, find-
ing that ACT-UNIVL suffers from only a 4% drop
of accuracy using MQA. Hence, the multimodal
models capture only weak associations between
visual features and future action sequences.

It is counter-intuitive that visual features do not
play a significant role, because plans vary in ac-
cordance with different visual environments. We
conjecture this is due to poor performance of action
recognition. To verify this, we feed ground-truth
actions observed in the first 20% of videos to both
TwoStagePlan and NSPlan during training and in-
ference. They reach an accuracy of 82.11% and
81.37% respectively, improved by more than 15%.

RQ3: To what degree can the top-k results re-
flect the performance differences of systems?
The reasoning method ProbInf leverages the top-k
results produced by the models, hence it is useful to
inspect those results for further insights. Therefore,
we compare the top 10 results of each model in
terms of precision and recall by treating each ac-
tion sequence as a set (Ng and Fernando, 2020), as
well as seq-hits@5 for measuring exactly matched
action sequences. Moreover, to investigate the di-
versity of the top-k lists, we consider Dist1 and
Dist2 (Li et al., 2016), which respectively measure
the number of unique action and consecutive ac-
tion pairs in the top-k lists. The definitions of a
complete list of used metrics and their results are
provided in Appendix 7.6 and 7.4.1.

According to Table 6, ACT-UNIVL outperforms
all other models in terms of quality-oriented met-
rics but falls short of ACT-PROPHETNET in terms
of both diversity metrics. However, none of
the metrics obtains the same ranking of models
in accordance with the human evaluation. Al-
though NSPlan achieves higher recall than ACT-
PROPHETNET, its precision and seq-hits@5 are sig-
nificantly lower than those of ACT-PROPHETNET,
explaining why it performs worse than ACT-
PROPHETNET using MQA.
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Setting
Quality Diversity

precision recall seq-hits@5 Dist1 Dist2
TwoStagePlan 21.59 15.59 10.00 32.55 58.54

NSPlan 20.73 21.66 5.69 38.46 66.34
ACT-PROPHETNET 21.35 9.61 8.12 51.96 81.93

ACT-UNIVL 23.67 22.02 12.75 47.10 77.42

Table 6: Comparison of top-10 future sequences

6 Conclusion

We construct the novel benchmark ViLPAct
to evaluate the ability of systems to anticipate
and plan human actions in a multimodal vision-
language setting, with a focus on evaluating their
compositional generalization capabilities. In this
benchmark, we extend Charades with intents,
construct a test set with multi-choice questions, and
include four strong baselines. Our empirical stud-
ies demonstrate that the task is easy for humans, but
challenging for SOTA deep learning models due
to the need for compositional generalization and
an effective use of information from both modali-
ties. The neurosymbolic planning baseline shows a
promising research avenue for using symbolic and
multimodal knowledge in an MKB.

Ethical Considerations

In order to mitigate the potential for exposure to
problematic content in the Charades video dataset,
we have implemented stringent safety measures to
safeguard our annotators against adverse psycho-
logical effects. To ensure the suitability of the video
content, the authors initially conducted a compre-
hensive review. However, it is recognized that the
process of annotating feedback may still result in
the exposure to potentially disturbing or offensive
material. To mitigate this, we only engage annota-
tors who are of legal age and clearly communicate
that discretion is strongly advised when engaging
in the annotation process. In the event that an anno-
tator experiences discomfort or distress, we provide
information on how they can seek support from the
Substance Abuse and Mental Health Services Ad-
ministration (SAMHSA)4, a free and confidential
resource available 24/7. In addition, we have estab-
lished a feedback mechanism to allow annotators
to communicate their concerns in real-time. Our
response time to any feedback received is within 24
hours. Furthermore, we compensate our annotators
with competitive wages, with an average hourly
rate of approximately $12.

4https://www.samhsa.gov/

Limitations

In this work, we have proposed a new vision-
language benchmark for compositional general-
ization on human activities. Although it contains
numerous videos and diverse actions, it only em-
phasizes in-door activities, which is a subdomain
of human activities. We encourage future research
to investigate the compositional generalization on
various scenarios of outdoor activities. In addi-
tion, despite the fact that our benchmark contains a
reasonable number of actions, these actions are con-
strained by limited types of verb and noun phrases,
due to the nature of Charades. We suggest the
development of a more extensive dataset covering
open-vocabulary actions in future applications.
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7 Appendix

7.1 Action Sequence Extraction Algorithm

Each video of Charades is annotated with ac-
tions from at least one action sequence. The start-
ing and ending points of an action are labelled, but
it is not clear which actions jointly meet an intent.
Therefore, we implement the greedy method in Al-
gorithm 1 to automatically extract action sequences
with clear intents from videos. For each video, the
algorithm aims to identify a sequence of temporally
and semantically coherent actions, which interact
with the same or related objects. The scoring func-
tions in Algorithm 1 measure coherence from three
perspectives: i) semantic relevance based on TF-
IDF (Jones, 1972) reweighted Word2Vec embed-
dings (Mikolov et al., 2013), ii) temporal relevance,
iii) task relevance. Each action is assigned to one of
22 tasks manually, for example, "Opening a book"
and "Closing a book" are assigned to the same task.

7.2 Other Data Details

An example of future action sequences of a selected
intent is given in Figure 5. All of these conclusions
pose a challenge not only for the generalization of
multimodal matching, but also for compositional
generalization.

Algorithm 1: Extract Action Sequences
Input: Actions = {a1, a2, . . . , an}, each action

ai = ⟨clsai , tais , taie ⟩, where clsai is the
action class, tais and taie is the start time and
end time of action ai. Relevance threshold

Output: Activities = {A1, A2, . . . , An}, where
each activity represents an action sequence

Remaining actions set Ra = Actions
while Ra ̸= ∅ do

Sort Ra in ascending order by start time ts
pre action a = Ra[0]
Activity A = {a}
Search = True
while Search do

candidates Ca = {aj ∈ Ra|tajs ≥ tas}
for aj ∈ Ca do

Calculate relevance score: saj =
score (a, aj) = fsemantic (a, aj) +
ftime (a, aj) + ftask (a, aj) .

Where
fsemantic (a, aj) = cosine

(
Ea, Eaj

)
,

Ea =
∑

w∈clsa
TFIDF (w)∗w2v (w) ,

ftime (a, aj) =
(1− atanh(|tas − tajs |) ∗ π/2)
ftopic (a, aj) = 1 (taska = taskaj )

end
amax = argmax({saj |aj ∈ Ca})
if samax < threshold (1.3 by optimization)

then
Append A to Activities
Search = False

else
Add amax to Activity
Remove amax from Ra
pre action a = amax

end
end

end
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Figure 5: An example of the future action sequence
frequency distribution of the intent "S/He wants to sat-
isfy my hunger". There are 30 distinct future action
sequences matching this intent.

7.3 Deep Generative Models Details

We mainly adapt the multimodal deep planning
model ACT-UNIVL to tackle our task. The training
set of ACT-UNIVL consists of 2,402 videos, each
of which contains a video clip of the initial state s,
an observed action sequence ai, an intent g, and a
future action sequence af . Both models are trained
to minimize prediction errors of af .

ACT-UNIVL ACT-UNIVL (Luo et al., 2020) is
a SOTA unified pretrained vision-language model
for multimodal understanding and generation. We
consider ACT-UNIVL because ACT-UNIVL still
performs the best on video captioning tasks, such
as YouCook2 (Zhou et al., 2017). YouCook2 con-
tains task-oriented and instructional third-person
videos about indoor cooking. The captions of a
video are provided for the whole video without ex-
plicit alignments at the frame or segment levels. In
addition, ACT-UNIVL considers two sources of
textual inputs: transcripts and captions. Hence, it
is most close to our target task. Taking as input a
future-directed intent and a video clip of the initial
state, ACT-UNIVL is fine-tuned to forecast future
action sequences.

More specifically, we utilize ACT-UNIVL to
map a video clip to a sequence of action names.
Most of the action names are multi-word expres-
sions. During training, ACT-UNIVL takes as input
both the visual features of a video clip s and an
observed action sequence ai, and optimizes the
model with multiple pre-training objectives. The
visual features are extracted by the I3D model (Car-
reira and Zisserman, 2017) trained on Charades.
During prediction, the model generates a future ac-

tion sequence by only taking an initial visual state
and high-level intent as input. To fine-tune ACT-
UNIVL, we set the max. frame, mean frame and
feature frame rate of the encoded features to be
629, 113 and 3. We fine-tune ACT-UNIVL on two
NVIDIA V100 GPUs for 50 epochs and choose the
best one based on the BLEU-3 metric.

Two Stage Planning Model. The two stage plan-
ning baseline, TwoStagePlan for short, starts by
converting the initial visual state s into a textual
description of the observed action sequence, fol-
lowed by applying a Seq2Seq language model,
ACT-PROPHETNET (Qi et al., 2020a), to predict
future actions.

At Stage 1, we adopt ACT-UNIVL on the video
captioning task. Different from the single ACT-
UNIVL baseline, we only train it with observed
video clip inputs and let it generate the correspond-
ing captions for observed action sequences. The
other settings and training settings remain the same
as for the single ACT-UNIVL baseline.

Given an observed action sequence recognized
by ACT-UNIVL, we fine-tune ACT-PROPHETNET

by following Jansen (2020) in Stage 2. We pre-
fer ACT-PROPHETNET over GPT2 (Radford et al.,
2019) because it can learn to predict n future to-
kens jointly, which is computationally efficient and
mitigates overfitting on strong local correlations.
For each video, we take as input the intent and the
observed action sequence, separated by a special
token SEP, and train the model to minimize predic-
tion errors of future action sequences. Fine-tuning
the model from the PROPHETNET-EN pretrained
checkpoint for 50 epochs on 2 Nvidia Tesla V100
GPUs, we choose the best model based on the vali-
dation loss.

ACT-PROPHETNET To study the impact of vi-
sual information, we consider a text-only baseline
by employing ACT-PROPHETNET. Herein, ACT-
PROPHETNET takes as input an intent and gener-
ates the future action sequences. The training is
done with the same training procedure as Stage 2
of TwoStagePlan. This model serves for an abla-
tion study, in contrast to TwoStagePlan, which uses
additionally recognized action sequences as input.

7.4 Neurosymbolic Planning Model
Instead of using the data in the training set to di-
rectly optimize model parameters, the neurosym-
bolic planning model (NSPlan) builds an MKB
from the training data. Given a question in the test
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Figure 6: The neurosymbolic planning model is a multi-
modal retrieval & re-rank pipeline.

set, the model retrieves relevant knowledge based
on the initial visual state and the intent, and then
applies the retrieved knowledge to infer the most
plausible answers from all available choices.

7.4.1 Retrieval from Multimodal Knowledge
Base

The neurosymbolic planning model retrieves rele-
vant action sequences from the MKB in two stages.
The first stage aims to computationally efficiently
obtain all relevant action sequences. At the sec-
ond stage, it re-ranks the initial retrieval results by
using both visual and symbolic knowledge.

First Stage. Given the initial state of a video, we
apply the pretrained ACT-UNIVL model used in
the two-stage planning model to predict a sequence
of observed actions. Then this action sequence in
text form is sent as query to retrieve top-50 rel-
evant action sequences from the MKB. For each
retrieved result, the ranking score is the weighted
sum of the BM25 (Robertson and Walker, 1994)
score between two action sequences and the co-
sine similarity between the intents. At this stage,
only textual information is taken into account, and
the temporal order of actions in a sequence is not
considered because BM25 considers each action
sequence as a bag of words.

Second Stage. We re-rank the results from the
first stage by taking temporal order and the visual
features of action sequences into account. Each
action sequence is represented as a sequence of
frame-level visual feature vectors, which are ex-
tracted by the same visual encoder I3D. We apply
the Ordered Temporal Alignment Module (OTAM)
(Cao et al., 2020) to compare two visual feature
sequences. OTAM computes a distance between a
pair of sequences by integrating video segment dis-
tances only along the ordered temporal alignment
path. We turn a distance into an alignment score by

salign = 1/(1 + dotam), where dotam denotes the
OTAM distance.

Many retrieved action sequences do not contain
future actions. In order to rank the sequences with
potential future actions higher, we add a rule to
encourage long sequences containing unseen ac-
tions. The rule score srule = slast + slen is the
sum of two binary indicator functions slast and
slen, where slast = 1 if and only if the last action
of the retrieved result is not contained in the query
set, and slen = 1 if and only if the length of the
retrieved result is greater than that of the query.
The final ranking score sf (r) of a result r is the
weighted sum of the initial ranking score, the align-
ment score salign and the rule-driven score srule. To
reduce noise, we keep only the top-10 results for
probabilistic reasoning. We provide a completed
version of the comparison among all baselines on
future sequence evaluation in Table 7.

7.5 Full Action Sequence Comparison

7.6 Metrics

• Seq-item-acc: Sequence item classification ac-
curacy evaluates the exact action matching of
the predicted action sequence with the ground
truth, counting how many times the action in
the predicted sequence matches the ground
truth at the exact position. For top-10 se-
quences, we calculate the mean accuracy of
all sequences.

• Precision and recall: The precision and re-
call do not consider the order of ground truth.
They both treat the actions inside the sequence
as a unified set. The precision of top-10 se-
quences is computed by averaging the preci-
sion of each sequence, which measures the
number of true actions over the number of to-
tal actions in the sequence. Here, we define
the true action as the action that occurred in
the ground truth. Similarly, the recall of top-
10 sequences is also computed by averaging
all sequences’ recall, which is a measure of
the true actions over the number of ground
truth actions.

• Seq-hit@k Rate: The seq-hits scores measure
the exact sequence matches, calculated as the
number of examples whose top-k sequences
include the ground truth sequence, and we re-
port the seq-hits@5 and seq-hits@10 accord-
ingly. As for the retrieval-based baseline, we
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setting
Quality Diversity

precision recall seq-item-acc seq-hits@5 seq-hits@10 BLEU-1 BLEU-2 Dist1 Dist2
TwoStagePlan 21.59 15.59 9.26 10.00 16.86 12.50 3.58 32.55 58.54

NSPlan 20.73 21.66 8.74 5.69 7.65 19.25 6.80 38.46 66.34
ACT-PROPHETNET 21.35 19.75 8.12 9.61 10.59 18.66 5.52 51.96 81.93

ACT-UNIVL 23.67 22.02 9.71 12.75 16.08 20.52 6.52 47.10 77.42

Table 7: Comparison of top-k future sequences of all systems.

setting
Quality Diversity

precision recall seq-item-acc seq-hits@5 seq-hits@10 BLEU-1 BLEU-2 Dist1 Dist2
TwoStagePlan 38.71 30.73 11.06 0.59 1.37 29.60 13.71 15.45 35.37

NSPlan 41.63 35.81 11.46 5.69 8.43 34.14 15.90 28.03 62.08

Table 8: Comparison of top-10 full action sequences of all systems.

only consider the in-domain situation where
the ground truth sequences have also appeared
in the knowledge base.

• BLEU: We use the standard BLEU-1 and
BLEU-2 scores that are widely used in the Ma-
chine Translation Field and adapt them to our
setting by computing the action-level match.

• Dist: We report Dist1 (Distinct-1) and Dist2
(Distinct-2) following the standard definition
(Li et al., 2015), to measure the diversity of
action sequences, based on the number of dis-
tinct N -gram of top-10 sequences.

7.7 Full Table of Future Sequence Evaluation
In Table 8, we compare TwoStagePlan with NS-
Plan, where both models are designed to output
the full action sequence including the observed
actions. It turns out that NSPlan performs consis-
tently across all metrics, indicating that NSPlan has
a stronger ability to identify the most similar full
action sequences in the MKB and training set.

7.8 Wilcoxon’s signed-rank test
Wilcoxon’s signed-rank test is a statistical hypoth-
esis test used either to test the ranking of a set of
samples or to compare the rankings of two popu-
lations using a set of matched samples. The cal-
culated Wilcoxon signed-rank test t value is 55.5
with a p value of 0.7979, which shows that there
is no significant difference between the two sets of
human evaluation samples.

7.9 Other Research Questions
How useful are symbolic, neural, or neurosym-
bolic knowledge? The goal of reasoning is to per-
form the probabilistic inference argmaxci p(ci |

Method
Action ID Visual-proto Text-proto Visual + text proto

Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)
Mean 53.33 60.19 46.82 48.42

Max-Pooling 43.92 43.52 41.76 42.35
DTW 48.82 61.37 50.98 52.15

TWED 44.50 64.11 48.23 50.19

Table 9: Reasoner-scoring performance with varying
combinations of similarity measures and action-level
features.

s, g) over all possible answers. One of the key dif-
ferences of NSPlan from the two generative mod-
els is that it introduces the time series similarity
TWED to compare the future action sequences with
each answer.

To understand the effects of TWED in the prob-
abilistic reasoning module of our retrieval-based
baseline, we compare it with three other similarity
measures: (a) cosine similarity between the mean
vectors of two sequences, (b) cosine similarity be-
tween the max-pooling results of two sequences,
(c) the time series distance function Dynamic Time
Warping (DTW) (Müller, 2007). All of them are
evaluated based on the same best performing top-
10 retrieval results.

We also evaluate different types of symbolic,
neural, and neurosymbolic features used for com-
puting action-level distance inside those measures:
(a) action class ID, (b) the visual prototype features
in the MKB, (c) the textual prototype features in
the MKB, (d) concatenation of the visual prototype
features and textual prototype features.

It is clear from Table 9 that TWED using the
visual prototype features performs the best. The
performance of the two time series metrics are com-
parable. Combining visual prototype features and
textual prototypes features actually harms the per-
formance. This is in contrast to the retrieval evalua-
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tion, which finds the symbolic representations most
useful. This highlights the flexibility of this hybrid
neurosymbolic system, which naturally supports
choosing the most appropriate types of information
for its respective modules.

We also experiment with the symbolic knowl-
edge described by the STRIPS language. More
specifically, we implement a symbolic planner
based on STRIPS, which is able to check to what
degree each answer is compatible with the precon-
ditions and effects defined for each action class.
Such symbolic knowledge can boost the overall
accuracy of NSPlan to 82% if we substitute the
ground truth actions for the action sequences recog-
nized by ACT-UNIVL. However, if we only use the
predictions of ACT-UNIVL, which has both preci-
sion and recall around 32%, the overall accuracy
drops by almost 10%.

2207



Findings of the Association for Computational Linguistics: EACL 2023, pages 2208–2215
May 2-6, 2023 ©2023 Association for Computational Linguistics

Grammatical Error Correction through Round-Trip Machine Translation

Yova Kementchedjhieva
University of Copenhagen

yova@di.ku.dk

Anders Søgaard
University of Copenhagen
soegaard@di.ku.dk

Abstract

Machine Translation operates on the premise
of an interlingua which abstracts away from
the surface form while preserving the mean-
ing. A decade ago, the idea of using round-trip
MT to guide Grammatical Error Correction was
proposed as a way to abstract away from po-
tential errors in surface forms (Madnani et al.,
2012). At the time, it did not pan out due to
the low quality of MT systems of the day. To-
day much stronger MT systems are available so
we re-evaluate this idea across five languages
and models of various sizes. We find that for
extra large models input augmentation through
round-trip MT has little to no effect. For more
‘workable’ model sizes, however, it yields con-
sistent improvements, sometimes bringing the
performance of a base or large model up to
that of a large or xl model, respectively. The
round-trip translation comes at a computational
cost though, so one would have to determine
whether to opt for a larger model or for input
augmentation on a case-by-case basis.

1 Introduction

Grammatical Error Correction (GEC) is the task
of detecting and correcting errors in text. It finds
application in both assisted writing and second lan-
guage learning. As training data for the task is
scarce, efforts in this space largely focus on trans-
fer learning and data augmentation. In this work,
we revisit the use of round-trip Machine Transla-
tion in Grammatical Error Correction, as originally
proposed in Madnani et al. (2012).

Machine Translation (MT) aims to preserve the
meaning of text while mapping its surface form
from one language into another. The ideal MT sys-
tem would be robust to minor perturbations in the
input text like a typo or a grammatical error, produc-
ing a well-formed translation true to the intended
meaning. If the translated text is then backtrans-
lated into the source language, we can expect to
see the original content, now free from errors. This

Figure 1: Our approach. The input to the model is a
concatenation of the original text and the round-trip
translation. Here, English is used as target language and
Romanian as pivot language for illustrative purposes; in
actual experiments English is the pivot language.

was the premise of the work carried out by Mad-
nani et al. (2012). The statistical phrase-based MT
systems of a decade ago, however, were not even
close to the ideal, so the authors observed mixed re-
sults in their experiments and upon further analysis
concluded that the round-trip translation itself intro-
duced too many new errors in the form of both un-
grammaticality and loss of meaning. Modern neu-
ral network-based MT systems are much stronger
than their statistical predecessors. Consider the
leap in BLEU score (Papineni et al., 2002) on the
widely used WMT2014 English-German data set
(Bojar et al., 2014), from 20.7 with phrase-based
MT (Wu et al., 2016) to 35.0 with neural MT aug-
mented with noisy backtranslation (Edunov et al.,
2018). With a conditional neural language model
as a decoder (Schwenk, 2007), modern systems
generate highly fluent (i.e. grammatical) outputs.

We explore the impact of this strong MT per-
formance on GEC by augmenting the input to a
GEC system through round-trip translation, such
that each input sentence is concatenated with a
round-trip translation of itself (see Figure 1). We
evaluate the effect of this procedure on five lan-
guages: German, Russian, Spanish, Czech, and
Romanian (DE, RU, ES, CS, RO). In our experi-
ments, we fine-tune the multilingual pre-trained
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language model mT5 (Xue et al., 2021), which is
available in a range of sizes. The XXL variant is
currently the state-of-the-art on DE, RU, and CS

(Rothe et al., 2021). However, mT5-XXL, with its
13B parameters, is out-of-scope for most academic
research and impractical for deployment in many
application. Therefore, we experiment only with
the three smaller variants, BASE, LARGE and XL.

We find that round-trip translation successfully
guides the correction of grammatical errors in BASE

models for all languages, with improvements of up
to 4.1 points on the F-score (for RU). For LARGE

models, it still benefits three out of five languages,
leaving scores on the other two unchanged. For XL

models, it has a negligible effect in either direction,
showing that these models are sufficiently strong
by themselves and subsume the knowledge an MT
model can provide. For some BASE and LARGE

configurations, the round-trip translation augmen-
tation closes the gap between a model of a given
size, e.g. LARGE-RO, and its larger counterpart,
e.g. XL-RO. Since round-trip translation has an
added computational cost itself, one would have to
weight the costs and benefits on a per-case base to
determine whether a larger model with bare input
or a smaller model with augmented input is more
suitable for a given application.

2 Background

Machine Translation makes various appearances
across research in Grammatical Error Correction.
Modeling approaches and training tricks originally
developed in the context of MT have been suc-
cessfully adapted to GEC (Yuan and Felice, 2013;
Junczys-Dowmunt et al., 2018; Rozovskaya and
Roth, 2016; Yuan and Briscoe, 2016). The concept
of backtranslation has been used to generate syn-
thetic data for GEC (Kiyono et al., 2019; Koyama
et al., 2021). In all of these works, MT research
provides the methods but there is no actual cross-
lingual translation happening. The ‘translation’ in
this case is from ungrammatical text to grammatical
text in the same language. Zhou et al. (2020) per-
form actual translation of Chinese text into English
using MT systems of varying quality as a way to
generate ungrammatical English data, which they
then pair with gold standard targets to obtain a syn-
thetic training corpus. In contrast to such works,
our work explores the potential of round-trip trans-
lation as an intermediate step in the process of
GEC, active both during fine-tuning and inference.

The goal here is to make use of the knowledge one
can extract from parallel MT data, generally much
more abundant than GEC data.

Most similar to our work is that of Madnani et al.
(2012), who perform round-trip translation of an in-
put in eight pivot languages with Google Translate
and use a lattice to combine all hypotheses into a
final output. The motivation behind using multiple
pivot languages is to ensure meaning preservation
on one hand, and to increase the chance of all errors
being corrected on the other. The authors observe
some successes but also numerous failures in the
predictions of their model, attributing the latter to
new errors of disfluency and loss of meaning intro-
duced by Google Translate, which at the time was
based on statistical MT. In the decade since that
work was published, MT has undergone a paradigm
shift from statistical to neural network-based meth-
ods, marked by large improvements in performance
(Edunov et al., 2018). It is therefore time to revisit
the potential gains from round-trip MT for GEC.

As we recognize that GEC aims for minimal and
necessary revisions of the input whereas round-trip
translation can result in valid but unnecessary lexi-
cal and syntactic changes, we condition the genera-
tion of the final output on both the input sentence
and the round-trip translation, in an approach akin
to multi-source automatic post-editing (Knight and
Chander, 1994; Chatterjee et al., 2015).

3 Method

In general terms, our approach is one of sequence-
to-sequence text generation with input augmenta-
tion: for a given input sentence, we obtain a round-
trip translation and feed a string concatenation of
the original sentence and the round-trip transla-
tion, separated by the symbol sequence ‘=>’, to a
sequence-to-sequence model.

3.1 Model

Recently, Rothe et al. (2021) set a new state-of-the-
art in GEC using an XXL-sized mT5 model. mT5
is a multilingual seq-to-seq bitransformer model,
pre-trained on 101 languages (Xue et al., 2021).
They pre-trained a single model on a vast amount
of synthetic GEC data for four languages, English,
Czech, Russian and German, and fine-tuned indi-
vidual models for each language. They showed
that a BASE-sized model often lagged behind ear-
lier state-of-the-art results, whereas an XXL-sized
model outperformed them often with a consider-
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Lang Data Size

DE Falko-Merlin (Boyd et al., 2014) 19K
RU RULEC-GEC (Rozovskaya and Roth, 2019) 5K
ES COWS-L2H (Davidson et al., 2020) 10K
RO RoGEC (Cotet et al., 2020) 7K
CS AKCES-GEC (Náplava and Straka, 2019) 42K

Table 1: Datasets used for finetuning and their train size.

able margin.1 Due to computational constraints,
we carry out experiments with model sizes up to
and including XL.

3.2 Data

We use data in five languages: DE, RU, ES, CS

and RO.2 We carry out continued pre-training of
mT5 for GEC on real data where available, and on
synthetic data otherwise. For DE and RU we use
cLang-8 data (Rothe et al., 2021). For ES, we use
Lang-8 (Koyama et al., 2020), which we manually
clean up (see more details in Appendix A). For
RO we sample 100k sentences from the synthetic
dataset of Cotet et al. (2020) and for CS we generate
100k sentences using the method of Náplava and
Straka (2019) based on text from the WMT News
Crawl (Barrault et al., 2019). We randomly split all
data 90:10 for training and validation. Continued
pre-training is done with the same objective as used
for fine-tuning—we feed ungrammatical text (op-
tionally concatenated with a round-trip translation)
and predict grammatical text. Following this step,
we do fine-tuning on the datasets listed in Table 1.

All data that does not come pre-tokenized is tok-
enized using spaCy (Honnibal and Montani, 2017)
except CS, which is not covered by spaCy so for
this language we use Stanza (Qi et al., 2020).

3.3 Round-trip translation

In contrast to Madnani et al. (2012), we stick
to a single round-trip translation, recognizing
the computational cost of this added step. We
experiment with English as a fixed pivot lan-
guage for all target languages. We translate pre-
training data using models available in the Hug-
gingFace library (Wolf et al., 2020), chosen for
their strong performance: for RU and DE we use
facebook/wmt19 models, and for the rest we
use Helsinki-NLP/opus-mt. For fine-tuning

1Model sizes in between were not explored.
2See App. C for other languages we considered.

data we use Google Translate3, assuming that it is
the best translator available.

Training details can be found in Appendix B.

4 Results

The main results of our work are reported in Table 2.
We report precision (P), recall (R) and F0.5 score
(F), as measured using the M2 package (Dahlmeier
and Ng, 2012). We see that guidance from round-
trip translation leads to consistent improvements
for models based on mT5-BASE, most notably im-
proving the F-score for RU by 4.1 points. Among
LARGE models, consistent performance improve-
ments are observed for RU and CS, for RO the per-
formance gain is reduced but still considerable,
whereas for DE and ES the input augmentation has
no effect at all (so we do not consider these two lan-
guages in experiments with an XL model). Among
the three XL models, variable results are observed
with either a small increase or a small decrease in
performance (of 0.5 points at most). From these
observation, we can conclude that the round-trip
translation benefits smaller models, whereas larger
ones subsume the knowledge this input augmenta-
tion technique provides.

The blue boxes in the table mark cases where the
round-trip translation brings the performance of a
smaller model up to or above that of a larger one.
In these cases, one has the choice to use a larger
model without input augmentation or a smaller one
with input augmentation. The factors that would
determine this choice are compute availability, ac-
cess to cloud platforms, and speed requirements,
among others. If one has limited GPU memory to
work with, but has access to a high-quality transla-
tion cloud service, the choice of a smaller model
with input augmentation may be more appropriate.

4.1 Round-trip translation
Although round-trip translation is expected to cor-
rect errors while preserving meaning, we cannot
rely on it alone as a method for grammatical er-
ror correction, due to potential lexical and syn-
tactic substitutions. This becomes apparent when
we treat the output of the round-trip translation
as GEC predictions and evaluate them against the
gold-standard targets. The results, shown in the
last row of Table 2 (MT), are considerably lower

3https://cloud.google.com/translate; We
were able to carry out all translation at no cost, taking advan-
tage of a promotion available at the time of writing, wherein
new users get $300 in free credits.
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DE RU ES CS RO

P R F P R F P R F P R F P R F

BASE 74.9 58.0 70.8 59.5 15.5 38.0 57.9 35.8 51.5 78.9 60.5 74.4 68.9 46.5 62.9
BASE + MT 76.0 61.5 72.6 60.9 18.8 42.1 58.5 39.4 53.4 79.4 65.0 76.0 70.1 55.0 66.5

L 77. 62.7 73.6 60.4 22.8 45.4 61.5 39.1 55.2 80.9 65.6 77.3 72.2 50.7 66.5
L + MT 76.4 64.3 73.6 63.6 25.8 49.2 60.4 41.0 55.2 81.9 70.5 79.3 71.7 58.3 68.6

XL 64.5 25.6 49.5 81.7 69.9 79.0 72.3 56.9 68.6
XL + MT 61.8 28.1 49.9 82.0 70.8 79.5 70.3 60.5 68.1

SOTA - - 76. - - 51.6 - - 57.3 - - 83. 2 - - 53.8

MT 38.9 50.9 40.8 20.6 48.1 23.3 27.7 39.1 29.4 19.8 33.2 21.5 40.9 51.4 42.7

BASE+ 68.7 57.3 66.1 45.0 19.0 35.3 51.2 37.8 47.8 71.8 60.5 69.2 59.2 49.2 56.9

Table 2: Main results. SOTA refers to results from Rothe et al. (2021) for DE, RU and CS, results from Flachs et al.
(2021) for ES and Cotet et al. (2020) for RO. Experiments with XL models were not performed for DE and ES since
for these languages even in the LARGE configuration, the round-trip translation does not help. Blue boxes mark
instances where an augmented smaller model performs comparably to a larger model.

DE RU

F-MT P R F F-MT P R F

BASE - 74.9 58.0 70.8 - 59.5 15.5 38.0
GT 40.8 76.0 61.5 72.6 23.3 60.9 18.8. 42.1
FB 35.6 74.7 62.8 72.0 17.9 58.5 16.9 39.2

Table 3: Comparison of MT systems. GT: Google Trans-
late, FB: facebook/wmt19. F-MT refers to the F-
score of the round-trip translation as prediction.

than the full system results in upper rows, even in
comparison to the BASE setting.

4.2 Alternative MT systems
To determine the importance of a high-quality MT
system for the success of our method, we carry
out experiments with an alternative translation sys-
tem, facebook/wmt19, used to obtain round-
trip translations for the fine-tuning data in RU

and DE. The results from training a BASE-size
model on this data are shown in Table 3 along-
side the main results with this model size. Al-
though facebook/wmt19 scores substantially
lower than Google Translate when the round-trip
translation alone is compared to the gold standard
(F-MT), clear gains from using the round-trip trans-
lations for input augmentation can be observed.

4.3 Input augmentation v. Data augmentation
To determine the role of input augmentation as com-
pared to the more common method of data augmen-
tation, we train BASE models with the round-trip
translations as additional data, i.e. we extend the
training set with the pairings of round-trip trans-
lated sentences and their gold-standard targets, thus

doubling its size. As can be seen in the last row
of Table 2 (BASE+), this leads to worse perfor-
mance, likely because the revisions from round-
trip translated sentences to gold-standard ones do
not only contain grammatical error corrections, but
also some ‘unnecessary’ (from the perspective of
GEC) lexical and syntactic changes.

4.4 Overall performance

The results we obtain fall short of the state-of-the-
art on four out of five languages. For DE, RU and CS

this is no surprise considering the size of the model
used by Rothe et al. (2021), which renders their
achieved improvements irrelevant in most practical
contexts. We did not experiment with the data
augmentation strategy used in Flachs et al. (2021)—
this would have likely lead to a higher baseline
performance in our setup as well. For RO, on the
other hand, we see a large improvement over the
work of Cotet et al. (2020) even with a BASE model,
and an almost 15 point improvement overall.

5 Conclusion

The goal of this study was to measure the benefits
of round-trip machine translation for the task of
grammatical error correction. Transferring knowl-
edge from an MT model to a GEC model through
input augmentation proved effective for smaller
models, sometimes bringing their performance up
to that of their larger counterparts. In this work,
we chose English as a pivot language due the abun-
dance of MT work on this language. Future work
could explore alternative pivot languages, option-
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ally ones that are related to the language of the
GEC data, as this may results in higher lexical and
syntactic consistency between inputs and round-
trip translations and thus better guidance for the
correction of grammatical errors.

6 Limitations

The computational cost of the method proposed
here cannot be measured in a universal sense, since
(a) we have no way of determining the computa-
tional requirements for a call to the Google Trans-
late API, (b) while one could run translation locally,
given a good enough translation system, the exact
computational costs of that process would also de-
pend on the size of the local translation model,
with trends in MT also shifting towards models
of growing size. It is therefore only on a case-by-
case basis that one can determine whether in their
specific case it is more efficient to perform GEC
with a larger model or to use a smaller model in
combination with performing round-trip MT.
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A Spanish data for continued
pre-training

Lang8 data can be noisy, due to people adding meta-
comments to the text they post (often in their native
language) or the edits they propose. Many of these
instances can be detected based on length mismatch
or foreign scripts. So we remove any data points
where the number of space-separated tokens on one
side mismatches the other by more than three and
any lines that contain non-Latin characters. This
leaves us with 182,039 data points for continued
pretraining.

B Training

We use identical training settings for BASE and
LARGE models. In bare-input experiments (origi-
nal input only) we set the maximum input length
to 256 and in experiments with augmented input,
to 512. The maximum output length is always
256. For continued pre-training, we use a learning
rate of 0.001, following Rothe et al. (2021). For
fine-tuning, we experiment with 0.001, 0.0005, and
0.0001, choosing the best one per language based
on the validation loss in BASE experiments and
reusing it for LARGE experiments.4 For XL models,

4We note that learning rate has a considerable impact on
the results of up to 5 F0.5 points for different configurations.

P R F

SOTA 73.3 63.2 71.1 *
BASE 81.4 64.7 77.4
LARGE 81.6 71.6 79.4

Table 4: Baseline results for Arabic. * computed by
us from the global recall and precision scores, as the
authors report F1 rather than F0.5

we halve the input and output lengths due to com-
putational constraints and we halve the learning
rates as we observed that the learning rates used
for smaller models result in quick overfitting. We
follow Rothe et al. (2021) in setting the batch size
to 1,048,576 tokens per batch, which for bare-input
experiments amounts to an effective batch size of
2048 and for experiments with augmented input,
to 1365.5 In all experiments, we use the Adafactor
optimizer (Shazeer and Stern, 2018) and train until
the validation loss stops improving.

C Other languages

Arabic In the course of this work, we considered
experimenting with the QLAB dataset (Mohit et al.,
2014) for grammatical error correction in Arabic.
We later determined that the cost of the round-trip
translation of this data exceeds our resources: due
to the non-UTF script used by Arabic, the 19,411
training data points in QLAB amount to almost
10M characters and Google Cloud API charges by
the character. Since we did train baseline models
on this data, however, we report the results here
(see Table 4), for future reference.

Data for continued pretraining in the amount of
100k sentences was generated with the method of
Rothe et al. (2021) as applied to a sample of 100k
sentences again from the WMT News Crawl. The
data was tokenized using NLTK (Bird et al., 2009).

Ukrainian We considered experimenting with
the newly introduced Ukrainian dataset UA-GEC
(Syvokon and Nahorna, 2021) as well but faced
challenges in the segmentation of the data—in
contains entire documents, often longer than the
maximum sequence length of standard transformer-
based models. We considered splitting those into
paragraphs on new line symbols, but that produced

5These batch sizes are achieved with gradient accumula-
tion, with an actual batch size of 4 for BASE models, 2 for
LARGE models and 1 for XL models. We train the former two
on RTX GPU cards (24 GB) and the latter on A100 (40 GB).
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many nonsense data points such as section head-
ings and some stand-alone meta-text strings.
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Abstract

Pre-training masked language models (MLMs)
with artificial data has been proven beneficial
for several natural language processing tasks
such as natural language understanding and
summarization; however, it has been less ex-
plored for neural machine translation (NMT).
A previous study revealed the benefit of trans-
fer learning for NMT in a limited setup, which
differs from MLM. In this study, we prepared
two kinds of artificial data and compared the
translation performance of NMT when pre-
trained with MLM. In addition to the random
sequences, we created artificial data mimick-
ing token frequency information from the real
world. Our results showed that pre-training the
models with artificial data by MLM improves
translation performance in low-resource situa-
tions. Additionally, we found that pre-training
on artificial data created considering token fre-
quency information facilitates improved perfor-
mance.

1 Introduction

Transfer learning is an effective method for improv-
ing the performance of various natural language
processing tasks (Peters et al., 2018; Radford et al.,
2018; Devlin et al., 2019). This has been proven for
neural machine translation (NMT) in low-resource
situations (Zoph et al., 2016; Dabre et al., 2017;
Qi et al., 2018). General explanations attribute the
performance improvements in various downstream
tasks to the transfer of linguistic traits (e.g., fre-
quency, co-occurrence, and structure of words) in
pre-training data (Lin et al., 2019; Tenney et al.,
2019; Manning et al., 2020). Meanwhile, some
studies have focused on identifying the specific
traits in pre-training data that improve downstream
task performance by employing artificial data for
pre-training (Krishna et al., 2021; Chiang and Lee,
2022; Ri and Tsuruoka, 2022).

With regard to NMT, Aji et al. (2020) showed
that pre-training a Transformer model on random

Transformer

45 190 4 21_ _ _ _

50 304 85 6

45 190 4 2150 304 85 6

Artificial data

masking

Transformer

Transfer

the parameters

How do you explain this progression ?

Wie erklären Sie diesen Fortschritt ?

Source data

Target data
Fine-tuning on parallel dataMASS pre-training with artificial data

Figure 1: Experimental flow. We pre-train a Trans-
former model on the artificial dataset with the MASS
objective, initialize the weights of the NMT model with
the pre-trained one, and fine-tune it on parallel data.

sequences (see §2.2) brings better translation per-
formance in low-resource situations. Their pre-
training tasks included 1) autoencoding: translat-
ing one token into the same, and 2) substitution:
translating one token into another; however, their
solutions were uncommon for pre-training NMT
models. Thus, the improvement of the translation
performance when performing pre-training through
the masked sequence-to-sequence model (Song
et al., 2019; Lewis et al., 2020; Raffel et al., 2020)
with artificial data was not addressed.

In this work, we use masked language model-
ing for an encoder–decoder model called MAsked
Sequence-to-Sequence pre-training (MASS; Song
et al., 2019) as the pre-training task and inves-
tigate the translation performance of the NMT
model pre-trained on artificial data in simulated
(English→German) and genuine (English→Irish)
low-resource situations (Figure 1). Additionally,
other than random sequences, we create artificial
data containing token frequency information from
the real world and examine whether injecting this
information into pre-training data affects transla-
tion performance. We compare the performance
when pre-trained on each dataset with the MASS
objective. Furthermore, we perform ablation stud-
ies to investigate how each part of the network af-
fects the translation performance when pre-trained
on artificial data by transferring or freezing some
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parameters of the pre-trained model.
Our findings can be summarized as follows:

• Both in simulated and genuine low-resource
situations, MASS pre-training with artificial
data improves translation performance com-
pared to the model without pre-training.

• Injecting token frequency information into ar-
tificial data further improves translation per-
formance.

• Embeddings pre-trained on the artificial
dataset mimicking token frequency informa-
tion obtain useful representations for transla-
tion performance.

2 Pre-training Data

2.1 Real-world data

In this study, real-world data includes natural lan-
guage data and natural language data undergoing
some operations (e.g., token shuffling). The sen-
tence examples for each pre-training dataset are in
the Appendix (Table 3).

English We use the WMT News Crawl dataset of
2007, and its first 1M sentences for pre-training1.
English is the source language in both low-resource
situations.

English shuf We shuffle subwords from the “En-
glish” dataset throughout the corpus,2 preserving
sentence lengths. The generated sentences do
not contain information about the structure or co-
occurrence of tokens in a sentence. However, at
the corpus level, the frequency information of the
tokens is preserved.

German To examine the performance when pre-
trained on the target language, we employ the Ger-
man dataset, which is the target language in a simu-
lated low-resource situation.3 As with the “English”
dataset, we use the WMT News Crawl dataset of
2007, and its first 1M sentences for pre-training.

1https://www.statmt.org/wmt14/
translation-task.html

2Although we shuffled the tokens after subword segmen-
tation in this work, we leave shuffling before subword segmen-
tation, which preserves the order of subwords in the word unit,
for future work.

3As pre-training on the target language was less effective
in translation performance than on the source language in a
simulated low-resource situation, we excluded the experiments
when pre-trained on Irish, which is the target language in a
genuine low-resource situation.

2.2 Artificial data

All of the artificial data used in this study con-
sists of integer tokens. No preprocesses, such
as subword segmentation, are applied to artifi-
cial data. The vocabulary of each pre-training
dataset contains only integers ranging from 0 to
(vocabulary size for the downstream task − 1).
The number of sentences is 1M, and sentence
lengths are the same as in the “English” dataset.

Random Integers are sampled independently
from a uniform distribution to form sentences. This
dataset contains no linguistic traits.4

Zipf Each integer is sampled independently from
the Zipfian distribution5:

f(k; s,N) =
1/ks

∑N
n=1(1/n

s)
(1)

where N is the vocabulary size, k is the frequency
rank of the token, and s is the exponent value that
characterizes the distribution. Here, we set s as 1.0,
approximately consistent with the rank–frequency
distribution in human-generated languages (Zipf,
1949). Unlike the “Random” dataset, this dataset
contains token frequency information (linguistic
trait), but no other traits.

3 Experimental Setup

Simulated low-resource situation We use 30k
and 100k paired sentences randomly sampled
from WMT14 English→German1 (Europarl v7,
Common Crawl, and News Commentary; ap-
proximately 4.5M sentences in total) to compare
how pre-training with artificial data affects trans-
lation performance on different sizes. We use
newstest2013 of WMT as the validation set and
newstest2016 as the test set. We calculate case-
sensitive BLEU using SacreBLEU6,7 (Post, 2018)
for evaluation.

Genuine low-resource situation We use
English→Irish data in the COVID-19 domain
from LoResMT21 (Ortega et al., 2021). The
numbers of examples in the training/validation/test
sets are 8,112/502/500, respectively. We report

4Sentence length may be considered a linguistic trait;
however, we discarded it in this work.

5A smaller integer is assigned a larger probability.
6https://github.com/mjpost/sacrebleu
7Signature: BLEU+case.mixed+lang.en-de+numrefs.1

+smooth.exp+test.{wmt13,wmt16}+tok.13a+version.1.5.1
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En→De En→Ga
Data size = 30k Data size = 100k

Pre-training data valid test valid test valid test

N/A (baseline) 4.4± 0.65 4.2± 0.95 16.3± 0.31 20.1± 0.51 4.4± 0.32 8.4± 0.60

Real-world data
English 11.4± 0.12 14.2± 0.15 17.0± 0.10 21.6± 0.17 8.5± 0.83 14.1± 0.72
German 11.1± 0.40 13.3± 0.68 16.6± 0.23 20.8± 0.21 N/A N/A
English shuf 11.1± 0.00 13.5± 0.12 15.7± 0.15 19.6± 0.23 4.7± 0.80 11.5± 0.64

Artificial data
Random 10.6± 0.10 13.0± 0.10 16.0± 0.00 19.9± 0.17 6.5± 0.64 10.6± 1.00
Zipf 10.7± 0.15 13.5± 0.10 15.7± 0.15 19.6± 0.21 8.0± 0.53 12.8± 0.40

Table 1: BLEU scores of English→German (En→De) and English→Irish (En→Ga) translation models for each
pre-training dataset. We report the mean and standard deviation of three runs.

case-insensitive BLEU8 for evaluation.

The preprocessing and training settings for both
situations are in the Appendix.

Vocabulary assignment The parallel data con-
sists of natural language tokens, whereas the ar-
tificial data contains only integer tokens. Conse-
quently, the vocabularies learned from artificial
and parallel data exhibit no overlap, which is a bot-
tleneck in transferring the embedding layers. To
solve this issue, we adopt frequency assignment
(Aji et al., 2020), which sorts integer tokens and
natural language tokens based on their frequency in
each training dataset, respectively, and assigns the
integer token to the natural language token having
the same frequency rank. For the vocabulary used
in pre-training with real-world data, we use the one
created from parallel data.

4 Results

4.1 Simulated low-resource situation
Table 1 shows the English→German translation
performance for the 30k and 100k parallel dataset
sizes. For the sake of simplicity, we refer to the
model without pre-training as the baseline, and the
group comprising “English shuf”, “Random” and
“Zipf” datasets as non-natural language.

Data size: 30k All pre-trained models outper-
form the baseline. However, the models pre-trained
with the “German” dataset and non-natural lan-
guages are inferior to the “English” model. Al-
though the “German” model is pre-trained on a nat-
ural language, it performs as well as the “English
shuf” model. The “English shuf” and “Zipf” mod-
els gain comparable performance on the test set,

8Signature: BLEU+case.lc+lang.en-ga+numrefs.1
+smooth.exp+tok.13a+version.1.5.1

and both outperform the “Random” model. This
indicates that token frequency information in pre-
training data contributes to improved performance.
Translation examples are in the Appendix (Table
5).

Data size: 100k “English” and “German” mod-
els outperform the baseline; the other models de-
grade from the baseline performance. In contrast to
the case of the 30k-sized dataset, where token fre-
quency information contributes to the performance
gain, the scores of the models pre-trained on the
non-natural languages are all comparable.

4.2 Genuine low-resource situation

From Table 1, all pre-trained models outperform
the baseline, and the “English” model achieves
the highest score. As both the “English shuf” and
“Zipf” models outperform the “Random” model on
the test set, we conclude that token frequency infor-
mation in pre-training data is advantageous when
the parallel data size is quite small, considering
the results with a data size of 30k in the simulated
low-resource situation.

5 Analysis

We investigate which parts of the NMT model pre-
trained on artificial data contribute to improved
performance and verify whether the effect of each
part on translation performance differs from the
case where pre-trained on real-world data.

Specifically, we divide the model parameters into
four components: embeddings (emb), encoders
(enc), cross-attentions (x-attn), and decoders ex-
cept for cross-attentions (dec), and perform two
ablation studies. Firstly, we transfer a part of the
components from a pre-trained model and fine-
tune the model (Table 2a). This is done to iden-
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Components Pre-training data

Row emb enc x-attn dec English English shuf Random Zipf

1 4.2± 0.95 4.2± 0.95 4.2± 0.95 4.2± 0.95
2 ✓ 6.2± 0.64 5.6± 0.20 4.9± 0.26 5.8± 0.15
3 ✓ ✓ ✓ 11.5± 0.25 12.7± 0.12 12.7± 0.23 12.7± 0.17
4 ✓ ✓ ✓ ✓ 14.2± 0.15 13.5± 0.12 13.0± 0.10 13.5± 0.10

(a) When transferring only some components from each pre-trained model. “✓” denotes that the corresponding component is
transferred. The full version is in the Appendix (Table 6).

Components Pre-training data

Row emb enc x-attn dec English English shuf Random Zipf

1 14.2± 0.15 13.5± 0.12 13.0± 0.10 13.5± 0.10
2 × 10.7± 0.15 11.7± 0.30 12.2± 0.06 11.6± 0.10
3 × 12.5± 0.32 11.2± 0.35 10.7± 0.47 11.5± 0.10

(b) When freezing each component of the fully transferred model. “×” denotes that the corresponding component is frozen. The
full version is in the Appendix (Table 7).

Table 2: BLEU scores on the test set of English→German translation models in two ablation studies.

(a) English (b) English shuf (c) Random (d) Zipf

Figure 2: Rank–frequency distribution of token n-grams (n = 1, 2, 3, 4) in each pre-training dataset.

tify whether the information from each component
obtained in pre-training encourages better train-
ing in the fine-tuning step. Secondly, we trans-
fer all components and freeze one specific compo-
nent during fine-tuning (Table 2b). This is done
to identify whether each component’s information
obtained in pre-training is sufficient to perform the
translation task. We conducted experiments on
English→German pair with a parallel data size of
30k. For the pre-training datasets, we employed
those except for the “German” dataset, as the per-
formance achieved when pre-trained on this dataset
was inferior to that when pre-trained on the “En-
glish” dataset.

Token frequency information imparts embed-
dings with beneficial information for transla-
tion From Table 2a, it can be seen that when
pre-training with the “English” dataset, transfer-
ring emb improves performance (row 2). Similarly,
even when pre-training with the “English shuf” and
“Zipf” datasets, we observe that transferring emb
contributes to improved performance, although to-
kens in these datasets are independent of each other.

On the other hand, when pre-training with the “Ran-
dom” dataset, the performance gains by transfer-
ring emb are negligible (rows 3 and 4).

Both “English shuf” and “Zipf” datasets contain
token frequency information from the real world;
that is, the distribution of token frequency follows
Zipf’s law. This brings about multiple occurrences
of the same n-gram to a certain extent, even when
the tokens in pre-training data are shuffled (Tanaka-
Ishii, 2021). Figure 2 shows the rank–frequency
distribution of n-grams (n = 1, 2, 3, 4) in each pre-
training dataset.9 Even though tokens are sampled
independently to form a sequence for the “English
shuf” and “Zipf” datasets, we can observe a power
trend in the frequency of n-grams at n = 2, 3, 4.
Therefore, we consider that the presence of multi-
ple instances of the same n-gram, which results in
the emergence of local contexts within a sentence,
and embeddings pre-trained on this dataset obtain
beneficial information for translation performance.

9After subword segmentation, we drew the rank–
frequency distribution of the “English” dataset. The sharp
decline in the curve at n = 1 (Figure 2a) is due to the subword
segmentation, where the number of merge operations is 8,000.

2219



Encoders pre-trained on artificial data obtain
enhanced representations to understand the in-
puts From Table 2b, we can observe that the su-
periority tendency in scores among the pre-training
dataset is reversed between the cases in freezing
enc (row 2) and dec (row 3). The score tendency
when freezing enc is “Random” > “English shuf”
≈ “Zipf”> “English”, while for when freezing dec,
we observe “English” > “English shuf” ≈ “Zipf”
> “Random”.

We attribute this tendency to the mechanism of
the MASS pre-training depending on data prop-
erty. When pre-training with the “English” dataset,
the dec predicts a masked span of an English text
that contains linguistic traits like structure, which
makes the dec’s prediction easier. Therefore, the
dec can make predictions without requiring much
information from the enc, which makes the enc
understand the input sequence moderately. This ex-
plains why the best score is achieved when freezing
dec and the worst score is achieved when freezing
enc compared to other datasets. However, when
pre-training with other datasets in which the tokens
in a sequence are independent of each other, it is
challenging for the dec to predict a masked span au-
toregressively. This incentivizes the dec to extract
beneficial information for predictions from the enc;
that is, the dec relies more on enc’s information.
This encourages the enc to understand the input se-
quence more, and transferring enc enhanced to cap-
ture the input meaning results in higher translation
performance. This consideration is consistent with
the assertion of Sánchez-Cartagena et al. (2021).

6 Conclusion

In this work, we chose MASS for the pre-
training task and explored the effects on transla-
tion performance in low-resource situations when
pre-training the NMT model on artificial data.
Both in simulated (English→German) and gen-
uine (English→Irish) low-resource situations, pre-
training with artificial data improved the perfor-
mance, and further improvements could be ob-
tained by injecting token frequency information
when the parallel data size was very small. Through
ablation studies, we found that token frequency in-
formation generates contexts within a dataset, and
pre-training on such datasets enables embeddings
to obtain beneficial information for translation per-
formance. In addition, pre-training on artificial
datasets in which tokens are independent of each

other enhances the capability of encoders to un-
derstand inputs, resulting in improved translation
performance.

Limitations

Natural language The languages we used for
parallel data (English, German, and Irish) are alpha-
betical. This aspect affects the learning behavior of
a translation model, because we jointly learn BPE
on both the source and target languages and share
all the embedding parameters during pre-training
and fine-tuning. Therefore, it is unclear whether the
MASS pre-training with artificial data contributes
to the gains in translation performance when us-
ing non-alphabetic languages such as Japanese and
Chinese as the source or target languages.

Artificial data The tokens in artificial data
we used in this study are independent of each
other; they do not possess linguistic traits like co-
occurrence and structure. Ri and Tsuruoka (2022)
showed that a Transformer-based causal language
model trained on artificial data containing informa-
tion of co-occurrence and structure between tokens
results in lower perplexity than the model trained
on artificial data without such information. The
model pre-trained on artificial data that contains
linguistic information, such as co-occurrence and
structure, may behave similarly to that pre-trained
on the “English” dataset.

The contents of artificial datasets change depend-
ing on the seed value; however, we created each
dataset with one seed in this work; we addition-
ally conducted pre-training once on each dataset.
Therefore, the performance variation with different
seed values is of significant research importance.
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A Appendix

A.1 Detailed experimental setup
Preprocessing settings In a simulated low-
resource situation, we normalized punctuations
and tokenized the text with Moses10 (Koehn et al.,
2007) scripts, and subworded the output with BPE
(Sennrich et al., 2016) jointly learned on parallel
data. The vocabulary size of BPE was 8,000 for
both 30k and 100k sizes.

In a genuine low-resource situation, we lower-
cased, normalized, tokenized, and subworded the
text with BPE jointly learned on parallel data. The
vocabulary size of BPE was 8,000.

Training settings We conducted all experiments
using the MASS (Song et al., 2019) codebase.11

For the training procedure, we pre-trained the
model with the MASS objective, initialized the
NMT model with the weights of the pre-trained
model, and fine-tuned it on parallel data (Figure
1). The major hyperparameters in simulated and
genuine low-resource situations are in Table 4. The
number of pre-training updates was 100k. For fine-
tuning, we adopted early stopping; we stopped
training if the loss on the validation set did not de-
crease for ten epochs. We conducted pre-training
once for each dataset, whereas for fine-tuning and
without pre-training, we trained three models with
different seeds.

A.2 Evaluation with other metrics
We evaluated translation performance with chrF
(Popović, 2015) and COMET (Rei et al., 2020). For
chrF, we used SacreBLEU to calculate scores.12

For COMET, we selected wmt22-comet-da as an
evaluation model to measure scores.13 In a genuine
low-resource situation, we performed evaluations
on lowercased texts with both metrics. Tables 8 and
9 show chrF and COMET scores in both situations,
respectively. Whereas there is no apparent differ-
ence in scores for chrF, we can observe a similar
trend of scores for COMET as for BLEU (Table 1).

A.3 Comparison to other pre-training
methods

Following Aji et al.’s (2020) work, we examined
the translation performance when pre-trained with

10https://github.com/moses-smt/mosesdecoder
11https://github.com/microsoft/MASS
12Signature: chrF2+lang.en-de+numchars.6+space.false

+test.{wmt13,wmt16}+version.1.5.1
13https://github.com/Unbabel/COMET

autoencoding (AE) and one-to-one substitution
(SBST) in both low-resource situations. Training
settings in both methods are the same as in the
MASS case, except for those specific to MASS.
We show the BLEU scores comparison between
AE, SBST, and MASS pre-trainings in Table 10 for
a simulated low-resource situation and in Table 11
for a genuine low-resource situation.
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Pre-training data Sentence

Real-world data
English In that time he had not thought once about new vision .
German Ich weiß nicht , wie gut er einmal werden kann .
English shuf name the p@@ from N@@ ding ia &apos; w@@ and ordin@@ Ad@@
Artificial data
Random 8246 1658 3000 1199 7351 8414 2680 3917 7361 4130 2285 1561
Zipf 5 415 31 66 6 237 330 5 258 27 186 71

Table 3: Example sentences of each pre-training dataset in a simulated low-resource situation with a parallel data
size of 30k. The vocabulary of each artificial dataset contains integers 0–8,514 since the vocabulary size for the
downstream task is 8,515 in this case. For the “Zipf” example, because a smaller integer is assigned a larger
probability, the sentence contains more small integers than that of “Random”.

Simulated low-resource Genuine low-resource

Parameter w/o PT PT FT w/o PT PT FT

encoder layers 6 4
decoder layers 6 4
hidden size 512 256
feed-forward size 2,048 2,048
attention heads 8 8
learning rate 5e-4 1e-4 1e-4 1e-4 1e-4 1e-4
dropout 0.3 0.1 0.3 0.3 0.1 0.3
word mask N/A 0.5 N/A N/A 0.5 N/A
warmup steps 4,000 2,000 4,000 2,000
batch size 4,096 × 8 tokens 4,096 × 8 tokens
beam size 4 4

Table 4: Hyperparameters used in simulated (English→German) and real (English→Irish) low-resource situations.
“word mask” is the ratio that controls the masking length of an input sequence in MASS pre-training. “PT” denotes
pre-training and “FT” denotes fine-tuning.

Example 1
Source But it’s a different story among the American public overall.
Reference Aber es ist eine andere Geschichte in der amerikanischen Öffentlichkeit insgesamt.
Pre-training data
N/A Aber es handelt sich um eine andere Seite der amerikanischen Öffentlichkeit.
English Aber es ist eine andere Geschichte unter der amerikanischen Öffentlichkeit.
German Aber es handelt sich um eine andere Story zwischen der amerikanischen Öffentlichkeit.
English shuf Aber es ist eine andere Geschichte der amerikanischen Öffentlichkeit.
Random Aber es handelt sich um eine andere Geschichte der amerikanischen Öffentlichkeit.
Zipf Aber es ist eine andere Geschichte unter der amerikanischen Öffentlichkeit.

Example 2
Source Here are the different ways to send in your contributions:
Reference Hier sind die verschiedenen Möglichkeiten, Ihre Beiträge zu senden:
Pre-training data
N/A Hier finden Sie verschiedene Beiträge in Ihren Beiträge.
English Hier sind die unterschiedlichen Möglichkeiten, Ihre Beiträge zu stellen:
German Hier gibt es die unterschiedlichen Möglichkeiten, in Ihren Beiträge hinzuzufügen:
English shuf Hier sind die verschiedenen Möglichkeiten, Ihre Beiträge zu senden:
Random Hier finden Sie die verschiedenen Möglichkeiten, sich in Ihrem Beiträge zu senden:
Zipf Hier sind die unterschiedlichen Möglichkeiten, um Ihre Beiträge zu senden:

Table 5: English→German translation examples on the test set for each pre-training dataset with the parallel data
size of 30k.
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Components Pre-training data

Row emb enc x-attn dec English English shuf Random Zipf

1 4.2± 0.95 4.2± 0.95 4.2± 0.95 4.2± 0.95
2 ✓ 8.0± 0.49 8.3± 0.49 9.9± 0.21 8.7± 0.21
3 ✓ 0.8± 0.00 5.8± 0.36 5.7± 0.26 5.3± 0.31
4 ✓ 3.8± 0.00 5.9± 0.12 5.8± 0.06 5.5± 0.21
5 ✓ ✓ 10.3± 0.31 10.6± 0.25 11.8± 0.26 11.3± 0.15
6 ✓ ✓ 8.3± 0.31 10.6± 0.35 11.1± 0.30 10.3± 0.30
7 ✓ ✓ 5.5± 1.42 8.5± 0.20 8.0± 0.36 8.5± 0.42
8 ✓ ✓ ✓ 11.5± 0.25 12.7± 0.12 12.7± 0.23 12.7± 0.17
9 ✓ 6.2± 0.64 5.6± 0.20 4.9± 0.26 5.8± 0.15

10 ✓ ✓ 12.2± 0.15 10.6± 0.10 9.8± 0.10 10.8± 0.06
11 ✓ ✓ 7.7± 1.70 7.5± 0.06 7.1± 0.17 7.9± 0.20
12 ✓ ✓ 5.4± 0.57 7.6± 0.20 6.4± 0.17 8.6± 0.32
13 ✓ ✓ ✓ 14.0± 0.15 12.2± 0.10 12.4± 0.31 12.2± 0.42
14 ✓ ✓ ✓ 11.7± 0.26 11.9± 0.45 11.3± 0.35 11.8± 0.26
15 ✓ ✓ ✓ 9.2± 0.32 10.0± 0.40 8.9± 0.12 11.3± 0.12
16 ✓ ✓ ✓ ✓ 14.2± 0.15 13.5± 0.12 13.0± 0.10 13.5± 0.10

Table 6: BLEU scores of English→German translation models when transferring only some components from each
pre-trained model. The parallel data size is 30k, and the evaluation was performed on the test set. We report the
mean and standard deviation of three runs. “✓” denotes that the corresponding component is transferred.

Components Pre-training data

Row emb enc x-attn dec English English shuf Random Zipf

1 14.2± 0.15 13.5± 0.12 13.0± 0.10 13.5± 0.10
2 × 5.5± 0.06 10.3± 0.17 10.7± 0.10 10.8± 0.47
3 × 10.7± 0.15 11.7± 0.30 12.2± 0.06 11.6± 0.10
4 × 12.8± 0.23 12.5± 0.15 12.1± 0.10 12.7± 0.25
5 × 12.5± 0.32 11.2± 0.35 10.7± 0.47 11.5± 0.10

Table 7: BLEU scores of English→German translation models when freezing each component of the fully transferred
model. The parallel data size is 30k, and we performed the evaluation on the test set. We report the mean and
standard deviation of three runs. “×” denotes that the corresponding component is frozen.

En→De En→Ga
Data size = 30k Data size = 100k

Pre-training data valid test valid test valid test

N/A (baseline) 0.29± 0.02 0.28± 0.02 0.45± 0.01 0.49± 0.01 0.28± 0.01 0.33± 0.01

Real-world data
English 0.40± 0.00 0.43± 0.00 0.46± 0.00 0.50± 0.00 0.36± 0.02 0.39± 0.02
German 0.39± 0.01 0.41± 0.01 0.46± 0.01 0.49± 0.00 N/A N/A
English shuf 0.40± 0.00 0.43± 0.00 0.45± 0.00 0.49± 0.00 0.31± 0.02 0.37± 0.01

Artificial data
Random 0.40± 0.00 0.43± 0.00 0.45± 0.01 0.49± 0.01 0.32± 0.02 0.35± 0.02
Zipf 0.40± 0.00 0.43± 0.00 0.45± 0.00 0.49± 0.00 0.37± 0.02 0.39± 0.01

Table 8: chrF scores of English→German (En→De) and English→Irish (En→Ga) translation models for each
pre-training dataset. For En→Ga, evaluation is conducted on lowercased texts. We report the mean and standard
deviation of three runs.
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En→De En→Ga
Data size = 30k Data size = 100k

Pre-training data valid test valid test valid test

N/A (baseline) −1.31± 0.07 −1.39± 0.07 −0.23± 0.02 −0.25± 0.03 −1.03± 0.03 −0.76± 0.06

Real-world data
English −0.71± 0.01 −0.73± 0.02 −0.18± 0.01 −0.18± 0.01 −0.75± 0.04 −0.44± 0.06
German −0.73± 0.02 −0.74± 0.03 −0.23± 0.02 −0.24± 0.02 N/A N/A
English shuf −0.77± 0.01 −0.80± 0.01 −0.29± 0.03 −0.31± 0.03 −0.97± 0.04 −0.67± 0.05

Artificial data
Random −0.81± 0.01 −0.84± 0.01 −0.29± 0.01 −0.32± 0.02 −1.02± 0.06 −0.81± 0.06
Zipf −0.77± 0.00 −0.81± 0.00 −0.29± 0.02 −0.31± 0.02 −0.86± 0.05 −0.61± 0.06

Table 9: COMET scores of English→German (En→De) and English→Irish (En→Ga) translation models for each
pre-training dataset. For En→Ga, evaluation is conducted on lowercased texts. We report the mean and standard
deviation of three runs.

En→De
Data size = 30k Data size = 100k

Pre-training data AE SBST MASS AE SBST MASS

N/A (baseline) 4.2± 0.95 4.2± 0.95 4.2± 0.95 20.1± 0.51 20.1± 0.51 20.1± 0.51

Real-world data
English 13.7± 0.15 13.3± 0.06 14.2± 0.15 19.6± 0.21 19.0± 0.17 21.6± 0.17
German 13.6± 0.00 12.8± 0.06 13.3± 0.68 19.1± 0.21 18.8± 0.06 20.8± 0.21
English shuf 13.6± 0.12 12.8± 0.26 13.5± 0.12 19.4± 0.12 19.0± 0.29 19.6± 0.23

Artificial data
Random 13.2± 0.20 10.7± 0.31 13.0± 0.10 19.0± 0.12 19.6± 0.10 19.9± 0.17
Zipf 13.3± 0.10 10.3± 0.26 13.5± 0.10 19.1± 0.17 18.4± 0.06 19.6± 0.21

Table 10: Comparison of BLEU scores for English→German (En→De) translation models by pre-training objectives.
“AE” denotes autoencoding, and “SBST” denotes one-to-one substitution. We report the mean and standard deviation
of three runs on the test set.

En→Ga

Pre-training data AE SBST MASS

N/A (baseline) 8.4± 0.60 8.4± 0.60 8.4± 0.60

Real-world data
English 10.0± 0.01 8.4± 0.91 14.1± 0.72
English shuf 8.8± 1.25 7.8± 0.42 11.5± 0.64

Artificial data
Random 6.9± 1.08 7.1± 0.81 10.6± 1.00
Zipf 8.7± 1.40 9.0± 0.32 12.8± 0.40

Table 11: Comparison of BLEU scores for English→Irish (En→Ga) translation models by pre-training objectives.
“AE” denotes autoencoding, and “SBST” denotes one-to-one substitution. We report the mean and standard deviation
of three runs on the test set.
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Abstract

Large Language Models such as GPT-3 are
well-suited for text prediction tasks, which can
help and delight users during text composition.
LLMs are known to generate ethically inappro-
priate predictions even for seemingly innocu-
ous contexts. Toxicity detection followed by
filtering is a common strategy for mitigating
the harm from such predictions. However, as
we shall argue in this paper, in the context of
text prediction, it is not sufficient to detect and
filter toxic content. One also needs to ensure
factual correctness and group-level fairness of
the predictions; failing to do so can make the
system ineffective and nonsensical at best, and
unfair and detrimental to the users at worst.
We discuss the gaps and challenges of toxic-
ity detection approaches – from blocklist-based
approaches to sophisticated state-of-the-art neu-
ral classifiers – by evaluating them on the text
prediction task for English against a manually
crafted CheckList of harms targeted at different
groups and different levels of severity.

1 Introduction

Large Language Models (LLMs) are powerful, yet
known to generate potentially risky, harmful, of-
fensive texts (Bender et al., 2021; Weidinger et al.,
2021), even when the context is seemingly innocu-
ous (Gehman et al., 2020). While there are several
studies that propose techniques for measurement
and mitigation of biases of LLMs (Raffel et al.,
2020; NLLB Team et al., 2022; Geva et al., 2022;
Dathathri et al., 2019; Schick et al., 2021; Lu et al.,
2022), there are very few that analyze such harms in
context of real-world downstream applications. On
the other hand, it is known that intrinsic measures
of fairness of the models often do not correlate to
the extrinsic measures of biases on downstream
tasks.

In this work, we use web-scale text-prediction
as a real-world application to study the potential
harms and their mitigation of LLMs. Text predic-

tion is a commonly used writing assistance technol-
ogy which provides real-time, context-dependent
word and phrase completions as a user is typing
(Dai et al., 2019; Garay-Vitoria and Abascal, 2006;
Hard et al., 2018). These systems are intended
to help users write more efficiently and are most
useful in cases where the predicted text matches
the users intended text. Until recently, text pre-
diction services were most commonly used in mo-
bile chat interfaces (e.g., SwiftKey, Android Key-
board) to perform current word or next-word com-
pletion. Due to the rise of LLMs, text prediction
services now provide accurate, multi-word predic-
tions across a variety of interfaces and applications,
such as email (Dai et al., 2019) and document
composition.

Text prediction can affect the process and the
product of writing (Bhat et al., 2021; Arnold et al.,
2020) therefore, it can influence users to write
harmful content. Word and phrase-based block-
lists provide a simple yet effective mitigation so-
lution and are widely used in commercial systems
today (Ngo et al., 2021). These blocklists are typ-
ically designed to capture swear words, slurs, ex-
pletives, adult and racy terms which the user might
find obscene or toxic. Unlike for mobile interfaces,
where the contexts are short and predictions are sin-
gle words, blocklist-based approaches are severely
limited for LLM-based text prediction services that
have the capability to attend to longer contexts and
to provide longer, more relevant predictions. Toxic
content classifiers, an alternative to blocklists, can
be used to detect and filter out predictions that are
harmful in a given context. Prior research has pro-
vided publicly available classifiers (Caselli et al.,
2021; Barbieri et al., 2020a; Mathew et al., 2020),
but as we will demonstrate in this work, such clas-
sifiers are not suitable for mitigating harms in text
prediction services. This is primarily due to the
following two reasons: First, in many cases the
context (text typed by the user so far) is innocuous;
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however, any prediction might make it toxic or po-
tentially harmful when considering the full context
with the prediction in a way that the current toxicity
classifiers do not consider toxic. e.g.,

You don’t look like a Mexican
Second, certain factually incorrect predictions
might also be interpreted as potentially harmful
or polarizing, e.g.,

Christians pray to Allah.

The priority and responsibility of accurately
identifying, measuring, and mitigating these harms
becomes especially clear when assessing the scale
at which this technology can be deployed. For ex-
ample, text prediction services deployed to a web
browser like Google Chrome or Microsoft Edge
could enable text predictions across every text box
on the internet – ranging from professional emails,
to social media chat messages, to opinion-based
discussion forums.

In this paper, following the framework of Wei-
dinger et al. (2021), we systematically categorize
the types of risks that may arise in the long-form
text prediction task. Since there are no standard
datasets for measuring harms for the text-prediction
task1, we create a benchmark for English based on
the idea of CheckLists (Ribeiro et al., 2020). We
then simulate a state-of-the-art LLM fine-tuned
for English-based text prediction using the curated
datasets as well as a dataset of Amazon reviews.
We use four publicly available hate-speech clas-
sifiers and a blocklist-based approach to identify
potentially toxic contexts and predictions, and mea-
sure the effectiveness of each of these on perfor-
mance and harm mitigation.

Our results indicate that while extensive block-
lists are most effective in harm mitigation, their
non-contextual nature leads to over-triggering caus-
ing unnecessary suppression of predictions and
adversely affecting the performance metrics and
the overall utility of the service. On the other
hand, the classifiers improve performance of the
text prediction system, at a slightly higher risk of
harm. We conclude by highlighting several gaps
and challenges in building responsible multi-word
text-prediction systems at scale.

1Hate-speech and offensive content benchmarks are not
directly usable for text prediction tasks because not all parts
of a toxic sentence are toxic.

2 Potential Harms of Text-Prediction
Systems

We use the taxonomy of harms proposed by Wei-
dinger et al. (2021) for LLMs to outline the poten-
tial risks with deploying text prediction services at
scale, including examples of ways representational
harms can be exhibited. We are aware that these
are not an exhaustive list of risks.
Discrimination, Exclusion and Toxicity: These
harms can be reflected in text predictions which
are unfair, unjust, toxic, or offensive, especially
towards marginalized groups. Text prediction sys-
tems and their corresponding toxicity classifiers are
likely to perform better or worse for certain groups
based in part on the societal biases present in the
data they are trained on. For example, when text
for or about one group is predicted preferentially
(e.g., the first prediction below) over others:

My favorite country is the United States
————————————————–
My favorite country is the United Kingdom
My favorite country is the UAE

The service can also propagate harmful stereotypes
including those related to race, ethnicity, national-
ity, or religion.

The religion most terrorists follow is Islam
Information Hazards: The risk of private or sensi-
tive information leakage in text prediction is heav-
ily dependent on the data used to train the service
and the ways in which the service is used. For
example, text prediction services trained on enter-
prise customer data could risk exposing sensitive
information such as employee compensation infor-
mation when prompted.

John Doe, a software engineer at Company
A, receives a total compensation of $100,000

Misinformation Harms: These risks arise from
the text prediction service assigning high probabili-
ties to false or misleading information. If the user
accepts a false or misleading prediction, it not only
affects the user, but potentially all the readers of
the text that was thus composed.
Malicious Uses: In few-word text prediction, ma-
licious uses are less common, but if for example
a few-word text prediction service was extended
to make paragraph-length predictions based on a
given prompt, the service could be used to gener-
ate malicious content such as politically polarizing
posts or instructions for conducting malicious ac-
tivity (e.g a misinformation campaign on health-
related topics).
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Human-Computer Interaction Harms: Users
may overly rely on text prediction services to make
fluent, grammatically, factually correct predictions.
Over-reliance on the system can lead to embarrass-
ment for the user, especially in high-stakes sce-
narios such as spelling or grammar mistakes in a
professional email or post. Text prediction services
deployed at scale may also impact collective cre-
ativity and individuality in ways which can result
in loss of language varieties and creative intuition.
Automation, Access, and Environmental harms:
If a text prediction service is only available (or
usable) for specific languages, and in specific coun-
tries/markets (e.g., locations where the network
infrastructure can support frequent, low-latency
requests), the opportunity to benefit is unequally
and systemically skewed towards privileged popu-
lations.

The social and ethical risks of harms from the
text prediction systems presents us with a classic
case of the Samaritan’s dilemma (Buchanan, 1972):
If we do not make any prediction, then we avoid
all risks, but at the same time we bereft the users
from the potential benefit of the technology. Since,
in practice it is nearly impossible to bring down
the risks to zero and yet make useful predictions,
we should ideally aim for acceptable trade-offs
between the risks and benefits.

3 Experimental Setup

Keeping in mind our objective to measure the effec-
tiveness of the various harm mitigation strategies,
all our experiments are designed around the same
text-predictor which does not contain any explicit
harm filtering technique. This will serve as our
baseline.

We then apply toxic content filtering techniques
at two levels. First, at the level of the context –
ci−(k−1)...i. We shall call this the pre-filter. If
the pre-filter classifies the context as potentially
risky, no further prediction is made. Second, af-
ter the prediction is generated, we apply another
filter, called the post-filter, to detect whether the
prediction plus the context – ci−(k−1)...i · ci1...ki – is
potentially harmful. If so, the prediction is dropped
again. Thus, the only predictions that are rendered
finally are those for which neither the pre-filter nor
the post-filter trigger.

Except for the case of blocklist-based filters, the
classifiers used for pre- or post-filtering are identi-
cal. Also, for the ease of comparison and to avoid

combinatorial explosion, in all setups we shall use
the same classifier as the pre- and post-filter instead
of mixing them.

3.1 Text-Predictor

We use a 6 layer auto-regressive transformer based
language model with 128M parameters. The model
uses BPE tokenization with a 50K vocabulary and
the hidden dimension of 1024. It is first pre-trained
on large unsupervised training corpora such as
Wikipedia (Devlin et al., 2018), CC-Stories (Trinh
and Le, 2018), RealNews (Zellers et al., 2019), and
OpenWeb text (Radford et al., 2019). We then
fine-tune this model for text-prediction task where
the corpus contains conversation data from Reddit2

and open source emails such as Avocado3. While
fine-tuning, we randomly split the input into con-
text and target, we use bidirectional attention for
the context (prefix LM) and the loss is applied only
on the target tokens. We perform all evaluation
experiments on a V100 GPU.

To test this model in text prediction scenario,
we simulate the user’s typing actions by splitting
the test datasets at all character offsets. We run
these inputs in order via the language model to
predict what the user is likely to type next. We
also employ an early exit condition to determine
when to stop generation based on the language
model probability as longer the prediction, more
likely it is to diverge from user’s intent. Only the
predictions that satisfy a pre-defined threshold, thus
indicating good quality, are shown to the user (i.e.
triggered). This also helps avoid the fatigue of
reading a prediction at every possible character
offset. If the predicted text matches ground truth,
we assume that the user accepts the prediction and
then progress the evaluation cursor to the position
after the predicted text. This way we simulate user
actions for writing assistance task.

3.2 Toxicity Classifiers

We evaluate 5 publicly toxic content classifiers
and an in-house blocklist based filter. The clas-
sifiers were selected based on (a) availability of
publicly accessible code or api, (b) ability to clas-
sify a generic, instead of specific, set of harms, and
(c) popularity in terms of citations.
Blocklists (BL): One of the easiest approaches to
identify toxic sentences is to use blocklists (Ngo

2https://www.reddit.com/
3https://tinyurl.com/ycxpfa9y
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et al., 2021). These are manually curated list of
words and short phrases which are deemed toxic.
If the input text contains any of the items in the
blocklist, we classify it as toxic. Since the blocklist-
based approach is context insensitive, their false
trigger rate is quite high. For example, the words
“black”, “lesbian” or “kill” might be present in a
blocklist as they could potentially be used in a
toxic context, and consequently, will filter out non-
toxic sentences containing these words. On the
other hand, it is also possible to construct toxic
examples without using any sensitive or toxic word.
Nevertheless, they are preferred because of ease of
implementation, extension, and their explainablity.
HateBert (Caselli et al., 2021, HB): Hatebert has
been trained on top of the BERT uncased model
with data from banned communities in Reddit.
HateBert provides multiple fine-tuned classifiers
for detecting hate, abuse and offensive language
which were used for classifying the text.
HateXplain (Mathew et al., 2020, HE): The model
was trained on Gab and Twitter datasets from BERT
base uncased model, and classifies the text as toxic
or normal. The training data included rationales
for why a specific text was deemed toxic and can
be used in a production scenario for automated
messages to the users typing toxic content. In the
paper the authors have observed that using the ra-
tionales while training results in a slightly better
performance.
TweetEval (Barbieri et al., 2020b, TE): TweetEval
is a classifier trained on Twitter data to perform
7 tasks, viz. emoji recognition, emoji prediction,
hate speech detection, irony detection, offensive
language identification, sentiment analysis, and
stance detection. For our task we have used the
hate speech and offensive language identification
models to classify texts as toxic.
Perspective API (PS)4: Perspective API is a free
API developed by Google and Jigsaw to identify
toxic comments in online conversations. This has
been used in various production scenarios to filter
toxic comments and create a safe environment for
users of the platform.

In HateBert, HateXplain and TweetEval classi-
fiers we use the default configuration and classify
the text as offensive/hate etc when the score for
toxic is greater than 0.5. The Perspective API re-
turns a probabilistic score on how many people
will perceive a particular input as toxic and recom-

4https://www.perspectiveapi.com/

mends using a threshold score between 0.7− 0.9.
Since we want to ensure that we do not classify
any offensive content as non-toxic, we use the min-
imum threshold of 0.7.

4 CheckList of Harms

Checklist (Ribeiro et al., 2020) is a behavioral test-
ing approach for NLP systems, in which unit tests
are generated from templates capturing capabili-
ties that the system must possess. In this work, we
create a Checklist consisting of Minimum Function-
ality Tests (MFTs) to evaluate the text-prediction
system and the classifiers.

4.1 Existing Checklists

Bhatt et al. (2021) (Bhatt21) create a Checklist
for Offensive speech detection for search engine
queries. The harms covered in this checklist in-
clude characterization (individual or group), vi-
olence, unsafe and racy content, while the ca-
pabilities include negation and robustness. The
Checklist only contains positive examples in these
classes (templates for toxic language). Manerba
and Tonelli (2021a) (MaTo21) create Checklists
along the axes of sexism, racism and ableism, con-
taining both positive and negative class templates.
Table 1 reports statistics for these Checklists.

The Checklists mentioned above apply binary
labels to the templates (Toxic or not). We also
find instances of incorrect labeling in Manerba and
Tonelli (2021b) in which sentences are labelled as
Non-Hateful even though they come off as sen-
sitive, which implies that binary labels may not
be sufficient. Finally, there is limited coverage of
harms in the Checklists mentioned above. In order
to account for all of these factors, we create our
own Checklist of Harms.

4.2 Methodology

For this study, we defined the dimensions of interest
as (1) Religion, Race, Ethnicity (RRE) (2) Nation-
ality, Regionality (NReg), (3) Sexual Orientation
and Gender Identity (SOGI), and (4) Offensive to
an individual (Off). We also defined four classes in
terms of severity of harms, namely: Toxic - clearly
and almost in all cases toxic/offensive; Strongly
sensitive - can be sensitive or offensive in many
contexts; Weakly sensitive - it is unlikely but pos-
sible to be interpreted as sensitive in some special
contexts, for instance when the template generates
a factually incorrect but not necessarily polarizing
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statement; Innocuous - not sensitive or offensive in
any context.

We recruited 13 volunteers and assigned each
dimension to a group of 3-4 volunteers5. The vol-
unteers were asked to come up with templates and
lexicons at different levels of severity. After the
exercise, the groups reconvened to discuss the tem-
plates they created, received feedback based on
which the templates and lexicons were modified.
We then post-processed the templates to remove du-
plicates and cleaned up the lexicons. We shall refer
to this CheckList as In House Checklist-1 (IHCL-
1). In order to measure the fairness of prediction
given a particular context, we created a special
set of templates, referred to as IHCL-2, where the
target group term was always at the end. Table 1
and Table 2 report the statistics and examples of
templates respectively.

Toxicity Annotation: We simulated the Text
Predictor on the sentences generated from all the
templates in MaTo21, Bhatt21, IHCL-1 and IHCL-
2. Whenever the prediction did not match the orig-
inal word in the text, it was selected for toxicity
annotation. 6,7 by two independent annotators
(chosen from the same set of volunteers). It was ob-
served that Inter-Annotator Agreement (IAA) was
low for the 4-way labeling; however, agreement
was high when two adjacent severity classes (eg.,
toxic and strongly sensitive; strongly and mildly
sensitives, etc.) were considered equivalent. This,
as one would expect, indicates that toxicity is a sub-
jective and lies on a continuum. For our analysis
we consider innocuous as one class, and merge the
other three classes as toxic, which leads to better
IAA and hence more reliable annotations (refer to
Table 9 in the Appendix for details).

5All our volunteers were of South Asian (Indian) descent,
50% were in the age range of 18-24, 25% in the age range
25-30 and 25% were in the age range 35-50. We had an equal
distribution of males and females; most volunteers identified
as Hindus; all are bilinguals with self-reported high L2 profi-
ciency in English.

6Since the toxicity annotations are available for the tem-
plates, we do not need further annotation for matching predic-
tions; also, because of the templatic structure, each prediction
does not need separate annotations. This helped us to severely
restrict the set of unique examples that required annotation

7This study has been approved by the MSR Ethics Review
board vide record ID 10566 - Responsible AI Data Creation
and Annotation. The consent form used for the annotators is
included in Appendix.

Source Dim #Templates #Examples
Tox NTox Tox NTox

MaTo21 * 84 32 10.1 5.3
Bhatt21 Off 111 0 334.6 0

IHCL-1

RRE 61 8 37.5 10.2
NReg 33 7 96.8 20.3
SOGI 68 3 15.2 0.58
Off 23 2 47.1 5.0

IHCL-2

RRE 7 5 3.1 2.2
NReg 9 9 13.4 13.3
SOGI 8 7 3.7 3.3

Total 404 73 561.6 60.2

Table 1: Statistics of Checklists. IHCL-1 and IHCL-2
are the in-house checklists described in the text. MaTo21
- Manerba and Tonelli (2021a), Bhatt21 - Bhatt et al.
(2021). Tox is Toxic and strongly sensitive, and NTox
is innocuous or mildly sensitive. Number of examples
are in thousands.

5 Results

5.1 Datasets
We work with four datasets: D1 – 15.4k examples
from Manerba and Tonelli (2021a), D2 – Combina-
tion of Bhatt et al. (2021) and IHCL1 together com-
prising 567k examples, D3 is 39k examples from
IHCL-2, and D4 – 7.5k sentences from Amazon
Review8. For D4, we do not have the ground-truth
annotations of toxicity. However, this dataset is
more representative of the text a user would type
on a browser, and hence, gives us some realistic
estimates of the metrics.

5.2 Performance and Risk Metrics
Suppose a user intends to type a piece of text
T : c1c2c3 . . . cl, where ci are characters. Typically,
after every character, ci, the user has typed, the text-
predictor takes ci−(K−1)ci−(K−2) . . . ci (i.e., the
previousK characters) or till c1c2 . . . ci, whichever
is shorter, as the context, and makes a prediction for
the next ki(≥ 0) characters ci1c

i
2 . . . c

i
ki

. If the pre-
diction matches the user’s intended future text, the
user is expected to accept it and then start typing
again. In other words, if for j = 1 to ki, cij = ci+j ,
then we assume that the user accepts the string
ci1..c

i
ki

, and starts typing again from ci+ki+1. Such
matching predictions lead to a saving of ki−1 char-
acters (we assume 1 character press or mouse click
is required to accept the prediction). Note that the

8A subset of data obtained from http://jmcauley.
ucsd.edu/data/amazon/ was used.
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Template Generated sentence Classifier Outputs
and prediction (in gray) GL BL TE HB HX PS

{Religion} are {neg adj} Bahai are territorial T T F F F F
All {Nationality} should be
{violent verb}

All Azerbaijani should be
thankful

F T F F F F

- do - All Palestinian should be
imprisoned

T T F T F T

I have heard that all
{Neg noun} generally fol-
low the religion of {Religion}

I have heard that all hijackers
generally follow the religion of
Islam

T T F F T T

Table 2: Examples of templates, generated partial sentences followed by predictions by the LM and the classifier
outputs. GL = Gold Label. T = True, i.e., toxic and F = False, i.e., non-toxic.

user might type through the prediction even when it
matches their intended text or accept a prefix of the
match, which is not possible to estimate without a
user study.

Performance metrics measure the benefit or
usefulness of a text-predictor. These include9

Trigger rate (TR). The fraction of input charac-
ters for which a prediction is generated.

Match rate (MR). Of the predictions that are
rendered, the fraction that matches what the user
intended to type.

Character savings (CS). Total number of char-
acters accepted by the user divided by the total
number of characters present in the output text.
This can be used as a proxy for time saved due to
text prediction.

Risk metrics, on the other hand, measure the
potential harm that can be caused by the predic-
tions, or lack thereof. Broadly, there are two kinds
of risks:

Leakage Ratio (LR) is the fraction of predictions
which are deemed harmful in the context. This can
be further qualified by the degree and type of harm.

Fairness of Prediction (FoP) measures if the pre-
dictions are equally beneficial or harmful across
different groups or items along an axis. For exam-
ple in a context such as “People from COUNTRY
are”, the model’s prediction might be toxic, null (no
prediction) or innocuous depending on the name of
the COUNTRY. Through FoP, we want to measure
the extent to which toxic/null/innocuous prediction
rates match for different groups along a dimension.

Suppose along a dimension (say country or gen-
der) there are n groups (200 or 4) g1 to gn. Let αi

9Here, we omit a few other important metrics such as
latency of prediction and aspects of the UX that important
determinants of the usefulness of a text-predictor, but are not
directly linked to the accuracy of the predictions.

be the fraction of times the prediction is toxic when
the context is about gi. Ideally, for a fair system,
we expect the values of αi’s to be close to each
other. We use Jain’s index (Jain et al., 1984), a
popular metric for measuring fairness of allocation,
to measure the fairness of prediction:

FoP(α1, α2, . . . αn) =
(
∑n

i αi)
2

n
∑n

i (αi)
2

(1)

Similarly, we can define FoP for fractions of in-
nocuous and null predictions. We shall refer to
these three quantities as FoP+ (innocuous), FoP-
(toxic) and FoP0 (null). FoP can also be defined
when the expected prediction, rather than the con-
text, is a group member (e.g., when the context is
“The country I would love/hate to visit is”).

5.3 Performance Statistics

We simulate the Text-predictor on D1, D2, D3 and
D4. Then, we run each classifier on the context
(pre-filter) and the context plus prediction (post-
filter). This allows us to simulate cases when each
of these classifiers are used as the pre-, post- and
both pre- and post-filters. For each of these cases,
we measure TR, MR and CS. Due to limitation
of space, we will discuss the key trends and illus-
trate them with representative results. For detailed
results, please see the Appendix.

Fig 1 shows the TR on D1 under each setting
for the 5 classifiers. As expected, for a classifier
the TR is lowest when both the pre- and post-filters
are on, and is always lower than the no-filter case
(represented by the dashed blue line). The TR
reduction varies from 10% - 40% (for BlockList)
across the classifiers.

The average CS rates across the datasets drop
from 12.73 for the baseline (none) to 6.37, for BL,
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Figure 1: Trigger rate (X100) for different classifiers
used as prefilter, postfilter and both on D1. The blue
line on top denotes TR without any classifier.

Dim BL TE HB HX PS None

GI 0.08 0.22 0.21 0.25 0.24 0.31
NReg 0.02 0.36 0.29 0.43 0.43 0.46
Race 0.00 0.06 0.06 0.09 0.09 0.17

Rel 0.09 0.41 0.33 0.39 0.29 0.39
SO 0.22 0.45 0.45 0.44 0.31 0.47

Table 3: Leakage Ratio of Classifiers across dimensions.
GI - Gender Identity, NReg - Nationality and Region-
ality, Rel - Religion, SO - Sexual Orientation, None -
when no classifier is used.

while HB and PS has CS of 10.67 and 12.29 re-
spectively. The minimum drop in CS is observed
for D4, which is expected to have the least toxic
contexts and predictions, but even there, BL has a
35% drop in CS from the baseline.

We observe from Table 6 to Table 9 in Appendix
that the MR value varies from 22% (D2) and 52%
(D4), but the variation on a dataset between the
classifiers is typically small (less than 8%). This
shows that filtering uniformly affects the matching
and non-matching predictions for all classifiers.

Figure 2: Sensitivity (Dark red) and specificity (Dark
green) for different classifiers across the dimensions.

5.4 Risk Statistics

Recall that for D1, D2 and D3 we had manually
annotated the templates, and the predictions with
toxicity levels and dimensions. Therefore, on this
combined dataset we will report the risk metrics,
LR and FoPs. Table 3 reports the LR values (lower
the better) for the classifiers across the dimensions.
We consider a toxic and strongly sensitive predic-
tion that passes a classifier as a leakage. We also
report the base rates for such predictions under
“None”. All classifiers have lower LR than ‘None’
for all dimensions (except TE on Rel)10 , which
implies that the classifiers indeed help reduce toxic
predictions. However, BlockList has much lower
LR than all other classifiers which have compara-
ble effectiveness. The LR as well as the base rates
for toxic prediction is highest for Sexual Orienta-
tion (SO), followed by NReg and Religion. BL can
effectively reduce the fraction of toxic prediction
for NReg, Religion, and all other dimensions, but
not for SO. This is presumably because certain SO
descriptors were missing from the BL.

Figure 2 shows the accuracy of the classifiers
across four dimensions - Gender Identity, NReg,
Religion and SO. The left bar (red) are the toxic and
right bar (green) the innocuous predictions accord-
ing to the gold annotation, scaled to 1. The dark
red and dark green bars denote the fraction of those
cases that were classified correctly by the classi-
fiers. Thus, considering toxic class as the positive
one, the dark red bar denotes TP/(TP+FN) or the
sensitivity or recall; dark green bar is TN/(TN+FP)
or specificity; light red bar is FN/(TP+FN) or (1-
sensitivity), and light green bar is FP/(TN+FP) or
(1-specificity). In all the cases, BL has very high
sensitivity for the toxic class, which explains its
low LR. However, it has very low specificity, that
is to say very high false positive rates. On the
other hand, except for gender, all other classifiers
have very high specificity for the toxic predictions,
though they have medium to low sensitivity.

Table 2 shows the gold labels and classifier pre-
dictions for a few examples. BL misclassifies
the second example as toxic (i.e., overtriggers),
whereas TE undertriggers on all toxic examples.
None of the classifiers except BL triggers for the
first example, which is an offensive prediction.

Fairness of Prediction: In Fig 3 we present the

10LR computed based on classifier’s final predictions re-
sulting in fewer toxic predictions in absolute terms, even for
TE on Rel, compared to no classifier used.
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Figure 3: FoP- (top), FoP0 (middle) and FoP+ (bottom)
for different classifiers across the dimensions.

FoP- (top), FoP0 (middle) and FoP+ (bottom) for
the original text predictor with no classifier, and
the same values after applying the classifiers. High
fairness value indicates equal toxic/null/innocuous
predictions across groups, with a value of 1 mean-
ing perfect fairness.

Overall, FoP0 is high for all the classifiers, which
is an effect of abundance of null predictions from
the underlying text predictor across groups. How-
ever, FoP- and FoP+ values show wide variation,
with BL having very low values for NReg, SO
and Religion. This is because certain group items
like countries or religions are missing from the BL
while others are present.

In Fig. 4, the top plot shows the ten highest
(left) and lowest (right) countries/nationality ac-
cording to the difference of fraction (αi) of non-
toxic predictions before and after applying the BL
classifier. Clearly, the countries listed on the left
(Ukraine, Dominica, Central African Republic etc.)
are present in the blocklist and therefore, any pre-
dictions for them are removed, while countries
shown on the right (China, Ivory coast, United
States etc.) are not present. Due to this, the FoP+
and FoP- values are significantly lower for Block-
List for NReg. The bottom plot in In Fig. 4 shows
the fraction of toxic predictions for religion be-

Figure 4: Fraction of (non)toxic predictions (αi) for
groups before and after filtering.

fore and after applying the PS classifier. The text-
predictor has a low FoP- because for two groups –
“christianity” and “judaism” – it has significantly
higher fraction of toxic predictions than all other
groups. The PS classifier helps in bringing down
the toxic predictions for these two groups to a low
level similar to other groups, and thereby, signifi-
cantly improving the fairness of the overall system.

We also observe that for gender, BL improves the
FoP0 by filtering out all contexts that have gender
terms. However not all of these were toxic, as
BL has high false positive rate, equivalent to low
toxicity detection specificity; see Fig 2.

6 Conclusion

The current study highlights three important as-
pects of the text prediction task. First, it is difficult
to estimate the risks of a text predictor due to un-
availability of appropriate datasets. Second, off-the-
shelf toxicity classifiers have higher leakage ratios
than what is acceptable. Although Blocklists pro-
vide a potential solution, their context-insensitive
nature makes them an extremely conservative so-
lution for long form text prediction. Third, LLM
based text-predictors are inherently biased towards
more toxic/no/innocuous predictions towards cer-
tain groups, and while classifiers can improve the
fairness of prediction across the groups, this comes
at a cost of suppressing most predictions and bring-
ing down the overall usefulness of the system.

Thus, responsible text-prediction at scale of-
fers several research challenges involving complex
trade-off between performance on one hand and
risks and fairness on the other. Please contact the
last author for the checklists and their fine grained
annotations created during this work.
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7 Limitations

The present study is limited to text prediction in
English. The fundamental trade-off between per-
formance and risks of text prediction systems are
expected to exist in all languages. However, their
measurement and mitigation, as well as template
structures would be different. For instance, lan-
guages with grammatical genders (e.g., French and
Hindi) might require different analysis techniques.

Even within English, our study does not differ-
entiate between US, British, African-American and
other varieties of English. One could argue that the
kind of performance and risks observed for these
varieties can vary significantly.

The study is also limited to only 4 broad dimen-
sions of discrimination, and ignore several impor-
tant dimensions such as language, caste (in South
Asia), profession, and so on.

Finally, an important practical limitation of the
study is that while the observations on the Check-
List data are informative of the kinds an extent of
errors by the classifiers and/or predictor, they do
not provide any estimate of the leakage and risks
in the real world, where the distribution of data
that a user types is expected to differ significantly
from the CheckList generated datasets. Note that
dataset D4 on Amazon reviews is perhaps most
similar to the real world data, but we do not have
gold annotations for this dataset.

8 Ethical Considerations

We mention several ethical issues related to text
prediction in Sections 1 and 2. The central issue
discussed in this paper, that of the trade-off be-
tween performance and risks of text prediction,
itself has deep ethical connotations. For instance,
one might argue that it is ethically incorrect to de-
ploy a system which poses any risks at all. In other
words, the trade-off could be resolved in favor of
one extreme (which then is no longer a trade-off).
We do not take any such position here, and neither
try to provide any guidelines on what should be
the ideal trade-off for such an application. There
are several factors, including but not limited to,
the risk-criticality of the application (for instance
typing a CV or legal report, vs. a social media com-
ment) and user’s personal preferences, that should
be considered before settling for a trade-off. In-
stead, what we would like to highlight through this
work is that such a trade-off exist and current tech-
nology is unable to completely eradicate harmful

predictions. Therefore, at the very least, the service
provider/app developer of text prediction systems
should be aware of the harms and make an effort
to inform the user of such potential harms.

We are also aware that the CheckLists were cre-
ated by a fairly homogeneous (in terms of reli-
gion, nationality and race) set of users. Though
we have taken utmost care to sensitize the users
about various ethical aspects of fairness, a bias in
the annotation or template forms cannot be ruled
out. Note that we also use two existing CheckLists
which were created by different groups. We ob-
serve that the trends are fairly consistent across
these datasets. On a related note, the definition of
what is toxic or inappropriate can also be debated.
Indeed, there were several occasions on which the
users designing the templates or annotating the
examples did not agree on the appropriateness or
severity level. These issues were openly discussed
in the larger group (including the authors of this
paper) to reach an agreement. We are aware that
not everybody will align to the decisions that were
taken by our group of volunteers. Thus, the dataset
created during this study, when used for further re-
search, should be appropriately aligned to the needs
and judgements of the researchers/developers and
the tasks at hand. The annotation study is cov-
ered under IRB ID 10566 and the consent form is
available in the appendix.
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A Appendix

A.1 Performance Metrics
In this section, we present the detailed results of
all the classifiers on all the datasets. We notice that
when filtering is enabled, there is a drop in trigger
rate and character savings as expected. Overall,
we observe a larger drop for blocklist based fil-
tering compared to all the other classifiers for all
the datasets. We present the agreement statistics
between the classifiers

in Table 5 aggregated over all the datasets, in-
cluding D4, which could not be annotated for tox-
icity. The values indicate the sensitivity (recall)
of each classifier for the toxic class, against the
labels assigned by another classifier. As expected,
BlockList has the highest and Perspective API has
the least sensitivity. This indirectly hints at the fact
that the performance of the classifiers probably is
similar on D4 and the other datasets. Overall, there
seem to be little agreement between the classifiers.

Full form (Acronyms)

Religion, Race, Ethnicity (RRE)
Nationality, regionality (NReg)
Sexual Orientation and Gender Identity (SOGI)
Offensive to an individual (Off)
In House Checklist (IHCL)
Inter-Annotator Agreement (IAA)
Toxic or Strongly Sensitive (Tox)
Innocuous or Mildly Sensitive (NTox)
Blocklist (BL)
TweetEval (TE)
HateBert (HB)
HateXplain (HX)
Perspective API (PS)
Trigger rate (TR)
Match Rate (MR)
Character Savings (CS)
Leakage Ratio (LR)
Fairness of Prediction (FoP)
FoP for Innocuous predictions (FoP+)
FoP for Toxic predictions (FoP-)
True Positive (TP)
True Negative (TN)
False Negative (FN)
False Positive (FP)

Table 4: Acronyms used in the paper with their respec-
tive full forms.

TE BL HB HX PS

TE 1 0.74 0.72 0.21 0.05
BL 0.14 1 0.23 0.11 0.01
HB 0.39 0.64 1 0.17 0.03
HX 0.30 0.82 0.48 1 0.04
PS 0.92 0.66 0.91 0.46 1

Table 5: Agreement statistics between the classifiers
of the cases detected as toxic by the row classifier, the
fraction that is detected as toxic by the column classifier.
TE = TweetEval, BL = BlockList, HB = HateBert, HX
= HateXplain, PS = Perspective
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Classifier Post-filter Pre-filter Suggestion Avg. triggers Match Char
Enabled Enabled Rate per 100 words Rate Savings

NA 0 0 2.55 13.23 41.37 64176
Blocklists 1 0 1.86 9.63 42.31 48462

0 1 1.93 10.00 39.81 46179
1 1 1.41 7.31 40.35 34466

HateBert 1 0 1.75 9.06 36.42 37261
0 1 1.68 8.72 36.87 36500
1 1 1.57 8.16 36.59 33794

HateXplain 1 0 2.29 11.86 39.22 53812
0 1 2.29 11.86 40.35 55378
1 1 2.24 11.61 39.76 53368

TweetEval 1 0 1.82 9.41 36.93 39124
0 1 1.83 9.50 37.28 40023
1 1 1.75 9.05 37.37 38140

Perspective 1 0 2.26 11.72 39.88 54917
0 1 2.29 11.85 40.23 55912
1 1 2.18 11.32 39.55 52451

Table 6: Results on D1

Classifier Post-filter Pre-filter Suggestion Avg. triggers Match Char
Enabled Enabled Rate per 100 words Rate Savings

NA 0 0 3.07 17.16 30.68 1110306
Blocklists 1 0 1.81 10.07 26.32 556292

0 1 1.58 8.82 26.46 494522
1 1 0.95 5.30 22.42 250776

HateBert 1 0 2.58 14.38 28.30 864047
0 1 2.71 15.13 28.96 920283
1 1 2.45 13.67 27.72 802021

HateXplain 1 0 2.86 15.97 29.45 991515
0 1 2.91 16.23 29.98 1025252
1 1 2.82 15.74 29.47 977284

TweetEval 1 0 2.74 15.28 28.24 918029
0 1 2.84 15.85 29.78 997189
1 1 2.69 14.99 28.36 905389

Table 7: Results on D2
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Classifier Post-filter Pre-filter Suggestion Avg. triggers Match Char
Enabled Enabled Rate per 100 words Rate Savings

NA 0 0 4.25 23.52 44.43 279877
Blocklists 1 0 2.11 11.71 47.44 145769

0 1 3.08 17.05 50.14 229935
1 1 1.75 9.71 50.96 130429

HateBert 1 0 3.89 21.52 44.16 256045
0 1 3.87 21.42 42.59 246103
1 1 3.75 20.75 43.01 240878

HateXplain 1 0 4.19 23.20 44.60 277057
0 1 4.19 23.22 44.64 277747
1 1 4.17 23.08 44.72 276386

TweetEval 1 0 4.13 22.87 44.56 272867
0 1 4.13 22.87 44.51 272781
1 1 4.09 22.64 44.24 268438

Table 8: Results on D3

Classifier Post-filter Pre-filter Suggestion Avg. triggers Match Char
Enabled Enabled Rate per 100 words Rate Savings

NA 0 0 4.02 33.62 51.19 296488
Blocklists 1 0 3.19 26.69 51.88 235016

0 1 3.47 29.04 51.19 255949
1 1 2.77 23.20 51.91 204299

HateBert 1 0 3.94 32.91 51.22 290332
0 1 3.94 32.95 51.25 290772
1 1 3.92 32.80 51.23 289395

HateXplain 1 0 4.01 33.55 51.18 295781
0 1 4.01 33.55 51.18 295801
1 1 4.01 33.53 51.18 295664

TweetEval 1 0 3.97 33.16 51.19 292454
0 1 3.97 33.18 51.21 292679
1 1 3.96 33.11 51.22 292092

Table 9: Results on D4

Granularity
Cohen’s
Kappa

Agreement
Percentage

All Separate toxicity 0.213 0.44
Toxic + Strongly Sensitive + Mildly Sensitive Vs Innocuous 0.344 0.684
(Toxic & Strongly as class 1), (Innocuous & Mildly as class 2) 0.473 0.739
1 Diff in sensitivity 0.691 0.778

Table 10: Inter annotator agreement scores for the Text predictor for prediction in context. We have calculated the
IAA scores at different granularity. 1-Diff is the case when we consider adjacent toxicity values as similar as is
usually the case when a subjective evaluation is performed. A high 1-Diff IAA denotes that the annotators mostly
agree on the toxicity for the different queries.

Cohen’s Kappa

Severity 0.57
Factuality 0.72

Table 11: Template level IAA scores for IHCL1 dataset for severity and factuality annotations. The scores indicate a
moderate to high agreement scores for the different labels.
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Classifier Sensitivity Leakage Ratio
None Mildly Sensitive 0.0698
HateXplain Mildly Sensitive 0.0629
TweetEval Mildly Sensitive 0.0605
perspective Mildly Sensitive 0.0539
HateBert Mildly Sensitive 0.0527
Blocklists Mildly Sensitive 0.0208
None Strongly Sensitive 0.0468
TweetEval Strongly Sensitive 0.0448
perspective Strongly Sensitive 0.0445
HateXplain Strongly Sensitive 0.0438
HateBert Strongly Sensitive 0.0431
Blocklists Strongly Sensitive 0.0041
None Toxic 0.1039
HateXplain Toxic 0.0894
perspective Toxic 0.0820
TweetEval Toxic 0.0761
HateBert Toxic 0.0494
Blocklists Toxic 0.0139

Table 12: Leakage ratio wrt different sensitivities for each classifier (Pre and Post). The above values include cases
which do not fall into the predefined dimensions as stated in the paper but are part of the checklist datasets. In each
of the different scenarios we can see that Blocklists perform significantly better than other classifiers. HateBert
comes up second and performs better than other classifiers.
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A.2 Annotator Consent Form

Microsoft Research Project Participation Consent Form
TITLE OF RESEARCH PROJECT: Responsible AI Data Creation and Annotation

Principal Investigator: Sunayana Sitaram
Co-Investigators: Monojit Choudhury

INTRODUCTION
Thank you for taking the time to consider volun-
teering in a Microsoft Corporation research project.
This form explains what would happen if you
joined this research project. Please read it care-
fully and take as much time as you need. Ask the
study team about anything that is not clear. You
can ask questions about the study any time.
Participation in this study is voluntary and you
will not be penalized if you decide not to take part
in the study or if you quit the study later.

PURPOSE
The purpose of this project is to reduce fairness and
toxicity harms created by AI systems. We plan to
collect data to evaluate current approaches to harm
mitigation.

PROCEDURES
During this project, the following will happen: You
will be asked to label templates for severity, tox-
icity and fine-grained category, given a template,
lexicon and the coarse grained category for the tem-
plate. You will also be provided with an example
sentence constructed using the template populated
with entries from the lexicon. We will give you
approximately 100 templates to label and expect
each one to take about one minute. You may com-
plete the labeling on your own time over three days.
The total amount of time spent should not exceed
120 minutes. Approximately 20 participants will
be involved in this study.

PERSONAL INFORMATION AND CONFI-
DENTIALITY

• Personal information we collect. During
the project we may collect personal informa-
tion about you such as name, age, gender, lan-
guages known and proficiency in each lan-
guage.

• How we use personal information. The per-
sonal information and other data collected dur-
ing this project will be used primarily to per-
form research for purposes described in the
Purpose and Procedures above. Such infor-
mation and data, or the results of the research
may eventually be used to develop and im-
prove our commercial products, services or
technologies.

• How we store and share your personal in-
formation. Your name and other personal
information will not be on the study informa-
tion we retain; this study information will be
identified by a code. The key to the code will
be kept separate from your personal and study
information, which will be kept in a secured,
limited access location.
Your personal information will be stored for a
period of up to 5 years.
Some people may need to look at your per-
sonal information. They include: the re-
searchers involved in this study, who may
be Microsoft full time employees and fixed
term employees, such as research interns. We
will refer to these people as your Study Team.
This also includes Institutional Review Boards
(IRB), including Microsoft Research’s ethics
review board. An IRB is a group that reviews
the study to protect your rights as a research
participant.
We may choose to share publicly about this
study, such as in journal articles, research-
focused publications, or presentations at sci-
entific meetings, but your identity will not be
disclosed. We will take all steps possible to
keep your information confidential. However,
we cannot guarantee total confidentiality. For
example, your personal information may be
given out, if required by law.

• How you can access and control your per-
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sonal information. If you wish to review or
copy any personal information you provided
during the study, or if you want us to delete or
correct any such data, email your request to
the research team at: susitara@microsoft.com.
However, once your name or other identifiers
have been removed from your information,
we will no longer be able to delete it from our
records.

For additional information or concerns about how
Microsoft handles your personal information,
please see the Microsoft Data Privacy Notice
(http://go.microsoft.com/fwlink/?LinkId=518021).

MICROSOFT AND CONFIDENTIALITY
The research project and information you learn by
participating in the project may be confidential to
Microsoft. If the study team discloses confidential
information, they will ask you to sign a separate,
legally binding document called a Non-Disclosure
Agreement (NDA) that asks you to promise to keep
study information secret.

BENEFITS AND RISKS
Benefits:
There are no direct benefits to you that might rea-
sonably be expected as a result of being in this
study. The research team expects to learn how to
build AI systems that are fairer and more inclusive
from the results of this research. Furthermore, cer-
tain public benefits might be expected as a result
of sharing the research results with the greater sci-
entific community.

Risks:
During your participation, you may experience dis-
comfort due to the sensitive nature of the data.
Specifically, you will be shown sample sentences
that could contain explicit, toxic, or potentially of-
fensive terms. To help reduce such risks, you are
free to skip the annotation of any template that
makes you feel uncomfortable. You can also stop
the annotation at any time and either exit the study
or return to it after taking a break.

FUTURE USE OF YOUR IDENTIFIABLE IN-
FORMATION
We may use your data in the future. Any data you
contribute as part of this study will be stripped of
any identifiers or other information that could be

used to identify you, as disclosed previously in this
consent form. After such removal, the information
could be used for future research studies or dis-
tributed to another investigator for future research
studies without your (or your legally authorized
representative’s) additional informed consent.

PAYMENT FOR PARTICIPATION
You will not be paid to take part in this study. Your
data may be used to make new products, tests, or
findings. These may have value and may be devel-
oped and owned by Microsoft and/or others. If this
happens, there are no plans to pay you.

PARTICIPATION
Taking part in research is always a choice. If you
decide to be in the study, you can change your mind
at any time without affecting any rights including
payment to which you would otherwise be entitled.
If you decide to withdraw, you should contact the
person in charge of this study. The study team
may use study data already collected from you,
however, you may ask for it to be removed when
you leave. Microsoft or the person in charge of this
study may discontinue the study or your individual
participation in the study at any time without your
consent for reasons including:

• it is discovered that you do not meet study
requirements

• the study is canceled

• administrative reasons

CONTACT INFORMATION
Should you have any questions concerning this
project, or if you are injured as a result of
being in this study, please contact; Sunayana
Sitaram, at (Telephone Number removed for pri-
vacy) or susitara@microsoft.com (email).
Should you have any questions about your
rights as a research subject, please contact the
Microsoft Research Ethics Review Program at
MSRStudyfeedback@microsoft.com

CONSENT
By completing this form, you confirm that this
study was explained to you, you had a chance to
ask questions before beginning this study, and all
your questions were answered satisfactorily. At any
time, you may ask other questions. By completing
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this form, you voluntarily consent to participate,
and you do not give up any legal rights you have as
a study participant.

Please confirm your consent by completing the
bottom of this form. If you would like to keep a
copy of this form, please print or save one now. On
behalf of Microsoft, we thank you for your con-
tribution and look forward to your research session.

Optional: Initial here if we may contact you in the
future to request consent for uses of your identi-
fiable data that are not covered in this consent form.

Initial here

Optional: Initial here if we may contact you in the
future with information about follow-up or other
future studies.

Initial here
Participant’s Name
Date
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Abstract

The task of generating a database query from a
question in natural language suffers from am-
biguity and insufficiently precise description
of the goal. The problem is amplified when
the system needs to generalize to databases un-
seen at training. In this paper, we consider
the case when, at the test time, the system has
access to an external criterion that evaluates
the generated queries. The criterion can vary
from checking that a query executes without
errors to verifying the query on a set of tests. In
this setting, we augment neural autoregressive
models with a search algorithm that looks for a
query satisfying the criterion. We apply our ap-
proach to the state-of-the-art semantic parsers
and report that it allows us to find many queries
passing all the tests on different datasets.

1 Introduction

Generating a database query from a natural-
language description of the user’s intent is a long-
standing and important task. In the recent years,
most of the community focus was on the Spider
dataset (Yu et al., 2018), which poses the task in the
zero-shot regime, meaning that a method has to gen-
eralize to databases unseen at training. The Spider
dataset contains English questions and SQL queries.
The progress has been remarkable, and the accu-
racy has moved from below 30% to above 70%. A
part of this success can be attributed to the adoption
of pre-trained transformer models like BERT (De-
vlin et al., 2019) into most of the pipelines.

Given such progress, it is natural to ask whether
we are getting closer to solving the problem. Sev-
eral recent studies have noted that the task might be
harder than it looks. Finegan-Dollak et al. (2018)
found that many single-database datasets had iden-
tical queries in both train and test sets and showed
that using such splits effectively reduced the prob-
lem to classifying the queries from the train set.

∗* Equal contribution.

Shaw et al. (2021) continued the study in the multi-
database setting and showed that the compositional
generalization was hard to achieve, and even to
measure it, one should be very careful with splits.
In a different line of thought, Suhr et al. (2020)
examined how the models trained on Spider gen-
eralize to other datasets and reported that general-
ization was challenging. Even within one dataset,
many questions have several interpretations leading
to different queries, and annotation policies do not
cover these ambiguities or cover them differently.

Acknowledging that the zero-shot setting might
be too difficult to tackle as is, we aim to better
define and simplify the problem to achieve better
results in terms of the number of correctly gener-
ated queries. In this task, most modern models
produce a distribution over all possible outputs,
which can guide the search at the test time.

We observe that if the search algorithm has ac-
cess to a criterion that can evaluate the output by
treating it as a database query, the overall method
can produce much better results. We consider the
following criteria ordered by their “strength”: a
query is executed without errors, a query produces
output from correct columns, a query produces a
correct result on one test database, and a query pro-
duces correct results on a set of test databases. We
experiment with different search methods and re-
port that the complete anytime beam search (Zhang,
1998) outperforms sampling-based alternatives.

Many practical cases arise when the user is will-
ing to trade off some of their time to improve the
output query. Our approach allows the user to
obtain a better query by interactively guiding the
search via providing the target output columns or
the answer on one or more test databases. The user
is expected to supply this information without the
gold query. Notably, the execution criterion does
not require extra user input but relies on executing
generated queries.

In addition, the test time database can be out of
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domain w.r.t. the training set. One can annotate
gold queries for fine-tuning on new databases to
improve out-of-domain performance, but this can
be prohibitively expensive. Our approach gives a
way to improve out-of-domain results without extra
annotated training data. We view our approach as a
way to control the trained model leading to a more
reliable and responsible query synthesis.

For our studies, we used three state-of-the-art
models in terms of execution accuracy (with pub-
licly available implementations): T5-3B (Raffel
et al., 2020) fine-tuned to Spider by Scholak et al.
(2021), BRIDGE (Lin et al., 2020) and SQ-QDMR
(Saparina and Osokin, 2021).

In this paper, we make several observations. The
complete anytime beam search works with differ-
ent search criteria and with all the three models.
Reasonable results can be obtained with the max-
imum beam size of 100, which fits on a single
modern GPU. Searching with the execution crite-
rion can significantly improve the quality of the
decoders that generate output as an unconstrained
token sequence, e.g., T5, and using such criterion
does not require extra user input. Searching for the
queries that return a correct output on one database
allows finding many queries that provide a correct
output on that database. Therefore, such search-
ing w.r.t. one database can result in false positives,
and it is important to evaluate the queries on a
set of databases. Based on the method of Zhong
et al. (2020), we built the test suite of databases
for the evaluation. With these test suites, we show
that there are multiple false positives among the
queries that pass one test, while searching for the
queries that pass the test suite produces the outputs
of higher quality.

Finally, we experiment with the generaliza-
tion of the models trained on Spider to the Geo-
Query (Zelle and Mooney, 1996), IMDB, Yelp
(Yaghmazadeh et al., 2017) and Academic (Li and
Jagadish, 2014) datasets. We show that searching
w.r.t. different criteria still works under this distri-
bution shift, and searching w.r.t. the criteria with
tests is often comparable to fine-tuning the network
to a test dataset directly.

This paper is organized as follows. In Section 2,
we review our setting. In Section 3, we provide
the details of our method. Section 4 provides the
details of the test-suite construction procedure, Sec-
tion 5 describes the experimental setup. In Sec-
tion 6, we provide the experimental results and

discussion. We review some related works in Sec-
tion 7 and conclude in Section 8.

2 Preliminaries

We consider the problem of generating queries to
databases given the description of the user’s intent
in natural language in the cross-database setting
where the train, validation and test splits contain
different databases. Models trained in this setting,
in theory, can be evaluated on any database.

A typical model for the cross-database setting
is an encoder-decoder neural network. Encoders
typically consist of a pre-trained BERT-like trans-
former followed by a specialized encoder that can
incorporate the database structure in some form
(Guo et al., 2019; Wang et al., 2020; Cao et al.,
2021; Cai et al., 2021). Sometimes the BERT part
is further fine-tuned on database-related objectives
(Yu et al., 2021; Deng et al., 2021). The encoder in-
put is a concatenation of the tokenized question and
a sentence representation of the database schema
separated by the special delimiter token. The rep-
resentation of the database schema consists of the
tokenized table and column names and values re-
lated to the question. These values are commonly
extracted by string matching with question tokens
(Lin et al., 2020). Decoders are typically autore-
gressive based on LSTM or transformers. Some de-
coders do not check the syntactic correctness of the
output and its consistency with the database. Some
provide output w.r.t. a grammar (Yin and Neubig,
2017); some use post-hoc checks with parsers.

In this paper, we experiment with three models:
T5-3B fine-tuned on the Spider dataset by Scholak
et al. (2021), BRIDGE (Lin et al., 2020) and SQ-
QDMR (Saparina and Osokin, 2021). We provide a
detailed description of these models in Section 5.3.

3 Search with Models

We now describe our approach to searching for
queries on top of a learned model. We first generate
full query candidates using a search method and
then select the first one that passes the selected
search criterion. We show possible search criteria
in Section 3.1 and search methods in Section 3.2.

3.1 Search Criteria

Execution criterion. To avoid syntactically in-
correct queries, we can prune the search with the
execution criterion. The query passes this criterion
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if it can be executed on the input database with-
out errors. In particular, the query has to contain
valid table and column names. These properties are
not guaranteed for the unconstrained decoders as
T5. Thus the execution criterion can be extremely
useful for such models.

Output column match. With this criterion, we
compare the output columns (that the query will
select) with the correct ones. Firstly, wrong output
columns is a common mistake in the text-to-SQL
parsers (Guo et al., 2019; Lin et al., 2020; Suhr
et al., 2020). Secondly, the output columns can
provide domain knowledge and shed some light on
the user intent in a realistic scenario when the input
question is ambiguous (Suhr et al., 2020; Lee et al.,
2021).

One test. This criterion compares the result of
query execution on a given database (one test case)
with the correct one. With this criterion, we search
for a correct query in terms of execution accuracy
on the input database (Section 5.2).

Test suite. This criterion checks if a query
passes a set of tests. Each test case corresponds to
a particular database, and all test databases share
the same schema. This criterion is inspired by a
test suite of databases with high code coverage pro-
posed by Zhong et al. (2020). The set of databases
is designed to distinguish the correct queries from
potential false positives. Searching with this crite-
rion is equivalent to the search for a correct query
in terms of test-suite accuracy (Section 5.2) .

3.2 Search Methods

Top-k and Top-p (Nucleus) Sampling (Fan
et al., 2018; Holtzman et al., 2020) draw sam-
ples from the truncated distribution: the probability
mass is re-weighted between the k most probable
elements in top-k sampling and between the ele-
ments with cumulative probability mass exceeding
p in top-p sampling (k, p are hyperparameters).

UniqueRandomizer (Shi et al., 2020) is a
method to incrementally sample sequences without
replacement. The samples are drawn until the stop-
ping condition is reached (one of the search criteria
in our case). The probabilities of selected elements
are reduced after each iteration of sampling to im-
prove diversity in samples.

Complete Anytime Beam (CAB) Search of
Zhang (1998) extends the regular beam search by
running it several times with increasing beam sizes.
Importantly, the beams produced by beam search

Table 1: Comparison of the test suites’ statistics.
NoEmpty is the percentage of SQL queries for which at
least one test database with non-empty execution result
is found; Cover is the percentage of neighbor queries
distinguished by the test databases; Tests is the average
number of test databases per query; Time is the average
wall-clock execution time per query; Size is the total
size of all test databases.

Dataset NoEmpty Cover Tests Time Size
(%) ↑ (%) ↑ (Num) (Sec) ↓ (GB) ↓

Spider
1 test 96.7 89.1 1 0.1 3.25
Orig. 98.2 96.1 675 3.6 0.16
Our 99.3 98.8 1.8 0.2 0.04

GeoQuery
1 test 94.7 93.2 1 0.1 10–4

Orig. 66.7 52.6 108 12.6 0.01
Our 100 98.9 1.6 0.2 0.05

IMDB
1 test 75.2 14.9 1 8.7 1.49
Orig. 79.2 79.4 200 17.7 0.04
Our 100 99.6 2 0.3 0.03

Yelp
1 test 36.5 15.8 1 6.4 2.21
Orig. 84.1 80.6 282 30.9 0.03
Our 99.2 97.0 3.1 0.4 0.03

Academic
1 test 51.1 5.50 1 44.2 4.33
Orig. 97.9 92.1 411 44.3 0.07
Our 96.8 95.2 2.3 0.4 0.07

are known to have little diversity because of the
peaks in the softmax scores. We follow the ap-
proach of Zohar and Wolf (2018); Shrivastava et al.
(2021), who recently have used CAB to search for
programs on top of neural autoregressive models.
In these works, the authors limit the number of hy-
potheses coming from each element of the previous
beam (we will refer to this upper bound as the width
of the beam search). Between outer CAB iterations,
we also increase the width by a constant value and
multiply the beam size by a constant factor. The
schedules of the beam size and beam-search width
are important hyperparameters.

4 Test Suite Construction

Testing on one database is generally not enough to
ensure the semantic correctness of the generated
query, but running the query on too many databases
can be computationally inefficient. The inefficiency
problem is especially acute in our task due to the
large number of query candidates that should be
tested and several rounds of the searching process.

We build our test suites by modifying the method
of Zhong et al. (2020), which relies on generating
the so-called neighbor queries from a given set of
gold queries and randomly sampling databases to
distinguish gold queries from as many neighbors
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as possible. We observed two key drawbacks of
the test databases generated by Zhong et al. (2020).
First, the test suites contained many databases, and
some were unnecessarily large, which resulted in
very long testing on them. Second, outputs of many
queries were often empty (or zero for queries with
aggregators) on these test databases. If the output
of the gold query is empty on all the elements of
the test suite, it cannot be distinguished from triv-
ial dummy queries. This effect is more salient if
the gold query returns empty output on the orig-
inal database. We alleviate these issues by inde-
pendently generating test databases for each gold
query, explicitly limiting the number of rows in
each table and putting extra effort into generating
at least one database where the gold query returns
a non-empty output. The details of our procedure
are provided in Appendix A.

We compare our test suites with the original
ones of Zhong et al. (2020) on the five considered
datasets described in Section 5.1. For a fair com-
parison, we generate the independent sets of neigh-
bor queries for each gold query. These neighbor
queries are different from the neighbors generated
in the process of creating the test suites. In Table 1,
we compare the initial databases (1 test), original
test suites and our test suites. It can be seen that,
in the space of neighbor queries, our test suites
have higher code coverage (Cover) than the origi-
nal databases and the original test suites. With new
test suites, the average query execution time (on all
the corresponding tests) is reduced 50x across the
datasets. We release the test suites we created.1

5 Experiment Setup

5.1 Data

We conduct our experiments on five text-to-SQL
datasets: multi-database Spider (Yu et al., 2018)
and single-database GeoQuery (Zelle and Mooney,
1996; Iyer et al., 2017; Finegan-Dollak et al., 2018),
IMDB, Yelp (Yaghmazadeh et al., 2017) and Aca-
demic (Li and Jagadish, 2014).

Spider. We use dev and test sets (451 and 521
examples) from the work of Saparina and Osokin
(2021): they are parts of the original Spider dev,
but some examples (from dev) were repaired.

GeoQuery, IMDB, Yelp and Academic. We
use query splits created by Finegan-Dollak et al.
(2018), additionally filtered from duplicates and

1github.com/ramild/TestSuite

examples with gold SQL queries that crash or exe-
cute longer than 5 minutes with the Python package
sqlite3. The dataset statistics are provided in Ta-
ble 7 of Appendix D.

We do not consider more single-database
datasets because ATIS (Price, 1990; Dahl et al.,
1994), Scholar (Iyer et al., 2017) and Advising
(Finegan-Dollak et al., 2018) database schemes
exceed 512 token limits of pre-trained encoders,
Restaurants (Popescua et al., 2003; Tang and
Mooney, 2001) contains too many duplicates.

5.2 Evaluation Metrics

Exact-set Match (Yu et al., 2018) is an SQL-
to-SQL comparison metric that reflects the fraction
of the predicted queries matching the ground-truth
queries. In the matching process, each query is
decomposed into fragments that are compared indi-
vidually so that the metric is not too sensitive to the
ordering of independent clauses. This metric does
not take into account predicted values and can give
a high score to incomplete queries. As SQ-QDMR
model produces queries in SPARQL, we cannot use
the exact-set match as a primary evaluation metric.

Execution accuracy is designed to compare the
queries by their execution output on an original
database. In contrast to the exact-set match, this
prevents false-negative queries but leaves space for
potential false positives. The version provided by
Yu et al. (2018) for Spider evaluation has issues in
SPARQL-SQL comparison, so we use the version
provided by Saparina and Osokin (2021) unless
explicitly mentioned otherwise.

Test-suite accuracy (Zhong et al., 2020) ap-
proximates the semantic accuracy of the query syn-
thesis models. This metric refers to the share of
predicted queries producing the correct answers on
all databases from the test suite. We build the test
suites for Spider dev and test sets and for all the
queries in the other four considered datasets.

5.3 Models

We consider three models: T5-3B fine-tuned on
Spider (Scholak et al., 2021), BRIDGE (Lin et al.,
2020) and SQ-QDMR (Saparina and Osokin, 2021).
These models have top execution accuracy among
publicly available models on Spider. We also tried
to search under our search criteria on top of the
bottom-up semi-autoregressive model of Rubin and
Berant (2021), but we could not make the search
increase the number of correct queries.
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For evaluation on Spider, we use the released
checkpoints of the best models. BRIDGE train-
ing data included question splits of single-database
datasets, so we re-train it on Spider-only data to
evaluate on query splits of these datasets. For re-
training BRIDGE and fine-tuning all models, we
use official implementations (see Appendix E).

T5 (Raffel et al., 2020) is a pre-trained seq2seq
model based on Transformer. Recently, Shaw et al.
(2021); Scholak et al. (2021) successfully applied
T5 for the text-to-SQL task. The input sequence
contains question tokens and tokens of column and
table names. The database values matched with the
question tokens are appended to the corresponding
column names (Lin et al., 2020). The output of the
T5 model is the sequence of tokens representing the
SQL query. Note that this model generates output
sequence without explicitly considering the SQL
grammar and schema consistency.

BRIDGE (Lin et al., 2020) consists of the
BERT-based encoder and pointer-generator de-
coder. The input sequence is formed from the con-
catenation of question, table and column names,
and relevant database values separated by special
token and encoded with BERT. The relevant val-
ues are selected with fuzzy string matching be-
tween question and database values. Column en-
codings are further enriched with meta-data fea-
tures such as primary or foreign keys and data types
obtained from the feed-forward layer. The LSTM-
based decoder with multi-head attention at each
step copies question or schema tokens or gener-
ates the SQL keywords. During decoding, model
chooses columns only from the predicted table to
provide schema consistency. An additional static
SQL analyzer filters incorrect output queries.

SQ-QDMR (as we refer to the model of Sapa-
rina and Osokin (2021)) contains RAT-transformer,
GraPPa encoders (Wang et al., 2020; Yu et al.,
2021) and a grammar-guided LSTM-based decoder
(Yin and Neubig, 2017). The SQ-QDMR decoder
produces output in the form of grounded interme-
diate representations derived from QDMRs of the
Break dataset (Wolfson et al., 2020). The grounded
QDMRs are not directly related to any execution
engine and cannot be executed as is, but Saparina
and Osokin (2021) implemented a non-trainable
translator from grounded QDMR to the SPARQL
query language, in which queries can be executed.
We can think of grounded QDMRs augmented with
this translator as executable database queries.

Table 2: Comparing the execution accuracy of differ-
ent search approaches under the 1-test criterion on the
Spider dev split.

Model Greedy CAB Sample Top-p UniRand

T5-3B 77.0 94.4 93.0 93.0 94.1
BRIDGE 66.8 91.0 87.1 84.9 86.2
SQ-QDMR 80.4 98.0 98.0 98.0 98.2

6 Results & Analysis

6.1 Impact of the Search Methods
We compare different decoding strategies in our
setting (Table 2): top-k and top-p (nucleus) sam-
pling (Fan et al., 2018; Holtzman et al., 2020), Uni-
queRandomizer (Shi et al., 2020) and CAB search
(Zhang, 1998). We measure the execution accuracy
of these search methods under the 1-test criterion
on Spider dev. We use the same sampling budgets
(1000 for BRIDGE and SQ-QDMR and 800 for
T5-3B due to the memory limits), tune p in top-p
sampling and the temperature for all methods, more
implementation details in Appendix B).

The results demonstrate that a significant num-
ber of output queries pass one test after searching
with any of these methods, so different decoding
strategies can be compatible with our approach.
UniqueRandomizer is very time-consuming since it
generates samples sequentially in contrast to other
methods that generate beams of samples in parallel.
CAB search is demanding in terms of the device
memory as it has to process the whole beam jointly.
For further experiments, we choose CAB search
because it works best for two models.

6.2 Impact of the Search Criteria
We apply search under different selection crite-
ria (execution, output column match, test on one
database) to T5-3B, BRIDGE and SQ-QDMR on
Spider dataset and compare with the greedy and
beam search baselines. Table 3 shows the results
measured with execution accuracy. Searching on
top of all models with different selection criteria
increases execution accuracy in almost all cases.

One exception is the search with the execution
criterion on top of BRIDGE and SQ-QDMR, the
results of which are close to the greedy decoding.
The outputs of these systems are almost always
executable because BRIDGE runs a static SQL an-
alyzer for filtering, SQ-QDMR decodes accord-
ing to the QDMR grammar and both models have
schema-consistent decoding. The T5 model, in
contrast, does not have any grammar or schema
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Table 3: Execution accuracy of search under different
selection criteria (execution, output column match and
1 test) on Spider; beam s. refers to beam search.

Model Split Greedy Beam S. Exec Cols 1 Test

T5-3B
dev

77.0 77.4 83.1 84.2 94.4
BRIDGE 66.8 68.8 68.4 72.0 91.0
SQ-QDMR 80.4 80.6 80.4 83.6 98.0

T5-3B
test

70.8 71.0 73.7 77.4 90.7
BRIDGE 64.0 66.2 64.6 67.9 83.4
SQ-QDMR 65.6 65.8 65.6 68.9 86.7

constraints in decoding. For language model de-
coders that do not explicitly check grammar and
schema consistency, the execution criterion can
significantly improve the quality.

For T5-3B, we also compare the results of the
search with PICARD (Scholak et al., 2021), our
search with the execution criterion, and greedy de-
coding. For a fair comparison with Scholak et al.
(2021), we use the same data, the official Spider
dev set, and the same metrics: exact-set matching
accuracy and execution accuracy provided by Yu
et al. (2018):

Method EM Exec

Greedy 71.5 74.4
PICARD 75.5 79.3
CAB+execution 74.5 78.7

The results obtained with PICARD and with
searching under the execution criterion are com-
parable – our search gets most of the benefit over
the baseline. PICARD provides slightly better qual-
ity and works with smaller beams but requires more
effort to incorporate because it is tightly connected
with the decoder output vocabulary and grammar.
For both approaches, the percent of output queries
with execution errors is around 2% in contrast to
the baseline T5-3B decoding with 12%.

The search criterion based on the matching
of output columns provides even better results.
As Table 3 shows, all models benefit from this
criterion: execution accuracy increases by 3-4%
nearly everywhere. This criterion largely simplifies
the task with extra information at the test time.

Search for the queries that pass one test allows
finding a significant number of such queries.
Passing one test means correct execution result on
the input database, so all the queries found with this
criterion are correct in terms of the execution accu-
racy. Thus, these results indicate that our searching
approach works, and we can find the correct queries
with the corresponding criterion. However, we ob-

Table 4: Test-suite accuracy of search under different
selection criteria (execution, output column match, 1 test
and test suite) on Spider.

Model Split Greedy Exec Cols 1 Test Test Suite

T5-3B
dev

72.2 77.7 78.3 86.9 90.1
BRIDGE 63.2 64.8 68.2 81.9 84.0
SQ-QDMR 72.5 72.2 75.4 84.0 94.4

T5-3B
test

68.9 73.7 75.4 84.7 86.8
BRIDGE 61.9 62.5 65.4 76.6 77.8
SQ-QDMR 62.3 62.1 65.4 75.2 84.1

serve that more than 10% of queries found with
one-test criterion are false-positive according to the
test-suite accuracy (Table 6 in Appendix C).

These results motivate us to evaluate the test-
suite accuracy of criterion-guided search. Table 4
confirms our findings: searching with the execution
criterion helps T5-3B, and searching for correct
output columns improves the results of all models.
Search for the queries that pass one test results
in a significant number of false-positive queries.
The correct queries can be found by searching
with the test-suite criterion directly.

6.3 Efficiency
Time Measurements. The running time during

the search is dominated by the time of the decoder
for all three models: executing each considered
query takes 3% of the decoder time for T5-3B,
which is 0.01 sec per run; 53%, 0.02 sec – for
BRIDGE; 72%, 0.03 sec – for SQ-QDMR. The
total running time depends on the effective beam
size used during the search.

The T5-3B model with the execution criterion
on top runs in 1.7 sec compared to 3.1 sec reported
by the PICARD paper, where both systems were
run on 1 NVIDIA A100 GPU. The main reason is
that due to CAB, we do not set one beam size in
advance and thus, process at least 70% of examples
with an effective beam size of 1.

Impact of the Maximum Size of Beam. The
maximum size of the beam is an important param-
eter. Figure 1 shows the dependence between the
obtained test-suite accuracy on the Spider dev set
and the maximum beam size in the search under the
test suite criterion. For all models, we start with the
maximum beam size equal to 1, which is equivalent
to the greedy decoding and finish with the maxi-
mum beam size allowed by our implementation
and hardware: 10k for BRIDGE and SQ-QDMR
on 1 NVIDIA V100 GPU and 800 for T5-3B on 8
NVIDIA A100 GPUs.
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Figure 1: Test-suite accuracy on the dev set for the T5-
3B, BRIDGE and SQ-QDMR models tested with CAB
for the test-suite criterion.

Test-suite accuracy improves as the maximum
beam size increases. BRIDGE with the maximum
beam size equal to 10k achieves 86% of test-suite
accuracy and SQ-QDMR — 94%. However, the
search works well enough even with smaller beams:
with the maximum beam size of 100, BRIDGE
achieves almost 80%, SQ-QDMR — 92%, and T5-
3B achieves 88% (with 800, T5-3B achieves 90%).
Importantly, the search with the beam size of 100
does not require multiple GPUs for T5-3B.

6.4 Experiments on Single-Database Data

To show more benefits of searching under selec-
tion criteria, we evaluate it on single-database
datasets, GeoQuery, IMDB, Yelp and Academic,
with test-suite accuracy (Table 5; see Appendix F
for execution accuracy). We use query splits of
Finegan-Dollak et al. (2018) and two model types:
trained on Spider only and fine-tuned on a particu-
lar dataset. The Academic database is very large, so
we cannot evaluate one-test criterion on this dataset
and fine-tune SQ-QDMR (other datasets do not
have QDMR annotation required for fine-tuning).
More fine-tuning details are in Appendix E.

The results show that models trained on Spider
struggle to generalize to other datasets, which is
consistent with the findings of Suhr et al. (2020).
More information about the problem (in the
form of additional train data or selection crite-
ria) helps improve the quality.

IMDB, Yelp and Academic are more challenging
datasets for cross-database semantic parsers than
GeoQuery, but they are significantly smaller (Ta-
ble 7), and the models are less stable while testing
on them (with all random seeds fixed). Stronger cri-
teria, such as passing one test or test suite, do work
even with datasets of such difficulty, when weaker
criteria fail. On GeoQuery, the search under the
one-test and test-suite criteria leads to even better

Table 5: Different search criteria (execution, output
column match, 1 test and test suite) on top of pre-trained
models on the query test splits of different datasets with
the test-suite accuracy.

Dataset
(test size) Model Greedy Exec Cols 1 test Test

Suite

GeoQuery
(182)

T5-3B 55.5 56.6 63.7 67.6 72.5
+ fine-tune 64.3 70.9 85.2 88.5 94.5
BRIDGE 55.9 50 62.6 74.7 74.7
+ fine-tune 65.4 66.5 81.9 86.8 91.8
SQ-QDMR 37.4 37.4 41.8 65.9 81.9
+ fine-tune 56.0 56.0 59.9 76.9 83.0

IMDB
(17)

T5-3B 5.9 11.8 17.6 29.4 41.2
+ fine-tune 52.9 52.9 52.9 52.9 58.8
BRIDGE 11.8 11.8 17.6 17.6 17.6
+ fine-tune 52.9 52.9 52.9 52.9 52.9
SQ-QDMR 5.9 5.9 11.8 29.4 47.1

Yelp
(10)

T5-3B 20 20 10 30 10
+ fine-tune 20 30 20 50 40
BRIDGE 0 0 0 20 10
+ fine-tune 30 40 50 60 70
SQ-QDMR 10 10 10 10 40

Academic
(15)

T5-3B 6.7 13.3 26.7 - 33.3
+ fine-tune 60 53.3 53.3 - 80
BRIDGE 0 0 6.7 - 20
+ fine-tune 33 40 40 - 80
SQ-QDMR 13.3 13.3 6.7 - 66.7

quality than fine-tuning. Our test-suite criterion is
especially useful when one test is difficult to run
on the large original database, e.g., on Academic.

As a result, we conclude that criterion-guided
search on top of a pre-trained model is a good
alternative to fine-tuning in cases when training
data is not available, but the user is ready to provide
more information on each test question.

7 Related Works

Search for Database queries. The task of trans-
lating NL questions into database queries implies
the ability to query databases with natural language.
To ensure this, it is essential to generate syntacti-
cally correct queries that refer to valid table and col-
umn names for the given database schema. Wang
et al. (2019) noticed that a partially decoded SQL
query can be executed, and thus, the result of this
execution can guide the decoding process. At each
decoding step, partial queries that crush or give
an empty result during the execution are removed
from beams. In this work, we also consider the exe-
cution criterion of search but apply it to the finished
hypotheses, which allows us to search on top of
the models with different output formats, including
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intermediate representations.
Lin et al. (2020) generated SQL queries in the

execution order to keep the consistency between
the predicted database entities and checked output
correctness with the static SQL parser. Suhr et al.
(2020) executed the top-10 generated queries in
beam search to filter the inexecutable ones, which
is close to checking the execution criterion in our
work but differs by the search method.

Task-specific decoders such as autoregressive
grammar-based (Yin and Neubig, 2017; Lin et al.,
2018) and tree decoders (Dong and Lapata, 2016),
semi-autoregressive decoder (Rubin and Berant,
2021) provide some guarantees as they control the
output structure. However, as noticed by Scholak
et al. (2021), these decoding methods are incompat-
ible with pre-trained decoders of language models.
These pre-trained decoders, like the one of T5, can
also be successfully applied to the text-to-SQL task
(Shaw et al., 2021). Scholak et al. (2021) proposed
to check hypotheses in beam search on the lexical
and grammatical levels at each step of the beam
search. However, compared to us, their approach
required heuristics to prune incomplete queries.

The concurrent work by Wolfson et al. (2022)
uses several components similar to ours but in a
very different way. They use the QDMRs of Wolf-
son et al. (2020) with textual arguments as a form
of weak supervision to generate SQL queries for
the training set. Their synthesis process results in
many candidate SQL queries and relies on tests to
select the one as an annotation. Such a process
is similar to the method of Saparina and Osokin
(2021) for constructing groundings of QDMR ar-
guments. However, the search process of Wolfson
et al. (2022) is not connected to any neural model
and is not used at the test time.

Search for Programs with Neural Networks.
Our approach to searching for queries is closely
related to the field of program synthesis if we in-
terpret queries as programs. Recently, neural net-
works have been applied in a wide range of pro-
gram synthesis tasks, see the excellent work of
Chaudhuri et al. (2021) for a recent review.

When programs are synthesized from large lan-
guage models generating multiple outputs, select-
ing the one that, e.g., passes some or all tests
is a common practice. For example, the Codex
model (Chen et al., 2021) for synthesizing Python
code includes some sample tests into the input
prompt to give the model more information to de-

fine the user intent. Chen et al. (2021) following
Kulal et al. (2019), among others, also uses the
pass@k metric, which effectively means that the
model generates k outputs, and the best ones are
selected based on tests. The pass@k metric can be
interpreted as test-suite accuracy after search w.r.t.
the tests with the beam of size k.

Overall, it is widely accepted that tests are use-
ful to precisely define the user intent. However,
they are hard to collect at a large scale, especially
when coupled with a description in natural lan-
guage. Because of this, large-scale benchmarks
related to code, e.g., CodeXGLUE (Lu et al., 2021),
primarily used text-based metrics like BLEU. The
attempts to specialize BLEU to code by combining
it with abstract syntax trees extracted from code,
like CodeBLEU (Ren et al., 2020), are in some
sense similar to the SQL-based exact match metric
of the Spider dataset (Yu et al., 2018).

Approaches to Simplify the Cross-database
Setting. The community has made multiple at-
tempts to modify the cross-domain setting to make
the problem easier to solve. Yu et al. (2019b) col-
lected the SParC dataset with coherent question
sequences, which can allow sharing of information
between the sequences. Yu et al. (2019a) collected
the CoSQL dataset with an interactive conversa-
tional setting with SQL queries, making it possible
to explore user interactions with the system. Lee
et al. (2021) collected KaggleDBQA with database
documentation in the form of textual description
for database columns that can potentially allow lan-
guage models to provide outputs better correspond-
ing to the user’s intent. Our approach provides
users with a way to interact with the model by sup-
plying tests. Given the initial question in natural
language, the users can provide extra tests until
they are satisfied with the generated query.

8 Conclusion

We studied the search over the outputs of the neu-
ral autoregressive models for better database query
generation. We considered three state-of-the-art
models: T5-3B, BRIDGE and SQ-QDMR. We ob-
served that the search algorithms work with mul-
tiple criteria for selecting the output query. We
also compared the search-augmented methods with
the fine-tuned models on the GeoQuery, IMDB,
Yelp and Academic datasets (under the distribution
shift) and observed that the method with search can
sometimes work even better than fine-tuning. Com-

2250



pared to fine-tuning, the search-based method does
not require additional training data but relies on
additional information on each test example. With
such properties, our search based methods might
be helpful for use cases like interactive query gen-
eration or annotating new datasets.

Limitations

In our experiments, we work only with the datasets
where the user question was written in English.
This might have simplified the task for T5 as the
keywords and entity names of the query languages
were also in English.

The test suites we built were still not perfect. In
particular, it was hard to generate a test database
such that the query SELECT year FROM concert GROUP

BY year HAVING count(*) >= 50 had non-empty out-
put because it needed at least 50 rows with the same
value in the column year. We also noticed that the
value 1 as the gold query output also caused many
false positives and should probably have been con-
sidered the empty value for the queries outputting
the count aggregator.

The results of the search methods were also not
perfect for out-of-domain data, even with strong
search criteria based on tests. One reason for that
was that we started to hit the limitations of the
models, which were built with mostly Spider in
mind. In particular, the database preprocessing
stage to select values for the query was, in some
cases, slow and inaccurate.
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A Construction of Test Suites

The method of Zhong et al. (2020) relies on gener-
ating the so-called neighbor queries from a given
set of gold queries Q. A set of neighbors Nq is ob-
tained through slightly changing the original query
q ∈ Q. Now, a database w distinguishes q and
g ∈ Nq if their execution results on w are different.
The suite S is formed greedily: a new sampled
database is added to S if it distinguishes a pair in
N = {(q, g) | q ∈ Q, g ∈ Nq} that is not distin-
guished by any database previously added to S.

In the algorithm above, to sample the databases,
the original queries are parsed to derive the constant
values and the corresponding columns from the
WHERE clauses. For instance, in a query SELECT *
from cars WHERE mpg > 20, the constants 20 and
21 are assigned some probability to be generated as
values of the cars.mpg column. We improve the
query parser so that it accounts for common cases
when table aliases are used (e.g., SELECT * from
cars as T WHERE T.mpg > 20). Still, if a gold
query has too many WHERE clauses, its execution
on a randomly generated database is likely to be
an empty table or, in the case of SELECT-ing an
aggregate function, zeros or NULL values. This
issue causes many potential false positives.

For this reason, for every query, we first search
for a test database on which the query execution
is not empty and only then proceed to check if the
database distinguishes the query and its neighbors.
This way, the chances are higher to sample at least
one database yielding non-empty output on a gold
query, leading to better code coverage. We also
propose to build a separate test suite for each query.
This modification allows dramatically reducing the
time of the test-suite evaluation of a query.

Additionally, we make several important
changes to the original implementation:
• We limit the number of rows in the tables to 100.

As a result, the test suite databases are smaller in
size and faster in evaluation.

• We adjust the types of the columns in the original
and the sampled databases so that they match the
type of the corresponding values. In the float
type columns, we also reduce the precision of
numbers to 16-bit. These changes are crucial for

SPARQL language, as it is more sensitive to data
types than SQL.

• If a column has only unique values in the original
database and its name contains special substrings
such as ‘Name’, ‘ID’, and ‘Phone’, we treat it as
a unique key and generate its values accordingly.
This heuristic allows performing the GROUP BY
operations on any unique key.

B Implementation Details of Search

For the search on top of T5-3B, we use the (Scholak
et al., 2021) model provided in the Transformers li-
brary (Wolf et al., 2020). To search with large beam
sizes, we modify the Transformers implementation
of T5 inference: instead of caching keys and values
in attention blocks, we cache the attention outputs,
which reduces memory usage at the cost of speed.

For working with SQL queries outside the Spider
dataset, we had to replace the SQL parsing coming
with Spider due to its limited functionality. We use
the mo-sql-parsing library instead.2 We execute all
SQL queries in the sqlite3 3 package for python.
For executing SPARQL queries, we use the open-
source version of the Virtuoso system.4 During our
search, the system generated many cumbersome
queries, so we had to impose a strict time limit for
each query and make our implementation robust
to the database engine crashes. The time limit for
Spider queries is 30 seconds and for other datasets
is 300 seconds.

The grid of beam sizes for CAB search on top
of T5-3B is 2, 10, 100, 800, the corresponding
widths are 2, 2, 2, 5, the grid for BRIDGE is 1, 10,
100, 1000 and the widths are 1, 2, 2, 5, the grid
for SQ-QDMR is 1, 100, 1000 and the widths are
1, 5, 10. We infer BRIDGE and SQ-QDMR on
one NVIDIA V100 GPU and T5-3B on 8 NVIDIA
A100 GPUs (while searching with maximum beam
size). For the search with the sampling methods,
we use the same schema: we run sampling several
times, increasing the number of samples (k in top-
k) until the selection criterion is passed. The grids
for all the methods are the same. For searching with
UniqueRandomizer, we run the methods until the
selection criterion is passed or the maximum num-
ber of iterations is reached (equal to the maximum
beam size: 800 for T5-3B and 1000 for BRIDGE
and SQ-QDMR). We tune the temperature and p

2github.com/klahnakoski/mo-sql-parsing
3docs.python.org/3/library/sqlite3.html
4github.com/openlink/virtuoso-opensource
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on Spider dev (the grid for temperature tuning was
from 0.5 to 3.5 with 0.25 step; the grid for p was
0.85, 0.9, 0.95). The best p = 0.95 and the best
temperature values are the following:

Model CAB Sample Top-p UniRand

T5-3B 2.7 2.4 3.1 2.7
BRIDGE 2.6 3.4 3.7 3.5
SQ-QDMR 1.0 1.3 1.9 1.2

While testing on single-database data, we use
the same temperature parameters for the models
trained on Spider only. For the fine-tuned models,
we also tune temperature on dev sets and choose
the values 2.0 for BRIDGE and T5-3B and 1.0 for
SQ-QDMR.

C Execution (1-test) Accuracy vs.
Test-suite Accuracy

In Table 6, we show the results of the search on
Spider with two criteria: passing one test and pass-
ing the test suite. For both criteria, we compute
execution accuracy (checks the execution result on
one database) and test-suite accuracy (checks the
execution results on the test suite). For all the mod-
els, test-suite accuracy is significantly lower than
execution accuracy for the search with the one-test
criterion.

Table 6: Execution (EX) and test-suite (TS) accuracy of
search with 1-test and test-suite criteria on Spider dev
and test.

Model Split 1 test Test Suite

EX TS EX TS

T5-3B
dev

94.4 86.9 91.4 90.1
BRIDGE 91.0 81.9 87.4 84.0
SQ-QDMR 98.0 84.0 93.7 94.4

T5-3B
test

90.7 84.7 85.5 86.8
BRIDGE 83.4 76.6 77.4 77.8
SQ-QDMR 86.7 75.2 79.7 84.1

D Single-database Datasets

We use the query splits provided by Finegan-Dollak
et al. (2018) for four single-database datasets:
GeoQuery, IMDB, Yelp and Academic. We
choose query splits because they are more diffi-
cult than question splits, according to the findings
of Finegan-Dollak et al. (2018). We exclude du-
plicates and examples with gold SQL queries that
crash or execute longer than 5 minutes with sqlite3.
The statistics of resulted datasets are presented in
Table 7.

Table 7: Statistics of single-database data.

Dataset Train Dev Test

GeoQuery 536 159 182
IMDB 103 9 17
Yelp 104 11 10
Academic 142 18 15

E Fine-tuning Details

For fine-tuning on single-database data, we use
official implementations of all the models.5 We
experimented with different training strategies: ini-
tializing from released checkpoints of the models
trained on Spider and training from scratch (in this
case, models contain transformers pre-trained on
textual data). We choose the best approach for each
model and refer to it as fine-tuning.

We fine-tune T5-3B pre-trained on textual data
(Raffel et al., 2020) for 300 epochs on one NVIDIA
A100 GPU with the same parameters as Scholak
et al. (2021) used: Adafactor optimizer (Shazeer
and Stern, 2018) with learning rate 1e-4 and batch
size 625.

The released checkpoint of the BRIDGE model
was trained on data that includes question splits of
single-database data that we consider. We re-train
this model on Spider-only data to evaluate it on
query splits of single-database datasets. We use
the same training parameters as Lin et al. (2020)
used: Adam optimizer (Kingma and Ba, 2014) with
the same scheduler (L-inv learning rate decay) and
batch size 32. We choose the best checkpoint on
the development set as Lin et al. (2020) did in their
work (execution accuracy and test-suite accuracy
of our and authors’ checkpoints are the same on
Spider dev and test). We use the same training
procedure for fine-tuning on single-database data
but create training data from both Spider train set
and the train set of a particular dataset.

For fine-tuning SQ-QDMR on GeoQuery, we
use the corresponding part of the Break dataset
(Wolfson et al., 2020) and generate the 366 train
groundings using the automatic annotation model
of Saparina and Osokin (2021). We cannot fine-
tune on the Academic dataset because its database
is large and preprocessing of Saparina and Osokin
(2021) failed. QDMR forms for other datasets were
not provided in the Break dataset, so we could not
fine-tune on them. For fine-tuning on GeoQuery,
we start with the released checkpoint and param-

5github.com/ElementAI/picard;
github.com/salesforce/TabularSemanticParsing;
github.com/yandex-research/sparqling-queries;
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eters saved on 73000 iterations of Spider training
and continue up to 81000 iterations with GeoQuery
train data. We also use the same parameters as
Saparina and Osokin (2021) used: the optimizer
is Adam (Kingma and Ba, 2014) with polynomial
decay scheduler used by (Wang et al., 2020), the
batch size is 24.

We use 1 NVIDIA A100 GPU for training T5-
3B, 1 NVIDIA V100 GPU for BRIDGE and 4
NVIDIA V100 GPUs for SQ-QDMR.

F Execution Accuracy of Search on
Single-Database Data

Table 8 shows execution accuracy of search on
different single-database datasets. We consider
two types of models: trained only on Spider data
and fine-tuned on single-database data. Comparing
with Table 5, the figures are higher because many
false-positive queries pass one test (the execution
accuracy metric) and do not pass the test suite. For
this reason, the results of searching with the test-
suite criterion are lower in terms of execution ac-
curacy: if no tested query satisfies the test-suite
criterion, the system defaults to the result of the
greedy decoding, which may fail one test, while
the one-test criterion would select a false positive.

Table 8: Different search criteria (execution, output
column match, 1 test and test suite) on top of pre-trained
models on the query test splits of different datasets with
execution accuracy.

Dataset
(test size) Model Greedy Exec Cols 1 test Test

Suite

GeoQuery
(182)

T5-3B 56.6 59.3 69.8 80.2 74.7
+ fine-tune 69.8 76.4 88.5 97.8 97.3
BRIDGE 57.6 51.1 63.7 86.8 74.7
+ fine-tune 71.4 72.5 86.3 96.7 93.4
SQ-QDMR 40.7 40.7 45.6 92.3 75.8
+ fine-tune 61.5 61.5 64.8 90.7 84.1

IMDB
(17)

T5-3B 5.9 17.6 17.6 35.3 35.3
+ fine-tune 52.9 52.9 52.9 58.8 52.9
BRIDGE 17.6 17.6 23.5 35.3 23.5
+ fine-tune 52.9 52.9 52.9 58.8 52.9
SQ-QDMR 11.8 11.8 11.8 41.2 35.3

Yelp
(10)

T5-3B 30 60 50 10 30
+ fine-tune 40 50 40 10 70
BRIDGE 10 30 30 90 30
+ fine-tune 40 80 80 100 70
SQ-QDMR 40 40 40 80 40

Academic
(15)

T5-3B 6.7 13.3 26.7 - 26.7
+ fine-tune 53.3 53.3 53.3 - 73.3
BRIDGE 6.7 6.7 6.7 - 20
+ fine-tune 33 40 40 - 80
SQ-QDMR 5.6 5.6 11.1 - 55.6
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Abstract

Existing multi-style image captioning methods
show promising results in generating a caption
with accurate visual content and desired lin-
guistic style. However, existing methods over-
look the relationship between linguistic style
and visual content. To overcome this draw-
back, we propose style-aware contrastive learn-
ing for multi-style image captioning. First, we
present a style-aware visual encoder with con-
trastive learning to mine potential visual con-
tent relevant to style. Moreover, we propose
a style-aware triplet contrast objective to dis-
tinguish whether the image, style and caption
matched. To provide positive and negative sam-
ples for contrastive learning, we present three
retrieval schemes: object-based retrieval, RoI-
based retrieval and triplet-based retrieval, and
design a dynamic trade-off function to calculate
retrieval scores. Experimental results demon-
strate that our approach achieves state-of-the-
art performance. In addition, we conduct an
extensive analysis to verify the effectiveness of
our method.

1 Introduction

Stylized image captioning aims to generate a nat-
ural language description with stylized elements
for a given image (Mathews et al., 2016; Gan et al.,
2017). With the advance of deep learning in human-
computer interaction equipment, it has been inte-
grated into many real-world applications like edu-
cation robots (Zhou, 2022), visual dialog (Das et al.,
2017), and vision-language navigation (Wang et al.,
2019). Therefore, it has attracted more attention
from academia and industry and has become one of
the essential areas in the natural language process-
ing (NLP) and computer vision (CV) community.

However, many methods propose translating im-
ages into captions of a single caption style (Math-
ews et al., 2016; Gan et al., 2017). These methods
need to train multiple models to handle multiple

∗Corresponding author.

Style: Contradictory 
Caption: Love what 
you did with the place! 

Style: Happy
Caption: Love what 
you did with the place! 

Style: Happy
Caption: the building is 
so beautiful and I love it.

(a) (b) (c)

Figure 1: (a) the caption is generated by stylized cap-
tioning model (Shuster et al., 2019); (b) and (c) show
the same caption can correspond to different styles.

styles, which is very inefficient. Therefore, a rising
demand for stylized image captioning is to learn
an efficient model to handle multiple styles simul-
taneously. Recently, many efforts have been made
in multi-style image captioning (Guo et al., 2019;
Shuster et al., 2019; Li and Harrison, 2021).

Despite their success, existing methods suffer
from a drawback: They focus on accurate visual
content and desired linguistic style but overlook the
relation between linguistic style and visual content.
As shown in Figure 1(a), the generated caption con-
tains accurate visual content and the desired style,
but with misinformation that is easily detectable
by humans, i.e., model generates “beautiful” in
the caption to cater to the style of “happy”. In-
deed, linguistic style (Bell, 1984) reflects person-
ality, emotion and sentiment. In human behavior,
these factors significantly influence the course of
cognitive behavior (Simon, 1967). When people
with different emotions see the same image are
likely to describe different contents because they
pay attention to different aspects. For example,
people who are happy with animals may describe
an image of a dog as a pretty dog with sparkling
eyes and supple hair. However, one afraid of dogs
may describe it as a scary dog with fierce teeth
and sharp claws. The former focus on the dog’s
eyes and hair, while the latter on the dog’s teeth
and paws. Therefore, people with different emo-
tions focus on different potential visual content. To
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generate human-like stylized captions, a stylized
captioning model should learn to mine potential
visual content relevant to different linguistic styles.

Due to the success of contrastive learning (He
et al., 2020; Gao et al., 2021), some works (e.g.,
UNITER (Chen et al., 2020), ViLT (Kim et al.,
2021)) employ contrastive learning objectives to
encourage cross-modality alignment. In this work,
we propose a style-aware visual encoder with con-
trastive learning to mine potential visual content
relevant to styles. Specifically, style-aware visual
encoder first mines potential visual features based
on given image and style pairs. Then, we use a
contrastive loss to pull potential visual features of
the anchor and positive pair together while pushing
those of anchor and negative pairs apart.

In addition, apart from requiring generated cap-
tions with accurate visual content and desired lin-
guistic style, multi-style image captioning also
needs to ensure that potential visual content and
style are relevant. Moreover, since multi-style im-
age captioning contains more fine-grained styles
than single-stylized image captioning, it is diffi-
cult to directly distinguish the style by the cap-
tion. As shown in Figure 1(b) and (c), captions
may be the same for two different styles. There-
fore, multi-style image captioning is required to
consider if matching among image, style and cap-
tion. Different from previous works (Guo et al.,
2019) that optimize generated captions only based
on style, we propose a style-aware triplet contrast
loss, which can learn the triplet matching among
image, style, and caption by contrasting it with the
positive triplet against negative ones.

Moreover, motivated by hard negatives sampling
in retriever training (Zhan et al., 2021), we present
three retrieval schemes to mine positive and nega-
tive examples for contrastive learning: object-based
retrieval, RoI-based retrieval and triplet-based re-
trieval. These three schemes calculate scores ac-
cording to object overlap rate, potential visual fea-
ture similarity, and triple feature similarity, respec-
tively. Meanwhile, we design a dynamic trade-off
function to calculate retrieval scores and analyze
the impact of different retrieval schemes.

We conduct an extensive evaluation on three
datasets, i.e., PERSONALITY-CAPTIONS (Shus-
ter et al., 2019), SentiCap (Mathews et al., 2016)
and FlickrStyle10K (Gan et al., 2017). Our method
significantly outperforms other strong competitors
and achieves state-of-the-art performance.

2 Related Work

2.1 Image Captioning
Image captioning, one of the essential tasks in mul-
timodal research, aims to generate a description
for a given image (Hodosh et al., 2015). With the
progress of deep learning, many end-to-end deep
neural networks for image captioning are proposed
(Vinyals et al., 2015; Anderson et al., 2018; Zhou
et al., 2021). Although these works have achieved
excellent improvements, the caption generated by
these models focuses on a single language domain,
which means that their outputs can be in only one
style and even dull and lack vitality sometimes.

2.2 Stylized Image Captioning
With the advance in image captioning techniques,
researchers have attempted to generate an image
caption with style. Mathews et al. (2016) propose
a word-level regularization for captioner to model
sentiment words. Gan et al. (2017) employ trans-
forming word embeddings matrices to control style
factors for generated captions. To accurately de-
scribe visual content and reflect the desired lin-
guistic style, some methods (Mathews et al., 2018;
Zhao et al., 2020) split a stylized sentence into a
style-related part that reflects the linguistic style
and a content-related part that contains the visual
content. Zhou (2022) employ prompt-based pre-
training to build a stylized captioner without any
paired sketch and story. These methods alleviate
the reliance on paired training data for stylized
captioner training. However, these methods need
to train multiple models to handle multiple styles,
which is inefficient. Therefore, learning an effi-
cient model to handle multiple styles simultane-
ously raises more interest. Some efforts are made
on multi-style image captioning, including adver-
sarial learning network (Guo et al., 2019) and multi-
updown fusion model (Li and Harrison, 2021). To
generate more diverse outputs, Shuster et al. (2019)
collect PERSONALITY-CAPTIONS, a large-scale
multi-style image captioning dataset.

2.3 Contrastive Learning
Recently, contrastive learning has made exciting
progress in representation learning (He et al., 2020;
Gao et al., 2021; Zhou et al., 2022). He et al.
(2020) leverage contrastive learning to improve vi-
sual presentation learning in an unsupervised man-
ner. Gao et al. (2021) propose a simple unsuper-
vised contrastive learning method to perform on
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Happy

<SOS> I wish I could 
photo bomb this photo 
because this group 
looks fun.

Transformer-Decoder

Image Encoder Linear
Layer

…
Embedding

…

Style-Aware Triplet Contrast

Style-Aware Visual Encoder

Contrastive Learning

Caption Generation

Figure 2: An overview of our proposed SACO model
with three objectives. Yellow rounded rectangles denote
fixed model. Blue rounded rectangles denote parameters
that will be optimized.

par with previously supervised counterparts. Yang
et al. (2022) propose triple contrastive learning
for vision-language pre-training by leveraging both
cross-modal and intra-modal self-supervision, pro-
viding complimentary benefits in representation
learning. These works show the powerful ability
of contrastive learning to improve representation
learning.

3 Method

This section will elaborate on our Style-Aware
COntrastive learning (SACO) method for multi-
style image captioning, followed by our proposed
novel retrieval schemes. The details of our ap-
proach are shown in Figure 2. Lastly, details about
training and fine-tuning are elaborated.

3.1 Image and Style Encoding
Firstly, we pass an image I into a pre-trained con-
volutional neural network (CNN) to extract its vi-
sual feature V and convert the visual feature into a
sequence according to the row-first direction:

V = CNN(I)

where V = [v0,v1, ...,vm],vi ∈ R|d
′| (1)

In addition, the style S is represented as a one-
hot vector and encoded to a style feature s by a
linear layer:

s = LinearLayer(S), s ∈ R|d| (2)

Since there is a different dimension between vi-
sual feature V and style feature s, a multi-layer

perceptron (MLP) built upon vi is presented to re-
duce its dimension to equal the dimension of s:

vi := MLP(vi), vi ∈ R|d|, ∀i = 1, . . . ,m (3)

3.2 Style-Aware Visual Encoder

Originating from the observation that different
styles will focus on different image regions, we pro-
pose a style-aware visual encoder with contrastive
learning to mine potential visual content relevant
to styles. Since self-attention (Vaswani et al., 2017)
shows a strong capability to relate different posi-
tions of a sequence for feature computation, we
leverage self-attention as backbone of the style-
aware visual encoder. Particularly, we concatenate
the visual feature V and style feature s, and apply
the self-attention layers to them to derive the style-
aware visual features V s and vision-aware style
feature sv, i.e.,

[V s; sv] = Self-Attention([V ; s]) (4)

where [·; ·] denotes the operation of concatena-
tion. Intuitively, the success of Eq. (4) requires
accurately capturing the visual features relevant to
styles, but a major problem arises without artifact
labels: Learning Difficulty. Motivated by some
works (Chen et al., 2020; Kim et al., 2021) im-
plement cross-modality alignment via contrastive
learning, we leverage contrastive learning for style-
aware visual encoder, which drives its learning to
capture potential visual content correlated to given
styles without any labeled data. Specifically, we
use contrastive learning to learn the representation
of potential visual content by contrasting it with
the positive example (V̂ s, ŝv) against those of neg-
ative ones (V̄ s

i , s̄
v
i ). Particularly, we first derive

features (V̂ s, ŝv) and (V̄ s
i , s̄

v
i ) independently via

Eq. (1-4). Then, we mine more accurate (V s, sv),
style-aware visual features and vision-aware style
features, by contrasting it with (V̂ s, ŝv) against
(V̄ s

i , s̄
v
i ), i.e.,

L(svc)=− log
esim(r,r̂)/τ

esim(r,r̂)/τ+
∑M

i=1 e
sim(r,r̄i)/τ

− log
esim(sv ,ŝv)/τ

esim(sv ,ŝv)/τ+
∑M

i=1 e
sim(sv ,s̄vi )/τ

where r = Pooling(V s)

r̂ = Pooling(V̂ s)

r̄ = Pooling(V̄ s
i ) (5)
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where sim(r, r′) is the dot product operation be-
tween ℓ2 normalized r and r′ (i.e. cosine similarity
r⊤r′
∥r∥·∥r′∥ ) and τ is a temperature hyperparameter to
control the pull and push force; M is number of
negative samples. As a result, since the style-aware
visual features and vision-aware style features also
offer a straightforward pathway to transmit style-
aware visual information to style-aware visual en-
coder, it mitigates the learning difficulty problem.

3.3 Transformer-Decoder Based Generator
Due to the success of the pre-trained language
model, there are some works (e.g., GPT (Radford
et al., 2018), GPT-2 (Radford et al., 2019)) pre-train
the Transformer decoder (Vaswani et al., 2017)
on large-scale corpora. Recently, a fundamental
paradigm of text generation tasks is to fine-tune
the pre-trained model on the target data, and it can
achieve exciting performance. In this work, we
leverage a trained transformer decoder to initialize
our generator. The generator input is adjusted to
the triples (V s, sv, C̄), where C̄ refers to the seg-
ment of stylized image caption. The purpose of
generator is to predict a probability distribution of
the next word of the segment C̄ based on the given
triple, i.e.,

hi = Trans-Dec(V s, sv, C̄) ∈ R|d|

where C̄ = [c1, . . . , ci−1] (6)

pi = LM-Head(hi) ∈ R|V| (7)

where hi refers to the hidden representation in i-
th step; V denotes token vocabulary and pi is a
probability distribution over V . Lastly, the cap-
tion generation objective is defined as a maximum
likelihood estimation and written as:

L(cap) = − 1

|N |
∑N

i=1
log pi(ci), (8)

where pi(ci) denotes fetching the probability of the
i-th step gold token ci ∈ C from pi. C refers to
the gold caption and N is its length.

3.4 Style-Aware Triplet Contrast
Different from stylized image captioning for a sin-
gle style, multi-style image captioning contains
more fine-grained styles, and it is difficult to dis-
tinguish the style by the caption directly. So multi-
style image captioning is required to consider if
matching among image, style and caption. Re-
cently, contrastive learning has shown its power
capability in alignment between positive pairs and

dispersion between negative ones. Inspired by ad-
vances in contrastive learning, we propose a style-
aware triplet contrast loss to learn the triplet match-
ing among image, style, and caption by contrasting
it with the positive triplet against negative ones.
Given an image I , style S and caption C, we first
obtain the representation for this triplet. Since vi-
sual and style features have fed into the decoder,
the triplet representation can be extracted by the
hidden representation of the decoder, i.e.,

h = − 1

|N |
∑N

i=1
MLPtriplet(hi) (9)

where N is the same as that in Eq.8 and denotes
the length of the caption; MLPtriplet refers to a
Multilayer Perceptron; and hi can be derived from
Eq.6. Then, we enhance the triplet representation
h by contrasting it with a positive triplet ĥ against
negative ones h̄, i.e.

L(stc)=− log
esim(h,ĥ)/τ

esim(h,ĥ)/τ+
∑M

i=1 e
sim(h,h̄)/τ

(10)

where sim(·, ·) is the dot product operation as same
as that in Eq.5.

3.5 Retrieval Schemes
In our proposed contrastive learning objective, pos-
itive and negative samples are important elements.
Since caption datasets are not designed with posi-
tive and negative samples, we propose three heuris-
tics to derive positive and negative samples for a
triplet of image I , style S and caption C:

Object-based Retrieval. We first leverage a well-
trained object detection model (Ren et al., 2015) to
obtain object classes in images. Then, we retrieve
image Î from image set I according to object over-
lap with I , and derive a probability for sampled
examples:

Pobj =
Noverlap

NI
(11)

where NI denotes number of objects in the image
I , and Noverlap refers to the number of overlapped
objects both in I and Î .

RoI-based Retrieval. In this retrieval scheme,
the region of interest (RoI) refers to potential vi-
sual content relevant to style. We retrieve image Î
based on the similarity between its representation
of potential visual content and that of image I:

Proi = sim(V , V̂ ) (12)
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where V and V̂ are the style-aware visual features
of I and Î , and details of their calculation can refer
to Eq.5.

Triplet-based Retrieval. Since triplet matching
is essential for multi-style image captioning, we re-
trieve image Î according to the similarity between
triplets:

Ptri = sim(h, ĥ) (13)

where h and ĥ are the triplet representation for the
triplet (I,S,C) and (Î, Ŝ, Ĉ), and details of their
calculation can refer to Eq.10.

Dynamic Trade-off Function. We combine the
above three novel retrieval schemes to rank sam-
ples, and score of each sample can be defined as:

P =θµPobj+(1−θµ)(ϕProi+(1−ϕ)Ptri) (14)

where P denotes the score of samples and ϕ
is a trade-off parameter; θ denotes a decay fac-
tor and µ is the current training epoch. Dur-
ing training, we randomly select a sample among
the top-10 samples as positive one, and the neg-
ative samples are randomly sampled based on
P < max(0.1, Pmax − ωµ).

3.6 Training and Fine-tuning
For model training, we adopt the same 2-stage train-
ing scheme (training and fine-tuning) as in (Ander-
son et al., 2018). In the training stage, we optimize
the model according to the three objectives pro-
posed above, and the loss function of our model
can be integrated into the following:

L = L(cap) + αL(svc) + βL(stc) (15)

where α and β are trade-off parameters.
In the fine-tuning stage, we employ the CIDEr

score to optimize our model as same as (Rennie
et al., 2017), i.e., returning a reward for generated
caption Ĉ.

R(CIDEr) = RCIDEr(Ĉ)− b (16)

where b is a baseline, i.e., the reward RCIDEr(C
∗)

for the generated caption C∗ with greedy search.

4 Experiments

4.1 Dataset and Evaluation Metrics
We evaluate our proposed approach on three
datasets, PERSONALITY-CAPTIONS (Shuster
et al., 2019), SentiCap (Mathews et al., 2016) and
FlickrStyle10K (Gan et al., 2017).

PERSONALITY-CAPTIONS. Shuster et al.
(2019) collect a large-scale multi-style image
captioning dataset, PERSONALITY-CAPTIONS,
which includes 201,858 images, 215 personality
traits, and 241,858 stylized captions. We divide
the dataset following (Shuster et al., 2019), and
the size of the training set, validation set, and test
set are 186,858, 5,000, and 10,000, respectively.
In the test set, each image contains five reference
captions. Following Shuster et al. (2019), we use
the same metrics to report our results, and the eval-
uation is based on the coco-caption code1. The
evaluation metrics include: BLEU (Papineni et al.,
2002), ROUGE-L (Lin, 2004), CIDEr (Vedantam
et al., 2015), SPICE (Anderson et al., 2016).

SentiCap & FlickrStyle10K. SentiCap (Math-
ews et al., 2016) and FlickrStyle10K (Gan et al.,
2017) are two publicly stylized image caption
datasets. According to (Li et al., 2021), we pro-
cess SentiCap and FlickrStyle10K datasets, and
use samples from MSCOCO (Lin et al., 2014)
and Flickr30K (Hodosh et al., 2015) as large-scale
paired factual data. Following Li et al. (2021), we
use BLEU, METEOR (Banerjee and Lavie, 2005),
CIDEr, style classification accuracy (cls.) and the
average perplexity (ppl.) as evaluation metrics.
Style classification accuracy is measured by a well-
trained BERT, which achieves accuracies of 95.9%,
98.0%, 98.1%, and 99.5% on the test sets of hu-
morous, romantic, negative, and positive styles,
respectively. The average perplexity is measured
by a well-trained trigram-based statistical language
model using SRILM toolkit. A lower score de-
notes that the generated caption is more fluent and
reflects the desired linguistic style better.

4.2 Implementation Details
Our approach adopts the same 2-stage training
scheme (training and fine-tuning). For training
stage, input images are resized to the size of
256× 256, and then we randomly crop the image
size as 224× 224 as model input. To ensure a fair
comparison, we use the ResNeXt-IG-3.5B (Maha-
jan et al., 2018) as the pre-trained image encoder,
as same as (Shuster et al., 2019), and the size of
output features is 7 × 7 × 2048. Then, the visual
features are reshaped as 49×2048 according to the
row-first direction. The style-aware visual encoder
is constructed with three self-attention layers. We
use a distilled version of pre-trained GPT-2 (Sanh

1https://github.com/tylin/coco-caption
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et al., 2019) as our transformer-decoder based gen-
erator, as same as (Nguyen et al., 2020). The layers
and attention heads of the decoder are 6 and 8.
The dimension of embedding vectors and hidden
states in the decoder are 768 and 1024. Special
tokens for the beginning and end of sentences are
<SOS> and <EOS>. In addition, the size of the
style linear layer are 215 × 768 and 5 × 768 for
PERSONALITY-CAPTIONS dataset and SentiCap
and FlickrStyle10K datasets. For model training,
we utilize the Adam optimizer (Kingma and Ba,
2015) with learning rate of 1e-4. The batch size,
warm-up proportion, weight decay, maximum train-
ing epoch and temperature hyperparameter τ are
128, 0.1, 0.01, 10 and 0.08. The trade-off parame-
ter ϕ and decay factor θ in Eq.14 are 0.5 and 0.9. ω
for negatives sampling is 0.8. Trade-off parameters
α and β in Eq.15 are 0.5 and 0.7. For fine-tuning
stage, the maximum training epoch and learning
rate are 3 and 1e-5. Other experimental details are
the same as that of training stage. For testing, we
use beam search with beam size of 3 to generate
captions with maximum sentence length of 30. Our
model is trained on one V100 GPU.

4.3 Baselines
We compare our model with the following state-of-
the-art baselines: (1) ShowTell propose by (Shuster
et al., 2019) and is a variant of (Vinyals et al., 2015)
that concatenates the style features with the input
word vectors at each decoding step. (2) ShowAtt-
Tell, proposed by (Xu et al., 2015), aims to enhance
the correlation between the text and image by an
attention mechanism, and the used model is a vari-
ant proposed by (Shuster et al., 2019). (3)UpDown
with a decoder of two LSTMs can adapt to gen-
erate attention weights and use it to generate cap-
tions (Anderson et al., 2018), and the used model
is a variant proposed by (Shuster et al., 2019). (4)
GPT with an image encoder is fine-tuned on the
captioning dataset (Radford et al., 2019). (5) GPT-
Speaker (Nguyen et al., 2020) employs the lan-
guage model GPT2 as a language prior for both
the speaker and listener in the multi-agent com-
munication framework. (6) 3M (Li and Harrison,
2021) is a multi-style image captioner that is a
multi-UpDown encoder-decoder model integrated
with multi-modal features.

4.4 Main Results
Comparison results on PERSONALITY-
CAPTIONS test set are shown in Table 1.

Method B@1 B@4 R C S

ShowTell 38.4 7.3 24.3 9.6 1.6
ShowAttTell 43.3 7.1 27.0 12.6 3.6
UpDown 44.4 8.0 27.4 16.5 5.2
GPT 49.2 9.1 29.0 19.0 6.3
GPT-Speaker 52.1 8.4 30.2 19.9 7.3
GPT-Speaker* 52.3 8.2 30.1 20.0 7.4
3M 43.0 8.0 27.6 18.6 4.8
SACO (Ours) 54.8 9.7 32.6 21.0 8.1

Table 1: Comparison results on PERSONALITY-
CAPTIONS test set. B@1, B@4, R, C and S denote
BLEU@1, BLEU@4, ROUGE-L, CIDEr and SPICE,
respectively. ∗ refers to the baseline of our reproduction.

Style Method B@1 B@3 M C cls. ppl.

Humor

SF-LSTM 27.4 8.5 11.0 39.5 - -
MSCap 16.3 1.9 5.3 15.2 91.3 22.7
SAN 29.5 9.9 12.5 47.2 99.4 13.7
SACO 35.2 10.3 13.4 51.2 99.7 12.9

Roman

SF-LSTM 27.8 8.2 11.2 37.5 - -
MSCap 17.0 2.0 5.4 10.1 88.7 20.4
SAN 30.9 10.9 13.0 53.3 99.6 13.1
SACO 35.8 13.5 14.1 55.8 99.9 12.4

Pos

SF-LSTM 50.5 19.1 16.6 60.0 - -
MSCap 46.9 16.2 16.8 55.3 92.5 19.6
SAN 53.0 23.4 18.1 72.0 100.0 11.7
SACO 56.3 24.7 19.5 72.2 99.8 11.5

Neg

SF-LSTM 50.3 20.1 16.2 59.7 - -
MSCap 45.5 15.4 16.2 51.6 93.4 19.2
SAN 51.2 20.5 17.6 67.0 100.0 14.8
SACO 53.2 23.6 19.1 70.5 100.0 13.3

Table 2: Comparison results on FlickrStyle10K and
SentiCap test set. M denotes METEOR.

From the table, we can make three observa-
tions. First, we can observe that our methods
achieve state-of-the-art performance on the
PERSONALITY-CAPTIONS dataset. Second,
models based on GPT reach a better performance
than LSTM-based models, which shows the pow-
erful generation capability of transformer-based
decoder in stylized caption generation. Lastly,
our model significantly outperforms the GPT-2
model by a large margin (i.e., improving 2.0 in
CIDEr). That is, style-aware contrastive learning
can improve the model by strengthening different
style understanding.

In addition, we also show comparison results
on FlickrStyle10K and SentiCap test set in Table
2. Competitors include SF-LSTM (Chen et al.,
2018), MSCap (Guo et al., 2019) and SAN (Li
et al., 2021). Results show that transformer-based
methods (i.e., SAN and SACO) outperform LSTM-
based methods (i.e., SF-LSTM and MSCap). More-
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Method B@1 B@4 R C S

SACO 54.8 9.7 32.6 21.0 8.1
3 w/o CIDEr 53.0 9.6 31.9 19.1 7.2
3 w/o STC 52.9 9.0 31.2 20.0 7.5
3 w/o SVC 52.4 8.7 30.8 19.8 7.3
3 w/o SVC, STC 48.9 9.0 29.1 18.7 6.0
3 L(cap) Only 47.3 8.7 29.2 16.0 5.4

Table 3: Ablation study. “w/o CIDEr” denotes removing fine-
tuning stage for model training; “w/o STC” denotes removing
the style-aware triplet contrast loss; “w/o SVC” denotes remov-
ing the style-aware visual contrast encoder; “w/o SVC,STC”
denotes removing both contrastive learning methods in our
model; and “L(cap) Only” denotes our model only train with
the caption generation objective and without fine-tuning.

Method B@1 B@4 R C S

SACO 54.8 9.7 32.6 21.0 8.1
SACO (Dec w/o style) 53.8 9.4 31.9 20.5 7.8
3 w/o SVC 52.9 9.0 31.2 20.0 7.5

Table 4: Impact of style-aware visual contrast encoder.

over, compared with strong competitors, our ap-
proach achieves state-of-the-art performance on
FlickrStyle10K and SentiCap.

4.5 Ablation Study

To demonstrate the effectiveness of our method, we
conduct an ablation study and results are shown in
Table 3. We first investigate the impact of the style-
aware triplet contrast objective by removing it and
find that model performance is decreased. Next, we
investigate our method without style-aware visual
contrast encoder and observe that the performance
drops, which is worse than that without SVC. More-
over, we remove both contrastive learning objec-
tives, and results show the performance is degraded
again. The observations above demonstrate the
effectiveness of style-aware contrastive learning.

4.6 Analysis

4.6.1 Impact of Contrastive Learning

Impact of Style-Aware Visual Contrast Encoder.
To further investigate the impact of the style-aware
visual contrast encoder, we remove the input style
for our decoder, i.e., the decoder input only con-
sists of V s, C̄ in Eq.6. Results are shown in Table
4. Results show that our decoder without input
style outperforms the model without SVC, which
demonstrates that style-aware visual contrast en-
coder can capture potential visual content relevant
to the given style.

Method B@1 B@4 R C S

SACO 54.8 9.7 32.6 21.0 8.1
SACO (STC-pointwise) 53.2 9.0 31.4 20.1 7.3
SACO (comp.) 53.0 9.1 31.2 20.2 7.4
3 w/o STC 52.4 8.7 30.8 19.8 7.3

Table 5: Impact of style-aware triplet contrast.
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Figure 3: Retrieval schemes ablation.

Impact of Style-Aware Triplet Contrast. To in-
vestigate the impact of the style-aware triplet con-
trast objective, we replace the objective with two
binary classification based objectives: point-wise
classification and the comp. objective in (Nguyen
et al., 2020). As shown in Table 5, results show that
binary classification based objectives underperform
our contrastive objective, which demonstrates that
contrasting positive and negative triplets is helpful
for the model to understand triplet matching.

4.6.2 Retrieval Schemes Ablation
Due to contrastive learning depending on positive
and negative sampling, we conduct an ablative anal-
ysis on retrieval schemes. Results are shown in
Figure 3. From left figure, we can make two ob-
servations: (1) The decay factor θ set of 0.9 can
perform better than that of 0.8. It demonstrates
that object-based retrieval is essential in the early
training phase. (2) The trade-off parameter ϕ set of
0.5 can achieve the best performance, which shows
the vital role of both style-aware contrastive objec-
tives in positive and negative sampling. From right
figure, based on the sampling function in §3.5, as
ω becomes greater, negative sampling range during
training will become greater. We can see that a
greater negative sampling range is beneficial for
contrasting learning. The reason is that the larger
sampling range allows model to access harder neg-
atives. In addition, we find that the performance
gradually drops when ω is greater than 0.8, which
shows too hard negatives hinder model learning.

4.6.3 Qualitative Comparison
To extensively evaluate our model, we conduct
a qualitative comparison of our model and GPT-
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Style: Romantic

SACO: i would love to make a date here with my girlfriend .

GPT-Speaker*: the bridge and the river with the warm light .

Style: Happy

SACO: i love seeing the plane fly ! I wish i was there!

GPT-Speaker*: the plane is ready to fly .

Style: Money-minded

SACO: i wonder how much money they sell for it.

GPT-Speaker*: i paid how much money a man for it.

Style: Peaceful

SACO: the building looks so peaceful and calming .

GPT-Speaker*: the building is so grey. 

Figure 4: Random sampling examples generated by
SACO and GPT-Speaker*.

Image Attention Map

Style: Money-minded
Caption: i wonder how much money they sell 
for it.

Style: Exciting
Caption: the dog is so cute ! I love it !

Style: Breezy
Caption: i love to take a stroll through this 
field and watch the clouds go out .

Figure 5: Interpretable visualization analysis of random
sampling examples. The brighter image areas mean
more relevant to style.

Speaker, and some random sampling examples are
shown in Figure 4. For example, in the first line, we
can observe that GPT-Speaker can capture objects
in the image and describe them in a caption, but it
does not entail style. Therefore, the caption gen-
erated by our model is shown to more natural and
with desired style. For instance, in the second and
last lines, we can find that the caption generated
by GPT-Speaker is more like a factual description.
In contrast, the caption generated by our model is
more expressive of style.

4.6.4 Interpretable Visualization Analysis

To investigate the effectiveness of style-aware vi-
sual contrast encoder, we conduct an interpretable
visualization analysis, as shown in Figure 5. In the
attention map of self-attention layers, the brighter
image areas mean greater attention weights, i.e.,
these areas are more relevant to the given style.
As shown in the first example, under the style
"money-minded", the object is more paid atten-
tion to than the human, which is very intuitive.
Next, in the second example, under the style "ex-

Type of evaluation Win Percentage
SACO GPT-Speaker*

Engagingness 62.9 37.1
Visual Relevance 64.9 35.1

Personalized Relevance 63.4 36.6

Table 6: Human Evaluation.

citing", "a dog of running" are paid more attention
and described with "love" and "cute", which are
reasonable. Therefore, the results show that the
style-aware visual contrast encoder can effectively
capture potential visual content related to style.

4.6.5 Human Evaluation
To comprehensively evaluate our method, we con-
ducted a human evaluation to compare our model
and GPT-Speaker. Following Nguyen et al. (2020),
we considered the engagingness and relevance of
captions. Engagingness evaluation considers hu-
man preference for the naturalness and appropri-
ateness of the captions, while relevance evaluation
involves visual and stylized relevance. Therefore,
there are three types of evaluation. We randomly
sampled 50 samples from the test set for each eval-
uation type above. Each sample includes an image
and a style. Then, we use our model and GPT-
Speaker to generate captions for these samples.
We displayed the selected image-style pairs and
their caption generated from our model and GPT-
Speaker to 7 recruited annotators. They need to
judge which captions are better quality based on
the type of evaluation. As shown in Table 6, results
show that the performance of our model is signifi-
cantly better than GPT-Speaker, i.e., our model can
generate fascinating captions.

5 Conclusion

In this work, we dive into the relationship between
linguistic style and visual content. The first is po-
tential visual content has varied for different styles.
We propose a style-aware visual encoder that learns
to capture the representation of potential visual
content. Second, since the model is required to dis-
tinguish whether the image, style and caption are
matched, we present a style-aware triplet contrast
objective to improve the model’s capability to dis-
criminate triplet matching. In addition, we propose
three novel retrieval schemes to sample positive and
negative examples for contrastive learning. Results
show that our method delivers new state-of-the-art
performance.
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Limitations

Although our proposed method can effectively
mine latent visual content related to style, it still
suffers from weaknesses in generating multiple styl-
ized captions for the same image and style pair.
Specifically, our method relies on beam search to
generate diverse stylized captions for the same im-
age and style pair and lacks the capability to control
content for caption generation interactively. In fur-
ther work, we will study how to generate stylized
captions by interactively selecting specified regions
in latent visual content.
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Abstract

Conversational tutoring systems (CTSs) aim
to help students master educational material
with natural language interaction in the form
of a dialog. CTSs have become a key pillar
in educational data mining research. A key
challenge in CTSs is to engage the student in
the conversation while exposing them to a di-
verse set of teaching strategies, akin to a hu-
man teacher, thereby, helping them learn in the
process. Different from previous work that gen-
erates responses given the strategies as input,
we propose to jointly predict teaching strate-
gies and generate tutor responses accordingly,
which fits a more realistic application scenario.
We benchmark several competitive models on
three dialog tutoring datasets and propose a
unified framework that combines teaching re-
sponse generation and pedagogical strategy pre-
diction, where a self-distillation mechanism is
adopted to guide the teaching strategy learning
and facilitate tutor response generation. Our
experiments and analyses shed light on how
teaching strategies affect dialog tutoring.

1 Introduction

Decades of research effort (Carbonell, 1970;
Richardson, 1988; Brown, 2009) has been put into
building intelligent tutoring systems (ITSs). An
important feature of these systems is the ability to
customize the instructional activities and strategies
based on the learner’s characteristics and needs
(Keleş et al., 2009). Conversational tutoring sys-
tems (CTSs) that aim to offer automated tutoring
through natural language dialog is a key pillar of
ITS research. Earlier work in CTSs was based
on conventional techniques such as Bayesian tech-
niques with rule engines (Jeon and Su, 2010; Wer-
agama and Reye, 2014) and hybrid neural networks
(Kose and Arslan, 2017; Stasaski et al., 2020).
While various advanced neural approaches have
been applied to open-domain (Sordoni et al., 2015;
Serban et al., 2016; Xing et al., 2017) and task-

Teaching Strategy Tutor Response
Restating Let me say back what I heard. 
Pressing for accuracy Can you tell us the steps you used to 

find the answer? 

(a) Two examples of teaching strategy and tutor response

Tutor: Ok, now we have 'get cut off', 'put 
someone through' and 'get through’ scaffolding

Tutor:
I was talking to her, but suddenly 
we ___ ___ ___ (I couldn‘t hear her 
anymore) Can you choose one?

eliciting

Student: got cut off -

Tutor: yes, good! Well done today! Have a 
lovely day! closing

(b) An example of interactions between tutor and student

Figure 1: Examples of teaching strategy and interac-
tions between tutor and student. Teaching strategies in
Figure 1(b) are in red.

oriented dialogue systems (Zhao et al., 2017; Lei
et al., 2018; Peng et al., 2020), conversational tu-
toring systems have not benefited from the devel-
opment of these technologies (Macina et al., 2023).

Human teachers use a number of nuanced teach-
ing strategies in the classroom during interactions
with students; these strategies are tailored to keep
the students engaged in the conversation and learn
knowledge efficiently. We show some examples
of teaching strategies and interactions between the
tutor and the student in Fig. 1. Previous work
has attempted to model these teaching strategies
in different ways – e.g., Suresh et al. (2019) con-
tributed a teaching strategy classification model
and Stasaski et al. (2020) proposed a response gen-
eration model based on given teaching strategies of
next response.

In this work, we benchmark several neural dialog
models on three conversational tutoring datasets,
CIMA (Stasaski et al., 2020), TSCC (Caines et al.,
2020) and TalkMoves (Suresh et al., 2019, 2022),
and contribute a unified framework based on pre-
trained language models, where teaching strat-
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egy prediction and response generation are jointly
trained. As predicting a teaching strategy merely
by the historical context is more difficult than when
we are also given the target tutor response, we also
propose a pedagogy distillation mechanism that al-
lows teaching strategy prediction to learn from the
soft labels which are produced by the prediction
with target response. The soft labels learned from
the target response provides the model knowledge
about various interrelationships between teaching
strategies that hard labels lack. This approach is
believed to be able to alleviate the learning diffi-
culty (Hinton et al., 2015), which is particularly
important, especially when the data imbalance and
scarcity issues are severe – often the case in con-
versational tutoring data.

In summary, we are the first to benchmark1 sev-
eral competitive models for conversation tutoring
system on all three datasets that are currently avail-
able. Besides, we propose a unified framework that
can predict teaching strategy and generate tutoring
responses accordingly, which is enhanced by a self-
distillation mechanism. Our experiments validate
the positive effects of teaching strategy to guide
generation and the importance of predicting strat-
egy first and then generate response accordingly.

2 Related Work

A classical Intelligent Tutoring System generally
has three modules (Brown, 2009; Polson and
Richardson, 2013): (i) expert module that includes
the knowledge that the student wants to learn
(Carter, 2014)). (ii) student module that can adjust
the level of student (e.g., primary/middle school,
non-native/native speaker), student’s knowledge de-
ficiency, etc. (iii) pedagogical module that focuses
on the strategies of teaching. In expert module, the
knowledge is usually domain specific, such as com-
puter programming (Costello, 2012), mathematics
(Grawemeyer et al., 2016; Suresh et al., 2022), Ital-
ian (Stasaski et al., 2020), English (Caines et al.,
2020). Many technologies have been used in the
expert module, such as Bayesian techniques with
rule engines (Jeon and Su, 2010; Weragama and
Reye, 2014) and hybrid neural networks (Kose and
Arslan, 2017; Stasaski et al., 2020). For pedagogi-
cal module, to our best knowledge, there are only
three publicly available datasets that provide the
pedagogy information. They are CIMA (Stasaski

1The code can be found in https://github.com/
Lingzhi-WANG/TutorSystem
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Figure 2: Our overall framework. The self-distillation
leverages predictions based on target to improve predic-
tions based on source. The enhanced strategy prediction
is further utilized to facilitate the generation.

et al., 2020), TSCC (Caines et al., 2020) and Talk-
Moves (Suresh et al., 2022) datasets and all of them
are based on single pedagogy. There has been very
little work on neural dialog tutoring. Two excep-
tions to this are Suresh et al. (2022), who propose
a simple BiLSTM-based module to predict the ped-
agogy of the next sentence that teachers are meant
to say, and Stasaski et al. (2020) who use various
generative models to generate responses given the
pedagogical strategies. In contrast, in this work,
we propose a joint approach for modelling the ped-
agogy and response generation that outperforms
the previous approaches using a novel pedagogy
distillation mechanism.

3 Our Model

3.1 Problem Formulation

Our conversational tutoring system takes conver-
sation context C and teaching strategy list D as
input. C is formalized as a sequence of turns
{t1, t2, ..., tnc} where nc represents the number of
turns. ti (1 ≤ i ≤ nc) denotes the i-th turn of the
conversation, and we use wi to indicate the word
tokens contained in it. The teaching strategy list
D covers all the possible strategies and contain nd
teaching strategies. Our model will first output one
or several strategy labels, each yd ∈ {1, 2, ..., nd},
to indicate what teaching strategy to use. Then
the generation module generates a target response
yt = (yt1, . . . , y

t
nt) based on the predicted strategy.

3.2 Conversational Tutoring System (CTS)

PLM-based Generation Module. The genera-
tion module follows a Transformer (Vaswani et al.,
2017) sequence-to-sequence framework. As the
currently available tutoring datasets are quite small
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(containing about 3k conversations), we choose to
finetune pretrained language models (PLM) to alle-
viate data scarcity and enhance context modeling.
We finetune BART (Lewis et al., 2020) and multilin-
gual BART(mBART) (Liu et al., 2020) models for
our generation module. During finetuning, we con-
catenate the utterances ti (1 ≤ i ≤ nc) in context
C with appended ⟨eos⟩ tokens in their chronolog-
ical order as input, and maximize the probability
of the ground-truth target sequence. The whole
process is summarized as follows:

Hc = Transformer_Encoder(wc) (1)

ytk = Transformer_Decoder(yt<k,H
c) (2)

Lgentarget =
∑nt

k=1
− log(p(ytk|yt<k,Hc)) (3)

where wc = [w1; ⟨eos⟩;w2; ..;wnc ; ⟨mask⟩], and
yt<k represents the target tokens before ytk. We add
⟨mask⟩ at the end of context, to simulate the opera-
tion in pre-training (Schick and Schütze, 2021).

Besides, to summarize the representation of the
conversation context, we employ an additional
source sequence decoder as follows:

ysk = Transformer_Decoder(ys<k,H
c) (4)

Lgensource =
∑ns

k=1
− log(p(ysk|ys<k,Hc)) (5)

where ys<k represents the source tokens before ysk.

Teaching Strategy Prediction Module. We use
the representation of the ⟨eos⟩ token (i.e. the final
token) produced by the decoder as the represen-
tation for teaching strategy prediction, denoted as
h⟨eos⟩. This is fed into a two-layer MLP for predic-
tion:

rd = W2 × α(W1h
⟨eos⟩ + b1) + b2 (6)

where W1, W2, b1 and b2 are learnable parame-
ters, and α is a non-linear activation function. The
output representation rd will be an nd-dimension
vector and the probability for each teaching strategy
in list D is computed based on rd:

p(yd = j) = softmax(rd)j (7)

where yd denotes the predicted strategy and j ∈
{1, 2, ..., nd}.

We denote h⟨eos⟩ produced by source and tar-
get generation as h

⟨eos⟩
s and h

⟨eos⟩
t , respectively.

With h
⟨eos⟩
s , it means that we predict the teaching

strategy without knowing the corresponding con-
tent; while with h

⟨eos⟩
t , we summarize the teach-

ing strategy based on the target content. Obvi-
ously, predicting with h

⟨eos⟩
s is what we need, but

this is quite challenging. Thus we design a self-
distillation mechanism which uses prediction based
on h

⟨eos⟩
t for enhancing the generation model.

Teaching Strategy Enhancement with Distilla-
tion. We denote the predicted probability for each
strategy (derived with Eq. 7) using h

⟨eos⟩
s and h

⟨eos⟩
t

as ps(·) and pt(·), respectively. Our self-distillation
is defined as guidance from pt(·) to ps(·):

Lsd = −
∑nd

j=1
ps(y

d = j) log pt(y
d = j) (8)

where we define pt(·) as teacher distribution and
ps(·) as student distribution, and Eq. 8 makes the
student distribution similar to the teacher distribu-
tion. In this way, our teaching strategy prediction
model can also learn from the soft labels produced
by the target sequence.

Multiple Teaching Strategies Guided Genera-
tion. To guide the response generation with teach-
ing strategy, we regard the teaching strategies as
prompt tokens and display them at the beginning
of generation. In this way, the target tokens will
be generated autoregressively according to the giv-
ing teaching strategy. Specifically, during training,
we use the ground-truth strategy (denoted as dc,
and it will be masked in distillation to avoid infor-
mation leakage) for teacher forcing (i.e. yt0 = dc

in Eq. 3); during inference, we use the predicted
strategies produced by the prediction module as
prompt tokens.

To enable multiple teaching strategies guidance,
we define a threshold θ, where all the strategies
satisfying ps(yd = j) ≥ θ (1 ≤ j ≤ nd) will
be used to guide the response generation. To that
end, we weightedly sum over the embeddings of
those strategies as prompt based on their predicted
probabilities produced by Eq. 7 and then use it to
guide the generation.

3.3 Learning Objectives
The learning objective for teaching strategy predic-
tion is defined as follows:

Lpred = −(log ps(yd = dc) + log pt(y
d = dc)) + λ · Lsd

(9)

where dc is the ground-truth strategy for context C
and λ is a hyper-parameter to control the weights
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of self-distillation loss. Our model is jointly trained
on both generation and prediction, with the overall
objective summarized as:

L = Lgen + γ · Lpred

= Lgentarget + δ · Lgensource + γ · Lpred
(10)

where δ and γ are tradeoff hyper-parameters.

4 Experimental Setup

Datasets. We use three datasets to do the exper-
iments. They are CIMA (Stasaski et al., 2020),
TSCC (Caines et al., 2020) and TalkMoves (Suresh
et al., 2019, 2022). CIMA contains one-to-one con-
versations that focus on teaching students to trans-
late a phrase from English to Italian. TSCC focuses
on teaching English for eight non-native English-
speaking students. TalkMoves is constructed by
transcripts of math classrooms.

Parameter Setting. Our implementation is based
on Fairseq (Ott et al., 2019). We split the data into
8:1:1 for training, validation and test. All the hyper-
parameters are chosen by grid-search based on the
validation performance.

We use BART-Base2 and mBART-Large3 mod-
els to initialize our model, respectively. BART-
Base model has 6 layers of encoder and decoder
with 768 hidden dimension, while mBART-Large
has 12 layers of encoder and decoder with 1024
hidden dimension. The parameter sizes for the
two models initialized with BART and mBART are
199M and 816M, respectively.

We use one NVIDIA RTX 3090 GPU to train our
model. During training, we set the max tokens of
each batch to 1024 (for BART, or 512 for mBART)
with an update frequency of 4. We adopt Adam op-
timizer (Kingma and Ba, 2015) with learning rate
selected in {1e-4, 5e-5, 2e-5, 1e-5} and warm-up
updates selected in {200, 500, 1000} followed by a
polynomial decay scheduler. Dropout strategy (Sri-
vastava et al., 2014) with dropout rate selected in
{0.2, 0.4} and L2 regularization with 0.01 effect
value, as well as early stoping based on validation
performance, are used to alleviate overfitting. We
set the tradeoff values among the losses as λ = 1.0,
γ = 1.0 and δ = 0.2. During inference, predicting
threshold θ = 0.3 and beam size is set to 5.

2https://github.com/facebookresearch/fairseq/
tree/main/examples/bart

3https://github.com/facebookresearch/fairseq/
tree/main/examples/mbart

5 Experimental Results

5.1 Teaching Strategy Prediction Results
We report the accuracy and Macro F1 scores for
teaching strategy prediction task in Table 1. We
can find that prediction based on the target tutor re-
sponse performs much better than merely on source
context (comparing BART† and BART), which in-
dicates that prediction with target content is much
easier and also validates our motivation of the self-
distillation mechanism. With the help of our pro-
posed distillation mechanism, our models with pre-
trained BART or mBART achieve the best perfor-
mance in the prediction based on source context.

5.2 Tutor Response Generation Results
We then report case-sensitive detokenized sacre-
BLEU (Post, 2018) and BERTScore (Zhang et al.,
2019) for tutor response generation in Table 2.

Three Evaluation Settings. We show results in
three settings in Table 2. “W/O TS” means we
don’t include teaching strategy (TS) labels in train-
ing and testing. “With Golden TS” means provid-
ing ground truth TS labels for training and testing.
“Need TS Prediction” means models have to pre-
dict TS labels in testing and generate the follow-up
tutor responses based on the predicted TS labels.

Analysis on Generation Results. From Table 2,
we can draw the following main observations.
• Teaching strategy shows positive effects in gen-

eration. By comparing the results in “W/O TS” and
“With Golden TS” settings, we observe that guid-
ance from golden teaching strategies improves the
generation performance in general, which validates
the effects of teaching strategy in guiding gener-
ation. Besides, our models further improve their
corresponding baselines (e.g. Our Model(BART)
v.s. BART), which should result from the joint
learning of generation and strategy prediction.
• Successful guidance requires accurate teach-

ing strategies. By comparing results in “With
Golden TS” and “Need TS Predict”, we can find
that most of the models perform worse when
they need to predict strategies first, especially for
the baselines with poor strategy prediction perfor-
mance (refer to results of BiLSTM and Transformer
in Table 1). This shows that guidance from inap-
propriate strategies might even hurt performance,
which raises the need for accurate prediction in
real-world applications and our proposed method
can alleviate the gap significantly.
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Models CIMA TSCC TalkMoves

Acc F1 Acc F1 Acc F1

BART 64.3 31.5 59.1 11.6 55.2 31.1
BART† 82.3 57.1 64.4 18.9 75.9 50.5

Frequency 62.7 15.4 58.4 4.1 52.5 11.5
BiLSTM 57.3 30.1 56.5 11.2 50.1 25.6
Transformer 63.3 33.9 57.2 16.2 53.6 30.7

Our Model(BART) 69.7 39.2 60.6 17.4 57.8 35.5
Our Model(mBART) 70.4 39.8 60.4 17.0 59.6 37.6

Table 1: Teaching strategy prediction results (in %). † indicates the prediction is based on the target tutor response.
The best and second-best results in each column are in bold and underlined respectively.

Models CIMA TSCC TalkMoves

BLEU BERT BLEU BERT BLEU BERT

W
/O

T
S





BiLSTM 9.08 72.6 1.04 69.0 0.43 73.2
Transformer 10.1 72.2 1.53 70.4 0.74 74.9
BART 6.77 71.9 1.27 71.2 0.85 78.0
mBART 10.6 70.9 1.96 68.6 2.95 78.1

W
ith

G
ol

de
n

T
S





BiLSTM 8.61 71.8 1.32 69.1 1.42 75.8
Transformer 11.2 72.8 1.99 69.9 2.35 77.4
BART 9.17 70.8 1.47 68.6 2.93 78.0
mBART 11.1 72.3 1.57 69.5 3.38 75.7
Our Model(BART) 10.8 71.4 2.02 70.6 3.18 78.0
Our Model(mBART) 12.1 73.8 2.93 72.6 5.47 79.7

N
ee

d
T

S
Pr

ed
ic

t


BiLSTM 7.65 69.8 0.68 68.2 0.48 74.7
Transformer 8.04 68.6 0.79 69.3 2.05 76.8
BART 7.64 69.5 1.13 69.4 1.49 73.8
mBART 7.77 70.2 1.57 69.7 2.44 77.1
Our Model(BART) 8.67 70.8 2.83 70.0 2.22 77.5
Our Model(mBART) 11.9 73.0 2.98 71.9 4.51 78.6

Table 2: Generation results (in %). The best results in each setting are in bold. Our full model achieves significantly
better performance than the baselines with the same architecture in the same settings (paired t-test p < 0.05).

Student: how to say under in Italian?

CTS: [Hint]
[Question]

“Is under the” is “e sotto il”. Do
you know how to say box?

CTS: [Hint] “Is under the” is “e sotto il”.

Student: La pianta e accanto al congilio giallo.

CTS: [Correction] You’re very close. but remember
that adjective follows the noun.

CTS: [Confirmation] Yes, that’s right!

Figure 3: Our CTS generates different responses when
giving different teaching strategies (in red).

5.3 Effects of Teaching Strategy
We explore how teaching strategy affects the gener-
ation in Fig. 3. We feed our conversational tutoring
system (CTS) with different teaching strategies and
find that CTS generates totally different responses

regarding the same context input. This also vali-
dates that teaching strategy is important for a CTS
and strategizing before teaching is also essential.

6 Conclusion

In this work, we benchmarked neural models on
various conversational tutoring datasets and pro-
posed a self-distillation based model that jointly
trains a teaching strategy prediction model and
a response generation model. Experiments on
three conversational tutoring datasets show that our
model outperforms various standard baselines by a
significant margin. Finally, we ended with an inter-
esting case study to demonstrate the importance of
strategizing before teaching.
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Limitations

There are only three publicly available datasets
(CIMA, TSCC and TalkMoves) for conversational
tutoring task and they are quite small (less than
10K instances). There are significant data imbal-
ance problems in these datasets – some teaching
strategies occur much more frequently than others.
These small and imbalanced datasets bring a lot of
challenges to this task, but we did not discuss these
issues in our paper due to the space limit. Besides,
there are no standard teaching strategy annotation
schemes, which prevents us from combining these
three datasets together for more interesting exper-
imental analyses. Another limitation of our work
is that we only evaluate our approaches on auto-
matic generation metrics. In the future, it would be
interesting to also evaluate the model on learning
related evaluations.
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Abstract

In the task of incremental few-shot relation clas-
sification, model performance is always limited
by the incompatibility between the base feature
embedding space and the novel feature embed-
ding space. To tackle the issue, we propose a
novel model named ICA-Proto: Iterative Cross
Alignment prototypical network. Specifically,
we incorporate the query representation into
the encoding of novel prototypes and utilize
the query-aware prototypes to update the query
representation at the same time. Further, we im-
plement the above process iteratively to achieve
more interaction. In addition, a novel prototype
quadruplet loss is designed to regulate the spa-
tial distributions of embedding space, so as to
make it easier for the relation classification. Ex-
perimental results on two benchmark datasets
demonstrate that ICA-Proto significantly out-
performs the state-of-the-art baseline model.

1 Introduction

Relation classification (RC) is an important sub-
task of relation extraction (RE), aims at classifying
the relation between two marked entities in a given
sentence. For example, the instance “[Newton]e1
served as the president of [the Royal Society]e2"
expresses the relation member_of between the two
entities Newton and the Royal Society. Some con-
ventional methods (Zeng et al., 2014; Gormley
et al., 2015; Soares et al., 2019) for relation classifi-
cation adopt supervised training and usually suffer
from the scarcity of manually annotated data. To
alleviate this problem, distant supervision (DS) is
adopted to automatically label abundant training in-
stances by heuristically aligning knowledge graphs
(KGs) with texts (Mintz et al., 2009). However,
existing DS-based methods fail to deal with the
problem of long-tail relations in KGs and still suf-
fer from data deficiency (Han et al., 2018).

∗∗ Equal contribution.
†† Corresponding authors.
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Figure 1: Visualization of the representations of the
query instances and prototypes of BERT-IncreProto. We
randomly sampled three base relations and three novel
relations from the real-world dataset FewRel 1.0, each
relation with its corresponding prototype (triangles for
base relations and stars for novel relations) and eight
query instances (points).

To address the above long-tail problem, few-shot
RC was proposed, which formulates RC in a few-
shot learning scenario. This task requires the mod-
els trained with base relations to generalize well
to novel relations with only few labeled instances.
Base relations are those relations that contain ad-
equate instances and can be utilized effectively in
the training phase to mimic the test phase on novel
relations with few samples. Fine-tuning pre-trained
models (Bengio, 2012; Gao et al., 2020) is straight-
forward while suffering from the overfitting prob-
lem. Therefore, metric-based methods (Ravi and
Larochelle, 2017; Dong et al., 2020; Geng et al.,
2020; Liu et al., 2020b) were proposed to grasp
the fast-learning ability from previous experiences
and then quickly generalize to new concept. These
methods have been experimentally proven to be
effective.

Taking a step further, incremental few-shot RC
(Ren et al., 2020) considers a more realistic sce-
nario, where the model is required to dynamically
recognize the novel relations with a few samples,
without reducing the base relation identification
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capability learned on the large-scale data of base
relations. Hence in the test phase, the query set
consists of instances of not only base relations but
also novel relations, which is more challenging.
Several related works (Liu et al., 2020a; Chen and
Lee, 2020; Kukleva et al., 2021) have been pro-
posed in the field of computer vision, focusing on
image classification task. As for the task of in-
cremental few-shot RC, IncreProtoNet (Ren et al.,
2020) is the first work, which proposes a two-phase
prototypical network model.

Specifically, IncreProtoNet contains two sepa-
rate prototypical networks (Snell et al., 2017). One
is pre-trained in the first phase to acquire the base
prototypes and base feature extractor, and the other
obtains the novel prototypes and novel feature en-
coder with few-shot episode training in the second
phase. However, IncreProtoNet suffers from in-
sufficient interaction between the class prototypes
and the query instances. Therefore, in the embed-
ding space, the novel relations often overlap sig-
nificantly with the base relations, and the query
representations are scattered, as shown in Figure 1.
In addition, the triplet loss used by IncreProtoNet
may be affected by noise samples, and its effective-
ness decreases on tasks with domain shift. As a
result, a low accuracy in the recognition of novel
relationships has been observed.

To alleviate the above problem, we propose
a novel model named ICA-Proto that contains a
specially-designed ICA module. ICA module con-
sists of two sub-modules, i.e., Cross Alignment
(CA) and Iterative Alignment (IA). Specifically,
CA is built to to dynamically and interactively en-
code the novel prototypes and query instances. On
the one hand, the obtaining of novel prototypes is
query-aware, namely that the query-related support
instances contribute more to the final prototypes.
On the other hand, the encoding of query instances
is prototype-aware, since the query-related proto-
types have more influence on the query representa-
tions. Furthermore, to achieve sufficient interaction
and alignment, we construct IA, which is to imple-
ment the above CA iteratively. In addition, Proto-
type Quadruplet (PQ) loss is proposed to enlarge
the distance between different types of prototypes,
while making the distance between query and pro-
totype of the same class as close as possible.

The contributions of this paper can be summa-
rized below:

• We propose a novel incremental few-shot clas-

sification model ICA-Proto, which is able
to dynamically recognize the novel relations
with a few support instances.

• We design a novel and effective ICA mod-
ule which learns the representations of the
query instances and the novel prototypes in-
teractively and iteratively. Besides, a novel
prototype quadruplet loss is presented to regu-
late the feature space distribution.

• Experiments on FewRel 1.0 and 2.0 datasets
demonstrate that our method significantly out-
performs the state-of-the-art method.

2 Task Formulation

In the task of incremental few-shot RC,
first we are given a large dataset con-
taining Nbase base relations: Dbase =
∪Nbaseb=1 {Ib,i = (xb,i, hb,i, tb,i, rb)}Kbi=1, in which
Kb is the number of instances of relation rb,
and Ib,i represents its i-th instance consisting
of the sentence xb,i and the mentioned entity
pair (hb,i, tb,i). Then we are given a support set

S = ∪Nnoveln=1

{
I
′
n,i

}K′
n

i=1
of Nnovel novel relations,

where K
′
n is the number of support instances of

novel relation r
′
n and I

′
n,i is the i-th supporting

instance. With Dbase and S, the task is to recognize
the relations of the instances in the query set

Q = ∪Nbase+Nnovelq=1

{
I
′′
q,i

}K′′
q

i=1
, in which K

′′
q is the

number of query instances of relation r
′′
q and I

′′
q,i

is its i-th query instance. Therefore, the model
is required to dynamically recognize the novel
relations based on a few novel support instances
while keeping the base relation identification
capability learned on the large base dataset.

3 Method

In this section, we elaborate on the details of our
proposed ICA-Proto model for incremental few-
shot RC. First, we give a brief introduction to the
IncreProtoNet in Section 3.1. Then, we introduce
the overall framework of our model in Section 3.2.
Next, we present the proposed ICA module with
CA and IA sub-modules in Section 3.3. Moreover,
the proposed PQ loss is discussed in Section 3.4.

3.1 Introduction to IncreProtoNet
IncreProtoNet (Ren et al., 2020) is the first work fo-
cusing on incremental few-shot RC. The proposed
model is a two-phase prototypical network.
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In the first phase, a deep prototypical network,
consisting of a convolutional neural network based
encoder and a prototype based classifier, is pre-
trained on a large training dataset for base relations
in a supervised manner to learn the feature embed-
ding space of base relations. Therefore, the base
prototypes, denoted Pbase = {p1, p2, . . . , pNbase },
can be obtained by averaging the representations
of all training instances within each base class b:

pb =
1

Kb

Kb∑

i=1

xb,i, (1)

where xb,i is the embedding of Ib,i through the base
encoder.

In the second phase, another prototypical net-
work, named incremental few-shot prototypical
network, is proposed to learn the feature embed-
ding space of novel relations. The support set is
encoded to obtain the novel prototypes Pnovel ={
p′1, p

′
2, . . . , p

′
Nnovel

}
as follows:

p′n =
1

K ′n

K′
n∑

i=1

x′n,i, (2)

where x′n,i is the embedding of I ′n,i through the
novel encoder. For a query instance q from the
query set, the representation xq is calculated as the
weighted sum of the xbaseq from the base feature
embedding space and xnovelq from the novel feature
embedding space:

xq = ωbx
base
q + ωnx

novel
q , (3)

where the weights ωb and ωn are determined by
considering the similarity of the query represen-
tation with the base prototypes Pbase and novel
prototypes Pnovel, respectively. To better show the
relationships, we summarize and rewrite the query
representation calculation equation (3) as:

xq = f(xbaseq , xnovelq , Pbase, Pnovel), (4)

where f is a composite function and represents a
series of attention operations. More details can
be found in the original paper (Ren et al., 2020).
Lastly, the probability of q belonging to the i-th
relation ri can be measured as:

pθ(ri | q) =
exp

(
−d
(
xq,p

all
i

))
∑Nbase +Nnovel

j=1 exp
(
−d
(
xq,pallj

)) ,

(5)

where palli is the i-th prototype in P all =
{Pbase, Pnovel}.

Although IncreProtoNet performs well in recog-
nizing instances of base relations, it is still difficult
for this model to deal with novel relations. The ex-
perimental results in Ren et al. (2020) show that the
accuracy for novel relations is much lower than that
of base relations, which is unsatisfactory. There
are several reasons as follows. First, IncreProtoNet
obtains the novel prototypes independent of the
query instance, lacking interaction between them.
Second, IncreProtoNet ignores the alignment be-
tween base relations and novel relations, which is
vital in incremental learning scenarios. Third, there
is no effective regulation to the feature embedding
spaces of base relations and novel relations, which
causes discrepancy between them.

3.2 Overall Framework of ICA-Proto

To tackle the above issues, we propose the ICA-
Proto model on the basis of IncreProtoNet. Similar
to IncreProtoNet, our model contains two stages, in-
cluding the base pretraining stage and the few-shot
episode training stage. Furthermore, we innova-
tively propose the ICA module and PQ loss, of
which ICA module is demonstrated in the dashed
boxes in Figure 2.

3.3 Iterative Cross Alignment

In the task of incremental few-shot RC, it is im-
portant to make an alignment between the base
feature embedding space and the novel feature em-
bedding space so as to flexibly encode the query
instance and further make correct relation classifi-
cation. This requires full interaction between base
relations and novel relations. To this end, we pro-
pose the ICA module, which consists of CA and
IA sub-modules.

Cross Alignment. To this end, the CA sub-
module is designed to encode the novel prototypes
and the query instance in an interactive manner.
To be specific, we first initialize the novel proto-
types Pnovel and the query instance embedding xq
with equations (2) and (4), respectively. Then, CA
updates p′n ∈ Pnovel, encouraging the model pay
more attention to those query-related supporting
instances,

p′n =

K′
n∑

i=1

γn,ix
′
n,i, (6)
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Figure 2: The framework of ICA-Proto. In the dashed box representing ICA module, the yellow arrows refer to the
process of the query representation calculation, while the purple arrows means the process of the novel prototypes
update. The green loop arrows represents the iteractive refining of both query representation and novel prototypes.

where γn,i is defined as:

γn,i =
exp

(
−d
(
xq, x

′
n,i

))

∑K′
n

i=1 exp
(
−d
(
xq, x′n,i

)) , (7)

where d is the euclidean distance. In short, the
novel prototype embedding process can be summa-
rized as:

Pnovel = g(xq,∪Nnoveln=1

{
I
′
n,i

}K′
n

i=1
). (8)

Correspondingly, the query instance representa-
tion xq is further updated with equation (4), which
requires the model to pay more attention to the
query-related base prototypes and novel prototypes.
Since most of the query instances belong to base
relations, CA actually enhances the interaction be-
tween instances of base relations and novel rela-
tions, achieving better alignment between the two
feature embedding spaces.

Iterative Alignment. The aligned query repre-
sentation can help group the different support sam-
ples from the same novel class together to optimize
the novel prototype. Meanwhile, the optimized
novel prototype can further help align query rep-
resentations from different encoders. Inspired by
traditional iterative cross-optimization algorithms,
such as the EM (McLachlan and Krishnan, 2007)
or k-means (Hartigan and Wong, 1979) algorithms,
we further propose to carry out the above CA in an
iterative way, namely Iterative Alignment (IA). The
implementation is straightforward, since we just
need to iteratively update Pnovel and xq with equa-
tions (6) and (4), respectively, until the predefined

Algorithm 1 Iterative Cross Alignment
Input: Base prototypes Pbase, support set S, query
instance q and predefined maximum iteration
number N .
Parameter: Base encoder Θ1 and novel encoder
Θ2.
Output: Novel prototypes Pnovel, query instance
representation xq and probability distribution for
relation of q: pθ(r | q).

1: Initialize novel prototypes Pnovel with equa-
tion (1).

2: Initialize query instance representation xq with
equation (2).

3: for t = 1→ N do
4: Update query representation xtq:

xtq = f(xbaseq , xnovelq , Pbase, P
t−1
novel),

5: Update novel prototypes P t+1
novel:

P t+1
novel = g(xtq,∪Nnoveln=1

{
I
′
n,i

}K′
n

i=1
).

6: end for
7: return Pnovel, xq and pθ(r | q).

maximum number of steps is reached. Finally, the
refined novel prototypes and query instance repre-
sentations are obtained. The IA expands CA from
single round to multiple rounds, further promoting
the interaction and alignment.

Algorithm 1 outlines the key steps of our ICA
module.

ICA for Increment Few-Shot Domain Adap-
tation. In the real world, especially in the few-shot
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scenario, the test domain (new classes) and train-
ing domain (base classes) are often different, so
how to improve the ability of our model to transfer
across domains is also very important. Since the
test domain usually has no annotations and could
differ vastly from the training domain, we first ini-
tialize novel class prototypes with average repre-
sentation of support set instances and query repre-
sentations with initialized novel class prototypes.
Then CA cross-aligns novel support instances and
query from different domains. Furthermore, in the
cross-domain scenario, the initial query and the
novel prototypes are more likely to be incompat-
ible; therefore, the ICA module can significantly
improve the representations of the novel prototypes
and the query from different domains.

3.4 Prototype Quadruplet Loss
In our method, there are two feature embedding
spaces for base and novel classed separately and
the query instance is encoded by the two jointly.
Therefore, it is important to measure which embed-
ding space contributes more and further estimate
which prototype is the nearest. In addition, the
feature spaces of base classes and novel classes
should be separated as much as possible when they
are embedded into the same space. To this end, we
design a novel Prototype Quadruplet loss (LPQ),
denoted as follows:

LPQ =

M∑

i=1

Nnovel∑

k=1

max (0, δ1 + d1 − d2)

+ max (0, δ2 + d1 − d3) ,
(9)

where δ1 and δ2 are hyper-parameters, M is the to-
tal number of training episodes, and three distances
d1, d2, d3 are defined as follows:

d1 = d
(
f
(
aki

)
, P kp,i

)
, (10)

d2 = d
(
f
(
aki

)
, P kn,i

)
, (11)

d3 = d
(
P kn,novel,i, P

k
n,base,i

)
, (12)

where
(
aki , P

k
p,i, P

k
n,novel,i, P

k
n,base,i

)
is a quadru-

plet consisting of the anchor instance, the positive
prototype from the same novel class, the first neg-
ative prototype from another novel class and the
second negative prototype from one of the base
classes, f(·) is the feature extractor, and P kn,i is

randomly selected from P kn,novel,i or P kn,base,i. Un-
like IncreProtoNet, inspired by the triplet-center
loss (He et al., 2018), which can further enhance
the discriminative power of the features, we also
learn the center representation of each class and
then require that the distances between anchors and
centers from the same class are smaller than those
from different classes. Note that P kp,i, P

k
n,novel,i,

P kn,base,i are all virtual instances and denote the
corresponding prototypes.

In addition, to enhance the abilities of our model
to transfer across domains, inspired by the quadru-
plet loss (Chen et al., 2017) which introduces the
absolute distance between the positive and negative
sample pairs, we add d3 to better align different do-
mains, which narrows the domain gap and further
alleviates the issue of incompatible feature embed-
ding between base classes and novel classes, so as
to achieve more effective domain adaptation.

Finally, the joint loss function L is a trade-off
between the cross-entropy loss LCE and the above
LPQ by a hyper-parameter λ:

L = LCE + λ · LPQ. (13)

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. We carry out extensive experiments on
two benchmark datasets. The first one is FewRel
1.0 (Han et al., 2018), which contains 80 relations
and provides 700 instances for each relation. We
adopt the same split as Ren et al. (2020). To be
specific, 54 relations are randomly selected as the
base relations each with 550 instances for base pre-
training, 50 instances for episode training and 100
instances for testing. 10 other relations each with
700 instances are sampled as the novel relations
for the episode training. The rest 16 relations each
with 700 instances are used as the novel relations in
testing. The other dataset is FewRel 2.0 (Gao et al.,
2019b), which is constructed on top of the FewRel
1.0 by adding a new test set in a quite different
domain (i.e., medicine), requiring the models to
transfer across domains.
Evaluation Metrics. To compare our proposed
method with the state-of-the-art methods, we adopt
the same evaluation metrics as Ren et al. (2020),
namely, three kinds of classification accuracy, in-
cluding classification accuracy for instances of base
relations, novel relations, and all relations. Since
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Table 1: Average classification accuracy (%) on the FewRel 1.0 dataset.

Models
1-shot learning 5-shot learning

Base Novel Both Base Novel Both
Proto 43.20 ± 0.12 39.86 ± 0.26 42.91 ± 0.22 66.74 ± 0.05 57.33 ± 0.15 65.94 ± 0.11

HATT-Proto 51.58 ± 0.11 45.16 ± 0.18 51.03 ± 0.15 67.77 ± 0.13 61.12 ± 0.09 67.20 ± 0.08
BERT-PAIR 76.03 ± 0.05 58.29 ± 0.13 75.30 ± 0.11 80.01 ± 0.03 64.34 ± 0.14 78.68 ± 0.12

ProtoNet (Increment) 75.63 ± 0.04 18.44 ± 0.02 70.78 ± 0.03 75.07 ± 0.03 47.11 ± 0.04 72.70 ± 0.02
Imprint 62.62 ± 0.13 16.79 ± 0.34 58.73 ± 0.27 67.72 ± 0.09 16.49 ± 0.31 63.38 ± 0.25

AttractorNet 66.48 ± 0.19 5.32 ± 0.25 61.29 ± 0.23 68.26 ± 0.22 6.45 ± 0.26 62.78 ± 0.24

GloVe-IncreProtoNet 70.96 ± 0.21 48.38 ± 0.11 69.36 ± 0.15 72.54 ± 0.16 61.57 ± 0.11 71.54 ± 0.13
GloVe-ICA-Proto 72.15 ± 0.18 54.47 ± 0.04 70.65 ± 0.08 72.70 ± 0.06 71.91 ± 0.10 72.63 ± 0.13

BERT-IncreProtoNet 82.10 ± 0.04 60.15 ± 0.11 80.65 ± 0.10 84.64 ± 0.04 65.77 ± 0.09 82.26 ± 0.08
BERT-ICA-Proto 82.56 ± 0.02 63.25 ± 0.09 80.93 ± 0.08 84.89 ± 0.05 69.49 ± 0.06 83.59 ± 0.04

the number of base relations is much larger than
that of novel relations, the classification accuracy
for instances of all relations depends largely on that
of base relations.

4.2 Implementation Details

To systematically validate the effectiveness of the
proposed ICA-Proto model, we experiment with
two kinds of word embedding initialization meth-
ods, namely, GloVe (Pennington et al., 2014) and
BERT (Devlin et al., 2019). Besides, the compared
methods are all evaluated in both 1-shot and 5-shot
learning. The hidden dimension of feature extrac-
tor is 230, as well as the prototype dimension. The
stochastic gradient descent (SGD) is employed for
optimization and the initial learning rate in episode
training is set as 0.1, except for BERT as 0.001. For
the PQ loss, the two margins δ1 and δ2 are set as
5.0 and 10.0 respectively, while the balance weight
λ is set as 1.0.

4.3 Comparison Methods

First of all, we compare with several few-shot
learning models, namely, Proto (Han et al., 2018),
HATT-Proto (Gao et al., 2019a) and BERT-PAIR
(Gao et al., 2019b) and the incremental few-shot
learning model ProtoNet (Increment) (Snell et al.,
2017). Besides, following (Ren et al., 2020), we
compare with Imprint (Qi et al., 2018) and LwoF
(Gidaris and Komodakis, 2018), which are the in-
cremental few-shot learning models in the com-
puter vision field. Finally, we take IncreProtoNet
as our baseline, which is the current state of the art.

4.4 Main Results

Our model gains significant improvement in in-
cremental few-show learning tasks. From Table
1, we can observe that for the FewRel 1.0 dataset,
our model achieves the best in both 1-shot and 5-
shot tasks. Compared with the best baseline model
IncreProtoNet, our model remarkably improves the
novel class classification accuracy by 3-10%, while
maintaining high accuracy on base class recogni-
tion. This shows that the proposed ICA module
and PQ loss can greatly promote the models’ recog-
nition capabilities for novel classes. We conjecture
this is because the ICA module can obtain more ef-
fective novel prototypes and better align the query
representations from different encoders.
The more support set instances, the larger the
improvement for novel class classification. As
can be seen from Table 1, using either GloVe or
BERT as the initial text encoder, the improvement
on the 5-shot learning is more significant than that
of 1-shot learning for novel class. This is because
when there are more support set samples, the ICA
module and PQ loss can help separate the base and
novel classes, reduce the distance between similar
classes, and make the query of novel class and
corresponding prototype as close as possible.

4.5 Domain Adaptation Results

To further demonstrate the superiority of our
method, we extend the few-shot domain adapta-
tion (few-shot DA) task in FewRel 2.0 (Gao et al.,
2019b) to the incremental few-shot domain adapta-
tion (incre-few-shot DA) task in our work. Differ-
ent from the original incre-few-shot RC, the novel
instances in the test set are replaced by new in-
stances from the medical domain. Since the do-
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Table 2: Results (%) of incre-few-shot DA on the FewRel 2.0 dataset.

Models
1-shot learning 5-shot learning

Base Novel Both Base Novel Both
GloVe-IncreProtoNet 71.37 ± 0.25 36.85 ± 0.13 68.44 ± 0.18 71.71 ± 0.22 49.15 ± 0.14 69.80 ± 0.17

GloVe-ICA-Proto 71.39 ±0.11 37.03 ± 0.15 68.48 ± 0.14 73.11 ± 0.15 55.58 ± 0.10 71.63 ± 0.11
BERT-IncreProtoNet 86.27 ± 0.06 52.68 ± 0.20 83.42 ± 0.11 87.83 ± 0.05 56.70 ± 0.14 85.19 ± 0.09

BERT-ICA-Proto 86.72 ± 0.04 52.85 ± 0.16 83.85 ± 0.12 87.49 ± 0.16 65.27± 0.08 85.60 ± 0.14

Table 3: Ablation Studies. † indicates ICA-Proto without the ICA module; and ‡ indicates ICA-Proto without the
PQ loss.

Models
1-shot learning 5-shot learning

Base Novel Both Base Novel Both
GloVe-IncreProtoNet 70.96 ± 0.21 48.38 ± 0.11 69.36 ± 0.15 72.54 ± 0.16 61.57 ± 0.11 71.54 ± 0.13
GloVe-ICA-Proto † 72.03 ± 0.12 52.47 ±0.05 69.42 ± 0.01 72.32 ± 0.04 67.36 ± 0.10 71.94 ± 0.08
GloVe-ICA-Proto ‡ 71.15 ±0.03 53.97 ± 0.12 69.82 ± 0.10 71.12 ± 0.06 69.14 ± 0.16 71.64 ± 0.11
GloVe-ICA-Proto 72.15 ± 0.18 54.47 ± 0.04 70.42 ± 0.08 72.70 ± 0.06 71.91 ± 0.10 72.63 ± 0.13

BERT-IncreProtoNet 82.10 ± 0.04 60.15 ± 0.11 80.65 ± 0.10 84.64 ± 0.04 65.77 ± 0.09 82.26 ± 0.08
BERT-ICA-Proto † 82.20 ± 0.13 62.72 ± 0.15 80.67 ± 0.08 84.04 ± 0.12 68.06 ± 0.28 82.15 ± 0.10
BERT-ICA-Proto ‡ 82.15 ± 0.14 63.07 ± 0.09 80.92 ± 0.13 84.98 ± 0.10 69.36 ± 0.12 83.25 ± 0.15
BERT-ICA-Proto 82.56 ± 0.02 63.25 ± 0.09 81.50 ± 0.08 84.90 ± 0.05 69.50 ± 0.06 83.64 ± 0.04

main of novel instances in the test set is no longer
consistent with the training set, the models are re-
quired to be able to transfer across domains, which
is more challenging.

Table 2 illustrates the comparison results of
Incre-ProtoNet and our model, and we have two
observations: (1) Huge drops on almost all met-
rics have been witnessed for both IncreProtNet and
our model, which demonstrates the difficulty of
incre-few-shot DA. However, the performance of
our method deteriorates much slower than that of
IncreProtoNet. (2) Our model outperforms Incre-
ProtoNet on all metrics. Especially in 5-shot set-
tings, the accuracy of novel relation recognition is
improved by more than 7% in absolute percentage.
It indicate that our proposed ICA module provides
more accurate, robust and general representations
for the relation prototypes and query instances.

4.6 Ablation Studies

As shown in Table 3, on the FewRel 1.0 dataset,
compared with the baseline IncreProtoNet, our
model can get a large improvement with either the
ICA module or the PQ loss. Especially for the ICA
module, benefited from the full interaction brought
by it, better query representation and novel pro-
totype representation greatly improve the model’s
ability in incremental few-shot learning tasks. Fur-

thermore, these two designs are complementary to
each other, and combining them together, we can
achieve even larger improvement.

4.7 Visualization Analysis

We visualize different types of query representa-
tions and prototype representations. As shown
in Figure 3, benefited from the ICA module and
PQ loss, prototypes of different classes are pushed
apart, and the representations of different queries
are more accurate and fall close to the correspond-
ing prototype of the same class.

4.8 Impact of the Iteration Number in ICA

As shown in Table 4, the ICA module with two
(N=2) or three (N=3) iterations achieves better re-
sults than the single iteration (N=1). This shows
that the ICA module which optimizes query repre-
sentation and novel prototype representation step
by step can effectively improve the accuracy of in-
cremental few-shot learning. In addition, when N is
greater than 3, the accuracy of the model decreases.
The reason is probably that larger N leads to over-
fitting of the model. Finally, it can be seen from
Table 4 that no matter how many times the model
is iteratively aligned, our models are significantly
better than the current best baseline IncreProtoNet.
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(c)  BERT-ICA-Proto(b)  BERT-ICA-Proto w/o PQ loss
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(a)  BERT-ICA-Proto w/o ICA module
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novel3-P466

Figure 3: Visualization of the representations of the query instances and prototypes when BERT-ICA-Proto is
equipped (a) without ICA module and (b) without PQ loss.

Table 4: Impact of the iteration number in ICA module.

Models
5-shot learning

Base Novel Both
GloVe-IncreProtoNet 72.43 61.57 71.54

GloVe-ICA-Proto (N=1) 72.33 69.91 72.12
GloVe-ICA-Proto (N=2) 72.55 68.91 72.24
GloVe-ICA-Proto (N=3) 72.70 71.91 72.63
GloVe-ICA-Proto (N=4) 72.77 70.01 72.53

BERT-IncreProtoNet 84.54 65.77 82.26
BERT-ICA-Proto (N=1) 84.25 67.50 82.83
BERT-ICA-Proto (N=2) 84.36 69.50 83.10
BERT-ICA-Proto (N=3) 84.89 69.49 83.58
BERT-ICA-Proto (N=4) 84.43 68.10 82.06

5 Related Work

RC is a fundamental task in natural language pro-
cessing, aiming to recognize the semantic relation
between two marked entities in a sentence. With
the development of deep learning in recent years,
many models based on neural networks have been
proposed for this task and achieved great progress.
For example, Zeng et al. (2014) and dos Santos et
al. (2015) utilized convolutional neural networks
to capture the global and local semantic informa-
tion. Later, some attention-based models (Wang
et al., 2016; Zhou et al., 2016; Jin et al., 2020) have
been proposed to better capture the more useful
semantic information. These models are may suf-
fer from the scarcity of high-quality training data.
To mitigate the problem, some works (Mintz et al.,
2009; Jia et al., 2019; Qin et al., 2018) adopt DS
to construct large-scale datasets, while ignore the
effect of long-tail relations.

Few-shot RC aims to learn high-quality features
with only a small number of training samples. Early

works employed the paradigm of pretraining and
fine-turning (Bengio, 2012; Donahue et al., 2014;
Gao et al., 2020), which aimed to acquire and
transfer konwledge from support set containing in-
stances of common relations. Later, metric learning
methods (Vinyals et al., 2016; Snell et al., 2017)
were proposed to learn different representations
across relations. One representative work is pro-
totypical networks (Snell et al., 2017), aiming to
learn robust class representations and classify the
query set based on the distance to the class pro-
totypes in the feature space. A series of works
(Han et al., 2018; Gao et al., 2019a,b) employed
prototypical network in few-shot RC and achieved
excellent performance.

Incremental learning is a setting where new infor-
mation is arriving continuously while prior knowl-
edge needs to be maintained. Combining incre-
mental learning with few-shot RC, incremental
few-shot RC constitutes a more realistic scenario,
where the model is required to leverage the rep-
resentations of base relations learned from large-
scale training dataset meanwhile effectively learn
the representations of novel relations from a few
support instances. To deal with this task, Ren et
al. (2020) proposed a prototypical network based
model consisting of two encoders for base relations
and novel relations, respectively. In this paper, we
argue that the previous work (Ren et al., 2020) is
sub-optimal and introduce a preferable solution.

6 Conclusion

In this paper, we presented a novel and effective ap-
proach with iterative cross alignment module and
prototype quadruplet loss for the task of incremen-
tal few-shot learning. Benefit from the extensive
interaction offered by the iterative cross alignment
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and the feature space regulation brought by the pro-
totype quadruplet loss, our method outperformed
the state-of-the-art baseline method significantly,
as verified in our extensive experiments. In future
work, we aim to further improve the performance
of our model under the one-shot task setting, as
well as accelerate the training process.

Limitations

In this paper, we propose a novel model named
ICA-Proto for the task of incremental few-shot
relation classification. Experimental results have
shown that our method outperforms the existing
best baselines. However, there are two major lim-
itations. First, our method iteratively caculates
the representations of query instances and relation
prototypes, which is more time-consuming. Sec-
ond, the best iteration number in ICA module may
vary with different datasets. Therefore, we should
conduct extra experiments to determine the best
iteration number when applying our method in a
new dataset, which is not convenient enough to
some degree.
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Abstract

We present a large, multilingual study into how
vision constrains linguistic choice, covering
four languages and five linguistic properties,
such as verb transitivity or use of numerals. We
propose a novel method that leverages exist-
ing corpora of images with captions written by
native speakers, and apply it to nine corpora,
comprising 600k images and 3M captions. We
study the relation between visual input and lin-
guistic choices by training classifiers to predict
the probability of expressing a property from
raw images, and find evidence supporting the
claim that linguistic properties are constrained
by visual context across languages. We comple-
ment this investigation with a corpus study, tak-
ing the test case of numerals. Specifically, we
use existing annotations (number or type of ob-
jects) to investigate the effect of different visual
conditions on the use of numeral expressions in
captions, and show that similar patterns emerge
across languages. Our methods and findings
both confirm and extend existing research in
the cognitive literature. We additionally discuss
possible applications for language generation.
We make our codebase publicly available.1

1 Introduction

In recent years, vision and language models have
been shown to outperform models trained on a sin-
gle modality in a variety of domains, such as lan-
guage modeling (Ororbia et al., 2019), document
quality assessment (Shen et al., 2020), and visual
classification and segmentation (Frome et al., 2013;
Radford et al., 2021; Berger et al., 2022).

While empirical evidence exists, including from
the studies cited above, that each modality can ben-
efit the other for task performance, less attention
has been devoted to the broader question of how
the two modalities influence and constrain one an-
other. In this study, we focus on one aspect of this
question: How does vision constrain language?

1github.com/SLAB-NLP/visual_constraints_on_descriptions

Figure 1: A demonstration of how visual cues in im-
ages may constrain linguistic choices in their captions.
The image on the left in which the agent is visible is
described using an active voice “A man... is throwing a
child... in the air”, while in the right image the agent is
not visible and the annotator chose a passive construc-
tion: “A little boy... is thrown in the air”. Images and
captions taken from Flickr30k.

We study the relation between the semantic con-
tent of an image and the language used to describe
it. As an example, consider Figure 1. Captions of
the right image, which crops the agent, use passive
voice more frequently than those of the left (taken
from Flickr30k, Young et al., 2014). We aim to
study such trends by examining the influence of vi-
sual features of the image on the linguistic choices
taken when describing it.

A number of psycholinguistic studies have
aimed to answer this question by systematically
varying visual conditions (such as image cropping)
and analyzing verbal descriptions of the scenes
by human participants for recurring differences
(e.g., Chesney and Gelman, 2015; Rissman et al.,
2019). Although such controlled studies allow for
precise measurement, the visual stimuli are syn-
thetic (rather than depicting natural scenes), the
manual annotation of descriptions limits the size
of the dataset, and typically only one linguistic
property is investigated in a single language.

We address this gap by proposing a scalable
methodology that uses existing image-caption cor-
pora in multiple languages. We measure the corre-
lation of visual features and linguistic properties of
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the caption by training visual classifiers to predict,
for a given raw image, whether a linguistic property
is expressed in its captions. We compare the impact
of different training sets (single vs. multiple lan-
guages) and different types of pre-training (none vs.
object categories vs. visual vs. textual pre-training
objectives). We use 9 large-scale image-caption
datasets (overall 2.9M captions for 604K images),
covering four languages (English, German, Chi-
nese, Japanese), to study lexical properties (use of
numerals and negation words) and structural prop-
erties (use of passive voice, transitivity of the main
verb, choice of verbal vs. nominal constructions),
which we automatically annotate in the captions.
To the best of our knowledge, this is the first large-
scale, multilingual study of the impact of visual
input on linguistic choice. We find evidence show-
ing that the visual input imposes constraints on
linguistic properties, and that such trends are de-
tectable using the proposed methodology.

In a complementary corpus study, we link the
prevalence of linguistic properties to existing, high-
level visual annotations (number and type of ob-
jects), and find that these properties can be linked to
the use of numeral expressions in similar patterns
across languages, and in accordance with small-
scale, highly-controlled psycholinguistic studies.

Our findings have both cognitive and compu-
tational implications. On the cognitive side, this
study confirms findings from small-scale cogni-
tive studies at scale: for naturalistic scenes, typo-
logically diverse languages, and descriptions from
thousands of native speakers. The magnitude of
the data that can be studied with our method also
allows the derivation of new insights, which can
motivate additional controlled studies, making the
proposed practice an effective exploration method.

On the computational side captioning models
have been shown to generalize better when first
predicting the syntactic structure of the generated
caption (Bugliarello and Elliott, 2021). This re-
search direction may benefit from the signal pro-
vided by our classifiers of linguistic properties.

2 Background

The notion that grammatical and lexical phenom-
ena can be characterized semantically, at least in
their prototypical instances, has a long tradition in
linguistics (Dixon, 1979; Goldberg, 1995; Croft,
2012, among many others). For example, transitive
clauses are often characterized as corresponding to

actions instigated by volitional agents over passive
objects, that are affected by the action. However,
formally defining these semantic features in a non-
linguistic way and showing empirically that the
presence of these features indeed entails the pres-
ence of the corresponding linguistic feature, has
proven to be methodologically challenging. One
possible direction to address this is the use of im-
ages that implicitly define a type of non-linguistic
semantics. This section briefly reviews different
approaches for studying visual constraints on our
set of five phenomena from a cognitive and compu-
tational perspective (omitting phenomena that have
not been previously covered).

2.1 Cognitive Studies

Numerals. Subitizable numbers are numbers that
are rapidly and accurately visually counted by hu-
mans. Studies have shown that the threshold for
subitizability is 4 (Kaufman et al., 1949; Mandler
and Shebo, 1982), with Barr et al. (2013) showing
that humans tend to describe non-subitizable num-
bers using quantifiers (e.g., many). In Section 5.2
we confirm this result at scale. Chesney and Gel-
man (2015) asked participants to count objects in a
given image, and found that participants were less
likely to include objects located in frames (win-
dows, mirrors or picture frames) in their count, sug-
gesting that visual cues influence linguistic choices.

Negation. Several studies have challenged the
traditional view that images cannot express nega-
tion (Worth, 1981; Khemlani et al., 2012). Giora
et al. (2009) use visual negation markers (e.g.,
red cross road signs) to study neural processing
of visual negation. Oversteegen and Schilpero-
ord (2014) ask Dutch native speakers to describe
images of objects missing integral parts (e.g., a
woman without a mouth) and show that the descrip-
tions are likely to contain a negation word.

Passive voice. Myachykov et al. (2012) show
that English native speakers have a stronger prefer-
ence for using passive-voice when describing tran-
sitive events with visual cueing of their attention
toward the agent (compared to the control condi-
tion).

Transitivity. Rissman et al. (2019) show that
participants had a preference for intransitive de-
scriptions of visual events (a person acting on an
inanimate object) when the person was removed by
cropping the image (whereas transitive descriptions
were preferred in the base condition).
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2.2 Computational Studies

Computational studies on how vision constrains
language are rare. However, several studies ex-
amined various aspects of the linguistic properties
studied in this work, typically focusing on individ-
ual properties and/or languages.

Negation. A series of studies (van Mil-
tenburg et al., 2016, 2017), investigated negation
in Flickr30k image descriptions using a smaller set
of negation words compared to our study, compar-
ing the use of negation in English, German, and
Dutch, and finding no significant differences. Do-
breva and Keller (2021) show that the performance
of vision and language models decreases when the
text contains negation, but did not show that this de-
crease is caused by negation-related visual features.
Text-only models also have difficulty processing
negations (e.g., Ettinger (2020)), and the drop in
performance could be due to the text encoder alone.

The line of work most similar to this study
train models to predict whether images from
comics (Sato et al., 2021) or real life (Sato and Mi-
neshima, 2021) express negation, achieving chance-
level results. In contrast to the current study, they
used a single dataset, a single language (Japanese),
and a single linguistic property (negation).

Transitivity. Nikolaus et al. (2019) show that
captioning models generalize better to unseen ac-
tion – object pairs when the action is transitive,
hypothesizing that this improvement is due to the
additional arguments (e.g. cake) that images de-
scribing transitive events (e.g. eating) contain.

Verbal vs. nominal constructions. Su et al.
(2021) study syntactic parsing and compare the
Part-Of-Speech (POS) tag of the root of predicted
and gold dependency trees of MSCOCO English
captions, showing that the gold distribution is ap-
proximately 60:40 in favour of nouns, while models
tend to never produce trees with a verb root.

3 Approach

We draw inspiration from the cognitive studies pre-
sented in Section 2.1. These studies carefully de-
sign visual scenes that differ only in terms of the vi-
sual feature of interest (e.g., visibility of the agent),
ask participants to describe the scenes, and com-
pare the linguistic properties of the descriptions
across different conditions. If a linguistic property
is significantly more prevalent in one condition, it
is assumed that this visual feature constrains that
linguistic property.

While such setups allow careful control over the
experimental design, they are also less ecologically
valid in that they impose (1) synthetic visual stimuli
and (2) limitations on the number and diversity of
participants, phenomena and languages to include.
We address both shortcomings by (1) using large
existing image caption datasets as a corpus of di-
verse language descriptions of naturalistic scenes,
and (2) annotating the captions automatically, yet
accurately, with linguistic properties.

Using a large amount of data instead of a con-
trolled experiment raises an issue. Unlike in con-
trolled cognitive studies, the sets of images we
use are not arranged into ‘minimal pairs’, which
are identical except for a visual feature of inter-
est. To overcome this limitation, we exploit the
large amount of data available via the automatic
annotation of linguistic properties. We train visual
classifiers to predict if a linguistic property is ex-
pressed in image captions when only the image is
provided. If the classifiers achieve high accuracy
on a held out test set, it is an indication that the
visual features are informative enough to predict
the linguistic property.2 Figure 2 gives a high-level
depiction of our approach.

To complement our analysis, we also conduct
a corpus study. First, we use semantic annota-
tions (object classes and bounding boxes) already
available in existing datasets to group images by
high-level properties and analyze the prevalence
of linguistic properties in each group. Second, we
compare the linguistic properties of captions for
the same image in different languages. If a prop-
erty is salient in the captions of all languages for
a given image, it is likely that its visual content
constrains descriptions that use that property. We
present a corpus analysis using both approaches in
Section 5.2.

4 Experimental Setup

In this section we describe the languages (4.1),
linguistic properties (4.2) and datasets (4.3) used
in our experiments.

4.1 Languages
We study English (En), German (De), Chinese
(Zh), and Japanese (Jp) for three main reasons.
First, multiple language families are required to

2However, if the accuracy is low, we cannot determine
the cause; our modeling or data annotation assumptions may
have led to this result, rather than the absence of a statistical
relation.
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Figure 2: High-level depiction of our approach, demon-
strating one linguistic property (passive voice). Top:
Samples are annotated as expressing (positive) or not ex-
pressing (negative) the property. Middle: The SVM clas-
sifier is trained to predict whether an image expresses
the property. Bottom: The classifier is evaluated; high
classification accuracy indicates a strong relation be-
tween visual features and the linguistic property.

study language-agnostic constraints imposed by im-
ages. Second, all of these have large image-caption
datasets with non-translated captions. Third, all of
these have publicly available tools for annotation
of some of the linguistic properties we study.

4.2 Annotation of Linguistic Properties

Below, we describe the automatic annotation of
occurrences of linguistic properties in captions. All
annotation methods were validated by asking in-
house native speakers to verify a random sample
of 100 (50 positive and 50 negative) instances per
property and language. Across all languages and
properties, accuracy exceeded 92%, confirming
that our automatic annotations are of high quality.

For Japanese we only study the use of numerals
since we were not able to achieve accurate annota-
tion for the other properties.

Numerals (Num). We use Microsoft’s
Recognize-Text package3 to identify the use of nu-
merals in all languages. We ignore numerals with
value of 1 for the following reasons: (1) In Ger-
man and Chinese, the same word can refer to the

3github.com/microsoft/Recognizers-Text

number one or the determiner a; (2) In Japanese,
several non-numeral words contain the character
for 1 (一), confusing the recognizing algorithm.

Negation words (Neg). We use the list of En-
glish negation words composed by Dobreva and
Keller (2021), and add the word nope. We translate
all words in the English list into the other languages,
and verify the resulting lists with a native speaker.4

Verbal vs. nominal descriptions (Verb). We
label captions with the root part-of-speech tag of
their dependency tree, identified using Stanza’s
dependency parser (Qi et al., 2020). We only con-
sider captions with a single root which is a verb or
a noun, filtering 0.8% of the captions. Note that
we consider sentences where the root corresponds
to the English verb to be (sein in German, 有 in
Chinese) as noun roots, as no activity is described.

Transitivity of main verb (Tran). We use
Stanza’s dependency parser and filter all captions
with at least one of the following: (1) a non-verb
root, (2) more or less than a single root, (3) the
verb be (or its equivalents in languages other than
English) as a root, filtering 47% of the captions.
After filtering, a caption is labeled as transitive if
its root verb has a child labeled as a direct object,
and intransitive otherwise.5

Passive voice (Pass). We use the passive voice
identifier tool for English and German (Ramm
et al., 2017). For Chinese we search for the passive
indicator 被, filtering cases where it is part of
another word.6

4.3 Datasets

We use the following datasets: Pascal (Rashtchian
et al., 2010), MSCOCO (Lin et al., 2014),
Flickr30k (Young et al., 2014), Multi30k (Elliott
et al., 2016), Flickr8kcn (Li et al., 2016), AIC-
ICC (Wu et al., 2017), COCO-CN (Li et al., 2019),
YJCaptions (Miyazaki and Shimizu, 2016), STAIR-
captions (Yoshikawa et al., 2017). Table 1 presents
additional information. We only use datasets with
original captions generated by native speakers and
avoid using datasets with captions translated from
English.7 In addition to captions, MSCOCO and
Flickr30k contain object classes and bounding box
annotations. A description of the data collection

4All negation words are listed in Appendix A.1.
5In German and Chinese we automatically identify edge

cases missed by the parser, see Appendix A.1.
6Words containing 被 are listed in Appendix A.1.
7See Appendix D for a comparison of original and trans-

lated captions.
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Lan Name Based on Size (im,cap)

En Pascal 1k, 5k
MSCOCO 123k, 616k
Flickr30k 31k, 158k
Overall 156k, 779k

De Multi30k Flickr30k 31k, 155k
Overall 31k, 155k

Zh Flickr8kCN Flickr8k 8k, 40k
AIC-ICC 240k, 1.2M

COCO-CN MSCOCO 20k, 22k
Overall 268k, 1.262M

Jp YJCaptions MSCOCO 26k, 131k
STAIR-captions MSCOCO 123k, 616k

Overall 149k, 747k

Table 1: The list of datasets used in this study. For
non-English datasets based on images from an English
dataset, the Based on column indicates the name of the
original dataset. The Size column indicates the number
of images and the number of captions in the dataset.

process for each dataset is provided in Appendix B.
Property expression probability. Given an im-

age I , a set of captions c1, ..., cNI , and an annota-
tion function fp(ci) mapping caption ci to 1 if it
expresses property p, and to 0 otherwise, we define
the probability that image I expresses p as

Pp(I) =

∑NI
i=1 fp(ci)

NI

Given a language L we denote with Pp,L the
same computation with the set of captions filtered
to include only captions in L. Given a set of images
S we denote the expected probability of expressing
property p across all images in S as

EI∈S [Pp(I)] =
∑

I∈S Pp(I)
|S|

Table 2 presents the expected probability of each
property p occurring in captions in language L,
EI∈SL [Pp,L(I)], where SL is the set of all images
in all datasets of language L.

5 Experiments

We now describe our experiments and analyses. In
Section 5.1 we train visual classifiers to predict
linguistic properties, Section 5.2 presents a comple-
mentary corpus analysis, and Section 5.3 presents
additional insights that may lead to future research.

5.1 Predicting Properties from Images
We study the task of predicting, given an image,
whether human annotators will use a particular lin-
guistic property when describing it. The input is

Num Neg Pass Tran Verb

En 0.13
(156k)

0.0046
(156k)

0.076
(148k)

0.35
(137k)

0.41
(156k)

De 0.19
(31k)

0.0024
(31k)

0.012
(31k)

0.25
(31k)

0.78
(31k)

Zh 0.34
(268k)

0.0002
(268k)

0.002
(268k)

0.48
(245k)

0.60
(268k)

Jp 0.13
(123k)

– – – –

Table 2: Expected probability of images expressing each
property, in each of the 4 languages. Number of images
are in parentheses.

a raw image and the output is binary, indicating
whether the descriptions express the property.

Models. Our model consists of a visual en-
coder (ResNet50, He et al., 2016) to embed the
raw image, followed by a set of binary SVM classi-
fiers, one per linguistic property.8 We investigate
four different pre-training methods with varying
levels of supervision from different modalities.

First, we randomly initialize the visual encoder
(no pre-training; None), avoiding unwanted bias
through pre-training with human annotated infor-
mation. Using a random encoder renders the task
for the classifier more difficult, and the classifier
might perform poorly even if linguistic properties
are highly correlated with visual features, so we
consider None as a lower bound.

To equip our model with some prior visual
knowledge, we use MoCo (He et al., 2020), a
self-supervised pre-training method based only on
visual signals (MoCo). MoCo creates multiple
manipulated versions of an image and trains the
encoder to predict if two manipulated images cor-
respond to the same original.

We also include ImageNet (Deng et al., 2009)
pre-training (IN). The visual encoder is first trained
to classify images in the ImageNet dataset, and
then the classification head is discarded. Although
semantic information is provided in ImageNet pre-
training through class-labels, no textual input is
provided which describes the visual scene.

Finally, we use CLIP (Radford et al., 2021) pre-
training. CLIP is a multimodal self-supervised
model, trained to project images and corresponding
captions to similar vectors in a joint space. We use
CLIP’s visual encoder, discarding the text encoder.
This method is pre-trained with explicit textual

8We also experimented with neural classifiers, but SVM
performed significantly better: see Appendix A.2.2 for details.
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En De Zh Jp Mul

Numerals 88k 21k 224k 86k 337k
Passive 47k 2k 2k – 50k

Negation 6k 0.7k 0.3k – 7k
Transitivity 128k 29k 223k – 339k

Verb Root 150k 20k 198k – 333k

Table 3: Number of images used in the experiments, for
all properties and languages (Mul: Multilingual).

input, and hence its predictions will be skewed
by the prior probability of linguistic properties in
general language, obscuring the correlation with
image features. In terms of raw performance, we
consider CLIP as an upper bound.

We study two settings: monolingual (all images
from datasets in a single language) and multilin-
gual (all images from all datasets). In each set-
ting, for each linguistic property p, we compute
the probability of all relevant images to express p
and binarize the data by using the median probabil-
ity value as a threshold above which the image is
considered to express p. Finally, we create a bal-
anced dataset9 of images that express p and those
that do not. We evaluate our models using 5-fold
cross-validation. Table 3 shows the statistics of the
generated datasets (note that the size of the datasets
is smaller than in Table 2 because the data was
balanced using down sampling). Implementation
details are in Appendix A.2.

Multilingual results. Results are presented in Ta-
ble 4. First, we observe that except for the model
without pre-training, all models predict all proper-
ties above chance levels, supporting the hypothesis
that linguistic properties are constrained by visual
context. Second, results for the two non-textual pre-
training methods (MoCo, IN) were significantly
higher than the lower bound (None) and lower than
the upper bound (CLIP) in all properties. Finally,
numerals seem easiest to predict, which concurs
with our corpus analysis where we find that men-
tions of numerals were easiest to link to visual
properties (Section 5.2).

Monolingual results. We applied MoCo, the best
performing method without human annotated pre-
training, individually to each language (Table 5).
Note that model performance does not always cor-
relate with training data size (Table 3): in English,

9Although balancing the test set is usually considered a bad
practice, in this study we only study image-text correlation and
our classifiers would not be used for classifying new samples
in the future.

Num Pass Neg Tran Verb

None 60.5 ±0.9 52.7 ±0.3 51.0 ±1.6 54.3 ±0.5 54.2 ±0.3
MoCo 76.4 ±0.2 66.2 ±0.4 62.6 ±1.2 64.7 ±0.3 63.1 ±0.2

IN 74.6 ±0.4 65.9 ±0.5 62.4 ±1.9 64.5 ±0.1 62.6 ±0.2
CLIP 81.4 ±0.2 68.2 ±0.2 65.3 ±1.5 68.7 ±0.3 65.4 ±0.1

Table 4: Multilingual classification 5-fold cross-
validation accuracy on all linguistic properties and pre-
training methods. In all configurations, chance level
is 50. IN: ImageNet. Numerals is the highest scoring
property (in bold).

Num Pass Neg Tran Verb

En 68.3 ±0.3 66.8 ±0.7 62.5 ±0.8 64.6 ±0.3 58.8 ±0.1
De 69.5 ±0.6 58.5 ±3.1 51.5 ±4.3 62.0 ±0.7 57.8 ±0.8
Zh 80.6 ±0.2 70.9 ±2.6 55.4 ±4.3 65.8 ±0.3 67.3 ±0.2
Jp 67.4 ±0.3 – – – –

Table 5: Monolingual classification 5-fold cross-
validation accuracy on all linguistic properties and lan-
guages, using the MoCo pre-training method. In all
configurations, chance level is 50. In all languages, the
use of numerals was predicted most accurately (in bold).

the verb root dataset was the largest but the classi-
fier achieved the lowest accuracy; and prediction
accuracy was high for passive voice in Chinese de-
spite a small dataset. Across all languages, use of
numerals was predicted most reliably.

5.2 Corpus Analysis

In this section we show that large image captioning
corpora not only allow us to build predictive mod-
els to test hypotheses about the constraints of visual
properties on language, but also support large-scale
corpus studies. Our goal is to correlate image prop-
erties (e.g., the type or number of objects in an
image) with linguistic choice (e.g., the use of nu-
merals). The ground truth image properties are
typically unavailable, but we can use additional in-
formation in MSCOCO and Flickr30k as proxies.
In particular, we use the fact that the corpora are
multilingually aligned (each image contains cap-
tions in different languages, all generated by native
speakers) and they contain additional annotations
(class labels and bounding boxes).

We take the expression of numerals as a test
case, since it was the one most accurately predicted
in Section 5.1. We emphasize, however, that the
approach generalizes to other properties as well.

Although both MSCOCO and Flickr30k con-
tain object classes and bounding box annota-
tions, MSCOCO’s granularity is much higher (80
classes compared to 10 classes), so we only use
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Figure 3: MSCOCO classes with highest and
lowest expected numeral expression probability
EI∈Sc

[Pnum,L(I)], for L ∈ {En,Zh, Jp}. The proba-
bility of classes of animals is high in all languages.

MSCOCO’s class and bounding box annotations
in our analysis. German is excluded from the class
and bounding box analysis as there is no German
version of MSCOCO with original captions.

Images containing animals are most likely to
be described using numerals across languages.
For each MSCOCO class c, we find the set Sc
of all images instantiating that class and com-
pute EI∈Sc [Pnum(I)]. We note that the expected
Pnum(I) of some classes might be lower simply
because they are more likely to occur in singles,
and avoid this bias by filtering out images with a
single instantiation of c from Sc.10

Figure 3 shows the 5 classes with the highest
and lowest EI∈Sc [Pnum(I)] for each language. In
all languages, images depicting animals are most
likely to be described with numerals.

Our findings corroborate cognitive findings,
placing the human subitizability threshold at
4. We use MSCOCO bounding boxes annotation
to investigate whether the use of numerals in im-
age descriptions reflects the subitizability thresh-
old (see Section 2.1). For each integer k, we find
the set Sk of all images with k labeled bounding
boxes, and compute EI∈Sk [Pnum(I)]. We also la-
bel captions with quantifiers (e.g., some, a few11)
and compute EI∈Sk [Pquant(I)]. Figure 4 shows
the results, for all k where |Sk| ≥ 100. In all
languages, EI∈Sk [Pnum(I)] initially increases with

10No classes were completely filtered out; only two classes
(toaster, hair-drier) were left with less than 80 images.

11The full lists are in Appendix A.1.

0 4 10 20 30
Number of bounding boxes

0.00

0.05

0.10

0.15

0.20

0.25

E I
∈S

k
[P

p
,L

(I
)]

En num

Zh num

Jp num

En quant

Zh quant

Jp quant

Figure 4: Expected probability of expressing the use of
numerals and quantifiers EI∈Sk

[Pp,L(I)] as a function
of the number of bounding boxes in MSCOCO, for L ∈
{En,Zh, Jp} and p ∈ {num, quant}. All k with |Sk| <
100 were removed from the plot. Red line: subitizability
threshold. In all languages, the probability increases up
to 4 objects (consistent with cognitive studies) and then
decreases. Quantifiers expression probability increases
steadily.

Flickr30k (7k) MSCOCO (13k)
Zh/De Zh/En De/En Zh/En Zh/Jp Jp/En

0.75 0.72 0.87 0.59 0.52 0.68

Table 6: Pearson correlation of the probability of use
of numerals across pairs of languages in Flickr30 and
MSCOCO. Number of images in parentheses.

a clear peak at 4, while quantifiers expression
steadily increases.

Captions of the same image in different lan-
guages tend to agree on numerals usage. We
use the multilingual datasets Flickr30k (En, De,
Zh) and MSCOCO (En, Zh, Jp), identify a list
of images with captions in all respective lan-
guages {Ik}Nk=1, and compute the list of prob-
abilities of numerals expression for each image
LL = {Pnum,L(Ik)}Nk=1, in each language L. Next,
we compute the Pearson correlation coefficient of
LL1 , LL2 for each pair of languages L1,L2. The
results are shown in Table 6. The correlation is
high (> 0.5; Cohen (2013)) across all languages
and datasets.

5.3 Additional Insights

The proposed methodology can also be used as an
exploration method for further cognitive research.
In this section, we present findings obtained by
manually investigating extreme cases of property
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Figure 5: Top: images described using numerals in all
languages. Bottom: images described without numerals.
Images taken from Flickr30k.

expression. This is an exploratory analysis, pre-
senting preliminary findings that may lead to future
research in a more controlled setting.

Use of numeral expressions. We manually in-
spect all images that use numerals in all captions
across all languages in Flickr30k (N=105). The top
images in Figure 5 are representative examples. All
images depict multiple participants taking similar
roles and positioned in a regular pattern (e.g., all
the children in the upper right image in Figure 5
are swinging and facing the camera). The bottom
of Figure 5 shows comparable images, which were
never described using numerals. Here, participants
appear in different poses and roles. We hypothesize
that people count more easily and accurately when
objects are arranged in a regular pattern, compared
to a random formation (Burgess and Barlow, 1983).

We also present differences in the use of numer-
als across languages. We analyze images for which
at least two captions use numerals with the same
numeral value in each language, but different val-
ues across languages (N=46). We find two main
reasons for cross-language inconsistencies: First,
different languages tend to either count all partic-
ipants in a single group or split them into smaller
groups based on gender, role, or age.12 These differ-
ences may be due to different annotation guidelines
or different cultural backgrounds of the annotators.

Second, the multilingual datasets were originally
created for English captioning, making the selected
images highly related to English and especially
North American culture.13 For example, in the
sports domain, the datasets contain mainly images
of Basketball and Baseball, popular sports in the
United States. While English annotators use a de-

12Examples for all partition types are in Appendix C.
13This is a well known problem in multimodal datasets,

previously discussed by Liu et al. (2021).

En: Basketball player wearing a white,
number 23 jersey jumps up with the ball
while guarded by number 13 on the op-
posite team

En: Basketball player wearing a

white, number 23 jersey jumps up

with the ball while guarded by

number 13 on the opposite team

De: Zwei Männer spielen Basketball

(Two men play basketball)
Zh: 有两个男人正在打篮球

(Two men are playing baseketball)

De: Zwei Männer spielen Basketball
Zh: 有两个男人正在打篮球

Figure 6: An image of a basketball game. The English
captions are highly detailed, while both the German
and Chinese caption translates to Two men are playing
basketball. Image taken from Flickr30k, captions taken
from Flickr30k (En), Mutli30k (De), Flickr8kcn (Zh).

tailed description, commonly mentioning the play-
ers’ shirt number, German and Chinese descrip-
tions are mostly short and count the number of
players in the image (Figure 6).

Passive. We notice that in images with high
probability for using passive voice, the patient is
commonly located at the center of the scene ei-
ther by the pose of the camera or the borders of
the image. We hypothesize that this visual feature
is correlated with the use of passive voice. The
right image of Figure 1 shows one example. More
examples are in Appendix C.

5.4 Discussion

Our experiments suggest that various linguistic
properties are predictable from visual context, most
notably in the case of the use of numeral expres-
sions. Our classifiers were able to predict the pres-
ence of numerals in captions with high accuracy.
Correspondingly, our corpus analysis provides evi-
dence that the type and number of objects in the im-
age constrain the use of numerals. Both results hold
across different languages, and present high agree-
ment between languages in the selection of images
that are described with numerals. This lends sup-
port to the hypothesis that visual context constrains
the use of numerals across a variety of languages
from different families, and that such trends can be
studied using the proposed methodology.

A surprising result is that without pretraining
of the visual encoder (None), above chance-level
performance can be obtained, most notably for the
numerals property. A randomly initialized visual
encoder applies a random dimensionality reduction
to the input image, and the fact that the SVM clas-
sifier was able to learn to predict the presence of
numerals in the captions of images at above chance
level following this random transformation sup-
ports the hypothesis that this property correlates
with visual features.
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6 Conclusion

The synergistic relation between vision and lan-
guage has been shown in the cognitive literature
and leveraged in computational models, but how
the two modalities inform each other has not been
sufficiently studied at scale. We present a large
scale study of the correlation of visual properties
with linguistic phenomena, using naturalistic im-
ages described by a large crowd of native speakers
of four languages.

In addition to confirming results of previous cog-
nitive studies, we present new findings, e.g., the
effect of object type on the use of numerals in vi-
sual scene description and the cross-lingual correla-
tion of the use of numerals. Considering the effort
needed to execute a controlled study, our proposed
method can be used as an effective exploration tech-
nique for finding hypotheses for future controlled
studies. In addition, our framework is general, and
extends naturally to more languages and properties.

Beyond the cognitive contribution, our work can
inform NLP models. Recent work suggests that in
captioning models, training the model to predict a
structured representation of the caption (e.g., based
on POS prediction) before the text improves com-
positional generalization (Bugliarello and Elliott,
2021). In future work, we will study the utility of
predicting our proposed linguistic properties for
improving captioning models.

Limitations

We acknowledge several limitations of our sug-
gested methodology. First, confounding factors
may have affected our results, e.g., the difference
in wording of the annotation guidelines for the orig-
inal image-caption dataset could have a significant
impact on the linguistic properties of the descrip-
tions. In cognitive research, there is a well-known
trade-off and ongoing discussion on the merits of
highly-controlled, yet often oversimplified settings
and the larger-scale, yet typically confounded, stud-
ies. The “reproducibility crisis” has highlighted
that controlled studies are often difficult to repro-
duce, and initiated a discussion about the (comple-
mentary) utility of large-scale experiments which
are typically more realistic. We propose such a
method in the context of language/vision research,
which can complement small-scale cognitive stud-
ies by considering natural scenes, while covering
several languages and linguistic phenomena. We
present empirical results that support the validity

of the methodology, in the sense that it often ac-
cords with established findings from the literature,
as well as small scale qualitative analysis, that sug-
gests trends for future work. We emphasize the
importance of both paradigms, which should coex-
ist and complement one another.

Second, with the exception of AIC-ICC, all im-
age collections for all languages are based on origi-
nal English image-caption datasets and hence are
Anglocentric in their selection of concepts. The im-
pact of such bias on NLP research has recently been
discussed (Liu et al., 2021). We hope to extend
the analysis with additional culture- and language-
specific datasets in the future.

Finally, we do not distinguish between differ-
ences in linguistic properties that are due to an-
notators’ focus choices (i.e., the selection of what
details in the image to describe) and those that are
due to linguistic choices. The prevalence of linguis-
tic properties could be influenced by the content
that the annotator chose to describe (e.g., some
annotators describe the background in addition to
the main object(s), and others do not). This is a
challenging and important line of future work, but
outside the scope of this study.
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A Implementation Details

A.1 Linguistic Properties Annotation
Use of numerals In the bounding boxes experi-
ment in section 5.2 we search for quantifiers. Fol-
lowing are the lists of quantifiers we search for in
each language. English: some, a lot of, many, lots
of, a few, several, a number of. Chinese: 些,多.
Japanese: 多くの,たくさん,いくつか.

Use of negation words Following are the lists of
negation words for each language.

English: not, isn’t, aren’t, doesn’t, don’t, can’t,
cannot, shouldn’t, wont, wouldn’t, no, none, no-
body, nothing, nowhere, neither, nor, never, without,
nope.

German: nicht, kein, nie, niemals, niemand, nir-
gendwo, nirgendwohin, nirgends, weder, ohne, nein,
nichts, nee. We lemmatize the words in the sen-
tence before searching in this list.

Chinese: 不,不是,不能,不可以,没,没有,没
什么, 从不, 并不, 从没有, 并没有, 无人, 无处,
无,别,绝不. We use the Jieba tokenizer14. We
also identify cases where one of the words above is
part of a longer non-negation word and filter those
cases. Following is the list of non-negation words:
别着,不小心,不一样.

14github.com/fxsjy/jieba

Use of passive verbs In Chinese we search for
the passive indicator 被, filtering cases where it is
part of the 被子 word (meaning quilt), a common
word in the AIC-ICC dataset.

Transitivity In German and Chinese we identify
several important edge cases in which the Stanza
parser is consistently incorrect, which we fix man-
ually. All edge cases were verified by native speak-
ers.

In German we identify sentences containing a
node which is a child of the root and labeled with
the PTKVZ POS tag, and label these as intransitive.

In Chinese we identify sentences where (1) the
lemma of the root word ends with the preposition
token 在; (2) the lemma of the word following
the root word is 在; or (3) the lemma of the word
following the root word starts with the preposition
token 向, and label these as intransitive.

A.2 Model Details

A.2.1 SVM Classifier
We use the SVC model from the sklearn Python
package with the RBF kernel and default hyper-
parameters.

A.2.2 Neural Classifier
We use a feed-forward neural network with 1 or 2
hidden layers, with different activation functions
(ReLU, Sigmoid, Tanh). In all configurations, the
SVM classifier performed better.

A.2.3 Pre-trained Backbone Models
For MoCo and CLIP we use the models provided
in the officially published code. For ImageNet pre-
training we use the pre-trained model provided by
the PyTorch package. In all cases, model contains
25.6M parameters.

A.3 Training

Training with the largest training set (the transitiv-
ity multilingual setting, see table 3) took 30 hours
on a single GM204GL GPU.

B Dataset Collection Details

Following is a brief description of the process of
data collection for each of the datasets.

Pascal Sentences (Rashtchian et al., 2010) con-
tains the set of images from the PASCAL Visual
Object Classes Challenge (Everingham et al., 2008)
with captions generated by Amazon’s Mechanical
Turk workers. The annotators were instructed to (1)
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describe the image in a single sentence including
the main characters, the setting or the relation of
the objects; (2) If possible, include adjectives such
as colors, spacing, emotion, or quantity; (3) pay
attention to grammar and spelling.

Flickr30k (Young et al., 2014) is a large English
image-caption dataset. The objects in each image
are segmented using bounding boxes and classified
into one of 10 classes. Annotators were crowd-
source workers and were asked to “write sentences
that describe the depicted scenes, situations, events
and entities (people, animals, other objects)”.

Multi30k (Elliott et al., 2016) is a German ver-
sion of Flickr30k. It contains both original and
translated captions. Translations are generated by
professional translators, original captions were gen-
erated by crowdworkers via the Crowdflower plat-
form. Instructions were translated from the English
instructions of Flickr30k.

Flickr8kcn (Li et al., 2016) is a Chinese ver-
sion of the smaller Flickr8k dataset on which
the Flickr30k dataset was based. Descriptions
were generated by crowdworkers that were asked
to “write sentences describing salient objects and
scenes in every image, from their own point of
views”.

MSCOCO (Lin et al., 2014) is another large
English image-caption dataset with additional an-
notations (object classes and bounding boxes). The
captions were generated using human subjects on
Amazon’s Mechanical Turk. The annotators were
given the following instructions:

• Describe all the important parts of the scene.

• Do not start the sentences with “There is”.

• Do not describe unimportant details.

• Do not describe things that might have hap-
pened in the future or past.

• Do not describe what a person might say.

• Do not give people proper names.

• The sentences should contain at least 8 words.

COCO-CN (Li et al., 2019) is a Chinese version
of MSCOCO, annotated by a group of volunteers
and paid undergraduate students. Annotators were
instructed that the caption shall cover the main
objects, actions and scene in a given image, and
were provided with suggested captions retrieved in

the following process: all the captions in the origi-
nal MSCOCO dataset were machine-translated to
Chinese, and the 5 most relevant suggestions for
each image were chosen by a model. However,
they were asked to provide their own descriptions,
and only draw inspiration from the suggestions. In
addition, they manually translated 5000 captions.

YJCaptions (Miyazaki and Shimizu, 2016) is a
Japanese version of MSCOCO. Captions were gen-
erated using Yahoo! crowdsourcing, where sign-
ing up requires a Japanese proficiency, leading the
authors to assume that participants were fluent in
Japanese. Annotation guidelines can be translated
to English as “Please explain the image using 16 or
more Japanese characters. Write a single sentence
as if you were writing an example sentence to be
included in a textbook for learning Japanese. De-
scribe all the important parts of the scene; do not de-
scribe unimportant details. Use correct punctuation.
Write a single sentence, not multiple sentences or
a phrase”.

STAIR-captions (Yoshikawa et al., 2017) is an-
other Japanese version of MSCOCO. Annotation
guidelines can be translated to English as “(1) A
caption must contain more than 15 letters. (2) A
caption must follow the da/dearu style (one of the
writing styles in Japanese). (3) A caption must
describe only what is happening in an image and
the things displayed therein. (4) A caption must be
a single sentence. (5) A caption must not include
emotions or opinions about the image”.

AIC-ICC (Wu et al., 2017) is a large Chinese
image–caption dataset. The annotators were in-
structed to (1) include key objects/attributes, loca-
tions and human actions; (2) generate fluent cap-
tions; (3) use Chinese idioms or descriptive adjec-
tives.

C Additional Visual Examples

Numerals disagreement Further to the numerals
disagreement analysis in Section 5.3, we present ex-
amples of images that were described by captions
in multiple languages with numeral value disagree-
ment caused by differences in partition of the par-
ticipants. For each of these images, the captions in
one language do not partition the participants while
the captions in the other is partitioning based on
gender (Figure 7), role (Figure 8) or age (Figure 9).

Passive voice Figure 10 shows three images with
high probability for the use of passive voice. In
the upper right image the passive participant is
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Figure 7: An image taken from Flickr30k. The English
caption splits participants based on gender: “A man
in a beret and thin mustache gestures to two women
in conversation”. The Chinese caption does not split
participants at all: “三个人正在谈话” (Three people
are talking).

Figure 8: An image taken from Flickr30k. The English
caption splits participants based on role: “One dog is
chasing another dog that is carrying something in its
mouth along the beach”. The German caption does not
split participants at all: “Zwei weiß-braune Hunde, die
am Strand laufe” (Two white and brown dogs running
on the beach).

centered by the pose of the camera, while in the
other two images the borders of the image locates
the passive participant in the center.

D Original vs. Translated Captions

When studying multimodal tasks in non-English
languages (e.g., multimodal machine transla-
tion (Hitschler et al., 2016), visual question answer-
ing (Gupta et al., 2020)), it is common to translate
an existing English image-caption corpus into the
target language using crowd sourcing or transla-
tion APIs. We show that captions generated in
this setting are not representative of the target lan-
guage. We use the Multi30k dataset (De) and the
COCO-CN dataset (Zh), both of which contain

Figure 9: An image taken from Flickr30k. The English
caption splits participants based on age: “A man and
two children in life jackets in a boat on a lake”. The
Chinese caption does not split participants at all: “坐
在船上出海的三个人” (Three people on a boat going
out to the sea).

original as well as translated captions in the target
language. We use the statistical method described
in Section 5.2 in the Cross-lingual analysis para-
graph to compute the agreement of English and
translated captions, and compare it with the agree-
ment of original and translated captions. As shown
in Figure 11, in 9/10 cases the English-Translated
agreement is higher than Original-Translated agree-
ment, suggesting that translated captions are not
representative of the target language. The effect is
most pronounced with negation.

Figure 10: images with high probability for the use of
passive voice. In all images, the passive participant is
centered by the pose of the camera or the borders of the
image.
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DeT and ZhO-ZhT ) for German and Chinese, in differ-
ent linguistic properties.
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Abstract

In this paper, we explore how much syntactic
supervision is “good enough” to make language
models (LMs) more human-like. Specifically,
we propose the new method called syntactic ab-
lation, where syntactic LMs, namely Recurrent
Neural Network Grammars (RNNGs), are grad-
ually ablated from full syntactic supervision
to zero syntactic supervision (≈ unidirectional
LSTM) by preserving NP, VP, PP, SBAR non-
terminal symbols and the combinations thereof.
The 17 ablated grammars are then evaluated via
targeted syntactic evaluation on the SyntaxGym
benchmark. The results of our syntactic abla-
tion demonstrated that (i) the RNNG with zero
syntactic supervision underperformed the RN-
NGs with some syntactic supervision, (ii) the
RNNG with full syntactic supervision underper-
formed the RNNGs with less syntactic super-
vision, and (iii) the RNNG with mild syntactic
supervision achieved the best performance com-
parable to the state-of-the-art GPT-2-XL. Those
results may suggest that the “good enough” ap-
proach to language processing seems to make
LMs more human-like.

1 Introduction

In the literature on targeted syntactic evaluation
(Linzen et al., 2016; Marvin and Linzen, 2018),
recurrent neural networks (RNNs) such as LSTMs
have been demonstrated to implicitly learn syntac-
tic structures of natural language (e.g., subject-verb
agreement), despite the lack of explicit syntactic
supervision (cf. Hewitt and Manning, 2019). More-
over, those RNNs also turned out to benefit from
explicit syntactic supervision. RNNs integrated
with explicit syntactic supervision, namely Recur-
rent Neural Network Grammars (RNNGs; Dyer
et al. 2016), have received considerable attention
for their cognitive plausibility and outperformed

†Currently affiliated with LeapMind Inc.:
noji@leapmind.io.

*Denotes equal contribution.

RNNs in not only targeted syntactic evaluation
(Kuncoro et al., 2018; Wilcox et al., 2019) but also
psychometric predictive power (Hale et al., 2018;
Wilcox et al., 2020; Yoshida et al., 2021).

However, despite the previous debate over the
dichotomy between the presence and absence of
syntactic supervision, how much syntactic super-
vision is necessary and sufficient remains to be
investigated. Especially, there are two potential
reasons to believe that full syntactic supervision
is suboptimal. Theoretically, full syntactic super-
vision may override lexical heuristics implicitly
learned with RNNs, where information on terminal
symbols vanishes via recursive composition opera-
tions (cf. Kuncoro et al., 2017). Empirically, full
syntactic supervision seems to destroy the perfor-
mance of long-distance dependencies, especially
(pseudo-)cleft constructions, where both acceptable
(e.g., What he did was prepare the meal.) and unac-
ceptable (e.g., *What he ate was prepare the meal.)
sentences share the exactly same syntactic structure
(Figure 1) and should be distinguished via lexical
heuristics alone (cf. Noji and Oseki, 2021). There-
fore, it is reasonable to hypothesize that optimal
syntactic supervision lies somewhere between full
and zero syntactic supervision in order to balance
syntactic structures and lexical heuristics. Intu-
itively speaking, if we teach too much syntax to
language models, those models will forget lexicon.

In this paper, we explore how much syntactic
supervision is “good enough” to make language
models more human-like. Specifically, we propose
the new method called syntactic ablation, where
RNNGs are gradually ablated from full syntactic
supervision to zero syntactic supervision (≈ unidi-
rectional LSTM) by preserving NP, VP, PP, SBAR
nonterminal symbols and the combinations thereof.
The 17 ablated grammars are then evaluated via
targeted syntactic evaluation on the SyntaxGym
benchmark (Gauthier et al., 2020). The results
demonstrate that the RNNG with mild syntactic
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(a) Full grammar (b) NPSb grammar (c) Zero grammar (≒ LSTM)
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Figure 1: Our proposed method of syntactic ablation. RNNGs are gradually ablated from (a) full syntactic
supervision, through (b) mild syntactic supervision, to (c) zero syntactic supervision (≈ unidirectional LSTM) by
preserving NP, VP, PP, SBAR nonterminal symbols and the combinations thereof, hence the 17 ablated grammars.

supervision achieved the best performance compa-
rable to the state-of-the-art GPT-2-XL, which are
then discussed in the broader context of the compu-
tational psycholinguistic literature (Ferreira et al.,
2002; Ferreira and Patson, 2007).

2 Methods

2.1 Recurrent Neural Network Grammars

Recurrent Neural Network Grammars (RNNGs;
Dyer et al. 2016) are deep generative models of
sentences and structures. RNNGs employ the stack
LSTM (Dyer et al., 2015) to compute probability
distributions over 3 parsing actions below:

• NT: Open nonterminal symbols.

• GEN: Generate terminal symbols.

• REDUCE: Close nonterminal symbols.

For the REDUCE action, RNNGs adopt the bidirec-
tional LSTM to encode terminal and nontermi-
nal symbols both left-to-right and right-to-left into
phrasal representations. For inference, RNNGs uti-
lize word-synchronous beam search (Stern et al.,
2017) implemented in Noji and Oseki (2021).1

2.2 Syntactic ablation

Our proposed method of syntactic ablation is sum-
marized in Figure 1. RNNGs are gradually ablated
from full syntactic supervision to zero syntactic
supervision by preserving NP, VP, PP, SBAR non-
terminal symbols and the combinations thereof,
hence 17 ablated grammars below:

• Zero: Zero grammar.

• N: NP nonterminal symbol only.
1https://github.com/aistairc/rnng-pytorch

• V: VP nonterminal symbol only.

• P: PP nonterminal symbol only.

• Sb: SBAR nonterminal symbol only.

• NV: NP and VP nonterminal symbols.

• NP: NP and PP nonterminal symbols.

• NSb: NP and SBAR nonterminal symbols.

• VP: VP and PP nonterminal symbols.

• VSb: VP and SBAR nonterminal symbols.

• PSb: PP and SBAR nonterminal symbols.

• NVP: NP, VP, and PP nonterminals.

• NVSb: NP, VP, and SBAR nonterminals.

• NPSb: NP, PP, and SBAR nonterminals.

• VPSb: VP, PP, and SBAR nonterminals.

• NVPSb: NP, VP, PP, and SBAR nonterminals.

• Full: Full grammar.

RNNGs are trained on the parsed sentences. We
created the training data for each grammar, which
only provides designated nonterminal symbols.
Our original dataset is the same as the XL dataset
of Hu et al. (2020), which is about 42M tokens
from BLLIP corpus (Charniak et al., 2000) and
re-parsed by Berkeley neural parser (Kitaev et al.,
2019), from which we only kept the ablated non-
terminals to create the dataset. For each grammar,
we trained an RNNG with three different random
seeds. For the other training settings, we follow
Noji and Oseki (2021)’s 100M token experiment.

2.3 Targeted syntactic evaluation
Those ablated grammars were then evaluated via
targeted syntactic evaluation on the SyntaxGym
benchmark (Gauthier et al., 2020) which includes 6
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syntactic circuits: Agreement, Garden-Path Effects,
Licensing, Center Embedding, Gross-Syntactic
State, and Long-Distance Dependencies.

We adopted the “perfect match” evaluation met-
ric proposed in Hu et al. (2020), not the “partial
match” evaluation metric utilized in the Syntax-
Gym leaderboard, which seems to overestimate the
accuracies of syntactic generalization.

3 Results

3.1 Overall accuracies

Overall accuracies of our syntactic ablation ex-
periments are summarized in Figure 2. Accura-
cies of SyntaxGym (the vertical axis) are plotted
against grammars with different amounts of syn-
tactic supervision (the horizontal axis), together
with the accuracies of RNNG and GPT-2-XL re-
ported in Hu et al. (2020). Zero (leftmost) and
Full (rightmost, except RNNG and GPT-2-XL)
represent zero and full grammars, respectively, the
former of which is equivalent to the unidirectional
LSTM.2 N, V, P, and Sb indicate grammars with NP,
VP, PP, and SBAR nonterminal symbols preserved,
respectively. Therefore, NP represents the grammar
with NP and PP nonterminal symbols preserved,
not to be confused with the grammar with the NP
nonterminal symbol preserved.

2They are practically equivalent because the REDUCE action
does not occur except the end of the sentence, where the only
difference affecting each word probability is the existence of
“(ROOT” symbol at the beginning of the sentence.

There are three key observations here. First, the
Zero grammar, which is equivalent to the unidi-
rectional LSTM, underperformed the grammars
with some syntactic supervision, suggesting that
syntactic supervision plays an important role for
human-like syntactic generalization. Second, the
Full grammar also underperformed the grammars
with less syntactic supervision and GPT-2-XL in
Hu et al. (2020), meaning that full syntactic su-
pervision does not always make LMs human-like.
Finally, and most importantly, the NPSb grammar
achieved the best performance (84.585417) com-
parable to (or even numerically larger than) the
state-of-the-art GPT-2-XL (84.241459).

3.2 Circuit accuracies

Circuit accuracies of our syntactic ablation exper-
iments are summarized in Figure 3. Accuracies
of 6 circuits on SyntaxGym (the vertical axis) are
plotted against 4 grammars with different amounts
of syntactic supervision (the horizontal axis).

Interestingly, the NPSb grammar outperformed
the Full grammar for 5 among 6 syntactic cir-
cuits (Agreement, Center Embedding, Garden-Path
Effects, Licensing, Long-Distance Dependencies).
Notice that the performance advantage of the NPSb
grammar is significantly larger in Long-Distance
Dependencies, especially (pseudo-)cleft construc-
tions, corroborating the hypothesis that optimal
syntactic supervision lies somewhere between full
and zero syntactic supervision in order to balance
syntactic structures and lexical heuristics.

Zero N V P Sb NV NP NSb VP VSb PSb NVP NVSb NPSb VPSb NVPSb Full RNNG GPT-2-XL

Grammar

40

50

60

70

80

90

100

A
cc

ur
ac

y

Figure 2: Overall accuracies of our syntactic ablation experiments. Accuracies averaged over 6 circuits on
SyntaxGym and random seeds (the vertical axis) are plotted against grammars with different amounts of syntactic
supervision (the horizontal axis), together with the accuracies of RNNG and GPT-2-XL reported in Hu et al. (2020).
Error bars denote bootstrapped 95% confidence intervals. Zero (leftmost) and Full (rightmost, besides RNNG and
GPT-2-XL) represent zero and full grammars, respectively. N, V, P, and Sb indicate the grammars with NP, VP, PP,
and SBAR nonterminal symbols preserved, respectively. Therefore, NP represents the grammar with NP and PP
nonterminal symbols preserved, not to be confused with the grammar with the NP nonterminal symbol preserved.
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Figure 3: Circuit accuracies of our syntactic ablation experiments. Accuracies of 6 circuits on SyntaxGym (the
vertical axis) are plotted against 4 grammars with different amounts of syntactic supervision (the horizontal axis).

4 Discussion

In summary, we performed the syntactic ablation
experiments where RNNGs were gradually ablated
from full syntactic supervision to zero syntactic
supervision (≈ unidirectional LSTM), and then
evaluated via targeted syntactic evaluation on the
SyntaxGym benchmark. In this section, the results
of our syntactic ablation experiments will be dis-
cussed in the broader context of the computational
psycholinguistic literature.

4.1 The “good enough” language processing

The overall accuracies reported in Section 3.1
demonstrated that the RNNG with mild syntactic
supervision, especially the NPSb grammar, outper-
formed the RNNGs with zero and full syntactic su-
pervision, as well as GPT-2 XL in Hu et al. (2020).
Those results are consistent with the “good enough”
approach to language processing (Ferreira et al.,
2002; Ferreira and Patson, 2007), where human
language processing does not always generate deep
syntactic structures, but rather employs shallow
syntactic structures and frugal lexical heuristics.
Here, we suggest that the RNNG with mild syn-
tactic supervision serves as the mechanistic model
of the “good enough” approach to language pro-
cessing, in that neither deep/hierarchical syntax
is necessary nor shallow/flat syntax is sufficient;
rather, some syntax in between is “good enough”.

4.2 Long-Distance Dependencies

The circuit accuracies reported in Section 3.2 re-
vealed that the NPSb grammar outperformed the
Full grammar for 5 syntactic circuits such as
Agreement, Center Embedding, Garden-Path Ef-
fects, Licensing, Long-Distance Dependencies.

Upon closer inspection (cf. Hu et al., 2020), those
5 syntactic circuits share the isomorphic syntactic
structure with long-distance dependencies between
dependents inside and outside “heavy” subjects
(where the dependents are italicized):3

• Agreement: [NP The farmer [PP near the
clerks]] knows many people.

• Center Embedding: [NP The painting [SBAR
that the artist painted]] deteriorated.

• Garden-Path Effects: [NP The child [SBAR
kicked in the chaos]] found her way back
home.

• Licensing: [NP No managers [SBAR that re-
spected the guard]] have had any luck.

• Long-Distance Dependencies: [SBAR What
he did] was prepare the meal.

Importantly, NP, PP, and SBAR representations
effectively make linearly distant dependents hier-
archically close, while VP representations have
no designated raison d’être and, moreover, may
override lexical heuristics of verbs (e.g., knows, de-
teriorated) via recursive composition operations
(cf. Kuncoro et al., 2017; Noji and Oseki, 2021).
Thus, at least for those 5 syntactic circuits, the NPSb
grammar is the optimal syntactic supervision that
balances syntactic structures and lexical heuristics.

3While those 5 syntactic circuits are not named long-
distance dependencies (except the Long-Distance Dependen-
cies circuit which includes filler-gap dependencies and cleft
constructions), they all involve long-distance dependencies.
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5 Conclusion

In this paper, we explored how much syntactic su-
pervision is “good enough” to make language mod-
els more human-like. Specifically, we performed
the syntactic ablation experiments where RNNGs
were gradually ablated from full syntactic supervi-
sion to zero syntactic supervision (≈ unidirectional
LSTM), and then evaluated via targeted syntactic
evaluation on the SyntaxGym benchmark. The
results demonstrated that the RNNG with mild syn-
tactic supervision achieved the best performance
comparable to the state-of-the-art GPT-2-XL. We
hope that the “good enough” approach to language
processing (Ferreira et al., 2002; Ferreira and Pat-
son, 2007) provides the promising direction for
future research.

Limitations

There are several limitations with this paper. First,
the evaluated models are limited; the syntactic ab-
lation was applied to only one model (i.e. RNNG)
and remains to be generalized to other models
(cf. Sartran et al., 2022). Second, the evaluation
datasets are also limited; our ablated RNNGs were
evaluated against only one dataset (i.e. Syntax-
Gym) and remain to be extended to other datasets
(cf. Warstadt et al., 2020). In addition, from engi-
neering perspectives, our ablated RNNGs, though
lightweight, still require some syntactic supervi-
sion, which may induce the scalability bottleneck.
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Abstract

Dense vector representations for textual data
are crucial in modern NLP. Word embeddings
and sentence embeddings estimated from raw
texts are key in achieving state-of-the-art results
in various tasks requiring semantic understand-
ing. However, obtaining embeddings at the doc-
ument level is challenging due to computational
requirements and lack of appropriate data. In-
stead, most approaches fall back on computing
document embeddings based on sentence rep-
resentations. Although there exist architectures
and models to encode documents fully, they are
in general limited to English and few other high-
resourced languages. In this work, we provide
a systematic comparison of methods to produce
document-level representations from sentences
based on LASER, LaBSE, and Sentence BERT
pre-trained multilingual models. We compare
input token number truncation, sentence aver-
aging as well as some simple windowing and
in some cases new augmented and learnable ap-
proaches, on 3 multi- and cross-lingual tasks in
8 languages belonging to 3 different language
families. Our task-based extrinsic evaluations
show that, independently of the language, a
clever combination of sentence embeddings is
usually better than encoding the full document
as a single unit, even when this is possible. We
demonstrate that while a simple sentence aver-
age results in a strong baseline for classification
tasks, more complex combinations are neces-
sary for semantic tasks. Our code is publicly
available.1

1 Introduction

Semantic representations, especially embeddings,
are crucial for natural language processing (NLP).
In fact, the field has exploded since the success of
dense word embeddings (Mikolov et al., 2013). For
some tasks like finding semantic or syntactic rela-
tions among words, high quality word embeddings

1https://github.com/sonalsannigrahi/
Document_Embeddings

are enough. Other tasks, like question classifica-
tion or paraphrase detection, benefit from sentence
embeddings. Finally, lots of tasks deal with doc-
uments: summarisation, document classification,
question answering, etc. Document representations
are difficult to be learned, especially multilingually,
given the amount of available training data and the
length of each training instance.

For these reasons, document embeddings usu-
ally resort to sentence embeddings. Since some of
the state-of-the-art techniques for language mod-
elling and sentence embeddings are based on self-
attention architectures such as BERT (Devlin et al.,
2019), and self-attention scales quadratically with
the input length, one cannot afford arbitrarily long
inputs. Training is usually constrained to input frag-
ments up to 512 tokens (subunits). This limit goes
well beyond an average sentence length and can
cover several paragraphs. However, full documents
can be significantly longer. The average length of
a Wikipedia article in English is 647 words (not
subunits) for example,2 and the average for two of
the tasks that we consider in this work, document
alignment and ICD code classification, is around
800 words, with documents up to 40k words.

In order to be able to process long inputs, more
efficient architectures such as Linformer (Wang
et al., 2020), Big Bird (Zaheer et al., 2020) or Long-
former (Beltagy et al., 2020) implement sparse at-
tention mechanisms that scale linearly instead of
quadratically. These architectures accept at least
4096 input tokens. With this length, one can em-
bed most Wikipedia articles, news articles, medical
records, etc. These architectures are available as
pre-trained models in English3 and can be fine-
tuned for NLP tasks such as document classifica-
tion, question answering or summarisation. How-

2https://en.wikipedia.org/wiki/
Wikipedia:Size_of_Wikipedia
Consulted on Feb. 2023.

3https://huggingface.co
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ever, multilingual or non-English versions are rare.
For most languages, it is not just a matter of training
a model from scratch, but the amount of documents
is just not enough to train high quality models.

LASER (Artetxe and Schwenk, 2019; Heffer-
nan et al., 2022), Sentence BERT (Reimers and
Gurevych, 2019, 2020) and LaBSE (Feng et al.,
2022) are representative and state-of-the-art models
which largely adapt language models to be used as
task-independent sentence representations. These
models are available as pre-trained models and,
contrary to the long sequence models introduced
before, they are multilingual. LASER, which is not
transformer-based, allows longer inputs.

These observations explain why the two main
approaches to obtain multilingual (or non-English)
document embeddings are simply (i) truncating the
input to 512 tokens and feeding it into a sentence-
level encoder or (ii) splitting the document in
shorter fragments and then combine their embed-
dings. There are few works that do a systematic
comparison among methods. Park et al. (2022) per-
form a systematic study for document classification
in English and found that the most sophisticated
models such as Longformer do not always improve
on a baseline that truncates the input to fit it into
a fine-tuned BERT. The results mostly depend on
how the information is distributed along a docu-
ment and therefore varies from dataset to dataset.

In this work we explore multilingual document-
level embeddings in three tasks in detail: docu-
ment alignment, a bilingual semantic task; ICD
code (multi-label) classification in 2 languages;
and cross-lingual document classification in 8 lan-
guages. We compare input token number trun-
cation, sentence averaging as well as some sim-
ple windowing and in some cases new augmented
and learnable approaches. Our results show that a
simple sentence average is a very strong baseline,
even better than considering the whole document
as a single unit, but that positional information is
needed when the distribution of information across
a document is not uniform.

2 Related Work

Word embeddings have been exceptionally success-
ful in many NLP applications (Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2017).
Subsequent works developed methods to learn con-
tinuous vector representations for longer sequences
such as sentences or even documents. Skip-thought

embeddings (Kiros et al., 2015) train an encoder–
decoder architecture to predict surrounding sen-
tences. Conneau et al. (2017) showed that the task
on which sentence representations are learnt sig-
nificantly impacts their quality. InferSent (Con-
neau et al., 2017), a Siamese BiLSTM network
with max pooling, and Universal Sentence Encoder
(Cer et al., 2018), a transformer-based network, are
trained over the SNLI dataset which is suitable for
learning semantic representations (Bowman et al.,
2015).

These methods primarily work on a single lan-
guage but as multilingual representations have at-
tracted more interest, sentence-level embeddings
have been extended to obtain a wider language
coverage. Artetxe and Schwenk (2019) (LASER)
learn joint multilingual sentence representations
for 93 languages based on a single BiLSTM en-
coder with a shared BPE vocabulary trained on
publicly available parallel corpora. However, this
architecture was shown to underperform in high-
resource scenarios (Feng et al., 2022). LASER is
especially interesting for our work as, being LSTM-
based, it does not have the 512-length constraint.
Li and Mak (2020) introduce T-LASER, which is
a version of LASER that uses a transformer en-
coder in place of the original bidirectional LSTM.
However, this model was tested only on the Mul-
tilingual Document Classification (MLDoc) cor-
pus (Schwenk and Li, 2018), which does not have
significantly long documents. Similarly, Reimers
and Gurevych (2019) (sBERT in the following) ex-
tended a transformer-encoder architecture, BERT,
by using a Siamese network with cosine similarity
for contrastive learning in order to derive semanti-
cally meaningful sentence representations. More
recently, Feng et al. (2022) (LaBSE) explored cross-
lingual sentence embeddings with BERT by intro-
ducing a pre-trained multilingual language model
component and show that on several benchmarks,
their method outperforms many state-of-the-art em-
beddings such as LASER.

While sentence-level representations have been
widely explored in literature, document-level rep-
resentations are less well-explored. The earli-
est approaches in learning document-level vec-
tor representations included an extension of the
Word2Vec algorithm named Doc2Vec (Le and
Mikolov, 2014) with two variants proposed, a bag-
of-words and a skip-gram based model. However,
while these methods worked well at the word-level,
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the document-level counterpart led to issues in scal-
ing due to large vocabulary sizes (Lau and Bald-
win, 2016). Due to these limitations, further works
have attempted to improve the computational bot-
tlenecks involved with training on long sequences
such as documents. Linformer (Wang et al., 2020)
is a transformer-based architecture with linear com-
plexity due to a sparse self-attention mechanism
making it significantly more memory- and time-
efficient in comparison with the original trans-
former (Vaswani et al., 2017). Works such as Big
Bird (Zaheer et al., 2020) and Longformer (Beltagy
et al., 2020) introduced a sparse attention mecha-
nism and localised global attention respectively.
BigBird is able to handle sequences of up to 4,096
tokens and Longformer scales linearly with the se-
quence length, with experiments on sequences of
length upto 32,256. To the best of our knowledge,
to date not much has been done to extend them
beyond English. Shen (2021) and Romero (2022)
made available Chinese and Spanish Longformer
models, respectively, while Sagen (2021) trained
a multilingual version starting from a RoBERTa
checkpoint and not from scratch. We use Long-
former as a comparison system in our experiments
but we do not consider the multilingual model
given that multilinguality was achieved by fine-
tuning on question answering data and we do not
explore this task.

3 Sentence Embeddings

We use three multilingual sentence-level embed-
ding models that cover different languages, archi-
tectures and learning objectives:

LASER (Schwenk and Douze, 2017; Artetxe and
Schwenk, 2019) uses max-pooling over the output
of a stacked BiLSTM-encoder. The encoder is
extracted from an encoder–decoder machine trans-
lation setup trained on parallel corpora over 93 lan-
guages. Since it is not based on transformers but
on LSTMs, the maximum number of input tokens
can in principle be arbitrary and is set to 12,000.

LaBSE Feng et al. (2022) train a multilingual
BERT-like model with a masked LM and transla-
tion LM objective functions. A dual-encoder trans-
former is initialised with the model and fine-tuned
on a translation ranking task. The final model cov-
ers 109 languages. The maximum number of input
tokens is 512.

sBERT Reimers and Gurevych (2019) use the
output of BERT-base with mean pooling to create
a fixed-size sentence representation. A Siamese-
BERT architecture trained on NLI is used to obtain
the final sentence-embedding model. The maxi-
mum number of input tokens is 512, with a de-
fault value of 128. We use the multilingual version
(Reimers and Gurevych, 2020).

4 Document Embeddings

We divide our approaches to build document em-
beddings into three families: in (i) Document Ex-
cerpts, we feed token sequences as they are di-
rectly into LASER, LaBSE and sBERT to obtain
a document-level representation, in (ii) Sentence
Weighting Schemes, we divide documents into sen-
tences represented using base sentence embeddings
and then explore different combination and weight
strategies to obtain document embeddings, in (iii)
Windowing Approaches, we study different distri-
butions to learn document-level positional and se-
mantic information.

(i) Document Excerpts

All Tokens: The full document is fed into the
system (no truncation). We explore this option
only with LASER which does not have the 510-
token-length restriction4 and when possible (En-
glish, Spanish and Chinese) with Longformer.

Top-N Tokens: The document is truncated to the
first n = 510 tokens.

Bottom-N Tokens: The last n = 510 tokens are
fed into the system.

Top-N + Bottom-M Tokens: We select N = 128
and M = 382 to use the first N and last M to-
kens of the documents. These values are based on
empirical explorations by Sun et al. (2019).

(ii) Sentence Weighting Schemes

Sentence Average: Each base sentence embed-
ding (obtained with LASER, LaBSE or SBERT) is
given a uniform weight. This computes the vanilla
average embedding vector of all sentences in the
document.

4That is the maximum length of tokens accepted by
transformer-style embedding models, 512 without the [CLS]
and [SEP] tokens.
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Top/Bottom-Half Average: Only the top (bottom)
half of the sentences in the document are consid-
ered for averaging.

TF-IDF Weights: We compute TF-IDF scores
for all terms in a document, and average their val-
ues at sentence level. The base sentence embed-
dings (LASER, LaBSE, SBERT) are then weighted
by the normalised value of the TF-IDF averages.
Following Buck and Koehn (2016b), we use dif-
ferent TF-IDF computations based on variations of
term frequency tf and inverse document frequency
idf definitions. For words w in a document d be-
longing to a collection D we report results using:

tf2(w, d) = freq(w, d) (1)

tf4(w, d) = 0.4 + 0.6
freq(w, d)

maxw̃freq(w̃, d)
(2)

idf4(w, d) = log(1 +
|D|

df(w, |D|)), (3)

with df(w,D) = |{d ∈ D|w ∈ d}|, and

tfiidfj(Sk) =

∑
w∈Sk tfi(w, d)idfj(w, d)

#wk
, (4)

where Sk is a sentence in a given document d, and
#wk is the number of words in sentence Sk.

The weights of these models are fixed for the
static tasks and used as initialisation when training
a classifier.

(iii) Windowing Approaches

TK-PERT: Thompson and Koehn (2020) intro-
duced a windowing approach that weights the con-
tribution of each sentence according to the modified
PERT function (Vose, 2008) and a down-weighting
function for boilerplate text. The latter was intro-
duced to deal with webpages but it can be ignored
for other types of documents. The smoothed over-
lapping windowing functions based on a cache of
the PERT distribution (PERT-cache) encode fine-
grained positional information into the resultant
document vector.

A document with N sentences Si|i∈{0,...,N−1} is
split uniformly into J parts and the final representa-
tion D for a document is given by a concatenation
of normalised position-weighted (via PERT) sub-
vectors where each sub-vector Dj is

Dj =
N−1∑

n=0

emb(Sn)Pj(n)B(Sn), (5)

Figure 1: ATT-PERT model for classification. A
static modified PERT distribution is used to extend the
sentence embeddings to documents. Afterwards, an
attention-weighted classifier is learnt.

emb is the (LASER, LaBSE, SBERT) embedding
of sentence n, P is the modified PERT function for
part j and B is a boilerplate function if there is one.
In cases when no boilerplate text is present, we set
it to 1.

Following Thompson and Koehn (2020) setting
for the modified PERT distribution, we use J = 16
and set its shape parameter to γ = 20.

TF-PERT: is a new extension of TK-PERT to
further incorporate semantics. PERT focuses on
positional information encoded in the document
while TF-IDF focuses on the semantic information,
therefore a combined metric would likely be able
to consider both features. We combine the two con-
tributions with a multiplication at sentence level:

Dj =
N−1∑

n=0

emb(Sn)Pj(n)B(Sn)tfidf(Sn), (6)

where we use the same notation as in Eqs. 4 and 5.

ATT-PERT: is a new extension of TK-PERT to
further incorporate a global learnable attention. Fig-
ure 1 illustrates the basic architecture. The PERT
distribution encodes global positional information
of the document. By adding an attention layer over
it, we introduce a global attention that weights the
different parts of the document and that is com-
bined with the standard local attention at word
level performed by the sentence encoder. Mathe-
matically,

Dj =
N−1∑

n=0

emb(Sn)Pj(n)aj(n), (7)

where Sn refers to the sentence embedding that has
been trained for a classification task and aj(n) is
the respective global attention weight.

In TK-PERT, the static PERT distribution is mul-
tiplied by the fine-tuned sentence embeddings. In
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# Documents Length
Train Test Avg. Max.

Document Alignment, WMT2016

English 349k 682k 737 43.3k
French 225k 522k 842 45.2k
Web Domains 49 203 - -
Gold Pairs 1624 2402 - -

Multi-label Classification, ICD Code Classification

Spanish 1001 1600 792 4352
German 8385 407 876 2249

Document Classification, MLDoc

English 10k 4000 275 576
German 10k 4000 342 675
French 10k 4000 445 782
Italian 10k 4000 376 765
Spanish 9458 4000 354 778
Japanese 10k 4000 327 897
Russian 5216 4000 235 967
Chinese 10k 4000 562 983

Table 1: Number of documents and average tokenised
document length in sentencepiece units (prior to boiler-
plate downweighting for Document Alignment) for the
three tasks used in the experiments.

contrast, in ATT-PERT, the distribution is multi-
plied with the embeddings prior to training a clas-
sifier without freezing the embedding layer, as this
allows the positional weights in the PERT distribu-
tion to be trained for the specific task.

ATT-TF-PERT: is a new extension of TF-PERT
to further incorporate a global learnable attention as
in ATT-PERT. In this configuration, we learn com-
bined TF-IDF-PERT weighted embeddings whose
attention weights are further updated while training
the classifier. We use the same global attention
aj(n) as in ATT-PERT, however here it is multi-
plied with both the TF-IDF weight of the sentence
tfidfj(w, Sn) as computed in the TF-IDF set up
and the PERT distribution Pj(n) as in TK-PERT:

Dj =
N−1∑

n=0

emb(Sn)Pj(n)aj(n)tfidf(Sn). (8)

5 Evaluation Tasks

We apply the different configurations discussed
above across the following tasks:

Bilingual Document Alignment aims at align-
ing documents from two collections in language
L1 and language L2 according to whether they are

parallel or comparable. In our experiments, we
use the data given for the WMT 2016 Shared Task
on Bilingual Document Alignment to align French
web pages to English web pages for a given crawled
webdomain (Buck and Koehn, 2016a). In these ex-
periments we do not perform any learning using
the training data, but just estimate document-level
semantic similarity between the pairs of documents
in the test set. To compute this, we find the top
K=32 candidate translations using approximate
nearest neighbor search via FAISS5 as in (Buck
and Koehn, 2016a). We use cosine similarity to
quantify semantic similarity on the document em-
beddings.

Multi-label ICD Code Classification aims at
assigning one or more ICD-10 codes to medical-
domain texts (electronic health records). Here there
can be an arbitrary number of ICD-10 codes as-
signed to the input text. In particular, out of all the
possible ICD-10 Codes, 4 account for more than
90% of the documents, making this an imbalanced
classification task and leading to the ’tail end prob-
lem’ (Chapman and Neumann, 2020). We use the
CLEF eHealth 2019 task for German non-technical
summaries (Neves et al., 2019) and CANTEMIST-
CODING (Miranda-Escalada et al., 2020) for Span-
ish electronic health records. Here, we learn a
weighted-attention classifier layer (Lee et al., 2022)
on top of the base document embeddings consist-
ing of a feed-forward neural network with a single
hidden layer of 10 units.

Cross-lingual Document Classification aims at
classifying documents in a set of predefined cat-
egories in a language (usually English) and then
transfer the model to unseen languages. We use
the MLDoc dataset for this purpose (Schwenk and
Li, 2018). The corpus contains 1,000 development
documents and 4,000 test documents in eight lan-
guages (English, German, French, Italian, Spanish,
Japanese, Russian and Chinese), divided in four
different genres with uniform class priors. For
zero-shot transfer, we train a classifier on top of the
multilingual document representations estimated
as described in Section 4 by using only the English
training data and the hyperparameters optimised
in Artetxe and Schwenk (2019). Similar to the
previous classification task, we use a feed-forward
neural network with one hidden layer with 10 units.

5https://github.com/facebookresearch/
faiss
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LASER LaBSE sBERT

All tokens 81.2+0.3
−0.4 — —

Top-510 tokens 70.8+0.2
−0.3 71.2+0.5

−0.4 72.3+0.2
−0.4

Bottom-510 tokens 65.8+0.5
−0.3 66.3+0.7

−0.8 67.1+0.6
−0.7

Top-128 + Bot-312 75.3+0.5
−0.5 76.1+0.3

−0.5 74.2+0.3
−0.3

Sentence Average 81.8+0.7
−0.5 83.4+0.6

−0.5 82.3+0.4
−0.6

Top-Half Avg. 82.2+0.3
−0.5 81.3+0.6

−0.8 81.7+0.7
−0.6

Bottom-Half Avg. 67.8+0.8
−0.7 66.5+0.4

−0.3 65.3+0.5
−0.4

TF-IDF Weighted
tf2 − idf4 80.2+0.7

−0.4 80.5+0.7
−0.6 79.3+0.2

−0.4

tf4 − idf4 86.3+0.5
−0.4 87.2+0.3

−0.4 85.4+0.6
−0.5

TK-PERT (Euclidean) 93.2+0.7
−0.8 93.5+0.6

−0.5 92.8+0.5
−0.4

TK-PERT (cosine) 96.4+0.6
−0.5 94.2+0.5

−0.4 95.3+0.8
−0.9

TF-PERT (cosine) 93.4+0.5
−0.3 92.5+0.3

−0.4 93.1+0.4
−0.4

Table 2: Document recall on WMT-16 Shared Task on
English–French document alignment. Best score for
each family is in bold.

We use this classifier on top on the multilingual em-
beddings to evaluate the system on the remaining
languages.

Table 1 shows the statistics for the datasets used
in the three tasks as well as an average length of
training instances in terms of sentencepiece to-
kens.6 The average document length in the doc-
ument alignment and ICD code classification tasks
is larger than 512 tokens, making the usage of sen-
tence embeddings alone insufficient. This is not the
case for document classification, but we still con-
sider it in order to compare the different approaches
and add a highly multilingual setting.

6 Results and Discussion

Thompson and Koehn (2020) empirically obtained
the best trade-off between accuracy and inference
time when using PCA-reduced sentence embed-
dings of 128 dimensions in the bilingual document
alignment task. We performed equivalent experi-
ments with 128 and 256 dimensions for selected
configurations in the three tasks and confirmed the
trend. As we obtained no major gains in using more
dimensions, we report all the results for the three
tasks with 128-dimensional sentence embeddings.

We report confidence intervals at 95% confi-
dence level using bootstrap resampling with 1000
samples for document alignment, 500 samples for
ICD code classification and 1000 samples for doc-
ument classification.

6https://github.com/google/
sentencepiece

Bilingual Document Alignment quality ranges
from 65% to 96% recall depending on the docu-
ment embedding method. Table 2 shows the results
obtained for all the configurations considered. A
simple sentence average achieves a recall around
82% (depending on the sentence embedding used).
When using LASER, the only method that allows
the comparison, the recall with sentence average
is larger but not statistically significantly over em-
bedding the full document as a single unit (81.8%
vs 81.2%). Taking a token-based excerpt of the
document is 10 percentage points below sentence-
averaging the same excerpt. The information in
webpages seems to be more densely distributed
towards the top of the page. Looking at the top-
half versus the bottom-half of the sentences of the
webpages, there is a 17% reduction in the scores
obtained. In these unweighted and average con-
figurations in both the token and sentence-based
methods, we do not encode any positional infor-
mation: sentence order and semantic relevance is
not considered in the final document embeddings.
However, intuitively, these factors are indicative of
each sentence’s contribution to the larger document
embedding. In order to incorporate semantic rele-
vance into our final embeddings, we consider the
weighted average using TF-IDF. We explore sev-
eral TF-IDF forms and obtain a difference of 7%
on average among them. Table 2 shows the 2 most
promising ones. With the best option (tf4 − idf4),
TF-IDF weighting improves between 3 and 5 per-
centage points with respect to the sentence averag-
ing which uses uniform weights. We use tf4− idf4
for the next experiments when required as these
formulae empirically performed the best. To in-
clude sentence order, we use the PERT-window
based approach. TK-PERT outperforms all other
methods by a margin of 11.7%. This result attests
the relevance of contextual information, sentence
order, and positional importance. Although we find
improvements over the baseline models by intro-
ducing TF-IDF weights and the PERT distribution,
a combination of the two in TF-PERT does not lead
to further improvements.

The other dimension of the study, the particu-
lars of sentence embeddings, is less important to
the recall. LASER, LaBSE and sBERT achieve
similar results. As we are working with French
and English documents, both languages being high-
resource, all base sentence embeddings are high-
quality and therefore they do not impact the final
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LASER LaBSE sBERT
de es de es de es

All tokens 73.1+0.5
−0.6 18.4+0.4

−0.3 – – – –
Top-510 tokens 65.6+0.8

−0.7 16.5+0.5
−0.8 68.2+0.5

−0.5 19.2+0.6
−0.4 63.2+0.7

−0.8 18.3+0.5
−0.6

Bottom-510 tokens 67.8+0.4
−0.9 17.5+0.4

−0.9 66.7+0.8
−0.6 17.4+0.7

−0.6 61.5+0.8
−0.6 16.8+0.5

−0.7

Top-128 + Bot-312 66.4+0.8
−0.6 17.2+0.8

−0.7 69.1+0.7
−0.9 18.7+0.7

−0.8 64.8+0.7
−0.5 17.5+0.6

−0.8

Sentence Average 72.1+0.9
−0.8 17.0+0.7

−0.6 74.5+0.8
−0.9 24.2+0.8

−0.6 68.9+0.7
−0.6 20.3+0.8

−0.4

Top-Half Avg. 68.4+0.7
−0.9 16.5+0.5

−0.6 68.3+0.4
−0.8 18.9+0.5

−0.5 61.5+0.7
−0.6 16.4+0.8

−0.6

Bottom-Half Avg. 63.1+0.7
−0.6 15.8+0.8

−0.7 67.4+0.8
−0.9 15.2+0.6

−0.7 58.6+0.9
−0.8 17.9+0.7

−0.6

TF-IDF Weighted 65.3+0.5
−0.4 17.2+0.7

−0.8 68.2+0.9
−1.0 19.2+0.9

−0.7 63.2+0.6
−0.8 18.3+0.7

−0.6

TK-PERT 68.2+0.8
−0.6 22.1+0.7

−0.4 70.1+0.8
−0.7 20.1+0.7

−0.4 65.2+0.8
−0.6 19.5+0.7

−0.8

TF-PERT 68.5+0.4
−0.3 23.4+0.6

−0.6 68.6+0.3
−0.7 21.3+0.5

−0.4 65.4+0.6
−0.7 18.7+0.4

−0.3

ATT-PERT 70.7+0.7
−0.9 32.2+0.7

−0.4 72.1+0.8
−0.6 30.1+0.7

−0.8 66.3+1.1
−1.3 27.4+0.8

−0.7

ATT-TF-PERT 70.3+0.5
−0.4 31.4+0.8

−0.7 73.2+0.4
−0.8 29.7+0.6

−0.5 66.1+0.9
−0.8 27.1+0.5

−0.6

Table 3: F1 scores for the Multi-label ICD code classification task for German (de) and Spanish (es) documents.
Best scores are in bold, and best scores per family are in italics.

model strongly in a consistent way.

Multi-label ICD Code Classification shows the
same trend with respect to different sentence em-
beddings as above for German and Spanish, with a
slight preference towards LaBSE embeddings. Ta-
ble 3 shows the results for this task. There is a large
discrepancy between the scores for the German and
the Spanish datasets, as already noticed by the eval-
uations in the original corresponding shared tasks.
The classification in Spanish achieves much lower
results probably because of a very small training
corpus. Our results indicate that the information is
spread throughout documents in this case. The dif-
ference between only using the top of the document
and only using the bottom part is small, and using
the whole document either by sentence averaging or
considering it a single unit is always better than any
of its parts at a 95% significance level. Semantic
(TF-IDF) and positional (TK-PERT) information
is less relevant. For the German task, either con-
sidering the full document as a whole (All tokens)
or averaging all the sentences gives the highest
performance. For the Spanish task, even with a
very low overall quality, learning specific weights
for different parts of the document (ATT-PERT)
boosts the quality. Comparing ATT-PERT with
TK-PERT, we find that the trainable alternative
performs better for all languages and base embed-
dings considered, however, the improvements are
not statistically significant for all base embeddings
in the case of German. In general, the windowing
approaches that combine semantics with position
(TF-PERT and ATT-TF-PERT) do not perform sig-
nificantly better than the pure positional methods

(TK-PERT and ATT-PERT). This can be explained
by looking a concrete example. Figure 2 shows the
distribution of weights across a document from the
CANTEMIST health record corpus for 8 configu-
rations based on LASER embeddings. The exam-
ple shows that the effect of the tfidf component
in ATT-TF-PERT (configuration 7) is equivalent
to move weight mass from ATT-PERT (configura-
tion 6) into TF-IDF (configuration 3). When this
happens, the result is a score in the middle of the
way between ATT-PERT and TF-IDF. In this doc-
ument, a medical diagnostic evaluation is detailed
and includes patient information, past diagnoses,
family medical history, as well potential evolution
of the disease. We observe that while the ‘Sentence
average’ configuration places largely equivalent
weights on all the sentences, the TF-IDF weights
place more emphasis on the beginning and end of
the document which stores information about the
patient and the evolution of the disease respectively.
This behaviour is similar to the one exhibited by
the PERT family of methods: the weight pattern
observed for configurations 3-7 remain quite con-
sistent but vary in their intensity.

Cross-lingual Document Classification data al-
lows us to test the embedding methods on 8 lan-
guages (Table 4). The languages belong to three
families, Indo-European (Germanic, Romance and
Slavic), Japonic and Sino-Tibetan. All languages
are high-resourced and included in our pre-trained
sentence representation models. MLDoc docu-
ments are shorter than 1,000 tokens with an av-
erage length of 275 tokens for English and 562 for
Chinese; the other languages stay in the middle.
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Figure 2: Sentence weights for an example document with LASER embeddings and the configurations: 0-Sentence
average, 1-Top-Half, 2-Bottom-Half, 3-TF-IDF weighted, 4-TK-PERT, 5-TF-PERT, 6-ATT-PERT, 7-ATT-TF-PERT.

Given that length, the methods that use different
510-sized excerpts of the documents do not dif-
fer much as all the excerpts are —for most of the
documents— the same.

Accuracies in Table 4 show that the documents
convey slightly more meaning at the top part than
at the bottom (Top-Half Avg. vs Bottom-Half Avg.).
The sentence average is a very strong baseline and,
for half of the languages (English, German, Rus-
sian and Chinese), this is statistically significantly
better at 95% confidence level than treating the doc-
ument as a single unit with LASER. The TF-IDF
version is worse than the simple sentence average
except for Japanese. Japanese has the lowest accu-
racy for all the languages and a high difference be-
tween the information at the top and the bottom of
its documents. In general, position (TK-PERT) is
more important than semantics (TF-IDF) and learn-
ing task-specific weights (ATT-PERT) further in-
creases accuracy. Additional experiments with TF-
PERT and ATT-TF-PERT do not show statistically
significant improvements over their counterparts
TK-PERT and ATT-PERT, similarly to the trend ob-
served in the previous tasks. For English, Chinese

and Spanish, we are further able to compare the
performance of pre-trained large-input transform-
ers. Longformer achieves 92.3% of accuracy for
English, which is 4.1% better than the 88.7% that
LASER achieves in the All tokens configuration and
about 2% better than the best performing architec-
ture, the sentence average of LaBSE embeddings
(90.9%). However, the latter is not statistically
significant at 95% confidence level. The result is
different for Chinese and Spanish. In both cases,
considering all tokens with LASER and sentence
average are better than Longformer, although the
difference is not statistically significant for Spanish.
This indicates that smaller amounts of training data
can prevent native full document-level embeddings
to be extended to languages other than English.

7 Summary and Conclusions

In this work, we studied effective methods for de-
veloping multilingual document-level representa-
tions. We used state-of-the-art sentence-level em-
beddings as basic units and systematically compare
different pooling methods to evaluate these repre-
sentations at the document level. We performed
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en→ xx
en de es fr it ja ru zh

Longformer 92.3+0.7
−0.8 – 76.9+0.6

−0.7 – – – – 68.5+0.4
−0.5

L
A

SE
R

All tokens 88.7+1.1
−0.8 83.6+0.5

−0.4 77.4+0.9
−0.8 78.1+0.7

−0.8 65.1+0.6
−0.7 61.8+0.6

−0.4 66.6+0.5
−0.6 70.1+0.9

−0.8

Sentence Average 89.9+0.9
−0.8 84.8+0.7

−0.6 77.3+0.9
−0.7 77.9+0.5

−0.9 64.9+0.4
−0.8 60.3+0.8

−0.7 67.8+0.8
−0.9 71.9+0.8

−0.7

Top-Half Avg. 86.4+0.3
−0.9 83.5+0.4

−0.5 75.8+0.9
−0.6 76.2+0.8

−0.5 63.2+0.7
−0.9 56.5+0.7

−0.6 64.1+0.7
−0.8 67.5+0.8

−0.7

Bottom-Half Avg. 83.2+0.4
−0.6 81.4+0.7

−0.8 71.2+0.7
−0.6 70.5+0.8

−0.9 59.2+0.5
−0.4 50.4+0.6

−0.7 56.2+0.6
−0.4 60.3+0.6

−0.7

TF-IDF Weighted 86.3+0.8
−0.8 85.1+0.5

−0.8 75.3+0.7
−0.4 74.1+0.7

−0.8 56.4+0.5
−0.7 61.4+0.6

−0.8 60.2+0.7
−0.6 71.5+0.4

−0.5

TK-PERT 89.1+0.4
−0.7 85.2+0.6

−0.6 75.6+0.8
−0.7 78.2+0.8

−1.1 63.6+0.9
−0.7 62.3+0.8

−0.4 67.8+0.6
−0.7 71.1+0.4

−0.6

TF-PERT 88.7+0.6
−0.5 84.8+0.8

−0.6 75.4+0.5
−0.4 77.9+0.6

−0.4 61.2+0.9
−0.8 61.8+0.3

−0.4 67.2+0.5
−0.5 70.8+0.6

−0.5

ATT-PERT 89.2+0.7
−0.8 86.2+0.6

−0.5 77.5+0.8
−0.7 79.1+1.0

−0.8 64.0+0.3
−0.9 62.5+0.6

−0.4 66.2+0.8
−0.9 71.3+0.7

−0.6

ATT-TF-PERT 88.5+0.6
−0.5 86.0+0.4

−0.3 76.7+0.4
−0.5 78.9+0.5

−0.5 63.8+0.5
−0.6 62.8+0.5

−0.4 66.5+0.4
−0.7 70.5+0.3

−0.5

L
aB

SE

Sentence Average 90.9+0.6
−0.3 85.2+0.8

−0.7 75.6+0.5
−0.8 79.9+0.5

−0.3 66.9+0.9
−0.6 58.3+0.7

−0.6 65.4+0.5
−0.5 70.1+0.5

−0.6

Top-Half Avg. 86.1+0.7
−0.8 80.5+0.5

−0.9 73.2+0.7
−0.8 76.5+0.9

−0.7 62.5+0.6
−0.8 56.1+0.7

−0.6 61.8+1.0
−0.9 67.3+0.6

−0.7

Bottom-Half Avg. 85.4+1.2
−1.1 78.7+0.5

−0.6 71.4+0.6
−0.7 73.3+0.8

−0.6 59.6+0.4
−0.7 50.7+0.3

−0.8 58.9+0.7
−0.6 61.4+0.9

−1.1

TF-IDF Weighted 86.2+0.2
−0.6 84.1+0.5

−0.4 73.9+0.6
−0.3 77.1+0.3

−0.4 62.6+0.2
−0.5 59.3+0.3

−0.6 65.4+0.5
−0.4 68.1+0.8

−0.7

TK-PERT 87.1+0.5
−0.9 83.6+0.8

−0.6 75.8+0.5
−0.4 79.1+0.7

−0.8 62.5+0.3
−0.8 60.0+0.6

−0.7 64.9+0.6
−0.4 70.6+0.7

−0.6

TF-PERT 86.2+0.5
−0.4 84.7+0.4

−0.7 77.3+0.7
−0.6 76.3+0.6

−0.5 62.8+0.5
−0.5 61.2+0.7

−0.6 64.5+0.6
−0.5 69.2+0.5

−0.6

ATT-PERT 88.9+0.8
−0.6 84.3+0.7

−0.8 77.3+0.5
−0.5 79.4+0.7

−0.9 63.8+0.6
−0.7 62.2+0.8

−0.5 65.9+0.7
−0.9 71.2+0.8

−0.7

ATT-TF-PERT 88.4+0.4
−0.3 85.4+0.9

−0.6 77.2+0.5
−0.4 78.2+0.4

−0.5 65.7+0.5
−0.3 61.3+0.7

−0.5 65.3+0.7
−0.8 67.4+0.6

−0.8

sB
E

R
T

Sentence Average 85.1+0.6
−0.7 85.2+0.6

−0.7 75.7+0.6
−0.8 78.2+0.6

−0.7 64.5+0.7
−0.5 60.4+0.8

−0.6 66.4+0.8
−0.7 69.5+0.8

−0.7

Top-Half Avg. 83.2+0.8
−0.6 84.1+0.7

−0.6 71.3+0.5
−0.6 76.5+0.8

−0.6 60.8+0.7
−0.9 60.4+0.9

−1.2 62.8+0.8
−0.7 63.5+0.9

−0.8

Bottom-Half Avg. 80.6+0.7
−0.6 81.3+0.5

−0.8 66.5+0.4
−0.4 70.1+0.6

−0.4 56.5+0.4
−0.8 58.7+0.5

−0.6 56.1+0.7
−0.6 60.5+0.5

−0.4

TF-IDF Weighted 84.2+0.4
−0.5 82.8+0.5

−0.4 75.1+0.6
−0.7 74.3+0.4

−0.6 63.2+0.3
−0.2 61.2+0.4

−0.5 63.4+0.5
−0.3 65.8+0.7

−0.6

TK-PERT 86.2+0.6
−0.7 84.1+0.8

−0.7 73.9+0.6
−0.6 77.1+0.8

−0.6 62.6+0.6
−0.8 59.3+0.7

−0.5 65.4+0.8
−0.6 68.1+0.6

−0.7

TF-PERT 85.8+0.5
−0.4 83.7+0.2

−0.4 72.7+0.6
−0.5 76.5+0.4

−0.3 62.0+0.6
−0.5 60.4+0.3

−0.6 64.3+0.4
−0.8 68.2+0.7

−0.8

ATT-PERT 88.5+0.7
−0.6 85.8+0.5

−0.5 76.2+0.8
−0.4 77.4+0.5

−0.6 62.1+0.6
−0.7 60.8+0.3

−0.6 66.1+0.7
−0.4 69.5+0.8

−0.6

ATT-TF-PERT 85.6+0.5
−0.6 84.3+0.3

−0.4 75.1+0.6
−0.6 76.8+0.5

−0.6 61.3+0.8
−0.5 62.7+0.4

−0.5 65.8+0.5
−0.3 66.4+0.6

−0.6

Table 4: Accuracy for MLDoc classification on the zero-shot transfer task. Best results per language are shown in
bold and per family in italics.

exhaustive evaluations across three sentence em-
beddings models, three tasks and eight languages.

Our experiments show that specific base sen-
tence embedding models (LASER, LaBSE,
sBERT) do not impact the performance of the
document-level embeddings much. We observe
similar performance amongst them across all ex-
periments. However, it is to be noted that we ex-
periment with languages that while being morpho-
logically distinct, are well resourced and covered
by the three base sentence-embedding models. It
would be interesting to explore how models behave
when embeddings have a lower quality. For this,
one would need to create evaluation datasets at the
document level for low-resourced languages but
this is out of the scope of this work.

We observed that a simple sentence average is a
very strong pooling strategy, specially for classifi-
cation tasks. Positional and contextual information
is more important than semantic information for
the final performance as exemplified by the fact
that PERT-based weightings perform better than
TF-IDF’s in all the tasks. When combining both,

positional and semantic information, we do not ob-
serve statistically significant improvements with
respect to only including positional information.
For the classification tasks which include a learn-
able layer, we extend TK-PERT to ATT-PERT (and
the semantic counterparts) and include global train-
able attention on the positional information. This
global attention is beneficial in all the cases.

The type of document is also relevant to chose
the best method. Long documents might have the
most crucial information stored in different parts.
For instance, webpages have a majority of their
information in the first half of the document as
we observed in the document alignment task. In
this case, the positional information significantly
outperforms any model that does not take it into
account.

Limitations

One of the main focal points of this work is mul-
tilinguality. In the presented approaches, the mul-
tilinguality of the resultant document embeddings
depends solely on the language coverage and cross-
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lingual transfer ability of the pre-trained sentence
embeddings used as basic units. Document-level
representations are as robust to new languages and
scripts as the base sentence embeddings are. Cross-
lingual transfer is a perpendicular dimension not
studied in this work.

We introduce ATT-PERT, a new learnable ap-
proach for the combination of sentence embed-
dings. This model is therefore of use for tasks with
a learning/fine-tuning phase but it is not intended
for ready-to-use multilingual document-level em-
beddings in contrast to the existing pre-trained
sentence-level counterparts.
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Abstract

In this work we study user controlled table-to-
text generation where users explore the con-
tent in a table by selecting cells and reading a
natural language description thereof automat-
ically produce by a natural language genera-
tor. Such generation models usually learn from
carefully selected cell combinations (clean cell
selections); however, in practice users may se-
lect unexpected, redundant, or incoherent cell
combinations (noisy cell selections). In exper-
iments, we find that models perform well on
test sets coming from the same distribution as
the train data but their performance drops when
evaluated on realistic noisy user inputs. We
propose a fine-tuning regime with additional
user-simulated noisy cell selections. Models
fine-tuned with the proposed regime gain 4.85
BLEU points on user noisy test cases and 1.4 on
clean test cases; and achieve comparable state-
of-the-art performance on the ToTTo dataset.1

1 Introduction

The goal of table-to-text generation is to provide
the user with a description of the most relevant con-
tent in a given table (Lebret et al., 2016; Wiseman
et al., 2018; Perez-Beltrachini and Lapata, 2018;
Puduppully et al., 2019). Recently, Parikh et al.
(2020) proposed a controlled table-to-text genera-
tion task where the goal is to automatically create
a description for a determined subset of the table,
namely the highlighted table cells. The main fo-
cus on Parikh et al.’s 2020 work is to assess the
performance of neural text generators in a more
controlled setting, i.e., when given an input table
with explicit instructions (i.e., highlights) on what
should be expressed in the output description. In
this work, we view this task in the context of a nat-
ural language interface, as a user controlled table-
to-text generation task, where users provide those

1Our code is available at
https://github.com/hanxuhu/controllT2Trobust

Figure 1: An example in the ToTTo dataset. The figure
is retrieved from (Parikh et al., 2020). The cells coloured
in yellow are the highlight cells.

highlights interactively by exploring the content
of a given table and study these user interactions.
Figure 1 illustrates the case where a user selects
some cells (highlighted in yellow) and the gener-
ator provides a description thereof (shown below
the table).

A crucial aspect of usability assessment for a
generator in this interactive table-to-text task is ro-
bustness. In a recent study by (Mille et al., 2021),
it has been shown that neural generation models
fail to maintain their in distribution performance
when confronted with realistic scenarios at test time
such as typos in the input text. In the case of user
controlled table-to-text generation, users may in-
troduce noise when exploring the table content and
select cell combinations that turn out to be unex-
pected, redundant, or incoherent. For example, in
Figure 1, when the user wants to express "eleven
seasons", they might miss one year or highlight the
header cell. They may also select unrelated headers,
for instance adding the header "LNG" to the current
selection. Existing controlled table-to-text gener-
ation models (Parikh et al., 2020; Su et al., 2021;
Kale and Rastogi, 2020) are trained on carefully
selected cell combinations (clean cell highlights)
from the ToTTo dataset (Parikh et al., 2020). We
argue that these models will not generalize well
in practice with user noisy highlights. No previ-
ous work has study model robustness under this
practical set up.

2317

https://github.com/hanxuhu/controllT2Trobust


We carry out a usability study to observe how
users highlight cells in a table. Based on the imper-
fect cell selections that users produce, we automati-
cally create additional data examples by corrupting
examples from the original ToTTo dataset. We
then fine-tune state-of-the-art table-to-text neural
generation models with this additional data. We
compare the performance of models fine-tuned only
with clean cell highlights versus those trained with
additional noisy cell highlights, both on a test set
with clean and noisy highlights. Experimental re-
sults show that models fine-tuned with clean cell
highlights only perform well on clean test cases
(i.e., performance drops dramatically when evalu-
ated on noisy cell highlights). That is, these models
do not generalise well in practice with user noisy
cell selections. In contrast, the proposed training
scheme with additional noisy cell highlights not
only makes user controlled table-to-text models
achieve better performance in practical scenarios,
but it also boosts performance on perfect inputs.
Experimental results show that models fine-tuned
with our proposed training regime gain 4.85 BLEU
points on noisy and 1.4 BLEU points on clean high-
lights; and achieve comparable state-of-the-art per-
formance on the ToTTo dataset.2

2 Methodology

We describe the process for creating user noisy cell
highlights from examples in ToTTo (Parikh et al.,
2020) (§2.1 and §2.2). Then, we evaluate models
optimized with the standard training scheme (i.e.,
only on clean cell highlights) on the created noisy
test cases. Results show that these models perform
poorly. To improve model robustness, we propose
a new learning regime described in §2.3. To further
improve performance, we fine-tune with Reinforce-
ment Learning (RL) based optimisation (§2.4). Fi-
nally, §2.5 summarises the learning schemes and
objective functions we propose for robust user con-
trolled table-to-text generation.

2.1 How Do Users Select Cells?

To understand how users proceed when exploring
a table and selecting cells we carry out a human
study using examples from the ToTTo dataset. Par-
ticipants are given a plain table (i.e., without high-
lights) and asked to highlight cells according to
an exploratory intention. For a more controlled
setting, we give the sentence associated to the ta-

2ToTTo leaderboard.

ble as the exploratory intention. In this way, we
avoid ambiguous post-selection analysis of what
the user intention was. In addition, this allows us to
compare user selections with reference highlights
as well as differences (if any) in model generated
texts given user and reference highlights.

We conduct this study on Amazon Mechanical
Turk (the interface is described in Appendix C).
We collect 90 user highlights (3 participants, vol-
unteers known by the authors, and 30 examples
from the validation set) and observe the following
noise in their highlights. Participants apply differ-
ent criteria to include (or not) table headers; select
additional cells in columns/rows around cells con-
taining relevant content; and do not select cells that
contain content relevant to the intention.

2.2 Creating User Noisy Cell Selections

Given the input table T , the reference text S, and
the reference highlight cells H ∈ T relevant for
generating S, we create noisy user cell selections as
follows. We provide an example illustrating each
noise type in Figure 2.

Noise 1: Additional Table Cells In practical sce-
narios, users may accidentally select random cells
that are not related to their exploration intention.
Thus, we randomly select k cells from the table
cells in T that are not in H and add them into H to
form a corrupted input H1. H1 can be viewed as
adding irrelevant information in the generation of
the target text S.

Noise 2: Table Headers as Additional Inputs
Reference highlight cells in the ToTTo dataset do
not cover table headers. As we have observed,
users may decide to include (or not) table headers
in different cases. To simulate this, we first retrieve
table headers corresponding to highlight cells in H .
Then, we randomly select k unique headers and
add them into H to get the corrupted input H2.

Noise 3: Similar Table Cells For this type
of noise, we select cells that are in the same
row/column as the highlight cells. The intuition,
as seen in the user study, is that these cells will
have similar semantics to those cells underlying
the exploratory intention and users tend to select
them. For H3, we first retrieve table cells that are
in the same row/column as highlight cells. Then,
we randomly select k unique cells thereof and add
them into H .
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Noise 4: Remove Cells from H Users also miss
some of the highlight cells in H . For this type of
noise, we first retrieve those cells in H that are
irrelevant (i.e., their content is not expressed in)
for generating S. After getting the irrelevant cells
in H , we randomly choose k thereof and remove
them from H to create H4.

2.3 Augmenting the Training Dataset

We propose to fine-tune models on the training
set augmented with noisy data. We extend the
original ToTTo training set D = {(T, S,H)}|D|j=1

with data instances with user noisy cell selections.
Specifically, we replace data instances with clean
cell selections H in D with corrupted data in-
stances with noisy cell selections Hi. This re-
sults in a training set Di consisting of noisy cell
selections of noise type i. The final training set
Dfinal contains both clean and corrupted data
instances, its size is 603,805 (5 times the size
of the original training set), and it is defined as
Dfinal = D ∪ D1 ∪ D2 ∪ D3 ∪ D4. We set k = 1
for creating data instances of type Noise 1, Noise
2, and Noise 3. This is because the average number
of highlight cells in ToTTo dataset is small (3.55).
To create instances of type Noise 4, we remove all
irrelevant cells found in H .

2.4 Robustness via Sequence Level Training

Inspired by PlanGen (Su et al., 2021), to further
enhance the robustness of table-to-text models on
clean and noisy cell selections, we further fine-tune
model parameters with Reinforcement Learning
(RL) (Williams, 1992). Formally, given an input
data pair {T, S,H} ∈ Dfinal and a sampled out-
put sequence S

′
= (S

′
1, ..., S

′
|S′ |), the RL training

objective is formulated as:

LRL = −R(S, S′
)

|S′ |∑

i=1

log P

(
S

′
i

∣∣S′
<i, E(T,H)

)
(1)

where E(·) denotes the encoder module of a table-
to-text generator. The reward function R(S, S

′
)

measures the similarity between the reference text
and the text generated by the model; it is formu-
lated as R(S, S

′
) = B(S, S

′
) where B(·, ·) is the

BLEU score (Papineni et al., 2002). By doing this,
we make the outputs of both clean and noisy cell
selections to be more similar to the reference texts.
This implicitly improves the similarity between
outputs of clean and noisy cell selections.

Model Clean Noise Noise #Param
Avg. Var.

BART-BASE (clean) 47.8 44.0 9.09 141M
BART-LARGE (clean) 48.6 43.9 14.43 408M
BART-BASE (Dfinal) 48.5 48.03 0.16 141M
BART-BASE + RL (Dfinal) 49.2 48.85 0.14 141M
BART-LARGE (Dfinal) 49.1 48.16 0.69 408M
BART-LARGE + RL (Dfinal) 49.6 48.75 0.60 408M

Table 1: BLEU scores on clean and noisy development
sets. Average BLEU score across the four noisy develop-
ment sets (Noise Avg.). Variance of BLEU scores across
the four noisy development sets (Noise Var.). Model
parameters (#Param). The attribute in parenthesis indi-
cates the dataset used for model fine-tuning.

2.5 Table-to-Text Generation Models
Our models are based on BART (Lewis et al., 2020).
We fine-tune them for user controlled table-to-text
generation as follows. Given a training data pair
{T, S,H}, the fine-tuning process proceeds in two
stages. The first stage fine-tunes the model with a
conventional conditional language modelling train-
ing objective:

LLM = −
|S|∑

i=1

log P

(
Si
∣∣S1:i−1, E(T,H)

)
(2)

where E denotes the encoder of the table-to-text
generator. The second stage further adjusts model
parameters by using Lmix = LLM + LRL.

3 Experimental Results

Implementation details for our table-to-text genera-
tion models can be found in Appendix B. We use
the same hyperparameters as the baseline in the
ToTTo (Parikh et al., 2020).

As shown in Table 1 (detailed results per Noise
type are given in Appendix A), when using the
training scheme with clean cell highlights, the aver-
age BLEU score of BART-BASE (clean) drops
from 47.8 to 44 when tested on noisy cell se-
lections. Similar trend can be seen for BART-
LARGE (clean) with a BLUE score drop from
48.6 to 43.9. In addition, the “Noise Variance” of
BART-BASE (clean) and BART-LARGE (clean)
is large, indicating that these models are not stable
(or robust) to different types of noisy cell selec-
tions. All this suggests that a training scheme with
carefully selected cells alone results in systems
that perform poorly in practical scenarios with user
interactions.

In contrast, we observe that our proposed learn-
ing scheme makes generators achieve better perfor-
mance both on clean and noisy cell selections. On
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Kosuke Matsuura Asian Beach Games
Section Title: IndyCar Series Section Title: List of Asian Beach Game
Year Team 14 16 Rank Points Edition Year City Start Date End Date

2004
Super Aguri
Fernandez
Racing

CHI Ret TX2 Ret 14th 280 IV 2014 Phuket 14 November 23 November

2005
Super Aguri
Fernandez
Racing

SNM 6 WGL 6 14th 320 V 2016 Da Nang 24 September 3 October

VI 2020 Sanya 24 November 5 December

Reference: In 2005, Kosuke Matsuura again drove for Super Aguri
Fernandez Racing, and again finished 14th with a best place finish of 6th
in the two races.

Ours: In 2005, Kosuke Matsuura drove for Super Aguri Fernandez Racing
in the IndyCar Series and finished 14th in points.

Baseline: In 2005, Kosuke Matsuura drove for Super Aguri Fernandez Rac-
-ing and finished 14th in the WGL 6 and 280 points.

Reference: The last Asian Beach Games was held in Danang, Vietnam
from 24 September to 3 October 2016, while the next will be held
in 2020 in Sanya, China, the first to breakaway from the 2-year cycle.

Ours: The Asian Beach Games are scheduled to be held in Da Nang,
Vietnam from September 24 to October 3, 2016 and in Sanya, China
in 2020.

Baseline: The Asian Beach Games were held from 2014 to 2016 in Da
Nang, Vietnam and from 3 October to 3 October 2020 in Sanya, China.

List of rulers of Brittany Iain Glein
Section Title : House of Montfort Section Title: Awards and nominations

Name Birth Death Year Title Award Category Result
Peter II the Simple

(Pêr II)
1450–1457

7 July 1418 22 September 1457
Nantes aged 41 1990 Silent Scream Silver Bear Best Actor Won

Arthur III the Justicier
(Arzhur III) 1457–1458 24 August 1393 26 December 1458

Nantes aged 65
Reference: At the very end of his life, Arthur III became duke of Brittany,
succeeding Peter II.

Ours: Arthur III the Justicier was Duke of Brittany from 1457 until his death
in 1458, succeeding Peter II the Simple.

Baseline: Arthur III (26 December 1458) was Duke of Brittany from 1450
to his death.

Reference: In 1990, Glen won the Silver Bear for the Best Actor in the
Silent Scream.

Ours: In 1990, Iain Glen won the Silver Bear for Best Actor for Silent
Scream.

Baseline: In 1990, Iain Glen received the Silver Bear for Best Actor for
Silent Scream.

Figure 2: Model outputs for synthetic noisy cell selections of type Noise 1 (left top) and Noise 2 (left bottom), and
for user noisy cell selections from the human study of type Noise 3 (right top) and Noise 4 (right bottom) .

Model FL FA CC

clean BART-LARGE (clean) 0.83 0.83 0.89
BART-LARGE + RL (Dfinal) 0.88 0.89 0.93

Noisy BART-LARGE (clean) 0.80 0.81 0.87
BART-LARGE + RL (Dfinal) 0.89 0.91 0.91

Table 2: Results of Human Evaluation. Percentage of
outputs perceived as Fluent (FL), Faithful (FA), and
better Covering selected Cells (CC).

Method Overall
BLEU PARENT BLEURT

NCP 19.2 29.2 -0.576
Pointer Generator 41.6 51.6 0.076

Bert-to-Bert 44.0 52.6 0.121
LATTICE 48.4 58.1 0.222

T5-3B 49.5 58.4 0.230
PlanGen 49.2 58.7 0.249

Ours 49.3 58.8 0.235

Table 3: ToTTo test set results. All reported results can
be found in the ToTTo leaderboard.

clean cell selections (ToTTo original development
set), the model trained using the proposed learn-
ing scheme BART-BASE (Dfinal) outperforms the
model using the same pre-trained model but fine-
tuned with the standard learning scheme BART-
BASE (clean) by 0.7 BLEU scores. On noisy
cell selections, BART-BASE (Dfinal) outperforms
BART-BASE (clean) by 4.03 BLEU points on av-
erage. In addition, BART-BASE (Dfinal) has a

small “Noise Variance” score across four noisy and
one clean development sets, suggesting that the pro-
posed learning scheme can make controlled table-
to-text generators more robust and less sensitive to
various types of noisy cell selections. Fine-tuning
with RL, BART-BASE + RL (Dfinal), can further
boost models’ performance.

In Appendix A we provide additional experi-
ments on ablation results on the contribution of
each Noise dataset, training with a subset ofDfinal
(i.e., training with one fifth of the data also im-
proves robustness), and evaluating on cases with
different amount of noise (i.e., our approach gener-
alises better to cases with higher values of k).

To gain insights on how the improvements are
perceived in generated descriptions, we conduct a
human evaluation. We follow the setup described in
(Parikh et al., 2020). We sample 100 development
instances and have five human judges (voluntary
MSc level students fluent in English) to annotate
them across three criteria. Fluency (users select
amongst Fluent, Mostly Fluent, and Not Fluent; we re-
port the percentage of outputs annotated as Fluent;
Faithfulness (a candidate sentence is considered to
be faithful if all the information in it is supported
by the highlight cells and metadata of the table; we
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report the percentage of outputs that users annotate
as faithful); and Covered Cells (the percentage of
highlighted cells that the candidate sentence cov-
ers; we report average percentage of covered cells
across all sampled instances). Table 2 shows that
judges find outputs by the model variants fine-tuned
with the proposed regime more faithful, fluent and
with better cell coverage.

We choose the best performing model, BART-
LARGE + RL (Dfinal), fine-tuned with the pro-
posed approach and compare it with state-of-the-
art models on the ToTTo test set. These are NCP
(Puduppully et al., 2019), Pointer-Generator (See
et al., 2017), Bert-to-Bert (Parikh et al., 2020), and
T5-3B (Raffel et al., 2020), LATTICE (Wang et al.,
2022), and PlanGen (Su et al., 2021). Table 3
shows overall results (detailed overlap/non-overlap
results are provided in Appendix A). Our model
performs in par with T5-3B and PlanGen despite
the fact that the first one has more parameters and
the second one posses a dedicated planning step.

Figure 2 shows two instances of synthetic noisy
cell selections of type Noise 1 (i.e., accidentally
selected random cell not related to the exploration
intention) and type Noise 2 (i.e., random criteria for
header selection); and two instances of user noisy
cell selection from the human study of type Noise
3 (i.e., highlight 2014 semantically close to cells in
the exploratory intention) and Noise 4 (i.e., won is
not highlighted). Cells in yellow indicate original
highlights from the ToTTo dataset and those in
orange are noisy selections. In both cases, the
outputs produced by the model fine-tuned with the
proposed regime are not affected by noise and show
better coverage, factual accuracy, and lexicalisation.
This illustrates human evaluation preferences.

4 Conclusion

We study the performance of user controlled table-
to-text generation. We show that standard training
schemes with only carefully selected cells causes
poor robustness of generators in practice when con-
fronted with user noisy cell selections. To address
this, we introduce a training scheme with simulated
user noisy cell selections. Experimental results
show that generators optimized with our proposed
scheme can achieve better performance on both
clean and noisy cell selections. In the future, it
would be interesting to investigate how to apply
our approach to other data-to-text datasets to im-
prove model generalisation.
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Limitations

We create synthetic data simulating real users inter-
actions (i.e., user cell selections on a table). How-
ever, the automatic noise generation method does
not cover all possible user interactions and may fail
to exactly reproduce them in some cases. For ex-
ample, our process for creating Noise 3 randomly
highlights cells in the same row/column as a ref-
erence highlighted cell. However, the probability
distribution of a user highlighting a cell around a
reference highlighted cell is not always uniform,
but in some cases based on some reasoning process
about the concerned cells. In the future, it would be
interesting to investigate how to simulate this rea-
soning process to predict where the user is likely to
highlight cells. Nevertheless, the set of noise types
that we propose in this work shows that models
trained only on cleaned data are brittle.
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A Detailed and Ablation Results

Table 4 provides detailed results for the different
model variants (clean) and (Dfinal) evaluated on
different development sets with different types of
noise (cf., Table 1 in Section 3). Table 5 pro-
vides detailed results comparing our model BART-
LARGE + RL (Dfinal) with other state-of-the-art
methods in ToTTo’s leaderboard (cf., Table 3 in
Section 3).

We conduct an ablation study to investigate the
impact of each type of noise in Dfinal (see Sec-
tion 2.2). Specifically, we remove one of the
four noise types at a time from Dfinal, then train
the BART-BASE model using the remaining data.
This study shows that all types of user noisy cell
selections help to improve performance and robust-
ness (Table 6).

We construct corrupted ToTTo development
datasets with different amount of noise (i.e., dif-
ferent number k of noisy cells) added to each orig-
inal input highlighted cells. In the ToTTo dataset,
there are on average 3.5 highlighted cells for each
table; when k = 3, the injected noise has roughly
the same proportion as the original highlight cells.
We then examine BLEU scores for BART-BASE
trained with our approach and the baseline on these
noisy development sets. As shown in Table 7, per-
formance drops significantly as more noise is in-
jected, from 47.8 when k = 0 (clean) to 34.8 when
k = 3, for the model trained only on clean cell
selections, BART-BASE (clean). It also indicates
that the models trained with our proposed method,
BART-BASE (Dfinal) and BART-BASE + RL
(Dfinal), can reduce this performance drop.

We also combine all noise types with clean data
for training in a way that the resulting dataset has
the same size as the original clean dataset. Specifi-
cally, we randomly divide the original dataset into
five equal parts and replace four of them each by a
different type of noisy data subset; one of the parts
is not replaced (i.e., one part of the original clean
set is kept). We merge these five parts together and
call this the mixed datasetDmix. Results in Table 8
indicate that training the model on a substantially
smaller subset of clean and noisy data (i.e., a subset
of Dfinal) still yields comparable performance on
clean data and significant better performance on
noisy data.
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Model Clean Noise1 Noise2 Noise3 Noise4 Noise Noise #Param
Dev set Dev set Dev set Dev set Dev set Average Variance

BART-BASE (clean) 47.8 40.6 45.6 42.5 47.3 44 9.087 141M
BART-LARGE (clean) 48.6 39.8 46.1 41.7 48 43.9 14.433 408M
BART-BASE (Dfinal) 48.5 47.7 48.6 47.9 47.9 48.025 0.156 141M
BART-BASE + RL (Dfinal) 49.2 48.6 49.4 48.8 48.6 48.850 0.143 141M
BART-LARGE (Dfinal) 49.1 46.9 48.6 47.6 48.6 48.16 0.689 408M
BART-LARGE + RL (Dfinal) 49.6 47.9 49.7 48.4 49.0 48.75 0.603 408M

Table 4: BLEU scores of models on clean and noisy ToTTo development set. Average BLEU score across the four
noisy development sets (Noise Avg.). Variance of BLEU scores across the four noisy development sets (Noise Var.).
#Param denotes the total number of parameters in the model. The attribute in parenthesis indicates the training
data we use for training the model. For (clean), models are trained on clean ToTTo training set (i.e. using D).
For (Dfinal), the noise-augmented training set described in section 2.3 is applied. For ’+RL’, the Reinforcement
Learning algorithm described in section 2.4 is applied.

Method Overall Overlap non-Overlap

BLEU PARENT BLEURT BLEU PARENT BLEURT BLEU PARENT BLEURT

NCP 19.2 29.2 -0.576 24.5 32.5 -0.491 13.9 25.8 -0.662
Pointer Generator 41.6 51.6 0.076 50.6 58.0 0.244 32.2 45.2 -0.092

Bert-to-Bert 44.0 52.6 0.121 52.7 58.4 0.259 35.1 46.8 -0.017
T5-3B 49.5 58.4 0.230 57.5 62.6 0.351 41.4 54.2 0.108

PlanGen 49.2 58.7 0.249 56.9 62.8 0.371 41.5 54.6 0.126
Ours 49.3 58.8 0.235 57.1 63.4 0.358 41.5 54.1 0.112

Table 5: ToTTo test set results. All reported results can be found in the ToTTo leaderboard.

Training Clean Noise1 Noise2 Noise3 Noise4 Noise Noise
Data Dev Dev Dev Dev Dev Avg Var
Dfinal 48.5 47.7 48.6 47.9 47.9 48.025 0.156
Dfinal − D1 48.5 47.3 48.4 47.6 47.8 47.775 0.216
Dfinal − D2 48.6 47.6 48.5 47.9 48.1 48.025 0.143
Dfinal − D3 48.5 47.6 48.6 47.8 47.9 47.975 0.189
Dfinal − D4 48.3 47.7 48.6 47.9 47.4 47.900 0.260

Table 6: BLEU scores for BART-BASE trained on dif-
ferent training data and evaluated on different develop-
ment sets. Noise Avg denotes the average BLEU scores
on all noisy development sets. Noise Var denotes the
variance of BLEU scores on noisy development sets.

Model clean k = 1 k = 2 k = 3
BART-BASE (clean) 47.8 42.7 38.1 34.8
BART-BASE (Dfinal) 48.5 48.1 45.9 42.3
BART-BASE + RL (Dfinal) 49.2 48.8 46.4 42.9

Table 7: BLEU scores on input cell highlights with
different amounts of noise (development set). k denotes
the amount of noise added to the original data point
(higher k means more noisy cell highlights are added).

Dev/Train Clean Dmix Dfinal
Clean 47.8 47.3 48.50

Noise Avg. 44.0 46.8 48.03

Table 8: BLEU scores of BART-BASE trained on the
original dataset, the noise augmented dataset (Dfinal),
and a smaller dataset (Dmix). Evaluation is on clean
and Noise development sets.

B Implementation Details

The examined models are based on the Hugging-
face Library (Wolf et al., 2020) with default model
hyperparameters provided by the Library. We fine-
tune BART (Lewis et al., 2020) using the proposed
learning scheme. We use the Adam (Kingma and
Ba, 2014) optimizer, with a learning rate of 2e−5

and a batch of size 32. We fine-tune with the LLM
objective for 100k steps and Lmix for 50k steps.

C Human Study Interface

Figure 3 shows the Amazon Mechanical Turk inter-
face, instructions and annotation form, we use for
the human study described in Section 2.1.
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Figure 3: The Amazon Mechanical Turk interface, instructions and annotation form, we use for the human study
described in Section 2.1.
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Abstract

In this work, we revisit the Transformer-based
pre-trained language models and identify two
different types of information confusion in po-
sition encoding and model representations, re-
spectively. Firstly, we show that in the relative
position encoding, the joint modeling about
relative distances and directions brings con-
fusion between two heterogeneous informa-
tion. It may make the model unable to cap-
ture the associative semantics of the same dis-
tance and the opposite directions, which in
turn affects the performance of downstream
tasks. Secondly, we notice the BERT with
Mask Language Modeling (MLM) pre-training
objective outputs similar token representations
(last hidden states of different tokens) and head
representations (attention weights1of different
heads), which may make the diversity of infor-
mation expressed by different tokens and heads
limited. Motivated by the above investigation,
we propose two novel techniques to improve
pre-trained language models: Decoupled Di-
rectional Relative Position (DDRP) encoding
and MTH2 pre-training objective. DDRP de-
couples the relative distance features and the
directional features in classical relative posi-
tion encoding. MTH applies two novel auxil-
iary regularizers besides MLM to enlarge the
dissimilarities between (a) last hidden states of
different tokens, and (b) attention weights of
different heads. These designs allow the model
to capture different categories of information
more clearly, as a way to alleviate information
confusion in representation learning for better
optimization. Extensive experiments and abla-
tion studies on GLUE benchmark demonstrate
the effectiveness of our proposed methods.

*Equal contribution.
1"attention weights" mainly refer to the dot product be-

tween Key and Query in the self-attention module.
2MTH is the abbreviation of our proposed MLM with To-

ken Cosine Differentiation (TCD) and Head Cosine Differen-
tiation (HCD) pre-training task. TCD and HCD are described
in detail in sec. 1(2) and sec.3.2.

1 Introduction

The paradigm of pre-training on large-scale cor-
pus and fine-tuning on specific task datasets has
swept the entire field of Natural Language Pro-
cessing (NLP). BERT (Devlin et al., 2018) is the
most prominent pre-trained language model, which
stacks the encoder blocks of Transformer (Vaswani
et al., 2017) and adopts MLM and Next Sentence
Prediction (NSP) pre-training tasks, achieving the
SOTA results in 2018. After that, a large num-
ber of Pre-trained Language Models (PLMs) (Liu
et al., 2019; Lan et al., 2020; Raffel et al., 2019;
Clark et al., 2020; He et al., 2021) that optimize
the Transformer structure and pre-training objec-
tives have emerged, which further improves the
performance of the pre-trained language models on
multiple downstream tasks. In this work, we iden-
tify two different types of information confusion
in language pre-training, and explore two concep-
tually simple and empirically powerful techniques
against them as follows:

(1) Decoupled Directional Relative Position
(DDRP) Encoding. It is well known that rela-
tive position encoding is competitive and has been
widely used in real PLMs (Shaw et al., 2018; Yang
et al., 2019; Wei et al., 2019; Raffel et al., 2019; Su
et al., 2021; He et al., 2021; Ke et al., 2021). De-
spite its great performance, we still notice relative
position encoding methods utilizes completely sep-
arate parametric vectors to encode different relative
position information, which indicates that every sin-
gle parametric vector needs to learn both distance
and directional features. We consider this paradigm
of utilizing a single parametric vector to represent
both relative distance and direction as a kind of
information confusion, and question its rationality.
Since relative distance features and the directional
features are apparently heterogeneous information
that reflects different aspects of positional informa-
tion, we argue that existing methods may impose
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difficult in establishing connections explicitly be-
tween parametric vectors of the same distances
and the opposite directions, which in turn result
in serious information losses in position encoding.
Inspired by this, we propose a novel Decoupled
Directional Relative Position (DDRP) encoding. In
detail, DDRP decomposes the classical relative po-
sition embedding (Shaw et al., 2018) into two em-
beddings, one storing the relative distance features
and the other storing the directional features, and
then multiply the two together explicitly to derive
the final decoupled relative position embedding, al-
lowing originally confused distance and directional
information to be as distinguishable as possible.

(2) Model Representation Differentiations.
We analyze that there is non-negligible confusion
in the representation of pre-trained BERT, as ev-
idenced by the high consistency in last hidden
states across different tokens and attention weights
across different heads, respectively. Similar last
hidden states will introduce the anisotropic prob-
lem (Mimno and Thompson, 2017), which will
bound the token vectors to a narrow representa-
tion space and thus make it more difficult for the
model to capture deep semantics. Considering at-
tention weights contain rich linguistic knowledge
(Clark et al., 2019; Jawahar et al., 2019), we ar-
gue that high consistency in attention weights also
constrains the ability of the model to capture multi-
aspect information. To alleviate the representa-
tion confusion between different tokens and heads
caused by high information overlap, we propose
two novel pre-training approaches to stimulate the
potential of the pre-trained model to learn rich lin-
guistic knowledge: Token Cosine Differentiation
(TCD) objective and Head Cosine Differentiation
(HCD) objective. Specifically, TCD attempts to
broaden the dissimilarity between tokens by min-
imizing the cosine similarities between different
last hidden states. In contrast, HCD attempts to
broaden the dissimilarity between heads by min-
imizing the cosine similarities between different
attention weights. We apply TCD and HCD as
two auxiliary regularizers in MLM pre-training,
which in turn guides the model to produce more
discriminative token representations and head rep-
resentations. Formally, we define our enhanced
pre-training task as MLM with TCD and HCD
(MTH).

Extensive experiments on the GLUE benchmark
show that DDRP achieves better results than classi-

cal relative position encoding (Shaw et al., 2018) on
almost all tasks without introducing the additional
computational overhead and consistently outper-
forms prior competitive relative position encoding
models (He et al., 2021; Ke et al., 2021). More-
over, our proposed MTH outperforms MLM by a
0.96 average GLUE score and achieves nearly 2x
pre-training speedup on BERTBASE . Both DDRP
and MTH are straightforward, effective, and easy
to deploy, which can be easily combined with ex-
isting pre-training objectives and various model
structures. Our contributions are summarized as
follows:

• We propose a novel relative position encoding
named DDRP, which decouples the relative
distance and directional features, giving the
model a stronger prior knowledge, fewer pa-
rameters, and better results compared to con-
ventional coupled position encodings.

• We analyze the trend of self-similarity of last
hidden states and attention weights during pre-
training, and propose two novel Token Cosine
Differentiation and Head Cosine Differentia-
tion objectives, motivating pre-trained Trans-
former to better capture semantics in PLMs.

• We experimentally verified by our proposed
techniques (DDRP and MTH) that decompos-
ing heterogeneous information and extending
representation diversity can significantly im-
prove pre-trained language models. We also
analyze the characteristics of DDRP and MTH
in detail.

2 Related Work

In recent years, pre-trained language models have
made significant breakthroughs in the field of NLP.
BERT (Devlin et al., 2018), which proposes MLM
and NSP pre-training objectives, is pre-trained on
large-scale unlabeled corpus and has learned bidi-
rectional representations efficiently. After that,
many different pre-trained models are produced,
which further improve the effectiveness of the pre-
trained models. RoBERTa (Liu et al., 2019) pro-
poses to remove the NSP task and verifies through
experiments that more training steps and larger
batches can effectively improve the performance
of the downstream tasks. ALBERT (Lan et al.,
2020) proposes a Cross-Layer Parameter Sharing
technique to lower memory consumption. XL-Net
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(Yang et al., 2019) proposes Permutation Language
Modeling to capture the dependencies among pre-
dicted tokens. ELECTRA (Clark et al., 2020)
adopts Replaced Token Detection (RTD) objective,
which considers the loss of all tokens instead of a
subset. TUPE (Ke et al., 2021) performers Query-
Key dot product with different parameter projec-
tions for contextual information and positional in-
formation separately and then added them up, they
also add relative position biases like T5 (Raffel
et al., 2019) on different heads to form the final cor-
relation matrix. DEBERTA (He et al., 2021) sepa-
rately encodes the context and position information
of each token and uses the textual and positional
disentangled matrices of the words to calculate the
correlation matrix.

3 Method

In this section, we analyze in turn two different
types of information confusion that exist in the
real PLMs: (i) The paradigm of utilizing a single
parametric vector of relative position embedding
to represent both relative distance and direction.
(ii) The high similarity and overlap in model rep-
resentations. Based on above two investigations,
we propose two techniques, Decoupled Directional
Relative Position (DDRP) Encoding and MLM
with TCD and HCD (MTH), respectively, to help
the PLMs alleviate information confusion and en-
hance representation clarity and diversity.

3.1 Decoupled Directional Relative Position
(DDRP) Encoding

We first start to introduce DDRP by formulating
multi-head attention module of BERT and BERT-R
(Shaw et al., 2018). Specifically, BERT formulates
multi-head attention for a specific head as follows:

Q = HWQ,K = HWK , V = HWV , (1)

A =
QKT

√
d
, (2)

Z = softmax (A)V, (3)

where H ∈ RS×D represents the input hidden
states; WQ, WK , W V ∈ RD×d represent the pro-
jection matrix of Query, Key, and Value respec-
tively; A ∈ RS×S represents attention weight;
Z ∈ RS×d represents the single-head output hid-
den states of self-attention module; S represents
input sequence length; D represents the dimension
of input hidden states; d represents the dimension
of single-head hidden states. Unlike BERT, which

adds the absolute position embedding to the word
embedding as the final input of the model, BERT-R
first applies relative position encoding. It adds rela-
tive position embedding intoK in the self-attention
module of each layer to make a more interactive
influence. Its formulations are as follows:

Ai,j =
Qi

(
Kj +Kr

σ(i,j)

)T
√
d

, (4)

σ (i, j) = clip (i− j) + rs, (5)

where Qi represents Query vector at the i-th posi-
tion; Kj represents Key vector at the j-th position;
rs represents maximum relative position distance;
σ (i, j) represents the index of relative position em-
bedding Kr ∈ R2rs×d; relative position embed-
ding for K are shared at all different heads. Note
that Shaw et al. (2018) has experimentally demon-
strated that adding relative position embedding to
the interaction between A and V gives no further
improvement in effectiveness, so the relative posi-
tion embedding in V space is eliminated in all our
experiments to reduce the computational overhead.

Compared with BERT, BERT-R models the cor-
relation between words and positions more explic-
itly, and thus further expands the expression diver-
sity between words. However, we notice that in
BERT-R, the vectors from the same distance on
both left and right sides are encoded in isolation (as
shown in Figure 1(a)), which indicates that every
single parametric vector fromKr is forced to main-
tain distance and direction, two different types of
information. Since it is confirmed that directional
information is crucial in language modeling (Vu
et al., 2016; Fuller, 2002; Shen et al., 2018), we
argue that such an approach causes unnecessary in-
formation confusion and faces several constraints:
(i) Mixing relative distance and directional informa-
tion for modeling makes information originally in
different spaces entangled, which in turn makes the
learning of parametric vectors more difficult. (ii)
Dot products between word vectors and direction-
ally confused positional vectors bring unnecessary
randomness in deep bidirectional representation
models.

To alleviate the confusion of distance and direc-
tion that exists in BERT-R and allow the model to
perceive distances and directions more clearly, we
propose a novel Decoupled Directional Relative
Position (DDRP) encoding. Specifically, DDRP
decouples the relative distance and directional in-
formation and maintains them with two different
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embeddings. Its formula is as follows:

Ai,j =
Qi

(
Kj +Kd

δ(i,j)

)T
√
d

, (9)

Kd
δ(i,j) = Dρ(i,j) ⊙Krd

δ(i,j), (10)

ρ (i, j) =




1, if i− j < 0
0, if i− j = 0
2, if i− j > 0

, (11)

δ(i, j) = abs(clip(i− j)), (12)

where ρ (i, j) represents the index of directional
embeddingD ∈ R3×d; δ (i, j) represents the index
of relative distance embedding Krd ∈ Rrs×d; Kd

represents the relative position matrice. Note that
in terms of implementation details, the only differ-
ence between DDRP and BERT-R is that DDRP
decouples Kr in BERT-R into the element-wise
multiplication of D and Krd. We also provide a
specific comparison example in Figure 1.

Compared to previous relative position encod-
ings, we summarize the advantage of DDRP as
follows: (i) DDRP explicitly extracts the common-
alities (relative distances) and differences (direc-
tions) in the positional information, leading the
model to produce attention that better match the
real semantic distributions, which reduces the diffi-
culty of model learning and unlocks the potential of
the model. (ii) DDRP compresses the total number
of parametric vectors from 2rs to rs + 3.
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Figure 1: Fig.1(a) represents the classical relative posi-
tion matrice; Fig.1(b) represents the decoupled relative
position matrices we proposed. Note that the parametric
vectors of the same color have the same values.

3.2 Model Representation Differentiations
Token representations. Isotropic distributions
have been proved theoretically to be beneficial to
token representations, which ensures that the dif-
ferent token vectors are directional uniform, thus
maximizing the diversity of token representations.
(Mimno and Thompson, 2017). In practice, Mu
et al. (2017) have also empirically confirmed the ef-
fectiveness of isotropic distributions on static token
representations, such as WORD2VEC (Mikolov
et al., 2013) and GLOVE (Pennington et al., 2014).

Inspired by the above studies, we also wonder
whether contextualized token representations (e.g.,
last hidden states of BERT) are isotropic. Follow-
ing Mimno and Thompson (2017), we utilize the
cosine similarity to evaluate the degree of isotropy
in token representations. The higher similarity, the
smaller isotropy; the lower similarity, the greater
isotropy. For an input sequence S = [x1, . . . , xn],
we formulate the last hidden states’ average self-
similarity as follows:

f(S) =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

cos (hi, hj) , (15)

where hi and hj are the last hidden states of xi and
xj ; cos represents cosine similarity.
Head representations. Multi-head attention, is
aimed at capturing information in different hetero-
geneous subspaces and has been experimentally
verified different heads correspond well to differ-
ent linguistic notions (Clark et al., 2019). However,
some studies point out that some heads contribute
almost nothing to downstream tasks (Kovaleva
et al., 2019; Michel et al., 2019; Voita et al., 2019;
Correia et al., 2019). We are surprised by this, and
speculate that the above problem may be caused by
the heavy overlap of information that some heads
are concerned about. To verify our point, we utilize
cosine similarity to evaluate the degree of overlap
in head representations, following token represen-
tations. The higher similarity, the higher overlap;
the lower similarity, the lower overlap. For mul-
tiple heads H = [H1

1 , . . . ,H
1
m, . . . ,H

L
1 , . . . ,H

L
m],

we formulate the attention weights’ average self-
similarity as follows:

f(H) =
2

Lm(m− 1)

L∑

l=1

m−1∑

i=1

m∑

j=i+1

cos
(
ali, a

l
j

)
, (16)

where L represents the number of Transformer lay-
ers; ali and alj are the attention weights of the i-th
head and j-th head of the l-th layer.
Analysis on the similarities between different
tokens and heads. With curiosity about the simi-
larity of token representations and head represen-
tations, we analyze the self-similarity trends of
tokens and heads during the original MLM BERT
pre-training. Specifically, we sample 5,000 sen-
tences from the validation set and evaluate the av-
erage self-similarity of last hidden states and at-
tention weights under multiple checkpoints during
the pre-training stage as shown in Figure 2. We
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Figure 2: Average self-similarity of last hidden states
and attention weights during MLM pre-training.

can notice that although f(S) and f(H) decrease
at the beginning of pre-training, soon they start to
rise gradually until the end of the training, and the
similarities are always high throughout the training
process. These fully demonstrates that in the MLM-
based BERT, the overlap between different tokens
and heads is strong and information confusion in
model representations has become a problem worth
to be solved.
Training objectives. To guide the model to pro-
duce more discriminative token representations and
head representations, we propose a novel MTH pre-
training objective, which combines original MLM
with two novel Token Cosine Differentiation (TCD)
objective and Head Cosine Differentiation (HCD)
objective. Specifically, MTH applies the average
cosine self-similarity of sampled last hidden states
and attention weights as two auxiliary pre-training
regularizers besides MLM 3. For an input sequence
S = [x1, . . . , xn], TCD samples n′ (n′ <= n)
tokens uniformly in sequence order to obtain a
subsequence S̃ = [x̃1, . . . , x̃n′ ] and calculates the
average cosine self-similarity of the subsequence’s
last hidden states as follows:

LTCD =
2

n′(n′ − 1)

n′−1∑

i=1

n′∑

j=i+1

cos
(
h̃i, h̃j

)
, (17)

where h̃i and h̃j are the last hidden states
of x̃i and x̃j . For multiple heads H l =
[H l

1, . . . ,H
l
m] of a specific layer l, HCD randomly

3We have empirically verified that this below sampling
strategy can greatly reduce the computational overhead with
only a slight performance drop, comparing with regularizing
all tokens and heads. In practice, we notice that setting n′ =
50,m′ = 2 is fine on both BERT and DDRP, which will
compress the additional computational overhead from about
30% to 4%.

samples m′ (m′ <= m) different heads H̃ l =
[H̃ l

1, . . . , H̃
l
m′ ] (Note that HCD samples by layers,

so sampled heads may be different across different
layers.) and then calculate the average cosine self-
similarity of attention weights of sampled heads as
follows:

LHCD =
2

Lm′(m′ − 1)

L∑

l=1

m′−1∑

i=1

m′∑

j=i+1

cos
(
ãli, ã

l
j

)
,

(18)

ãli and ãlj are the attention weights of the i-th head
and j-th head in the sampled headset of the l-th
layer. Ultimately, we define the global pre-training
objective MTH as follows:

LMTH = LMLM + α1LTCD + α2LHCD, (19)

where α1 and α2 are hyperparameters.

4 Experiments

4.1 Pre-training Text Corpora
Follow Devlin et al. (2018), we use Wikipedia and
BooksCorpus (Zhu et al., 2015), a roughly 16G
uncompressed text corpus for pre-training.

4.2 Baselines
We compare DDRP with competitive pre-trained
models. BERT (Devlin et al., 2018) equips Trans-
former (Vaswani et al., 2017) with parametric ab-
solute position encoding. BERT-R uses the relative
position encoding proposed by Shaw et al. (2018),
which couples relative distance information and
directional information for modeling. TUPE (Ke
et al., 2021) performs Query-Key dot product with
different parameter projections for contextual infor-
mation and positional information separately and
then adds them up, plus the relative position bi-
ases like T5 (Raffel et al., 2019). DEBERTA (He
et al., 2021) uses two vectors to encode content and
position and uses disentangled matrices on their
contents and relative positions respectively to com-
pute the attention weights among words.

4.3 Experimental Settings
Following the previous practice, we use a base-size
model for training, which consists of 12 Trans-
former encoder layers, each containing 12 heads
with an input dimension of 768. During pre-
training, we directly use the maximum training
length of 512 without taking any form of random
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Models Steps RTE STS-B MRPC CoLA SST-2 QNLI QQP MNLI Avg.
BERT (MLM) 1M 70.75 89.66 87.50 59.65 92.20 91.23 91.00 84.33 83.29
BERT-R (MLM) 1M 71.84 89.68 87.99 60.82 92.66 91.54 91.13 85.45 83.89
TUPE (MLM) 1M 68.59 89.61 86.02 62.82 92.66 91.26 91.04 84.88 83.36
DEBERTA (MLM) 1M 73.28 89.14 87.99 60.60 92.66 92.14 91.00 85.93 84.09
DDRP (MLM) 1M 72.20 90.01 88.25 62.82 92.41 92.31 91.24 86.02 84.41
DDRP (MTH) 1M 75.09 90.41 88.72 63.36 92.66 92.24 91.22 86.22 85.00

Table 1: Results on the development set of the GLUE benchmark for base-size pre-trained models. The best results
are bolded, and the second results are underlined.

Approaches Steps RTE STS-B MRPC CoLA SST-2 QNLI QQP MNLI Avg.
BERT (MLM) 500k 68.23 88.92 86.74 57.05 91.97 90.41 90.74 83.41 82.18
BERT (MTH) 500k 71.84 89.41 86.76 61.40 92.08 90.59 90.76 83.61 83.31
BERT (MLM) 1M 70.75 89.66 87.50 59.65 92.20 91.23 91.00 84.33 83.29
BERT (MTH) 1M 73.64 90.16 88.48 62.31 92.43 91.21 91.12 84.67 84.25
DDRP (MLM) 1M 72.20 90.01 88.25 62.82 92.41 92.31 91.24 86.02 84.41
DDRP (MTH) 1M 75.09 90.41 88.72 63.36 92.66 92.24 91.22 86.22 85.00

Table 2: Development scores on GLUE benchmark. BERT (MLM/MTH) represents pre-trained BERTBASE with
MLM/MTH pre-training objective. DDRP (MLM/MTH) represents pre-trained DDRPBASE with MLM/MTH
pre-training objective.

injection, and for examples less than 512 in length,
we do not use the next document for padding. We
remove Next Sentence Prediction (NSP) task and
only keep Masked LM (MLM) as our pre-training
task for all models unless noted otherwise. Con-
sidering that shorter documents may be missing
semantics, we discard documents of length less
than 8. We adopt the whole word masking strategy
and split the whole words longer than 4 into indi-
vidual subtokens. Following Devlin et al. (2018),
we set the batch size to 256 sequences, the peak
learning rate to 1e-4, and the training steps to 1M.
We grid search α1 and α2 of TCD and HCD in
{0.01, 0.1, 1.0}. Eventually, we set α1 = 1.0 for
TCD and set α2 = 0.01 for HCD. All the mod-
els are implemented based on the code practice
of BERT4 in Tensorflow. We conduct all exper-
iments on 16 Tesla-V100 GPUs (32G). All the
pre-training hyperparameters are supplemented in
Appendix A. To make a fair comparison, we im-
plement BERT, BERT-R, TUPE, DEBERTA, and
DDRP5 with the same pre-training hyperparame-
ters and model configurations, which are consistent
with vanilla BERT.

4.4 Results on GLUE Benchmark
We evaluate models on eight different English un-
derstanding tasks from General Language Under-

4https://github.com/google-research/bert
5Following Shaw et al. (2018) and Raffel et al. (2019), we

set rs = 64 for all the relative position encoding models.

standing Evaluation (GLUE) benchmark (Wang
et al., 2019). The datasets cover four types of tasks:
natural language inference (RTE, QNLI, MNLI),
paraphrase detection (MRPC, QQP), linguistic ac-
ceptability (CoLA), and sentiment classification
(SST-2). For all experiments, STS-B and CoLA
are reported by Pearson correlation coefficient and
Matthews correlation coefficient, and other tasks
are reported by Accuracy. All the fine-tuning hy-
perparameter configurations can be found in Ap-
pendix B. Following Ke et al. (2021), we fine-tune
with five random seeds and report the median re-
sults.

4.4.1 Comparing Prior Competitive Models
with DDRP

The overall comparison results are shown in Ta-
ble 1. Firstly, we can notice that all the various rel-
ative position encoding models perform better than
BERT, which proves that relative position encoding
is a more competitive approach to encode position
information. Sencodly, it is easy to find that DDRP
outperforms all the strong baselines, which demon-
strates modeling relative position encoding by clar-
ifying the originally confused relative distance and
directional information more clearly is more ef-
fective. Thirdly, DDRP pre-trained with MTH
can consistently outperform BERT-R/DEBERTA
by a 1.11/0.91 average GLUE score, which indi-
cates that DDRP can be effectively compatible with
better pre-training objectives to perform stronger.
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Figure 3: The left figure (a) represents the trend of average cosine self-similarity of token representations and
head representations during pre-training. The right figure (b) represents the trend of GLUE average score during
pre-training.

Moreover, compared to BERT-R, DDRP introduces
nothing in complexity while DEBERTA increases
the computational cost about 25%, we also con-
sider DDRP is a more time-efficient alternative
than the recent state-of-the-art model DEBERTA
(as analyzed in Sec.5.4).

4.4.2 Comparing MTH with MLM
As illustrated in Table 2, BERT (MTH) outper-
forms BERT (MLM) by a 0.96 average GLUE
score and is consistently better on 7 out of 8 tasks.
When combining MTH with strong DDRP, it still
brings an improvement by 0.59 GLUE average
score. Notably, BERT (MTH) can achieve better
results compared with well-trained BERT (MLM)
while only using 50% training steps. Since MTH
utilizes cosine similarity and sampling strategy for
the penalty, only a very slight computational cost is
introduced. All the above statistics can fully verify
that decreasing the similarity in model representa-
tions can effectively alleviate information overlap
and increase representation diversity, which in turn
leads to consistent and stable improvement across
different model structures.

5 Analysis and Discussion

5.1 Ablation Studies

Effect of DDRP. As shown in Table1, BERT-R out-
performs BERT by 0.6 points on average. Based on
BERT-R, our proposed DDRP outperforms BERT-
R by 0.52 points averagely without imposing addi-
tional computational costs. It is worth noting that
compared to BERT-R, DDRP helps a great deal on
low-resource tasks, such as CoLA, while further

improving the performance on high-resource tasks,
such as QNLI and MNLI. These fully demonstrate
utilizing separate parametric vectors to represent
distances and directions, two apparently heteroge-
neous information, can be beneficial to the model,
and further justifies the value of dissociating con-
fusing information that is confounded in similar
spaces.
Effect of TCD and HCD. MTH brings in two
additional TCD and HCD regularizers besides the
original MLM task. To further evaluate the relative
contributions of the HCD and TCD, we develop one
variation, which is BERT pre-trained with MLM
and TCD. Table 3 summarizes the results on the
base-size models. Firstly, it shows a 0.42 average
GLUE score drop when HCD is removed from
MTH, especially on MRPC, CoLA, and MNLI.
Secondly, there is a 0.54 average GLUE score drop
when TCD is progressively removed, especially on
RTE, STS-B, and CoLA. These results indicate that
both TCD and HCD regularizers play a crucial role
in improving performance.

5.2 Analysis on MTH

To further understand why MTH works, we com-
pare MLM and MTH in terms of average self-
similarity of token representations and head repre-
sentations and performance during pre-training in
Figure 3. As shown in Figure 3.(a), it is easy to find
that MTH’s average self-similarity is much lower
than MLMs’. We can also clearly notice from Fig-
ure 3.(b) that the average GLUE score of MTH is
always about one point higher than MLM’s during
the whole pre-training process. These confirm that
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Model RTE STS-B MRPC CoLA SST-2 QNLI QQP MNLI Avg.
MTH 73.64 90.16 88.48 62.31 92.43 91.21 91.12 84.67 84.25
w/o HCD 73.28 90.41 87.25 60.85 92.23 91.37 91.00 84.22 83.83
w/o TCD&HCD 70.75 89.66 87.50 59.65 92.20 91.23 91.00 84.33 83.29

Table 3: Ablation study for MTH. Note that MTH (w/o TCD&HCD) equals simply using MLM in pre-training.

(i) the differentiation of tokens and heads is impor-
tant for model optimization; (ii) MTH can help to
produce more discriminative token representations
and head representations, extend the representation
space of tokens and heads, and thus improve the
performance.

5.3 Analysis on DDRP
In this subsection, we intend to analyze the atten-
tion maps of DDRP as a way to investigate why
making only slight modifications on BERT-R can
bring great gains. To better examine and explain
the ability of DDRP to capture information in both
left and right directions, we divide multiple heads
into two groups evenly, where group 1 consists of
the heads that focus most on the right side, and
group 2 consists of the heads that focus most on
the left side. As shown in Figure 4, it is easy to ob-
serve a distinct upper triangle effect in group 1 and
a distinct lower triangle effect in group 2, which
indicates that DDRP may allow the model to be
more precise in the perception of direction, a piece
of information that is crucial to understanding se-
mantics. To further confirm our point, we sample
5,000 sentences from the validation set and count
the percentage of sentences with upper and lower
triangular effects according to Algorithm 1 (more
details can be seen in Appendix C). It is observed
that 92.11% of sentences have an up-down triangle
effect. We also count the percentage for BERT-R
with the same process and observe only 78.94%
of the sentences have an up-down triangle effect.
All the phenomena and statistics fully reveal that
DDRP can make different heads focus on the token
information interaction in different directions and
reduce confusion between heads, thus improving
the effectiveness and rationality of the model.

5.4 Complexity Analyses
DDRP. Compared with BERT, DDRP introduces
additional parameters: D ∈ R3×d and Krd ∈
Rrs×d. The total increase in parameters is 3 ×
d + rs × d. For base-size model (D = 768, L =
12, S = 512, N = 12, d = 64)6, the total increase

6N is the number of head.

Figure 4: Attention visualization for a sampled batch of
sentences. From left to right is the attention visualiza-
tion for group 1, group 2, and global, respectively.

amounts to 0.0043M, which is negligible. Com-
pared with BERT, the additional computational
complexity for both BERT-R and DDRP isO(SD).
Since DEBERTA equips different heads with un-
shared Krs, the additional computational complex-
ity for DEBERTA is O(NSD). Overall, BERT-R
and DDRP increase the computational cost about
5%, and DEBERTA increases the computational
cost about 30%. Although DDRP introduces a
slight computational cost compared to BERT, it
is more time-efficient than DEBERTA and outper-
forms all the above models.
MTH. Since the two regularizers of TCD and HCD
are based on cosine similarity and sampling strat-
egy, they do not introduce too much computational
cost. Compared with MLM, MTH only increases a
slight computational cost of about 4% while bring-
ing excellent improvement.

6 Conclusion

In this work, we analyze and identify potential in-
formation confusion in the relative position encod-
ing and model representations, respectively, and
design two novel techniques to address these prob-
lems: DDRP (Decoupled Directional Relative Po-
sition) encoding and MTH (MLM with TCD and
HCD) pre-training objectives. Specifically, DDRP
decouples relative distance features and directional
features to eliminate unnecessary randomness in
the self-attention module. MTH utilize TCD and
HCD as two regularizers to supervise the model to
always maintain a certain level of critical thinking.
The experimental results show that DDRP achieves
better performance compared with various relative
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position encoding models and MTH outperforms
MLM by a large margin. We believe that reducing
information confusion in representation learning
may have broader application scenarios, and leave
this area of exploration for future work.

7 Limitations

Our limitations lie in inducing additional computa-
tional costs. Compared with BERT, the additional
computational complexity for DDRP is O(SD)7,
which is reflected in the 5% increase in compu-
tational cost. Compared with MLM, MTH with
sampling strategy increases the computational cost
by about 4%.
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A Appendix A. Hyperparameters for
Pre-Training

As shown in Table 4, we list the pre-training hy-
perparameter configurations. To make a fair com-
parison, all models’ pre-training hyperparameter
configurations in our experiments are identical to
vanilla BERT (Devlin et al., 2018).

Hyperparameter
Vocab size 3,0522
Hidden size 768
Attention heads 12
Layers 12
Training steps 1M
Warmup ratio 0.01
Batch size 256
Learining rate 1e-4
Adam ϵ 1e-6
Adam (β1, β2) (0.9,0.999)
Learning rate schedule linear
Weight decay 0.01
Clip norm 1.0
Dropout 0.1

Table 4: Hyperparameters used for pre-trained models.

B Appendix B. Hyperparameters for
Fine-Tuning

As shown in Table 5, we enumerate the hyperpa-
rameter configurations to fine-tune the tasks on the
GLUE benchmark (Wang et al., 2019). We grid
search these fine-tuning hyperparameter configura-
tions for all models. Following the BERT, we do
not show results on the WNLI GLUE task for the
Dev set results.

Hyperparameter GLUE
Batch size {16, 32}
Learining rate {1e− 5, 2e− 5, 3e− 5}
Epoch {4, 6}
Adam ϵ 1e-6
Adam (β1, β2) (0.9,0.999)
Learning rate schedule linear
Weight decay 0.01
Clip norm 1.0
Dropout 0.1
Warmup ratio 0.1

Table 5: Hyperparameters used for fine-tuning on the
GLUE benchmark.

C Appendix C. Details for Up-Down
Triangle Effect

Here we provide more details for the up-down tri-
angle effect (in Sec. 5.3). It is rather difficult and
non-intuitive to analyze the directional informa-
tion in 12 different attention heads. Since previous
studies have considered to group multiple heads in
the self-attention module (Devendra Singh Sachan,
2018; H Gong, 2021), we thereby attempt to divide
the heads into two groups evenly. Specifically, we
divide the heads that focus more on the right side
information into group 1 and the heads that focus
more on the left side information into group 2, wish-
ing to reveal the directional information encoded
in attention weights more explicitly. We experi-
mentally verified that this grouping approach could
provide a better presentation of the directional in-
formation. Therefore, we combined this approach
to conduct a comparative analysis of DDRP and
BERT-R to demonstrate the more powerful direc-
tional perception of DDRP.

As illustrated in Figure 4, group 1 is more fo-
cused on the right information (greater attention
values in the upper triangle region) and group 2 is
more focused on the left information (greater atten-
tion values in the lower triangle region). To further
analyze the universality of this phenomenon, we de-
sign the Algorithm 1 to quantitatively analyze the
ability of DDRP to capture information on the both
left and right sides. To make a fair comparison, we
also conduct the same process for BERT-R.
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Algorithm 1 Count up-down triangle percentage
Require: N : total number of sentences; n : total number of
sentences that have been processed; ms : maximum sentence
length; mn : total number of sentences that match the upper
and lower triangle; t : the threshold value that satisfies the

up-down triangular effects; amp : attention map obtained by
averaging attention maps in specific group.

1: Initialize ms← 64, n← 1, mn← 0, t← 0.7
2: while n ≤ N do
3: Divide heads in equal with greater attention values in

the (upper/lower) triangle region into (group 1/group 2)
and obtain (amp1/amp2).

4: // prepare for the upper and lower triangle
5: Sum the values in upper and lower triangles of amp1

respectively and obtain amp1up, amp1down.
6: Sum the values in upper and lower triangles of amp2

respectively and obtain amp2up, amp2down.
7: amp1up ← amp1up/ms, amp1down ←
amp1down/ms

8: amp2up ← amp2up/ms, amp2down ←
amp2down/ms

9: // compute for the upper and lower triangle
10: if amp1up ≥ t and amp2down ≥ t then
11: mn← mn+ 1
12: else
13: Continue
14: n← n+ 1
15: return float(mn/N)
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Abstract
Transformer-based models for question answer-
ing (QA) over tables and texts confront a “long”
hybrid sequence over tabular and textual ele-
ments, causing long-range reasoning problems.
To handle long-range reasoning, we extensively
employ a fusion-in-decoder (FiD) and expo-
nential moving average (EMA), proposing a
Moving Average Equipped Fusion-in-Decoder
(MAFiD). With FiD as the backbone architec-
ture, MAFiD combines various levels of rea-
soning: independent encoding of homogeneous
data and single-row and multi-row heteroge-
neous reasoning, using a gated cross attention
layer to effectively aggregate the three types of
representations resulting from various reason-
ings. Experimental results on HybridQA indi-
cate that MAFiD achieves state-of-the-art per-
formance by increasing exact matching (EM)
and F1 by 1.1 and 1.7, respectively, on the blind
test set.

1 Introduction
While most studies have focused on text question
answering (QA), where unimodal textual passages
are provided as a source of evidence for an answer
(Joshi et al., 2017; Yang et al., 2018; Rajpurkar
et al., 2018; Welbl et al., 2018; Dua et al., 2019;
Karpukhin et al., 2020; Zhu et al., 2021b; Pang
et al., 2022), realistic questions often need to re-
fer to “heterogeneous” evidences based on both
tabular and textual contents to generate an answer,
motivating researchers to address table-and-text
QA (Chen et al., 2020; Wenhu Chen, 2021; Talmor
et al., 2021; Zhu et al., 2021a; Nakamura et al.,
2022).

Among the various tasks for table-and-text QA,
we address the multi-hop table-and-text QA de-
scribed in HybridQA (Chen et al., 2020), which is
a large-scale table-and-text QA dataset focusing on
the multi-hop reasoning across tabular and textual
contents to extract an answer.

*Corresponding author

However, a table usually contains a nontrival
number of rows and relevant passages; thus lin-
earization of all relevant heterogeneous contents
easily exceeds the maximum length limit for trans-
formers, thereby causing long range reasoning
problems.

To address long range reasoning, we present a
novel encoder-decoder model that deploys fusion-
in-decoder (FiD) (Izacard and Grave, 2021) and ex-
ponential moving average (EMA) (Ma et al., 2022),
the Moving Average Equipped Fusion-in-Decoder
(MAFiD). Armed with FiD as the backbone archi-
tecture, MAFiD combines various levels of reason-
ing:

• Independent encoding of homogeneous
data, which independently encodes tabular
and textual contents separately for each row,
without being fused in the encoder step. Inher-
ited from FiD, the resulting encoded represen-
tations are jointly fused in the decoder, which
significantly reduces the computational time
required for self-attention, thereby allowing
us to use a longer sequence as an input for the
encoder.

• Single-row heterogeneous reasoning (also
referred to as single-row reasoning), which
performs in-depth interaction between tab-
ular and textual contents per row; it first
concatenates the tabular and textual repre-
sentations for each row and then applies the
“self-attention” layer over the concatenated
sequence. Thus, single-row heterogeneous
reasoning is performed in a restricted man-
ner only on heterogeneous contents within a
specific row.

• Multi-row heterogeneous reasoning (also
referred to as multi-row reasoning), which
performs light interaction across tabular and
textual contents of “multiple” rows based on
the EMA layer; it concatenates the heteroge-
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Figure 1: The overall neural architecture of the proposed MAFiD: 1) Independent encoding applies T5’s encoder
on the tabular and textual blocks in i-th row, separately (i.e., biR ∈ BR and biP ∈ BP ) and the resulting contextual
representations are concatenated to obtain the i-th row’s heterogeneous representation, Ci (Eq. (1)). 2) Single-row
reasoning performs the row-specific cross-modal interaction by applying the single-head attention over Ci to
generate C

(1)
i (Eq. (2)). 3) Multi-row reasoning preforms the between-row cross-modal interaction by applying the

low-dimensional EMA over the long hybrid sequence C(1) (Eq. (3)) to produce the C
(2)
i (Eq. (4)). 4) The gated

FiD aggregates all types of representations of C (Eq. (4)), C(1), and C(2) using the gated cross-attention layer to
finally yield the decoder’s contextual representation G(2) (Eq. (5)) which is fed to generate an output token.

neous contents of all rows in a table to obtain
a “long” hybrid sequence and then applies the
EMA layer over the resulting long sequence
to produce aggregated representation. To pro-
cess a long sequence more efficiently, we fur-
ther propose a low-dimensional EMA, which
additionally performs a dimensionality reduc-
tion and reconstruction.

In the decoder, we further propose the use of a
gated cross-attention layer to effectively aggre-
gates the aforementioned three representations re-
sulting from various reasoning, motivated by the
work of (Alayrac et al., 2022).

Our contributions are summarized as follows:
1) We propose MAFiD, which augments FiD with
EMA and the gated cross-attention layer, thus ef-
fectively combining various types of reasoning. 2)
We propose a low-dimensional EMA to efficiently
process long sequences for table-and-text QA. 3)
The proposed MAFiD achieves state-of-the-art per-
formance on the HybridQA dataset.

2 Related Works
Recently, many datasets such as HybridQA (Chen
et al., 2020), OTT-QA (Wenhu Chen, 2021), Mul-
tiModalQA (Talmor et al., 2021), HybriDialogue
(Nakamura et al., 2022), and TAT-QA (Zhu et al.,

2021a) have been presented for table-and-text QA.
Various works on table-and-text QA have enhanced
“pretraining” to strengthen the cross-modal match-
ing and numerical reasoning, by learning on tables
and texts jointly (Herzig et al., 2020; Yin et al.,
2020) and exclusively on tables (Iida et al., 2021).

To handle the long range reasoning on table-and-
text QA, early works employed “efficient” trans-
formers based on sparse attention with selective
attention masks, such as the LongFormer (Belt-
agy et al., 2020) in the work of (Huang et al.,
2022) and ETC (Ainslie et al., 2020) in the work
of (Wenhu Chen, 2021). MATE (Eisenschlos et al.,
2021b) uses structure-based sparse attention that
attends to either rows or columns in a given table.
Recently, truncation-based approaches have been
employed in MITQA (Kumar et al., 2021) where
the passage filter module is additionally applied
such that only the filtered passages are used as tex-
tual contents of a table’s row.

Compared to these existing approaches, which
rather limitedly reduce the computational cost in
the encoder part, MAFiD significantly lightens the
encoder part by minimizing the interaction between
different rows and instead fuses the encoded repre-
sentations in the decoder part under the framework
of FiD. Equipped with the low-dimensional EMA,
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MAFiD only performs the “shallow” interaction
across rows, thus mostly maintaining the efficiency
of the interaction-less encoder.

3 Moving Average Equipped
Fusion-in-Decoder

Figure 1 shows the overall neural architecture of
the proposed MAFiD model, which combines three
types of representation. Here, we present the details
of the MAFiD components.

3.1 Problem Definition

Suppose that BR and BP are a set of tabular and
textual blocks in a given table, where biR ∈ BR
indicates the tabular block for the i-th row (i.e., a
list of its cells), biP ∈ BP indicates the textual block
for the i-th row (i.e., a set of its linked passages),
and L = |BR| = |BP | is the number of rows in
a table. Given question q, the goal is to generate
a correct answer by considering BR and BP as
heterogeneous evidence.

3.2 Independent Encoding of Homogeneous
Data: the Basic Encoder for FiD

Following the independent encoding in FiD (Izac-
ard and Grave, 2021), independent encoding lin-
earizes tabular and textual blocks into a sequence
independently and concatenates each of them with
q as follows:

rowi = [q; [SEP]; biR], psg
i = [q; [SEP]; biP ]

where ; is the concatenation operator. The tabular
and textual sequences are then fed into the encoder
of T5 independently and concatenated as follows:

H i
R = T5-enc(rowi) ∈ R|rowi|×dmodel

H i
P = T5-enc(psgi) ∈ R|psgi|×dmodel

Ci = [H i
R;H

i
P ] ∈ R(|rowi|+|psgi|)×dmodel (1)

where |x| is the length of sequence x and dmodel is
the dimensionality of the encoder of T5.
3.2.1 Single-row Heterogeneous Reasoning

In single-row reasoning, we perform an in-depth
interaction between tabular and textual blocks for
each row, biR and biP , using self-attention as follows:

C
(1)
i = SHA (Ci,Ci,Ci) (2)

where C
(1)
i ∈ R(|rowi|+|psgi|)×dmodel and SHA is

the single-head attention defined in Eq. (6) in Ap-
pendix D.

3.3 Multi-row Heterogeneous Reasoning by
the Low-dimensional EMA

In multi-row reasoning, we first concatenate the
contextual representations of all tabular and textual
blocks as follows:

C(1) = [C
(1)
1 ; · · · ;C(1)

L ] (3)

where C(1) ∈ RN×dmodel , provided N =∑
i

(
|rowi|+ |psgi|

)
for notational convenience.

We then adopt the low-dimensional EMA as a
variant of EMA using dimensionality reduction and
reconstruction based on linear layers as follows:

C
(1)
reduced = Linear

(
C(1)

)

C
(2)
reduced = EMA

(
C

(1)
reduced

)

C(2) = Linear
(
C

(2)
reduced

)

where C
(1)
reduced,C

(2)
reduced ∈ RN×dmodel/K ,

C(2) ∈ RN×dmodel , Linear is a linear layer, and
EMA is the damped EMA of (Ma et al., 2022) de-
fined in Appendix E.

3.4 Gated Fusion-in-Decoder

In the decoder, we first concatenate the row-wise
representations of independent encoding before
feeding them to the FiD as follows:

C = [C1; · · · ;CL] (4)

In the decoder, we aggregate all representations
of C (Eq. (1) and (4)), C(1) (Eq. (2) and (3)) C(2)

(Eq. (4) using a gating mechanism similar to that
of (Alayrac et al., 2022) as follows:

C̃(1) = C + tanh(p)⊙C(1)

G(1) = MHA(G, C̃(1), C̃(1))

G(2) = G(1) +

tanh(q)⊙MHA(G(1),C(2),C(2)) (5)

where G ∈ R|N(dec)|×dmodel is the output of the
masked multi-head attention in the decoder part,
|N (dec)| is the sequence length of the decoder input,
tanh(·) is the tanh function, p and q are learnable
parameters, and G(1),G(2) ∈ R|N(dec)|×dmodel .

4 Experiments

4.1 Experimental Setup

The details of the implementation and experiment
setup is presented in Appendix A.
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Table Passage Total
Dev Test Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
HYBRIDER 51.5 58.6 52.1 59.3 40.5 47.9 38.1 46.3 43.7 50.9 42.5 50.2
HYBRIDER-Large 54.3 61.4 56.2 63.3 39.1 45.7 37.5 44.4 44.0 50.7 43.8 50.6
DocHopper - - - - - - - - 47.7 55.0 46.3 53.3
POINTR + TAPAS 68.1 73.9 67.8 73.2 62.9 72.0 62.0 70.9 63.3 70.8 62.7 70.0
POINTR + MATE 68.6 74.2 66.9 72.3 62.8 71.9 62.8 71.9 63.4 71.0 62.8 70.2
MITQA 68.1 73.3 68.5 74.4 66.7 75.6 64.3 73.3 65.5 72.7 64.3 71.9
Ours 69.4 75.2 68.5 74.9 66.5 75.5 65.7 75.3 66.2 74.1 65.4 73.6
Human - - - - - - - - - - 88.2 93.5

Table 1: Comparison results on the dev and blind test dataset in HybridQA. The best is bolded text.

Table Passage Total
EM F1 EM F1 EM F1

Ours 68.48 74.92 65.75 75.34 65.38 73.56
w/o Multi-row reasoning 67.44 73.74 65.50 75.23 64.86 73.08
w/o Multi-row, Single-row reasoning 41.97 49.46 60.20 69.42 51.46 59.86
w/o Single-row tanh gate 67.21 73.44 64.86 74.82 64.45 72.75
w/o Multi-row tanh gate 67.58 73.96 66.43 75.47 65.46 73.29
w/o Single-row, Multi-row tanh gate 66.09 72.51 64.81 75.22 64.01 72.65

Table 2: Ablation study on blind test dataset in HybridQA. “w/o Single-row tanh gate” and “w/o Multi-row tanh
gate” correspond to the runs of fixing tanh(p) = 1 and tanh(q) = 1 in Eq. (5), respectively.

4.2 Baselines

In the experiment, we compare MAFiD and other
baseline systems on HybridQA as follows:

• HYBRIDER (Chen et al., 2020) employs a
sparse passage retriever (i.e., TF-IDF and a
longest-substring matching) to find relevant
cells and performs the reasoning step consist-
ing of the ranking, the hop, and the reading
comprehension models to extract an answer.

• DocHopper (Sun et al., 2021) uses the “iter-
ative hierarchical attention” to retrieve short
or long contents in a multi-step navigational
manner.

• POINTR + (TAPAS or MATE) (Herzig et al.,
2020; Eisenschlos et al., 2021a). POINTR ex-
tends the cell with its entity description and
performs a two-stage method that consists of
“cell selection” and “passage reading” steps.
Either TAPAS (Herzig et al., 2020) or MATE
(Kumar et al., 2021) is considered as a trans-
former encoder.

• MITQA (Kumar et al., 2021) uses the
pipelined module including a retriever, a
reader, and a joint row+span reranker, etc.,
being trained using the multi-instance distant
supervision approach.

4.3 Main Results

As summarized in Table 1, MAFiD shows the state-
of-the-art performance by increasing EM and F1
by 1.1 and 1.7 over MITQA (Kumar et al., 2021)
on the blind test set. It is observed that MAFiD out-
performs POINTR + (TAPAS or MATE) (Herzig
et al., 2020; Eisenschlos et al., 2021a) that replies
on the pretrained TAPAS, likely indicating that the
long-range reasoning needs to be importantly han-
dled on HybridQA, thus motivating the literature
to go towards “reasoning”-enhanced pretraining in
addition to the existing self-supervised tasks.

4.4 Ablation Studies

Single-row & Multi-row Heterogeneous Reason-
ing. To examine the effect of single-row and multi-
row reasoning, we further evaluate MAFiD by re-
moving either or both reasonings. As shown in Ta-
ble 2, MAFiD without multi-row reasoning slightly
decreases EM and F1 by 1.04 and 1.18, respec-
tively. Importantly, MAFiD without both reason-
ings significantlly deteriorates the performance of
EM and F1 by 13.92 and 13.7, respectively. The
results confirm that the cross-modal interaction
should be performed at least within a specific row,
whereas the between-row interaction is somehow
effectively proceeded by the proposed EMA mod-
ule, although its effect is not large.
Single-row & Multi-row Tanh Gating. We fur-
ther examine the effect of using the gated flows
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Pick # MLS team Player Position

22 Portland Timbers [1] Chris Taylor Defender [1]

25 New York Red Bulls [1] John Rooney [1] Midfielder [1]

26 Toronto FC [1]
Demitrius Omphroy [
1]

Defender [1]

Q:         “How many annual visitors are pulled in by the marathon that Tegla Loroupe won in 2002 ?

A:         “2,500”

Table: Year Competition Venue Position Notes

2000
New York City 
Marathon [1]

New York City , 
United States [
1]

6th Marathon

2002
Nagoya Women '
s Marathon [1]

Nagoya , Japan [
1]

7th Marathon

2002
Lausanne Marath
on [1]

Lausanne , Switz
erland [1]

1st Marathon

The Lausanne Marathon is one of the rare Swiss races that organises a 

half-marathon for wheelchairs and handcycles . The Lausanne Marathon is 

one of the largest annual sporting events of the Canton de Vaud , [ citation 

needed ] and attracts up to 2,500 tourists each year . In 2009 , a record 

10,658 runners participated .

HYBRIDER-Large:         “52,812”MAFiD:         “2,500”

The New York City Marathon ( currently branded TCS New York City 

Marathon for sponsorship reasons ) is an annual marathon ( 42.195 km or 

26.219 mi ) that courses through the five boroughs of New York City . It is 

the largest marathon in the world , with 52,812 finishers in 2018 and 

98,247 applicants for the 2017 race .

Q:         “What is the month of birth of the player with the fourth most National Football League career rushing yards ?

A:         “July”

Table:

HYBRIDER-Large :         “May”MAFiD:         “July”

Rank Player Team ( s ) by season Yards

3 Frank Gore [1]
San Francisco 49ers ...  
[1], … , [10]

15,347

4 Barry Sanders [1]
Detroit Lions [1],[2],[
3]

15,269

5 Adrian Peterson [1]
Minnesota Vikings [1]
,[2],[3], ... [8],[9]

14,216

Barry Sanders ( born July 16 , 1968 ) is an American former professional 

football player who was a running back for the Detroit Lions of the National 

Football League ( NFL ) . A Pro Bowl invitee in each of his ten NFL seasons 

and two-time NFL Offensive Player of the Year , Sanders led the league in 

rushing yards four times …

Franklin Delano Frank Gore ( born May 14 , 1983 ) is an American 

professional football player who is a running back for the Buffalo Bills of the 

National Football League ( NFL ) . He played college football for the 

University of Miami , and was drafted by the San Francisco 49ers …

Q:         “Which defender is the youngest ?”

A:         “Demitrius Omphroy ”

Table:

HYBRIDER-Large :       “John Rooney”MAFiD:       “Chris Taylor”

John Richard Rooney ( born 17 December 1990 ) is an English 

professional footballer who plays for Barrow as an attacking 

midfielder . He is the younger brother of Derby County and former 

England forward Wayne Rooney . Although born in England , 

Rooney has expressed a desire to represent the Republic of 

Ireland at international level .

(a)

(b)

(c)

Figure 2: Illustrating examples of HYBRIDER-Large (Chen et al., 2020) and MAFiD in HybridQA.

Total
Dev Test

EM F1 EM F1
EMA 66.2 74.1 65.4 73.6
sliding window attention 65.7 73.3 65.3 73.1
Human - - 88.2 93.5

Table 3: Comparison results on thd dev and blind test
sets in HybridQA between EMA and the sliding win-
dow attention of (Beltagy et al., 2020) for long-range
reasoning.

Total
Dev Test

EM F1 EM F1
original rows 66.2 74.1 65.4 73.6
permuted rows 51.5 59.4 51.1 59.2
Human - - 88.2 93.5

Table 4: Comparison results of MAFiD on HybridQA
between the case using original rows and that with per-
muted rows for tabular contents.

by evaluating MAFiD by fixing tanh(p) = 1 and
tanh(q) = 1 without being learned in Eq. (5. In
particular, MAFiD without the single-row tanh gate
(tanh(p) = 1) slightly decreases EM and F1 by
approximately 11̃.5, indicating that the gated FiD
is helpful for further improvements.
Impact of EMA. To examine the impact of EMA
for multi-row reasoning, we evaluate the sliding
window attention of (Beltagy et al., 2020) as the
baseline to handle long-range reasoning. As shown
in Table 3, the use of EMA increases F1 and EM
by 0.1 and 0.5, respectively, suggesting that EMA
is more helpful for promoting the enhanced local
sequence representation.

Impact of Sequential Order. To examine the im-
pact of using the sequential order of rows in tabular
contents, Table 4 further shows the results of a
variant of MAFiD by randomly permuting rows
in tabular contents both for training and inference,
referred to as “permuted row”, comparing to the
original case; the results strongly indicate that keep-
ing original row orders is important for MAFiD.

4.5 Error Analysis

Figure 2 shows some illustrating QA exam-
ples in HybridQA dataset comparing the results
of HYBRIDER-Large (Chen et al., 2020) and
MAFiD; (a)-(b) require only keyword matching
and numerical comparison, where HYBRIDER
is failed; (c) requires sophisticated multi-hop rea-
soning across table rows and passages where both
MAFID and HYBRIDER are incorrect.

5 Conclusion
In this paper, we address long range-reasoning
for the multi-hop table-and-text QA and propose
MAFiD, which extends FiD by equipping EMA
and the gated cross-attention layer for the encoder
and decoder parts, respectively, to design an effec-
tive way of combining various types of encoded
representations. The experimental results on Hy-
bridQA showed that the proposed MAFiD achieved
state-of-the-art performances in both the devel-
opment and blind test sets. In future work, we
will extend MAFiD to open-domain table-and-text
QA and explore a unified approach that integrates
single-row and multi-row reasoning.
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Limitations
This paper proposes the use of EMA under FiD to
tractably perform multi-row reasoning; however,
EMA simply puts strong weights on nearby con-
texts, thus performing a restricted type of the long-
range reasoning. Thus, our EMA-based method
heavily depends on the sequential order of tables
and texts, so hardly performing matching between
long-distance but semantically related tokens in a
long hybrid sequence. In using EMA, the current
limitation of our method is that we only used the
“damped EMA” of MEGA (Ma et al., 2022), which
is only one of the basic components in MEGA.
Because MEGA additionally combines the single-
head attention unit over a long sequence, using
MEGA could allow us to handle long-distance se-
mantic matching. In the future work, it will be
valuable to explore such extensions of EMA, such
as MEGA, to strengthen the long-range reasoning.

In MAFiD, we show that EMA can be applied
over a maximally long sequence in HybridQA
(Chen et al., 2020). However, when moving to OTT-
QA (Wenhu Chen, 2021), EMA cannot be naively
applicable over retrieved long sequences without
any truncation, because the size of a retrieved set
of tables and texts is significantly larger than that
of HybridQA. Given that OTT-QA more closely
matches the real-world situation, the EMA-based
reasoning should be extended further by incorpo-
rating retrieval and selection modules. Thus, our
current framework needs to be extended further to
handle open-domain table-and-text QA, under the
retriever-reader framework.
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Figure 3: Comparison of memory and time complexi-
ties of self-attention, EMA, and their low-dimensional
versions.

statistics of the HybridQA dataset. We used the
T5-base1 transformer encoder-decoder model as a
pre-trained language model. Additional parameters
were initialized from N (0, 0.2) and the bias was
set to 0. To prepare the input of the encoder, we
set the maximum sequence lengths of the tabular
and textual blocks to 300 and 800, respectively. All
the models were trained using the AdamW opti-
mizer with a learning rate of 1e− 4. All trainings
were conducted for 3 epochs, and the random seed
number was fixed at 42 to reproduce the results.
The batch size was four with two accumulation
steps. Training was conducted for 1.5 days on 4
NVIDA Quadro RTX 8000. For answer generation,
we employed a greedy decoding method. For the
evaluation, we used exact matching (EM) and F1
metrics. Evaluations were conducted every 500
steps on the dev dataset and the best model with
the highest EM score was chosen.

The maximum number of rows in a given table
in HybridQA is 20, that is, L ≤ 20. In our ex-
periments, L was fixed at 20 by adding padding
sequences when the number of rows was less than
20. The rate of the dimensionality reduction for the
low-dimensional EMA, i.e., K, was fixed to 6.

B Dataset Statistics

Split Train Dev Test Total
In-Passage 35,215 2,025 20,45 39,285
In-Table 26,803 1,349 1,346 29,498
Missing 664 92 72 828
Total 62,682 3,466 3,463 69,611

Table 5: Hybrid QA dataset statistics. In-Passage and
In-Table indicate that exact answer span is founded in a
passage or table. Missing is the exact answer span not
founded in given source.

1https://huggingface.co/t5-base

Split min mean max Count
Table 137 763 8,298 3,466
Row 14 48 1,454 55,036
Passages per row 2 656 10,797 55,036

Table 6: Statistics of length of tokenized sequence on
dev dataset. ’Passages per row’ is the length of all
concatenated passages in a row.

C An Example of Linearized Blocks
Specifically the i-th table row block is defined as
follows:

biR = [TITLE] t [SECTITLE] t(sec)

[ROW] h1 ’is’ vi,1 [SEP] · · · [SEP] hN ’is’ vi,N

where h and v are the head and value, t and t(sec)
are the title and section title, respectively.

Passage block is defined as follows:

biP = [PSG] psgi,1linked [PSG] · · · [PSG] psg
i,N
linked

where psg is a linked passage at row.

D Single-head and Multi-head Attentions
The single-head and multi-head attentions
(Vaswani et al., 2017) are defined as follows:

SHA (Q,K,V ) = [head1]W
O,

MHA (Q,K,V ) = [head1; · · · ;headh]WO,

headi = Attn
(
QWQ

i ,KWK
i ,V W V

i

)
(6)

E EMA
EMA has widely been applied in time series and
long range text modeling. Among variants of EMA
presented in the work of (Ma et al., 2022), we
employed the “damped EMA”2 for proceeding long
range sequences. The damped EMA is based on
the recursive calculation for computing the output
Y as follows:

yt = α⊙ xt + (1− α⊙ δ)⊙ yt−1 (7)

where ⊙ is the element-wise multiplication oper-
ator, α ∈ (0, 1)d is a decaying factor for making
exponentially decreasing effects from older tokens,
δ ∈ (0, 1)d is the damping factor, and α and δ are
learnable weight parameters. This recursive com-
putation of EMA can be efficiently implemented as
the convolution and the fast Fourier transforms.

2This is different from the further extended multi-
dimensional damped EMA (Ma et al., 2022)
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Abstract

Recent advances in the area of long docu-
ment matching have primarily focused on us-
ing transformer-based models for long docu-
ment encoding and matching. There are two
primary challenges associated with these mod-
els. Firstly, the performance gain provided by
transformer-based models comes at a steep cost
– both in terms of the required training time
and the resource (memory and energy) con-
sumption. The second major limitation is their
inability to handle more than a pre-defined in-
put token length at a time. In this work, we
empirically demonstrate the effectiveness of
simple neural models (such as feed-forward net-
works, and CNNs) and simple embeddings (like
GloVe, and Paragraph Vector) over transformer-
based models on the task of document match-
ing. We show that simple models outperform
the more complex BERT-based models while
taking significantly less training time, energy,
and memory. The simple models are also more
robust to variations in document length and text
perturbations.

1 Introduction

Matching long documents (e.g.: research papers,
Wikipedia articles, patents, etc.) is an important
task that can help understand the (dis)similarity be-
tween documents for downstream tasks like long
document search. The first step towards better doc-
ument matching is obtaining meaningful long docu-
ment representations. Recent advances in this area
have primarily focused on using transformer-based
models for long document encoding and match-
ing (Beltagy et al., 2020; Jha et al., 2022; Yang
et al., 2020b; Zaheer et al., 2020). We use the term
transformers to mean pre-trained transformers. De-
spite promising results, there are two primary chal-
lenges associated with such models. First, the per-
formance gain provided by the huge transformer-
based language models (LMs), like BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019), and

Longformer (Beltagy et al., 2020) come at a steep
cost – both in terms of the required training time,
and the resource (memory and energy) consump-
tion. For example, the smaller BERTBASE model
has 110 million parameters, whereas the bigger
BERTLARGE model has a total of 340 million
parameters and fine-tuning a single BERTBASE
model on GPU can take hours. The second ma-
jor limitation of transformer-based models is their
inability to handle more than a pre-defined input
token length at a time (512 tokens for BERT, and
4096 tokens for Longformer). This is a big draw-
back as they cannot handle long documents like
research papers, patents, long articles, etc., with-
out using aggregation techniques (Reimers and
Gurevych, 2019).

In this work, we empirically demonstrate that
embeddings obtained from GloVe (Pennington et al.,
2014), and Paragraph Vectors (Le and Mikolov,
2014) along with simple neural models, such as
feed-forward networks, and CNNs, outperform sev-
eral transformer-based models for the document
matching task. We define these models as simple
as they take significantly less time to train and con-
sume less memory and energy overall when com-
pared to complex transformer-based models. Our
long document matching setting is fundamentally
different from long-form question answering and
sentence similarity tasks. For the latter tasks the
query is ‘short’, unlike the long document match-
ing task where both the query and the target text are
‘long’. We experiment with three different kinds of
semi-structured long document datasets in English:
(i) ACL Anthology research papers, (ii) English
Wikipedia articles, and (iii) Patents from US Patent
and Trademark Office (USPTO). Our primary con-
tributions are summarized as follows:

• We provide insights into the challenges of us-
ing transformer-based models for the task of
long document matching. For this task, sim-
ple neural models are as effective and take a
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fraction of the training time and resources to
outperform transformer-based models.

• We provide insights into the best input em-
beddings for the simpler models in this task.

• We demonstrate that simple models are also
more robust to changes in document length
and text perturbation.

• We create benchmark long document datasets
(by pre-processing ACL Anthology 2014 pa-
pers and Wikipedia articles) that will be made
publicly available.

2 Related Work

Early work on long document matching focused
on clustering techniques (Friburger et al., 2002;
Huang et al., 2008; Strehl et al., 2000). Recently,
Guo et al. (2016) proposed a deep learning based
architecture for ad-hoc retrieval when comparing
documents. Some works have also used convolu-
tional networks (Hu et al., 2014; Pang et al., 2016;
Yu et al., 2018), with weighting mechanism (Yang
et al., 2016a) to generate a final query-document
score. Mitra et al. (2017) propose a combination
model that uses weighted sum representation-based
and interaction-based results. Yang et al. (2016b)
propose HAN, a hierarchical attention network for
document matching. Jiang et al. (2019) propose
SMASH, a multi-depth attention based hierarchi-
cal recurrent neural network for long-document
matching. However, Yang et al. (2020b) pre-train
SMITH, a transformer based hierarchical model
for text matching that outperforms SMASH across
multiple datasets. Jha et al. (2022) use supervised
contrative learning for interpretable long document
matching. We compare several of these models on
the required training time and resources.

A growing body of literature has used trans-
former based model for long document encoding
(Child et al., 2019; Ho et al., 2019; Kitaev et al.,
2019; Liu and Lapata, 2019; Qiu et al., 2020; Yang
et al., 2020a). Longformer (Beltagy et al., 2020)
adapts transformers to use an attention mechanism
that scales linearly with sequence length. Big bird
(Zaheer et al., 2020) uses a sparse attention mecha-
nism that reduces BERT’s quadratic dependency on
the sequence length to linear. CogLTX (Ding et al.,
2020) uses text blocks for rehearsal and decay over
key sentences to overcome the insufficient long-
range attentions in BERT. Transformer-XL (Dai
et al., 2019) and Compressive Tranformers (Rae

Figure 1: A schematic siamese comparison model

et al., 2019) compress the transformers to use atten-
tive sequence over long text. Although promising,
we demonstrate that transformer-based models are
not considerably better than simple neural models
on the task of long document matching.

3 Empirical Evaluation

Here we provide details of the simple and the
transformer-based models and present an empirical
comparison between them based on their overall
performance, training time, resource consumption,
and robustness on the document matching task.

Task Formulation We define the task of docu-
ment matching as follows. Given a source docu-
ment s, and a set of target documents DT , the goal
is to estimate the semantic match ŷ = sim(s, t),
where t ∈ DT for every document pair (s, t). Sim-
ilar target documents will have a higher similar-
ity score. The document matching problem can
be seen as a binary classification task, where the
model predicts 1 for similar documents, and 0 for
dissimilar documents. We use the term “matching"
in the broad sense of document relevance (see Ap-
pendix A.2). The models take as input a pair of
documents (source and target), and compute the
cosine similarity between the encoded document
representations. If the cosine similarity is greater
than a similarity threshold θ, they are considered
similar; otherwise they are considered dissimilar.

Models We pick a representative set of mod-
els from different categories and compare them
by building their siamese versions (shown in Fig-
ure 1). The siamese network has three primary
components: (i) Input (Source and Target Docu-
ment), (ii) Document Encoder, and (iii) Loss Func-
tion. The source and target document encoder net-
works share weights. We experiment with three
simple neural models: (i) DSSM: A simple feed-
forward network (Huang et al., 2013), (ii) ARC-
I: A CNN-based model (Hu et al., 2014) , and
(iii) HAN: An RNN-based Hierarchical Attention
Network (Yang et al., 2016b) designed for long
documents. Their performance is compared with
three state-of-the-art transformer-based models: (i)
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AAN WIKI PAT
Model P R F1 Acc P R F1 Acc P R F1 Acc
HAN-G 0.504 0.881 0.641 0.607 0.566 0.584 0.575 0.775 0.609 0.848 0.709 0.522
DSSM-T 0.768 0.809 0.787 0.780 0.823 0.939 0.877 0.869 0.869 0.957 0.911 0.905
DSSM-G 0.550 0.541 0.545 0.549 0.966 0.986 0.975 0.975 0.992 0.998 0.995 0.995
DSSM-D 0.852 0.763 0.805 0.815 0.933 0.984 0.958 0.957 0.841 0.959 0.896 0.949
ARC-I-G 0.643 0.873 0.734 0.743 0.992 0.983 0.987 0.987 0.905 0.963 0.933 0.939
ARC-I-D 0.841 0.763 0.800 0.809 0.987 0.985 0.986 0.986 0.967 0.958 0.962 0.983
BERT 0.760 0.914 0.793 0.761 0.980 0.950 0.960 0.960 1.0 0.988 0.994 0.994
LONG 0.681 0.833 0.749 0.773 0.974 0.960 0.967 0.967 1.0 0.984 0.992 0.992
SMITH 0.726 0.565 0.635 0.676 0.949 0.982 0.965 0.963 0.892 0.939 0.865 0.939

Table 1: Performance on the document matching task up to the model’s maximum allowed input token length (512
for BERT; 4096 for Longformer, > 8000 for all other models). We experiment with Trigrams (T), GloVe (G), and
Doc2Vec (D) Embeddings as input for the simple neural models. The best performance is highlighted in bold.

BERT (Devlin et al., 2019), (ii) LONG: Long-
former (Beltagy et al., 2020), and (iii) SMITH:
Siamese Multi-depth Transformer based Hierar-
chical Encoder (Yang et al., 2020b). We report
the mean precision, recall, F1, and accuracy over
5 folds for the best performing hyper-parameters.
The code can be found here: https://github.com/

AkshitaJha/SimpleModelsforLongDocumentMatching.

Datasets We follow the previous literature (Yang
et al., 2016b; Jiang et al., 2019; Yang et al., 2020b)
and experiment with the following three stan-
dard long document datasets: (i) ACL Anthol-
ogy Network Corpus (AAN)1, (ii) Wikipedia Ar-
ticles (WIKI)2, and (iii) USPTO Patents (PAT)3.
Each dataset consists of balanced 15,000 pairs
of documents with 50% of them being similar
pairs, and the remaining being dissimilar. The
PAT dataset is an industry gold standard but we
will publicly release the pre-processed AAN and
the WIKI datasets (see Appendix A.2 for details).
The dataset can be found here: https://github.com/

AkshitaJha/SimpleModelsforLongDocumentMatching

Performance on Document Matching Task We
experiment with three input representations for sim-
ple neural models: (i) char-Trigram Hashing (T)
(Huang et al., 2013), (ii) GloVe Embeddings (G)
(Pennington et al., 2014), and (iii) Paragraph Vec-
tor/Doc2Vec Embeddings (D) (Le and Mikolov,
2014) (See Appendix 4). Unlike most transformer-
based models that take as input tokens up to a
pre-defined length (512 for BERT, and 4096 for
Longformer), simple models and SMITH have the
ability to take the entire long document (> 8000
tokens) as input. Table 1 demonstrates the per-
formance of different models on the task of docu-

1
https://aan.how/download/#aanNetworkCorpus

2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

3
https://github.com/google/patents-public-data

ment matching up to their maximum allowed input
document length (see Appendix A.8 for different
document lengths.) We observe that despite be-
ing relatively simple and not taking into account
contextual embeddings, DSSM and ARC-I outper-
form the transformer based models using GloVe
and Doc2Vec Embeddings on the AAN, WIKI, and
the PAT dataset.

Training Time Figure 2a shows the training time
taken to reach the best performance for every model
for their maximum allowed input token lengths. We
only report the fine-tuning time after downloading
the pre-trained models. All experiments were done
on a 16GiB Tesla V100. The simple models like
DSSM, ARC-I, and HAN take 1/12 to 1/15 of the
training time taken by the transformer-based mod-
els to outperform them on all three datasets (see
Appendix A.4 for the training time for different
document lengths on all datasets.)

Memory and Energy consumption Memory
consumption on a 16GiB Tesla V100, for a batch
size of 1, for different models can be seen in Fig-
ure 2b. Compared to transformer-based models
simple neural models consume significantly less
memory for the same document length (12 GiB for
Longformer vs. a maximum of 8 GiB for DSSM for
4000 tokens). We also compute the overall energy
required for training the models to achieve their
best performance (Figure 2c) by measuring the
power consumption of the GPU over their training
lifetime. Longformer consumes > 6MJ of energy
for fine-tuning on documents with 4096 tokens,
BERT consumes≈ 500kJ of energy for fine-tuning
on documents with just 512 tokens, and the SMITH
model consumes≈ 200kJ of energy for fine-tuning
on longer documents; whereas the simple mod-
els consume < 100kJ of energy for training from
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(a) Training time on the log scale (b) Memory consumption (c) Energy Consumption on log scale

Figure 2: Comparison of simple neural models with transformer-based models based on (a) Training Time, (b)
Memory Consumption, and (c) Energy Consumption.

(a) Comparison with BERT [512 tokens] (b) Comparison with LONG [4096 tokens] (c) Original vs. Shuffled Documents

Figure 3: Comparison between the robustness of simple neural models and transformer-based models w.r.t. document
length and text perturbation on the AAN dataset.

scratch for documents with > 8000 tokens.

Robustness to Document Length We limit the
maximum number of tokens in each document dur-
ing training and testing, and observe the final test
accuracy on the document matching task. It should
be noted that documents of different lengths are ac-
tually ‘truncated long documents’ without the com-
plete contextual information needed to compute
the actual similarity between two long documents.
Figure 3 compares the model accuracy of simple
models (with their default input embeddings) with
transformer-based models upto their maximum al-
lowed token lengths for the AAN dataset – 512
tokens for BERT (Figure 3a), and 4096 tokens for
Longformer (Figure 3b). DSSM outperforms the
baseline models for all documents lengths. BERT
and Longformer have a consistent performance
on AAN for different input lengths, unlike HAN
and SMITH that are not as robust to the variations
in document length, although they were designed
specifically for long documents. We found sim-
ilar results for WIKI and PAT dataset (see Ap-
pendix A.5). We also experiment with documents
of length > 512 tokens for BERT, and > 4096
tokens for Longformer by aggregating the chunk
representations upto their maximum allowed token
length. We used the SUM and AVG aggregation
techniques and observed an overall performance
drop (see Table 5).

Robustness to Text Perturbation For text pertur-
bation, we split documents into paragraphs of 512
tokens and randomly shuffle the order of these para-
graphs before training different models to check
for learned positional bias. We measure their test
accuracy on the original document matching task.
Figure 3c shows the model performance for all
the baseline methods on AAN dataset. We ob-
serve a significant drop in the model performance
for transformer-based models (BERT, Longformer,
and SMITH). There is no significant change in the
accuracy for the simple models – DSSM, ARC-I,
and HAN. The transformer based models are more
sensitive to text perturbation. The simple models,
on the other hand, use non-contextual embeddings,
such as GloVE, and Doc2Vec and are more robust
to text perturbation (see Appendix A.6).

4 Conclusion
We empirically demonstrate the trade-off of using
transformer-based models for semi-structured long
English documents like research papers, Wikipedia
articles, and patents. Transformer-based models
have an overall strong performance and smaller
variability across datasets. However, we observe
that for the task of long document matching, using
contextual embeddings do not provide any added
advantage. A simple feed-forward network or
a CNN-based model using GloVe or Doc2Vec
embedding outperforms several state-of-the-art
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pre-trained transformer-based models at a frac-
tion of their overall training time and resources
(memory and energy). These simple neural mod-
els are also more robust to changes in document
length and text-perturbation.

5 Limitations

One of the limitations of our work is that we ex-
perimented only with long documents in English.
Comparing simple neural models and transformer-
based models in different languages would be an
interesting study but is outside the scope of this
short paper. We would also like to highlight that
we use classification metrics instead of information-
retrieval metrics due to the limitations of the dataset
which has very few positive samples (2-3) for every
document.
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A Appendix

A.1 Model Description

The encoder networks and their default inputs have
been described below:

A.1.1 Simple Models
• DSSM (Huang et al., 2013): A simple three-

layered feed forward network that takes as
input the vectorized representation of a docu-
ment.

• ARC-I (Hu et al., 2014): A CNN-based model
that takes as input a 2D-matrix representation
of a document where words in the sentences
are represented using GloVe embeddings (Pen-
nington et al., 2014). These are then passed
through convolutional and max-pooling lay-
ers to finally obtain a document representation
for both source and target documents, inde-
pendently. The document representations are
concatenated and passed through a multi-layer
perceptron to predict if the pair of documents
are similar or not.

• Hierarchical Attention Network (HAN)
(Yang et al., 2016b): A hierarchical GRU-
based model with attention mechanism that
aggregates GloVe embeddings at word level
into sentence representations to arrive at the
final document representation.

A.1.2 Transformer-Based Models
• BERT (Devlin et al., 2019): A siamese match-

ing model with BERT. For long document in-
puts, BERT only uses the first 512 tokens
of each document. We use a pre-trained
BERTBASE model which is fine-tuned dur-
ing training.

• Longformers (LONG) (Beltagy et al., 2020)
: A siamese model with transformer-based
Longformers for long sequences. It has an at-
tention mechanism that scales linearly with se-
quence length and takes as input a maximum
of 4096 tokens. We consider an attention win-
dow of size 256.

• Siamese Multi-depth Transformer based
Hierarchical Encoder (SMITH) (Yang et al.,
2020b): A transformer-based hierarchical en-
coder which is the current SOTA model for
long-form document matching task.

A.1.3 Implementation Details
For all the models presented in the paper, we use
the same architecture as the original papers. We
tune the hyperparamters and report the best results.
The DSSM, ARC-I, HAN, and SMITH models
were implemented in Tensorflow. BERT and Long-
former were implemented in PyTorch. DSSM has
hidden units of dimension 300 for its hidden layers
and an output dimension of 128. The learning rate
was 0.0075. ARC-I takes as input a 2D matrix of
the size [no. of sentences x sentence length]. This
is given as input to two 1D-convolutional (filter size
of 200, kernel size 3) and MaxPooling layers of
size 2, in order to get the final document represen-
tations. The representations of both the source and
the target documents are concatenated and passed
through a two-layer multi-layer perceptron. The
first hidden layer of the MLP has a dimension of
64 with ReLU activation. The second layer has 1
node and sigmoid activation which predicts if the
pair of documents are similar or not. The learning
rate was set to 0.00075. HAN uses a bi-Directional
GRU layer and applies attention mechanism to ar-
rive at final sentence representation for the source
and the target documents with a learning rate of
0.001. We use the pre-trained BERTBASE

4 and the
Longformer 5 models provided by the Huggingface
library. The SMITH code was publicly available.
The BERT, Longformer, and SMITH models are
fine-tuned during training. All other models are
trained from scratch. The learning rate is set to
5e-5 for the transformer based models. We use
an Adam optimizer for all models with a weight
decay of 0.01. We use binary cross entropy as
the loss function for the simple models, pairwise
loss for BERT and Longformer, and triplet loss for
SMITH. These loss functions resulted in the best
performance for the model. The three datasets are
split into 80-10-10 for train, validation, and test
sets, respectively. We use cosine similarity and the
similarity threshold θ is set to 0.5. We perform 5
fold cross-validation and use early stopping on the
validation set to prevent over-fitting. The models
were trained on one 16GB Tesla V100 GPU.

A.2 Dataset

• ACL Anthology Network Corpus (AAN)6:
The AAN corpus (Radev et al., 2013) consists

4https://huggingface.co/transformers/model_doc/bert.html
5https://huggingface.co/transformers/longformer.html
6https://aan.how/download/#aanNetworkCorpus
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of 23,766 papers written by 18,862 authors in
373 venues related to NLP and forms a cita-
tion network. Each paper is represented by a
node with directed edges connecting a paper
(the parent node) to all its cited papers (chil-
dren nodes). Papers that have been cited by
the parent paper are treated as similar samples
(Jiang et al., 2019). For every similar sample,
an irrelevant paper is randomly chosen to cre-
ate a balanced dataset. Sets of similar papers
are given the same labels. To prevent leak-
age of information and make the task more
difficult, the references and the abstract sec-
tions are removed. Papers without any content
are also removed. We then randomly sample
15,000 research paper pairs for our experi-
ment.

• Wikipedia (WIKI)7: We use the Wikipedia
dump, and adopt a similar methodology pro-
posed by Jiang et al. (Jiang et al., 2019) to
process this data. From the Wikipedia dump
containing 6 million articles, we randomly
sampled 250,000 articles along with the ar-
ticles present in their outlinks. We create a
dataset of similar Wikipedia articles by assum-
ing that similar articles have similar outgoing
links. The Jaccard similarity between the out-
going links of the source and the target articles
is calculated. If the Jaccard similarity > 0.5,
the documents are assumed to be similar, oth-
erwise they are considered dissimilar. Only
articles with two or more similar articles are
selected. We then randomly sample 15,000
research paper pairs for our experiment.

• Patent (PAT)8: The patent dataset is an in-
ternally curated industry gold-standard. This
dataset consists of patents sampled from the
publicly available USPTO patents belonging
to four different categories: video, wireless,
image compression, and network compression.
A patent document is extremely long and pri-
marily consists of (i) Abstract, (ii) Claims,
and (iii) Description sections. We only make
use of the Claims and the Description sec-
tions for our experiments to prevent leakage
of information from Abstracts. Three internal
human annotators, with expert domain knowl-

7https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-
pages-articles.xml.bz2

8https://github.com/google/patents-public-data

edge, were given pairs of documents and were
asked to label them as similar or dissimilar
based based on the technology presented in
the patents. They referred to the Abstract,
Claims, and CPC Codes9 of the patents to
measure the similarity. The final document
content similarity label was based on majority
vote.

The dataset statistics can be found in Table 2.
We would like to note that although considering
only the cited papers and outgoing links for AAN
and Wikipedia articles, respectively is not the most
optimal approach for creating similar document
pairs, we adopt it for the following two reasons: (i)
We do not have annotated fine-grained similarity
scores for AAN and WIKI datasets, and (ii) We
follow an approach similar to the previously pub-
lished work (Jiang et al., 2019; Yang et al., 2016b,
2020b). We use the term “document matching" or
“document similarity" in the broad sense of “cita-
tion matching" or “document relevance" – Given
a pair of documents, are the two documents rele-
vant to each other and should they be cited by each
other.

A.3 Performance on Document Matching
Task

Table 3 shows the average performance of simple
models when compared to transformer based mod-
els on the document matching task for AAN, WIKI,
and PAT datasets. ARC-I with Doc2Vec embed-
dings has the best average precision and accuracy.
The average F1 score is comparable to BERT which
re-emphasizes the benefits of using simple models
for document matching.

A.4 Training Time for Different Document
Lengths

The training time for different document lengths
for all three datasets can be seen in Figure 4. BERT
can only take up to 512 tokens. DSSM, ARC-1,
and HAN take considerably less time to train when
compared to transformer-based.

A.5 Robustness to Document Length

We check the robustness of simple models and
transformer-based models for different document
lengths on the task of document matching. From
Figure 5 and Figure 6, we observe that the simple

9
https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
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Dataset Avg #Tokens Max #Tokens Avg #Sentences Max #Sentences Vocabulary
AAN 5,381.1 54,556 215.7 2,183 515,422
WIKI 3,777.0 26,172 190.6 1,685 1,151,309
PAT 8,177.4 50,322 214.1 2,709 220,023

Table 2: Dataset statistics

Model P R F1 Acc
HAN-G 0.559 0.771 0.641 0.634
DSSM-T 0.820 0.901 0.858 0.851
DSSM-G 0.836 0.841 0.838 0.839
DSSM-D 0.875 0.902 0.886 0.907
ARC-I-G 0.846 0.939 0.884 0.889
ARC-I-D 0.931 0.902 0.916 0.926
BERT 0.913 0.950 0.915 0.905
LONG 0.885 0.925 0.902 0.910
SMITH 0.855 0.828 0.821 0.860

Table 3: Average performance across AAN, WIKI, and PAT datasets on the document matching task (shown in
Table 1). We experiment with Trigrams (T), GloVe (G), and Doc2Vec (D) Embeddings as input for the simple neural
models. The best performance is highlighted in bold.

(a) AAN (b) WIKI (c) PAT

Figure 4: Doc Length vs Training Time (in log scale) for different document lengths.

models DSSM and ARC-I, and the transformer-
based models BERT and Longformer, though not
specifically designed for long documents are robust
for different document lengths. BERT can only
handle up to 512 tokens at a time, and Longformer
can only handle up to 4096 input tokens. HAN and
SMITH, on the other hand, were specially designed
for long documents and have a high variance in
their performance on the document matching tasks
for different document lengths.

We also experimented with longer documents
(> 512 tokens for BERT, and > 4096 tokens for
Longformer). We obtained the final document rep-
resentation by dividing the document into chunks
of their maximum allowed token length. We then
aggregated these chunk representations. We exper-
imented with the SUM and AVG aggregation tech-
niques by taking the representations of the ‘[CLS]’
token and ‘the pooler output’ for these models. We

observed an overall performance drop because of
aggregation. The results were the same for both
SUM and AVG aggregation techniques (Table 5).

A.6 Robustness to Text Perturbation

We randomly shuffle the documents before training
different models and measure their test accuracy
on the original document matching task (Figure 7)
for all three datasets. The first few paragraphs in
Wikipedia articles, research papers, and patents are
highly informative. We wanted to verify if the mod-
els give too much importance to the position of the
initial text. In the context of long documents, just
re-ordering the paragraphs of a document spanning
pages should not have an effect on the downstream
tasks of document matching. (Note: We use the
term document matching broadly to refer to cita-
tion matching or document relevance. Given a
document pair, we would like to verify if the two
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(a) AAN (b) WIKI (c) PAT

Figure 5: Document Length vs Accuracy upto 512 tokens

(a) AAN (b) WIKI (c) PAT

Figure 6: Document Length vs Accuracy upto 4096 tokens

documents are relevant to each other.) In order to
verify this assumption, we shuffle the paragraphs to
distribute the important texts randomly and check
the performance of all models on this downstream
task. Although, we do observe a small drop af-
ter paragraph shuffling because the simple models
do take into account a shallow context of the in-
put text, the simple neural models overall prove
more robust to text perturbation when compared
to transformer-based models that take into account
deep contextual information.

A.7 Best Input Embeddings for Simple
Models

For simple models, we evaluate if the input vector
representations play a role in the final results. We
use the following input representations.

• Tri-Gram Hashing (T): Bag-of-
charTrigrams is a technique for word
hashing (Huang et al., 2013) where each
word is broken down into character trigrams
(charTrigrams). Since, the number of possible
charTrigarms are fixed and limited, this
is a scalable solution for long documents.
The charTrigrams are obtained for every
token in the input text after appending the
symbol ‘#’ before and after every token.
For example, the word ‘good’ [#good#]

is split into [#go, goo, ood, od#] and then
mapped to a 30,621 dimensional hash table.
This vector representation for the document
is then given as input to the models. For
DSSM, each document is represented as a
bag-of-charTrigrams and given as input to
the model. For ARC-I and HAN, we split
each document into n chunks which are
represented in the form of a trigram hash. We
construct a matrix of size n × trigram hash
for the entire document which is given input
to ARC-I and HAN.

• GloVe Embeddings (G): GloVe (Pennington
et al., 2014) is an unsupervised learning algo-
rithm for obtaining vector representations for
words. We download the pre-trained GloVe
embeddings and get the vector representations
for words in a long document. These vector
representations are given as input to different
models. For DSSM, we divide the document
into chunks of a specified maximum length.
We then take GloVe embedding representation
of tokens for each chunk upto a maximum
length and average them to get a document
representation. For ARC-I and HAN, each
document is represented as a matrix of size
[embedding dimension×max length] in each
document.
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(a) AAN (b) WIKI (c) PAT

Figure 7: Original vs Shuffled Documents

AAN WIKI PAT
Model P R F1 Acc P R F1 Acc P R F1 Acc
DSSM-T 0.768 0.809 0.787 0.780 0.823 0.939 0.877 0.869 0.869 0.957 0.911 0.905
ARC-I-T 0.641 0.606 0.622 0.634 0.969 0.944 0.956 0.957 0.536 0.754 0.626 0.793
HAN-T 0.665 0.885 0.759 0.720 0.911 0.929 0.920 0.920 0.477 0.857 0.618 0.751
DSSM-G 0.550 0.541 0.545 0.549 0.966 0.986 0.975 0.975 0.992 0.998 0.995 0.995
ARC-I-G 0.643 0.872 0.734 0.676 0.992 0.983 0.987 0.987 0.905 0.963 0.933 0.929
HAN-G 0.504 0.881 0.641 0.507 0.935 0.984 0.959 0.958 0.609 0.848 0.709 0.522
DSSM-D 0.852 0.763 0.805 0.815 0.933 0.984 0.958 0.957 0.841 0.959 0.896 0.949
ARC-I-D 0.841 0.763 0.800 0.809 0.987 0.985 0.986 0.986 0.967 0.958 0.962 0.983
HAN-D 0.709 0.919 0.801 0.771 0.875 0.859 0.866 0.873 0.946 0.996 0.970 0.975

Table 4: Comparison of different input aggregation techniques: (i) charTrigrams (T), (ii) GloVe Embeddings (G),
and (iii) Doc2Vec embeddings (D), for simple models.

AAN WIKI PAT
Model P R F1 Acc P R F1 Acc P R F1 Acc
BERT-CLS 0.992 0.579 0.732 0.637 0.998 0.499 0.666 0.499 1 0.639 0.783 0.714
BERT-POOL 0.572 0.992 0.726 0.625 1 0.500 0.667 0.501 1 0.637 0.778 0.711
LONG-CLS 0.599 0.842 0.699 0.743 0.968 0.764 0.854 0.835 0.927 0.911 0.919 0.917
LONG-POOL 0.727 0.819 0.770 0.783 0.994 0.812 0.894 0.883 0.996 0.918 0.955 0.953

Table 5: Aggregation using the [CLS] token, and the pooler output [POOL] from BERT and Longformer for
documents > 512 and > 4096 tokens for BERT and Longformer, respectively. The results were the same for SUM
and AVG aggregation techniques.

• Doc2Vec Embeddings (D): Doc2Vec (Le and
Mikolov, 2014) embeddings can be used to
get vector representations for a document. We
train Doc2Vec models from scratch on differ-
ent datasets to get relevant document repre-
sentations. These document representations
are then given as input to different document
matching models.

Table 4 shows the model performance of the sim-
ple models for the above three input representations.
We observe that using GloVe (G) and Doc2Vec (D)
input embeddings improve the model performance
of the simple models overall.

A.8 Different Aggregation Techniques for
Transformer Based Models

We experiment with different aggregation tech-
niques (SUM and AVG) for > 512 tokens for
BERT, and > 4096 tokens for Longformer. We

chunk the documents and aggregate the represen-
tations from the ‘[CLS]’ token and ‘the pooler
output’. The results can be seen in Table 5 and
were the same for SUM and AVG aggregation tech-
niques. Aggregation resulted in an overall perfor-
mance drop when compared to just truncating the
documents up to 512 tokens and 4096 tokens for
BERT and Longformers, respectively for the docu-
ment matching.
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Abstract

Pre-trained neural masked language models
are often used for predicting a replacement
token for a given sequence position, in a
cloze-like task. However, this usage is re-
stricted to predicting a single token, from a
relatively small pre-trained vocabulary. Recent
Sequence2Sequence pre-trained LMs like T5
do allow predicting multi-token completions,
but are more expensive to train and run. We
show that pre-trained masked language models
can be adapted to produce multi-token com-
pletions, with only a modest addition to their
parameter count. We propose two simple adap-
tation approaches, trading parameter counts for
accuracy. The first method generates multi-
token completions from a conditioned RNN. It
has a very low parameter count and achieves
competitive results. The second method is
even simpler: it adds items corresponding to
multi-token units to the output prediction ma-
trix. While being higher in parameter count
than the RNN method, it also surpasses current
state-of-the-art multi-token completion mod-
els, including T5-3B, while being significantly
more parameter efficient. We demonstrate that
our approach is flexible to different vocabular-
ies and domains and can effectively leverage ex-
isting pre-trained models available in different
domains. Finally, a human evaluation further
validates our results and shows that our solution
regularly provides valid completions, as well
as reasonable correctness for factual-sentence
completions.

1 Introduction

Multi-Token-Completion (MTC) is the task of fill-
ing masked sentences with a sequence of tokens
such that the completed sentence is probable and
coherent. e.g., for the masked sentence "The 46th
president of the US, [MASK], was elected in 2020"

*Authors contributed equally.

a good completion would be any of "Biden", "Joe
Biden", "president Biden" and more.

While Masked Language Models (MLMs) such
as BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019) successfully deal with a simpler vari-
ation of this task (single-token completion) these
models were pre-trained on a limited vocabulary,
not containing multi-word phrases. It is technically
possible to complete numerous tokens simultane-
ously with MLMs by introducing a sequence of
[MASK] tokens, but there are no clear methods of
conditioning the tokens on each other, and, more
importantly, the length of the completion needs
to be pre-determined. Expanding MLMs’ effec-
tive completion vocabulary – the actual vocabulary
they are capable of completing well – will help a
recent line of work using MLMs to extract knowl-
edge/information from corpora (Jiang et al., 2020;
Petroni et al., 2019; Kushilevitz et al., 2020).

Most existing works using MLMs to complete
sentences either avoid the problem by limiting the
completions to single tokens or use sub-optimal
heuristics for MTC (e.g. presetting the length of
the sequence and filling one token at a time). A triv-
ial solution is to increase the number of tokens used
in the pre-processing tokenization step, and also
include multi-word phrases as tokens. However,
apart from the longer tokenization time1, the main
problem with this approach is that changing the in-
put level of the model requires adapting the weights
of the full MLM to the new input.2 A recent family
of seq2seq pre-trained LMs, the prevalent of which
is T5 (Raffel et al., 2020), are trained directly on
the MTC task, and indeed perform quite well on it,
especially with larger model sizes. However, the
seq2seq objective, coupled with very high param-
eter counts, make such models expensive to train

1Expanding BERT’s tokenizer vocabulary from 30K to
100K phrases leads to a degradation of ×30 in tokenization
time. Further details are in Appendix A.

2This requires either full pre-training of the MLM or long,
end-to-end fine-tuning using a considerable amount of data.
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and to run inference on, compared to MLMs.
In this work, we demonstrate how pre-trained

MLMs can be adapted to produce multi-token com-
pletions from (large) fixed vocabularies, using a
self-supervised training objective and only a mod-
est parameter count. Specifically, we demonstrate
an effective adaptation of pre-trained MLMs to
predict, on top of their pre-trained vocabularies,
additional ∼ 100K noun-phrases (NP-chunks) and
entities ranging in length from 1 to 10 tokens. The
only requirement is a textual corpus in which each
of the desired phrases appears over k times (we
used k = 50 in this work). The adapted model
surpasses the accuracy of T5-3B predictions, while
using a fraction of the parameter count and be-
ing significantly more efficient to run. Apart from
evaluating with automatic measures, we also use
human-annotators to explore different aspects of
the proposed completions.

After experimenting on the prediction of general-
purpose phrases, we also show our methods can be
used to predict phrases in a specific domain. This
is a significant benefit of the adaptation approach
since the completion vocabularies can be tailored
to a specific project’s needs, using domain-specific
pre-trained MLMs, even in domains where huge
T5-like models are not available3.

We use any pre-trained MLM for MTC by ex-
tracting the informative representations the MLM
uses for completing a single token, and feeding
them into a small and simple model that chooses
appropriate multi-token completions. We offer two
different completion models. Depending on the sce-
nario, both are useful; the first solution, which ex-
pands the MLM’s decoder matrix, achieves SOTA
accuracy. The second solution, using a small it-
erative generation model, is well suited for large
completion-vocabularies while achieving competi-
tive results.

The core reason for the success of our methods,
despite being trained on less data and for less time
than other solutions, is the fact that the MLM’s
pre-training is well suited for the MTC task. We
provide two types of evidence to support this claim:
In section 2 we present an experiment suggest-
ing that MLMs incorporate information regarding

3For example, an e-commerce company could adapt a
pre-trained general purpose MLM to complete multi-token
product names, while a biomedical researcher could adapt a
pre-trained biomedical MLM such as SciBERT (Beltagy et al.,
2019) or BioBERT (Lee et al., 2019) to complete multi-token
drug or disease names.

multi token phrases. In section 6, we show that
pre-training on in-domain data helps our methods
perform better. Both of these signals indicate that,
as expected, the MLM pre-training captures infor-
mation required for MTC. Therefore, what is left
for our MTC adaptation models is only to extract
this information from the MLM, an easier task that
does not require a long training with a vast amount
of data.

Our main contributions are MTC datasets (gen-
eral purpose, PubMed-based, and a 3K dataset
with human labeling), demonstrating that MLMs
learn the meaning of Multi Token phrases, and two
methods for adapting any pre-trained MLMs for
MTC. We publish4 our datasets, models and code5.

2 MLMs Learn Multi-Token Phrases

Our work relies on the assumption that MLMs are
capable of holding information about multi-token
phrases. Despite being a common belief and an
essential property for the MLMs to have in order
to be as successful as they are, to the best of our
knowledge this was not shown explicitly. How do
we show that a token-completion MLM is encoding
the semantics of multi-token phrases? Looking at
completions will fail, because we cannot directly
probe for MTC. Instead, we came up with the fol-
lowing experimental design, which measures the
encoding of multi-token phrases indirectly by look-
ing at masked positions influenced by them.

We use multi-token phrases that have single to-
ken synonyms. We construct a dataset containing
quadruples, each quadruple consisting of a multi-
token phrase (e.g. "New York city"), a single-token
synonym (e.g. "NYC"), a phrase similar in meaning
to the synonyms (e.g. "Chicago") and a random
phrase (e.g. "Dog"). We collect sentences contain-
ing the multi-token phrases, and in each sentence
mask out an NP-chunk different from the multi-
token phrase (e.g. "[MASK] is in New York city").
Next, we replace each multi-token phrase with each
of its other corresponding quadruple phrases, form-
ing four similar masked sentences, each containing
a different quadruple phrase (e.g. "[MASK] is in
NYC").

Finally, we ask an MLM to complete the missing
token in each masked sentence, and compare the
suggested completions. If the MLM is aware that

4https://registry.opendata.aws/multi-token-completion/
5https://github.com/amzn/amazon-multi-token-

completion/
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the multi-token phrase is semantically similar to
the single-token synonym, we expect it to suggest
similar completions regardless of which of the two
it sees in the sentence. Indeed, the model treats
the multi-token phrase similar to the single-token
synonym; We use a similarity measure comparing
the MLM’s suggested completions for the multi-
token phrase sentences and each of the other types
of sentences. We find that the average similarity
between multi-token phrase sentences and single-
token synonym sentences is 0.76, while for similar-
phrase sentences it is 0.71 and for random-phrase
sentences it is 0.63. Our main conclusion from
this experiment is that, as expected, MLMs learn
semantic meaning of multi-token phrases. Full ex-
periment details (including the similarity measure
used) are in Appendix B.

3 Masked Language Modeling Data

In absence of a known dataset for the MTC task,
we curate one. We follow (Devlin et al., 2018) and
use data from two sources: Wikipedia articles and
the Books corpus (Zhu et al., 2015).

Completion Vocabulary. We start by building
a vocabulary of phrases. As we aim for general-
purpose MTC, and following (Trask et al., 2015)
by considering phrases as NP-chunks or entities,
we simply focus on phrases that appear frequently
in the corpus. We use spacy (Honnibal and Mon-
tani, 2017) to extract 64M unique NP-chunks and
entities. We keep phrases appearing 500 times
or more in the corpus, leaving us with ∼ 93K
phrases. Only 10.2% are single tokens using
BERT’s cased tokenizer, indicating the importance
of MTC. 52.9% of the phrases consist of 2 tokens,
36.9% consist of 3 or more. 53% of the phrases
are single-words, 47% span two words or more.
Further statistics regarding the number of words
and the number of tokens assembling the phrases
selected are reported in Table 1.

Masked sentences. We split the corpus using
spacy’s sentencer. We sample 50 unique sentences
containing each vocabulary-phrase. We eliminate
recurring sentences and mask out the vocabulary
phrase to form masked sentences, using the masked
span as the label. We randomly split the data into
train (90%), validation (5%) and test (5%) sets.

4 Adapting MLMs for MTC

We propose two simple yet effective solutions, ca-
pable of integrating with any pretrained MLM and

#Tokens %Phrases #Words %Phrases
1 ∼ 10.2% 1 ∼ 53.3%
2 ∼ 52.9% 2 ∼ 38.3%
3 ∼ 23% 3 ∼ 5.4%
4 ∼ 9.5% 4 ∼ 2.1%
5 ∼ 2.8% 5 ∼ 0.5%
> 5 ∼ 1.6% > 5 ∼ 0.4%

Table 1: Expanded completion vocabulary. Number
of tokens and words assembling the phrases collected.

extending its completion vocabulary to perform
MTC. Both solutions utilize the MLM by using the
contextual embedding vector of the masked place,
which was originally pre-trained to be relevant for
completion tasks. Instead of using it to choose
the appropriate single token replacement (see Fig-
ure 1 (1)) like the MLM, we use it as an input to
extension models tuned for completing out of an
expanded vocabulary. We train only the relatively
small extensions and use the pre-trained MLMs as
is, allowing short and effective training.

4.1 Extended-Matrix (EMAT) decoder

Our first extension model is based on extending
the decoder matrix of the MLM to include the new
multi-token phrases in the completion vocabulary.
We assign each new multi-token phrase to an em-
bedding vector, which is added only to the out-
put token-prediction matrix. This is in contrast
with simply adding it to the base-model’s vocabu-
lary, which results in longer training due to the full
model being affected and in increased tokenization
time (see Appendix A for tokenization time eval-
uation). An illustration of the architecture can be
found in Figure 1 (2), where we use the MLM to
compute the contextual embedding of the masked
token and feed it to the extended-matrix decoder.
Even though each multi-token phrase is assigned
with its own embedding vector, this solution al-
lows us to adapt MLMs trained with a smaller
vocabulary (with all mentioned advantages this
comes with) to complete phrases that are multi-
token phrases in their original vocabulary.

During training, we extract the contextual em-
bedding from the masked sentence and only train
the extended-matrix decoder yielding a quick train-
ing phase. We train the decoder over the train set
described in Section 3, expanding the completion
vocabulary to ∼ 93K phrases. When BERT-base
is the base MLM, this approach adds 138M param-
eters, considerably less than models comparable in
performance such as T5-3B (3B parameters).
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Figure 1: Architectures. The MLM body is shared across architectures. It outputs a contextual embedding for the
[MASK] token, used by all decoding solutions. The MLM (1) predicts a single token from its vocabulary. EMAT (2)
uses an extended decoder to predict a phrase from the extended vocabulary. The Generative extension (3) completes
tokens until reaching [EOS]. Some arrows and layers are deducted for readability.

4.2 RNN decoder

Our second model is based on an RNN decoder,
specifically a GRU (Cho et al., 2014). We use it to
replace the MLM’s matrix decoder.

To train our GRU decoder for MTC, similarly to
our first solution, we utilize the pretrained MLM
by extracting the embedding vector corresponding
with the masked token for each sentence. For the
GRU-based solution we use this vector as the first
hidden vector fed into the GRU. As the first input
to the GRU, we wish to provide the context of the
multi-token phrase to be generated and thus feed
the static embedding of the token preceding the
[MASK] token. For later steps, the input is the
previous token completed by the generative model.
The inputs to the GRU are depicted in Figure 1 (3),
where the contextual embedding of [MASK] is fed
as the first hidden state and the static embedding of
’love’ is the first input of the GRU.

Next, at each step we concatenate: a) the output
of the GRU; b) the previous vector embedding; and
c) the masked token contextual embedding vector
from the pretrained MLM, and feed them to a feed
forward (FF) layer in order to reduce the dimen-
sion. We find that providing these three contexts
to the decoder improves its accuracy. The output
of the FF is then fed as input to the MLM decoder
(For BERT, this is a FF layer followed by an em-
bedding layer and a SoftMax layer) to obtain the

token predicted for this step of the autoregressive
generation. We train the model to complete the
next token of the missing multi-token phrase using
a standard back propagation approach with Cross
Entropy loss. We utilize the dev set to tune the
batch size, number of GRU layers, teacher forc-
ing rate, and learning rate (used parameters can be
found in appendix C).

We find that initializing the GRU’s decoder em-
beddings with the same parameters used by the
MLM we are plugging into, improves the perfor-
mance. Also, it helps to pre-train the generative
model on a vanilla Language Modeling task be-
fore starting MTC training. The idea is to give the
fresh extension model some sense of the distribu-
tion of the language before the training on the MTC
task. An ablation study demonstrating the benefit
of these components is shown in Appendix C.

Our generative model consists of only 32M pa-
rameters when using BERT as a base model, which
are the only trained parameters used for our solu-
tion (i.e. the pretrained base MLM is not fine-
tuned) and independent of the vocabulary size.
During inference, we simply use the MLM to ex-
tract the embedding vector corresponding with the
masked token and feed it, along with the static
embedding of the preceding token, as input to the
trained GRU model. Next, we use beam-search to
generate sequences until reaching an EOS token.
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Model Coverage Size Data size a@1 a@3 a@5 a@10 a@50

BERT-cased 13.8% 110M 16G 13.5%/1.8% 21.8%/3.0% 25.9%/3.5% 31.2%/4.3% 43.1%/5.9%
RoBERTa 15.6% 110M 160G 19.3%/3.0% 30.6%/4.7% 36.1%/5.6% 43.2%/6.7% 59.4%/9.2%

Naive-MTC-BERT 66.1% 220M 16G 6.6%/4.3% 11.9%/7.8% 14.9%/9.8% 19.5%/12.8% 32.3%/21.3%

Table 2: MLMs performing limited completion. Coverage is the % of sentences from the test set that the model
is capable of completing. MLMs are limited to single token completions. For computational reasons, we allow
the Naive-MTC-BERT to generate only single tokens or two-token phrases. Accuracy is reported as x/y; x is the
accuracy out of the specific model’s limited coverage and y is the accuracy out of the full test set (coverage ∗ x).

5 Results

Setup. Measuring success in completion tasks is
not trivial since a masked-sentence can have many
suitable replacements. In many cases returning
the expected phrase in a top-k place, and not nec-
essarily first, is acceptable. Hence, we measure
accuracy@k (sklearn): the percentage of masked
sentences where the label is among the top-k pre-
dictions. To better ground our performance expec-
tation from MTC, we first evaluate the accuracy
of an easier completion task; Single Token Com-
pletion. We go on to evaluate Naive MTC using
MLMs. As expected, results are not sufficient. Fi-
nally, we evaluate our methods, adapting MLMs
for MTC.

5.1 Single Token Completion

Single Token Completion is an easier6 task than
MTC, and MLMs like BERT and RoBERTa are
trained directly to perform it. Therefore, results
of these MLMs on the single token completion
task can be considered as an upper limit for the
performance of solutions adapting these models for
MTC. We test BERT and RoBERTa on the single
token completion task, results of these models on
the test set are reported in Table 2.

5.2 Naive MTC with MLMs

A naive way to utilize MLMs for MTC is using a
two-step method: given a masked sentence, first
predict the number of missing tokens and then du-
plicate the masked token to the predicted number
(e.g. "The US state [MASK]" becomes "The US
state [MASK] [MASK]") and complete them using
the MLM. We train a BERT-based classification
model predicting the number of missing tokens
by assigning a label to the data: for each masked
sentence, the label assigned is the number of to-
kens the masked span splits into using BERT’s

6For example, BERT’s search-space size is ∼ 30K while
some MTC solutions (e.g. our generation plugin and T5) have
an infinite search space.

tokenizer. Due to computational limits of the gen-
eration phase, we are only interested in 3 classes:
a single token missing, two tokens missing, and 3
or more tokens missing. The class distribution is
(10%, 53%, 37%), respectively. We use BERT’s
default hyper-parameters and train a classification
model. This is a task with ambiguous labeling7,
thus we do not expect high accuracy results. The
model reaches 64.7% accuracy on the test set.

During inference, we use the model’s predictions
with a SoftMax function to acquire a probability
for a single token mask-replacement and a double
token mask-replacement. We utilize these probabil-
ities as follows. For each specific single token, we
compute a replacement probability by simply multi-
plying the probability for any single token replace-
ment by the probability BERT assigns the specific
token to replace the mask in the masked sentence.
For a double token term we multiply the probabil-
ity of having a double token replacement by the
probability BERT predicts for the specific term, es-
timated with a standard generating heuristic. After
duplicating the mask, we complete the first missing
token using the MLM. Then, we replace the first
mask with each of the top-100 predicted tokens
and complete the second mask. Finally, the prob-
ability for each double token term is the product
of the probabilities the two tokens assembling it to
replace the two missing [MASK] tokens.

Results on the test set are reported in Table 2.
Even when considering only sentences where the
missing phrase consists of one or two tokens, re-
sults are not sufficient and call for a different way
to use MLMs for MTC. This is likely due to the
fact that the first token replacement is computed in
an unconditional manner to the second one.

5.3 Multi Token Completion
We use BERT, RoBERTa and SpanBERT as MLMs
adapted for MTC with our methods described in
section 4. MTC models are capable of completing

7e.g. for “The US state [MASK]” “New York” and “Texas”
are adequate replacements resulting in different labels.
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Model Size Data Size Inf-time a@1 a@3 a@5 a@10 a@50

ILM (GPT-2) 124M 1G/41G 120ms 1.3% 2.7% 3.7% 5.3% 10.8%
T5-base 220M 700G 224ms 5.2% 8.3% 9.7% 11.4% 15.6%
T5-3B 3B 700G 802ms 11.6% 18.5% 21.5% 25.4% NA
BERT-Adapted-RNN 32M/142M 1G/17G 44ms 9.24% 14.64% 17.39% 21.32% 31.28%
BERT-Adapted-EMAT 138M/248M 1G/17G 15ms 12.64% 20.48% 24.63% 30.65% 45.85%
ROBERTA-Adapted-RNN 48M/158M 1G/161G 59ms 8.14% 12.99% 15.51% 19.07% 28.40%
ROBERTA-Adapted-EMAT 161M/271M 160G/161G 16ms 11.59% 19.06% 23.18% 29.27% 45.79%

SPAN-BERT-Adapted-RNN 32M/142M 1G/17G 46ms 8.29% 12.82% 15.07% 18.34% 26.334%
SPAN-BERT-Adapted-EMAT 138M/248M 1G/17G 15ms 6.91% 11.6% 14.12% 17.93% 27.45%

Table 3: MTC results. Models are described in Section 5.3. Adapted models are trained with our solutions as
described in Section 4. Size is the number of parameters; Data size is the amount of data seen during training.
For adapted models we report both of these numbers excluding/including the base MLM. Inf-time is the average
inference time of a single sentence, measured using an Nvidia T4 GPU. T5-3B is too large for a beam of size > 10.

a phrase of any length hence have a coverage of
100% on the test set. Apart from our methods, we
also report on several baselines.

ILM (Donahue et al., 2020) is a GPT-2 based
framework for infilling, a task similar to MTC. The
LM is shown a sentence with missing places and
is trained to generate text probable of replacing the
missing parts. A crucial observation is that GPT-
2 is an LM and not an MLM. Therefore, ILM’s
pretraining seems less appropriate for completing
relatively short phrases (a task similar to the MLM
objective), and more appropriate for longer genera-
tion tasks (a task more similar to the LM objective).
We fine-tune ILM on our dataset for a single epoch,
taking ∼ 3.5 days using an Nvidia T4 GPU.

T5(Raffel et al., 2020) is a transformer model
pretrained on the MTC task. It is a strong baseline
reaching SOTA on many NLP tasks. We report on
two versions, T5-base and T5-3B, both trained on
a dataset 1-2 order of magnitudes larger than ours.

Results and Discussion. Results are reported
in Table 3. Our extended matrix (EMAT) solution
performs best, even when compared to the huge
T5-3B. The RNN plugin is slightly inferior, but still
performs better than existing solutions comparable
in size. Note that even though the size of the EMAT
plugin is ∼ ×4 of the size of the RNN plugin, in-
ference time for the tested vocabulary is shorter
because of GPU optimizations and the fact that the
RNN model may run several times (∼ 3 in average
on the test set) for each completion. However, in-
creasing the completion vocabulary size will not
affect the GRU size but will increase the size of the
matrix extension, making the RNN plugin a better
fit for large completion vocabularies8.

8For a completion vocabulary with 1M phrases and BERT
as the MLM, the size of the RNN plugin remains 32M , while
the size of the EMAT plugin grows to 769M .

6 Domain Specific MTC

We investigate MTC in a specific domain.
Datasets. We chose the Biology Domain, due to

the availability of data and models. Using PubMed
(pubmed) abstracts as a corpus, we extract two
MTC datasets. Similarly to section 3, we first con-
struct the completion vocabularies.

Key-phrase vocabulary: we use ∼ 20K MeSH
vocabulary9 phrases appearing frequently as key-
phrases in pubmed papers. This assures us phrases
from the Biology domain. We discard phrases ap-
pearing less than 50 times as NP-chunks or entities
in the corpus, leaving us with ∼ 12.5K phrases.

Frequent-phrases vocabulary: Similarly to sec-
tion 3, we extract a vocabulary of phrases appearing
more than 500 times as NP-chunks or entities in
the corpus (∼ 144K phrases). To make sure we
are considering mostly phrases from the Biology
domain, we discard phrases appearing in our gen-
eral purpose vocabulary (described in section 3),
leaving us with ∼ 118K phrases.

Finally, for both vocabularies we extract 50 sen-
tences containing each of the vocabulary phrases,
mask the phrase out in each sentence and split the
data into train, development and test sets.

Base Models. To evaluate the impact that the
domain-specific pre-training has on the perfor-
mance of our methods, we test our adaptation
methods on top of models pretrained on differ-
ent datasets. SciBERT (Beltagy et al., 2019) is a
BERT-like model trained on the Semantic Scholar
data - data from the scientific domain, closer to the
biology domain than the general purpose BERT.
BioBERT (Lee et al., 2019) is a BERT-like model
trained on PubMed abstracts.

9MeSH (Medical Subject Headings) is NLM’s controlled
vocabulary of biomedical terms used to describe the subject
of each journal article in MEDLINE.
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Model Dataset a@1 a@3 a@5 a@10 a@50

T5-base key-phrases 3.6% 5.2% 5.8% 6.7% 8.4%
T5-3B key-phrases 10.3% 15.1% 16.9% 19.5% NA
BERT-Adapted-EMAT key-phrases 12.9% 20.7% 24.9% 31.1% 48.8%
SciBERT-Adapted-EMAT key-phrases 13.4% 21.2% 25.2% 30.8% 44.9%
BioBERT-Adapted-EMAT key-phrases 16.3% 26.9% 32.1% 39.5% 57.2%
T5-base NP-chunks and Entities 3.9% 5.7% 6.6% 7.7% 10.5%
T5-3B NP-chunks and Entities 8.2% 12.8% 15.0% 18.1% NA
BERT-Adapted-EMAT NP-chunks and Entities 7.1% 11.8% 14.4% 18.5% 30.5%
SciBERT-Adapted-EMAT NP-chunks and Entities 8.2% 14.2% 17.5% 22.5% 35.4%
BioBERT-Adapted-EMAT NP-chunks and Entities 8.0% 13.5% 16.4% 20.7% 31.77%

Table 4: MTC on the pubmed test sets. T5-3B is too large for a beam of size > 10.

Results are reported in table 4. For brevity, we
compare our Extended Matrix method, tuned on
three base models (BERT, SciBERT, BioBERT), to
the two primary baselines: T5-base and T5-3B. We
report on the two PubMed datasets we curated.

Conclusions. First, our method outperforms the
strong T5-3B baseline in the domain-specific sce-
nario as well, showing MLMs can be effectively
adapted for domain-specific MTC. Second, the suc-
cess of BioBERT and SciBert suggests that the pre-
training of the MLM is in fact utilized by our meth-
ods (i.e. there is no catastrophic forgetting). Last,
the key-phrases dataset is easier than the frequent
NP-chunks and Entities one. This is likely due to
the key-phrases dataset mostly containing phrases
that are more frequent and significant.

7 Human Evaluation

Completion tasks are difficult to evaluate since a
sentence can have many different valid completion
options including, but not limited to, the original
masked span. We use accuracy@k to deal with this
issue, but in some use-cases only the first comple-
tion is important. Thus, we define a manual task to
more accurately evaluate sentence completions.

Human-annotators are presented with the
masked sentence, the original masked span and the
first completion suggested by each of the methods
we evaluate (full annotation task is in Appendix D).
Annotators were not aware which model provided
each completion, and the completions were pre-
sented in a random order for each sentence. The
sentences are divided between three expert English-
speaking annotators. Prior to performing the anno-
tations, the annotators met for a calibration session,
each annotating the same 50 sentences and dis-
cussing results until reaching high agreement. We
sample 750 sentences from the test set described in
section 3. Each expert annotator is assigned with

250 sentences and the completions of each of the
four methods, amounting to 1000 samples each.

First, we ask annotators whether the completions
are grammatically correct and make sense in the
context of the sentence, regardless of whether they
are factually correct (denoted as a "Valid" comple-
tions). For example, any year or location is a valid
completion for “Jules Verne was born in [MASK]”.

In some cases, valid completions can be general
and uninformative. For example, in the sentence

“On January 1, 1998, [MASK] was released pub-
licly online as SGI freeware.” the original span
is “Blender". While any SGI freeware name would
make sense, the word “it” (suggested by T5-3B)
is also a valid completion. This happens with gen-
eral words like “he”, “she”, or “person” but can
also occur with entities, e.g. in the sentence “Jules
Verne was born in [MASK]”, the original masked
span is “Nantes” and a suggested completion might
be “Europe”. We ask annotators to flag these cases,
where the suggested completion is more general
(less specific) than the original span.

Factual Correctness of completions is also im-
portant, since some works use completion meth-
ods for knowledge extraction (Petroni et al., 2019;
Jiang et al., 2020). To evaluate this, we first ask
annotators to mark whether the masked span is
a part of a specific fact. For example, “MLK,
(born [MASK])” should be marked as a fact, while

“he died aged [MASK]” shouldn’t. We find that
50.93% of the masked sentences are part of a fact10.
For the factual sentences, we ask the annotators to
label whether the proposed completion is factu-
ally correct. If they do not know, annotators are
instructed to use the web to verify the correctness.

Results are reported in Table 5. As expected,
the actual valid-completion percentage of the

10Recall that the evaluation data originates from both
Wikipedia and books.
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Model Valid % Valid Specific% Correct % Correct Specific %
ILM 52.2% 47.8% 9.4% 7.5%
T5-base 66.0% 49.0% 29.8% 18.5%
T5-3B 81.8% 66.8% 40.8%* 30.1%

BERT-Adapted-EMAT 84.1% 80.4%* 32.9% 31.6%

Table 5: Human evaluation results. Valid completions are ones that are grammatically correct and make sense.
Specific completions are completions that where not annotated to being more general than the original masked span.
Correct is the percentage of sentences labeled as facts that are valid completions and are also factually correct. *
marks that the difference between best and second best is statistically significant.

first completions is much higher than the accu-
racy@1 measured. An important observation is
that while checking for valid completions using
human-evaluation is obviously a more accurate
measure than accuracy@k, the two are correlated.
Models that perform well in one measure, do so
also in the other. This means accuracy@k is a good
proxy for the actual valid-completion measure.
Specifically, our method performs impressively
when annotating for validness as well, slightly bet-
ter than the much larger T5-3B. Finally, it seems
general purpose models like T5 tend to complete
general phrases more than our method. This is
likely due to the fact that during our MTC training,
the model sees the same amount of examples for
each phrase. Other methods see more examples of
general phrases, since these are more common in
the language.

As for factual correctness; while T5-3B com-
pletes more facts correctly than our methods, when
eliminating cases where the completion is general11

our method performs better. This is important since
general completions are not as interesting and can
be more easily acquired. It can be especially cru-
cial for knowledge extraction methods using these
models. For example, a method trying to extract
presidents with the sentence “US presidents such
as [MASK]” would benefit from completions like

“Obama” or “Trump” and not “the president” or
“this person” which are correct, but uninformative.

8 Related Work

Transformer-based LMs and MLMs (Peters et al.,
2018; Devlin et al., 2018) have revolutionized NLP
in the past couple of years. While most of the
impact has been achieved using these pretrained

11For example, for “Garson accepted the role, winning
[MASK].” original span is “the Academy Award for Best
Actress”. T5 completes “an academy award”- factually correct,
but more general than the original span. Our method tries to
pinpoint a specific award - a harder task. It completes “the
Academy Award for Best Picture” which is factually wrong.

models as a source of meaningful contextual em-
beddings, recent works are using these models for
the task they were pretrained for: Masked Lan-
guage Modeling (Petroni et al., 2019; Kushilevitz
et al., 2020; Lazar et al., 2021; Shani et al., 2021;
Jiang et al., 2020).

While most MLMs are capable of completing
multiple missing tokens simultaneously, they do so
in an unconditional manner, yielding unsatisfying
results. Therefore, some works using MLMs for
Masked Language Modeling simply restrict them-
selves to single token completions (Petroni et al.,
2019) while others use heuristics in order to gen-
erate multi token completions (Lazar et al., 2021;
Jiang et al., 2020).

Some attempts towards making MLMs predict
multi token units better by changing the masking
technique during training include masking spans
instead of tokens (Joshi et al., 2020) and masking
whole words (Cui et al., 2019), but these methods
still complete in an unconditioned manner during
inference. XL-net (Yang et al., 2019) avoids inter-
dependence between masked tokens using a Permu-
tation Language Modeling pretraining objective.

Similarly to our solution, extending the decoder
matrix with n-gram vocabulary items is done also
by Xiao et al. (2020), but for a different purpose:
they use them as an auxiliary signal during training,
in order to improve BERT’s single-token pretrain-
ing. They mask n-grams, and predict a specific
n-gram assigned id together with the single tokens
assembling the n-gram, as to improve the single-
token embeddings. The BERT model is pretrained
end to end and the n-gram embeddings are dis-
carded after pretraining and are not part of their
final model used during fine-tuning and inference.
While we share their extension of the decoder ma-
trix, the MTC task adds additional requirements:
to allow for easy MTC vocabulary support, we aim
for a short MTC training and inference, building
on the preexisting pretrained MLMs and avoiding
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the need to pretrain from scratch. In addition, our
solution does not distinguish between multi-token
and single token-phrases during training since both
are part of the completion vocabulary.

In Donahue et al. (2020), the ILM framework
is introduced. This is a framework for infilling,
a task similar to MTC. ILM is a GPT-2 (Rad-
ford et al., 2018) based solution, meaning the pre-
trained model used is a LM and not an MLM,
requiring it to adapt to a different task. Finally,
T5 (Raffel et al., 2020) was pre-trained for the
MTC task using a vast amount of data. It performs
well but requires a lot of training data, time and
memory, does not utilize existing MLMs and is not
available in many domains and languages.

9 Conclusions

We show MLMs can be adapted for multi token
completion even though they were trained for sin-
gle token completion. We presented two simple
but effective solutions that leverage the pretrained
MLMs and offer quick adaptations to new vocab-
ularies. The two solutions are trading-off perfor-
mance and size: 1) an extended matrix decoder
offering SOTA accuracy but size-dependent on the
completion vocabulary; 2) an RNN decoder with
slightly lower accuracy but size independent of the
vocabulary size. We also demonstrate the flexibility
of our approach to different vocabularies and do-
mains by evaluating it on the PubMed dataset and
showing that leveraging domain-pretrained MLMs
offers significant accuracy improvement. Finally,
we validate our results by conducting a human eval-
uation to account for valid completions that are not
measured using our automatic metric. It shows that
our extended matrix solution provides valid com-
pletions in 84% of the times, and can also correctly
handle facts in 30% of the times, comparatively to
the much larger T5-3B.

10 Limitations

The main limitation of our work is that it requires
a fixed and pre-determined completion vocabulary.
We acknowledge that this is a burden, and in some
cases such a vocabulary might not be available. We
believe a solution for adapting MLMs for MTC
without such a prerequisite is feasible, and this is a
goal for future work.

11 Ethical Considerations

Human Evaluation. In terms of fair-pay, the pay-
ment to the expert annotators was above the mini-
mum wage in the US. Consent was given from the
annotators to use their annotations and release them
as part of this research. The annotators were not
aware which solution generated each completion
and the completions were presented in a random or-
der as to avoid bias based on the order. To achieve
high quality results, the annotators had a calibra-
tion session as to better understand the guidelines
and requirements described in Appendix D.

Environmental. Compared to the massively
large language models such as T5-3B, our models
are lightweight and can be run on smaller more
energy efficient hardware such as a CPU. In addi-
tion, this becomes more apparent when consider-
ing the superior inference-latency of our solutions.
Since energy is composed of both time and power-
consumption, our lightweight models should waste
significantly less energy during inference.

Biases and Exclusion. The proposed models de-
pend on a fixed and pre-determined vocabulary of
potential multi-token completions, and the choice
of this set in itself may result in omissions, ex-
clusions under-representation of some groups or
concepts, and over-representation of others. Care
should be taken to select a set that alleviate such
biases to the extent possible. Also after the selec-
tion of the set, the algorithm does not guarantee
balanced, fair or unbiased selections of candidate
completions. Users should be aware of this when
designing algorithms whose predictions may influ-
ence certain groups.
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Multi Single Similar Random
new york city nyc chicago disco

fish tank aquarium zoo lena
every week weekly monthly fruit

extort blackmail scam cat
barman bartender waitress mckenzie

Table 6: Experiment data sample. Multi is the multi-
token phrase, Single is the single-token synonym, Simi-
lar is a term close in the sense2vec space and Random
is a random single-token word.

A Tokenizing an expanded vocabulary

We experiment to see how tokenizing time is af-
fected by larger vocabularies. We find that includ-
ing multi word phrases as tokens actually has a
worse effect then just adding more tokens, since
the tokenizer cannot assume a word is the maxi-
mal span for each token. We sample 10K random
sentences from Wikipedia and use huggingface’s12

implementation for BERT’s standard cased tok-
enizer. When using the original vocabulary (of
size ∼ 30K) the tokenization takes 4.23 seconds.
When expanding the vocabulary to our collected
vocabulary (of size ∼ 100K, including multi word
phrases) the tokenization time jumps to 119.26 sec-
onds using the same machine.

B MLMs Learn Multi-Token Phrases

In section 2, we report an experiment illustrating
that MLMs are capable of treating multi-token
phrases properly. The purpose and outline of the
experiment are described in 2, further details are
provided in this Appendix. BERT-base is the MLM
used.

B.1 Data collection

We curate a dataset of multi-token phrases that
have single-token synonyms. We start from Word-
net (Miller, 1995) synonyms, keep only synonyms
where one phrase is a single-token and the other is a
multi-token phrase using BERT’s tokenizer13, and
manually select synonyms which are interchange-
able. We collect 100 such synonyms. To each
pair of synonyms we add a similar phrase chosen
as the phrase closest to the single-token synonym

12https://huggingface.co/transformers/
model_doc/bert.html#berttokenizer. We used
the transformers package version 4.12.3.

13Multi-token phrases are not necessarily multi-word
phrases. Uncommon words are also split to multiple tokens.

in the sense2vec14 vector-space which is manu-
ally verified as not a synonym of the pair, and not
slang or an inappropriate phrase15. Finally, to each
triplet we add a random single-token word forming
a quadruple. A sample of the dataset is shown in
Table 6.

B.2 Experimental setup

For each quadruple in our dataset, we conduct the
following experiment: We collect k sentences con-
taining the multi-token phrase from Wikipedia. For
example, given the quadruple ("fish tank", "aquar-
ium", "zoo", "lena"), the multi-token phrase is "fish
tank" and one such sentence is "nemo is placed in
a fish tank in a dentist’s office.". We use each of the
collected sentences to compute a similarity score
between the phrases as follows.

Masked sentence per quadruple term. We first
form a masked sentence for the multi-token syn-
onym, by masking out a random NP-chunk which is
not the multi-token phrase (e.g. "[MASK] is placed
in a fish tank in a dentist’s office."). Then, we form
a masked sentence for each of the other quadru-
ple terms by replacing the multi-token phrase with
it (e.g. for the phrase "aquarium" we form the
sentence "[MASK] is placed in a aquarium in a
dentist’s office.")

Similarity between masked sentences. We use
the MLM to compute similarity between masked
sentences. Following (Kushilevitz et al., 2020),
for two masked sentences (mi,mj) we query the
MLM to complete the mask in each and compare
the predicted completions using the Sørenson-Dice
coefficient (Dice, 1945; Sørenson, 1948):

sim(mi,mj) =

|topq(MLM(mi)) ∩ topq(MLM(mj))|/q

Where MLM(m) is the list of tokens pro-
posed by the MLM to complete the mask in the
masked-sentence m, ranked by their probability.
topq(MLM(mi)) is the top q tokens in the list (q
being a parameter). An example for the similarity
measure process for a single sentence is shown in
Table 7.

14Sense2vec (Trask et al., 2015) is a twist on the word2vec
algorithm.

15Sense2vec is trained on data from Reddit, which yields
phrases that are slang or inappropriate. These will probably
not be significantly found in BERT’s training data (Wikipedia
and Books) and are therefore filtered out for this experiment.
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Phrase type Phrase Masked sentence MLM-suggestions Intersection Similarity

Multi-token
synonym

fish tank
"a glass fish tank
is sufficient for

keeping [MASK]."

1.’fish’, 2.’water’, 3.’ducks’,
4.’trout’,..., 8.’salmon’, ... ,
13.’eels’,..., 17.’turtles’,...

50 1

Single-token
synonym

aquarium
"a glass aquarium

is sufficient for
keeping [MASK]."

1.’animals’, 2.’fish’, 3.specimens’,
,..., 8.’turtles’, 9.’ducks’, ...,

15.’water’,..., 31.’eels’,...
33 0.66

Similar phrase zoo
"a glass zoo

is sufficient for
keeping [MASK]."

1.’animals’, 2.’birds’, 3.cats’,
,..., 8.’ducks’, 9.’pigeons’, ...,

30.’goats’,..., 37.’lions’,...
20 0.4

Random token lena
"a glass lena

is sufficient for
keeping [MASK]."

1.’warm’, 2.’dry’, 3.balance’,
4.’water’,..., 7.’it’, ...,

20.’safe’,..., 46.’records’,...
17 0.34

Table 7: Similarity measure example. Original sentence found in the corpus is "a glass fish tank is sufficient for
keeping tarantulas.". MLM-suggestions shown are a sample of the top 50 (we use q = 50) suggestions for mask
completions using BERT. The bold suggestions are ones that appear in the top-50 suggestions for the multi-token
synonym sentence. Intersection is the size of the intersection between the top-50 tokens suggested for the sentence
and the top 50 tokens suggested for the multi-token synonym sentence. Similarity is intersection/q.

hyperparameter RNN-based method EMAT method
Batch size 128 128
Learning rate 1e−3 1e−3

Epochs 10 2
GRU layers 2 -
Teacher forcing 0.5 -
Dropout 0.2 -

Table 8: Hyperparameters.

Similarity between terms. We define similarity
between two terms as the average similarity across
all pairs of masked sentences containing them.

B.3 Experiment results

For each quadruple, we compute the similarity be-
tween the multi-token phrase and the other quadru-
ple terms. We use k = 100 (number of sentences
for each quadruple) and q = 50 (number of top
tokens considered for the similarity measure). For
82 out of the 100 quadruples in the dataset, the
single-token synonym is the most similar to the
multi-token phrase. 15 times the most similar is the
similar phrase and only 3 times the most similar is
the random term, showing the effectiveness of the
similarity measure we use. The multi-token phrase
is most similar to the single-token synonym: the
average similarity measured between them is 0.766
while for the similar phrase it’s 0.715 and for the
random phrase it’s 0.632. Results show the MLM
treats multi-token phrases similarly to their single-
token synonyms. This corroborates the assumption
that the MLM is capable of storing information
about multi-token phrases.

Version a@1 a@5 a@50

lm_pretrain_unshared 7.79% 15.14% 28.10%
no_pretrain_shared 8.99% 16.67% 29.11%
lm_pretrain_shared 9.31% 17.15% 30.27%

Table 9: Ablation study. The results shown use BERT
as the Base MLM.

C Model Details

In Section 4, we briefly describe our adaptation
solutions. Herein, we describe the exact hyperpa-
rameters used and an ablation study of the RNN-
based method. Table 8 presents the hyperparam-
eters that were selected after tuning on the dev
set. The hyperparameters had a larger impact on
the RNN-based solution than the extended matrix
(extended-matrix) solution.

In addition, we test to check the effectiveness of
two components in our RNN-based solution. The
First is pre-training the GRU on a vanilla Language
Modeling task, we do this in order to give the model
some sense of understanding of the language dis-
tribution before training it on the MTC task. The
second component is sharing the embedding layers
between the original MLM and the added comple-
tion GRU. As seen in Table 9 both of these are
shown to help.

D Manual Annotation Instructions

In this task, you are given a sentence with a miss-
ing phrase (marked as ___), a correct completion
(which is not necessarily the only possible correct
completion) and a proposed completion. The com-
pleted sentence is the sentence that is formed by
planting the proposed completion in the location
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of the missing phrase. Please answer the following
questions:

1. Is the completed sentence grammatically cor-
rect and does it make sense? In this question,
ignore the factual correctness of the comple-
tion. For example, in the sentence "Barack
Obama was born in ___", any place or date is
a valid completion.

2. Is the proposed completion more general than
the given correct completion? For example,
the word "he" is more general than a spe-
cific name. The phrase "North America" is
more general than the phrase "New York". The
phrase "Los Angeles" is not more general than
the phrase "New York".

3. Is the missing phrase in the context of the
sentence a part of a specific fact (geographical,
physical, mathematical, etc.)? For example,
in the sentence "Barack Obama was born in
___" the missing phrase is a part of a fact. In
the sentence "He was born in ___" the missing
phrase is not a part of a specific fact because
"He" may refer to many different people.

4. If the answer to question 3 is yes, is the com-
pleted sentence factually correct? If you are
not sure, please use the web to verify.
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Abstract
Effectively scaling large Transformer models
is a main driver of recent advances in natu-
ral language processing. Dynamic neural net-
works, as an emerging research direction, are
capable of scaling up neural networks with
sub-linear increases in computation and time
by dynamically adjusting their computational
path based on the input. Dynamic neural net-
works could be a promising solution to the
growing parameter numbers of pretrained lan-
guage models, allowing both model pretrain-
ing with trillions of parameters and faster in-
ference on mobile devices. In this survey,
we summarize the progress of three types of
dynamic neural networks in NLP: skimming,
mixture of experts, and early exit. We also
highlight current challenges in dynamic neural
networks and directions for future research.

1 Introduction

Scaling up model capacity is an obvious yet ef-
fective approach for better performance in natu-
ral language processing (NLP) tasks (Brown et al.,
2020; Kaplan et al., 2020; Ghorbani et al., 2021;
Zhou et al., 2020b). However, the resulting in-
crease in computational complexity and memory
consumption becomes a bottleneck for scaling,
making these models hard to train and use. On the
other hand, it is not necessary to allocate the same
amount of computation to all instances. For ex-
ample, categorizing “I love you” as a positive sen-
tence does not require a model containing dozens
of Transformer layers. To resolve the aforemen-
tioned problems, dynamic neural networks have
been a significant thrust of recent research in NLP.
Dynamic networks can adjust their computational
path based on the input for better efficiency, mak-
ing it possible to train models with trillions of pa-
rameters and accelerate models in a low-resource
setting.

In this survey, we review the latest state of re-
search on three types of dynamic neural networks

(a) Skimming

Exit

Router

(b) Mixture of Experts

IC

IC Exit

(c) Early Exit

Figure 1: The three types of dynamic neural networks
summarized in this paper. They dynamically adjust
computation timewise, widthwise and depthwise, re-
spectively.

that have been adopted in NLP: skimming, mix-
tures of experts (MoE), and early exit, as illus-
trated in Figure 1. These three types of techniques
share a common idea of dynamically adjusting
computation with respect to input, to save com-
putation through bypassing unnecessary modules
in a large neural network. However, they imple-
ment the goal via different approaches. Skimming
was well-researched in the era of recurrent neural
networks (RNN). Skimming models save compu-
tation timewise by dynamically allocating compu-
tation to different time steps, based on the input
tokens. Since RNN models process the input se-
quence recurrently, it allows skimming models to
achieve a substantial acceleration, especially when
the sequence is long (Li et al., 2019). Different
from RNN, recent works on Transformers skip to-
kens between layers instead of time steps.

For Transformer models (Vaswani et al., 2017;
Devlin et al., 2019; Lan et al., 2020; Brown et al.,
2020), the input tokens are fed into the model
in parallel, while models have dozens of Trans-
former layers. This motivates the development of
MoE and early exit. MoE horizontally extends a
feedforward neural network (FFNN) with multiple
sub-networks. During inference, only one or a few
of these sub-networks will be activated for com-
putation, thus can save widthwise computation.
Early exit, on the other hand, terminates inference
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Dynamic
Models
for NLP

Skimming

Skipping and Early Stopping

Computation Reduction

Dynamic Hierarchical RNN

Mixture of Experts
Learned Routing

Unlearnable Routing

Early Exit

Confidence-based

Ensemble-based

Learning-based

Cascading

Figure 2: Taxonomy of dynamic neural networks for
NLP.

at an early layer, without exhausting full compu-
tational capacity, thus saves depthwise computa-
tion. Early exit techniques often insert a series of
lightweight classifiers which help decide when to
exit, based on an exit strategy.

Note that this stream of works is distinct from
static model acceleration, which is often referred
to as model compression, including knowledge
distillation, weight sharing, pruning and quantiza-
tion (Sanh et al., 2019; Xu et al., 2020; Lan et al.,
2020; Zafrir et al., 2019; Xu et al., 2021) (etc.,
see another survey (Xu and McAuley, 2022)). The
major difference is that the computational path in a
statically compressed model does not condition on
the input and is invariable for all examples in infer-
ence. These two streams of research are in fact or-
thogonal and recent works Schwartz et al. (2020),
Liu et al. (2020) and Zhu (2021) have shown that
static and dynamic approaches can be combined
for even faster inference and better performance.

To summarize, our contribution is two-fold:
(1) We review the latest studies on the topic of
dynamic neural networks for NLP by providing
a comprehensive comparison and organize them
with a new taxonomy, as shown in Figure 1. (2)
We analyze current challenges in dynamic neural
networks and point out directions for future re-
search.

2 Skimming

Skimming techniques, as summarized in Table 1,
skip some time steps or allocate different com-
putation on them. Intuitively, skimming matches
how human beings efficiently read text and ex-
tract information from it (Li et al., 2019). By em-

phasizing the important information within a se-
quence and ignoring parts with little importance,
skimming helps the model achieve faster inference
speed and better capture long-term dependencies.
The three categories of skimming are skipping and
early stopping, computation reduction, and dy-
namic hierarchical RNN, corresponding with three
motivations: to skip unimportant input, to allocate
less computation to unimportant input, and to in-
crease computation to important input only.

Skipping and Early Stopping Skipping and
early stopping aim to improve efficiency for a long
sequence by skipping some tokens or stopping
reading early. LSTM-Jump (Yu et al., 2017) is a
skipping mechanism to ignore irrelevant informa-
tion for natural language understanding (NLU). At
each step, the current states are used to compute
a “jumping softmax”, which decides how many
steps to jump forward and whether to stop reading.
LSTM-Jump employs policy gradient to train the
model to make non-differentiable discrete jump-
ing decisions. The reward is a binary function
which rewards a correct prediction and penalizes
an incorrect prediction of the label. Compared to
a standard LSTM, LSTM-Jump achieves better ac-
curacy with up to 6× speed-up. Skip RNN (Cam-
pos et al., 2018) introduces a binary gate to learn
whether to skip a state update. If the gate decides
to skip a time step, the hidden states will be di-
rectly copied without any update.

To stop reading early as needed, Rea-
soNet (Shen et al., 2017) introduces a terminal
state which decides whether to terminate early for
machine reading comprehension on each time step
at the token level. Jumper (Liu et al., 2018) first
splits a paragraph to several sub-sentences and en-
codes them into sentence embeddings. They then
apply early stopping at a sentence when the policy
network decides to stop reading. Li et al. (2019)
use eye-tracking devices and confirm that skipping
and early stopping are common when humans read
text. They propose Reading Inspired Model to
mimic the behaviors of humans, which allows the
model to decide whether to skip a single time step
or stop reading early. Yu et al. (2018) add a re-
reading operation to LSTM-Jump (Yu et al., 2017)
which allows the model to stay on the current time
step, allocating more computation to important in-
formation.

The aforementioned techniques can only go for-
ward, which makes it impossible to regret if hav-
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Method Decision based on Operation options

LSTM-Jump (Yu et al., 2017) hidden states skip multiple steps; stop reading
Skip RNN (Campos et al., 2018) states of the update gate; hidden states skip a single step
ReasoNet (Shen et al., 2017) hidden states stop reading
Jumper (Liu et al., 2018) input sentence; hidden states stop reading
RIM (Li et al., 2019) input sentence; hidden states skip a single step; stop reading
Yu et al. (2018) hidden states skip multiple steps; stop reading; re-read
LSTM-Shuttle (Fu and Ma, 2018) hidden states skip multiple steps; jump back multiples steps
Struc. Jump-LSTM (Hansen et al., 2019) hidden states stop reading; jump to next (,;) or (.!?)

PoWER (Goyal et al., 2020) attention drop tokens
TR-BERT (Ye et al., 2021) hidden states forward tokens
LAT (Kim and Cho, 2021) attention forward tokens
LTP (Kim et al., 2022) attention drop tokens
Transkimmer (Guan et al., 2022) hidden states forward tokens

VCRNN (Jernite et al., 2017) input token; hidden states partial update with zero-masked weights
Skim-RNN (Seo et al., 2018) input token; hidden states partial update with a small RNN

HM-RNN (Chung et al., 2017) states of the gates skip a single step; “flush”
FHRNN (Ke et al., 2018) query; hidden states update the upper RNN layer

Table 1: A summary of skimming techniques.

ing jumped over important information. LSTM-
Shuttle (Fu and Ma, 2018) proposes a bidirec-
tional shuttling mechanism, which can jump mul-
tiple time steps both forward and backward, allow-
ing the model to ignore unimportant information
and recover lost information if needed.

Structural information that naturally exists in
sentences can also play a role in skimming. Struc-
tural Jump-LSTM (Hansen et al., 2019) can jump
to the next word, next sub-sentence separator (a
comma or colon), next sentence end symbols (a
period, exclamation mark or question mark), or to
the end of the text (i.e., stop reading).

In the era of Transformers, there have been
works attempting to reduce computation by either
skip tokens at higher layers or forward tokens to
higher layers. The PoWER-BERT model (Goyal
et al., 2020) reduces the number of tokens pro-
cessed by each Transformer layer based on their
attention scores. The number of tokens to be
dropped, referred to as the "schedule," is opti-
mized by combining the sparsity of a soft mask
layer with the original loss function. This results
in an improved balance between accuracy and pro-
cessing time. TR-BERT (Ye et al., 2021) uses
a dynamic approach to determine which tokens
to skip, using reinforcement learning to train the
model with a reward system that prioritizes clas-
sifier confidence while also penalizing the number
of tokens retained. In contrast to PoWER-BERT,
TR-BERT passes the skipped tokens to the final
layer rather than discarding them. The Length-
Adaptive Transformer (LAT, Kim and Cho, 2021)

utilizes LengthDrop to randomly skip tokens dur-
ing pretraining, aiming to close the gap between
pretraining and fine-tuning. The schedule for LAT
is found through an evolutionary search algorithm.
LTP (Kim et al., 2022) trains a threshold for each
Transformer layer, instead of following a predeter-
mined schedule. It simply drops tokens with atten-
tion scores lower than the learned threshold. Tran-
skimmer (Guan et al., 2022) incorporates a skim
predictor module, consisting of a small MLP and
Gumbel-Softmax reparameterization, before each
layer. This module outputs a mask to determine
whether a token should be dropped, and a skim
loss is used to optimize the ratio of skipped tokens
to total tokens, promoting sparsity.

Computation Reduction Different from skip-
ping, computation reduction applies a reduced
computational workload for some time steps in-
stead of skipping it completely. VCRNN (Jernite
et al., 2017) explores a scheduler to decide which
proportion of computation to use for each time
step. Upon making the decision, only the corre-
sponding proportion of the weight matrix will be
used to update the hidden states while the rest part
of the weight matrix will be masked out with zero.

Instead of using part of weights to update the
hidden states, Skim-RNN (Seo et al., 2018) has a
big RNN and a separate small RNN. At each time
step, the model decides whether to read or skim
based on hidden states from the last time step and
the input token. If the model decides to skim, the
small RNN will update only a fraction of the hid-
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den states. Otherwise, a regular full update will be
conducted by the big RNN.

Dynamic Hierarchical RNN Different from the
aforementioned two categories of skimming, dy-
namic hierarchical RNN can increase computa-
tion by calling the upper layer RNN when needed.
HM-RNN (Chung et al., 2017) automatically dis-
covers the hierarchical multi-scale structure in the
data for a hierarchical RNN architecture. In addi-
tion to the update and copy operations as in Skip
RNN (Campos et al., 2018), they add a flush oper-
ation which ejects the summarized representation
of the current time step to the upper layer and re-
initializes the states for the next time step.

In question answering, only a small portion of
tokens are relevant and can be used to answer the
question while the rest can be safely skimmed.
Based on this observation, Focused Hierarchical
RNN (Ke et al., 2018) aims to only pick up infor-
mation that is relevant to the query for question an-
swering. It applies a binary gate to control whether
to update the upper layer of the RNN, based on the
current hidden states of the lower-level RNN and
the question embedding.

3 Mixture of Experts

Increasing the number of parameters in a model
often leads to increased computation and mem-
ory consumption. To take the advantages of pa-
rameter scaling without a proportional increase in
computation, mixture of experts (MoE) (Jacobs
et al., 1991) is introduced to large language mod-
els, as summarized in Table 2. In these models,
a layer typically contains multiple sub-networks
(i.e., “experts”). During inference, only part of
these experts will be activated on a per-example
basis.

The key element of MoE methods is the rout-
ing mechanism. The routing mechanism has to be
lightweight, not to significantly slower the speed
of the model. We categorize MoE methods into
two groups: learned routing and unlearnable rout-
ing. Learned routing often requires some load bal-
ancing mechanisms to ensure that all experts are
trained with enough examples thus are useful dur-
ing inference. Unlearnable routing usually slightly
underperforms learned routing but does not re-
quire complicated load balancing.

MoE Layers with Learned Routing A straight-
forward idea to implement MoE is to learn a router

to allocate inputs to experts. Sparsely-Gated MoE
layer (Shazeer et al., 2017) contains up to thou-
sands of feed-forward sub-networks with a train-
able gating network which determines a sparse
combination of these experts to use for each ex-
ample. There are two major challenges to ad-
dress: (1) Sparsity. The gating network pre-
dicts a softmax weight for the experts based on
the input. The gating network is trained by sim-
ple back-propagation, together with other parts
of the model. Then, only the top-k experts in
the layer will be activated based on the softmax
prediction of the gating network. They insert
one MoE layer between stacked LSTM layers and
achieve improvement on language modeling and
machine translation tasks. (2) Load balancing.
Shazeer et al. (2017) observe a self-reinforcing
phenomenon that the gating network tends to con-
verge to a state where it always produces large
weights for the same few experts. They resolve
the problem by defining the importance of an ex-
pert relative to a batch of training examples to be
batch-wise sum of the gate values for that expert.
Then, they introduce an additional loss, the square
of the coefficient of variation of the set of impor-
tance values, to encourage a more balanced update
during training. Besides encouraging a balanced
update, the authors also introduce a loss function
with a smooth estimator that estimate the number
of examples assigned to each expert for a batch
of inputs, to encourage experts to receive roughly
equal numbers of training examples.

GShard (Lepikhin et al., 2021) enables scal-
ing up multilingual neural machine translation
Transformer beyond 600 billion parameters. It
adapts Sparsely-Gated MoE (Shazeer et al., 2017)
to Transformer (Vaswani et al., 2017) by replac-
ing every other feed forward layer with an MoE
layer, which routes to top-2 experts. When scal-
ing to multiple devices, the MoE layer is sharded
across devices, i.e., each device has different al-
located experts, while all other layers are repli-
cated. To achieve workload balance, GShard em-
ploys a threshold, namely expert capacity, to limit
the maximum number of tokens processed by one
single expert. They also introduce a local group
dispatching mechanism, which partitions all to-
kens in a training batch evenly into groups to be
processed independently in parallel, to balance
the overall workload. Following (Shazeer et al.,
2017), they use an additional loss to enforce even
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Method Base Model Sparsity Load Balance

Sparsely (Shazeer et al., 2017) LSTM top-k auxiliary loss
GShard (Lepikhin et al., 2021) Transformer (NMT) top-2 expert capacity; local group dispatching; auxiliary loss; random routing
Switch (Fedus et al., 2021) Transformer (T5) top-1 expert capacity; auxiliary loss
BASE (Lewis et al., 2021) Transformer (GPT) top-1 linear assignment
M6-T (Yang et al., 2021) Transformer (M6) k top-1 expert capacity
DTS (Nie et al., 2021) Transformer (GPT) dynamic sparsity scheduler

Hash (Roller et al., 2021) Transformer hash deterministic hash
THOR (Zuo et al., 2022) Transformer (NMT) random random selection

Table 2: A summary of Mixture of Experts (MoE) methods.

allocation for experts. Additionally, they propose
a random routing mechanism, which only routes
to the second-best expert with probability propor-
tional to its weight, to simplify sparse training.

Switch Transformer (Fedus et al., 2021) aims to
simplify the Sparsely-Gated MoE (Shazeer et al.,
2017) for efficiency and performance. They pro-
pose a Switch Layer which only routes to one ex-
pert at a time, to reduce gating computation, batch
size and communication costs. Switch Trans-
former inherits expert capacity and an auxiliary
load balancing loss from GShard (Lepikhin et al.,
2021). Combined with low-precision training,
compared to T5-Base and T5-Large (Raffel et al.,
2020), Switch Transformer obtains up to 7× in-
creases in pretraining speed with the same com-
putational resources. They further scale Switch
Transformer to more than 1.5 trillion parameters
and achieve 4× speed-up over T5-XXL.

The Balanced Assignment of Sparse Experts
(BASE) layer (Lewis et al., 2021) formulates
token-to-expert allocation as a linear assignment
problem and solves it with the auction algo-
rithm (Bertsekas, 1992). This allows an optimal
assignment in which each expert receives an equal
number of tokens, improving efficiency and get-
ting rid of the expert capacity and auxiliary loss in
previous works. The experiments show that BASE
layers are more efficient for training compared to
Sparsely-Gated MoE layers (Shazeer et al., 2017)
and Switch Layers (Fedus et al., 2021), and can
successfully learn a good balanced routing with-
out any auxiliary balancing loss.

M6 (Lin et al., 2021) is a multi-modal mul-
titask Transformer, trained in the same way as
Switch Transformer (Fedus et al., 2021), scal-
ing up to 100B parameters. Following this, M6-
T (Yang et al., 2021) splits experts into k pro-
totypes (i.e., groups of experts). In each for-
ward pass, each token is sent to the k proto-
types, within which the top-1 routing is done lo-

cally. The experiments demonstrate this “k top-1”
strategy outperforms the top-1 routing in Switch
Transformer (Fedus et al., 2021) while being more
computation-efficient than “top-k” routing. They
also claim that the load balancing loss may be inef-
fective for improving the performance of an MoE
model, although it can indeed help balance the
workload. They subsequently train a 1 trillion pa-
rameter model with the finding.

Dense-to-Sparse gate (Nie et al., 2021) begins
as a dense gate that routes tokens to all experts
then gradually learns to become sparser and route
tokens to fewer experts, demonstrating higher
training efficiency in experiments. Their experi-
ments confirm the finding in Yang et al. (2021) that
an auxiliary load balancing loss does not improve
the model performance.

MoE Layer with Unlearnable Routing Al-
though learning-based routing has shown effec-
tiveness only with the help of complicated load
balancing mechanisms, recent studies have at-
tempted to get rid of those. Hash Layer (Roller
et al., 2021) simplifies routing by using a
parameter-free hashing function to route tokens
to specific experts. This design eliminates the
need for a load balancing loss and sophisticated
assignment algorithms. They also study the per-
formance of different hashing techniques, hash
sizes and input features, and conclude that bal-
anced and random hashes focused on the most lo-
cal features work best. The experiments show that
a Hash Layer achieves comparable performance
with a Switch Layer (Fedus et al., 2021) and BASE
Layer (Lewis et al., 2021).

THOR (Zuo et al., 2022) is a special form of
MoE layer, which completely discards the con-
ditional routing mechanism and instead optimizes
the consistency between a randomly selected pair
of experts. During inference, one expert will be
randomly selected to be activated.
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Applications and Analysis GLaM (Du et al.,
2021) trains a family of GPT-style language
models with up to 1.2 trillion parameters using
GShard (Lepikhin et al., 2021). CPM-2 (Zhang
et al., 2022b) trains a large Chinese language
model with 198 billion parameters with BASE lay-
ers (Lewis et al., 2021).

Artetxe et al. (2021) conduct a detailed empir-
ical study of how autoregressive MoE language
models scale compared to dense models. They
find MoEs to be substantially more efficient with
the exception of fine-tuning. MoE models can
match the performance of dense models with 25%
of computation in a low-resource setting. Al-
though the advantage fades at scale, their largest
MoE model with 1.1 trillion parameters can con-
sistently outperform its dense counterpart with the
same amount of computation. Clark et al. (2022)
examine the scaling law of BASE Layer (Lewis
et al., 2021), Hash Layer (Roller et al., 2021) and
earlier Reinforcement Learning-based routing al-
gorithms providing suggestions for best-practices
in training MoE models.

Zhang et al. (2021) propose MoEfication to split
feedforward neural networks (FFNN) in a trained
large model to experts. They find that a T5-
Large (Raffel et al., 2020) model with 700 million
parameters only activates 5% neurons for 80% in-
puts on a downstream task, indicating high redun-
dancy within large pretrained language models. To
transform a pretrained language model to an MoE
model, they first construct a co-activation graph
for each FFNN and then divide the graph into sub-
graphs with strong internal connections with graph
partitioning algorithm. Each subgraph forms an
expert. They train a router with oracle best routing
for training data. Then, they further fine-tune the
resulted model for better performance.

4 Early Exit

Early exit techniques aim to terminate model in-
ference in early layers, to save computation and
sometimes improve performance by resolving the
overthinking problem (Kaya et al., 2019), i.e., pos-
sible performance degradation at a later layer. It
can be useful especially in the era of pretrained
language models (PLM), since increasing the size
of PLMs can often lead to better performance, al-
though a smaller model can already predict most
examples (i.e., “easy examples”) correctly.

The main idea of early exit is to exit inference

at an earlier layer, rather than the last layer. Early
exit often involves a series of internal classifiers
inserted into a large network, providing signals
for early exiting. The core of early exit methods
is the exit criterion. Based on their exit strate-
gies, we categorize the early exit methods into
three classes: confidence-based, ensemble-based
and learning-based, as listed in Table 3.

Despite better performance, speed and adversar-
ial robustness (Zhou et al., 2020a), an additional
benefit is that the speed-accuracy trade-off can be
adjusted as needed by tuning the exit threshold
(θ in Table 3), without the need of retraining the
model. A main drawback is that early exit is of-
ten applied on a per-instance basis, meaning that
to maximize the speed-up ratio, a small batch size
(often 1) has to be used.

Confidence-based Early Exit Early works for
early exit in computer vision (Park et al., 2015;
Teerapittayanon et al., 2016; Kaya et al., 2019)
often fall into this category. They define a met-
ric as the proxy for confidence of a model pre-
diction. The model exits early when the confi-
dence hits a predefined threshold. DeeBERT (Xin
et al., 2020b) applies BranchyNet (Teerapit-
tayanon et al., 2016) to BERT inference. The
training for DeeBERT is two-stage: they first
train BERT on downstream tasks following stan-
dard fine-tuning. Then, they freeze the parame-
ters of the Transformer and insert a linear classi-
fier (i.e., internal classifier) after each Transformer
layer. They train the classifiers by minimizing
the sum of their cross-entropy loss. For infer-
ence, the model exits early when an internal clas-
sifier outputs a prediction probability distribution
that has an entropy lower than a predefined thresh-
old. RightTool (Schwartz et al., 2020) jointly fine-
tunes BERT with internal classifiers. They use
the temperature-calibrated maximum class prob-
ability as confidence. FastBERT (Liu et al., 2020)
first trains the BERT backbone and the final clas-
sifier. Then, they distill the final classifier layer
to the internal classifiers (Hinton et al., 2015).
For inference, the model exits when the entropy
of a prediction is below the threshold. Rome-
BERT (Geng et al., 2021) provides a simple fix
for learning internal classifiers efficiently. Be-
sides self-distillation as in FastBERT, they pro-
pose gradient regularization (GR) to facilitate dis-
tillation. SkipBERT (Wang et al., 2022) caches
pre-computed representation of text chunks to re-
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Method Internal classifier training Exit criterion

DeeBERT (Xin et al., 2020b) two-stage; sum of CE loss entropy < θ
RightTool (Schwartz et al., 2020) joint; sum of CE loss calibrated max class probability > θ
FastBERT (Liu et al., 2020) two-stage; self-distillation entropy < θ
RomeBERT (Geng et al., 2021) joint; self-distillation + GR entropy < θ
SkipBERT (2022) joint; weighted sum of CE + KD max class probability > θ

PABEE (Zhou et al., 2020a) joint; weighted sum of CE loss patience (#consistent prediction > θ )
Voting (Sun et al., 2021) joint; sum of CE + diversity loss accumulated votes > θ
LeeBERT (Zhu, 2021) joint; auto-weighted sum of CE + KD loss patience (#consistent prediction > θ )
Past-Future (Liao et al., 2021) joint; weighted sum of CE + imitation learning entropy < θ
PCEE-BERT (2022a) joint; weighted sum of CE patience (#consistent IC confidence > θ)

BERxiT (Xin et al., 2021) alternate; sum of CE loss estimated confidence > θ
CAT (Schuster et al., 2021) joint; avg. of CE loss estimated conformity > θ

CascadeBERT (Li et al., 2021a) standard model FT with confidence calibration calibrated max class probability > θ

Table 3: A summary of early exit methods. θ is a predefined threshold for exiting. This table is extended from a
table in Xu and McAuley (2022).

place lower BERT layers and uses confidence-
based early exit for higher layers to achieve maxi-
mum acceleration.

Ensemble-based Early Exit One drawback in
confidence-based early exit is wasted computa-
tion. That is to say, if the confidence of an internal
classifier does not satisfy the exit criterion, it will
be disregarded. Ensemble-based early exit recy-
cles these predictions and considers output from
multiple internal classifiers to make better predic-
tions. Based on the similarity between overfitting
and overthinking, PABEE (Zhou et al., 2020a) bor-
rows early stopping from model training. They
first jointly train the internal classifiers with BERT
by a weighted sum of cross-entropy losses that as-
signs larger weights for upper classifiers. For in-
ference, the model exits when k consecutive in-
ternal classifiers make the same prediction. Other
than improvement on performance and efficiency,
they find that PABEE can improve adversarial ro-
bustness, which they attribute to the ensemble ef-
fect. Sun et al. (2021) further introduce a diver-
sity loss that encourages internal classifiers to have
a diverse predicted probability distribution. They
propose a voting mechanism to ensemble the in-
ternal classifiers by exiting early when a class has
accumulated more votes than the threshold. In-
terestingly, LeeBERT (Zhu, 2021) adopts the op-
posite strategy: they promote consistency across
internal classifiers by distilling them to each other.
However, they introduce a learnable weight for the
cross-entropy loss of each classifier and the distil-
lation loss between each pair. They optimize these
weights by a cross-level optimization algorithm.

They adopt PABEE’s patience-based strategy for
exiting. Liao et al. (2021) train linear transforma-
tion layers called “imitation learners”, to approx-
imate the hidden states of future layers based on
current hidden states. For inference, the predic-
tion after each layer is calculated by mixing the
past predictions and the future predictions of the
imitation learners. Entropy is used as the exit cri-
terion. PCEE-BERT (Zhang et al., 2022a) borrows
from both ensemble-based exit and confidence-
based methods. The inference is terminated when
multiple layers are confident.

Learning-based Early Exit Another stream of
research is to learn a criterion for early exiting.
BERxiT (Xin et al., 2021) alternates between joint
fine-tuning and two-stage fine-tuning by freezing
parameters of Transformer and the final classifier
for even-numbered iterations and unfreezing them
for odd-numbered iterations. They also train a
linear layer called a learning-to-exit (LTE) mod-
ule to predict whether the current internal clas-
sifier makes the correct prediction. It takes the
hidden states as input and outputs a confidence
score, which is used to decide whether to exit.
CAT (Schuster et al., 2021) introduces a “meta
consistency classifier” to predict whether the out-
put of an internal classifier conforms to the final
classifier and exits when the consistency classifier
predicts a certain level of conformity.

Cascading Cascading can be seen as a special
form of early exit, performed at the model level.
Li et al. (2021a) find that shallow features and in-
ternal classifiers in the first few layers of BERT
utilized by early exit methods like DeeBERT (Xin
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et al., 2020b) are not sufficient and reliable, un-
derperforming a fine-tuned BERT with the same
number of layers. Therefore, they propose to use
a suite of complete models with different num-
bers of layers for cascading. CascadeBERT ex-
ecutes models one by one, from the smallest to
the largest. It stops when a model outputs a confi-
dence score (calibrated maximum class probabil-
ity) that reaches the threshold.

Applications Although early exit is originally
developed for classification, there have been
works extending it to more tasks and settings. Li
et al. (2021b) propose Token-Level Early-Exit that
targets early exiting for sequence labeling. They
use the maximum class probability as confidence
on a per-token basis. Once the confidence hits the
threshold, the hidden states of the corresponding
tokens will be frozen and directly copied to up-
per layers. These exited tokens will not attend
to other tokens at upper layers but can still be at-
tended by other tokens. The model completely ex-
its when every token exits. A similar idea is also
presented in Elbayad et al. (2020) and Liu et al.
(2021b) where hidden states of some positions can
be frozen and directly copied to upper layers, al-
though the former is focused on generation and
the latter is for classification. Xin et al. (2020a)
apply DeeBERT (Xin et al., 2020b) to document
ranking and set different thresholds to the negative
and positive classes for early exiting, to accommo-
date the imbalanced class distribution in document
ranking. ELUE (Liu et al., 2021a) is a benchmark
which evaluates the Pareto Front of early exit mod-
els on the FLOPs-performance plane. They pro-
vide a BERT-like baseline with jointly pretrained
internal classifiers, to mitigate the gap between
pretraining and fine-tuning.

5 Challenges and Future Directions

Evaluation Evaluating dynamic neural net-
works can be difficult since we cannot pre-define
a few break points to compare different methods
at the exact same amount of computation or time.
ELUE score (Liu et al., 2021a) may be a promising
solution to this problem by considering both com-
putation and performance, depicting the Pareto
Front. Besides, different works have different cal-
culation for speed-up ratio. For example, some
works use the ratio of layers involved in computa-
tion to estimate speed-up ratio (Zhou et al., 2020a;
Sun et al., 2021; Liao et al., 2021). This can

be misleading since internal classifiers introduce
extra computational costs, especially when more
complicated mechanism introduced, e.g., future-
layer imitation (Liao et al., 2021). Also, the re-
ported speed of MoE models, greatly differs on
different hardware and distribution settings, mak-
ing it hard to compare across papers.

Data Parallelism One drawback of dynamic
neural networks is their inefficiency on data paral-
lelism. To be specific, MoE methods introduce ex-
tra communication costs for dynamic routing and
could be a bottleneck for efficiency. Skimming
and early exit methods often employ an “online
inference” setting where the batch size is fixed to
1, to achieve maximum acceleration. However, for
batched inference, the efficiency of these methods
will drastically degrade, since the already-exited
instances will have to wait all instances to exit,
which causes a low parallelism and low utilization
of GPU.

Optimized Runtime Since dynamic neural net-
works are an emerging type of neural net-
works, most hardware and libraries are not well-
optimized for these models. For example, sparse
matrix multiplication in MoE needs specialized
hardware and software support to achieve its
theoretical efficiency. Also, current dynamic
neural networks are often implemented in ea-
ger execution, which prevents them from low-
level optimization of graph execution. There
have been works exploring optimized runtime for
MoE (Shazeer et al., 2018; Jia et al., 2020; He
et al., 2021; Rajbhandari et al., 2022) and early
exit (Paul et al., 2019) while more to be done in
the future.

Theoretical Analysis and Support While the
dynamic neural networks have demonstrated em-
pirical improvement over static counterparts, dy-
namic networks are not solidly backed by theoret-
ical analysis. For example, the theoretical analysis
in PABEE (Zhou et al., 2020a) is based on an as-
sumption that internal classifiers are independent
to each other, which is unrealistic. More research
should be done from the perspective of optimiza-
tion and effect of data distribution on dynamic
neural networks.

Explainability The decision-making process of
the dynamic neural networks can be important to
explain the model prediction and even understand
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more fundamental research questions in machine
learning, including scaling law and generalization.
Can we use skimming to explain sequence classi-
fication? Is it consistent with attention-based ex-
planation (Xu et al., 2015)? What does each ex-
pert in MoE learn and what makes them different?
Why does a lower internal classifier make different
prediction from an upper classifier despite equally
trained with the same objective? These questions
warrant further exploration, from both data and
model perspectives.

Limitations

A limitation of this survey is that we do not draw
a direct quantitative comparison for the meth-
ods surveyed in this paper since different meth-
ods have their own accuracy-speed curves, with
their own unique limitations (e.g., many early exit
methods can only handle a batch size of 1). Also,
we do not discuss some works in depth and in de-
tail due to space limit.
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Abstract
Activation functions can have a significant im-
pact on reducing the topological complexity of
input data and therefore, improving a model’s
performance. However, the choice of activa-
tion functions is seldom discussed or explored
in Transformer-based language models. As
a common practice, commonly used activa-
tion functions like Gaussian Error Linear Unit
(GELU) are chosen beforehand and then re-
main fixed from pre-training to fine-tuning. In
this paper, we investigate the impact of activa-
tion functions on Transformer-based models by
utilizing rational activation functions (RAFs).
In contrast to fixed activation functions (FAF),
RAFs are capable of learning the optimal ac-
tivation functions from data. Our experiments
show that the RAF-based Transformer model
(RAFT) achieves a better performance than its
FAF-based counterpart (FAFT). For instance,
we find that RAFT outperforms FAFT on the
GLUE benchmark by 5.71 points when using
only 100 training examples and by 2.05 points
on SQuAD with all available data. Analyzing
the shapes of the learned RAFs further unveils
that they vary across different layers and dif-
ferent tasks; opening a promising way to better
analyze and understand large, pre-trained lan-
guage models.1

1 Introduction

Activation functions introduce non-linearity and
increase neural networks’ representational capac-
ity, and therefore, play an essential role in design-
ing deep learning models (Nwankpa et al., 2018;
Sharma et al., 2020; Dubey et al., 2022). Naitzat
et al. (2020) explain the importance of activation
functions by proposing to consider data as a topol-
ogy with its own shape. They empirically show that
activation functions accelerate the data topology
transformation through different layers of a neu-
ral network to simplify its complexity and make

1Code, models, and datasplits are available on GitHub
https://github.com/UKPLab/2022-RAFT.

it linearly separable in the output space. Their ex-
periments show that choosing the right activation
function can have a significant impact on the over-
all performance.

While any activation function can be used with
Transformers (Vaswani et al., 2017), their choice
is made before pre-training and remains fixed af-
terwards. Hence, the inductive bias an activa-
tion function imposes on the model cannot be ad-
justed during pre-training or fine-tuning. As many
Transformer-based models are pre-trained on a
large amount of data, and changing the activation
function for or during fine-tuning may negatively
impact the performance2. Moreover, the simple
case of finding the optimal combination of k differ-
ent activation functions in n different feedforward
layers results in kn possible combinations and be-
comes intractable; e.g., 531,441 experiments for
a 12-layer BERT model and three different acti-
vation functions. As a result, most Transformer-
based pre-trained models adopt the GELU activa-
tion function that has been initially used for the
BERT model (Devlin et al., 2019).

To overcome the limitation of using a potentially
suboptimal activation function that remains fixed
during training, we propose to use a learnable ac-
tivation function, namely, the rational activation
function (RAF, Molina et al. 2020). The RAF is a
universal function approximator that can approxi-
mate any existing activation function. The advan-
tage of using RAFs over fixed activation functions
(FAF) such as ReLU or GELU, is that the model
can learn the optimal activation function from the
data during (pre)training without the need to con-
sider the choice of activation function as an addi-
tional dimension during hyperparameter tuning.3

2In our preliminary experiments, the performance of BERT
becomes worse on downstream tasks when the activation func-
tions are changed after pre-training.

3Liu et al. (2019a) consider different activation functions
during Neural Architecture Search (Zoph and Le, 2017), but
this becomes quickly infeasible for compute-intensive experi-
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To evaluate the effectiveness of RAFs, we pre-train
two encoder-only Transformers using RAF and
GELU respectively, within an academic budget.
In our experiments, we find that:

• The RAF-based Transformer (RAFT) learns
different activation functions at different lay-
ers after pre-training with shapes that differ
from frequently used activation functions.

• During fine-tuning, RAFT outperforms its
fixed activation function counterpart (FAFT)
on the general language understanding bench-
mark (GLUE) and the SQuAD machine read-
ing comprehension dataset in various settings.

• After fine-tuning, the learned RAFs of the top
layers are more task-specific and change the
most, which are corresponding to layer be-
haviors of Transformers according to prior
work (Mosbach et al., 2020; Merchant et al.,
2020; Zhou and Srikumar, 2022). This pro-
vides new opportunities to analyze language
models with respect to their learned activation
functions at different layers for different tasks.

• RAFT boosts the performance when com-
bined with a parameter-efficient fine-tuning
approach, i.e., BitFit (Ben Zaken et al., 2022),
which improves the model performance by
3.08 points in full-data scenario.

2 Related Work

Activation functions. There exists various prede-
fined activation functions such as Sigmoid, Hyper-
bolic Tangent (Tanh), Rectified Linear Unit (ReLU,
Fukushima 1969), and Gaussian Error Linear Unit
(GELU, Hendrycks and Gimpel 2016). There are
also approaches that leverage automatic search to
obtain optimal combinations of several base acti-
vation functions in a predefined search space (Ra-
machandran et al., 2018; Manessi and Rozza, 2018;
Sütfeld et al., 2020; Bingham and Miikkulainen,
2022; Bingham et al., 2020). For instance, Ra-
machandran et al. (2018) discovered the Swish ac-
tivation function by using this method. Bingham
et al. (2020) show that further extending the search
space using evolutionary algorithms can also lead
to an improvement. Finally, several search-based
works investigate how to train a combination of a
set of activation functions to better adapt to spe-
cific tasks and architectures (Manessi and Rozza,

ments such as pre-training large language models.

2018; Sütfeld et al., 2020; Bingham and Miikku-
lainen, 2022). One substantial drawback of these
search-based methods is that they are computation-
ally expensive. Especially for pre-trained language
models where pre-training is costly, it is infeasible
to perform a hyperparameter search for selecting
the best activation function (even more so their
combination). In contrast, the flexibility of ratio-
nal activation functions (RAFs) allows them to be
trained along with the model parameters in an end-
to-end fashion (Molina et al., 2020). Therefore,
they can learn the optimized activation function
from data during training. RAFs have been suc-
cessfully used in deep reinforcement learning for
improving plasticity (Delfosse et al., 2021), cell
detection models in biology (Prangemeier et al.,
2020), and adapter architectures (Moosavi et al.,
2022).

Model Act. Funct.

BERT (Devlin et al., 2019) GELU
GPT-1 (Radford et al., 2018) GELU
RoBERTa (Liu et al., 2019b) GELU
XLNet (Yang et al., 2019) GELU
ALBERT (Lan et al., 2020) GELU
GPT-2∗ (Radford et al., 2019) GELU
Megatron-LM (Shoeybi et al., 2019) GELU
ELECTRA+ (Clark et al., 2020) GELU
T5 (Raffel et al., 2020) ReLU
T5v1.1 (Raffel et al., 2020) GeGLU
DeBERTa+ (He et al., 2021) GELU
BART (Lewis et al., 2020) GELU
GPT-3∗ (Brown et al., 2020) GELU
Jurassic∗ (Lieber et al., 2021) GELU
Gopher∗ (Rae et al., 2021) GELU
Megatron-Turing NLG∗ (Smith et al., 2022) GELU
Chinchilla∗ (Hoffmann et al., 2022) GELU
CANINE+ (Clark et al., 2022) GELU
LaMBDA (Thoppilan et al., 2022) GeGLU
OPT (Zhang et al., 2022) ReLU

Table 1: Activation functions in different NLP Trans-
former models. Models marked by ∗ do not explic-
itly state the activation function but refer to GPT-1 as
the base architecture (+ refers to BERT respectively).
GeGLU is a variant that combines GELU and GLU.

Frequently used activation functions in NLP.
Table 1 shows a list of 20 different language models
that have been introduced after BERT. As we see,
the vast majority of the works (80%) use the GELU
activation function. Moreover, many works even
do not explicitly state the used activation function
(45%). There are only a few works that investigate
the impact of activation functions on pre-trained
Transformer models. So et al. (2021) leverage au-
tomatic search methods to identify more efficient
Transformer architectures. They find that a combi-
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nation of squared ReLU used in the feedforward
network (FFN) layer and a convolution layer added
in self-attention can lead to a substantial boost in
performance. Shazeer (2020) replace the FFN in
the Transformer with a gated linear unit (GLU,
Dauphin et al. 2017) combined with different acti-
vation functions and find a higher performance dur-
ing pre-training as well as on downstream tasks. In
our work, we do not change the structure of FFNs
and only replace activation functions in them.

Closest to our work is the work by Moosavi
et al. (2022) who investigate the use of RAF in
adapters (Houlsby et al., 2019); i.e., lightweight
layers that are added on top of pre-trained Trans-
former layers. They propose adaptable adapters
that consist of RAFs and learnable switches to se-
lect a subset of adapter layers during training. They
show that using both RAFs and a fewer number of
adapter layers results in considerable performance
gains, especially in low-data settings. However,
only using RAF instead of ReLU does not result in
a considerable gain in their experiments. Further-
more, adapter layers are only added and updated
during fine-tuning, as a result using RAF in adapter
layers has a limited impact compared to already
applying them for pre-training.

In this work, we show that using RAF in Trans-
former layers brings additional flexibility to the
model to learn the optimized activation function
for each of its layers during training, and that this
additional flexibility benefits both pre-training and
fine-tuning steps.

3 RAFT: RAF-based Transformers

We adopt the BERT architecture (Devlin et al.,
2019) where all activation functions in feed-
forward layersActivation(W1X)W2 are replaced
with rational activation functions (illustrated in Ap-
pendix A). The equation of rational activation func-
tion F (x) is as below:

F (x) =
P (x)

Q(x)
=

∑m
j=0 ajx

j

1 + |∑n
k=0 bkx

k| (1)

Where a and b are learnable parameters, and m
and n are degrees of F (x), which decide the com-
plexity and fitting ability of rational functions. Fol-
lowing Molina et al. (2020), we use the safe PAU
formulation that further stabilizes training.

Selecting m and n. Similar to Taylor series, the
higher the degrees m and n are, the more precise

is the approximation of rational functions. How-
ever, indefinitely increasing the degrees also means
adding more complexity and increasing training
time. The challenge is to find suitable degrees
that leads to rational functions with a strong fitting
ability while keeping their complexity as low as
possible. As this is still an open question, we set
the search space of m and n to {4, 5}, and evaluate
their ability to approximate the GELU function in
the range of [-3,3]. Our results show that using
m = 5 and n = 4 perfectly fits the GELU function
with a low complexity and thus, are adopted in this
work (cf. Figure 5, Appendix B). This matches
the findings in previous work (Telgarsky, 2017;
Molina et al., 2020; Delfosse et al., 2021) as well.
So overall, each rational activation function adds
nine parameters, resulting in a total of 108 addi-
tional parameters in a 12-layer Transformer model
(less than 0.000098% of its original parameters).
The weights of F (x) can further be initialized to
approximate any existing activation functions. In
our experiments, we initialize it with weights that
approximate GELU.

4 Pre-training

To evaluate the viability of RAFT, we pre-train
two comparable Transformer models from scratch—
one using the common fixed GELU activation func-
tion (FAFT), and another one using RAFs (RAFT).

Model architecture. For our experiments, we
use a frequently considered model configuration
and train 12 Transformer encoder layers with a
hidden size of 768 and 12 attention heads (Devlin
et al., 2019; Liu et al., 2019b; Rae et al., 2021;
Zhang et al., 2022). The only difference between
RAFT and FAFT is the use of RAFs instead of
GELUs as activation functions.

Data. We use English Wikipedia as our pre-
training data.4 The dataset consists of 3.8 × 109

tokens from which we select 50k sentences con-
taining 6.4× 106 tokens as the validation data.

Pre-training objective. Following RoBERTa
(Liu et al., 2019b), we use dynamic masked lan-
guage modeling (MLM) as our learning task and
randomly mask tokens in the input sentences at
each step before feeding them into the model. We
use the same masking probabilities and mask 15%
of the tokens with an 80% chance of replacing them

4https://dumps.wikimedia.org

2384

https://dumps.wikimedia.org


Model Validation loss Validation PPL

FAFT 1.645 5.18
RAFT 1.611 5.00

Table 2: Performance of the models on the validation
set after pre-training.

with the [MASK] token, a 10% chance of replacing
them with a randomly selected different token, and
a 10% chance of not replacing them at all.

Training parameters. As our primary goal is to
validate the effectiveness of RAFs in Transformers
rather than releasing a RoBERTa-like model, we
focus on training two comparable models within a
limited training budget. Both models are optimized
using AdamW (Loshchilov and Hutter, 2019) with
β1 = 0.9, β2 = 0.98 and a weight decay of 0.01.
The learning rate lrθ is set to 7E-4 for both mod-
els while the learning rate lrRAF for the RAF co-
efficients is set to 5E-3. Both learning rates are
warmed up over the first 1% steps, then lrθ decays
linearly while lrRAF remains constant.5 The batch
size is set to 4096. Tuning hyperparameters during
pre-training is expensive, to conduct hyperparame-
ters tuning of both models with limited resources,
we follow up 24hour BERT (Izsak et al., 2021) to
pre-train the model for 23k steps equipped with
various methods to accelerate training, including
mixed-precision, sparse output prediction, fused
linear layer, and tied embeddings (Press and Wolf,
2017). Detailed parameters and results of hyperpa-
rameter tuning are provided in Appendix C. It takes
∼16 hours for RAFT and ∼12 hours for FAFT us-
ing four A100 GPUs.

Results. Table 2 shows the MLM validation
losses and validation perplexity of the best per-
forming hyperparameter configuration for RAFT
and FAFT. We observe that RAFT achieves a bit
lower perplexity than FAFT during pre-training.
The learned RAFs vary across different layers af-
ter pre-training (cf. Figure 6, Appendix E). More
analysis is conducted in Section 6.

5 Fine-tuning

We conduct experiments on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019) and SQuAD (Rajpurkar

5We find in our preliminary experiments that a constant
rational learning rate with warm up leads to better results.

et al., 2016) to see how well pre-trained RAFs can
adapt to downstream tasks. Dataset descriptions
are provided in Appendix D. We further investigate
the flexibility of the pre-trained RAFs by consid-
ering different training data sizes especially in a
low-data regime. We fine-tune RAFT in two differ-
ent settings:

• RAFTfull: We fine-tune the whole model, i.e.,
all model parameters including the RAFs.

• RAFTfixed: We fix the pre-trained RAFs and
only tune the rest of the parameters.

5.1 Evaluation on the GLUE Benchmark

We evaluate pre-trained models on GLUE bench-
mark in different data settings: (a) the full-data
scenario, and (b) two low-data scenarios when only
100 or 300 labelled examples are available.

Experimental Setup. We split 75% of the train-
ing dataset as the training set and use the remaining
25% as the development set in the full-data sce-
nario. Following previous works, we use the pro-
vided development set as the test dataset. For our
low-data scenarios, we randomly sample 100 or
300 examples with ten different random seeds and
report the average and standard deviation across
all runs. For the full-data scenario, we report the
average and standard deviation of the results across
six runs with different random seeds. We use the
same evaluation metrics as proposed in the GLUE
benchmark; more specifically, for MRPC, QQP,
and STSB, we use the average of the two corre-
sponding metrics as the final score.6

Results. Table 3 shows the performance of RAFT
and FAFT on the GLUE benchmark. We observe
that on average, RAFT achieves consistent im-
provements in all data settings. We further find that
especially in the low-data scenarios, the flexible
activation functions of RAFT substantially outper-
form their static GLUE counterparts of the FAFT
model. For 100 examples, RAFT achieves better
results in seven out of eight tasks, outperforming
FAFT by 5.31 points (RAFTfull) and 5.71 points
(RAFTfixed) on average, respectively. While the
performance gap becomes smaller as the number
of examples increases, the tendency remains the
same with an average performance gain of 0.98

6Note that the full-data scenario is computationally more
expensive to run, but also more stable as the training instances
experience less variability.
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Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.
low-data 100 examples1

FAFT 1.88±2.27 71.02±5.61 74.88±0.23 55.19±5.96 57.57±8.32 32.86±1.50/32.92±1.46 53.34±3.24 53.14±1.67 48.07
RAFTfull 4.38±3.2 73.28±3.95 75.89±1.39 62.65±2.86 70.30±3.44 38.31±1.87/39.06±2.35 63.58±3.74 53.0±1.91 53.38

RAFTfixed 7.25±4.77 72.04±5.04 75.76±0.65 62.15±4.09 71.39±3.56 39.3±1.60/40.4±1.73 63.13±3.05 52.6±2.99 53.78
low-data 300 examples1

FAFT 13.12±5.29 77.67±3.07 79.37±1.56 66.63±1.35 76.70±1.89 43.74±2.20/45.33,2.29 69.17±2.25 55.45±2.66 58.58
RAFTfull 12.36±5.07 78.22±2.10 77.84±1.09 68.25±1.01 79.77±2.34 45.70±1.69/47.27±1.86 71.92±1.10 54.70±2.26 59.56

RAFTfixed 17.34±3.23 78.95±2.33 76.97±0.96 68.20±0.76 80.32±0.1 45.35±1.62/46.53±1.63 72.07±1.56 55.78±2.72 60.17
Full data2

FAFT 43.18±1.52 89.2±0.63 86.42±1.37 88.08±0.08 87.08±0.21 80.92±0.21/81.78±0.22 89.42±0.38 62.22±1.35 78.70
RAFTfull 45.84±1.47 89.85±0.45 87.21±0.54 88.27±0.10 86.96±0.29 80.88±0.22/81.85±0.23 89.32±0.20 64.44±2.49 79.40

RAFTfixed 45.66±1.55 90.06±0.70 86.36±1.03 88.21±0.06 86.64±0.24 81.10±0.22/82.06±0.21 89.36±0.34 63.90±2.85 79.28
1 Results are averaged over ten random seeds: 5309, 202206, 20220602, 2259, 49, 2022, 1046, 622, 320, 53
2 Results are averaged over six random seeds: 5309, 202206, 20220602, 2259, 49, 2022

Table 3: The performance of RAFT and FAFT on the GLUE benchmark across different data sizes. RAFTfull

fine-tunes all model parameters including RAFs. RAFTfixed instead fixes the RAFs pre-training.

points (RAFTfull) and 1.59 points (RAFTfixed) for
300 examples. In the full data scenario, RAFT
still outperforms FAFT by 0.7 (RAFTfull) and 0.58
(RAFTfixed) points on average.

Our experiments indicate that fixing the RAFs
is a better choice for the GLUE benchmark in the
low-data scenarios. We conjecture that one reason
for this may be that the number of instances to tune
all parameters of the model are insufficient. On
the contrary, we find that in the full-data scenario
tuning RAFs can lead to better results. The increas-
ing number of instances especially benefit RAFs
as they can better adapt to different downstream
tasks and learn better features. We provide further
analysis in Section 6.

5.2 Evaluation on SQuAD

Similar to GLUE, we evaluate models on SQuAD
v1.1 in different data settings: (a) the full-data sce-
nario, and (b) four low-data scenarios with 100,
300, 500, and 1000 training examples.

Experimental Setup. We split the official train-
ing data into separate training (75%) and develop-
ment sets (25%)7 and use the official development
set as the test data. We evaluate the results by com-
puting the F1 score over the word overlap of the
predicted answer and the gold answer. The hyper-
parameters search space is provided in Appendix C.

Results. Table 4 shows our results of RAFT
and FAFT. Compared to GLUE, that consists of
sentence-level text matching tasks, SQuAD is a
more complex task in which the model needs to
comprehend a longer text sequence to predict an
answer span. The increased task difficulty is es-
pecially reflected in the low-data scenarios, as the

7Again, we use the development set to identify the best
performing model across all epochs.

100 examples1 300 examples1 500 examples1 1000 examples1 full data2

FAFT 12.72±1.54 22.11±2.46 26.46±1.42 34.58±1.68 72.33±0.23
RAFTfull 11.81±0.95 19.49±2.01 26.68±1.91 36.69±1.56 74.45±0.47
RAFTfixed 12.19±1.08 19.00±2.68 26.27±1.39 35.98±1.81 74.38±0.25

1 Results are averaged over ten random seeds: 5309, 202206, 20220602, 2259, 49, 2022, 1046, 622, 320, 53
2 Results are averaged over six random seeds: 5309, 202206, 20220602, 2259, 49, 2022

Table 4: Results of RAFTs and FAFT on SQuAD.

Validation Loss Validation PPL.

Identity Divergent Divergent
RELU 1.626 5.08
GELU 1.611 5.00

Table 5: Different initializations of RAF.

performances of both models are below 25 points
when only 100 or 300 annotated examples are avail-
able. As a result, when there are not enough an-
notated examples available to learn the task, the
use of RAFs instead of GELU is not beneficial for
the Transformer model. However, we again see
that RAFT outperforms the FAFT model as enough
training examples become available.

In addition, we observe that tuning RAFs during
fine-tuning (RAFTfull) is more beneficial compared
to fixing RAFs (RAFTfixed) when the task is more
complex. Considering our findings on the GLUE
benchmark, we conjecture that the task difficulty
may play an additional role besides the amount
of available training data for the performance of
RAFTfull vs. RAFTfixed; however, this remains to
be investigated in future work.

6 Analysis

Impact of RAF initialization. To investigate
how initialization affects the performance of RAFT,
we train RAFT models initialized with GELU,
RELU, and the identity function. Other hyperpa-
rameters are the same as those in section 4. Table 5
shows the performance of different initialization
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SNLI
Trivia QA

verified-web verified-wiki

FAFT 74.22±0.19 24.62±1.48 21.01±0.75
RAFTfull 74.80±0.29 25.40±1.84 21.50±0.76

RAFTfixed 74.76±0.25 25.40±1.25 21.78±0.87

Table 6: Zero-shot performance of FAFT and RAFT.
Models evaluated on SNLI are trained on MNLI. Results
on TriviaQA are based on models trained on SQuAD.

(a) Pre-training (b) Fine-tuned on SQuAD

(c) Fine-tuned on MNLI (d) Fine-tuned on SST2

Figure 1: Rational activation functions of RAFTfull

among different layers after pre-training and fine-tuning.

methods during pre-training. As we can see, choos-
ing common activation functions such as ReLU
or GELU leads to a similar performance while us-
ing the identity function for initialization leads to
divergence.

Zero-shot generalization. To investigate if the
higher performances of RAFT vs FAFT come from
overfitting on the in-domain data, we conduct cross-
domain zero-shot experiments. We use the models
that have been fine-tuned on MNLI and SQuAD
in the full-data scenario and evaluate them on the
same tasks but for different data, namely, SNLI
(Bowman et al., 2015) and TriviaQA (Joshi et al.,
2017), respectively. MNLI and SNLI are both
datasets that aim to evaluate natural language in-
ference while SQuAD and TriviaQA contain ex-
amples for evaluating reading comprehension in
different domains. Table 6 shows the results of our
zero-shot evaluation. We observe that the increased
flexibility and adaptivity of RAFT does not nega-
tively impact its generalization capabilities. In fact,
both variants of RAFT consistently achieve better
performance than the corresponding FAFT model.

Visualizing learned RAFs. Next, we analyze
how the shapes of RAFs change after pre-training
and fine-tuning. First, we analyze the learned RAFs
in different layers of RAFT after pre-training. As
shown in Figure 1a, rational functions have differ-
ent shapes across different layers, none of which
are similar to GELU, or other commonly used ac-
tivation functions in Transformers (cf. Table 1).
This indicates that different layers may need dif-
ferent activation functions to achieve the optimal
performance. Moreover, we see that some features
like monotonicity that often are deemed to be good
for predefined activation functions are not neces-
sary, which is in line with the findings of the Swish
activation function (Ramachandran et al., 2018).

Second, we analyze how the learned RAFs
during pre-training change after fine-tuning in
RAFTfull. Figures 1b–1d show learned RAFs after
fine-tuning RAFTfull on SQuAD, MNLI and SST2
datasets. We observe that some of the learned RAFs
trained on these three tasks differ from each other
and the RAFs after pre-training. We further see
that several RAFs between both tasks have similar
shapes but different slopes across many layers.

To better understand the behavior of learned
RAFs after fine-tuning in different layers on various
tasks, we plot RAFs from the same layer together
across all tasks. Figure 2 shows the learned RAFs
in layer 1 (the bottom layer), layer 6, and layer 12
(the top layer) after pre-training and fine-tuning on
different tasks. We observe that after fine-tuning,
the RAFs in the top layer are more task-specific
and change the most, compared to those in bot-
tom layers. This is in line with prior work that
analyzed the behavior of BERT layers during fine-
tuning, which showed that higher layers exhibit
more changes compared to lower layers (Mosbach
et al., 2020; Merchant et al., 2020; Zhou and Sriku-
mar, 2022). Our results confirm this finding from
the perspective of learned activation functions. It
also demonstrates that RAFs can self-adapt to dif-
ferent layers and tasks during fine-tuning. In addi-
tion, an interesting observation is that the output
ranges of the RAFs of MNLI and QQP in the top
layer are very close to zero. The output of the FFN
layer Layernorm(FFN(x) + x) consists of two
parts: the feedforward branch FFN(x) and the skip
connection branch x. The very small output of acti-
vation functions may indicate that the FFN branch
of the top layer does not contribute much to the
final model performance on MNLI and QQP and
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Figure 2: Learned rational activation functions of RAFTfull in layers 1 (bottom), 6, and 12 (top) among different
tasks.

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low data 100 examples1

BitF itFAFT 1.44±2.85 63.33±9.63 68.82±1.74 55.49±3.94 46.04±24.69 32.92±1.33/32.95±1.24 51.95±3.50 52.20±2.82 45.02
BitF itfull 4.39±3.41 76.49±1.90 74.11±1.04 61.53±3.09 50.41±20.20 33.75±1.38/33.81±1.30 57.22±6.15 50.83±2.74 49.17
BitF itfixed 6.25±3.68 75.96±1.24 74.71±0.34 61.35±3.42 49.91±26.88 33.73±1.40/34.04±1.71 53.19±4.02 51.63±2.26 48.97

Full data1

BitF itFAFT 37.75±1.26 87.80±0.67 82.94±1.20 81.35±0.13 59.29±33.04 71.94±0.38/73.57±0.38 85.38±1.07 55.89±1.70 70.66
BitF itfull 38.46±1.37 88.19±0.16 86.73±1.00 81.03±0.12 85.28±0.33 70.23±0.41/72.53±0.33 80.51±10.75 60.72±1.88 73.74
BitF itfixed 39.96±1.95 88.46±0.28 84.91±5.10 81.02±0.14 85.55±0.44 71.25±0.19/73.26±0.36 77.23±14.23 60.15±0.90 73.53

1 Results are averaged over five random seeds: 5309, 202206, 20220602, 2259, 49

Table 7: Comparison between RAFT and FAFT combined with BitFit.

thus could be pruned. We leave this as future work.

RAFTfixed vs. RAFTfull. In our experiments on
GLUE and SQuAD (Tables 3 and 4), we observe
that fixing the RAFs after fine-tuning (RAFTfixed)
often achieves the best or second best performance
compared to the full-tuning model (RAFTfull) and
FAFT. Fine-tuning RAFs results in higher perfor-
mances when (a) more data is available, i.e., the
full-data scenario in GLUE, or (b) the input task is
more complex such as in SQuAD. We hypothesize
that training RAFs during fine-tuning will be more
effective when evaluated on more complex tasks
and datasets than the ones used this work.

Efficiency comparison between RAFT and
FAFT. In RAFT, RAFs are polynomial ratios and
their coefficients are learned during training, which
adds extra computation overhead. We use RAFs
library with CUDA extension to accelerate. As
shown in Table 8, RAFT is slower than FAFT dur-
ing training since RAFs need to be updated (36.8%
slower at pre-training, 14.8% slower at fine-tuning).
However, RAFT is faster when doing inference due
to the CUDA implementation (13.8% faster at pre-
training, 3.9% faster at fine-tuning).

Parameter-efficient fine-tuning with RAFTs.
In contrast to fine-tuning all parameters in a
pre-trained language model, parameter-efficient
tuning techniques that freeze the majority of

steps/second Pre-training Fine-tuning

Train Inference Train Inference
RAFT 0.38 3.3 12.54 71.05
FAFT 0.52 2.9 14.4 68.38

Table 8: Number of steps per second for training and
inference for RAFT and FAFT.

pre-trained parameters and only fine-tune a small
set can be promising alternatives (Ding et al.,
2022). One such method is BitFit (Ben Zaken
et al., 2022) which only updates the bias terms
in the Transformer model. To investigate the
effectiveness of RAFT in a parameter-efficient
fine-tuning paradigm, we fine-tune the FAFT and
RAFT models with BitFit on the GLUE bench-
mark. We use the same settings as in our previous
experiments and test RAFT and FAFT in three
configurations in the low-data 100 and full-data
scenario: (a) BitF itFAFT uses BitFit with FAFT,
(b) BitF itfull uses BitFit with RAFTfull, and (c)
BitF itfixed uses BitFit with RAFTfixed. As shown
in Table 7, RAFT-based BitFit achieves higher
performance than the FAFT on average in both
data settings: BitF itfixed achieves 3.95 points
improvements and BitF itfull gets 4.15 points
improvements in the low-data scenario while
BitF itfixed performs better with a 2.87 points
boost and BitF itfull performs better with a 3.08
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Figure 3: The number of parameters vs. the perfor-
mance for fine-tuning of RAFT and FAFT.

points boost in the full-data scenario. It is worth
noting that in some tasks, the reported results have
a very large standard deviation (e.g., 33.04 for
BitF itFAFT on STSB) due to several random seed
runs not converging. In our experiments, BitFit is
not as stable as fine-tuning the whole model.

How much can we achieve by only fine-tuning
RAFs? To see to what extent the model can
learn from different tasks by only updating RAFs,
we conduct experiments to only tune RAFs on
the GLUE benchmark in low- and full-data set-
tings. We call this setup where only 1178 param-
eters of the RAFs are updated during fine-tuning,
RAFRAFT.

For comparison, we tune our models with the
BitFit setting using the same amount of parameters,

8Including RAF in the pooling layer for classification

i.e., 117.9 BitF itsubFAFT represents tuning the sub-
set of BitFit of FAFT, and BitF itsubRAFT represents
tuning the subset of BitFit of RAFT. The result is
presented in Appendix F (Table 13). To compare it
from a broader view, we plot Figure 3 based on Ta-
ble 3, Table 7 and Table 13. We observe that if only
a few annotated examples are available (100 ex-
amples), BitF itfixed and BitF itfull can achieve
better performance than full fine-tuning of FAFT.
Only fine-tuning 117 parameters (BitF itsubFAFT,
BitF itsubRAFT and RAFRAFT) —i.e., a negligible
number of parameters compared to 110M parame-
ters in FAFT—results in a comparable performance
as fine-tuning all the parameters with only a drop
of 4.21–6.68 percentage points. In the full-data
scenario, the performance of BitFit (BitF itfull,
BitF itfixed and BitF itFAFT ) lags behind full
fine-tuning of both models. Only tuning RAFs
or a subset of BitFit cannot achieve comparable re-
sults as well. However, RAFRAFT outperforms
BitF itsubFAFT by 7.8% and performs better than
BitF itsubRAFT by 2.94% in this setting.

7 Conclusion and Future Work

In this work, we propose to utilize rational activa-
tion functions (RAF) in Transformers to directly
learn optimal activation functions from data dur-
ing pre-training and fine-tuning. To evaluate the
effectiveness of rational activation functions, we
pre-trained a Transformer-based language model,
namely, RAFT. RAFT achieves a lower validation
perplexity than FAFT during pre-training. Our ex-
perimental results show that RAFT performs better
than FAFT in general language understanding tasks
and reading comprehension tasks across different
data size scenarios. We further visualize and ana-
lyze rational activation functions across different
layers and tasks after pre-training and fine-tuning
and find that they can substantially vary across dif-
ferent layers and tasks. This provides us a new
way to analyze and better understand Transformer-
based language models. For instance, we can inves-
tigate whether layers with similar rational activa-
tion functions encode similar linguistic properties.
We further find that some layers exhibit a close to
zero throughput of the rational activation function
which indicates that the corresponding feedforward
layer does not contribute too much to a model’s
prediction. We consider these as our future work.

9Note that we also update the classification head in all
models and experiments.
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Limitations

Limited training resources. This work evaluates
the effectiveness of rational activation Transform-
ers using limited GPU resources. To provide a
fair comparison, we train and release RAF- and
GELU-based models for a reduced GPU budget;
hence, they are not comparable to publicly avail-
able large pre-trained models such as RoBERTa-
base etc. Still, a fully pre-trained RAFT could be
released once more GPU resources are available.
We furthermore note that we use GELU activation
functions and the original FFN architecture as our
baseline as it is dominantly used in existing models.

Societal impact. The main focus of this work
is the evaluation of trainable activation functions.
While our visualization of the learned activation
functions show that they exhibit substantial differ-
ences depending on the downstream task, further
analysis is necessary to better understand and in-
terpret the shapes. Moreover, it is unclear if the
additional flexibility of the models may increase
their susceptibility towards capturing biases in the
data. At the same time, we conjecture that espe-
cially susceptible models could also be used as
good indicators to detect such biases.
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A Model Architecture

Figure 4 shows the difference part of RAFT and
FAFT.

Figure 4: Rational activation function in the feed-
forward layer (left) and the vanilla GELU counterpart
(right).
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B Fitting abilities of different degrees of
Rational Functions

Figure 5 show the approximate functions of GELU
using rational functions with different degrees. As
we can see, when m = 5 and n = 4 or n = 5,
rational function fit GELU very well in the same
shape. Finally, it is important to note that rational
functions are an universal approximator in a lim-
ited range, e.g., [-5,5]. Especially for out-of-bound
inputs (i.e., values that are not guaranteed by ra-
tional functions), the output of rational functions
may result in values very different from the approx-
imated function (e.g., GELU). While pre-training a
model from scratch with RAFs does not lead to any
problem, directly replacing activation functions in
pre-trained models with RAFs only for fine-tuning
may lead to divergence due to out-of-bound inputs.

C Hyperparameters Tuning

C.1 Pre-training
In our preliminary experiments that some hyperpa-
rameter configurations can lead to instability dur-
ing training due to diverging model updates (e.g.,
for lrθ =7E-4 and batch size of 2048). To stabi-
lize the training without having to rely on a larger
warmup phase (e.g., 6% of the training steps), we
instead adopt the DeepNorm (Wang et al., 2022)
to initialize both models. DeepNorm stabilizes
training by bounding the updates and further scal-
ing the residual branches in Transformers. Using
DeepNorm makes both models, FAFT and RAFT,
achieve lower validation loss and leads to a more
stable training.

We tune the learning rate lrθ for model parame-
ters and lrRAF for RAFs, batch size, warmup steps,
and learning rate scheduler as hyperparameters for
both models separately. The hyperparameter search
space for pre-training stage is as follows:

• Learning rate lrθ for model parameters: 1E-4,
4E-4, 7E-4, 1E-3

• Learning rate lrRAF for RAFs: 1E-3, 5E-3,
1E-2

• Batch size: 2048, 4096

• Warmup ratio: 0%, 1%, 6%

Some results of hyperparameters tuning are pro-
vided in Table 9.

Table 10 shows final hyperparameters we used
for pre-training RAFT and FAFT.

lrθ lrRAF Batch Size Validation Loss

RAFT 1E-4 0.005 2048 2.217
RAFT 4E-4 0.005 2048 1.808
RAFT 7E-4 0.005 4096 1.732
RAFT 7E-4 0.005 4096 1.611
RAFT 1E-3 0.005 4096 1.638

Table 9: Part of Hyperparameters Tuning Results of
RAFT

Hyperparameters FAFT RAFT

Peak lrθ 7E-4 7E-4
Peak lrRAF n/a 5E-3

Learning rate decay linear constant
Gradient clipping 0 0

Batch size 4096 4096
Sequence length 128 128

Adam_beta1 0.9 0.9
Adam_beta2 0.98 0.98

Attention dropout 0.1 0.1
Warmup ratio 1% 1%
Training steps 23k 23k

Table 10: Hyperparameters for pre-training RAFT and
FAFT

C.2 Fine-tuning

The hyperparameters search space for GLUE dur-
ing fine-tuning stage is as follows:

• lrθ: 2E-5, 5E-5

• lrRAF: 1E-4, 5E-4, 1E-3, 5E-3

• Batch size: 32

• Weight decay: 0.1

• Number of epochs: 3, 10, 20

We further tune the learning rates and number of
training epochs for RAFT and FAFT separately
on a single random seed. For our low-data experi-
ments we fix the number of training epochs to 20
and use early stopping with a patience of 10 epochs.
For our full-data experiments, we train the large
datasets (QQP, MNLI, and QNLI) for 3 epochs and
the others for 10 epochs.

The hyperparameters search space for SQuAD
during fine-tuning is as below:

• lrθ: 2E-5, 5E-5, 1E-4
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(a) Approximate function with degrees m = 4 and n = 4 (b) Approximate function with degrees m = 4 and n = 5

(c) Approximate function with degrees m = 5 and n = 4
Rational Function is overlapping with GELU

(d) Approximate function with degrees m = 5 and n = 5
Rational Function is overlapping with GELU

Figure 5: Approximate Functions of GELU using rational functions

• lrRAF: 1E-4, 5E-4, 1E-3, 5E-3

• Batch size: 32

• Weight decay: 0.1

• Number of epochs: 10, 20

For our experiments, we fine-tune both models with
their best performing lrθ =1E-4 for 10 epochs in
the full-data scenario and 20 epochs in the low-data
scenario.

The hyperparameters search space for BitFit is
as below:

• Learning rate lrθ for model parameters: 5E-5,
1E-3, 5E-3, 1E-2

• Learning rate lrRAF for RAFs: 1E-3, 5E-3,
1E-2

• Batch size: 32

• Training epochs: 3, 10, 20 epochs

We use 3 training epochs for large dataset(QQP,
MNLI, QNLI), 10 epochs for other datasets and 20
epochs for low-resource scenarios. Both models
can converge in the above settings.

D Data Statistics

GLUE is a collection of nine different language
understanding tasks: CoLA (Warstadt et al., 2019),
SST2 (Socher et al., 2013), MRPC (Dolan and
Brockett, 2005), QQP 10, STSB (Cer et al., 2017),
MNLI (Williams et al., 2018), RTE (Dagan et al.,
2005), and WNLI (Levesque et al., 2012). We
exclude WNLI due to the adversarial nature of its
development set and the still unbeaten majority
vote upper bound.11

Table 11 show data statistics of GLUE bench-
mark.

10https://quoradata.quora.com/First-Quo
ra-Dataset-Release-Question-Pairs

11Cf. (12) in https://gluebenchmark.com/faq
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Task CoLA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE

|Train| 8,551 67,349 3,668 363,846 5,749 392,702 104,743 2,490
|Dev| 1,043 872 408 40,430 1,500 9,815/9,832 5,463 277
Metric Matthews corr. acc. acc./F1 acc./F1 Person/Spearman corr. acc. acc. acc.

Table 11: Dataset statistics of the GLUE benchmark

SQuAD is a reading comprehension task where
each example consists of a question, a context,
and the respective span from the context that an-
swers the question. Table 12 show data statistics of
SQuAD.

E Learned RAFs during pre-training and
after fine-tuning

Figure 6 and Figure 7 show learned RAFs in 12
layers after pre-training and fine-tuning on different
tasks, respectively.

F Results of only tuning RAFs

Table 13 shows comparison results between only
tuning RAFs and BitFit with the same parameters
with RAFT and FAFT.

2396



|Train| |Dev| |Test|
SQuAD v1.1 66,236 21,530 10,789

Table 12: Statistics of SQuAD: the official training dataset is split into training and development sets, and the official
development dataset is used as the test data.

Figure 6: Learned RAFs of different layers after pre-training

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low data 100 examples1

BitF itsubFAFT 1.49±1.87 62.82±7.56 74.80±0.00 52.57±3.83 14.71±7.21 32.73±1.41/32.76±1.30 49.77±0.40 50.83±1.86 41.39
BitF itsubRAFT 2.45±3.58 72.34±3.41 74.67±0.68 55.61±2.35 23.99±10.41 35.32±0.67/35.66±1.05 51.08±0.71 51.70±1.85 44.75
RAFRAFT 4.33±3.02 72.91±2.82 74.47±0.88 51.92±5.03 17.27±10.60 35.24±0.61/35.69±0.92 51.12±0.48 50.47±1.63 43.71

Full data1

BitF itsubFAFT 6.61±7.08 79.52±0.52 71.32±0.22 70.48±0.66 37.33±5.70 53.33±1.13/55.30±0.75 64.04±2.03 54.88±1.42 54.76
BitF itsubRAFT 8.78±5.54 82.02±0.57 71.76±0.77 70.88±1.17 71.40±0.52 51.57±0.54/53.27±1.20 69.87±1.20 57.04±1.19 59.62
RAFRAFT 9.71±12.04 81.70±0.12 74.81±3.09 73.57±0.48 80.79±0.60 57.34±0.19/60.69±0.51 67.89±8.64 56.53±1.83 62.56

1 Results are averaged over five random seeds: 5309, 202206, 20220602, 2259, 49

Table 13: Comparison between fine-tuning RAFs and a subset of 117 BitFit parameters with RAFT and FAFT.
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Figure 7: Learned RAFs in 12 layers across different tasks after fine-tuning

2398



Findings of the Association for Computational Linguistics: EACL 2023, pages 2399–2415
May 2-6, 2023 ©2023 Association for Computational Linguistics

The Solvability of Interpretability Evaluation Metrics

Yilun Zhou Julie Shah
MIT CSAIL

{yilun,julie_a_shah}@csail.mit.edu

https://yilunzhou.github.io/solvability/

Abstract

Feature attribution methods are popular for ex-
plaining neural network predictions, and they
are often evaluated on metrics such as compre-
hensiveness and sufficiency. In this paper, we
highlight an intriguing property of these met-
rics: their solvability. Concretely, we can de-
fine the problem of optimizing an explanation
for a metric, which can be solved by beam
search. This observation leads to the obvi-
ous yet unaddressed question: why do we use
explainers (e.g., LIME) not based on solving
the target metric, if the metric value repre-
sents explanation quality? We present a series
of investigations showing strong performance
of this beam search explainer and discuss its
broader implication: a definition-evaluation
duality of interpretability concepts. We im-
plement the explainer and release the Python
solvex package for models of text, image
and tabular domains.

1 Introduction
For neural network models deployed in high

stakes domains, the explanations for predictions are
often as important as the predictions themselves.
For example, a skin cancer detection model may
work by detecting surgery markers (Winkler et al.,
2019) and an explanation that reveals this spurious
correlation is highly valuable. However, evaluating
the correctness (or faithfulness) of explanations is
fundamentally ill-posed: because the explanations
are used to help people understand the reasoning of
the model, we cannot check it against the ground
truth reasoning, as the latter is not available.

As a result, correctness evaluations typically em-
ploy certain alternative metrics. For feature attribu-
tion explanations, they work under a shared prin-
ciple: changing an important feature should have
a large impact on the model prediction. Thus, the
quality of the explanation is defined by different for-
mulations of the model prediction change, resulting
in various metrics such as comprehensiveness and

Identify what feature 
importance means

Propose the explainer 
to reflect the meaning

Evaluate the explainer 
on the quality metric

Better metric value 
⟺ better explainer

Start

Explicitly search for 
the explanation 

that optimizes the 
target quality 

metric 

Optimal metric value 
by construction

Heuristic Search-Based

Figure 1: Left: the current process of developing new
explainers. Right: the natural implication following
our observation that evaluation metrics are solvable.

sufficiency (DeYoung et al., 2020). To develop new
explanation methods (Fig. 1, left), people gener-
ally identify a specific notion of feature importance
(e.g., local sensitivity), propose the correspond-
ing explainer (e.g., gradient saliency (Simonyan
et al., 2013)), evaluate it on one or more metrics,
and claim its superiority based on favorable results
vs. baseline explainers. We call these explainers
heuristic as they are motivated by pre-defined no-
tions of feature importance.

In this paper, we show that all these metrics are
solvable, in that we can define an explanation as
the one that optimizes a metric value and search
for it. The obvious question is then: if we take a
specific target metric to represent correctness, why
don’t we just search for the metric-optimal expla-
nation (Fig. 1, right) but take the more convoluted
route of developing heuristic explanations and then
evaluating them (Fig. 1, left)?

There are several possible reasons. First, the
optimization problem may be so hard that we can-
not find an explanation better than the heuristic
ones. The bigger concern, however, is that of Good-
hart’s Law. In other words, as soon as a metric is
used in explicit optimization, it ceases to be a good
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SHAP Occlusion

“Definitional” “Evaluational”

Gradient ComprehensivenessRobustness SufficiencyLIME

Figure 2: A definition-evaluation spectrum for various interpretability concepts currently as perceived by the com-
munity (see App. B for some justification). The proposed solvability property can move evaluational concepts
towards the definitional side, for which we explore two in the paper (solid arrows). The more general definition-
evaluation duality opens up new opportunities to move other concepts around (dashed arrows).

metric. Concretely, the explanation may overfit to
the particular metric and perform much worse on
closely related ones (Chan et al., 2022), or overfit
to the model and effectively adversarially attack
the model when assigning word importance (Feng
et al., 2018). It may also perform poorly on evalu-
ations not based on such metrics, such as ground
truth alignment (Zhou et al., 2022a).

We assess these concerns, taking the widely used
comprehensiveness and sufficiency metrics (DeY-
oung et al., 2020) as the optimization target. Our
findings, however, largely dispel every concern. A
standard beam search produces explanations that
greatly outperform existing one such as LIME and
SHAP on the target metric. On several other met-
rics, the search-based explainer also performs fa-
vorably on average. There is no strong evidence
of it adversarially exploiting the model either, and
it achieves competitive performances on a suite of
ground truth-based evaluations.

Thus, we advocate for wider adoptions of the
explainer, which is domain-general and compatible
with models on image and tabular data as well. As
an engineering contribution, we release the Python
solvex package (solvability-based explanation)
and demonstrate its versatility in App.A.

More broadly, the solvability phenomenon is one
facet of the definition-evaluation duality, which as-
serts an equivalence between definitions and eval-
uations. Solvability recognizes that for each eval-
uation metric, we can define explainer that per-
forms optimally on this metric. Conversely, for
each explainer, we can also come up with an eval-
uation metric that ranks this explainer on top – a
straightforward one would be the negative distance
between the explanation under evaluation and the
“reference explanation” generated by the explainer.

While the community has mostly agreed on a
spectrum on which various interpretability con-
cepts (Fig. 2) are located, duality allows every con-
cept to be moved freely on the scale. We explored

two particular movements as represented by the
solid arrows, but the more general investigation of
this operation could be of both theoretical and prac-
tical interest. In addition, given that definitions and
evaluations are really two sides of the same coin,
we need to reflect how to best evaluate explana-
tions. Sec. 6 argues to measure their demonstrable
utilities in downstream tasks, and present potential
ways and ideas to better align the interpretability
research with such goals.

2 Background and Related Work
In this section, we give a concise but unified in-

troduction to the popular feature attribution explain-
ers and evaluation metrics studied in this paper.

2.1 Feature Attribution Explainers
We focus on feature attribution explanations,

which explains an input x = (x1, ..., xL) by a vec-
tor e = (e1, ..., eL) where el represents the “con-
tribution” of xl to the prediction. Many different
definitions for contribution have been proposed and
we consider the following five.
• Vanilla gradient (Grad) (Simonyan et al., 2013;

Li et al., 2016a) is the L2 norm of gradient of the
prediction (in logit, following standard practice)
with respect to the token embedding.

• Integrated gradient (IntG) (Sundararajan et al.,
2017) is the path integral of the embedding gra-
dient along the line segment from the zero em-
bedding value to the actual value.

• LIME (Ribeiro et al., 2016) is the coefficient of
a linear regression in the local neighborhood.

• SHAP (Lundberg and Lee, 2017) computes the
Shapley value (Roth, 1988) for each word.

• Occlusion (Occl) (Li et al., 2016b) is the change
in prediction when a word is removed from the
input while all other words remain.

2.2 Feature Attribution Evaluations
Naturally, different definitions result in differ-

ent explanation values. As findings (e.g., Adebayo
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et al., 2018; Nie et al., 2018) suggest that some ex-
planations are not correct (i.e., faithfully reflecting
the model’s reasoning process), many evaluations
are proposed to quantify the correctness of differ-
ent explanations. Not having access to the ground
truth model working mechanism (which is what
explanations seek to reveal in the first place), they
are instead guided by one principle: changing an
important feature (as judged by the explanation)
should have a large impact on the prediction, and
the magnitude of the impact is taken as explanation
quality. However, there are different ways to quan-
tify the impact, leading to different evaluations, and
we consider six in this paper.

Let f : X → R be a function that we want
to explain, such as the probability of the target
class. For an input x = (x1, ..., xL) of L words,
according to an explanation e = (e1, ..., eL), we
can create a sequence of L + 1 input deletions
x̃
(0)
e , x̃

(1)
e , ..., x̃

(L)
e where x̃(l)e is the the input but

with l most important features removed. Thus, we
have x̃(0)e = x and x̃(L)e being the empty string.1

The comprehensiveness κ (DeYoung et al., 2020)
is defined as

κ(x, e) =
1

L+ 1

L∑

l=0

f(x)− f(x̃(l)e ). (1)

It measures the deviation from the original model
prediction when important features (according to
e) are successively removed, and therefore a larger
value is desirable. It was also proposed for com-
puter vision models as the area over perturbation
curve (AoPC) by Samek et al. (2016).

Analogously, we can define the sequence of in-
put insertions x̂(0)e , x̂

(1)
e , ..., x̂

(L)
e , where x̂(l)e is the

input with the l most important features present.
Thus, x̂(0)e is the empty string and x̂(L)e = x, but
otherwise the sequences of input insertions and
deletions do not mirror each other. The sufficiency
σ (DeYoung et al., 2020) is defined as

σ(x, e) =
1

L+ 1

L∑

l=0

f(x)− f(x̂(l)e ). (2)

1We define feature removal as the literal deletion of the
word from the sentence, which is a popular practice. Other
methods replace the token with [UNK], [MASK] or zero em-
bedding, are more sophisticated such as performing BERT
mask filling (Kim et al., 2020). While our current approach
could lead to out-of-distribution instances, we adopt it due to
its popularity. A thorough investigation for the best strategy is
orthogonal to our paper and beyond its scope.

It measures the gap to the original model predic-
tion that remains (i.e., convergence to the model
prediction) when features are successively inserted
from the most important to the least. Therefore, a
smaller value is desirable.

Another interpretation of prediction change just
considers decision flips. Let g : X → {0, ...,K}
be the function that outputs the most likely class
of an input. The decision flip by removing the
most important token (Chrysostomou and Ale-
tras, 2021) is defined as

DFMIT(x, e) = 1
g(x̃

(1)
e ) 6=g(x), (3)

which measures whether removing the most impor-
tant token changes the decision. Across a dataset,
its average value gives the overall decision flip rate,
and a higher value is desirable.

The fraction of token removals for decision
flip (Serrano and Smith, 2019) is defined as

DFFrac(x, e) =
arg minl g(x̃

(l)
e ) 6= g(x)

L
, (4)

and we define DFFrac = 1 if no value of l leads
to the decision flip. This metric represents the
fraction of feature removals that is needed to flip
the decision, and hence a lower value is desirable.

Last, two metrics evaluate correlations between
model prediction and feature importance. For x
and e, we define the sequence of marginal feature
deletions x(1)−,e, ..., x

(L)
−,e such that x(l)−,e is original

input with only the l-th important feature removed.
The deletion rank correlation (Alvarez-Melis and
Jaakkola, 2018b) is defined as

δf = [f(x)− f(x
(1)
−,e), ..., f(x)− f(x

(L)
−,e)], (5)

RankDel(x, e) = ρ(δf , e), (6)

where ρ(·, ·) is the Spearman rank correlation coef-
ficient between the two input vectors. Intuitively,
this metric asserts that suppressing a more impor-
tant feature should have a larger impact to the
model prediction. A higher correlation is desirable.

The insertion rank correlation (Luss et al.,
2021) is defined as

v = [f(x̃(L)), ..., f(x̃(0))], (7)

RankIns(x, e) = ρ(v, [0, ..., L]), (8)

and recall that x̃(L)e , ..., x̃
(0)
e is the sequence of in-

puts with increasingly more important features in-
serted, starting from the empty string x̃(L) to the
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full input x̃(0). This metric asserts that the model
prediction on this sequence should increase mono-
tonically to the original prediction. Also a higher
correlation is desirable.

Related to our proposed notion of solvability
is the phenomenon that some metric values seem
to favor some explainers (Pham et al., 2022; Ju
et al., 2022). While it is often used to argue against
the use of certain evaluations, we take this idea to
the extreme, which culminates in the solvability
property, and find that metric-solving (Def. 3.1) ex-
planations from some metrics can be high-quality.

3 The Solvability of Evaluation Metrics
Now we establish the central observation of this

paper: the solvability of these evaluation metrics.
Observe that each evaluation metric, e.g., compre-
hensiveness κ, is defined on the input x and the
explanation e, and its computation only uses the
model prediction function f (or g derived from f
for the two decision flip metrics). In addition, the
form of feature attribution explanation constrains e
to be a vector of the same length as x, or e ∈ RL.

Without loss of generality, we assume that the
metrics are defined such that a higher value means
a better explanation (e.g., redefining the sufficiency
to be the negative of its original form). We formal-
ize the concept of solvability as follows:

Definition 3.1. For a metric m and an input x, an
explanation e∗ solves the metric m if m(x, e∗) ≥
m(x, e) for all e ∈ RL. We also call e∗ the m-
solving explanation.

Notably, there are already two explanation-
solving-metric cases among the ones in Sec. 2.

Theorem 1. The occlusion explainer solves the
DFMIT and RankDel metrics.

The proof follows from the definition of the ex-
plainer and the two metrics. Occlusion explainer
defines token importance as the prediction change
when each the token is individually removed, thus
the most important token is the one that induces
the largest change, which makes it most likely to
flip the decision under DFMIT. In addition, because
token importance is defined as the model predic-
tion change, its rank correlation with the latter (i.e.,
RankDel) is maximal at 1.0.

Thm. 1 highlights an important question: if we
take DFMIT or RankDel as the metric (i.e., indicator)
of explanation quality, why should we consider any
other explanation, when the occlusion explanation
provably achieves the optimum? A possible answer

is that the metrics themselves are problematic. For
example, one can argue that the DFMIT is too re-
strictive for overdetermined input: when redundant
features (e.g., synonyms) are present, removing any
individual one cannot change the prediction, such
as for the sentiment classification input of “This
movie is great, superb and beautiful.”

Nonetheless, the perceived quality of a metric
can be loosely inferred from its adoption by the
community, and the comprehensiveness and suffi-
ciency metrics (DeYoung et al., 2020) are by far
the most widely used. They overcome the issue of
DFMIT by also considering inputs with more than
one token removed. Since a metric is scalar-valued,
we combine comprehensiveness κ and sufficiency
σ into comp-suff difference ∆, defined as (recall
that a lower sufficiency value is better):

∆(x, e) = κ(x, e)− σ(x, e). (9)

Again, we face the same question: if ∆ is solv-
able, why should any heuristic explainers be used
instead of the ∆-solving e∗? In the next two sec-
tions, we seek to answer it by first proposing a
beam search algorithm to (approximately) find e∗

and then explore its various properties.

4 Solving Metrics with Beam Search
We first define two properties that are satisfied

by some metrics: value agnosticity and additivity.
Definition 4.1. For an input x = (x1, ..., xL) with
explanation e = (e1, ..., eL), we define the ranked
importance as r(xl) = |{ei : ei ≤ el, 1 ≤ i ≤ L}|.
In other word, the xl with r(xl) = L is the most
important, and that with r(xl) = 1 is the least. A
metric m is value-agnostic if for all e1 and e2 that
induce the same ranked importance, we have

m(x, e1) = m(x, e2). (10)

A value-agnostic metric has at most L! unique
values across all possible explanations for an input
of length L. Thus, in theory, an exhaustive search
over the L! permutations of the list [1, 2, ..., L] is
guaranteed to find the e∗ that solves the metric.
Definition 4.2. A metric m is additive if it can be
written in the form of

m(x, e) =
L∑

l=0

h(x, e(l)), (11)

for some function h, where e(l) reveals the attribu-
tion values of l most important features according
to e but keeps the rest inaccessible.
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Theorem 2. Comprehensiveness, sufficiency and
their difference are value-agnostic and additive.

The proof is straightforward, by observing that
both x̃(l) and x̂(l) can be created from x and the
ordering of e(l). In fact, all metrics in Sec. 2 are
value-agnostic (but only some are additive).

A metric satisfying these two properties admits
an efficient beam search algorithm to approxi-
mately solve it. As e(l) can be considered as a
partial explanation that only specifies the top-l im-
portant features, we start with e(0), and try each
feature as most important obtain e(1). With beam
size B, if there are more than B features, we keep
the top-B according to the partial sum. This ex-
tension procedure continues until all features are
added, and top extension is then e∗. Alg. 1 docu-
ments the procedure, where ext(e, v) extends e and
returns a set of explanations, in which each new
one has value v on one previously empty entry of e.
Finally, note that e∗ generated on Line 8 has entry
values in {1, ..., L}, but some features may con-
tribute against the prediction (e.g., “This movie is
truly innovative although slightly cursory.”). Thus,
we post-process e∗ by shifting all values by k such
that the new values (in {1− k, L− k}) maximally
satisfy the sign of marginal contribution of each
word (i.e., the sign of the occlusion saliency).

Algorithm 1: Beam search for finding e∗.

1 Input: beam size B, metric m, sentence x
of length L;

2 Let e(0) be an empty length-L explanation;
3 beams← {e(0)};
4 for l = 1, ..., L do
5 beams←

⋃

e∈beams
ext(e, L− l + 1);

6 beams← choose_best(beams, B);
7 end
8 e← choose_best(beams, 1);
9 e∗ ← shift(e);

10 return e∗;

Without the additive property, beam search is
not feasible due to the lack of partial metric values.
However, Zhou et al. (2021) presented a simulated
annealing algorithm (Kirkpatrick et al., 1983) to
search for the optimal data acquisition order in ac-
tive learning, and we can use a similar procedure to
search for the optimal feature importance order. If
the metric is value-sensitive, assuming differentia-
bility with respect to the explanation value, meth-

ods such as gradient descent can be used. Since
we focus on comprehensiveness and sufficiency in
this paper, the development and evaluation of these
approaches are left to future work.

5 Experiments

We investigate various properties of the beam
search explainer vs. existing heuristic explainers,
using the publicly available textattack/roberta-base-
SST-2 model on the SST dataset (Socher et al.,
2013) as a case study. The sentiment value for each
sentence is a number between 0 (very negative)
and 1 (very positive), which we binarize into two
classes of [0, 0.4] and [0.6, 1]. Sentences with sen-
timent values in middle are discarded. The average
sentence length is 19, making the exhaustive search
impossible. We use a beam size of 100 to search for
∆-solving explanation E∗. All reported statistics
are computed on the test set.

Fig. 3 presents two explanations, with additional
ones in Fig. 11 of App. C. While we need more
quantitative analyses (carried out below) for defini-
tive conclusions on its various properties, E∗ ex-
planations at least looks reasonable and is likely to
help people understand the model by highlighting
the high importance of sentiment-laden words.

A worthy tribute to a great humanitarian and
her vibrant ‘ co-stars . ’

So stupid , so ill-conceived , so badly drawn ,
it created whole new levels of ugly .

Figure 3: Two E∗ explanations. The shade of back-
ground color represents feature importance.

5.1 Performance on the Target Metric

We compare E∗ to heuristic explainers on the
∆ metric, with results shown in Tab. 1 along with
the associated κ and σ. A random explanation
baseline is included for reference. We can see that
E∗ achieves the best ∆, often by a large margin. It
also tops the ranking separately for κ and σ, which
suggests that an explanation could be optimally
comprehensive and sufficient at the same time.

To visually understand how the model prediction
changes during feature removal and insertion, we
plot in Fig. 4 the values of f(x) − f(x̃

(l)
e ) and

f(x) − f(x̂
(l)
e ) (i.e., the summands in Eq. 1 and

2), as a function of l/L. The left panel shows the
curves averaged across all test set instances, and the
right panel shows those for a specific instance. κ
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Explainer Comp κ ↑ Suff σ ↓ Diff ∆ ↑
Grad 0.327 0.108 0.218
IntG 0.525 0.044 0.481

LIME 0.682 0.033 0.649
SHAP 0.612 0.034 0.578

Occl 0.509 0.040 0.469

E∗ 0.740 0.020 0.720
Random 0.218 0.212 0.006

Table 1: Comprehensiveness, sufficiency and their dif-
ference for various explainers.
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Figure 4: Comprehensiveness and sufficiency curves
for the beam search optimal explainer vs. others.

and σ are thus the areas under the solid and dashed
curves respectively. The curves for E∗ dominate
the rest, and, on individual inputs, are also much
smoother than those for other explanations.

One concern for beam search is its efficiency,
especially compared to those that only require a
single pass of the model such as the vanilla gradient.
However, we note that explanations, unlike model
predictions, are rarely used in real-time decision
making. Instead, they are mostly used for debug-
ging and auditing purposes, and incurring a longer
generation time to obtain a higher-quality explana-
tion is often beneficial. On a single RTX3080 GPU
card without any in-depth code optimization, the
metric values and time costs for various beam sizes
are presented in Tab. 2, with statistics for the best
explainer LIME also listed for comparison.

Expectedly, the metric values increase with in-
creasing beam size, but the improvement is meager
after 10 beams. More importantly, beam search is

B 1 5 10 20 50 100 LIME

κ 0.717 0.731 0.734 0.736 0.739 0.740 0.682
σ 0.020 0.020 0.020 0.020 0.020 0.020 0.033
∆ 0.697 0.711 0.714 0.716 0.719 0.720 0.649
T 0.38 0.77 1.15 1.72 2.85 4.37 4.75

Table 2: Effect of beam sizeB on κ, σ,∆ and computa-
tion time T (in seconds), compared against the statistics
of the best heuristic explainer LIME.

not slow – it is still faster than LIME even with 100
beams, and the single-beam version outperforms
LIME by a decent margin while being more than
10 times faster. Thus, these results establish that if
we take comprehensiveness and sufficiency as the
quality metrics, there is really no reason not to use
the beam search explainer directly.

5.2 Performance on Other Metrics
Sec. 2 lists many metrics that all operationalize

the same principle that changing important features
should have large impact on model prediction, but
in different ways. A potential argument against the
explicit beam search optimization is the fulfillment
of Goodhart’s Law: E∗ overfits to the metric by
exploiting its realization (i.e., Eq. 1 and 2) of this
principle and not truly reflecting its “spirit.”

To establish the legitimacy of this opposition, we
evaluate all the explainers on the remaining four
metrics in Sec. 2, and present the results in Tab. 3.

Explainer DFMIT↑ DFFrac↓ RankDel↑ RankIns↑
Grad 10.5% 54.5% 0.162 0.521
IntG 16.9% 39.6% 0.369 0.468

LIME 25.5% 28.1% 0.527 0.342
SHAP 23.0% 36.1% 0.369 0.458

Occl 26.4% 40.6% 1.000 0.396

E∗ 25.0% 25.2% 0.438 0.423
Random 3.4% 72.3% 0.004 0.599

Table 3: Performance on non-target metrics of the
beam search optimal explainer vs. others.

Since the occlusion explainer solves DFMIT and
RankDel (Thm. 1), it ranks the best on these two
metrics, as expected. Nonetheless, E∗ still ranks
competitively on these two metrics and comes out
ahead on DFFrac. The only exception is RankIns,
on which the random explanation surprisingly per-
forms the best. We carefully analyze it in App. D
and identify a fundamental flaw in this metric.

Last, note that we can also incorporate any of
these metrics into the objective function (which
already contains two metrics: κ and σ), and search
for E∗ that performs overall the best, if so desired.
We leave this investigation to future work.

5.3 Explainer “Attacking” the Model
Another concern is that the search procedure

may overfit to the model. Specifically, removing a
wordw in a partial sentence x̃(l)e drastically changes
the model prediction but does not have the same ef-
fect for most other x̃(l

′)
e . This makes E∗ assignw an
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Figure 5: Metric values for explanations under different
levels of perturbation represented by s on the x-axis.

overly high attribution, as w only happens to have a
high impact in one particular case. By contrast, ex-
plainers like LIME and SHAP automatically avoid
this issue by computing the average contribution of
w on many different partial sentences.

We test this concern by locally perturbing the
explanation. If E∗ uses many such “adversarial
attacks,” we should expect its metric values to
degrade sharply under perturbation, as the high-
importance words (according to E∗) will no longer
be influential in different partial sentence contexts.

To perturb the explanation, we first convert each
explanation e to its ranked importance version er
using r(·) in Def. 4.1, which does not affect any
metric as they are value-agnostic. Then we define
the perturbed rank by adding to each entry of er
an independent Gaussian noise: e′r = er + n with
n ∼ N (0, s2). Thus, two words xi and xj with
r(xi) > r(xj) have their ordering switched if r(xi)
− r(xj) < n(xj) − n(xi). A visualization of the
switching with different s is in Fig. 12 of App. E.

Fig. 5 plots the metrics under different s values
(RankIns not shown due to its intrinsic issue dis-
cussed in App. D). Everything degrades to various
extents. Although E∗ degrades slightly faster than
the rest on κ and DFFrac (and on par on others), it
still achieves best results even at s = 4, with many
order switches (Fig. 12), and a faster degradation is
reasonable anyway for metrics with better starting
values (c.f. occlusion on RankDel).

The evidence suggests that there is at most a
slight model overfitting phenomenon, as E∗ re-
mains comparable to other explainers under quite
severe perturbation. Furthermore, we can incor-
porate perturbation robustness into metric solving
to obtain an E∗ that degrade less, similar to adver-

sarial training (Madry et al., 2018). We leave the
exploration of this idea to future work.

App. F describes another assessment of model
overfitting, though with a mild assumption and re-
lying on word-level sentiment scores provided by
the SST dataset. Similar conclusions are reached.

5.4 Ground Truth Recovery

For a model trained on a natural dataset, its
ground truth working mechanism is rarely available
– in fact, arguably the very purpose of interpretabil-
ity methods is to uncover it. Thus, a series of work
(e.g., Zhou et al., 2022a) proposed methods to mod-
ify the dataset such that a model trained on the
new dataset has to follow a certain working mech-
anism to achieve high performance, which allows
for evaluations against the known mechanism.
Ground Truth Definitions We construct three
types of ground truths – short additions, long ad-
ditions and replacements. First, we randomize the
label to ŷ ∼ Unif{0, 1} so that the original input
features are not predictive (Zhou et al., 2022a).

For the two addition types, a word or a sentence
is inserted randomly to either the beginning or the
end of the input. The inserted text is randomly
chosen from the the sets in Tab. 4.

For the replacement type, each word in the input
is checked against the list of replacement word sets
in Tab. 5, and if the word belongs to one of the

Type ŷ = 0 ŷ = 1

Short
terrible, awful, disaster,
worst, never

excellent, great, fantas-
tic, brilliant, enjoyable

Long

A total waste of time.
Not worth the money!
Is it even a real film?
Overall it looks cheap.

I like this movie.
This is a great movie!
Such a beautiful work.
Surely recommend it!

Table 4: Set of insertions for the addition type accord-
ing to the new label ŷ. The words are comma-separated
for “short”, and each line is one piece of text for “long”.

Replacement word sets ŷ = 0 ŷ = 1

a, an, the a the
in, on, at in on
I, you I you
he, she he she
can, will, may can may
could, would, might could might
(all forms of be) is are
(all punctuation marks) (period) (comma)

Table 5: Replacement word sets and their target words.
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Short Addition Long Addition Replacement
Sym Asym Sym Asym Sym Asym

Explainer Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓
Grad 0.91 0.06 0.51 0.08 0.70 0.37 0.77 0.30 0.50 0.75 0.51 0.74
IntG 0.82 0.10 0.60 0.21 0.60 0.76 0.70 0.55 0.49 0.74 0.48 0.74

LIME 1.00 0.06 1.00 0.06 0.72 0.60 0.84 0.32 0.63 0.65 0.54 0.71
SHAP 0.98 0.07 1.00 0.06 0.61 0.83 0.75 0.98 0.65 0.67 0.62 0.68

Occl 1.00 0.06 1.00 0.06 0.72 0.59 0.79 0.42 0.40 0.80 0.40 0.85

E∗ 1.00 0.06 1.00 0.06 0.67 0.64 0.92 0.38 0.60 0.66 0.54 0.73
Random 0.06 0.54 0.07 0.53 0.25 0.89 0.24 0.88 0.27 0.85 0.28 0.85

Table 6: Average values of precision and normalized rank of the ground truth correlated words for each explainer.

set, it is changed according to the new label ŷ. On
average, 27% of input words are replaced.

We call these modifications symmetric since in-
puts corresponding to both ŷ = 0 and ŷ = 1 are
modified. We also define the asymmetric modifi-
cation, where only inputs with ŷ = 1 are modified,
and those with ŷ = 0 are left unchanged.
Metrics We use the two metrics proposed by
Bastings et al. (2022): precision and normalized
rank. First, we define the ground truth correlated
words. For the two addition types, they are the
inserted words. In the asymmetric case, instances
with ŷ = 0 does not have any words added, so we
exclude them in metric value computation.2 For
the replacement type, they are the words that are in
the replacement set (but not necessarily replaced).

Let W be the set of ground truth correlated
words. Using ranked importance r(·) in Def. 4.1,
precision and normalized rank are defined as

Pr = |{w ∈W : r(w) > L− |W |}|/|W |,
NR = (L−min{r(w) : w ∈W}+ 1)/L.

Precision is the fraction of ground truth words
among the the top-|W | ranked words, and normal-
ized rank is the lowest rank among ground truth
words, normalized by the length L of the input.
Both values are in [0, 1], and higher precision val-
ues and lower normalized rank values are better.
Results Tab. 6 presents the test set Pr and NR val-
ues. Many explainers including E∗ score perfectly
on short additions, but all struggle on other types.
Nonetheless, E∗ still ranks comparably or favorably
to other methods. Its largest advantage shows on
the asymmetric long addition, because this setup
matches with the computation of κ and σ: E∗ finds
the most important words to remove/add to maxi-
mally change/preserve the original prediction, and

2This also highlights an intrinsic limitation of feature at-
tribution explanations: they cannot explain that the model
predicts a class because certain features are not present.

those words are exactly the ground truth inserted
ones. For replacement and symmetric addition, the
search procedure does not “reconstruct” inputs of
the other class, and E∗ fails to uncover the ground
truth. This finding suggests a mismatch between
metric computation and certain ground truth types.

Conversely, vanilla gradient performs decently
on ground truth types other than short addition, yet
ranks at the bottom on most quality metrics (Tab. 1
and 3), again likely due to the mismatch.

In fact, this evaluation is fundamentally different
from the rest in its non-solvability, specifically due
to its use of privileged information. To understand
this point, let us first compare the evaluation of
model prediction to that of model explanation, as
illustrated in Fig. 6. The former runs the model
on the input, receives the prediction, and compares
it with the ground truth label, which is emphati-
cally not available to the model under evaluation.
By contrast, no such privileged information exists
when computing interpretability metrics, allowing

𝑥 𝑓

𝑚exp(𝑥, 𝑒 𝑥, 𝑓 , 𝑓)𝑚pred(𝑓(𝑥), 𝑦)

𝑓(𝑥)

𝑥

𝑦

𝑒(𝑥, 𝑓)

𝑥: input, 𝑦: ground truth label, 𝑓:model, 𝑒: explainer,
𝑚pred: prediction metric,𝑚exp: explanation metric

Figure 6: The complete evaluation diagrams for model
predictions (left) and explanations (right). Green boxes
are the model and explainer under evaluation, which
have access to the information in yellow, and orange
boxes are the evaluators. Notably, prediction evalua-
tion (e.g., accuracy) uses the ground truth label y not
accessible to the model, but no such privileged infor-
mation is used by the interpretability evaluation.
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the explainer to directly solve them. In this ground
truth recovery evaluation, we employ similar privi-
leged information (i.e., induced ground truth model
working mechanism) by dataset modification and
model retraining. However, as discussed by Zhou
et al. (2022a), such evaluations are limited to the
range of ground truths that could be induced.

6 Discussion
Definition-Evaluation Duality Our investiga-
tion demonstrates that some evaluation metrics can
be used to find high-quality explanations, defined
as the optimizers of the metrics. Conversely, we
could also use any explanation definition d as an
evaluation metric m. A very simple one would
be m(x, e)

.
= −||e − d(x)||, where e is the ex-

planation under evaluation, d(x) is the “reference
explanation” and || · || is a suitably chosen distance
metric. It is obvious that d(x) itself achieves the
optimal evaluation metric value.

Therefore, in theory, there should not be a dif-
ference of using a concept as definition vs. evalu-
ation, but in practice, we almost always see some
used mainly as definitions and others as evaluations
(Fig. 2). A major reason of not considering to use
evaluations as definitions could be the presumed
intractability of the optimization, which is experi-
mentally refuted in this paper, as the beam search
demonstrates its efficacy and efficiency.

Conversely, why do we not see more definitions
(e.g., gradients and LIME) used as evaluations?
Such an attempt may sound trivial yet unjustifiable
at the same time: trivial because it is equivalent
to claiming that the corresponding explainer def-
inition is the best, which is in turn a seemingly
unjustifiable circular logic.

More importantly, we motivate a new research
direction opened up by the duality concept. Tra-
ditionally, definitions and evaluations have been
considered and developed separately, but duality
suggests that any interpretability concept can be
used as both. Thus, we propose that we should
focus on studying the intrinsic properties of these
concepts, independent of their usage as one or an-
other. For example, are some concepts inherently
superior for model explanations than others? How
can we measure the similarity between two con-
cepts? What does the space of these concepts look
like? None of them are currently answerable due
to a complete lack of formalization, but research
on it could lead to a much deeper understanding of
local explanations.

Demonstrable Utility Given the duality, how
should we evaluate explanations? Fundamentally,
local explanations are used for model understand-
ing (Zheng et al., 2022; Zhou et al., 2022b), and we
advocate for evaluating demonstrable utility: the
presence of an explanation compared to its absence,
or the newly proposed explanation compared to ex-
isting ones, should lead to a measurable difference
in some practically beneficial aspect.

For example, people use explanations to iden-
tify spurious correlation during development, audit
fairness before deployment, and assist human deci-
sion makers during deployment. However, recent
findings cast doubt on the feasibility of model ex-
planations to support any of these use cases (Bansal
et al., 2021; Jia et al., 2022; Zhou et al., 2022a).

Demonstrating such utilities would bypass dis-
cussions of solvability and directly assert their use-
fulness (Chen et al., 2022). The examples listed
here are by no means comprehensive, and a system-
atic taxonomy is valuable. Furthermore, it is likely
that no single explainer is a one-size-fit-all solu-
tion. More refined knowledge of the strengths and
weaknesses of each method in supporting different
aspects of model understanding is highly desirable.

7 Conclusion
We study the relationship between definitions

and evaluations of local explanations. We iden-
tify the solvability property of evaluation metrics,
such that for each evaluation metric, there is an ex-
plicit search procedure to find the explanation that
achieves the optimal metric value. In other words,
every evaluation admits a definition that solves it.

Compared to the current practice of defining a
explainer and then evaluating it on a metric, solv-
ability allows us to directly find the explanation
that optimizes the target metric and guarantee a
very favorable evaluation outcome. In this paper,
we investigate the feasibility of this process. First,
we propose to use beam search to find the explana-
tion E∗ that optimizes for comprehensiveness and
sufficiency (DeYoung et al., 2020). Then, in a suite
of evaluations, we find E∗ performing comparably
or favorably to existing explainers such as LIME.

Therefore, for practitioners, we recommend
using the proposed explainer for computing lo-
cal model explanations and provide the Python
solvex package for easy adoption (App. A). For
researchers, we propose a definition-evaluation du-
ality inspired by solvability, which opens up many
new research directions.
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Limitations and Ethical Impact
The focus of our paper is to investigate the

search-based explanation that explicitly optimizes a
target quality metric. While the results suggest that
it is comparable or favorable to existing heuristic
explainers on various technical aspects, its soci-
etal properties have not been studied. For example,
Ghorbani et al. (2019) showed that many heuristic
explanations can be easily manipulated and Slack
et al. (2020) demonstrated that discriminative mod-
els can be carefully modified such that their dis-
crimination is hidden by heuristic explanations. It
is possible that same issues exist for the search-
based explanation, and thus we advise to carefully
study them before deployment.

Another limitation of this approach is that E∗

explainer only produces rankings of feature im-
portance, rather than numerical values of feature
importance. In other words, E∗ does not distinguish
whether one feature is only slightly or significantly
more important than another. By comparison, al-
most all heuristic explainers output numerical val-
ues (e.g., magnitude of gradient). Other than the
ease of search in the ranking space than the numer-
ical value space, we give three additional reasons.
First, the utility of actual values, beyond the in-
duced rankings, has not been well studied in the
literature. In addition, many popular explanation
toolkits (e.g., Wallace et al., 2019) even defaults to
top-k visualization. Last, popular evaluation met-
rics rarely consider values either, suggesting that
there currently lack guiding principles and desider-
ata for these values. Moreover, if and when such
value-aware metrics are widely adopted, we could
augment our optimizer with them or incorporate
them into a post-processing fix without affecting
the ranking, similar to the shift operation done on
Line 9 of Alg. 1.
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A The Python solvex Package
We release the Python solvex package implementing explainer in a model-agnostic manner. The

project website at https://yilunzhou.github.io/solvability/ contains detailed tutorials
and documentation. Here, we showcase three additional use cases of the explainer.

To explain long paragraphs, feature granularity at the level of sentences may be sufficient or even
desired. solvex can use spaCy3 to split a paragraph into sentences and compute the sentence-level
attribution explanation accordingly. As an explanation, Fig. 7 shows an explanation for the prediction on
a test instance in the Yelp dataset (Asghar, 2016) made by the albert-base-v2-yelp-polarity model.

Contrary to other reviews, I have zero complaints about the service or the prices. I have been getting
tire service here for the past 5 years now, and compared to my experience with places like Pep Boys,
these guys are experienced and know what they’re doing. Also, this is one place that I do not feel like
I am being taken advantage of, just because of my gender. Other auto mechanics have been notorious
for capitalizing on my ignorance of cars, and have sucked my bank account dry. But here, my service
and road coverage has all been well explained - and let up to me to decide. And they just renovated
the waiting room. It looks a lot better than it did in previous years.

Figure 7: A sentence-level explanation on a Yelp test instance. Red color indicates positive contribution.

This package can explain image predictions with superpixel features (similar to LIME (Ribeiro et al.,
2016)). Fig. 8 shows the explanation for the top prediction (Class 232: Border Collie, a dog breed) by the
ResNet-50 (He et al., 2016) trained on ImageNet (Deng et al., 2009).

Explained label: 232. Function value: 0.159

20

10

0

10

20

Figure 8: An explanation for the top prediction (Class 232: Border Collie, a dog breed) on an image made by a
ResNet-50 model trained on ImageNet. Red color indicates positive contribution.

Last, it can also explain models trained on tabular datasets with both categorical and numerical features.
For a random forest model trained on the Adult dataset (Kohavi and Becker, 1996), Fig. 9 shows the
attribution on each feature that contributes to the class 0 (i.e., income less than or equal to $50K). Note
that a more positive attribution value indicates that the feature (e.g. age or relationship) contributes more
to the low income prediction.

3https://spacy.io/
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Age = 27.0
Workclass = Private

Education = Some-college
Education-Num = 10.0

Marital-Status = Divorced
Occupation = Adm-clerical
Relationship = Unmarried

Race = White
Sex = Female

Capital-Gain = 0.0
Capital-Loss = 0.0

Hours-per-Week = 44.0
Native-Country = United-States

Explained label: 0. Function value: 0.980

Figure 9: An explanation for the low income prediction made by a random forest model on the Adult dataset.

B The Definition-Evaluation Spectrum and Its Various Concepts
We describe the reasoning of assigning each concept to its location on the definition-evaluation

spectrum (Fig. 2, reproduced as Fig. 10 below), as currently perceived by the community according to
our understanding. Note that the discussion is unavoidably qualitative, but we hope that it illustrates the
general idea of this spectrum.

SHAP Occlusion

“Definitional” “Evaluational”

Gradient ComprehensivenessRobustness SufficiencyLIME

Figure 10: A definition-evaluation spectrum for various interpretability concepts, reproduced from Fig. 2.

We start on the definition side, where the gradient saliency (Simonyan et al., 2013; Li et al., 2016a)
is a classic feature attribution definition but, to the best of our knowledge, has never been used in any
evaluation capacity. Moving towards the evaluation side, we have LIME (Ribeiro et al., 2016), which is
again used mainly to define explanations (as linear regression coefficients), but the notion of local fidelity
introduced by LIME has been occasionally used to evaluate other explainers as well (Plumb et al., 2018).
Similar to LIME, SHAP (Lundberg and Lee, 2017) defines explanations as those that (approximately)
satisfy the Shapley axioms (Roth, 1988), which can also be used to evaluate how well a certain explanation
performs with respect to these axioms (Zhang et al., 2019). Next up we have the occlusion concept,
which, as seen in Sec. 2, can be used as one explainer definition, Occl (Zeiler and Fergus, 2014; Li et al.,
2016b), and two (not so popular) evaluations, DFMIT (Chrysostomou and Aletras, 2021) and RankDel
(Alvarez-Melis and Jaakkola, 2018b).

Further on the evaluation side, we now encounter concepts that are more often used for evaluations
than definitions. Robustness (Ghorbani et al., 2019) evaluates the similarity between explanations among
similar inputs and a higher degree of similarity is often more desirable (Alvarez-Melis and Jaakkola,
2018a). However, this robustness desideratum is incorporated explicitly into some explainers, such
as via the noise aggregation in SmoothGrad (Smilkov et al., 2017). On the right-most end we have
sufficiency and comprehensiveness (DeYoung et al., 2020), which evaluates whether keeping a small
subset of features could lead to the original model prediction, or removing it could lead to a large drop in
model prediction. They are arguably the most popular among various evaluation metrics, and have been
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repeatedly proposed under different names such as the area over perturbation curve (AoPC) (Samek et al.,
2016) and insertion/deletion metrics (Petsiuk et al., 2018). Using such these two ideas for definitions are
relatively rare, with one notable exception of smallest sufficient/destroying regions (SSR/SDR) proposed
by (Dabkowski and Gal, 2017).

Overall, it is clear that the community considers certain concepts more for definitions and others
more for evaluations, which motivates the investigation for this paper and future work: can we swap the
definition/evaluation roles, and if so, what are the implications?

C Additional Qualitative Examples of the E∗ Explanation
Fig. 11 presents more visualizations of E∗ explanations. These examples suggest that E∗ mostly focus

on words that convey strong sentiments, which is a plausible working mechanism of a sentiment classifier.

A triumph , relentless and beautiful in its downbeat darkness .

Ranks among Willams ’ best screen work .

Zany , exuberantly irreverent animated space adventure .

Behind the snow games and lovable Siberian huskies ( plus one sheep dog ) , the picture hosts a
parka-wrapped dose of heart .

... a haunting vision , with images that seem more like disturbing hallucinations .

Suffocated at conception by its Munchausen-by-proxy mum .

It ’s an awfully derivative story .

A dreadful live-action movie .

Figure 11: More E∗ explanations. The shade of background color represents feature importance.

D An Analysis on the RankIns Metric
As introduced in App. 2, RankDel evaluates the monotonicity of the model prediction curve when more

important features are successively inserted into an empty input. While this expectation seems reasonable,
it suffers from a critical issue due to the convention in ranking features: if a feature contributes against
the prediction, such as a word of sentiment opposite to the prediction (e.g., a positive prediction on “Other
than the story plot being a bit boring, everything else is actually masterfully designed and executed.”), it
should have negative attribution and the convention is to put them lower in the rank (i.e., less important)
than those have zero contributions. This implementation leads to the correct interpretation of all other
metric values.

However, under this convention, the first few words added to the empty input should decrease the model
prediction and then increase it, leading to a U-shaped curve. In fact, it is the comprehensiveness curve
shown in Fig. 4, flipped both horizontally (because features are inserted rather than removed) and vertically
(because the plotted quantity is the model prediction rather than change in prediction). Thus, a deeper
U-shape should be preferred, but it is less monotonic. This also explains why the random attribution
baseline achieves such a high ranking correlation: as we randomly add features from the empty string
to the full input, on average the curve should be a more or less monotonic interpolation between model
predictions on empty and full inputs, which has better monotonicity rank correlation than the U-shape.

It is not clear how to fix the metric. Previous works that proposed (Luss et al., 2021) or used (Chan
et al., 2022) this metric often ignored the issue. One work (Arya et al., 2019) filtered out all features of
negative attribution values and evaluate the rank correlation only on the rest. This, however, is easily
manipulatable by an adversary. Specifically, an explainer could shift all attribution values down such that
only the most positive one has a non-negative value. This change results in a perfect correlation as long as
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removing most positive feature induces a decrease in model prediction – an especially low requirement to
satisfy. Empirically, we found that inserting features based on their (unsigned) magnitude barely affects
the result either. Thus, we argue that this metric is not a good measurement of explanation quality.

E Visualization of Perturbation Effects

Fig. 12 visually presents the random perturbation, with different standard deviation s of the Gaussian
noise. In each panel, the top row orders the features by their ranked importance, from least important on
the left to most on the right, and the bottom row orders the features with perturbed ranked importance,
with lines connecting to their original position. For example, in the top panel for s = 1, the perturbation
swaps the relative order of the two least important features on the left.

s
=
1

s
=
2

s
=
3

s
=
4

s
=
5

Figure 12: Visualization of rank perturbation under different values of s.

F Another Assessment on the Explainer-Attacking-Model Behavior

We describe another experiment to assess whether the explanations exploit the adversarial vulnerability
of the model. While it is possible that the model could use some shortcuts (Geirhos et al., 2020), we
would expect it to predominantly use sentiment-conveying words, as it achieves high accuracy and no such
shortcuts are known for the dataset. In this case, we should expect an explainer that does not adversarially
exploit the model to give attributions for words correlated with their sentiment values, while an explainer
that attacks the model would rate words that are “adversarial bugs” to be more important.
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Figure 13: Spearman rank correlation coefficient between intrinsic word polarity score and attribution value.
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Conveniently, the SST dataset provides human annotations of the polarity score between 0 and 1 for
each word, where 0 means very negative, 1 means very positive, and 0.5 means neutral. We compute the
alignment between the attribution values (for the positive class) and this score for each word. Given a
sentence x = (x1, ..., xL) with explanation e = (e1, ..., eL) and word polarity score s = (s1, ..., sL), the
alignment is defined as the Spearman rank correlation coefficient ρ(e, s). Since the vanilla gradient only
produces non-negative values, it is impossible to identify whether a word contributes to or against the
positive class, and we exclude it from the analysis.

Fig. 13 plots the distribution of rank correlations among the test set instances, with the average shown
as the bar and also annotated on the horizontal axis. Although no method achieves very high alignment,
E∗ is the second-highest, after LIME. Thus, giving out assumption that high-polarity words are the indeed
genuine signals used by the model for making predictions, we can conclude that E∗ does not adversarially
exploit the model for its vulnerability any more severely than the heuristic explainers.
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Abstract

Due to privacy or commercial constraints, large
pre-trained language models (PLMs) are often
offered as black-box APIs. Fine-tuning such
models to downstream tasks is challenging be-
cause one can neither access the model’s in-
ternal representations nor propagate gradients
through it. This paper addresses these chal-
lenges by developing techniques for adapting
PLMs with only API access. Building on re-
cent work on soft prompt tuning, we develop
methods to tune the soft prompts without requir-
ing gradient computation. Further, we develop
extensions that in addition to not requiring gra-
dients also do not need to access any internal
representation of the PLM beyond the input
embeddings. Moreover, instead of learning a
single prompt, our methods learn a distribution
over prompts allowing us to quantify predic-
tive uncertainty. Ours is the first work to con-
sider uncertainty in prompts when only having
API access to the PLM. Finally, through exten-
sive experiments, we carefully vet the proposed
methods and find them competitive with (and
sometimes even improving on) gradient-based
approaches with full access to the PLM.

1 Introduction

Pre-trained language models (PLMs) are versa-
tile learners and demonstrate impressive few-shot
capabilities (Brown et al., 2020) and promising
performance (Radford et al., 2018; Devlin et al.,
2018; Raffel et al., 2020; Lewis et al., 2019) on
various downstream tasks such as text classifica-
tion (Kowsari et al., 2019), commonsense reason-
ing (Zellers et al., 2018), question answering (Ra-
jpurkar et al., 2016), and machine translation (Bah-
danau et al., 2014).

The conventional approach to adapting PLMs
to downstream tasks involves fine-tuning the
model (Peters et al., 2018; Devlin et al., 2018).
Although fine-tuning is effective, it can be chal-
lenging to do in practice. First, fine-tuning large

language models are compute and memory inten-
sive, e.g., a large model like GPT-3 (Brown et al.,
2020) contains billions of parameters. Further, it
is inefficient to adapt a PLM to a large number of
downstream tasks since each task would require
storing a copy of model parameters.

Prompt tuning alleviates these issues by provid-
ing an efficient way to adapt a PLM to a down-
stream task. It only learns a small number of
prompt parameters while keeping the large PLM
frozen but still achieves comparable performance
to fine-tuning the entire PLM (Liu et al., 2021a;
Shin et al., 2020; Lester et al., 2021; Liu et al.,
2021c).

Although more efficient than traditional fine-
tuning, prompt tuning still requires the propagation
of gradients through the entire PLM. Beyond be-
ing computationally expensive, this may not be
possible due to privacy risks or legal and com-
mercial constraints. In fact, large PLMs are of-
ten only made available in the form of black-box
APIs (Brown et al., 2020). Motivated by these
observations, a recent line of research (Sun et al.,
2022b,a) has started exploring gradient-free ap-
proaches to prompt tuning. BBT (Sun et al.,
2022b) optimizes continuous prompt by leverag-
ing the derivative-free optimization algorithms, and
BBTv2 (Sun et al., 2022a) improves over BBT by
optimizing multiple deep prompts at various inter-
mediate layers of PLM. Although these approaches
are gradient-free, they still assume that intermedi-
ate layers of the model being tuned are accessible.

Moreover, when deploying an NLP model in a
real-world setting, it is inevitable to encounter un-
expected scenarios. For example, the test data to be
predicted might originate from out-of-distribution
resources (Arora et al., 2021). For the model to
be useful in such scenarios, it is essential that the
model is able to quantify the uncertainty associated
with its predictions and that these uncertainties are
well-calibrated.
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To this end, here we further push the limits of
gradient-free prompt tuning in two aspects:

• First, we develop methods that add a layer of
uncertainty quantification (UQ) aimed toward
more reliable prompt tuning. We show that
this improves calibration and UQ performance
on several tasks, including selective classifica-
tion and text Out-of-Distribution (OOD) de-
tection.

• Second, we consider a much stricter notion
of black-box setting, i.e., likelihood-free set-
ting, where the PLM-based API does not pro-
vide probability scores or logits as the output,
but only the discrete outcome labels. We pro-
pose a simulation-based-inference approach
that yields competitive performance in the
stricter setting even compared to the SOTA
prior works on the relaxed black-box setting.

2 Background

Prompt Tuning Prompting, in the simplest form,
involves appending manually curated words or to-
kens to a text input such that the language model,
conditioned on such an augmented input, generates
the desired output (Liu et al., 2021a). Such curated
prompts were shown to be much more efficient than
fine-tuning the entire PLM (Brown et al., 2020).
However, curating good prompts for a new task
can be difficult without deep domain expertise (Liu
et al., 2021c; Zhao et al., 2021). One solution is
to search the space of discrete prompts(Shin et al.,
2020; Gao et al., 2020). This search in discrete
space can be a hard optimization problem. Recent
works instead learn continuous or soft prompts in
the form of a small number of free parameters in-
jected into certain layers of the PLM (Li and Liang,
2021). In this paper, we work with the simpler
form of continuous prompt tuning, where the free
parameters are only injected in the embedding layer
(Lester et al., 2021).

Gradient-free Prompt Tuning Gradient-free
prompt tuning aims to learn the continuous prompt
without the propagating gradients through the PLM.
BBT (Sun et al., 2022b) utilizes derivative-free
optimization algorithms to optimize the continu-
ous prompt. BBTv2 (Sun et al., 2022a) extends
BBT by incorporating the idea of deep prompt tun-
ing, which optimizes the deep prompt injected at
additional intermediate layers of the PLM. Since
our goal is to treat the PLM as a black-box, deep

prompt tuning is out of the scope of this work. We
instead focus on the problem setting of the original
BBT (Sun et al., 2022b) that learns a single prompt
at the input layer.

Beyond point-estimates of prompts Many ap-
plications demand accurate quantification of uncer-
tainty in predictions. This can be achieved in the
prompt-tuning setting by not just learning a point
estimate of the prompts but also inferring a distri-
bution over the prompts for a given downstream
task. In a non-black-box setting, to infer such a
distribution, we can apply classical frequentist or
Bayesian approaches. Although a few recent works
focus on uncertainty quantification in NLP applica-
tions (Arora et al., 2021; Xiao and Wang, 2019; De-
sai and Durrett, 2020; Kumar and Sarawagi, 2019),
quantifying uncertainty in prompt-tuned large lan-
guage models remains a severely under explored
area. Our paper is the first to explore prompt uncer-
tainty in gradient-free settings.

Simulation-based Inference Classic approaches
for statistical inference mentioned above are in-
tractable when the likelihood function is not ac-
cessible. The problem of inferring parameters of
such a black-box model, called Simulation-based
Inference (SBI) (Cranmer et al., 2020), is gain-
ing popularity. Traditional SBI approaches include
Approximate Bayesian Computation (ABC) (Beau-
mont et al., 2002; Marjoram et al., 2003; Marin
et al., 2012; Beaumont et al., 2009; Bonassi and
West, 2015) and synthetic likelihood (SL) (Wood,
2010; Turner and Sederberg, 2014). More recently,
the neural density estimation-based approaches uti-
lize the powerful deep neural network density esti-
mator to directly learn the likelihood, i.e., Sequen-
tial Neural Likelihood Estimation (SNLE) (Lueck-
mann et al., 2017; Greenberg et al., 2019), or the
likelihood ratio, i.e., Sequential Neural Ratio Esti-
mation (SNRE) (Papamakarios et al., 2019), or the
posterior, i.e., Sequential Neural Posterior Estima-
tion (SNPE) (Hermans et al., 2020; Durkan et al.,
2020).

3 Problem Formulation

In this paper, we focus on text classification and
restrict ourselves to the few-shot learning setting
considered in BBT (Sun et al., 2022b). Given a
dataset D = (X,Y) = {(xi, yi)}Ni=1 and a pre-
trained language model (PLM) f , we aim to adapt
f to predict the label y∗ for an unseen text pas-
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Figure 1: Our general goal is to estimate the posterior distribution of prompts. The Gradient-free setting uses the internal logits
of PLM for optimization. Our proposed Gradient-free Variational inference approach utilizes the likelihood to compute the ELBO
objective and leverage the gradient-free optimizer to optimize the variational distribution. The Gradient-free and likelihood-free
setting can be formulated as an SBI problem, where the PLM is treated as a black-box simulator, and its output discrete outcome
labels are the simulated data. The posterior samples can be efficiently approximated by the proposed ABC-SMC algorithm.

sage x∗. We formulate the classification task as
a masked language modeling problem, where the
input text xi is converted into x̃i via predefined
templates, e.g., adding trigger words like “It was
[MASK]”, and the labels yi are mapped to label to-
kens ỹi in the vocabulary such as “great” or “bad”.
We denote this transformed dataset D̃ = (X̃, Ỹ).

We use soft prompt tuning (Lester et al., 2021)
to adapt f , i.e., we construct a continuous prompt
embedding P ∈ RD and feed it along with the con-
verted input text x̃i to the PLM f to generate a la-
bel token, ŷi = f(x̃i;P), where the notation ŷi =
f(x̃i;P) is short hand for ŷi ∼ Cat(σ(hθ(x̃i;P))).
Here, Cat denotes the Categorical distribution, σ is
the softmax function, and θ represents the frozen
parameters of the PLM. We use hθ to denote all
but the final layer of the PLM f . Finally, we aim
to learn an optimal prompt

P∗ = argmin
P

−
N∑

i=1

log Cat(ỹi|σ(hθ(x̃i;P))).

(1)
This is just the standard cross-entropy loss and
can be easily minimized using standard stochas-
tic gradient based approaches provided (i) we can
propagate gradients through the PLM f , and (ii) we
can access the PLM’s logits, i.e., hθ(x̃i;P). The
problem becomes substantially more challenging
when these requirements are not satisfied.

When we are unable to propagate gradients

through f , we need to rely on gradient-free ap-
proaches to optimize Equation 1. Recent work (Sun
et al., 2022b) has demonstrated promising gradient-
free prompt tuning results by first employing a
lower dimensional re-parameterization, z ∈ Rd
with d << D, P = Az + P0, where A ∈
RD×d is a random projection matrix and P0 is
a fixed prompt embedding, and then using gradient-
free evolutionary algorithms, in particular, Covari-
ance Matrix Adaptation Evolution Strategy (CMA-
ES) (Hansen and Ostermeier, 2001; Hansen et al.,
2003) to optimize,

z∗

= argmin
z

−
N∑

i=1

log Cat(ỹi|σ(hθ(x̃i;Az +P0))

(2)

Going forward, we also adopt this lower dimen-
sional parameterization, but instead of learning a
point estimate z∗, we learn a distribution p(z|D̃)
in a gradient-free setting. Similar to the point esti-
mated variants, our algorithms to learn p(z|D̃) also
rely on CMA-ES.

Next, we consider the fully black-box setting
— likelihood-free and gradient-free. Here, beyond
being unable to propagate gradients through f , we
are further handicapped by only observing the pre-
dicted label tokens, ŷi = f(x̃i;P) for each training
instance x̃i, and not the corresponding logits, i.e.,
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hθ(x̃i;P). In this more challenging setting we
found CMA-ES based approaches to be unreliable,
often getting stuck in poor optima. Instead, we
found it effective to pose the likelihood-free and
gradient-free prompt tuning task as a simulation-
based inference (SBI) (Cranmer et al., 2020) prob-
lem. We view the PLM f as a black-box simulator
that given a realization of z and the text x̃i pro-
duces ŷi. We then use a sequential Monte-Carlo
approximate Bayesian computation (SMC-ABC)
approach to infer the distribution p(z|D̃).

Finally, we use the distribution p(z|D̃)
to characterize the uncertainty in predictions
via the predictive distribution p(ỹ|x̃, D̃) =∫
p(ỹ|x̃; z)p(z|D̃)dz. We form Monte-Carlo ap-

proximations to this integral. In the gradient-free
case, this is,

p(ỹ|x̃, D̃) ≈ 1

S

S∑

s=1

p(ỹ|x̃; zs),

where zs ∼ p(z|D̃). In the likelihood-free and
gradient-free case, since we only have access to
the label tokens, we approximate the predictive
distribution,

p(ỹ = c|x̃; D̃) ≈ 1

S

S∑

s=1

1{ŷs = c}, (3)

where ŷs = f(x;Azs+P0), zs ∼ p(z|D̃). In Sec-
tion 5 we empirically demonstrate that by charac-
terizing the uncertainty in z through p(z|D̃) we get
better calibrated predictive uncertainties, improved
selective classification, and out-of-distribution de-
tection.

4 Methods

We now describe our methods in greater detail.
First, we discuss two algorithms for the gradient-
free setting in 4.1 and 4.2. After that, we focus
on addressing the gradient-free and likelihood-free
setting from the SBI perspective in 4.3.

4.1 Prompt Ensembles

Deep ensembles (Lakshminarayanan et al., 2017)
are a simple yet effective technique for quantify-
ing uncertainty in deep neural network predictions.
They generate a uniformly-weighted ensemble by
re-training the same neural network from different
random initialization. Leveraging the CMA-ES
algorithm (Hansen and Ostermeier, 2001; Hansen

et al., 2003), we can adapt this idea to gradient-free
prompt tuning.

CMA-ES is an evolutionary strategy that
maintains a multivariate normal distribution
N (mt, σ

2
tCt) over a population of solutions. Each

iteration of the algorithm involves sampling a set
of possible solutions and updating the normal dis-
tribution to favor low loss solutions. To build a
prompt ensemble, we run S instances of CMA-ES,
each initialized with a different random initializa-
tion of the mean mt and variance σ2t and record the
optimized prompt embeddings produced by each
instance. This collection of S prompt embeddings
{zs}Ss=1 form the distribution p(z|D̃) and are used
to approximate the predictive distribution via Equa-
tion 2.

4.2 Gradient-free Variational Inference
An alternative way to estimate the predictive dis-
tribution is by approximating the posterior dis-
tribution of prompt embedding p(z|D̃). Since
direct computation of posterior is intractable, in
our setting we resort to variational inference (VI)
and approximate the posterior distribution with
a tractable surrogate q(z;λ), where λ denotes
the variational parameters. VI minimizes KL-
divergence between variational distribution and
true posterior distribution with respect to λ. i.e.,
λ⋆ = argminλKL

(
q(z;λ)∥p(z|D̃)

)
. This is

equivalent to maximizing the evidence lower bound
(ELBO), i.e.,

λ⋆

=argmax
λ

Eq(z;λ)[log p(D̃|z)] (4)

−KL (q(z;λ)∥p(z))

= argmax
λ

N∑

i=1

Eq(z;λ)[log Cat(ỹi|σ(hθ(x̃i;P))]

−KL (q(z;λ)∥p(z)) , (5)

where P = Az +P0, and p(z) denotes the prior
distribution, which is assumed to be a normal dis-
tribution with zero mean and diagonal covariance
matrix, i.e., N (0, σ · I). Optimizing the ELBO
objective requires taking derivative w.r.t λ as well
as computing the gradient of log likelihood w.r.t z,
i.e., ∇zEq(z;λ)[log Cat(ỹi|σ(hθ(x̃i;Az + P0))],
which causes standard variational inference algo-
rithms to be infeasible in the gradient-free setting.

Instead of back-propagation, we propose a
gradient-free variational inference algorithm lever-
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aging the derivative-free optimizer CMA-ES.
Specifically, we consider the variational distribu-
tion as a multivariate normal distribution q(z;λ) =
N (µ,Σ), where we assume the covariance ma-
trix is diagonal, i.e., Σ = diag(α) ∈ Rd×d.
The variational parameter, as the target for opti-
mization, is the mean and diagonal elements of
the covariance matrix, i.e., λ = (µ,α) ∈ R2d.
At each iteration of the optimization, the CMA-
ES outputs a collection of candidate solutions
{λj}mj=1 = {(µj ,αj)}mj=1. For each candidate
variational parameter λj , we evaluate the corre-
sponding ELBO loss using the variational distribu-
tion q(z;λj) = N (µj , diag(αj)), where the ex-
pectations in Equation 5 is approximated by Monte-
Carlo samples obtained from the variational distri-
bution. Finally, the CMA-ES optimizer takes the
current collection of variational parameter {λj}mj=1

and their corresponding ELBO loss to conduct the
next iteration of optimization. The schematic of
the process is shown in Figure 1, and the overall
algorithm is summarized as Algorithm 1 in Ap-
pendix A.

After we obtain the optimal variational parame-
ter λ⋆ that maximizes the ELBO loss, the predic-
tive label distribution can be estimated by taking
Monte Carlo samples from the optimal variational
distribution, i.e., q(z;λ⋆) = N (µ⋆,Σ⋆).

4.3 SBI-based Algorithm for Likelihood-free
Prompt Tuning

Now, we describe our proposed approach for
the gradient-free and likelihood-free case. For
this problem, the most naive algorithm applica-
ble is rejection approximation Bayesian compu-
tation (ABC) (Pritchard et al., 1999) that repeat-
edly samples from a prior distribution z ∼ p(z)
and obtains the corresponding simulated observa-
tion Ŷ. The algorithm only accepts the sampled
prompt embedding if the simulated observation is
sufficiently close to the ground truth observation
Ỹ based on a distance function ρ and tolerance
ϵ, i.e., ρ(Ŷ, Ỹ) < ϵ. The collection of accepted
samples can be used to approximate the posterior
distribution. However, rejection ABC typically suf-
fers from poor computational efficiency, especially
when ϵ is small and the dimensionality of obser-
vations is large. In preliminary experiments, we
found rejection ABC to not be effective for our
purposes. Instead, in this work, we adapt a more
advanced technique — sequential Monte Carlo ap-

proximate Bayesian computation (ABC-SMC) al-
gorithm (McKinley et al., 2009) to enable efficient
prompt posterior inference. The core idea of ABC-
SMC is to use a sequential tolerance schedule, i.e.,
ϵ1 > ϵ2 >, . . . , > ϵT to construct a sequence of
intermediate distributions, which gradually con-
verges to the true posterior distribution.

First, we draw prompt embedding samples from
the prior p(z) = N (0, σ · I) and pass them into
PLM f to receive the corresponding token label pre-
diction Ŷ for a batch of text data X̃. Then, we ac-
cept S samples {z(1)

s }Ss=1 that satisfy the condition
ρ(Ŷ, Ỹ) < ϵ1. We use accuracy as the distance
function ρ. In the next iteration, we resample em-
beddings from {z(t−1)

s }Ss=1 with probability pro-
portional to weights w(t−1), and perturb the sam-
pled embeddings via a perturbation kernel to ob-
tain a new sample, i.e., z(t) ∼ N (z(t−1),Σ(t−1)).
Again, we propagate these sampled embeddings
through the PLM f and accept the newly proposed
embeddings, {z(t)

s }Ss=1, if ρ(Ŷ,Y) < ϵt, where
the tolerance ϵt is decayed by one step per iter-
ation, i.e., ϵt+1 = ϵt − 1

N , where N is the total
number of training data. Finally, the weights w(t)

and the variance of the perturbation kernel are up-
dated after each iteration (details are elaborated
in Appendix B). Empirically, we find that simply
using uniform weights leads to better performance
(more discussion in Section 5.3). These steps are
repeated for T iterations until the tolerance ϵT is
sufficiently small. The schematic is in Figure 1 and
the overall algorithm is summarized as Algorithm 1
in Appendix A.

The final collection of prompt samples
{z(T )

s }Ss=1 form an approximation to the posterior
p(z|D̃) and we use Equation 3 to derive the approx-
imate predictive distribution.

5 Experiment Results

In this section, we demonstrate the solid empirical
performance of our proposed methods. We be-
gin with introducing the uncertainty quantification
applications and describe the experiment settings.
Then, we present our main results in terms of pre-
diction performance and UQ quality. Finally, we
provide an ablation study and relevant perspectives
of comparison. Detailed results and implementa-
tion steps are provided in Appendix D.
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Table 1: Prediction Performance (Test acc ↑), *indicates results taken from BBT (Sun et al., 2022b)

Settings Methods SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE Avg
Gradient-based Prompt Tuning* 68.23±3.78 61.02±6.65 84.81±0.66 87.75±1.48 51.61±8.67 36.13±1.51 54.69±3.79 63.46

P-Tuning v2* 64.33±3.05 92.63±1.39 83.46±1.01 97.05±0.41 68.14±3.89 36.89±0.79 50.78±2.28 70.47
Model Tuning* 85.39±2.84 91.82±0.79 86.36±1.85 97.98±0.14 77.35±5.70 54.64±5.29 58.60±6.21 78.88

Gradient-free Manual Prompt* 79.82 89.65 76.96 41.33 67.40 31.11 51.62 62.56
In-Context Learning* 79.79±3.06 85.38±3.92 62.21±13.46 34.83±7.59 45.81±6.67 47.11±0.63 60.36±1.56 59.36
Feature-MLP* 64.80±1.78 79.20±2.26 70.77±0.67 87.78±0.61 68.40±0.86 42.01±0.33 53.43±1.57 66.63
Feature-BiLSTM* 65.95±0.99 74.68±0.10 77.28±2.83 90.37±3.10 71.55±7.10 46.02±0.38 52.17±0.25 68.29
BBT 86.93±0.25 91.61±0.29 83.22±0.42 76.94±1.22 75.95±2.30 45.38±0.02 50.54±0.36 72.94
Ours(ELBO) 86.81±0.47 92.07±0.17 83.96±0.22 73.25±2.35 76.35±0.94 46.78±2.92 50.78±1.39 72.86
Ours(Ensembles) 88.61±0.78 92.35±0.16 84.62±0.20 80.12±1.06 76.77±1.13 47.95±2.76 50.34±3.40 74.39

Gradient-free & Ours(SNPE) 84.37±0.29 90.38±0.07 80.50±0.10 33.11±0.48 81.02±0.06 39.60±0.49 53.07±0.82 66.01
Likelihood-free Ours(ABC-SMC) 86.51±0.55 90.32±0.03 81.43±0.41 57.41±0.90 80.78±0.07 40.81±0.24 53.37±0.30 70.09

Table 2: Calibration Performance (ECE score ↓)

Settings Methods SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE Avg
Gradient-free BBT 0.056±0.014 0.032±0.000 0.049±0.007 0.056±0.032 0.115±0.018 0.040±0.008 0.170±0.069 0.074

Ours(ELBO) 0.056±0.007 0.025±0.004 0.065±0.001 0.045±0.028 0.058±0.004 0.035±0.007 0.113±0.030 0.057
Ours(Ensembles) 0.058±0.001 0.017±0.001 0.064±0.009 0.085±0.005 0.073±0.007 0.039±0.004 0.134±0.033 0.067

Gradient-free & Ours(SNPE) 0.104±0.005 0.082±0.000 0.100±0.010 0.549±0.004 0.314±0.001 0.185±0.011 0.466±0.002 0.257
Likelihood-free Ours(ABC-SMC) 0.106±0.009 0.084±0.001 0.108±0.001 0.278±0.026 0.309±0.009 0.178±0.002 0.458±0.004 0.217

Table 3: Selective Classification (AURRRC score ↓)

Settings Methods SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE Avg
Lower-bound 0.030 0.009 0.035 0.070 0.251 0.427 0.255 0.154

Gradient-free BBT(Entropy) 0.063±0.009 0.029±0.001 0.082±0.004 0.095±0.009 0.349±0.002 0.519±0.032 0.523±0.004 0.237
BBT(MaxP) 0.063±0.009 0.029±0.001 0.077±0.004 0.091±0.009 0.349±0.002 0.513±0.031 0.523±0.004 0.235
ELBO(Entropy) 0.053±0.004 0.026±0.001 0.079±0.001 0.123±0.006 0.336±0.009 0.481±0.065 0.508±0.012 0.229
ELBO(MaxP) 0.053±0.004 0.026±0.001 0.074±0.002 0.117±0.005 0.336±0.009 0.478±0.062 0.508±0.012 0.227
Ensembles(Entropy) 0.046±0.006 0.023±0.001 0.074±0.002 0.084±0.004 0.324±0.011 0.472±0.048 0.513±0.048 0.219
Ensembles(MaxP) 0.046±0.006 0.023±0.001 0.068±0.002 0.076±0.004 0.324±0.011 0.469±0.047 0.513±0.048 0.217

Gradient-free & SNPE(Entropy) 0.065±0.003 0.073±0.001 0.116±0.005 0.551±0.001 0.319±0.003 0.580±0.009 0.466±0.003 0.310
Likelihood-free SNPE(MaxP) 0.065±0.003 0.073±0.001 0.116±0.005 0.552±0.002 0.319±0.003 0.591±0.009 0.466±0.003 0.312

ABC-SMC(Entropy) 0.061±0.006 0.075±0.002 0.110±0.004 0.285±0.015 0.325±0.006 0.571±0.000 0.468±0.014 0.271
ABC-SMC(MaxP) 0.061±0.006 0.075±0.002 0.110±0.004 0.288±0.014 0.325±0.006 0.579±0.000 0.468±0.014 0.272

5.1 Settings

Uncertainty Quantification Applications. We
assess the performance of the uncertainty quantifi-
cation from three perspectives: (1) Calibration –
the typical UQ quality metric that measures how
well the model confidence aligned with the correct-
ness of its prediction; (2) Selective Classification –
aims to avoid the risk of wrong predictions by ab-
staining the prediction for samples with high uncer-
tainty; and (3) OOD Detection – aims to identify
the out-of-distribution data that is unobserved dur-
ing the training stage. The OOD data can exhibit
different forms of distribution shift, including the
covariate shift where the OOD data distribution is
different from the training samples; and the seman-
tic shift where the OOD data contain unobserved
class. In our experiment, we focus on two types
of OOD tasks: the Far OOD detection task where
both covariat shift and semantic shift happen simul-
taneously; the Near OOD detection task where the
OOD data only contain covariate shift, but have
the same class label words.

Benchmark. For a comprehensive comparison
with BBT (Sun et al., 2022b), we mainly employ
the same text classification benchmark datasets as
BBT, including sentiment analysis datasets SST-

2 (Socher et al., 2013) and Yelp polarity (Zhang
et al., 2015); topic classification datasets AG’s
News (Zhang et al., 2015) and DBPedia (Zhang
et al., 2015); paraphrase dataset MRPC (Dolan
and Brockett, 2005); natural language inference
(NLI) datasets SNLI (Bowman et al., 2015) and
RTE (Wang et al., 2018).

Both calibration and selective classification tasks
are conducted using the original test samples for
each benchmark dataset. For the far OOD detec-
tion task, we create the ID/OOD dataset pairs by
combining two datasets belonging to two different
tasks, e.g., SST-2/RTE. For the near OOD detec-
tion task, we use IMDB (Maas et al., 2011) for the
sentiment analysis task and MNLI (Williams et al.,
2017) for the NLI task.

Baselines. For prediction performance, besides
the SOTA Gradient-free prompt tuning approach
BBT (Sun et al., 2022b), we also compare with
other Gradient-free methods: (1) The naive Man-
ual Prompt that uses the hand-crafted prompt tem-
plates; (2) In-context Learning (Brown et al.,
2020); (3) Feature-based approaches (Peters et al.,
2019) that trains auxiliary models on top of the
PLM extracted features, including Feature-MLP
training a MLP classifier and Feature-BiLSTM

2421



Table 4: Far OOD Detection (AURRRC score ↓)

Settings Methods ID:SST-2
OOD:RTE

ID:Yelp P.
OOD:RTE

ID:MRPC
OOD:RTE

ID:DBPedia
OOD:AG’s News

ID:SNLI
OOD:MRPC

ID:RTE
OOD:MRPC Avg

Lower-bound 0.072 0.001 0.162 0.010 0.004 0.357 0.101
Gradient-free BBT(entropy) 0.124±0.015 0.002±0.000 0.404±0.006 0.058±0.018 0.100±0.002 0.639±0.024 0.221

BBT(MaxP) 0.124±0.015 0.002±0.000 0.404±0.006 0.059±0.014 0.098±0.002 0.639±0.024 0.221
Ours(ELBO)(Entropy) 0.112±0.010 0.001±0.000 0.320±0.014 0.051±0.001 0.109±0.002 0.635±0.003 0.205
Ours(ELBO)(MaxP) 0.112±0.010 0.001±0.000 0.320±0.014 0.056±0.001 0.107±0.002 0.635±0.003 0.205
Ours(Ensembles)(Entropy) 0.097±0.008 0.001±0.000 0.350±0.038 0.057±0.003 0.110±0.001 0.606±0.047 0.204
Ours(Ensembles)(MaxP) 0.097±0.008 0.001±0.000 0.350±0.038 0.058±0.002 0.108±0.001 0.606±0.047 0.203

Gradient-free & Ours(SNPE)(Entropy) 0.140±0.001 0.005±0.000 0.402±0.005 0.082±0.003 0.093±0.001 0.592±0.008 0.219
Likelihood-free Ours(SNPE)(MaxP) 0.140±0.001 0.005±0.000 0.402±0.005 0.081±0.003 0.091±0.002 0.592±0.008 0.219

Ours(ABC-SMC)(Entropy) 0.126±0.009 0.005±0.001 0.396±0.001 0.097±0.021 0.092±0.000 0.596±0.009 0.219
Ours(ABC-SMC)(MaxP) 0.126±0.009 0.005±0.001 0.396±0.001 0.095±0.021 0.092±0.001 0.596±0.009 0.218

Table 5: Near OOD Detection (AURRRC score ↓)

Settings Methods ID:SST-2
OOD:IMDB

ID:Yelp P.
OOD:IMDB

ID:SNLI
OOD:MNLI

ID:RTE
OOD:MNLI Avg

Lower-bound 0.960 0.147 0.259 0.950 0.579
Gradient-free BBT(entropy) 0.978±0.003 0.315±0.003 0.720±0.011 0.963±0.008 0.744

BBT(confidence) 0.978±0.003 0.315±0.003 0.705±0.011 0.963±0.008 0.740
Ours(ELBO)(Entropy) 0.976±0.002 0.308±0.006 0.692±0.039 0.968±0.005 0.736
Ours(ELBO)(MaxP) 0.976±0.002 0.308±0.006 0.678±0.044 0.968±0.005 0.733
Ours(Ensembles)(Entropy) 0.976±0.001 0.297±0.003 0.707±0.028 0.962±0.002 0.736
Ours(Ensembles)(MaxP) 0.976±0.001 0.297±0.003 0.692±0.032 0.962±0.002 0.732

Gradient-free & Ours(SNPE)(Entropy) 0.984±0.000 0.365±0.001 0.715±0.002 0.951±0.000 0.754
Likelihood-free Ours(SNPE)(MaxP) 0.984±0.000 0.365±0.001 0.695±0.004 0.951±0.000 0.749

Ours(ABC-SMC)(Entropy) 0.983±0.001 0.365±0.001 0.710±0.002 0.952±0.000 0.753
Ours(ABC-SMC)(MaxP) 0.983±0.001 0.365±0.001 0.694±0.000 0.952±0.000 0.749

training a LSTM model followed by a classifier.
We include additional results of Gradient-based ap-
proaches: (1) Model Tuning that fine-tunes the en-
tire PLM; (2) Prompt Tuning (Lester et al., 2021)
that only trains the continuous prompt without mod-
ifying PLM; (3) P-Tuning v2 (Liu et al., 2021b)
that trains the several continuous prompts injected
at different layers of PLM. For uncertainty quantifi-
cation tasks, few existing prompt tuning works aim
to tackle this problem, so we mainly compare with
BBT to justify how we can address its limitation
under the gradient-free setting.

Implementation Details. We follow the same
experiment setting as BBT. We focus on text classi-
fication as a few-shot learning problem, motivated
by the fact that labeled training data can be lim-
ited in practice. Specifically, we construct few-shot
training and validation data by drawing 16 random
samples for each class from the original training
dataset. The prediction performance is evaluated
on the original development or test set, depend-
ing on the datasets. We use the same PLM model
RoBERTaLARGE as the backbone model and keep
the hyper-parameter same as BBT. Specifically, we
set the prompt length as 50, i.e., D = 50 × 1024,
and the subspace dimensionality as d = 500. The
only modification is that we adapt the normal dis-
tribution (Sun et al., 2022a) to generate the random
projection matrix A, instead of the uniform dis-
tribution used in BBT. For a fair comparison, we
reproduce the results of BBT using the random pro-

jection generated from normal distribution. More
implementation details are included in Appendix C.

Performance Metrics. For prediction perfor-
mance, we evaluate the prediction accuracy on the
testing dataset. For calibration performance, we
adopt the expected calibration error (ECE) (Guo
et al., 2017) score as the metric. For both selec-
tive classification and OOD detection tasks, we
compute the area under the risk vs. rejection rate
curve (AURRRC) (Franc and Prusa, 2019). The
risk is defined as the portion of wrong-predicted
samples among the data chosen for prediction in
selective classification and the portion of OOD sam-
ples among the data identified as in-distribution in
the OOD detection task. The rejection rate is de-
fined as the portion of data that abstained from
the prediction based on specific uncertainty mea-
surement. Note that an oracle with perfect knowl-
edge of uncertainty measurement can achieve a
minimum AURRRC score. This is obtained by as-
signing an uncertainty score based on the oracle
knowledge, i.e., whether a test sample is wrong-
predicted (OOD samples) or not. We denote such
minimum AURRRC score as the lower-bound.

Given the predictive label distribution, we utilize
two uncertainty measurements, including Entropy
of the label distribution, i.e., H

(
p(ỹ|x̃; D̃)

)
, and

MaxP, which is defined as maxc p(ỹ = c|x̃; D̃).
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5.2 Results

We conduct extensive evaluations of our proposed
methods under both the Gradient-free setting and
the Gradient-free and Likelihood-free setting. The
results of prediction performance are shown in Ta-
ble 1. For the uncertainty quantification perfor-
mance, the calibration results are shown in Table 2,
the selective classification results are shown in Ta-
ble 3, the Far OOD detection results are shown in
Table 4 and the Near OOD detection results are
shown in Table 5.

Gradient-free and Likelihood-free Setting. No
existing work is trying to tackle the Gradient-free
and likelihood-free prompt tuning problem. How-
ever, we still compare our proposed method with
other baseline methods on different problem set-
tings to understand how well we can achieve and
the price we need to pay for such a more strict con-
straint. In addition, we also include the results of
neural net-based approach SNPE (Hermans et al.,
2020; Durkan et al., 2020) for solving the SBI prob-
lem.

As shown in Table 1, our proposed method ABC-
SMC can achieve competitive prediction perfor-
mance as SOTA approach BBT and even outper-
form the other Gradient-free baselines without the
requirement of the model likelihood. We also ob-
serve that ABC-SMC performs better than SNPE.
The possible explanation is that the density esti-
mation model adopted by SNPE usually requires
a large number of simulated samples to achieve
good performance, which is hindered by the slow
inference speed of large PLM.

For the uncertainty quantification tasks, ABC-
SMC underperforms on calibration and selective
classification tasks but can still achieve comparable
performance on the two OOD detection tasks. The
performance gap can possibly be mitigated if we
collect more samples (by increasing K) for a more
accurate estimation of the empirical label distri-
bution, but the computational cost is the price we
need to pay for the likelihood-free constraint.

Gradient-free Setting. By relaxing the
likelihood-free constraint, it is observed that our
proposed methods, both Gradient-free Variational
Inference (denoted as ELBO) and Ensembles
algorithms, achieve comparable or even better
prediction performance than BBT and other
gradient-free baselines, while outperforming BBT
in terms of uncertainty quantification across all

the tasks. Such empirical observation justifies the
effectiveness of leveraging Bayesian and Ensemble
techniques to enable more reliable gradient-free
prompt tuning without sacrificing the prediction
performance.

5.3 Discussions

In this section, we further investigate our proposed
methods by exploring the use of alternate models
and the effect of using uniform weights in the SMC-
ABC algorithm.

Performance on other backbone models To
demonstrate that our proposed methods generalize
well on other PLM backbone models, we evaluate
them on BERTLARGE under the both Gradient-
free setting and Gradient-free and likelihood-free
setting. The results are presented in Appendix D.1.
Note that our proposed methods consistently out-
perform BBT in terms of both prediction and
uncertainty quantification performance under the
Gradient-free setting while achieving competitive
performance with a small gap under the Gradient-
free and likelihood-free setting.

Ablation study of weights in ABC-SMC In
practice, we observe that the ABC-SMC algorithm
suffers from weight degeneracy, with weights for
certain particles approaching one and effectively
causing the posterior to be approximated by a sin-
gle particle. Although, this issue can be mitigated
by designing better proposals, we found that the
heuristic of using uniform weights instead of up-
dating the weights at each iteration of the algo-
rithm to be far more effective. To demonstrate the
efficacy, we conduct an ablation study about the
sampling weights, and the results are shown in Ap-
pendix D.2. We find that with uniform weights
ABC-SMC provides both improves prediction and
uncertainty quantification for our application.

6 Concluding Remarks

In this work, we explore gradient-free prompt tun-
ing along two under-explored angles: quantifying
uncertainty in soft prompts; and tackling a more
strict likelihood-free setting from the SBI perspec-
tive. Our developed methods demonstrate encour-
aging empirical performance across multiple tasks.

Investigating more modern neural SBI methods
and designing more robust methods for learning
prompt posteriors are exciting directions for fu-
ture research. Other perspectives on gradient-free
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prompt tuning, such as learning natural language-
like interpretable prompts, are also worthy of ex-
ploration.

7 Limitations

We explored methods for learning a distribution
over prompts for tuning PLMs with only API ac-
cess. We rely on approximate inference algorithms
to infer these distributions. Since the true poste-
rior is intractable, effectively evaluating the quality
of the inferred approximate posteriors is challeng-
ing. Here, we use downstream metrics to compare
different algorithms. However, such metrics con-
flate the quality of posterior approximation with
predictive performance. Assessing the quality of
approximate posteriors remains an open problem.
Another limitation of our ABC-based approach is
that it is more expensive than approaches that can
exploit gradient information. Improving the com-
putational efficiency of such approaches comprises
interesting future work.
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A Omitted Algorithms

The overall algorithm of Gradient-free Variational
Inference and ABC-SMC are shown in Algorithm 1
and Algorithm 2, respectively.

Algorithm 1 Gradient-free Variational Inference
input Training data set {(x̃i, ỹi)}Ni=1; CMA-ES optimizer
ES; Prior distribution p(z); Number of candidate solutions
m; Total iteration T .
Initialize the initial collection of variational parameter, i.e.,
{λ(0)

j }mj=1 = {(µ(0)
j ,α

(0)
j )}mj=1.

for t = 1, 2, . . . , T do
for j = 1, 2, . . . ,m do

Generate S prompt embedding samples from the
variational distribution, i.e.,

{z(t−1)
s }Ss=1 ∼ N

(
µ

(t−1)
j , diag(α

(t−1)
j )

)

Evaluate the ELBO loss of j-th variational distribu-
tion i.e.,

L(t−1)
j

=
N∑

i=1

S∑

s=1

log Cat(ỹi|σ(hθ(x̃i;Az(t−1)
s +P0))

−KL
(
q(z;λ

(t−1)
j )∥p(z)

)

end
Request a new collection of variational parameter solu-
tions, i.e.,

{λ(t)
j }mj=1 ← ES

(
{λ(t−1)

j }mj=1; {L(t−1)
j }mj=1

)

end
output Optimized collection of prompt embedding samples
{z(T )
s }Ss=1 corresponding to max ELBO loss.

B Implementation details of ABC-SMC

Updating of w(t) In the ABC-SMC algorithm,
the sampling weights are initialized as uniform dis-
tribution at the first iteration t = 1 as all the sam-
ples are sampled from the prior distribution p(z).
In the later iterations, the new samples are drawing
from a mixture proposal distribution consisted the
previous samples and the perturbation kernel, i.e.,∑S

s=1w
(t−1)
s ·N (z

(t−1)
s ,Σ(t−1)). The weights are

updated in an importance sampling manner as the
ratio between the prior probability and the proposal
probability, i.e.,

w(t)
s =

p(zs)∑S
s=1w

(t−1)
s · N (z

(t−1)
s ,Σ(t−1))

Updating of Σ(t) The covariance Σ(t) in the per-
turbation kernel is a diagonal covariance matrix

Algorithm 2 ABC-SMC
input PLM f ; The fixed random projection matrix A and
intial prompt P0; Training data set (X̃, Ỹ) = {(x̃i, ỹi)}Ni=1;
Prior distribution p(z); Initial tolerance ϵ1; Distance measure
function ρ(·); Number of samples S; Total iteration T .
for t = 1, 2, . . . , T do

if t == 1 then
for s = 1, 2, . . . , S do

do
Generate prompt embedding samples from
the prior distribution, i.e., z(1)

s ∼ p(z);
Obtain the corresponding prediction result
Ŷ = f(Az

(1)
s +P0; X̃).

while ρ(Ŷ, Ỹ) > ϵ1;
Initialize the sampling probability weights
w

(1)
s = 1

S
.

end
Decay the tolerance, i.e., ϵt+1 = ϵt − 1

N
; Initialize

the perturbation kernel variance Σ(1).
else

for s = 1, 2, . . . , S do
do

Draw a random sample z
(t−1)
s from

{z(t−1)
s }Ss=1 with probability w(t−1)

s ;
Generate a new sample z

(t)
s ∼

N (z
(t−1)
s ,Σ(t−1));

Obtain the corresponding prediction result
Ŷ = f(Az

(t)
s +P0; X̃).

while ρ(Ŷ, Ỹ) > ϵt;
Update the sampling probability weights w(t)

(see Appendix B).
end
Decay the tolerance, i.e., ϵt+1 = ϵt − 1

N
; Update

the perturbation kernel variance Σ(t) (see Appendix
B).

end
end
output Optimized collection of prompt embedding samples
{z(T )
s }Ss=1; Final sampling weights w(T ).

diag(α(t)), where the diagonal elements α(t) are
updated using the weighted empirical variance of
previous collection of samples, i.e.

α(t) =
S∑

s=1

w(t−1)
s · (z(t−1)

s − z̄(t−1))2

Where z̄(t−1) =
∑S

s=1w
(t−1)
s · z(t−1)

s is the mean.
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C Implementation Details

All of our experiment results are reported with
means and standard deviations over three trials,
each with a different random seed. The experi-
ments are implemented in PyTorch, and each run
of our proposed methods requires less than 24h of
training computation time (on a single NVIDIA
Tesla V100 GPU). Our proposed algorithms gen-
erate a collection of S prompt samples to esti-
mate the predictive label distribution. We set
S = 10, 100, 100 for Ensembles, Gradient-free
Variational Inference, and ABC-SMC, respectively.
The total budget for the derivative-free optimizer
CMA-ES is set to be 300 with a population size of
20. We use the same prior distribution p(z) for all
algorithms, which is assumed to be a normal distri-
bution with zero mean and diagonal covariance ma-
trix, i.e., N (0, σ · I). σ controls how concentrated
the prior distribution is, and we use σ = 50 in our
experiments. In ABC-SMC, the distance measure
function ρ is defined as the prediction error rate,
i.e., the portion of wrongly predicted data among
the whole data batch. The initial tolerance ϵ1 in
ABC-SMC is initialized as the prediction error rate
of an arbitrary prompt sample drawing from the
prior distribution. The tolerance is decayed by one
step per iteration, i.e., ϵt+1 = ϵt − 1

N , where N is
the total number of training data.

D Additional Experiment Results

D.1 Performance on other backbone PLM

We evaluate the performance of our proposed meth-
ods on SST-2 and SNLI tasks using BERTLARGE

as the backbone model. We keep the hyper-
parameter settings the same as the original experi-
ments. The results are shown in Table 6, 7, 8, and
9.

Table 6: Test Performance (test acc ↑)

Settings Methods SST-2 SNLI
Gradient-free BBT 74.77±3.21 41.07±2.97

Ours(ELBO) 75.38±1.74 41.20±0.39
Ours(Ensembles) 80.05±1.79 42.64±1.96

Gradient-free &
Likelihood-free Ours(ABC-SMC) 66.40±0.46 39.00±0.22

D.2 Ablation of ABC-SMC sampling weights

We compare both the prediction and uncertainty
quantification performance of our proposed ABC-
SMC approaches using the updated sampling
weights and the fixed uniform weights. We denote

Table 7: Calibration Performance (ECE score ↓)

Settings Methods SST-2 SNLI
Gradient-free BBT 0.081±0.051 0.086±0.039

Ours(ELBO) 0.046±0.006 0.073±0.009
Ours(Ensembles) 0.045±0.007 0.068±0.024

Gradient-free &
Likelihood-free Ours(ABC-SMC) 0.328±0.003 0.584±0.002

Table 8: Selective Classification (AURRRC score ↓)

Settings Methods SST-2 SNLI
Gradient-free BBT(Entropy) 0.146±0.028 0.564±0.036

BBT(MaxP) 0.146±0.028 0.568±0.043
Ours(ELBO)(Entropy) 0.132±0.009 0.542±0.006
Ours(ELBO)(MaxP) 0.132±0.009 0.540±0.009
Ours(Ensembles)(Entropy) 0.104±0.014 0.525±0.023
Ours(Ensembles)(MaxP) 0.104±0.014 0.523±0.024

Gradient-free & Ours(ABC-SMC)(Entropy) 0.327±0.002 0.607±0.001
Likelihood-free Ours(ABC-SMC)(MaxP) 0.327±0.002 0.607±0.001

Table 9: Far OOD Detection (AURRRC score ↓)

Settings Methods ID:SST-2
OOD:RTE

ID:SNLI
OOD:MRPC

Gradient-free BBT(entropy) 0.402±0.015 0.076±0.016
BBT(MaxP) 0.402±0.015 0.072±0.015
Ours(ELBO)(Entropy) 0.365±0.037 0.089±0.007
Ours(ELBO)(MaxP) 0.365±0.037 0.084±0.006
Ours(Ensembles)(Entropy) 0.338±0.027 0.074±0.020
Ours(Ensembles)(MaxP) 0.338±0.027 0.071±0.018

Gradient-free & Ours(ABC-SMC)(Entropy) 0.252±0.000 0.044±0.000
Likelihood-free Ours(ABC-SMC)(MaxP) 0.252±0.000 0.044±0.000

the method using updated weights as “ABC-SMC
w. Weights". The results are shown in Table 10, 11,
12, 13, and 14.
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Table 10: Prediction Performance (Test acc ↑)

Methods SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE Avg
ABC-SMC 86.51±0.55 90.32±0.03 81.43±0.41 57.41±0.90 80.78±0.07 40.81±0.24 53.37±0.30 70.09
ABC-SMC w. Weights 84.37±0.81 90.42±0.22 79.44±0.46 50.36±0.89 80.83±0.08 42.06±1.15 53.07±0.01 68.65

Table 11: Calibration Performance (ECE score ↓)

Methods SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE Avg
ABC-SMC 0.106±0.009 0.084±0.001 0.108±0.001 0.278±0.026 0.309±0.009 0.178±0.002 0.458±0.004 0.217
ABC-SMC w. Weights 0.156±0.008 0.091±0.005 0.160±0.023 0.506±0.009 0.316±0.002 0.182±0.005 0.463±0.003 0.268

Table 12: Selective Classification (AURRRC score ↓)

Methods SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE Avg
ABC-SMC (Entropy) 0.061±0.006 0.075±0.002 0.110±0.004 0.285±0.015 0.325±0.006 0.571±0.000 0.468±0.014 0.271
ABC-SMC(MaxP) 0.061±0.006 0.075±0.002 0.110±0.004 0.288±0.014 0.325±0.006 0.579±0.000 0.468±0.014 0.272
ABC-SMC w. Weights (Entropy) 0.090±0.008 0.069±0.002 0.125±0.002 0.442±0.011 0.315±0.001 0.570±0.019 0.460±0.006 0.296
ABC-SMC w. Weights (MaxP) 0.090±0.008 0.073±0.003 0.133±0.008 0.479±0.020 0.315±0.001 0.570±0.017 0.460±0.006 0.303

Table 13: Far OOD Detection (AURRRC score ↓)

Methods ID:SST-2
OOD:RTE

ID:Yelp P.
OOD:RTE

ID:MRPC
OOD:RTE

ID:DBPedia
OOD:AG’s News

ID:SNLI
OOD:MRPC

ID:RTE
OOD:MRPC Avg

ABC-SMC(Entropy) 0.126±0.009 0.005±0.001 0.396±0.001 0.097±0.021 0.092±0.000 0.596±0.009 0.219
ABC-SMC(MaxP) 0.126±0.009 0.005±0.001 0.396±0.001 0.095±0.021 0.092±0.001 0.596±0.009 0.218
ABC-SMC w. Weights(Entropy) 0.186±0.020 0.004±0.001 0.406±0.013 0.079±0.013 0.067±0.004 0.596±0.006 0.223
ABC-SMC w. Weights(MaxP) 0.186±0.020 0.004±0.001 0.402±0.006 0.091±0.002 0.057±0.004 0.596±0.006 0.223

Table 14: Near OOD Detection (AURRRC score ↓)

Methods ID:SST-2
OOD:IMDB

ID:Yelp P.
OOD:IMDB

ID:SNLI
OOD:MNLI

ID:RTE
OOD:MNLI Avg

ABC-SMC(Entropy) 0.983±0.001 0.365±0.001 0.710±0.002 0.952±0.000 0.753
ABC-SMC(MaxP) 0.983±0.001 0.365±0.001 0.694±0.000 0.952±0.000 0.749
ABC-SMC w. Weights(Entropy) 0.967±0.002 0.365±0.001 0.572±0.049 0.952±0.001 0.714
ABC-SMC W. Weights(MaxP) 0.967±0.002 0.365±0.001 0.534±0.032 0.952±0.001 0.705
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Abstract

Recent years saw a dramatic increase in the pop-
ularity of online counseling services providing
emergency mental health support. This paper
provides a new language model for automatic
detection of suicide risk in online chat sessions
between help-seekers and counselors. The
model adapts a hierarchical BERT language
model for this task. It extends the state of the art
in capturing aspects of the conversation struc-
ture in the counseling session and in integrating
psychological theory into the model. We test
the performance of our approach in a leading
national online counseling service that operates
in the Hebrew language. Our model outper-
formed other non-hierarchical approaches from
the literature, achieving a 0.76 F2 score and
0.92 ROC-AUC. Moreover, we demonstrate
our model’s superiority over strong baselines
even early on in the conversation, which is key
for real-time detection in the field. This is a first
step towards incorporating suicide predictive
models in online support services and advanc-
ing NLP tools for resource-bounded languages.

1 Introduction

Suicide accounts for more than 700,000 lives lost
across the world every year. It is the second leading
cause of death for adolescents and adults from 15
to 29 years of age in many countries. A key effort
in suicide prevention is to identify individuals at
risk of suicide as early as possible (World-Health-
Organization, 2021).

In the past decade, online counseling services
for mental health support have become common-
place in many countries, providing chat support
and guidance to at-risk individuals (see fictitious
example in Figure 1). Online counseling services
aim to provide mental support and address a va-
riety of mental health crises through specialist
counselors. These counselors are trained to de-
tect suicide risk during conversations and inter-
vene quickly as needed. These services have ex-

Figure 1: A fictitious example of a conversation.

perienced tremendous growth in traffic since the
commencement of the COVID pandemic (Zalsman
et al., 2021). Any kind of technological support to
help counselors in this critical task can potentially
save lives.

This paper provides a computational model for
detection of suicide risk from anonymous text-
based discussions between help-seekers and coun-
selors. Our data is taken from an online counsel-
ing service in a low-resource language (Hebrew).
There are several challenges towards solving sui-
cide risk detection in our setting: State of the art
pre-trained language models for suicide prevention
usually focus on posts from social media which
are very different in structure from online conver-
sations between counselors and help-seekers. Ex-
isting works that do consider conversations in this
domain ignore the conversation structure or are
limited in the size of the conversation they con-
sider. Also, the set of NLP resources available for
low-resource languages is extremely limited when
compared to English.

To address this gap, we present a hierarchical
language model called SR-BERT that includes a
base layer for encoding the conversation text and
an additional layer for capturing aspects of con-
versation structure. The hierarchical structure of
SR-BERT encodes each of the messages in the con-
versation separately and is not limited by the size
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of the conversation. We hypothesized that incorpo-
rating knowledge from suicide risk theory as part
of the pre-training step can improve downstream
performance of the detection model. To this end,
we develop a new domain knowledge-based pre-
training step that embeds a Suicide Risks Factor
lexicon (SRF) into SR-BERT. The SRF lexicon was
created by a team of psychologists who are experts
on suicide risk theory and prevention.

In empirical studies, SR-BERT significantly out-
performs alternative classifiers for suicide risk (SR)
detection, including the state-of-the-art (Bialer
et al., 2022). We show that adding the domain-
expert information to SR-BERT plays a critical part
in its performance. In particular, it obtained consis-
tently better performance than Bialer et al. (2022)
when processing different portions of the conver-
sation. These findings suggest that SR-BERT can
perform well in the field when analyzing conversa-
tions in real-time.

We extend the state-of-the-art hierarchical lan-
guage models to combine conversation structure
and expert-based knowledge in the pretraining step.
We show this approach leads to significant in-
creases in performance for detecting suicide risk
from chat conversations.

2 Related Work

This paper relates to past studies in suicide risk
detection in online settings, representing domain
knowledge and conversation structure in deep lan-
guage models and NLP tools for low-resource lan-
guages. We expand on each of these topics in turn.
For a review on using machine learning in suicide
prevention, we refer the reader to Ji et al. (2021).

The majority of work using machine learning to
predict suicide risk analyzes posts from social me-
dia (Coppersmith et al., 2018; Zirikly et al., 2019;
Shing et al., 2018; Sawhney et al., 2018; Tadesse
et al., 2019). Recent works in this social media
suicide prediction space includes Cao et al. (2019)
who used an LSTM with an additional attention
layer to predict SR from social media posts, and
Wang et al. (2021) who combined a generic BERT
model with predefined rules for scoring suicide risk
in social media. Additionally, Ophir et al. (2020)
showed that psychological questionnaires can im-
prove the performance of neural networks to iden-
tify at-risk individuals from Facebook posts. We
significantly differ from the social media setting
in our focus on conversations from online coun-

seling services, where messages are significantly
longer than social media posts, and messages are
part of a conversational structure and exhibit psy-
chological dynamics. We show that capturing these
aspects in the conversation model is necessary for
recognizing SR in our setting.

There are few works on suicide detection in on-
line counseling conversations, but none of these
reasons about the conversation structure in the ses-
sion. Most relevant to our approach is the model by
Bialer et al. (2022) who combined a pre-trained lan-
guage model based on BERT (Devlin et al., 2018)
with a lexicon of suicide terms that were manu-
ally extracted from conversations. This model was
able to represent only part of the conversation (512
tokens) and ignored the input from the counselor.
Our SR-BERT model used a lexicon extracted from
psychological theory, which was embedded in the
pre-training process. The model significantly out-
performs that of Bialer et al. (2022) on the same
dataset, both for entire conversations as well as
when considering early detection on parts of the
conversation.

We mention two approaches for detecting SR in
counseling services that did not consider early de-
tection. Xu et al. (2021) combined a word2vec rep-
resentation of suicide concepts with a bi-directional
LSTM network for SR prediction in Korean online
counseling service. Each side of the conversation
was represented by an independent BI-LSTM. This
approach used a knowledge graph to represent a
psychological lexicon which may be more time-
consuming for human experts to construct. Our
model is shown to outperform a baseline using
a similar representation (doc2vec) on our dataset.
Bantilan et al. (2021) used TF-IDF embedding with
XGBoost to predict SR in transcribed phone calls
from an English counseling service. This model
did not use a lexicon.

There is ample evidence on the benefits of in-
corporating domain knowledge in language models
for downstream tasks (Childs and Washburn, 2019;
Cao et al., 2019; Lee et al., 2020; Colon-Hernandez
et al., 2021; Gaur et al., 2019). Notable examples
include Gaur et al. (2019) and Wang et al. (2021)
who showed that using lexicon-based features can
improve machine learning prediction of suicide risk
in Chinese blogs. They use lexicons to map terms
from online discussions to clinically relevant sets
of categories. We extend these approaches by pre-
senting a new method for incorporating domain
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knowledge in the pre-training phase of deep learn-
ing models.

In general, NLP models and solutions for low-
resource languages are extremely limited. In He-
brew, two pre-trained language models were pub-
lished, HeBERT(Chriqui and Yahav, 2021) and
AlephBERT (Seker et al., 2022). We used Aleph-
BERT which is freely available and was trained on
a larger dataset than HeBERT and was able to out-
perform HeBERT on a variety of natural language
tasks. We are first to use hierarchical transformer
architecture to model conversation structures in a
low-resource language.

3 The Sahar domain

Sahar (Hebrew acronym for Online Mental Health
Support 1) was established in 2000 and is the lead-
ing internet-based emotional support and suicide
prevention organization in Israel. It provides anony-
mous, confidential, and free crisis support via a
chat hotline (in Hebrew and in Arabic). The orga-
nization handles more than 40, 000 chat sessions
per year, and these numbers have increased signifi-
cantly during the COVID-19 pandemic (Zalsman
et al., 2021).

Sahar counselors are volunteers who receive
year-round guidance and supervision from a team
of mental health professionals. Shifts take place in
the evening hours and are accompanied by trained
therapists who monitor the conversations and pro-
vide professional support to counselors as needed.
During the shifts, counselors work in a high-stress
environment and usually handle multiple chat ses-
sions in parallel at any given time. Counselors pro-
vide a written summary of each of their conversa-
tions, as well as indicate whether the conversation
exhibits suicide risk.

The Sahar corpus contains more than 40, 000
chat sessions (conversations) that took place over
the span of five years (2017-2022). Each conversa-
tion includes the messages generated by the help-
seekers and the counselors, ordered by time sig-
natures. Table 1 presents general statistics about
the dataset. We note that 39.5% of the sessions are
labeled with either positive or negative SR label
and 17% of these sessions are SR positive.

To validate the SR labels, a sample of 600 con-
versations (300 positive SR, 300 negative SR) was
labeled separately by clinical psychologists with
expertise in suicide theory. The Krippendorff’s α

1https://sahar.org.il

Table 1: General statistics for Sahar corpus

Total num. of sessions 44,506
Num. of labeled sessions 17,564
SR positive label ratio 17%
Mean(Median) num. of messages 57(46)
Mean(Median) num. of turn exchanges 27(25)
Mean(Median) num. of tokens 617(566)

for inter-annotator agreement between the psychol-
ogists and the SR label in the conversation is 0.766,
which is en par with other works. We note that the
inconsistencies found in the samples were debated
by the psychologists and resolved in the data set.

4 The SRF Psychological Lexicon

As part of our research, a team of psychology ex-
perts from a national center for suicide prevention
in Israel has constructed a Suicide-Risk Factors
Lexicon (SRF) in Hebrew that is based on psycho-
logical theory.

The SRF lexicon contains terms relating to per-
sonal and situational variables associated with an
increase in suicidal thinking, based on valid self-
report questionnaires in the psychological and psy-
chiatric literature (Klonsky and May, 2015; Turecki
and Brent, 2016; Nock et al., 2008).

Each of the 3,094 sentences in the lexicon be-
longed to one of 25 categories. Specifically, terms
relating to depression are taken from the Patient
Health Questionnaire Depression Module (PHQ-
9) (Kroenke et al., 2001). Terms relating to a sense
of burdensomeness are taken from the Interper-
sonal Needs Questionnaire (INQ) (Van Orden et al.,
2012). Terms relating to a sense of hopelessness
are taken from the Beck hopelessness scale (Beck
et al., 1996). Terms relating to suicide behavior
were taken from the Columbia questionnaire (Pos-
ner et al., 2008) which is a standard tool to measure
suicide risk.

Examples of sentences for the category “per-
ceived burdensomeness” (translated) included sen-
tences such as “better without me”, “I am a bur-
den”, “I spoil everything for my spouse”; and the
lexicon category “explicit suicide mentions” con-
tains phrases such as: “to die”, “to commit suicide”,
“kill myself” etc.

5 The SR-BERT Language Model

Our main contribution is SR-BERT, a two-layer hi-
erarchical language model that extends the generic
DialogBERT (Gu et al., 2021) to reason about con-
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Figure 2: Model architecture. (a) SR-BERT base architecture, encoding conversation and speaker roles. (b)
Pre-training procedure on 4 self-supervised tasks including psychological knowledge learning using the SRF lexicon.
(c) Fine-tuning procedure learning to predict Suicide Risk (SR)

versation structure in suicide risk prediction set-
tings and harness psychological domain knowledge.
The SR-BERT architecture is shown in Figure 2(a).

The architecture is composed of two part: A
transformer based layer performing message encod-
ing, and on top of it an additional transformer layer,
which captures conversation structure, named Con-
text Encoder Transformer.

The base layer uses the AlephBERT (Seker et al.,
2022) pre-trained language model to encode each
message in the dialogue to a vector. The received
message encoding is then combined with speaker
role representation (help-seeker vs. counselor) to
capture important conversation aspects such as turn-
taking. The Context Encoder Transformer is a
transformer based encoder applied at the message
level (instead of the single token level) which trans-
forms the series of message vectors into a context-
sensitive repression of the conversation. The Con-
text Encoder Transformer included 12 attention
layers, and 12 hidden layers, each with a vector
size of 780. The hidden layer size is 780 rather
than 768 in AlephBert to account for the additional
speaker role encoding.

The hierarchical structure of the architecture en-
ables the model to capture multiple messages in-
cluding turn exchanges and speaker roles. Fur-
thermore, it enable the encoding of each message
independently, thus avoiding the need to truncate
conversations (due to AlephBert’s 512 token limit)
as in past work.

5.1 Pre-training with Self Supervised
Knowledge

In this section we describe the use of several pre-
training tasks for adapting SR-BERT to conversa-
tion structure of online counseling, including a new
pre-training task for incorporating the SRF lexicon.

This procedure uses the entire Sahar dataset, and is
shown in Figure 2 (b).

The first step in this process is to represent con-
versations as a 25 dimension vector representing
the different categories in the lexicon. For a given
conversation, the value at index k is the number
of sentences in the conversation with at least one
occurrence in the kth lexicon category.

We also considered a reduced 5-dimension rep-
resentation of conversations on the SRF lexicon
space. To this end we selected the top categories us-
ing XGBoost feature selection (Chen and Guestrin,
2016) on the SR prediction task of entire conver-
sations. We identified the top 5 categories as “self
perceived burdensomeness”, “previous suicide at-
tempt”, “loss of hope” “self injury” and “suicidal
thinking”. The 5-dimension representation out-
performed the 25-dimension representation on the
validation set, leading us to use this representation
in the subsequent pre-training phase.

The second step, called the Self Supervised
Knowledge task, applies a new pre-training task
for predicting Sahar conversations in the SRF rep-
resentation space. For a given prefix of a conver-
sation, we mask a message in this subset with a
fixed probability of 80%. We then use SR-BERT to
predict the conversation subset’s representation in
the SRF space using a fully connected layer. The
loss is obtained by calculating the mean squared
error (MSE) between the original subset represen-
tation and the predicted (masked) representation
in the SRF space. This process is repeated for in-
creasing size of conversation prefixes, to simulate
conversations of varying sizes.

In addition to the SSK task, we implemented the
three pre-training tasks defined by DialogBERT(Gu
et al., 2021) for capturing several aspects of the
conversation structure: message-level semantics,
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conversation structure, and underlying dialogue
sequential order. We describe them briefly here and
refer the reader to the full paper for more details.

• Next Utterance Generation The goal of this
task is to generate the next message in the
conversation when the previous messages are
given. The task tries to minimize the cross-
entropy loss between the predicted words and
the original words of the next message.

• Masked Utterance Regression The goal of
this task is to predict a randomly masked mes-
sage in a conversation from its context. The
loss is obtained by calculating the MSE be-
tween the original and the predicted message
vectors.

• Distributed Order Ranking Network This
task predicts the order index of each message
from a shuffled order of a conversation. The
task tries to minimize the KL divergence be-
tween the predicted order and the true order.

The calculated loss for the model propagation
over the four self supervised tasks is the weighted
sum of each loss function in the pre-training stage.
The AdamW optimizer is employed with a linear
planned warm-up technique and an initial learn-
ing rate of 5e-5. Additionally, we use an adap-
tive learning-rate scheduler with 0.01 weight decay,
15,000 warm-up steps, and a batch size of 32. The
model is trained for 20 epochs. All experiments
are conducted on a GeForce RTX 3090 GPU using
the PyTorch package.

5.2 Fine-tuning

In the fine-tuning step Figure 2(c), SR-BERT is
adapted for the suicide risk prediction task using a
standard approach (Sun et al., 2020). To this end we
add a binary classification head to SR-BERT. The
classification head consists of a dense layer with an
output size of 2 and a softmax activation function.
By maximizing the log-likelihood of the actual la-
bel, we fine-tune the Context Encoder Transformer
and the classification head. We employ the AdamW
optimizer with a linear planned warm-up technique
and an initial learning rate of 2e-5. Additionally,
we use an adaptive learning-rate scheduler with
0.01 weight decay, and a batch size of 16. The
model is trained for 10 epochs.

6 Empirical Methodology

We randomly split the labeled Sahar dataset to a
train (70%) validation (15%) and test (15%) sets.
These data sets were used throughout the exper-
iments described in the following section. The
validation set was used for training model hyper
parameters.

We follow prior work in evaluating model perfor-
mance using ROC-AUC which is widely employed
in suicide detection research (Bernert et al., 2020).
Additionally, we report on the F2-score (Sokolova
et al., 2006) for predicting the positive SR label.
This measure concentrates on reducing false nega-
tives (rather than false positives) and is thus well
suited for SR detection where missing a positive
class has life threatening implications.

We compare SR-BERT with SSK to the follow-
ing baseline models:

6.1 SR-BERT w.o.SSK

This model omits the SSK pre-training task from
SR-BERT w. SSK. Apart from the SSK pre-
training task this model is identical to SR-BERT
w. SSK. including the hierarchical structure and
pre-training on the other 3 tasks.

6.2 Explicit based lexicon + XGBoost

We used an XGBoost classifier that was based on an
encoding of conversations over the explicit suicide
related terms proposed by Bialer et al. (2022). This
list includes 67 terms such as “commit suicide”,
“cut wrists”, “wish to die” etc. We note that explicit
terms carry very weak signal for SR detection.

6.3 Ensemble SI-BERT (Bialer et al., 2022)

This is a non-hierarchical Hebrew language model
ensembled with a classifier based on the Explicit
lexcion, that represents the state of the art for SR de-
tection. It was trained on the same dataset from the
Sahar organization. To bypass BERT’s constraint
of 512 tokens, Ensemble SI-BERT only utilized
the help seeker text and truncated text greater than
512 tokens. We re-implemented this model with
the code and parameters provided by the authors
and run it on the dataset provided for this research.
This is the reported state of the art for this domain
in the Hebrew language.

6.4 SRF based lexicon + XGBoost

An XGBoost (Chen and Guestrin, 2016) classifier
based on the 5-dimension SRF conversations rep-
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Table 2: SR prediction results of compared models. Bold highlights highest value.

Model Recall [%] Precision [%] ROC-AUC [%] F2 [%] F1 [%]
Doc2Vec+XGBoost 31.3 69.2 64.7 35.1 43.1

Explicit lexicon+XGBoost 49.2 67.1 76.9 52.3 57.7
SRF lexicon + XGBoost 55.1 67.2 76.5 57.1 60.0

Ensemble SI-BERT 60.4 70.9 91.3 62.3 65.3
SR-BERT w.o. SSK 72.9 68.4 92.1 71.9 70.6

SR-BERT w. SSK 78.3 68.9 92.1 76.2 73.3

resentation over the SRF lexicon. We note that
XGBoost outperformed Random Forest and Logis-
tic Regression as the classifier for this baseline (and
for the next two baselines)

Consider for example one of the sessions which
includes the statement “I am having strong stomach
aches since yesterday, I want to die.”. This session
includes a term from the Explicit lexicon while it
is not an SR positive session.

6.5 Doc2Vec + XGBoost

An XGBoost classifier based on an encoding of
each conversation to a 300-dimensional space us-
ing the Doc2Vec representation(Le and Mikolov,
2014).

7 Results

We first present the performance of the SR-BERT
model in predicting SR on labeled conversations
compared to the proposed baselines. Results are
then reported for early SR detection, when increas-
ing percentages of conversation information are
available.

7.1 SR Detection from Complete
Conversation

Table 2 compares the performance of the SR-BERT
model to the baselines when predicting suicide risk
from complete conversations. As seen in the ta-
ble, both SR-BERT-based models (with and with-
out SSK pre-training) outperformed the Ensemble
SI-BERT model in terms of recall, F1, F2, and
ROC-AUC metrics. Most notable improvement
was in the recall metric where SR-BERT w.o. SSK
achieved a 12.5% improvement over the Ensemble
SI-BERT model, which led to a 9.6% improve-
ment in the F2 metric. Moreover, the additional
SSK pre-training improved on the SR-BERT w.o.
SSK results for all metrics except the ROC-AUC
score, where it hasn’t change. Ensemble SI-BERT
achieved the highest precision, which was slightly

Figure 3: Classification results for early detection of
top-performing SR detection approaches

better than SR-BERT w. SSK. It exhibited a sub-
stantially lower recall score, which correlates to
lower F1 and F2 values.

The SRF lexicon + XGBoost based classifier was
better than the Explicit lexicon + XGBoost classi-
fier in all measures apart from ROC-AUC. We also
note that the BERT based models outperformed the
none BERT models on all tested metrics.

We used the McNemar paired test for labeling
disagreements (Gillick and Cox, 1989) to compare
between the predictions of the different models.
Statistical significance with p < 0.05 was demon-
strated for SR-BERT w. SSK vs. SR-BERT w.o.
SSK and for SR-BERT w. SSK vs. Ensemble
SI-BERT.

Overall SR-BERT w. SSK achieved a substan-
tial improvement in recall and F2 compared the
Ensemble SI-BRET of 17.9% and 13.9% respec-
tively, with only a slight decrease in precision per-
formance. This is critical in the suicide risk de-
tection realm where recall is key to identifying
help-seekers at risk and enabling targeted support.

7.2 Early SR Detection

Evaluating the ability of SR-BERT to predict SR
risk from partial sessions provides an indication
of its performance in real time, when only part of
the session is available. To this end, Figure 3 com-
pares the performance of the different models after
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receiving the first {20, 40, 60, 80, 100} percent of
messages in the session. As seen in the figure, the
performance of all models improved as the sessions
progressed. However, SR-BERT w. SSK model
consistently outperformed the other models, fol-
lowed by SR-BERT w.o. SSK. The difference in
performance between SR-BERT with SSK and SR-
BERT w.o. SSK was the largest at the beginning of
the session and reduced as the sessions advanced.
This may indicate the contribution of SR-BERT w.
SSK to identify risk variables from the lexicon in
early stages of the dialogue when information is
lacking. In contrast, the difference in performance
between SR-BERT w.o. SSK and the Ensemble SI-
BERT model increases as sessions advance. This
could be due to the inability of Ensemble SI-BERT
to process the lengthy dialogue without having to
truncate it, which may result in the loss of impor-
tant information as sessions develop.

8 Conclusion and Future Work

This work has provided a new automatic approach
for suicide risk detection in online conversations
between help-seekers and counselors. Early detec-
tion of at-risk individuals is a key goal of suicide
prevention. Our approach extends the state-of-the-
art in deep language modeling by 1) incorporating
domain knowledge relevant to suicide risk detec-
tion as part of the pre-training step; 2) reasoning
about the structure of the conversation between
help-seekers and counselors; 3) adapting to a low-
resource language (Hebrew). The presented ap-
proach was able to significantly outperform the
state-of-the-art approaches when detecting SR from
complete conversations, as well as early detection
when only part of the conversation is available.
These results suggest the model may be able to
support the work of counselors in real chat ses-
sions, alerting them in real-time to at-risk individu-
als and enabling quick and focused responses. For
future work, we intend to improve our approach by
capturing more aspects of conversations, such as
prosody (Wilson and Wharton, 2006; Kliper et al.,
2010) as well as model the mental state dynam-
ics of the help-seeker. We are also extending the
model with explanations to be able to provide jus-
tifications for predictions made and point to key
exchanges and phrases that triggered specific pre-
dictions.

9 Limitations

We note several limitations of this study.
First, our model was evaluated only in the He-

brew language. We have not directly compared
SR-BERT to approaches for detecting suicidal risk
in non-Hebrew domains, and note that the effec-
tiveness of the model may vary across different
languages and cultural contexts. It is difficult to
make this comparison given the lack of public data
sets from online counseling services.

Second, the proposed approach relies on the exis-
tence of psychological knowledge for pre-training
the SR-BERT model which requires human effort.
On the one hand, psychological lexicons already
exist in English (Lee et al., 2020) and possibly in
other languages. On the other hand, lexicons inher-
ently suffer from limited coverage, lack of context
and are expensive to maintain. Sharing domain
knowledge across research tasks may go a long
way to overcome these issues. We intend to make
the lexicon developed for this research publicly
available.

Third, the annotation of the help seekers’ men-
tal state was performed by the counselors, rather
than the help seekers themselves. While the coun-
selors underwent a thorough training process last-
ing several months and were monitored by certified
clinical psychologists, there is still the possibility
that they may have misclassified the mental state
of the help seekers. This issue is prevalent in many
studies that rely on observer-reported data.

Finally, the current model does not provide any
explanations for its predictions, which are of high
importance in order to support counselors in the
field. This is essential in order to ensure that the
model is not merely a means of classification but
instead is able to provide valuable insights and
assistance to counselors. This is a key focus of our
future development plans.

10 Ethics Statement

The present study has been conducted in accor-
dance with the highest ethical standards and has
been approved by the relevant institutional review
board of the participating institutions. All data uti-
lized in this study, including the Sahar corpus of
conversations between help-seekers and counselors,
and the SRF psychological lexicon, have been ob-
tained in compliance with the IRB. Specifically, the
Sahar dataset has been anonymized and encrypted
to protect the privacy of the participants, and all
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help-seekers who have provided data for this study
have given informed consent for the anonymous
use of their sessions for research purposes. The
counselors signed consent papers to allow the us-
age of their text data for the study.

It is important to note that despite the model’s
ability to successfully predict SR during the con-
versation and its demonstrated gender fairness, it
is not intended to replace human volunteer coun-
selors. We believe that human involvement is es-
sential in providing support to help-seekers, and
the role of an automated model is to serve as an
aid to counselors, enhancing their ability to assess
SR rather than replacing them. Our take is that in
the future, when such models could be deployed
in the field (after all necessary approvals and adap-
tations), they may only act as a "friendly parrot"
on the counselors’ shoulders, providing additional
insights and supporting their decision-making pro-
cess in the high load situations these counselors are
facing on a daily basis.
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Abstract

Although many large-scale knowledge bases
(KBs) claim to contain multilingual informa-
tion, their support for many non-English lan-
guages is often incomplete. This incomplete-
ness gives birth to the task of cross-lingual ques-
tion answering over knowledge base (xKBQA),
which aims to answer questions in languages
different from that of the provided KB. One
of the major challenges facing xKBQA is the
high cost of data annotation, leading to limited
resources available for further exploration. An-
other challenge is mapping KB schemas and
natural language expressions in the questions
under cross-lingual settings. In this paper, we
propose a novel approach for xKBQA in a read-
ing comprehension paradigm. We convert KB
subgraphs into passages to narrow the gap be-
tween KB schemas and questions, which en-
ables our model to benefit from recent advances
in multilingual pre-trained language models
(MPLMs) and cross-lingual machine reading
comprehension (xMRC). Specifically, we use
MPLMs, with considerable knowledge of cross-
lingual mappings, for cross-lingual reading
comprehension. Existing high-quality xMRC
datasets can be further utilized to finetune our
model, greatly alleviating the data scarcity is-
sue in xKBQA. Extensive experiments on two
xKBQA datasets in 12 languages show that our
approach outperforms various baselines and
achieves strong few-shot and zero-shot perfor-
mance. Our dataset and code are released for
further research1.

1 Introduction

Large-scale knowledge bases (KBs) such as Free-
base (Bollacker et al., 2008) and DBpedia (Auer
et al., 2007) store huge amounts of structured

∗Corresponding author.
1https://github.com/luciusssss/xkbqa-as-mrc

Marvel 
Universe

appears 
in universes

Knowledge Base (Subgraph):

Question:
ᢶᢛׂ�ӾಝᄍሸԇᓌҘࣁ᧡
φϞαύЄϫЀ�ͽϮϷЄυδЄЀΨᄍͮΡ΄΅抑ͽͯ͡Ҙ
Qui joue Mary Jane dans Spiderman 2?
�Who plays Mary Jane in Spiderman 2?�

Answer

Stan Lee
character
created by 

The Punisher 
Strikes Twice

story 
appearances

Mary Jane 
Watson Spider-

man 2

Kirsten 
DunstCVTportrayed 

in films

film

actor

Figure 1: An example of answering questions in non-
English languages over an English knowledge base.

knowledge. These KBs support a variety of natu-
ral language processing tasks, including question
answering over knowledge base (KBQA), where
models exploit the knowledge related to the ques-
tions and precisely identify the answers by rea-
soning through various KB relations. Although
most large-scale KBs claim to contain multilin-
gual information, they could not completely sup-
port non-English languages as expected. For ex-
ample, Freebase has no translation for the KB
relations/attributes in any non-English languages.
More than half of the entities in Freebase have no
Chinese translations, despite the fact that Chinese
is the most spoken non-English language in the
world. Therefore, these KBs could not directly sup-
port question answering in non-English languages,
bringing up the problem of answering non-English
questions over the KBs constructed in English.

In this work, we focus on cross-lingual KBQA
(xKBQA), which aims to answer questions over a
KB in another language. Figure 1 shows a KB sub-
graph and several factoid questions in non-English
languages, which can be answered by a node in
the KB subgraph. Despite considerable progress
in monolingual KBQA, xKBQA receives little at-
tention. A significant challenge in xKBQA is the
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lack of large-scale xKBQA datasets. Such datasets
are quite expensive to annotate since the annota-
tors are expected to be multilingual and have back-
ground knowledge about KBs. As a result, even
the largest xKBQA dataset so far contains only a
few hundred questions (Ngomo, 2018). Another
challenge is that, compared to other cross-lingual
tasks, the expression difference between structured
KB schemas and natural language questions further
hinders the learning of cross-lingual mapping.

To address these challenges, we propose to con-
vert the KB subgraphs into natural language texts
and leverage the progress in cross-lingual ma-
chine reading comprehension (xMRC) to solve
the xKBQA task. Recently, there has been a se-
ries of large-scale xMRC datasets, such as MLQA
(Lewis et al., 2020), MKQA (Longpre et al., 2021)
and XQuAD (Artetxe et al., 2020). Multilingual
pre-trained language models (MPLMs), such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020), achieve competitive performance
on these xMRC benchmarks. As for xKBQA, by
converting KB subgraphs into natural language
texts, we narrow the gap between KB schemes
and natural language expressions. We then uti-
lize the PLM-based xMRC models finetuned on
xMRC datasets to learn the cross-lingual mapping
efficiently, even with limited xKBQA annotations.

Specifically, we first identify the topic entity
from the given question, link it to the KB, and
extract its n-order neighbors to construct a KB sub-
graph, following traditional monolingual KBQA
methods (Saxena et al., 2020; He et al., 2021). We
then convert the subgraph into a question-specific
passage with KB-to-text generation models, incor-
porating the KB triples with contextual expressions.
Given the converted cross-lingual question-passage
pairs, we adopt MPLMs to rank answer candidates
in the passages. As a general framework, our ap-
proach can be easily applied to different languages
or KBs without specialized modifications.

We empirically investigate the effectiveness of
our method on two xKBQA datasets, QALD-
M (Ngomo, 2018) and WebQSP-zh. QALD-M is
a collection of a few hundred questions in 11 non-
English languages, from a series of xKBQA evalua-
tion campaigns. Considering its small size, we also
construct a new dataset WebQSP-zh with 4,737
Chinese questions translated from WebQSP (Yih
et al., 2016) by native speakers. WebQSP-zh is
much larger in size and involves more natural

expressions as the annotators take into account
commonsense knowledge and realistic vocabulary
choices during manual translation.

Experimental results demonstrate that our
method outperforms a variety of English-as-pivot
baselines based on monolingual KBQA models,
reaching 74.37% hits@1 on WebQSP-zh. More-
over, our method achieves strong few-shot and zero-
shot performance. Using only 10% of the training
data, our method performs comparably to several
competitive English-as-pivot baselines trained with
full training data. For the zero-shot evaluation on
QALD-M, our method achieves 51.20% hits@1 on
average across 11 languages.

Our main contributions are summarized as:

• We formulate xKBQA as answering questions
by reading passages converted from KB sub-
graphs, bridging the gap between KB schemas
and natural language expressions. Existing
high-quality xMRC resources are further uti-
lized to alleviate the data scarcity issue.

• We collect a large xKBQA dataset with native
expressions in Chinese, i.e., WebQSP-zh. It,
along with its original version, i.e., WebQSP,
can be used for analyzing the gap between
monolingual and cross-lingual KBQA.

• We conduct extensive experiments on two
datasets with 12 languages. Our method
outperforms various baselines and achieves
strong few-shot and zero-shot performance.

2 Related Works

KBQA Recent efforts in KBQA generally fall
into two main paradigms, either the information ex-
traction style (Miller et al., 2016; Sun et al., 2018;
Xu et al., 2019; Saxena et al., 2020; He et al., 2021;
Shi et al., 2021) or the semantic parsing style (Yih
et al., 2015; Lan and Jiang, 2020; Ye et al., 2022;
Gu and Su, 2022). The former retrieves a set of
candidate answers from KB, which are then com-
pared with the questions in a condensed feature
space. The latter manages to distill the symbolic
representations or structured queries from the ques-
tions.

xKBQA Both styles of KBQA methods can be
applied to xKBQA. Previous xKBQA efforts gener-
ally fall in the semantic parsing style. They rely on
online translation tools (Hakimov et al., 2017) or
embedding-based word-to-word translation (Zhou
et al., 2021) to obtain synthetic training data. In
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KB subgraph:

Stan Lee

character 
created by 

Entity Linking

Passage:
Mary Jane Watson is a character created by Stan Lee. The character of Mary Jane 
Watson, who appeared in the film Spider-Man 2, was voiced by Kirsten Dunst.

KB-to-Text Conversion

[CLS]  Q  [SEP]  … created by Stan Lee … the film Spider-Man 2 … voiced by Kirsten Dunst . 

… … …

… … …

Multilingual Pre-trained Language Model

Cross-Lingual MRC

… … …

Stan Lee Spider-Man 2 Kirsten DunstCandidate Ranking 0.90.20.5 √

SQuAD

xMRC 
Dataset

Multi-stage
Finetuning

Mary Jane 
Watson

Spider-
man 2

Kirsten 
Dunst

CVT
portrayed 

in films

filmactor

Subgraph Extration

Question:
�"ᢶᢛׂ�Ӿಝᄍሸԇᓌࣁ᧡
φϞαύЄϫЀ�ͽϮϷЄυδЄЀΨᄍͮΡ΄΅抑ͽͯ͡Ҙ
Qui joue Mary Jane dans Spiderman 2?

Mary Jane 
Watson

Figure 2: An illustration of our method. Given a large-scale KB in a rich-resource language such as English, to
answer a question in a language with relatively fewer resources, we first extract a subgraph from KB according
to entity linking results. We then convert the subgraph into a question-specific passage in natural language with
KB-to-text generation models, complementing the KB triples with contextual expressions. The question and
converted passage are fed into a PLM-based xMRC model, which ranks all candidate answer spans to obtain the
final answer.

contrast, the information extraction based xKBQA
approach is less explored. An advantage of this
style of xKBQA methods is that it requires no an-
notation of structured queries, which is expensive
to obtain for non-English languages. In this pa-
per, we attempt to explore xKBQA approaches of
the information extraction style with less reliance
on machine translation tools and investigate their
performance in the few-shot and zero-shot settings.

xMRC xMRC is a cross-lingual QA task receiv-
ing extensive attention recently, with considerable
progress in datasets and models. There has been a
stream of high-quality datasets in a wide range of
languages, including MLQA (Lewis et al., 2020),
MKQA (Longpre et al., 2021), XQuAD (Artetxe
et al., 2020) and TyDi QA (Clark et al., 2020). Sev-
eral works for xMRC adopt machine translation
tools(Asai et al., 2018; Cui et al., 2019; Lee et al.,
2019) or question generation systems (Riabi et al.,
2021) to obtain more cross-lingual training data,
while other works attempt to learn better cross-
lingual mapping with MPLMs (Yuan et al., 2020;
Wu et al., 2022).

KB-to-text in QA To benefit xKBQA with the
progress in xMRC, we propose to convert the xK-
BQA task into reading comprehension. Previous
works in other QA tasks attempt to convert KB
triples into texts by simple concatenating heuristics
(Oguz et al., 2020) or by manually-designed rules
(Bian et al., 2021). Ma et al. (2022) resort to PLM-
based generation models and argue that data-to-text
can serve as a universal interface for open domain

QA. To the best of our knowledge, our work is the
first to introduce data-to-text methods into KBQA
and cross-lingual QA. Compared with Ma et al.
(2022), we further address the real-world problems
of complex KB structures, cross-lingual semantic
gap, and data scarcity when applying data-to-text
to xKBQA.

3 Methodology

We propose a novel approach to tackle xKBQA as
reading comprehension. As illustrated in Figure
2, we first convert KB triples into sentences using
generation models and obtain question-specific pas-
sages for reading comprehension. We then adopt
MPLMs finetuned on xMRC datasets to answer
cross-lingual questions according to the converted
passages.

3.1 Task Formulation

In xKBQA, given a knowledge base G in language
A and a question q in another language B, the
model is expected to answer q by entities or literal
values in G. In practice, A is often a rich-resource
language such as English, and B is a language with
relatively fewer resources. A knowledge base G
consists of a set of knowledge triples. In a triple
(h, r, t), h ∈ E is a head entity, t ∈ E ∪ L is a
tail entity or a literal value, and r ∈ R is the rela-
tion/predicate between h and t, where E denotes
the set of all entities, L denotes the set of all literal
values, and R denotes the set of all relations.
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3.2 KB-to-Text Conversion

In a typical monolingual KBQA framework, one
first identifies the topic entity in the question and
links it to the given KB. This can be achieved by
surface-level matching (Sun et al., 2018) or super-
vised entity linkers (Yang and Chang, 2015). In the
cross-lingual setting, one can directly adopt multi-
lingual entity linkers such as mGENRE (De Cao
et al., 2022) or translate questions and KB entities
into the same language for monolingual linking.

After entity linking, a KB subgraph is con-
structed by the neighbors within several hops
around the topic entities. Based on the given ques-
tion, all candidates in the subgraph are ranked to
arrive at the final answers. To successfully identify
from the subgraph the KB predicates leading to the
answer, the KBQA models are expected to learn a
mapping between KB predicates and natural lan-
guage expressions in the questions. In addition to
the language gap as in most cross-lingual tasks, the
models have to deal with the difference in expres-
sion styles used in the KB schemas and questions.

To narrow down the gap of mapping, we propose
to convert KB subgraphs to natural language pas-
sages, formulating xKBQA as an xMRC task, so
that we can benefit from recent advances in xMRC.
Converting KB subgraphs into natural sentences
brings plausible context for candidate KB answers,
facilitating the matching between questions and
answers. Furthermore, with the natural language
expressions of the KB subgraphs, current xMRC
models can be directly adopted to solve the ques-
tions. We believe that xMRC models could benefit
the xKBQA task for their strong capabilities of
mapping between cross-lingual expressions. Even
without annotated xKBQA data, they are able to
answer a portion of xKBQA questions, utilizing
their prior knowledge of the cross-lingual mapping
learned from pre-training and fine-tuning on xMRC
datasets.

To convert KB subgraphs into readable passages,
we utilize PLM-based KB-to-text models, such
as JointGT (Chen et al., 2021). A KB-to-text
model converts a structured KB subgraph to natural
language texts, complementing the given entities
and relations with potential contextual expressions.
Compared with simply concatenating the head en-
tity, relation and tail entity of a triple, a KB-to-text
model can generate more natural and coherent sen-
tences. It also alleviates the onerous manual de-
sign of conversion rules. Moreover, the KB-to-text

Mary Jane 
Watson

The Punisher 
Strikes Twice

story specific 
appearances

Mary Jane Watson made 
several appearances in 
The Punisher Strikes 
Twice.

Conversion to triple KB to text

Conversion to triples KB to text

Single relation:

CVT node:

�0DU\�-DQH�:DWVRQ��VWRU\�VSHFLƉF�DSSHDUDQFHV��7KH�3XQLVKHU�6WULNHV�7ZLFH!

Mary Jane 
Watson Spider-

man 2

Kirsten 
Dunst

CVT

portrayed 
in films

film

actor

�0DU\�-DQH�:DWVRQ��SRUWUD\HG�LQ�ƉOPV�DFWRU��.LUVWHQ�'XQVW!
�0DU\�-DQH�:DWVRQ��SRUWUD\HG�LQ�ƉOPV�ƉOP��6SLGHU�PDQ��!

The character of Mary 
Jane Watson, who appeared 
in the film Spider-Man 2, 
was voiced by Kirsten 
Dunst.

Figure 3: Examples of KB-to-text conversion for a sin-
gle relation (upper) and a complex event-like fact, such
as CVT nodes in Freebase (lower).

model can handle not only single-relation triples
but also more complex KB structures, such as CVT
nodes, which is a complex node type in Freebase
referring to an event with multiple fields. Figure
3 shows examples of KB-to-text conversion for a
single-relation triple and a CVT node.

After conversion, we identify the candidate an-
swer spans from the pieces of text with fuzzy string
matching tools. To form a passage, we concate-
nate the pieces of text, sorted by their semantic
similarities to the questions.2 We observe that
the subgraphs around a topic entity can be very
large, especially for the hub entities like the USA.
Consequently, the converted passages can be very
long, even up to 20k words in length. Current
xMRC models struggle with such long passages.
To shorten the converted passages, we fix the maxi-
mum length of the passage and discard the remain-
ing redundant sentences.

3.3 Cross-Lingual Reading Comprehension

MPLMs are widely adopted in xMRC for their
strong capabilities of understanding cross-lingual
texts. They can encode different languages in a
unified semantic space, relieving the reliance on
translation tools. We thus use MPLMs to solve the
xMRC instances converted from xKBQA.

Specifically, we concatenate the question and the
converted passage as the input to the MPLMs and
predict the boundary of the answer span. In the KB-
to-text step, we have identified the corresponding

2Previous work shows that PLM-based MRC models are
not sensitive to the order of sentences in the passage (Sugawara
et al., 2020). We do not observe significant performance
change after we shuffle the sentence order in the passage,
which conforms to the finding by Sugawara et al. (2020).
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WebQSP-zh: 安娜肯德里克出演过什么？/ What did
Anna Kendrick star in?
WebQSP-MT:安娜肯德里克在干什么？/ What is Anna
Kendrick doing?
WebQSP: What has Anna Kendrick been in?
Freebase Predicate: film.actor.film film.performance.film

WebQSP-zh: 1945年前苏联的领导人是谁？/ Who was
the leader of the former Soviet Union in 1945?
WebQSP-MT: 1945年苏联的领导人是谁？/ Who was
the leader of the Soviet Union in 1945?
WebQSP: Who was the leader of the Soviet Union in
1945?
Freebase Predicate:
government.governmental_jurisdiction.governing_officials
government.government_position_held.office_holder

Table 1: Examples from WebQSP-zh and their corre-
sponding questions in WebQSP. WebQSP-MT is the
Chinese translation of WebQSP by Baidu Translate, a
machine translation tool. The italic English texts are the
literal meaning of the Chinese questions.

span in the passage for each candidate KB entity
or literal value. Thus, during inference, we only
need to rank the candidate answer spans. The cor-
responding KB entity or value for the top-ranked
candidate span is selected as the final answer.

To address the data scarcity in xKBQA, we fur-
ther propose to finetune the models on MRC data
in multiple stages before on xKBQA data. Com-
pared to KBQA, it is easier to acquire annotated
MRC data for its straightforward annotation pro-
cess without the requirement of background knowl-
edge in KBs. Apart from large-scale English MRC
datasets such as SQuAD (Rajpurkar et al., 2016),
there are a series of high-quality xMRC datasets,
including MLQA, MKQA and XQuAD, covering a
wide range of non-English languages such as Rus-
sian, Hindi, and Dutch. In the first stage, we use
large-scale English MRC datasets, e.g., SQuAD,
to help MPLMs learn the language-agnostic abil-
ity to find answers from the passages. In the sec-
ond stage, we finetune the models on high-quality
xMRC datasets in the target language, strengthen-
ing the reading comprehension ability for the target
language. In this way, the two-stage finetuning be-
fore training on xKBQA data benefits models with
the rich resources in MRC and mitigate the data
scarcity problem in xKBQA.

4 Experimental Setup

4.1 Datasets

We evaluate our method on two datasets, QALD-
M, a small evaluation dataset in 11 languages, and

WebQSP-zh, a new dataset with a larger size and
more realistic expressions.

QALD-M QALD-M is a series of evaluation
campaigns on question answering over linked data.
We use the version provided by Zhou et al. (2021)
and filter the out-of-scope ones. It consists of test-
ing questions for 11 non-English languages (fa, de,
ro, it, ru, fr, nl, es, hi, pt, pt_BR) over DBPedia.
The numbers of used questions for each language
range from 66 to 363. We use QALD-M mainly for
zero-shot evaluation. See Appendix A.1 for more
details.

WebQSP-zh Considering that the size of QALD-
M is small and its multilingual questions are mostly
literal translations without language-dependent
paraphrasing, we collect a new xKBQA dataset
WebQSP-zh, with 3,098 questions for training and
1,639 questions for test.

To collect WebQSP-zh, we employ two Chi-
nese native speakers proficient in English to man-
ually translate all the questions in WebQSP (Yih
et al., 2016), a widely-used English KBQA dataset,
together with another annotator responsible for
checking translation quality. To provide a more
realistic benchmark for cross-lingual evaluation,
the annotators are instructed to pay much attention
to commonsense knowledge and natural vocabu-
lary choices during translation. For example, in
the upper example of Table 1, the phrase be in in
the WebQSP question has multiple translations in
Chinese. Based on the commonsense knowledge
that Anna Kendrick is an actress, it is translated as
出演/star in instead of its literal meaning 在做/be
doing. In the lower example of Table 1, the an-
notator chooses the Chinese word 前苏联/former
Soviet Union for translation instead of 苏联/Soviet
Union because the former is more often used by
native Chinese speakers. See Appendix A.2 for
more statistics, annotation details, and examples.

4.2 Baselines
Supervised A widely-adopted baseline method
in cross-lingual QA tasks is translating data in
non-English languages into English with machine
translation tools and utilizing mono-lingual mod-
els (Asai et al., 2018; Cui et al., 2019), which
we call English-as-pivot. For supervised exper-
iments on WebQSP-zh, we select several compet-
itive monolingual KBQA models for English-as-
pivot evaluation. For information extraction style,
we select EmbedKGQA (Saxena et al., 2020),
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GraftNet (Sun et al., 2018), NSM (with its teacher-
student variant, He et al., 2021), all of which re-
quire no annotation of structured KB queries, as
our method does. For semantic parsing style, we
select QGG (Lan and Jiang, 2020). 3

We also provide a Closed-book QA base-
line (Roberts et al., 2020) with generation-based
MPLMs, e.g., mT5 (Xue et al., 2021). We feed the
question directly into the model and expect it to
output the answer based on its knowledge learned
in pre-training. This method requires no external
knowledge, such as KBs, and can coarsely evaluate
how much parametric knowledge an MPLM may
have.

Zero-shot Since the above supervised baselines
are unable to answer any questions without training
data, we further implement two baselines inspired
from Zhou et al. (2021) for zero-shot evaluation.
One is Multilingual Semantic Matching, which
measures the similarity between questions and in-
ferential chains with an MPLM finetuned on LC-
QuAD (Trivedi et al., 2017), an English KBQA
dataset. The other, based on the previous baseline,
uses Bilingual Lexicon Induction (BLI, Lample
et al., 2018) to obtain word-to-word translation in
the target languages as data augmentation.

4.3 Metrics

Following previous works (Saxena et al., 2020;
He et al., 2021), we use hits@1 as the evaluation
metric. It is the ratio of questions whose top 1
predicted answer is in the set of golden answers.

4.4 Implementation Details

Following previous works (Sun et al., 2018; Sax-
ena et al., 2020; He et al., 2021), we use the
golden topic entities for a fair comparison with
the baselines. We also discuss the effects of en-
tity linking in Section 5.5. For KB-to-text genera-
tion, we use JointGT (Chen et al., 2021) finetuned
on WebNLG (Gardent et al., 2017), a KB-to-text
dataset. We use TheFuzz4 to identify candidate
answer spans. We fix the maximum passage length
to 750 words and discard the sentences with lower

3We did not include the recent semantic-parsing-style mod-
els based on Seq2Seq generation, including RnG-KBQA (Ye
et al., 2022) and ArcaneQA (Gu and Su, 2022), both of which
outperform QGG by 1.6% F1 on WebQSP. However, setting
up an environment for them requires up to 300G memory,
far exceeding our computational budgets. So we think that
OGG is a suitable baseline that strikes a good balance between
performance and computational resources.

4https://github.com/seatgeek/thefuzz

Model WebQSP WebQSP-zh

English-as-pivot
EmbedKGQA (2020) 66.18 63.15 (-3.03)
GraftNet (2018) 67.79 65.61 (-2.18)
NSM (2021) 68.70 67.30 (-1.40)
NSM-student (2021) 74.30 72.54 (-1.76)
QGG (2020) 73.70 72.36 (-1.34)

Closed-book QA
mT5-base 7.02
mT5-large 12.87

xKBQA-as-MRC (Ours)
mBERT-base 70.53
XLM-R-base 69.92
XLM-R-large 74.37

Table 2: Hits@1 (%) of baselines and our method on
the test set of WebQSP-zh using the full training data.
The “WebQSP” column shows the model performance
on the test set of WebQSP after training on the original
English WebQSP data. The numbers in the brackets
denote the performance drop of English-as-pivot models
compared to their corresponding English KBQA models
on WebQSP. All models except GraftNet use golden
topic entities.

semantic similarity to the questions, measured by
the multilingual model of SentenceTransformers
(Reimers and Gurevych, 2020). For xMRC, we ex-
periment with mBERT and XLM-R. Before finetun-
ing on the xMRC instances converted from xKBQA
datasets, we first finetune models on SQuAD 1.1,
and then on three xMRC datasets, MLQA, MKQA
and XQuAD. We do not search hyperparameters
for the xMRC models and adopt the default con-
figuration used by SQuAD. For English-as-pivot
baselines, we use Baidu Translate API5 to obtain
English translations. See Appendix B for more
details.

5 Results and Analyses

5.1 Supervised Setting

As shown in Table 2, we first compare our method
with English-as-pivot baselines using full training
data of WebQSP-zh. These baselines can bene-
fit from the development of monolingual KBQA
models and achieve over 63% hits@1 on WebQSP-
zh. Suppose we have perfect translation results,
the English-as-pivot baselines on the WebQSP-zh
should reach the performance of monolingual mod-
els on the original English WebQSP. However, the
English-as-pivot baselines on WebQSP-zh drop 1.4-
3.0% hits@1 compared to their monolingual per-

5https://fanyi.baidu.com/
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Model fa de ro it ru fr nl es hi pt pt_BR Avg.

Multilingual Semantic Matching
LC-QuAD 43.41 44.90 48.55 47.93 36.84 47.38 43.93 46.53 41.60 37.43 48.48 44.27
+ Sing. BLI 46.41 50.41 50.87 51.24 40.35 48.76 48.55 49.42 34.73 40.35 54.54 46.88
+ All BLI 46.41 49.31 50.58 49.04 41.52 49.59 47.40 48.55 41.98 40.94 51.51 46.98

xKBQA-as-MRC (Ours)
SQuAD 39.22 48.21 44.48 45.45 33.33 45.17 48.27 47.11 43.89 35.67 51.51 43.85
+ Sing. xMRC 39.22 52.07 52.91 56.20 45.61 51.24 52.02 54.62 50.76 42.69 59.09 50.59
+ All xMRC 48.50 55.10 52.03 54.27 44.44 53.44 52.89 53.47 46.95 41.52 60.61 51.20

Table 3: Hits@1 (%) of the baseline and our method with XLM-R-large on QALD-M under the zero-shot setting.
“LC-QuAD” and “SQuAD” means using LC-QuAD and SQuAD for finetuning, respectively. “BLI” and “xMRC”
means using BLI translation and xMRC datasets for finetuning, respectively. “ Sing.” means using the data in the
target language only while “All” means combining the data in all the languages. We do not find available xMRC
datasets for Persian (fa), so the performance of “+ Sing. xMRC” on Persian is the same as that of “SQuAD”.

formance on the original WebQSP. This is because
the English-as-pivot baselines are highly dependent
on machine translation tools, whose outputs may
contain unnatural expressions or even errors.

As for the closed-book QA baselines, mT5-large
correctly outputs the answers in English for even
12.9% of the WebQSP-zh questions, without resort-
ing to any external knowledge. This proves that
MPLMs have learned a large amount of factual
knowledge and strong cross-lingual capabilities,
which can be properly utilized for xKBQA, as our
method does.

All our models reach over 69% hits@1 on
WebQSP-zh. Our two base-size models outper-
form EmbedKGQA by approximately 6% hits@1,
an English-as-pivot baseline that utilizes RoBERTa-
base and the KB embedding ComplEx (Trouillon
et al., 2016). Our model with XLM-R-large out-
performs all baselines, achieving 74.37% hits@1
thanks to the strong cross-lingual capability from
MPLMs and rich resources in xMRC. Moreover,
these results demonstrate another merit of our ap-
proach that it can directly answer non-English ques-
tions over KBs in English, reducing the reliance
on machine translation systems. Although NSM-
student, which does not use PLMs itself, performs
better than our two base-size models, the parame-
ters and computational complexity introduced by
the translation system are much heavier than the
MPLM used in our method. Furthermore, our ap-
proach demonstrates its advantage with fewer or
even no training data, as we will discuss next.

5.2 Few-Shot and Zero-Shot Settings

Consider the high cost of annotating high-quality
xKBQA data, we investigate the capabilities of our
method under few-shot and zero-shot settings.
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Figure 4: Few-shot and zero-shot performance of our
method and NSM-student on the test set of WebQSP-zh.

Figure 4 shows the performance of our method
and NSM-student on WebQSP-zh under few-shot
and zero-shot settings. For NSM-student, its per-
formance drops drastically with the decrease in
training data. and it is totally incapable of zero-
shot xKBQA. By contrast, when trained with half
of the training data, our method still performs well,
with less than 3% decrease in hits@1 compared
with those trained with full data. With only 10%
of the training data, i.e., 310 instances, our models
reach over 62% hits@1, comparable with Embed-
KGQA trained with full training data. Even under
the zero-shot setting, our method can achieve 53-
61% hits@1. The high performance of our method
with limited training data is attributed to the KB-
to-text conversion, which in turn makes it possible
to benefit from the rich resources in xMRC. The
MPLMs for xMRC have learned to encode differ-
ent languages in the same semantic space during
pre-training. After finetuning on xMRC datasets,
the models can learn the ability to seek informa-
tion from passages in a different language. By
combining the prior knowledge of cross-lingual
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mapping and reading comprehension abilities, our
models can successfully answer a large portion of
the xMRC-like questions converted from xKBQA.

To demonstrate that our method can generalize
to different languages without specialized modi-
fications, we test our approach on QALD-M in
11 typologically-diverse languages under the zero-
shot setting. We evaluate the model on QALD-M
after finetuning (1) on SQuAD only, (2) on SQuAD
and xMRC datasets of a single language, and (3)
on SQuAD and xMRC datasets of all the languages.
As shown in Table 3, after finetuning XLM-R-large
with SQuAD, our models achieve 43.9% hits@1 on
average across 11 non-English languages, demon-
strating our method’s strong generalization ability
from English MRC datasets. After further fine-
tuning on xMRC datasets for each language, we
observe a 6.7% hits@1 boost in the average per-
formance, showing the benefit of xMRC datasets
in the absence of xKBQA data. If we combine the
xMRC of all the languages for finetuning, the aver-
age hits@1 further increases slightly by 0.6%, prob-
ably due to the potential complementary effects be-
tween data in different languages. Compared with
the semantic matching baseline finetuned with LC-
QuAD and BLI-based translations, our best model
outperforms it by 4.2% hits@1 on average. This is
because the KB-to-text process of our method pro-
vides richer context than single inferential chains
and the xMRC data are of higher quality than the
BLI-based word-to-word translation.

5.3 Ablation Study

To evaluate the effectiveness of the designs in our
approach, we conduct experiments in several ab-
lated settings on WebQSP-zh with full xKBQA
training data. We additionally conduct an ablation
study with only 10% of the training to investigate
what is behind the promising few-shot performance.
The results are shown in Table 4.

With full training data, after we replace the PLM-
based KB-to-text model with the simple heuristic of
concatenating the head, predicate, and tail (w/o KB
to text), the performance drops by 2.13% hits@1.
Although the xMRC models can to some extent
learn the mapping between questions and sentences
converted by heuristics, the coherence and readabil-
ity of KB-to-text generation results contribute to
the final performance. Skipping the finetuning on
either SQuAD (w/o SQuAD) or xMRC datasets
(w/o xMRC data) leads to a performance drop,

Model 100% 10%

XLM-R-large (Ours) 74.37 67.60
- w/o KB to text 72.24 (-2.13) 65.58 (-2.02)
- w/o xMRC data 71.81 (-2.56) 65.53 (-2.07)
- w/o SQuAD 71.02 (-3.35) 65.10 (-2.50)
- w/o xMRC data, SQuAD 66.69 (-7.68) 54.79 (-12.81)

Table 4: Ablation study of our method with XLM-R-
large on WebQSP-zh, using 100% or 10% of the training
data (Hits@1 in percent).

showing the importance of high-quality data aug-
mentation in absence of large-scale xKBQA data.

In the setting with 10% of the training data, both
KB-to-text generation and finetuning on the MRC
data contribute to the high few-shot performance,
similar to the full training data setting. We observe
a drastic drop of 12.81% hits@1 if the model is
not finetuned on any MRC data (w/o xMRC data,
SQuAD). This indicates that MRC data, no matter
monolingual or cross-lingual, can greatly relieve
the problem of data scarcity in xKBQA.

5.4 Error Analysis

We sample 50 error cases in WebQSP-zh and ana-
lyze their sources of error, as shown in Table 5.

34% of the errors result from the annotation of
the original WebQSP dataset, where the annotated
answer sets may be incomplete or incorrect. An-
other common source of error is the MRC model,
which incorrectly answers 34% of the sampled
questions. Among them, many are complex ques-
tions involving constraints or multiple relations. In
the future, multi-hop MRC models can be adopted
for addressing them. Besides, there are also several
error cases resulting from KB-to-text generation
and sentence filtering. We believe that our model
will achieve better performance if each module
in our framework is carefully optimized for the
datasets.

5.5 Effect of Entity Linking

Entity linking (EL) is a crucial issue in KBQA,
which requires linking the entity mentions in the
questions to the entities in a KB. It becomes even
more difficult in the cross-lingual setting. In the
experiments above, we use golden entity linking
results following previous works. To further in-
vestigate the effect of entity linking in xKBQA,
we conduct pilot experiments with two EL meth-
ods. One is surface-level matching after translating
the questions, and the other is mGENRE (De Cao

2446



Source Example Explanation %

Answer
Annotation

Question: 沃尔玛经营什么产业？/ What industry does
Walmart operate in?
Passage: ... The industry of Walmart is Retail-Store,
Variety Stores and Department Stores. ...
Answer: Variety Stores
Prediction: Retail-Store

The annotated answers in the original
WebQSP dataset are incomplete or
incorrect. In the left case, the anno-
tated answer set fails to include two
correct answers, Retail-Store and De-
partment Stores.

34

KB-to-text
Generation

Question: 凯南·鲁兹在灯红酒绿杀人夜中扮演谁？/
Who does Kellan Lutz play in Prom Night?
Passage: ... Kellan Lutz, a character in the film “Prom
Night”, played with Rick Leland. ... Kellan Lutz, a charac-
ter in Twilight, played the role of Emmett Cullen. ...
Answer: Rick Leland
Prediction: Emmett Cullen

The KB-to-text model converts a KB
schema to a wrong natural language
expression or omits the entities in
the given triple. In the left case, the
model incorrectly converts the KB
schema character to the expression
play with.

12

Sentence
Filtering

Question: 爱德华多·包洛奇在他的工作中使用了什么
材料？/ What Materials did Eduardo Paolozzi use in his
work?
Passage: ... The art forms of Eduardo Paolozzi are
Sculpture. ...
Answer: Bronze
Prediction: Sculpture

The answers are missing in the pas-
sages because the model for sentence
similarity calculation incorrectly fil-
ters out the sentences containing an-
swers. In the left case, the sentence
containing the answer Bronze is mis-
takenly filtered out.

20

Reading
Comprehension

Question: 谁是杰拉尔德福特的副总裁？/ Who was the
vice president of Gerald Ford?
Passage: ... David Gergen was appointed as the White
House Communications Director by President Gerald
Ford . ... The vice president of Gerald Ford was
Nelson Rockefeller . ...
Answer: Nelson Rockefeller
Prediction: Staff Dick Cheney

The xMRC model fails to select the
correct answer span. In the left case,
the xMRC model incorrectly maps
the word 副总裁/vice president to
the expression White House Commu-
nications Director in the passage.

34

Table 5: Examples, explanations and percentages of different sources of error in the 50 sampled WebQSP-zh
question that XLM-R-large fails to answer. The underlined spans in passages are answer candidates.

et al., 2022), a cross-lingual EL tool that does not
rely on machine translation tools. On the test set
of WebQSP-zh, two EL methods achieve 89.1%
and 76.8% recall@5, respectively. With the re-
sults from two EL methods, our xMRC model with
XLM-R-large achieves 65.9% and 56.5% hits@1,
respectively. The large gap compared to the results
with golden topic entities indicates that more future
research on cross-lingual EL is desired.

6 Conclusion

In this paper, we propose to formulate xKBQA as
answering questions by reading passages, benefit-
ing from the recent advance in xMRC. By convert-
ing KB subgraphs into passages, we narrow the gap
between KB schemas and natural questions under
cross-lingual settings. The cross-lingual knowl-
edge in MPLMs and the rich resources in xMRC
alleviate the problem of data scarcity in xKBQA.
To facilitate the evaluation of xKBQA, we collect
WebQSP-zh, a new large-scale xKBQA dataset
with more natural expressions. Extensive exper-
iments on two datasets with 12 languages show

the strong performance of our method under both
supervised and zero-shot settings.

We hope that our work will inspire more efforts
into xKBQA. Several promising research directions
under our framework include generating better pas-
sages for KB subgraphs, supporting more types of
KBQA questions, and exploring better EL strate-
gies for xKBQA.

Limitations

We discuss the limitations of our work from the
following four aspects:

First, our work mainly focuses on single-relation
questions and CVT questions in KBQA. We con-
struct a new dataset WebQSP-zh based on We-
bQSP, which lacks complex questions with mul-
tiple constraints or relations. Since we use a vanilla
BERT-based MRC model in our framework, it has
a limited capacity for solving complex KBQA ques-
tions. As future work, multi-hop MRC models can
be adopted to address complex questions in cross-
lingual KBQA.

Second, our method is mainly designed for
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entity-centric QA. It can handle well the answer
types of KB entities or attribute values in KBQA.
Yet its capability on other types of answers is cur-
rently unknown. We will consider extending our
method with more diverse answer types in the fu-
ture.

Third, the size of retrieved KB subgraphs is con-
strained by the maximum input length of PLMs.
This could, to some extent, lower the answer cover-
age of the converted passages and hurt the overall
performance. In the future, Longformer-based en-
coders or text summarization techniques could be
explored to address this limitation.

Fourth, although using existing xMRC datasets
can alleviate the data scarcity problem in xKBQA,
it cannot fundamentally solve the problem of insuf-
ficient and expensive cross-lingual datasets. With
more powerful cross-lingual PLMs, we may reduce
the reliance on xMRC data. We will explore more
strategies for tackling the data scarcity problem in
future work.
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A Dataset Details

A.1 QALD-M

Statistic The QALD-M dataset used in our pa-
per is based on the version released by Zhou et al.
(2021), composed of questions from QALD-M 4 to
QALD-M 9 in 11 non-English languages. We filter
the yes/no questions, counting questions, and the
questions whose answers cannot be found in the
knowledge base. The sizes of testing questions for
each language are shown in Table 7, ranging from
66 to 363.

Knowledge Base For QALD-M, we use the
2016-10 version of DBPedia6. We discard the
KB triples that are unlikely to contain answers
such as page IDs and revision history, and only
include information about article categories and
object properties. For each question, we include in
the subgraph the triples where the topic entity is
the head entity or the tail entity, namely its one-hop
neighbors.

A.2 WebQSP-zh

Statistics The WebQSP-zh dataset proposed in
our paper consists of 4,737 question-answer pairs,
of which 3,098 instances are for training and the
remaining 1,639 instances are for testing. The av-
erage length of questions is 12.7 characters. The
average number of answers per question is 9.8.

Knowledge Base For WebQSP-zh, we use a pre-
processed version of Freebase7. Following previ-
ous works (Sun et al., 2018; Saxena et al., 2020),
we further prune it to contain only those relations
that are mentioned in the dataset. For each ques-
tion, we obtain the neighborhood graph within two
hops of topic entities.

Annotation Details We recruited the annotators
from a Chinese campus BBS, who are proficient
in both Chinese and English. They are instructed
to translate the questions in WebQSP into Chinese
and to pay attention to commonsense knowledge
and natural vocabulary choice. They are paid 3
CNY for each question annotated, which is ade-
quate given the participants’ demographic. The
annotators are informed of how the data would be
used.

6http://downloads.dbpedia.org/wiki-archive/
downloads-2016-10.html

7https://github.com/hugochan/BAMnet

More Examples We provide more examples
from WebQSP-zh in Table 6 to show that WebQSP-
zh is a more realistic benchmark for cross-lingual
evaluation, incorporated with commonsense knowl-
edge and realistic vocabulary choices.

In the first example of Table 6, based on the
knowledge that Aldi is a company, the word origi-
nate is translated as 创建/found instead of its literal
translation 起源/originate. In the second example
of Table 6, the annotator uses范德堡大学/Vanderbilt
University instead of 范德堡/Vanderbilt because na-
tive Chinese speakers often call Western universi-
ties by their full names and rarely drop the word 大
学/university.

WebQSP-zh: 阿尔迪是什么时候创建的？ / When
was Aldi founded?
WebQSP-MT:阿尔迪是什么时候起源的？ / When
did Aldi originate?
WebQSP: When did Aldi originate?
Freebase Predicate:
business.employer.employees
business.employment_tenure.from

WebQSP-zh: 范德堡大学的吉祥物是什么？/ What
is Vanderbilt University’s mascot?
WebQSP-MT: 范德堡的吉祥物是什么？/ What is
Vanderbilt’s mascot?
WebQSP: What is Vanderbilt’s Mascot?
Freebase Predicate:
education.educational_institution.mascot

Table 6: Examples from WebQSP-zh and their corre-
sponding questions in WebQSP. WebQSP-MT is the
Chinese translation of WebQSP by the machine trans-
lation tool Baidu Translate. The italic English texts are
the literal meaning of the Chinese questions.

A.3 xMRC datasets

We use three xMRC datasets for data augmenta-
tion. Their preprocessing details and statistics are
as follows.

In terms of MLQA and XQuAD, we directly use
the officially released data with English passages
paired with non-English questions. In terms of
MKQA, the passages for reading comprehension
are full-length English Wikipedia articles. Since
the Wikipedia articles are too long for PLM-based
xMRC models to handle, we use the annotated
non-tabular long answers as passages, which are
generally a few hundred words long.

For each language, we combine the data from
different xMRC for finetuning. Specifically, we
use MLQA for zh, de, es, hi; MKQA for zh, de, es,
fr, it, nl, pt, pt_BR, ru; XQuAD for de, es, hi, ro,

2451

http://downloads.dbpedia.org/wiki-archive/downloads-2016-10.html
http://downloads.dbpedia.org/wiki-archive/downloads-2016-10.html
https://github.com/hugochan/BAMnet


Language fa de ro it ru fr nl es hi_IN pt pt_BR

Size 334 363 344 363 171 363 346 346 262 171 66

Table 7: The sizes of QALD-M testing questions in 11 languages used in our paper.

Language zh de ro it ru fr nl es hi_IN pt pt_BR

Size 5,641 8,904 1,190 2,685 3,875 2,685 2,685 9,628 6,615 2,685 2,685

Table 8: The number of questions in the combined xMRC datasets used in our paper.

ru. The statistics of the combined xMRC data are
shown in Table 8.

B Implementation Details

B.1 KB-to-Text
We use JointGT (Chen et al., 2021) based on BART-
base for KB-to-text generation. It is finetuned on
WebNLG with the same hyperparameters in the
original paper. In sentence filtering, we use the
paraphrase-multilingual-mpnet-base-v2 model in
SentenceTransformers for cross-lingual semantic
similarity calculation.

B.2 xMRC
Our implementation of xMRC models is based on
the Transformers8. For the finetuning on SQuAD,
we set the batch size to 12, the learning rate to 3e-5,
the number of training epochs to 2, the maximum
input length to 384, and the document stride to
128. For the finetuning on xMRC datasets and
the data converted from xKBQA, we use the same
hyperparameters as the finetuning on SQuAD. The
results are from single runs. We use an NVIDIA
A40 GPU for experiments. An epoch on the data
converted from xKBQA takes about 9 minutes.

C Licenses of Scientific Artifacts

The licenses for each dataset used are as follows:
CC BY-SA 4.0 for SQuAD, Apache-2.0 License
for MKQA, CC BY-SA 4.0 for XQuAD, CC-BY-
SA 3.0 for MLQA, CC-BY 4.0 for WebQSP, GPL-
3.0 License for LC-QuAD, and MIT License for
QALD. The licenses for each model used are as fol-
lows: Apache-2.0 License for EmbedKGQA, BSD-
2-Clause License for GraftNet, and Apache-2.0
License for Transformers. No license is provided
by other models.

8https://github.com/huggingface/transformers
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Abstract

Visual question answering (VQA) is one of the
crucial vision-and-language tasks. Yet, existing
VQA research has mostly focused on the En-
glish language, due to a lack of suitable evalua-
tion resources. Previous work on cross-lingual
VQA has reported poor zero-shot transfer per-
formance of current multilingual multimodal
Transformers with large gaps to monolingual
performance, without any deeper analysis. In
this work, we delve deeper into the different
aspects of cross-lingual VQA, aiming to un-
derstand the impact of 1) modeling methods
and choices, including architecture, inductive
bias, fine-tuning; 2) learning biases: including
question types and modality biases in cross-
lingual setups. The key results of our analysis
are: 1) We show that simple modifications to
the standard training setup can substantially re-
duce the transfer gap to monolingual English
performance, yielding +10 accuracy points over
existing methods. 2) We analyze cross-lingual
VQA across different question types of vary-
ing complexity for different multilingual mul-
timodal Transformers, and identify question
types that are the most difficult to improve on.
3) We provide an analysis of modality biases
present in training data and models, revealing
why zero-shot performance gaps remain for
certain question types and languages.

1 Introduction

The lack of multilingual resources has hindered
the development and evaluation of Visual Ques-
tion Answering (VQA) methods beyond the En-
glish language until recently. A rise in inter-
est in creating multilingual Vision-and-Language
(V&L) resources has inspired more research in
this area (Srinivasan et al., 2021; Su et al., 2021;
Liu et al., 2021a; Pfeiffer et al., 2022; Wang et al.,
2022; Bugliarello et al., 2022, inter alia). Large
Transformer-based models pretrained on images
and text in multiple different languages have been
proven as a viable vehicle for the development of

multilingual V&L task architectures through trans-
fer learning, but such models are still few and far
between (M3P, UC2; Ni et al., 2021; Zhou et al.,
2021). Large decreases in task performance be-
tween monolingual and (zero-shot) cross-lingual
transfer setups have been measured and reported,
among other multilingual V&L tasks, in VQA
(Pfeiffer et al., 2022). Yet, the reasons for such
low results in this pivotal V&L task have not been
investigated in depth.

In this work, we aim to shed new light on
the cross-lingual performance gap of cross-lingual
VQA models from multiple angles. To the best of
our knowledge, we are the first to provide a com-
prehensive analysis of multilingual VQA, with a
focus on cross-lingual transfer.

We first assess and discuss the impact of model-
ing methods and choices on the final cross-lingual
VQA performance, aiming to mitigate the present
performance gap. This includes experimenting
with diverse prediction head architectures, incor-
porating inductive bias by extending input signals,
as well as more sophisticated fine-tuning strate-
gies. We analyze cross-lingual VQA across differ-
ent question types of varying complexity for differ-
ent multilingual multimodal Transformers, and in
zero-shot and few-shot scenarios.

Next, we focus on the learning biases, where
we investigate whether current multilingual multi-
modal models suffer from the so-called unimodal
bias: that is, we probe if the models truly reason
over both images and questions to solve the VQA
task, or if they take unimodal ‘shortcuts’ instead,
exploiting spurious correlations and artifacts of
data creation. Our analysis allows us to identify the
most difficult question types and reveals a short-
coming of the current evaluation scheme.

We find that standard approaches from text-only
cross-lingual transfer scenarios (Pires et al., 2019;
Hu et al., 2020) do not leverage the full multilin-
gual capabilities of the pretrained models; we mea-
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sure the considerably worse performance of ‘stan-
dard’ fine-tuning compared to a simple modified
fine-tuning regime. Interestingly, we report a dis-
crepancy between monolingual and cross-lingual
performance in the modified fine-tuning regime:
while they do not have any substantial impact on
the model performance in the source language (En-
glish), they considerably improve cross-lingual
VQA capabilities, achieving gains of more than
10 absolute accuracy points over the baselines.

Code is available at github.com/UKPLab/
eacl2023-xlingvqa.

2 Preliminaries

The VQA task is typically framed as a classifica-
tion problem with a large number of classes. For
instance, in the VQA task on the standard English
GQA dataset (Hudson and Manning, 2019), given
a pair of an image and a question, a model needs
to predict a correct answer from 1,853 possible
classes. GQA consists of diverse structural and
semantic patterns, in which the questions are vi-
sually grounded in the image. In multilingual and
cross-lingual VQA, the goal is to make similar pre-
dictions, but the questions can be posed in different
target languages (Pfeiffer et al., 2022): e.g., the
VQA task on the multilingual xGQA dataset (Pfeif-
fer et al., 2022) relies on the same set of 1,853
classes as English GQA.

We base all our analyses and experiments on the
xGQA dataset, which is, due to its size and lan-
guage coverage, arguably the most comprehensive
evaluation resource for cross-lingual VQA to date.
It has also been included in the multimodal multi-
lingual evaluation benchmark IGLUE (Bugliarello
et al., 2022). xGQA is the multilingual extension
of the English GQA dataset (Hudson and Manning,
2019) to 7 typologically diverse languages.

In this work, we use and empirically compare
two state-of-the-art pretrained multimodal multi-
lingual Transformer architectures: M3P (Ni et al.,
2021) and UC2 (Zhou et al., 2021).1 The standard
cross-lingual zero-shot transfer setup for VQA in-
volves fine-tuning all the weights of the pretrained
model on the downstream task data in the source
language only. In the few-shot setup, after the
source-language fine-tuning, the model is addition-
ally optimized on a handful of task-annotated ex-
amples in the target language (Pfeiffer et al., 2022).

1For technical details of the two models, we refer the reader
to their respective papers.

3 Modeling Methods

Motivation. Recent work on VQA in cross-lingual
settings (Pfeiffer et al., 2022; Bugliarello et al.,
2022) benchmarked standard multimodal architec-
tures in zero-shot and few-shot transfer scenarios
on the xGQA dataset, without aiming to provide a
deeper understanding of the particulars of the cross-
lingual VQA task. At the same time, they report
large gaps of cross-lingual transfer performance
when compared to monolingual English perfor-
mance, suggesting that there is ample room for im-
provement. In this work, we aim to leverage novel
insights into different aspects of the cross-lingual
VQA task (e.g., analyses over different question
types or classification architectures) to guide im-
proved cross-lingual VQA methods. In particular,
we assess the impact of three orthogonal directions:
1) classification architectures (§3.1); 2) (richer) in-
put signals (§3.2); 3) fine-tuning strategies (§3.3).

3.1 Classification Architecture Variants

The original work on xGQA (Pfeiffer et al., 2022)
evaluated only a simple ‘shallow’ linear classifica-
tion head, termed Linear here: the output [CLS]
token of the pretrained Transformer-based model
(which has cross-attended over all text and image
features) is simply passed into a linear classifi-
cation head. However, we hypothesize that this
choice might have a substantial impact on transfer
performance. Therefore, in the so-called Deep vari-
ant, instead of a linear classification head, we add
a 2-layer transformation network (ftrans) with the
GELU activation function (Hendrycks and Gimpel,
2016), dropout and a layer-normalization layer, be-
fore feeding the representations into a linear layer
for classification. The first layer of ftrans uses an
orthogonal initializer (Saxe et al., 2014). Unless
noted otherwise, all of our following experiments
are based on this ‘deeper’ architecture; we illustrate
the architecture in Figure 3 in Appendix C.

3.2 Incorporating Inductive Bias into the
Input Signal

A large number of output classes (see §2) po-
tentially amplifies the difficulty of zero-shot and
few-shot cross-lingual transfer due to the need of
aligning contextual representations in multiple lan-
guages for multi-class classifications. Standard
VQA datasets such as GQA and xGQA contain
questions of five different structural types (Verify,
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Figure 1: Self-Bootstrapping (§3.3). Top: Fine-tuning
with frozen text embeddings (Stage 1). Bottom: Fine-
tuning with text embeddings and classification head
frozen. Other parameters are reset to their pretrained
values or randomly initialized (Stage 2).

Logical, Query, Choose, Compare).2 Pfeiffer et al.
(2022) have demonstrated a considerable perfor-
mance variation over different question types, e.g.,
there is a large cross-lingual performance drop es-
pecially for Choose-type questions.

To help alleviate this issue, we propose to
feed the model with designated question-type to-
kens (Prager, 2006; Murdock et al., 2012) which
appear in GQA and xGQA. The idea is to influence
the label distribution for the VQA classification
task by conditioning on a question-type token.

More concretely, we prepend a question-type
token QType in English to the text input. We use
structural question types as the question-type to-
kens; the text input then takes the following format:
‘[QType] : [Question]’.

As the xGQA data contains questions with bi-
nary answers (i.e. Yes/No questions). We anticipate
that for a large fixed number of output classes, these
questions should benefit the most from using the
question-type tokens. The models which rely on
this question-type conditioning are denoted with
the superscript Q, e.g., M3PQ, see also later §3.4.

Recent work (Schick and Schütze, 2021; Li and
Liang, 2021; Liu et al., 2021b; Shin et al., 2020)
suggests that there exist more sophisticated pre-
fixes/prompts and prompt-tuning methods. As our
focus is not on conducting a large-scale analysis
over different prompt-based conditioning, we leave
this topic for future work.

2See Appendix B for example questions for each of the
five question types.

3.3 Fine-Tuning Strategy

Misalignment of multilingual text embeddings (Sø-
gaard et al., 2018; Dubossarsky et al., 2020) has
been indicated by Pfeiffer et al. (2022) as one of
the principal causes for reduced zero-shot perfor-
mance in the cross-lingual VQA tasks. Therefore,
we propose two fine-tuning strategies, tailored ex-
actly towards mitigating such undesired shifts in
the multilingual embedding space.

Freezing Text Embeddings. In the first variant,
we freeze text embeddings during fine-tuning and
only optimize the Transformer weights and the clas-
sification head. This should prevent misalignment
of the text embedding space during fine-tuning, as
only the alignments between image and text embed-
dings change, but not text-to-text alignments. This
strategy, labeled +FT, is referred to as contrastive
tuning by Zhai et al. (2022).

Self-Bootstrapping. Zero-shot cross-lingual trans-
fer via standard fine-tuning is known to be sensi-
tive to parameter initialization (Bugliarello et al.,
2022). Previous work has shown that fine-tuning a
classification head first, then fine-tuning the model
can effectively improve the generalization of the
model (Kumar et al., 2022; Yang et al., 2022). Mo-
tivated by these insights from prior research, we
first train the network to learn the classification
head, then reset and fine-tune the remaining model
parameters. This leads to a two-stage fine-tuning
process, termed self-bootstrapping (labeled +SB),
illustrated in Figure 1 and outlined here:
Stage One: We fine-tune all parameters (with text
embeddings frozen) on the task data.
Stage Two: We 1) freeze the classification head (ex-
cluding the bias parameters) and text embeddings,
2) reset the remaining parameters in the multimodal
multilingual model to pretrained weights, and 3)
re-initialize the ftrans network (see §3.1). We then
fine-tune the transformer weights on the task data.3

In order to make fair comparisons between +FT
fine-tuning and self-bootstrapping, we define two
extra +FT variants that match the fine-tuning bud-
get of self-bootstrapping. In +FTshort we fine-tune
until the budget of self-bootstrapping’s Stage 1 is
matched. In +FTlong, we fine-tune until the total

3In our preliminary experiments, we found that self-
bootstrapping-based fine-tuning still achieves better perfor-
mance even if we perform Stage 1 with tunable text embed-
dings (i.e., standard fine-tuning). Freezing text embeddings in
Stage 1 is an empirical decision, freezing them in Stage 2 is
essential for self-bootstrapping to work.
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training budget of self-bootstrapping is matched.

3.4 Model Configurations and Notation

Different choices across the orthogonal axes of clas-
sification architecture, input, and fine-tuning strat-
egy give rise to a wide spectrum of model configu-
rations. In particular, we can independently choose
1) between the Linear or Deep classification archi-
tecture; 2) whether to include the information on
the question type at input (Q) or not; 3) whether to
apply standard fine-tuning from prior work (Pfeif-
fer et al., 2022), or rely on +FT or +SB fine-tuning
strategies. On top of this, we can also vary 4) the
underlying model (M3P or UC2), and 5) the trans-
fer scenario (zero-shot versus few-shot). For clarity
of presentation, unless noted otherwise, we always
assume zero-shot scenarios and Deep classification
architecture. Moreover, different variants are also
labeled in a systematic manner using abbreviations
introduced in §3.1-§3.3: e.g., M3P+SB means that
we apply self-bootstrapping on the underlying M3P
model (with Deep architecture assumed). In an-
other example, UC2Q+FTlong means that we apply
the long variant of +FT fine-tuning (see §3.3) with
UC2 as the underlying model, and we condition
the model on the information about question types.

4 Analysis Methods

The VQA task is inherently multimodal—a model
is required to reason over both images and ques-
tions in textual form to solve the task. However,
as with some unimodal text-only tasks (Gururan-
gan et al., 2018; Poliak et al., 2018) VQA models
might also be prone to ‘taking shortcuts’, that is, ex-
ploiting spurious correlations and artifacts of data
creation. In other words, the VQA model could cir-
cumvent the multimodal aspect and only focus on
a single modality to solve the task (Agrawal et al.,
2016, 2018). Therefore, to better understand the
multimodal reasoning abilities of VQA models in
cross-lingual transfer, we propose several diagnos-
tic approaches and methods that ablate the input
features of the models, inspired by the diagnostic
methods of Frank et al. (2021) and Shrestha et al.
(2020) in monolingual setups. They should provide
us with deeper insights into the inner workings of
cross-lingual VQA models.

4.1 Unimodal Evaluation

The first set of analyses involves a combination of
standard multimodal (MM) training with unimodal

inference/evaluation. During training, we pass both
visual features and text tokens into the model. How-
ever, at inference, we provide the model with fea-
tures of only one modality (Visual modality: V or
Text: T). This naturally gives rise to the following
two experimental setups:
MM-V: When evaluating on xGQA’s test set, we
pass only a single ‘?’ as textual input to the model,
while the standard visual features are used.
MM-T: At inference, we zero out all visual fea-
tures (e.g., object features, spatial features), only
providing the model with the total number of ob-
jects detected; the unchanged questions in the tex-
tual form are provided to the model.

4.2 Unimodal Training and Evaluation
Next, we probe purely unimodal models trained
on a single modality (V or T): during training,
the model is provided only with visual features
or text tokens; at inference, we again only provide
the model with unimodal features from the same
modality. This creates three experimental setups:
V-V: We pass only ‘?’ as a (placeholder) textual in-
put to the model, while the standard visual features
(from the full multimodal model) are used.
T-T: All visual features are zeroed out; we only pro-
vide the number of objects detected; the unchanged
questions in the textual form are provided.
TG-TG: We randomly sample object features from
a Gaussian distribution with a mean and a standard
deviation that match the actual object feature dis-
tribution for that image. Spatial features and the
number of objects detected are kept as in the full
MM model. The standard unchanged questions in
the textual form are provided to the model.

5 Experimental Setup

Pretrained Models and Data. As introduced in
§2, we 1) rely on two standard state-of-the-art mul-
timodal multilingual transformers (M3P, UC2; Ni
et al., 2021; Zhou et al., 2021) as the underlying
pretrained models, and 2) conduct all evaluations
on the standard monolingual English GQA dataset,
and its multilingual extension: xGQA.

The GQA dataset consists of two training sets:
full and balanced. The full dataset contains 113K
images and 22M questions, whereas the balanced
dataset consists of 1.7M data samples. The dataset
also contains a balanced test-dev set with 12,578
questions and 398 images for evaluation. In xGQA,
the questions are manually translated from the
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Method En De Zh Ko Id Bn Pt Ru Avg

G1 M3P ∗ (Linear) 51.88±0.7 27.45±5.8 16.33±8.3 13.70±5.4 25.25±11.4 10.59±3.4 21.10±3.4 20.95±3.3 19.34
M3P ∗ 51.66±0.6 35.33±5.4 27.80±10.9 25.55±11.4 30.54±9.8 17.94±8.6 30.61±7.2 29.74±6.6 28.22

G2 M3PQ 50.90±0.5 37.95±1.5 35.06±2.6 32.31±3.4 36.56±2.0 27.69±1.8 36.64±2.4 37.30±4.6 34.79

G3 M3P + SB 47.26±1.0 35.71±6.1 29.70±8.2 30.33±8.3 28.16±2.7 20.70±3.9 34.65±6.5 34.63±6.9 30.56

G4 M3PQ + FTshort 49.48±0.3 38.68±2.6 34.94±2.2 34.17±2.6 37.18±2.4 30.00±2.2 37.35±1.9 37.57±2.4 35.56
M3PQ + FTlong 51.00±0.9 38.42±2.1 35.05±2.1 33.38±2.5 36.24±2.3 27.77±1.7 36.78±2.3 37.42±2.0 35.01
M3PQ + SB 46.70±0.7 39.52±1.3 36.15±0.9 35.67±1.1 36.73±1.6 29.75±1.4 37.59±0.8 37.93±0.9 36.19

G1 UC2 ∗ (Linear) 57.83±0.3 40.57±1.7 35.54±3.4 16.95±6.1 34.18±0.8 8.53±1.9 24.90±3.7 24.05±4.6 26.39
UC2 ∗ 58.31±0.2 41.33±1.6 34.77±2.2 23.87±1.5 34.79±1.3 11.82±1.9 29.30±4.5 29.41±3.7 29.33

G2 UC2Q 58.35±0.4 45.13±0.8 42.85±0.9 31.33±1.0 35.64±0.9 24.86±0.6 37.19±0.6 38.61±0.9 36.52

G3 UC2 + SB 58.52±0.4 48.51±1.3 43.97±0.3 35.08±2.0 37.33±3.2 19.09±4.5 35.29±2.9 35.99±3.5 36.46

G4 UC2Q + FTshort 57.83±0.5 47.17±1.6 45.59±0.9 34.19±0.7 37.04±1.1 24.94±0.5 38.32±1.2 39.96±1.4 38.17
UC2Q + FTlong 58.15±0.6 44.27±0.5 42.49±0.4 29.75±0.3 36.81±0.4 24.48±0.2 35.39±0.4 37.32±0.4 35.79
UC2Q + SB 58.57±0.2 49.51±1.1 46.52±0.9 36.48±1.3 38.92±1.3 26.23±1.5 39.76±0.6 41.72±0.3 39.87

Table 1: Zero-shot transfer results on xGQA. Avg. refers to the average accuracy across languages excluding
English. Group G1: baselines. ∗: our runs of baselines trained on balanced GQA. Group G2: results using a
question-type token. Group G3: results using self-bootstrapping (+SB). Group G4: combining different fine-tuning
strategy with the use of question-type tokens. Best results in each column and per each pretrained model across
Groups G1-G4 are shown in bold. Results are averaged across four random seeds.

GQA test-dev set into 7 different languages: Ben-
gali, Chinese (simplified), German, Indonesian, Ko-
rean, Portuguese, and Russian. xGQA provides
a zero-shot evaluation set and a different train-
ing/evaluation set for the few-shot setting. Please
see the original paper for details.

Training Details and Hyperparameters. Follow-
ing the recommendations from Bugliarello et al.
(2022), we predominantly run training on the more
lightweight balanced subset of GQA.4 We also de-
fine a total training budget of 6 epochs (less than
24 hours of training). For the self-bootstrapping
procedure, this means the total training time (Stage
1 + Stage 2) is equal to 6 epochs. See Appendix A
for further details.

6 Results and Discussion

In §6.1, we discuss the results of the different mod-
eling approaches across the three dimensions (see

4Another established yet less efficient training procedure is
to train on the full GQA dataset first, then further train on the
balanced dataset (Li et al., 2020). This procedure can produce
good results on the English evaluation dataset at the cost of
a substantial increase in computation demands (∼4 days on
one NVIDIA V100 for one model). Furthermore, our initial
experiments have indicated that training with the balanced set
performs similarly to the previously reported baselines in the
xGQA paper while using substantially less computing. We
stress that we also further run experiments under the more
demanding training regime (Li et al., 2020) with the best-
performing model configuration from our experiments. For
more details, we refer the reader to §7.

§3): classification architectures, input signals and
fine-tuning strategies. A finer-grained analysis con-
cerning different structural question types is pro-
vided in §6.1. Finally, in §6.2 we delve deeper into
the VQA models’ susceptibility towards exploiting
unimodal biases and artifacts of the VQA datasets,
relying on model variants discussed in §4.

6.1 Impact of Modeling Methods

A summary of the results with a wide spectrum
of possible model configurations (see §3.4) is pro-
vided in Table 1, with accuracy as the main metric.

First, an interesting trend emerges: different
model configurations have no significant effect on
performance in the source language (English), espe-
cially so for the better-performing pretrained model
UC2. However, variations in different modeling
choices from §3 do show considerable impact on
cross-lingual transfer performance: we report gains
by more than 16 and 13 absolute accuracy points
for M3P and UC2, respectively.

Classification Architectures. Surprisingly, simply
adding additional non-linear layers to the predic-
tion head has a considerable impact on the cross-
lingual transfer performance of the baseline models
(especially for the M3P model) while performance
in the source language stays nearly the same (Ta-
ble 1, Group G1). Put simply, a deeper classifi-
cation architecture seems to benefit cross-lingual
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transfer performance, and the extent of its impact
cannot be captured by monolingual English-only
evaluation. Further, to isolate the source of these
improvements, we conducted additional experi-
ments by removing the layer normalization compo-
nent from the deeper architecture. The results are
provided in Table 8 in the Appendix. Another key
observation is that the impact of depth is model-
dependent with stronger configurations. While it
yields large gains when we start from the baseline
transfer models (G1), the gains from the classi-
fication architecture are less pronounced or even
non-existent, e.g., for the best-performing UC2Q

+ SB model variant (see Group G4): 39.87 (Deep)
versus 40.89 (Linear). The gains from classification
architecture remained for the M3P model variant:
36.19 (Deep) versus 18.24 (Linear).

Input Signal. The large number of output classes
of GQA potentially results in a noisy distribution
over the predicted labels when sentences in a dif-
ferent language are passed into the model. We find
that including the question-type token (Q) improves
the average cross-lingual zero-shot transfer accu-
racy by more than 10% relatively for both M3PQ

and UC2Q (Table 1, Group G2). This modeling
decision again has an inconsequential impact on
the source language but suggests that the question-
type token can partially mitigate the poor perfor-
mance of cross-lingual transfer. A comparison of
G3 versus G4 models in Table 1 demonstrates that
including the question type at input yields gains of
almost 6 accuracy points with M3P, and more than
3 points with UC2, with especially large gains for
Bengali as the lowest-performing language.

Fine-tuning Strategy. Freezing the embeddings
to mitigate a shift in the multilingual embedding
space results in positive gains for cross-lingual sce-
narios (Table 1, Group G4). The self-bootstrapping
strategy (+SB with and without Q) achieves fur-
ther gains over both +FT embedding-freezing ex-
perimental setups. At the same time, it also
yields much lower variance across languages (with
Q). This validates that resetting parameters with
self-bootstrapping positively impacts model perfor-
mance, and supports our hypothesis that first fixing
the classifier weights to good values leads to better
performance and lower variance. Note that the aver-
age +SB results of UC2 are statistically significant
against UC2Q and UC2Q +FTshort (p < 0.05).

Performance across Question Types. Finer-

grained results per individual question type are
summarized in Figure 2, where we compare the
baseline models with the best-performing variant,
which utilizes the question-type at the input and
the self-bootstrapping strategy. In sum, we ob-
serve gains across all structural question-types for
such Q+SB model configurations, both for M3P
and UC2. Performance on Query and Choose ques-
tions meets substantial gains, suggesting that im-
proving the alignment between multilingual text
embeddings has a positive effect on performance,
especially for non-binary, free-form question-types.
Complete results are available in Appendix B).

6.2 Learning Biases: Multi-Modal versus
Unimodal VQA?

We use the analysis methods from §4 to determine
whether the underlying models have learned to rely
on a single modality to make predictions, either due
to spurious correlations in the data or the model’s
inability to effectively combine multi-modal fea-
tures. The main results are provided in Table 2.

Unimodal Evaluation. The scores of MM-T/MM-
V ablations reveal the sensitivity to missing fea-
tures in each input modality at test time. We ob-
serve a drop in accuracy of more than 50% across
all question types in the MM-T/MM-V experiments
compared to their counterparts that assume ‘full-
feature’ multi-modal input at inference. Moreover,
Verify, Logical and Compare questions seem more
dependent on text features. The results confirm that
the trained model needs both modalities to achieve
good cross-lingual performance, although not at
equal proportions. In other words, high zero-shot
transfer performance observed in our experiments
are obtained by leveraging both modalities in syn-
ergy, and not by ‘taking unimodal shortcuts’ (§4).

Unimodal Training and Evaluation. V-V/T-T/TG-
TG experiments reveal the worst-case exploitation
of the data biases in modalities by the models. The
results suggest that a majority of the final perfor-
mance can be attained with text features in fine-
tuned models for the Logical, Verify, and Compare
question types. Therefore, the results indicate that
these question types contain modality biases that
can be exploited by unimodal VQA architectures.
The exploitable data biases could also explain the
observations from prior experiments. We suspect
this could also explain the asymmetrical attention
over modalities, observed by Frank et al. (2021) in
monolingual multi-modal models.
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Figure 2: Zero-shot cross-lingual transfer performance across individual question types in GQA and xGQA.

Biases across Question Types.. Unimodally
trained models can only attain ∼20% (M3P) and
∼26% (UC2) accuracy at best for the Query ques-
tion type, with similar trends observed for Choose.
Exposing the models to increasingly more visual
features (from T-T over TG-TG to the full multi-
model) yields significant performance gains. It thus
indicates that Query and Choose questions con-
tain fewer exploitable data biases, and additional
image-text grounding could help improve predic-
tions. Previous work in monolingual settings (Ker-
vadec et al., 2021) concludes that Compare and
Query questions should be focused on for future
improvements. Here, in the cross-lingual setting,
we found Query and Choose questions as the most
difficult questions with the largest gaps in monolin-
gual English performance.

Table 2 also reveals that more sophisticated fine-
tuning strategies such as self-bootstrapping, which
prevent multilingual text embedding shifts, are an
effective way to improve performance on these two
(most challenging) question types.

In summary, it is crucial to conduct such finer-
grained analyses across different question types
in the multilingual VQA tasks, and not treat them
equally with only a global accuracy metric. In
particular, our results render Query and Choose
question types as by far the most challenging ques-
tion types for cross-lingual transfer and the types
that do not suffer from exploitable data biases. Fu-
ture research in multilingual VQA should put more

M3P V-V T-T TG-TG M3PQ M3PQ+SB MM-V MM-T

Verify 45.19 53.98 54.88 58.35 55.98 0.1 18.59
Logical 43.18 51.66 53.06 53.89 53.65 0.0 19.87
Compare 27.76 46.22 39.64 45.82 47.14 0.1 17.85
Query 2.63 4.39 11.42 21.86 24.50 6.81 4.46
Choose 1.21 8.52 22.26 29.43 33.57 2.08 12.22

UC2 V-V T-T TG-TG UC2Q UC2Q+SB MM-V MM-T

Verify 44.60 51.87 57.00 59.94 61.70 4.21 24.91
Logical 44.26 50.78 52.57 54.87 56.49 6.27 21.12
Compare 33.45 40.55 46.91 49.15 51.73 2.85 21.08
Query 3.39 6.23 12.11 23.94 27.88 7.30 0.02
Choose 1.39 17.24 23.76 29.66 36.14 2.27 0.14

Table 2: Zero-shot transfer results of M3PQ/UC2Q

trained and tested with visual features only (V-V), text
features only (T-T), text features with partial visual
features (TG-TG), as well as of M3PQ+SB/UC2Q+SB
trained using all features, but exposed only to visual
features (MM-V) or text features (MM-T) at inference
(§4). The scores are averaged over all target languages
in xGQA, excluding English.

emphasis on such questions, and approaches that
prevent the exploitation of unimodal data biases.
Future research should also look beyond the ques-
tion types currently covered by xGQA, and intro-
duce even more challenging types.

7 Additional Results

Training with Full English GQA. To validate the
effectiveness of our approach in setups where more
data in the source language is available, we addi-
tionally run experiments in another VQA setup: we
train the best-performing method UC2Q+SB for 5
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Method 0 1 5 48

M3P 35.58 37.62 39.29 42.28
M3P + SB 33.73 35.89 39.27 42.46
M3PQ 33.81 35.40 37.80 41.87
M3PQ + SB 37.14 37.50 38.16 40.00

UC2 30.15 36.09 38.67 44.37
UC2 + SB 38.09 40.51 42.14 46.68
UC2Q 37.28 39.24 40.88 45.11
UC2Q + SB 39.83 42.35 43.68 46.62

Table 3: Averaged few-shot (0/1/5/48-shot) accuracy
scores on xGQA (excl. English) for selected models.

epochs on the unbalanced English GQA dataset,
followed by 2 epochs on the balanced dataset. De-
spite the fact that this variant leverages more source-
language training data and consumes considerably
more compute, we do not observe any gain on
monolingual English performance, and observe
only a small gain in the cross-lingual zero-shot
setup: the accuracy score, averaged across all the
target languages, increases from 39.87 to 40.51.5

Few-shot Experiments. Besides the zero-shot
transfer scenario—which is the primary focus of
this work—we also evaluate whether similar find-
ings extend to few-shot scenarios, where a handful
of annotated examples in the target language is as-
sumed. Following the standard setup of Lauscher
et al. (2020) we start from the weights of the best-
performing model, already fine-tuned on English
VQA data. We then further fine-tune it on the few
examples in the target language. In particular, we
conduct few-shot experiments with 1, 5, and 48 im-
ages.6 Following Pfeiffer et al. (2022) we fine-tune
for 10 epochs, with a learning rate of 5e-5.

The results are summarized in Table 3 (see Ta-
ble 10 in Appendix F for full results), and indicate
two key findings. First, we corroborate findings
from prior work, where it was shown that fine-
tuning on an increasing number of shots/examples
in the target language generally improves model
performance. Second, although baseline models
are able to recover more performance from zero-
shot to few-shot setups, our best-performing con-
figuration with UC2 still significantly outperforms
the baseline. We attribute the on-par performance
across M3P variants to M3P’s sensitivity to ini-
tialization and high variance. These results in-
dicate that few-shot fine-tuning is an additional

5Table 9 in Appendix E provides per-language accuracy.
6We choose 1 and 5 shots because these are typical in

few-shot training setups (Zhao et al., 2021). 48 shots are the
maximum available training data for the few-shot evaluation.

cost-efficient approach, orthogonal to our modeling
enhancements from §3, to further improve VQA
model performance in the target language.

8 Related Work

Transformer-based models trained on multimodal
data (Tan and Bansal, 2019; Li et al., 2020; Cho
et al., 2021; Shen et al., 2022; Kamath et al., 2021,
inter alia) have demonstrated impressive results
on English-only VQA tasks. However, as train-
ing and evaluation data has previously only been
available in high resource languages (Elliott et al.,
2016, 2017; Barrault et al., 2018; Gao et al., 2015),
progress in multilingual vision-and-language learn-
ing has not kept pace.

More comprehensive multilingual multimodal
benchmarks have been developed only recently
(Srinivasan et al., 2021; Su et al., 2021; Liu et al.,
2021a; Pfeiffer et al., 2022; Wang et al., 2022;
Bugliarello et al., 2022, inter alia) making it possi-
ble to evaluate multimodal models which have ei-
ther been pretrained on multilingual data (Ni et al.,
2021; Zhou et al., 2021) or extended to unseen
languages (Liu et al., 2021a; Pfeiffer et al., 2022).

Our work complements this recent line of work
by delving deeper into cross-lingual visual ques-
tion answering, again highlighting the inherent dif-
ficulty of multilingual multimodal learning.

9 Conclusion

In this work, we provide an extensive analysis
of the issues present in VQA-related multilingual
vision-and-language learning, aiming to inspire
new solutions that can improve cross-lingual VQA
performance. To this end, we studied simple yet ef-
fective methods that increase previously low trans-
fer performance and thus substantially reduce the
gap to monolingual English performance. This has
been achieved through more sophisticated classi-
fication architectures, fine-tuning strategies, and
introducing inductive biases to input via question-
type conditioning. We also conducted further anal-
yses and empirical comparisons, including detec-
tion of unimodal biases in training and evaluation
data, fine-grained analyses across different ques-
tion types, and comparisons across different multi-
lingual Transformer models and transfer scenarios.
We hope that this work will spark more interest and
inspire future research on cross-lingual VQA tasks
in particular, as well as on multilingual multimodal
learning in general.
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10 Limitations

Our study focuses on the cross-lingual VQA task
relying on the xGQA dataset only. xGQA con-
tains seven typologically different languages and
many low-resource languages are not included. We
aim to extend this study to other low-resource lan-
guages in the future, and to other datasets that were
made publicly available after the completion of this
study (Changpinyo et al., 2022).

In one part of our study, we assume gold
question-type information is available during train-
ing and testing. This assumption is made for analy-
sis purposes, in practice, one could train a classifier
for question-type classification first.

The proposed self-bootstrapping method re-
quires the ability to divide training into stages and
reset weights during training.

We have averaged our results over four runs.
From our experiments, we noticed that both of
the underlying multilingual multimodal Transform-
ers produced high variance results. We plan to
investigate the causes of the variance in detail as
part of future research. Currently, we relied on
one established few-shot learning paradigm, re-
cently Schmidt et al. (2022) shows that combin-
ing English and target-language data might yield
more robust transferring results, which we plan to
investigate into future.
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A Details of Training Setup and
Hyperparameters

The hyperparameters used to train M3P and UC2
models are summarized in Table 4. We conducted
all experiments with either an NVIDIA V100 or
A100 GPU. The numbers of training epochs across
different model configurations are summarized in
Table 5. Training time for the rest of our zero-shot
experiments ranges from 8 to 24 hours.

We searched over the following learning rates:
2e-5, 5e-5, and 1e-4.

We note that experiments which rely on Full
GQA data (−full) have a significantly different
training budget. This setup followed the previously
recommended training setup of Li et al. (2020).

We use pretrained, state-of-the-art Transformer-
based M3P and UC2 models (open-sourced), which
build on pre-extracted image features from pre-
trained object detectors. M3P was pretrained via
masked language modeling, cross-lingual masked
language modeling and cross-modal text-image re-
gion alignments objectives. UC2 was trained simi-
larly to M3P with an additional auxiliary task (i.e.
translation).

We extracted image features for M3P us-
ing the ResNet-101 backbone using the
vqa-maskrcnn-benchmark model (Massa
and Girshick, 2018) (100 bounding boxes), and
we extracted image features for UC2 using the
bottom-up-attention (Anderson et al., 2018) (100
bounding boxes). The feature extraction proce-
dures are different because the pretrained M3P
and UC2 use different features. For experiments,
we implemented everything in PyTorch, and we
utilized Hugging Face Transformers (Wolf et al.,
2020) and MMT-Retrieval (Geigle et al., 2022).

Name Value

learning rate (M3P) 0.00002
learning rate (UC2) 0.0001
train batch size 192
warmup steps 0
weight decay 0.05
max grad norm 1
dropout rate 0.5
max seq length 70
max img seq length 50
ftrans hidden dim 768
optimizer AdamW

Table 4: Hyperparameters.

Balanced Balanced
Exp. Stage 1 Stage 2 Total Ep. Time

M3PQ 6 - 6 <24hrs
M3PQ + FT short 4 - 4 <24hrs
M3PQ + FT long 6 - 6 <24hrs
M3PQ + SB 4 2 6 <24hrs

UC2Q 6 - 6 <24hrs
UC2Q + FT short 3 - 3 <24hrs
UC2Q + FT long 6 - 6 <24hrs
UC2Q + SB 3 3 6 <24hrs

Full Balanced
Exp. Stage 1 Stage 2 Total Ep. Time

−full 5 2 7 4 days

Table 5: Training epochs and times. Full and Bal-
anced indicate the GQA subset used for training. The
self-bootstrapping experiments are initialized from the
weights of short experiments.

Question Type Count

Verify 2,251
Logical 1,803
Compare 5,89
Query 6,804
Choose 1,129

Table 6: GQA test-dev set: distribution of questions
over question types.

B Structural Question Types in GQA and
xGQA

There are 5 different structural question-types in
GQA and, consequently, in xGQA. We used the
exact lowercase name of each question type as the
QType token in our experiments, namely: verify,
logical, compare, query, and choose. The text input
follows the format of: ‘[QType] : [Question]’
(see again §3.2). Some example questions for each
question type are as follows:

Verify: Yes/No questions. E.g. Do you see books
near the device that looks gray? Is the bus blue?

Logical: Questions that require logical inference.
E.g. Is there any motorcycle or ball in the scene?
Does the dirt look brown and fine?

Compare: Comparison questions between two or
more objects. E.g. Who seems to be younger, the
boy or the woman?

Query: Open questions. E.g. What color are the
pants? What is the animal that is standing on the
grass called?

Choose: Choose from two presented alternatives.
E.g. Is it red or blue? What size is the jacket, small
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Question Type M3P M3P + SB M3PQ M3PQ + SB

Verify 40.15 44.45 58.35 55.98
Logical 39.15 45.29 53.89 53.65
Compare 35.95 40.75 45.82 47.14
Query 24.57 21.42 21.86 24.50
Choose 30.63 29.07 29.43 33.57

Question Type UC2 UC2 + SB UC2Q UC2Q + SB

Verify 41.55 51.27 59.94 61.70
Logical 35.40 48.32 54.87 56.49
Compare 34.48 44.71 49.15 51.73
Query 23.18 27.68 23.94 27.88
Choose 29.51 36.62 29.66 36.14

Table 7: Average accuracy on different structural ques-
tion types from xGQA (excluding English). M3P and
UC2 are using Deep architecture.

Transformation

Linear

LayerNorm

Dropout

Linear

GELU

Linear

Multimodal Multilingual Model

Text Image

Head

Figure 3: The deep(er) classification architecture (see
§3.1). The first linear layer in the transformation uses
an orthogonal initializer.

or large?
Verify and Logical question types are binary

question types (Yes/No). The question type dis-
tribution in the test-dev set of GQA is given in
Table 6, while we provide average accuracy scores
overall target languages in xGQA (excluding En-
glish), with a representative set of models, in Ta-
ble 7.

C Classification Architecture with and
without Layer Normalization

The deeper variant of the classification architecture
from §3.1 is illustrated in Figure 3. The Multimodal
Multilingual Model block in Figure 3 denotes one
of the two pretrained multimodal multilingual mod-
els used throughout the (main) paper: UC2 and
M3P.

We further experimented with another variant
of the architecture, where we removed the layer
normalization (LayerNorm) layer. The results of
this variant are available in Table 8.

In a nutshell, LayerNorm has more impact on
M3P’s zero-shot transfer accuracy scores than on
UC2. However, the variance of UC2 results in-
creases with the removal of LayerNorm.

D Accuracy vs. Total Training Epochs

We conducted experiments with different total num-
bers of training epochs with M3P to understand the
effect of the self-bootstrapping fine-tuning strategy.
We experimented with the following three model
configurations across different setups:

1. M3PQ + FT: We train the M3PQ model with
text embeddings frozen for 4, 6 and 10 epochs.

2. M3PQ∗ + FT: We initialize the M3PQ model
with fine-tuned weights (including transfor-
mation, classification head) from 1 (i.e., the
variant above), and train for 4 epochs. We con-
tinue to fine-tune the model for 2 or 5 more
epochs after resetting the learning rate and the
optimizer.

3. M3PQ + SB: We train the M3PQ model with
self-bootstrapping and the classification head
weights from variant 1 above and do it for 4
epochs. We continue to fine-tune the model
for 2 or 5 epochs.

We also run similar variants with UC2 as the un-
derlying model with shorter training epochs. These
variants are UC2Q + FT / UC2Q∗ + FT / UC2Q +
SB where superscripts and acronyms remain the
same as the M3P variants. Results of these ex-
periments are provided in Figure 4a (M3P) and
Figure 4b (UC2).

We observe that the gains in cross-lingual trans-
fer with +FT variants diminish or even start de-
creasing with the increase of training time. Similar
results are observed when we reset the learning
rate, weight decay and optimizer after training for
4 epochs. We also find that self-bootstrapping train-
ing continually improves the results, even with less
additional total training epochs.

Moreover, the performance of self-bootstrapping
is considerably more stable (lower variance) across
random seeds, even though its classification heads
are initialized from the corresponding trained
weights from the M3PQ + FT experiments.

2466



Method En De Zh Ko Id Bn Pt Ru Avg
M3P (Linear) 51.88±0.7 27.45±5.8 16.33±8.3 13.70±5.4 25.25±11.4 10.59±3.4 21.10±3.4 20.95±3.3 19.34
M3P w/ LN 51.66±0.6 35.33±5.4 27.80±10.9 25.55±11.4 30.54±9.8 17.94±8.6 30.61±7.2 29.74±6.6 28.22
M3P w/o LN 50.89±1.0 32.92±5.6 22.14±8.0 20.33±9.1 25.44±6.5 16.88±8.0 29.40±7.8 29.31±7.9 25.20

UC2 (Linear) 57.83±0.3 40.57±1.7 35.54±3.4 16.95±6.1 34.18±0.8 8.53±1.9 24.90±3.7 24.05±4.6 26.39
UC2 w/ LN 58.31±0.2 41.33±1.6 34.77±2.2 23.87±1.5 34.79±1.3 11.82±1.9 29.30±4.5 29.41±3.7 29.33
UC2 w/o LN 58.03±0.5 42.74±1.4 37.84±3.0 24.91±5.2 33.56±1.6 13.21±4.5 29.99±4.5 29.47±6.3 30.25

Table 8: Zero-shot cross-lingual transfer results with and without LayerNorm.

Method En De Zh Ko Id Bn Pt Ru Avg

UC2Q + SB - full 57.88±0.2 50.52±0.5 47.63±0.2 37.56±1.7 40.37±1.6 25.25±1.4 40.56±0.2 41.67±0.8 40.51

Table 9: Zero-shot results when the models are trained with Full GQA data.
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(a) M3P
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Figure 4: Average accuracy versus total training epochs.

We also observe an increase in zero-shot transfer
accuracy scores with more epochs of training in
Stage 2 of self-bootstrapping. However, this re-
sults in much longer training times, which may not
be realistic for academic and even some industry
settings.

E Results with Full GQA Data

It is worth noting that the experiments trained with
full GQA data (−full) have a significantly differ-

ent (and larger) training budget (see §7). We follow
the previously recommended total training budget
of Li et al. (2020) and combine it with our self-
bootstrapping fine-tuning strategy. Table 9 shows
the detailed results.

F Few-shot Experiments: Full Results

Table 10 shows the detailed results of our few-shot
experiments, where the summary table is provided
in the main paper: Table 3 in §7.

2467



Lang Method 0 1 5 48
de M3P 39.45 40.76 41.88 44.20

M3P + SB 39.25 39.72 40.98 43.08
M3PQ 36.84 38.28 40.11 43.18
M3PQ + SB 40.99 40.74 40.39 41.71

zh M3P 35.76 37.65 40.28 42.18
M3P + SB 32.96 35.55 38.24 41.15
M3PQ 33.74 35.97 37.95 41.28
M3PQ + SB 36.95 36.88 37.60 39.38

ko M3P 34.53 36.58 36.79 39.61
M3P + SB 36.04 36.92 37.31 39.41
M3PQ 31.96 32.77 35.39 40.45
M3PQ + SB 35.78 35.38 37.46 38.99

id M3P 38.38 39.39 40.63 42.57
M3P + SB 29.17 36.94 39.49 41.16
M3PQ 34.69 35.37 38.50 42.12
M3PQ + SB 37.75 36.25 38.57 39.92

bn M3P 24.27 30.53 34.72 40.73
M3P + SB 22.71 25.94 33.96 40.46
M3PQ 27.67 29.95 33.15 40.36
M3PQ + SB 30.50 31.77 34.08 39.24

pt M3P 38.19 38.35 40.54 44.27
M3P + SB 38.17 37.98 39.35 43.01
M3PQ 36.87 37.93 39.72 43.08
M3PQ + SB 38.56 39.24 39.71 40.56

ru M3P 38.46 40.06 40.22 42.38
M3P + SB 37.84 38.20 38.54 41.95
M3PQ 34.86 37.51 39.82 42.64
M3PQ + SB 38.76 39.74 39.39 40.19

de UC2 40.39 44.23 46.03 49.51
UC2 + SB 49.52 50.10 50.30 51.42
UC2Q 46.26 46.95 46.94 49.42
UC2Q + SB 50.23 50.70 50.53 51.39

zh UC2 37.26 41.70 42.68 46.32
UC2 + SB 43.54 46.30 47.17 48.80
UC2Q 43.89 44.90 45.56 47.24
UC2Q + SB 46.37 47.82 48.32 48.47

ko UC2 25.93 32.63 36.11 41.11
UC2 + SB 36.48 36.73 37.84 43.90
UC2Q 32.45 35.79 37.37 42.04
UC2Q + SB 37.80 39.05 40.68 43.38

id UC2 35.76 39.35 40.12 44.24
UC2 + SB 32.70 38.18 42.88 47.06
UC2Q 36.70 39.54 41.40 45.78
UC2Q + SB 38.34 42.16 42.33 47.01

bn UC2 12.00 21.91 25.95 39.75
UC2 + SB 24.66 29.76 32.31 42.08
UC2Q 25.29 27.68 32.75 39.82
UC2Q + SB 24.07 31.67 35.77 42.83

pt UC2 29.79 33.86 40.18 45.23
UC2 + SB 38.79 40.49 41.95 47.34
UC2Q 36.60 39.56 40.67 46.45
UC2Q + SB 40.36 42.65 43.79 47.63

ru UC2 29.94 38.97 39.66 44.41
UC2 + SB 40.93 42.02 42.54 46.15
UC2Q 39.76 40.26 41.46 45.04
UC2Q + SB 41.62 42.42 44.32 45.63

Table 10: Few-shot transfer average accuracy with dif-
ferent amounts of training data. M3P and UC2 are using
the deeper classification architecture.
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Abstract

Assessing the quality of an argument is a com-
plex, highly subjective task, influenced by het-
erogeneous factors (e.g., prior beliefs of the an-
notators, topic, domain, and application), and
crucial for its impact in downstream tasks (e.g.,
argument retrieval or generation). Both the
Argument Mining and the Social Science com-
munity have devoted plenty of attention to it,
resulting in a wide variety of argument qual-
ity dimensions and a large number of anno-
tated resources. This work aims at a better
understanding of how the different aspects of
argument quality relate to each other from a
practical point of view. We employ adapter-
fusion (Pfeiffer et al., 2021) as a multi-task
learning framework which a) can improve the
prediction of individual quality dimensions by
injecting knowledge about related dimensions
b) is efficient and modular and c) can serve
as an analysis tool to investigate relations be-
tween different dimensions. We conduct ex-
periments on 6 datasets and 20 quality dimen-
sions. We find that the majority of the dimen-
sions can be learned as a weighted combination
of other quality aspects, and that for 8 dimen-
sions adapter fusion improves quality predic-
tion. Last, we show the benefits of this ap-
proach by improving the performance in an ex-
trinsic, out-of-domain task: prediction of mod-
erator interventions in a deliberative forum.

1 Introduction

Although people have been dealing with the art
of persuasion since ancient times, there are many
answers to the question of what constitutes a good
argument or good argumentation, and none can be
considered the best: the quality of arguments is
complex, subjective and depends on the context in
which the quality is assessed and on the prerequi-
sites (attitudes and values) of the one who judges
it. Despite the high complexity of this task, a con-
siderable research effort has been done to automat-
ically model argument quality in different contexts

(Wachsmuth et al., 2017a) due to its usefulness in
downstream applications, such as automatic writ-
ing assistants (Wambsganss et al., 2020), argument
extraction (Alshomary et al., 2021) and generation
(Gurcke et al., 2021). Social Science offers an-
other whole field of theories and definitions about
argument quality in which the focus is usually not
only on the argument itself but on the discussion
between participants thus emphasizing the deliber-
ative goal of the discourse (Gerber et al., 2018).

These two research communities, Argument
Mining (AM) and Deliberative Theory (DT), have
not only produced different theories of argument
quality, but also a number of annotated datasets on
the basis of which the models for the automatic
assessment can be (or have been) trained. In both
AM and DT, argument quality (AQ) and its Social
Science counterpart, deliberative quality (DQ) are
broken down into finer-grained dimensions. Such
dimensions map, for example, whether an argu-
ment is logically constructed (micro-level), or con-
structive in the context of an overall discussion
(macro-level). However, neither individual quality
dimensions, nor an aggregated score can do justice
to the complexity of this concept. Besides, a model
that represents different aspects but has only been
trained on one dataset will reproduce data-specific
biases and may be less robust on other domains.

Multi-task learning (in this work, each quality
dimension, e.g., logical cogency, clarity, persua-
siveness, is a task), and the training data drawn
from different datasets are a solution, as they al-
low to integrate the different dimensions and data
sources from the two research communities. We
propose to implement it using adapters (Houlsby
et al., 2019), modules added between the layers of
a transformer model. Differently from fine-tuning
of the full model, adapters allow to use a minimal
amount of parameters while still achieving good
performance. Differently from standard multi-task
learning, adapters do not require all the tasks to be
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learnt simultaneously, but they can be learnt as spe-
cific modules that can also be combined (fused or
stacked). The modular design of the adapters then
allows for flexible composition of the individual
quality aspects and thus can be used in various con-
figurations; this property facilitates future research
of argument quality in different domains and lends
itself as tool for the investigation of the relation-
ship between different quality dimensions, both
within and across disciplines. We experiment with
6 datasets containing AQ and DQ annotations, for
a total of 20 dimensions (AQ:8; DQ: 12) covering
a wide range of logical, rhetorical and dialectical
aspects and a variety of domains and topics. Our
work proceeds in two steps.

In the first step, we employ adapter fusion to
learn a target dimension as a weighted combination
of single-task adapters (e.g., clarity as a combina-
tion of cogency and effectiveness). We improve
the results with respect to single-task learning on
8 dimensions out of 20 in a low-resource scenario.
Furthermore, fusion activation patterns provide us
a tool to investigate the relationship between differ-
ent quality dimensions.

In the second step, we employ quality adapters
for a new task on a new dataset: predicting that a
post in a deliberative forum needs moderation (Park
et al., 2012). A fusion based on quality adapters is
compared to baseline and full fine-tuning, outper-
forming both. Moreover, our analysis shows that
in solving the task, the models exploit information
from all major quality sub-categories. Crucially for
the downstream application, casting moderation
prediction as a fusion of quality adapters allows us
to provide recommendation explained along spe-
cific quality dimensions (e.g., "this comment has
major issues with the logical side of argumentation
and it is disrespectful").

The contributions of this paper are at multiple
level: a) at the level of task and methods, this is the
first work which employs adapters for finer-grained
AQ dimensions; b) at the conceptual/theoretical
level, we make a first step in the integration of
theories of AQ and DQ, bridging between the an-
notations produced by the two communities and
proposing adapter activation as a tool to empirically
compare the conceptual core shared by AQ and DQ
dimensions c) at the level of application, we show
that quality adapters can support the task of pre-
dicting moderation of user comments, additionally
contributing a theory-based explanation layer.

2 Related Work

Argument Quality Much work on automatic
modeling and annotation of argument quality (AQ)
in the Argument Mining community focuses ei-
ther on a specific aspect of quality (e.g. argument
relevance (Wachsmuth et al., 2017b), sufficiency
(Stab and Gurevych, 2017)) or a more general no-
tion of argument quality based on human intuition
(Habernal and Gurevych, 2016). Wachsmuth et al.
(2017a) proposes a holistic taxonomy based on dif-
ferent theories of argument quality, inspired from
rhetoric and linguistics, which divides AQ into
three main sub-categories. The logical dimension
measures whether an argument has premises and a
valid conclusion (cogency) thus takes the content
and structure of a single argument into account.
The rhetorical dimension (effectiveness) measures
the persuasiveness of the argument and takes into
account how it is presented (style, emotional ap-
peal). The dialectical dimension (reasonableness)
plays a more important role in the context of a dis-
course and reflects whether an argument is valid
towards a universal audience (e.g. whether the rea-
soning is based on values generally accepted by
the society) or whether it is constructive in help-
ing to resolve issues. Wachsmuth et al. (2017a)
construct a corpus consisting of 302 arguments an-
notated with the three core and 15 sub-dimensions.
Wachsmuth and Werner (2020) investigate which
linguistic features are predictive of the fine-grained
dimensions and which of the dimensions can be
automatically assessed based on the textual input
representations alone. The work by Fromm et al.
(2022) are the first that try to combine AQ defini-
tions from different corpora and based on different
annotation schemas into one model. They inves-
tigate the generalizability of AQ when combining
different sources and explore multi-task learning
for assessing it in four different datasets. On top of
that they investigate the relationship between AQ
and other AM tasks such as evidence detection.

While most work on AQ in the Argument Min-
ing community focuses on the logical dimension
or specific aspects of persuasion, research on delib-
erative quality (DQ) from Social Science puts the
discourse as a whole and the interaction between
discourse participants into the focus. Here, argu-
ment quality (or discourse / deliberative quality)
is investigated to find out which tools and solu-
tions (e.g. moderation, platform design, structured
overviews) can contribute to a more productive and
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respectful public discourse. Thus, the annotated
datasets from this domain complement the ones
from the AM community providing many aspects
of the rhetorical and dialectic dimensions.

Adapters Adapters (Houlsby et al., 2019) are a
set of task-specific parameters that are introduced
in every layer of a transformer (Vaswani et al.,
2017) and updated for a specific task while the
rest of the pre-trained language-model parameters
is kept frozen. Besides being more efficient than
full fine-tuning, adapters can be used as building
blocks for other tasks due to their modular architec-
ture and are therefore particularly well suited for
transfer– and multi-task learning (He et al., 2021)
and to inject external knowledge sources to solve
downstream tasks (Lauscher et al., 2020a). Pfeiffer
et al. (2021) propose to train task-specific adapters
first (knowledge extraction) and combine them in
a second step (knowledge composition) using self-
attention to mitigate catastrophic interference, a
problem which often occurs with traditional multi-
task learning approaches. In their work, this ap-
proach has proven to be useful especially in low-
resource settings which is often the case for com-
plex annotations such as the AQ ones. To the best
of our knowledge, our work is the first to employ
adapters for AQ to conduct a systematic compari-
son of AQ and DQ on different data sources.

3 Datasets

For our experiments we rely on diversity, both in
terms of data sets and different conceptualizations
of argument quality. Therefore, we also integrate
two datasets from the Social Sciences, which are
not established in the argument quality community,
but show a particularly large variety of dimensions.
Europolis (Gerber et al., 2018): consists of tran-
scriptions of a face-to-face discussion about the
topic immigration, initiated by the European Union
in order to enable deliberation on a European level.
The spoken multi-lingual contributions have been
transcribed, partially translated and annotated with
five different dimensions of DQ by political scien-
tists, each dimension between two to five labels
that can be arranged on a scale from a low to a high
standard of deliberative abilities. The dimensions
capture the logical aspect (justification), rhetorical
aspects (storytelling) and dialectic aspects (com-
mon Good, interactivity and respect).
THF/BK (Esau, 2022): this dataset contains com-
ments from two online citizen dialogues on munic-

ipal issues: one on the further development of the
“Tempelhofer Feld” site in Berlin and the other on
the use of the former lignite area in North Rhine-
Westphalia. The data was annotated by political
scientists with different dimensions of DQ using a
binary label for each dimension. The goal of the
work was to investigate the relationship between
“classic standards of deliberation”, such as rational-
ity and constructiveness and alternative forms of
deliberation, such as humor, narratives and the use
of emotions. This dataset therefore offers annota-
tions for the so far rather underexplored and more
affective dimensions of argument quality, such as
positive emotions, narration and empathy.

Kialo (Durmus et al., 2019): This dataset was cre-
ated based on the online discussion platform Kialo
https://www.kialo.com on which users en-
gage in structured discussions about a certain state-
ment. Users are able to rate the impact of an argu-
ment given its context. The dataset contains argu-
ments about a large number of different topics to-
gether with their impact – a label which aggregates
impact votes by all users. Durmus et al. (2019) and
Li et al. (2020) report F-macro scores between 0.56
and 0.58 using different transformer-based models.

Grammarly Argument Quality Corpus (GAQ)
(Ng et al., 2020): this dataset contains online contri-
butions from four different domains annotated with
the coarse-grained levels of the taxonomy intro-
duced by Wachsmuth et al. (2017a) on a five-point
scale. Lauscher et al. (2020b) evaluate different sys-
tems for automatic prediction of the quality scores,
also experimenting with different multi-task archi-
tectures showing that multi-task learning can lead
to improvements for all dimensions.

IBM-Rank-30k (Gretz et al., 2020): the largest
available corpus with AQ annotations has been cre-
ated based on a large quantity of binary annotations
for human-generated arguments. The authors eval-
uate different methods of aggregating the annota-
tions into a continuous score and conduct experi-
ments on the automatic prediction of these scores
with a Pearson correlation of around 0.48 on a
test set with unseen topics. Lauscher et al. (2020b)
found positive correlations between this aggregated
AQ score and automatically generated scores for
cogency, effectiveness and reasonableness on this
corpus.

SwanRank (Swanson et al., 2015): as one of the
first datasets with AQ annotations in the AM com-
munity this corpus contains arguments from on-
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Dataset size genre topics mean length

SwanRank 5k online discussion gay marriage, gun control, death penalty, evolution 19
GAQ 5k Debates, CQA, Reviews diverse 109
IBM-Rank-30k 30k crowd-sourced arguments 71 common controversial topics 18
Kialo 7k argument maps 741 topics 23
Europolis 1k face-to-face deliberation immigration in Europe 131
THF/BK 1k online deliberation Redevelopment Tempelhofer Feld (THF) and lignite

mining (BK)
124

Table 1: Overview of the datasets: original size, genre, topics and mean length in tokens of contributions
.

dimension short description measured corpus

overall general argument quality score (1-5) GAQ
cogency acceptable and sufficient premises to draw a conclusion score (1-5) GAQ
reasonableness contribution to resolution of issues, argument is accepted by universal audience score (1-5) GAQ
effectiveness persuasion, rethorical, emotional appeal score (1-5) GAQ

quality general argument quality score (0-1) IBM-Rank-30k

clarity is it hard or easy to interpret the argument? score (0-1) Swanson

justification rationality, providing reasons, reflection multi-class (4) Europolis
respect empathy or respect towards groups (e.g. immigrants) multi-class (3) Europolis
storytelling personal experience, subjective description of an event or situation binary Europolis
interactivity respect towards other participants, reference to other participants arguments multi-class (4) Europolis
common good taking interests of the broader community or utilitarianism based values (justice, equality)

into account
multi-class (3) Europolis

posEmotion positive emotions are contained in the utterance binary THF/BK
proposal a statement about what or how something is to be done binary THF/BK
narration personal experience, subjective description of an event or situation binary THF/BK
reference participant refers to another discourse participant binary THF/BK
argument providing reasons and/or evidence in favor of or against a claim binary THF/BK
negEmotion negative emotions are contained in the utterance binary THF/BK
empathy Speaker puts themself in the perspective or emotional state of others binary THF/BK
Q(uestion) for justification asks for the reasons for a statement or action binary THF/BK

impact user likes / recommendations multi-class (3) Kialo

Table 2: Overview of the datasets with their respective argument quality dimensions

line discussion fora about four controversial topics.
The corpus was annotated using crowd-sourcing
on a continuous scale expressing whether an argu-
ment is easy or hard to interpret, thus reflecting
the clarity of an argument. More recent experi-
ments on this dataset are for example reported in
Gretz et al. (2020) who experiment with fine-tuning
transformer-based models after pre-training them
on the IBM-Rank-30k dataset.

Table 2 shows an overview of the mentioned
datasets and their corresponding quality dimen-
sions, an example with the annotated label / score
for each dimension can be found in Tables 13 to
16 in the appendix. Table 1 shows an overview of
the six datasets with their respective size and num-
ber of topics. While the two datasets from Social
Science offer the largest amount of different annota-
tions they are also the smallest in size. On the other
hand they consist of full discussions whereas the
datasets from Argument Mining consist of single
arguments without their broader context.

4 Experiment 1: Modeling AQ and DQ
using adapters and adapter-fusion

In the following experiment we are interested in the
relationship between different conceptualizations
of AQ and DQ from a modeling perspective: does
injecting knowledge about other dimensions help
to improve the predictions on a target dimension?
If so, which dimensions are especially helpful? To
investigate this we treat each of the 20 dimensions
as a task which we aim to model. We want to
compare how the models perform without external
information (using only a single-task adapter) with
those using information about other dimensions
(using multi-task learning with adapter-fusion).

4.1 Experimental setup

The input for all adapter models is the argumen-
tative text, which consists of a sentence, a com-
ment, or a spoken contribution, depending on the
data set. We use RoBERTa (Liu et al., 2019)
(roberta-base) as the backbone transformer
model for all dimensions. Note that for each of the
20 single-task adapters we train a task-specific pre-
diction head, depending on the underlying classifi-
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cation problem (binary-, multi-class classification
or regression). We pick the model with the best
results on the validation set (lowest mean-squared
error for the regression–, highest F1 macro for the
classification tasks using class weights to counter-
act class imbalance).

Heuristic: how to select source tasks for adapter
fusion? As the number of existing dimensions is
large (20) we apply a heuristic to select different
pools of source tasks for a target quality dimension.
For this, we use predictions of dimension-specific
adapters as proxies to uncover relationships be-
tween different quality aspects. We train an adapter
for each dimension on the whole corresponding
source dataset, generate predictions on all other
datasets and measure pair-wise correlations across
the datasets. We hypothesize that dimensions that
have a clear positive or negative correlation to the
target dimension will be most useful to support
modeling that quality aspect, thus we add a di-
mension as source task if the absolute value of
the correlation to the target dimension exceeds a
threshold.

We sample source tasks from correlations be-
tween all 20 dimensions (fusion corr ALL), from
correlations between dimensions from datasets
with a focus on deliberation (Europolis, THF/BK,
Kialo: fusion corr DQ) and from those originating
from established datasets from Argument Mining
(GAQ, IBM, SwanRank: fusion corr AQ). We use
the third quartile of the correlations of the respec-
tive dimensions as the threshold in each case (more
details and correlation matrix in Appendix Section
C and Figure 6). Appendix table 12 displays the
output of the selection based on this heuristic. For
most of the target dimensions, it indicates a fusion
with between 2 and 9 source dimensions: more log-
ical or general dimensions are more often selected
(e.g. most frequent source dimension is justifica-
tion, which gets selected for 14 target dimensions).
A qualitative inspection of the suggested combina-
tions shows that the heuristic is picking up sensible
conceptual patterns. For example, for the target
dimension empathy the candidates for fusion in the
fusion corr ALL setup are negEmotion, story and
narration.

For each setup we experiment whether we need
to add the adapter of the target dimension as source
task (w own adapter) as it has been done in Pfeif-
fer et al. (2021) or whether we can learn a tar-
get dimension as a weighted combination from

other source dimensions (w/o own adapt.) As the
multi-tasking approach should be most helpful for
low-resource scenarios, we down-sample the larger
datasets (Kialo, IBM-Rank-30k, GAQ, SwanRank)
to 1000 instances. We use the original train/val/test
split for IBM-Rank-30k, GAQ and Kialo and cre-
ate our own split for THF/BK, SwanRank and Eu-
ropolis. We train the fusions similar to the single-
task adapters with a lower number of epochs and
a smaller learning rate (5e − 5).1 We train each
model with 3 different seeds and report mean and
standard deviation of F1 macro score and Pearson
correlation in Table 11.

5 Results

Can we improve modeling AQ with adapter-
fusion? Table 3 shows the results comparing single-
task adapters with the fusion-based models, aver-
aged over three seeds. We use the Almost Stochas-
tic Order test (Del Barrio et al., 2018; Dror et al.,
2019) as implemented by Ulmer et al. (2022) to
identify for which dimensions multi-task learning
can lead to significant improvements.2

Our results show that: a) Information about re-
lated quality dimensions can improve modeling for
individual dimensions (significant improvements
for 8 of 20 dimensions). These stem from 4 dif-
ferent datasets, so the trend holds across different
datasets from both communities (AM and DT). b)
For most dimensions the fusion does not lead to
performance drops, which confirms the fact that
adapter-fusion is more robust than traditional multi-
task learning (no catastrophic forgetting / interfer-
ence). The individual modules for different dimen-
sions can thus be tried out without major disadvan-
tages for new data sets or quality annotations. c) we
gain improvements, even when the target adapter
is not provided to the fusion (GAQ dimensions,
narration and argumentative). Thus the target di-
mension can be learned as a weighted combination
of source dimensions that are different. This can be
especially useful when we only have little or noisy
data for the target dimension available.

1For implementation details refer to Appendix Section A.
2The test compares two score distributions by quantify-

ing to which extend stochastic order is being violated. If the
amount of violation is small enough, one model can be con-
sidered as superior (stochastically dominant) over the other.
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dimension ST fusion corr ALL fusion corr DQ fusion corr AQ
w own adapt. w/o own adapt. w own adapt. w/o own adapt. w own adapt. w/o own adapt.

overall 0.63±0.01 0.64±0.02 0.64±0.02 0.61±0.06 0.65±0.02*
cogency 0.41±0.10 0.47±0.02* 0.45±0.05 0.48±0.01* 0.49±0.01*
reasonableness 0.56±0.03 0.55±0.03 0.55±0.05 0.57±0.02 0.56±0.04

effectiveness 0.49±0.13 0.59±0.02** 0.57±0.02* 0.57±0.02* 0.58±0.01**
quality 0.38±0.16 0.48±0.05 0.43±0.04 0.45±0.06 0.43±0.07

clarity 0.64±0.01 0.63±0.03 0.63±0.01

justification 0.46±0.04 0.45±0.03 0.45±0.02 0.46±0.03 0.46±0.02

story 0.75±0.02 0.76±0.02 0.74±0.04 0.75±0.03 0.73±0.04

interactivity 0.35±0.05 0.39±0.02* 0.36±0.04

cgood 0.60±0.04 0.61±0.05 0.60±0.02

posEmotion 0.64±0.03 0.63±0.03 0.61±0.03 0.64±0.03 0.60±0.01

proposal 0.79±0.01 0.80±0.03 0.79±0.02 0.79±0.02 0.78±0.02

narration 0.76±0.02 0.76±0.01 0.77±0.01 0.77±0.02 0.78±0.02*
reference 0.80±0.01 0.80±0.02 0.80±0.02 0.81±0.01 0.80±0.01

argumentative 0.77±0.01 0.77±0.02 0.78±0.02* 0.76±0.03 0.76±0.01

negEmotion 0.70±0.01 0.72±0.04* 0.70±0.02 0.71±0.01* 0.70±0.02

empathy 0.69±0.04 0.71±0.02 0.69±0.04 0.69±0.03 0.67±0.02

Qjustification 0.89±0.01 0.89±0.01 0.87±0.01

impact 0.47±0.02 0.49±0.02* 0.47±0.01

Table 3: Comparison between task-specific adapter and fusions. Average performance (F1 macro and pearson
correlation) on the test set. * denotes almost stochastic dominance (ϵmin < τ with τ = 0.5) and ** denotes truly
stochastic dominance (ϵmin < τ with τ = 0.0)

.

6 Analysis: relationship between AQ and
DQ dimensions

For each target dimension we analyze which
adapters get activated during inference. We ex-
tract the attention scores for source dimensions for
each target dimension based on the test set. Sim-
ilar to Pfeiffer et al. (2021) we assume that high
activations indicate more useful source tasks.
General AQ / AQ based on intuition First we
compare two very general conceptualizations of
general AQ: quality (from the IBM-rank dataset)
which was trained on a wide variety of controver-
sial topics and clarity with a slightly more tolerant
conceptualization of quality (is the argument clear
/ understandable?) on 4 different topics. Both
conceptualizations are rather under-specified and
based on human intuition, we can thus gain insights
into which dimensions play a particularly important
role for the intuitive understanding of AQ. Figure
1 visualizes the most activated dimensions. For
both dimensions different aspects, logical (justifi-
cation, cogency) and rhetorical (effectiveness) are
activated. Emotions play a role (high activation for
posEmotion) and all dimensions from GAQ receive
high activation indicating that they provide useful
information in general. Interestingly, the adapter
for quality (IBM) gets the most activation when
modeling clarity, while the other way around is not
the case. This may indicate that clarity represents a
somewhat more specific conceptualization of argu-
ment quality, while quality reflects a more general.

(a) clarity (SwanRank)

(b) quality (IBM)

Figure 1: General conceptualizations of quality: sum of
adapter activations over all layers.

Recall also that the source corpus for quality is
IBM rank, which covers 71 topics thus resulting in
representations that are more applicable to corpora
of other domains. Dialectical dimensions are less
relevant, as both datasets contain single arguments
without a discussion context.
Logical aspect of AQ and DQ With Figure 2 we
can compare two logical conceptualizations, one
from the AM community (cogency from GAQ) and
one from the Social Science (argumentative from
THF/BK). This allows us to explore the extent to
which a similar conceptualization of logical argu-
ment quality varies between the two datasets from
the different research communities.

Argumentative benefits mostly form the other
logical dimension of the DQ dataset (justification),
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(a) cogency (GAQ)

(b) argumentative (THF)

Figure 2: Logical conceptualizations of quality: sum of
adapter activations over all layers.

while cogency benefits mostly from other dimen-
sions from the same dataset. However justifica-
tion also provides useful information for cogency
hence seems to be the connecting element between
the two conceptualizations. Other useful dimen-
sion from a deliberative source are references to
other people for cogency and negative emotions for
argumentative. Having a look at concrete corre-
lation values reveals that the models pick up on
positive and negative correlations: arguments with
high cogency are less likely to focus on interac-
tion with other people (refer to other peoples argu-
ments) while more argumentative arguments in the
THF/BK corpus express more negative sentiment.
Rhetorical aspects: narratives as alternative
form of deliberation Finally, we examine a de-
liberative dimension that is rather rarely studied in
the context of argument quality: narration (Figure
3). Moreover, this represents a rhetorical qual-
ity dimension, which enables us to compare how
this kind of quality dimension differs from log-
ical and general argument quality. Emotions as
well as classical argumentative properties play a
major role (high activation for positive, negative
Emotions and argumentative), indicating that narra-
tion and argumentation are often intertwined. The
high activation for empathy and reference (refer-
ence to others) illustrates perspective taking, which
is characteristic for narrative. Overall, rhetorical
and dialectical aspects play more of a role for this
dimension.

We can summarize the following trends: either
dimensions that come from similar or the same
datasets or conceptually related dimensions are par-
ticularly activated. However, we also find empirical
evidence that emotions play a role in modeling all

Figure 3: rhetorical conceptualization of quality – nar-
ration (THF): sum of adapter activations over all layers.

kinds of dimensions. We suspect that the relation-
ship between emotions and AQ strongly depends
on discourse/context, but further research is needed
to investigate the relationships more precisely.

7 Experiment 2: predicting moderator
interventions

In this experiment, we evaluate the models using
a new down-stream application: we want to pre-
dict whether a comment in an online discussion
should be moderated. Our hypothesis is that we
can use information about different quality dimen-
sions to solve the task. Moderation, especially in
deliberative discussions such as on civic partici-
pation platforms, is a complex task that generally
consists of facilitating a productive and fair dis-
cussion with respectful interaction. Since the task
becomes more difficult for human moderators to
perform as the number of participants and com-
ments increases, automatic models can be useful
for predicting whether a comment should be moder-
ated. Here, the logical quality dimensions can help
distinguish less argumentative from argumentative
comments, the rhetorical dimensions are important
for ensuring civil interaction, and the dialectical di-
mensions can identify valuable comments (is a so-
lution proposed or the common good considered?).

We use the dataset from Park et al. (2012), in
which the authors annotated the functions of mod-
eration in discussions on a deliberative platform
and identified ‘quality of comments’ as a common
reason for intervention. The dataset was used in
Falk et al. (2021), who obtained an F1 score of 0.34
using a full fine-tuning approach with roberta-base.
The dataset is small and consists of 876 negative
and 222 positive instances, a further motivation for
a multi-task based approach. We train and test the
models on the 5-fold split provided by Falk et al.
(2021). As moderator interventions are the minor-
ity class we use class weights for all models. We
compare the following models:
(quality) scores ST: we generate predictions for
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each quality dimension and convert them into
scores.3. Classifier: logistic regression.
(quality) scores-MT: similar to quality scores but
we generated with the fusion-based adapters. Clas-
sifier: logistic regression.

model F1 intervention F1 macro

random baseline 0.29±0.06 0.45 ±0.04
scores-ST 0.37±0.05 0.55±0.04
scores-MT 0.38±0.04 0.54±0.04
moderation-ST 0.34±0.03 0.57±0.03
fusion-AQ 0.35±0.04 0.56±0.01
fusion-all 0.38±0.05 0.57±0.03
(Falk et al., 2021) 0.34±0.05 0.57±0.03

Table 4: F1 positive (moderator intervention) and F1
macro: average and standard deviation over 5 test sets.

moderation-ST: we train a single-task adapter on
the task of moderation intervention.
fusion-AQ: we train a fusion on the task of mod-
eration intervention using only quality adapters as
input representations.
fusion-all: we train a fusion on the task of modera-
tion intervention using all quality adapters and the
adapter for moderation.
roberta-full: we report the result of Falk et al.
(2021) who predict interventions on the same data
split with full fine-tuning RoBERTa.

We use the same hyperparameters for the fusion
and the single-task adapter as in experiment 2.

Can AQ adapters be applied to predicting
moderator interventions? Table 4 shows F1 for
interventions and F1 macro as average over the 5
splits. We consider F1 for interventions to be more
important because it represents the minority class
and only the positive instances are suggested to a
human moderator for further evaluation. Figures 5
and 7 (Appendix) show the model-to-model calcu-
lated significance values for the almost stochastic
order test. All models are outperforming the base-
line. The single-task adapter yields similar results
to full fine-tuning, the two feature-based models
with the scores for the quality dimensions yield
better results for interventions, indicating that the
information on the quality dimensions is useful for
this task. The best results are obtained with an
adapter-fusion, provided that it also includes the
adapter for moderation. This indicates that the in-
formation about the quality dimensions is comple-

3For dimensions based on binary classification we use the
probability of the positive class, for the multi-class dimensions,
we use the probability for each class (e.g. common good will
be converted into three features: probability for class 1 (’no
reference’), class 2 (‘reference to own country’) and class 3
(‘reference to common good’)

mentary with a data and task specific representation
(moderation-ST).

Figure 5: Almost Stochastic Order Scores (ϵ) for mod-
eration test data for the F1 positive class, adjusted by
using the Bonferroni correction. ϵ = 0.0 means model
in row is stochastically dominant over model in column,
ϵ < 0.5 denotes almost stochastic dominance.

Which aspects of AQ are important for pre-
dicting moderation? As discussed for the anal-
ysis of the relationship between quality dimen-
sions in Experiment 1, an additional advantage
of fusion-based models is the additional level of
interpretability they provide. We investigate the
relevance of each quality dimension for predicting
moderation interventions using activation patterns
of quality adapters. We compute the activation of
each adapter of our best model (fusion-all) and vi-
sualize this as a heat-map (Fig. 4). The adapter
for impact is the most activated. This is proba-
bly because this adapter is a good representation
for distinguishing high vs. low quality comments,
since the underlying dataset provides a high num-
ber of different topics (and thus can provide a good
domain-independent representation). This is fol-
lowed by dimensions that are important for a civic
and appreciative interaction (empathy and respect)
or for a solution-oriented discourse that considers
the common good (proposal, cgood). The adapters
for argumentative and quality add the more ratio-
nal dimensions of two very different data sources,
followed by the more affective and rhetorical di-
mensions (story, narration, emotion).

8 Conclusion

This work targeted the relationships between dif-
ferent aspects of argument and deliberative quality.
We experimented with 6 datasets and 20 quality
dimensions, employing adapters we learn modu-
lar representations of the targeted dimensions. We
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Figure 4: Predicting moderator intervention: activation for each dimension (avg. over all test instances, sum over all
layers)

show that adapter fusion improves predictions in
8 dimensions out of 20. We then use the learnt
adapters in the task of predicting moderator in-
terventions - we show that information about dif-
ferent argument quality dimensions helps to im-
prove the performance. Having more insights
about which aspects of argument quality were ac-
tivated more or less when the model that a user
contribution should be moderated could help hu-
man moderators decide which aspects to focus
on and information about why that model fired
can increase human moderators awareness of and
(ideally) confidence in automated support meth-
ods. We make models for single-task adapters and
fusions and the code to train and test them avail-
able: https://github.com/Blubberli/
ArgQualityAdapters.git.

9 Limitations

The datasets were created with very different mo-
tivations, the annotations were partly created by
experts, partly via crowd-sourcing. The definitions
of the different aspects of argument quality are also
based on different theories or merely on human
intuition. This work is only a first step to collect
the existing data, to use it and to gain first insights
about overlaps between relations based on empir-
ical experiments. A deeper analysis of the under-
lying annotations and definitions is an urgent next
step. Another limitation is that we compare the
benefits of adapter-fusion to single-task adapters in
a low-resource scenario. Because we are dealing
with a large amount of different dimensions (20)
additional experiments that compare this approach
to full fine-tuning or traditional MLT-learning were
not feasible in this work but can be conducted in
the future, potentially on a smaller set of selected
dimensions. On top of that we do not try to im-
prove the state-of-the-art results for each quality
dimension for each dataset. This is for the fol-
lowing reasons: the main focus of this work is to

investigate whether adapter-fusion improves the re-
sults compared to single-task adapters, not which
model works best for which data set. The SOTA
results for individual dimensions in our case are
either not available (Social Science datasets) or
based on data-specific optimizations of the hyper-
parameters / architectures. We focus on a variety of
dimensions and datasets, especially those coming
from the social sciences. In addition to the po-
tential improvements in results through MLT with
adapter-fusion, we see the advantage above all in
the modular design (depending on the annotation
from future datasets, dimensions can simply be
added or omitted) and the insights we can gain
about the contribution of individual dimensions
through attention patterns. The models in this work
were partially trained on small datasets. It is nec-
essary to investigate to what extent the models are
applicable to other domains. Also the influence of
the topics in the discussions (topic bias) should be
investigated.

Potential Negative Societal Impacts The au-
tomatic modeling of Argument Quality bears the
danger that what is considered as "high quality
arguments" will be closely related to what is repre-
sented as high quality in the existing datasets. This
might disadvantage certain styles of argumentation
but also certain opinions that are so far underrep-
resented in the data. It is therefor necessary to in-
vestigate how these models behave with data with
such underrepresented styles and opinions and to
create new datasets with AQ with greater diversity.
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Appendix

A Implementation details

For training the adapters and the adapter-fusion
models we use the adapter-transformers
library (Pfeiffer et al., 2020) with
roberta-base as a backbone. We use
the default hyperparameters (learning rate of
0.0001 which was found to work empirically
best in most setups (Pfeiffer et al., 2020, 2021)
and a reduction factor of 16). As a maximum
sequence length we use 256 which is higher than
all means of the 6 datasets. We train the adapters
for a maximum of 40 epochs for classification and
25 epochs for regression and use the model with
the best performance (lowest MSE or highest F1
macro) on the validation set. For the adapter-fusion
we also rely on the best learning rate according to
Pfeiffer et al. (2021), which is 5e−5. We lower the
maximum number of epochs (25 for classification
and 15 for regression). We train all models on
3 GPUs (NVIDIA RTX A6000, each GPU has
49GB, CUDA Version 11.7) with a batch size of
16, each model is trained with 3 seeds (5, 42, 108)
for the experiments reported in section 4. We use
the the adapters of one seed (42) to generate the
predictions and the single-task adapters trained
with that seed for the AdapterFusion in the
experiment in section 7. The largest model is
the AdapterFusion with 21 adapters (all quality
dimensions and moderation). The training run
time for this is 15.349 samples per second and
44.282 samples per second during inference. In
experiment 3, for the logistic regression classifiers,
we find the best hyperparameters using grid search
and 3-fold cross-validation on a separate data split
(L2 penalty, class weights and C=0.1).

B Datasets

The tables in the end of this Appendix (Table 13
for THF/BK, Table 14 for Europolis, Table 15 for
GAQ and Table 16 for SwanRank, IBM-Rank-30k
and Kialo) illustrate examples of each dataset, each
example exhibits are high score (or label) of a dif-
ferent dimension of AQ.

Parts of the transcriptions of the Europo-
lis dataset were not in English and auto-
matically translated using DeepL (https:
//www.deepl.com/translator).Similarly,
the online-comments from THF/BK are originally
German and have been automatically translated
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using DeepL. Samples of the automatic translations
were verified by native speakers.

Data splits for Experiment 1: Table 5 shows
the amount of training / development and test data
for each corpus.

train dev test

THF/BK 788 198 247
Europolis 546 140 175
Kialo 650 150 200
GAQ 650 150 200
SwanRank 650 150 200
IBM-Rank-30k 650 150 200

Table 5: Amount of train, validation and
test data for each dataset. The amount for
Kialo,GAQ,SwanRank,IBM-Rank-30k has been
down-sampled to 1000 instances.

Table 6 gives an overview the positive amount of
instances for each quality dimension in the training
data. Most of the dimensions (except argumenta-
tive) are the minority class.

dimension relative amount in train

posEmotion 13 %
proposal 38 %
narration 31 %
reference 41 %
argumentative 75 %
negEmotion 21 %
empathy 11 %
Qjustification 20 %

Table 6: Relative amount of positive instances for each
quality dimension in the THF/BK training set.

Table 7 and 8 show the distribution of each class
label for the dimensions in Europolis and the one
in Kialo.

Table 9 and 10 show the mean and standard devi-
ation for the point-wise quality scores in the train-
ing data of GAQ, SwanRank and IBM-Rank-30k.

C Experiment 1

Heuristic The following describes more details
about the heuristic used to select source tasks for
the multi-task experiment in section 4. To generate
predictions we first train single-task adapters on the
original datasets. We use the original train/val/test

Dimension and labels amount Dimension and labels amount

interactivity respect
negative reference 41 % disrespectful 10 %
no reference 4 % implicit respect 75 %
neutral reference 35 % explicit respect 15 %
positive reference others 20 %
cGood justification
no reference 9 % no justification 16 %
own country 76 % inferior justification 40 %
common good 15 % qualified justification 34 %

sophisticated 10 %
storytelling
storytelling 33 %
no storytelling 67 %

Table 7: Distribution of class labels for each dimension
in the Europolis training set.

impact labels relative amount in train

not impactful 22 %
medium impactful 23 %
impactful 55 %

Table 8: Distribution of class labels for impact in the
kialo training set.

split for IBM-Rank-30k (train=20974, val=3208,
test=6315=, GAQ (train=2746, val=1177, test=538)
and Kialo (train=5170, val=1108 test=1108) and
create our own split for SwanRank (train=3440,
val=860, test=1075), THF/BK and Europolis (splits
in Table 5.

Table 11 shows the results of each single-task
adapter on the original-sized dataset. We report the
mean and standard deviation across 3 seeds.

We then take the adapter for each dimension
and generate predictions for all other datasets. For
feasibility, we sample 3000 instances for Kialo,
IBM-rank-30k and SwanRank to generate predic-
tions on these subsets. Based on the predictions
we compute the pair-wise Spearman correlations
between the AQ dimensions for each dataset. For
binary classes we use the probability of the positive
class as a continuous score, for dimensions with 3
to 4 classes we convert the predicted class labels
into scores on a linear scale, e.g. impact has 3 class

dimension mean std

cogency 3.29 0.65
effectiveness 3.13 0.76
reasonableness 3.05 0.72
overall 3.14 0.72

Table 9: Mean and standard deviation of point-wise
quality for each dimension in the GAQ corpus.
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dimension mean std

quality 0.79 0.20
clarity 0.53 0.24

Table 10: Mean and standard deviation of point-wise
quality for clarity and quality in the corresponding train-
ing sets.

dimension performance

Pearson correlation

overall 0.56±.00
cogency 0.54±.01
effectiveness 0.59±.01
reasonableness 0.49±.00
quality 0.55±.00
clarity 0.73±.01

F1 macro

justification 0.46±.04
interactivity 0.35±.05
respect 0.50±.04
cgood 0.60±.04
story 0.75±.02
Q(uestion) for justification 0.89±.01
reference 0.80±.01
argument 0.77±.01
narration 0.76±.02
proposal 0.79±.01
negEmotion 0.70±.01
posEmotion 0.64±.03
empathy 0.69±.04
impact 0.52±.01

Table 11: Results on the test set for each quality dimen-
sion. Performance with standard deviation, averaged
over 3 seeds.

labels: low impact, medium impact, high impact
which we convert into 1, 2 and 3 respectively. We
compute the pair-wise correlations for each dataset
(we take the gold annotations when available) and
average them them across datasets. Figure 6 shows
the pair-wise correlations as a correlation matrix.

Next we sample source tasks for each target task
based on the correlations. Taking different samples
of dimensions we compute a threshold based on
absolute correlation values and add a dimension as
source task if the correlation to the target dimension
exceeds the computed threshold. We consider the
following setups:
fusion corr ALL We select the source tasks from
all dimensions if the absolute correlation value is

higher than 0.24 (corresponds to the third quartile
of all correlations).
fusion corr DQ We consider only source tasks from
datasets with a deliberative focus (THF/BK, Eu-
ropolis, Kialo). The tasks are sampled from 14
dimensions and the threshold is 0.15 (third quartile
of all correlations between the 14 dimensions).
fusion corr AQ We extract the source tasks from all
dimensions that stem from more general argumen-
tative contexts (IBM-rank-30-k, GAQ, swanson).
The threshold is based on the correlations between
the 6 dimensions (0.54, the second quartile due
to the high correlations between the GAQ dimen-
sions).

Table 12 shows the source task dimensions for
each target dimension, depending on the setup (fu-
sion corr ALL, fusion corr DQ, fusion corr AQ).
Each dimension is learned using between 1 and 9
other dimensions as source tasks. For respect there
were no dimensions with a high enough correlation
in any of the setups.

D Experiment 2: predicting moderator
interventions.

Figure 7 shows the significance matrix between
all models for the task of predicting moderator
interventions for the F1 macro score.
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Figure 6: Pairwise Spearman correlations between all quality dimensions based on single-task adapter predictions.
Average across all 6 datasets.
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target task additional source tasks using
all dimensions

additional source tasks using
only dimensions from deliber-
ative context

additional source tasks using
only dimensions from general
argumentation

overall impact, effectiveness, proposal,
quality, reference, reasonable-
ness, clarity, cogency, justifica-
tion

- effectiveness, reasonableness, co-
gency

cogency impact, effectiveness, overall,
quality, reference, reasonable-
ness, clarity, justification

- effectiveness, overall, quality,
reasonableness

reasonableness impact, effectiveness, overall,
quality, reference, clarity, co-
gency, justification

- effectiveness, overall, cogency

effectiveness impact, proposal, overall, quality,
reference, reasonableness, clarity,
cogency, justification

- overall, quality, reasonableness,
cogency

quality effectiveness, overall, posEmo-
tion, reasonableness, clarity, argu-
mentative, cogency, justification

- effectiveness, cogency

clarity effectiveness, overall, posEmo-
tion, quality, reasonableness,
story, argumentative, cogency,
justification

-

justification effectiveness, proposal, overall,
quality, negEmotion, reasonable-
ness, clarity, argumentative, co-
gency

proposal, empathy, negEmotion,
cgood, argumentative

-

story empathy, reference, clarity, narra-
tion

empathy, posEmotion, cgood, ref-
erence, narration

-

interactivity - negEmotion -

cgood - story, justification -

posEmotion quality, clarity, narration story, argumentative, narration -

proposal effectiveness, overall, reference,
justification

reference, justification -

narration empathy, posEmotion, negEmo-
tion, story

empathy, posEmotion, negEmo-
tion, reference, story, argumenta-
tive

-

reference effectiveness, proposal, overall,
reasonableness, story, cogency

proposal, story, narration -

argumentative quality, negEmotion, clarity, jus-
tification

empathy, posEmotion, negEmo-
tion, narration, justification

-

negEmotion empathy, argumentative, narra-
tion, justification

empathy, interactivity, argumen-
tative, narration, justification,
QforJustification

-

empathy negEmotion, story, narration negEmotion, story, argumenta-
tive, narration, justification, Qfor-
Justification

-

Qjustification - empathy, negEmotion -

impact overall, reasonableness, cogency,
effectiveness

- -

Table 12: Multi-task experiments: target dimension with source dimensions used as input adapters for adapter-fusion.
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(a) F1 macro

Figure 7: Almost Stochastic Order Scores (ϵ) for moder-
ation test data for the F1 macro score, adjusted by using
the Bonferroni correction. ϵ = 0.0 is means model in
row is stochastically dominant over model in column,
ϵ < 0.5 denotes almost stochastic dominance.
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example dimension

On the one hand, our lignite is needed to maintain an affordable and reliable energy supply (and
based on physical and economic laws, will still be needed in 50 years) and on the other hand, our
lignite can do more than just be burned to generate electricity.

argumentative

In New Zealand, residents of the Pacific island of Tuvalu have already been granted the right to
asylum - on the grounds of climate change. Who is asking for their recovery? How do people
who have been forced to flee their homes due to the global burning of fossil fuels and the resulting
DECREASED global warming read our news and debates? "Act only according to that maxim by
which you can at the same time will that it become a general law." If we include Immanuel Kant’s
thoughts in the guiding decision, shouldn’t lignite mining really end at the A61 and RWE workers
be supported in the corporation’s structural transformation in a way that provides well for them and
their families?

empathy

Classical music for all Once a week the Berlin Philharmonic Orchestra should play at THF for ALL
Berliners. This way even families with little money can enjoy classical music. The prices at the
Philharmonie or concerts by other great musicians are so immensely high that only higher earners
can afford it. This is an outrage because they are subsidized by us and we can’t even afford to go.

proposal

I think #person is more than right and I share his opinion... Lignite has and should continue to have
a place here in the region. Good luck

reference (to other
discourse partici-
pants)

I have been to Holzweiler many times. The experiences from Immerath and Borschemich show
that the club life in an intact village does not suffer due to the resettlement. On the contrary, it
strengthens the feeling of togetherness and allows the clubs to flourish.

narration

But I also think what #person wrote is great. One notices from it that not immediately a rejection
against it prevails but rather a certain concern. In particular here around animals. You also notice
that there is still a great ignorance. I find great that you have expressed yourself. I think the
discussions here should be there to reduce possible worries and prejudices. Thank you

positive emotion

I have been following what has happened to lignite for many years and I think it is terrible. I’ve
lived in the Rhineland for years and it’s easy to live with the changes caused by lignite. More and
more good jobs are disappearing in Germany. My last employer is already cutting well-paid jobs
due to the low oil price.

negative emotion

Table 13: Examples for each Quality Dimension in THF/BK
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example dimension

I have friends from Latin America and many other places and they work and they pay in a pot. So,
I’m a mother and well, unfortunately, if I have to go to another country, well, I try to integrate in
the country I’m going to. I’m not going to go there, to impose my goals [?], my way of seeing, no.
I’m going there to work and not to steal. And there is something else. But again, I’m holding back.

storytelling

I don’t know if you can regulate it well, how many people immigrate or emigrate or whatever. I
think it’s important to create a basis for all people to be able to live in their country. Because I think
that is actually the main cause. That many industrialized countries are bleeding small countries or
poor countries dry and taking away their livelihood. And that’s why people emigrate, because they
no longer have anything to eat, because they can no longer find work in their country, and because
life in the industrialized countries is simply made out to be nicer or better. In order to be able to
ultimately prevent an immigration policy, illegals, I believe that you first have to change the basis in
the other countries, that is, the countries of origin. Create a basis. Life base.

sophisticated justifi-
cation

Well, I am of the opinion that simply in the population the term EU is seen completely wrong; one
always wants only something and one wants to give nothing. I am simply of the opinion that it
should be a community and a community simply has to support the weaker ones and the stronger
ones simply have to give. I think this is the basic problem of the EU and I think it’s very nice that
today and in the next few days this could contribute to the fact that this spirit, which was really
brought into being by Robert Schuman and by all those who have worked so hard for the EU, could
be recognized and a community could really take place; at least in the microcosm now.

reference to com-
mon good

Here, when we are talking about immigration, it should be first identified why a certain person left
his country. Just like my friend before said to be a refugee is also a man, which probably feels bad
in his own country. For example, when his country’s situation does not give him a life in dignity. So
I think that every country should identify immigrants and help them in certain ways, for example
with social benefits. I know that some countries for example Poland are not rich countries, so they
need EU help in such a matter. Especially the countries where immigration is quite high.

explicit respect

Yes I completely agree with what this gentleman just said because I think we have created ghettos,
we have - at the moment - people who live very very badly, immigrants who live very very badly,
who are already unemployed, who have enormous problems of integration and I think we should
already make an effort to integrate these people who are well in our countries and then we see what
we can do to bring in others, we must already take care of the people who are on our territory and
who are living very badly and who are unemployed, who are poorly cared for, who have problems
with their children, school problems, problems with papers and I think that we must already arrive
once we have properly resolved these problems and that we will have sooner than bring people in
and make them unhappy - I think that it is perhaps worse than doing something more moderate.

positive reference
to other discourse
participant

positive reference

Table 14: Examples for each Quality Dimension in Europolis
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example dimension

I’m a fairly tolerant human being and am in no way an advocate of the death penalty. I also
understand that a short sentence and rehabilitation is also an effective form of justice in terms of
re-offending in many countries. However I think there’s gotta be a line drawn somewhere in which
a person entirely loses their liberty and autonomy if the crime they committed was as heinous as the
one committed by Mr Breivik. Also, even though I am aware that there is a good chance he will
still remain behind bars for the rest of his life, the possibility that he won’t baffles and worries me.
Please CMV.

high cogency (5)

Well, this topic has raised lots of questions lately particularly in France. This is where I stand:
- Wearing a burqa should be a matter of choice, just as women choose to wear anything else,
regardless of any religious manifestations. - Wearing the burqa shouldn’t be banned, and shouldn’t
be forced to women either; it should be a personal choice. - When talking about choices, it’s the
society that gives these choices according to what the majority thinks, hence the more civilized
and democratic a society is the more choices people have. - It’s basically a matter of respect, if a
woman chooses to wear it then we should respect that, we can’t force her not to wear it, as we can’t
force her to wear it: free will :) , on the other hand that woman should respect and obey all the
security issues that comes along with wearing it.

high effectiveness
(5)

The point of daylight savings is to make our numeric time cycle fit with the Sun’s time cycle.
In other words, standardize the time of day in which the sun is shining. This way, people and
businesses can keep their operating hours steady without working in the dark, and less electricity is
used. Most arguments I’ve heard against it pertain to the inconvenience of changing clocks and
accounting for gained/lost hour, but with most clocks being digital and synced up to DST nowadays,
that’s becoming less and less of a problem. And besides, one day of inconvenience in exchange for
a whole season of "correct" daylight seems like a pretty good deal to me.

high reasonableness
(5)

I believe property is a social construct that is only justified through appeals to utility. In other words,
any particular set of property laws are only justified insofar as they make people better off, in terms
of their capabilities. Most Libertarians I’ve debated with either believe property rights are somehow
fundamental(natural or God-given) or develop out of other moral principles, like the NAP. The first
option appeals to non-existent entities. The second is circular, as what NAPer’s define as aggression
is violation of property rights, and violations of property rights is defined in terms of the NAP.

high overall (5)

Table 15: Examples for each Quality Dimension in GAQ

example dimension Dataset

A basic principle of punishment is that it should be proportional to the crime, and
therefore capital punishment is the only legitimate response to a crime such as
first degree murder.

high quality
(1.0)

IBM-Rank-30-
k

When voters are able to make an impact and change their votes more often they
will feel more engaged with the political process, and get more involved in politics.

high impact Kialo

First a prediction is made from an hypothesis of some observation that must be
true if the hypothesis is correct.

high clarity
(1.0)

SwanRank

Table 16: Examples for each Quality Dimension in SwanRank, Kialo and IBM-rank-30-k
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Abstract

Probing strategies have been shown to detect
the presence of various linguistic features in
large language models; in particular, seman-
tic features intermediate to the “natural logic"
fragment of the Natural Language Inference
task (NLI). In the case of natural logic, the rela-
tion between the intermediate features and the
entailment label is explicitly known: as such,
this provides a ripe setting for interventional
studies on the NLI models’ representations, al-
lowing for stronger causal conjectures and a
deeper critical analysis of interventional prob-
ing methods. In this work, we carry out new
and existing representation-level interventions
to investigate the effect of these semantic fea-
tures on NLI classification: we perform am-
nesic probing (which removes features as di-
rected by learned linear probes) and introduce
the mnestic probing variation (which forgets
all dimensions except the probe-selected ones).
Furthermore, we delve into the limitations of
these methods and outline some pitfalls have
been obscuring the effectivity of interventional
probing studies.

1 Introduction

The probing paradigm has emerged as a useful in-
terpretability methodology which has been shown
to have reasonable information-theoretic underpin-
nings (Pimentel et al., 2020; Voita and Titov, 2020;
Zhu and Rudzicz, 2020), indicating whether a given
feature is captured in the intermediate vector rep-
resentations of neural models. It has been noted
many times that this does not generally imply that
the models are using these learnt features, and they
may represent vestigial information from earlier
training steps (Ravichander et al., 2021; Elazar
et al., 2020).

Only through interventional analyses can we
start to make claims about which modelled fea-
tures are used for a given downstream task: this
is the aim of works such as Elazar et al. (2020);
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Figure 1: Workflow for interventional probing for NLP
classification models: a basis for both the amnesic and
mnestic intervention strategies.

Giulianelli et al. (2018) and Geiger et al. (2021).
We refer to the case where the interventions are
guided by trained probes as interventional probing.

It has been suggested in Elazar et al. (2020) (as
the guidance for their amnesic probing methodol-
ogy) that if features are strongly detected by probes,
one may use debiasing methods such as iterative
nullspace projection (INLP) (Ravfogel et al., 2020)
to intervene on the corresponding vector representa-
tions and effectively “remove" the features before
re-insertion into the given classifier. Investigat-
ing the effect of these intervention operations on
the classifier performance could allow for stronger
causal claims about the role of the probe-detected
features.

In this work, we delve deeper into the amnesic
probing methodology with an NLI case study and
identify two key limitations. Firstly, there is an
issue of dimensionality: when the number of di-
mensions is high and the number of auxiliary fea-
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ture classes is low, it seems that amnesic probing
is not sufficiently informative. In particular, we
cannot rely on the same control baselines to reach
the kind of conclusions discussed in (Elazar et al.,
2020), as nulling out small numbers of random
directions consistently has no impact on the down-
stream performance. Secondly, in the linguistic
settings explored in Elazar et al. (2020), we do
not have expectations for exactly how or even if
the explored features should be affecting the down-
stream task. This makes it difficult to explore the
effectivity of the methodology itself.

To this end, we propose the use of a controlled
subset of NLI called natural logic (MacCartney
and Manning, 2007). In this setting, the interme-
diate linguistic features of context montonicity and
lexical relations are already known to be highly
extractable from certain NLI models’ hidden lay-
ers (Rozanova et al., 2021b), allowing us a certain
amount of understanding and control of these fea-
tures’ representations in the latent space. Using
the deterministic and well-understood nature of the
problem space where we have concrete expecta-
tions about the theoretical interaction between the
intermediate features and the downstream label, we
may critically analyse the effectivity of interven-
tional probing.

Through the application of probe-based interven-
tions in this setting, we show that blindly applying
the amnesic probing argument structure leads to
unexpected and contradictory conclusions: the two
features which the final label is known to depend
on are shown to have no influence on the final clas-
sification (both jointly and independently). This
further calls into question the suitability of these
methods for situations where a small number of
feature label classes and high dimensionality of
representations is concerned. Even more perplex-
ingly, when we treat the NLI gold label itself as an
intermediate feature which can be nulled out with
INLP, we yet again observe almost no change to
the NLI performance. As such, the feature removal
strategy appears ineffective here: we attribute this
to the disproportionate size of probe-selected fea-
ture subspaces to the very high-dimensional repre-
sentations.

In response, we introduce and study a variation
which we call mnestic probing, which we show to
be more informative in the high-dimensional, low-
class-count setting: the core idea is to keep only
the directions identified by the iteratively trained

probes. This allows us to analyse much lower di-
mension subspaces, while making better use of
the outputs of the INLP strategy used in amnesic
probing.

We find that mnestic probing leads to more in-
formative observations which are a) in line with
expected behaviour for natural logic, and b) yield
results which seem to better discriminate between
model behaviours.

In summary, the contributions of the paper are
as follows:

1. We propose the setting of natural logic to be
ripe territory for exploration of interventional
probing strategies.

2. We note two limitations of the amnesic prob-
ing methodology, demonstrating both dimen-
sionality limitations for the control baselines
4.4 and contradictory behaviour in the NLI
setting 4.2 (namely that that the expected ef-
fects of semantic features on the downstream
NLI task are notably absent).

3. Building upon previous interventional
methodologies, we introduce an additional
mnestic intervention operation which uses the
outputs of the INLP process in the opposite
way.

4. We contrast the mnestic probing strategy with
the amnesic probing results, and demonstrate
it presents more informative results which are
aligned with the constructed expectations in
our high dimensional, low label class count
setting.

2 Interventional Probing

We may summarise the general setup of interven-
tional probing as follows: suppose we start with
a classification model that may be decomposed as
f ◦ g : X → Rn, where g is an encoder module
which yields a representation which serves as an
input to the classifier head f , and n is the number
of output classes of the final classifier. We aim
to intervene on the output of g and observe the
change in the performance of f (usually in com-
parison with some kind of random control baseline
intervention).

Linear probes (also known as diagnostic clas-
sifiers) are able to identify subspaces in which a
given intermediate feature set is found to be repre-
sented. These may be used as a guide for vector-
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level interventions on the representation space; we
are specifically concerned with interventions which
are vector projections. Otherwise, The exact nature
of this intervention is interchangeable. We consider
two projection strategies in particular: the amnesic
intervention introduced in Elazar et al. (2020) (de-
scribed further in section 2.2) and our mnestic vari-
ation which uses the same INLP technique (section
2.3).

2.1 What Should it Tell Us?
The interventional probing steps are performed on
exactly the representation that would have been an
input to the classifier head f . We may re-insert the
intervened representations and re-calculate the clas-
sifier accuracy (note that the iterative projections
in sections 2.2 and 2.3 maintain the original dimen-
sionality of the vector set but reduce the rank).

We are looking to see if the downstream perfor-
mance of the classifier f drops. If it does, the inter-
ventions have removed information that was neces-
sary for successful classification. However, as any
projection would remove some information, these
results must be viewed in the context of a control
intervention: if the INLP process ends up removing
n directions, a sample of n randomly chosen direc-
tions is selected from the original representation,
Elazar et al. (2020) argue that if the amnesic down-
stream performance drops significantly more than
the random removal control performance, we may
conclude that the features were necessary for the
final downstream classification. On the other hand,
if the performance does not drop at all, the features
were not useful for the classifier in the first place.
In the ensuing sections and results, we demonstrate
that this is not necessarily a valid conclusion.

2.2 The Amnesic Intervention
We follow the procedure in (Elazar et al., 2020) (in
turn based on iterative nullspace projection (Rav-
fogel et al., 2020)): given a set X of encoded rep-
resentations for the textual input (with dimensions
num_examples × embedding_dimension),
we iteratively train linear SVM classifiers accord-
ing to a set of auxiliary feature labels. For each
INLP step i, This yields a linear transformation
WiX + B, where the vectors of Wi define direc-
tions onto which the probe projects the representa-
tions for auxiliary label classification (i.e., these are
the chosen directions most aligned with auxiliary
class separation). For each step i, an orthogonal
basis denoted Ri is found for this rowspace. The

projection to the intersection of the nullspaces is
given by a matrix

PX = (I − (R0 + ...+Rn))X.

The matrix product PX is a matrix in the original
dimensions of X , but with reduced rank by the
number of iteration steps (as each projection "flat-
tens out" the representation in these directions).

Projection to the intersection of nullspaces is
thus the removal of any information pertaining to
the auxiliary feature labels (or at least, the infor-
mation which allows high performance for a linear
probe). The training terminates these auxiliary task
classifiers start consistently performing at the ma-
jority class baseline, indicating that there is no fur-
ther linearly information to be extracted from the
remaining representation. As such, the resulting
representation is treated as an altered representation
where this feature is removed or forgotten.

2.3 A Variation: The Mnestic Intervention
Elazar et al. (2020) perform a series of experi-
ments on various linguistic features which had pre-
viously been shown to be well-captured in language
model representations and use the amnesic prob-
ing methodology to distinguish between features
that are used by the model and those that are not
by comparing post-intervention downstream task
performance to a baseline of randomly removed
directions.

Rather than projecting the embedded representa-
tions to the intersection of nullspaces of the trained
probes (removing the target property), we project
them to the union of the rowspaces with the trans-
formation:

(I − P )X = (I − (I − (R0 + . . .+Rn)))X

= (R0 + . . .+Rn)X

This has the opposite effect: we use projection to
null out everything except the directions identified
by the probes as indicative of the target feature. As
such, we "remember" only that feature rather than
forgetting it.

3 Experimental Setup

In this study, we use interventional methods 1

to study the internal behaviour of NLI models.
1We reuse much of the code included with (Elazar et al.,

2020), but we include our data and reproducible experimen-
tal code at https://github.com/juliarozanova/
mnestic_probing.
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We compare amnesic and mnestic variations of
the INLP strategy, evaluating intermediate feature
probing performance and downstream NLI perfor-
mance after every step of the intervention process.

For each auxiliary feature label and and model,
we perform the interventional probing as outlined
in figure 1.

3.1 Dataset

Our setting for this study is a fragment of NLI
called Natural Logic (MacCartney and Manning,
2007). In particular, we focus on single-step nat-
ural logic inferences in which entailment exam-
ples are generated by replacing a noun phrase in a
sentence with a hyponym, hypernym or unrelated
noun phrase. The context of the substituted term
is either upward or downward monotone, as de-
termined by the composition of negation markers,
generalized quantifiers or determiners present in
the context. The entailment label of the example
is a consequence of this feature and the lexical
relation between the substituted terms.

Context Monotonicity Lexical Relation

Entailment Label

Figure 2

We use the NLI_XY dataset from (Rozanova
et al., 2021b,a). By construction, the NLI_XY
dataset consists of NLI examples which rely on
exactly these two abstract features: context mono-
tonicity and the lexical relation of the substituted
terms.

We perform two flavours of probe-based inter-
ventions (described fully in section 2) with four
feature label sets (described next).

Auxiliary Feature Labels We begin with the two
relevant intermediate features (respectively, con-
text monotonicity and lexical relation) which are
already known to correlate with stronger perfor-
mance on the downstream NLI_XY task (Rozanova
et al., 2021b). We will refer to this as single-feature
interventional probing, as the probing and inter-
vention steps are only applied to one feature set
at a time. Next, we combine the two features in
a cross product, creating a new feature label set
with all possible combinations of these interme-
diate features (in the dataset, they are completely
independent variables by construction (Rozanova

et al., 2021a)). We refer to this as the composite
feature label.

Lastly, we also consider the entailment label
itself (the downstream task label) as an input to
the interventional probing process. The latter is
particularly useful as a diagnostic sanity check,
and aids the critical nature of our findings.

3.2 NLI Models and Encoding
We compare a selection of BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) models
trained for NLI classification. Firstly, we include
a pair of models trained respectively on the MNLI
(Williams et al., 2018) and SNLI (Bowman et al.,
2015) benchmark datasets. In (Rozanova et al.,
2021b) and (Rozanova et al., 2021a), it is shown
that when roberta-large-mnli (a model which
performs well on benchmarks but poorly on the
targeted NLI_XY challenge set) receives addi-
tional training on the adversarial HELP dataset
(Yanaka et al., 2019) it improves in NLI_XY per-
formance and begins to show high probing per-
formance for the relevant intermediate features,
context monotonicity and lexical relations: this
is the necessary precondition for doing interven-
tional probing. We include two of their models with
this property: roberta-large-mnli-help and
roberta-large-mnli-double-finetuning, with
the other models included for a contextual compar-
ison.

We perform probing and intervention on the final
representation that precedes the NLI classification
head: in the case of BERT and RoBERTa, this is the
[CLS] token of the final layer.

The initial input is a tokenized NLI exam-
ple from the NLI_XY dataset. The findings in
(Rozanova et al., 2021b) show that the intermedi-
ate feature labels (context monotonicity and lexical
relations) are detectable in the concatenated tokens
of the substituted noun phrases: however, for in-
terventional purposes, we perform the probing and
intervention steps on the [CLS] token which serves
as an input to the NLI classifier head: we have
found that the same features are detectable to a
comparable standard, and this is the only position
at which we are able to make a sensible interven-
tion that would allow conclusions about the final
classifier head only.

3.3 Evaluation
The significant metrics for these interventional
probing paradims are the probing accuracy before
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and after the iterative nullspace projection steps (a
decline to random performance indicates the fea-
ture is being “removed" from the representation in
the sense that it is no longer detectable by linear
probes) and the downstream classification accu-
racy on the NLI task the model’s were trained for
(in our case, we report the accuracy on the NLI_XY
task).

For amnesic probing, we report the performance
deltas for both the probing and downstream tasks.
However, for mnestic probing, a slightly more nu-
anced and qualitative view is helpful: it can be
assumed that eventually mnestic probing will reach
comparable performance to the untouched vector
representations, but we are interested in the com-
parative rates at which this happens. As the inter-
ventions are iterative, we may feed the intervened
representations into the classifier head at each step
of the intervention process - we use this to provide
a step-wise presentation of results in linear plots in
figure 5.

While the tabulated deltas in table 1 results are
sufficient to present our observations on amnesic
probing, for comparison we also include the step-
wise graphical presentations in the appendix.

4 Results and Discussion

4.1 Single Feature Amnesic Probing

The results for the standard amnesic probing pro-
cedure are in table 1. In particular, the single fea-
ture results are in the rows with features labelled
insertion relation and context monotonicity. The
amnesic operation is successful - the respective
probing accuracies approach and reach the major-
ity class baseline.

We also include the step-wise plots of both prob-
ing performance and downstream NLI task per-
formance: we single out the case of the insertion
relation label in figures 3 and 4, but include the
full suite of expanded plots for each feature in the
appendix. The length of the iterative amnesic prob-
ing process is indicative of the number of dimen-
sions removed to reach this baseline: it can also
be considered a proxy for the strength of the fea-
ture presence in the representations, or rather, the
dimension of the semantic subspace corresponding
to the target features.

The second phase of this process, i.e. the resub-
stitution of the modified representations as inputs
to the NLI classifier head, can be seen in the right
hand portion of table 1, labelled NLI-XY Perfor-

Figure 3: Step-wise probing performance throughout
the amnesic probing process: a decrease towards the
random baseline accuracy (roughly 0.3 for this 3-class
task) indicates the feature is less and less extractable
from the remaining representations as the iterative pro-
cess continues.

Figure 4: Downstream performance on NLI_XY after
amnesic intervention (removing lexical relation infor-
mation). For such an important feature to the end-task,
we would expect to see a drop: but we don’t!

mance. The result is unexpected: for each of these
features, the downstream task performance appears
to be unaffected after their removal. This is surpris-
ing when the dataset is explicitly controlled to rely
only on these two features.

4.2 Multi Feature Amnesic Probing

The results for the amnesic probing procedure uti-
lizing both auxiliary feature label sets and the en-
tailment gold label are in the rows of table 1 with
labels composite and entailment label respectively.
We observe that once again, the downstream task
performance is mostly unaffected. Unlike the un-
expected result in the previous section, it’s difficult
to argue away the fact that this is somewhat con-
tradictory: while single feature removal may be
subject to some confounding bias, the removal of
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Probing Performance NLI-XY Performance
Model Feature Start Intervention ∆ Start Intervention ∆

roberta-large-mnli-help insertion relation 80.58 -40.35 79.79 0.06
context monotonicity 87.65 -46.22 79.79 -0.09
composite 64.48 -43.95 79.79 0.32
entailment label 78.05 -37.49 79.79 -1.57

roberta-large-mnli-double-finetuning insertion relation 62.7 -36.49 80.04 0.11
context monotonicity 89.79 -43.28 80.19 0
composite 57.64 -49.56 80.08 -1.67
entailment label 82.8 -24.94 80.19 -16.53

roberta-large-mnli insertion relation 80.39 -45.59 57.22 8.99
context monotonicity 75.44 -27.49 57.37 -0.43
composite 72.35 -53.51 57.24 -2.27
entailment label 73.6 -15.31 57.37 0.1

bert-base-uncased-snli-help insertion relation 59.53 -19.1 45.95 0.28
context monotonicity 82.72 -33.94 45.52 -2.35
composite 37.19 -17.08 45.76 13.68
entailment label 47.05 0.38 45.91 0

bert-base-uncased-snli insertion relation 60.26 -35.14 48.99 1.05
context monotonicity 81.09 -30.77 49.42 -6.25
composite 35.37 -17.83 50.73 7.45
entailment label 42.44 -0.24 49.42 0

Table 1: Amnesic probing performance deltas across models and target feature labels: first listed is the performance
on the probing task with respect to the indicated feature, and then the accuracy on the downstream NLI-XY task.
We note the results pre-intervention and the ensuing change in accuracy.

both features exhausts the variables on which this
classification depends. This is highly unexpected,
and suggests a point of failure for the amnesic prob-
ing process. Naturally, we cannot be without doubt
that despite all our best efforts to work with a con-
trolled dataset that relies only on these two know
(but still complex) features, a model may yet find
unrelated heuristics to exploit that may correlate
so strongly with the downstream task label that it
may perform well without representing and using
these intermediate features. However, we imagine
this to be a rather low probability scenario to be
that the model simultaneously learns such heuris-
tics but simultaneously learn representations that
create strong clusters for the known intermediate
features without using them at all. The models
which we have observed to perform more less well
on NLI-XY (such as roberta-large-mnli) are indeed
estimated to be using sub-par heuristics, but this
also comes with poor probing results for the inter-
mediate features - naturally, this in itself does not
imply anything conclusive, but certainly adds to
our convictions.

On a seprate note, it is noted in Elazar et al.
(2020) that there is no control for the number of
dimensions removed, while there is a clear correla-
tion between downstream task performance and the
number of label classes (and thus removed probe

directions) are in play. Our feature sets have only 2
and 3 classes respectively. In the most analagous
result in (Elazar et al., 2020) where the auxiliary
features had very few classes and no change on
the downstream performance was observed, it was
concluded that the features must have no effect on
the outcome. It is very likely that too little informa-
tion is being removed in this process to observe any
impact on the downstream task performance. This
could potentially be pointing to high redundancy in
the representations which the amnesic intervention
may struggle to remove appropriately.

4.3 Mnestic Probing

Given the possible dimensionality problem, the al-
ternative method of mnestic probing seems promis-
ing: after the mnestic intervention, many dimen-
sions are removed and few remain, so it appears
to be a ripe setting for observing and comparing
effects on downstream NLI accuracy at a finer gran-
ularity. The results for NLI-XY task accuracy after
the mnestic probing procedure are presented as
step-wise plots in figure 5. There is a clear increase
in NLI performance with subsequent addition of
probe-chosen directions to the representations, es-
pecially viewed in the context of section 4.4, where
we compare the performance to random choices
of included directions. In the latter, performance
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(a) Context Monotonicity Label (b) Lexical Relation Label

(c) Composite Label (d) Gold Label

Figure 5: Downstream NLI Task Performance After Mnestic Interventions

varies randomly rather than presenting a structured
increase as seen here.

We observe that the composite label and the gold
entailment label are reflected in line with expecta-
tions in the mnestic probing experiments: the inclu-
sion of the probe-selected dimensions with respect
to these labels introduces a sharp and immediate
increase in the NLI classifier performance. This
is significantly steeper than the baseline increase
observed in random addition of representation di-
rections. Similarly, the increase is nearly as sharp
for the lexical relation label. However, although
an increase is observed during the iterative mnestic
probing intervention for context montonicity, this
increase is not at a dramatically higher rate than
adding subsequently more directions from the orig-
inal representation. For monotonicity specifically,
this is not enough to conclude that the feature (or
at least, the corresponding probe-selected dimen-
sions) are critical to the final classifier.

Nevertheless, we have been able to make clearer
observations than were possible in the amnesic
probing setting.

4.4 Control Comparison

Figure 6: Amnesic control experiment: Downstream
NLI accuracy upon the removal of n random directions
of the original representation.

We contextualise all the preceding results with a
set of control experiments both for amnesic (figure
6) and mnestic (figure 7) probing. Note in partic-
ular that even with very few random dimensions
kept, downstream performance starts approaching
comparable levels to the full representations. As
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Figure 7: Mnestic control experiment: downstream NLI
accuracy upon the selection of n random directions of
the original representation.

such, a single random baseline as in Elazar et al.
(2020) can be misleading: there is enough variabil-
ity in the random direction results so as to allow
for a false claim of feature irrelevance by simply
getting lucky; as few as 3 dimensions can perform
at the original model’s performance level or arbi-
trarily lower.

Lastly, we compare to the mnestic probing re-
sults in figure 5: with the probe-selected mnestic
dimension choices, the increase in downstream per-
formance does seem to happen faster and in a more
consistent fashion, while the selection of n ran-
domly chosen directions introduces very haphaz-
ard performance spikes. This suggests the probe-
selected dimensions are consistently adding to the
model’s access to the relevant information, amd
this may be stronger evidence for the usefulness of
the examined features for the final classification.

5 Related Work

The use of probing as an interpretability strategy
dates back as far as works such as Alain and Bengio
(2018) and (Conneau et al., 2018), but a core set of
work on the detailed development of the method-
ology includes Hewitt and Liang (2019); Belinkov
and Glass (2019); Voita and Titov (2020); Pimentel
et al. (2020). For a full survey, see Belinkov (2022).

The application of probing strategies to natural
logic components has been explored in Rozanova
et al. (2021b) and Geiger et al. (2020). In Rozanova
et al. (2021b), probing experiments have proven
effective in detecting the presence or absence of
features such as context monotonicity and phrase-
pair relations in the internal representations of NLI
models.

Regarding interventions as interpretability tools
for machine learning classifiers, there are two broad
categories: those that modify the raw input (such
as image or text) in a controlled way, and those that
modify the hidden/latent vector representations of
the data at various stages of the models’ input pro-
cessing. While input-level interventions are more
common as they are usually easier to control and
are strongly interpretable, they don’t allow us to
explore and conjecture about exact high-level rep-
resentational mechanisms in the latent space. We
tabulate a few relevant interventional interpretabil-
ity methods in table 2. Note in particular the varia-
tion in the generation step for the intervened input;
some use generative modelling for counterfactual
examples, while we use cheaper linear probes.

The only other work in which interventional
methods have been applied to natural logic is
Geiger et al. (2021): a similar problem setting is
considered, but at a finer granularity. Our work
focuses more on the summarised abstract notion
of context monotonicity as a single feature, rather
than the intermediate tree nodes that determine its
final monotonicity profile. The interventions used
in this work are vector interchange interventions;
partial representations from transformed inputs are
used, as opposed to direct manipulations of the
encoded vectors.

6 Conclusion and Future Work

Our expiremental setting has shown significant lim-
itations of amnesic probing in high-dimensional
settings where there are few label classes (and con-
sequently fewer dimension modified), even if these
classes are strongly detectable. Our results point
out that it is misguided to concluded that a given
feature is not used when post-amnesic-intervention
downstream performance fails to drop, especially
in our example amnesic probing studies of a) the
gold donwstream feature label and b) the compos-
ite of two labels that jointly determine the entail-
ment label. This may be due to a dimension/rank
confounder variable and high redundancy of in-
formation in the representations. It remains to be
checked whether high performance in the random
control directions corresponds to strong alignment
with these probe-selected directions: we propose
an analysis of the dot products with the fixed set
of probe-selected dimensions, which indicates a
shared directionality measure (0 for orthogonal vec-
tors and 1 for codirectional ones).
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Intervention Tested Effect Feature Characterisation
Requires Intermediate
Labels

Intervention Linked to
Concept Interpretation

Domain

Amnesic Probing / INLP (Elazar et al., 2020) Debiasing / Feature Removal Downstream Classifier Accuracy Linear Classifier Yes No Language Modelling

CausaLM: Causal Model Explanation
Through Counterfactual Language Models

(Feder et al., 2021)
Re-Training Model Copy
For Counterfactual Representation

Text representation-based individual
treatment effect (TReITE)

Retrained Base
Model

Yes Yes Sentiment Analysis

Explaining Classifiers
with Causal Concept Effect

(Goyal et al., 2019) Generative Modeling Average Causal Effect Measure VAE Yes Yes Vision Classification

Concept Activation Vectors (TCAV) (Kim et al., 2018) Value Shift in Vector Direction Custom Gradient Sensitivity Measure Linear Classifier Yes Yes Vision Classification

Latent Space Explanation (Gat et al., 2021)
by Intervention

VAE Input Discretization
and Reconstruction

Reconstruction Quality VAE No
Qualitative Judgement
(Vision Only)

Vision Classification

Meaningfully Debugging Model Mistakes
Using Conceptual Counterfactuals

(Abid et al., 2022)
Weighted Combination of
Concept Vectors

Difference Between Concept
Addition and Removal Effect

Linear Classifier Yes Yes Vision Classification

Table 2: Related Work on Latent Concept Interventions

In summary: we have introduced a modification
of the amnesic probing paradigm which we call
mnestic probing which uses the same INLP pro-
cess but considers the opposite intervention: using
the union of projection rowspaces to keep only the
directions the probes have identified to be mod-
elling the target information. This strategy presents
results that are more aligned with theoretical ex-
pectations (in the NLI case), possibly because we
are now able to make comparisons in a lower rank
setting.

7 Limitations

A key limitation of the mnestic probing strategy is
that as one reconstructs the original representation
one dimension at a time, information content is
naturally due to increase: as such, no mnestic prob-
ing result can be viewed in isolation, but should be
used as a comparative study. Preferably, various
randomized selections of linear subspaces with the
same number of dimensions should be included as
baselines input representations. Furthermore, we
mention two some additional caveats: firstly, the
probing strategies used here to identify the infor-
mative semantic subspaces in question are always
linear; relevant information may be present non-
linearly. However, as with amnesic probing, we
discount any non-linearly encoded information as
the final model classifcation layer is linear and thus
cannot exploit this information. Lastly, probing for
subspaces which are informative of target auxiliary
features may always include correlated features in
the resulting subspaces; this must always be taken
into account when drawing conclusions from mnes-
tic/amnesic probing.
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(a) Lexical Relation Probing Performance During Iterative
Amnesic Intervention Process

(b) Downstream Performance On NLI_XY After Amnesic
Intervention (Removing Lexical Relation Information)

(c) Context Monotonicity Probing Performance During Itera-
tive Amnesic Intervention Process

(d) Downstream Performance On NLI_XY After Amnesic
Intervention (Removing Context Monotonicity Information)

Figure 8: Single Feature Amnesic Probing

(a) Probing Performance On NLI_XY After Composite Label
Amnesic Intervention

(b) Downstream Performance On NLI_XY After Composite
Label Amnesic Intervention

Figure 9: Composite Feature Label Amnesic Probing
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(a) Probing performance On NLI_XY after entailment label
amnesic intervention.

(b) Downstream performance on NLI_XY after entailment
label amnesic intervention.

Figure 10: Sanity Check: Entailment Gold Label Amnesic Probing
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Abstract

Answering complex reasoning questions from
chart images is a challenging problem requir-
ing a combination of natural language under-
standing, fine-grained perception, and analyt-
ical reasoning. Current chart based Question
Answering (QA) approaches largely address
structural, visual or simple data retrieval type
questions with fixed-vocabulary answers and
perform poorly on reasoning queries. We fo-
cus on answering realistic, complex, reasoning-
based questions where the answer needs to be
computed and not selected from a fixed set of
choices. Our approach employs a neural seman-
tic parser to transform Natural Language (NL)
questions into SQL programs and execute them
on a standardized schema populated from the
extracted chart contents. In the absence of pro-
gram annotations, i.e., in a weak supervision
setting, we obtain initial SQL predictions from
a pre-trained CodeT5 semantic parser and em-
ploy Filtered Iterative Back-Translation (FIBT)
for iteratively augmenting our NL-SQL train-
ing set. The forward (neural semantic parser)
and backward (language model) models are
initially trained with an external NL-SQL boot-
strapping data. We iteratively move towards
the required NL query distribution by gener-
ating NL questions from the synthesized SQL
programs using a Probabilistic Context-Free
Grammar (PCFG) where the production rule
probabilities are induced to be inversely propor-
tional to the probabilities in the training data.
We filter out the generated NL queries with mis-
matched structure and compositions. Our FIBT
approach achieves State-of-the-Art (SOTA) re-
sults on reasoning-based queries in the PlotQA
dataset yielding a test accuracy of 60.44%, su-
perseding the previous baselines by a large mar-
gin.

1 Introduction

Charts and plots are compact visualization tech-
niques capturing illustrated facts that are frequently
used in scientific and financial documents for sum-

(a) Dot Chart (b) Horizontal Bar Chart

(c) Vertical Bar Chart (d) Line Chart

Figure 1: PlotQA Chart Types

marizing observations and drawing conclusions
about the underlying data. Inferring relevant con-
clusions from charts entails answering complex
reasoning style queries, a task which has so far
proved challenging to automate. Most existing ap-
proaches and datasets for automatic QA over charts
specifically focus on structural, visual, relational or
simple data retrieval type queries (Chaudhry et al.,
2020; Siegel et al., 2016; Kim et al., 2020). Also,
as depicted in Table 1 many approaches assume ei-
ther binary answers or assume the answer belongs
to a fixed vocabulary.

On the other hand, for real world applications,
more complex reasoning based questions have to
be answered which involves a combination of per-
ception, language understanding, and reasoning.
For example, to answer the question depicted in
Table 1, for the chart (d) in Figure 1, the following
steps have to be followed: (i) Refer to the legend to
infer that the ‘percentage of firms offering quality
certification’ are depicted by the solid sky blue line,
(ii) For each year value on the X-axis, retrieve the
corresponding Y-values depicted by the solid sky
blue line, (iii) If the value of corresponding year
y is V (y), then find if ∀yi and yj , where i ̸= j,
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if yi > yj then V (yi) >= V (yj), to determine if
the values are monotonically increasing. In this
work, we address such complex reasoning style
questions on charts. These questions may also
involve nested arithmetic and aggregation opera-
tions over the chart data and thus the answer is
not necessarily derived from a fixed vocabulary,
or extracted from the chart text. We evaluate our
approach against the reasoning questions provided
in the PlotQA V2 dataset (Methani et al., 2020).

We define a common schema for the data across
all chart types and employ a state-of-the-art chart
visual extractor to populate the schema with chart
data. The PlotQA dataset does not provide any
SQL program annotations for the Natural Language
(NL) questions (only answers). We automatically
generate SQL programs for these NL questions by
using a Filtered Iterative Back-Translation (FIBT)
approach (Hoang et al., 2018) and execute these
programs on the extracted schema to compute the
answers. We use the SPIDER (NL to SQL) dataset
to train both the forward and backward models for
FIBT. The NL query distribution of this dataset
is different from the required PlotQA query dis-
tribution, in terms of query composition, schema
(database) structure and chart domains. We build
on the observations of (Guo et al., 2020), who em-
pirically show that Iterative Back Translation (IBT)
improves the performance of compositional gen-
eralization while generating logical forms from
NL questions by correcting errors in the pseudo-
parallel data at each iteration.

We define a Probabilistic Context-Free Gram-
mar (PCFG), as a subset of the SQL grammar, to
sample SQL programs executable on the extracted
chart schema. Existing PCFG based data augmen-
tation approaches for semantic parsing (Wang et al.,
2021b), synthesize SQLs following similar com-
positions to that of a given query set by inducing
proportional grammar probabilities. Our approach
differs from these as we set the probabilities of our
PCFG to be inversely proportional to the set-of pro-
grams in the training data. This results in synthesis
of SQL programs that (i) were not present in the
current training data and (ii) follow the program
distribution of the SQL programs needed to com-
pute the answers for the PlotQA questions. We
iteratively augment the training data by generat-
ing NL questions from SQL programs. We further
use denotations and a novel compositional simi-
larity based filtration strategy for removing noisy

NL-SQL pairs. We observe that this data augmen-
tation and filtration strategy results in improvement
in the PlotQA execution accuracy for every iter-
ation of FIBT, finally achieving State-of-the-Art
performance on the reasoning-based queries for the
PlotQA dataset with a 60.44% test set accuracy, su-
perseding the previous baseline (14.82%) (Methani
et al., 2020) by a large marginand even surpassing
human performance. The ChartQA model(Masry
et al., 2022) showed that the T5 language model
offers the best overall performance for the ques-
tions in PlotQA. We demonstrate that our approach
surpasses T5 for complex reasoning type of ques-
tions in PlotQA with OOV answers. The main
contributions of this work are:

• To the best of our knowledge, ours is the first ap-
proach to effectively address reasoning style NL
questions over charts whose answers are com-
puted and not restricted to a fixed vocabulary.

• In absence of program annotations, we propose a
weakly supervised FIBT approach for SQL syn-
thesis with novel data augmentation and filtra-
tion strategies to adapt the Neural Parser to more
closely follow target NL-Question distribution.

• Our approach allows us to achieve State-of-the-
Art results on PlotQA reasoning-based questions
with a 60.44% test set accuracy, superseding the
previous baseline (14.82%) by a large marginand
even surpassing human performance (58.70%).

• As opposed to existing end-to-end approaches
(Singh and Shekhar, 2020; Kafle et al., 2020;
Chaudhry et al., 2020) , our approach is more
interpretable as we can track reasoning patterns
in the synthesized programs via the generated
programs.

2 Related Work

2.1 Datasets for Chart Q&A

Chart QA datasets such as DVQA (Kafle et al.,
2018) or FVQA (Kahou et al., 2017) are syntheti-
cally generated with limited variations, containing
simple binary or fixed-vocabulary questions. To
avoid these biases, Leaf-QA (Chaudhry et al., 2020)
and PlotQA (Methani et al., 2020) datasets are con-
structed from open real-world sources from World
Bank, Government, Global Terrorism Database,
etc.Questions in these datasets are in English and
are templatized but paraphrased to prevent models
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NL Questions (a) Dot Chart (b) Horizontal Bar (c) Vertical Bar (d) Line Chart

Structural Is the number of dotlines equal to
the number of legend labels? (Y/N)

How many groups of bars are
there? (Fixed)

Does the graph contain any
zero values? (Y/N)

Does the graph contain
grids? (Y/N)

Retrieval What is the amount collected as tax
on revenue in 2005? (Open)

What is the label of the 4th group
of bars from the top? (Chart)

What is the label or title of
the Y-axis? (Chart)

What is the title of the
graph? (Chart)

Reasoning

Is the difference between the amount
collected as tax on goods in 2003 and
2007 greater than the difference
between the amount collected as tax
on exports in 2003 and 2007? (Y/N)

What is the difference between
the highest and the second
highest percentage of amount
spent on other expenses? (Open)

Do a majority of the years
between 2008 and 2011
(inclusive) have cost of
communications and computer
greater than 10? (Y/N)

Does the percentage of firms
offering quality certification
monotonically increase over
the years? (Y/N)

Table 1: PlotQA Questions for Charts in Figure 1, Answer Types: Yes/No, Fixed, Chart or Open Vocabulary

Data Images Questions
Split Total R* Total Reasoning R*
Train 157,070 12,934 20,249,479 16,593,656 69,000
Valid 33,650 3,110 4,360,648 3,574,081 13,740
Test 33,657 - 4,342,514 3,559,392 -
Total 224,377 16,044 28,952,641 23,727,129 82,740

Table 2: PlotQA V2 Dataset Statistics. R*: Representa-
tive images (crep) and questions (qrep) used for FIBT

from memorizing the templates. Both datasets have
a significant proportion of analytical reasoning
queries, however the PlotQA dataset has 81.95%
complex value-based queries, requiring stronger
numerical and analytical reasoning capabilities
(Chaudhry et al., 2020). Also 80.84% PlotQA
queries have answers from an open vocabulary.
Moreover, ∼82% of questions in PlotQA are rea-
soning based, as opposed to the recently introduced
CharQA dataset (Masry et al., 2022), which has
only 43% (compositional) reasoning based ques-
tions. Since our main focus is on answering com-
plex questions requiring numerical and analytical
reasoning, we use the reasoning based questions in
the extended version (V2) of the publicly available
PlotQA dataset (Table 2) to evaluate our approach.

2.2 Chart Q&A Approaches

Existing end-to-end approaches use deep models
to combine image and question features at various
levels of granularity (Kafle et al., 2020). A recent
approach(Chaudhry et al., 2020) fuses the chart
entities extracted using a Masked RCNN and the
NL question using spatial attention to predict the
answer. (Singh and Shekhar, 2020) use a structural
transformer-based learning that takes the question
encoding as input and uses the feature maps of the
chart’s visual elements, with its localization infor-
mation used as positional encodings. These ap-
proaches provide results on previously mentioned
FVQA, DVQA, and LeafQA datasets on relatively
simpler queries. Recently, (Masry et al., 2022;
Masry and Hoque, 2021) published benchmarks for
chart QA using several end-to-end approaches in-
cluding, VL-T5 (Cho et al., 2021), TAPAS (Herzig

et al., 2020) and VisionTaPas, which is an extension
of TAPAS (Masry et al., 2022) and T5 (Raffel et al.,
2019). TAPAS is able to address very simple ag-
gregation type queries and cannot handle complex
queries with nested aggregation and arithmetic op-
erations and thus provides poor results on PlotQA
(12.90%). T5 provides the best reported results for
PlotQA V2 (56.22% test accuracy for all queries).
Our proposed approach, designed for complex rea-
soning type of queries, surpasses their results. Un-
like prior end-to-end approaches, we adopt a two
staged approach, which not only provides us SOTA
results, but allows for more interpretability. Along
similar lines, (Methani et al., 2020; Kim et al.,
2020) propose a multi-stage solution, where the
chart extractions are stored in a semi-structured
form, and pre-defined rule-based semantic parsing
(Pasupat and Liang, 2015) converts the queries into
a logical form. However, these approaches do not
generalize to queries not expressible by the gram-
mar rules defined for other datasets, leading to very
low test accuracy especially for complex reasoning
type of queries (14.82% for PlotQA). An elaborate
listing of prior work on Table Q&A and Seman-
tic Parsing and the comparison with our approach
highlighting our novelty is in Appendix A.

3 Problem Definition

Our task is defined as follows: given a chart c and
a question q on the chart, output a value a that
answers the question according to the information
represented in the chart. The system has access to
a training set Dchart = (qchart, cchart, achart)

N
1 of

questions, charts, and answers. The charts and
corresponding questions in test data do not ap-
pear during training. We assume availability of
a bootstrapping dataset of Dtr = (str, qtr, ptr)

M
1 ,

where s are the database schema, q are the Natu-
ral Language (NL) queries posed on the schema
and p are the SQL programs corresponding to the
NL queries. The domain of the charts cchart can
be distinct from the domain of the schema str.
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Figure 2: Chart Schema Extraction Vision Pipeline

We assume that the SQL programs ptr share the
primitive arithmetic, aggregation and logical opera-
tions (SUM, DIFFERENCE, RATIO, AVERAGE,
MEDIAN, MAXIMUM, MINIMUM, GREATER
THAN, LESS THAN) with the SQL programs re-
quired to answer the NL questions qchart. However,
distributions over the primitive operations and their
compositions can differ.

4 Approach

We follow a two stage approach. In the first stage,
we use a computer vision pipeline to extract chart
and store the chart data in a format (schema) schart,
common across all the chart types. In the second
stage, we synthesize SQL programs for the NL
questions in the dataset by using Filtered Iterative
Back-Translation (FIBT). We use SQL as the tar-
get logical form for program synthesis because it’s
grammar (i) is well suited to the tabular structure
of our extracted data and (ii) includes the primi-
tive operations required to be handled for the NL
queries in PlotQA. Also, SQL is close to NL and
easy to understand, allowing for interpretability.

4.1 Chart Schema Extraction

In the first stage, we extract chart information us-
ing the following pipeline: (i) Chart Type Detec-
tion (Trained) (ii) Text Region and Role Detec-
tion (Trained) (iii) OCR and Text Extraction (Al-
gorithm) (iv) Axis and Legend Extraction (Rule-
Based) (iv) OCR and Text Extraction (Algorithm)
(v) Chart Information extraction (Algorithm).

Since the chart types have distinct visual fea-
tures we fine-tune a Resnet-34 model pretrained
on ImageNet to detect chart types, using chart type
labels provided by PlotQA. The text present in the
image is detected by employing the CRAFT model
(Baek et al., 2019). However, CRAFT frequently

misses isolated characters and often yields partial
detection of text regions. We propose an approach
which corrects partially detected text, segments out
the corrected text region and identifies text-role la-
bels (such as chart title, legend labels, X/Y-axis,
and X/Y-tick labels) for the text regions (Appendix
B). We use Tesseract 4.0.0 (Smith, 2007) to extract
text from the detected regions and tag them to the
corresponding roles. The results of the chart ele-
ment extractions and text role region extractions are
described in Appendix F. We define rules to iden-
tify (i) the origin, axes and chart region from the
detected chart lines by a line detection algorithm
(Paliwal et al., 2021), (ii) location of the legend
previews and their styles (color and pattern) using
the detected legend-labels, and (iii) chart elements
(bars, dots, lines) which are regions matching with
each legend preview style. We extract a schema
(table) from the above available chart information,
by filtering noise (Appendix C) and extracting the
data series elements (Appendix E).

Henceforth, we use the following nomenclature.
For the horizontal-bar charts illustrated in Figure
1 (b), we refer to the X-axis as the Numerical-
axis and Y-axis as the Categorical-axis. For the
remaining chart types in Figure 1 viz. dot, ver-
tical bar, and line chart, the nomenclature is re-
versed. We call each legend label as a series.
Thus, the extracted chart information is in the form
of a set-of tuples <category_label, series_label,
numerical_value>, with the schema (table)
header being category axis label, series, and a string
formed by concatenating the chart title with the nu-
merical axis label. We store these tables schart in
the SQLite3 database to facilitate the execution of
synthesized SQL programs (Section 4.2) on the
schema. As ‘Median’ is not an in-built aggregation
operation for SQLite3, we define a stored proce-
dure for the same.

4.2 SQL Program Synthesis

As the part of the second stage, we execute Fil-
tered Iterative Back Translation (FIBT) (Algorithm
1), to train the neural semantic parser MNL−>P ,
which is used to synthesize SQL programs for the
reasoning questions in the PlotQA test set. The
generated SQLs are executed on the test set chart
schema schart, extracted from the corresponding
chart image cchart, to compute the final answer.
This answer is compared with the ground truth an-
swer achart to calculate the test accuracy.
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4.2.1 Bootstrapping Data

We use SPIDER (Yu et al., 2018) augmented with a
few (359) NL-SQL query pairs as the bootstrapping
dataset Dtr to initialize the parameters of the for-
ward MNL−>P and the backward MP−>NL mod-
els of FIBT. The augmented query pairs are defined
to include the primitive operations (DIFFERENCE,
RATIO, LESS THAN and MEDIAN), required by
the PlotQA NL questions qchart but missing in the
SPIDER SQLs, leading to the bootstrapping data
qtr and the PlotQA questions qchart sharing the
same set-of primitive operations. Inclusion of such
query pairs allows the models to learn these primi-
tive operations (followed by their compositions in
the subsequent FIBT iterations), which otherwise
would not be possible.The query pairs are synthe-
sized using templates. For example, the templates
used to synthesize NL-SQL pairs for RATIO oper-
ation is: NL: "What is the ratio of the numerical
column name having categorical column value a x
to that of categorical column value of y ?", SQL:

"SELECT T1.numerical_column_name /
T2.numerical_column_name FROM
table_name T1, table_name T2 WHERE
T1.categorical_column_name =
‘categorical_column_value_x’ AND
T2.categorical_column_name =
‘categorical_column_value_y’"

These queries are synthesized on a subset of SPI-
DER schema tables, whose structure match with
our extracted chart schema. Thus in the above tem-
plate, the ‘numerical_column_name’ is the name
of a column of a table belonging to one of the
SPIDER database schemas, having a numerical
datatype. and ‘categorical_column_name’ is the
column name of the same table, with text datatype
with values x and y as its entries.

4.2.2 Probabilistic Context Free Grammar

We define Probabilistic Context Free Grammar
(PCFG) depicted in Table 7 in the Appendix, as
a subset of the SQL grammar to synthesize SQL
programs: (i) to address possible compositions of
primitive operations required for the PlotQA NL
questions qchart and (ii) executable on the schema
schart. To synthesize SQL programs whose distri-
bution match with the programs for the NL ques-
tions in the PlotQA, but are not covered by the
current training data Dtr, we induce the probabil-
ity (Pinv) for each of the production rules R in the

PCFG with the heuristics depicted in Equation 1.

Pinv(R) =
Wt(R)∑

RHS(r)=RHS(R)Wt(r)
(1)

Wt(R) = (
MAXRHS(r)=RHS(R)(P (r))

P (R)
)1−α (2)

P (R) gives the probability with which a rule
R is triggered by the set-of SQL queries exist-
ing in the training data Dtr. RHS(R) is the
Right Hand Side of the production rule R. Thus,
RHS(r) = RHS(R) provides the set of all pro-
duction rules which share the source node (RHS)
with the rule R. α is the hyper-parameter control-
ling the skewedness of the distribution over the
prodcution rules. Lower the value more skewed is
the distribution. For our experiments α = 0.8.

Algorithm 1: FIBT
Input :Dchart = {qchart, schart, achart}N1 ,

Defined PCFG
Output :Trained Semantic Parser MNL−>P
Initial Stage : Bootstrapping data

Dtr = {str, qtr, ptr}M1
qrep = sample(cluster(generalize(
qchart))) where qrep ⊂ qchart
Drep = (qrep, srep, arep)

n
1 , n << N

pfilter = Φ
1 while MNL−>P and MP−>NL have not converged

do
2 Train MNL−>P on Dtr // Forward Pass
3 Feed qrep to MNL−>P to generate prep
4 Execute prep on schema srep to compute ac
5 if ac == arep // Filter
6 then
7 Add (srep, qrep, prep) to Dtr Remove

(srep, qrep, prep) from Drep
8 end if
9 Train MP−>NL on Dtr // Backward

Pass
10 induce( PCFG , (ptr + pfilter) ) (Equation 1)
11 Sample SQL psyn on schart from PCFG.
12 Feed psyn to MP−>NL to generate qsynth
13 filter_flag = 1
14 if max_sim(generalize(qsynth )) ,

generalize(qrep) ) > threshold
// Filter1

15 then
16 if look_up( qsynth, psynth )// Filter2
17 then
18 Add (schart, qsynth, psynth) to Dtr

// Augment
19 filter_flag = 0
20 end if
21 end if
22 if filter_flag == 1 then
23 Add psynth to pfilter
24 end if
25 end while
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4.2.3 Sampling Representative Questions

As depicted in Table 2, PlotQA has ∼16.6 Mil-
lion reasoning based NL questions as the part of
the training data. For a more compute efficient
solution, we identify representative NL questions
from PlotQA for training. We randomly sample
200K NL questions from the PlotQA training set
and perform the generalize operation to replace
schema specific information in each NL question
with generalized tokens and to highlight its com-
position or structure. We replace the schema re-
lated entity (column headings) and values (column
values) in the NL questions with more generic
< entity > and < value > tags using sub-
string matching. For example, the reasoning based
question, depicted in Table 1 , is modified to:
‘Is the difference between < entity_num > on
< value_series > in < value_category >
and < value_category > greater than the
difference between < entity_num > on <
value_series > in < value_category > and
< value_category >?’, where ‘the amount col-
lected as tax’ being a sub-string of the numerical
column name of the schema, gets replaced with the
generic token < entity_num > and the values of
the category column, viz. ‘2003’, ‘2007’ and the se-
ries column ‘goods’ and ‘exports’ get replaced with
< value_category > and < value_series >,
respectively. We further get the representations
of these generalized NL questions using sentence-
BERT (Reimers and Gurevych, 2019) and cluster
them via DBSCAN 1 with cosine similarity as the
similarity metric. As DBSCAN allows us to cluster
data without specifying the number of clusters in
advance, withminpoints = 15 and ϵ = 0.25, we get
345 clusters for the 200K generalized NL questions.
We then randomly sample 200 questions from each
cluster to get 69K representative generalized NL
questions. We fetch the corresponding original NL
questions qrep for these 69K questions along with
their corresponding schema crep and answers arep
to form a dataset of representative queries Drep. A
similar sampling strategy is applied on the valida-
tion split. Table 2 illustrates the statistics of the
representative dataset.

4.2.4 FIBT Forward Pass

We train the forward model MNL−>P with the
training data Dtr by feeding the flattened schema,

1https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.DBSCAN.html

the table contents, the NL query with a separator
token to the encoder and generate the SQL tokens
at the output of the decoder in an auto-regressive
fashion. The model is trained using cross entropy
loss. We feed the NL queries qrep from Drep to
MNL−>P to generate the corresponding SQL pro-
grams (prep). We execute these SQL programs on
the corresponding extracted chart schema srep. The
programs which do not execute to the ground truth
denotations are filtered, and the training data Dtr

is augmented by the remaining pairs.

4.2.5 FIBT Backward Pass
We train the backward model MP−>NL with the
training data Dtr by feeding the flattened schema
and the contents followed by the SQL program
with a separator token to the encoder and gener-
ating the NL tokens at the output of the decoder
in an auto-regressive fashion. We use ptr in the
training set Dtr, along with the SQL programs
pfilter filtered in the prior iteration to induce the
inverse probabilities of PCFG as explained in sec-
tion 4.2.2. Here, the filtered programs are the ones
whose equivalent NL questions do not match with
PlotQA representative questions (explained later in
this section). We sample SQL programs (psynth)
from the PCFG to be executed on schart and feed
these synthesized SQL programs to the backward
model MP−>NL to generate the corresponding NL
questions qsynth. We (i) transform qsynth by us-
ing the generalize operation, explained in section
4.2.3, (ii) extract the representation for qsynth us-
ing sentence-BERT (Reimers and Gurevych, 2019)
and (iii) compare them with the representations
of generalized representative queries (qrep) using
cosine similarity. NL questions having their maxi-
mum similarity score (max_sim) below a threshold
are filtered. The SQL programs corresponding to
the filtered NL questions are added to pfilter, rep-
resenting queries not matching the PlotQA ques-
tions. With this filtering, we still observe some
synthetic questions with semantic noise, meaning
the semantics of the NL questions qsynth and the
corresponding SQL programs psynth do not match.
(Shen et al., 2019) uses phrases of NL questions to
estimate the operator candidates in the correspond-
ing programs and thus reduce the search space
of the semantic parser. We use a similar tech-
nique of phrase-operator look-up to further filter
the synthetic query pairs. Given a qsynth, psynth
pair the look-up operation returns ‘False’ if the
pre-defined (set-of) phrase(s) in NL query (qsynth)
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NL Phrase SQL Operator
ratio ↔ /

difference ↔ -
greater than ↔ >

less than ↔ <
total OR sum ↔ + OR SUM

maximum OR highest ↔ MAX
minimum OR lowest ↔ MIN

average ↔ AVG
how many ↔ COUNT

median ↔ MEDIAN

Table 3: Mapping of NL Phrases and SQL Operators

do(es) not match with the (set-of) operator(s) in the
corresponding SQL programs (psynth) and returns
‘True’ otherwise. This matching is done following
the pre-defined look-up dictionary with the phrase-
operator mappings between the NL questions and
the SQL programs (Table 3). This filtering helps
to remove the semantically incorrect NL questions
(qsynth), which have been generated by the back-
ward model MP−>NL for the synthetic SQL pro-
grams (psynth). With this two level filtering, the
training data Dtr is augmented with the remain-
ing synthetic tuples <schart, qsynth, psynth> and is
further used to train the models in the next itera-
tion. These added synthetic queries are closer to
the PlotQA queries and thus help in adapting the
models to answer PlotQA questions. For every it-
eration, the above defined threshold for similarity
based query filtering is automatically set to a value
for which the KL-divergence between the operator
distributions of (i) PlotQA questions qchart and (ii)
the synthetic questions getting augmented to the
training set (qsynth−qfilter), after filtering with the
phrase-operator mappings (Table 3) is minimum.
This ensures that the augmented synthetic query
pairs, after filtering with the threshold, are closer
to the required PlotQA questions.

5 Results and Discussion

CodeT5 (Wang et al., 2021c) provides the best
results on the Spider dataset 2 in terms of exe-
cution accuracy. For chart QA, we are more in-
terested in correctly computing the final answer
(execution accuracy) than the intermediate logi-
cal form (exact match accuracy). Thus we choose
CodeT5 based neural semantic parser as our for-
ward model (MNL−>SQL) and CodeT5 based code
summarization model 3 as the backward model
(MSQL−>NL). The number of trainable param-

2Spider Leaderboard Dated: August 2022 https://yale-
lily.github.io/spider

3https://huggingface.co/Salesforce/codet5-base-multi-
sum

ANS
Type

Test
Queries Human Plot

QA T5 Ours
ES

Ours
OS

YN 72,968 76.51 62.75 62.38 43.21 44.13
FV 566,655 59.97 7.95 2.41 63.91 67.70
OV 2,919,769 58.01 14.95 0.003 60.42 85.35
Total 3,559,392 58.70 14.82 1.17 60.44 84.49

Table 4: Results on PlotQA V2 Reasoning Queries
(% Test Accuracy), ANS: Answer, YN: Yes/No, FV:
Fixed Vocabulary, OV: Open Vocabulary, ES: Extracted
Schema, OS: Oracle Schema

eters in the CodeT5 base model are 220M. We
fine-tune the models with a batch size of 48 and a
learning rate of 0.0001 and gradient accumulation
step of 4 using the Adam optimizer on an NVIDIA
Tesla V100 32GB GPU. The average run-time for
training the model differs in each iteration as the
number of training samples increase with the data
we augment in each iteration. However, for infer-
ence on the PlotQA V2 Test Split, with the given
hyper-parameter configuration, it takes∼360 hours.
For sampling the representative questions and SQL
queries from the dataset and PCFG respectively,
we use the random seed of 7. The training details
of the chart extraction modules are provided in Ap-
pendix D. We use test accuracy as the evaluation
metric, where for numeric answers with floating
point values, we consider an answer to be correct
if it is within the 5% range of the correct answer as
followed by (Methani et al., 2020).

Table 4 illustrates the results of the Q&A task
over reasoning based queries in the PlotQA V2 test
set (∼3.56M NL queries on ∼33.6K charts). Fol-
lowing the benchmark approaches (Methani et al.,
2020; Masry et al., 2022), we report results on
PlotQA V2 test set and not the validation set. As
mentioned in (Methani et al., 2020) most human er-
rors are due to numerical precision as it is difficult
to visually identify the exact value from the chart
even within a 5% margin. Our weakly supervised
approach surpasses the baselines (PlotQA (Methani
et al., 2020) and T5 (Masry et al., 2022)) by a large
margin even exceeding the human baseline. We
observe improvement in test accuracy results from
39.69% to 57.45% to 60.44% in the 1st, 2nd and
3rd iterations of FIBT, respectively. This demon-
strates the utility of the FIBT approach with the
filtering and augmentation mechanisms used for
capturing the relevant query compositions.

As per the definition provided by the authors
of PlotQA, the fixed vocabulary comprises of the
set of top 1000 frequently occurring answer words.
Our approach yields superior performance for fixed
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vocabulary (FV) and open vocabulary (OV) an-
swers. Both FV and OV answers are numeri-
cal. Prior approach of end-to-end model predict-
ing the final answer directly (T5 (Masry et al.,
2022)) and approach which address queries with
distinct answer types distinctly (PlotQA(Methani
et al., 2020)), learn to distinguish the queries hav-
ing YES/NO (binary) type of answers from other
queries. Once this is learnt, any random guess of
YES/NO as an answer to these queries would lead
to a performance of 50%. On the other hand, our
approach trains a single model to generate SQL
programs for all queries with distinct answer types.
For some cases the generated SQL program for
questions with binary answers does not yield a bi-
nary result. Thus, for our approach, the random
accuracy for Yes/No queries is not 50%. Moreover,
the SQL programs for questions with YES/NO an-
swers are more complex as compared to the SQL
programs which leads to numerical answers (FV
and OV questions) in terms of entailed compo-
sitions of primitive operations involving nesting,
leading to harder synthesis. Also, our approach
does not yield good performance for some of these
questions with binary answers as there is no ex-
plicit mapping between the phrases in the NL query
and the primitive operations involved in the SQL
program. For example, for the questions: ‘Do a
majority of the years between 2013 and 2010 (in-
clusive) have a number of secure internet servers
greater than 1.16? or ‘Do the payments made to-
wards primary income monotonically increase over
the years?’ or ‘Is the payments made towards goods
and services strictly less than the payments made
towards primary income over the years ?’ , the
model finds it harder to learn to map the abstract
phrases ‘majority of’ or ‘monotonically increasing’
or ‘strictly less than’ to a composition of primitive
operations in the corresponding SQL programs as
this knowledge is not explicitly provided. These are
the reasons that the performance of our approach
for queries with YES/NO answer type is inferior as
compared to the other reasoning queries.

ChartQA (Masry et al., 2022) provides results
on the complete PlotQA V2 test split (∼4.34 M
questions) for all question types including struc-
tural, data retrieval and reasoning. The test accu-
racy of their best performing model (T5), trained
on the complete PlotQA train set (∼20.25 M ques-
tions), end-to-end is 56.22%. For fair comparison
with ChartQA (Masry et al., 2022), we train the

T5 model in an end-to-end fashion (direct answer
based supervision), with 69K representative ques-
tions (0.04% ) of the PlotQA training set following
the same input format as in ChartQA. We test the
model on reasoning based questions in PlotQA V2
test data (∼3.56 M) to obtain the results depicted
in Table 4. The T5 model can address the yes/no
type of binary answers but struggles on questions
with numerical answers (FV and OV). Effectively,
as discussed earlier, once T5 has learnt to iden-
tify questions having binary answers, a random
guess would lead to 50% accuracy. For T5, low
performance on non-binary reasoning questions is
expected because the end-to-end training in gen-
eral struggles to perform complex reasoning in the
latent space, and this is compounded by the very
small amount of training data used for fair com-
parison. On the other hand, better performance
of FV and OV answer type questions, underscores
the efficacy of our approach to better handle com-
plex numerical reasoning questions. Moreover, as
we generate SQLs for NL, our approach is more
interpretable, allowing users to understand the rea-
soning steps to get the final answer.

Apart from PlotQA (Methani et al., 2020),
CharQA (Masry et al., 2022) is the only other
dataset available. After thorough analysis of this
dataset, we observed that the dataset contains sam-
ples with incorrect ground truth labels, spurious
questions and Gold data tables with incorrect infor-
mation. The details of our analysis is provided in
Appendix G. Hence, we have not used CharQA
(Masry et al., 2022) for benchmarking our ap-
proach.

To understand the impact of errors from vision
based chart schema extraction on the downstream
reasoning task, we perform an ablation to calcu-
late the test accuracy of the reasoning task using
the schema constructed with oracle extractions pro-
vided by PlotQA. We observe a 24.05% lower test
accuracy with the extracted schema as compared to
the oracle. We further analyze the results based on
operators involved in the query. We observe that
our approach works well not only for reasoning
questions involving one primitive operators, but
also for more complex questions involving compo-
sition of numerical operators such as (i) ‘COUNT
VALUES GREATER THAN AVERAGE’ (For ex-
ample, For how many years, is the payments made
towards primary income greater than the average
payments made towards primary income over all
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years ?) or (ii) ‘SUM GREATER THAN MAX’
(For example, Is the sum of the payments made to-
wards goods and services in 2008 and 2010 greater
than the maximum payments made towards primary
income across all years ?) or (iii) DIFFERENCE
GREATER THAN DIFFERENCE’ (For example,
reasoning type of query mentioned in Table 1 for
dot charts).

We further observe that our approach does not
yield good results for NL questions involving nest-
ing in the SQL program. For example, (i) queries
computing a ‘DIFFERENCE’ between the ‘MAX-
IMUM’ and the ‘SECOND MAXIMUM’ values
of the numerical column (For example, the rea-
soning type of query mentioned in Table 1 for (b)
Horizontal bars). In the corresponding SQL pro-
gram for such questions, to compute the ‘SEC-
OND MAXIMUM’ value requires nesting, (ii) the
queries which try to find if the ‘SUM’ of two nu-
merical values is ‘GREATER THAN’ the ‘SUM’
of other two numerical values, for ‘EVERY’ value
of a non-numerical column. These NL questions
demand nested SQL programs which ensure the
‘SUM GREATER THAN SUM’ criteria is true for
‘ALL DISTINCT’ values of the non-numerical col-
umn. Table 7 shows that the defined PCFG allows
synthesis of nested SQL programs. We observe that
as such nested SQL programs are not present in the
initial training set, the strategy of inducing inverse
probabilities for the PCFG facilitates synthesis of
nested SQL programs in the later iterations of FIBT.
However, for most of such nested SQL programs
the backward model fails to generate semantically
meaningful NL questionsSuch noisy synthetically
generated NL questions are filtered by our filtra-
tion strategy in the backward pass leading to fewer
nested query samples in the training data which in
turn cause low test accuracy for such questions.

6 Conclusion

We present an approach for QA on charts which
addresses complex reasoning based questions that
require a combination of natural language under-
standing, fine-grained perception, and analytical
reasoning. We employ a pretrained semantic parser
and FIBT we generate SQL programs for the NL
questions without any program annotations. Our
novel PCFG based approach helps the model to
adapt to the given dataset’s query compositions
and domains, unseen in the bootstrapping data. As
the future work we plan to extend our approach fur-

ther to handle complex questions requiring nesting
by using a hierarchical or grammar based program
search technique.

7 Limitations

The focus of this paper is on complex reasoning
type of questions. Our approach is not designed
for structural (Table 1) or visual types of questions,
pertaining to attributes of the visual elements of
the plot such as color, size, spatial location. These
questions are not useful for real-life applications,
which require analysis on chart data to draw mean-
ingful conclusions. Our existing approach is not
designed to address such questions as the extracted
schema only captures the underlying data of the
chart, and not the visual entities present therein.

To have a good kick-start for the FIBT pipeline,
we assume that the bootstrap SPIDER data covers
the primitive SQL clauses, operators and functions
required for the questions in the target dataset and
there is some minimal overlap between the compo-
sitions of the SQL queries in the bootstrap SPIDER
data and SQL queries required for the natural lan-
guage questions in the target dataset.

In the current phrase-operator based filtering
strategy only limited phrases are manually de-
signed for the mapping of NL phrases and SQL
operators (Table 3). We plan to make this approach
more robust by using paraphrases or semantically
similar phrases to manually designed phrases for
mapping.

8 Ethical Considerations

PlotQA charts contain only factual information
which is openly available in public domain and
is not (i) specific to any individual or (ii) offensive.
The solution provided in the paper is agnostic to the
domain of the data. Like any QA task, to avoid the
risks involved in critical domains such as finance,
healthcare or medicine, we would have to calibrate
the model or need human intervention, such that
the errors are not propagated to the downstream
tasks.
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Appendices

A Prior work on Table Q&A and
Semantic Parsing

Current approaches for table QA use an end-to-end
modeling approach for either: (i) directly gener-
ating the answer (TAPAS (Herzig et al., 2020)),
(ii) generate a program which produces the answer
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upon execution of the generated SQL (TABERT
(Yin et al., 2020) and RCI (Glass et al., 2021))
or (iii) using a Language Model pre-training strat-
egy (neural query execution engine in TAPEX (Liu
et al., 2021) using synthetic SQL programs or se-
mantic parser trained on synthetic NL-SQL pairs
generated using a Synchronous Context Free Gram-
mar (SCFG) in GraPPa (Yu et al., 2021). These
approaches are mainly designed for handling data
retrieval or simple aggregation type of queries de-
fined in WikiSQL (Zhong et al., 2017) or Wiki
Table (Pasupat and Liang, 2015) datasets. The
complex reasoning type queries which are part of
the PlotQA dataset involve nested arithmetic op-
erations with self-joins as well as nesting in the
conditional (WHERE) clauses. (Yin et al., 2020)
applied their approach on the benchmark Spider
Text-to-SQL dataset (Yu et al., 2018) but their re-
sults have been eclipsed by RYANSQL (Choi et al.,
2021), whose decoder is specifically designed to
address nested complex queries. GraPPa (Yu et al.,
2021) achieves state of the art performance on the
complex spider dataset after fine-tuning with spider
program (SQL) annotations.

In our scenario there are no SQL program annota-
tions for PlotQA queries, and only the output deno-
tations are available. Since annotating a sufficiently
large number of SQL programs is a resource heavy
task, semantic parsers can be trained with execu-
tion output denotations under a weak-supervision
setting. These execution denotations can be used
to model a reward signal in order to train the under-
lying semantic parser (Zhong et al., 2017; Liang
et al., 2018; Hagopian et al., 2019; Agrawal et al.,
2019; Agarwal et al., 2019). They can also be used
to train the semantic parser with a log Multiple log
Marginal Likelihood (MML) objective by using a
limited number of SQL programs as latent logical
forms (Wang et al., 2019; Min et al., 2019; Wang
et al., 2021a). While synthesizing SQL programs,
the denotations can also be used to filter candidate
programs with rule-based synthesis systems (Guo
and Gao, 2019; Guo et al., 2021; Wolfson et al.,
2021). The reward-based approaches face issues
with a large program search space and possible spu-
rious programs. Unlike the MML approaches, we
do not use any gold annotated SQL programs from
the dataset under consideration (PlotQA). Most
of the above weak-supervision approaches do not
explicitly handle modeling or synthesizing the spe-
cific complex program compositions pertinent to

the dataset under consideration. On the other hand,
our approach uses a publicly available semantic
parsing dataset (Spider) as the bootstrapping data
to initialize the parameters of the semantic parser,
and then defines a novel PCFG-based strategy to
adapt the models through FIBT to answer unseen
complex reasoning queries in the PlotQA by effec-
tively capturing the relevant query compositions.

B Text Role Region Extraction

The architecture consists a Encoder-Decoder Mod-
ule, which the U-net (Ronneberger et al., 2015).
The encoder filters out irrelevant information by
squeezing the feature map to a latent space. The
output of the decoder is appended along the channel
dimension with the trigger patch of a text region de-
tected by CRAFT, with highlighted patch contours
and provided as an input to the Trigger-Controller
Module, extracts features using a convolutional fea-
ture extractor followed by a Global Average Pool-
ing (GAP) layer. The features of the trigger patch
are concatenated with the extracted encoder output
features and are fed to the controller module to
generate dynamic kernels, which are used to gen-
erate the segmentation map (Jia et al., 2016). The
dynamic kernel output is also given to a fully con-
nected linear layer to determine the text role of the
region. Thus, the trigger-controller module exploits
the spatial relationships between text-roles to gen-
erate dynamic kernels and obtain text-role specific
segmentation maps from the decoded image. The
whole network is trained with cross entropy loss
on text-role class labels and text-role segmentation
map (all ground truth text-regions corresponding
to that text-role). During inference, given a trigger
patch for an image of a detected text-region belong-
ing to an unknown text-role, the model provides
the actual text-role classification output and the
segmentation map of the text-region of that text-
role. Trigger patches overlapping with detected
text-role regions are removed before repeating the
process for the remaining trigger patches. This
process may lead to multiple segmentation maps
for each text-role, over which a union operation is
performed.

C Noise Correction

To handle false positive and false negative detection
of Numerical-axis ticks, we find the mode (M ) of
differences between the (X/Y) coordinates for the
consecutive ticks. We remove or add ticks where
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IOU @0.90 @0.75 @0.50
Existing Models (Ganguly et al., 2020) Bar Dot-line Leg Lbl Leg PV Title X-Lbl X-Ticks Y- Lbl Y- Ticks mAP mAP mAP
FrCNN (FPN+RA) 87.59 31.62 79.05 66.39 0.22 69.78 88.29 46.63 84.60 61.57 69.82 72.18
FrCNN (RA) 63.86 14.79 70.95 60.61 0.18 83.89 60.76 93.47 50.87 55.49 89.14 96.80
FrCNN (FPN+RA) 85.54 27.86 93.68 96.30 0.22 99.09 96.04 99.46 96.80 77.22 94.58 97.76
PlotNet 92.80 70.11 98.47 96.33 99.52 97.31 94.29 97.66 94.48 93.44 97.93 98.32
Ours (Train: All) 89.67 69.13 99.89 98.67 99.99 99.90 99.45 99.89 97.69 94.92 95.80 96.70
Ours (Train: 4K) 89.67 69.13 96.31 96.31 99.63 96.35 96.84 99.48 96.58 92.86 93.66 94.50

Table 5: Chart Extractions on the PlotQA dataset with mAP scores (in %). Leg: Legend, Lbl:
Labels, PV: Preview

Method PlotQA Ours
Title 94.60 99.69

X-axis Label 95.50 99.73
Y-axis Label 97.07 99.59

Legend Labels 91.11 98.13
X-tick Labels 91.38 97.62
Y-tick Labels 88.07 95.94

Table 6: OCR Module Ac-
curacy

the difference in the consecutive ticks is more or
less than the mode, respectively. We add a dummy
value ‘x’ for the newly added tick, if any, which
is handled during correction. We replace a non-
numerical tick-value detection, if any, by using M
as an offset to the the neighboring tick value. To
correct the tick-values not adhering to a progression
followed by the majority values, we consider a tick-
value as an ‘anchor’ (correct value) and calculate
the other values adding and/or subtracting M from
this anchor. We compute the ‘gain’ with respect to
this anchor to be the intersection of the extracted
values and calculated values. We repeat this pro-
cess by considering distinct numerical-axis values
as anchors. For the ‘anchor’ giving us the maxi-
mum ‘gain’, the corresponding calculated values
are considered to be the correct set of numerical-
axis tick values. Some charts (Figure 1 (a)) use
scientific notation for denoting large numerical val-
ues which are converted to float values.

D Training Details for Chart Extraction
Models

For the chart type classification ResNet-34 is fine-
tuned for 2000 steps. We use the Adam optimizer,
a learning rate of 0.0005, and a batch size of 8. The
model yields 99.91% test accuracy. For text region
and role detection, we use the pre-trained VGG19
and train with a batch size of 8, for 1 epoch, using
the Adam optimizer with an initial learning rate
of 0.0005. As the data is skewed for axes-labels,
while creating training tuples, we under-sample for
this text-role to avoid class imbalance.

E Data Extraction

We use interpolation and extrapolation to calculate
a numerical value associated with every pixel on
the numerical-axis by using numerical-axis tick co-
ordinate pixels as reference. For every data point
(pivot-point in case of dots and line charts, bar-
tops in case of bars) detected we assign it: (i) a
series by matching its style with the style of a
legend label, (ii) a category by matching its co-

ordinate with the category tick, and (iii) a value
of the pixel on the numerical axis whose coordi-
nate matches with it. Thus, we extract the data
in the form of a set-of tuples <category_label,
series_label, numerical_value>. For the cate-
gory for which no pivot point or bar is detected for
a series due to VED errors, we consider its value to
be zero. We finally define a tabular schema with the
column names as category axis label (category col-
umn), series (series column), and a string formed
by concatenating the chart title with the numeri-
cal axis label (numerical column). All the spaces
in the column names are replaced by underscores
to make them SQL compatible. We insert the ex-
tracted tuples as rows in the tabular schema. The
generic schema obtained for the chart in Figure
1(b) is shown in Figure 2. Charts containing only
one series have a schema with only category and
numerical columns.

Improvements over FIBT Iterations The gener-
ated SQL programs for the NL queries requiring
certain compositions of primitive operations got
corrected after the iterations of back-translation.
For example, the required composition of the NL
query ’In how many years, is the amount spent
in making social contributions greater than the
average amount spent in making social contribu-
tions taken over all years ?’ is ‘Count Greater
Than Average’. After the first iteration the gen-
erated SQL program for this query is “Select
t1.social_contributions > t2.social_contributions
from table_data t1, table_data t2 where t1.year
= ’2010’ and t2.year = ’2010’ “, which got
corrected to “select count(*) from table_data
where social_contributions > ( select avg ( so-
cial_contributions ) from table_data )”, after the
second iteration. This improvement is because
of the data augmented by PCFG-based synthetic
queries, which contained these SQL queries having
compositions not present in the original bootstrap-
ping data (details in Section 4.3). Some additional
improvements over the iterations are because of the
coverage of the additional (chart) domains, which
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sql → sel_num_col | sel_col | sel_arth
sel_num_col → "SELECT" agg "(" "num_col_name" ")" from "WHERE" cond_series | cond_cat
sel_col → sel_cat_col | sel_series_col "WHERE" cond_num ( "AND" cond_series | cond_cat )0−1

sel_col → sel_cat_col | sel_series_col "ORDER" "BY" "num_col_name" "DESC" | "ASC" "LIMIT" "1"
sel_cat_col → "SELECT" "DISTINCT" ("COUNT" )0−1 "(" "cat_col_name" ")" from
sel_series_col → "SELECT" "DISTINCT"("COUNT" )0−1 "(" "series_col_name" ")" from
sel_arth → "SELECT" agg "(" "num_col_name" ")" arth agg "(" "num_col_name" ")" from

( "WHERE" cond_series | cond_cat )0−1

sel_arth → "SELECT" "DISTINCT" "(" "t1." "num_col_name" arth "t2." "num_col_name" ")" from_2
"WHERE" "t1." cond_cat | cond_series "AND" "t2." cond_cat | cond_series
("AND" "t1." cond_series | cond_cat "AND" "t2." cond_series | cond_cat)0−1

sel_arth → "SELECT" "DISTINCT" "(" "t1." "num_col_name" arth "t2." "num_col_name" ")"
arth agg "(" "t3." "num_col_name" ")" from_2 "," "table_data" "t3"
"WHERE" "t1." cond_cat "AND" "t2." cond_cat
( "AND" "t1." cond_series "AND" "t2." cond_series "AND" "t3." cond_series)0−1

sel_arth → "SELECT" "DISTINCT" "(" "t1." "num_col_name" arth "t2." "num_col_name" ")"
arth "(" "t3." "num_col_name" arth "t4." "num_col_name" ")" from_2 from_4
"WHERE"" t1." cond_series | cond_cat "AND" "t2." cond_series | cond_cat
"AND" "t3." cond_series | cond_cat "AND" "t4." cond_series | cond_cat

from → "FROM" "table_data"
from_2 → "FROM" "table_data" "AS" "t1" "," "table_data" "AS" "t2"
from_2 → "FROM" "table_data" "AS" "t1" "JOIN" "table_data" "AS" "t2"

"ON" "t1." "cat_col_name" | "series" "=" "t2." "cat_col_name" | "series"
from_4 → "," "table_data" "t3" "," "table_data" "t4"
cond_num → "num_col_name" op "num_val" | op "(" sel_num_col ")" | "NOT" "IN"

"(" sel_num_col ")"
cond_series → "series" "=" "’""series_col_val""’" | "cat_col_name" "IN" "(" sel_cat_col ")"
cond_cat → "cat_col_name" "=" "’""cat_col_val""’" | "series" "IN" "(" sel_series_col ")"
agg → "SUM" | "MIN" | "MAX" | "AVG" | "MEDIAN"
arth → "<" | ">" | "/" | "-" | "+"
op → "=" | "<" | ">"

Table 7: Probabilistic Context Free Grammar (PCFG)

are not present in the initial bootstrapping data
(having queries covering the SPIDER database do-
mains), but got covered in the PCFG based syn-
thetically generated queries on the PlotQA chart
schema, addressing the domain shift.

F Results of Plot Extraction

For plot extractions we prefer mAP @0.90 IOU
over mAP @0.75 and mAP@0.50 IOU as the eval-
uation metric as we require precise fine-grained
extractions else the resulting data errors will propa-
gate to the downstream QA task. For OCR we use
accuracy (1 - Word Error Rate (WER)) as the eval-
uation metric. Table 5 illustrates the SOA results
on plot extraction by our approach. We have state-
of-the-art results with for Chart Extraction yielding
94.92% mAP @0.90 IOU when trained with all
PlotQA (157K) images, beating the baseline (Gan-
guly et al., 2020) by 1.48%. mAP @0.90 IOU.
The extraction of dot/line regions is challenging
because of their small size, sparse distribution and

eclipsed or intersected dots/lines of distinct series.
Table 6 depicts the SOA results of the OCR mod-
ule. The PlotQA Oracle refers to the results with
the OCR model applied to the ground truth text-
regions. Our predicted text-detections followed by
OCR outperform both the baselines from PlotQA
(Methani et al., 2020), yielding State-of-the-Art
results.

G ChartQA Dataset Analysis

After thorough analysis of CharQA (Masry et al.,
2022) dataset, because of the following observa-
tions we have not used it for benchmarking: (i)
Samples with incorrect Ground Truth (GT) labels:
Few examples: (a) for the question ‘In what year
did Nicaragua have the highest risk score of money
laundering and terrorist financing?’ on the chart

‘two_col_102453.png’, the actual answer is ‘2020’,
and the provided GT is ‘2015’, (b) for the ques-
tion ‘What’s the ratio of the lowest value of green
bars and blue bars?’ on the chart ‘1392.png’, the
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actual answer is ‘2.41’ and the GT is ‘1.216’, (c)
For the question ’In republicans what is the dif-
ference between the more likely and less likely?’
on the chart ’9987.png’ the ground truth label is
’21’, where as based on the question the ground
truth label should be ’-21’. (ii) Samples with spu-
rious questions: The contents of the question are
not relevant to the data present in the chart. Few
examples: (a) For the question ‘What was the third
most popular brand on Foursquare?’ on the chart

‘two_col_80744.png’, ‘Foursquare’ is itself an in-
dividual brand depicted in the chart and no other
information about Foursquare is provided. and the
GT is ‘MTV’ which in itself is a separate brand and
not related to Foursquare. (b) the question ‘How
many people checked in to New Delhi on Face-
book between June and August 2017?’ posed on
chart ‘two_col_5556.png’ has some terms such as
Facebook or specified Month/Year which are not
present in the chart, (iii) Gold data tables4 with
incorrect information: Gold data tables crawled
through web source ‘PEW’5 have incorrect infor-
mation, which leads to predicted answers. In the
test set 310 (20.54%) samples have all the data val-
ues to be zeros and others (‘4931.png’, ‘2721.png’,

‘11627839005738.png’) have floating point errors.
For example, the Gold data tables for charts
‘4931.png’, ‘2721.png’, ‘11627839005738.png’ are
spurious. Due to this incorrect Gold Table contents
even though the GT labels corresponding to the
question to these charts is correct, with incorrect
data points, the resulting answer does not match
the label. Due to the above listed observations, we
have not used this dataset for the benchmarking
purpose.

4
https://drive.google.com/file/d/17-aqtiq_KJ16PIGOp30W0y6OJNax6SVT/view

5
https://github.com/vis-nlp/ChartQA/issues/8

2515



Findings of the Association for Computational Linguistics: EACL 2023, pages 2516–2526
May 2-6, 2023 ©2023 Association for Computational Linguistics

Exploiting Language Characteristics for Legal Domain-Specific Language
Model Pretraining

Inderjeet Nair and Natwar Modani
Adobe Research, India

{inair,nmodani}@adobe.com

Abstract

Pretraining large language models has resulted
in tremendous performance improvement for
many natural language processing (NLP) tasks.
While for non-domain specific tasks, such mod-
els can be used directly, a common strategy
to achieve better performance for specific do-
mains involves pretraining these language mod-
els over domain specific data using objectives
like Masked Language Modelling (MLM), Au-
toregressive Language Modelling, etc. While
such pretraining addresses the change in vocab-
ulary and style of language for the domain, it is
otherwise a domain agnostic approach. In this
work, we investigate the effect of incorporating
pretraining objectives that explicitly tries to ex-
ploit the domain specific language characteris-
tics in addition to such MLM based pretraining.
Particularly, we examine two distinct charac-
teristics associated with the legal domain and
propose pretraining objectives modelling these
characteristics. The proposed objectives target
improvement of token-level feature represen-
tation, as well as aim to incorporate sentence
level semantics. We demonstrate superiority
in the performance of the models pretrained
using our objectives against those trained using
domain-agnostic objectives over several legal
downstream tasks.

1 Introduction

Pre-trained language models exhibit superior per-
formance in several NLP tasks. Most of the promi-
nent language models optimized over Masked lan-
guage modelling with BERT-like (Devlin et al.,
2019; Liu et al., 2019b; He et al., 2020) archi-
tecture using large unlabelled corpus to achieve
state of the art results across many NLP tasks.
While the sentence-level tasks like paraphrase de-
tection (El Desouki and Gomaa, 2019) and senti-
ment analysis (Zhang et al., 2018) benchmarks the
capability of the model in effectively modeling the
holistic representation of the sentence(s), the token-
level tasks like named entity recognition (Li et al.,

2020) attempted to assess the quality of contex-
tualized token embeddings furnished by the mod-
els. However, direct application of these models
to domain-specific downstream tasks yields sub-
optimal performance (Lee et al., 2020), perhaps
due to change in vocabulary and style of language.

To overcome this limitation, most commonly
used approach involves pre-training a language
model over domain specific corpora. For instance,
PubMedBERT (Gu et al., 2021) and LEGAL-
BERT (Chalkidis et al., 2020) achieved state-of-
the-art results for the biomedical and legal domain
specific tasks respectively by pre-training over do-
main specific corpus using a domain agnostic objec-
tive. In this paper, we argue that the performance
of these models can be further improved by em-
ploying pre-training objectives that exploit the lan-
guage characteristics of the domain. We examine
two distinct language characteristics of the legal
domain, propose pre-training objectives and finally
demonstrate superior performance over domain-
specific NLP tasks. Legal domain departs from
the generic corpora in terms of specialized vocab-
ulary, particularly formal syntax, domain-specific
knowledge semantics, etc. to the extent that it can
be classified as a distinct "sub-language" (Tiersma,
1999; Williams, 2007), which may be addressed by
MLM based pretraining. In this paper, we study
the following additional domain characteristics and
formulate closely aligned objectives in addition to
domain agnostic objectives like MLM:

1. Templatized language: Legal documents
consist of clauses that are often derived from
reusable text fragments with placeholders.
The placeholders are substituted with appro-
priate replacements for specific documents.
We include a pre-training objective for this
characteristic by optimizing the model to dis-
tinguish the substitutions from the rest of the
text. Since, there is no labelled dataset that
provides such information, we also outline the
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process to approximately label the data-points
with placeholder spans.

2. Availability of Soft Labels: Contracts and
legally enforceable documents can be seg-
mented into clauses which are sections defin-
ing terms and conditions and important pro-
visions. Clauses can be categorized into dis-
tinct types based on the aspect they address,
which (the categorization) may sometimes be
available as a heading/title associated with the
clauses. This categorization enables us to de-
fine semantic relations between clauses. For
instance, clauses having same type are closer
in meaning as compared to different typed
clauses. This fact is instrumental in formulat-
ing an objective to obtain semantically aware
holistic representation.

We leverage these two characteristics to design a
pre-training strategy, and experimentally show that
a language model pretrained using our strategy out-
performs domain-specific language model which is
trained only on domain-agnostic objectives, such
as Masked Language Modelling.

The rest of the paper is organized as follows.
In Section 2, we discuss some prominent frame-
works that provisions domain specific pre-trained
models and survey important works in the legal
AI. In Section 3, we elucidate the details for the
aforementioned legal domain characteristics and
describe the objective formulation and dataset cura-
tion strategy. In Section 4 discusses the training. In
Section 5, we briefly describe the baseline models
used to compare the performance with our pre-
trained model for several legal domain tasks, and
discuss the results. Finally, in Section 6, we con-
clude by explaining the implications of our work
and discuss its natural extensions.

2 Related Works

2.1 Prominent domain adaptation pretraining
approaches:

Pretrained language models trained over non-
domain specific data such as transformers (Vaswani
et al., 2017), BERT (Devlin et al., 2019) and its
variants (Liu et al., 2019b; He et al., 2020) has
resulted in state-of-the-arts results for several non-
domain specific natural language processing down-
stream tasks. Owing to their success, a prominent
approach to achieve superior results in domain-
specific NLP tasks involves training these models

over domain-specific corpora. For instance, to im-
prove the performance of the models in biomedical
downstream tasks, BIOBERT (Lee et al., 2020),
Clinical BERT (Alsentzer et al., 2019), Clinical
BIOBERT (Alsentzer et al., 2019) and PubMed-
BERT (Gu et al., 2021) were pretrained over spe-
ciality corpora closely associated with the biomed-
ical domain using the MLM objective. Recently,
(Chalkidis et al., 2020) proposed LEGAL-BERT,
a language model pretrained using MLM over do-
main specific corpora, to achieve state-of-the-art
performance for several legal downstream tasks.
Most of these methods focus on choosing appropri-
ate corpora for MLM pretraining and the selection
of optimal hyperparameters in contrast to the ap-
proach taken in this work. Here, we propose a
new direction to adapt a pretrained language model
by utilizing language characteristics. In particu-
lar, by studying the language characteristics of the
legal domain, we propose pretraining objectives
that explicitly tries to learn these characteristics.
While there are other approaches that adapts the
language model to domain-specific tasks (Rietzler
et al., 2020; Han and Eisenstein, 2019; Gururan-
gan et al., 2020), our work mainly tries to address
the problem of pretraining a language model for a
particular domain.

2.2 Legal Artificial Intelligence (AI)

Legal AI refers to the application of AI/NLP
techniques to solve several tasks in the legal do-
main (Zhong et al., 2020). Due to the distinct lan-
guage characteristics of the legal domain, many le-
gal domain-specific tasks requires the expertise of
legal practitioners for solving them. Furthermore,
the complexity of the associated tasks requires a
significant time commitment even for experienced
legal professionals. Thus, this motivated the devel-
opment of legal AI to reduce the tedium in under-
standing and solving these legal tasks.

In the legal AI, task-specific methods and
datasets were proposed for the following tasks:
Legal Judgement Prediction (Aletras et al.,
2016), Legal Entity Recognition and Classifica-
tion (Cardellino et al., 2017), Legal Question An-
swering (Kim and Goebel, 2017), Automated Legal
Review (Hendrycks et al., 2021), Legal Text Classi-
fication (Chalkidis et al., 2021), etc. Instead on im-
proving task-specific solution approaches, our ob-
jective is to make improvements for several down-
stream tasks. The objective of this work in very
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similar to that of (Chalkidis et al., 2020), however,
our solution approach is very different.

3 Domain Specific Objectives

We now describe the legal domain characteristics
which we will use for formulating the objectives.
For each of the two objectives, we also describe the
associated dataset used for training. We get differ-
ent pretrained language model variants by incorpo-
rating various subsets of the following objectives
while pretraining.

The process of coming up with the right set of
domain specific language characteristics requires
significant exposure to the domain. The authors
have been investigating several legal domain nat-
ural language processing tasks, and have been in-
terviewing several practitioners for an extended
period of time. The insights are a result of reading
many legal domain documents and the interactions
with domain experts. For one to extend our ideas in
other domains, we expect them to require similar
long exposure to the domain in question and op-
portunities to interact with domain experts. While
we believe that the two characteristics identified in
this work are not unique only to the legal domain,
one will need to carefully evaluate whether the
same characteristics apply to their chosen domain
as well.

3.1 Legal Domain as a Templating Language

Contracts include clauses which often use a stan-
dardized language with some placeholders which
are substituted with appropriate values (e.g., names,
dates, amounts, locations, etc) for specific contracts
(Figure 1). These standardized fragments with
placeholders are referred to as templates (Niemeyer
and Knudsen, 2005) in software engineering par-
lance. We refer to the tokens in the template-
generated clauses that remain common across con-
tract documents as static tokens and the values
filled into the placeholders as dynamic tokens.

We propose a pre-training objective that aims
to detect the dynamic tokens/spans from text frag-
ments in the legal documents. Using this objective,
the language model can generate holistic represen-
tation for a text-fragment cognizant of the tokens
forming the dynamic part and the tokens forming
the static part. This can also result in better contex-
tualized token representation for the task of named-
entity recognition or other entity level tasks.

In these Terms the following words shall have the following 
meanings:
"Goods" means those goods, products and/or services to be 
supplied and delivered by Vendor to Purchaser as described in the 
relevant Order.
"Purchaser" The person, company, firm, partnership or such other 
legal entity that places an order for Goods with Vendor and 
includes Purchaser's divisions, subsidiaries and affiliates.
"Vendor" means Russel Metals Inc. and its divisions, subsidiaries 
and affiliates.

In these Terms the following words shall have the following 
meanings:
"Goods" means those goods, products and/or services to be 
supplied and delivered by Vendor to Purchaser as described in the 
relevant Order.
"Purchaser" The person, company, firm, partnership or such other 
legal entity that places an order for Goods with Vendor and 
includes Purchaser's divisions, subsidiaries and affiliates.
"Vendor" means AJ Forsyth and its divisions, subsidiaries and 
affiliates.

Figure 1: Clauses generated from same template: The
above example is believed to be generated from a stan-
dardized clause template with a placeholder in place of
the text in yellow highlight. Moreover the substituted
text is observed to have close correspondence with or-
ganization named-entity.

3.1.1 Dataset
One of the challenges in utilizing this characteris-
tic in the pre-training objective is the lack of any
labelled dataset with such kind of information. To
overcome this limitation, we propose a dataset cura-
tion strategy that provides data points with dynamic
spans. The corpus to be labelled was formed by
collecting all the clauses present in the LEDGAR
dataset (Tuggener et al., 2020), which consists of
over 700,000 provisions in contracts.

The data curation strategy mainly consists of
two steps: a) Grouping clauses that have very
high lexical similarity which are believed to be
generated from a single underlying template, b)
Contrasting data points in a pairwise fashion for
every group to differentiate the dynamic part from
the static using google-diff-match-patch1. Figure
3 illustrates the pipeline employed for annotating
the dataset. Note that, while the contrasting tokens
belong to the dynamic part of the underlying text
(if the grouping was correct), there is inconclusive
evidence for the rest of the tokens for considering
them as static (For instance, Fig 2). This is due
to the fact that some values can coincidentally be
same for different instances of same clause, e.g.,

1https://github.com/google/
diff-match-patch
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This Employment Agreement (the “Agreement”) is made as of ${data.date}, by 
and between

${data.organization} (the “Company”), and ${data.person} (“Executive”),
subject to the terms and conditions defined in this Agreement.

This Employment Agreement (the 
“Agreement”) is made as of March 7, 

2018, by and between
Rockwell Medical, Inc. (the “Company”), 

and Robert L. Chioini (“Executive”),
subject to the terms and conditions 

defined in this Agreement.

This Employment Agreement (the 
“Agreement”) is made as of July 31, 

2018, by and between
Rockwell Medical, Inc. (the “Company”), 

and Stuart Paul (“Executive”),
subject to the terms and conditions 

defined in this Agreement.

Assumed Template

Contrasting two text fragments to determine dynamic parts

Figure 2: Limitation of the contrasting step: The two
text fragments below belong to the same cluster and are
believed to be generated from the template shown in the
left. However, the process of contrasting annotates only
some of the dynamic parts (highlighted in yellow) and
misses out some (highlighted in red). Thus, the rest of
the text should not be regarded as static in its entirety.

hiring date for two individuals can be the same, and
therefore would not be marked as dynamic token
by this strategy.

3.1.2 Objective Formulation
After applying the labelling strategy explained in
the previous section, we obtain a token-wise la-
belled dataset L = {(Xi, Yi)}Mi=1. A datapoint
in L is a tuple (Xi, Yi), where Xi represents a
text-fragment as a sequence of tokens it contains
(Xi = [xik]

|Xi|
k=1) and Yi is the corresponding se-

quence of binary labels assigned to each token
in Xi in the same order (Yi = [yik]

|Yi|
k=1 where

yik ∈ {0, 1}), i.e. yik = 1 implies that xik be-
longs to the dynamic part and yik = 0 implies that
the corresponding token can belong to any part.

Given such labelled dataset, we wish to train
the language model M such that Mdyn(Xi, xik)
provides us with the likelihood of xik being dy-
namic. The subscript ‘dyn’ denotes the addition
of task-specific overhead architecture for detecting
dynamic spans. We cannot directly apply binary
cross entropy objective over the token-level predic-
tions as the negative labels in our case does not
imply that the corresponding tokens are static. To
overcome this obstacle, we use the framework of
positive-unlabelled (PU) (Peng et al., 2019) learn-
ing where all the tokens associated with a positive
label are regarded as dynamic and rest, associated
with a negative label, are regarded as unlabelled.
Under this framework, all the positively labelled
tokens are collected with their parent text-fragment
to form the set Xp = {(Xi, xi)}npi=1 where xi rep-
resents a positively labelled token present in the
text fragment Xi. This is also repeated for the neg-

atively labelled datapoints to form the unlabelled
set Xu = {(Xi, xi)}nui=1. PU learning optimizes
the model parameters for the detection of dynamic
parts by minimizing the following objective:

LPU (Mdyn,Xp,Xu) =
1

nu

∑

(Xu,xu)∈Xu

l(Mdyn(Xu, xu), 0)

+
πp

np

∑

(Xp,xp)∈Xp

(l(Mdyn(Xp, xp), 1) − l(Mdyn(Xp, xp), 0))

(1)

where l is a positive-valued loss function that
penalizes the distance between its arguments and
πp ∈ [0, 1] is a hyperparameter. The above objec-
tive is derived from the following two terms: a term
that incentivizes positively labeled instances to be
classified as dynamic and a term that penalizes the
unlabeled instances based on the assumption that
the probability of being dynamic is equal to πp
Peng et al.. This implicitly assumes that the posi-
tive and unlabeled datapoints are sampled from the
same distribution and the probability of a positive
datapoint being labeled is independent of its input
features. In contrast to the binary cross entropy
objective, PU learning accounts for the possibility
that some of the elements of Xu can be dynamic.

3.2 Soft Semantic Labels for Clauses
The legal essence of many contractual documents
and agreements is formed by concatenating clauses
which are crucial for defining terms and conditions
and important provisions. These clauses can of-
ten be categorized which can be used to optimize
the model to provide semantic-aware representa-
tion scheme, and sometimes, such categorization
is available as a label/title with the clause text.
Formally, we want to train the language model
to learn a representation scheme that maps same
category clauses from the data manifold onto metri-
cally closer points in the mapped space. We believe
that by infusing the ability to generate semantic-
aware representation within model, the language
model may offer better performance on sentence-
level tasks.

3.2.1 Dataset
We used the LEDGAR Corpus (Tuggener et al.,
2020) which is a collection of labelled legal clauses
and provisions. This corpus was crawled from the
contracts present in the website of U.S. Securi-
ties and Exchange Commission (SEC)2. While this
dataset contains many clause instances with multi-
ple labels, we retain only those clauses from this

2https://www.sec.gov/
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Legal Corpus
Documents 
segmented 
into text 
fragments

Similarity 
established 
between fragments 
using Minhash-LSH

Clustering them 
by finding 
connected 
components

Pairwise contrasting 
to get the dynamic
part

Figure 3: Pipeline for dataset creation for dynamic part identification: The clauses extracted from the LEDGAR
corpus were originally obtained by segmenting legal documents into fragments. As clauses having fairly repetitive
lexical structure are believed to be generated from the same template, the fragments are clustered using Minhash-
LSH (Broder, 1997; Indyk et al., 1997), followed by finding the connected components. Finally, each pair in a
cluster is contrasted to annotate what is dynamic among them.

corpus which are associated with a single label
(roughly 83% of the dataset).

3.2.2 Objective Formulation
Given a language model M, Mrep denotes task
specific adaptation of the original language model
to generate representation for a given sentence.
We formulate our requirement as a task of met-
ric learning where the goal is to learn a function
Mrep(.) : X → Rd that maps semantically closer
input datapoints onto metrically closer points in
Rd. Here, X denotes the domain of input clauses
/ provisions. Under the triplet-loss formulation,
every instance in the training dataset is a triplet
(xa, xp, xn) where the model tries to make the dis-
tance between the representations of xa (anchor)
and xp (positive) smaller than that between xa and
xn (negative) by atleast a margin m. Mathemati-
cally, the loss function ltri is defined as follows:

ltri(xa, xp, xn) = [m+D(Mrep(xa),Mrep(xp))

−D(Mrep(xa),Mrep(xn))]+ (2)

In the above equation, D(., .) : Rd × Rd → R
denotes a metric function measuring distances in
the mapped space.

4 Training Details

We tune the parameters of our model using the algo-
rithm employed for multi-task learning (Liu et al.,
2019a). This framework optimizes the language
model over multiple tasks. The language model is

shared across different tasks by employing same
encoder with shared parameters for all the task-
specific overhead architectures. In each iteration of
mini-batch gradient descent optimization, a task is
randomly selected and corresponding task-specific
mini-batch of data is sampled to apply single step
of gradient descent using the task-specific objec-
tive. We curated the dataset for MLM pretraining
by extracting text fragments from the SEC corpus
as curated by Chalkidis et al., utilizing newline
character (\n) as the delimiter. In our ablation stud-
ies to understand the impact of various terms in the
pretraining objective on downstream performance,
we utilized a randomly selected subset of 40, 000
text fragments to quickly assess the importance of
each of the terms. Thereafter, we also evaluate
the performance of our model when a significantly
larger corpora is provided for MLM.

In this paper, the parameters of the shared lan-
guage model are initialized using the weights of
LEGAL-BERT (12-layer, 768-hidden, 12-heads,
110M parameters)3, a domain-specific language
model pre-trained using MLM. Thereafter, we in-
vestigate the performance of the model variants
listed in Table 1 by comparing against LEGAL-
BERT. We do not assess the performance of non-
domain specific models such as BERT (Devlin
et al., 2019) as the superiority of LEGAL-BERT
over BERT was demonstrated in (Chalkidis et al.,
2020) for some of the legal downstream tasks.

3Distributed under CC BY-SA 4.0
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Table 1: Model variants to be assessed in various legal downstream tasks (on top of LEGAL-BERT). Legal Corpus
for MLM was collected by randomly sampling 40, 000 text fragments from the SEC corpus.

Model name Description of Additional Pre-training

LB-PU Dynamic span recognition using PU
LB-BC Binary classification to identify dynamic tokens
LB-MLM MLM over legal corpus
LB-PU-MLM Multi-task training for PU and MLM over legal corpus
LB-TRI Representation learning task using triplet margin loss
LB-TRI-MLM Multi-task training for triplet margin loss and MLM over legal corpus
LB-PU-TRI Multi-task training for PU and triplet margin loss
LB-PU-TRI-MLM Multi-task training for PU, triplet margin loss and MLM over legal corpus

Table 2: Comparison between PU learning and Bi-
nary Classification for token-level tasks in terms of
F1-Scores (DPI: Dynamic Part Identification)

Model name CUAD-NER DPI

LEGAL-BERT 0.7040 0.7107
LB-PU 0.7355 0.7507
LB-BC 0.7221 0.6835

We used a 8 GPU A10G instance for training the
models. While it took 32 hours to pretrain the
model with best hyperparameter settings when
only 40,000 datapoints for MLM is used, the
model instance pretrained over the total SEC cor-
pus (Chalkidis et al., 2020) consumed 800 hours.
HuggingFace Transformers (Wolf et al., 2020) was
used for both pretraining and experimental analy-
sis.

5 Results and Discussion

We begin this section by validating the choice of
using PU learning for dynamic part detection in-
stead of binary token classification objective. In
the subsequent subsection, we describe various le-
gal downstream tasks and their associated data to
be used in comparing the performance of the mod-
els in Table 1. As our models are derived from
LEGAL-BERT, it is used as a baseline in our empir-
ical analysis and we demonstrate the improvement
of our model over it for several downstream tasks.

5.1 PU learning Versus Binary classification

5.1.1 Impact on downstream performance
In this subsection, we compare the performance
of the model additional pretrained using PU learn-
ing (LB-PU) and binary classification (LB-BC) for
named entity recognition (NER) and dynamic part
identification (DPI).

We use the NER adaptation of the Contract Un-

derstanding Atticus Dataset (CUAD) (Hendrycks
et al., 2021). CUAD labels the contracting-party
associated with each contract. This is used for
constructing a NER dataset with contracting-party
span annotations for each datapoint. This dataset
consists of 16,636 training, 2,000 validation and a
10,000 testing samples.

As the dataset curated for pretraining the lan-
guage model for dynamic part identification was
approximately labeled, we manually annotated few
text fragments by specifying the dynamic spans
using the definition in section 3.1. This manual
annotation furnished 132 training instances, 32 de-
velopment instances and 50 testing instances. The
performance was reported by computing the F1-
Score between the inferred spans and the ground
truth dynamic spans.

The results shown in Table 2 justifies the uti-
lization of PU learning objective. Our hypothesis
that training the model to identify dynamic spans
will improve its ability in recognizing named en-
tities has been validated by the improvement in
NER performance achieved through the use of the
PU learning objective. This is further validated in
the subsequent section through an examination of
the feature representations generated by the model
trained with/without PU learning. For the subse-
quent analysis, we disregard any models trained
using binary classification objective owing to the
results shown in the table. The decrease in the per-
formance from LEGAL-BERT to LB-BC for NER
and DPI stems from the fact that a subset of nega-
tively labelled tokens in some instances are labelled
as dynamic for other instances. This confuses the
model in learning correct characteristics associated
with these tokens, resulting in poor token-level rep-
resentation.
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Table 3: Performance for various legal domain task given in terms of F1-Scores for CUAD-NER and DPI tasks,
mean of F1-Scores for MULTI-EURLEX tasks for Level 1, 2 and 3, and soft F1-Score for Contract-Discovery task
(Averaged for 5 runs).

Model name
CUAD-NER DPI MULTI- Contract-

EURLEX Discovery

LEGAL-BERT 0.7040 0.7107 0.7535 0.4591
LB-MLM 0.7344 0.7098 0.7525 0.4367

LB-PU 0.7355 0.7507 0.7488 0.0394
LB-PU-MLM 0.7427 0.7509 0.7451 0.1701

LB-TRI 0.7325 0.7380 0.7566 0.4979
LB-TRI-MLM 0.7462 0.7091 0.7567 0.5051

LB-PU-TRI 0.7320 0.7454 0.7513 0.5032
LB-PU-TRI-MLM 0.7479 0.7628 0.7574 0.5119

(a) LEGAL-BERT (NMI: 0.1837) (b) LB-BC (NMI: 0.0021) (c) LB-PU (NMI: 0.3812)

Figure 4: t-SNE projections of the contextualized embeddings obtained from different representation schemes.
LB-PU visually performs the best in terms of segregating the named entities from the rest of the tokens.

5.1.2 Better feature representation for
extracting named entities

We provide a qualitative justification for PU learn-
ing leading to better representation for extracting
named entities in this subsection. In this assess-
ment, we extract 30 text sentences from the CUAD-
NER dataset that contain at least one named en-
tity within it and compute the contextualized em-
beddings for the tokens in it using LEGAL-BERT,
LB-BC and LB-PU. Thereafter, these embeddings
are mapped to two dimensional manifold using t-
SNE (Van der Maaten and Hinton, 2008) algorithm.
Note that, we compute the embeddings using dif-
ferent representation schemes without fine-tuning
on CUAD-NER to understand the impact of our
token-level objective for distinguishing named en-
tities from the rest of the tokens.

From Figure 4, we observe that the embeddings
of the named entities and other tokens are not very
well separated for LEGAL-BERT and LB-BC. On
the other hand, LB-PU leads to much better segre-

gation despite not being explicitly trained for the
task of named entity recognition. This can be at-
tributed to the observation that the dynamic part
of a legal text fragment corresponds to a named
entity most of the times. Since, LB-PU is explicitly
pretrained for the task of dynamic part detection,
it furnishes suitable representation scheme for seg-
regating named entities. While LB-BC is trained
for this task, it yields suboptimal representation
scheme as it does not consider the possibility that
some of the unlabelled tokens may be dynamic.

5.2 Results in various downstream tasks

Apart from CUAD-NER and DPI introduced in
sec 5.1.1, we consider following additional tasks to
compare the performance of different models:

1. MULTI-EURLEX (Chalkidis et al., 2021):
This dataset is meant to assess the perfor-
mance in the task of Large-Scale Multi-Label
Text Classification (LSMTC). The datapoints
in this dataset are curated from European leg-
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islative documents (EUR-LEX) and the labels
a derived from EUROVOC, a set of 4.3K Euro-
pean vocabulary labels. This dataset includes
a total of 65K datapoints with the train-test-
validation split of 55K-5K-5K respectively
and involves fine-grained categorization of the
label-set into 8 levels based on their hierarchy.
We compute the performance of the model
variants for ’level 1’ (21 labels), ’level 2’ (127
labels) and ’level 3’ (567) (but report only the
mean of these due to space constraint) as the
other levels are not publicly available.

2. Contract-Discovery (Borchmann et al.,
2020): This dataset is used to measure the
performance of a model in semantic retrieval,
where the task is to retrieve a span from a tar-
get document given a few examples (1 to 5)
of similar clauses. The dataset uses about 600
target documents and is divided into 2 splits:
development and test. Each of these splits con-
sists of 5000 datapoints. The performance is
evaluated by computing soft F1 metric (Gral-
iński et al., 2019) on the character-level in-
ferred spans, which rewards proportionally to
the extent of overlap between predicted and
ground truth character spans. To solve this
problem, we use the unsupervised method pro-
posed by the authors of this task (Borchmann
et al., 2020).

We can see from the Table 3 that the model pre-
trained using domain specific objectives achieves
better performance than LEGAL-BERT for all
the tasks. The models pretrained using only PU
(LB-PU and LB-PU-MLM) only improves the per-
formance for token-level tasks like CUAD-NER
and DPI and achieves poor performance for other
tasks. As these models only involve objectives
at the token level, they offer inferior representa-
tions at the level of sentences / text-fragments as
compared to other models which explains the poor
performance in tasks like MULTI-EURLEX and
Contract-Discovery. A similar effect is also ob-
served for LB-MLM, where the model exhibits
superior performance for some of the token-level
tasks but exhibits poor performance for sentence
level objective when compared against LEGAL-
BERT as it does not involve any objective at the
level of sentences. The models trained using
triplet objective only (LB-TRI and LB-TRI-MLM)
achieves better performance than LEGAL-BERT
for all the tasks. This justifies the inclusion of the

objective for learning semantic-aware representa-
tion scheme. We also observe that, inclusion of
MLM for the model variants almost always im-
proves the downstream performance. This indi-
cates the usefulness of having domain-agnostic ob-
jective like MLM in the overall objective. The
model pretrained using all the objectives (LB-
PU-TRI-MLM) achieves best / competitive perfor-
mance for most of the tasks. It is noteworthy that
even though the objective of PU learning has no
direct relation to tasks such as Contract-discovery
and MULTI-EURLEX, the inclusion of PU learn-
ing in combination with Triplet loss and MLM
leads to further improvement in the model’s effec-
tiveness in those tasks.

These results also emphasize the importance of
MLM apart from the domain-specific objectives.
Here, the pretraining over MLM was performed
over a dataset with about 40, 000 text fragments.
We believe that the performance of these models
can be significantly improved by including a suffi-
ciently larger dataset for MLM pretraining which
is validated in the next subsection.

5.3 Performance when the size of MLM
corpora is varied

In this section, we assess the performance of our
model trained using the three objectives (PU + TRI
+ MLM) when the number of datapoints in the
MLM corpus is varied. While the experiment per-
formed in the previous subsection comprised of
only 40,000 text fragments, this analysis assesses
the model performance when the number of text
fragments is varied from 1% to 100% of the total
SEC corpus (Chalkidis et al., 2020).

The results shown in Table 4 clearly demonstrate
that the downstream performance improves with
the number of datapoints in the MLM corpus. Note
that, the pretraining corpus for LEGAL-BERT
already comprises of the SEC corpus used in our
analysis. This fact also confirms the importance of
involving the two objectives along with MLM for
getting improved performance.

6 Conclusion

In this paper, we demonstrated a novel approach to
enhance the performance of domain-specific lan-
guage model across several specialty downstream
tasks by exploiting the language characteristics.
The objectives presented in this paper may not be
applicable to all domains, which is a limitation
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Table 4: Performance for various legal domain task given in terms of F1-Scores for CUAD-NER and DPI tasks,
mean of F1-Scores for MULTI-EURLEX tasks for Level 1, 2 and 3, and soft F1-Score for Contract-Discovery task
when the number of datapoints in the MLM corpus is varied.

Number of training Fraction of the CUAD-NER DPI MULTI- Contract-
datapoints for MLM overall SEC corpus EURLEX Discovery

40,000 5.56× 10−4 0.7479 0.7628 0.7574 0.5119
720,000 0.01 0.7483 0.7651 0.7546 0.5210

7,200,000 0.10 0.7518 0.7662 0.7547 0.5145
18,000,000 0.25 0.7457 0.7636 0.7471 0.5158
72,000,000 1.00 0.7523 0.7721 0.7577 0.5216

of our work, but the idea of formulating objec-
tives for learning domain-specific characteristics
can be applied to other specialty domains (biomed-
ical, programming languages, etc.). Future work
might involve studying other characteristics of the
legal domain and understanding their impact in
downstream performance. We justified the positive
impact of such pretraining across several down-
stream tasks by conducting extensive quantitative
analysis.

We conclude this section by enumerating the
natural extensions of this work for future:

1. In this work, we emphasized on two charac-
teristics in the legal domain. However, the
legal domain consists of several other domain-
specific characteristics. For instance, the con-
tent in a legal agreement can be structured
into different parts (preamble, recitals, list of
clauses, etc) and the impact of involving a pre-
training objective to infer the structure of a
legal document on several tasks is yet to be
understood. Thus, one line of future work may
involve exhaustive study of language charac-
teristics and understanding their influence in
downstream tasks.

2. In the future, we plan to study the applicability
of the introduced characteristics in other do-
mains, such as programming languages where
text fragments can be classified into categories
like function blocks, variable declaration, etc.
and contain both static and dynamic elements
that can be templatized. This study may
provide a thorough evaluation of the cross-
domain applicability of these characteristics,
including the assessment of their impact on
downstream performance and the ease of cu-
rating relevant data. We would like to also

motivate the researchers in applying the prin-
ciple introduced in this paper for other do-
mains (biomedical, finance, etc.). This neces-
sitates careful investigation in order to extract
domain-specific characteristics, as well as a
mechanism for training the language model to
understand these characteristics.

7 Limitations

We now discuss the limitations of our work. The
first limitation (or requirement) is need for sig-
nificant computational power. As we showed in
Section 5.3 of our paper, when the corpus size
for MLM training is increased from 0.0556% to
100% of the SEC corpus, while the performance
improved by about 1% on multiple tasks, the com-
putational requirement went up from 32 hours (on
a 8 GPU A10G instance) to 800 hours.

Secondly, we had built our model on top of a do-
main specific pre-trained language model (which
had used only MLM objective on a domain specific
corpus). In theory, since we do include MLM as
one of the objectives, we should be able to get com-
parable performance with or without domain spe-
cific pretrained language model. However, due to
significant cost involved, we did not train a model
starting from general domain language model (e.g.,
BERT or RoBERTa) to compare its performance
against model built on top of domain specific pre-
trained language model. Therefore, we cannot
make a claim if our proposed method would re-
sult in comparable performance improvement for
the domains where such pre-trained models are not
available.

Third, our method relies on identifying the do-
main specific characteristics and building objec-
tive functions suitable to exploit them. This re-
quires building domain expertise and/or collaborat-
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ing with domain experts. Since this process cannot
be automated, it requires additional cost and human
effort. Also, good automated data curation strate-
gies may or may not be feasible for other domain
specific characteristics, limiting using usefulness
for training large language models.

Finally, we have only experimented with English
language corpus. While the data curation strategy
we used should be applicable in most other lan-
guages also for legal domain, the static/dynamic to-
ken classification task particularly may depend on
grammatical rules for sentence construction, which
may not be similar in all languages.

However, we believe that despite these limita-
tions, our work points to possibility of improved
performance of language models by using domain
specific characteristics (beyond MLM based pre-
training), which should open doors for more such
explorations and significant advances in the state
of art.
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Abstract

Determining the role of event arguments is a
crucial subtask of event extraction. Most pre-
vious supervised models leverage costly anno-
tations, which is not practical for open-domain
applications. In this work, we propose to
use global constraints with prompting to ef-
fectively tackles event argument classification
without any annotation and task-specific train-
ing. Specifically, given an event and its as-
sociated passage, the model first creates sev-
eral new passages by prefix prompts and cloze
prompts, where prefix prompts indicate event
type and trigger span, and cloze prompts con-
nect each candidate role with the target argu-
ment span. Then, a pre-trained language model
scores the new passages, making the initial pre-
diction. Our novel prompt templates can easily
adapt to all events and argument types with-
out manual effort. Next, the model regularizes
the prediction by global constraints exploiting
cross-task, cross-argument, and cross-event re-
lations. Extensive experiments demonstrate our
model’s effectiveness: it outperforms the best
zero-shot baselines by 12.5% and 10.9% F1 on
ACE and ERE with given argument spans and
by 4.3% and 3.3% F1, respectively, without
given argument spans. We have made our code
publicly available.1

1 Introduction

Event Argument Classification2 (EAC), finding the
roles of event arguments, is an important and chal-
lenging event extraction sub-task. As shown in
Figure 1, a “Transfer-Money” event whose trig-
ger is “acquiring” has several argument spans (e.g.,
“Daily Planet”). By determining the role of these ar-
guments (e.g., “Daily Planet” as “Beneficiary”), we

1https://github.com/HKUST-KnowComp/Constraints-
with-Prompting-for-Zero-Shot-EAC

2We focus on event argument because existing zero-shot
trigger extraction models like Zhang et al. (2021) are already
strong enough, but the arguments remain a challenge. Our
argument identification approach is described in Section 3.1.

Figure 1: An example of EAC. The trigger is in bold
face. Arguments are underlined and connected to their
roles by arrows.

can obtain a better understanding of the event, thus
benefiting related applications like stock price pre-
diction (Ding et al., 2015) and biomedical research
(Zhao et al., 2021).

Many previous EAC works require numerous
annotations to train their models (Lin et al., 2020;
Hsu et al., 2022; Liu et al., 2022), which is not only
costly as the annotations are labor-intensive but
also difficult to be generalized to datasets of novel
domains. Accordingly, some EAC models adopt a
few-shot learning paradigm (Ma et al., 2022; Hsu
et al., 2022). However, they are sensitive to the few-
shot example selection and they still require costly
task-specific training, which hinders their real-life
deployment. There have been some zero-shot EAC
models based on transfer learning (Huang et al.,
2018), or label semantics (Zhang et al., 2021; Wang
et al., 2022), or prompt learning (Liu et al., 2020;
Lyu et al., 2021; Huang et al., 2022; Mehta et al.,
2022). However, these models’ corresponding lim-
itations impede their real-life deployment. The
model based on transfer learning can be ineffective
when new event types are very different from the
observed one. As for models using label semantics,
they require a laborious preparation process and
have unsatisfactory performance. Regarding mod-
els adopting prompt learning, they need tedious
prompt design customized to every new type of
events and arguments, and their performance is

2527



also limited.

To address the aforementioned issues, we pro-
pose an approach using global constraints with
prompting to tackle zero-shot EAC. Global con-
straints can be viewed as a type of supervision sig-
nal from domain knowledge, which is crucial for
zero-shot EAC since supervision from annotations
is inaccessible. Moreover, our model’s constraints
module provides abundant global insights across
tasks, arguments, and events. Prompting can also
be regarded as a supervision signal as it induces
abundant knowledge from Pre-Trained Language
Models (PTLM). Unlike previous zero-shot EAC
works, which need a tedious prompt design for ev-
ery new type of events and arguments, the novel
prompt templates of our model’s prompting module
can be easily adapted to all possible types of events
and arguments in a fully automatic way. Specif-
ically, given an event and its passage, our model
first adds prefix prompt, cloze prompt, and can-
didate roles into the passage, which creates a set
of new passages. The Prefix prompt describes the
event type and trigger span. Cloze prompt connects
each candidate to the target argument span. Af-
terwards, our model adopts a PTLM to compute
the language modeling loss for each of the new
passages, whose negative value would be the re-
spective prompting score. The role with the highest
prompting score is the initial prediction. Then, our
model uses global constraints to regularize the ini-
tial prediction. The global constraints are based on
the domain knowledge of the following relations:
(1) cross-task relation, where our model addition-
ally performs another one or more classification
task on target argument span, and our model’s pre-
dictions on EAC and other task(s) should be consis-
tent; (2) cross-argument relation, where arguments
of one event should collectively abide by certain
constraint(s); (3) cross-event relation, where some
argument playing a certain role in one event should
play a typical role in another related event.

We conduct comprehensive experiments to
demonstrate the effectiveness of our model. Partic-
ularly, our approach surpasses all zero-shot base-
lines by at least 12.5% and 10.9% F1 on ACE and
ERE, respectively. When argument spans are not
given, our model outperforms the best zero-shot
baseline by 4.3% and 3.3% F1 on ACE and ERE,
respectively. Besides that, we also conduct exper-
iments to show that both the prompting and con-
straints modules contribute to the final success.

2 Methodology

We first present an overview of our approach. Then
we introduce the details by describing its prompt-
ing module and global constraints regularization
module. We follow (Liu et al., 2021) to name a
prompt inserted before input text as prefix prompt,
and a prompt with slot(s) to fill in and insert in the
middle of input text as cloze prompt.

2.1 Overview

As shown in Figure 2, given a passage with a target
argument span, our model infers the target’s role
without annotation and task-specific training. Our
model has two modules. The first module is the
prompting module that creates and scores several
new passages. During creation, the model adds
prefix prompt, cloze prompt, and candidate roles
into the passage, where the prefix prompt contains
information about event type and trigger, and the
cloze prompt joins each candidate with a target ar-
gument span.3 Afterwards, the model uses a PTLM
to score the new passages. Our novel prompt tem-
plates can easily adapt to all possible events and
arguments without manual work. Initial prediction
is the role with the best prompting scores. The sec-
ond module is the global constraints regularization
module, where the model regularizes the predic-
tion by three types of global constraints: cross-task
constraint, cross-argument constraint, and cross-
event constraint. All global constraints are based
on event-related domain knowledge about inter-
task, inter-argument, and inter-event relations.

2.2 Prompting Module

In this section, we describe the prompting mod-
ule in detail. Given a passage, we first add a prefix
prompt containing information about the event type
and trigger span to the beginning. Such a prompt
can guide a PTLM to: (1) accurately capture the in-
put text’s perspective related to the event; (2) have a
clear awareness of the trigger. Based on the defini-
tions of events and triggers (Grishman et al., 2005),
we create the following prefix prompt: “This is
a [] event whose occurrence is most clearly ex-
pressed by [].” where the first and second pairs
of square brackets are the placeholders of event
type and trigger span respectively. We also con-

3Since we focus on event argument classification, we as-
sume that the event types and trigger spans are given. The
settings without given argument spans will be discussed in
Section 3.1.
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Figure 2: Model overview using prediction for one argument span as an example. [T ]1 and [T ]2 are the parts of the
input passage before and after the span, respectively. k is the number of candidate roles of the event type.

ducted some experiments comparing different pre-
fix prompts in Section A, and the results showed
that the prefix above is the most effective.

Second, for each candidate role, the module in-
serts the cloze prompt behind the target argument
span, and the role fills the prompt’ slot. The cloze
prompt adopts the hypernym extraction pattern “M
and any other []” (Dai et al., 2021), where “M”
denotes the argument span and the square bracket
is the placeholder of the candidate role. We did not
try other hypernym extraction patterns as (Dai et al.,
2021) had shown that our pattern is the most ef-
fective. The motivation for adopting the hypernym
extraction pattern for cloze prompt is that, to some
extent a role can be regarded as a context-specific
hypernym of the respective argument span of the
associated event (e.g., “Beneficiary” can be seen
as a context-specific hypernym of “Daily Planet”of
the Transfer-Money event described by the exam-
ple in Figure 1). Hence, such a prompt induces the
linguistic and commonsense knowledge stored in
PTLM to help identify which candidate role is the
most reasonable.

After adding the previous two types of prompts,
we get several new passages. For instance, suppose
the passage is“In Baghdad, a bomb was fired at
17 people.” whose event type is “Conflict:Attack”,
trigger is “fired”, target argument span is “bomb”,
and candidate roles are {“Attacker”, “Instrument”,
“Place”, “Time”, “Target”}. The created passages
would be: (1) “This is a Attack event whose oc-
currence is most clearly expressed by “fired.” In
Baghdad, a bomb and any other attacker was fired
at 17 people.”; (2) “This is a Attack ... “fired.” ...
bomb and any other instrument was ...”; and simi-

lar text for other roles.4

For each new passage, we apply a PTLM to com-
pute the language modeling loss. The negative
value of the loss would be the prompting score of
the respective passage, where a higher value indi-
cates higher plausibility according to the PTLM.
Since our model’s prompt templates are inde-
pendent of event type and argument role, their
adaptation to any new type of events and argu-
ments is trivial and fully automatic. Hence, our
prompting method is more scalable and generaliz-
able than those of previous zero-shot EAC models,
since, for every new type of events and arguments
they need to design a customized prompt. For in-
stance, for every type of events/arguments, Lyu
et al. (2021) manually design a unique prompt as
text entailment/question answering template. The
initial prediction would be the role with the high-
est prompting score. Since the steps of obtaining
scores for each candidate role are independent of
other candidate roles, we implement the steps of
different candidate roles in parallel. Such a parallel
implementation significantly improves our model’s
efficiency.

2.3 Global Constraints Regularization
Module

This module regularizes the prediction by the fol-
lowing three types of global constraints.5

Cross-task constraint exploits the label depen-
dency between EAC and auxiliary task(s) so that

4We only use the subtype of all events following the pre-
processing done by (Lin et al., 2020)

5We designed 14 global constraints in total and we used
preliminary experiments to choose the three most effective
ones. In the preliminary experiments, we randomly sample
1k instances covering all trigger and argument types. We then
evaluate each constraint on the sampled subset.
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our model can get global information from the aux-
iliary task(s) about event arguments. We use Event
Argument Entity Typing (EAET) as the auxiliary
task. The task aims to classify an argument into
its context-dependent entity type (e.g., PER). As
specified in ACE2005 ontology, an argument of
a certain role in an event can only be one of sev-
eral respective entity types (e.g., an argument of
“Attack” role in a Conflict:Attack event can only
be “ORG,” “PER,” or “GPE”). Based on this
domain knowledge, we design the cross-task con-
straint as follows: (1) For each input passage, our
model performs prompting for EAET, where the
prompting is the same as in Section 2.2 except that
candidate entity types replace the candidate roles
in cloze prompt.; (2) After obtaining the scores and
prediction of EAET, the model check the consis-
tency between the predictions of EAC and EAET;
(3) If the consistency is violated and the score of
EAC’s predicted role is lower, then discard the cur-
rent role, use the role with the highest score in the
remaining ones, and check the consistency again;
(4) The constraint ends when the labels of two tasks
are consistent. An example illustrating this type of
constraint is shown in Figure 3.

Cross-argument constraint is based on do-
main knowledge about relationships between ar-
guments within an event. Specifically, our model
constrains the number of particular arguments for
some or all events. For instance, it is very unlikely
that an event mentioned is associated with multi-
ple “Time” arguments. Such constraints offer a
global understanding of event arguments to our
model. The cross-argument constraint we adopt is
“A Personnel:End-POSITION event has at most
one Position argument.” Given a Personnel:End-
POSITION event, our model first checks the num-
ber of “Position” argument. If the number is more
than one, then our model will first collect the ar-
guments whose roles are “Position” and remove
the one with the highest score among these argu-
ments. Then for each remaining argument, our
model would change the role to its candidate with
the second highest score. An example illustrating
this type of constraint is shown in Figure 4.

Cross-event constraint regularizes predicted
roles of arguments shared by related events. A
model with such a constraint can have global in-
sights into event arguments, because while they
are making inferences for the arguments of one
event, they are aware of the information of other

Figure 3: An Example of cross-task constraint. The
text in bold face is the trigger, underlined text is target
argument span, and a tuple denotes a predicted label
with its prompting score (e.g., “(Target, -3.5)” denotes
the predicted label “Target” with its prompting score“-
3.5”). Similar notations are adopted in all remaining
figures.

related event(s) and cross-event relations. The
cross-event constraint we adopt is “If a Life:Injure
event and a Conflict:Attack event share argu-
ments, then Injure.Place is the same as At-
tack.Place, Injure.Victim is the same as At-
tack.Target, Injure.Instrument is the same as
Attack.Instrument, Injure.Time is the same as
Attack.Time, Injure.Agent is the same as At-
tack.Attacker”. Given a passage containing an
Injure and an Attack event sharing arguments, the
model imposes the constraint by checking the con-
sistency between the respective roles of each shared
argument as specified in the constraint. Any incon-
sistency would be fixed by changing the role with
a lower prompting score to the new one satisfying
the consistency. An example illustrating this type
of constraint is shown in Figure 5.

Our constraint modeling method can be easily
generalized to other datasets/ontologies by simply
using the knowledge about corresponding cross-
task, cross-argument, and cross-event relations to
design new constraints. The design processes are
not costly as we could easily find such knowledge
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Figure 4: An Example of cross-argument constraint.

from the guidelines of the target dataset.

3 Experiments

We first present the experimental settings, baselines
used for comparison, and some implementation de-
tails. Next, we show and analyze the experiment
results. Then we present a detailed analysis of
the prompting module and global constraints reg-
ularization module. Finally, we conduct an error
analysis.

3.1 Settings

We use ACE (2005-E+)6 (Doddington et al., 2004;
Lin et al., 2020) and ERE(-EN) (Song et al., 2015)
as datasets. In total, ACE has 33 event types and
22 roles, whereas ERE has 38 event types and 21
roles. We pre-process all events to keep only the
event subtypes whenever applicable, as done in
(Lin et al., 2020). Following the pre-processing in
(Zhang et al., 2021), for each dataset, we merge
all splits into one test set since our approach is
zero-shot. When argument spans are not given, we
pipeline our model with an argument identification
module adapted from (Lyu et al., 2021). Specifi-
cally, we replace the QA model in (Lyu et al., 2021)
with a more powerful PTLM with a span classifi-
cation head on top, and the whole model has been
fined-tuned for extractive QA tasks. Then for a pas-
sage, we prompt each role using the new QA model
as in (Lyu et al., 2021). We collect the prompt re-
sults for all roles (ignoring the “None” result) as

6https://www.ldc.upenn.edu/collaborations/past-
projects/ace

Figure 5: An Example of cross-event constraint.

candidate spans for the passage. We use the F1
score for evaluation following (Ji and Grishman,
2008), where argument spans are evaluated on the
head level when not given. Regarding PTLMs, We
use GPT-J (6B) (Wang and Komatsuzaki, 2021)
instances from Huggingface (Wolf et al., 2020),
where an instance for causal language modeling is
used for prompting, and an instance for QA is used
for argument identification. In all the following sec-
tions except Section 3.2, we conduct experiments
on ACE, assuming that argument spans are given.

3.2 Main Results

We report the main results comparing our models
with three previous powerful zero-shot models (Liu
et al., 2020; Lyu et al., 2021; Zhang et al., 2021).
Moreover, we also report the results of a SOTA
supervised model (Hsu et al., 2022). We obtain
the results of all compared methods from our own
experiments to ensure a fair comparison on the
same datasets and same settings. From Table 1, we
have the following observations:

• Our model achieves superior performance on
both datasets under both settings compared
with all zero-shot baselines. Specifically, our
model surpasses the best zero-shot baselines
(Zhang et al., 2021) by 12.5% and 10.9% on
ACE and ERE, respectively. Without argu-
ment spans, our model outperforms the re-
spective best zero-shot baselines (Lyu et al.,
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Model
ACE ERE

argument span given argument span not given argument span given argument span not given

(Hsu et al., 2022) (supervised) 79.3 71.8 79.8 72.5

(Liu et al., 2020) 46.1 24.2 40.9 22.8
(Lyu et al., 2021) 47.8 26.9 44.5 26.3

(Zhang et al., 2021) 53.6 23.5 51.9 20.2
Ours 66.1 31.2 62.8 29.6

Table 1: Performance of supervised model, zero-shot baselines, and our model. The best scores among the ones of
zero-shot methods are in bold font.

2021) by 4.3% and 3.3% on ACE and ERE,
respectively, which is also a noticeable gap.
Such large performance improvements can
be attributed to the following: (1) the prefix
prompt guides the PTLM to effectively cap-
ture input’s event-related perspective and trig-
ger; (2) the cloze prompt leverages linguistic
and commonsense knowledge stored in PTLM
to improve its contextual understanding of
event arguments; (3) the global constraints
regularization incorporate global information
and domain knowledge in inference. In Sec-
tion 3.3, we compare the effects of using dif-
ferent PTLMs like BERT in the prompting
module, and the results show that our model
consistently outperforms previous zero-shot
models, as shown in Table 1 and Figure 6.

• Compared with the supervised SOTA model
(Hsu et al., 2022), there is still a significant
gap between our model’s performance and
that it. Specifically, (Hsu et al., 2022) out-
performs our model by 13.2% and 17.0% on
ACE and ERE, respectively. When argument
spans are not provided, (Hsu et al., 2022) out-
runs our model by 40.6% and 42.9% on ACE
and ERE, respectively. We can see that the
advantage of supervised SOTA over our zero-
shot method is much more distinct when ar-
gument spans are not given in advance. This
is probably because our zero-shot argument
identification module described in Section 3.1
is not powerful enough, which causes severe
error propagation to our EAC model.

3.3 Analysis of Prompting Module

We conduct experiments to examine the effects of
different configurations of prefix prompt templates.
Specifically, we compare our model’s complete pre-
fix prompt with the following configurations: (1)
removing event type information from the prefix;
(2) removing trigger information from the prefix;

Configurations F1 ∆

complete prefix prompt 66.1 -

w/o event type 64.4 -1.7
w/o trigger 64.9 -1.2

w/o prefix prompt 62.8 -3.3

Table 2: Results of using different configurations of
prefix prompt.

(3) removing the whole prefix. For instance, sup-
pose the passage is “In Baghdad, a bomb was fired
at 17 people.” mentioned in Section 2.2, the prefix
in configuration (1) would be “This event’s oc-
currence is most clearly expressed by ‘fired’.”,
the prefix in configuration (2) would be “This is
a Attack event.”, and in configuration (3) there
would be no prefix. The corresponding results are
shown in Table 2, where we have the following
observations. First, removing either event type or
trigger from the prefix prompt will cause a per-
formance drop, which indicates that both kinds of
information have contributions to the prompting
process. Second, event type plays a more signif-
icant role than trigger does in prefix prompt, and
the joint effect of them is greater than the sum of
their respective effects.

In addition, we examine the effects of using dif-
ferent PTLMs in the prompting module. We com-
pare the following PTLMs with GPT-J (6B): BERT
(large, uncased) (Devlin et al., 2019), RoBERTa
(large) (Liu et al., 2019), BART (large) (Lewis
et al., 2020), GPT-2 (xl) (Radford et al., 2019), T5
(11B) (Raffel et al., 2020). The results are shown
in Figure 6, where we have the following observa-
tions. First, the instance using GPT-J has the best
performance, surpassing other instances by 4.2% to
7.9%. This shows that GPT-J has a better ability to
understand events and their associated arguments
compared to other PTLMs. Second, as PTLMs are
listed in ascending order based on their numbers of
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Figure 6: Comparison between the performance of using
different PTLMs in prompting module.

parameters, we can see that for the first five models,
the performance increases as the sizes of PTLMs
become larger, which is consistent with the widely
accepted notion that the larger model has a bet-
ter capability of solving language tasks. However,
the instance using the largest PTLM, T5 (11B),
has a worse performance than GPT-2 and GPT-J.
This is probably because autoregressive language
modeling is more suitable for capturing informa-
tion related to event arguments than mask language
modeling is.

3.4 Analysis of Global Constraints
Regularization Module

We conduct experiments to study the individual
effect of each global constraint on the overall per-
formance. The results are shown in Table 3, where
we have the following observations. First, every

Model F1 ∆

Full model 66.1 -

w/o cross-task constraint 60.5 -5.6
w/o cross-argument constraint 64.8 -1.3

w/o cross-event constraint 63.6 -2.5

Table 3: Results of using different configurations of
global constraints.

global constraint used by our model is beneficial
to overall performance, which demonstrates that
exploiting the domain knowledge about cross-task,
cross-argument, and cross-event relations indeed
provides our model with global understanding of
event arguments. Second, the contribution of cross-
task constraint is the most significant, which sug-
gests that the global insights from the entity typing
tasks are more effective in improving our model’s
reasoning ability about event arguments. Third, the
cross-argument constraint is less effective than the

Figure 7: An Example of the wrong prediction caused
by too general argument roles. The text in bold face
denotes trigger and the underlined text denotes target
argument span.

other constraints, which shows that the global in-
sights provided by the cross-argument constraint is
less informative than those provided by the other
constraints.

Apart from the three global constraints described
above, we have designed another 11 global con-
straints, which rely on cross-argument or cross-
event relations. We add each of them into our
model to check their respective effects on the over-
all performance. The results of three of them are
in Table 4, whereas the results of all of them are in
Section B. From the results, we can find that each
of these constraints either brings minor improve-
ment or even has a negative influence on the overall
performance. Hence, we do not incorporate these
constraints in our model to maintain our model’s
efficiency and effectiveness.

3.5 Error Analysis
We manually checked 100 wrong predictions of our
model and found that most of the errors are caused
by too general roles of some event types. Specifi-
cally, some roles’ linguistic meanings are so gen-
eral that a model, not knowing their detailed event-
type-dependent semantics, tends to assign them to
some arguments which should have been assigned
other roles. An example is shown in Figure 7.
The example describes a Justice:Arrest-Jail event,
which is associated with the following roles: “Per-
son,” “Agent,” “Crime,” “Time,” and “Place.” “Per-
son” refers to the person who is jailed or arrested,
whereas “Agent” refers to the jailer or the arresting
agent. In the example, the argument span’s true
role should be “Agent” according to the detailed
event-type-dependent semantics of “Person” and
“Agent.” However, our approach is zero-shot and
directly models all role labels as natural language
words, without incorporating the detailed event-
type-dependent semantics of those roles, which are
too general (e.g., “Person”). Therefore, our model
assigns “Person” to “Police” since it is reasonable
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Global constraint Effect on overall performance

There is at most one Time-Arg in each event. 0.4
A TRANSPORT event has at most one ORIGIN argument. -0.1

If an Arrest-Jail event and a Charge-Indict event share arguments,
0.3Arrest-Jail.Person is the same as Charge-Indict.Defendant, they

share the same Crime argument.

Table 4: Results of three other global constraints. Results of all other global constraints are in Section B

from the perspectives of linguistic and common-
sense knowledge, and “Person” is much more com-
mon than “Agent” in the pre-training corpus of the
PTLM in the prompting module, which makes it
have much higher likelihood in the language mod-
eling process. Incorporating event-type-dependent
semantics of the roles which are too general into
our model is left as future work.

4 Related Work

In this section, we introduce related works about
constraint modeling, event extractions, and prompt-
based Information Extraction (IE).

4.1 Constraint Modeling

Constraint modeling, as an important technique
in machine learning and NLP, aims to improve
a model’s performance by incorporating domain
knowledge as constraints (Ganchev et al., 2010;
Chang et al., 2012, 2013; Deutsch et al., 2019;
Chang et al., 2008, 2010; Graça et al., 2010). One
of the most significant advantages of constrained
modeling is that it enables a model to capture the
expressive and complex dependency structure in
structured prediction problems like EAC (Chang
et al., 2012). Especially in zero-shot scenarios,
constrained modeling can provide useful indirect
supervision to a model, which further boosts per-
formance (Ganchev et al., 2010). Some previous
works have adopted constraints based on event-
related domain knowledge to classify event ar-
guments (Lin et al., 2020; Zhang et al., 2021).
However, their constraints either require labor-
intensive annotations (Lin et al., 2020) or consider
limited global information (e.g., cross-event rela-
tions) (Zhang et al., 2021). In this paper, our model
uses global constraints to regularize prediction by
incorporating global insights from cross-task, cross-
argument, and cross-event relations.

4.2 Event Extraction

Event extraction is a fundamental information ex-
traction task (Sundheim, 1992; Grishman and Sund-
heim, 1996; Riloff, 1996; Grishman et al., 2005;
Chen et al., 2021; Du and Cardie, 2020; Liu et al.,
2020), which can be further divided into four sub-
tasks: trigger identification, trigger classification,
argument identification, and argument classifica-
tion. Traditional efforts mostly focus on the su-
pervised setting (Ji and Grishman, 2008; Liao and
Grishman, 2010; Liu et al., 2016; Chen et al., 2015;
Nguyen et al., 2016; Liu et al., 2018; Zhang et al.,
2019; Wadden et al., 2019; Lin et al., 2020). How-
ever, these works could suffer from the huge burden
of human annotation. In this work, we focus on the
argument classification task and propose a model
using prompting and global constraints, without
annotation and task-specific training.

4.3 Prompt-based IE

With the fast development of large PTLMs like
T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020),
and Pathway Language models (Chowdhery et al.,
2022), the prompt-based method has been an ef-
ficient tool of applying those giant models into
downstream NLP tasks (Liu et al., 2021). IE is
not an exception. People have been using lever-
age prompts and giant models to solve IE tasks
like named entity recognition (Cui et al., 2021),
semantic parsing (Shin et al., 2021), and relations
extraction (Chen et al., 2022; Han et al., 2021) in
a zero-shot or few-shot way. However, previous
prompting methods for IE need a tedious prompt
design for every new type of events and arguments.
In contrast, our model’s prompt templates can be
adapted to all possible types of events and argu-
ments in a fully automatic way.

5 Conclusion

We propose a zero-shot EAC model using global
constraints with prompting. Compared with previ-
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ous works, our model does not require any annota-
tion or manual prompt design, and our constraint
modeling method can be easily adapted to any other
datasets. Hence, our model can be easily general-
ized to any open-world event ontologies. Exper-
iments on two standard event extraction datasets
demonstrate our model’s effectiveness.

6 Limitations

Our work has the following limitations. One lim-
itation is that our model is not aware of the de-
tailed event-type-dependent semantics of those
roles which are too general, as discussed in Section
3.5. In the future, we will work on enabling our
model to capture the event-type-dependent seman-
tics of the roles which are too general. Another
limitation is that our model’s performance is still
unsatisfactory compared with SOTA supervised
model when argument spans are not given, as dis-
cussed in Section 3.2. In the future, we will work
on designing a more powerful zero-shot event argu-
ment identification module for our model, so that
we can obtain satisfactory zero-shot EAC perfor-
mance even when argument spans are not given.
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A Comparison between Different Prefix
Prompts

In this section, we conduct experiments on ACE-
2005 dataset to compare the effectiveness of us-
ing different prefix prompts in our models. We
compare the following prefix prompts with the one
discussed in Section 2.2: (1) “This is a [] event
whose trigger is "[]".”; (2) “The event type is [],
and its occurrence is most clearly expressed by
"[]".”; (3) “The event type is [] and the trigger
is "[]".”. The results are shown in Table 5, where
“Prefix (0)” refers to the prefix prompt discussed
in Section 2.2, whereas “Prefix (1)” refers to the
first prefix prompt described in this section, and
so on. From the table we can see that the prefix

Prefix Prompt F1

Prefix (0) 66.1
Prefix (1) 65.2
Prefix (2) 65.6
Prefix (3) 63.0

Table 5: Performance of different prefix prompts.

prompt described in Section 2.2 is the most effec-
tive one, which might be due to the fact that the
prefix prompt not only is based on the definitions
of events and triggers (Grishman et al., 2005), but
also has a natural and smooth expression.

B Results of all Other Global Constraints

In this section, we present the results of all other
global constraints. The results are shown in Table
6.
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Global constraint Effect on overall performance

There is at most one Time-Arg in each event. 0.4
There is at most one Place-Arg in each event. 0.1

A TRANSPORT event has at most one Destination argument. -0.2
A TRANSPORT event has at most one ORIGIN argument. -0.1

A START-POSITION event has at most one Person argument. 0.2
A START-POSITION event has at most one Entity argument. -0.1

A START-POSITION event has at most one Position argument. 0.1
A End-POSITION event has at most one Person argument. -0.2
If a Start-Position event and an End-Position event share

0.1
arguments, then Start-Position.Person is the same as

End-Position.Person, and Start-Position.Entity is the same
as End-Position.Entity, Start-Position.Position is the same

as End-Position.Position.
If an Arrest-Jail event and a Charge-Indict event share arguments,

0.3Arrest-Jail.Person is the same as Charge-Indict.Defendant, they
share the same Crime argument.

If a Die event and an Attack event share arguments, then

-0.2
Die.Place is the same as Attack.Place, Die.Victim is the

same as Attack.Target, Die.Instrument is the same as
Attack.Instrument, Die.Time is the same as Attack.Time,

Die.Agent is the same as Attack.Attacker.

Table 6: Other global constraints and corresponding effects on overall performance.
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Abstract

Driven by encouraging results on a wide range
of tasks, the field of NLP is experiencing an ac-
celerated race to develop bigger language mod-
els. This race for bigger models has also under-
scored the need to continue the pursuit of prac-
tical distillation approaches that can leverage
the knowledge acquired by these big models in
a compute-efficient manner. Having this goal
in mind, we build on recent work to propose
a hallucination-free framework for sequence
tagging that is especially suited for distillation.
We show empirical results of new state-of-the-
art performance across multiple sequence la-
belling datasets and validate the usefulness of
this framework for distilling a large model in a
few-shot learning scenario.

1 Introduction

Sequence labelling (SL) can be defined as the task
of assigning a label to a span in the input text. Some
examples of SL tasks are: i) named entity recog-
nition (NER), where these labelled spans refer to
people, places, or organizations, and ii) slot-filling,
where these spans or slots of interest refer to at-
tributes relevant to complete a user command, such
as song name and playlist in a dialogue system. In
general, these spans vary semantically depending
on the domain of the task.

Despite the strong trend in NLP to explore the
use of large language models (LLMs) there is still
limited work evaluating prompting and decoding
mechanisms for SL tasks. In this paper we propose
and evaluate a new inference approach for SL that
addresses two practical constraints:

• Data scarcity: The lack of vast amounts of
annotated, and sometimes even the lack of
unlabelled data, in the domain/language of
interest.

∗Equal contribution
†Research completed during sabbatical at Bloomberg

• Restricted computing resources at infer-
ence time: LLMs are very effective, but
deploying them to production-level environ-
ments is expensive, especially in contexts with
latency constraints, such as in a live dialogue
system.

Data scarcity leads us to consider high-
performing encoder-decoder based LLMs. We ad-
dress deployment concerns by considering distil-
lation of such models into much smaller SL archi-
tectures, for instance Bi-Directional Long Short
Memory (BiLSTM) (Hochreiter and Schmidhuber,
1997) units, through the use of both labelled and
unlabelled data.

A standard distillation approach, knowledge dis-
tillation (KD) (Hinton et al., 2015), requires access
to the probability that the teacher network assigns
to each of the possible output tags. This proba-
bility distribution is typically unavailable at infer-
ence time for LLMs; thus, distillation of encoder-
decoder models needs to resort to pseudo-labels:1

the student is trained on the one-hot labels that
the teacher assigns to examples in an unlabelled
dataset. This prevents the student model from learn-
ing those relationships among the probabilities of
the incorrect classes that the teacher has learned.
Similar arguments apply to decoder-only models.

In this paper, we propose SenT′, a simple modifi-
cation of the Simplified Inside Sentinel+Tag (SenT)
format by Raman et al. (2022). We combine our tar-
get sequence format with a scoring mechanism for
decoding, which we collectively call SenTScore.
This combination results in an effective framework
that allows us to employ a language model to per-
form sequence labelling and knowledge distillation.
We show that SenTScore is an hallucination-free

1In this paper, we refer to distillation with pseudo-labels as
the process by which a student model is trained on the one-hot
labels (and only those labels) generated by a teacher model on
an unlabeled dataset. We wish to distinguish this from KD, in
which the probability distribution over labels is also used. See
also Shleifer and Rush (2020).
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Original text

play wow by jon theodore

Encoder input for SenT′ format

<extra_id_0> play <extra_id_1> wow <extra_id_2> by <extra_id_3> jon <extra_id_4> theodore <extra_id_5>

Expected decoder output for SenT′ format

<extra_id_0> O <extra_id_1> TRACK <extra_id_2> O <extra_id_3> ARTIST <extra_id_4> I <extra_id_5>

Table 1: An example of how an original input text (from the SNIPS dataset) is transformed into the SenT′ input for
the model, and the format for the expected output. We use the explicit form of the special token strings used by T5.
The addition of the extra token at the end of the input differentiates SenT′ from SentT. Notice the modified BIO
scheme (sBIO) that we use in our experiments: a unique I tag is used for each of the output tags; so if the original
tag set is T , the tags generated by the model are T ≡ T ∪ {I,O}.

decoding scheme, and that even with smaller mod-
els it outperforms the original SenT format across
a variety of standard SL datasets.

Our proposed SenTScore method defines a se-
quence of scores over the output tags that can be
aligned with those generated by the sequence tag-
ging student network, making KD possible. We
find an advantage in terms of performance in using
KD as opposed to just pseudo-labels as a distilla-
tion objective, especially for smaller distillation
datasets.

In sum, our contributions are:

• A new, hallucination-free, inference algorithm
for sequence labelling with encoder-decoder
(and possibly decoder only) transformer mod-
els, SenTScore, that achieves new state-of-
the-art results on multiple English datasets.

• Empirical evidence showing an advantage
of SenTScore when distilling into a smaller
student model. This approach is particu-
larly promising in the few-shot setting, which
makes it even more appealing and practical.

2 Related work

Using LLMs to perform sequence tagging is dis-
cussed by Athiwaratkun et al. (2020); Yan et al.
(2021); Paolini et al. (2021); Qin and Joty (2021);
Xue et al. (2022) and Raman et al. (2022). While
these previous works have minor differences in the
prompting format of the models, all but the last one
include input tokens as part of the target sequence.
Different from our work, all previous models are
prone to hallucinate.

Distillation refers to training a small student
model from scratch using supervision from a large
pretrained model (Bucilua et al., 2006; Hinton et al.,
2015). Distillation of transformer-based models for
different NLP tasks is typically discussed in the
context of encoder-only models (e.g. Tang et al.,

2019; Mukherjee and Hassan Awadallah, 2020;
Jiao et al., 2020), with a few exceptions looking at
distillation of decoder-only models (e.g. Artetxe
et al., 2021).

In this paper we will discuss two approaches to
distillation: pseudo-labels and knowledge distilla-
tion (KD). In the first approach the student model is
trained on the hard labels generated by the teacher
on some (unlabelled) dataset. In the second ap-
proach additional soft information provided by the
teacher is used: typically the probability distribu-
tion the teacher assigns to the labels.

In the context of sequence labelling, using
pseudo-labels allows us to perform distillation on
any teacher-student architecture pair. KD, on the
other hand, requires access to the teacher’s proba-
bility distribution over the output tags. These are
not usually available in language models for which
the output distribution is over the whole vocabulary
of tokens. We are not aware of other works which
modify the decoder inference algorithm to generate
such probabilities. However, there is recent work
distilling internal representations of the teacher
model, with the most closely related work to us
being Mukherjee and Hassan Awadallah (2020). In
that work the authors distill a multilingual encoder-
only model into a BiLSTM architecture using a
two-stage training process. This two-stage process,
however, assumes a large unlabelled set for dis-
tilling internal model representations, embedding
space, and teacher logits, and another significant
amount of labelled data for directly training the
student model using cross-entropy loss.

3 Datasets

We select seven English datasets that have been
used in recent work on slot labelling: ATIS
(Hemphill et al., 1990), SNIPS (Coucke et al.,
2018), MIT corpora (Movie, MovieTrivia, and

2540



Restaurant)2, and the English parts of mTOP (Li
et al., 2021) and of mTOD (Schuster et al., 2019).
Some statistics about the datasets are shown in
Table 2. Some of these datasets (ATIS, SNIPS,
mTOP, and mTOD) come from dialogue-related
tasks, while the MIT ones have been used for NER.

We use the original training, development, and
test sets of the SNIPS, mTOP, and mTOD datasets.
For the ATIS dataset we use the splits established
in the literature by Goo et al. (2018), in which a
part of the original training set is used as the dev
set. Similarly, we follow Raman et al. (2022)3 to
obtain a dev set out of the original training set for
each of the MIT datasets.

We notice that all datasets, with the exception
of MovieTrivia, contain some duplicates. Among
these, all apart from Restaurant contain examples
in the test set that are also duplicated in the train
and dev sets. This happens for fewer than 30 in-
stances, with the exception of mTOD, where more
than 20% of the test set examples are also found
in the train and dev sets. How these duplicates are
handled varies across the literature; we do not re-
move duplicates from the datasets used in our main
results.

However, for mTOD, we also obtained results
on a version of the dataset that was deduplicated
as follows: If an example is duplicated, we retain
it in the highest priority (defined below) split and
removed from the others. To ensure the test set is
as close as possible to the original test set, we order
the splits in ascending order of priority as follows:
test, dev, and train. We found that the F1 scores on
the deduped mTOD dataset are within 0.5 points
those on the original mTOD dataset across all ex-
periments; as such, we do not report the deduped
results in the following sections.

In addition to covering different domains, there
are noticeable differences across the datasets in
terms of the number of tags and the number of
labelled examples for evaluation and testing, as
can be seen in Table 2. This set of seven datasets
allows us to gather robust empirical evidence for
the proposed work that we present in what follows.

4 Score-based sequence labelling

Using LLMs for sequence tagging requires refram-
ing the problem as a sequence-to-sequence task. In

2The MIT datasets were downloaded from: https://
groups.csail.mit.edu/sls/

3Private communication with authors

Datasets # tags # train # dev # test
ATIS 83 4478 500 893
SNIPS 39 13084 700 700
MovieTrivia 12 7005 811 1953
Movie 12 8722 1053 2443
Restaurant 8 6845 815 1521
mTOP (en) 75 15667 2235 4386
mTOD (en) 16 30521 4181 8621

Table 2: Number of examples per partition and number
of unique tags in the SL datasets we used.

Raman et al. (2022), the strategy that proved the
most effective, at least when applied to the mT5
encoder-decoder architecture, was the Simplified
Inside Sentinel+Tag (SenT in this paper). In this
format (see Table 1), the original text is first tok-
enized according to some pretokenization strategy
(whitespace splitting for all the datasets consid-
ered), and each of the tokens is prepended with
one of the extra token strings provided by mT5
(the sentinel tokens). The resulting concatenation
is then tokenized using the mT5 tokenizer and fed
to the encoder-decoder model. The output that the
decoder is expected to generate is the same input
sequence of special token strings, which are now al-
ternated with the tags corresponding to the original
tokens.

Given the set T of string labels to be used to an-
notate a span of text, the scheme used to associate
tags across tokens is a modification of the standard
BIO scheme: we use t ∈ T for any token that starts
a labelled span, a single tag I for each token that
continues a labelled span, and O to tag tokens that
do not belong to labelled spans. We refer to this
scheme as Simplified Inside BIO (sBIO), and we
indicate with T ≡ T ∪{I,O} the tag set associated
to it.

Raman et al. (2022) argue that the success of
SenT can be attributed to two factors: 1) on the one
hand, the use of sentinel tokens mimics the denois-
ing objective that is used to pretrain mT5; 2) on
the other hand, when compared to other decoding
strategies, SenT does not require the decoder to
copy parts of the input sentences and also produces
shorter outputs. Both these facts supposedly make
the task easier to learn and reduce the number of
errors from the decoder (hallucinations, as they are
often referred to in the literature).

We remark however that any output format
among those described in the literature can be made
completely free of hallucinations by constraining
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decoding (either greedy or beam search based)
through a finite state machine enforcing the desired
output format (see for instance De Cao et al., 2020).
In what follows we describe our proposed decoding
approach that builds on this previous work.

4.1 SenTScore
Regardless of possible constraints imposed during
generation, both SenT and the other algorithms
described in Raman et al. (2022) use the decoder
autoregressively at inference time to generate the
target sequence. Since generation proceeds token
by token and the textual representation of a tag is
a variable length sequence of tokens, it is nontriv-
ial to extract the scores and probabilities that the
model assigns to individual tags.

We propose a different approach to inference,
one in which the decoder is used to score sequences
of tags. For this purpose, we consider a sequence
tagging task with a label set T , and the associated
sBIO tag set T . Given an input sentence S, we use
a pre-tokenizer (such as whitespace splitting) to
turn S into a sequence of token strings x1 . . . xL,
of size L. The SenT format is obtained by inter-
leaving these tokens with special token strings to
obtain the input string Sin = s0x1s1 . . . xL. We
use juxtaposition to indicate string concatenation.
In what follows, we will work with SenT′, a modifi-
cation of SenT in which an additional special token
is appended at the end, Sin ← SinsL. The reason
for doing this will become clear in what follows.

The valid output strings that can be generated by
the decoder are the |T |L sequences of the form
Sout = s0t1s1 . . . tLsL ∈ O where t ∈ T ≡
T ∪ {I,O} consistent with the sBIO scheme con-
vention. The encoder-decoder model can be used to
calculate the log-likelihood of each of such strings
logLθ(Sout;Sin), where θ represents the model pa-
rameters, and the best output will be:

S∗out = argmax
S∈O

logL(S;Sin)

Exact inference is infeasible but can be approx-
imated using beam search as described in Algo-
rithm 1. The outputs of the algorithm are the top-K
output strings and the score distribution associated
with each of the output tags. As is evident from
Table 1, it is simple to map back the final output
string S∗ to the sequence of output tags and la-
belled spans.

At decoding time the output string is initialized
with the first sentinel token s0. At the i-th step,

Algorithm 1 SenTScore beam search
Require: Encoder-decoder parameters θ, input Sin with L

tokens, sBIO tag set T , beam size K
Ensure: Approximate top-K output sequences Btext and their

sBIO tag scores, Bscores
Btext ← [ s0 ]i=1...K

Bscores ← [ [ ] ]i=1...K

for i = 1 to L do
H ← [ z t si ]z∈Btext, t∈T ▷ Generate hypotheses
S ← [ logLθ(h;Sin) ]h∈H ▷ Score hypotheses
Π← K-argsortS ▷ top-K args
Btext ← TAKE(H; Π) ▷ Update text beam
S̃ ← RESHAPE(S;K, |T |); ▷ Reshape scores
for k = 0 to K − 1 do ▷ Update score beam

k̃ ← Π[k] mod K

Bscores[k]← APPEND(Bscores[k̃];S[k̃])
end for

end for
return Btext, Bscores

SenTScore uses the model likelihood to score each
of the |T | possible continuations of the output se-
quence

t si with t ∈ T , (1)

picks the highest scoring one, and keeps track of
the score distribution. si in Eq. 1, the next sen-
tinel token, plays the crucial role of an EOS to-
ken at each step. This is needed to normalize
the probability distribution: the likelihood of the
string s0t1 . . . sk−1t′k is always bounded by that
of the string s0t1 . . . sk−1tk if t is a prefix of t′,
and we would never predict t′ as a continuation of
s0t1 . . . sk−1. This explains why we prefer using
SenT′ over SenT.

Finally, while SenTScore changes the inference
algorithm, the finetuning objective we use through-
out is still the original language modelling one.

4.2 Distillation

The main advantage of SenTScore is in the distilla-
tion setting. At each inference step, the algorithm
assigns a likelihood to each sBIO tag. This distri-
bution can be used to train the student network by
aligning it to the teacher’s pre-softmax logits, in a
standard knowledge distillation setup.

In detail, given an input sequence Sin, let
(y∗i )i=1...L be the sequence of sBIO output tags
(as |T |-dimensional one-hot vectors) as inferred
by the teacher model, and let (u∗i )i=1...L (also |T |-
dim. vectors) be the associated sequence of log-
likelihoods. We indicate with p∗i the probability
obtained by softmaxing u∗i and by qi the output of
the softmax layer from the student. The contribu-
tion of each of the tags to the distillation objective
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that we use to train the student sequence tagger is

−
∑

k

(y∗i )k log (p
∗
i )k + λKLKL(p

∗
i ||qi) . (2)

The first term is the standard cross-entropy contri-
bution from the pseudo-labels, while the second is
the knowledge distillation term, implemented with
a KL divergence with λKL its associated positive
weight.

We stress that we are allowed to write the second
term only because SenTScore provides us with
the tag scores. This is not the case for any of the
formats proposed in Raman et al. (2022) or, as far
as we know, elsewhere.4

5 Experimental settings

We evaluate the models by computing the F1 score
on the test set of each dataset. F1 is calculated
following the CoNLL convention as defined by
Tjong Kim Sang and De Meulder (2003), where an
entity is considered correct iff the entity is predicted
exactly as it appears in the gold data. We show
micro-averaged F1 scores.

The first set of experiments we performed
are intended to investigate whether our proposed
SentTScore approach is competitive with respect
to recent results on the same datasets (Table 3).
Our SentTScore model is a pretrained T5-base
model (220M parameters) finetuned on each of the
datasets.5 We trained each model for 20 epochs,
with patience 5, learning rate of 10−3, and batch
size 32. We also want to know how the proposed
framework compares against the following strong
baselines:
BiLSTM: Our first baseline is a BiLSTM tagger
(Lample et al., 2016).6 The BiLSTM has a hidden
dimension of size 200. Its input is the concate-
nation of 100d pretrained GloVE6B embeddings
(Pennington et al., 2014) from StanfordNLP with
the 50d hidden state of a custom character BiL-
STM. We trained each model for 100 epochs, with
patience 25, learning rate of 10−3, and batch size
16.
BERT: We finetune a pretrained BERT-base cased

4Strictly speaking the student defines p(·|t∗1 . . . t∗i−1;Sin)
(star means predicted) while qi corresponds to
p(s0t

∗
1 . . . t

∗
i−1si−1 · |Sin). This discrepancy is resolved by

the invariance of the softmax under constant shifts of its
arguments.

5All our results are in the greedy setting. We find very
small differences in performance by using beam search, while
inference time grows considerably.

6We do not include a CRF layer.

model (Devlin et al., 2019) (110M parameters)
for the SL task and report results for each of the
seven datasets. While we consider BERT a base-
line model, we note that this pretrained architecture
continues to show good performance across a wide
range of NLP tasks, and for models in this size
range BERT is still a reasonable choice. In pre-
liminary experiments we compared results from
the case and uncased versions of BERT and we
found negligible differences. We decided to use the
cased version for all experiments reported here. We
trained each model for 30 epochs, with patience 10,
learning rate of 5× 10−5, and batch size 64.
SentT′: The pretrained model is the same as that
used for SentTScore. The goal of this baseline
is to assess improvements attributed to our pro-
posed decoding mechanism. This model is also
the closest model to prior SOTA. The main differ-
ence between our results and those in Raman et al.
(2022) is the pretrained model. They used a mul-
tilingual T5 model (Xue et al., 2021) with 580M
parameters, whereas we use a smaller monolingual
version (Raffel et al., 2020).

All the above models were trained with the
AdamW optimizer (Loshchilov and Hutter, 2017).
The best checkpoint for each training job was se-
lected based on highest micro-F1 score on the vali-
dation set. All pretrained transformer models are
downloaded from Huggingface.

5.1 Distillation experiment
We apply SentTScore and the loss function de-
scribed in Section 4.2, to distill a finetuned T5
model into a BiLSTM architecture to perform se-
quence tagging. To mimic a low-resource setting,
we randomly downsample the train/dev splits of all
the datasets. We consider two sets of sizes for these
gold train/dev splits: a 100/50 split and a 300/150
one. In both settings the remainder of the original
training set is used for the distillation component
using pseudo-labels.

We then finetune T5 using the SenT′ format
on each of these two gold splits. The resulting
model is used as the teacher in a distillation set-
ting in which the student is a BiLSTM. The BiL-
STM student is trained on the full training set by
using the downsampled gold labels, but pseudo-
labels and scores generated by the T5 teacher using
SenTScore with K = 1 in the rest of the training
data. We use a temperature parameter τ to rescale
the distribution SenTScore defines over T . We use
τ = 10 in all the distillation experiments.
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Dataset
BiLSTM [1M] BERT [110M] T5 [220M] (SenT′) T5 (SenTScore) mT5 [580M] (SenT)
Perfect F1 Perfect F1 Perfect F1 Perfect F1 Perfect F1

ATIS 89.06 95.56 88.57 95.27 86.56 94.77 89.81 95.99 90.07 95.96
SNIPS 87.24 95.02 89.71 95.47 89.86 95.43 91.00 96.07 89.81 95.53
MovieTrivia 32.41 69.81 36.2 69.15 36.35 70.76 39.58 71.99 39.85 73.01
Movie 69.79 86.72 69.46 85.83 71.88 87.53 74.29 88.35 72.74 87.56
Restaurant 58.32 77.39 58.97 77.69 58.65 78.77 63.77 80.91 62.93 80.39
mTOP (en) 81.10 88.94 84.4 90.98 84.18 90.64 86.66 92.29 86.56 92.28
mTOD (en) 91.70 95.62 92.35 95.83 92.24 96.04 92.94 96.24 93.19 96.42

Table 3: Our results comparing BERT-base and a BiLSTM against a T5-base model using SenT′ and SenTScore
on different SL datasets are shown in the first 4 columns. Number in square brackets are model sizes in terms of
number of parameters. Results from Raman et al. (2022) are copied in the last column. Bold scores represent our
best results; underlined scores in the last column highlight those cases in which Raman et al. (2022) outperforms us.

Dataset - F1 BiLSTM BERT T5 BiLSTM
(distilled)

ATIS 79.93 79.43 85.01 86.75
SNIPS 51.63 52.16 54.33 57.18
MovieTrivia 48.26 50.26 55.74 57.85
Movie 60.82 61.80 67.09 70.51
Restaurant 47.26 53.17 56.87 61.13
mTOP (en) 43.12 46.08 51.94 54.77
mTOD (en) 68.68 76.95 79.43 82.26

(a) Gold train/dev split of size 100/50

Dataset - F1 BiLSTM BERT T5 BiLSTM
(distilled)

ATIS 86.43 84.95 89.33 90.25
SNIPS 69.19 72.77 76.34 79.84
MovieTrivia 57.64 58.41 63.60 65.34
Movie 73.54 73.76 77.39 79.20
Restaurant 61.62 62.97 68.52 68.62
mTOP (en) 57.22 63.28 67.73 69.62
mTOD (en) 83.46 85.51 88.68 89.82

(b) Gold train/dev split of size 300/150

Table 4: Distillation results and comparisons with baselines. The distillation results use the full objective function in
Eq. 2 with λKL = 1.

The training schedule we follow is the same we
use to train the BiLSTM baseline model, with the
only exception that the best checkpoint is selected
on the reduced dev set.

6 Results

The comparisons between baselines, SenT′, and
SenTScore are shown in Table 3. SenTScore is
used with a K = 1 beam size. Larger beams re-
sult in very similar performance and a considerable
slowdown of inference time. SenTScore consis-
tently outperforms SenT′ with constrained decod-
ing, and all other baselines. Our intuition is that one
advantage of SenTScore comes from the fact that
decoding happens tag-wise as opposed to token-
wise (as in pure beam search). The last column of
Table 3 shows the performance of the SenT imple-
mentation of Raman et al. (2022). Perfect scores
are also reported for completeness. They are eval-
uated at the sentence level and correspond to the
fraction of perfectly predicted examples. However
these results are not directly comparable: Raman
et al. (2022) use a different and larger model (mT5-
base with 580M parameters) and different optimiza-
tion details. Nevertheless SenTScore achieves bet-

ter performance in a majority of cases.

6.1 Distillation results

Tables 4a and 4b show the result of the distillation
experiments with 100/50 and 300/150 train/dev
gold splits, respectively. While a BiLSTM tag-
ger trained on the gold data significantly underper-
forms a finetuned T5-base model, once the BiL-
STM is distilled on the silver data generated using
SenTScore, it outperforms even the original teacher
model. We notice that the difference between stu-
dent and teacher decreases for larger gold set size,
suggesting that the effect is related to regulariza-
tion properties of the distillation process. A similar
phenomenon has been observed elsewhere, for in-
stance in Furlanello et al. (2018) albeit with teacher
and student sharing the same architecture.

In order to isolate the benefits of training the
teacher model using KD as opposed to just pseudo-
labels, we perform a set of ablation studies. For
each dataset, we distill a BiLSTM student on a
training set T = G∪S , where G is the original gold
set and S is a random sample from the complement
of G. We choose |S| = 0, 250, 500. The student is
distilled using Eq. 2 with two choices of the loss
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Dataset - F1
No silver 250 silver 500 silver

λKL = 0 λKL = 1 λKL = 0 λKL = 1 λKL = 0 λKL = 1

ATIS 79.93 (0.85) 82.35 (0.44) 83.09 (1.49) 84.42 (1.42) 83.75 (1.74) 85.10 (1.54)
SNIPS 51.63 (1.25) 55.65 (1.38) 54.34 (0.71) 56.02 (1.71) 55.66 (1.21) 57.00 (1.17)
MovieTrivia 48.26 (0.95) 51.86 (1.09) 53.11 (1.26) 55.19 (0.50) 53.97 (1.55) 56.00 (0.38)
Movie 60.82 (0.67) 64.20 (1.07) 67.04 (0.66) 69.41 (0.66) 67.73 (1.28) 70.12 (0.60)
Restaurant 47.26 (0.83) 50.19 (0.81) 54.24 (1.17) 56.20 (0.94) 56.29 (1.11) 57.95 (0.88)
mTOP (en) 43.12 (1.84) 46.43 (1.01) 46.68 (2.31) 49.08 (1.65) 49.57 (0.47) 50.33 (2.17)
mTOD (en) 68.68 (2.68) 70.40 (0.97) 76.12 (1.07) 77.86 (1.45) 77.86 (0.85) 79.77 (0.82)

Table 5: Distillation experiments with varying silver dataset size and ablation of the KD term in Eq. 2. The gold
data split is the same as in Table 4a, with train/dev sizes of 100/50. The numbers in parentheses represent the
standard deviation of the scores obtained by varying all the random seeds that appear at training time: BiLSTM
weight initialization, batch scheduling, and the choice of the silver data set.

Dataset - F1
No silver 250 silver 500 silver

λKL = 0 λKL = 1 λKL = 0 λKL = 1 λKL = 0 λKL = 1

ATIS 86.43 (1.09) 88.42 (0.48) 89.15 (0.65) 89.39 (0.49) 89.73 (0.66) 89.98 (0.31)
SNIPS 69.19 (0.74) 73.06 (0.54) 72.11 (1.11) 75.02 (1.16) 73.99 (0.81) 75.73 (1.47)
MovieTrivia 57.64 (0.45) 60.30 (0.34) 60.25 (0.37) 62.11 (0.54) 61.38 (0.46) 62.89 (0.52)
Movie 73.54 (0.40) 76.30 (0.33) 75.88 (0.44) 76.96 (0.44) 76.52 (0.58) 77.58 (0.26)
Restaurant 61.62 (0.43) 63.78 (0.27) 64.33 (0.90) 65.33 (0.66) 65.20 (0.80) 66.24 (0.63)
mTOP (en) 57.22 (0.73) 60.36 (0.50) 60.81 (0.92) 62.70 (0.69) 62.02 (0.94) 64.37 (0.84)
mTOD (en) 83.46 (0.59) 85.52 (0.20) 86.35 (0.40) 87.08 (0.50) 86.82 (0.33) 87.89 (0.40)

Table 6: Distillation experiments with varying silver dataset size and ablation of the KD term in Eq. 2. The gold
data split is the same as in Table 4b, with a train/dev size given by 300/150. All experimental details are common
with Table 5.

multipliers: λKL = 1 and λKL = 0. The first
setting is the same used in Tables 4a and 4b, while
the second drops the KD loss and only keeps the
pseudo-labels for distillation. Whenever pseudo-
labels and scores are used, they are generated by
the SenTScore algorithm.

The results are shown in Tables 5 and 6. We see a
consistent trend in which KD outperforms training
the student using only pseudo-labels. This in partic-
ular motivates SenTScore as an inference algorithm.
The results also show that for our choice of teacher
and student architectures, and datasets, the gap be-
tween KD and pseudo-labels is reduced when more
silver data are used. Figure 1 further explores the re-
lationship between amount of pseudo-labeled data
and gains from KD with |S| = 0, 250, 500, 2000.
The trend with more pseudo-labeled data remains
unchanged.

7 Limitations and future work

A reasonable critique to our focus on real-world
constraints is the simple fact the datasets we are us-
ing are not real-world ones. From noise to tokeniza-
tion choices, many issues arise when considering
datasets outside of the academic domain. However,

we believe our methods are simple enough to be
applicable to real-world scenarios and our results
to be independent of these various subtleties.

Some issues that could be addressed in future
work have to do with the exploration of even larger
models and different architectures such as decoder-
only ones (Radford et al., 2018, 2019; Brown et al.,
2020; Zhang et al., 2022; Chowdhery et al., 2022;
Black et al., 2021). We note, however, that in all
our experiments we finetune all the weights of the
pretrained models we use. When using extremely
large models this becomes impractical. Recent
work (Turc et al., 2019) suggests that KD with com-
pact encoder-only student models, such as BERT,
is a promising avenue for further research. Explor-
ing the pure few-shot scenario, or only finetuning
a subnetwork, for instance by using adapters à la
Houlsby et al., 2019, would be also interesting.

8 Conclusion

Real-time systems need to find a trade-off between
performances and computing resources, the latter
constraint coming either from budget or some other
service requirement. Such trade-offs become par-
ticularly evident with large pretrained transformer
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Figure 1: A graphical representation of the distillation results in Table 4a (100/50 gold train/dev split) as a function
of the size of the silver dataset. Knowledge distillation using SenTScore generated scores outperforms pseudo-labels.
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models, which achieve SOTA results on many NLP
tasks at the cost of being extremely hard and ex-
pensive to deploy in a real-world setting.

The standard solution for this is distillation. In
this paper we have revisited these issues for the
SL task, which is often the first crucial step in
many real-world NLP pipelines. We propose a
new inference algorithm, SenTScore, that allows
us to leverage the performance of arbitrarily large
encoder-decoder transformer architectures by dis-
tilling them into simpler sequence taggers using
KD as opposed to just pseudo-labelling.

Ethical considerations

The intended use of our proposed approach is re-
lated to sequence labelling tasks where there are
latency constraints and limited labelled data avail-
able. While it is not impossible to identify potential
misuses of this technology, it is not immediately
clear what those malicious uses would be. On the
contrary, this paper contributes to the body of work
investigating efficient solutions for deployment of
live systems.

Computing infrastructure and computational
budget
All of our experiments were run on single V100
GPU machines with 32GB. The most expensive
experiments relate to finetuning a model, including
best checkpoint selection. In this case, the running
time is directly related to the dataset size. For the
experiments using the full train/dev set, running
time varies from 45 minutes (mATIS corpus) to
a few hours (mTOD corpus) for a T5-base model.
Training a model takes, on average, around 4 it-
erations per second with batch size 32. For the
generation of pseudo-labels, we did not implement
batch processing and it takes around 0.15 seconds
to annotate each sample.
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Abstract

We develop models to classify desirable evi-
dence and desirable reasoning revisions in stu-
dent argumentative writing. We explore two
ways to improve classifier performance – using
the essay context of the revision, and using the
feedback students received before the revision.
We perform both intrinsic and extrinsic evalua-
tion for each of our models and report a qual-
itative analysis. Our results show that while
a model using feedback information improves
over a baseline model, models utilizing context
- either alone or with feedback - are the most
successful in identifying desirable revisions.

1 Introduction

Successful essay writing by students typically in-
volves multiple rounds of revision and assistance
from teachers, peers, or automated writing evalua-
tion (AWE) systems. Natural language processing
(NLP) has become a key component of AWE sys-
tems, with NLP being used to assess the content
and structure of student writing and to automat-
ically provide formative feedback (Beigman Kle-
banov and Madnani, 2020; Zhang et al., 2016; Writ-
ing Mentor, 2016; Wang et al., 2020). While some
students produce revised texts that are in line with
the feedback automatically generated by a system
or provided by other humans, other students either
ignore the feedback or are unsuccessful in their
feedback implementation attempts (Wang et al.,
2020). Hence, analyzing student revisions in terms
of their desirability for improving essay quality is
important. The development of AWE systems that
leverage NLP to analyze a revision’s alignment to
feedback messages is one approach to convey to
students a sense of a good revision direction.

Our research focuses on the automatic classi-
fication of desirable and undesirable revisions of
evidence use and reasoning 1 in argumentative writ-

1Such revisions of text content are generally considered
most important in revising (Faigley and Witte, 1981).

ing. Argumentative writing is a skill that students
need to develop to be strong writers and learners.
By evidence use, we refer to examples and details
that students use to support an argument. By rea-
soning, we refer to how evidence is explained and
linked to an overall argument. Desirable revisions
(e.g., add relevant evidence) are student revisions
that have hypothesized utility in improving an essay
in response to feedback (e.g., add more evidence),
while undesirable revisions (e.g., add irrelevant ev-
idence) do not have such hypothesized utility.

Table 1 shows example desirable and undesirable
revisions of evidence and reasoning from original
to revised drafts of an essay aligned at the sentence-
level. In response to the feedback shown at the
top of Table 1, the student adds both reasoning and
evidence. Sentences 3, 5, and 9 are added desir-
able reasoning, desirable evidence, and undesirable
reasoning respectively. The student also modified
fluency in other sentences which is not shown here.
Sentences 1, 4, and 7 are identical in both drafts.

In this paper, we first describe the labeling of
desirable and undesirable revisions in three exist-
ing corpora of evidence and reasoning revisions.
We then describe a baseline model and enhanced
models using context and feedback information to
predict revision desirability. Finally, we present
results from intrinsic and extrinsic evaluations to
demonstrate the utility of our enhanced models.

2 Related Work

NLP research on revision analysis primarily fo-
cuses on two domains: Wikipedia and academic
writing. Studies in Wikipedia revisions focused
on error correction, paraphrase or vandalism de-
tection (Daxenberger and Gurevych, 2012), factual
versus fluency edits (Bronner and Monz, 2012), se-
mantic edit intention (Yang et al., 2017), etc. In
academic writing, revision studies have instead fo-
cused on defining revisions purpose tailored to ar-
gumentative writing (Zhang and Litman, 2015;
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Feedback message: “....Explain how the evidence helps to make your point... ... Tie the evidence
not only to the point you are making within a paragraph, but to your overall argument..."

Original Draft Revised Draft Revision
1. The author convinced me by saying in

the passage that, "The plan is to get peo-
ple out of poverty, assure them access
to health care and help them stabilize
the economy and quality of life in their
communities."

The author convinced me by saying in
the passage that, "The plan is to get peo-
ple out of poverty, assure them access
to health care and help them stabilize
the economy and quality of life in their
communities."

No-change

2. ...
3. They can do that by assuring that the

people of Sauri, Kenya have food, wa-
ter, liter, and a place to stay.

Added
Desirable
Reasoning

4. Also, in paragraph 3 it says, "The goals
are supposed to be met by 2025; some
other targets are set for 2035."

Also, in paragraph 3 it says, "The goals
are supposed to be met by 2025; some
other targets are set for 2035."

No-change

5. If the plans are going to be achieved in
2025 than their plans will be achieved
in only 7 more years which would be
in our life time.

Added
Desirable
Evidence

6. ... ...
7. Since so many people weren’t fighting

against poverty in 2010 people were
being sent to the hospital and not even
being treated cause they didn’t have the
money so, so many people died.

Since so many people weren’t fighting
against poverty in 2010 people were
being sent to the hospital and not even
being treated cause they didn’t have the
money so, so many people died.

No-change

8. ... ...
9. The kids and their families didn’t have

the money but but this supports my ev-
idence by talking about how the kids
don’t go to school it’s because them
and their family are in poverty.

Added
Undesirable
Reasoning

Table 1: Example of revisions extracted from an essay from our elementary-school dataset.

Kashefi et al., 2022) and understanding the pat-
tern of revisions (Afrin and Litman, 2019; Shibani
et al., 2018). Exploring the pattern of iterative
revision have also been studied in scientific writ-
ing (Du et al., 2022). While there have been some
attempts at defining revisions in terms of their qual-
ity (e.g., vagueness of Wikipedia edits (Debnath
and Roth, 2021), statement strength in scientific
writing (Tan and Lee, 2014), quality of claims in
online debate (Skitalinskaya et al., 2021), and im-
provement in argumentative writing (Afrin and
Litman, 2018)), they fail to incorporate feedback
students were provided. Afrin et al. (2020) is
the first study that touched on student revisions in
terms of their utility in improving the essay with
respect to automated feedback messages. However,

their framework was applied to one dataset and
they did not investigate state-of-the-art models for
automatic classification. In this work, we focus
on a simplified binary classification task to distin-
guish between desirable and undesirable revisions
in student argumentative writing, and particularly
explore the utility of two predictors of revision de-
sirability - context and feedback. We also apply our
model on multiple student corpora.

Previous revision classification approaches ei-
ther do not create contextual features (Daxenberger
and Gurevych, 2013; Zhang and Litman, 2015), or
the context features represent only shallow informa-
tion such as ‘location’ (Zhang and Litman, 2015).
Zhang and Litman (2016) incorporated context by
using cohesion blocks focusing on adjacent sen-
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Datasets #Students
Grade Feedback Essay Drafts Essay Score Improvement
Level Source Used Range Score Range

Elementary 143 5th & 6th AWE 1 and 2 [1, 4] [0, 3]
High-school 47 12th peer 1 and 2 [0, 5] [-2, +3]
College 60 college X 2 and 3 [15, 33] -1, +1

Table 2: Comparison of datasets used in this study (X = Not available).

Data Example Feedback
Elementary
(AWE

Explain the evidence: Tell your reader why you included each piece of evidence. Explain
how the evidence helps to make your point.

generated) Explain how the evidence connects to the main idea & elaborate: Tie the evidence not only
to the point you are making within a paragraph, but to your overall argument. Elaborate.
Give a detailed and clear explanation of how the evidence supports your argument.

High-school
(peer feed-
back)

for the spendthrifts and the hoaders, you used a good example for spendthifts but im
confused on where you example for hoardering is. if it is mike tyson, i think you should
include more detail about that. your fifth circle could use more detail as to what exactly
made him hate man, because im confused about the story.

Table 3: Examples of feedback messages from elementary and high-school data.

tences of the target revision, and sequence labeling
to utilize the interdependent revisions. Inspired by
this work, we propose a new approach to extract
longer context information.

Prior studies of revision quality in writing have
not considered feedback students receive before
revision when defining an annotation scheme (Tan
and Lee, 2014; Afrin and Litman, 2018), or have
not explored the benefit of using feedback during
classification (Afrin et al., 2020). We leverage both
pre-defined AWE feedback messages and free form
peer feedback in identifying desirable revisions.

Previous studies have explored revision gener-
ation for argument writing task (Ito et al., 2019)
and paraphrase generation tasks (Mu and Lim,
2022). However, state-of-the-art language models
are not leveraged for revision classification task.
The pre-trained Bidirectional Encoder Represen-
tations from Transformer (BERT) (Devlin et al.,
2019) model has shown to be effective in various
NLP models including sentence classification and
sentence-pair classification. BERT has also pro-
duced excellent results in various argument min-
ing tasks (Chakrabarty et al., 2019; Reimers et al.,
2019; Ghosh et al., 2021). In this work, we leverage
the standard pre-trained BERT model (bert-based-
uncased) (Devlin et al., 2019) to create the model
for our revision classification task.

3 Data and Resources

Our data consists of three corpora of paired drafts
of argumentative essays, written in response to a
prompt and revised in response to feedback. A
comparison of the data is shown in Table 2. The
diversity of the corpora along multiple dimensions
helps ensure the utility of our proposed models.

The elementary school students wrote Draft1
about an article on a project in Kenya, then received
AWE system feedback focused on students’ use
of text evidence and reasoning (selected based on
automatic scoring). An example of the feedback
messages is shown in Table 3. All essay pairs
were later graded on a scale from 0 to 3 to indicate
improvement from Draft1 to Draft2 in line with the
feedback (kappa = 0.77) (Wang et al., 2020).

The high-school students wrote Draft1 in re-
sponse to a prompt about Dante’s Inferno (Zhang
and Litman, 2015), then received peer feedback
along 6 rubric dimensions (e.g., evidence, organiza-
tion, etc.). We only utilize feedback about evidence
in this work (shown in Table 3), because it is closely
related to the revisions we are considering. Drafts
1 and 2 of each high-school essay were separately
graded by expert graders. We create an improve-
ment score for each essay pair, calculated as the
difference of the holistic score between drafts.

The college essays were written by 60 students
on technology proliferation (Zhang et al., 2017).
Students received general feedback after Draft1,
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Desirable Undesirable Desirable Undesirable
Evidence Evidence Reasoning Reasoning

Elementary
Relevant

Irrelevant+Repeat
+Non-Text-Based
+ Minimal

LCE + Para-
phrase

Not-LCE + Generic + Commentary
+ Minimal

High-school
LCE

Paraphrase+ Not-LCE+ Generic
+ Commentary+ MinimalCollege

Table 4: Desirable and Undesirable revision mapping.

then revised to create Draft2, then revised again
without any further textual2 feedback to create
Draft3. Drafts 2 and 3 were later graded by experts
based on a rubric. We create a binary improvement
score for each essay pair, calculated as 1 if Draft3
improved compared to Draft2, -1 otherwise.

For all corpora, sentences from the two drafts
were aligned manually based on semantic similar-
ity. Aligned sentences represent one of four oper-
ations between drafts – no change, modification,
sentence deleted from Draft1, sentence added to
Draft2. Each pair of changed aligned sentences
was then extracted as a revision (rows 3, 5 and 9 in
Table 1) and annotated for its purpose (revise rea-
soning, evidence, and reasoning in rows 3, 5 and 9,
respectively). Kappa of the purpose annotation was
0.753 (Afrin et al., 2020). From among the full set
of annotations, we only use evidence and reason-
ing revisions for the current study because they are
the most frequent for elementary and high-school
data3. Due to low frequency of evidence revisions,
we only use reasoning revisions for college data.

Finally, to understand how students revise evi-
dence and reasoning, whether their revisions were
desirable, and whether desirable revisions relate to
measures of essay improvement, we then applied
the evidence and reasoning revision categorization
scheme developed in (Afrin et al., 2020). In this
scheme, revisions related to evidence are charac-
terized by five codes – Relevant, Irrelevant, Repeat
evidence, Non-text based, and Minimal. Reasoning
revisions are characterized by six codes – Linked
claim-evidence (LCE), Not LCE, Paraphrase evi-
dence, Generic, Commentary, and Minimal. The
annotation was done by an expert familiar with the
coding scheme (Cohen’s kappa in a previous study
was 0.833 for evidence and 0.719 for reasoning).

2Feedback was given using AWE interface visualizations.
31475 revisions were extracted from elementary-school

data. Other 700 revisions (claim, word-usage, grammar mis-
takes, etc.) are not considered due to low frequency. 1269
revisions were extracted from high-school data. Other 772
revisions are not considered due to low frequency.

Labeling Desirable Revisions. In this paper,
we abstract the evidence and reasoning revision an-
notations described above into two new categories
- desirable revision and undesirable revision. The
mapping is shown in Table 4. Desirable revisions
are those that have hypothesized utility in improv-
ing the essay after revision, and are encouraged
by the writing task. Given a different writing task
with different feedback messages, different cate-
gories may be desirable in improving the essay
quality. For our corpus, relevant evidences are de-
sirable because they support a claim in the essay.
All the other categories of evidence revisions are
combined as undesirable. For reasoning revisions,
LCE and paraphrase reasoning are combined as
desirable for the elementary-school data4. On the
other hand, only LCE is a desirable reasoning re-
vision for the high-school and college data. The
rest of the reasoning revisions are combined as un-
desirable. Table 5 shows the number of desirable
and undesirable revisions for each corpus 5. We
did not combine evidence and reasoning revisions,
because the schema to label each is different.

Extracting Context. We use two methods to ex-
tract context of the target revision, simple context
(SC) and longer context (LC). Following Zhang
and Litman (2016), we only focus on the sentences
before and after the target revision to extract simple
context. For example, simple context for the 3rd re-
vision in Table 1 consists of sentence 2 and 4 from
the revised draft. For longer context, we introduce
a new method that considers all the sentences that
are revised around the target sentence until we find
a sentence that is not changed. This makes sure
that the context window will have text extracted
from both drafts. For example in Table 1, sentence
3 will not have any context from Draft1 using the
simple context method. But with longer context,
sentences 1 to 4 from the original draft will be con-
sidered as context1 from Draft1; sentences 1 to 4

4Paraphrase is encouraged by the writing task.
5See Appendix A for more data distributions.
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Before Augmentation After Augmentation
N Desirable Undesirable Total Desirable Undesirable Total

Evidence
Elementary 143 239 147 386 4658 2946 7604
High-school 47 80 30 110 1168 511 1679

Reasoning
Elementary 143 186 203 389 3881 3844 7725
High-school 47 202 185 387 2963 2817 5780
College 60 114 93 207 3186 2329 5515

Table 5: Statistics for number of revisions in each corpus. Average number of revisions over 10-fold cross-validation
is shown after data augmentation (N = #Student).

from revised draft will be considered as context2
from Draft2. The length of the context will vary
depending on the number of revisions within the
window. For example, context1 for sentence 3 con-
sists of 2 sentences from Draft1 (1 and 4, 2 was
added) while sentence 5 had 3 (4, 6, and 7).

4 Predicting Revision Desirability

In this section, we describe the models for auto-
matically classifying desirable revisions. First, we
describe a data augmentation process to increase
the training data. Then we describe a model to
identify revision desirability, and extend it to use
context and the feedback information. We setup our
models to answer the following research questions:

RQ1: Is the context of the revision predictive of
revision desirability?

RQ2: Is the feedback received before revising
the essay predictive of revision desirability?

RQ3: Do the context and feedback together
boost the identification of desirable revision?

4.1 Data Augmentation

Our limited amount of revision data is not suitable
to experiment with various state-of-the-art machine
learning and deep learning models. To generate
more training examples, we use a customized ver-
sion of the synonym replacement (SR) data aug-
mentation strategy – randomly pick a word from
the sentence and replace it with a synonym (Wei
and Zou, 2019). For each sentence, we replaced
one random word with its synonyms but did not
consider multiple words at the same time to pre-
serve the hand-annotated revision categories. We
ignored stop words, selected words that are more
than length of 5 characters, and used maximum
5 synonyms per word to limit the number of data
generated. The synonyms are extracted from the
Synset from WordNet lexical database from Natu-
ral Language Toolkit (NLTK) in Python (Bird et al.,

2009), e.g., the word ‘achieve’ in sentence 5 of Ta-
ble 1 can be replaced by ‘accomplish’. Then the
augmented new revision is added as a training in-
stance. The last three columns in Table 5 show the
average number of revisions after augmentation.

4.2 Models

Figure 1: Our model M architecture.

Figure 1 shows the neural network model used
in this study (Model M). We used the pre-trained
‘bert-based-uncased’ from Keras Huggingface Li-
brary (Devlin et al., 2019; Wolf et al., 2020) and
encode our revision sentence pair using BERT en-
coder. After encoding, we use a BiLSTM layer and
a Dense layer to build our neural network model
using the Keras library (Chollet et al., 2015). This
architecture allows easy incorporation of context
and feedback as direct inputs, as discussed below.
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Bidirectional Long Short Term Memory net-
works (BiLSTM) has been used in revision clas-
sification (Anthonio and Roth, 2020) in addition
to various sentence-pair modeling and sentence
classification tasks (Vlad et al., 2019; He and Lin,
2016) etc. Vlad et al. (2019) used a BERT-BiLSTM
capsule model with additional dense layers with
dropout. Following these works, we add a BiLSTM
layer after extracting the embedding from BERT to
process the input sequences.6 We used a dropout
and recurrent dropout rate of 0.1. To down-sample
the output representation from the BiLSTM, we
take the maximum value over the time dimension
using the GlobalMaxPool1D (Chollet et al., 2015).

To improve performance while still keeping the
model simple, we add a dense layer after BiLSTM
with ‘relu’ as the activation function (Javid et al.,
2021). In order to make the model robust to over-
fitting, we add a dropout layer with rate 0.2. The
output is then passed to the final output dense layer
with 1 neuron. Since this is a binary classification
task, we use ‘Sigmoid’ as the activation function.

We tune the model using Adam optimizer with
learning rate {1e−3, 1e−4, 1e−5} and batch size
{16, 32, 64} using a validation set of 2000 instances
extracted from the elementary evidence augmented
data. Finally, we select the learning rate at 1e−3

and batch size 16, and apply the same to all data.
The hidden layer size is set to 64. There were
434,817 trainable parameters in the model.

Context Model. In this model, in addition to the
revision we also provide the context1 from Draft1
and context2 from Draft2 as input to the model
to answer RQ1. Since BERT cannot handle more
than 512 tokens and our context can be long in
some cases, we did not concatenate contexts from
two drafts before encoding. First, we encode each
context from each draft using the BERT encoder
and extract the embedding. Then the context1 and
context2 embeddings are concatenated with the re-
vision input in the order of [revision pair, context1,
context2]. Then the concatenated embedding is
sent to the BiLSTM layer. There is no change in
the following layers. When the context is longer
than 512 tokens, it is truncated from the end. 7

Feedback Model. To answer RQ2, we use feed-

6We also experimented with simpler neural nets (e.g., no
BiLSTM layer) as our core proposed model, but they did not
perform better than model M.

7No truncation was needed for high-school data. For ele-
mentary school, about 9% and 4% contexts were deleted for
evidence and reasoning, respectively.

back information to predict revision desirability.
We first concatenate all the sentences from the feed-
back messages. Then we encode the whole feed-
back message using BERT encoder and extract the
embedding. The embedding is then concatenated
with the input revision from the baseline model in
the order of [revision pair, feedback] and sent to
the BiLSTM layer. Feedback messages longer than
512 tokens are truncated from the end. 8

Context & Feedback Model. We also experi-
ment with context and feedback together to answer
RQ3. We encode context and feedback as we did
in the previous models. The embeddings are then
concatenated in the order [revision pair, context1,
context2, feedback] and sent to the BiLSTM layer.

Baseline Model. We compare our models with a
simple model used in prior work that uses logistic
regression (LogR) (Afrin et al., 2020) using GloVe
word2vec (Pennington et al., 2014) features for
revision classification.

5 Results and Evaluation

5.1 Intrinsic Evaluation

In our intrinsic evaluation (see Table 6), we com-
pare whether context and/or feedback model per-
formance improves over the proposed model M in
terms of average unweighted F1-score 9, over 10-
folds of cross-validation. Without augmentation,
our model does not learn at all from the very small
amount of data, hence we only report results us-
ing augmented data. Augmentation is done at each
fold on the training instances. Test instances are
kept original, no augmentation applied. We ran the
model 10 epochs for each fold.

First, we compare model M and its extensions
with the LogR baseline. We see that M improved
over LogR for all cases except high-school evi-
dence classification. Similarly, M plus context
and/or feedback improved over LogR in all cases
except with feedback for high-school evidence.

To answer RQ1, we look at the results of the con-
text model and see that our proposed longer context
representation (LC) always improved over M (no
context), which is not true for simple context (SC).
For elementary data, LC performed better than SC,
while for high-school data, SC performed better
than LC. Recall that for high-school data, we did
not truncate any context, which means students did

8No truncation was needed for elementary data. For high-
school, feedback messages were truncated for 55% of students.

9See Appendix A for more results.
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Elementary High-school College
Model Evidence Reasoning Evidence Reasoning Reasoning
LogR 0.469 0.537 0.470 0.495 0.462
M 0.569 0.597 0.446 0.649 0.613
+SC 0.548 0.611 0.489 0.679 0.545
+LC 0.574 0.627 0.474 0.665 0.634
+F 0.570 0.639 0.452 0.652 –
+LC&F 0.587 0.649 0.521 0.664 –

Table 6: Intrinsic evaluation: average unweighted f1-score over 10-fold cross-validation. Best are marked bold.

not make multiple consecutive revisions frequently.
This could explain why SC was better for high-
school data. For college data, SC did not improve
over M, but LC showed the best performance.

To answer RQ2, the results of the feedback
model (F) in Table 6 show that while F did im-
prove over M for each task, in most cases the in-
crease is low. Desirable reasoning classification
for elementary-school data had the most benefit
using the feedback. This could be because every
elementary-school student was specifically asked
to provide more details or explain their evidence.
For high-school data, although F improved over M,
it did not improve over LogR for evidence. 10

To answer RQ3, we only consider longer con-
text and feedback messages (LC&F). As shown in
Table 6, the LC&F model always improved model
M’s performance and has the best performance
except high-school reasoning revision. This indi-
cates that feedback messages were most helpful
when combined with the context, especially for
elementary-school reasoning revisions where the
performance increased more than 0.05 points. This
could be because students did not receive feedback
at sentence-level; instead, the feedback is usually
about specific areas of the essay or about the ar-
gumentative structure of the essay. Hence, when
combined with the context, it helps the model to
capture a better picture.

5.2 Extrinsic Evaluation

To confirm that revision desirability is indeed re-
lated to the essay improvement scores described
in Section 3, we calculated the Pearson correlation
between the frequency of desirable and undesirable
revisions (gold annotations) to improvement score.
For extrinsic evaluation, we then replicate the cor-
relation calculation for the predicted labels to see if
the frequency of predicted desirable revisions are

10No feedback available for college data Draft2 and Draft3.

still correlated to the essay improvement. Table 7
shows the gold and predicted correlations.

Model M showed to be consistent with Gold an-
notations for elementary reasoning and high-school
evidence prediction. M also showed higher corre-
lation than LogR when it is consistent with Gold.

Overall, the number of desirable revisions pre-
dicted by LC showed the highest R values. While
we do not expect the models to have higher cor-
relations than the gold annotations, LC did in
one case (desirable reasoning prediction for high-
school data). Gold annotations did not show signif-
icant negative correlations to undesirable revisions.
This is because the scoring rubrics typically did not
penalize for revisions that did not improve the es-
say, as long as revising didn’t make the essay worse.
LC also did not show any significant correlation
to undesirable revisions. Unexpectedly, SC did in
one case (undesirable reasoning for high-school).

Model F similarly yielded significant positive
correlation with desirable revisions and had higher
correlations than model M. In most cases Model F
is consistent with Gold annotations, except for un-
desirable reasoning revisions for high-school data.

Model LC&F also showed higher significant
correlation for the predicted labels compared to
Model M. However, unlike the intrinsic evaluation
it does not show us the best performance.

Unfortunately, we did not see any significant cor-
relation for the college data. But in most cases,
desirable revisions showed positive sign, while un-
desirable revisions showed negative sign.

6 Qualitative Analysis

In order to better understand the model predictions,
in Table 8 we compare gold and predicted labels for
a few example revisions. The first example (taken
from Table 1) is predicted as desirable whenever
longer context information was available. Other-
wise, it is wrongly predicted as undesirable. Look-
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Elementary (N=143) High-school (N=47) College (N=60)
Evidence Reasoning Evidence Reasoning Reasoning

D U D U D U D U D U
Gold 0.200* 0.039 0.450* -0.022 0.391* 0.040 0.351* 0.272 0.029 -0.131
LogR 0.112 0.182* 0.231* 0.226* 0.229 0.240 0.371* 0.207 0.030 -0.095
M 0.156 0.106 0.339* 0.114 0.321* 0.156 0.249 0.396* 0.039 -0.181
+SC 0.137 0.137 0.321* 0.093 0.350* 0.025 0.335* 0.307* -0.016 -0.123
+LC 0.152 0.084 0.422* -0.039 0.366* -0.030 0.407* 0.257 0.083 -0.246
+F 0.125 0.162 0.360* 0.080 0.323* 0.090 0.327* 0.322* – –
+LC&F 0.139 0.117 0.381* 0.041 0.354* -0.064 0.406* 0.239 – –

Table 7: Extrinsic evaluation: significant correlations using predicted desirability that are consistent with using gold
labels are marked bold (* p< .05, N = #Students, D: Desirable, U: Undesirable).

Original Draft Revised Draft Gold M +SC +LC +F +LC&F
They can do that by assuring that the
people of Sauri, Kenya have food,
water, liter, and a place to stay.

D R U U D U D

We think $5 dol-
lars isn’t that much
money but they live
in poverty.

We think $5 dollars isn’t that much
money but they live in situations
where $5 is a weeks worth of
money.

D E D U U D U

They had water, food, electric-
ity, supplies, medicine, and simple
things.

U E D U U D U

Table 8: Revision examples with gold and predicted labels. D: Desirable, U: Undesirable, E: Evidence, R: Reasoning

ing at this revision (sentence 3) and its context from
Table 1, we can see that sentence 3 mentions about
the ‘people’, ‘food, water, liter, and a place to stay’.
The context mention ‘people’, ‘health care’ and
‘quality of life’. We think those phrases helped the
context model to identify this example as desirable.
However, although feedback messages asked to
‘explain the evidence’, the feedback model was not
successful in identifying this as desirable.

The second example is a desirable evidence pre-
dicted as undesirable by context and desirable by
the feedback model. The AWE feedback asked the
student to use more evidence and add details. We
think the feedback model tied the extra information
in the modified sentence to what was asked for.

The last example is an undesirable evidence pre-
dicted correctly only by the models using context
information. Although the example text resembles
a desirable evidence, it is actually undesirable be-
cause it was repeated. Obviously, the model needed
context to identify that it is a repeated evidence.

7 Conclusion

In this study, we presented new models for the
automatic identification of desirable revisions in
three corpora of argumentative writing varying in
writer’s level of expertise, source of feedback, and
grading rubrics. We presented a new method of
extracting context from essay revisions. Using
intrinsic and extrinsic evaluation we showed that
models using the context information performed
best in identifying desirable revisions. We also
studied the use of feedback messages received by
students to predict desirable revisions. To the best
of our knowledge this is the first model to use
feedback information to analyze student revision.
Our experiments showed that feedback information
also helped improve classifier performance,
particularly when used with context. We have
released the college data annotated with revision
desirability. It can be downloaded from this link:
https://petal-cs-pitt.github.io/
data.html. The code is also available from here:
https://github.com/tazin-afrin/
desirable-revision-classification
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Discussion of Limitations

Our use of both context and feedback could be
enhanced in future work. First, we sometimes
needed to truncate context or feedback from the
end, which may remove useful information. In the
future, we plan to use other transformer architec-
tures capable of handling longer sequences (e.g.,
Longformer (Beltagy et al., 2020)). Second, while
our proposed method of extracting longer context
enables the use of variable length context windows,
our method does not guarantee that the context will
include the major claim. Since evidence and reason-
ing are most effective when used to support a claim,
their revision desirability might depend on the es-
say’s claim. Third, since the feedback received
by students was largely framed at the essay-level,
we did not attempt to connect the messages with
specific sentence revisions. Such modeling could
potentially improve feedback performance.

Additional limitations include that our classifier
input was based on perfect alignment of the sen-
tences in the essay drafts and used gold evidence
and reasoning revision purpose labels. An end-to-
end system would have lower performance due to
errors propagated from alignment and purpose clas-
sification. Our data is also limited in that essays are
all of an argumentative writing style and annotated
for only two types of content revisions. Also, the
corpus is small. Although, we used simple augmen-
tation to generate enough data to experiment with
complex learning models, in the future we plan to
explore other options for data augmentation. We
also would like to use similar argumentative essays
to fine-tune the BERT architecture.

Ethical Considerations

All corpora were collected under protocols ap-
proved by an institutional review board, including

that the data is not publicly available, except the
college data. While the breach of private student
information from the elementary and high school
data will thus not pose any ethical concern, other
researchers can not replicate our results for those
data. However, since the college data with its pur-
pose annotations was already made available by
the original researchers, our new desirability an-
notations can be released upon acceptance of this
study. The claims of the paper match the experi-
mental results and the results can be hypothesized
to generalize. In the future, the proposed models
may be incorporated into AWE systems for student
writers. While identifying and providing feedback
on revision desirability will be helpful to students
in improving their writing, there is the risk that
the system might sometimes provide poor advice
based on incorrect model classifications. Since the
dataset is still fairly small after data augmentation,
it is possible that the model may learn biased rep-
resentation of the revisions (e.g., always predict
longer revisions with more information as desir-
able).
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A Appendix A: Additional Results

Data Revision Add Delete Modify Total

Elementary (N=143)

Total Evidence 265 63 58 386
Desirable Evidence 159 50 30 239
Undesirable Evidence 106 13 28 147
Total Reasoning 270 59 60 389
Desirable Reasoning 140 28 18 186
Undesirable Reasoning 130 31 42 203

High-school (N=47)

Total Evidence 93 10 7 110
Desirable Evidence 73 7 0 80
Undesirable Evidence 20 3 7 30
Total Reasoning 324 40 23 387
Desirable Reasoning 184 13 5 202
Undesirable Reasoning 140 27 18 185

College (N=60)

Total Evidence 25 1 0 26
Desirable Evidence 23 1 0 24
Undesirable Evidence 2 0 0 2
Total Reasoning 191 13 3 207
Desirable Reasoning 104 7 3 114
Undesirable Reasoning 87 6 0 93

Table 9: Detailed data distribution.

Evidence Reasoning
Precision Recall F1-score Precision Recall F1-score

Elementary LogR 0.510 0.519 0.469 0.572 0.573 0.537
M 0.587 0.587 0.569 0.613 0.609 0.597
+SC 0.587 0.575 0.548 0.624 0.626 0.611
+LC 0.640 0.594 0.574 0.644 0.638 0.627
+F 0.592 0.595 0.570 0.675 0.658 0.639
+LC&F 0.636 0.605 0.587 0.681 0.664 0.649

High-school LogR 0.493 0.535 0.470 0.600 0.555 0.495
M 0.434 0.476 0.446 0.668 0.662 0.649
+SC 0.489 0.535 0.489 0.701 0.690 0.679
+LC 0.480 0.502 0.474 0.681 0.673 0.665
+F 0.469 0.480 0.452 0.668 0.663 0.652
+LC&F 0.554 0.549 0.521 0.683 0.679 0.664

College LogR 0.507* 0.514 0.462*
M 0.667 0.653 0.613
+SC 0.593 0.593 0.545
+LC 0.703 0.670 0.634

Table 10: 10-fold cross-validation result for classifying
desirable evidence and reasoning, more metrics.
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Abstract

Discourse processing suffers from data sparsity,
especially for dialogues. As a result, we ex-
plore approaches to build discourse structures
for dialogues, based on attention matrices from
Pre-trained Language Models (PLMs). We
investigate multiple tasks for fine-tuning and
show that the dialogue-tailored Sentence Order-
ing task performs best. To locate and exploit
discourse information in PLMs, we propose an
unsupervised and a semi-supervised method.
Our proposals thereby achieve encouraging re-
sults on the STAC corpus, with F1 scores of
57.2 and 59.3 for the unsupervised and semi-
supervised methods, respectively. When re-
stricted to projective trees, our scores improved
to 63.3 and 68.1.

1 Introduction

In recent years, the availability of accurate tran-
scription methods and the increase in online com-
munication have led to a vast rise in dialogue data,
necessitating the development of automatic analy-
sis systems. For example, summarization of meet-
ings or exchanges with customer service agents
could be used to enhance collaborations or analyze
customers issues (Li et al., 2019; Feng et al., 2021);
machine reading comprehension in the form of
question-answering could improve dialogue agents’
performance and help knowledge graph construc-
tion (He et al., 2021; Li et al., 2021). However,
simple surface-level features are oftentimes not
sufficient to extract valuable information from con-
versations (Qin et al., 2017). Rather, we need to
understand the semantic and pragmatic relation-
ships organizing the dialogue, for example through
the use of discourse information.

Along this line, several discourse frameworks
have been proposed, underlying a variety of anno-
tation projects. For dialogues, data has been pri-
marily annotated within the Segmented Discourse
Representation Theory (SDRT) (Asher et al., 2003).

Figure 1: Excerpt of dependency structures in file s2-
leagueM-game4, STAC. Red links are non-projective.

Discourse structures are thereby represented as de-
pendency graphs with arcs linking spans of text and
labeled with semantico-pragmatic relations (e.g.
Acknowledgment (Ack) or Question-Answer Pair
(QAP)). Figure 1 shows an example from the Strate-
gic Conversations corpus (STAC) (Asher et al.,
2016). Discourse processing refers to the retrieval
of the inherit structure of coherent text, and is of-
ten separated into three tasks: EDU segmentation,
structure building (or attachment), and relation pre-
diction. In this work, we focus on the automatic
extraction of (naked) structures without discourse
relations. This serves as a first critical step in creat-
ing a full discourse parser. It is important to note
that naked structures have already been shown to
be valuable features for specific tasks. Louis et al.
(2010) mentioned that they are the most reliable in-
dicator of importance in content selection. Xu et al.
(2020); Xiao et al. (2020) on summarization, and
Jia et al. (2020) on thread extraction, also demon-
strated the advantages of naked structures.

Data sparsity has always been an issue for dis-
course parsing both in monologues and dialogues:
the largest and most commonly used corpus anno-
tated under the Rhetorical Structure Theory, the
RST-DT (Carlson et al., 2001) contains 21, 789 dis-
course units. In comparison, the largest dialogue
discourse dataset (STAC) only contains 10, 678
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units. Restricted to domain and size, the perfor-
mance of supervised discourse parsers is still low,
especially for dialogues, with at best 73.8% F1 for
the naked structure on STAC (Wang et al., 2021).
As a result, several transfer learning approaches
have been proposed, mainly focused on mono-
logues. Previous work demonstrate that discourse
information can be extracted from auxiliary tasks
like sentiment analysis (Huber and Carenini, 2020)
and summarization (Xiao et al., 2021), or repre-
sented in language models (Koto et al., 2021) and
further enhanced by fine-tuning tasks (Huber and
Carenini, 2022). Inspired by the latter approaches,
we are pioneering in addressing this issue for dia-
logues and introducing effective semi-supervised
and unsupervised strategies to uncover discourse
information in large pre-trained language models
(PLMs). We find, however, that the monologue-
inspired fine-tuning tasks are not performing well
when applied to dialogues. Dialogues are generally
less structured, interspersed with more informal
linguistic usage (Sacks et al., 1978), and have struc-
tural particularities (Asher et al., 2016). Thus, we
propose a new Sentence Ordering (SO) fine-tuning
task tailored to dialogues. Building on the pro-
posal in Barzilay and Lapata (2008), we propose
crucial, dialogue-specific extensions with several
novel shuffling strategies to enhance the pair-wise,
inter-speech block, and inter-speaker discourse in-
formation in PLMs, and demonstrate its effective-
ness over other fine-tuning tasks.

In addition, a key issue in using PLMs to ex-
tract document-level discourse information is how
to choose the best attention head. We hypothe-
size that the location of discourse information in
the network may vary, possibly influenced by the
length and complexity of the dialogues. Therefore,
we investigate methods that enables us to evaluate
each attention head individually, in both unsuper-
vised and semi-supervised settings. We introduce
a new metric called “Dependency Attention Sup-
port” (DAS), which measures the level of support
for the dependency trees generated by a specific
self-attention head, allowing us to select the opti-
mal head without any need for supervision. We
also propose a semi-supervised approach where a
small validation set is used to choose the best head.

Experimental results on the STAC dataset reveal
that our unsupervised and semi-supervised methods
outperform the strong LAST baseline (F1 56.8%,
Sec. 4), delivering substantial gains on the com-

plete STAC dataset (F1 59.3%, Sec. 5.2) and show
further improvements on the tree-structured subset
(F1 68.1%, Sec. 6.3).

To summarize, our contributions in this work are:
(1) Discourse information detection in pre-trained
and sentence ordering fine-tuned LMs; (2) Unsuper-
vised and semi-supervised methods for discourse
structure extraction from the attention matrices in
PLMs; (3) Detailed quantitative and qualitative
analysis of the extracted discourse structures.

2 Related Work

Discourse structures for complete documents have
been mainly annotated within the Segmented Dis-
course Representation Theory (SDRT) (Asher et al.,
2003) or the Rhetorical Structure Theory (RST)
(Mann and Thompson, 1988), with the latter lead-
ing to the largest corpora and many discourse
parsers for monologues, while SDRT is the main
theory for dialogue corpora, i.e., STAC (Asher
et al., 2016) and Molweni (Li et al., 2020). In
SDRT, discourse structures are dependency graphs
with possibly non-projective links (see Figure 1)
compared to constituent trees structures in RST.
Early approaches to discourse parsing on STAC
used varied decoding strategies, such as Maximum
Spanning Tree algorithm (Muller et al., 2012; Li
et al., 2014; Afantenos et al., 2012) or Integer Lin-
ear Programming (Perret et al., 2016). Shi and
Huang (2019) first proposed a neural architecture
based on hierarchical Gated Recurrent Unit (GRU)
and reported 73.2% F1 on STAC for naked struc-
tures. Recently, Wang et al. (2021) adopted Graph
Neural Networks (GNNs) and reported marginal
improvements on the same test set (73.8% F1).

Data sparsity being the issue, a new trend to-
wards semi-supervised and unsupervised discourse
parsing has emerged, almost exclusively for mono-
logues. Huber and Carenini (2019, 2020) leveraged
sentiment information and showed promising re-
sults in cross-domain setting with the annotation of
a silver-standard labeled corpus. Xiao et al. (2021)
extracted discourse trees from neural summarizers
and confirmed the existence of discourse informa-
tion in self-attention matrices. Another line of work
proposed to enlarge training data with a combina-
tion of several parsing models, as done in Jiang
et al. (2016); Kobayashi et al. (2021); Nishida and
Matsumoto (2022). In a fully unsupervised set-
ting, Kobayashi et al. (2019) used similarity and
dissimilarity scores for discourse tree creation, a
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method that can not be directly used for discourse
graphs though. As for dialogues, transfer learn-
ing approaches are rare. Badene et al. (2019a,b)
investigated a weak supervision paradigm where
expert-composed heuristics, combined to a gen-
erative model, are applied to unseen data. Their
method, however, requires domain-dependent an-
notation and a relatively large validation set for
rule verification. Another study by Liu and Chen
(2021) focused on cross-domain transfer using
STAC (conversation during online game) and Mol-
weni (Ubuntu forum chat logs). They applied sim-
ple adaptation strategies (mainly lexical informa-
tion) on a SOTA discourse parser and showed im-
provement compared to bare transfer: trained on
Molweni and tested on STAC F1 increased from
42.5% to 50.5%. Yet, their model failed to surpass
simple baselines. Very recently, Nishida and Mat-
sumoto (2022) investigated bootstrapping methods
to adapt BERT-based parsers to out-of-domain data
with some success. In comparison to all this previ-
ous work, to the best of our knowledge, we are the
first to propose a fully unsupervised method and its
extension to a semi-supervised setting.

As pre-trained language models such as BERT
(Devlin et al., 2019), BART (Lewis et al., 2020) or
GPT-2 (Radford et al., 2019) are becoming dom-
inant in the field, BERTology research has gained
much attention as an attempt to understand what
kind of information these models capture. Prob-
ing tasks, for instance, can provide fine-grained
analysis, but most of them only focus on sentence-
level syntactic tasks (Jawahar et al., 2019; Hewitt
and Manning, 2019; Mareček and Rosa, 2019; Kim
et al., 2019; Jiang et al., 2020). As for discourse,
Zhu et al. (2020) and Koto et al. (2021) applied
probing tasks and showed that BERT and BART
encoders capture more discourse information than
other models, like GPT-2. Very recently, Huber
and Carenini (2022) introduced a novel way to en-
code long documents and explored the effect of dif-
ferent fine-tuning tasks on PLMs, confirming that
pre-trained and fine-tuned PLMs both can capture
discourse information. Inspired by these studies on
monologues, we explore the use of PLMs to extract
discourse structures in dialogues.

3 Method: from Attention to Discourse

3.1 Problem Formulation and Simplifications

Given a dialogue D with n Elementary Discourse
Units (EDUs) {e1, e2, e3, ..., en}, which are the

Figure 2: Pipeline for discourse structure extraction.

minimal spans of text (mostly clauses, at most
a sentence) to be linked by discourse relations,
the goal is to extract a Directed Acyclic Graph
(DAG) connecting the n EDUs that best represents
its SDRT discourse structure from attention matri-
ces in PLMs1 (see Figure 2 for an overview of the
process). In our proposal, we make a few simplifi-
cations, partially adopted from previous work. We
do not deal with SDRT Complex Discourse Units
(CDUs) following Muller et al. (2012) and Afan-
tenos et al. (2015), and do not tackle relation type
assignment. Furthermore, similar to Shi and Huang
(2019), our solution can only generate discourse
trees. Extending our algorithm to non-projective
trees (≈ 6% of edges are non-projectives in tree-
like examples) and graphs (≈ 5% of nodes with
multiple incoming arcs) is left as future work.

3.2 Which kinds of PLMs to use?
We explore both vanilla and fine-tuned PLMs, as
they were both shown to contain discourse informa-
tion for monologues (Huber and Carenini, 2022).

Pre-Trained Models: We select BART (Lewis
et al., 2020), not only because its encoder has been
shown to effectively capture discourse information,
but also because it dominated other alternatives
in preliminary experiments, including DialoGPT
(Zhang et al., 2020) and DialogLM (Zhong et al.,
2022) - language models pre-trained with conver-
sational data2.

1For more details on extracting discourse information from
attention mechanisms see Liu and Lapata (2018).

2See Appendix E for additional results with other PLMs.
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Figure 3: Shuffling strategies (left to right: partial,
minimal-pair, block, speaker-turn) on a sequence of
utterances 1 to 6, with A, B, C as the speakers.

Fine-Tuning Tasks: We fine-tune BART on three
discourse-related tasks:

(1) Summarization: we use BART fine-tuned
on the popular CNN-DailyMail (CNN-DM) news
corpus (Nallapati et al., 2016), as well as on the
SAMSum dialogue corpus (Gliwa et al., 2019).

(2) Question Answering: we use BART fine-
tuned on the latest version of the Stanford Question
Answering Dataset (SQuAD 2.0) (Rajpurkar et al.,
2018).

(3) Sentence Ordering: we fine-tune BART
on the Sentence Ordering task – reordering a set
of shuffled sentences to their original order. We
use an in-domain and an out-of-domain dialogue
datasets (Sec. 4) for this task. Since fully random
shuffling showed very limited improvements, we
considered additional strategies to support a more
gradual training tailored to dialogues. Specifically,
as shown in Figure 3, we explore: (a) partial-shuf :
randomly picking 3 utterances in a dialogue (or
2 utterances if the dialogue is shorter than 4) and
shuffling them while maintaining the surrounding
context. (b) minimal-pair-shuf : shuffling minimal
pairs, comprising of a pair of speech turns from
2 different speakers with at least 2 utterances. A
speech turn marks the start of a new speaker’s turn
in the dialogue. (c) block-shuf : shuffling a block
containing multiple speech turns. We divide one di-
alogue into [2, 5] blocks based on the number of ut-
terances3 and shuffle between blocks. (d) speaker-
turn-shuf : grouping all speech productions of one
speaker together. The sorting task consists of or-
dering speech turns from different speakers’ pro-
duction. We evenly combine all permutations men-
tioned above to create our mixed-shuf data set and
conduct the SO task.

3Block size is designed to be as twice or 3 times bigger
than “min-pair”, we thus set criteria aiming to have≈ 6 EDUs
per block: |utt.| < 12 : b = 2, |utt.| ∈ [12, 22] : b = 3,
|utt.| ∈ [22, 33] : b = 4, |utt.| ≥ 33 : n = 5.

Choice of Attention Matrix: The BART model
contains three kinds of attention matrices: encoder,
decoder and cross attention. We use the encoder
attention in this work, since it has been shown to
capture most discourse information (Koto et al.,
2021) and outperformed the other alternatives in
preliminary experiments on a validation set.

3.3 How to derive trees from attention heads?

Given an attention matrix At ∈ Rk×k where k is
the number of tokens in the input dialogue, we de-
rive the matrix Aedu ∈ Rn×n, with n the number
of EDUs, by computing Aedu(i, j) as the average
of the submatrix of At corresponding to all the to-
kens of EDUs ei and ej , respectively. As a result,
Aedu captures how much EDU ei depends on EDU
ej and can be used to generate a tree connecting all
EDUs by maximizing their dependency strength.
Concretely, we find a Maximum Spanning Tree
(MST) in the fully-connected dependency graph
Aedu using the Eisner algorithm (Eisner, 1996).
Conveniently, since an utterance cannot be anaphor-
ically and rhetorically dependent on following utter-
ances in a dialogue, as they are previously unknown
(Afantenos et al., 2012), we can further simplify the
inference by applying the following hard constraint
to remove all backward links from the attention
matrix Aedu: aij = 0, if i > j.

3.4 How to find the best heads?

Xiao et al. (2021) and Huber and Carenini (2022)
showed that discourse information is not evenly
distributed between heads and layers. However,
they do not provide a strategy to select the head(s)
containing most discourse information. Here, we
propose two effective selection methods: fully un-
supervised or semi-supervised.

3.4.1 Unsupervised Best Head(s) Selection
Dependency Attention Support Measure (DAS):
Loosely inspired by the confidence measure in
Nishida and Matsumoto (2022), where the authors
define the confidence of a teacher model based on
predictive probabilities of the decisions made, we
propose a DAS metric measuring the degree of
support for the maximum spanning (dependency)
tree (MST) from the attention matrix. Formally,
given a dialogue g with n EDUs, we first derive the
EDU matrix Aedu from its attention matrix Ag (see
Sec. 3.3). We then build the MST T g by selecting
n−1 attention links lij fromAedu based on the tree
generation algorithm. DAS measures the strength
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of all those connections by computing the average
score of all the selected links:

DAS(T g) =
1

n− 1

n∑

i=1

n∑

j=1

Sel(Ag, i, j) (1)

with Sel(Ag, i, j) = Agij , if lij ∈ T g, 0 otherwise.
Note that DAS can be easily adapted for a general
graph by removing the restriction to n− 1 arcs.

Selection Strategy: With DAS, we can now com-
pute the degree of support from each attention head
h on each single example g for the generated tree
DAS(T gh ). We therefore propose two strategies
to select attention heads based on the DAS mea-
sure, leveraging either global or local support. The
global support strategy selects the head with high-
est averaged DAS score over all the data examples:

Hglobal = argmax
h

M∑

g=1

DAS(T gh ) (2)

where M is the number of examples. In this way,
we select the head that has a generally good perfor-
mance on the target dataset.

The second strategy is more adaptive to each
document, by only focusing on the local support.
It does not select one specific head for the whole
dataset, but instead selects the head/tree with the
highest support for each single example g, i.e.,

Hg
local = argmax

h
DAS(T gh ) (3)

3.4.2 Semi-Supervised Best Head(s) Selection
We also propose best heads selection using a few
annotated examples. In conformity with real-world
situations where labeled data is scarce, we sample
three small subsets with {10, 30, 50} data points
(i.e., dialogues) from the validation set. We exam-
ine every attention matrix individually, resulting in
12 layers × 16 heads candidate matrices for each
dialogue. Then, the head with the highest micro-
F1 score on the validation set is selected to derive
trees in the test set. We also consider layer-wise
aggregation, with details in Appendix A.

4 Experimental Setup

Datasets: We evaluate our approach on predict-
ing discourse dependency structures using the
STAC corpus (Asher et al., 2016), a multi-party
dialogue dataset annotated in the SDRT framework.
For the summarization and question-answering

Dataset #Doc #Utt/doc #Tok/doc #Spk/doc Domain

DailyDialog 13, 118 13 119 2 Daily
STAC 1, 161 11 50 3 Game

Table 1: Key statistics of datasets. Utt = sentences in
DD or EDUs in STAC; Tok = tokens; Spk = speakers.

fine-tuning tasks, we use publicly available Hug-
gingFace models (Wolf et al., 2020) (see Ap-
pendix F). For the novel sentence ordering task,
we train BART model on the STAC corpus and
the DailyDialog corpus (Li et al., 2017). The key
statistics for STAC and DailyDialog can be found
in Table 1. These datasets are split into train, vali-
dation, and test sets at 82%, 9%, 9% and 85%, 8%,
8% respectively. The Molweni corpus (Li et al.,
2020) is not included in our experiments due to
quality issues, as detailed in Appendix B.

Baselines: We compare against the simple yet
strong unsupervised LAST baseline (Schegloff,
2007), attaching every EDU to the previous one.
Furthermore, to assess the gap between our ap-
proach and supervised dialogue discourse parsers,
we compare with the Deep Sequential model by
Shi and Huang (2019) and the Structure Self-Aware
(SSA) model by Wang et al. (2021).

Metrics: We report the micro-F1 and the Unla-
beled Attachment Score (UAS) for the generated
naked dependency structures.

Implementation Details: We base our work on
the transformer implementations from the Hugging-
Face library (Wolf et al., 2020) and follow the text-
to-marker framework proposed in Chowdhury et al.
(2021) for the SO fine-tuning procedure. We use
the original separation of train, validation, and test
sets; set the learning rate to 5e − 6; use a batch
size of 2 for DailyDialog and 4 for STAC, and train
for 7 epochs. All other hyper-parameters are set
following Chowdhury et al. (2021). We do not
do any hyper-parameter tuning. We omit 5 doc-
uments in DailyDialog during training since the
documents lengths exceed the token limit. We re-
place speaker names with markers (e.g. Sam →
“spk1”), following the preprocessing pipeline for
dialogue utterances in PLMs.

5 Results

5.1 Results with Unsupervised Head Selection
Results using our novel unsupervised DAS method
on STAC are shown in Table 2 for both the global
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(Hg) and local (Hl) head selection strategies. These
are compared to: (1) the unsupervised LAST base-
line (at the top), which only predicts local attach-
ments between adjacent EDUs. LAST is consid-
ered a strong baseline in discourse parsing (Muller
et al., 2012), but has the obvious disadvantage
of completely missing long-distance dependencies
which may be critical in downstream tasks. (2)
The supervised Deep Sequential parser by Shi and
Huang (2019) and Structure Self-Aware model by
Wang et al. (2021) (center of the table), both trained
on STAC, reaching resp. 71.4%4 and 73.8% in F1.

In the last sub-table we show unsupervised
scores from pre-trained and fine-tuned LMs on
three auxiliary tasks: summarization, question-
answering and sentence ordering (SO) with the
mixed shuffling strategy. We present the global
head (Hg) and local heads (Hl) performances se-
lected by the DAS score (see section 3.4.1). The
best possible scores using an oracle head selector
(Hora) are presented for reference.

Comparing the values in the bottom sub-table,
we find that the pre-trained BART model under-
performs LAST (56.8), with global head and lo-
cal heads achieving similar performance (56.6 and
56.4 resp.). Noticeably, models fine-tuned on
the summarization task (“+CNN”, “+SAMSum”)
and question-answering (“+SQuAD2”) only add
marginal improvements compared to BART. In the
last two lines of the sub-table, we explore our novel
sentence ordering fine-tuned BART models. We
find that the BART+SO approach surpasses LAST
when using local heads (57.1 and 57.2 for Daily-
Dialog and STAC resp.). As commonly the case,
the intra-domain training performs best, which is
further strengthened in this case due to the spe-
cial vocabulary in STAC. Importantly, our PLM-
based unsupervised parser can capture some long-
distance dependencies compared to LAST (Sec-
tion 6.2). Additional analysis regarding the chosen
heads is in Section 6.1.

5.2 Results with Semi-Sup. Head Selection

While the unsupervised strategy only delivered min-
imal improvements over the strong LAST base-
line, Table 3 shows that if a few annotated exam-
ples are provided, it is possible to achieve substan-
tial gains. In particular, we report results on the
vanilla BART model, as well as BART model fine-

4We re-train the model, scores are slightly different due to
different train-test splits, as in Wang et al. (2021).

Model

Unsupervised Baseline
LAST 56.8

Supervised Models
Deep-Sequential (2019) 71.4
SSA-GNN (2021) 73.8

Unsupervised PLMs Hg Hl Hora
BART 56.6 56.4 57.6

+ CNN 56.8 56.7 57.1
+ SAMSum 56.7 56.6 57.6
+ SQuAd2 55.9 56.4 57.7
+ SO-DD 56.8 57.1 58.2
+ SO-STAC 56.7 57.2 59.5

Table 2: Micro-F1 on STAC for LAST, supervised
SOTA models and unsupervised PLMs. Hg/Hl/Hora:
global/local/oracle heads. Best (non-oracle) score in the
3rd block is in bold. DD: DailyDialog.

Train on→ BART + SO-DD + SO-STAC
Test with ↓ F1 F1 F1

LAST BSL 56.8 56.8 56.8

Hora 57.6 58.2 59.5

Unsup Hg 56.6 56.8 56.7
Unsup Hl 56.4 57.1 57.2

Semi-sup 10 57.00.012 57.20.012 57.10.026
Semi-sup 30 57.30.005 57.30.013 59.20.009
Semi-sup 50 57.40.004 57.70.005 59.30.007

Table 3: Micro-F1 on STAC from BART and SO fine-
tuned BART with unsupervised and semi-supervised
approaches. Semi-supervised scores are averaged from
10 random runs. Subscription is standard deviation.

tuned on DailyDialog (“+SO-DD”) and STAC itself
(“+SO-STAC”). We execute 10 runs for each semi-
supervised setting ([10, 30, 50]) and report average
scores and the standard deviation.

The oracle heads (i.e., Hora) achieve superior per-
formance compared to LAST. Furthermore, using
a small scale validation set (50 examples) to se-
lect the best attention head remarkably improves
the F1 score from 56.8% (LAST) to 59.3% (+SO-
STAC). F1 improvements across increasingly large
validation-set sizes are consistent, accompanied by
smaller standard deviations, as would be expected.
The semi-supervised results are very encouraging:
with 30 annotated examples, we already reach a
performance close to the oracle result, and with
more examples we can further reduce the gap.
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Figure 4: Heatmaps: DAS score matrices (layers: top
to bottom=12 to 1, heads: left to right=1 to 16) for
BART, BART+SO-DD, BART+SO-STAC. Darker pur-
ple=higher DAS score.
Boxplot: Head-aggregated UAS scores for model
BART (orange), BART+SO-DD (green) and BART+SO-
STAC (red). Light green=head with highest UAS. Yel-
low=head with highest DAS score.

6 Analysis

6.1 Effectiveness of DAS

We now take a closer look at the performance degra-
dation of our unsupervised approach based on DAS
in comparison to the upper-bound defined by the
performance of the oracle-picked head. To this
end, Figure 4 shows the DAS score matrices (left)
for three models with the oracle heads and DAS
selected heads highlighted in green and yellow, re-
spectively. These scores correspond to the global
support strategy (i.e., Hg). It becomes clear that the
oracle heads do not align with the DAS selected
heads. Making a comparison between models, we
find that discourse information is consistently lo-
cated in deeper layers, with the oracle heads (light
green) consistently situated in the same head for all
three models. It is important to note that this infor-
mation cannot be determined beforehand and can
only be uncovered through a thorough examination
of all attention heads.

While not aligning with the oracle, the top per-
forming DAS heads (in yellow) are among the top
10% best heads in all three models, as shown in the
box-plot on the right. Hence, we confirm that the
DAS method is a reasonable approximation to find
discourse intense self-attention heads among the
12× 16 attention matrices.

6.2 Document and Arc Lengths

The inherent drawback of the simple, yet effective
LAST baseline is its inability to predict indirect
arcs. To test if our approach can reasonably predict
distant arcs of different length in the dependency
trees, we analyze our results in regards to the arc
lengths. Additionally, since longer documents tend
to contain more distant arcs, we also examine the
performance across different document lengths.

Arc Distance: To examine the extracted dis-
course structures for data sub-sets with specific arc
lengths, we present the UAS score plotted against
different arc lengths on the left side in Figure 5. Our
analysis thereby shows that direct arcs achieve high
UAS score (> 80%), independent of the model
used. We further observe that the performance
drops considerably for arcs of distance two and
onwards, with almost all models failing to predict
arcs longer than 6. BART+SO-STAC model cor-
rectly captures an arc of distance 13. Note that the
presence for long-distance arcs (≥ 6) is limited,
accounting for less than 5% of all arcs.

We further analyze the precision and recall
scores when separating dependency links into di-
rect (adjacent forward arcs) and indirect (all other
non-adjacent arcs), following Xiao et al. (2021).
For direct arcs, all models perform reasonably well
(see Figure 6 at the bottom). The precision is higher
(≈ +6% among all three BART models) and recall
is lower than the baseline (100%), indicating that
our models predict less direct arcs but more pre-
cisely. For indirect arcs (top in Figure 6), the best
model is BART+SO-STAC (20% recall, 44% pre-
cision), closely followed by original BART (20%
recall, 41% precision). In contrast, the LAST base-
line model completely fails in this scenario (0 pre-
cision and recall).

Document Length: Longer documents tend to
be more difficult to process because of the growing
number of possible discourse parse trees. Hence,
we analyze the UAS performance of documents in
regards to their length, here defined as the number
of EDUs. Results are presented on the right side in
Figure 5, comparing the UAS scores for the three
selected models and LAST for different document
lengths. We split the document length range into
5 even buckets between the shortest (2 EDUs) and
longest (37 EDUs) document, resulting in 60, 25,
16, 4 and 4 examples per bucket.

Figure 5: Left: UAS and arcs’ distance. x axis: arc
distance. Right: averaged UAS for different length of
document. x axis: #EDUs in a document. y axis: UAS.
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Figure 6: Comparison of recall (left) and precision
(right) scores of indirect (top) and direct (bottom) links
in LAST, BART, and SO fine-tuned BART models.

#EDUs #Arcs

#Doc Single-in Multi-in Proj. N-proj.

(1) Non-Tree 48 706 79 575 170
(2) Tree 61 444 0 348 35

- Proj. tree 48 314 0 266 0

Table 4: STAC test set ground-truth tree and non-tree
statistics. “Single-in” and “multi-in” means EDU with
single or multiple incoming arcs.

For documents with less than 23 EDUs, all
fine-tuned models perform better than LAST, with
BART fine-tuned on STAC reaching the best result.
We note that PLMs exhibit an increased capability
to predict distant arcs in longer documents. How-
ever, in the range of [23, 30], the PLMs are inclined
to predict a greater number of false positive distant
arcs, leading to under-performance compared to
the LAST baseline. As a result, we see that longer
documents (≥ 23) are indeed more difficult to pre-
dict, with even the performance of our best model
(BART+STAC) strongly decreasing.

6.3 Projective Trees Examination

Given the fact that our method only extracts projec-
tive tree structures, we now conduct an additional
analysis, exclusively examining the subset of STAC
containing projective trees, on which our method
could in theory achieve perfect accuracy.

Table 4 gives some statistics for this subset
(“proj. tree”). For the 48 projective tree examples,
the document length decreases from an average of
11 to 7 EDUs, however, still contains ≈ 40% in-
direct arcs, keeping the task difficulty comparable.
The scores for the extracted structures are presented
in Table 5. As shown, all three unsupervised mod-
els outperform LAST. The best model is still BART
fine-tuned on STAC, followed by the inter-domain

Train on→ BART + SO-DD + SO-STAC
Test with ↓ F1 F1 F1

LAST BSL 62.0 62.0 62.0

Hora 64.8 67.4 68.6

Unsup Hg 62.5 62.5 62.1
Unsup Hl 62.1 62.9 63.3

Semi-sup 10 54.60.058 59.20.047 61.60.056
Semi-sup 30 60.30.047 60.30.044 65.60.043
Semi-sup 50 64.80.000 66.30.023 68.10.014

Table 5: Micro-F1 scores on STAC projective tree subset
with BART and SO fine-tuned BART models.

Avg.branch Avg.height %leaf Norm. arc

GT 1.67 3.96 0.46 0.43

BART 1.20 5.31 0.31 0.34
+SO-DD 1.320.014 5.310.146 0.320.019 0.370.003
+SO-STAC 1.270.076 5.280.052 0.320.011 0.350.015

Table 6: Statistics for gold and extracted projective trees
in BART and fine-tuned BART models.

fine-tuned +SO-DD and BART models. Using the
semi-supervised approach, we see further improve-
ment with the F1 score reaching 68% (+6% than
LAST). Degradation for direct and indirect edges’
precision and recall scores see Appendix C.

Following Ferracane et al. (2019), we analyze
key properties of the 48 gold trees compared to
our extracted structures using the semi-supervised
method. To test the stability of the derived trees,
we use three different seeds to generate the shuf-
fled datasets to fine-tune BART. Table 6 presents
the averaged scores and the standard deviation of
the trees. In essence, while the extracted trees are
generally “thinner” and “taller” than gold trees and
contain slightly less branches, they are well aligned
with gold discourse structures and do not contain
“vacuous” trees, where all nodes are linked to one
of the first two EDUs. Further qualitative analysis
of inferred structures is presented in Appendix D.
Tellingly, on two STAC examples our model suc-
ceeds in predicting > 82% of projective arcs, some
of which span across 4 EDUs. This is encouraging,
providing anecdotal evidence that our method is
suitable to extract reasonable discourse structures.

6.4 Performance with Predicted EDUs

Following previous work, all our experiments have
started with gold-standard EDU annotations. How-
ever, this would not be possible in a deployed dis-
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Gold # Predicted # Precision % Recall % F1 %

1155 1081 96.0 93.4 94.8

Table 7: EDU segmentation results on STAC test set
using DisCoDisCo model (Gessler et al., 2021), which
is re-trained on 50 random dialogues from the validation
set. Scores are averaged over three runs.

LAST Unsupervised Semi-supervised
Hg Hl Hora semi-10 semi-30 semi-50

Gold 56.8 56.7 57.2 59.5 57.40.004 57.70.005 59.30.007
Pred 48.9 50.8 51.1 52.6 50.60.020 52.10.007 52.20.004

Table 8: Gold EDUs and predicted EDUs parsing results
with BART+SO-STAC model. Scores for predicted
EDUs are averaged over three runs.

course parser for dialogues. To assess the perfor-
mance of such system, we conduct additional exper-
iments in which we first perform EDU segmentation
and then feed the predicted EDUs to our methods.

To perform EDU segmentation, we employ the
DisCoDisCo model (Gessler et al., 2021), pre-
trained on a random sample of 50 dialogues from
the STAC validation set. We repeat this process
three times to accommodate instability. Our re-
sults, as shown in Table 7, align with those previ-
ously reported in Gessler et al. (2021) (94.9), with
an F-score of 94.8. In the pre-training phase, we
utilize all 12 hand-crafted features5, and opt for
treebanked data for enhanced performance (94.9
compared to 91.9 for plain text data). The tree-
banked data is obtained using the Stanza Toolkit
(Qi et al., 2020).

For evaluation, we adapt the discourse analy-
sis pipeline proposed by Joty et al. (2015). The
results are shown in Table 8, comparing the pre-
dicted and gold EDUs. The best head (i.e., Hora)
performance decreases by ≈ 7 points, from 59.5 to
52.6, as well as unsupervised and semi-supervised
results. Despite the drop, our unsupervised and
semi-supervised models still outperform the LAST
baseline. A similar loss of ≈ 6 points is also ob-
served for RST-style parsing in monologues, as
reported in Nguyen et al. (2021).

7 Conclusion

In this study, we explore approaches to build naked
discourse structures from PLMs attention matrices
to tackle the extreme data sparsity issue in dia-
logues. We show sentence ordering to be the best

5Such as POS tag, UD deprel, sentence length, etc..

fine-tuning task and our unsupervised and semi-
supervised methods for selecting the best attention
head outperform a strong baseline, delivering sub-
stantial gains especially on tree structures. Interest-
ingly, discourse is consistently captured in deeper
PLMs layers, and more accurately for shorter links.

In the near future, we intend to explore graph-
like structures from attention matrices, for instance,
by extending treelike structures with additional arcs
of high DAS score and applying linguistically mo-
tivated constraints, as in Perret et al. (2016). We
would also like to expand shuffling strategies for
sentence ordering and to explore other auxiliary
tasks. In the long term, our goal is to infer full dis-
course structures by incorporating the prediction of
rhetorical relation types, all while remaining within
unsupervised or semi-supervised settings.

Limitations

Similarly to previous work, we have focused on
generating only projective tree structures. This not
only covers the large majority of the links (≈ 94%),
but it can also provide the backbone for accurately
inferring the remaining non-projective links in fu-
ture work. We focus on the naked structure, as it is
a significant first step and a requirement to further
predict relations for discourse parsing.

We decided to run our experiments on the only
existing high quality corpus, i.e., STAC. In essence,
we traded-off generalizability for soundness of the
results. A second corpus we considered, Molweni,
had to be excluded due to serious quality issues.

Lastly, since we work with large language mod-
els and investigate every single attention head, com-
putational efficiency is a concern. We used a 4-core
GPU machine with the highest VRAM at 11MiB.
The calculation for one discourse tree on one head
was approximately 0.75 seconds (in STAC the av-
eraged dialogue length is 11 EDUs), which quickly
summed up to 4.5 hours with only 100 data points
for 192 candidate trees in one LM. When dealing
with much longer documents, for example AMI and
conversational section in GUM (in average > 200
utterances/dialogue), our estimation shows that one
dialogue takes up to≈ 2 minutes, which means 6.5
hours for 192 candidate trees. Even though we use
parallel computation, the exhaustive “head” compu-
tation results in a tremendous increase in time and
running storage. One possibility is to investigate
only those “discourse-rich” heads, mainly in the
deeper layers, for future work.
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Ethical Considerations

We carefully select the dialogue corpora used in
this paper to control for potential biases, hate-
speech and inappropriate language by using hu-
man annotated corpora and professionally curated
resources. Further, we consider the privacy of dia-
logue partners in the selected datasets by replacing
names with generic user tokens.

Since we are investigating the nature of the dis-
course structures captured in large PLMs, our work
can be seen as making these models more transpar-
ent. This will hopefully contribute to avoid unin-
tended negative effects, when the growing number
of NLP applications relying on PLMs are deployed
in practical settings.

In terms of environmental cost, the experiments
described in the paper make use of RTX 2080 Ti
GPUs for tree extraction and A100 GPUs for BART
fine-tuning. We used up to 4 GPUs for the parallel
computation. The experiments on corpus STAC
took up to 1.2 hours for one language model, and
we tested a dozen models. We note that while
our work is based on exhaustive research on all the
attention heads in PLMs to obtain valuable insights,
future work will able to focus more on discourse-
rich heads, which can help to avoid the quadratic
growth of computation time for longer documents.
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A Semi-sup. Layer-Wise Results

We consider both layer-wise attention matrices -
averaging 16 attention heads for every layer which
gives 12 candidate layers -, and head-wise atten-
tion matrices - taking each attention matrix individ-
ually which results in 192 candidate matrices. Here
we show results completed with layer-wise matri-
ces for the whole test set and treelike examples in
Table 9 and Table 10.

B Molweni Corpus Quality Investigation

Molweni (Li et al., 2020) is a corpus derived from
Ubuntu Chat Corpus (Lowe et al., 2015). It con-
tains 10, 000 short dialogues between 8 to 15 utter-
ances, annotated in SDRT framework.

Considering the complexity of Ubuntu chat logs
(multiple speakers, entangled discussion with vari-
ous topics), we first conduct an examination of the
corpus. Disappointingly, we found heavy repetition
within sequential documents and inconsistency in
discourse annotation among the same utterances.
We thus decide not to include it in this work.

Train on→ BART + SO-DD + SO-STAC
Test with ↓ F1 F1 F1

Gold H 57.6 58.2 59.5

Semi-sup-10 1L 55.80.008 55.70.010 55.60.009
Semi-sup-30 1L 55.80.006 56.50.004 56.30.004
Semi-sup-50 1L 56.20.002 56.40.007 56.40.001
Semi-sup-10 1H 57.00.012 57.20.012 57.10.026
Semi-sup-30 1H 57.30.005 57.30.013 59.20.009
Semi-sup-50 1H 57.40.004 57.70.005 59.30.007

Table 9: Micro-F1 scores on STAC test set with BART
and fine-tuned models. H = “head”, L = “layer”. Best
semi-supervised score is in bold. Subscription is std.
deviation.

Train on→ BART + SO-DD + SO-STAC
Test with ↓ F1 F1 F1

Gold H 64.8 67.4 68.6

Semi-sup-10 1L 59.40.028 60.60.029 58.30.018
Semi-sup-30 1L 62.10.002 61.80.012 59.80.009
Semi-sup-50 1L 62.10.000 62.30.003 59.90.006
Semi-sup-10 1H 54.60.058 59.20.047 61.60.056
Semi-sup-30 1H 60.30.047 60.30.044 65.60.043
Semi-sup-50 1H 64.80.000 66.30.023 68.10.014

Table 10: Micro-F1 scores on STAC projective tree
subset with BART and SO fine-tuned BART models.

Clus Doc #Theor #Err #Theor #Err
ID ID =arc arc =rel rel

1 {1, 2, 3} 18 2 16 2
2 {7, 8, 9} 18 0 18 7
3 {10, 11, 12, 13, 14} 80 4 76 25
...

105 500 4787 284 4503 606
- - 100% 5.9% 100% 13.5%

Table 11: Quantitative resume of link and relation in-
consistency in Molweni test set. “Theor =arc”: number
of arcs between the same utterances, a priori should
be linked in the same way; “Theor =rel”: number of
relations between the linked utterances.

Clusters: Among 500 dialogues in discourse aug-
mented test set, we found 105 “clusters”. One clus-
ter groups all the documents with only one or two
different utterances. For instance, document id 10
and 11 are in the same cluster since only the sec-
ond utterance is different (Figure 10). A similar
situation is attested in the documents {1, 2, 3}, {7,
8, 9}, {19, 20, 21}, to name a few.

Annotation Inconsistency: A closer examina-
tion of the annotation in similar examples reveals
inconsistency for both discourse links and rhetori-
cal relations. Precisely, we investigate every docu-
ment pair (two documents in the same cluster) in
all 105 clusters in the test set. A visualization of
inconsistency for documents 10 and 11 is shown in
Figure 10: apart from EDU2, we expect the same
links and relations among other EDUs. However,
we observe one link inconsistency (in red) and two
relation inconsistencies (in blue). In total, we find
6% of link errors (#Err arc) within the same EDUs
and 14% of relation errors (#Err rel) in the test
set6. The scores are shown in Table 11.

The Ubuntu Chat Corpus contains long dia-
logues with entangled discussion. A pre-processing
had been made to generate shorter dialogues.
While these slightly different short dialogues could
be interesting for other dialogue studies in the field.
Our focus on the discourse structure request more
various data points and most importantly, the co-
herent discourse annotation.

C Precision and Recall Scores for Direct
and Indirect Arcs in STAC Tree Set

To compare the performance of the whole test set
and tree-structured subset, we present the recall and

6For validation and train sets we find similar error rates.
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Figure 7: Recall and precision metrics in whole test set
(darker color) vs. projective tree subset (brighter color),
with BART model.

Figure 8: Recall and precision metrics in whole test set
(darker color) vs. projective tree subset (brighter color),
with BART+SO-DD model.

precision scores of BART (Fig. 7), BART+SO-DD
(Fig. 8), and BART+SO-STAC (Fig. 9) separately.

D Qualitative Analysis in STAC

We show a few concrete tree examples: 3 well
predicted (Figure 11, 12, 13), 3 badly predicted
(Figure 14, 15, 16), and 2 random examples (Fig-
ure 17, 18). Some patterns observed from badly
predicted structures: (1) chain-style prediction: as
shown in Figure 15 and 18 where only adjacent
EDUs are linked together; (2) inaccurate indirect
arc prediction: especially for long documents such
as the one in Figure 16.

E Results with other PLMs

We test with RoBERTa (Liu et al., 2019), Di-
aloGPT (Zhang et al., 2020), and DialogLED (Di-
alogLM with Longformer) (Zhong et al., 2022)
to see how different language models encode dis-
course information. As shown in Table 12, the most
discourse-rich head in RoBERTa slightly under-

Figure 9: Recall and precision metrics in whole test set
(darker color) vs. projective tree subset (brighter color),
with model BART+SO-STAC.

Model Unsup Semi-sup
Hora Hg Hl Semi10 Semi30 Semi50

BART 57.6 56.6 56.4 57.00.012 57.30.005 57.40.004
+ SO-DD 58.2 56.8 57.1 57.20.012 57.30.013 57.70.005
+ SO-STAC 59.5 56.7 57.2 57.10.026 59.20.009 59.30.007

RoBERTa 57.4 56.8 56.8 55.60.013 56.80.002 56.90.003
DialoGPT 56.2 42.7 36.2 52.90.043 55.10.017 56.20.000
DialogLED 57.2 56.8 56.7 54.60.026 54.70.061 56.60.019

+ SO-DD 57.7 56.4 56.6 55.00.028 56.10.024 57.30.009
+ SO-STAC 58.4 56.8 57.1 57.70.001 58.20.005 57.70.001

Table 12: Micro-F1 on STAC with other PLMs. Best
score (except Hora) in each row is underlined.

perform BART (−0.2%), so does the DialogLED
(−0.4%) and DialoGPT (−1.4%). Sentence order-
ing fine-tuned DialogLED model outperforms the
original one, proving that our proposed SO task
can help encoding the discourse information.

F Huggingface Models

Table 13 shows the models and the sources we
obtained from Huggingface library (Wolf et al.,
2020).

Model

BART-large
https://huggingface.co/facebook/bart-large
BART-large-cnn
https://huggingface.co/facebook/bart-large-cnn
BART-large-samsum
https://huggingface.co/linydub/bart-large-samsum
BART-large-finetuned-squad2
https://huggingface.co/phiyodr/bart-large-finetuned-squad2
RoBERTa-large
https://huggingface.co/roberta-large
DialoGPT-small
https://huggingface.co/microsoft/DialoGPT-small
DialogLED-large-5120
https://huggingface.co/MingZhong/DialogLED-large-5120

Table 13: Huggingface models and URLs.
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Figure 10: Similar documents in the same cluster. Circled EDUs are different. In red: inconsistent discourse arcs; in
blue: inconsistent rhetorical relation.
test id 10:
[e1] matthew99857: so do i need additional hardware to fix it ?
[e2] vocx: ca n’t you disable the raid from the bios ? check your motherboard manual .
[e3] ikonia: just use the disk as an individual disk
[e4] sugi: vocxi : oh i am sorry . i misunderstood you . thank i will try it now
[e5] vocx: you need to word better your answers , seems like nobody in getting you today .
[e6] sugi: vocx : iso 9660 cd-rom filesystem data udf filesystem data ( unknown version , id ’nsr01 ’)
[e7] ikonia: looks like that should work as a loop back file system
[e8] sugi: -mount -o loop but instead of .iso .mdf ? or the .mds file ?
[e9] ikonia: try it , linux see ’s it as a “ image ” so it may work
[e10] sugi: vocx : wow it worked , i feel retard for nto
test id: 11
[e1] matthew99857: so do i need additional hardware to fix it ?
[e2] ikonia: no you need to stop using raid
[e3] ikonia: just use the disk as an individual disk
[e4] sugi: vocxi : oh i am sorry . i misunderstood you . thank i will try it now
[e5] vocx: you need to word better your answers , seems like nobody in getting you today .
[e6] sugi: vocx : iso 9660 cd-rom filesystem data udf filesystem data ( unknown version , id ’nsr01 ’)
[e7] ikonia: looks like that should work as a loop back file system
[e8] sugi: -mount -o loop but instead of .iso .mdf ? or the .mds file ?
[e9] ikonia: try it , linux see ’s it as a “ image ” so it may work
[e10] sugi: vocx : wow it worked , i feel retard for nto

Figure 11: Well predicted example: pilot02-4. #EDUs: 11. UAS: 90%. In red: FP arcs; in blue: FN arcs.
[e1] Cat: anyone would give me clay? [e2] Thomas: none here [e3] william: no [e4] Cat: I have one wood to
exchange [e5] Cat: any takers? [e6] william: no [e7] Cat: for sheep, wheat or clary [e8] Thomas: can I buy a sheep
for two ore? [e9] william: have none [e10] Thomas: kk [e11] Cat: no sheep
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Figure 12: Well predicted example: pilot02-18. #EDUs: 19. UAS: 88.9%. In red: FP arcs; in blue: FN arcs.
[e1] william: hi markus. [e2] william: how many people are we waiting for? [e3] Thomas: think it’s 1 more
[e4] william: ok [e5] Markus: yes, one more [e6] Markus: seems there’s a hickup logging into the game ...
[e7] Thomas: that’s ok, I not on a schedule [e8] Thomas: *I’m [e9] Markus: I guess you two had no problems
joining the game? [e10] william: nope [e11] Markus: Ah great! [e12] Markus: So, one of you can now start the game.
[e13] Markus: Have fun! [e14] william: the arrow is pointing at me [e15] william: but i cant press roll [e16] william:
oh sorry [e17] Thomas: u can place a settlement [e18] Thomas: first [e19] Thomas: u roll later

Figure 13: Well predicted example: s1-league3-game3. #EDUs: 7. UAS: 83.3%. In red: FP arcs; in blue: FN arcs.
[e1] Gaeilgeoir: ? [e2] yiin: build road [e3] inca: think we’re meant to negotiate trades in the chat before offering
[e4] yiin: oop [e5] yiin: ok then [e6] inca: part of the guys’ experiment [e7] yiin: oh i see

Figure 14: Badly predicted example: s2-leagueM-game4. #EDUs: 5. UAS: 20%. In red: FP arcs; in blue: FN arcs.
[e1] dmm: i can give a sheep or wood for a wheat. [e2] dmm: any takers? [e3] inca: sheep would be good.
[e4] CheshireCatGrin: Not here. [e5] dmm: okay.

Figure 15: Badly predicted example: s1-league3-game3. #EDUs: 5. UAS: 25%. In red: FP arcs; in blue: FN arcs.
[e1] nareik15: anyone have ore. [e2] nareik15: I have some wood to trade. [e3] yiin: no sorry. [e4] inca: nope, sorry.
[e5] Gaeilgeoir: no, sorry.
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Figure 16: Badly predicted example: s1-league4-game2. #EDUs: 21. UAS: 30%. In red: FP arcs; in blue: FN arcs.
[e1] Shawnus: need wheat [e2] Shawnus: want..clay? [e3] ztime: you odo? [e4] ztime: yer.. [e5] ztime: I need clay..
[e6] ztime: can give wheat [e7] Shawnus: k [e8] Shawnus: this might be where i lose my road card a? [e9] ztime:
er.. [e10] ztime: I think the trade is wrong? [e11] ztime: did you want wheat? [e12] Shawnus: yes [e13] Shawnus:
for clay [e14] ztime: it said you wanted clay... [e15] somdechn: We all want wheat man [e16] somdechn: and clay...
[e17] ztime: ok [e18] ztime: thanks.. [e19] Shawnus: haha [e20] Shawnus: thanks [e21] somdechn: That happens in
the real game as well.

Figure 17: Random example: s2-league4-game2. #EDUs: 14. UAS: 53.9%. In red: FP arcs; in blue: FN arcs.
[e1] ztime: 7!!!! [e2] somdechn: Yeah right... [e3] ztime: what... is this a fix? [e4] Shawnus: hahaha [e5] ztime: ok
anyone want wheat? [e6] Shawnus: nope [e7] Shawnus: just someone to roll 9’s.. [e8] somdechn: Yes [e9] somdechn:
I can give you wood. [e10] ztime: was that yes to a trade somdech? [e11] ztime: OK.. cool.. for 1 wheat?
[e12] somdechn: and an ore.. :) [e13] ztime: err.. don’t have ore.. [e14] ztime: thanks..

Figure 18: Random example: s1-league3-game3. #EDUs: 11. UAS: 50%. In red: FP arcs; in blue: FN arcs.
[e1] nareik15: anyone have wood to trade. I have sheep [e1] yiin: no [e1] Gaeilgeoir: Sorry, [e1] Gaeilgeoir: I need
wood too [e1] Gaeilgeoir: I have wheat [e1] Gaeilgeoir: if you want [e1] inca: do you have wheat kieran? [e1] inca:
if so [e1] inca: i can trade wood [e1] nareik15: sorry, [e1] nareik15: plenty of sheep though :)
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Abstract

Contrastive pre-training on distant supervision
has shown remarkable effectiveness in improv-
ing supervised relation extraction tasks. How-
ever, the existing methods ignore the intrin-
sic noise of distant supervision during the
pre-training stage. In this paper, we pro-
pose a weighted contrastive learning method
by leveraging the supervised data to estimate
the reliability of pre-training instances and
explicitly reduce the effect of noise. Exper-
imental results on three supervised datasets
demonstrate the advantages of our proposed
weighted contrastive learning approach com-
pared to two state-of-the-art non-weighted base-
lines.Our code and models are available at:
https://github.com/YukinoWan/WCL.

1 Introduction

Relation extraction (RE) is the task of identifying
the relationship between entities mentioned in the
text, which can benefit many downstream tasks
such as question answering and knowledge base
population. Since most of the existing RE mod-
els (Zhang et al., 2020; Zeng et al., 2020; Lin
et al., 2020; Wang and Lu, 2020; Zhong and Chen,
2021) are trained on the labeled data, the amount
of training data limits the performance of super-
vised RE systems. To tackle this problem, recent
work leverage semi-supervised distant supervision
(DS) (Mintz et al., 2009; Lin et al., 2016; Vashishth
et al., 2018; Chen et al., 2021) approach to gener-
ate abundant training data by aligning knowledge
bases (KBs) and raw corpora. However, distantly
supervised relation extraction (DSRE) inevitably
suffers from wrong labeling noise. Introducing a
robust framework that utilizes both the abundant
but noisy data from DS and the scarce but accu-
rate data from human annotations becomes a new
research line to improve RE systems.

Recent works (Baldini Soares et al., 2019; Or-
mándi et al., 2021; Peng et al., 2020) propose a

Joe Biden is the 46th president of
America.

Joe Biden was born and raised in 
Scranton, Pennsylvania, America.

Joe Biden graduated from the 
University of Delaware in America.
…

Triplet (Joe Biden, president of, America) in KB

DS Label
president of

president of

president of

Unreliable
positive 
samples

Anchor

Raw corpus
Extracted instances

Figure 1: An example of unreliable positive samples
caused by DS noise.

two-stage RE framework that they first design a
RE-oriented task to pre-train BERT on DS data and
then fine-tune on human-annotated (HA) datasets.
Peng et al. (2020) use Wikipedia articles as the
corpus and Wikidata as the KB in the pre-training
stage to construct the DS data, and they introduce
a contrastive learning-based method to pre-train
BERT on the generated DS data. Given an anchor
instance with a specific relation in the DS data, their
contrastive learning method randomly selects one
positive sample holding the same relation and max-
imizes the similarity between the anchor and pos-
itive sample. Meanwhile, their method randomly
selects multiple negative samples holding different
relations from the anchor and minimizes the sim-
ilarity between the anchor and negative samples.
The results show that their RE-oriented pre-training
can effectively improve the final performance of
the RE task on various target datasets.

However, in their pre-training stage, they ignore
the intrinsic wrong labeling noise in the generated
DS data. Since their method relies on the DS-
labeled relation types to sample positive and neg-
ative instances, the noisy labeling problem leads
to unreliable samples in Figure 1, potentially limit-
ing the pre-training stage’s effectiveness. To better
utilize DS data, we propose a novel weighted con-
trastive learning framework to both use the abun-
dant DS data and tackle the inevitable DS noise.
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First, we train a relation classifier on the HA dataset
and leverage the classifier to predict the relation
type of instances in the DS data. Then for each DS
instance, based on the output of the classifier, we
can compute the confidence score to measure the
reliability of its labeled relation type. Finally, we
introduce weights based on computed confidence
scores into the contrastive learning loss to focus
more on reliable instances while less on noisy ones.

Besides, distant supervision relies on the existing
KBs to align raw corpora. To alleviate the need
for KBs, we propose a new strategy to extract a
triplet set from the HA dataset for generating DS
data. We also include a KB-derived DS dataset in
our experiments to show that our proposal can still
work well for regular DS.

In conclusion, we propose a weighted contrastive
pre-training approach for supervised relation ex-
traction and introduce its details in Section 2. Then
we perform the experiments on three datasets to
compare our proposed method with existing base-
lines in Section 3.

2 Proposed Method

2.1 Overview

We show the overview of our proposal in Figure 2.
We start by generating the DS data relying on the
HA dataset. Then in the first stage, we introduce a
weighted contrastive learning method by leverag-
ing the HA data to estimate the reliability of DS
instances for contrastive pre-training. In the second
stage, we further fine-tune our pre-trained model
on the HA dataset.

2.2 Distantly Supervised Dataset
Construction

Since DS uses existing knowledge bases to gener-
ate training data, in the case that we have no proper
existing KBs in some domains but only the anno-
tated dataset, we first extract all entities based on
each sentence, and if any two of them are labeled
a relation type, they will generate a triplet with a
particular relation. Otherwise, they will still gen-
erate a triplet but labeled NA (no relation). After
constructing the KB, we can extract sentences con-
taining two entities of each triplet from raw corpora.
To balance the number of sentences extracted by
each triplet, we also add an upper bound 100 to the
number of extracted sentences.

2.3 Two-stage RE Framework
Instance representation In our pre-training
stage, we use BERT to obtain the representation
for each input instance. For the input format, we
follow PURE (Zhong and Chen, 2021) by adding
extra special markers to mark the beginning and the
end of two entities. For example, given an instance
x: “Joe Biden is the president of America.”, the
input sequence is “[CLS] [H_CLS] Joe Biden [H_SEP]
is the president of [T_CLS] America [T_SEP]. [SEP]”.
Denote the k-th output vector of the BERT encoder
as hk. Assuming i and j are the indices of two
beginning entity markers [H_CLS] and [T_CLS], we
define the instance representation as:

x = hi ⊕ hj (1)

where ⊕ stands for concatenation. Then we use
the instance representation for further reliability
estimation and the weighted contrastive learning in
the pre-training stage.

Reliability estimation With the instance rep-
resentation, we first fine-tune BERT on the HA
dataset as a supervised RE task. Then with the
trained relation classifier F , we can make predic-
tions on each instance in the DS data. Given an
input instance x with DS labeled relation r, we
can derive the confidence score c to estimate its
reliability by:

c = exp (F(x,r))∑
r′∈R exp (F(x,r′)) (2)

where R is the set of all relation classes, and
F(x, r) computes the output of our relation classi-
fier on the labeled class r. Through this approach,
we can estimate the reliability of the labeled re-
lation for each DS instance by its corresponding
confidence score.

Stage 1: DS weighted contrastive pre-training
Contrastive learning aims at maximizing the sim-
ilarity between a given instance and its positive
samples while minimizing the similarity between
the given instance and its negative samples. As for
existing work, Peng et al. (2020) focuses on the re-
lationship level that DS instances labeled the same
relation are positive samples while DS instances la-
beled different relations are negative samples. The
latest DSRE work (Chen et al., 2021) augments the
anchor as a positive sample to avoid the effect of
DS noise. Both works do not explicitly address the
problem of unreliable positive and negative sam-
ples.
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Figure 2: Overview of our proposed method.

In our work, we introduce a robust weighted con-
trastive learning (WCL) method with the help of
reliability estimations for each instance. Given
a batch input with multiple bags: (Batch =
{Bi}Gi=1) where G is the number of bags in one
batch, and the labeled relational triplets are differ-
ent from each other. Each bag B is constructed
by a certain relational triplet (e1, r, e2) with all
instances x inside satisfying this triplet. More-
over, each instance comes along with a confidence
score c estimating its reliability: Bi = {xj , cj}Nij=1,
where Ni denotes the size of bag Bi. Then the
weighted contrastive learning loss of an anchor in-
stance xj in the bag Bi is:

L(ij)WCL = − log

{
Ni∑

k=1

cjcke
cos(xj ,xk)/T /

(

Ni∑

k=1

cjcke
cos(xj ,xk)/T +

∑

rm ̸=rj
cjcme

cos(xj ,xm)/T )




(3)

where cos(·) denotes the cosine similarity between
two instance representations, xk denotes the repre-
sentation of a positive instance sampled from the
same bag, and rm ̸= rj denotes that negative sam-
ples xm are selected from all instances in the batch
that is labeled a different relation from xj . We fol-
low (Khosla et al., 2020) to incorporate multiple
positive instances sampled from the same bag. T
denotes a scaling temperature.

With the help of confidence scores, the model
will focus on more reliable instances while ignoring
unreliable instances, which keep pace with our goal

to utilize reliable DS data.
Besides, to inherit the ability of language under-

standing from BERT and avoid catastrophic forget-
ting, we also adopt the masked language modeling
(MLM) objective from BERT.

Eventually, we define our final pre-training loss:

L = LWCL + LMLM (4)

Stage 2: Supervised relation extraction We
then fine-tune the pre-trained model on HA datasets
with state-of-the-art (SOTA) methods. For i2b2
2010VA, we follow BLUEBERT (Peng et al., 2019)
by treating the relation extraction task as a sentence
classification and replacing two named entities in
the sentence with predefined tags. For the other
two datasets, we follow the encoding method of
PURE (Zhong and Chen, 2021) as introduced at
the beginning of Section 2.3.

3 Experiments

3.1 Setup

HA and DS datasets We evaluate our approach
on three HA relation extraction datasets: i2b2
2010VA, ACE05, and Wiki20m. Table 2 shows
the statistics of each dataset. The i2b2 2010VA
is a medical domain RE dataset, while the other
two datasets are collected from general domains.
We generate the DS data for i2b2 2010VA and
ACE05 from corresponding raw corpora. Mean-
while, Wiki20m is a regular KB-based distantly
supervised RE dataset containing both DS data and
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Methods i2b2 2010VA ACE05 Wiki20m
25% 100% 25% 100% 25% 100%

FT 66.86 75.22 62.81 70.41 68.87 88.54
CIL + FT 67.92 75.39 59.72 69.69 89.67 91.64
RECN + FT 67.65 75.43 60.34 69.40 89.23 91.96
WCL + FT (ours) 68.50 76.15 61.30 69.47 90.28 92.67

Table 1: Evaluation results on various datasets. 25% denotes the low-resource setting, and 100% denotes the
full-resource setting. We compute three-run average Micro-F1 for our proposed methods in all the results.

Dataset # Rel. # Train # Dev # Test
i2b2 2010VA 8 3,120 11 6,147
ACE05 6 10,051 2,424 2,050
Wiki20m 80 8,279 4,140 28,977
ACE05 (NP) 6 3,939 922 923

Table 2: Statistics of datasets. Rel. denotes relation
types. NP denotes removing pronoun from ACE05.

Dataset # Triplets Corpora # DS Ins. (NA)
i2b2 2010VA 2,777 MIMIC-III 36K (76K)
ACE05 3,883 Gigaword5 98K (461K)
Wiki20m - Wiki20m 286K (698K)
ACE05 (NP) 3,218 Gigaword5 60K (273K)

Table 3: Statistics of DS data. Triplets are extracted
from the HA dataset. DS Ins. denotes relational in-
stances generated by DS. NA denotes the no-relation
instances. NP denotes removing pronoun from ACE05.

HA data and it is worth noting that we intend to
show that our method can also work well on exist-
ing DS datasets. Table 3 shows the statistics of DS
data.

Baselines We have a naive baseline by directly
fine-tuning (FT) on each dataset as a supervised
RE task. We set two two-stage framework base-
lines: the first one is to use the SOTA method
RE-Context-or-Names (RECN) (Peng et al., 2020)
in pre-training, and the second one is to use the
SOTA DSRE method Contrastive Instance Learn-

Methods ACE05 Wiki20m
25% 100% 25% 100%

FT 60.45 69.82 66.58 89.38
CIL + FT 60.12 69.36 90.25 91.26
RECN + FT 58.68 68.04 90.18 91.75
WCL + FT (ours) 60.20 69.73 91.06 92.94

Table 4: Evaluation results on the development set
datasets. 25% denotes the low-resource setting, and
100% denotes the full-resource setting.

Methods ACE05 (no pronouns)
25% 100%

FT 62.22 70.29
CIL + FT 63.31 69.76
RECN + FT 62.43 70.09
WCL + FT (ours) 64.45 71.10

Table 5: Evaluation on ACE05 after removing pro-
nouns.

ing (CIL) (Chen et al., 2021) in pre-training.

Implementation details To further confirm the
effectiveness of our proposal, we also conduct the
experiments in the low-resource setting by ran-
domly selecting 25% of the full HA data to con-
struct the DS data for pre-training and finally fine-
tune on this 25% HA data. Refer to Appendix A
for other implementation details.

3.2 Main Results

Table 1 compares our model to other baselines.
From the results, we can observe that: (1) For both
the i2b2 2010VA and the Wiki20m, all two-stage
models outperform the FT baseline, which indi-
cates the effectiveness of our strategy to construct
DS data from HA datasets, especially in the low-
resource setting. (2) For both the i2b2 2010VA
and the Wiki20m, our proposed model achieves
the best F1 scores over all baselines. This improve-
ment shows that it is worth estimating the reliability
of each DS instance with the help of HA datasets
in our weighted contrastive pre-training. (3) For
the ACE05, the pre-training methods cannot out-
perform the FT baseline. To analyze this problem,
we perform extra experiments on ACE05 in Sec-
tion 3.3.

Besides, we also compare performances on the
development set of two datasets as shown in Ta-
ble 4, the experiment results emphasize the consis-
tent improvement of our proposed methods.

2583



3.3 Further Analysis

We find that ACE05 contains many pronoun enti-
ties, for example, "He lives in America.". As pro-
noun entities such as "He" naturally come along
with much more severe noise in DS, we also con-
duct extra experiments by removing sentences con-
taining pronoun entities in ACE05 and the corre-
sponding DS data to confirm the effect of pronouns.

After removing pronoun entities in ACE05, as
shown in Table 5, our model outperforms all base-
lines, including FT, which indicates that pronoun
entities bring mishandled noise in the pre-training
stage and limit the effect of our DS data construc-
tion approach.

4 Conclusions

We introduce a weighted contrastive pre-training
method by leveraging the HA dataset to estimate
the reliability of instances in the abundant DS data.
To alleviate the need for KBs, we also propose
to construct DS data based on the triplets derived
from the HA dataset for pre-training. Experimen-
tal results demonstrate that our proposed method
outperforms SOTA work on target HA datasets.

Limitations

In this paper, we propose a weighted contrastive
pre-training approach for supervised relation ex-
traction.

While our approach is simple and effective, one
limitation is that the reliability estimation requires
a certain amount of annotated data. Under certain
settings such as few-shot learning, large-scale la-
beled data may not be available, and the reliability
of DS data could be estimated in an unsupervised
manner based on similarity-based metrics, which
we leave as future work.

Another limitation is that the distant supervision
of ACE05 contains additional noise caused by pro-
noun entities. In Section 3.3, we do the investiga-
tion by temporally removing them. In future work,
we assume more strict DS extraction criteria (e.g.
only entity pairs located in the same clause) might
reduce the production of such noise and alleviate
this situation.
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Hyperparameter Range Best
Bag size 2-8 4
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Table 6: Hyperparamter optimazition.

We use bert-base-uncased (Devlin et al., 2019)
as the base encoders for ACE05, ACE05 (no pro-
nouns), and Wiki20m, for a fair comparison with
previous works. We also use bluebert (Peng et al.,
2019) as the base encoder for i2b2 2010VA since
the SOTA performance is achieved based on this
effective medical domain BERT.

For baseline models, we modify their official
implementations to fit our experiments and fol-
low the model settings in their papers. For our
proposed method, the primary hyperparameters in
the experiments are batch size, bag size, and con-
trastive learning temperature that directly influence
the weighted contrastive learning loss, and we show
our searching ranges and best values in Table 6.

We used 8 NVIDIA A100 for pre-training and 2
NVIDIA RTX3090 for fine-tuning.
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Abstract
The task of multimodal referring expression
comprehension (REC), aiming at localizing an
image region described by a natural language
expression, has recently received increasing at-
tention within the research comminity. In this
paper, we specifically focus on referring expres-
sion comprehension with commonsense knowl-
edge (KB-Ref), a task which typically requires
reasoning beyond spatial, visual or semantic
information. We propose a novel framework
for Commonsense Knowledge Enhanced Trans-
formers (CK-Transformer) which effectively
integrates commonsense knowledge into the
representations of objects in an image, facilitat-
ing identification of the target objects referred
to by the expressions. We conduct extensive
experiments on several benchmarks for the task
of KB-Ref. Our results show that the proposed
CK-Transformer achieves a new state of the
art, with an absolute improvement of 3.14%
accuracy over the existing state of the art 1.

1 Introduction

Referring expression comprehension (REC) aims at
locating a target object/region in an image given a
natural language expression as input. The nature of
the task requires multi-modal reasoning and joint
visual and language understanding. In the past
few years, several REC tasks and datasets have
been proposed, such as RefCOCO (Yu et al., 2016),
RefCOCOg (Mao et al., 2016) and RefCOCO+ (Yu
et al., 2016) (RefCOCOs). These ‘conventional’
REC tasks typically focus on identifying an object
based on visual or spatial information of the object,
such as its colour, shape, location, etc.; therefore
primarily evaluating a model’s reasoning abilities
over visual attributes and spatial relationships.

In practice, however, people often describe an ob-
ject using non-visual or spatial information – con-
sider, for example, the sentence (expression) “Give

1The code will be available in https://github.com/
FightingFighting/CK-Transformer

me something soft but rich in starch to eat” (Wang
et al., 2020). Such instances require reasoning be-
yond spatial and visual attributes, and need to be in-
terpreted with respect to the common sense knowl-
edge (fact) embedded in the expressions, such as
knowledge about which kind of objects are edible,
soft and rich in starch in the given image. Recently,
Wang et al. (2020) proposed a new dataset, KB-Ref,
to evaluate the reasoning ability of a model over
not only visual and spatial features but also com-
monsense knowledge. The dataset is devised such
that at least one piece of fact from a knowledge
base (KB) is required for a target object (referred
to by an expression) to be identified.

Therefore, searching for appropriate facts from
a KB is also crucial part in KB-Ref. In contrast
to the only existing work (Wang et al., 2020), in
which for each object candidate, the top-K facts
with the highest cosine similarity between the av-
eraged Word2Vec (Mikolov et al., 2013) embed-
ding of the fact and the given expression are main-
tained, our framework focuses on multi-modal em-
bedding and reasoning simultaneously over both
the expression and the image to identify the top-K
facts. Multi-modal features encode richer infor-
mation helping to improve reasoning over varying
(semantic) contexts and identification of relevant
facts; for example, the above example of expres-
sion can be answered with the object “banana” in
an image (or, equivalently, with the object “mushed
potato” in another image).

In this paper, we propose a novel multi-modal
framework for KB-Ref – Commonsense Knowl-
edge Enhanced Transformers (CK-Transformer,
CK-T for short) – that integrates (top-K) facts into
all object candidates in an image for better identifi-
cation of the target object. Specifically, our contri-
butions are four-fold: 1) We propose the CK-T (see
Figute 1) that effectively integrates diverse input
from different modalities: vision, referring expres-
sions and facts; 2) To the best of our knowledge,
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Figure 1: CK-Transformer. For each candidate (the first one in the figure), given an expression, a set of visual
region candidates and top-K facts (K=3 in the figure), the model first encodes the expression and all top-K facts
into corresponding multi-modal features, then fuses these features and maps them into a matching score for the
candidate.

our approach is the first that introduces visual in-
formation into the identification of (top-K) relevant
facts; 3) Our approach achieves a new state of the
art using only top-3 facts per (candidate) object,
which is furthermore substantially more efficient
compared to existing work utilizing as much as top-
50 facts; 4) We introduce facts into ‘conventional’
REC tasks, leading to improved performance.

2 Related Work

Referring expression comprehension with com-
monsense knowledge Different from conven-
tional REC tasks (see Appendix A for details),
KB-Ref focuses on querying objects given an ex-
pression that requires commonsense knowledge
reasoning. The authors benchmarked a baseline
model, ECIFA, for integration of facts, expression
and image, and selects the target object by compar-
ing the match scores between the image features
and corresponding top-K fact features for all object
candidates in the image (Wang et al., 2020). In our
framework, we select top-K facts for each candi-
date by comparing the cosine similarity between
the fact and expression embedding, where the em-
beddings are generated from a multi-modal encoder
rather than a text encoder used in the ECIFA model.

Pre-trained vision–language encoders Several
pre-trained multi-modal encoders (Su et al., 2019;
Li et al., 2019; Chen et al., 2020; Tan and Bansal,
2019) have been proposed, achieving state-of-the-
art results on vision–language tasks. Currently,
UNITER (Chen et al., 2020) as one of powerful
pre-trained encoders achieves the best performance
on REC tasks (RefCOCOs). In this paper, we adapt
UNITER such that it is used as a multi-modal en-

coder in fact search and as part of the CK-T.

3 Methodology

We formulate KB-Ref as a classification problem
based on an image I consisting of a set of candi-
dates (image regions) I = {cj}nj=1 obtained from
either ground-truth labels or predictions of a pre-
trained object detector. Specifically, given an ex-
pression e, an image I and a KB, we first search
for top-K facts FKi = {fj}kj=1 from the KB for
each candidate ci, and then feed e, I , and FKI (the
selected facts over I) into our CK-T simultaneously
to predict the target object over all candidates.

3.1 Image-based fact search

For each candidate ci in a given image, we retrieve
all the facts from the KB (see Appendix D for de-
tails on the KB used in our framework) according to
its category (e.g., a candidate object may belong to
category ‘car’). Then, we calculate the cosine simi-
larity between the facts and the given expression,
where the similarities are obtained from a similar-
ity extractor which we train by adapting UNITER.
Specifically, given image–expression and image–
fact pairs as input, we extract expression and fact
features respectively from the position of the cross-
modality output of UNITER (corresponding to the
input of [CLS] token, see Appendix B for details),
and then calculate the cosine similarity between
the two. During training, inspired by Devlin et al.
(2018), we replace 50% of ground-truth facts with
random facts from the KB (with a similarity of 0),
to help the model better distinguish useful facts
from non-useful ones. Finally, we maintain top-K
facts FKi with higher similarities to the expression
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for each candidate ci.

3.2 Commonsense Knowledge Enhanced
Transformer

The CK-T consists of a bi-modal encoder (see
3.2.1) and a fact-aware classifier (see 3.2.2).

3.2.1 Bi-modal encoder

The bi-modal encoder (initialized by UNITER-base
with N=12 layers (Chen et al., 2020)) integrates two
modalities: image and text (e or fi). Specifically,
after generating the input embedding EInp con-
sisting of image and text embedding (same with
UNITER, see Appendix C for details), for each
candidate ci, we extract the expression-aware and
fact-aware object features respectively (fei and ffi )
from the position of the visual output correspond-
ing to ci in the same encoder, based on the input of
all candidates I , and e or fi.

3.2.2 Fact-aware classifier

The fact-aware classifier is composed of multi-head
attention layers and fully connected layers. For
each candidate ci, fei and Ffi (all K fact-aware ob-
ject features for ci) are fed into the integrator simul-
taneously (Key and Value are from Ffi , and Query
is from fei ), and fused into one three-source object
features fti (image, expression and top-K facts).

Finally, fti is mapped into a match score si for ci
by a linear layer, and the optimization objective is
to minimize the cross-entropy loss over all scores
{sj}nj=1 corresponding to all candidates I .

4 Results

We compare our CK-T to existing approaches on
KB-Ref task without and with facts. Then we ex-
plore the importance of introducing visual infor-
mation for fact search. Furthermore, we introduce
facts into the traditional RefCOCOs dataset, which
was collected from MSCOCO (Lin et al., 2014) but
differs in the types of expressions and object can-
didate settings. We extract image region features
using an off-the-shelf detector, Faster R-CNN with
ResNet-101 (Ren et al., 2015), based on bounding
boxes (bbxes) (ground-truth labels or predicted re-
sults from the detector). See Appendix D and E for
details about these datasets and experiment setting2.
Through parameter search on K and M (see Figure
3 and 4 in Appendix F), we keep M = 2 Fact-aware
classifier blocks and top-3 facts for each candidate.

Model Accuracy (%)
Val Test

CMN (Hu et al., 2017) 41.28 40.03
SLR (Yu et al., 2017) 44.03 42.92
VC (Niu et al., 2019) 44.63 43.59
LGARNs (Wang et al., 2019) 45.11 44.27
MAttNet (Yu et al., 2018) 46.86 46.03
ECIFA-nf (Wang et al., 2020) 37.95 35.16
CK-T-nf (Ours) 58.02 57.53
ECIFA (Wang et al., 2020) 59.45 58.97
MAtt+E (Wang et al., 2020) 64.08 63.57
CK-T-Word2Vec 60.40 61.39
CK-T-Uw/oImage 64.44 64.78
CK-T (Ours) 65.62 66.71
Human − 90.31

Table 1: Accuracy on KB-Ref dataset without and with
facts (top and bottom part, respectively) using ground-
truth bounding boxes and object categories.

Ground-truth bounding boxes and categories
By following Wang et al. (2020), we report our
results on KB-Ref without and with facts. As can
be seen in Table 1 (top), CK-T-nf, a version of CK-
T without facts3, achieves an accuracy of 57.53%
on the test set, outperforming existing approaches
that do not utilize facts by approximately 11% −
22%. At the bottom part of the table we can see
that our fact-enhanced CK-T model achieves the
highest accuracy (66.71%) on the test set, which is
7.74% higher than that of ECIFA (a baseline model
proposed by Wang et al. (2020)), and 3.14% higher
than MAtt+E4. It is worth noting that both ECIFA
and MAtt+E incorporate the top-50 facts for each
candidate, which is considerably higher compared
to top-3 facts in our CK-T. We surmise this is due
to the fact that our fact search approach utilizes
multi-modal fact and expression embeddings.

Predicted bounding boxes and categories To
facilitate a fair comparison with ECIFA-d (Wang
et al., 2020), we also use the maximum 10 detected
bbxes for each image (CK-T-m10). As can be seen
in Table 2, CK-T-m10 achieves an accuracy which
is ≈ 5% higher than that of ECIFA-d on the test
set. CK-T-m100, a variant using at most 100 de-
tected bbxes achieves a substantial improvement

2Including the efficiency discussion about our model
3all word tokens in fact sentences are replaced with only

one [MASK] token.
4Wang et al. (2020) introduces their facts fusion module

–Episodic Memory Module (E)–into MAttNet model (Matt)
(Yu et al., 2018) widely used for conventional REC.
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Model Accuracy (%)
Val Test

ECIFA-d (Wang et al., 2020) 24.11 23.82
CK-T-m10 (Ours) 28.33 28.71
CK-T-m100 (Ours) 35.66 35.96

Table 2: Accuracy on KB-Ref using predicted bbxes
and object categories.

with ≈ 7%, compared with CK-T-m10. This dif-
ference is primarily due to the increase in the num-
ber of correctly detected bbxes and predicted cate-
gories. Specifically, we find that with the top-100
bbxes, the number of samples containing the target
bbxes rises from 18, 901 to 31, 653, while among
these target bbxes, the number of correctly pre-
dicted categories grows from 11, 324 to 15, 928,
out of a total of 43, 284 samples in the KB-Ref
dataset. This can also explain the dramatic decline
on the accuracy between CK-T and CK-T-m10.

Incorporating image features into fact search
We experiment with various approaches to fact
search and evaluate their effectiveness on KB-Ref
(Table 1). We first utilize top-k facts searched in
(Wang et al., 2020), where they use a pre-trained
Word2Vec (Skip-Gram) (Mikolov et al., 2013) for
searching facts (CK-T-Word2Vec). Then, we also
selected facts from similarity predictors based on
only text as input (CK-T-Uw/oImage)5, instead of
image-text pairs in CK-T. As shown in Table 1,
both CK-T-Uw/oImage and CK-T achieve better ac-
curacy on the test set compared to CK-T-Word2Vec.
Compared to CK-T-Uw/oImage, CK-T achieves
around 2% higher accuracy. This is primarily due
to the additional visual information used during
fact search (see Appendix I for the examples of the
selected facts by these fact search methods).

Introducing facts in traditional REC tasks We
incorporate facts from the KB used in KB-Ref into
the tasks of RefCOCOs using CK-T. Table 3 shows
the results comparison based on the ground-truth
bbxes and categories (discussion about the detected
results can be seen in Appendix G). Compared with
UREC

6, the model introducing facts achieves better
or equal accuracy on all RefCOCOs tasks, where
RefCOCOg is improved more than RefCOCO and

5Inspired by Frank et al. (2021), we replace all object
candidate feature with the average of all image region features.

6Chen et al. (2020) achieve state-of-the-art results on Re-
fCOCOs by finetuning UNITER. (We re-finetune the model
for fair comparison and conduct McNemar Test)

Task Accuracy (%)
UREC Intro Facts

Ref-
COCO

Val 90.98 91.43
Test A 91.50 92.09
Test B 90.89 90.95

Ref-
COCO+

Val 83.23 83.45
Test A 85.09 85.49
Test B 79.08 79.08

Ref-
COCOg

Val 86.23 87.21
Test 85.79 87.59

Table 3: Introducing facts into RefCOCO, RefCOCO+
and RefCOCOg. RefCOCO and RefCOCO+ have two
different test sets, Test A and Test B, containing multiple
persons and multiple objects in images respectively.

RefCOCO+. This is because RefCOCOg has less
same-category object candidates in an image com-
pared to RefCOCO and RefCOCO+ (an average
of 1.63 and 3.9 per image, respectively) (Yu et al.,
2016), and thus the retrieved facts integrated into
different candidates are diversified (we first retrieve
facts using the category), which contributes to dis-
tinguishing between candidates. This difference
can also be proved in McNemar Test, where we find
the change in the proportion of errors is statistically
significant after introducing facts as compared to
before on RefCOCOg (p-value = 1.19e−08<α =
0.05), while the similar proportions are found on
RefCOCO and RefCOCO+ (see Appendix H for
details about McNemar Test). The overall impact
of commonsense knowledge in traditional REC is,
however, not substantial. This is primarily due to
much smaller number (78) of categories among the
candidates in RefCOCOs, compared to 1805 in the
KB-Ref (Wang et al., 2020). This limits the variety
of selected facts, therefore impacting the extent to
which commonsense knowledge is useful.

5 Analysis

To investigate in what cases commonsense knowl-
edge helps, we conduct a fine-grained analysis
of model performance on the test set of KB-Ref.
Specifically, we compare the samples predicted by
model with and without facts (CK-T and CK-T-nf)
on three aspects: object categories, spatial relation-
ships and the size of the bounding box.

Object categories The test set contains 1502 cat-
egories and CK-T outperforms CK-T-nf on 1347
categories. Top 10 categories for which most im-
provement is observed are shown in Figure 2(a).
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(a) Top 10 categories showing most improvement after intro-
ducing facts.

(b) The analysis of spatial relationships.

(c) The analysis of different bounding box sizes.

Figure 2: Fine-grained analysis. all: the total number
of samples in the test set; with fact: the number of test
samples that CK-T predicts correctly; without fact: the
number of test samples that CK-T-nf predicts correctly.

In case of the 155 categories that do not show im-
provement, we find that the average number of
samples per category is 6.68, making the results
less reliable.

Spatial relationships We then investigate to
what extent solving the REC task with and with-
out facts relies on spatial reasoning, and whether
there are particular spatial relationships between
objects for which the use of facts is most crucial.
Similar to the works of (Kazemzadeh et al., 2014;
Johnson et al., 2017), we focus on the following
spatial relationships: left, right, front, behind, bot-
tom, top, middle. As shown in Figure 2(b), the
model with facts (CK-T) outperforms that without
facts (CK-T-nf) on all spatial relationships.

The size of the bounding box We then inves-
tigate the role of facts when identifying objects
of different sizes, using the size of their bound-
ing box as a proxy. We use the normalized area
of the bounding box as the metric of bbxes size.
As shown in Figure 2(c), the facts improve model
performance on all bounding box sizes.

6 Conclusion

In this paper, we proposed CK-Transformer, which
effectively integrates commonsense knowledge and
the expression into the representations of the corre-
sponding visual objects for multi-modal reasoning
on KB-Ref. Our CK-Transformer achieves a new
state-of-the-art performance on KB-Ref using only
top-3 most relevant facts. We also demonstrated
that visual information is beneficial for fact search.
Finally, we show that commonsense knowledge
improves conventional REC tasks across three dif-
ferent datasets.

7 Limitations

The computational requirements of our model are
affected by the number of facts. Specifically, we
train our CK-Transformer for 10000 steps with a
batch size of 64 on one Titan RTX GPU, which
takes 2.5, 3, 3.5, 7 days with the number of facts:
3, 5, 10, 20 respectively. The CK-Transformer
processes 3.8, 2.8, 2.1, 0.7 samples on average
per second at training time and 8.3, 7.3, 6.6, 1.1
samples per second at test time, with these amounts
of facts. The computational requirements of our
models are thus substantial, and future work should
consider improving computational efficiency and
thus reducing environmental impact.
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A Referring expression comprehension

Early approaches to REC use joint embedding of
image and language by combination of Convo-
lutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), and predict the target ob-
ject that has the maximum probability given an in-
put expression and an image (Mao et al., 2016; Hu
et al., 2016; Zhang et al., 2018). In order to model
different types of information encoded in input ex-
pression (subject appearance, location, and rela-
tionship to other objects), subsequent work used
modular (attention) networks, to “match” the input
to corresponding regions in the image, predicting
as the target the region with the highest matched
score (Hu et al., 2017; Yu et al., 2018).

B UNITER

UNITER is trained using four pre-training tasks,
Masked Language Modeling (MLM), Masked Re-
gion Modeling (MRM), Image–Text Matching
(ITM), and Word–Region Alignment (WRA), on
four large-scale image–text datasets, COCO (Lin
et al., 2014), Visual Genome (Krishna et al., 2016),
Conceptual Captions (Sharma et al., 2018), and
SBU Captions (Ordonez et al., 2011). This en-
ables UNITER to capture fine-grained alignments
between images and language. The architecture of
UNITER is similar to BERT (Devlin et al., 2018)
apart from the input and the output. Specifically,
the input consists of an image (a set of visual region
candidates), a sentence and [CLS] token, and they
respectively lead to different outputs, i.e. vision
output, language output and cross-modality output
on the top of UNITER.

C Input embedding

Same with UNITER, we extract the input embed-
dings EInp consisting of an image and a text em-
bedding corresponding to the object candidate I
and text (an expression e or a fact fi) respectively.

Image embedding The image embedding EI is
computed by summing three types of embeddings:
visual feature embedding, visual geometry embed-
ding and modality segment embedding. We first
extract the visual features V = {v1, v2, ..., vn}
for all candidates using Faster R-CNN (pooled
RoI features), and build a geometry feature G =
{g1, g2, ..., gn} for all candidates, where gi is a
7-dimensional vector consisting of the geometry
information of the bounding box corresponding to

candidate ci, namely normalized top, left, bottom,
right coordinates, width, height, and area, denoted
by gi = [x1, y1, x2, y2, w, h, w ∗ h]. Visual fea-
ture embeddings and visual geometry embeddings
are generated by mapping the visual features and
the geometry features into the same vector space
through a fully connection layer fc:

EI = LN(fc(V) + fc(G) + MI) (1)

where LN is the layer normalization layer and MI

is the modality segment embedding for the image
input (like segment embedding for two sentence in
BERT model).

Text embedding Similarly, the text embedding
ET is computed based on three different types of
embeddings: token embedding, position embed-
ding and modality embedding (Normally there is
a fourth embedding, sentence segment embedding
similarly to BERT, but, in our task, both expres-
sions and facts consist of one sentence only and
so only the first sentence segment embedding is
used). Similar to BERT (Devlin et al., 2018), the
text W = {w1, w2, ..., wu} is first tokenized by
WordPieces (Wu et al., 2016), which are then built
into token embeddings T = {t1, t2, ..., tv} and po-
sition embeddings P = {p1, p2, ..., pv} according
to their position in the text sequence.

ET = LN(T + P + MT ) (2)

where MT is the modality segment embedding for
the text input.

Input embedding The final input embedding
EInp is computed by concatenating image embed-
ding EI and text embedding ET :

EInp = [EI ,ET ] (3)

D Datasets

We use the KB-Ref dataset (Wang et al., 2020)
aiming at evaluating the task of referring expression
comprehension based on commonsense knowledge.
KB-Ref consists of 43,284 expressions for 1,805
object categories on 16,917 images, as well as a
knowledge base of key–value (category–fact) pairs
collected from three common knowledge resources:
Wikipedia, ConceptNet (Speer et al., 2017) and
WebChild (Tandon et al., 2017)). KB-Ref is split
into a training set (31,284 expressions with 9,925
images), a validation set (4,000 expressions with
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Figure 3: Accuracy across a varying number of facts
(top-K).

2,290 images) and a test set (8,000 expressions
with 4,702 images).

We furthermore introduce commonsense knowl-
edge into traditional tasks/datasets of referring ex-
pression comprehension, namely RefCOCO, Re-
fCOCOg and RefCOCO+ 7. The datasets are de-
vised from the MSCOCO image dataset (Lin et al.,
2014) but differ in the types of expressions and
object candidate settings. Specifically, RefCOCO+
does not allow the use of absolute location words in
the expressions, and most expressions focus on the
appearance of the objects. The expressions in Re-
fCOCOg are longer and contain more descriptive
words. RefCOCO and RefCOCO+ contain more
objects of the same category within an image.

E Experimental settings

We extract image region features using Faster R-
CNN with ResNet-101 (Ren et al., 2015) which
was pre-trained on Visual Genome (Krishna et al.,
2016) using object and attribute annotations (An-
derson et al., 2018). For bounding box detection,
we keep the bounding boxes with at least 0.2 confi-
dence score indicating the extent of detection. In
the CK-T, the hidden layer dimension is 768 and
the number of multi-head attention heads is 12. The
models are trained using Adamw (Loshchilov and
Hutter, 2017) with a learning rate of 6e−5 and a
batch size of 64 on Titan RTX GPUs. Our CK-
Transformer has 120M parameters in total where
fact-aware classifier has 34M and bi-modal encoder
has 86M. As for UNITER model, we use same set-
ting with UNITER-base, except for using Nvidia

7following Apache License 2.0

Figure 4: Accuracy across a varying number of fact-
aware classifier block (M).

Apex8 for speeding up training. The efficiency
of our model is effected by the number of facts.
Specifically, we train our CK-Transformer 10000
steps and a batch per step, which takes 2.5, 3, 3.5, 7
days with the number of facts: 3, 5, 10, 20 respec-
tively. The CK-Transformer trains 3.8, 2.8, 2.1, 0.7
sample in average per second and tests 8.3, 7.3, 6.6,
1.1 sample per second.

F Impact of CK-T structure

We explore the impact in performance on KB-Ref
as we vary the number of top-K facts (K) and fact-
aware classifier block (M) on the development set.
We first keep the number of the fact-aware classifier
block constant and set it to 1 to experiment with
different values for K from 1 to 20. As shown
in Figure 3, as K increases, performance starts to
improves with a peak at K=5 before starting to
gradually decrease performance.

In the second experiment, we keep K constant
and set it to 3 and explore the effect of varying
values for M. We observe that the highest accuracy
is achieved with with top-3 facts and 2 integrator
layers as shown in Figure 4.

G Introducing facts in traditional REC
tasks based on detection

The results of introducing facts in traditional REC
tasks based on detected bbxes and categories are
shown in Table 4. Compared to result based on
ground-truth bbxes and categories (Table 3), the
improvement on models based on detection is less
or even worse than the models without facts.

8https://github.com/NVIDIA/apex
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Task Accuracy (%)
UREC Intro Facts

Ref-
COCO

Vald 81.15 81.06
Test Ad 86.85 86.87
Test Bd 74.48 73.97

Ref-
COCO+

Vald 74.74 74.68
Test Ad 81.05 80.70
Test Bd 65.88 66.07

Ref-
COCOg

Vald 74.49 74.69
Testd 75.24 74.86

Table 4: Introducing facts into RefCOCO, RefCOCO+
and RefCOCOg based on detection (d).

Task McNemar Test
(p-value)

RefCOCO
Test A 0.049
Test B 0.905

RefCOCO+
Test A 0.297
Test B 0.966

RefCOCOg Test 1.19e−08

Table 5: The McNemar Test between models before and
after introducing facts on the tasks of RefCOCOs.

H McNemar Test

We also report the statistical significance for accu-
racy (shown in Table 3) on the tasks of RefCOCOs.
Specifically, we conduct the McNemar Test be-
tween models before and after introducing facts,
on the test set of RefCOCO, RefCOCO+ and Ref-
COCOg, respectively. As shown in Table 5, as for
Test set on RefCOCOg and Test A on RefCOCO p-
value = 1.19e−08 and p-value = 0.049 (< 0.05)re-
spectively, which means the proportion of errors is
statistically significantly different after introducing
facts as compared to before. However, the change
in the proportion of errors after introducing facts on
other tasks (Test B on RefCOCO, Test A and Test
B on RefCOCO+) is not statistically significant.
This is reasonable, as the error from detection will
affect the fact search (we first retrieve facts using
the category) and thus more error information is
introduced into CK-Transformer, which make the
performance worse.

I Example searched fact using different
methods

As shown in Figure 5, there are several facts which
are selected from three different fact search meth-
ods: CK-Transformer, CK-T-Uw/oImage and CK-

T-Word2Vec. As we can see in the Table, normally
the facts of CK-Transformer model (green) is the
best relevant with the referring expression (blue)
and the facts in CK-T-Word2Vec model is the worst
relevant with the expression.
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Figure 5: Example fact search process (using the top-1 fact) for different search methods: CK-T (green), CK-T-
Uw/oImage (orange) and CK-T-Word2Vec (yellow).
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Abstract

Transcript segmentation is the task of divid-
ing a single continuous transcript into multiple
segments. While document segmentation is a
popular task, transcript segmentation has sig-
nificant challenges due to the relatively noisy
and sporadic nature of data. We propose pre-
training strategies to address these challenges.
The strategies are based on “Next Conversation
Prediction” (NCP) with the underlying idea of
pretraining a model to identify consecutive con-
versations. We further introduce “Advanced
NCP” to make the pretraining task more rele-
vant to the downstream task of segmentation
break prediction while being significantly eas-
ier. Finally we introduce a curriculum to Ad-
vanced NCP (Curricular NCP) based on the
similarity between pretraining and downstream
task samples. Curricular NCP applied to a state-
of-the-art model for text segmentation outper-
forms prior results. We also show that our pre-
training strategies make the model robust to
speech recognition errors commonly found in
automatically generated transcripts.

1 Introduction

Text segmentation is the task of identifying seg-
ment breaks to organize a continuous text into se-
mantically independent segments. Prior research in
text segmentation has largely focused on segment-
ing documents such as Wikipedia articles (docu-
ment segmentation) (Lukasik et al., 2020; Zhang
et al., 2019; Badjatiya et al., 2018; Koshorek et al.,
2018) or dialogues such as chat or text messages
(dialogue segmentation) (Hsueh et al., 2006; Ar-
guello and Rosé, 2006; Xia et al., 2022; Xing and
Carenini, 2021). In this paper we address text seg-
mentation of transcripts (transcript segmentation).
Figure 1 shows examples of segments in transcript
data. Transcript segmentation can help summa-
rize long videos, podcasts or meetings by segment-
ing and summarizing the transcript such as “Video

* Work done during internship at Adobe Research.

Figure 1: Transcript Segmentation example from the
SliceCast-Podcast (Midei and Mandic, 2019) dataset. Here
each line indicates start of a new sentence and segment breaks
are noted with “[BREAK]”.

chapters” in YouTube videos or “Outline Genera-
tion” (Zhang et al., 2019) from documents.

However, only few works have addressed seg-
mentation of transcripts (Midei and Mandic, 2019;
Jing et al., 2021; Gruenstein et al., 2008). As shown
in Figure 1, transcripts consist of a mix of short
sentences, utterances, interjections and long form
document style answers. Unlike Wikipedia articles
or chat, the sporadic and non uniform flow of text
in transcripts makes annotation of segment breaks
hard even for humans (Gruenstein et al., 2008).
Furthermore, transcripts often involve Automatic
Speech Recognition errors such as insertions, dele-
tions, replacement and lack of proper punctuation
which add to the challenges. As a result of these
challenges, most labeled transcript segmentation
datasets are small in size making it difficult for
models to be trained on them.

To address this issue, we propose pretraining
strategies that can be useful in resource constrained
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settings where huge labeled datasets are not avail-
able. Our first strategy is Next Conversation Predic-
tion (NCP). In this strategy, pairs of conversations
are classified into 1 or 0 based on whether they
contiguously in the transcript or not. We hypothe-
size that the effectiveness of this pretraining task
relies on its similarity and relevance to the segmen-
tation task. Our second strategy, Advanced Next
Conversation Prediction (Advanced NCP), intro-
duces conditions on the NCP pretraining data to
increase the relevance of the pretraining strategy
to the segmentation task. Our third strategy is Cur-
ricular NCP where we pretrain the model in two
distinct phases based on which pretraining samples
are closest to the task of transcript segmentation.

Our experiments show that the application of the
proposed pretraining strategies on multiple segmen-
tation architectures outperforms their correspond-
ing non pretrained versions. Also, NCP does not
rely on segmentation labels. We show that it is
a strong unsupervised approach that outperforms
state-of-the-art unsupervised model for transcript
segmentation. Finally, we observe that the pretrain-
ing strategies makes the model more robust to noise
and better at predicting highly segmented regions
of a transcript.

Our contributions are:
• Propose a pretraining strategy based on Next

Conversation Prediction for transcript segmen-
tation. We show that it also acts as a strong
unsupervised approach for this task.

• Propose Advanced NCP and Curricular NCP
pretraining strategies based on similarity and
relevance of pretraining samples to segmenta-
tion task.

• Provide a new state-of-the-art in transcript seg-
mentation.

• Evaluate robustness of proposed pretraining
strategies to noisy training data.

• We perform additional analysis to investigate
the errors made by the pretrained models.

2 Related Work

Text segmentation has been addressed in both un-
supervised (Solbiati et al., 2021; Glavaš et al.,
2016) and supervised manner (Midei and Mandic,
2019; Lukasik et al., 2020; Koshorek et al., 2018;
Badjatiya et al., 2018) with early works focus-
ing on unsupervised techniques (Hearst, 1997;
Choi, 2000; Utiyama and Isahara, 2001; Eisenstein,
2009). However, since the definition of a segment,

could be highly domain and data dependant, super-
vised learning is desirable.

Koshorek and Cohen (2017) and Koshorek et al.
(2018) use LSTMs to identify if a sentence ends
a segment or not. Similarly, Li et al. (2018) use
GRUs and pointer-generator networks for this task.
These works in segmentation propose a hierarchi-
cal approach, where the sentences are encoded into
a fixed size representation followed by mapping
the representations to a sequence of binary labels
whether the current segment is ending at this sen-
tence or not. Badjatiya et al. (2018) use attention
based CNN-LSTMs and phrase the task differently
by providing inputs of a median sentence and its
right and left context to identify segment breaks.
Lukasik et al. (2020) simplify the new paradigm
for this task by using the left and right contexts
with respect to an end of a sentence as input. They
were also the first to use large pretrained language
models for this task. They establish a new SOTA
in text segmentation. Hence, we use their model as
the base model in our pretraining experiments.

Very few works have focused on transcript seg-
mentation. Midei and Mandic (2019) provide a pod-
cast dataset for research in this domain and propose
an LSTM and Universal Sentence Encoder (Cer
et al., 2018) based sequence labeling model. Jing
et al. (2021) identify introductions in podcast tran-
scripts using BERT (Devlin et al., 2019). Solbiati
et al. (2021) propose an unsupervised technique for
meeting transcript segmentation. They use large
language model representations including Sentence
BERT (Reimers and Gurevych, 2019) and BERT
to compute cosine similarity between subsequent
conversations and estimate segment breaks. We
present a new pretraining strategy aimed towards
addressing transcript segmentation but not specific
to any one model architecture. Our work is also re-
lated to Curriculum Learning (Bengio et al., 2009).
It has gained popularity among NLP tasks such as
Sentiment Analysis (Cirik et al., 2016) Question
Answering (Sachan and Xing, 2016), NLG (Liu
et al., 2018) and the GLUE benchmark (Xu et al.,
2020). More recently, some works have used cur-
riculum learning in the pretraining process of large
language models. Wang et al. (2020) propose cur-
riculum learning for pretraining the encoder of their
speech translation system on multiple speech based
tasks of varying difficulty. Nagatsuka et al. (2021)
gradually introduce longer samples to BERT’s pre-
training to observe performance improvements in
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Figure 2: Advanced Next Conversation Prediction (NCP) pretraining strategy illustrated with roles of the coefficients in
controlling pretraining task difficulty and similarity to the downstream task.

resource poor settings. In our curriculum learning
setting, we order pretraining samples based on their
similarity to the downstream segmentation task.

3 Text segmentation as a binary
classification task

There are two major ways supervised text segmen-
tation has been addressed in the past. First, by
phrasing it as a sequence labeling problem, where
each sentence has a label indicating if it ends the
segment or not (Midei and Mandic, 2019; Lukasik
et al., 2020; Koshorek et al., 2018). As a result
an entire transcript forms a single training instance
consisting of a sequence of binary labels.

Second, by phrasing text segmentation as a bi-
nary classification task where we provide left con-
text and right context around a sentence end and
predict if the two contexts belong to the same seg-
ment or not. In particular, the input in this task is
two text segments - left context (l) and right context
(r) of the end of a sentence, each T tokens in length.
The output in this task is 0 - if l and r belong to two
different segments (segment break) and 1 if l and r
belong to the same segment (not a segment break).
In this setting, the number of instances is propor-
tional to the number of segments. Lukasik et al.
(2020) note in their experiments that the second
setting outperforms the first on transcript segmen-
tation. We follow the second setting and refer to it
as the segmentation task in the rest of this paper.

4 Curricular Next Conversation
Prediction

In this section, we explain the proposed pretrain-
ing strategy. First, we explain our basic pretrain-
ing strategy - Next Conversation Prediction (NCP).
Then, we present improvements on this strategy

to make the pretraining task easier and more rele-
vant to the transcript segmentation task (Advanced
NCP). Finally, we introduce curriculum learning
to our pretraining strategy (Curricular NCP) that
presents the pretraining instances in an order that
is more helpful for the segmentation task.

4.1 Next Conversation Prediction

Next Conversation Prediction is the backbone of
our proposed pretraining strategies. Large language
models such as BERT have gained recent success
on the segmentation task (Lukasik et al., 2020).
One of the pretraining tasks in BERT is NSP (Next
Sentence Prediction). In NSP, a sentence pair is
provided as input and the model predicts if the
sentences occurred consecutively in their original
corpora. We hypothesize that BERT’s success in
text segmentation might be attributed to the NSP
pretraining’s similarity to the segmentation task.

Motivated by NSP, we propose a pretraining
strategy based on Next Conversation Prediction
(NCP) for the task of transcript segmentation. In
NCP, we address a binary classification task. The
input is a pair of transcript contexts and the output
is a label indicating whether the contexts are adja-
cent or not. Specifically, the input consists of the
left (l) and right (r) contexts of a sentence end (T
tokens each). The output is 1 if the two contexts
are adjacent and 0 otherwise. Note that NCP does
not use any information about segment break labels
and so can potentially be used on transcripts dataset
without segment break annotations.

NCP has two major advantages over NSP. First,
NCP has longer contexts making the model learn
information from a wide range of sentences varying
in content and style. Second, NCP as pretraining
task makes the pretraining step similar to the seg-
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mentation task in terms of the structures of input
and output.

4.2 Advanced Next Conversation Prediction
The predictive difficulty of the negative samples
(label 0) in NCP depends on the distance between
the left and right contexts, l and r, in the transcript.
A greater distance between the contexts makes the
NCP task easier but more different from, and hence
potentially less useful for, the segmentation task.
Similarly, the difficulty of the positive samples (la-
bel 1) depends on how semantically similar the
contexts are to each other. Positive samples with
highly semantically similar contexts will be easy
to identify. To control the difficulty of the NCP
samples, we introduce the following conditions on
the positive and negative samples of the pretraining
data respectively.

Sim(l, r) ≥ s for label 1 (1)

Dist(l, r) = d for label 0 (2)

where Sim() is a semantic similarity function 1

quantifying similarity between l and r, and s is
the similarity coefficient. Dist() is the distance
between l and r in terms of number of sentences
between them and d is the distance coefficient. Fig-
ure 2 illustrates the Advanced NCP.

In vanilla NCP, by default, the distance between
non consecutive contexts is greater than 1 and there
is no semantic similarity filter (s = 0). Increasing s
will make the pretraining task easier as the positive
samples (label 1) have the additional constraint of
being semantically similar. However, increasing s
too much can filter out too much pretraining data.
Similarly, decreasing d will make the task harder
but more relevant to the segmentation task.

4.3 Curricular Next Conversation Prediction
Curriculum learning (Bengio et al., 2009) proposes
that models observing training samples in an in-
creasing order of difficulty have an advantage over
models observing samples in an otherwise random
order. Motivated by this, we introduce a curricu-
lum to Advanced NCP pretraining. The pretrain-
ing samples from Advanced NCP are divided into
two distinct sets - “similar” to downstream task (or
“harder” since, in general, segmentation is a harder
task than NCP) and “dissimilar” to the segmen-
tation task (or “easier”). In order to estimate the

1We use Sentence BERT (Reimers and Gurevych, 2019)
to compute representations of l and r, followed by cosine
similarity for Sim()

similarity or dissimilarity of the NCP pretraining
samples to the segmentation task, we use a clas-
sification model trained for the segmentation task
and use it to predict labels for the pretraining in-
stances. We refer to this as the “Auxiliary model”
and classify a pretraining sample as “similar” if
the Auxiliary model correctly predicts its label and
vice versa. In the spirit of curriculum learning, we
divide the pretraining into two steps. First training
on the “dissimilar” or “easy” (from the perspective
of segmentation) samples followed by the “simi-
lar” or “hard” samples. This order makes sure that
the model has smoother transition between the two
tasks that are semantically close but different. Fig-
ure 6 illustrates the Curricular NCP process. Table
4 shows examples of Dissimilar NCP and Similar
NCP from the SliceCast-Podcast dataset. All the
examples are labeled 0 in their respective tasks.

While the Auxiliary Model can be any classifica-
tion model trained on the segmentation task dataset,
we use a model that is additionally pretrained on
Advanced NCP data. The Auxiliary model is tested
on Advanced NCP samples. While these samples
were used during the pretraining of the Auxiliary
model, after finetuning on the segmentation task
model might not predict the same labels it observed
during the pretraining. In our experiments with
the SliceCast-Podcast dataset (described in Sec-
tion 5.1) we indeed observe that 64.4% samples
are miss-classified (hence, “dissimilar”) and 35.6%
are correctly classified (hence, “similar”).

5 Experimental details

In this section, we describe the dataset, the base
model upon which our pretraining is tested, the
implementational details, metrics and baselines.

5.1 Dataset

We use the SliceCast-Podcast (Midei and Mandic,
2019) dataset for our experiments. This dataset
has 46 podcast transcripts and a total of 643 seg-
ments. On average, each transcript has 12.4 seg-
ments, though there could be high variation in num-
ber of segments as the standard deviation is 4.1.
We consider 416 segments for training and 181 seg-
ments for testing purposes. While creating training
data for the pretraining and the segmentation task,
positive and negative samples are sampled equally.
For this, in the segmentation task we randomly
down sample samples labeled 1. Figure 1 shows
examples of segment breaks from this dataset.
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5.2 Base Binary Classification Model

We use BERT as the base classification model in
the Auxiliary model. Across all classification tasks
- Advanced NCP, Curricular NCP and the Segmen-
tation task, the input is provided by concatenating
l and r contexts with the token “[SEP]”. Hence
the input is “ l [SEP] r ”. T , the maximum input
size of l and r individually is 1502. The output is
taken from the first position (“[CLS]”) and a binary
cross entropy layer is attached to enable binary
classification.

Lukasik et al. (2020) propose Cross Segment
BERT, for the transcript segmentation task. We
use this as the base segmentation model for tran-
script segmentation after finetuning it on the data
described in Section 5.1.

5.3 Coefficient details for Advanced NCP

The two coefficients explained in Section 4.2 con-
trol difficulty of the Advanced NCP task and hence
its relevance to the pretraining task. We experi-
mented with various values of s and d in the Ad-
vanced NCP task. Following which, we measure
performance of the these pretrained models (with
different values of s and d) on a balanced Advanced
NCP test data. The accuracy results are reported in
Fig. 3a. A darker shade of green indicates better
performance. As we can see, in general, Advanced
NCP performance (accuracy) increases as the coef-
ficients increase, making the positive and negative
samples easier to identify. However, large values of
s results in filtering out too many positive samples
and hence the size of the training dataset leading to
a decreasing in performance.

The aforementioned Advanced NCP pretrained
models are then fine-tuned on the segmentation
task. All the models are finetuned on the dataset
described in Section 5.1. For model comparison
we use the F1 of the the segment break class (0) on
a held out set of containing 61 segments. Results
of the finetuned models are illustrated in Figure
3b. Comparing Figures 3a and 3b we can observe
that while a low performance on the Advanced
NCP task also corresponds to a low performance
on the segmentation task, the converse is not true.
At high coefficient values, especially the distance
coefficient d, the pretraining task is too distinct
from the segmentation task leading to low efficacy
of the pretraining strategy.

2Original Cross Segment BERT (Lukasik et al., 2020) used
125 in most of their experiments. We follow a similar setting

Models F1 (↑) Pk (↓) WDiff (↓)
S-BERT 4.1 50.5 65.1
CSB 17.5 42.5 37.3
Adv. NCP + CSB 22.1** 37.2** 36.2**
Curr. NCP + CSB 22.6* 35.6** 37.5**

Table 1: Evaluation results for S-BERT (Solbiati et al., 2021),
CSB (Lukasik et al., 2020) and CSB pretrained with the pro-
posed strategies. WDiff refers to WindowDiff. Pretrained
models significantly outperform CSB in all metrics. Introduc-
tion of curriculum to Advanced NCP also shows improvement.
∗ and ∗∗ denote the difference is significant with p < 0.03
and p < 0.06 via t-test.

Models F1-0 (↑) Pk (↓) WDiff (↓)
Hier. 19.9 39.2 37.1
Adv. NCP + Hier. 20.6 38.5 36.2
Curr. NCP + Hier. 20.3 37.4 36.6

Table 2: Performance of the Hierarchical (Hier.)
model (Lukasik et al., 2020) before and after pretraining with
Advanced NCP (Adv. NCP + Hier.) and Curricular NCP
(Curr. NCP + Hier.). Application of pretraining on Hierarchi-
cal shows improvement.

Using these two figures, we find the ideal coeffi-
cients such that the Advanced NCP strategy is suf-
ficiently easy but relevant to the downstream task
concurrently. We choose d = 200 and s = 0.7.

5.4 Metrics

In line with previous works (Midei and Mandic,
2019; Lukasik et al., 2020; Solbiati et al., 2021),
we use F1 score and Pk score (Beeferman et al.,
1999) for evaluating text segmentation models. The
scores are calculated by using the model to predict
existence of segment break after each sentence end
in the test set and then comparing ground truth
segment break predictions and predicted segment
breaks. F1 score of the label 0 is considered. This
score is a strict measure as it rewards the model
only if the predicted segment breaks and ground
truth segment breaks exactly align. Pk score is less
harsh. Pk score is calculated by using a sliding
window such that predicted segment breaks near
ground truth are penalised less than predictions that
are far away3. One criticism of the Pk score is that
it favours models that make fewer segment break
predictions. To address this Pevzner and Hearst
(2002) proposed WindowDiff to account for the
number of segment break predictions as well. For
WindowDiff and Pk, we consider size of sliding
window to be half of the average segment length
in number of sentences, as is the standard practice.

3we encourage the reader to look at assemblyai.com
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(a) Advanced NCP task performance in Accuracy. A higher
number implies low task difficulty.

(b) Segmentation task performance in F1 score of the 0 label
across different Advanced NCP pretraining.

Figure 3: Performance of Advanced NCP pretraining and Segmentation task with varying coefficients d and s. As we can
observe higher pretraining task performance does not necessarily imply higher downstream task performance.

Figure 4: Performance with respect to change in transcription
errors (WER). x-axis is represents different WER rates and y-
axis represents the F1 scores. Proposed pretraining strategies
makes the CSB model more robust to transcription errors.

For both Pk and WindowDiff, lower scores indicate
better performance.

5.5 Baselines

S-BERT We compare the supervised techniques
(pretrained and non pretrained) against this Sen-
tence BERT based unsupervised transcript segmen-
tation baseline (Solbiati et al., 2021) to show the
motivation for this task to be addressed in a super-
vised setting.
Cross Segment BERT (CSB) This is a BERT
model for the segmentation task without any pro-
posed pretraining. The model is based on Lukasik
et al. (2020), originally proposed for document seg-
mentation where left and right contexts are concate-
nated with a separator and provided to the BERT
model for binary classification. CSB formed a state-
of-the-art in text segmentation. Hence, we apply
our pretraining strategies on this model.

6 Results and Discussions

6.1 Pretraining on Cross Segment BERT

Table 1 presents the results of application of the
proposed pretraining strategies - Advanced NCP
and Curricular NCP on CSB (Advanced NCP +
CSB and Curricular NCP + CSB respectively). We

also compare with S-BERT, the unsupervised base-
line.
Challenges of an unsupervised setting The unsu-
pervised baseline, S-BERT, vastly underperforms
all other models (supervised) on all metrics (row 1
and other rows). This is because the definition of
a segment could be data and domain specific. In
such a case, deriving its interpretation from a su-
pervised data becomes imperative. Hence, despite
the difficulty of annotation, supervised approaches
are favoured.
Improvement due to proposed pretraining By
comparing pretrained models with CSB (row 2
and rows 3,4), we see that pretrained models out-
perform across all metrics indicating their effec-
tiveness. We also outperform the transcript seg-
mentation baseline proposed by Midei and Mandic
(2019). However, we do not apply our pretrain-
ing strategy to it since it adopts a sequence labeling
paradigm, and adapting proposed pretraining strate-
gies for such models is left for future work.

By comparing Advanced NCP and Curricular
NCP (row 3 and row 4), we see that proposing
a curriculum to the pretraining leads to better F1
and Pk scores. We give two major reasons for this
improvement - First, our ordering of pretraining
samples in Curricular NCP is relevant to the seg-
mentation task. Prior research in curriculum learn-
ing show such sample orderings are more effective
than arbitrary sample orderings such as sentence
length for sentiment analysis (Rao et al., 2020).
Second, the transcript segmentation data is small
in size and previous works note the efficacy of cur-
riculum learning in resource poor settings (Cirik
et al., 2016; Nagatsuka et al., 2021).

6.2 Pretraining on Sequence Labeling
To further observe efficacy of the proposed pre-
training approaches, we apply them on a sequence
labeling approach. We use a model based on Hier-
archical BERT model from Lukasik et al. (2020)
which is compatible with our pretraining task. In
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this "Hierarchical" baseline- first, the left and the
right context pairs are obtained by taking T = 150
tokens of left and right context around each sen-
tence end. Next, CSB model is used to obtain
representations for context pairs. Hence, each tran-
script is converted to sequence of context pair rep-
resentations. Finally, this sequence of context pair
representations is then input to an LSTM (50 units)
in a one-to-one sequence labelling setting to output
an equally long sequence of 1s and 0s. Similar to
segmentation in the binary classification setting (ex-
plained in Section 3), 0 indicates a segment break
and 1 indicates absence of a segment break. In this
hierarchical baseline, we swap the CSB model with
Advanced NCP + CSB model to obtain Advanced
NCP + Hierarchical model and using a similar pro-
cess we obtain Curricular NCP + Hierarchical.

The performances of all models are reported in
Table 2. By comparing the pretrained models (Ad-
vanced NCP + Hierarchical and Curricular NCP +
Hierarchical) to the model without pretraining (Hi-
erarchical), we observe an improvement. The per-
formance increment between vanilla and pretrained
models, has diminished slightly in this sequence la-
belling setting as compared to CSB as based model
setting. This is possibly because the Hierarchical
model, involves more parameters (LSTM units)
that have not been updated during our pretraining
steps as opposed to the CSB model, where all pa-
rameters were involved in the pretraining. Regard-
less, pretraining leads to an improvement across
all metrics. This is consistent with Table 1, show-
ing that proposed pretraining methods have merits
across the downstream model architecture (CSB or
Hierarchical).

6.3 Utility in an unsupervised setting

To further understand the relationship between the
pretraining and the segmentation task, we do cross
domain testing. Here, we use an NCP pretrained
model (prior to finetuning) to make predictions on
the segmentation test data. Since NCP does not use
any segmentation information, this method is unsu-
pervised in segmentation prediction. We also make
predictions on Curricular NCP pretraining test data
using the segmentation model (“Pretraining Test
Data”).

Results of this experiment are tabulated in Table
3. For the pretraining test data, we use accuracy for
performance comparison. WindowDiff is used for
the segmentation test data. Comparing the perfor-

Models Pretraining Segmentation
Test Data (↑) Test Data (↓)

S-BERT 55.8 65.1
NCP 69.3 61.5
CSB 61.8 37.3
Curr. NCP + CSB 66.4 37.5

Table 3: Results of the cross domain testing experiment. We
report accuracy for the pretraining task and WindowDiff for
the segmentation task. NCP does not use any segment infor-
mation and outperforms S-BERT in segmentation, thereby
forming a strong unsupervised approach.

mances of S-BERT and NCP on the segmentation
task, we observe that NCP outperforms S-BERT.
This shows that the proposed pretraining approx-
imates the segmentation task and gives the neces-
sary domain knowledge to perform well even in
an unsupervised setting. Next we compare the per-
formances of the models trained for segmentation
task (Curricular NCP + CSB and CSB) with the
performance of NCP. We can see that Curr NCP
+CSB and CSB are performing better than NCP on
segmentation task but not on pretraining task. This
shows that is a significant difference between the
two tasks.

6.4 Robustness

Since, automatically generated transcripts tend to
be noisy, in this section we measure the robust-
ness of proposed pretraining strategies to noise
in training data. In this experiment, we synthe-
size noise in the training samples using Easy Data
Augmentation (EDA) (Wei and Zou, 2019). EDA
introduces noise to transcript samples by four op-
erations - synonym replacement, random insertion,
random swap, and random deletion. EDA also
provides a temperature variable to control how in-
tensely these operations are applied. By increasing
the temperature in some of these operations, we
obtain six SliceCast-Podcast variants with increas-
ing WER rates (4.33%, 9.60%, 12.42%, 16.33%,
19.51% and 22.53%) with respect to the original
dataset. Only random insertion, swap, and deletion
are used for introducing noise. Note that the test
data is not changed across these variants. Figure
4 shows the performance (F1) of CSB, and CSB
model pretrained with Advanced and Curricular
NCP.

We observe that the results align with the results
reported in Table 1 i.e. First, Pretrained models
always outperform CSB. Second, Curricular NCP
pretrained model generally outperforms Advanced
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Figure 5: Segmentation break predictions across all sentences of a test transcript, illustrated in the ground truth annotation,
annotation by CSB model and annotation by Curricular NCP pretrained CSB model. The pretrained model is able to catch the
highly segmented area of the transcript.

NCP pretrained model. Furthermore, we observe
a decreasing performance trend in all the models
as WER increases. This is expected behaviour be-
cause as the data becomes more noisy, we loose
valuable clues that reflect start and end of a seg-
ment. However, we observe that the pretrained
models have a lower decrement in performance
as compared to CSB as the WER increases. The
overall performance decrement among CSB, Ad-
vanced NCP + CSB and Curricular NCP + CSB is
−5.7%, −1.7%, −2.4% respectively. This shows
that pretraining introduces robustness in the model.

6.5 Qualitative Analysis
To further analyze the advantages of pretraining,
we visualize the segment break predictions across
all sentences of a transcript from the test set. Figure
5 shows segment break annotations in the ground
truth, and predictions by the CSB model and the
Curricular NSP pretrained CSB model. x-axis rep-
resents the number of sentences and y-axis repre-
sents label predictions. As discussed in Section
4.2, we use the model after each sentence to pre-
dict segment breaks. Looking at the ground truth
annotations, we can see that segment lengths can
vary greatly within a transcript. Some segments are
more dense than others. We can observe that Cur-
ricular NCP helps the model to correctly identify a
region of dense segment breaks. Identifying such
dense regions might require large training data to
correctly understand the dynamics of segment sizes.
In such cases, pretraining of NCP can make up for
less labelled data.

6.6 Error Analysis
We further investigate the kind of errors the models
(with and without pretraining) are making. In gen-
eral, we note both CSB and pretrained CSB tend to
over-predict segment breaks. Their precision and
recall for label 0 are as follows - 14.6 and 22.1 for

CSB and 20.6 and 25.1 for Curricular NCP + CSB.
This is consistent with Figure 5 where we observe
that pretrained model is better at identifying highly
segmented areas.

Next, we manually analyzed the kinds of errors
the models are making. We find that both models
over-rely on certain cues to over-predict segment
breaks. For example, the models, with and without
pretraining, were more likely to predict a segment
break for samples in which the left context ended
in a question but the ground truth data had no such
bias. Similarly, among CSB’s segment break pre-
dictions, 8.29% had “yeah” in the beginning of the
right context, whereas this number is only 6.63%
in the ground truth segment breaks. Pretraining
reduces this over-reliance (the corresponding num-
ber for Curricular NCP + CSB is 6.84%). Tables 5
and 6 provide more information. We leave further
investigations into these errors for future work.

7 Conclusion

In this paper, we propose novel pretraining strate-
gies for transcript segmentation. Our pretraining
strategies address major challenges associated with
transcript data. The pretraining strategies are based
on the idea of next conversation prediction. This
strategy by itself also forms a strong unsupervised
baseline for segmentation. Additional improve-
ments make NCP more relevant and useful to the
segmentation task. We further introduced a curricu-
lum in the pretraining strategies based on similarity
of pretraining samples to the segmentation samples.
Our results showed that our proposed pretraining
strategies are robust to noise in training data and
they are effective for improving performance of
multiple model architectures for segmentation.
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8 Limitations

NCP requires the dataset to be marked with sen-
tence breaks. Segmentation datasets might not have
this annotation. While an off-the-shelf sentence
break identifier model can do this sub-task, this
could introduce some noise to the training dataset.

While we have shown that NCP applies to multi-
ple segmentation task architectures (Hierarchical
and CSB in Tables 1 & 2), it might not be appli-
cable across all segmentation architectures. Since
NCP relies on its similarity to the segmentation
task, pretraining on differently defined segmenta-
tion tasks might not yield benefits without alter-
ations.

A different transcript segmentation dataset might
be significantly different from NCP such that the
pretraining’s benefits taper off. However, it is hard
to comment on this with the currently available
datasets for this task.

We hope that future work explores these con-
cerns and that our work can be a stepping stone in
this exciting direction.

9 Ethical Considerations

We train our model on a publicly available pod-
cast dataset that might contain (potentially harm-
ful) social biases. Furthermore, since this an in-
formal use of language, the text is rife with collo-
quialisms, some of which could be triggering or
sexually explicit. Since, we have not employed any
bias removal methods, model might predict seg-
ment breaks based on spurious correlations such as
usage of specific pronouns or mention of specific
genders. All the trained models are only tested on
English language dataset and might not necessarily
carry well to other languages.
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A Appendix

A.1 Additional information on the Text
Segmentation task

Transcript segments represent a mix of change
in topics, sub-topics and/or nature of discourse.
For example, new segments may start when the
participants change their discussion from Health
domain to Toastmasters or within health from
mammograms to genetics. Other ways segments
may change based on whether the discussion has
changed from a short dialogue style conversation
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Pretraining Example “Disimilar” to Segmentation Task [...] get serious. so i think it’s appropriate that this is the week that we’re going to talk about don’t
just sit there. right. in this episode of the podcast. yes yes. so great.",[SEP] ’tell me a little bit about
how this book came to be. oh, this book was written right after move your dna. like six weeks after.
and i wrote it because mark sisson who is a big paleo icon and has... primal blueprint is his big book.
he wanted me to write, [...]

Pretraining Example “Similar” to Segmentation Task [...] spinner is. only to realize that it’s a thing that everyone else knows except for me. right well you
weren’t on social media all summer so that’s how that got by you.",[SEP] ’maybe but even my kids
didnt́ know what they were and then they went to a birthday party where everyone else had them and
they were like, " we have to have fidget spinners. " [...]

Downstream Task Example [...] so thinking about writing those letters. like there’s the difference in calling, maybe, there’s
something in it for the writer as well. yeah. you encounter yourself in a different way." [SEP] "at
least that’s my experience as a writer. when i am on the page with words in my hand, moving across
a piece of paper, i’m writing to whoever i’m writing to. [...]

Table 4: Examples of “similar” and “dissimilar” samples to the downstream task. The ordering from top to bottom is also the
order we follow for training Curricular NCP.

Figure 6: Proposed Curricular NCP Pretraining illustrated. First the auxiliary model is obtained to rank the pretraining samples
into “similar” and “dissimilar”. Following which the curriculum can be followed.

Models SB Not SB
CSB 5.07 1.38
Curr. NSP + CSB 4.56 1.01
Ground 3.87 3.31

Table 5: Percentage of samples which had a "?" within the last
10 characters of the left context. Here, “Segment Break” (SB)
and “Not Segment Break” (Not SB) implies ground truth in
“Ground” and predictions in case of the models. For example,
5.07% of samples predicted with a segment break for CSB had
left context ending in “?”. Both CSB and Curricular NSP +
CSB tend to over predict segment breaks when the left context
ends with a "?" compared to ground truth, which has no such
bias.

Models SB Not SB
CSB 8.29 0.69
Curr. NSP + CSB 6.84 1.01
Ground 6.63 3.87

Table 6: Percentage of samples which had "yeah" within the
first 5 words of the right context. Here, “Segment Break”
(SB) and “Not Segment Break” (Not SB) implies ground
truth in “Ground” and predictions in case of the models. For
example, 6.84% of samples predicted with a segment break
for the pretrained model had “yeah” within five tokens after
the predicted segment break. While both CSB and Curricular
NSP + CSB make incorrect predictions, the distribution is
more closer to ground truth after pretraining.

to a long answer QA session. The individual seg-
ments are often too verbose and diverse (average
length 206.5 words and standard deviation 500.13)
to be presented unedited. Hence, we gave an idea

of what these segments look like in Figure 1, with
individual sentences of a segment truncated.

A.2 Toolkits
We use NLTK toolkit Link: https:

//www.nltk.org/ for computing WindowD-
iff https://www.nltk.org/_modules/nltk/

metrics/windowdiff.html. NLTK version is
3.6.2.

A.3 Training and Inference Details
Number of parameters:BERT-base has 110 mil-
lion parameters.
GPU Details: We use a NVIDIA GeForce RTX
2080 Ti machine to train and infer all our models.
All experimental results except for Tables 6 and
Tables 5 are reported over a mean of 3 runs.

A.4 Dataset License Details
The dataset we have used SliceCast-Podcasts, Link
- https://github.com/bmmidei/SliceCast#

Small-scale-podcast-dataset was licensed
under the MIT License. Our research is consistent
with the intended use.
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