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Message from the General Chair

Welcome to the 17th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL). This is the flagship European conference dedicated to European and international resear-
chers, covering a broad spectrum of research areas of Computational Linguistics and Natural Language
Processing.

Organizing a scientific conference of the prestige and size of EACL is always a great honor associated
with several challenges. Our team had to tackle unusual complexities: this conference was one of the
first scheduled to be in person after the long period of online conferences forced by COVID pandemic.
The bidding process for a location, which typically takes place several years before the actual start of the
conference, is mainly driven by the aim of expanding and involving the science community of all Euro-
pean countries: EACL selected Kyiv, Ukraine, as the physical location. As you all know, in February
2022, an unpredictable and dramatic event happened, the war between Russian and Ukraine, which made
the organization in Kyiv impossible.

Considering the importance of physical interaction among researchers, especially after the restrictions
imposed by the COVID pandemic, we worked hard with the EACL and ACL boards to find an alter-
native location, able to delight our attendees. Our team achieved this seemingly impossible goal of
organizing a conference in a new location a few months before its start: we selected Dubrovnik, Croatia,
while preserving the original aim of strengthening the connection with the Ukrainian community. In this
respect, the Ukraine local committee will feature a dedicated panel session, “Low-resource languages in
NLP products”, and a workshop to highlight work on Ukrainian language technologies. Following the
latest conference, EACL 2023 will be “hybrid,” serving both virtual and in-person participants. As our
official local chairs are not from the physical location, we needed a local team from Croatia for helping
with the logistics. As a result, the main unexpected novelty of EACL 2023 is to have two local organizing
committees from two different European countries.

In the remainder of this preface, I would like to thank EACL contributors chronologically with respect
to my work timeline for EACL: Roberto Basili and Shuly Wintner, the new and former Presidents of
ACL, along with the EACL board — thanks for having trusted me to manage the organization of the
conference in rather complicated times. I started to be confident that we would have done a good job after
Isabelle Augenstein and Andreas Vlachos accepted the role of PC Chairs. They have performed amazing
work, creating an outstanding program, and also helping me in recruiting our fantastic organization
team. A special thank is due to Preslav Nakov (EACL officer) for his support: thanks to his action, the
proactiveness of David Yarowsky, and the fairless effort of Jennifer Rachford (our new secretary of the
ACL business office), we successfully implemented the apparently unrealistic idea of switching from the
already planned online conference to a hybrid setting with a physical location in Dubrovnik. Regarding
the online side of our hybrid conference, we partnered with Underline (Sol Rosenberg, Damira Mrsic and
Luka Simic), who also gave us support for managing the entire conference. While finalizing the location,
we started to activate the different sections of the conference, for which my acknowledgements are again
in chronological order:

* Ukraine Local Committee, Viktoria Kolomiets, Mariana Romanyshyn, Oleksii Molchanovskyi,
Oles Dobosevych, was instrumental in preserving our initial goal of connecting the Ukraine re-
search community, organizing a panel and a workshop.

* The website chairs, Pepa Atanasova and Julius Cheng, started immediately to design our website,
even when almost no information was available.

* The workshop chairs, Zeerak Talat and Antonio Toral, selected our conferences and led the selec-
tion of workshops for the joint ACL call.



* The tutorial chairs, Sameer Pradhan and Fabio Massimo Zanzotto, together with the ACL chairs,
took care of the tutorial selection for the ACL related conferences.

* The demonstration chairs, Danilo Croce and Luca Soldaini, created a parallel conference program
to select exciting demos.

* The Publicity Chairs, Laura Biester, Leshem Choshen and Joel Tetrault, have been our interface
with the science community through social media platforms.

* The Publication Chairs, Carolina Scarton and Ryan Cotterell, produced high-quality proceedings,
thanks to their competence and experience.

* The diversity and inclusion chairs, Sara Tonelli, Elena Cabrio, Verena Rieser, Spandana Gella,
took care of DI and performed an amazing job, also working on hundreds applications.

* The Local Organising Committee of Croatia, Marko Tadi¢, KreSimir §oj at, and DasSa Farkas, gave
essential help for the logistics, Visa, and student volunteers.

* Student Research Workshop Chairs, Matthias Lindemann, Alban Petit, and Elisa Bassignana, along
with their faculty advisors Valerio Basile and Natalie Schluter, helped in setting the bases for
forming great NLP researchers of the future.

* Qur entire program committee, Senior Area Chairs, Area Chairs, reviewers, and best paper com-
mittee, was essential for obtaining our high-quality scientific program.

* The ACL’s sponsorship director Chris Callison-Burch took care of our sponsorships.
* The student volunteers, as usual, are essential for a successful conference execution.

* Priscilla Rasmussen, our former ACL business office secretary, continued to provide us with useful
advice.

Finally, I would like to thank our sponsors for helping us to fund scholarships and DI initiatives.
Alessandro Moschitti

Amazon Alexa Al, Los Angeles, USA
EACL 2023 General Chair
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ACL Statement on the Ukraine situation

March 11, 2022

The Association for Computational Linguistics (ACL) condemns in the strongest possible terms the ac-
tions of the Russian Federation government in invading the sovereign state of Ukraine and engaging in
war against the Ukrainian people. We stand together with Ukrainian NLP colleagues, the Ukrainian peo-
ple, Russian NLP colleagues and Russian people who condemn the actions of the Russian Federation
government, and all those around the world who have been impacted by the invasion.

As a small token of our solidarity with the Ukrainian people, the ACL has decided to temporarily sever
its ties with Russia-based organizations, while at the same time allowing Russian scientists to remain part
of the ACL community. In practice, this means that the ACL will refrain from accepting any sponsorship
or allowing any exhibits from Russian-headquartered entities at ACL-run events. Russian scholars are
still welcome to participate in ACL events and publish at ACL venues.

The ACL is committed to peace and condemns any form of violence and harassment. We are also com-
mitted to peaceful co-operation, mutual understanding, and tolerance across borders. NLP scholars from

both Ukraine and Russia are welcome to get in touch with the ACL with any concerns.

Tim Baldwin, on behalf of the ACL Executive
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Message from the Program Chairs

Welcome to the 17th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL). After the last edition in 2021 having been held fully online due to the COVID pandemic,
EACL 2023 is being held in “hybrid” mode this year, serving both virtual and in-person participants in
Dubrovnik, Croatia. While the original plan was to hold the conference in Kyiv (which was the plan
originally for EACL 2021), the ongoing war made the organisation in Ukraine impossible. In order to
ensure that the original aim of strengthening the connections with the Ukrainian community is still ser-
ved, our program features a dedicated session and a workshop to highlight work on Ukrainian language
technologies.

Submission and Acceptance

EACL 2023 accepted direct submissions, as well as submissions via ARR. For direct submissions, ab-
stracts were needed to be registered one week prior to the submission date.

In total, EACL 2023 received 1550 submissions, the largest number to date, with the 2021 edition having
received 1400 submissions. Out of those, 1045 were long and 505 were short paper submissions. 81 were
ARR papers that were committed to EACL. 249 submissions were withdrawn throughout the reviewing
process, including before the full paper submission deadline. 55 papers were desk rejected for various
reasons (missing the limitations section, anonymity policy, multiple submission policy, plagiarism or
formatting violations).

By the time we as the programme chairs made acceptance decisions, 1166 submissions were still active in
the system. We kept the acceptance rate in line with previous *ACL conferences, resulting in 281 papers
accepted to the main conference (24.1%), and 201 papers accepted to the Findings of EACL (17.2%),
with the remaining 58.7% being rejected. One paper accepted to the main conference and four papers
accepted to Findings were subsequently withdrawn. Out of the final set of accepted main conference
papers, we invited 178 to be presented orally, and all 281 papers accepted to the main conference to be
presented during in-person sessions, as well as a plenary virtual poster session. The EACL 2023 program
also features six papers from the Transactions of the Association for Computational Linguistics (TACL)
journal, and one from the Computational Linguistics (CL) journal.

Limitations Section

Following EMNLP 2022, we required that each submitted paper must include an explicitly named Li-
mitations section, discussing the limitations of the work. This was to counterbalance the practice of
over-hyping the take-away messages of papers, and to encourage more rigorous and honest scientific
practice. This discussion did not count towards the page limit, and we asked reviewers to not use the
mentioned limitations as reasons to reject the paper, unless there was a really good reason to.

Areas

To ensure a smooth process, the submissions to EACL 2023 were divided into 21 areas. The areas
mostly followed these of previous EACL, and more broadly *ACL conferences, reflecting the typical
divisions in the field. We also had a special area for papers for which both SACs had a conflict of
interest. Those papers were reviewed by the reviewers and ACs in their original areas, but the paper
recommendations were made by a dedicated SAC, who was a senior member of the NLP community.
The most popular areas with over 100 submissions were “Generation and Summarization”, “Language
Resources and Evaluation”, and ‘“Machine Learning in NLP”.
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Best Paper Awards

From the papers submitted to EACL 2023, we selected 25 papers accepted to the main conference as
candidates for a Best Paper award, based on nominations by the reviewers. These papers were assessed
by the Best Paper Award Committee, who also determined the types of paper awards, following the ACL
Conference Awards Policy. The selected best papers and runner-ups will be announced in a dedicated
plenary session for Best Paper Awards on 4 May 2023.

Programme Committee Structure and Reviewing

Similar to prior NLP conferences, we adopted the hierarchical program committee structure, where for
each area we invited 1-2 Senior Area Chairs (SACs), who worked with a team of Area Chairs (ACs), and
a larger team of reviewers. We relied on statistics from prior years to estimate how many SACs, ACs and
reviewers would be needed and ended up with 43 SACs, 118 ACs and 1634 reviewers. For identifying
ACs and reviewers, we used the reviewer lists from prior *ACL conferences, and also encouraged all
EACL 2023 authors to serve as reviewers, using a mandatory form requesting further information on
their ability to serve as ACs, reviewers or emergency reviewers, which authors had to fill in on Softconf
when registering their abstracts. We passed this information on to SACs, who were responsible for
recruiting ACs and reviewers.

Rather than making assignments using a matching algorithm, we asked ACs and reviewers to bid on
registered abstracts within their areas, to achieve a better fit. We went with this solution as the number
of papers per area was relatively small, and we wanted to avoid poor reviewing assignments as much
as possible. We then made an initial paper assignment, in which we ensured that each paper would be
reviewed by at least one reviewer who bidded “yes” for the submission, and by no reviewers who bidded
“no” for the submission.

Afterwards, we asked the SACs to fine-tune the allocations, and ensure each paper had one AC and three
reviewers assigned to it.

To ensure the review quality, we provided detailed guidelines about what reviewers should and shouldn’t
do in a review, based on the EMNLP 2022 guidelines. We also asked reviewers to flag papers for potential
ethical concerns.

For pre-reviewed ARR papers, we asked SACs to not rely mainly on the reviewer scores, but to make their
recommendations based on the text of the reviews, meta-reviews and the papers themselves. For making
acceptance decisions, we mostly followed SAC recommendations, though also taking into account the
overall quality of papers submitted to the conference. Where recommendations seemed overly harsh
or lenient given the reviewers’ scores, reviews, author responses, or discussions amongst reviewers, we
engaged in a dialogue with the respective SACs to make the final decision about the papers in question.

Ethics Committee

We also formed an Ethics Committee (EC) dedicated to ethical issues. The ethics committee considered
21 papers that were flagged by the technical reviewing committee for ethical concerns. Out of these, 10
were conditionally accepted, meaning the ethics issues had to be addressed in the camera-ready version,
to be verified by the EC prior to final acceptance, and the other 11 were accepted as is. The authors of
all conditionally accepted papers submitted the camera-ready version and a short response that explained
how they had made the changes requested by the EC. The EC double-checked these revised submissions
and responses, and confirmed that the ethical concerns had been addressed. As a result, all conditionally
accepted papers were accepted to the main conference or Findings.
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ACL Rolling Review

ACL Rolling Review (ARR) is an initiative of the Association for Computational Linguistics, where the
reviewing and acceptance of papers to publication venues are done in a two-step process: (1) centralized
rolling review and (2) the ability to commit the reviewed papers to be considered for publication by a pu-
blication venue. For EACL 2023, we decided to follow EMNLP 2022’s example and run a process which
is separate from ARR, but also allows for ARR submissions. Specifically, authors could either submit
papers to EACL 2023 directly, or commit ARR reviewed papers by a certain date. We coordinated with
the ARR team to extract the submission, review and meta-review from the OpenReview system, accor-
ding to a submission link that the author provided when committing their ARR submission to EACL.
The ARR commitment deadline was set one month after the direct submission deadline since the ARR
submissions already have their reviews and meta-recommendation. These ARR papers were then ranked
by the SACs together with the direct submissions in the track, and based on the reviews and meta-reviews
from ARR. Overall, EACL had 81 papers committed from ARR, of these 24 were accepted to the main
conference and 20 were accepted to Findings of EACL.

Presentation Mode

We made the decision on which papers would be invited for oral poster presentations based on several
factors: the relative rank of the paper according to SAC recommendation, whether the paper had been
recommended for a best paper award by at least one reviewer, and for TACL and CL papers, the authors’
preference of presentation mode.

Keynotes and Panel

Another highlight of our program are the plenary sessions, for which we scheduled three talks, as well a
panel:

* a keynote talk by Joyce Chai (University of Michigan) on “Language Use in Embodied AlI!

* a keynote talk by Edward Greffenstette (Cohere Al and University College London) on “Going
beyond the benefits of scale by reasoning about data”

* a keynote talk by Kevin Munger (Penn State University) on Chatbots for Good and Evil"

* a panel on “low-resource languages in NLP products” led by Mariana Romanyshyn with Viktoria
Kolomiets (Grammarly), Mariana Romanyshyn (Grammarly), Oleksii Molchanovskyi (Ukrainian
Catholic University) and Oles Dobosevych (Ukrainian Catholic University)

Thank Yous

EACL 2023 is the result of a collaborative effort and a supportive community, and we want to acknow-
ledge the efforts of so many people with whom we worked directly and made significant efforts in putting
together the programme for EACL 2023!

* Our General Chair, Alessandro Moschitti, who led the whole organising team, and helped with
many of the decision processes;

* Qur 43 Senior Area Chairs, who were instrumental in every aspect of the review process, from
recruiting Area Chairs, correcting reviewer assignments, to making paper acceptances;

* Our 118 Area Chairs, who had the role of interacting with the reviewers, leading paper review
discussions, and writing meta-reviews;



* The 1634 reviewers, who provided valuable feedback to the authors; The emergency reviewers,
who provided their support at the last minute to ensure a timely reviewing process;

* Our Best Paper Selection Committee, who selected the best papers and the outstanding papers: Jo-
nathan Kummerfeld (chair), Joakim Nivre, Bonnie Webber, Thamar Solorio and Hanna Hajishirzi;

* Our Ethics Committee, chaired by Zeerak Talat, for their hard work to ensure that all the accepted
papers addressed the ethical issues appropriately, under a very tight schedule;

* Our amazing Publication Chairs, Carolina Scarton and Ryan Cotterell for compiling the procee-
dings in good time for the conference;

* QOur Publicity Chairs, Laura Biester, Leshem Choshen and Joel Tetrault, for their work on managing
the communications on social media platforms;

* Our website chairs, Pepa Atanasova and Julius Cheng for putting together the website for the
conference and keeping it up to date;

* Damira Mrsic from Underline, for her support in developing the virtual conference platform;

* Jennifer Rachford, who has worked tirelessly online and on-site to ensure that EACL 2023 is a
success.

We’re looking forward to a great EACL 2023
Isabelle Augenstein (University of Copenhagen, Denmark)

Andreas Vlachos (University of Cambridge, UK)
EACL 2023 Programme Committee Co-Chairs
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Abstract

This work empirically investigates punctuation
insertions as adversarial attacks on NLP sys-
tems. Data from experiments on three tasks,
five datasets, and six models with four attacks
show that punctuation insertions, when limited
to a few symbols (apostrophes and hyphens),
are a superior attack vector compared to char-
acter insertions due to 1) a lower after-attack
accuracy (Aqf¢—atk) than alphabetical charac-
ter insertions; 2) higher semantic similarity be-
tween the resulting and original texts; and 3)
a resulting text that is easier and faster to read
as assessed with the Test of Word Reading Effi-
ciency (TOWRE)). The tests also indicate that
4) grammar checking does not mitigate punc-
tuation insertions and 5) punctuation insertions
outperform word-level attacks in settings with a
limited number of word synonyms and queries
to the victim’s model. Our findings indicate
that inserting a few punctuation types that re-
sult in easy-to-read samples is a general attack
mechanism. In light of this threat, we assess the
impact of punctuation insertions, potential mit-
igations, the mitigation’s tradeoffs, punctuation
insertion’s worst-case scenarios and summa-
rize our findings in a qualitative casual map, so
that developers can design safer, more secure
systems.

1 Introduction

The goal of an attack is to disrupt a natural language
processing (NLP) model’s classification accuracy.
The motivation behind researching these adversar-
ial attacks is to create a toolbox of methods to attack
systems while also pointing out flaws to improve
the models’ robustness. Previous work on adver-
sarial research showed that deep learning-based
NLP models are sensitive to slight changes in the
input (Ebrahimi et al., 2018) such as character per-
turbations or word substitutions. However, these
attack vectors have three major flaws: 1) letter per-
turbations can be detected by grammar checkers;
2) these attacks may change the meaning or, worse,

1

the human label of the sentence (e.g., ‘she’ to ‘he’
with a character deletion for a gender classification
system (Zang et al., 2020)); 3) they can make a
sample unreadable. Although word-level attacks
that change words to a perturbing synonym make
these perturbations almost invisible to humans, the
cumulative effect of multiple synonym substitu-
tions in a sentence can make the sample harder to
understand. Furthermore, the attack must find per-
turbing word synonyms when attacking samples in
a specific domain, such as biology or law, which
may be challenging if the algorithm uses general
word embeddings with no domain knowledge.

Punctuation insertions, on the other hand, may
be a feasible attack vector that is unaffected by
the limitations of character perturbations/word sub-
stitutions, since it is hard for grammar checkers
to detect punctuation (Section 5.5) while also not
drastically changing the meaning of the sentence
(Sections 5.7, 5.8). Removing punctuation causes
deep learning models to perform worse (Ek et al.,
2020), as punctuation contains critical information
that models require to function correctly (Jones,
1994). Furthermore, punctuation can hold adversar-
ial downstream information (Formento et al., 2021)
that may be exploited by malicious users. Punctua-
tion attacks remain an understudied area: Previous
works on the topic (Hosseini et al., 2017; Eger and
Benz, 2020; Formento et al., 2021) only casually
explored punctuation and ignored whether it can
generalize or show which punctuation symbols are
best suited for intrusion attacks.

Contributions: Through extensive empirical
studies, we have determined that punctuation inser-
tions can outperform, in terms of A, ¢ 4%, alpha-
betical character insertions (as shown in Section
5.1) and, under certain conditions, word substitu-
tion (5.2), allowing for a user-controllable tradeoff
between after-attack accuracy (Ag f1—quk), Sample
quality, and attack time efficiency when used to-
gether in a multi-level attack (5.3). Specifically,

Findings of the Association for Computational Linguistics: EACL 2023, pages 1-34
May 2-6, 2023 ©2023 Association for Computational Linguistics



hyphen (Hy) and apostrophe (Ap) insertions are the
most effective at avoiding straightforward defense
mechanisms (as shown in Sections 5.4, 5.5) while
preserving the original meaning, as evidenced by
achieving 100% semantic similarity in our tests (as
shown in Section 5.7). Additionally, by using the
TOWRE test, we have demonstrated that inserting
only one punctuation type significantly increases
attack readability by increasing reading speeds by
800% compared to character insertions, and 96.8%
compared to using multiple types of punctuation
(as shown in Section 5.8) without compromising
the attack performance (Section 5.9). To aid in
the understanding of our findings, we have also
introduced a casual map in Figure 5.

2 Related Work

Adversarial attacks on NLP systems can be cate-
gorized in terms of the level of granularity of the
perturbation. Character-level attacks (Ebrahimi
etal., 2018; Eger and Benz, 2020; Eger et al., 2019;
Belinkov and Bisk, 2018; Sun et al., 2020; Boucher
et al., 2021) modify individual characters in words
to force the tokenizer to process multiple unrelated
embeddings instead of the original, resulting in de-
creased performance. Word-level attacks (Jin et al.,
2020; Li et al., 2020; Maheshwary et al., 2020) em-
ploy a search algorithm to locate useful perturbing
embeddings (Jin et al., 2020; Li et al., 2020; Ma-
heshwary et al., 2020) or operations (Tan et al.,
2020; Li et al., 2021) that are clustered close to the
candidate attack word’s embedding given a simi-
larity constraint (such as the Universal Sentence
Encoder (Cer et al., 2018)). Multi-level attacks
combine multiple types of perturbations, making
the attack cumulative. Textbugger (Li et al., 2019),
which uses both character-level and word-level at-
tacks, is an example of a multi-level attack.
Although previous research has investigated
character and word-level attacks, few have studied
the use of punctuation attacks. To the best of our
knowledge, only Zéroe (Eger and Benz, 2020), Pre-
spective Atk (Hosseini et al., 2017) and SSTA (For-
mento et al., 2021) have researched punctuation as
an attack vector. While the former two randomly
insert symbols within a word, the third revealed
that symbols contain adversarial information and
can be inserted as padding with little further opti-
mization. Zéroe, in particular, is a benchmark of
ten different character attacks. Out of these ten,
Zgroe Intrude is the only one focusing on punctua-

tion and is thus used as one of the gold standards
in this paper.

Our work builds on these previous works by
further exploring Zéroe Intrude and the concept,
introduced initially in SSTA, that model-specific
symbols can attack binary classifiers when used as
padding. Our work contributes to the discussion on
punctuation symbols being a general mechanism to
attack deep learning models while also improving
readability through the novel use of the TOWRE
metric, which tracks how quickly someone can read
the adversarial text.

3 Methodology

3.1 Overview

Suppose we have a sequence classifier f : X —
Y, that takes an input sequence of words r =
(T1,...,7,) € X with ground truth label y and
outputs a prediction § = f(x). An adversarial at-
tack on input « and classifier f would perturb 7,
for example, using character manipulations or word
substitutions, to produce a new adversarial sample
Z that is misclassified by f such that f(&) # y.

We investigate punctuation and multi-level at-
tacks in gray-box and black-box settings. Specif-
ically, we explore the effects of inserting punctu-
ation when the victim’s model classification logit
is leaked (gray-box) and when it is not (black-
box). We use a variation of DeepWordBug (DWB)
and the original Zéroe Intrude (ZI) attack in these
settings. In addition, we combine punctuation to-
gether with word substitutions in a gray-box set-
ting (multi-level) to evaluate if punctuation can
augment word-level attacks. We provide a more
detailed description of the respective attacks used
in the following sections.

3.2 Attack foundations and baselines

We build upon and compare our results to the fol-
lowing four attack baselines: 1) Zéroe Intrude (ZI),
a simple black-box attack (see Section 3.5 (Eger
and Benz, 2020)); 2) DeepWordBug (DWB), which
uses four-character level perturbations including
delete, swap, insert, and nearby character swap
(Gao et al., 2018); 3) TextFooler, a popular base-
line that uses word synonyms from counterfeited
embeddings to perturb the sample perturbation (Jin
et al., 2020); and 4) SememePSO, a recent method
that uses a seme (e.g., a morpheme) to create a
word substitution together with PSO (Zang et al.,
2020).



3.3 Gray-box punctuation attack

As a representative gray-box punctuation attack,
we implement a variant of DWB through the Tex-
tAttack framework that performs only punctuation
insertions instead of alphabetical insertions, swaps,
deletions, and substitutions. We denote this punc-
tuation variant as DeepWordBugPunc (DWBP).
DWRBP has three main steps:

* Step 1: Determine the essential words with set
Tr = {71...7} for an NLP model f using a
word delete schema, ranking them from high-
est to lowest in terms of output logit change. A
delete schema, popularized by BERT-Attack
(Li et al., 2020), analyzes the logit change
when a word is removed from a sample.

» Step 2: Use user-defined set v (e.g. v ={-'})
and the RPos (Random Position) and RPunc
(Random Punctuation) flags to return a set
of transformations {7} from highest-ranking
word 73, from Step 1.

* Step 3: Search over the attack space by query-
ing the victim’s model with samples modified
with the transformations from Step 2. Keep
the best transformation with regard to the logit
and semantic similarity score. The next word
from 7p is then perturbed. This is repeated
until either f(x) # f(Z) or the algorithm iter-
ates through 7. This process is called Greedy
Search with Word Replacement (GSWR).

In summary, for a sample x, the algorithm identi-
fies the top words in 7. It gradually modifies them
by inserting one punctuation symbol and making
calls to the victim’s model through the GSWR Al-
gorithm 1. Optimizing over 7x results in GSWR be-
ing a time-efficient query alternative to the greedy
search algorithm. It gradually replaces Tx in x with
transformations from Step 2 by calling Algorithm
2.

Algorithm 2 takes a word and decides the loca-
tion and punctuation type to insert with the RPos
and RPunc flags. These two flags, when set to
false, allow the algorithm to explore the entire at-
tack space. This in turn creates many transforma-
tion variations with -y, therefore allowing GSWR to
check the adversarial performance of each symbol
in 7y at each position within the word 7;,. GSWR
keeps the transformation if the change creates a
successful reduction in logit score. After an adver-
sarial candidate Z is found, the semantic similarity

between z and Z with S = Sim(z, %) is calcu-
lated with a deep learning model (Cer et al., 2018).
GSWR will reject all perturbations that miss a se-
mantic similarity threshold, set at 0.8, which en-
sures a good tradeoff between sample quality and
adversarial strength (Li et al., 2019). The algorithm
repeats this procedure until the end condition.

The difference between DWBP and DWB is that
DWB transforms a word with a composition of
transformations (letter substitution, deletion, swap,
or insertion), and all the transformed words are
added to {7 }. Appendix D.1 gives an extended de-
scription for the three steps. We tested all variants
of RPos and RPunc when applicable.

Algorithm 1 7, Transform Function with GSWR
Input: Word ranking 7, Sample z, Symbols
Output: Adversarial sentence &

1: Initialize £ = =
2: for each 7 in 7 do
3: if len(7x) < 2 or 7, = Stop-Word then
4: skip
5: else
6: Transformations Set {7% } = TF~(x(7x), )
7: for 73, in Transformations Set {7% } do
8: T Tk
9: #0340 = f(2)

10: if Perturbation successful then

11: Keep best 7%

12: else

13: Don’t keep change — next word

14: return &

Algorithm 2 Step2: 73, Transform Function 7F
Input: Word 75, Symbols ~, Bool: RPos/RPunc
Output: Adversarial word 75,

1: Transformations = @)
2: if RPos then
3: if RPunc then
4: = RandInt(Start[dz, Endrgz)
5: Transformations < 7%= 7x[: 7] + Yrandom + Tk[i :]
6: else
7. i = RandInt(Startrq., Endraz:)
8: for jin v do
9: Transformations <7 = 7 [: ] + 75 + Tx[i ¢
10: else
11: if RPunc then
12: for i in |Startrsz — Endras| do
13: Transformations <75 = 7x[: %] + Yrandom +
Tk [7, :]
14: else
15: for 7 in |Start1dz — End1d1| do
16: for jin v do
17: Transformations <7k = Tk [: ] + v + e[ :]

18: Return Transformations




3.4 Gray-box multi-level attack

We also evaluated the performance of punctuation
insertions when used in conjunction with word-
level attacks. To conduct this assessment, we em-
ployed two baselines TextFooler and SememePSO.

* TextFooler/DWBP: This variant uses the same
word scoring function and the GSWR search
algorithm. However, 7, will be a mix of word
synonym and punctuation insertion transfor-
mations of 7y,.

* SememePSO/DWBP: This variant uses the
same word scoring function but with particle
swarm optimization (PSO) as a search tech-
nique. PSO uses a population-based evolu-
tionary algorithm that exploits the interactions
between individuals in a population to find a
solution in a search space. 73 will be a mix
of sememes (a type of word substitution) and
punctuation insertion transformations of 7.

See Section D.5 in the Appendix for details on
TextFooler/DWBP and SememePSO/DWBP.

3.5 Black-box punctuation attack

As a representative black-box attack, we imple-
ment a variant of the ZI algorithm instead of DWB,
as the latter requires access to logits that are ab-
sent in this setting. ZI is a simple black-box at-
tack that randomly perturbs a word in a sample
with probability p. It then adds a random symbol
from this list—!"#$%&’ () x+,-./:;<=>7@[\ " {1} —
between two letters with the same probability p,
which we define as baseline ZI. In our variant, ZI
perturbs a word with probability p (defined as ZIP)
but uses the same predefined symbol.

4 Experimental Setup

4.1 Backbone models and tasks

We evaluated the BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019), DistilBERT (Sanh et al., 2020) models on
classification (MR), entailment (MNLI, SNLI), and
question answering (ONLI, QQP) tasks. We also
used a CNN and LSTM for MR (details are provided
in Appendix C).

4.2 Evaluation metrics

We use the evaluation framework previously pro-
posed in (Morris et al., 2020), where an evalu-
ation set is perturbed and out of the Total At-

tacked Samples (T'AS) set the Number of Suc-
cessful Attacks (Ngyce—atk), Number of Failed At-
tacks (N fqi1—atx) and Number of Skipped Attacks
(Nskp—atk) are recorded. After attack accuracy
(Aaft—atk = %ﬁs‘“k ), the most important met-
ric, represents how well the attacker can fool the
model across a dataset. Lower values of A, ¢—qtk
indicate that the attacker can fool the model better.
After success rate (Agyce—rte = TXE#% ),
is similar to A, ;4 but ignores previously mis-
classified samples. Percentage of perturbed words
refers to the percentage of words the algorithm
perturbs out of the number of words in the sample.
This metric should be as low as possible, as perturb-
ing more words makes the sample’s perturbation
more detectable. Semantic similarity (Jin et al.,
2020; Maheshwary et al., 2020) is an automatic
similarity index that describes the visual difference
between two samples using a deep learning model.
In this case, the Universal Sentence Encoder (Cer
et al., 2018) is used, along with a cosine similarity
measure between the output embeddings. A value
of 1 indicates that the two inputs are semantically
equivalent, while O represents no similarity. Aver-
age number of queries represents the number of
times the algorithm must invoke the model to per-
form inference. This metric should be kept low to
avoid detection.

4.3 Human evaluation

To evaluate the quality of adversarial samples, we
conducted four human studies. The first three are
the same tests used in TextFooler (Jin et al., 2020),
and Hard-Label (Maheshwary et al., 2020). These
tests analyzed the adversarial sample for 1) gram-
matical correctness, where reviewers rate the gram-
matical correctness of the original and adversarial
samples on a scale from 1-5, where 1: many gram-
matical mistakes and 5: no grammatical mistakes;
2) reviewer classification accuracy, where review-
ers predict the label of each sample; and 3) simi-
larity, where reviewers rate if the two samples are
similar (1), dissimilar (0), or ambiguous (0.5); 4)
readability, where the novel application of TOWRE
(Tarar et al., 2015) was used to analyze the quality
of adversarial words in character-level black-box at-
tacks. TOWRE is a widely used test that measures
an individual’s reading accuracy and speed. We
adapted TOWRE to record the quality of adversar-
ial examples. Specifically, the reviewer pronounces
a list of words, where each word was modified with



one out of four different perturbation types intro-
duced with the ZI algorithm. We record the words
per minute (WPM) and error rates. All tests had
two reviewers who reviewed 100 samples in the
first three tests and 36 in the fourth. Agreement
between the reviewers was assessed with Krippen-
dorff’s alpha, where a score of 1 indicates complete
agreement and -1 indicates complete disagreement.
Further implementation details on the human test-
ing method and details on Krippendorff’s alpha are
in Appendix F.

4.4 Defense Baselines

We evaluate fine-tuning and adversarial training
as baseline defenses. In detail, it is possible to
remove all punctuation during training, fine-tune
the model for further epochs on this new punctua-
tionless dataset, and at inference, always strip all
punctuation (Table 18). We also experimented with
adversarial training (Table 15 in Section 5.6) by us-
ing a standard technique (Morris et al., 2020) that
is further described in Appendix E.3.

5 Experiments

We use the methodology in Section 3 and experi-
mental setup to explore how punctuation insertions
compare to character manipulations (Section 5.1).
In Section 5.4, 5.5 and 5.6 we demonstrate how
straightforward defence techniques fail and suc-
ceed and Sections 5.7, 5.8, and 5.9 highlight the
advantages of punctuation insertions where no de-
fence technique is present. The ~ choices for each
test are summarized and justified in Appendix E.2.

5.1 Punctuation vs character manipulations

How does an attack change when using punctuation
insertions instead of letter manipulations? Punc-
tuation insertions can degrade NLP model perfor-
mance while preserving semantic similarity. The
system’s Ag fi—q; is overall reduced (see Figure
1) while semantic similarity remains at 0.96—1.00
when using punctuation insertions (DWBP) com-
pared to 0.87-0.90 when using DWB. Each DWBP
box represents the A, f;—q for a dataset across all
models with RPos = False. The lower the A, ¢;—qi
the more perturbing the attack.

Hyphen, apostrophe, full stop, or comma inser-
tions lower A, f;_q:; more than any other letter
in the alphabet (Figure 2). Values in Figure 2 re-
flect the after-attack difference [%] between using
a letter or punctuation type in an intrusion attack.
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Figure 1: Gray box attack performance

Green/positive values represent an improvement
and purple/negative values a decrease between the
punctuation symbol on the x-axis and the letters
on the y-axis when using DWBP. Each attack in
Figure 2 has a constant number of queries, [%] of
perturbed words, and query time. The extended
results are in Appendix L.

Observation This experiment clarifies that if
any internal punctuation is present, the system
is vulnerable and that it is more susceptible to
such insertions than other character manipulations
and alphabet insertions. We limit our reporting to
BERT on MR because other model results are con-
sistent. Full tabular results for other Models and
datasets for Figure 1 are in Appendix I in Tables 6
and 7 (“Without Grammar”). While Figure 2 has
the other model’s results in Appendix L.

MR:BERT-BASE-UNCASED
. 7.4 .

m Ik jihg fedchba

Apostrophe Hyphen Comma

Full Stop

Figure 2: Punctuation vs character insertions. Green in-
dicates positive values; purple indicates negative values

5.2 Punctuation vs word-level attacks

Are there advantages in using punctuation inser-
tions instead of word substitutions? DWBP can
also be compared to TextFooler since, with DWBP,
a punctuation symbol is mapped to an embedding
when using a word piece tokenizer. Figures 3
and 4 each show increasing numbers of unique
punctuation symbols from v (DWBP) or synonyms
per word (TextFooler), ranging from 1 to 10. For



DWBP, vissetto. for N =1,. for N =2, up
to .-"[,]J(:) for N = 10. In TextFooler, N repre-
sents the number of synonyms per word. Figure 3
displays the relationship between N (represented
by the points and the x-axis) and improvement in
Aguce—rte (y-axis). Figure 4 displays the relation-
ship between NN (represented by the points), num-
ber of queries (x-axis), and the effect on A ¢ qi;
(y-axis). Both experiments used all variations of
RPunc/RPos on BERT-MR.

Observation The effectiveness of punctuation
insertions is demonstrated DWBP when con-
strained on N and queries, as seen by the higher
Asuce—rte With low N in Figure 3 and the low
Aqfi—atk With few queries in Figure 4. Similar
results for MNLI can be found in Appendix H.
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Figure 3: Punctuation embedding efficiency.

70 »\ -p-- TextFooler
o N -@- DWBP RPos=T/RPunc=F
E 60 [ 3 —#- DWBP RPos=F/RPunc=F
@) AN —#— DWBP RPos=T/RPunc=T
g 50 ™. ~#- DWBP RPos=F/RPunc=T

>

~ 40 >
2 »
s 30 5
[
& 20

10

N
o

30 40 50 60 70 80 90
Queries

Figure 4: Punctuation query efficiency.

5.3 Punctuation as a multi-level attack

We investigate a composite experiment where 7y,
is composed of word substitutions and punctuation
insertions. The methodology is introduced in Sec-
tion 3.4 and the details are given in Appendix D.5.
We set RPunc = False, RPos = False, and v = -’.
Observation: The results in Table 1 indicate
that incorporating punctuation insertions into the
optimization process enhances TextFooler and Se-
memePSO on BERT trained on MR. The additional
findings in Section G.1 of the appendix present re-

sults for all tasks and models, and provide further
observations.

Model Method After Attack  Perturbed Semantic Avg Time Avg Number
(Orig Acc) Acc[%]  Words[%]  Sim  Taken[s]  Queries
DWBP 74 1832 1 0.721 747
BERT TextFooler 94 1754 082 13072 1185
MR 35 TextFooler/DWBP 7.6 1831 0.89 1122 105.35
. SememePSO 7 16.52 081 16,1811 795071
SememePSO/DWBP 6 999 0.89 7.3252 988.44

Dataset

Table 1: Multi-level DWBP. Full results in Appendix J

5.4 Removing punctuation as a defense

How does removing punctuation perform as a de-
fense? In this section, we sought to evaluate the ef-
fectiveness of simple defenses in countering punc-
tuation attacks by examining the impact of vari-
ous forms of punctuation removal on attack perfor-
mance. To aid in this assessment, we employed the
use of a casual map in Figure 5, which allows for
tracking of the defender’s behavior in response to
the attacker’s changing strategy.

The casual map, presented in the blue quadrant,
begins with the "Base Model" on the right-hand
side, representing the unchanged finetuned model
from Hugging Face, in this instance, specifically
BERT finetuned on MR. Adjacent to this model is
a large red table, which represents the significant
performance drop when utilizing punctuation in-
sertions. For the sake of simplicity, in this map,
we limited ourselves to the use of full stops (FS),
commas (Co), which are common external punc-
tuation types, and apostrophes (Ap) and hyphens
(Hy), which are common internal punctuation types.
Given this threat, we identified and explored three
options for the defender to take. Beneath the "Base
Model," the first option is to remove all punctua-
tion ("All"), which secures the system but leads
to an original performance drop of -2.6%. The
second option, just beneath "All" is to remove all
punctuation found inside of words. While this ap-
proach solves the problem, it becomes challenging
to identify if a punctuation was inserted by mistake
by a user or to prevent the attacker from insert-
ing a whitespace before or after the punctuation
insertion. If the attacker adds a whitespace, the
attack defaults to the large red table. Furthermore,
removing all internal punctuation has a noticeable
original performance drop of -1.2%. An alterna-
tive to this is to remove all internal punctuation
but make an exception for Hy and Ap, reducing
the original performance drop to 0%, however, the
system remains vulnerable to Ap and Hy. Given
the persistent vulnerability to Ap and Hy, the de-
fender may employ a grammar checker to reject all



samples that do not meet a certain grammatical cor-
rectness level. When implemented, the robustness
of the model increases dramatically, resulting in a
semi-secure model.

The blue quadrant also shows "Finetune with
punctuation." This base model was further trained
and then compared to further training the model
when all the punctuation is removed (See "All +
Finetune"). As previously highlighted, removing
all punctuation can secure the system, the reduced
performance drop of -0.6% now indicates that this
approach has less of a trade-off between securing
the system and original accuracy drop.

In addition, we also explored adversarial training.
We discuss the findings of this quadrant in Section
5.6 and it’s experimental setup in Section E.3 in
the Appendix.

Observation Using a grammar checker in-
creases the robustness of this task. However, as
pointed out in the next section in Figure 6, the red
candlesticks representing DWBP have a large at-
tack variance depending on the dataset, symbol
used, and model. Hence, for a task that results in
a semi-secure model, another task may result in a
semi-broken model. This reasoning also applies to
black box punctuation attacks with ZIP, as pointed
out by the large variance in the red candlesticks in
Figure 7. Another aspect to consider is the original
accuracy drop in performance experienced in the
yellow boxes. Depending on the application, this
may be acceptable/negligible or unacceptable/too
high.

5.5 Grammar checkers as a defense

If a grammar checker preprocesses an input, how
does the attack performance change? Another com-
mon idea is that character-level attacks are easy
to defend against using a grammar checker (Zang
et al., 2020). Although adding a grammar checker
before processing the input lowers the effectiveness
of the attack, punctuation is nonetheless a success-
ful insertion technique with RPos = False, partic-
ularly when compared to DWB (Figure 6). Punc-
tuation insertions are also effective in black-box
settings (ZIP) and are as competitive as alphabet-
ical character manipulations in gray-box settings
(DWB) (Figure 7). The high variance of ZIP means
that inserting some symbols can lower performance
comparably, if not more than any character manipu-
lation technique introduced in DWB. For example,
ZIP Ap achieves a 7.8% lower A, ;a1 than DWB.

The full results can be found in Appendix I (col-
umn "With Grammar" in Tables 6 and 7, and the
performance of ZIP in Table 10).

Observation DWBP is more successful with the
attack, except on the [%] of perturbed words. These
results show a curious property of punctuation at-
tacks by highlighting that the [%] of perturbed
words is not necessarily aligned with semantic sim-
ilarity. Therefore, it is possible to have a highly
perturbed sample (in terms of [%] of perturbed
words) that is nonetheless readable and potentially
preserves the original information.

5.6 Adversarial training as a defense

How does adversarial training benefit learning?
In this section, we aimed to robustify the model
by experimenting with adversarial training on the
MR dataset. To test this, we employed the use of
the DWBP with hyphens and apostrophes (Hy and
Ap). Our findings suggest that adversarial training
for language models improves A, f;—q¢i. Specif-
ically, A, f¢—qtr increased by 7.4% with Hy and
6.4% with Ap on BERT, as shown in Figure 5.
This is demonstrated in the "Adv Training" quad-
rant, where this model was further finetuned for 4
epochs on the base dataset, while the models be-
neath it were trained for 4 epochs where the base
dataset was extended by 20% with adversarial sam-
ples containing either apostrophes or hyphens. The
effects of adversarial training were minimal, but did
result in an improvement to the model not undergo-
ing any adversarial training. This can be observed
by comparing the values in the Broken model to
the left of "Adv Training" and to the Broken mod-
els that have been adversarially trained beneath
"Adv Training". On LSTM, A ;4 increased by
2.4% with Hy and 1.6% with Ap, with negligible
drops/increases in original accuracy, as shown in
Table 15 in the appendix.

Observation Our findings are in agreement with
previous works, which highlight that adversarial
training on large language models, such as BERT
or LSTMs, can improve both original and adversar-
ial accuracy (Zhu et al., 2020; Miyato et al., 2017;
Cheng et al., 2019; Yoo and Qi, 2021). However,
other studies suggest that robustness and general-
ization may be at odds with one another (Li et al.,
2021; Eger and Benz, 2020; Meng and Wattenhofer,
2020). Our experiments also indicate that although
adversarial training improves the A, ¢;—q, there
is still a large drop in performance.
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Figure 7: Black-box attacks against grammar checker

5.7 Semantic similarity of punctuation attacks

How similar are samples that have been perturbed
with punctuation to the originals? Earlier tests con-
cluded that removing punctuation is an impractical
defense technique. We now evaluate the pertur-
bation quality. Apostrophe and hyphen insertions
attained a perfect score of 1 for similarity across all
samples (in both human and automatic evaluations),
a 98% on reviewer classification accuracy (nomi-
nal Krippendorff’s alpha = 0.960), and a grammat-
ical correctness score difference of 1.29 between
the original samples (3.14/5) and adversarial sam-

ples (4.43/5), with ordinal Krippendorff’s alphas
of 0.459 and -0.004 for the original and adversar-
ial samples, respectively. We provide qualitative
examples in Table 2 to highlight how the sample
changes with punctuation insertions.

MR A dark comedy that goes for sick and demented
(Negative ~ humor simply to do so . the movie is without
Sentiment) intent

" TextFooler A dark comedy that goes for psychopathic
(Positive and coot humor honestly to do so . the
Sentiment) film is without object .

"DWBP A dark comedy that goes for sickand
(Positive demented humor simply to do so . the movie
Sentiment) is withou’t intent .

Table 2: Qualitative examples of DWBP and TextFooler.
Bold words represent a perturbed word

Observation The grammar test is widely used
(Jin et al., 2020; Maheshwary et al., 2020). How-
ever, the low Krippendorff’s alphas for grammat-
ical correctness suggest the low reliability of the
test in indicating grammatical correctness. Analyz-
ing the visual effect of inserting punctuation makes
it possible to observe that the semantics remained
unchanged. However, such changes are very no-
ticeable to a human (Table 2).

5.8 Limiting punctuation and readability

Does limiting the punctuation types improve read-
ability? Our tests suggest that focusing on a few
types of punctuation facilitate meaning preserva-
tion (Section 5.7). Another reason to limit punctu-
ation insertions is to improve readability. To test
readability, we used TOWRE, where a reviewer
pronounces a list of words with four different per-
turbations in the test using the Zéroe algorithm with
p = 0.8 (high perturbation strength). The four types



are: 1) no perturbation (original); 2) ZIP with apos-
trophe (ZIP Ap), 3) ZI; and 4) character insertions.
Z1 uses all punctuation symbols from Section 3.5
and character insertions uses all alphabetic charac-
ters. Our ZIP Ap method has the fastest reading
speeds. Specifically, Table 4 shows an improve-
ment in WPM from 7 WPM (chracter insertion) to
32 WPM (ZI) to 63 WPM (ZIP Ap), with a ratio
Krippendorff’s alpha of 0.977 and a consistent er-
ror rate reduction from character insertions (71.43)
to ZI (6.17) to ZIP Ap insertions (1.43). In terms
of reading speeds, ZIP Ap is an improvement over
character insertions by 800% and by 96% over Z1.

Observation Compared to character insertions
and ZI, apostrophe insertions by ZIP Ap are easier
and faster to read, as seen with the perfect semantic
similarity, WPM improvement, and error reduction.
We also show, for the first time, that an attacker
cannot use alphabetical character insertions in a
high perturbation black-box setting as the samples
become too scrambled (Table 3).

MNLI
Not only that but they don’t

Premise

Original pay the money either
. They also do not contribute
Hypothesis financially.
Character Thzezy also do not contribute

Insertions Hypothesis fdiunlavnyckiwaulvlwyv.

Zéroe Th]ely also do not contribute

Intrude  TYPOUNESS g aln{e-ifallsy’.
Insertions Hypothesis Th.e.y also do not contribute
(Full Stop) P finan.cially.

Table 3: Qualitative examples of FS Insertions vs ZI vs
Ch. Bold words represent a perturbed word

Method

TOWRE Original zIp Zéroe Character
Ap Intrude  Insertions
Time [s] 24.54 33.60 60.00 60.00
WPM 86.64+9.6 63.35+7.3 32.50+1.5 7.00+0
Errors 0.00+0 0.50+0.5 2.00+0 5.00+1
Error Rate [%] 0.00+0 143+14  6.17+£02 71.43+14.3
Self-Corrections 1.00+0 0.50+0 1.50+0 0.50+0.5
Self-Correction Rate [%] ~ 2.86+0 143+£14 45513 7.1447.1

Table 4: Reading efficiency for the four perturbations

5.9 Limiting punctuation types

Is the attack still effective when using a limited
punctuation set? Despite limiting the types of punc-
tuation, ZIP performs similarly to ZI and better
than character insertions (Figure 8). The test in Fig-
ure 8 explores the ability of ZIP with Ap (apostro-
phe), Hy (hyphen), Co (comma), and FS (full stop)
insertions to generalize to black-box attacks. We
compare these ZIP intrusions to ZI with all punctu-
ation types and character insertions (Ch) with all al-
phabet letters using the ZI algorithm on MR-BERT.

Figure 8 shows the delta change in A ;g for
each attack technique against the others for p = 0.8.
Each square represents the A, ;g from the x-
axis attack method minus the A, p;—q from the
y-axis attack method. Table 14 in the Appendix
displays the A, ¢ a1 [%] and semantic similarity
(S) values for Figure 8. Limiting punctuation with
ZIP also avoids grammar checking better than us-
ing all punctuation types with ZI (Figure 7) as ZIP
can focus on one highly perturbing symbol.
Observation ZIP Ap achieved comparable re-
sults to that of Ch and ZI (Figure 8) where the dif-
ference is even smaller when comparing with other
models. Using character insertions can thus be
deemed counterproductive and should be avoided.
Attacks should instead focus on only one punctua-
tion type, such as Ap, since, compared to Ch and ZI
as Section 5.8 highlighted, readability is preserved.

17.5
13.0
-8.5

-4.0
-0.0

P =10.8
Ap Hy Co FS dl Ch

-2.2 B3.8

-—4.5

pdl 6.4 --9.0
-13.5
Ch I—IS.O
Figure 8: X-Axis Aqft—aur minus Y-Axis Aqfi—atk-
ZIP (Ap, Hy, Co, Fs) vs ZI, Ch

6 Conclusion

Researching adversarial attacks aims to create a
toolbox to identify flaws and improve model ro-
bustness. Results show that punctuation insertions
as an attack are more effective than character ma-
nipulations (Figure 1) and alphabetical character
insertions (Figure 2) and better evade grammar
checkers (Figures 6, 7). Punctuation insertions
preserve more information and are faster to read
(Section 5.7, 5.9). Simple defenses and adversarial
training are not necessarily effective (Section 5.4,
5.6). The information-preserving characteristic of
this attack could potentially evade censorship. Con-
versely, this highlights that a system deployed to
combat fake news and offensive language propaga-
tion can potentially be compromised by this use of
punctuation. Our defense findings are summarized
in Figure 5. We hope this inspires further research
in the under-explored area of punctuation and how
to process it. The code is available'.

"Provided at EmpiricalPunctuationInsertionAttacks


https://github.com/Aniloid2/EmpiricalPunctuationInsertionAttacks

7 Limitations

This work considers only classification tasks,
which raises questions on whether such punctu-
ation types can generalize to research tasks such
as fake news, offensive content detection, and seq-
to-seq tasks such as translation. From our experi-
ments, we can conclude that punctuation insertion
attacks (DWBP) with one symbol (apostrophe or
hyphen), given our evaluation metrics work bet-
ter in terms of after-attack accuracy, readability,
and defense avoidance than alphabetical character
insertions. However, We’ve found some limita-
tions and cases where punctuation insertions with
apostrophes or hyphens don’t work better than the
alternative. For example, ZI with all punctuation
symbols can achieve on some datasets and models
a lower after-attack accuracy, therefore, a better
attack success rate Figure8 than using ZIP with an
apostrophe of 3.8%. This increase in performance,
however, has a cost since the sample will be harder
to read. We only tested on English language, punc-
tuation insertions on other languages are mostly
unexplored.
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A Future Work

How punctuation attacks can augment an effective
adversarial learning schema is still an open ques-
tion. Our punctuation insertion serve as a founda-
tion for future punctuation manipulation. Hyphens,
for example, can be used to s-p-e-1-1 out words,
syl-la-bi-fi-ca-tion, or to indicate s-stammering or
s0-so-sobbing in a sentence. There is no research
exploring whether stammering or sobbing punctu-
ation perturbations could generate a high-quality
adversarial attack on NLP without compromising
the meaning.

Exploring whether the identified punctuation
types and attacks generalize to more complex pre-
diction tasks like fake news, offensive content de-
tection, and seq-to-seq tasks such as translation is
an interesting topic for future work.

B Appendix: Ethics Statement

This research was conducted in accordance with
the ACM Code of Ethics.

C Appendix: Task and Datasets

MR: The Rotten Tomatoes movie review dataset
holds a sentiment classification task with pos-
itive/negative reviews. QNLI: Is a question-
answering dataset where an annotator extracts the
answer from a reference text. The task is to allow
the model to predict whether the context sentence
holds the answer to the question. QQP: Is a du-
plicate question detection task, where the model is
required to detect if the two questions are asking the
same thing. SNLI: Is composed of human-written
sentence pairs where each annotator generates an
entailing for each given premise. MNLI: It is simi-
lar to SNLI but covers multiple genres.

Task Dataset Train Test Avg Len Classes
(Test)
Sentiment
Classification 8.5k Ik 187 2
Entailment MNLI 392k 9.8k 29.2 3
SNLI 550k 10k 214 3
Question — \\y 1 josk 54k 376 2
Answering
Duplicate
Question QQP 363k 40k 222 2

Table 5: Overview of datasets used in experiments

D Appendix: Methodology Details

Each attack composition has three components, a
word scoring function, a set of transformation func-
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tions, and a search algorithm.

D.1 Gray-box
D.2 Step 1: Word scoring function

The original DeepWordBug paper introduces four
word scoring functions: Replace-1 Score, Tempo-
ral Head Score, Temporal Tail Score, and Com-
bination Score. All of which are now outdated.
Therefore, for the Gray-Box tests, we use the same
schema as that of TextFooler, popularized by BERT-
Attack (Li et al., 2020). BERT-Attack records
the original sentence’s inference logit. Then for
each word in the input, the word is deleted. BERT-
Attack then extracts a new logit with the remainder
of the sample, tracking the difference in value be-
tween the original logit and the new logit for each
word. It then regards the words with the most sig-
nificant output change as the most important to
f. The original input sentence = with 7,, words is
turned to 2, tokens through a tokenizer function
Fyin z € (21...z1) tokens. To find the set of most
important words, which we call 7 = {71...7%},
that need to be perturbed to attack f, the delete
schema associates a rank value R, for each z,, or
sample z without top word 7;. Rj. Calculate 7
with:

Ry = f(Fi(2))escore = f(Fe(Tanay,, ))escore (1)

where @\, = (71, Tk—1, Tk1, - Tk). There-
after VR, € R each word 7; are ranked highest to
lowest, resulting in 7g, T score represents the output
logit from model f.

D.3 Step 2: Transformation

For every top word in step 1, the second step finds
‘transformation’ candidates.

DeepWordBug returns four total candidates.
The first candidate has a random letter character
inserted in a random position. The second has a
random letter deleted. The third has a random letter
substituted with another, and the fourth changes the
position of two adjacent letters.

DeepWordBugPunc adds punctuation symbols
in the sentence to create candidates. The number
of candidates depends on 7, RPos, and RPunc. 7 is
user-specific and is the punctuation types that can
be inserted. An example is v = { -’ }. With RPos
and RPunc It is possible to choose whether to insert
a Yrandom punctuation symbol at a random location,
or return candidates for all possible punctuation
insertions and position of such insertions.



D.4 Step 3: Optimization

For every word, Algorithm 2 returns a set of trans-
formations. To choose which transformation is best
and whether to keep it, we explore Greedy Search
with Word Replacement (GSWR). GSWR is a time-
efficient query modification applied to the greedy
search algorithm. It replaces with a transformation
only words strongly correlated with a change in the
output when removed from the input. GSWR keeps
the transformation if the change creates a success-
ful perturbation. After an adversarial candidate is
found the semantic similarity is calculated, with a
deep learning model (Cer et al., 2018), between x
and Z with S' = Sim(z, ). GSWR will reject all
perturbations that do not meet a semantic similarity
threshold (set at 0.8).

If |7%| = 1 or the word is part of a predefined
set of stop words, the algorithm does not do the
operation. As the algorithm perturbs top words 7%,
it checks for: if the 7 perturbation was successful at
reducing the logit score, if so, the algorithm keeps
the perturbation with ~y;, we define this new sample
as &. This is repeated until either f(x) # f(Z) or
the algorithm runs out of 7.

D.5 Multi-level extension

We also evaluated the performance of punctuation
insertions when used in conjunction with word-
level attacks. To conduct this assessment, we em-
ployed two baselines: 1) TextFooler, a popular
method that utilizes word synonyms from counter-
feited embeddings to perturb the sample (Jin et al.,
2020); and 2) SememePSO, a recent approach that
employs a sememe (e.g., a morpheme) to create a
word substitution, in conjunction with the use of
PSO (Zang et al., 2020).

D.5.1 Gray-box multi-level attack

We explored two multi-level attacks based on
TextFooler and SememePSO respectively:

* TextFooler/DWBP: This variant uses the same
word scoring function and the GSWR search
algorithm. However, 7, will be a mix of word
synonym and punctuation insertion transfor-
mations of 7y,.

SememePSO/DWBP: This variant uses the
same word scoring function but with particle
swarm optimization (PSO) as a search tech-
nique. PSO uses a population-based evolu-
tionary algorithm that exploits the interactions
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between individuals in a population to find a
solution in a search space. 73, will be a mix
of sememes (a type of word substitution) and
punctuation insertion transformations of 7.

We performed multi-level attacks to explore
their effect on deep learning models. The
TextFooler/DWBP and SememePSO/DWBP meth-
ods result in {7}} having both word substitu-
tions and punctuation insertion candidates. For
TextFooler/DWBP, TextFooler returns 20-word sub-
stitutions, and since RPunc and RPos are both false,
DWBP returns K transformations. K is propor-
tionate to the number of letters in the word and the
length of ~y. In our tests, v = {-’}. Appendix D.5
gives an extended description for the two multi-
level attacks and the TextFooler/SememePSO base-
lines.

To be clear, although we change SememePSO
in the SememePSO/DWBP test and TextFooler
in the TextFooler/DWBP, we compare Se-
memePSO/DWBP and TextFooler/DWBP to their
unaltered baselines.

D.5.2 TextFooler

Where Line 6 returns only TextFooler’s word syn-
onym substitutions. For 7, the algorithm will
return 50-word substitutions. This baseline uses
GSWR.

D.5.3 TextFooler/DWBP

Line 6 in Algorithm 2 is changed to both call
TextFooler’s word substitution and DeepWordBug-
Punc’s punctuation insertion functionality and con-
catenating the resulting transformations in Transfor-
mation Set 7. For TextFooler/DWBP, TextFooler
returns 20-word substitutions, and since RPunc
and RPos are both False, DWBP returns N num-
ber of transformations. N is proportionate to
the number of letters in the word and the length
of v. In our Tests v = { * - }. This base-
line uses GSWR. Hyperparameter-wise, we reduce
TextFooler/DeepWordBugPunc word embeddings
for TextFooler from 50 to 20 on all tasks.

D.5.4 SememePSO

uses word substitutions based on sememes together
with a different search algorithm based on particle
swarm optimization (PSO). We use an existing im-
plementation of SememePSO from the TextAttack
library. PSO exploits a swarm composed of indi-
vidual samples called particles that interact within
a space to find a solution iteratively. Every particle,



which in the case of SememePSO is a sample with
a sememe word substitution, has a position in the
search space and a velocity. Multiple samples with
a sememe word substitution form a swarm. Each
particle in the swarm is initialized with a random
velocity and position. PSO, after that, records for
each particle its own best position in the search
space and a global best position. This best position
is calculated using an optimization score, which
is the victim’s output logit for a classification task.
If one of the samples achieves the desired opti-
mization score, the algorithm is terminated since
this sample can attack the model. Otherwise, each
particle has its position and velocity updated with
values from the individual best position, global best
position, the inertia weight, two acceleration coeffi-
cients, and two random coefficients. The PSO com-
ponents would replace lines 10-13 in Algorithm
2.

D.5.5 SememePSO/DWBP

uses both sememe word substitutions and punc-
tuation insertions to construct {7} and uses
PSO to find the best substitution out of this set.
Hyperparameter-wise for SememePSO/DWBP, the
attack is changed by reducing the SememePSO
population size from 60 to 5 (MR, QNLI) to 2
(MNLI, SNLI, and QQP) and reducing the number
of iterations from 20 to 2 for all tasks.

E Appendix: Implementation Details

E.1 Attack detail

All tests were carried out with the TextAttack (Mor-
ris et al., 2020) framework to ensure repeatability,
standardization, and ease of future integration. The
DeepWordBug baseline, for fairness comparison,
has a cosine semantic similarity constraint set to
0.8 with (Cer et al., 2018) to ensure the perturbed
sample does not differ too much from the origi-
nal sample and is comparable to other baselines.
For TextFooler, SememePSO we keep the default
implementation from TextAttack when comparing
them with DWBP in Table 1, Tables in Appendix J
and Figure 4,3.

For each sample, we keep the After attack ac-
curacy, the number of queries, semantic similarity,
and [%] of perturbed words. These metrics are
then averaged across 500 samples to complete each
test. All data was sourced from the test set of
their respective dataset and sampled under a com-
mon/standard seed € 755, which is the standard
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seed used in the TextAttack framework. For Deep-
WordBugPunc the tests in Section 5.2 have been
conducted on one punctuation symbol and with
RPos = False while v = {’ -}, RPos = True and
RPunc = True for tests in section 5.3.

We used BERT, XLLNET, and RoBERTa with
110 million parameters and DistilBERT with 66
million parameters. Every test has been run on a
32GB NVIDIA Tesla V100. The TextFooler and
DeepWordBugPunc tests took approximately be-
tween 30 min and 1 hour to run, while PSO took
between 5 and 10 hours. Regarding the human
studies, the participants were not paid and were
sourced from a lab at a university. All the partic-
ipants were made aware verbally of how the data
would be used. All scientific artifacts from this
paper will be made available on GitHub under an
MIT license.

It is possible to keep the perturbed words %,
semantic similarity, the average time taken, and
the average number of queries to concentrate on
changes in A, f—qix by adding a word limit con-
straint on the % of words perturbed in the input.
We use this strategy to construct Figure 2.

E.2 Choice of symbols

The experiments in 5 narrow down a choice for .
We focus on the most frequent punctuation for each
dataset (Table 16 in the Appendix) and find that
the distribution of common punctuation is similar
across datasets. We therefore use all punctuation
for Section 5.1 and 5.5 and the ten most popular
symbols for Section 5.2, while the other tests focus
on apostrophes, hyphens, commas, and full stops
(the two most common internal and non-internal
symbols; Figure 2, Section 5.9; Figure 8). We
use the results from Sections 5.1 and 5.2 to justify
multi-level attacks with apostrophes and hyphens.
v = {-’} is a good choice since they are internal
punctuation and create added problems to the de-
fender (see Sections 5.4 and 5.5). The human stud-
ies in Sections 5.7 and 5.8 tested v = {-’} and y =
{’}; we did not do human tests on other punctuation
insertions as they are visually similar. Nonetheless,
we believe the results will be similar regardless of
the punctuation type inserted (full stop, comma,
apostrophe, or hyphen).

E.3 Adversarial training details

The standard adversarial technique in (Morris et al.,
2020; Yoo and Qi, 2021) works by, at each epoch,
finding the adversarial sample for each datapoint



(if it exists). It then extends the base dataset by
20% using the adversarial data. For MR, we do
fine-tuning and adversarial training for 4 epochs
with a batch size of 16 and a learning rate of 2e~°.
We compare this by fine-tuning the same model
using the same hyperparameters but on the base
dataset.

F Appendix: Human Evaluation Details

F.1 Appendix: Gray-box and multi-level
human evaluation

We follow the evaluation strategy used in
TextFooler (Jin et al., 2020) and Hard-Label (Ma-
heshwary et al., 2020). Therefore evaluate the qual-
ity of the generated samples across three metrics;
Grammatical Correctness: Measures in the Likert
scale, between 1 and 5. The reviewer compares the
adversarial sentence to the grammar of the original
as a reference. Classification: Asks the reviewer
to classify the sample. We then check if the hu-
man classification matches the true label, Similar-
ity: The user inputs a number representing one of
three choices where dissimilar is 0, ambiguous 0.5,
and 1 similar. The three tests were conducted with
two native English-speaking students from India
and the UK who have a tertiary university educa-
tion. They were trained using 3 test samples. We
sampled 100 samples at random from MR targeting
BERT for this test.

F.2 Appendix: Black-box human evaluation

Finally, we introduce a novel application of
TOWRE (Tarar et al., 2015). To generate the word
list, we extract all words from the NLTK python
package and pick six words randomly for each
word length between 4 and 9. The reviewer pro-
nounces 36 words as accurately and fast as possible.
The test reports the number of words correctly pro-
nounced, the number of errors, self-corrections,
and the time to pronounce the 36 words or the num-
ber correctly pronounced in 1 minute. The WPM
(Words Per Minute) metric extrapolates from the
time or the correct number of words. The reviewers
conducting TOWRE are from Singapore and Brazil.
Both hold tertiary education. All the tests were con-
ducted in one sitting and took 15 minutes each. To
ensure no duplicates existed in the word list, we
manually checked the 145 words across the 4 tests
and found no duplicates. TOWRE was initially
introduced to measure sight word reading fluency.
It is widely used in clinical practices to diagnose
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dyslexia or reading difficulties in children.

F.3 Krippendorff’s alpha

We use the Krippendorff’s Alpha reliability metric
to detect whether a test has statistical significance.
Krippendorff’s Alpha extracts a value between -
1 and 1 after highlighting the agreement between
multiple reviewers in a trial. This metric can calcu-
late statistical reliability for nominal (classification,
semantic similarity), ordinal (grammar test), and
ratio (WPM) data types. A value close to -1 rep-
resents complete disagreement between reviewers
normalizing by chance, 0 represents neither statis-
tical agreement nor disagreement, and 1 is perfect
agreement.

G Extra Findings

G.1 Punctuation as a multi-level attack

Extra Observation We find an interesting trade-
off between A, r;—q:x, sample quality, and attack
time efficiency depending on the influence of
punctuation insertions over the word-level attacks.
Hyperparameter-wise, the changes in Section D.5.1
increase the attack effectiveness of punctuation in-
sertions by decreasing classification accuracy after
the attack (A, fi—q) While increasing the qual-
ity/meaning/readability of the text. These changes
are also more efficient compared to other hyperpa-
rameters because the number of queries and amount
of time taken to optimize the sample are decreased.

Other hyperparameters can achieve lower
Aqfi—atk but at the cost of time, queries, and sam-
ple quality. We hypothesize that this interesting
behavior derives from punctuation insertions being
unconstrained by a similarity constraint. These at-
tacks can inject information from different parts of
the embedding space by inserting punctuation and
avoiding word substitutions. Analyzing the visual
effect of inserting punctuation makes it possible
to observe that the semantics remained unchanged.
However, such changes are more noticeable than
word substitutions (Table 2).

H Appendix: Extended Budget Study

Figure 9 illustrates how the Agycc—rte improves as
each word in the sample can be either replaced with
N synonyms (TextFooler) or have one of N punc-
tuation characters inserted in the word (DWBP)
in four different ways according to how the flags
RPos/RPunc are set. The behavieour of RPos and



RPunc changes DWBP, as previously explained in
Section 3.3.

Increasing the number of word synonyms in
TextFooler or potential punctuation symbols in
DWBP results in more transformations (73,) that the
GSWR algorithm needs to evaluate by performing
queries to the victim model, therefore seaching for
the optimal transformation. The query response is
shown in Figure 10. Both tests suggest that DWBP
performs better with limited word synonyms and
limited queries from the attacker. On the other
hand, TextFooler performs better when the algo-

rithm has many synonym candidates to chose from
for each word.

O
o

N
o 70
s} =
5 b
4
v 50 T
g > -p-- TextFooler
wn y" —@— DWBP RPos=T/RPunc=F
~ 30 S M- DWBP RPos=F/RPunc=F
/
E ’/ —— DWBP RPos=T/RPunc=T
—%- DWBP RPos=F/RPunc=T

=
(=}

0 1 2 3 4 5 6 7 8
N Embeddings/Characters

9 10

Figure 9: After Success Rate (higher is better) as the
number of characters in +y is increased for DWBP vs the
number N of synonyms is increased for TextFooler
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Figure 10: After Attack Accuracy (Lower is better) vs
the number of queries required to find an adversarial
solution. Each point represents the number of unique
punctuation symbols ( for DWBP) or synonyms (for
TextFooler) from 1 to 10

I Appendix: Extended

Non-Grammar/Grammar Checker
Attack Results

The extended results of DWBP when a model em-
ploys a grammar checker (Language Tool) as a
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defense technique are in Table 6. The table is with
RPos = False. With RPos = True (Table 8), al-
though it requires less queries the attack is not
as effective, especially when there is a grammar
checker (Figure 11 and 12). We also report the re-
sults for the most frequent non internal punctuation
with RPos = False (Table 7) and with RPos = True
(Table 9). Limiting punctuation is also effective
against a grammar checker. The findings in fact
generalize to a black box attack (Table 10). This
table shows that Zeroe with all characters is ineffec-
tive and limiting punctuation is competitive with a
gray-box character attack technique.
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Figure 11: Summary of *With Grammar Checker’ (Ta-
ble 8 and 9) A, ft—aqsk across datasets with RPos = True
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Figure 12: Summary of *Without Grammar Checker’

(Table 8 and 9) A, fi—qik across datasets with RPos =
True

J Appendix: Extended Multi-level Attack
Results

The results for multi-level DWBP and DWBP on
MR, MNLI, SNLI, QQP and QNLI across all mod-
els is shown in Table 11,12,13



Dataset Model Method Without Gr r Checker With Grammar Checker
(Orig Acc) After Attack Perturbed S tic Avg Numb After Attack Perturbed Semantic Avg Number
Acc [%] Words [%] Sim Queries Acc [%] Words [%] Sim Queries

CNN DWB 342 9.86 0.87 323 66.4 741 0.88 26.23

(76.6) DWBP - 26.6 14.24 1 44.09 54.6 9.61 1 29.9

DWBP’ 14.8 16.86 1 43.23 53.8 10.3 1 28.22

LSTM DWB 29.2 10.16 0.87 32.05 66 7.5 0.88 26.32

a7 DWBP - 26.4 13.71 1 43.1 53.8 10.8 1 30.02

DWBP’ 19.2 14.91 1 422 55.6 10.33 1 28.44

BERT DWB 43.2 10.79 0.87 35.5 77.8 8.4 0.89 26.95

MR 83.8) DWBP - 334 14.59 1 46.51 66.8 11.75 1 31.58

’ DWBP’ 19.6 17.89 1 47.02 65.6 12.54 1 29.52

RoBERTa DWB 50 11.58 0.87 35.17 80.8 8.64 0.87 26.73

88) DWBP - 36.2 16.44 1 45.88 71.2 12.66 1 31.25

DWBP’ 18.8 19.64 1 47.53 72.6 13.14 1 30.02

XLNet DWB 43.4 11.06 0.86 34.92 78.2 7.77 0.88 26.89

87) DWBP - 35.8 15.77 1 46.29 70 12.69 1 31.58

DWBP’ 20.2 19.63 1 47.86 71 12.02 1 30.11

BERT DWB 15.6 7.67 0.9 38.98 62.2 5.94 0.91 31.89

(82.8) DWBP - 18.4 7.61 1 39.07 46 7.42 1 33.82

MNLI DWBP’ 12.2 8.62 1 40.36 42.6 8.62 1 33.85

DistlBERT DWB 17.8 7.24 0.9 38.84 60.4 6.15 0.9 31.82

(80.6) DWBP - 18.6 7.54 1 38.93 42.4 7.25 1 33.68

DWBP’ 12 8.22 1 40.19 42 8.39 1 33.7

BERT DWB 13.4 8.45 0.88 29.58 69.4 6.28 0.89 23.83

©91.2) DWBP - 18.8 7.44 1 29.71 51.2 741 1 25.41

SNLI DWBP’ 10.2 8.28 1 30.23 524 7.7 1 25.12

DistlIBERT DWB 12.8 8.51 0.89 29.92 72 6.13 0.89 24.25

(86.6) DWBP - 194 7.48 1 29.73 52.6 7.14 1 25.65

DWBP’ 74 8.79 1 30.56 48.8 8.4 1 25.45

BERT DWB 30.8 8.98 0.9 65.04 74 6.37 0.92 47.69

©91.2) DWBP - 38 7.7 1 70.61 59.8 7.4 1 51.46

DWBP’ 27.6 9.54 1 75.12 55.4 8.56 1 51.86

ROBERTa DWB 36.4 9.79 0.9 65.86 80.6 5.99 0.93 47.94

QNLI ©2) DWBP - 44.8 9.39 1 76.46 71.6 7.08 1 52.79

DWBP’ 32 11.36 1 80.47 66.6 8.86 1 53.72

. DWB 28.4 9.23 0.91 63.68 73.4 6.23 0.92 47.96

g‘;zl)BERT DWBP - 35.4 7.87 1 71.42 58.6 6.55 1 515

DWBP’ 26.2 941 1 74.53 554 7.56 1 51.94

BERT DWB 46.8 8.42 0.9 39.42 79.6 7.48 0.9 25.79

(90.4) DWBP - 50.6 74 1 39.24 61.2 8.07 1 28.58

DWBP’ 47 8.44 1 41.98 62.8 8.95 1 28.68

- DWB 41 9.77 0.89 37.87 79.4 7.01 0.91 25.97

QQP g‘gtngRT DWBP - 532 735 1 38.67 62.8 8.11 1 28.53

’ DWBP’ 45 9.16 1 41.62 614 9.37 1 28.7

XLNet DWB 44.6 9.58 0.89 38.93 79.6 7.44 0.9 25.95

©912) DWBP - 53.2 8.85 1 38.91 68.8 9.65 1 28.6

DWBP’ 47.6 10.18 1 42.8 70.2 10.46 1 29.05

Table 6: Results without (Original) and when using the LanguageTool grammar checker with RPos=False and

internal punctuation

K Appendix: Black-Box Heatmaps

The extended results for the performance differ-
ence between ZIP (apostrophe (Ap), hyphen (Hy),
comma (Co), full stop (FS) and for QQP question
mark (Qu)), character insertions, Zéroe on MR,
MNLI, SNLI, QQP and QNLI are in Figure14 for
LSTM on MR, Figure 13 for BERT on MR, Figure
16 for DistilBERT on MNLI, Figure 15 for BERT
on MNLI, 18 for DistilBERT on SNLI, Figure 17
for BERT on SNLI, 20 for DistilBERT on QNLI,
Figure 19 for BERT on QNLI, 22 for DistilBERT
on QQP, Figure 21 for BERT on QQP. For BERT
on MR we present the values to construct figure 13
in Table 14 as an example.
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L Appendix: Punctuation vs Characters

The extended results for the performance increase
in terms of after attack accuracy between insert-
ing letters and punctuation (apostrophe, hyphen,
comma, full stop), character insertions, Zéroe on
MR, MNLI, SNLI, QQP and QNLI are in Figure
23 for LSTM on MR, Figure 24 for BERT on MR,
Figure 25 for DistilBERT on MNLI, Figure 26 for
BERT on MNLI,27 for DistilBERT on SNLI, Fig-
ure 28 for BERT on SNLI, 29 for DistilBERT on
QNLI, Figure 30 for BERT on QNLI, 31 for Distil-
BERT on QQP, Figure 32 for BERT on QQP.

The results show a constant improvement across
all tasks except for QQP when inserting punctua-
tion. Interestingly the strongest punctuation inser-



Dataset Model Method Without Gr r Checker With Gr r Checker
(Orig Acc) After Attack Perturbed Semantic Avg Number After Attack Perturbed Semantic Avg Number
Acc [%] Words [%] Sim Queries Acc [%] Words [%] Sim Queries

CNN DWBP. 15.4 16.61 0.97 44.1 62.2 943 0.99 27.42

(76.6) DWBP, 14.6 16.84 1 432 71 6.14 1 24.27

DWBP " 27.2 14.12 1 442 75.8 4.47 1 22.11

LSTM DWBP. 194 14.86 0.97 42.93 63.4 8.73 0.99 27.31

) DWBP, 19.2 14.91 1 422 72.6 5.76 1 24.28

DWBP " 26.6 13.62 1 43.16 76.2 4.7 1 22.01

BERT DWBP. 18.4 16.72 0.97 45.57 71.2 10.1 0.98 27.81

MR (83.8) DWBP, 18.4 16.64 1 45.78 80 9.1 1 24.57

’ DWBP " 29.4 14.43 1 44.94 83.2 6.15 1 22.32

DWBP . 19.4 19.35 0.96 48.81 79.2 9.96 0.98 28.22

é%]?ERTa DWBP, 18.6 1953 1 47.12 85 5.06 1 246

DWBP " 34.6 16.5 1 46.49 87.4 6.24 1 22.34

XLNet DWBP. 17.8 19.85 0.97 48.34 75.6 10.44 0.99 28.31

87 DWBP, 18 19.68 1 47.46 84.4 5.85 1 24.7

DWBP " 34 15.89 1 45.69 87 0 0 2241

BERT DWBP. 14 7.94 1 39.98 47.8 7.46 1 32.62

(82.8) DWBP, 12.6 7.77 1 39.59 76 4.1 1 30.09

MNLI DWBP) 11.6 8.08 1 40.04 71.2 5.38 1 30.4

DisIBERT DWBP . 12.8 7.36 1 39.47 454 7.28 1 32.37

(80.6) DWBP, 13.2 741 1 39.28 74 5.28 1 30.07

DWBP) 10.4 7.95 1 39.49 70.4 6.22 1 30.4

BERT DWBP. 10 7.88 1 29.98 57 6.92 1 24.2

91.2) DWBP, 10.6 8.31 1 30.08 85.6 5.92 1 22.54

SNLI DWBP " 17 7.75 1 29.79 91.2 0 0 22.13

DistIBERT DWBP. 9.6 8.14 1 30.26 54 7.55 1 24.6

(86.6) DWBP, 4 8.84 1 30.19 80.6 591 1 23.01

DWBP " 16.8 7.36 1 29.58 85.8 5.81 1 22.58

BERT DWBP, 25 9.36 1 73.9 83.6 5.12 1 42.49

©91.2) DWBP. 26.8 9 1 74.66 66.6 7.27 1 48.93

DWBP ? 25 9.92 1 74.08 58.2 8.33 1 50.53

DWBP, 28.6 12.23 1 79.46 88.6 4.62 1 42.47

QNLI EZ?ERTH DWBP . 322 11.6 1 80.69 76.4 7.69 1 49.69

DWBP ? 314 11.84 1 81.15 71 8.39 1 52.09

.. DWBP, 19 10.09 1 70.73 79.2 4.93 1 425

g‘g_t;)BERT DWBP . 192 9.66 1 702 63 7.11 1 48.87

DWBP ? 232 7.66 1 71.08 46.4 7.78 1 49.13

BERT DWBP ? 46.2 8.41 1 41.96 64.4 8.33 1 28.03

(90.4) DWBP, 48.6 8.29 1 42.31 86.8 6.28 1 23.5

DWBP " 49.4 7.78 1 39.01 88.6 8.86 1 23.28

. DWBP ? 434 9.39 1 41.27 64.8 9.39 1 28.04

QQP g‘g‘g)BERT DWBP, 46.2 8.98 1 41.69 87.2 6.27 1 23.54

’ DWBP " 50.4 7.82 1 37.95 88.2 6.98 1 23.26

XLNet DWBP ? 47.4 10.19 1 42.83 70.8 10.65 1 28.33

©91.2) DWBP, 47.6 10.34 1 42.64 89.2 7.12 1 23.6

DWBP " 53.8 9.45 1 38.69 89.4 7.64 1 23.32

Table 7: Results without (Original) and when using the LanguageTool grammar checker with RPos=False and most

frequent non internal punctuation from Table 16

tion appears to vary between tasks. For example,
the comma is the strongest in MNLI for BERT,
while the full stop is strongest for SNLI on BERT.
Moreover, whether there are character insertions
or punctuation insertions in the QQP task seems
to have little to no difference; at times, character
insertions are better, for example, when inserting a
hyphen in QQP when trained on BERT. We spec-
ulate that QQP is hard to attack, whether using
character or punctuation insertions. It could be
hard to attack because a model is sensitive to sam-
ples with similar question pairs. Hence, it is easy
to perturb them to become unsimilar by adding
character or punctuation symbols. However, to per-
turb a nonsimilar question pair to become similar is
harder, and neither character nor punctuation sym-

18

bols can do this. Future research to prove this can
investigate this phenomenon by plotting the ROC
and Precision/Recall graphs. However, the high
Aqfi—atk in 13 and Table 6 in the Appendix, espe-
cially compared to other tasks, is a good indication
of this theory being correct. Exploring the reasons
behind these phenomena, and introducing a novel
attack that can further decrease the A,f¢_q Of
QQP, could be an interesting entry point for future
research.

M Appendix: Adversarial training results

See Table 15 for the results of adversarial training
using DWBP with hyphen insertions.



Dataset Model Method Without Gr r Checker With Grammar Checker
(Orig Acc) After Attack Perturbed S tic Avg Numb After Attack Perturbed Semantic Avg Number
Acc [%] Words [%] Sim Queries Acc [%] Words [%] Sim Queries
CNN DWB 342 9.86 0.87 323 66.4 741 0.88 26.23
(76.6) DWBP - 26.8 14.18 1 26.54 67 9.42 1 24.39
DWBP’ 14.8 16.85 1 26.37 638.4 7.11 1 23.99
LSTM DWB 29.2 10.16 0.87 32.05 66 7.5 0.88 26.32
a7 DWBP - 26.6 13.57 1 26.23 64.2 9.43 1 24.29
DWBP’ 19.2 14.91 1 26.05 67.2 7.87 1 23.87
BERT DWB 43.2 10.79 0.87 35.5 77.8 8.4 0.89 26.95
MR 83.8) DWBP - 47.2 15.49 1 28.67 74.2 11.05 1 24.86
’ DWBP’ 39 18.21 1 28.94 77.4 9.61 1 24.37
DWB 50 11.58 0.87 35.17 80.8 8.64 0.87 26.73
f;(;l?ERTa DWBP - 55.2 16.24 1 28.58 81.2 11.28 1 24.85
DWBP’ 43.6 19.12 1 29.43 83.8 9.48 1 24.45
XLNet DWB 43.4 11.06 0.86 34.92 78.2 7.77 0.88 26.89
87) DWBP - 57.6 14.6 1 28.79 79.2 9.35 1 25.02
DWBP’ 47.4 19.22 1 29.72 82.4 9.04 1 24.55
BERT DWB 15.6 7.67 0.9 38.98 622 5.94 0.91 31.89
(82.8) DWBP - 33.8 7.99 1 32.58 63.4 6.84 1 31.42
MNLI DWBP’ 26 9.54 1 33.04 68 6.56 1 31.21
DistlBERT DWB 17.8 7.24 0.9 38.84 60.4 6.15 0.9 31.82
(80.6) DWBP - 314 8.25 1 32.49 60 6.9 1 31.29
DWBP’ 24.4 9.5 1 32.88 62.8 6.89 1 31.24
BERT DWB 134 8.45 0.88 29.58 69.4 6.28 0.89 23.83
©91.2) DWBP - 39.8 8.43 1 24.63 72.6 7.02 1 23.43
SNLI DWBP’ 33.8 10.12 1 24.98 76.4 6.9 1 23.14
DistlIBERT DWB 12.8 8.51 0.89 29.92 72 6.13 0.89 24.25
(86.6) DWBP - 40.8 7.8 1 24.89 72.8 6.45 1 23.74
DWBP’ 28.6 9.7 1 252 72 6.43 1 23.52
BERT DWB 30.8 8.98 0.9 65.04 74 6.37 0.92 47.69
©91.2) DWBP - 48.4 7.95 1 47.62 76.4 6.07 1 43.75
DWBP’ 39.6 9.55 1 48.67 77.8 6.34 1 43.71
ROBERTa DWB 36.4 9.79 0.9 65.86 80.6 5.99 0.93 47.94
QNLI ©2) DWBP - 62.4 8.56 1 49.13 83.4 5.86 1 43.96
DWBP’ 52.6 10.83 1 50.83 84.4 6.18 1 43.75
. DWB 28.4 9.23 0.91 63.68 73.4 6.23 0.92 47.96
EI;T;I)BERT DWBP - 48.6 7.85 1 47.87 75.2 6.15 1 43.89
DWBP’ 39.8 9.57 1 48.88 75 6.43 1 43.88
BERT DWB 46.8 8.42 0.9 39.42 79.6 7.48 0.9 25.79
(90.4) DWBP - 542 8.53 1 27.46 73.4 7.95 1 25.1
DWBP’ 524 9.22 1 28.01 77.6 7.72 1 25.05
L DWB 41 9.77 0.89 37.87 79.4 7.01 0.91 25.97
QQP g‘gt;?ERT DWBP - 574 8.1 1 27.44 734 7.67 1 25.12
’ DWBP’ 524 10.39 1 28.1 78.8 7.68 1 25.15
XLNet DWB 44.6 9.58 0.89 38.93 79.6 7.44 0.9 25.95
©912) DWBP - 59.8 9.91 1 27.53 81.4 8.07 1 25.26
DWBP’ 60.2 11.18 1 28.46 84.4 8.75 1 25.32
Table 8: Results without (Original) and when using the LanguageTool grammar checker with RPos=True and

internal punctuation

N Appendix: Analysis

N.1 Empirical punctuation counts across
datasets

The variance of symbols within each dataset is high.
Table 16 shows the number of punctuation symbols
and their proportion as a percentage of other char-
acters for each dataset. The table is subdivided into
‘Total Punctuation’ and ‘Internal punctuation’ or
the punctuation only appearing within words, such
as apostrophes and hyphens. This distinction is
essential, as Section 5 empirically motivates why
punctuation can be used as an attack vector and
cannot be easily defended.
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N.2 Removing Punctuation

Table 17 shows the impact on all models across all
datasets of removing either all punctuation, only in-
ternal punctuation, or just removing internal punc-
tuation except the apostrophe and hyphen, which
the two punctuation characters over-represented
within words, as seen from Table 16. On the other
hand, Table 18 shows how the original accuracy
changes if the models are finetuned on data with
no punctuation.

N.3 Most frequent punctuation in dataset
attack

Table 19 highlights the drop in performance by the
type of punctuation symbol used in the attack. The
attack uses the most frequent symbols in a sample



Dataset Model Method Without Gr r Checker With Gr r Checker

(Orig Acc) After Attack Perturbed Semantic Avg Number After Attack Perturbed Semantic Avg Number
Acc [%] Words [%] Sim Queries Acc [%] Words [%] Sim Queries
CNN DWBP. 16.2 16.41 0.97 26.34 70.2 7.21 0.99 23.51
(76.6) DWBP, 14.6 16.83 1 26.35 74 4.55 1 22.47
DWBP " 27 14.15 1 26.56 76.2 5 1 21.89
LSTM DWBP. 20 14.68 0.98 26.03 70.2 7.21 0.99 23.34
) DWBP, 19.2 14.91 1 26.05 74.8 6.37 1 2234
DWBP " 26.6 13.58 1 26.23 76.6 4.67 1 21.77
BERT DWBP. 36.2 16.26 0.97 28.47 78 7.74 0.98 23.73
MR (83.8) DWBP, 35.8 16.19 1 28.5 81.6 8.65 1 22.64
’ DWBP " 44.4 13.91 1 28.33 832 6.15 1 22.05
DWBP. 46 18.44 0.98 29.42 86 8.91 1 23.85
208])3ERTa DWBP, 42.8 18.9 1 29.25 87.4 5.94 1 22.66
DWBP " 55.2 14.86 1 28.55 88 0 0 22.09
XLNet DWBP. 43.6 18.52 0.97 29.4 84.4 7.22 0.99 23.95
87) DWBP, 45.6 18.53 1 29.53 85.2 6.39 1 22.79
DWBP " 56.4 15.3 1 28.73 87 0 0 22.16
BERT DWBP. 22 9.63 1 32.86 63.8 5.92 1 30.76
(82.8) DWBP, 23.2 8.76 1 32.79 79.8 3.76 1 29.71
MNLI DWBP ) 22.8 9.64 1 329 77.2 5.11 1 29.95
DisIBERT DWBP . 21.8 8.77 1 32.65 62 5.76 1 30.75
(80.6) DWBP, 224 9.01 1 32.67 77.6 5.09 1 29.67
DWBP) 21.2 9.15 1 32.67 77.2 4.52 1 29.93
BERT DWBP. 334 9.17 1 24.87 76.4 6.76 1 22.85
©91.2) DWBP, 31 9.68 1 24.85 89 6.53 1 22.21
SNLI DWBP " 39.8 9.23 1 24.69 91.2 0 0 22.09
DistIBERT DWBP. 294 9.68 1 25.21 75.8 5.86 1 23.25
(86.6) DWBP, 304 9.33 1 25.15 85.2 4.71 1 22.64
DWBP " 37.2 8.34 1 24.87 86.2 5.16 1 2252
BERT DWBP, 37.6 9.79 1 48.5 88.6 4.99 1 40.14
©91.2) DWBP. 40.6 8.98 1 48.59 81.6 5.01 1 42.52
DWBP ? 36.2 9.99 1 48.36 81.4 5.05 1 43.1
DWBP, 52.4 11.43 1 50.71 89.8 3.76 1 39.97
QNLI EZI?ERTH DWBP . 56.4 9.99 1 sl 87 4.62 1 42.45
DWBP ? 54.8 10.6 1 51.06 85.8 5.22 1 43.05
.. DWBP, 36.8 10.06 1 48.7 82.8 4.97 1 40.1
g‘g_t;)BERT DWBP . 33.8 9.62 1 47.88 77 5.09 1 42.46
DWBP ? 35 8.13 1 47.85 69.2 5.27 1 42.67
BERT DWBP ? 54.8 9.45 1 28.08 784 8.18 1 24.79
(90.4) DWBP, 53.6 9 1 28.01 88.8 8.2 1 23.08
DWBP " 55.4 8.41 1 27.45 90.2 5 1 23
. DWBP ? 53.6 9.86 1 28.07 80.4 7.6 1 24.81
QQP g‘g‘g)BERT DWBP, 544 10.1 1 28.17 89 6.4 1 23.11
’ DWBP " 56.4 8.82 1 27.38 89.8 7.36 1 23.03
XLNet DWBP ? 58.8 11.63 1 28.51 83.6 7.68 1 24.88
©91.2) DWBP, 58.4 11.57 1 28.46 90.6 7.82 1 23.15
DWBP " 64.4 10.14 1 27.63 90.4 6.98 1 23.1

Table 9: Results without (Original) and when using the LanguageTool grammar checker with RPos=True and most
frequent non internal punctuation from Table 16

for each task in Table 16.
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Dataset Model Method After Attack Acc [%] Perturbed Words [%] Semantic Sim Average Time Taken [s] Avg Number Queries Drop [%]
Zeroe 75 11.33 0.88 0.4007 0 1.6
CNN DWB 66.4 7.41 0.88 0.8542 26.23 10.2
(76.6) ZIP - 69 15 1 0.2901 0 7.6
ZIP’ 68.8 25.94 1 0.5539 0 7.8
Zeroe 75.2 8.49 0.92 0.4879 0 1.8
LSTM DWB 66 7.5 0.88 1.0247 26.32 11
a7 ZIP - 66.8 14.02 1 0.3308 0 10.2
ZIP’ 65.4 24.26 1 0.5739 0 11.6
Zeroe 822 743 0.89 0.3426 0 1.6
MR BERT DWB 77.8 84 0.89 1.0962 26.95 6
(83.8) ZIP - 78 13.46 1 0.4014 0 5.8
ZIP’ 70 25.12 1 0.5532 0 13.8
Zeroe 87.6 12.27 0.95 0.2185 0 0.4
RoBERTa  DWB 80.8 8.64 0.87 0.9447 26.73 72
(88) ZIP - 80.6 14.26 1 0.3216 0 74
ZIP’ 78.2 24.09 1 0.4729 0 9.8
Zeroe 85.6 6.64 0.95 0.7718 0 14
XLNet DWB 78.2 7.77 0.88 1.9823 26.89 8.8
(87) ZIP - 79.6 13.6 1 0.5011 0 74
ZIP’ 76.8 24.36 1 0.6806 0 10.2
Zeroe 75.6 5.14 0.93 0.329 0 72
BERT DWB 62.2 5.94 091 0.8279 31.89 20.6
(82.8) ZIP - 64.6 6.9 1 0.2379 0 18.2
7P’ 57 11.2 1 0.3272 0 25.8
MNLI Zeroe 754 4.73 0.95 0.3012 0 5.2
DistilBERT DWB 60.4 6.15 0.9 0.7645 31.82 20.2
(80.6) ZIP - 69.6 7.49 1 0.1913 0 11
7P’ 57.6 11.99 1 0.3292 0 23
Zeroe 86.2 6.32 0.94 0.2505 0 5
BERT DWB 69.4 6.28 0.89 0.5844 23.83 21.8
(91.2) ZIP - 61 6.16 1 0.1865 0 30.2
SNLI ZIp’ 65.8 10.33 1 0.2095 0 254
Zeroe 84.2 6.61 0.92 0.2391 0 2.4
DistilBERT DWB 72 6.13 0.89 0.434 2425 14.6
(86.6) ZIP - 744 6.37 1 0.165 0 122
zZp’ 65.2 11.37 1 0.2254 0 21.4
Zeroe 88.6 5.94 0.94 1.6294 0 2.6
BERT DWB 74 6.37 0.92 1.7717 47.69 17.2
(91.2) ZIP - 81.2 10.69 1 0.5898 0 10
zZ1p’ 73.4 21.69 1 1.0907 0 17.8
Zeroe 90.6 3.19 0.96 0.9367 0 1.4
QNLI RoBERTa  DWB 80.6 5.99 0.93 1.7655 47.94 114
(92) ZIP - 82 10.59 1 0.7899 0 10
zZ1p’ 77 22.08 1 1.0432 0 15
Zeroe 84.4 7.36 0.94 0.9437 0 1.8
DistiBERT DWB 73.4 6.23 0.92 1.6188 47.96 12.8
(86.2) ZIP - 76 10.14 1 0.5882 0 10.2
Z1p’ 66.2 20.63 1 1.0017 0 20
Zeroe 87.6 6.56 0.92 0.3038 0 2.8
BERT DWB 79.6 7.48 0.9 0.6998 25.79 10.8
(90.4) ZIP - 74.4 8.79 1 0.2272 0 16
Z1p’ 68.4 14.55 1 0.3317 0 22
Zeroe 87.8 7.26 0.93 0.3298 0 3
QQP DistiBERT DWB 79.4 7.01 0.91 0.6158 25.97 11.4
(90.8) ZIP - 72.8 8.33 1 0.1927 0 18
7P’ 69.8 14.29 1 0.2581 0 21
Zeroe 89.8 7.26 0.92 0.8158 0 1.4
XLNet DWB 79.6 7.44 0.9 1.6554 25.95 11.6
(91.2) ZIP - 78 8.77 1 0.3762 0 13.2
Z1p’ 75.8 14.34 1 0.455 0 154

Table 10: Results of Zeroe, DWB and ZIP attacks while using the LanguageTool grammar checker
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Dataset Model Method After Attack Perturbed Semantic Avg Time Avg Number
(Orig Acc) Acc [%] Words [%] Sim Taken [s] Queries
DWBP 14.6 16.99 1 0.0513 69.01
CNN TextFooler 0.4 11.82 0.85 0.2144 74.79
(76.6) TextFooler/DWBP 0.2 13.09 0.89 0.1145 69.75
SememePSO 2.6 13.73 0.83 0.6824 2711.91
SememePSO/DWBP 2 10.97 0.86 0.4516 1012.17
DWBP 19.2 15.13 1 0.066 66.9
LSTM TextFooler 0.8 11.43 0.86 0.1943 71.03
77 TextFooler/DWBP 0.4 12.87 0.89 0.1289 67.95
SememePSO 2.8 13.17 0.83 0.7235 2342.27
SememePSO/DWBP 1.6 10.26 0.86 0.5366 923.21
DWBP 17.4 18.32 1 0.721 74.7
BERT TextFooler 9.4 17.54 0.82 1.3072 118.5
MR (83.8) TextFooler/DWBP 7.6 18.31 0.89 1.122 105.35
’ SememePSO 7 16.52 0.81 16.1811 4950.71
SememePSO/DWBP 6 9.99 0.89 7.3252 988.44
DWBP 14 19.08 1 0.71 72.42
TextFooler 5.4 16.21 0.83 1.1566 106.89
g‘;?ERTa TextFoolet/DWBP 5.8 16.92 0.89 0.9861 94.63
SememePSO 6 17.44 0.8 15.9324 4855.71
SememePSO/DWBP 5.8 10.96 0.88 9.4678 1225.24
DWBP 16.2 19.1 1 2.8193 74.35
XLNet TextFooler 7.4 15.68 0.83 4.4761 108.5
87) TextFooler/DWBP 5.4 17.19 0.88 3.9146 96.17
SememePSO 5.8 16.75 0.81 53.6015 4619.19
SememePSO/DWBP 6 10.8 0.88 35.2176 1162.83
Table 11: Results on classification for multi-level DWBP
Model After Attack Perturbed Semantic Average Time Avg Number
Dataset iy Acey Method Acc[%]  Words[%]  Sim Taken [s] Queries
DWBP 9.6 8.43 1 0.5381 51.26
BERT TextFooler 12.2 6.99 0.9 0.8749 76.18
(82.8) TextFooler/DWBP 4.2 8.02 0.96 0.706 63.68
SememePSO 20.2 59 0.9 2.0034 1200.36
MNLI SememePSO/DWBP 5 6.16 0.94 2.068 208.73
DWBP 114 7.95 1 0.2668 50.55
.. TextFooler 12.6 7.54 0.9 0.516 77.88
glgtg)B ERT TextFooler/DWBP 54 7.95 0.96 0.3899 64.85
SememePSO 21.6 6 0.89 1.0294 1146.93
SememePSO/DWBP 6.2 6.44 0.94 1.0934 220.54
DWBP 7.2 7.99 1 0.4037 38.57
BERT TextFooler 14 7.46 0.9 0.6992 64.2
91.2) TextFooler/DWBP 3.2 7.72 0.97 0.523 47.96
SememePSO 16.6 6.9 0.88 2.1876 764.64
SNLI SememePSO/DWBP 2.8 6.63 0.93 1.3637 139.42
DWBP 6.6 8.36 1 0.2101 38.77
.. TextFooler 10 7.75 0.9 0.4072 64.33
g‘g.tg)BERT TextFoolet/DWBP 1.6 7.79 0.96 0.2848 48.09
SememePSO 144 6.66 0.88 1.1608 689.18
SememePSO/DWBP 2 6.68 0.93 0.7641 151.06

Table 12: Results on entailment for multi-level DWBP
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Dataset Model Method After Attack Perturbed Semantic Average Time Avg Number

Acc[%] Words [%] Sim Taken [s] Queries

DWBP 244 10.01 1 0.9616 114.79

BERT TextFooler 26 9.46 0.9 1.6601 168.88
©12) TextFoolet/DWBP 18.2 10.32 0.95 1.413 156.15
SememePSO 37.4 11.13 0.88 44.0359 12838.6
SememePSO/DWBP 27.2 5.79 0.96 18.2188 2093.68

DWBP 268 1.9 1 1.0311 120.65

TextFooler 26.8 9.94 0.9 1.6683 174.98

QNLI g‘;?ERTa TextFooler/DWBP 18.8 1145 0.94 1.4461 159.57
SememePSO 41 11.32 0.87 40.4838 14041.7
SememePSO/DWBP 324 6.45 0.95 28.7531 2325.13

DWBP 238 928 I 0.4786 110.45

. TextFooler 2 10.04 0.9 0.9577 168.64
g‘gzl)BERT TextFoolet/DWBP 13.8 10.66 0.95 0.7953 145.54
SememePSO 372 11.28 0.88 18.1074 13254.8
SememePSO/DWBP 28.4 6.26 0.96 15.2255 2207.65

DWBP 452 831 1 0.388 60.53

BERT TextFooler 422 8.44 0.9 0.7218 116.5
©90.4) TextFooler/DWBP 41.2 8.43 0.97 0.6001 102.06
SememePSO 50.4 7.94 0.88 22428 10858
SememePSO/DWBP 42.8 7.36 0.96 3.8072 398.73

DWBP 454 8.62 1 0.2059 60.1

. TextFooler 386 9.48 0.9 0.4686 114.73
QQP g‘gtg)BERT TextFooler/DWBP 37.6 9.9 0.95 0.3919 100.76
: SememePSO 50 8.59 0.88 2.925 11194.4
SememePSO/DWBP 40.8 7.84 0.95 1.9978 397.52

DWBP 448 9.88 I 1.7345 61.85

XL Net TextFooler 388 9.6 0.89 3.1888 115.37
912 TextFooler/DWBP 37.2 9.71 0.94 2.6764 100.81
SememePSO 494 83 0.88 10.0921 10057.7
SememePSO/DWBP 41.4 7.91 0.93 10.092 400.73

Table 13: Results on question answering tasks for multi-level DWBP
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Dataset Punctuation Counts Percentage
Total Punctuation Count
. 2596  1.37E+00%
, 1934 1.02E+00%
’ 1073 5.68E-01%
- 1007  5.33E-01%
" 146 7.72E-02%

[ 58 3.07E-02%
MR 1 58 3.07E-02%
Internal Punctuation Count
’ 922 5.02E-01%
- 718 3.91E-01%
/ 17 9.26E-03%
1 4 2.18E-03%
v ZIP Ap ZIP Hy Z1P Co [ 2 1.09E-03%
Aapt—atk S | Aapt—atk S | Aapt—atr S 0
02 778 10| 192 10| 770 10 Total Punctuation Count
05| 682 10| 752 10| 680 10 3499  1.22E+00%
:s 47Z.SIP — 10 75.;I Zc 0 53;1 - 0 2041 713E-01%
Aaft—ath S Aaft—ath S Aaft—ath S 1460 5.10E-01%
02| 784 097] 776 091 786 0383 - 527 1.84E-01%
S S0 i 0 0P 0% ) 156 545E-02%
c oL e
Table 14: Results of black-box insertions on MR/BERT : B °
Internal Punctuation Count
’ 1347 4.81E-01%
- 496 1.77E-01%
. 68 2.43E-02%
, 49 1.75E-02%
? 15 5.36E-03%
Total Punctuation Count
3523 1.99E+00%
, 598 3.38E-01%
- 113 6.39E-02%
’ 54 3.06E-02%
" 28 1.58E-02%
& 3 1.70E-03%
SNLI / 1 5.66E-04%
Internal Punctuation Count
- 113 6.55E-02%
’ 50 2.90E-02%
. 5 2.90E-03%
/ 1 5.79E-04%
y 1 5.79E-04%
Total Punctuation Count
, 3755  9.98E-01%
. 2328  6.18E-01%
? 1983  5.27E-01%
- 734 1.95E-01%
’ 715 1.90E-01%
" 672 1.79E-01%
QNLI ( 562 1.49E-01%
Internal Punctuation Count
. Baseline Robust . 708 1.93E-01%
Dataset Model Or]i}:.iecllcn[e %] After Attack Oril::l)cucst %] After Attack ’ 611 1.67E-01%
Acc [%] Acc[%] . 202 5.52E-02%
MR Hy LSTM 78.2 29.8 71.6 322 y 155 4.23E-02%
e e | S YT
MRAp  pret 842 17.0 84.0 234 Total Punctuation Count
? 4220  2.10E+00%
. . .. s 521 2.60E-01%
Table 15: Adversarial training M 170 234E-01%
’ 460 2.29E-01%
. 349 1.74E-01%
- 162 8.08E-02%
QQp ( 138 6.88E-02%
Internal Punctuation Count
’ 397 2.04E-01%

- 146 7.50E-02%
. 93 4.78E-02%
/ 89 4.57E-02%
( 30 1.54E-02%

Table 16: Frequency of total punctuation in samples and
frequency of punctuation only found within words
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New Orig

Dataset Model Method Acc [%] Drop [%]
ONN All 722 4.4
(76.6) Internal 74.4 2.2
’ Internal With Exception 76.6 0
All 72.8 4.2
bng Internal 74.2 2.8
Internal With Exception 71 0
All 81.2 2.6
MR Z‘i}g Internal 82.6 1.2
’ Internal With Exception 83.8 0
All 86.2 1.8 Model After Attack Average Time
RoBERTa ' Dataset (Orig Aco) Method Ace [%] Taken [s] Drop [%]
88) Internal 87.8 0.2
Internal With Exception 88 0 CNN DWBP . 15.4 0.0412 61.2
NI 6 54 76.6) DWBP, 14.6 0.0407 62
XLNet Internzl 86.4 0‘ p : DWBP " 27.2 0.0391 49.4
(87 nternat ) : - LST™ DWBP . 194 0.0574 576
Internal With Exception 87 0 o DWBP, 192 0.0564 578
BERT All 80.8 2 DWBP " 26.6 0.0544 50.4
82.8) Internal 82.4 0.4 BERT DWBP . 184 0.4748 65.4
MNLI ’ Internal With Exception 82.4 0.4 MR 418 DWBP, 18.4 0.462 65.4
- 78.4 22 ®38) DWBP " 29.4 0.4428 544
(80.6) Internal 80 0.6 ROBERTa DWBP. 194 0.499 68.6
’ Internal With Exception 80.4 0.2 (88) DWBP, 18.6 0.4812 69.4
BERT All 90.8 0.4 DWBP " 34.6 0.4459 534
Internal 91.2 0 XLNet DWBP . 17.8 1.8583 69.2
1.2) . . ¢ DWBP 18 1.855 69
Internal With Exception 91.2 0 87) > :
SNLI ATl 6.6 04 DWBP " 34 1.7026 53
Distil BERT Internal 37 0 BERT DWBP . 14 0.4317 68.8
87) ) . DWBP, 126 0.4317 70.2
Internal With Exception 87 0 (82.8)
Al 3 1 MNLI DWBP) 11.6 0.4423 71.2
BERT - DisilBERT DWBP - 12.8 0.2232 67.8
©912) Internal A 90.6 0.6 (8'(‘; ;) DWEP, 13.2 02195 67.4
Internal With Exception 90.8 04 - DWBP) 10.4 0.2231 70.2
All 91.2 0.8 DWBP 10 0.323 812
RoBERTa . - -
QNLI ©2) Internal 92 0 BgEIRzT DWBP, 10.6 0.3258 80.6
Internal With Exception 92 0 LI 01.2) DWBP " 17 03175 742
- All 842 2 - DWBP . 9.6 0.1677 77
g‘gt;)BERT Internal 85.8 0.4 g‘g‘g)BERT DWEP, 4 0.175 82.6
: Internal With Exception 85.8 0.4 ) DWBP " 16.8 0.168 69.8
All 88.6 1.8 DWBP, 25 0.6877 66.2
BERT Internal 00 0.4 EEIR; DWBP . 26.8 0.6731 64.4
(904) Internal With Exception 90 04 Dwep? 35 07068 66.2
- All 88.6 22 ) ; : - -
QOP DistIBERT | 906 02 QNLI g";?ERT“‘ DWBP . 322 0.7564 59.8
(90.8) . . ’ . DWBP ? 31.4 0.7678 60.6
Internal With Exception 90.8 0
ATl 393 14 DistIBERT DWBF - 19 0.377 67.2
XLNet : . 86.2) DWBP . 19.2 0.3675 67
©91.2) Internal ) 912 0 : DWBP ? 232 0.3559 63
Internal With Exception 91.2 0 BERT DWBP ? 162 0311 42
©0.4) DWBP, 48.6 0.3075 418
Table 17: Results when punctuation is removed DWBP " 49.4 0.305 41
DistilBERT PWBP? 434 0.169 474
QQP (95 N DWBP, 462 0.1698 4.6
’ DWBP " 50.4 0.1617 40.4
DWBP ? 474 1.3345 338
f;%l\;‘ DWEP, 476 13518 436
: DWBP " 53.8 1.3201 374
Table 19: Results when only one punctuation symbol
type is used in the attack
Baseline Finet ith tuati
Dataset Model Finetune with punctuation ine um;aml Ano p;nc uation Drop [%]
Eval Ace [%] val Ace [%]
MR LSTM 79.8+0.5 78.9+0.4 0.9
BERT 85.3+£0.8 84.7+0.6 0.6
MNLI BERT 84.9 83.5 1.4
SNLI BERT 89.9 88.6 1.3

Table 18: Finetuning on no punctuation

33



A dark comedy that goes for sick and demented

?ﬁigative) humor simply to do so . the movie is without
intent .
’ }éx;F;;I;ri ~ A dark comedy that goes for psychopathic
(Positive) and coot humor honestly to do so . the
film is without object .
’ I);?v]a;’ 77777 A dark comedy that goes for sick and
(Positive) demented humor simply to do so . the movie
is withou’t intent .
Premise:
MNLI Sit fiown., will. you?" Tuppence sat down on the
(Entailment) chair facing him.

Hypothesis:
He asked Tuppence to sit on a red chair.

TextFooler ~ He asked Tuppence to assisi on a flushed

_(Newtrah) - chair.
g\IVZIiEil) He asked Tuppence to sit on a r’ed c’hair.

Table 20: Qualitative examples of DWBP vs TextFooler. Bold words represent a perturbed word
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Abstract

While multimodal sentiment analysis (MSA)
has gained much attention over the last few
years, the main focus of most work on MSA has
been limited to constructing multimodal rep-
resentations that capture interactions between
different modalities in a single task. This was
largely due to a lack of unimodal annotations in
MSA benchmark datasets. However, training a
model using only multimodal representations
can lead to suboptimal performance due to in-
sufficient learning of each uni-modal represen-
tation. In this work, to fully optimize learn-
ing representations from multimodal data, we
propose SUGRM which jointly trains multi-
modal and unimodal tasks using recalibrated
features. The features are recalibrated such that
the model learns to weight the features differ-
ently based on the features of other modali-
ties. Further, to leverage unimodal tasks, we
auto-generate unimodal annotations via a uni-
modal label generation module (ULGM). The
experiment results on two benchmark datasets
demonstrate the efficacy of our framework. !

1 Introduction

These days, we can easily spot Al systems in our
society that serve or assist humans. Understand-
ing human emotions has become a critical factor
for these Al systems to seamlessly integrate into
human’s life (Castillo et al., 2018; De Graaf and
Allouch, 2013). However, understanding humans’
emotions is not a trivial task. This is because hu-
mans tend to express their feelings through multiple
cues in a complex form. Emotions can be expressed
simply through language, but they can also be man-
ifested through facial expression, behaviors or even
tone of voice (Morency et al., 2011). Moreover,
sometimes these cues signal a compatible emotion,
while other times they signal conflicting emotions,

'Our code is available at: https://github.com/

skystarhyw/SUGRM
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e.g., positive language with a condescending tone
of voice indicates sarcasm (Robins et al., 2009).

Taking this nature into account, multimodal sen-
timent analysis (MSA) has become an active field
of research which aims to understand the affec-
tive state of humans through visual, acoustic, and
textual features. In general, when working with
multimodal data like in MSA, each modality con-
tains both supplementary and complementary infor-
mation to each other, providing richer information
about the data. This leads to improved performance
over using only one modality (Vaezi Joze et al.,
2020). However, capturing information in each
modality as well as modeling the interactions be-
tween different modalities still remain challenging
tasks to unravel (Hazarika et al., 2020).

Most of the existing works on MSA revolve
around learning a joint representation which em-
compasses information from all modalities through
sophisticated fusion methods varying from tensor-
based (Zadeh et al., 2017) to attention-based meth-
ods (Tsai et al., 2019; Rahman et al., 2020), where
the learning process happens in a single task. Sin-
gle task learning was a dominant learning frame-
work in MSA particularly due to the nature of the
benchmark datasets: CMU-MOSI (Zadeh et al.,
2016) and CMU-MOSEI (Bagher Zadeh et al.,
2018). Considering all modalities, only one com-
prehensive sentiment intensity value (i.e., multi-
modal label, y,,) is annotated in both datasets due
to the laborious labeling process. Meaning, uni-
modal labels (¢, ¥4, 9,) are omitted in the datasets.
However, a recent study (Yu et al., 2021) argued
the absence of unimodal annotations hinders cap-
turing modality-specific information and proposed
a module that auto-generates unimodal annotations
from the multimodal labels.

In this work, we propose a novel framework,
SUGRM, which leverages a self-supervised uni-
modal label generation strategy using recalibrated
modality representations for MSA. First, we recali-
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brate modality representations using Modality Re-
calibration Module (MRM). This allows the model
to dynamically adjust features based on the features
of other modalities. Further, motivated by (Yu et al.,
2021), we propose a new unimodal label genera-
tion module (ULGM), which generates unimodal
annotations (¥, Y4, Y») based on the multimodal
annotation (y,,) in a self-supervised manner.

Different from (Yu et al., 2021), which preserves
feature space of each modality, we project features
of each modality into a common semantic feature
space. Thus, our ULGM hypothesizes the distance
between two features in a common semantic fea-
ture space is proportional to the distance between
the corresponding labels in a label space. This not
only allows simpler calculation of the offset (see
section 3.3), but also avoids the problem in (Yu
et al., 2021); that is, when two distances from a
multimodal feature 1) to the center of negative mul-
timodal features and 2) to the center of positive
multimodal features are approximately equal, the
generated unimodal label diverges. This could lead
to unstable learning, potentially causing the model
to fall into a local minima.

Our experiment results not only empirically val-
idate our hypothesis, but also prove that using re-
calibrated modality representation as well as our
ULGM lead to enhanced performance. The main
contributions of our work can be summarized as
follows:

* We introduce Modality Recalibration Module
(MRM) for MSA which recalibrates modality
features based on features of other modalities.

* We design a novel unimodal label generation
module (ULGM) to expand MSA to multi-task
learning and jointly train unimodal and multi-
modal tasks.

Not only does our method outperform the pre-
vious SOTA results, but the experiment results
validate the effectiveness of our framework.

2 Related Work

Prior works of MSA mainly focused on improv-
ing fusion between multi-modalities as well as
learning joint representations. In earlier works,
early fusion (Pérez-Rosas et al., 2013; Poria et al.,
2016) and late fusion (Zadeh et al., 2016) were
popular fusion methods to combine the multiple
modalities. Later, more sophisticated methods of
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fusion were proposed using a multi-dimensional
tensor (Zadeh et al., 2017), attention mechanism
(Zadeh et al., 2018a,b), multi-stage fusion (Liang
et al., 2018) and low rank tensors to improve effi-
ciency of fusion (Liu et al., 2018). In (Wang et al.,
2019), the authors dynamically adjusted a word
representation by calculating a shift caused by ac-
companying nonverbal information. More recent
works have focused on applying Transformer ar-
chitecture to better capture interactions between
modalities and learn feature representations. For
instance, (Rahman et al., 2020) was directly built
upon (Wang et al., 2019), but used pretrained Trans-
former based language models to improve the per-
formance. (Tsai et al., 2019) proposed cross-modal
attention to latently adapt a target modality from
source modalities. (Cheng et al., 2021) reduced
the computational burden in (Tsai et al., 2019), by
generating sparse attention matrices and compress-
ing a long sequence to a short sequence. Further, a
multi-task learning approach has been applied in
recent MSA (Akhtar et al., 2019; Yu et al., 2021)
to increase data efficiency.

Taking inspiration from the previous work (Yu
et al., 2021), we expand a learning framework of
MSA to multi-task learning. The benefits of multi-
task learning is that each task helps a learning pro-
cess of other tasks. This allows the model to learn
better generalized representations that are shared
across the tasks. Further, we recalibrate features
of each modality and efficiently model inter-, intra-
modality relationships by adopting the work of (Hu
et al., 2018; Vaezi Joze et al., 2020; Cheng et al.,
2021).

3 Methodology

3.1 Problem Definition

We define the input to the model as I,¢; 4,3 Which
is composed of three types of modalities-text, au-
dio, and video. The goal of our model is to take I
as input and predict a sentiment intensity y € R.
To aid the learning process, our model generates
labels for each modality ys; € R during training.

3.2 Overall Architecture

Our framework consists of multimodal and uni-
modal tasks where they share modality representa-
tions as shown in Figure 1.
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Figure 1: The overall architecture of SUGRM. The y,, y,, and y; are the unimodal annotations generated from our
ULGM based on the human-annotated multimodal label y,,, to enable supervised learning of the unimodal tasks.
The Y4, Yv, Ui, and g, are the predicted sentiment values from the unimodal and multimodal tasks.

3.2.1 Multimodal Task

In the multimodal task, modality features
(F!_ (t.a,0)) are initially extracted from pretrained
BERT (Devlin et al., 2019), COVAREP (Degottex
et al., 2014), and FACET (iMotions, 2013) for tex-
tual, acoustic, and visual information, respectively.
Then these features are passed through Modality
Recalibration Module (MRM) for feature recalibra-
tion. After the features are recalibrated, the final
feature representation of each modality is captured
using Sparse Phased Transformer (SPT).

Modality Recalibration Module. MRM recal-
ibrates modality features using squeeze and exci-
tation (SE) technique (Hu et al., 2018). This par-
ticular idea was studied in the case of CNN in
(Vaezi Joze et al., 2020). Here, we show how SE
can be expanded to the MSA application. MRM
receives FS’ € Rlsxds g9 input, where [, is the se-
quence length and d; is the feature dimension of s-
modality, and squeeze the input along the sequence
length using global average pooling:

l
1 S
Ss(d) = TZFS(l’d)’
S =1

where s € {t,a,v} and d = 1,...,ds. Then the
excitation process is performed to apply differ-
ent weight calibrations for each modality. First,
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squeezed features are concatenated and fed into a
series of a fully connected network and ReLLU to
learn a global multimodal embedding Z:

Z = ReLU(W,[S;; Sa; Sy] + b)) .

Here, the fully connected network reduces feature
dimension. Then we compute excitation signals
using another fully connected network as follows:

E,=W.Z +b;.

The second fully connected network restores the
original feature dimension, adopting bottleneck ar-
chitecture. The reason for this is to reduce the
number of computations and improve generaliza-
tion (Hu et al., 2018). Finally, the input features
are recalibrated through a following gating mecha-
nism:
Fi=2x0(E,) o Ft,

where o(-) is the sigmoid function and ® is the
element-wise product along the feature dimension.
Since the numbers returned by sigmoid function
(between 0 and 1) are multiplied by the original
features, each feature is rescaled based on its im-
portance. Finally, the textual, acoustic, and visual
features after MRM can be described as follows:

F! = MRM(F%0™™) ¢ Rbxds |



where 8™ are the parameters of MRM.

Sparse Phased Transformer. SPT (Cheng et al.,
2021) extracts the final feature representation of
each modality using the recalibrated features. The
motivation behind SPT is twofold: to extract more
informative features by modeling intra- and inter-
modalities (preferred over LSTM?) and to build a
more efficient and lighter model (preferred over
(Cheng et al., 2021)%). SPT alleviates the com-
putational burden of the self-attention mechanism
in the vanilla Transformer. Instead of generating a
full attention matrix, SPT generates a sparse atten-
tion matrix to reduce computational complexity.>
Multimodal SPT is composed of input attention,
cross attention, and self attention. Input attention
(IA) compresses input sequence into hidden states.
Then the hidden states of two different modalities
are interacted through cross attention (CA). Finally,
self attention (SA) refines the feature representa-
tions of each modality. For the technical details
of SPT, refer to (Cheng et al., 2021) on which our
implementation of SPT is based.

We denote the final feature representation for
each modality as follows:

F, = SPT(F};0°*"") e R%

where S PT is the process of [I[A—CA—SA]
repeated 4 times and 0%P! are the parameters of
SPT. Finally, the last element of the sequence is
selected as a sequence representation.

To obtain a fusion representation, we concate-
nate each modality representation and project into
a lower-dimensional feature space R% as follows:

F}, = ReLU(W{"[F}; F,: Fy] + b))

Lastly, the multimodal sentiment is predicted as
follows:
Qm = W2mF :1 + b12n :

3.2.2 Unimodal Task

For the unimodal task, we use the feature represen-
tation of each modality obtained from the multi-
modal task (Fye(y,q,0))- Then we map each feature
representation into the same feature space as R%
(i.e., a common semantic feature space) as follows:

F* = ReLU(W;F, +b).

Three options were considered as a final feature extractor:
LSTM, multimodal Transformer (Cheng et al., 2021), and SPT
(See Table 4).

3The authors of SPT (Cheng et al., 2021) claim that the
number of parameters is reduced to 10% of (Tsai et al., 2019)
which utilizes the vanilla Transformer encoder.
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(ym,) to s-modal label (y;) in a label space: Dy, _. ..

Then the final sentiment prediction from each
modality is obtained through an independent fully-
connected layer:

QSZW5F5*+b§'

The unimodal tasks are trained using supervised
learning, where labels for each modality are ob-
tained via non-parametric Unimodal Label Genera-
tion Module (ULGM):

ys = ULGM (ym, F,,, F7) .

Finally, the multimodal task and three unimodal
tasks are jointly trained.

3.3 ULGM

The goal of ULGM is to generate labels for each
unimodality based on multimodal labels and modal-
ity representations. As shown in Figure 2, our
ULGM is designed based on the notion that the
distance between two features in a common se-
mantic feature space is proportional to the distance
between the corresponding labels in a label space:

L
X Dm%s ?

Dy
where s € {t,a,v}. Our ULGM computes the
offset of unimodal label y, with respect to the mul-
timodal label y,, based on the distance from the
multimodal feature to each unimodal feature. We
consider two factors when computing the offset:
the magnitude and the direction.

Magnitude of offset. To calculate the offset,
we argue that the maximum distance within the
common semantic feature space is proportional to
the maximum distance within the label space. In

CMU-MOSI and -MOSEI datasets, the multimodal



labels range from -3 to +3, meaning the distance
between multimodal features with labels -3 (F};,~3)
and +3 (F*3) must correspond to the maximum
distance within the common semantic feature space.

Therefore, any D . greater than the maximum

m—s
vf;ax = HFJ@+3 - F;;SH:

distance is clipped to D

S DF F
DF o HF’;Z_FS*H’ lfDm%sgDmaxv
m—s I3 .
D, s otherwise,

where Fy,™® and Fy;,® are the mean of F5' and
E*73, respectively, and || - || is L2 normalization.
Based on our notion and the above argument, we
can consider the following relationship from which
we can obtain the magnitude of the offset from a
multimodal label to an unimodal label:

F F _ nlL L
Dmﬁ\s/Dma:p - Dm%s/D73%+3 )
F

DL _ Dm—>s DL
m—s F —3—4+3
D
max

Direction of offset. In order to determine the di-
rection of the offset, we identify the position of the
s-modal feature with respect to the multimodal fea-
ture. To do that, we first take the average of the mul-
timodal features with positive annotations (Fy;")
and negative annotations (F,;, ). Then we locate
the multimodal and the s-modal features within
this realm of feature space as shown in Figure 3.
Using the distance from modality representations

(F e fmta,0}) 1O F;;" and F;;,”, we can determine
the direction of the offset as follows:

.o DY DP
+, if D < D
Direction = £ - if Dy > D
) Do Dn >
.o DP DP
0, if D§ = —DEZ,
where DY = ||F* — F;,"||, D = ||F¥ — Fpi7 ],
Db, = ||F}, — F3'||, and D = ||F}, — Fj7||.

Finally, we obtain the unimodal label y; as follows:

Ym + DL _,¢, if direction is -,

L

Ys = § Ym — Dy, if direction is —,

yM7

Unimodal Label Update Scheme. We update
the generated unimodal labels using a momentum-
based update policy (Yu et al., 2021) as follows:

if direction is 0.

Um fore=1,
ys: e—1 (671) 2 e
f >1,
e+1ys +e+1y3 ore
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Figure 3: An illustration of positions of modality rep-
resentations with respect to the mean of multimodal

representations with positive labels (F;") and negative

labels (F,”) in the common semantic feature space.

where s € {t,a,v} and e is epoch. This scheme
is used to mitigate the instability of labels that are
generated at the beginning of epochs in which the
learning of the modality features is trivial. This
update scheme allows the labels generated in later
epochs to have greater impact than the ones gen-
erated in earlier epochs. After a sufficient number
of iterations, unimodal labels become stabilized,
resulting in a stable training process of unimodal
tasks. As can be seen in Figure 4, the labels stabi-
lize within 15 epochs.

3.4 Objective Function for Training

For the objective function, we investigated three
loss functions that are widely used in regression
tasks: L1 loss, L2 loss, and Huber loss. Based on
our loss ablation study (see Table 8 in Appendix),
we use L1 loss as the objective function for both
multimodal and unimodal tasks. We minimize the
sum of the two loss functions over N training sam-
ples to optimize the entire model as follows:

1 N {t’avv}
L= (i —vml+ D wixlgl—viD),

% s

where the first term corresponds to the multimodal
task, and the second term corresponds to the uni-
modal tasks optimization. Note the loss functions
for the unimodal tasks are weighted by w?, where
w? = tanh(|yt — yi|) (Yu et al., 2021) such that
the model can target the samples with larger differ-
ence between the multimodal label and the gener-
ated unimodal label more rigorously during train-
ing.



4 Experimental Settings

4.1 Datasets

We use the two most popular English benchmark
datasets for MSA: CMU-MOSI (Zadeh et al., 2016)
and CMU-MOSEI (Bagher Zadeh et al., 2018).
CMU-MOSI dataset consists of 2,199 labeled video
clips taken from 93 videos by 89 speakers. The
videos were crawled from YouTube and encompass
opinions on movies, books, and products. Each
video is annotated with sentiment on a [-3,3] range.
CMU-MOSEI dataset is the most comprehensive
dataset for sentiment analysis and emotion recogni-
tion which comprises more than 65 hours worth of
23,453 annotated video segments from 1,000 speak-
ers addressing 250 different topics. Each video is
annotated with sentiment on a [-3,3] range as well
as six discrete emotions: happy, sadness, anger, dis-
gust, surprise, and fear. We only utilize sentiment
values from CMU-MOSETI in this task. See Table
6 in Appendix for the dataset split.

4.2 Baselines

We compare the performance of our model with
previous state-of-the-art MSA models. The super-
script A indicates the proposed method only works
on the aligned settings, while UA indicates the pro-
posed method works on both unaligned and aligned
settings.*

EF-LSTM.A Early Fusion LSTM concatenates
the multimodal features at the input level.

LF-LSTM." Late Fusion LSTM combines
modality-wise decisions using a voting mechanism.

TFN.2 The Tensor Fusion Network (Zadeh et al.,
2017) models intra- and inter-modality dynamics
through multi-dimensional tensors.

RAVEN.* The Recurrent Attended Variation
Embedding Network (Wang et al., 2019) models
nonverbal sequences and dynamically shifts word
representations based on nonverbal cues.

MCTN.A The Multimodal Cyclic Translation
Network (Pham et al., 2019) learns robust joint
representations via multimodal cyclic translations
using a cycle consistency loss.

“Multimodal data in CMU-MOSI and MOSEI are loaded
from different sources which come at different frequencies,
making the multimodal data “unaligned” in terms of sequence
length. (The lengths of text, audio, video segments are 50, 375,
500, respectively for the unaligned dataset.) These unaligned
data have been preprocessed through CMU-Multimodal SDK
(https://github.com/A2Zadeh/CMU-MultimodalSDK) to align
different modalities such that they have the same sequence
length of 50. Note, our method works on both aligned and
unaligned settings.
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MulT." The Multimodal Transformer (Tsai
et al., 2019) uses cross-modal attention to model
interactions between asynchronous modalities and
latently adapt one modality to another.

MAG-BERT.A The Multimodal Adaptation
Gate for BERT (Rahman et al., 2020) is an im-
provement of RAVEN which applies multimodal
adaptation gate at the first layer of the BERT model.

SPT.U* The multimodal Sparse Phased Trans-
former (Cheng et al., 2021) is an improvement of
MulT in terms of efficiency by using a sampling
function to generate a sparse attention matrix.

Self-MM.U The Self-Supervised Multi-task
Multimodal sentiment analysis network (Yu et al.,
2021) generates a unimodal label for each modality
and jointly trains multimodal and unimodal tasks.

4.3 Implementation Details

We trained our framework using NVIDIA TITAN
Xp and Intel 17-9700K. We use the batch size of
32 and Adam as the optimizer for both datasets.
For more implementation details such as hyper-
parameters for each dataset, see Table 7 in Ap-
pendix.

4.4 Evaluation Metrics

We evaluate our model using four metrics:
weighted binary F1 score (F1-Score), binary clas-
sification accuracy (Acc;), Mean Absolute Error
(MAE), and Pearson correlation (Corr). For F1-
Score and Acc,, we report the model performance
in two ways: negative/non-negative (Zadeh et al.,
2017) and negative/positive (Tsai et al., 2019).

5 Results and Analysis

5.1 Quantitative Results

Tables 1 and 2 show the experiment results on the
aligned and unaligned MOSI and MOSEI datasets,
respectively. Our model outperformed all of the
previous SOTA baseline models on all metrics for
the MOSI dataset, and achieved either SOTA or
comparable-to-SOTA results on the MOSEI dataset
for both the aligned and unaligned datasets. Note,
CTC (Graves et al., 2006) was introduced to allow
some models (Wang et al., 2019; Pham et al., 2019)
that originally only work on the aligned dataset
to work on the unaligned dataset in Table 2. Un-
like the previous observation (Tsai et al., 2019),
our model shows greater strength in the unaligned
dataset than the aligned dataset. This is beneficial
in that it allows omission of extra data alignment



. fusion
text

= audio

m— vision

Epoch 2

o . fusion
text

. audio

- vision

. fusion
text

= audio

- vision

Epoch 4

o . fusion w0
text

s audio

m— vision

B fusion
text

mm audio

m— vision

positive

negative

egative

positive

Epoch 10 Epoch 15

. fusion o
text

mm audio

- vision

Epoch 20

. fusion o
text

- audio

m— vision

B fusion
text

- audio

m— vision

negative negative

positive

negative

Epoch 25 Epoch 30

Figure 4: Visualization of the generated unimodal labels update process throughout epochs on CMU-MOSI dataset

step and data to have its inherent trait of unalign-
ment, which could further facilitate real-time senti-
ment analysis.

5.2 Ablation Study

To explore the contributions of the unimodal tasks
in our model, we conducted experiments using
combinations of different unimodal tasks as shown
in Table 3. The general trend of the results shows
that incorporating the unimodal tasks leads to im-
provement in the model performance, which proves
the effectiveness of our model. Particularly, using
all three unimodal tasks along with the multimodal
task resulted in substantial performance gain on
all metrics compared to using the multimodal task
alone on the MOSI dataset. An interesting trend
on the MOSI dataset is that the performance rather
decreased when only one of the unimodal tasks
was added. However, we can observe that the ad-
dition of more than one unimodal task helps the
model to achieve better results. On the other hand,
introducing all the unimodal tasks (M,T,A,V) on
the MOSETI dataset did not show as apparent per-
formance gain as the MOSI dataset. However, we
can easily observe a generally increasing trend in
performance with the addition of unimodal tasks
on the MOSEI dataset.

To compare our ULGM as well as the effective-
ness of our architecture against that of Self-MM
(Yu et al., 2021), we conducted an ablation study
as shown in Table 4. Our model surpassed the
performance of Self-MM via the combination of
MRM, SPT, and ULGM,,;s modules. To study the
effectiveness of each module, we added MRM to
Self-MM, replaced LSTM in Self-MM with SPT
for learning sequence representation, and replaced
ULGMgeit-mm With ULGMg,s. The addition of
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MRM and the replacement of SPT on the MOSI
dataset certainly led to improved performance but
on a limited range of metrics. However, the re-
placement of ULGM,y, significantly increased the
performance on all metrics. Results on the MO-
SEI dataset show a notable performance boost in
all tasks across a wide range of metrics. Particu-
larly, the replacement of SPT, which showed trivial
results on the MOSI dataset, played an important
role in improving the performance on the MOSEI
dataset.

Similarly, we removed or replaced MRM, SPT,
and ULGM,,, to evaluate their contribution to our
model. First, we removed MRM, replaced SPT
with the vanilla Transformer encoder (TE) (Tsai
et al., 2019) and LSTM, and replaced ULGM gy
with ULGMggje.vm- The results in Table 4 predomi-
nantly show that the inclusion of all modules results
in the best performance. Replacing SPT with the
vanilla Transformer encoder and ULGM,,s with
ULGMseit.mM led to an increase in certain metrics.
However, not only the improvement is minuscule
for both replacements, but the opportunity cost for
exchanging computational efficiency with such mi-
nuscule improvement is rather counterproductive
particularly for the SPT —TE replacement.

5.3 Qualitative Results

To evaluate the quality of the generated labels of
each modality, we display four samples from the
CMU-MOSI dataset in Table 5. We observe that
the generated unimodal annotations are generally
in line with the descriptions from the text, acoustic,
and visual information. This further confirms the
efficacy of our ULGM.



Table 1: Results on the aligned CMU-MOSI and CMU-MOSEI datasets. In Acc, and F1-Score, the left side of the
“/” is the “negative/non-negative” method and the right side is the “negative/positive”” method.

MOSI MOSEI
Model

F1-Score Accy MAE Corr F1-Score Accy MAE Corr
EF-LSTM -/75.6 -/75.8 1.053 0.613 -/78.8 -/79.1 0.665 0.621
LF-LSTM -175.4 -176.4 1.037 0.620 -/80.0 -79.4 0.625 0.655
TFN 74.1/75.2 74.8/76.0 0.955 0.649 - - - -
RAVEN -176.6 -/78.0 0.915 0.691 -/79.5 -/79.1 0.614 0.662
MCTN -/79.1 -/79.3 0.909 0.676 -/80.6 -/79.8 0.609 0.670
MulT -/82.8 -/83.0 0.871 0.698 -/82.3 -/82.5 0.580 0.703
SPT -/82.9 -/182.8 - - -/182.8 -/82.6 - -
MAG-BERT  82.4/84.0 82.5/84.0 0.778 0.766 81.7/84.7 81.3/84.8 0.567 0.742
Self-MM 82.3/84.4 82.4/84.5 0.736 0.786 83.2/85.0 82.9/84.8 0.533 0.766
Ours 82.8/84.5 82.8/84.5 0.723 0.798 83.9/85.1 83.9/85.0 0.541 0.758

Table 2: Results on the unaligned CMU-MOSI and CMU-MOSEI datasets. Note that CTC method (Graves et al.,
2006) was employed to EF-LSTM, RAVEN, and MCTN to apply these models on the unaligned setting.

MOSI MOSEI
Model

F1-Score Acc, MAE Corr F1-Score Accy MAE Corr
EF-LSTM+CTC -/74.5 -/73.6 1.078 0.542 -/75.9 -/76.1 0.680 0.585
LE-LSTM -/77.8 -/77.6 0.988 0.624 -/78.2 -/717.5 0.624 0.656
RAVEN+CTC -/73.1 -/72.7 1.076 0.544 -/75.7 -/75.4 0.664 0.599
MCTN+CTC -176.4 -/75.9 0.991 0.613 -/79.7 -/79.3 0.631 0.645
MulT -/81.0 -/81.1 0.889 0.686 -/81.6 -/81.6 0.591 0.694
SPT -/81.3 -/81.2 - - -/82.7 -/82.4 - -
Self-MM 82.8/84.6  82.9/84.6 0.733 0.780 82.0/84.6 81.7/84.7 0.530 0.765
Ours 84.3/86.3  84.4/86.3 0.703 0.800 83.6/84.0  83.7/84.4 0.544 0.748

Table 3: An ablation study on the benefits of the unimodal tasks using the unaligned datasets. The bold numbers
indicate the best performance, and the underlined numbers indicate enhanced performance from introducing the
unimodal tasks to the multimodal task.

MOSI MOSEI
Model

F1-Score Accy MAE Corr F1-Score Accy MAE Corr
M 82.5/84.1 82.5/84.0 0.755 0.779 81.5/84.7 80.9/84.7 0.539 0.759
M,V 81.1/82.1 81.1/82.0 0.774 0.757 79.5/83.7  78.9/83.6 0.543 0.752
MA 81.9/83.6  81.9/83.5 0.764 0.770 82.7/85.2  82.4/85.3 0.532 0.763
M,T 81.0/81.5 80.9/81.4 0.773 0.779 80.8/83.7 80.4/83.8 0.530 0.763
M,AV 83.6/85.0  83.5/84.9 0.731 0.782 81.6/84.4  83.3/84.6 0.533 0.757
M,A,T 82.7/84.2  82.7/84.2 0.804 0.762 82.9/84.5 82.8/84.8 0.535 0.752
MV, T 83.6/84.7 83.5/84.6 0.748 0.778 82.9/82.7  83.4/83.4 0.540 0.748
MTAV 84.3/86.3 84.4/86.3 0.703 0.800 83.6/84.0  83.7/84.4 0.544 0.748

Table 4: An ablation study on the contribution of MRM, SPT, and our ULGM using the unaligned datasets. The
bold numbers indicate the best performance, and the underlined numbers indicate enhanced performance compared
to the baseline model. Superscript A, RP, and RM indicate added, replaced, and removed module, respectively.

Baseline Added/Removed/ MOSI MOSEI
Replaced Module  F1_Score Accy MAE  Corr F1-Score Accy MAE  Corr

- 82.8/84.6 82.9/84.6 0.733 0.780  82.0/84.6  81.7/84.7 0.530 0.765

Self-MM MRM* 82.4/84.1 82.5/84.2 0.718 0.791  83.5/85.0  83.3/85.1 0.542 0.756

SPTR? 82.8/84.3 82.8/84.3 0.735 0.785  82.7/85.6  82.3/85.7 0.534 0.771
ULGMoys®* 83.5/85.6 83.7/85.7 0.710 0.790 83.0/85.3  82.7/85.3 0.538 0.757

84.3/86.3 84.4/86.3 0.703 0.800 83.6/84.0 83.7/84.4 0.544 0.748

Ours MRMRM 81.5/82.9 81.5/82.8 0.761 0.767  79.2/83.4  78.5/83.4 0541 0.746
TERP 84.2/85.6 84.1/85.5 0.720 0.802 82.1/81.9  83.8/82.8 0.553 0.750
LSTMR? 79.2/81.7 79.5/81.9 0.801 0.740  77.3/82.1  76.5/82.0 0.556 0.744

ULGMsarmm®®  82.1/833 82.1/83.2 0.726 0.797 0.79.5/84.1 78.8/84.0 0.541 0.756
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Table 5: Four samples from the CMU-MOSI dataset. It shows the predictions from each modality as well as the
generated unimodal annotations (S¢, where S € {T', A, V'}) during training.

Text Acoustic Visual Prediction Annotation
"Everytime that was like Fast paced slightly M: 0.1, T: 0.1 M: 0.8, Tg: 0.6
a jump everyone jumped,” slightly thrilled smiling A:0.5,V:0.7 Ag: 0.9, Vg: 0.7
"I was really hoping that Monotonic and Slightly M:-0.1, T:-0.2 M:-0.8, Tg: -0.3
this one be just as good." emphasis on “really” frowning A:05,V:02  Ag: 0.0, Vg: -0.7
"Looks exactly the same as Relaxed Squinting eye and M:0.2, T: -0.1 M: 0.2, Tg: 0.1
this character in Defiance." and firm raising eyebrows A:0.5,V:0.3 Ag: 0.7, Vg: 0.1
"I don’t know what they High pitched and smiling and M:1.1,T: 0.3 M: 1.8, Tg: 0.9
are complaining about it." emphasis on “what”  head roll on “what”  A: 1.7, V: 1.6 Ag: 1.5, Vg: 1.5

6 Conclusion and Future Work

In this paper, we proposed SUGRM, a novel frame-
work for multimodal sentiment analysis (MSA)
which incorporates unimodal subtasks to aid the
learning process of the multimodal task. To en-
able this, we first designed Modality Recalibration
Module (MRM) so that features of each modal-
ity are recalibrated based on the features of other
modalities. Then, we designed a unimodal label
generation module (ULGM) based on the notion
that the distance between two features in a common
semantic feature space is proportional to the dis-
tance between the corresponding labels in a label
space. From this, ULGM was able to generate uni-
modal annotations from the multimodal label in a
self-supervised manner, which saved a tremendous
amount of human labor. The experiment results
validated our notion as well as the reliability of the
unimodal labels generated from our ULGM.

For future work, expanding the framework to
jointly train sentiment and emotion tasks could
be worthwhile. Recently (Akhtar et al., 2019) pro-
posed that MSA and Multimodal Emotion Recogni-
tion are closely correlated; therefore their tasks can
be carried out jointly. Applying contrastive learn-
ing for different emotion classes and exploiting
correlation between sentiment and emotion could
help achieve better results in both tasks.

Limitations

A limitation of our work is that the initial features
for audio and video are extracted using off-the-
shelf frameworks: COVAREP and FACET. There-
fore these features are fixed and cannot be further
fine-tuned unlike the text features which are fine-
tuned during training. Working with fixed features,
compared to dynamic features which can be ad-
justed via learning, inevitably results in subpar

performance. We expect this limitation can be
alleviated by making our framework completely
end-to-end by using raw audio and video data and
introducing learning-based audio and video fea-
ture extraction modules. However, using raw data
can exponentially increase memory usage which
is another challenge that needs to be considered.
Further, by introducing additional MRM and SPT
modules, our method took approximately twice the
time as the (Yu et al., 2021) during inference using
the unaligned MOSI dataset.’> Double in inference
time hinders the community’s strive to build faster
and more compact models.
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A Appendices
A.1 Dataset Split

Table 6: Train, validaton, test set split for CMU-MOSI
and CMU-MOSEI datasets.

Dataset # Train # Valid # Test # All

MOSI 1284 229 686 2199
MOSEI 16326 1871 4659 22856

A.2 Hyper-parameter Settings

Table 7: Hyper-parameters used in the two datasets. The
second half of the hyper-parameters (bottom row) are
for the SPT.

Hyper-parameter CMU-MOSI CMU-MOSEIL

Batch size 32 32
LR for BERT 5e — 5 5e —5
LR for others le — 2 le—3
output dropout 0.3 0.1

# Encoder layer 4 4

# Head 8 4
Embed size 32 32
Attn dropout 0.3 0.1
ReLU dropout 0.3 0.1
Residual dropout 0.3 0.1
Embed dropout 0.3 0.2

A.3 Loss Function Ablation Study

Table 8: Loss function ablation study on the unaligned
MOSI dataset. In Acc, and F1-Score, the left side of
the “/” is the “negative/non-negative” method and the
right side is the “negative/positive” method.

Loss type F1-Score Accy MAE  Corr

L1 loss 84.3/86.3 84.4/86.3 0.703 0.800
L2 loss 80.8/81.0 80.8/81.0 0.832 0.737
Huberloss  78.1/79.2  78.2/79.2 0.818 0.744
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Abstract

Searching troves of videos with textual descrip-
tions is a core multimodal retrieval task. Owing
to the lack of a purpose-built dataset for text-to-
video retrieval, video captioning datasets have
been re-purposed to evaluate models by (1)
treating captions as positive matches to their
respective videos and (2) assuming all other
videos to be negatives. However, this methodol-
ogy leads to a fundamental flaw during evalua-
tion: since captions are marked as relevant only
to their original video, many alternate videos
also match the caption, which introduces false-
negative caption-video pairs. We show that
when these false negatives are corrected, a re-
cent state-of-the-art model gains 25% recall
points—a difference that threatens the validity
of the benchmark itself. To diagnose and miti-
gate this issue, we annotate and release 683K
additional caption-video pairs. Using these, we
recompute effectiveness scores for three mod-
els on two standard benchmarks (MSR-VTT and
MSVD). We find that (1) the recomputed met-
rics are up to 25% recall points higher for the
best models, (2) these benchmarks are nearing
saturation for Recall@10, (3) caption length
(generality) is related to the number of pos-
itives, and (4) annotation costs can be miti-
gated through sampling. We recommend re-
tiring these benchmarks in their current form,
and we make recommendations for future text-
to-video retrieval benchmarks.

1 Introduction

Text-to-video retrieval (TVR) is a challenging multi-
modal retrieval task (Hu et al., 2011) with practical
applications ranging from web search to organiz-
ing media collections (Lew et al., 2006). To mea-
sure TVR model improvement—despite a dearth
of purpose-built TVR benchmarks—researchers
created benchmarks by re-purposing video cap-
tioning datasets such as MSR-VTT (Xu et al.,

*Correspondence to me@pedro. ai
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Figure 1: MSR-VTT and MSVD have one positive video
per caption (each video’s caption). Captions often match
multiple videos, leading to false negatives. When mod-
els rank false negatives highly, model quality is under-
stated (full example in Appendix Figure 5). This leads
to evaluations where reported metrics do not reflect their
true value and are therefore not internally valid (§2.2.1).

Test Videos:
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2016), MSVD (Chen and Dolan, 2011), and Activi-
tyNet (Heilbron et al., 2015; Krishna et al., 2017).
Early work established an evaluation paradigm that
treated captions as search queries over the collec-
tion of captioned videos (Zhang et al., 2018; Yu
et al., 2018; Gabeur et al., 2020); each caption and
their corresponding video are positives (relevant)
during retrieval, and all other caption-video pairs
are negatives (irrelevant).

However, even a cursory inspection of videos
and captions reveals many additional positive
caption-video pairs (§2). In current benchmarks,
true positives that are not the video’s original cap-
tion are falsely assumed to be negatives. Wray
et al. (2021) first identified this fundamental, false-
negative problem in TVR evaluation; our work
builds on this by quantifying the absolute metric
differences that false negatives induce (see discus-
sion in §6). Accurate absolute metrics are cru-
cial in industrial settings where deployment cri-
teria are often defined by minimum quality tar-
gets. These False Implicit Relevance labels intro-
duce measurement error—e.g., CLIPACLIP’s (Luo
et al., 2021) Recall@1 is underestimated by 25%
points (§2.2). We estimate measurement error by
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annotating 683K additional caption-video pairs,
which we call the FIRE & dataset (§3).!

A core measurement principle is that operational-
ized metrics should strongly correlate to the quan-
tity they intend to measure (Mathison, 2004; Liao
et al., 2021). For example, Recall @K operational-
izes the intent to measure retrieval quality. Label
errors are a common way that measurements are
invalidated (Bowman and Dahl, 2021; Northcutt
et al., 2021). Our work shows that since TVR met-
rics are computed with false negative label errors,
Recall @K does not accurately reflect retrieval qual-
ity, which negates the measurement’s validity. In
the remainder of this paper, we posit rationales of
why models gain different score boosts (§4.1) and
estimate how useful the FIRE dataset is for evaluat-
ing future models (§4.2 and §4.3).

To conclude, we review the implications of our
findings. Looking to the past, retrieval effective-
ness has been understated for some models, which
gives an overly pessimistic view of recent ad-
vances (Bowman, 2022). Critically, our results
also suggest that the MSR-VTT benchmark is near-
ing saturation and should be retired soon in favor
of a purpose-made benchmark. Looking outward,
we identify structurally similar benchmarks—such
as photo retrieval—that likely also have the same
False Implicit Relevance problem. A successful
benchmark should avoid the pitfalls we identify in
this paper, be faithful to the real-world user task it
targets (Rowe and Jain, 2005; de Vries et al., 2020),
improve reproducibility, and evolve (§7).

2 Text-to-Video Retrieval Evaluation

This section reviews current TVR evaluation prac-
tices using two concepts: internal validity (Camp-
bell, 1957, §2.2.1) and construct validity (Tague-
Sutcliffe, 1992, §2.2.2). Internal validity refers to
whether an evaluation reliably establishes a cause-
effect relationship between the measured depen-
dent variable and the independent variable to be
estimated (Brewer and Crano, 2014; Liao et al.,
2021). In TVR evaluations, false negatives con-
found model quality and label errors (i.e., is the
model wrong or is the label wrong?) which makes
reliably establishing cause (model quality) and ef-
fect (retrieval score) difficult. Construct validity
“pertains to the degree to which the measure of a
construct sufficiently measures the intended con-
cept” (O’Leary-Kelly and J. Vokurka, 1998)—in

"Data and Code: pedro.ai/multimodal-retrieval-evaluation.
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TVR evaluations, an important intended concept is
real-world search quality. Construct validity asks:
can we expect that measuring retrieval quality with
the benchmarks at hand generalizes to real-world
search quality? This section argues that TVR evalu-
ations are not internally valid or construct valid.

2.1 Model Evaluation

Multimodal retrieval evaluations typically focus
on two tasks: text-to-video and video-to-text re-
trieval. The first task’s goal is—given a text query—
to retrieve videos that match; the second task’s
goal is—given a video—to retrieve the matching
queries. The applications of text-to-video search
are straightforward: it is useful for searching the
web and personal media.? Since the applications
of TVR are clear, and the false-negative problem is
present in both tasks, here we focus on TVR.

The MSR-VTT and MSVD Datasets: It is stan-
dard for TVR evaluations (Zhang et al., 2018; Yu
et al., 2018; Gabeur et al., 2020) to report on MSR-
VTT and MSVD, so in the interest of comparabil-
ity, we use these benchmarks too. Although these
datasets were originally meant for evaluating video
captioning models, they have been repurposed for
TVR (Zhang et al., 2018; Gabeur et al., 2020). In
this paper, we focus our investigation on MSR-VTT
and MSVD since they are the most prevalent in
prior work. MSR-VTT consists of 10K videos, 1K
of which are in the test split. Each video has twenty
captions, but for evaluation, only one (arbitrarily
chosen) caption is used. MSVD contains 1,970
videos, 960 of which are in the test split. Videos
have about forty captions; unlike with MSR-VTT,
retrieval quality for each caption is evaluated.

Fundamentally, both MSR-VTT and MSVD are
video captioning datasets—not retrieval datasets.
MSVD addressed the lack of standard benchmarks
for paraphrasing (Chen and Dolan, 2011). In the
original task, annotators selected short clips from
YouTube, watched the clip, and wrote a sentence
describing its contents. The process was repeated
for each video, with each sentence being written by
a new annotator. This conditional independence—
given the video—resulted in a diverse set of cap-
tions. MSR-VTT captions were collected similarly:
independent annotators captioned the same video.
Videos were sourced from the output of a commer-
cial video search engine (Xu et al., 2016). In both

The applications of video-to-text retrieval—that are not
simply captioning—are not clear to us.
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datasets, video captions are used as search queries
and labeled relevant to the original video.

Metrics: Previous TVR work (Zhang et al., 2018;
Yu et al., 2018; Gabeur et al., 2020; Luo et al., 2020;
Zhu and Yang, 2020; Li et al., 2020; Xu et al., 2021;
Park et al., 2022) reports Recall@K (R@K)3 and
sometimes supplemental metrics such as median
or mean rank of the first correct result. However,
R@K in TVR work differs from the textbook infor-
mation retrieval definition (Manning et al., 2008, p.
155) where

R@K — # retrieved positives in top K

~ #total positives in collection M
In TVR work, query retrieval results are scored one
if a relevant video is in the top K and zero other-
wise. The traditional definition of Recall@K only
reduces to this when there is exactly one positive
in the collection but is not comparable when there
are multiple positives per caption—as in this case.

With the difference now salient, we avoid confu-
sion by defining a new quantity Correct @K (C@K)
which is 1 if at least one positive is in the top K
and 0 otherwise. Correct@K naturally reduces to
Recall@K—as defined in prior work—when there
is exactly one positive, but handles the additional
positives in our work. We recommend reporting
Correct@K as well as mean average precision (Su
et al., 2015; Mitra and Craswell, 2018, MAP), a
metric widely used in Information Retrieval.

The drawback of Correct@K—shared by me-
dian (or mean) rank to first positive—is that it does
not directly factor in rank order when there are mul-
tiple positives in retrieved results, only coarsely
factoring in rank via K value. MAP (Mitra and
Craswell, 2018, p. 19) is calculated by taking the
mean of
Z<i7v)eRq Prec,; x rel,(v)

> vey Telg(v) @
for each test query ¢ where ¢ is a video’s position
in the ranked list R, of videos, v is a video in
collection V, and rel,(v) denotes whether query ¢
is relevant to video v. Intuitively, this translates to
calculating the mean of Precision@K for every K
where a positive occurs in ranked predictions 2.
In all experiments, we report Correct@K and MAP.

AvgPrec, =

2.2 Questioning the Validity of Evaluations

In this section, we experimentally argue that cur-
rent TVR evaluations are not internally valid. Then

3Typical K values include 1, 5, 10, and 50.

49

we argue that they are not construct valid by con-
sidering actual use-cases for video search.

2.2.1 Internal Validity

If an evaluation metric is internally valid (Liao
et al.,, 2021), then model effectiveness (cause)
should be accurately and reliably reflected in met-
rics (effect) (Brewer and Crano, 2014). A central
hypothesis of this paper is that the prevalence of
false negatives invalidates the cause-effect relation-
ship between measured model effectiveness and
actual effectiveness—i.e., that correcting false nega-
tives will significantly change metrics.*

To test this hypothesis, we build the FIRE dataset,
which Fixes Implicit Relevance Errors. We de-
tail the dataset later (§3), but in short, we take
strong retrieval models from the past few years
and annotate their top ten predictions on both
MSR-VTT and MSVD. This process—called system
pooling—has been used for decades in information
retrieval (Spark-Jones, 1975) and, by construction,
eliminates implicit false negatives.> For MSR-VTT,
we collect annotations from TeachText (Croitoru
etal.,2021), Support-Set Bottlenecks (Patrick et al.,
2021, ssB), and cLIP4CLIP (Luo et al., 2021) mod-
els; for MSVD, we collect annotations from Teach-
Text and CLIP4CLIP models.®” Next, we compute
model scores using the original positives and com-
pare them to scores calculated with both the origi-
nal positives and the new positives in FIRE.

Table 1 clearly demonstrates that FIRE annota-
tions reveal large metric differences in both MSR-
VTT and MSVD. For example, the C@1 score of
CLIP4CLIP is understated by 25% points, and its
C@10 score arguably saturates the benchmark at
95.7%. Even “small” differences such as those for
TeachText and SSB are on par with the differences
used to claim state-of-the-art results. False nega-
tives directly cause high measurement error, which
invalidates the internal validity of the benchmark.

“We do not see rank changes in our three models, but score
differences suggest that ranks may change with more models.

By implicit, we mean false negative from the lack of
labeling and presuming non-positives are (implicitly) negative.
There may still be false negatives arising from human error
during annotation.

®We prioritize models that are (1) publicly available and
(2) have sufficient documentation to reproduce.

7 Annotating MSR-VTT predictions translates to 1,000 * 10
= 10K annotations since only one caption per video is used.
This is easy compared to MSVD annotation, which uses tens
of captions per video.



Dataset Metric  TeachText SSB CLIP4CLIP

MSR-VIT C@1 24.1 (23.3+0.800)% 27.3 (26.8 + 0.500)% 67.4 (42.4 +25.0)%
MSR-VIT C@5 53.2 (50.9 +2.30)% 55.9 (54.5 + 1.40)% 90.7 (70.4 + 20.3)%
MSR-VTIT C@10 67.0 (64.8 +2.20)% 68.9 (66.3 +2.60)% 95.7 (80.2 + 15.5)%
MSR-VTT AP 36.1 (35.8+0.296)% 39.3(39.2+0.0374)% 69.5 (54.9 + 14.7)%
MSVD Ce@l 34.7 (19.6 + 15.2)% Not Annotated 65.3 (46.6 + 18.8)%
MSVD C@5s 64.7 (48.9 + 15.8)% Not Annotated 89.6 (76.8 + 12.8)%
MSVD C@10 76.1(63.9+12.2)% Not Annotated 94.0 (85.4 + 8.61)%
MSVD AP 443 33.1+11.2)% Not Annotated 71.3(59.7+11.6)%

Table 1: The table shows the impact of FIRE annotations on MSR-VTT and MSVD text-to-video retrieval metrics. “A
(B + C)” has metrics computed with FIRE positives (A), only original positives (B), and the delta (C). The deltas
emphasize the deleterious effects of false negatives: CLIP4CLIP’s C@1 on MSR-VTT is understated by 25% points.

2.2.2 Construct Validity

In addition to problems with internal validity, we
posit that TVR evaluations are also not construct
valid (Cronbach and Meehl, 1955; O’Leary-Kelly
and J. Vokurka, 1998). Construct validity is re-
lated to “how closely our evaluations hit the mark
in appropriately characterizing the actual antici-
pated behaviour of the system in the real world or
progress on stated motivations and goals for the
field” (Raji et al., 2021). What is the real-world
use of text-to-video retrieval (or alternatively, the
field’s motivations)? Consider the most straight-
forward answer: that such systems will be used by
users to search through video collections, whether
on the web or in personal collections. First, search
queries issued by real users are very likely not sim-
ilar to captions written by crowd annotators; this is
easily observed by inspecting captions in Table 5
and Appendix Table 6. Second, the video distribu-
tion is unlikely to reflect real use-cases as they were
selected by annotators or are search results from
seed queries. Due to these problems, it seems un-
likely that the evaluations are construct valid, and
future benchmarks should improve this by building
evaluations that match the intended use of models—
i.e., be ecologically valid (de Vries et al., 2020).

3 FIRE Dataset Collection and Validation

Next, we describe and analyze the FIRE dataset.

3.1 Annotation Task and Dataset Collection

In the FIRE annotation task, annotators mark
whether the displayed caption is relevant to the
displayed video. Implicitly, the caption’s video is
relevant to it, but how do we judge whether another
arbitrary video is relevant? In other words, how
should annotators mark whether a caption is rele-
vant to a video? In both datasets (§2.1), the caption
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must be completely consistent with the video; oth-
erwise, it would not be an accurate caption. There-
fore, we enforce the same condition in our task to
preserve the original relevance semantics.®
Annotators are instructed to mark a caption as
relevant to a video only if every element men-
tioned in the query could be reasonably consid-
ered present. Elements included persons, objects,
locations, and activities, as well as quantifiers, qual-
ifiers, and adjectives. Raters are given some leeway
to use interpretation and inference but instructed to
err in favor of not relevant if the caption is ambigu-
ous or vague. For example, for the caption “a boy
playing the violin,” the video must show a boy who
is playing the violin, not a video of only violins or
a video with only a boy. Screenshots of the anno-
tation interfaces and details of sensitive category
handling are in Appendix B. Complete annotation
guidelines are included in supplemental materials.
To select caption-video pairs to annotate, we
obtain the top ten MSR-VTT and MSVD test set
predictions from three models: CLIP4CLIP (Luo
et al., 2021), sSB (Patrick et al., 2021), and Teach-
Text (Croitoru et al., 2021). For TeachText, we use
model checkpoints available on their webpage. For
CLIP4CLIP and SSB, checkpoints are not available,
so we train new models and verify that retrieval
quality is on par with the literature (see Table 1).
Table 2 summarizes the resulting FIRE dataset.
During data collection, 683K labels were collected
across a set of 579K unique caption-video pairs.
Some duplication was intentional: we obtained a
second label for 10% of annotations, and if the la-
bels disagreed, we collected a third label to resolve
the disagreement. Elsewhere, duplication was unin-
tentional: for MSVD we did not deduplicate caption-
video pairs between two models, so where the pre-

8Requiring complete matches makes the annotation task
easier by eliminating ambiguous partial match cases.



Dataset #Pairs Percent # Labels
MSR-VTT 24,183 100% 24,507
L Agreement 24,167 99.9% -
L Relevant 2,855 11.8% -
L Irrelevant 21,312 88.2% -
L Disagreement 16  0.0662% -
MSVD 555,391 100% 659,126
L Agreement 553,832 99.7% -
L Relevant 39,909 7.21% -
L Irrelevant 513,923 92.8% -
L Disagreement 1,559 0.281% -

Table 2: The FIRE dataset is composed of labels for
MSR-VTT and MSVD text-video pairs. The positive-to-
negative ratio is skewed, reflecting that queries do not
match most videos. We multiply annotate a subset to
compute annotator agreement rates and Krippendorft’s
o. Agreement on MSR-VTT was .931 with o = .691
and on MSVD was .958 with a = .798. Appendix C
disaggregates agreement rates which are consistent.

dictions overlapped, we obtained additional labels.
Fortunately, this provided an unexpected opportu-
nity to further validate dataset quality.

3.2 Dataset Quality Validation

Before, throughout, and after the collection, we
took steps to collect high-quality data and validate
its quality. The annotation task was completed by
a team of one hundred raters specifically trained
to review caption-video pairs and assess relevance.
These annotators completed a 1,000 job training
queue, which was reviewed by data quality leads
and this paper’s authors. This allowed annotators
to learn to annotate according to our guidelines,
request clarification to the guidelines, and request
tooling improvements. Annotators could also es-
calate tasks for being too ambiguous or confusing,
which occurred less than 0.0001% of the time.

After the dataset was collected, we computed
three measures of quality in Table 2: (1) the rate
that judgments resolved to a label (Percent), (2)
the degree to which examples with multiples la-
bels agreed (Agreement), and (3) the Krippendorff
alpha score amongst examples with multiple la-
bels (Krippendorff, 2004). Caption-video pairs re-
solved to a label 99.9% of the time in MSR-VTT and
99.6% of the time in MSVD. Agreement in both
datasets exceeded 90%, and the Krippendorff score
suggests reasonable agreement as well. Based on
this analysis, we see no evidence of data quality
issues. The next section digs deeper into FIRE and
suggests explanations for the observed phenomena.
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Dataset Models Overlap RBO
MSR-VTT C4C & sSB  0.0638 0.0568
MSR-VTIT C4C & TT 0.0610 0.0509
MSR-VTT TT & SSB 0.440 0.231
MSVD C4C & TT 0411 0.211

Table 3: Annotated predictions of one model boost the
score of another model when predictions overlap. In
MSR-VTT, there is little overlap between CLIP4CLIP and
other models; there is far more overlap in MSVD.

Model Data C@1 C@5 C@l10
CcLIP4cLIP  All 0.674 0907  0.957
cLip4cLip New 0430 0.713 0.812
TeachText  All 0.241 0.532 0.670
TeachText New 0.239 0.527 0.663
SSB All 0.273 0.559  0.689
SSB New 0271 0.553 0.679

Table 4: We compare C@K of a MSR-VTT model: (1)
with all annotations (All) and (2) without the model’s
annotated predictions to emulate model development
(New). cLIP4CLIP exhibits large differences.

4 Analysis Experiments

The difference FIRE makes on metrics (Table 1) is
striking, which begs the question: why are there
such large differences? We suggest explanations
for these differences (§4.1) while investigating how
these metrics vary under commonplace evaluation
settings such as new model development (§4.2).

4.1 Why Are Score Boosts Not Uniform?

FIRE-based metrics are interesting for at least two
reasons: (1) the magnitude of difference and (2) the
non-uniformity of boosts. Specifically, CLIP4CLIP
has a larger boost than TeachText and SSB on MSR-
VTT. First, we investigate the degree of prediction
overlap between models. When predictions over-
lap, the models share the boost. Likewise, when
they do not overlap, there is an opportunity for dif-
fering boosts. Table 3 shows this: on MSR-VTT,
CLIP4CLIP and the other two models have little
overlap; in contrast, TeachText and SSB have sub-
stantial overlap and their boosts are of roughly the
same magnitude. Overlap is computed between the
top ten predictions of each model using simple over-
lap and rank-biased overlap (Webber et al., 2010,
RBO).” As we might expect based on CLIP4CLIP

°If the ordering of predictions amongst the top ten did not
matter, the overlap would be acceptable. However, as in most
IR settings, we do care about the order so use a rank-aware
metric like RBO.



and TeachText having large boosts on MSVD, their
predictions also overlap. This mechanically ex-
plains the difference but fails to explain “why?”

We test the hypothesis that shorter queries
have more positives because they are less spe-
cific (i.e., general) and speculate that differences in
cLIP4cLIP and TeachText pre-training could make
CLIP4CLIP fare better on general queries. Intu-
itively, shorter captions should be less specific and
therefore match more videos, so models that handle
general captions well should benefit the most. Ta-
ble 5 and Appendix Table 6 validate this intuition
by showing MSVD and MSR-VTT captions. The cap-
tions are sampled from the shortest 100 captions,
median length captions, and longest 100 captions.

First, we empirically validate that short captions
have more positive videos. Figure 2 shows that
longer captions have fewer positive videos while
shorter captions have more. By construction, since
we find only positives if a model predicts them,
these are where models make gains.

Figure 3 takes the next step and compares model
accuracy as a function of caption length. For each
bin of caption lengths (e.g., captions of length zero
to twenty characters), we show the proportion of
whether both CLIP4CLIP and TeachText are correct,
neither are correct, or only one is correct. Empiri-
cally, we observe that CLTP4CLIP makes the largest
gains from accounting for false negatives with FIRE
when queries are short—whether this is due to short
queries containing more positives or CLIP4CLIP
handling these better is difficult to discern. Al-
though it is difficult to validate, our best, educated
guess at a causal reason for CLIP4CLIP finding
more positives in MSR-VTT is that its image-text
backbone, CLIP (Radford et al., 2021), was trained
with text that contains many general captions.

4.2 Does System Pooling Generalize?

Although system pooling eliminates (implicit) false
negatives, it comes with the substantial drawback
that every new model must have its predictions
annotated—otherwise, the results are potentially
biased against the new model due to the possibil-
ity of false negatives in novel predictions (Yilmaz
et al., 2020).'% System pooling has traditionally
been used in synchronized shared tasks where all
models are submitted by a deadline and evaluated

19Tf a model predicts a video that no prior model does and
it is a false negative, then the model’s effectiveness will be un-
derestimated. Yilmaz et al. (2020) study this when comparing
traditional and deep learning IR systems.
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at the same time, as in the Text REtrieval Confer-
ences (TREC) in IR.!! However, the trend in ma-
chine learning and NLP is for continuously running
or even dynamic benchmarks (Kiela et al., 2021).
Beyond benchmarking, even the development of
new models is affected since gains from improved
modeling may be understated. The question then is:
how large is this bias, and how fast does it decrease
with the number of pooled models?

The magnitude of the bias is affected by two fac-
tors: (1) the percent of model predictions that do
not exist in pooled annotations and (2) the preva-
lence of false negatives in this subset.'> While Ta-
ble 3 captures prediction overlap between pairs of
models, it does not capture the setting where some
number of models have annotated predictions, and
we wish to test a new model. Table 4 calculates (1)
model scores when using all annotated predictions
versus (2) model scores using only annotated pre-
dictions from the other two models. In this small
three-model experiment, the bias is unfortunately
still significant (24.4% for C@1) for the best model
(crLip4cLipr). Thus, the degree to which the FIRE
dataset will mitigate the false negative problem in
new model development is dependent on the simi-
larity of new models to current ones. The general-
izability also depends on the number of unknown
positives, which we indirectly study by plotting the
ranks of positive videos (Appendix G).

4.3 Mitigating Annotation Costs by Sampling

A limitation of our method is that until existing an-
notations include most positives, our method either
disadvantages new models or introduces non-trivial
annotation costs. Indeed, the costs of exhaustive
annotation in our work are substantial, but exhaus-
tive annotation is also excessive if the goal is only
to (robustly) estimate model scores. Instead, we
propose that future work need only annotate the
top 10 predictions from N examples in the evalu-
ation data. But how large should V be so that we
can be confident that the difference between model
scores is statistically significant? In our next exper-
iment, we use bootstrap sampling to characterize
the relationship between N and the effect size cor-
responding to a statistically significant difference
at the 95% confidence level.

In our bootstrap sampling experiment, we treat
the 27,763 MSVD test examples as a sample from

11https: //trec.nist.gov

12See Appendix F for analysis of the number of known
positive videos per query.


https://trec.nist.gov

MSVD Short Length Captions

MSVD Median Length Captions

playing panda
some work

a man

a baby

jumping dachsund
naah
amanplaysaguitar
a woman

camp

plying music

a gymnast falls off a balance beam
a person is riding a horse

a girl is riding a bicycle

two men are pushing an airplane
the turtle is playing with the cat
piano is played by an artist

the girl put stickers on her face

a boy is reading a card

a little boy is playing golf

a man is slicing a tomato

MSVD Long Length Captions

a man holding an open umbrella jumps across a wooden stand in a park and then does a summersault after kicking a wall
a man in a jail cell motions to a man in another cell who shows the first man his middle finger

a bowling man picks up a spare in his lane and manages to knock over the one remaining pin in the lane to his right

a woman is exercising by stepping from right to left and then from left to right while swinging her arms back and forth

a man wearing a black cape is walking toward a group of people and a man in the group is shooting at him with a pistol

Table 5: This table shows three sets of MSVD captions sampled from: (1) the 100 shortest captions, (2) median
length captions, and (3) the 100 longest captions. As also observed in MSR-VTT captions (Table 6), short captions
are general (e.g., “a man”) compared to the longest captions.

a population.!> We characterize the population

distribution through bootstrap re-sampling of the
original sample. Specifically, we estimate the abso-
lute difference in model scores that correspond to a
statistically significant effect size (i.e., score differ-
ence) at the 95% confidence level. For each sample
size N € [500, 1000, 3000], we (1) re-sample N
examples from MSVD evaluation data, (2) calcu-
late scores on the re-sample, (3) repeat this 10,000
times, (4) average the scores then calculate the ab-
solute value of the difference between the average
score and score calculated with the full dataset,
and finally (5) plot the distribution and score cor-
responding to the 95% percentile. The experimen-
tal results (Figure 4) demonstrate that annotation
volumes of 1,000 detect statistically significant dif-
ferences when C@1 differs by 0.029. The results
demonstrate that (1) annotating a subset of test ex-
amples detects absolute differences of one absolute
point, and (2) the number of annotated test predic-
tions varies based on the metric of interest.

5 Recommendations for Benchmarks

Towards improving TVR evaluations, we make rec-
ommendations for both current and future bench-
marks. This paper only investigated the effects of
false negatives in MSR-VTT and MSVD. However,
it is likely that other similarly constructed bench-
marks exhibit the same problem, and testing this
is important. Second, we show that for MSR-VTT

BMSR-VTT is small. To avoid convergence to the sample
mean, bootstrap sizes need to stay low.
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and MSVD, certain metrics such as Correct@10
are potentially saturated since improvements above
CLIP4CLIP’s 95.7% and 94% are plausibly noisy.
Consequently, since the remaining gains reside in
re-ranking the top K, the community should con-
sider retiring these evaluations. Third, the intro-
duction of multiple positives and use of various
K values makes mean average precision attractive
since: (1) it factors in preference for correctness at
higher ranks and (2) it handles multiple positives.

It is difficult to recommend that model develop-
ers exhaustively annotate model predictions. This
suggests a future where query or video set size
is a trade-off between annotation load and evalu-
ation quality. For example, one might choose to
trade-off annotation load with statistical power to
differentiate between models (Card et al., 2020).
TREC-style, annual shared tasks are one model for
this (Voorhees, 2019; Church and Hestness, 2019);
instead of building a monolithic benchmark that
becomes overfit over time (Blum and Hardt, 2015;
Anderson-Cook et al., 2019), stakeholders develop
evaluations that evolve with research objectives.

Looking forward, TVR evaluation would ben-
efit from: (1) a purpose-built benchmark that is
grounded in an actual use case so as to be eco-
logically valid (de Vries et al., 2020) and (2) cen-
tralized evaluation by submitting runnable models
to shared infrastructure such as Dynabench (Kiela
et al., 2021). This would improve reproducibil-
ity, which was a limiting factor in selecting which
model predictions to reproduce in this paper. This
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Figure 2: This figure shows the relationship between the number of positive videos and the length of captions in
words for MSR-VTT and MSVD. We show a log-scale density heatmap binned by the number of positive videos and
caption length; on the margins, are histograms. From this figure, we can infer that: (1) if a caption is long, it is less
likely to have many positive videos, and (2) if a caption is short, then the number of positive videos can vary widely.

also makes calculating statistical tests easy (Etha-  low-quality captions but differ by identifying single
yarajh and Jurafsky, 2020), which are often not  query tasks as the root problem (as opposed to false
reported (Dror et al., 2018; Dodge et al., 2019).  negatives) and recommend multi-query evaluation
TVR modeling has advanced enough to demand  where users make followup refinement queries.

better benchmarks for measuring future progress. While the multi-query problem is important, we
do not agree with the assessment that single-query
6 Related Work problems should be abandoned for multi-query

problems: for example, users often have a low tol-
erance for voice assistant errors and abandon their
query entirely after an error. Both problems are
important. Fortunately, the approaches are com-
plementary and should be combined: the multi-
query setting still has false negatives, whose effects
on measurement can be mitigated with our meth-
ods (§4.3). Just as we use predictions to improve
datasets, Beyer et al. (2020) improve ImageNet la-
bels by using predictions to reduce the label space
which makes the annotation task easier.

The paper draws on ideas in multimodal retrieval,
information retrieval, and evaluation methodology.

Improving Benchmark Quality: Wray et al.
(2021) is directly relevant to our work, and we
share their motivation: to study the effects of false
negatives in TVR evaluations. While we share moti-
vation and our works are complementary, our work
differs substantially in methods, contributions, and
conclusions. The primary difference is this: our
goal is to quantify the difference in absolute met-
rics that false negatives cause, even if there is no
promise the data can be effectively reused in the Benchmarking: Across machine learning, com-
future; Wray et al. (2021) develop automatically  puter vision, and natural language processing (Eger
runnable proxy measures that improve the reliabil- et al., 2020; Bowman and Dahl, 2021; Rogers,
ity of model rankings, but do not precisely quantify ~ 2021) there is a broad effort to critically examine
the impact of false negatives on existing metrics  the benchmarks (Schlangen, 2021), data (Linzen,
since automatic labeling is not equivalent to hu-  2020; Thrush et al., 2022), evaluation methods (Ro-
man annotation. Both these works are valuable:  driguez et al., 2021), and evaluation paradigms (Ro-
our work conclusively quantifies that false nega-  driguez and Boyd-Graber, 2021; Kiela et al., 2021)
tives create differences of 25% absolute points and  used in research studies. This effort goes beyond
demonstrate that new measures like those by Wray  particular methodologies and extends to identify-
et al. (2021) are necessary for current benchmarks.  ing the values prized by the community (Sculley

Wang et al. (2022) argue that video captioning et al., 2018; Dotan and Milli, 2020) which are
datasets used in TVR evaluation are noisy due to  subsequently operationalized in computer vision
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Figure 3: On MSR-VTT, we show relative model effectiveness differences (y-axis and color bars) broken down by
test caption length (x-axis); we super-impose the caption length distribution (black line). Short captions tend to be
more general, so they should match more videos and produce more false negatives. The gains for both models and
especially CLIP4CLIP occur predominantly on this subset (reduction of “None”) as we would expect.
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Figure 4: The distribution of absolute differences between bootstrap re-sample estimates of CLIP4ACLIP C@1 and
the true sample mean, by re-sample size. This estimates the number of annotations to detect an effect size at 95%
confidence. Appendix E expands on this experiment by showing results for C@5, C@10, and TeachText.

datasets and benchmarks (Wu et al., 2017; Scheuer-
man et al., 2021). Our work is in line with this
broader initiative and critically examines text-to-
video retrieval evaluation methodology.

We examine internal validity (§2.2.1) and find
a broken yardstick (Hernandez-Orallo, 2020). By
examining construct validity (§2.2.2), we also ar-
gue that TVR evaluations should prize usefulness
to ecologically valid use cases such as real-world
text-to-video search (de Vries et al., 2020). Lastly,
our experimental results suggest we may not be far
off from retiring MSR-VTT and MSVD for TVR eval-
uation, something we should not be afraid to do in
general (Boyd-Graber and Borschinger, 2020). An
alternate approach is smaller, periodic evaluations
as in TREC (Smeaton et al., 2002; Voorhees and
Tice, 2000; Smeaton et al., 2009). Part of the so-
lution is to create purpose-built datasets with clear
goals (Gebru et al., 2021; Bender and Friedman,
2018) as opposed to continually re-using datasets
intended for different uses (Koch et al., 2021).

Structurally Similar Tasks: TVR is not the only
evaluation with the implicit false negative problem.
Our critique is applicable to image retrieval bench-
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marks that use caption-media pairs from image cap-
tioning datasets (Lin et al., 2014; Plummer et al.,
2015) as the only positives (Karpathy and Fei-Fei,
2015; Kim et al., 2021; Singh et al., 2022).

7 Conclusion

In this work, we show that label errors (false nega-
tives) in text-to-video retrieval benchmarks invali-
date their internal validity—the measured metrics
do not accurately reflect reality (§2). Following
this, we critique the applicability of benchmarks
to real-world use cases (construct validity). To
estimate the impact of false negatives on bench-
mark metrics, we collect the FIRE dataset (§3)
which contains 683K relevance judgements. Anal-
ysis experiments (§4) suggest explanations for why
CLIP4CLIP scores higher and estimate system pool-
ing generalization. Based on our findings, we high-
light properties that future TVR benchmarks should
have and outline approaches to addressing inher-
ent challenges in retrieval evaluation (§5). Finally,
we position our work in the broader effort to im-
prove benchmarking by better aligning tasks with
the intended use and improving measurement (§6).



8 Limitations

Our work has several notable limitations. First, our
experiments use two representative and commonly
used TVR datasets (MSR-VTT and MSVD). While
we expect that our results will generalize, it is still
possible that these results do not generalize. For ex-
ample, both datasets are based on YouTube videos
and annotator-written captions: perhaps videos and
captions from alternate sources differ by too much.
Similarly, our experiments use three well-known
models, so while we expect our results to gener-
alize to similar models, future models may differ
substantially in ways that cause the empirical re-
sults not to hold. This said, system pooling has
long been used in TREC (Voorhees et al., 2005), so
we expect this to work for future models as well.

Beyond limitations in generalizability, the in-
principle critiques in our work apply only to bench-
marks where implicit false positives are likely to
be prevalent; it does not apply to benchmarks in
general. From the methods perspective, while our
computational experiments are coded to be easily
reproduced, the scale of our annotations is difficult
to reproduce (hence limited reproducibility in this
sense), but we do study sampling-based alternatives
to mitigate this limitation.

9 Ethics

This section discusses potential ethical issues re-
lated to our dataset-centric work. First, we discuss
data-related ethics. The FIRE dataset is built on
MSR-VTT and MSVD. We distribute the minimal
amount of data related to these datasets necessary
to reproduce our experiments: triplets of caption
identifiers, video identifiers, and annotated labels.
Section 3 and Appendix B describe how the data
was collected. All annotators were compensated,
and the data collection was reviewed before start-
ing. Potential risks due to the use of our dataset
are limited by the additional labels we provide for
an existing dataset. We thoroughly discuss the
risks associated with negatively influencing bench-
mark reliability (i.e., prediction overlap with future
models), and these risks are mitigated by our rec-
ommendation that more appropriate datasets be
developed.

Our work does not directly have negative soci-
etal impacts, but it is feasible that the improved
model scores we report could be used to misrepre-
sent the capability of retrieval systems. For exam-
ple, while we only claim that a model achieves a
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particular measure of effectiveness on a particular
benchmark, the media often inflates the importance
of these metrics (Cuthbertson, 2018). In our work,
we intentionally do not connect these higher met-
rics to more general capability and emphasize the
importance of establishing construct validity.
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A Model Prediction Comparison

As part of this paper, we develop several web apps
to make exploring the data more accessible. For ex-
ample, Figure 5 compares the predictions of three
models along with the labels in the original MSR-
VTT dataset compared to augmenting them with
FIRE’s labels. The source code repository provides
instructions to run these web app demos.

B Annotation Interfaces

The FIRE dataset (§3) was collected using the an-
notation interface in Figure 6.

In addition to the previously described annota-
tion instruction (§3.1), raters were also instructed
on how to handle sensitive categories. The raters
were instructed to accept the caption as accurate
unless they had compelling, concrete reasons to
believe otherwise (e.g., a little baby should be not
considered old, and octogenarians with white hair
and wrinkled skin should not be considered young);
raters should not attempt to make more fine-grained
distinctions. In particular, they were instructed not
to make any assumptions about gender and accept
the gender described by the caption.

C FIRE Data Quality

This section provides additional evidence to vali-
date the quality of the FIRE dataset. Specifically,
Figure 7 complements the agreement metrics com-
puted in §3.2 and Table 2 by un-aggregating agree-
ment rates.

D Shorter Captions, Their Generality,

and Correlation to Model Behavior

Experiments in §4.1 establish that shorter captions
have more positives and longer captions have fewer.
We intuitively explain this by stating that shorter
captions by nature are less specific, so will, in prin-
ciple, match more videos. For example, one of
the shortest captions in MSVD is “a man” (Table 5)
which is less specific than one of the longest cap-
tions like “a man holding an open umbrella jumps
across a wooden stand in a park and then does a
summersault after kicking a wall.” Inspecting these
captions also validates our construct validity cri-
tique (§2.2.2): they do seem like search queries.
In previous experiments (§4.1), we discussed
how caption length is related to which models gain
higher boosts. This section breaks down which
models gain the most on MSR-VTT by train-test
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overlap. We take inspiration from question answer-
ing and language modeling, where unintentional
textual overlap between train and test sets degrades
evaluation and model quality (Lewis et al., 2021;
Borgeaud et al., 2021; Lee et al., 2022). Our objec-
tive is to measure the degree to which test captions
in MSR-VTT are present in the training captions—
be it word-for-word or approximate. To measure
this, we use Scikit-Learn (Pedregosa et al., 2011)
to fit a 5-gram character TF-IDF encoder to the test
captions and compute the cosine similarity of each
test caption to each train caption. For each test
caption, we compute the mean similarity of the
top train ten captions and combine this informa-
tion with Correct@5 scores (Figure 8). The results
suggest that TeachText overfits the train set, which
may explain its comparatively better scores on the
original positives—were it not overfit, train-test
overlap should not matter.

Lastly, these factors are not unrelated. Since
shorter captions tend to be less specific, these are
also the captions that we would expect are more
prevalent in the training set, whether in exact form
or approximate (e.g., the phrase “a man” is likely
in the train set). To test whether these factors are
related, we compute the Kendall Tau correlation
and Spearman Rank correlation between the train-
test textual similarity score and caption length (in
both words and characters). As we expect, there is
a non-trivial negative correlation between caption
length and similarity score (Table 7): the lower
the caption length, the higher the train-test overlap
score.

E Can Annotation Costs be Mitigated
Through Sampling?

In our experiments, we use bootstrap sampling
to estimate the number of example annotations
needed to detect given effect sizes at the 95% confi-
dence level (§4.3). Figure 4 reports these results for
CLIP4CLIP since it was the best model; in practice,
it represents the type of model we would test after
models like TeachText. Figure 9 extends the results
from C@1 to C@5 and C@10. Figure 10 replicates
these results, but using the TeachText model.

F Number of Positive Videos per Text
Query
The generalization of the FIRE dataset to newer

models is reliant on two factors: (1) the number
of positive videos per query and (2) whether the



Model Comparison Viewer for MSRVTT/MSVD
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Figure 5: The web application shows the ranked predictions of three models: CLIP4CLIP, TeachText, and SSB.
Qualitatively, CLIP4CLIP predictions better match the query by showing only cartoon videos. This is reflected
quantitatively when FIRE labels are incorporated. Lastly, the ranked predictions also show some of the overlap that
TeachText and SSB shared.
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Figure 6: To annotate the FIRE dataset, raters used this annotation interface. The interface shows the candidate query
(caption) and video; raters are trained to select “relevant” or “irrelevant” based on whether every component of the

query matches the video.
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Figure 7: The agreement rate of annotators is broken down by the number of labels. For example, about 10,000
MSVD examples (text-video pairs) were annotated twice; of those, the two labels agreed on about 95% of examples.
As we did with the MSR-VTT collection, our intent for the data collection was to de-duplicate text-video pairs
and only annotate about 10% of the data multiple times to estimate reliability. However, we accidentally omitted
this step for the MSVD collection which resulted in some examples being annotated many times. Fortunately, this
provides an unplanned opportunity to further validate inter-annotator agreement.
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MSR-VTT Short Length Captions

a man playing video games
anchor talking about a shows
a woman is stirring food
sports are being played

a woman holding a ribbon

a diver goes underwater
baseball player hits ball
cartoon show for kids

two women are embracing
advertisement of seat basket

MSR-VTT Median Length Captions

a man runs into the crowd when trying to catch a basketball
in a music video a man is laying with women while singing

some people video conferencing as they watch a movie
a boy is trying out for a part on the voice kids
basketball players making a shot in the last seven seconds

views of two persons working on the super computer with the head phones on
a character is jumping and floating in the air in a video game
two people playing basketball and the one with a hat makes every shot

batman is beating up bane in a scene from a batman movie

a girl being surprised with a stuffed animal by male friend

MSR-VTT Long Length Captions

a man and a woman are sitting in front of a television and addressing and audience

a woman stirs up some soup sprinkles a spice in and drops a shot of liquid into it

a man is filming as he and a woman watch the news where it shows an area filled with smoke

flight is shaken and the pilots trying to land the flight while they opened the air

the chef adds fish sauce and fish paste to a large stainless steel cooking pot

a girl wearing a dress stands to the side of the screen while lyrics to a song playing in the background appear on the other

side

the man is giving an informational speech to a group of people about telling someone something
a girl in blue color dress wearing siting speaking and television screen with black shirt man beside still image displaying

on screen

a man plays a video game where the player has a first person perspective and shoots other characters
a man playing a video game character that is carrying a sword and killing animals with it

Table 6: This table shows three sets of captions from MSR-VTT sampled from: (1) the 100 shortest captions, (2)
the median length captions, and (3) the 100 longest captions. As we argued by intuition (§4.1), inspecting these
samples validates that the shorter captions are more general (e.g., “sports are being played”) and longer captions are
very specific (e.g., ““a woman stirs up some soup sprinkles a spice in and drops a shot of liquid into it”).

models we studied in this work predict all the true
positives. Estimating the number of true positives
per query without exhaustive annotation is difficult
at best. However, we can at least characterize how
many positives there are when including FIRE anno-
tations. Figure 11 shows a histogram of the number
of positive videos per query across MSR-VTT and
MSVD. For example, about 350 MSR-VTT queries
have only one known positive, which implies that
the other 650 have more than one known positive.
Unfortunately, even estimating the upper bound
would require annotating all the videos for each
query in a representative sample (e.g., for a sam-
ple of MSR-VTT 200 queries, exhaustive annotation
would include 200 * 1,000 = 200,000 query-video
annotations).
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G Rank of Positive Videos

While we follow prior work in measuring models
based on metrics computed from their top ten pre-
dictions, this still leaves open the question: ignor-
ing prior work, is ten predictions the right choice?
If ten is the correct choice, then we should see a
clear trend that positives are primarily distributed
below ten. Figure 12 plots the rank of positive
videos in CLIP4CLIP predictions (i.e., 1 is top-
ranked) versus their count. As expected, the num-
ber of positives drops dramatically before rank 10
(especially for MSVD), although not to zero; the
ranks of the original positives suggest there is a
long tail of undiscovered positives. Note that the
steep dropoff at 10 is due to annotating only the
top 10; positives beyond this are either from the
original dataset or predicted by other models. From
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Figure 8: Why are the MSR-VTT score differences between CLIP4CLIP and TeachText when using FIRE large? We
test the hypothesis that TeachText (comparatively) overfits textual training data. We compute the textual similarity
of each test caption to each train caption with a 5-gram character model; for each test caption, we calculate the mean
similarity of the ten most similar captions. The plot shows whether both models score a point on Correct@5, binned
by train-test similarity (the overall histogram is shown as the super-imposed line) when using original versus FIRE
annotations. On the original annotations, CLIP4CLIP fares much better compared to TeachText when similarity is
not nearly 1.0 (i.e., not overfitting).

Length Spearman Kendall

Word —0.419 —0.296
Character —0.479 0.334

Table 7: This table shows the Spearman and Kendall rank correlations between the train-test textual similarity score
used to measure train-test overlap (Figure 8) and the length of captions in both words and characters. The results
support our hypothesis that caption length and train-test overlap are correlated.

this, we conclude that although most positives have
likely been collected, there likely remain more past
rank 10, especially in MSR-VTT.

H Computational Resources

This paper was developed using two types of com-
putational resources. To rerun text-to-video re-
trieval models, we trained and evaluated on a sin-
gle AWS p4d compute node which has 96 vCPUSs,
1152GB of RAM, and eight Nvidia A100 GPUs.'*
All other experiments were run locally on a 16
inch, 2019 Macbook Pro with a 2.4GHz 8-core
Intel Core i9 CPU and 32GB of RAM.

"“https://aws.amazon.com/ec2/instance-types/
p4/
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Figure 9: This figure replicates the C@1 results from Figure 4 but adds results for C@5 and C@10. The additional
results are consistent in showing that differences of about 1 point are already detectible with 1,000 annotations.
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Figure 10: Similar to Figure 4, this figure shows the distribution of absolute differences between bootstrap re-sample
estimates of TeachText C@1, C@5, and C@ 10 scores and their true sample mean (i.e., scores on the full test set).
Compared to CLIPACLIP, statistically significant differences are marginally harder to detect.
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Figure 11: For MSR-VTT and MSVD, we plot the number of positive videos per test set query. While many queries
across both datasets have only one known positive, many others have more than that.
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Figure 12: The figure plots the rank of positive video predictions from CLIP4CLIP versus their count. The plot
displays MSR-VTT and MSVD separately, and it breaks down the source of each positive (from the original dataset
versus from FIRE). While the distribution suggests most positives are found within the top 10, the long tail suggests

that there are still unknown positives.

68



Improving Numeracy by
Input Reframing and Quantitative Pre-Finetuning Task

Chung-Chi Chen,! Hiroya Takamura,? Ichiro Kobayashi,® Yusuke Miyao?
! Artificial Intelligence Research Center, AIST, Japan
2 Ochanomizu University, Japan
3 University of Tokyo, Japan

c.c.chen@acm.com,
koba@is.ocha.ac. jp,

Abstract

Numbers have unique characteristics to words.
Teaching models to understand numbers in text
is an open-ended research question. Instead of
discussing the required calculation skills, this
paper focuses on a more fundamental topic: un-
derstanding numerals. We point out that innu-
meracy—the inability to handle basic numeral
concepts—exists in most pretrained language
models (LMs), and we propose a method to
solve this issue by exploring the notation of
numbers. Further, we discuss whether chang-
ing notation and pre-finetuning along with the
comparing-number task can improve perfor-
mance in three benchmark datasets contain-
ing quantitative-related tasks. The results of
this study indicate that input reframing and
the proposed pre-finetuning task is useful for
RoBERTa.

1 Introduction

Numerals are an indispensable part of narratives
and provide much fine-grained information.! How
models learn the number system has intrigued many
researchers (Spithourakis and Riedel, 2018; Naik
et al., 2019; Chen et al., 2019; Wallace et al., 2019;
Zhang et al., 2020). Researchers have long dis-
cussed some numeracy-related properties of pre-
trained language models (LMs). In this study, we
propose a new concept — innumeracy. The prob-
lem of innumeracy becomes most evident when
models are faced with numerals that do not appear
in training data, e.g., when the range of numerals
in training data is different from that in the test
data. Moreover, LMs often face difficulties un-
derstanding numbers even though the numbers are
present in the training data. One possible cause
of this problem is that numerals can have various
notations, some of which are difficult to understand
from their subwords. Another possible cause is

'In this paper, we focus on the numerals represented by

digits (0 to 9 and decimal point) and do not discuss those
written in words such as “one” and “two”.
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Model Notation Tokenized Example

Org. "147", "HHTO", HH2"
Digit e, a7, o, 2t

BERT M1, AT HHETO, #2000, "##00",
SN "#H0", "#ie", "+", "05"
Org. 147", 702"

RoBERTa | Digit B R A AN (A
SN "1, 47", 70", 200000, "E”, "+, 05"

Table 1: Tokenized example. Org. and SN denote
original and scientific notation, respectively.

that LMs are not pretrained to deal with numbers.
Therefore, in this study, we address the problem
of innumeracy via input reframing and quantitative
pre-finetuning tasks.

Input reframing refers to changing the notations
of numbers, which can be one of the crucial clues
for understanding numerals (Zhang et al., 2020;
Chen et al., 2021). In addition to the original
notation, we consider the digit-based and scien-
tific notations. Table 1 lists examples of using
different representations for numerals. Our exper-
iments indicate that ROBERTa (Liu et al., 2019)
performs poorly than BERT-based models (Devlin
et al., 2019; Yasunaga et al., 2022) in understand-
ing numerals. However, its performance is at par
with vanilla BERT-based models with a proper
input reframing method. Furthermore, in previ-
ous studies, pretraining with the self-supervised
learning approach been determined to be a com-
pelling method (Devlin et al., 2019; Yasunaga et al.,
2022). However, it is costly to pretrain a new
LM from scratch. Thus, an alternative way is to
design pre-finetuning tasks to enhance the abil-
ity of LMs (Aghajanyan et al., 2021). Inspired
by this idea, we propose a novel pre-finetuning
task to enhance the ability of the models to deal
with quantitative questions and improve the nu-
meracy of the models. Specifically, the proposed
method automatically generates a simple dataset
for the comparing-numbers task (ComNum), and
uses it to pre-finetune LMs. This study experi-
ments with representative pretrained LMs, includ-
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ing BERT, RoBERTa, and LinkBERT (Yasunaga
et al., 2022), and the experimental results show
that pre-finetuning with the proposed ComNum im-
proves the performance in the Quantitative Natural
Language Inference (QNLI) task regardless of the
LMs used.

To evaluate the influence of the input re-
framing and the quantitative pre-finetuning task,
we constructed the Quantitative 101 dataset,
which is a combination of three benchmark
datasets: Numeracy-600K (Chen et al., 2019),
EQUATE (Ravichander et al., 2019), and
NumGLUE Task 3 (Mishra et al., 2022). The tasks
in Quantitative 101 include Quantitative Prediction
(QP), QNLI, and Quantitative Question Answer-
ing (QQA). In the future, Quantitative 101 can be
used as a new collection by researchers studying
the quantitative skills of LMs. 2

2 Related Work

Numeracy, one of the recent hot topics in NLP, in-
corporates many skills such as calculation, algebra,
and geometry. Some previous studies (Spithourakis
and Riedel, 2018; Chen et al., 2019) have discussed
the prediction of the masked number tasks, while
others (Wallace et al., 2019; Naik et al., 2019;
Zhang et al., 2020) have explored numeracy from
the perspective of embedding properties. The math
word problem (Chen et al., 2021; Mishra et al.,
2022) is a high-level task requiring several numer-
acy skills. The textual representation of numerals,
such as digit-based or scientific notations-based, is
one of the possible directions for improving numer-
acy. Chen et al. (2021) suggested to use a digit-
based encoder to encode numerals. Meanwhile,
Zhang et al. (2020) used scientific notation to rep-
resent numerals and explored scale understanding
tasks. In this paper, we explore the role of these
notations of numbers in quantitative skill tasks.

A recent trend is to design pretraining tasks to
enhance the capability of models to understand nat-
ural language. Devlin et al. (2019) proposed two
pretraining tasks: masked language model (MLM)
and next sentence prediction (NSP), and broad-
ened the horizons of the transformer-based natural
language processing research direction. Yasunaga
et al. (2022) designed a new cross-document pre-
training task, called document relation prediction
(DRP), to improve the performance of LMs in sev-

2We release this dataset for academic use and follow the
license of the sources (Appendix C).
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Task Question Answer
[Num 1] is equal to [Num 2].

[Num 1] is smaller than [Num 2].

[Num 1] is larger than [Num 2].

FED’S DUDLEY REPEATS EXPECTS GDP
GROWTH TO PICK UP IN 2014, FROM 1
[Masked] PCT POST-RECESSION AVERAGE
S1: Nifty traded above 7500, Trading Calls Today
S2: Nifty above 7400

Elliot weighs 180 pounds whereas Leon weighs
120 pounds. Who has a bigger gravity pull?
Optionl: Elliot Option2: Leon

ComNum TRUE/FALSE

QP

QNLI Entailment

QQA Option 1

Table 2: Example for each task.

eral benchmark datasets, especially those requiring
multi-hop reasoning and multi-document under-
standing skills. To the best of our knowledge, this
is one of the earliest works proposing a tailor-made
pre-finetuning task to understanding numerals. Our
experimental results also support the usefulness of
the proposed task, specifically in the QNLI task.

3 Datasets and Tasks

This section introduces two datasets: the Compar-
ing Numbers Dataset (CND) and Quantitative 101,
with the corresponding quantitative tasks, including
ComNum, QP, QNLI, and QQA.

3.1 Comparing Numbers Dataset (CND)

Comparing numbers (ComNum) is one of the ba-
sic quantitative skills. We propose the Comparing
Numbers dataset (CND) to test the ability of differ-
ent pretrained LMs to perform the ComNum task.
CND is an automatically created dataset, and the
ComNum task is designed as a binary classifica-
tion task. In essence, the models need to determine
whether a given statement of comparing numbers
is true or false. In the CND, there are only three
templates as shown in Table 2. There is one train-
ing set and two test sets in CND. Specifically, we
randomly select two numbers from O to 199,999
and insert them into the template. The selected
numbers are deleted from the pool of numbers
to avoid duplication. Finally, 100,000 instances
are obtained, and the numbers in all instances are
unique. Note that the distributions of each template
and answers are balanced. 80% of the dataset is
considered as the training set and the remaining
20% is taken as the CND-T1 test set. Next, two
numbers from 4,000,000 to 5,000,000 are randomly
selected for 10,000 times to construct the CND-T2
test set. Thus, the order of magnitude of the train-
ing set and the first test set (CND-T1) is from O to
5, and that of the other test set (CND-T2) is 6. In
this study, we focused on natural numbers, and fu-



BERT RoBERTa LinkBERT FinBERT
‘ CND-TI  CND-T2 ‘ CND-TI CND-T2 ‘ CND-TI  CND-T2 ‘ CND-TI CND-T2
Original 99.86 95.59 (1 4.27) 99.44  86.75 (| 12.69) 99.92 97.58 (| 2.34) 99.55 7837 (] 21.18)
Digit-based 99.96 99.03 (| 0.93) 99.92  98.46 (| 1.46) 99.99  96.54 (| 3.45) 99.96 97.03 (| 2.93)
Scientific Notation 99.92  99.68 (| 0.24) 99.82  99.13 (| 0.69) 99.95 99.81 (| 0.14) 99.72  98.78 (| 0.94)

Table 3: Experimental results of ComNum task. The evaluation metric is Micro-average of F1 score (%).

) QP QNLI

Model Notation Comment Headline | RTE-QUANT AWP-NLI NEWSNLI REDDITNLI Stress Test | QQA | Score
Original 7044%  57.46% 6440%  5920%  72.29% 6042%  9991% | 53.20% | 67.17

BERT Digit-based 6538%  54.74% 57.86%  56.46%  71.36% 60.11%  99.11% | 53.75% | 64.85
Scientific Notation | 6531%  55.99% 64.42%  60.73%  72.23% 590.66%  99.56% | 53.24% | 66.39

Digir-based 69.93%  54.84% 61.07%  6027%  7554% 6539%  99.42% | 52.53% | 67.37

CN-BERT Scientific Notation | 64.87%  56.40% 6639%  54.70% 75.41% 63.94% 99.42% | 51.90% | 66.63
Original 68.81%  55.70% 5094%  56.85%  73.43% 59.01%  9991% | 54.14% | 65.97

LinkBERT Digit-based 63.76%  55.41% 50.54%  57.42%  73.63% 60.17%  99.73% | 53.44% | 6539
Scientific Notation |  65.81%  56.05% 57.00%  56.78%  75.51% 58.51%  99.82% | 54.33% | 65.48

, Digit-based 68.61%  54.44% 6359%  55.08%  7121% 58.99%  100.00% | 50.44% | 65.30
CN-LinkBERT ¢ i ific Notation | 63.48%  53.15% 62.02%  5939%  75.70% 62.61%  99.73% | 52.11% | 66.02

Table 4: Experimental results of the BERT-based models.

Original. The score indicates Quantitative-101 Score.

ture studies can extend our results to decimals and
fractions. Since natural numbers are in the infinite
set, and it is impossible to let models learn with
a dataset containing all magnitudes and numbers,
we designed the task in the way following the hu-
man learning process because human beings do not
need to learn to count from zero to trillion to get
the ability to compare all numbers.

3.2 Quantitative 101

Quantitative 101 collects recent benchmark
datasets and focuses on quantitative tasks. There
are three tasks in Quantitative 101, including Quan-
titative Prediction (QP), Quantitative Natural Lan-
guage Inference (QNLI), and Quantitative Question
Answering (QQA). This section briefly introduces
the tasks, and we further provide details in Ap-
pendix C.

QP is the task of predicting the correct magni-
tude of the masked numeral. Although a possible
choice would be to predict the exact number given
a context, doing so is often very difficult, even for
a human. For example, the QP listed in Table 2,
in which the correct answer is 2.2. However, mak-
ing an accurate rough estimate for the magnitude
would often be feasible only for seasoned experts.
We attempt to test whether models can also learn
such a numeracy skill after being trained with a
large amount of data. Thus, we adopt Numeracy-
600K (Chen et al., 2019) as the dataset for this
task. Chen et al. (2019) designed this task as an
eight-class classification task, which includes the
magnitude from 1 to 6, decimal, and a magnitude
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The results in bold are the ones that are better than the

larger than 6. Numeracy-600K contains two sub-
sets: market comments and blog headlines.

QNLI is the task of making natural language
inferences based on quantitative clues. It is a com-
plex version of ComNum, because the given sen-
tences could be varied. The example of QNLI pre-
sented in Table 2 shows that models need to com-
pare numbers based on more complex semantics.
We selected EQUATE (Ravichander et al., 2019)
to experiment on real-world scenarios for QNLI.
EQUATE has five subsets, including RTE-QUANT,
AWP-NLI, NEWSNLI, REDDITNLI, and Stress
Test.

QQA is the other format for testing whether mod-
els can understand numerals and semantics. We
selected the Task 3 subset of NumGLUE (Mishra
et al., 2022) for the QQA experiments. Table 2
provides an example of this dataset. It is under a
binary-classification setting, and each instance has
two options.

We chose these three datasets to test the basic
quantitative skills of models. We noticed that sev-
eral instances in these datasets can be solved using
only the basic ability to understand numbers. How-
ever, the other subtasks in NumGLUE required rea-
soning skills including the generation of equations.
These tasks are not the target of this paper.

4 Methods

4.1 Notation of Numbers

The findings of previous studies (Chen et al., 2021;
Zhang et al., 2020) suggest two methods that are
worth trying: digit-based notation and scientific no-



i QP QNLI

Model Notation Comment Headline | RTE-QUANT AWP-NLI NEWSNLI REDDITNLI Stress Test | QQA | Score

Original 60.46%  58.03% 60.15%  57.64% 79.58% 5877%  98.93% | 51.96% | 65.69

ROBERTa Digit-based 69.25%  57.65% 5940%  56.69% 78.90% 6238%  99.91% | 54.34% | 67.31

Scientific Notation | 64.32%  55.49% 60.08%  57.41% 78.68% 60.81%  100.00% | 53.67% | 66.31

Digit-based 6425%  55.92% 68.96%  58.80% 77.99% 60.99%  99.73% | 50.88% | 67.19

CN-RoBERT2  giionsific Notation | 60.28%  54.85% 6215%  58.74% 65.92% 59.59%  99.47% | 52.27% | 64.16

Table 5: Experimental results of the RoOBERTa-based models.

tation. Table 1 shows an example for each method. Model _Reframing QP-Comment
.. ionifies th . f Original 65.26%
Original signifies that we did not perform any pre- HnBERT Digit-based 69.89%
processing on the input data, and the results are Scientific Notation 70.03%
tokenized based on WordPiece (Schuster and Naka- : Digit-based 68.84%
( CN-FinBERT  Scientific Notation 69.76 %

jima, 2012; Wu et al., 2016) and Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016). In the Digit-
based method, we separated a numeral into digits.
In the Scientific Notation method, we we converted
numerals into scientific notation according to the
method described in Zhang et al. (2020), and Ta-
ble 1 provides examples to show that tokenizers
provide different results in this case. Note that we
pad the mantissa to 10 significant figures to retain
the information of most numerals.

4.2 Pre-Finetuning Task

We pre-finetune LMs with the CND for learning
the numeracy of comparing numbers. We believe
that this learning process can make models aware
of the numerals and may help answer the ques-
tions listed in Table 2. We further test whether
the proposed pre-finetuned method is helpful in
the QP, QNLI, and QQA tasks. We primarily use
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and LinkBERT (Yasunaga et al., 2022) for
the experiments. Since the market comment subset
for the QP task is in the financial domain, we also
experiment with FinBERT (Araci, 2019) in this sub-
set. The pre-finetuned LMs using BERT, RoBERTa,
LinkBERT, and FinBERT as initial models are
named CN-BERT, CN-RoBERTa, CN-LinkBERT,
and CN-FinBERT, respectively. During the pre-
finetuning process, we use the Digit-based or Sci-
entific Notation reframing methods to transform the
numerals in the input data. Thus, each proposed
pre-finetuned LM has two versions depending on
the notation of numbers.

5 Experiment

5.1 Innumeracy

Innumeracy can be tested via various experiments.
In this section, we observe the innumeracy phe-
nomenon with the empirical results of the Com-
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Table 6: Results of the FinBERT-based models.

Num task. We aim to answer whether LMs have dif-
ferent performances between CND-T1 and CND-
T2. We use the micro-average of the F1 score to
evaluate the results of the ComNum task. Table 3
shows the results. It is not surprising that models
perform well in CND-T1. However, model per-
formances drop when we test using CND-T2. In
CND-T2, the order of magnitude of the numerals
is different from that in the training set. We call
this phenomenon “innumeracy”, and find that both
Digit-based and Scientific Notation perform well
for most pretrained LMs. In particular, using Scien-
tific Notation method leads to the least performance
drops with all LMs.?

5.2 Experimental Results

We follow the setting of previous studies to use
the macro-average of F1 score for the QP task and
the micro-average of F1 score for the QNLI and
QQA tasks. Table 4 presents the results of the
BERT-based models, and Table 5 presents the re-
sults of the RoBERTa-based models.* To evaluate
the aggregate performance, we average all results
as in previous studies (Dua et al., 2019; Mishra
et al., 2022), and named this score the Quantitative-
101 Score. First, it can be observed that all nota-
tion methods and the pre-finetuning task improved
the overall performance of ROBERTa, and lead
RoBERTa to perform at par with the BERT-based
LMs. Second, we observed that the proposed pre-
finetuning task helped improve the QNLI task per-
formance. Third, using a proper reframing method
improved the QQA task performance. Fourth, the

3We provide more analysis on this point in Appendix B.
*We provide a fine-grained analysis in Appendix A for the
QNLI-Stress Test.



QP

QNLI

Model Preprocessing | oo ment  Headline | RTE-QUANT AWP-NLI NEWSNLI REDDITNLI Stress Test | QQA ‘ Score
RoBERTa - 60.46%  58.03% 60.15%  57.64% 79.58% 58.77% 98.93% | 51.96% | 65.69
CN-RoBERTa Original 86.86% 77.29% 62.52% 56.70% 78.82% 64.29% 99.94% | 50.71% | 72.14

Table 7: Results of CN-RoBERTa without input reframing.

reframing methods and the pre-finetuning task were
not helpful for the BERT-based LMs in the QP task
as well as the overall performance.

Table 6 shows the results of the FinBERT-based
models in QP-comment. The results indicate that
the performances of FinBERT can be improved
with a proper reframing method. Additionally, the
proposed CN-FinBERT performs better than the
Original FinBERT.

To sum up our findings, the input reframing
methods can improve the performance of ROBERTa
and FinBERT. However, it does not work for BERT-
based models. The proposed pre-finetuning task
can improve the performance in the QNLI task re-
gardless of the LM used.

5.3 Ablation Analysis

In this section, we train CN-RoBERTa without in-
put reframing for ablation analysis. Table 7 shows
the results. The results indicate that the perfor-
mances of QP tasks were improved significantly,
and the performance of QNLI tasks was also im-
proved. These results indicate the proposed pre-
finetuning task is important for the QP tasks, but
input reframing is not. However, the performance
of the QQA did not improve without input refram-
ing. This result implies that, for QQA, input re-
framing provides some hints to the models to make
predictions. Overall, this study does not find a sil-
ver bullet for solving quantitative problems, but
shows that input reframing and basic quantitative
pre-finetuning design are promising directions.

6 Conclusion

This study deals with the innumeracy of LMs and
shows that the notation of numbers matters, espe-
cially for RoBERTa. We also propose a novel pre-
finetuning task for improving the quantitative skills,
and find that the performance in the QNLI task can
be improved after pre-finetuning. We hope our re-
sults in Quantitative 101 lead to a more in-depth
discussion on the ability of LMs to understand nu-
merals.
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Limitations

The first limitation of the paper is that we focus
on the numerals represented by digits (0 to 9 and
decimal point) and do not discuss those written in
words such as “one” and “two”. Future work can
extend the findings of this work and transfer the
numeral words to digits. The second limitation of
this paper is that we do not discuss long text sce-
narios because the length of the instances in the
datasets is within 512. Future work can design
quantitative-related tasks with longer documents
and examine whether the proposed methods still
work. The third limitation of this paper is that we
do not train the model from scratch with the pro-
posed input reframing methods. We leave it as
one of the open questions for future studies. The
fourth limitation of this work is that we do not
experiment with all cases, including using data in
several ranges and experimenting with all kinds
of pretrained LMs, to prove that the innumeracy
phenomenon is a general phenomenon. Instead,
we present a pilot exploration of the phenomenon
and further pay attention to improving the perfor-
mances of other quantitative-related tasks.

Ethical Note

All datasets used in our experiment are available
online, and we provide the details and the license
information in Appendix C. We release the pre-
finetuned LMs (CN-BERT, CN-RoBERTa, CN-
LinkBERT, and CN-FinBERT) on the Hugging
Face models platform.’> Future work can repro-
duce our results easily and use our pre-finetuned
LMs for further research issues. Please refer to
Appendix B for details.
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Figure 1: BERT’s innumeracy phenomenon. (Perfor-
mance Drop between CND-T1 and CND-T2.)
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Figure 2: RoBERTa’s innumeracy phenomenon. (Per-
formance Drop between CND-T1 and CND-T2.)

Xikun Zhang, Deepak Ramachandran, Ian Tenney,
Yanai Elazar, and Dan Roth. 2020. Do language
embeddings capture scales? In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 4889—4896, Online. Association for Computa-
tional Linguistics.

A Analysis of QNLI-Stress Test

QNLI-Stress Test uses the data collected from
AQuA-RAT, and was annotated by an automatic
method (Ravichander et al., 2019). We follow the
splitting method in NumGLUE Task 7 (Mishra
et al., 2022) to separate it into training, develop-
ment, and test sets. First, we find 316 repeated
instances in both training and evaluation sets (de-
velopment and test sets). We already removed these
repeated instances from the training set in our ex-
periment. Second, we check the instances by re-
moving all numerals in each instance and find that
2,229 instances appear in both training and evalua-
tion sets, with 1,639 appearing in the same training
and test sets, and 80.17% have the same answer.
That could be the reason that the models perform
well in this dataset, since most instances do not
need to understand numerals.
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Figure 3: LinkBERT’s innumeracy phenomenon. (Per-
formance Drop between CND-T1 and CND-T2.)
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Figure 4: FinBERT’s innumeracy phenomenon. (Perfor-
mance Drop between CND-T1 and CND-T2.)

B Implementation Detail

We used the Hugging Face transformers pack-
age (Wolf et al., 2019) for the experiment. ® Intel
Xeon Gold CPU and Nvidia Tesla V100 w/32GB
are the CPU and GPU used in our experiment. Ta-
ble 8 provides the links to the LMs used in our
experiment. All pre-finetuned LMs (CN-BERT,
CN-RoBERTa, CN-LinkBERT, and CN-FinBERT)
are released on the Hugging Face platform.

Figure 1 to 4 present the tracing results of the
drop between CND-T1 and CND-T2 during the
training process. It can be observed that when
using Scientific Notation, the performances of LMs
stabilizes more quickly. In contrast, the change
of the performances with the Digit-based method
varies, and we did not obtain stable results in some
cases.

C Dataset

CND is our own generated dataset; therefore, we
did not have to obtain license permissions to use it.
There are three subsets in the proposed Quantita-
tive 101. Numeracy-600K (Chen et al., 2019) for

®https://huggingface.co/docs/
transformers/index
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URL

BERT (Devlin et al., 2019)
RoBERTa (Liu et al., 2019)
LinkBERT (Yasunaga et al., 2022)
FInBERT (Araci, 2019)

https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base
https://huggingface.co/michiyasunaga/LinkBERT-base
https://huggingface.co/ProsusAl/finbert

Table 8: Reference for the models in our experiments.

Model Reframing Method URL

CN-BERT Digit-based https://hugg?ngface.co/NLPF?n/CN—BERT—Digit
Scientific Notation ~ https://huggingface.co/NLPFin/CN-BERT-Sci
Original https://huggingface.co/NLPFin/CN-RoBERTa

CN-RoBERTa  Digit-based https://huggingface.co/NLPFin/CN-RoBERTa-Digit
Scientific Notation  https://huggingface.co/NLPFin/CN-RoBERTa-Sci

CN-LinkBERT Digit-based https://hugg?ngface.co/NLPF?n/CN—L?nkBERT—Digit
Scientific Notation ~ https://huggingface.co/NLPFin/CN-LinkBERT-Sci
Digit-based https://huggingtace.co/NLPFin/CN-FinBERT-Digit

CN-FinBERT ¢ o 6 Notation

https://huggingface.co/NLPFin/CN-FinBERT-Sci

Table 9: Reference for the proposed models.

QP task could be downloaded from GitHub’, and
it is under the Creative Commons Attribution-Non-
Commercial-ShareAlike 4.0 International (CC BY-
NC-SA 4.0) license. EQUATE (Ravichander et al.,
2019) for QNLI task can also be downloaded
from GitHub®, and it is under the MIT License.
NumGLUE (Mishra et al., 2022) for QQA task can
be downloaded from the page of Allen Institute
for AT (A12)°, and it is under the ODC Attribu-
tion License (ODC-By).!? In the following sub-
sections, we provide details of each subset. The
README document of the dataset provides all de-
tails about the separation. Please download the
dataset from https://huggingface.co/
datasets/NLPFin/QuantitativelOl.

C.1 Quantitative Prediction

Quantitative prediction (QP) is a task to predict the
correct magnitude of the masked numeral. For ex-
ample, even for a human, it is difficult to predict the
exact numeral (2.2) of the QP’s instance in Table 2;
however, some seasoned experts can make a cor-
rect rough estimate of the magnitude. We attempt
to test whether models also learn to make such pre-
dictions after being trained with a large amount
of data. Thus, we adopt Numeracy-600K (Chen
et al., 2019) as the dataset for this task. Chen et al.

"nttps://github.com/aistairc/
Numeracy-600K

$https://github.com/
AbhilashaRavichander/EQUATE/blob/master/
LICENSE

https://allenai.org/data/numglue

Yhttps://github.com/allenai/numglue/
blob/main/license.txt
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(2019) designed this task as an eight-class classi-
fication task, which includes the magnitude from
1 to 6, decimal, and the magnitude larger than 6.
We follow their setting in this paper. There are
two subsets, including 600K market comments and
600K news headlines. We use 80%, 10%, and 10%
of instances as training, development, and test sets
in each subset, respectively.

C.2 Quantitative Natural Language Inference

Quantitative Natural Language Inference (QNLI) is
a complex version of ComNum because the given
sentences can be varied. The example of QNLI pro-
vided in Table 2 shows that models need to compare
numbers based on more complex semantics. We se-
lect EQUATE (Ravichander et al., 2019) to experi-
ment on real-world scenarios for QNLI. EQUATE
has five subsets collected from different sources,
including RTE-QUANT, AWP-NLI, NEWSNLI,
REDDITNLI, and Stress Test. Since four of these
subsets are less than 1,000 instances, we perform
the 10-fold cross-validation in the experiments. For
the Stress Test, which contains 7,500 instances, we
follow the splitting method in NumGLUE Task
7 (Mishra et al., 2022) to separate it into train-
ing, development, and test sets. Ravichander et al.
(2019) designed the QNLI task as a two or three-
class classification task depending on the subset.
We follow their settings for each subset.

C.3 Quantitative Question Answering

Quantitative Question Answering (QQA) is the
other format for testing whether models can un-
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https://github.com/allenai/numglue/blob/main/license.txt

derstand numerals and semantics. We selected
the Task 3 subset of NumGLUE (Mishra et al.,
2022) for the QQA experiments. Table 2 provides
an example of this dataset. It is under a binary-
classification setting, and each instance has two
options. We follow Mishra et al. (2022) to separate
the dataset into training, development, and test sets.
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Abstract

Recent advances in text-to-image synthesis
make it possible to visualize machine imagi-
nations for a given context. On the other hand,
when generating text, human writers are gifted
at creative visualization, which enhances their
writings by forming imaginations as blueprints
before putting down the stories in words. In-
spired by such a cognitive process, we ask the
natural question of whether we can endow ma-
chines with the same ability to utilize visual in-
formation and construct a general picture of the
context to guide text generation. In this work,
we propose iNLG that uses machine-generated
images to guide language models (LM) in open-
ended text generation. The experiments and
analyses demonstrate the effectiveness of iNLG
on open-ended text generation tasks, including
text completion, story generation, and concept-
to-text generation in both few-shot and full-data
scenarios. Both automatic metrics and human
evaluations verify that the text snippets gener-
ated by our iNLG are coherent and informative
while displaying minor degeneration.'

1 Introduction

One great resource human writers cherish is the
ability of imagination, with which they render men-
tal images about an actual or vicarious experience
and link knowledge that would later make the writ-
ing more concrete, sensible, and intriguing. Cog-
nitive studies show that visual imagery improves
comprehension during language processing (Gam-
brell and Bales, 1986; Joffe et al., 2007; Sadoski
and Paivio, 2000), and that mental imagery facili-
tates humans’ written language expression at young
ages (Gambrell and Koskinen, 2002).

When it comes to the study of Artificial Intelli-
gence (Al), one classic challenge for Al systems
is to generate informative and coherent text snip-
pets. Open-ended text generation is such a task that
provides an input context, and asks the model to

'Our code & data: https://github.com/VegB/iNLG.
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1’ Context: The individual adds chicken to the pan and cooks it. The \‘
; individual adds chopped onions and mushrooms to the pan and cooks |
' them. The individual adds some other ingredients... '

Machine | Text-only Input
Imagination 1,;7 : and the individual adds them to the pan.

ERepetitive to the input context.
i Not informative. H

Text Input +

7 : and stirs them into the soup.

Figure 1: When performing open-ended text generation,
the language models prompted with text-only input may
generate repetitive or unilluminating contents, which is
also known as degeneration. Hereby, we propose to use
machine-generated images as additional visual supervi-
sion to guide the language models in generating more
informative and coherent text with the given context.

generate a piece of text that is consistent with the
context. This is the cornerstone of a wide range of
downstream tasks such as text completion (Guan
et al., 2019; Radford et al., 2019), story genera-
tion (Fan et al., 2018; Goldfarb-Tarrant et al., 2020;
Swanson et al., 2021; Su et al., 2022b), and dia-
logue systems (Schatzmann et al., 2007; Wen et al.,
2015, 2017; Wei et al., 2018; Wu et al., 2021), and
has received much attention throughout the years.
Inspired by human writers’ common practice of
creative visualization, we ask the following ques-
tion: Can we endow machines with the same ability
to construct a general picture of the context and use
it as a blueprint to guide text generation?

Recent advances in text-to-image generation
make it possible to visualize machine imaginations
for a given context (Ramesh et al., 2021; Rom-
bach et al., 2022; Crowson et al., 2022; Wang et al.,
2022b; Saharia et al., 2022). Moreover, this line
of work shows great potential in utilizing textual
information to guide image synthesis. It comes nat-
urally that one may attempt to complete the loop by
using visual supervision to guide text generation.

In this work, we propose using machine-

Findings of the Association for Computational Linguistics: EACL 2023, pages 78-92
May 2-6, 2023 ©2023 Association for Computational Linguistics


https://github.com/VegB/iNLG

generated images to guide the language model
(LM) in open-ended text generation. More specif-
ically, we visualize machine imagination for the
input context by rendering images with StableD-
iffusion (Rombach et al., 2022), a state-of-the-art
text-to-image generator. The machine imagination
acts as additional visual supervision to guide LMs
in generating informative and coherent text in two
ways. Firstly, the machine-generated images are
introduced as the input to the LM in the form of the
visual prefix. Secondly, we designed a contrastive
training objective that enforces the generated text
to be semantically similar to the visual supervision.

We conduct experiments on three open-ended
text generation tasks, namely text completion, story
generation, and concept-to-text generation. Exten-
sive experiments in the few-shot settings show bet-
ter or competitive performance to state-of-the-art
baselines on both automatic metrics and human
evaluation. Experiments with full-data settings
show that introducing machine-generated visual
supervision with our iNLG yields consistent im-
provements on various LM models including GPT-
2 (Radford et al., 2019), BART (Lewis et al., 2020),
and T5 (Raffel et al., 2020).

Our main contributions are as follows:

* We introduce a novel paradigm that lever-
ages machine-generated images to guide open-
ended text generation. This endows the ma-
chines with the ability of creative visualization
that human writers often demonstrate.

* We distill the vision information from the pre-

trained multimodal models and further con-
struct visual prefixes to guide language mod-
els performing text generation with teacher
forcing and contrastive objectives.
Extensive experiments show the effective-
ness of iNLG as a model-agnostic framework
in open-ended text generation tasks, includ-
ing text completion, story generation, and
concept-to-text in both few-shot and full-data
settings.

2 Related Work

Open-ended Conditional Text Generation is
the task of generating a coherent portion of the
text based on the given context. Recent advances
in pre-trained models have pushed frontier in the
open-ended conditional text generation, such as
text completion(See et al., 2019; Ippolito et al.,
2020), story generation (Guan et al., 2020; Fan
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et al., 2018; Yao et al., 2019) and concept-to-text
generation (Zhou et al., 2021; Liu et al., 2021). De-
spite the success of large language models, text
degeneration and semantic coverage still remain
as two core technical challenges in few-shot open-
ended text generation. To improve the text cover-
age, StoryEndGen (Guan et al., 2019) leverages the
knowledge graph to encode context sequentially.
Fan et al. (2018) and Yao et al. (2019) plan the
content (premise or keywords) first and then en-
courage the generation based on planned content.
To mitigate the text degeneration, SimCTG (Su
et al., 2022b) uses a contrastive training strategy
to encourage the model to learn isotropic token
embeddings. Similar to our approach, Wang et al.
(2022a) generates a scene graph for each concept
and combines them with text for the model input.
Previous work has proposed to add visual informa-
tion to LM by retrieving images from the Internet
or large-scale image sets (Yang et al., 2020; Cho
et al., 2021; Su et al., 2022a). However, the re-
trieved images may fail to fully incorporate the
context, which will misguide the LM from yield-
ing contextually consistent predictions.”> Unlike
prior work, our approach leverages images gener-
ated conditioning on the context to assist the text
generation process.

Visually-aided NLP Recent work show the
power of visual guidance in natural language pro-
cessing, spanning from the language representation
learning (Lu et al., 2019; Li et al., 2019; Sun et al.,
2019; Luo et al., 2020; Chen et al., 2020; Li et al.,
2020; Tan and Bansal, 2020; Lu et al., 2022), the
downstream tasks (Grubinger et al., 2006; Elliott
et al., 2016; Xie et al., 2019; Christie et al., 2016;
Shietal., 2019; Lu et al., 2022) and evaluation (Zhu
et al., 2021). They either leverage visual informa-
tion from an external vision-and-language corpus
or obtain such visual knowledge from the large pre-
trained model. In this line of work, imagination
achieves promising performance in various NLP
domains (Long et al., 2021; Zhu et al., 2021; Wang
etal., 2022a; Lu et al., 2022). Previous imagination-
based work in NLP either study non-generation
problems (Zhu et al., 2021; Lu et al., 2022) or
utilize non-visual information (Long et al., 2021;
Wang et al., 2022a). Our work explores the poten-
tial of generating visual imagination to improve
open-ended text generation tasks.

*Figure 8 shows examples where the image retrieved from
the search engine is irrelevant with the input context.
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Figure 2: An overview of our iNLG. Given an input context x, we first visualize the context with the text-to-image
generation model. Then we use the machine-generated image I as the additional visual supervision to guide the
language model in open-ended text generation. The visual feature is provided as a source of input to the LM in the
form of the visual prefix. Aside from the teacher forcing objective Leacher, We also enforce the LM to generate text
that is semantically similar to the machine imagination with a contrastive training objective Lconrastive-

3 Method

3.1 Overview

Open-ended text generation is a task that provides
an input context, and asks the model to generate a
piece of text that is consistent with the context.

This work mainly focused on introducing
machine-rendered images to assist LM in perform-
ing open-ended text generation. More specifically,
given the context x', we first use a text-to-image
generator to illustrate an image I* that depicts the
input context. The LM is prompted with image
I' as the visual prefix along with the text context
2, and will incorporate the multimodal input to
generate the output text .

Figure 2 provides an overview of our iNLG
framework, which mainly involves two modules.
The first module is a text-to-image generator that
takes in the input context and illustrates a descrip-
tive image, which we also refer to as the machine
imagination. The second module is a visually-
guided language model that utilizes the machine
imagination as a source of input and also a supervi-
sion that encourages the LM to generate text that is
semantically similar to the visual information.

3.2 Text-to-Image Rendering

In this work, we propose to use images gener-
ated conditioning on the context by the machines
as additional visual information to the LM. The
text-to-image generation backbone is StableDiffu-
sion (Rombach et al., 2022), which mainly consists
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of a text encoder, a diffusion model, and an au-
toencoder. The text encoder is from the frozen
CLIP ViT-L/14 (Radford et al., 2021) and encodes
the input text to textual embeddings. The diffu-
sion model uses UNet (Ronneberger et al., 2015)
to provide noise estimation. The UNet is modi-
fied so as to attend to the input textual embeddings.
The encoder of the pretrained autoencoder encodes
images into the lower-resolution latent maps zp.
At each step ¢, the diffusion model provides the
noise estimation e and modifies z; correspondingly.
The decoder of the pretrained autoencoder takes
the final noise-free latent map z and generates the
image prediction. StableDiffusion is trained with
LAION-5B (Schuhmann et al., 2022).

3.3 Visually Guided Text Generation

Visual Prefix Construction One can encode the
visual information with the pre-trained visual mod-
els. However, such visual embedding may lie in a
representation space different from the LM due to
the discrepancy between models. One way of intro-
ducing features extracted by another network to the
current model is through feature mapping (Mokady
et al., 2021). With a dataset of image-text pairs
(I', '), we can pre-train a mapping network F for
a given LM in an image captioning formulation.
More specifically, we encode I’ with the visual
encoder Encyiq,a and receive its visual features v’.
Then we apply the mapping network F over v/,
and receive a sequence of [ visual prefixes:

Cll, 0/2, R ,C; = JT"(’U/) = F(Encvisual(-[/)) (1)



We provide the list of visual prefix as input to the
LM with the corresponding text ' as the target
output. Such a pre-training process enables F to
project visual features into the visual prefix that
lies within the same embedding distributions as
the LM. The mapping network is agnostic of the
downstream task, and only depends on the visual
source and the LM.

After generating a descriptive image I* for the
input context x¢, we use CLIP to encode I’ and
receive its visual features v'. We apply the pre-
trained mapping network F over v’, and receive
the visual prefix ¢’ of length [:

¢ ={c,ch,....ci} = F(CLIP(I')) (2)
Visually-guided Language Modeling We use
the visual information to guide text generation
in two ways, reflected in the following two train-
ing objectives. Firstly, we directly introduce the
machine-generated visual information as input to
the LM. We concatenate the visual prefix ¢ and
the text embeddings t' for the input context x
with m tokens. LM input can be denoted as
[c5t] = {c,....cth,... .t} With y' =
{yi,95, ..., vy, } denoting the target output of n to-
kens, and 6 denoting the trainable parameters, we
can list out the teacher forcing training objective as
follows:

n
Licacher = — Z log pe (y; 't y2<]) 3)
j=1

In addition, we design a contrastive objective to
enforce the generated text to be semantically simi-
lar to the input visual supervision with the InfoNCE
loss (van den Oord et al., 2018; Yan et al., 2021):

exp(sim(v, £) /7)
22 exp(sim (v, ¢7)/7)

Ecomrastive =—1

in which £ is the projected representation of the
decoder’s last layer’s output, and can be viewed as
the sentence-level representation of the generated
text. Here sim(+, -) first normalizes the two vectors,
then compute their cosine similarity, and 7 is the
temperature.

3.4 Training & Inference

We first pre-train the mapping network on the pre-
training dataset with the teacher-forcing objective.
Such pre-training is agnostic of the downstream
task, and only depends on the type of base LM.
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When applying our iNLG on downstream tasks,
we train the base LM with the teacher forcing ob-
jective for the first Nyo conira €pochs. Then, we
introduce the contrastive objective and tune the
base LM together with the mapping network and
projection layer by minimizing the following loss
L. Here ep denotes the epoch and A is the factor:

ep > N no_contras

o
®)

During inference, we provide the context and
machine-generated image to the LM. We use beam
search during decoding with a beam width of 10.

Lieacher ep <V, no_contra

£teacher + )\Econtrastivey

4 Experimental Setup

4.1 Tasks, Datasets, and Baselines

We apply our iNLG on three open-ended text gen-
eration setups: sentence completion, story genera-
tion, and concept-to-text generation. Table 1 shows
examples for each task.

Sentence Completion is a task of finishing the
sentence in a commonsense inference scenario. We
conduct experiments on the ActivityNet (Heilbron
et al., 2015) subset® of HellaSwag (Zellers et al.,
2019), which is a benchmark for commonsense
natural language inference that ask the model to
predict the most likely follow-up among several
choices given a specific context. We compare with
StoryEndGen (Guan et al., 2019) which encodes
the given context incrementally and attends to the
one-hop knowledge graph retrieved from Concept-
Net for the context tokens. We implement our
iNLG on top of the GPT-2 (Radford et al., 2019),
which by nature, can generate the follow-up for an
arbitrary input in a zero-shot manner.

Story Generation requires the model to com-
pose a story based on the given title or context.
We conduct experiments on the widely used story
generation benchmark ROCStories (Mostafazadeh
et al., 2016). Each data item consists of a story title
and a human-written five-sentence everyday life
story that incorporates commonsense related to the
title.* We provide the story title and the story’s first
sentence as the input context, and ask the LM to pre-
dict the following four sentences. We consider the

314740/982/2261 samples for train/validation/test.

*We use the split provided by Su et al. (2022a), which is
based on the ROCStories Winter 2017 release and contains
49666/1500/1500 items for the train/validation/test sets.



Task Input Context

Target Output

Difterent people are interviewed on camera while several others
are shown raking up the leaves. A man is seen sitting in his car

Text Completion
and another puts his gloves on. The camera

pans over the raked up leaves while several others discuss their
hard work.

Story Generation Live Show. Tim was in his school’s play.

He was nervous about their first show. He almost dropped out.
The show went smoothly. Tim was excited for his second show.

Concept-to-Text  grow, flower, pavement

Wild flower growing through crack in the tiled pavement.

Table 1: Exemplars of the input context and corresponding target output for three open-ended text generation task
covered in this study, namely story generation, text completion, and concept-to-text generation.

following methods as baselines: Action-Plan (Fan
etal., 2018) first predicts the premise of a story with
the convolutional LM (Dauphin et al., 2017), then
use the fusion mechanism (Sriram et al., 2018) to
encourage a convolutional seq2seq model (Gehring
et al., 2017) to generate the story from the premise.
Plan-and-Write (Yao et al., 2019) first plans a sto-
ryline that consists of keywords, then generate the
story conditioned on the storyline. Its model struc-
ture is built upon GRU (Cho et al., 2014). Sim-
CTG (Su et al., 2022b) proposes a contrastive train-
ing objective that encourages the LM to learn dis-
criminative and isotropic token representations, and
is implemented on GPT-2 (Radford et al., 2019).

Concept-to-Text is a relatively more constrained
conditional text generation task involving common-
sense reasoning. This task provides a set of con-
cepts as input, and requires the model to generate
a piece of text that incorporates the concepts and
describes an everyday scenario. We conduct experi-
ments on the CommonGen (Lin et al., 2020) bench-
mark.> We compare against the following models:
KG-BART (Liu et al., 2021) encompasses the re-
lations of concepts with the knowledge graph and
augments the BART (Lewis et al., 2020) encoder
and decoder with graph representations. Mode-
1Adapt (Ma et al., 2021) is built upon BART and
removes the positional embedding in the encoder.
Imagine-and-Verbalize (I&V) (Wang et al., 2022a)
predicts a scene graph for each set of concepts, and
uses it as an additional input to the LM. In contrast
to I&V, we directly visualize the concepts and use
the machine-generated images as the auxiliary in-
formation to assist the concept-to-text generation.

4.2 Evaluation

Automatic For sentence completion and story
generation, we follow previous work and eval-

SWe use the in-house split provided by Wang et al.
(2022a), which contains 65323/2066/4018 samples for
train/validation/test.
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uate the quality of the generated text from the
aspect of model degeneration level (rep-n, di-
versity, distinct-n), text distribution divergence
(MAUVE), and semantic similarity (BERTScore):
(1) repn=1.0- % measures sequence
level repetition by computing the portion of du-
plicate n-grams (Welleck et al., 2020). (2) di-
versity = Hfl:z(l — rep-n) measures the diversity
of n-grams (Su et al., 2022a). (3) distinct-n =
% measures the portion of distinct n-
grams in the text (Li et al., 2016). (4) MAUVE mea-
sures the learned distributions divergence between
the generated text and human-written text (Pillutla
etal., 2021),6 a low MAUVE indicates a great dif-
ference between the distributions of generated text
and human text. (5) BERTScore assesses contex-
tual text similarity between two pieces of texts by
computing the cosine similarities between their to-
kens’ embeddings (Zhang* et al., 2020),” a low
BERTScore means the generated text is contextu-
ally different from the ground-truth.

For concept-to-text, following prior work, we
report the metrics scores on BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), SPICE (Anderson
et al., 2016), and BERTScore (Zhang* et al., 2020).

Human We also set up a human evaluation as a
complementary evaluation beyond the automatic
metrics. We select 100 samples from the test set
for sentence completion and story generation and
perform the head-to-head comparison between the
text snippets generated by our iNLG and the base-
line models. We invite human annotators to com-
pare the text quality from the following three inde-
pendent aspects: (1) Coherence: Which snippet is
more semantically consistent with the context, and
follows the logic of the context more naturally. (2)
Fluency: Which snippet is more fluent in English.
(3) Informativeness: Which snippet contains more

*We report MAUVE with gpt2-large as the base model.
"We report BERTScore with roberta-large as base model.



Task *  Setting rep-2 | rep-3| rep-4| diversity ! distinct-27 MAUVE! BERTScore

0 Human 0.45 0.05 0.01 99.50 77.32 - -

Sentence 1 GPT2 no finetune (Radford et al., 2019) 6.71 6.87 10.13 78.07 74.83 44.19 22.57
Completion 2 StoryEndGen (Guan et al., 2019) 39.53 35.11 39.30 34.12 44.57 0.45 -47.29
3 GPT2 text-only finetune 4.20 4.03 5.53 86.85 75.14 49.45 24.13

4  GPT2 +iNLG 2.43 2.61 3.57 91.63 75.92 60.30 24.25

5 Human 1.76 0.38 0.15 97.71 56.34 - -

6 GPT2 no finetune 37.65 22.76 21.92 45.67 43.42 0.43 -1.77

Story 7 Action-Plan (Fan et al., 2018) 52.05 35.58 28.11 26.97 21.43 0.41 -18.32
Generation 8 Plan-and-Write (Yao et al., 2019) 45.22 32.86 23.34 30.71 20.83 0.41 -37.35
9  SimCTG (Su et al., 2022b) 28.72 24.02 20.61 43.00 42.06 0.43 18.01

10 GPT2 text-only finetune 25.41 18.51 14.41 52.10 46.60 9.10 21.23

11 GPT2 +iNLG 10.73 5.64 3.42 81.36 51.91 35.94 23.03

Table 2: Generation quality scores for few-shot text completion on the ActivityNet and few-shot story generation on
ROCStories. “Human” shows the human performance and “GPT2 no finetune” denotes the vanilla GPT2 model
without tuning. All the other listed models are trained with 1% of the training data. “+iNLG” denotes introducing

machine-generated images on top of the base LM.

interesting content, and describes the scenes that
are more likely to happen in real life. Three human
judges rate each comparison.

4.3 Implementation Details

We use StableDiffusion-v1-1 (Rombach et al.,
2022) to render a 512x512 image from the context,
and use CLIP ViT/B-32 to extract features offline.
The mapping network is an 8-layer Transformer,
and the visual prefix length is 20. For the sentence
completion and story generation tasks, the mapping
network is pre-trained on the MSCOCO (Lin et al.,
2014) dataset. For the concept-to-text task, the
mapping network is pre-trained on VIST (Huang
et al., 2016).> We pre-train the mapping network
for 5 epochs with a batch size of 128. Results are
reported on three repeat runs. Detailed hyperpa-
rameters are listed in the Appendix.

5 Result and Analysis

5.1 Few-Shot Learning Results

Open-ended text generation is a broad topic with
flexible and inexhaustible setups, many of which
have low resources. Collecting annotations is often
extremely expensive and time-consuming. There-
fore, we first report few-shot results to check if our
iINLG can rapidly adapt to new task setups with a
few examples, which is more practical in real-life.

More specifically, we report few-shot open-
ended text generation results with 1% of the train-
ing data. For sentence completion and story gen-

8CommonGen is built upon image and video caption-
ing datasets including MSCOCO. To avoid data leakage, we
choose to pre-train the mapping network on VIST, which is
not revealed to CommonGen.

&3

eration tasks, the base LM is GPT2-base (Radford
et al., 2019). For concept-to-text, we test it with
BART-base (Lewis et al., 2020) as the base LM.

Sentence Completion As shown in Table 2, Sto-
ryEndGen (#2) suffers from degeneration with the
highest rep-n and the lowest diversity. Training
with only 1% of the training data improves GPT2’s
performance on all metrics (#3 vs. #1). Under the
same few-shot setting, adding additional machine-
generated images with our iNLG (#4) further al-
leviate model degeneration. The improvement on
MAUVE also indicates that introducing visual in-
put can aid GPT2 in generating text that is more
similar to the human-written ones.

Story Generation As shown in Table 2, for the
story generation task that requires the LM to com-
pose longer text, we see the vanilla GPT2 with-
out tuning suffering from more severe degener-
ation compared to rendering a sentence ending
(#6 vs. #1). The high rep-n scores indicate that
the two non-Transformer-based baselines Action-
Plan (#7) and Plan-and-Write (#8) stammer with
repetitive tokens, which greatly differs from the
human-written text (leads to low MAUVE) and
does not have concrete meanings (leads to low
BERTScore). The models based on GPT-2 (#9-
#10) yield more complete sentences with concrete
meanings (BERTScore gets higher). However, they
keep repeating the same sentence, which is still
quite different from human language (MAUVE re-
mains low). Applying iNLG to GPT-2 leads to
minor degeneration and has the best performance
on all metrics (#11). Examples of generated text
snippets can be found in Figure 6 and in Appendix.



Coherence Fluency Informativeness
Task Models

Win(%) Tie(%) Lose(%) Win(%) Tie(%) Lose(%) Win(%) Tie(%) Lose(%)
Ours vs. StoryEndGen 51.67 20.33 28.00 44.67 1933 36.00 4133 1833 40.33
Sentence Completion  Ours vs. GPT2 no finetune 51.00 22.67 26.33 45.00 2233 32.67 41.00  21.00 38.00
Ours vs. GPT2 text-only finetune 58.00 24.33 17.67 4333  18.67 38.00 4233  21.67 36.00
Ours vs. Action-Plan 51.00 24.67 24.33 54.67 16.33 29.00 52.00 15.00 33.00
Ours vs. Plan-and-Write 4533  25.67 29.00 53.00 16.67 30.33 54.67 17.00 28.33
Story Generation Ours vs. SimCTG 42.00 27.67 30.33 4033  25.67 34.00 4333 1833 38.33
Ours vs. GPT2 no finetune 4333 2433 32.33 43.67 20.33 36.00 44.67  19.00 36.33
Ours vs. GPT?2 text-only finetune 3933  26.67 34.00 38.67 26.67 34.67 4433  22.67 33.00

Table 3: Human evaluation results for the sentence completion task and the story generation task. The scores
indicate the percentage of win, tie or lose when comparing our iNLG with the baseline models.

*  Setting B-4 M. CIDEr SPICE BertS. Base LM Setting Metrics
1 BART-base text-only finetune 20.72 2547 114.49 2458 59.76 Concept-to-Text B-41 MET.? CIDErt SPICE? BertS.?
2 +KG (Liu etal., 2021) 1526 2444 9853 2313 5276
3 +Adapt (Ma et al., 2021) 2311 2596 12344 2514 6153 BART-base TTI;EI‘GIY ;8‘23 ;iii izﬁ‘zg ;iii 22‘32
4 +1&V (Wangetal,2022a) 2450 2589 11961 2559 57.29 : : : : :
5 +iNLG 2507 2648 12793 2632 6337 BARTJaree (XFoNY 3238 3306 169.69 3301 70.33
8 LINLG 3276 3317 17147 3335 70.79
Table 4: Automatic metrics scores for few-shot concept- TS-base textonly 3039 3087  163.67 3297 70.03
. . : +iNLG 3109 3118  165.52 3281 7035
to-text generation on CommonGen with 1% of the train-
. . . Tsqaee | feXGonly 3413 3291 17567 3430 7244
ng data. All listed models are 1mp1emented on BART- g +iNLG 3450 33.87 177.65 35.48 72.70
base. “4+KG” adds knowledge graph, “+Adapt” ap- Sentence Completion  vep-4,  div.]  dist-2] MAUVE] BertS.|
plies model adaption, “+1&V” adds scene graph, and textonly 420 87.46  72.87 6142  29.84
s s : : : GPTZbase  NLG 395 8933 7409 6401  30.10
+iNLG” introduces machine-generated images as input. i - - - ! -
B-4: BLEU-4; M.: METEOR; BertS.: BERTScore. GPT2darge SXCONlY 177 9654 7674 8781  31.66
+iNLG 205 9590  76.80 89.11 3215
Story Generation rep-4| div.] dist-2t MAUVE? BertS.1
textonly  7.83 6842 4953 3313 2881
Concept-to-Text Table 4 shows that knowledge GPT2-base oy 680 7117 49.92 3886  29.13
graph information may not be fully exploited under GPT2 textonly  1.02 9191  54.17 8281  31.86
-large .
+iNLG 085 9251  54.54 87.83 3203

the few-shot setting (#2), while removing the infor-
mation of relative positions between input concepts
helps the LM write better sentences (#3). Intro-
ducing machine-generated images can improve the
base LM’s performance on concept-to-text gener-
ation (#5 vs. #1). While both I&V and our iNLG
involve machine “imagination”, we provide such
information in different forms (scene graphs vs.
images). Comparing #4 and #5, our iNLG outper-
forms 1&V with BART-base as the base LM. This
suggests that the additional information introduced
by I&V and iNLG is complementary.

Human Evaluation Table 3 lists out human eval-
uation results on text completion and story gener-
ation. Our iNLG outperforms the compared base-
lines on all three criteria in the model-level head-
to-head comparisons. This further verifies the ef-
fectiveness of our iNLG in generating fluent and
informative text snippets that better align with the
given context.

5.2 Model-Agnostic Improvement

We further report open-ended text generation re-
sults with various base LM when trained with the
full set of data. For concept-to-text, we experiment
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Table 5: Automatic metric scores when trained with the
full set of data with ablations of the base LM. Introduc-
ing our iNLG leads to model-agnostic improvements
across the board. B-4: BLEU-4; MET.: METEOR;
BertS.: BERTScore; div.: diversity; dist-2: distinct-2.

with BART-base/large (Lewis et al., 2020) and T5-
base/large (Raffel et al., 2020). For sentence com-
pletion and story generation, we record results on
GPT2-base/large (Radford et al., 2019). As shown
in Table 5, introducing machine-generated visual
supervision with our iNLG leads to model-agnostic
improvements over text-only finetuning. This holds
true for all the listed base LM with different ar-
chitectures and verifies that our iNLG is a model-
agnostic framework.

5.3 Performance Analysis

Source of Image We first perform an ablation
study to understand how the source of visual infor-
mation affects our iNLG framework. We compare
retrieved/generated images from four sources: (1)
the first returned result by Yahoo Image Search;’

®https://images.search.yahoo.com/
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Figure 3: (a) iNLG’s performance on CommonGen and
ActivityNet with visual supervisions retrieved from the
web or generated by machines. Scores are reported
with error bars. (b) Average time to render an image on
TITAN RTX with each text-to-image generator.

(2) images rendered by VQGAN+CLIP (Crowson
etal., 2022):10 (3) images rendered by OFA (Wang
et al., 2022b),!! and (4) images rendered by Sta-
bleDiffusion (Rombach et al., 2022), with which
we report the main results.

As shown in Figure 3(a), the images generated
by machines act as a more effective supervision
than the retrieved images. This validates our mo-
tivation of introducing machine-generated images
over retrieved ones to guide LM in performing text
generation. Among the three text-to-image genera-
tors, VQGAN+CLIP is slightly inferior to the other
two, while StableDiffusion and OFA have mixed
performance. Images generated by StableDiffusion
rank first on CommonGen, while images rendered
with OFA score slightly higher on ActivityNet. Fig-
ure 3(b) reports the average image rendering time,
where StableDiffusion is 10x faster when render-
ing images than the other two.

Contrastive Training We examine the effect of
the contrastive training objective on CommonGen,
and the results are presented in Figure 4. We notice
that introducing Lontrastive improves iNLG’s perfor-
mance on 4 out of 5 listed few-shot setups, which
suggests that our contrastive training objective gen-
erally can assist the LM in composing open-ended
text snippets. One exception is in the extreme few-
shot setting with only 0.1% of training data, where
the amount of data is insufficient to let the LM
form a decent representation. In this case, enforc-
ing the sentence representation to be similar to the
visual supervision with Lconerastive Might misguide
the LM.

Mapping Network & Visual Prefix We discuss
the effects of different types of mapping networks
and various visual prefix lengths. Aside from the
8-layer Transformer we used in the main experi-

https://github.com/nerdyrodent/VQGAN-CLIP
"https://github.com/OFA-Sys/OFA
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Figure 4: Performance of applying our iNLG on BART-
base for few-shot concept-to-text with ablated training
objective L onyastive ON Various few-shot settings. Scores
are reported with error bars.
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Figure 5: Performance of our iNLG on few-shot sen-
tence completion with various visual prefix lengths and
with MLP and Transformer as mapping network. Scores
are reported with error bands.

ments, we also tried a simple Multi-Layer Percep-
tron (MLP) with two fully-connected layers. As
shown in Figure 5, the Transformer-based mapping
network outperforms MLP on all listed /. MLP
has the best performance when visual prefix length
[ = 15, while the Transformer-based mapping net-
work scores highest when [ = 20.

Model Weight Tuning Table 6 compares the in-
fluence of pre-training/tuning the weights of differ-
ent modules of our iNLG. Generally speaking, tun-
ing the weights during training outperforms freez-
ing the weights, which applies to both the base LM
and the mapping network. In addition, considering
our few-show setup, pre-training the mapping net-
work also helps our iNLG gain better performances.
The best combination is applying the pre-trained
mapping network, and tuning it together with the
base LM on the few-shot downstream task.

Showcase Figure 6 provides two showcases on
few-shot sentence completion and story generation
to compare our iNLG with the GPT2-based base-
lines. SimCTG and GPT2 tuned with text-only
corpus rendering repeated segments, either copy-
ing from the input context, or simply repeating
themselves. In comparison, our iNLG has minor
degeneration and writes coherent sentence endings
or stories with more creative details in both tasks.


https://github.com/nerdyrodent/VQGAN-CLIP
https://github.com/OFA-Sys/OFA

Tune LM Pretrain Map. Tune Map. diversity ! MAUVE |

X X X 15.52 0.47
X X v 78.20 33.79
X 4 X 27.06 1.83
X 4 v 76.36 25.15
v X X 87.45 48.06
v X v 88.68 51.81
v 4 X 89.05 55.61
v 4 v 92.68 60.62

Table 6: Performance of our iNLG on few-shot sentence
completion with ablated settings on whether to tune the
LM, pretrain the mapping network (Pretrain Map.) and
tune the mapping network (Tune Map.).

Context:  Two girls are standing in a yard wearing cheerleading outfits.

Agirl...
Generated Image:

GPT2 is standing in a yard with a group of girls.
(text-only)

GPT2 ) ) N

+INLG is wearing a white bikini and blue shorts.

(a) Sentence Completion

Context: Barry at the Mall. Barry and his friends spent a day at the mall.

Barry was at the mall with his friends. They were
all very excited to see him at the mall. They all
had a great time at the mall. They all had a great
time at work. They all had a great time at school
They went to the local mall and bought a new car.
They drove to the mall and bought a new car.
They drove to the mall and bought a new car.
Barry's friends were very happy they bought a
new car.

SimCTG

Generated

GPT2
Il |(text-only)

They were swamped by the crowds. Barry was
scared to go home. They tried to avoid the mall,
but they were stopped by the people at the mall.

L |GPT2
+NLG

(b) Story Generation

Figure 6: Sentence ending and stories generated by
GPT2-based methods tuned with 1% of the training
data. Repetitive contents are underlined. The sentence
ending and story written by our iNLG is coherent with
the context, related to the machine-generated image, and
has minor degeneration. More demonstrative examples
can be found in the Appendix.

6 Conclusion

In this work, we propose iNLG, a framework
that introduces machine-generated images to guide
open-ended text generation. This endows the ma-
chines with the ability of creative visualization
that human writers often demonstrate. We distill
the vision information from the pre-trained multi-
modal models and further construct visual prefixes
to guide language models to perform text gener-
ation with the teacher forcing and the contrastive
objective. Extensive experiments show the effec-
tiveness of iNLG in open-ended text generation
tasks, including text completion, story generation,
and concept-to-text generation in few-shot settings.
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Limitations

This work mainly focuses on open-ended text gen-
eration, where the search space for the target output
is infinite, and the language model would benefit
from additional visual imagination distilled from
large text-to-image generation models to produce
coherent and meaningful content. However, we
should note here that despite the commendable per-
formance of text-to-image generation models, there
are certain terms and concepts that are inherently
challenging to visualize, such as numerical values
and abstract philosophical terms. This problem it-
self is an interesting open research question for all
tasks involving text-and-vision.

In our current approach, the images are gener-
ated offline. In future work, one may explore the
integration of text-to-image and image-to-text mod-
ules in an end-to-end manner, which may be more
suitable for longer text generation that is not cov-
ered in this work.

Text-to-image generation models currently have
a length limit on the input text prompt, which may
impede their ability to visualize long text inputs
in a single image. Furthermore, as previously dis-
cussed, text-to-image models may also encounter
difficulties in generating images of complex scenes
or situations that are challenging to depict through
a single image. Future research could explore the
use of multiple images or supplementary videos
as visual input in order to provide a more com-
prehensive representation of the scene or situation
in question. The iNLG framework can be easily
extended to take video representation by taking
longer visual prefixes or iteratively applying visual
prefixes at each step.

Ethics Statement

In this work, we use pre-trained multimodal models
to visualize machine imagination. The machine-
generated images may contain uncontrolled bias
if any inductive bias exists from the pre-training
data. Even though we do not witness such an issue
in our study, this may be a potential factor that
affects the quality of the generated text. We do not
anticipate any major ethical concerns given that
all the datasets and models used in this study have
already been released to the public. We reproduce
baselines with the released code repository. For
human evaluation, our study is approved for IRB
exempt. The estimated hourly wage paid to MTurk
annotators is $10.
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A Appendix

A.1 Experiment Details

Pretraining We pre-train the mapping network
for GPT-2-base (Radford et al., 2019) on the
MSCOCO (Lin et al., 2014) dataset with 414,113
(image, text) pairs for training. We pre-train the
mapping network for BART-base (Lewis et al.,
2020) on VIST (Huang et al.,, 2016) story-in-
sequence subset, with 141,593 (image, text) pairs
for training after excluding the images that the
users have removed. For each setting, we pre-train
the mapping network for 5 epochs with a batch size
of 128, learning rate of 2e-5, weight decay of 0.01,
and warmup steps of 5,000.

Few-Shot Training for Downstream Tasks Ta-
ble 7 lists out the hyperparameters we used during
few-show experiments on the three open-ended text
generation tasks.

Text Story

Hyperparameters  Concept-to-Text Completion Generation
Base LM BART-base GPT2-base  GPT2-base
Batch Size 8 8 8
Training Epoch 20 20 20
Nnoic(mlra 4 10 15

A 1.5 1 0.2
Learning Rate 2e-5 2e-5 2e-5
Weight Decay 0.01 0.01 0.01
Warmup Steps 400 400 400
Max Output Length 64 100 150
Num of Beam 10 10 10

Table 7: Hyperparameter settings for few-shot open-
ended text generation.

Parameter Search We tried the learning rate in
the following setting: {1e-5, 2e-5, 5e-5, le-4}, and
tried the batch size in {4, 8, 16, 32}.

Parameter Size Table 8 lists out the parameter
size for the network modules used in our study.

Environment & Run Time Table 9 lists out the
execution time for the three open-ended text gen-
eration tasks with 1% of the training data. Experi-
ments are conducted on NVIDIA A100.

A.2 Human Evaluation

We invite Amazon Mechanical Turk!? annotators
to judge the quality of the generated text. Figure 7
shows an example template we use for head-to-
head comparison.

Phttps://www.mturk.com/
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snippet is more relevant to the given context.

context, and follows the logic of the context more naturally?

Which text snippet is more relevant to the given context?

Read the given context and the two piece of texts, determine which text

In other words, which snippet is more semantically consistent with the

Select an option
1 - Text 1 is more relevant 1
2 - Tie 2

3 - Text 2 is more relevant 3

are interviewed on camera sequentially. the scene ...
Text 1: changes to a more elaborate song.

Text 2: in the yard starts his lawn mower.

Context: A man and a woman talk to the camera in a newscast setting.
The scene transitions to various people training in gymnastics. Two women

Figure 7: A screenshot of the Amazon Mechanical Turk interface for our human evaluation on text coherency.

Task Model Prameter Size
StoryEndGen 11M
Sentence Completion GPT-2 base 117M
GPT-2 base+iNLG 160M
Action-Plan 43M
Story Generation Plan-and-Write 34M
SimCTG 117M
BART-base 110M
KGBART 439M
Concept-to-Text ModelAdapt 110M
Imagine-and-Verbalize 880M
BART-base+iNLG 153M

Table 8: Parameter sizes of the network modules used
in our study.

Dataset Text-only + iNLG
ActivityNet 50min 70min
ROCStories 70min 95min
CommonGen 40min 55min

Table 9: The average execution time for one single run
(training + inference) on each dataset. Text generation
experiments are conducted on NVIDIA A100.
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A.3 More Showcases

Figure 8 compares the images retrieved from
Yahoo Image Search and the images generated
by StableDiffusion-v1-1 (Rombach et al., 2022),
which is the text-to-image generation model we
used in this work. Figure 9 and Figure 10 show
more examples comparing the sentence endings
and stories generated by different models.

Context 1: One of the guys hits the ball over to the other side and they
hit it back. Then on the other side of the beach there is a group of
women also playing volleyball. They...

(al) Retrieved Image (bi) Generated Image

Context 2: A boy is talking to a camera. He goes into a bathroom and
drinks a cup of mouthwash. He...

N
it
(a2) Retrieved Image

(b2) Generated Image

Figure 8: With the context as input, (al)(a2) is the first
returned image by the Yahoo image search engine,'3and
(b1)(b2) is generated by StableDiffusion-v1-1 (Rom-
bach et al., 2022). The two input contexts are from
the ActivityNet (Heilbron et al., 2015) subset in Hel-
laSwag (Zellers et al., 2019).

BThe screenshots of the search results returned by Yahoo
Image Search as of Feb.3rd 2023: link1, link2.


https://github.com/VegB/iNLG/blob/dev/images/yahoo_screenshot_1.png
https://github.com/VegB/iNLG/blob/dev/images/yahoo_screenshot_2.png

Context: A leaf blower is shown blowing a large pile of leaves across a green lawn in front of residential houses. The leaves...

Generated Image:

StoryEndGen is her hands . the woman

GPT2 (no finetune) are then blown by a small wind turbine.

GPT2 (text-only finetune) iare then shown in a large circle and the roof is shown in a close up.

GPT2 + iINLG

are placed on the ground and the man is shown sitting on the back.

(a)

Context: Men are standing in the edge of a trampoline preparing to make a jump into a pool in a roofed pool. People...

Generated Image:

StoryEndGen

GPT2 (no finetune)

then then the camera and then the camera and the camera and the camera

are standing in the edge of a trampoline preparing to amke a jump into a
pool in a roofed pool.

GPT?2 (text-only finetune)

are standing in the middle of the pool preparing to jump into a pool in a
roofed pool.

GPT2 + INLG

are swimming in the pool and throwing a ball.

(b)

Context: They mix the eggs around a bowl and place butter and milk into another bowl and mix them all together. They...

Generated Image:

StoryEndGen

the cake ups and the cake and then the cake and then the cake and the
cake and then the cake and then the cake and

GPT2 (no finetune)
GPT2 (text-only finetune)

will be very soft and fluffy.
are ready to use.

GPT2 + iINLG

then put a bowl on the end of the sink and put the mixture in the sink.

©

Figure 9: Comparisons on few-shot sentence completion performance on ActivityNet.

Context: Sushi. Jerry loves to eat food from other nations.

Generated Image:

Action-Plan

She was to to to a . He . He was to to to the . He . She was to to to . He . She was to the the .

Plan-and-Write

the man was a lot of her . good he had to go good good good good good good good good good
good good good good good i decided good his new phone good good good good good good good
good good good good friends # wanted # made # found # happy good good # home good good
good # time good good good # bought # time

SimCTG

GPT2 (no finetune)

Tom was hungry. He went to the sushi place. There was a lot of sushi. Tom was hungry. He went to
the sushi place

He's a big fan of the Japanese. He's a big fan of the Japanese. He's a big fan of the Japanese. He's
a big fan of the Japanese.

GPT2 (text-only finetune)

He goes to the country to buy the freshest seafood. He buys a lot of seafood. He buys more seafood
and buys more seafood. Jerry buys more seafood and eats better.

GPT2 +iNLG

He was unable to find a slice he wanted. He grabbed a slice of sushi at a fast food restaurant. He
was able to eat it and it was the perfect meal.

(a)

Context: Hole in the House. Tim was putting away some paperwork in the attic.

Generated Image:

Action-Plan

He was to to to the . He . He was to to the . . He was to to to the . . He was to the the .

Plan-and-Write

#iwas a very hot . </s> he decided good to the store good good good good good good good good
good good good good <EOT> friends # wanted # made # found # happy <EOL> # my friend went
good with good good good good good good good good good good good good , she had good and
looked in good good good good good good good good good good good # time # found # home

SimCTG

My neighbor's house was burglarized. | went to investigate. My neighbor's house was burglarized.
My neighbor's house was burglarized. My neighbor's house was burglarized

GPT2 (no finetune)

He was trying to figure out how to get the house to be ready for the next day. He was trying to figure
out how to get the house to be ready for the next day. “I'm not going to be able to do that," he said.
"I'm not going to be able to do that.

GPT2 (text-only finetune)

He was trying to write a letter to his boss. He was trying to get his boss to write a letter to him. Tim
was frustrated.

GPT2 +iNLG

He saw a map of the area. He went to the bathroom to check. There was nothing there. He was
surprised to see it was a loophole.

(b)

Figure 10: Comparisons on few-shot story generation performance on ROCStories.
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Abstract

Automatic evaluations for natural language gen-
eration (NLG) conventionally rely on token-
level or embedding-level comparisons with the
text references. This is different from human
language processing, for which visual imagi-
nation often improves comprehension. In this
work, we propose IMAGINE, an imagination-
based automatic evaluation metric for natural
language generation. With the help of Sta-
bleDiffusion (Rombach et al., 2022), a state-
of-the-art text-to-image generator, we automat-
ically generate an image as the embodied imag-
ination for the text snippet and compute the
imagination similarity using contextual embed-
dings. Experiments spanning several text gen-
eration tasks demonstrate that adding machine-
generated images with our IMAGINE displays
great potential in introducing multi-modal in-
formation into NLG evaluation, and improves
existing automatic metrics’ correlations with
human similarity judgments in both reference-
based and reference-free evaluation scenarios.

1 Introduction

A major challenge for natural language genera-
tion (NLG) is to design an automatic evaluation
metric that can align well with human judgments.
To this end, many approaches have been inves-
tigated. Metrics that base on matching mecha-
nisms such as BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015), have been widely adopted in the
field. Edit-distance based metrics, such as Char-
acTER (Wang et al., 2016), WMD (Kusner et al.,
2015), SMD (Clark et al., 2019), have also been ex-
plored. Recently, BERTScore (Zhang* et al., 2020)
and BLEURT (Sellam et al., 2020) attempt to lever-
age BERT (Devlin et al., 2019) to compare text em-
bedding similarities, which correlates better with
human judgments than previous methods. These
automatic evaluation metrics make use of textual
information from various angles extensively.
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But what happens in our minds when we read,
comprehend, and evaluate text? Research (Just
et al., 2004; Eviatar and Just, 2006) has found that,
unlike commonly designed automatic evaluation
methods that compare the generated candidates
with the references on the text domain only, hu-
mans, in contrast, leverage visual imagination and
trigger neural activation in vision-related brain ar-
eas when reading text. Cognitive studies show that
visual imagery improves comprehension during lan-
guage processing (Gambrell and Bales, 1986; Joffe
et al., 2007; Sadoski and Paivio, 2013). Inspired
by this imagination-based multi-modal mechanism
in human text comprehension, we ask a critical re-
search question: can machines create a visual pic-
ture of any underlying sentence, and use their imag-
inations to improve natural language understand-
ing? The advances of recent pre-trained vision-
language models such as CLIP (Radford et al.,
2021) provide an excellent opportunity for us to
utilize the learned image-text representations. This
enables us to explore the possibility of incorporat-
ing multi-modal information into NLG evaluation.

In this work, we propose IMAGINE, an
imagination-based automatic evaluation metric for
text generation. Specifically, we first use the
state-of-the-art text-to-image generator StableDif-
fusion (Rombach et al., 2022) to visualize machine
imagination from sentences, which is to generate
descriptive images for the candidate text and the
references. Then we receive the IMAGINE scores
by computing two sets of similarity scores with
the pre-trained CLIP model (Radford et al., 2021):
the visual similarity of the generated images, and
the cross-modal similarity between the text and the
generated image. Figure 1 shows an example.

To understand the role the machine-generated
images play in NLG evaluation, we conduct a series
of experiments with IMAGINE on multiple NLG
tasks and datasets, including machine translation,
text summarization, and sentence completion for
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Text for Summarization:

Kevin Garnett scored ## points in his return after a one-game suspension and the Boston Celtics ripped Detroit

##-## here Thursday in a rematch of last season's NBA semi-finals.
Reference:

Basketball: Garnett makes triumphant return as
Celtics top Pistons

\
~StableDiffusion C QLIP

Render
Imagination

Imaginationger

Metric Score

Hypothesis: BLEU-4 0.0 )(
Celtics sink Detroit ##-## in NBA semi-final rematch
. ROUGE-1 125 X
ZCLl Rend -
i ’maz’i’n:ﬁ’on StableDiffusion ROUGE-2 0.0 x
ROUGE-L 109 X
BERTScore 5.7 X
ImaginEimage ~ 91.2
ImaginErextaimage  63.7

Human 4.2/5.0

Figure 1: An evaluation example on GigaWord for text summarization. IMAGINE visualizes machine imagination
with StableDiffusion (Rombach et al., 2022) and extracts textual and visual representations with CLIP (Radford
et al., 2021). While traditional evaluation metrics for natural language generation rely on n-grams matching or
textual embeddings comparison, IMAGINE incorporates machine-generated images into the evaluation process and
enhances the understanding of the text snippet as a whole through the integration of multi-modal information.

open-ended text generation, aiming to answer the
following questions:

1. How influential is IMAGINE in NLG evaluation
in terms of correlations with human judgments?
Can it provide additional reference information
on top of existing metrics?

What are the applicable scenarios of introduc-
ing IMAGINE fto NLG evaluation? When and
why do machine-generated images help?

What are the potentials and limitations of intro-
ducing machine-generated images with IMAG-
INE to NLG evaluation?

Experimental results show that IMAGINE can
serve as a complementary evaluation metric to text-
based ones, and adding IMAGINE scores to ex-
isting metrics surprisingly improves most of the
popular metrics’ correlations with human perfor-
mance on various text generation tasks. This holds
for both reference-based evaluation and reference-
free evaluation. We further conduct comprehensive
quantitative analyses with case studies to verify its
effectiveness. Overall, IMAGINE displays great po-
tential in introducing multi-modal information into
NLG evaluation.

2 Related Work

Automatic Metrics for Natural Language Gen-
eration Common practices for NLG evaluation
compare the generated hypothesis text with the
annotated references. Metric performance is con-
ventionally evaluated by its correlation with hu-
man judgments. Existing automatic evaluation met-
ric calculations are mainly based on three mech-
anisms: n-grams overlap, edit distance, and em-
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bedding matching. BLEU (Papineni et al., 2002),
ROUGE-n (Lin, 2004), METEOR (Banerjee and
Lavie, 2005) and CIDEr (Vedantam et al., 2015)
are a few widely used n-gram based metrics for text
generation tasks. Another direction is based on edit
distance (Tomas et al., 2003; Snover et al., 2006;
Panja and Naskar, 2018; Tillmann et al., 1997;
Wang et al., 2016), where they calculate the edit dis-
tance between the two text snippets with different
optimizations. Embedding-based metrics (Kusner
et al., 2015; Rubner et al., 1998; Clark et al., 2019;
Lo, 2017, 2019) evaluate text quality using word
and sentence embeddings, and more recently, with
the help of BERT (Zhang* et al., 2020; Sellam
et al., 2020).

Multi-Modal Automatic Metrics Aside from
previous text-only metrics, some metrics utilize
pre-trained multi-modal models and introduce vi-
sual features on top of text references for NLG
evaluation. TIGEr (Jiang et al., 2019) computes
the text-image grounding scores with pre-trained
SCAN (Lee et al., 2018). VILBERTScore-F (Lee
et al., 2020) relies on pre-trained VILBERT (Lu
et al., 2019) to extract image-conditioned embed-
dings for the text. The CLIPScore (Hessel et al.,
2021) proposes a metric for image captioning by
directly comparing images with captions using
CLIP (Radford et al., 2021). Our method differs
in that we use visual picture generation as embod-
ied imagination and apply our metric to various
text-to-text generation tasks.

Mental Imagery The debate between pictorial-
ists and propositionalists about how imagery infor-



mation is stored in the human brain is still an open
question in the neuroscience and psychology com-
munity (Troscianko, 2013). We follow the views
from pictorialists that information can be stored
in a depictive and pictorial format in addition to
language-like forms (Kosslyn et al., 2001; Pearson
and Kosslyn, 2015). In pictorialists’ model, mental
imagery is constructed in the “visual buffer” either
from the retinal image in seeing or from a long-
term memory store of “deep representations” in the
brain. Our image generation method is to mimic
the generation of deep representations in machines,
with the help of recent powerful text-to-image mod-
els. Inspired by empirical studies from cognitive
science that visual imagination improves human
text comprehension (Gambrell and Bales, 1986; Sa-
doski and Paivio, 1994; Nippold and Duthie, 2003;
Just et al., 2004; Joffe et al., 2007; Sadoski and
Paivio, 2013), we are interested in exploring if one
can draw similar conclusions from automatic text
evaluations by machines.

3 IMAGINE

This section describes how our IMAGINE metric
evaluates the similarity between two pieces of text
with the help of machine imagination. Figure 2
provides an overview of our method.

3.1 Model Details

CLIP We use the cross-modal retrieval model,
CLIP (Radford et al., 2021), for our evaluation
purposes. CLIP jointly trains an image encoder
and a text encoder to predict the correct pairing of
image-text pairs with InfoNCE (van den Oord et al.,
2018) on 400M image-text pairs gathered from
the web. We utilize the CLIP-ViT-B/32 variant,
which consists of a 12-layer, 8-head Transformer
text encoder with a hidden size of 512, and a Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021;
Vaswani et al., 2017) image encoder adopting the
BERT-base configuration and using a 32 x 32 input
patch size. Both the text and image representations
are normalized and projected into the multi-modal
space before computing pairing likelihood through
cosine similarity.

StableDiffusion We perform text-to-image gen-
eration with StableDiffusion (Rombach et al.,
2022), which is a denoising diffusion probabilistic
model (Ho et al., 2020). The model comprises
three key components: a text encoder, a diffu-
sion model, and an autoencoder. The text encoder,
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adopted from the frozen CLIP-ViT-L/14 (Radford
et al., 2021), is utilized to encode the input text
into textual embeddings. The diffusion model,
which leverages UNet (Ronneberger et al., 2015)
for noise estimation, is modified to attend to the
input textual embeddings. We conduct experiments
with StableDiffusion-v1-1, which was trained with
LAION (Schuhmann et al., 2022), using 256 x 256
images for pre-training, followed by 512 x 512
images for fine-tuning.

3.2 IMAGINE Similarity Score

In our proposed approach, as depicted in Fig-
ure 2, the computation of IMAGINE consists of
three sequential steps. Firstly, the StableDiffusion
model (Rombach et al., 2022) is utilized to generate
descriptive images, referred to as machine imagi-
nation, from the two text snippets being compared.
Secondly, both the text snippets and the generated
images are encoded using the CLIP model (Rad-
ford et al., 2021). Finally, IMAGINE is calculated
by computing the cosine similarities of the result-
ing text and visual features, both in a mono-modal
and cross-modal manner.

Step 1: Render Imagination For each image,
StableDiffusion randomly initializes a latent matrix
H from the standard normal distribution and uses
the encoder of the pre-trained autoencoder to en-
code H into the lower-resolution latent map zp (1T
is the total inference steps). At each step ¢, the dif-
fusion model estimates the noise, €, and subtracts
it from z;. The decoder of the pretrained autoen-
coder takes the final noise-free latent map z and
generates the image prediction I of size 512 x 512.

Step 2: Extract Feature In the previous step, we
generate the corresponding images I; and I5 for
the pair of text 1 and a2 for comparison with the
text-to-image synthesis backbone. Then we pass
the machine-generated images I; and I3 and the
input text 1 and x2 through corresponding CLIP
encoders to receive the visual representations vy,
v9, and the textual representation ¢1, to.

Step 3: Measure Similarity With sim(-, ) de-
noting the process of first normalizing the two vec-
tors, then computing their cosine similarity, we
compute two types of similarity scores for IMAG-
INE with the extracted textual and visual features:

(1) IMAGINE ;44 computes the visual repre-
sentation similarity between v; and va:

F (sim(vy,v2)) (D)

IMAGINE pqge =



STEP1: STEP 2: STEP 3:

Render Imaginatinr Extract Feature Measure Similarity
Text 1 x;: .
Beef Kway Teow originates from Singapore — -1 “k : e - — 3 £
and is also made in Indonesia. One of the ! V2 HWA(JIthmé’C

ingredients in the dish-is oyster sauce.
<

Text2 x,: Vi

Oyster sauce is a dish from Singapore, where — t [T \4 IMAGINE .

Oyster sauce is a dish from Indonesia. t, (I / FLIN Etext&image
~ — v

Figure 2: Illustration of the computation process of the IMAGINE metric. Given the two pieces of text for
comparison, x; and x5, we render the machine imagination by generating two images I; and I with the pre-
trained StableDiffusion (Rombach et al., 2022). We extract features of the input text and corresponding generated
images with CLIP (Radford et al., 2021). We receive two variants of IMAGINE by computing the cosine similarity
of the extracted features, in which IMAGINE;;,,,4. measures mono-modal similarities on the visual side, while
IMAGINE est&image conducts cross-modal matching.

(2) IMAGINE ¢zt&image  (IMAGINE;g,;) takes  text, where both text and visual imagination are
both the text and the generated image into con- utilized. The integration of IMAGINE with other
sideration, and conducts cross-modal comparisons  automatic metrics is straightforward, achieved by
between (t1, v2), as well as (o, v1): summing the IMAGINE similarity score with the

. . other automatic metric’s score for each example:
sim (1, v2) + sim(ta, v1)

IMAGINEg,; = F (
2 metric_score’ += IMAGINE i itarity_score (4)

2

The cosine similarity between the text and im-
age representations theoretically has a range of 4 Experimental Setup
[—1,1]. However, in practice, the IMAGINE simi-
larity scores tend to cluster within a more narrow 4.1 Tasks, Datasets, and Models
interval [, h]. Following Hessel et al. (2021), we ~ We evaluate our approach on three popular natural
use a linear function F to stretch the similarity  language generation tasks: machine translation,
score distribution to the range of [0, 1], which is  abstractive text summarization, and open-ended
also the score range for most of the automatic met-  text generation.
rics covered in this study. Eq. (3) shows how we
re-scale the similarity score s into s’. Appendix
Figure 6 plots the two IMAGINE variants’ distribu-
tions before and after rescaling.

Machine Translation We use Fairseq (Ott et al.,
2019) to generate English translation from Ger-
man on IWSLT 14 (Cettolo et al., 2014) and
WMT’19 (Barrault et al., 2019) datasets.

s’ = H, Abstractive Text Summarization We use the
implementation of Li et al. (2017) to generate sum-

[1,h] = [0.1,1.0], for IMAGINE mage, marization on DUC2004! and use ProphetNet (Qi
[0.1,0.4], for IMAGINE cqt&image- et al., 2020b) for generation on Gigaword.” Both

(3)  datasets are built upon news articles.

3.3 Integration with Existing Metrics Open-ended Text Generation We perform ex-
periments on the ActivityNet (Heilbron et al., 2015)
subset of HellaSwag (Zellers et al., 2019), which is
a benchmark for commonsense natural language in-
ference that ask the model to predict the most likely
follow-up among several choices given a specific

The IMAGINE similarity scores can serve as stan-
dalone automatic metrics. Additionally, IMAGINE
can be incorporated as an extension to existing
metrics, as it offers multimodal references and ad-
dresses the limitations of current text-only evalua-
tions that only compare tokens or text embeddings.  Ipps.//duc.nist.gov/duc2004/

This mimics the human process of comprehending Zhttps://catalog.ldc.upenn.edu/LDC2011T07
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Metri \ IWSLT’14 \ WMT’19
etric

‘ Original +H‘—Tfifmags +IEtcxt&image ‘ Original +IEimage +IEtczt&imagc
BLEU-1 21.47 21.38+1.53 21.86+0.82 13.74 14.71+1.19 16.40+0.73
BLEU-2 20.82 21.17+1.45 21.53+0.68 12.50 12.93+1.13 15.11+0.64
BLEU-3 19.17 19.88+1.39 20.31+0.62 11.31 12.07+1.09 13.90+0.58
BLEU-4 17.60 18.57+1.36 19.08+0.60 9.10  9.15+1.06 11.84+0.54
METEOR 20.60 21.44+1.54 21.30+0.99 13.47 14.77£1.33 16.80+0.91
ROUGE 20.55 20.69+1.54 21.26+0.80 11.40 11.58%1.16 14.34+0.68
CIDEr 21.98 22.12+0.24 22.25+0.07 11.82 11.86+0.18 12.05+0.07
BERTScore 2395 24.02+1.41 24.09+0.65 17.01 17.08+1.22 18.88+0.78
BLEURT 22.93  22.9940.64 23.40+0.41 18.81 19.36+0.82 19.59+0.37

Table 1: The effect of applying our IMAGINE similarities on automatic metrics for machine translation, reflected
in the Pearson correlation with human judgments. The image generation process is conducted over five different
random seeds for each piece of text. We report the mean and standard deviation of the repeated runs. IE: IMAGINE.

context. The dataset is derived from ActivityNet
video captions and we use it for the task of sentence
completion, where the model is given a context and
asked to complete the sentence. The predicted sen-
tence endings generated by StoryEndGen (Guan
etal., 2019) and GPT-2 (Radford et al., 2019) are
collected and used in the following evaluation.

4.2 Automatic Metrics

Machine Translation & Summarization In the
evaluation of machine translation and text sum-
marization tasks, it is a common practice to com-
pare the predicted text with the reference. Adher-
ing to previous studies, we present results using
reference-based metrics. For machine translation,
we present scores using BLEU-n (n=1,2,3,4) (Pap-
ineni et al., 2002), METEOR(Banerjee and Lavie,
2005), and CIDEr (Vedantam et al., 2015). Mean-
while, for text summarization, we present ROUGE-
n (n=1,2) (Lin, 2004) precision scores. Addi-
tionally, we report the scores of ROUGE-L (Lin,
2004), BERTScore (Zhang* et al., 2020), and
BLEURT (Sellam et al., 2020) for both tasks.

Open-ended Text Generation In the context of
open-ended text generation, where the number of
possible answers for a given scenario can be in-
exhaustible, evaluating the quality of generated
text through a comparison with a fixed set of refer-
ences is challenging. To address this issue, previ-
ous studies have proposed to utilize reference-free
metrics to evaluate the quality of the generated text.
In this work, we experiment with the following
reference-free metrics which assess model degener-
ation: (1) div-n = % measures sequence
level repetition by computing the portion of dupli-
cate n-grams (n=2,3,4) (Welleck et al., 2020). (2)
diversity = Hi:z rep-n measures the diversity of
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n-grams (Su et al., 2022), and assesses the model
degeneration. (3) distinct-n = %
sures the portion of distinct n-grams (here n=2) in
the text (Li et al., 2016). In addition, we report
results on BERTScore (Zhang* et al., 2020) and
BLEURT (Sellam et al., 2020) for comparison of

contextual similarity.

mea-

4.3 Human Evaluation

We invite Amazon Mechanical Turk? annotators to
evaluate the quality of the generated text. Due to
cost constraints, when conducting human evalua-
tion, we randomly sample 1,000 test examples for
each dataset, except for DUC2004 which has 500
examples in the test set. Each example is evaluated
by three human judges using a 5-point Likert scale,
which assessed the fluency, grammar correctness,
and factual consistency of the generated text with
the reference text. The overall human assessment
score is calculated as the mean of the scores ob-
tained from the three aspects. We compute the Pear-
son correlation (Freedman et al., 2007) between the
human scores and the scores obtained from the au-
tomatic metrics, and the results are reported as a
multiple of 100 for clarity.

S Results and Analysis
5.1

Machine Translation Table 1 presents the re-
sults of the system-level Pearson correlation with
human judges when extending the IMAGINE
similarity metric to various existing automatic
natural language generation (NLG) metrics on
the IWSLT’ 14 and WMT’ 19 German-to-English
datasets. The results demonstrate that the addition
of both IMAGINE;;qge and IMAGINE ¢cst&image

Main Results

3https://www.mturk.com/
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Metric | DUC2004 | GigaWord

‘ Original +H‘—Tfifmags +IEtcxt&L‘mage ‘ Original +IEimage +IEtczt&imagc
ROUGE-1 13.66 16.77+1.31 13.4540.80 1290 17.524+0.73 16.7840.66
ROUGE-2 9.74 15.71+1.65 11.19+1.08 7.75 14.26+0.83 13.334+0.77
ROUGE-L 13.14 16.35+1.47 13.1740.95 14.31 17.44+0.77 16.78+0.70
BERTScore 19.44  20.60+1.29 20.26+0.78 19.59 20.47+0.64 20.10+0.57
BLEURT 23.59 25.20+0.72 24.46+0.42 20.23  21.08+0.39 20.74+0.35

Table 2: The effect of applying our IMAGINE similarities on automatic metrics for text summarization, reflected
in the Pearson correlation with human judgments. The image generation process is conducted over five different
random seeds for each piece of text. We report the mean and standard deviation of the repeated runs. IE: IMAGINE.

‘ Reference-based

‘ Reference-free

Metric

| Original ~ +IEimage  +1Eteqttimage | Original  +IEimage  +1Bteqttcimage
div-2 2721 28.01+0.49  28.08+0.34 2721 26514042  27.2940.58
div-3 26.80 27.67+0.49  27.78+0.35 26.80 26.17+0.43 26.98+0.59
div-4 2620 27.14+0.48 27.28+0.36 2620 2571+£0.44  26.55+0.60
diversity 27.40 28.1940.41 28.23+0.30 2740 26.89+0.36  27.55+0.50
distinct-2 26,72 27.764+0.56  27.90+0.40 2672 25.5440.48  26.49+0.66
BERTScore 2347 259240.50  25.4340.36 25.10 23.47+0.56  25.26+0.78
BLEURT 19.99 22.47+0.83 21.55+0.72 18.70 19.674+0.88  20.56+1.25

Table 3: The effect of applying our IMAGINE similarities on ActivityNet for open-ended text generation, reflected
in the Pearson correlation with human judgments. In the “Reference-based” setting, we compare the predictions
with the references, while in the “Reference-free” setting, we compare the predictions with the input contexts. The
image generation process is conducted over five different random seeds for each piece of text. We report the mean

and standard deviation of the repeated runs. IE: IMAGINE.

improves the Pearson correlation for all metrics
listed. Among the two variants, the mean of
IMAGINE ¢zt8image consistently performs better
on both datasets. It is observed that there is a more
substantial variance in IMAGINE;;,4¢, Which is at-
tributed to the difference in the images generated by
the StableDiffusion model (Rombach et al., 2022)
due to varying random seed and initialization val-
ues. As a result, IMAGINE;,44¢, Which compares
two machine-generated images, has a higher stan-
dard deviation compared to IMAGINE ¢z t&image-

Abstractive Text Summarization The results
in Table 2 demonstrate the system-level Pearson
correlation with human judges when incorporat-
ing our IMAGINE similarity into existing auto-
matic NLG metrics on the DUC2004 and Giga-
word datasets. In alignment with the observations
made in the machine translation task, the addition
of both IMAGINE;;,4g¢ and IMAGINEczt&image
results in an improvement in Pearson correlation
across all metrics. On the two summarization
datasets, we notice that the correlation after in-
corporating IMAGINE ;.44 €xhibits higher mean
values along with larger variances compared to the
correlation with IMAGINE ¢z t&image-

Open-ended Text Generation For the sentence
completion task, we conduct evaluations in two
setups. In the reference-based evaluation, we com-
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pare the predicted sentence ending with the ground-
truth ending provided in the dataset. In reference-
free evaluation, we compare the predicted sentence
ending with the input context. This setup is de-
signed to assess the coherence of the prediction
with the input context, as it is hypothesized that a
high-quality prediction for open-ended text genera-
tion should be consistent with the input context.
The results of extending our IMAGINE similar-
ity metric to existing automatic NLG metrics for
the sentence completion task on the ActivityNet
dataset are shown in Table 3. In the reference-
based setting, both IMAGINE variants demonstrate
improvement over the listed metrics and exhibit
comparable performances. In the reference-free set-
ting, the introduction of IMAGINE¢;¢&image CON-
tinues to enhance the Pearson correlation, while
the implementation of IMAGINE;,44¢ Tesults in a
decrease in correlation. One possible reason for the
decline in correlation when IMAGINE ;.44 is used
in the reference-free setting of the sentence com-
pletion task on ActivityNet (which is comprised
of video captions) is that, despite the requirement
for the predicted continuation to be coherent with
the given context, the visual representation of the
context and continued text may differ greatly in
this scenario (e.g., due to a plot twist in the video).
Consequently, direct comparison of images through
IMAGINE; 44 may result in a decrease in correla-



Src.: Also entschied ich mich eines tages den filialleiter zu besuchen, und
ich fragte den leiter, "funktioniert dieses modell, dass sie den menschen all
diese moglichkeiten bieten wirklich?"
Ref.: So | one day decided to pay a visit to the manager, and | asked the
manager, "is this model of offering people all this choice really working?"
Hyp.: So | decided to visit the filialler one day, and | asked the ladder, "does
this model work that you really offer to the people all these possibilities?"
— N [

Metric | Score

BLEU-1; 69.70
ROUGE-L{ 50.00

BERTScore: 58.88

BLEURT: 55.73

ImaginEimagestext; 23.85

Imaginationget Imaginationnyp

Figure 3: A case study on IWSLT’14 German-
to-English translation with images rendered by
StableDiffusion-v2-1. Src.: input source text. Ref.:
reference text. Hyp.: generated hypothesis text.

tion. However, the inherent coherence between the
input text and the continued text may be captured
through cross-modal comparison, which may ex-
plain why IMAGINE ;18 image Still improves the
correlation for the listed metrics.

5.2 Performance Analysis

Why is ImaginE helpful? As shown in Ta-
bles 1 to 3, the incorporation of certain variants
of IMAGINE improves the correlation between the
reference-based and reference-free metrics and hu-
man scores in the majority of cases. This indi-
cates the usefulness of extending text-only metrics
with multi-modal knowledge. However, how do
these machine imaginations actually help text un-
derstanding and evaluation? In this section, we
further explore how and why IMAGINE works. We
first provide a case study to show the uniqueness of
IMAGINE over text-based metrics, then systemati-
cally analyze the effectiveness of our method from
different perspectives.

Case Study Figure 3 shows an example in which
IMAGINE effectively detects the dissimilarity in
keywords between two text snippets. Despite the
similarity in sentence structure between the refer-
ence and hypothesis, the crucial distinction lies in
the inclusion of the terms “manager” and “ladder”.
While traditional automatic metrics that rely on
n-grams matching (BLEU, ROUGE) or textual em-
bedding comparison (BERTScore, BLEURT) may
exhibit high scores, the quality of the generated text
remains questionable. In contrast, IMAGINE gen-
erates distinctive images and exhibits a relatively
low cross-modal similarity score, which aligns with
human perception.
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Metric | Original | +IE;qvap) +Eimigcan) +Ejvooan)  +IEisp)
ROUGE-1 1371159409 157410  159+08 168+13
ROUGE-2 97| 149+12 146+13  149+10 157+ 17
ROUGE-L 131]160+10 158+1.1  160+09 164+15

Table 4: The Pearson correlations with human judges
when using IMAGINE ;.44 (IE;) to augment ROUGE-
1/2 and ROUGE-L on DUC2004. We compute four sets
of IMAGINE;,,,qg4. similarity scores (mean+std) with
dVAE, BigGAN, VQGAN, and StableDiffusion (SD).

‘ dVAE BigGAN VQGAN StableDiffusion
Entity Recall ‘ 88.8% 41.2% 87.2% 94.1%

Table 5: Entity recall rate on the visualizations for
Flickr30k captions. We report results for images gener-
ated by dVAE, BigGAN, VQGAN, and StableDiffusion.

sitting at a bench talking to each other by a body of water

_L_ﬁzu.ﬂ -

StableDiffusion

dVAE BigGAN VQGAN

Figure 4: An example caption from Flickr30k Entities,
and images rendered by dVAE, BigGAN, VQGAN and
StableDiffusion. The bounding boxes point to the visu-
alizations of the entities marked in the same color.

Sensitivity to Different Image Generation Back-
bones In previous sections, we utilize StableDif-
fusion (Rombach et al., 2022) as the image genera-
tion backbone for IMAGINE. Here, we examine the
influence of the image generation backbone on the
evaluation performance of IMAGINE by conducting
experiments on the DUC2004 dataset for summa-
rization and comparing StableDiffusion with three
alternative models: dVAE (Ramesh et al., 2021),
BigGAN (Brock et al., 2019), and VQGAN (Esser
et al., 2021). The results, as shown in Table 4, in-
dicate comparable performance of IMAGINE;;,4g¢
with dVAE and VQGAN, both of which outper-
form BigGAN across all metrics. StableDiffusion
achieves the highest mean value, but also displays
the largest variance among the models. These find-
ings highlight the significance of considering the
image generation architecture when evaluating text,
as it can result in varying machine-generated im-
ages and affect the final evaluation outcomes.

Reliability of Machine-Generated Images The
reliability of IMAGINE’s visualization capabil-
ity is further evaluated on the Flickr30k Entities
dataset (Plummer et al., 2015), which consists of
annotated image captions. We randomly sample
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Figure 5: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in DUC2004. Lower: The
relative image similarity decrease after masking each
syntax tag. Baseline: The average intra-group pairwise
image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.

100 captions and use the four generative backbones
to render images. We present the captions and
generated images to human annotators, and ask
them to indicate if the entities mentioned in the
captions are visually represented. The results, in
terms of entity recall rates, are presented in Table 5.
A higher recall rate indicates that the text-to-image
generator is more capable of visualizing the con-
tent described in the text. The results show that
StableDiffusion has the highest entity recall rate
of approximately 94%, followed closely by dVAE
and VQGAN. In contrast, BigGAN has the lowest
recall rate of around 41%. An example of entity
recall for a set of images generated by the four
generative backbones is shown in Figure 4.

Syntax Importance to Machine-Generated Im-
ages We evaluate the significance of different syn-
tax tokens in the image generation process using
the DUC2004 summarization dataset. We utilized
the Stanza (Qi et al., 2020a) part-of-speech (POS)
tagger to parse the text and created ablated exam-
ples by masking out a token of a specific syntax
tag.* The visual similarity of the images gener-
ated from the ablated examples is then compared
to the visualization of the original text. The re-
sults, as reported in Table 5, indicated that the re-

*We report Universal POS tags in this
https://universaldependencies.org/u/pos/

study:

POS Tag ‘ 10 Most Frequent Tokens

president, minister, government, space, party, station,

N .
Nou ‘ budget, game, right, arrest
PROPN U.S,, Cll.nt.on, China, Korea, Gaza, Microsoft, Congo,
Israel, Livingston, Lebanon
new, prime, Russian, international, Asian, possible,
ADJ . .
Cambodian, first, human, economic

Table 6: The most frequent NOUN, PROPN, and ADJ
tokens in DUC2004.

moval of PROPN and ADJ tags has a significant
impact on the visualization results, resulting in a
12% decrease in visual similarity. Conversely, re-
moving NOUN tokens has a comparatively smaller
effect. The most frequent NOUN, PROPN, and
AD]J tokens in the DUC2004 dataset were listed
in Table 6. For DUC2004 built upon new clusters,
PROPN and ADIJ tokens cover concrete concepts
such as nations, corporations, and celebrities, while
NOUN tokens involve more abstract concepts such
as government, party, and right. For this partic-
ular dataset, our IMAGINE approach pays more
attention to PROPN and ADIJ tokens that are easier
to visualize by nature. Further analysis for other
dataset domains can be found in the Appendix.

Which IMAGINE Variant to Report? From Ta-
bles 1 to 3, we can see a mixed trend of perfor-
mance between the two IMAGINE variants. In
general, IMAGINE ;18 image has smaller variances
among repeated runs. Nevertheless, we would still
suggest reporting both IMAGINE variants since
they conduct comparisons from different aspects,
with IMAGINE;;,q4e comparing similarity within
the visual modality, while IMAGINEcst&image
compares cross-modal similarity.

IMAGINE as a Standalone Metric Table 7
presents the Pearson correlation with human evalua-
tions on each dataset when utilizing the two IMAG-
INE variants as standalone metrics. The results
reveal that both IMAGINE variants demonstrate a
lower correlation compared to other metrics as re-
ported in Tables 1 to 3. Additionally, the scores
produced by IMAGINE are not determinate, given
the probabilistic nature of text-to-image models
that generate various images with different random
seeds. Hence, IMAGINE may not be an optimal
choice as a standalone metric. Nonetheless, it is
important to emphasize the capability of IMAGINE
in introducing multimodal aspects to traditional
text-only metrics. In this study, integrating IMAG-
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IWSLT’14 WMT’19 DUC2004 GigaWord AN(w/ref) AN(w/o ref)

19.1+£1.5 138+1.7 10.6+1.5 159+1.1 18.9+1.5 16.8+1.9
18.0£1.5 129+1.8 9.6+1.6 153+1.1 18.4+1.6 182+1.8

IE;
1Bk

Table 7: The Pearson correlation between IMAGINE
variants and human assessments on each dataset. Here
we use IMAGINE ;,,44¢ (IE;) and IMAGINE ezt&image
(IE;g;) as two individual metrics. AN: ActivityNet, “w/
ref”: reference-based, “w/o ref”: reference-free.

INE with text-only metrics leads to an improvement
in the Pearson correlation with human evaluations.
Future work may explore alternative methods of
integrating multimodal information in text evalua-
tion.

6 Conclusion

We present IMAGINE, a novel automatic evaluation
metric for NLG that is based on machine imagi-
nation. Our experiments on five datasets across
three different NLG tasks demonstrate the poten-
tial of incorporating IMAGINE similarity scores as
a supplement to existing automatic NLG metrics,
which can lead to improvement in their correla-
tion with human evaluations in various scenarios.
In the future, it is interesting to explore effective
ways of visualizing abstract concepts, and how to
incorporate machine imagination efficiently. We
hope our work can contribute to the discussion and
advancement of multi-modal studies.

Limitations

The current limitations of IMAGINE include the
length constraint of the CLIP text encoder, which
is limited to 77 BPE tokens (including [BOS] and
[EOS]), thus limiting its applicability to longer
text generation tasks such as story generation or
document summarization. As a metric that re-
lies on “machine imagination”, IMAGINE is lim-
ited by the inherent limitations of the generative
models for images. The non-determined nature
of machine-generated images can lead to non-
determined IMAGINE scores. Possible solutions to
mitigate this issue includes but are not limited to
fixing the random seeds or repeating the evaluation
process several times to reduce the variance effect.
Additionally, it remains a challenge for machines
to properly visualize certain abstract concepts or
numerical values, which could limit the scope of
IMAGINE’s applicability.
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A Appendix

A.1 Score Distributions

In this study, we use cosine similarity to evalu-
ate the similarity between features, which yields
a score distribution in the range of [—1, 1]. How-
ever, our results indicate that negative scores were
not observed when computing the similarities be-
tween the features generated by CLIP. The score
distributions of the two IMAGINE variants are de-
picted in Figure 6. Prior to re-scaling, the scores
generated by IMAGINE; 44 typically fall within
the range of [0.1,0.4], while those generated by
IMAGINE ¢zt8image are within [0.1, 1.0]. Follow-
ing re-scaling, both IMAGINE metrics are linearly
transformed to lie within the range [0, 1].
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Figure 6: The score distributions of IMAGINE ;4. and
IMAGINE ¢st&image before and after re-scaling.
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A.2 Syntax Importance to Imaginations

In Section 5.2, we discussed the impact of
DUC2004 Part-of-Speech (POS) tags on the qual-
ity of generated images. In this section, we extend
our examination to another dataset domain, the
Flickr30k Entities dataset (Plummer et al., 2015),
which is an image captioning corpus. While the
domain of the Flickr30k Entities dataset is distinct
from that of the DUC2004 (based on news articles),
similar trends are observed. The results displayed
in Figure 7 also suggest that concrete concepts are
easier to be visualized and play a more significant
role in the visualization process, similar to the re-
sults observed in Figure 5.
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Figure 7: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in Flickr30k. Lower: The
relative image similarity decrease after masking each
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image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.
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Abstract

Fake news and misinformation spread rapidly
on the Internet. How to identify it and how to
interpret the identification results have become
important issues. In this paper, we propose a
Dual Co-Attention Network (Dual-CAN) for
fake news detection, which takes news con-
tent, social media replies, and external knowl-
edge into consideration. Our experimental re-
sults support that the proposed Dual-CAN out-
performs current representative models in two
benchmark datasets. We further make in-depth
discussions by comparing how models work in
both datasets with empirical analysis of atten-
tion weights.!

1 Introduction

The development of the Web and social media plat-
forms helps us obtain news quickly, but also pro-
vides a gateway for spreading false information.
The impact of false information is wide, and the
spread speed might be even faster than the actual
one (Vosoughi et al., 2018). For example, fake
news is proven empirically to influence the 2016
U.S. presidential election (Bovet and Makse, 2019;
Grinberg et al., 2019; Budak, 2019). Given the
impact of false information, previous studies paid
a lot of effort to detect it from different aspects, in-
cluding (1) news content only (Santos et al., 2020;
Kim and Ko, 2021), (2) the combination of news
articles and social media replies (Li et al., 2020;
Lu and Li, 2020), and (3) additional publisher/user
information (Long et al., 2017; Yuan et al., 2020;
Del Tredici and Fernandez, 2020). In this work,
we focus on using both news contents and social
media replies, and further add external knowledge
to enhance the model’s ability to capture critical
entities.

Named entities play an important role in docu-
ment understanding and influence text generation

'Code repository: https://github.com/SinHanYang/
Dual-CAN

performances (Narayan et al., 2021, 2022). In-
spired by this notion, we design a novel model,
named Dual Co-Attention Network (Dual-CAN),
which takes entities’ descriptions into considera-
tion to enhance the background knowledge of the
model. The proposed Dual-CAN is modified based
on one of the representative fake news detection
models, dEFEND (Shu et al., 2019a). There are
three major improvements in the proposed Dual-
CAN: (1) Inspired by Hu et al. (2021), we add en-
tities” descriptions for enhancing the performance.
(2) Instead of using LSTM-based architectures
(Shu et al., 2019a; Lu and Li, 2020), we adopt
attention architecture (Vaswani et al., 2017) as the
backbone. (3) We further tailor-made a co-attention
layer for comparing the given news article with en-
tity descriptions. In sum, in addition to adopting
entity descriptions from Wikipedia, we design a
new architecture to fusion all information. Our
main contribution is providing a novel model for
fake news detection and pointing out a new direc-
tion for enhancing performance.

2 Related Works

Previous works in fake news detection mainly fo-
cused on two aspects: news content based and so-
cial context based. Rashkin et al. (2017) focus
on the linguistic characteristics of the news con-
tent to detect fake news, and find that fake news
often contain specific kinds of words. Ma et al.
(2016) use recurrent neural networks (RNN) to
learn the hidden representations from the contex-
tual information of relevant posts over time. Monti
et al. (2019) analyze social graph and user profile
to predict fake news. Shu et al. (2019b) find that
user profile features are useful in fake news de-
tection. Shu et al. (2019a) and Lu and Li (2020)
use co-attention model to leverage news content
and social context. Their models not only have
better performance but also provide interpretability
to their models. Several works also use external
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knowledge to improve model’s predictions. Wang
et al. (2020) and Hu et al. (2021) use entity linking
method to capture entity descriptions and leverage
them in their models. Inspired by these works, we
use external knowledge for entities to enhance per-
formance, and use both news content and social
media context in the proposed model.

3 Method

Figure 1 shows the architecture of the proposed
Dual-CAN. This section describes the details of the
proposed Dual-CAN model, which is composed of
five components.> The first one is news content
encoder, which employs word-level attention net-
work and sentence-level encoder to generate fea-
tures for the corresponding news contents. The sec-
ond is entity description encoder. For each entity
in news content, entity description encoder grabs
its descriptions from the external knowledge base
and creates features to represent them. The third
is user engagement encoder, which employs the
same method as news content encoder to create
features to represent user comments. The fourth is
dual co-attention component, which captures the
relation between (news content, entity description)
and (news content, user engagement) pairs. The
last is prediction component, which combines all
information from the previous components to make
the final predictions.

3.1 News Content Encoder

A news story is composed of a sequence of sen-
tences S = [s1, S2, ..., SN, and a sentence is com-
posed of up to M words s; = [Wj1, Wai, ..., WiM]-
Here, N is the maximum number of sentences in a
piece of news, and M is the maximum number of
words in a sentence. We perform padding to con-
trol the maximum number of sentences and words
in news content. To create features to represent a
news story, we use word-level attention network
to encode each sentence, and use sentence-level
encoder to encode all sentences in news content.

3.1.1 Word-Level Attention Network

We use Glove (Pennington et al., 2014) to create
word embedding of d dimensions during the pre-
processing stage for each word in sentences. For
a sentence s € RY*M  we utilize bi-directional
Gating Recurrent Units (GRU) (Chung et al., 2014)
to learn the word-level representation. The output

The hyperparameters are reported in Appendix B.
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Figure 1: Architecture of Dual-CAN. D.C.L., ED.E.,
N.C.E., and U.C.E. stand for dual co-attention layer,
entity description encoder, news content encoder, and
user comment encoder, respectively.

of the BiGRU is v; = BiGRU(w;) € R?*"i ¢
{1,2,...M}, where h is the dimension of the GRU.
Next, we perform the basic attention mechanism to
increase performance and interpretability (Lu and
Li, 2020) of the word encoder. Attention weight
shows the importance of the ith word. The word-
level attention network generates the representation
of a sentence vector v/ € R?**! calculated as fol-

lows:
M
v = av )]
i=1
where a; 1s:

k; = tanh(Pnvi + by)
exp(upk;) ()
ij\/il exp(unk;)

i =

P, € R?*h u, € R"*! are learnable parame-
ter. We preform a linear layer on v;, and use a
parameter k; to calculate the attention weight.

3.1.2 Sentence-Level Encoder

We use BiGRU again to encode sentences in a news
story. A sentence vector s; € R?"*1 is calculated
from the output of word-level attention network:

si = BIGRU(V)),i € {1,2,..,N}  (3)

Finally, single news content is represented by a list
of sentence vectors S = [s1, sz, ..., sn| € R2XN,

3.2 Entity Description Encoder

For each news content, we identify entities in it
and grab their descriptions from Wikipedia using
tools TAGME (Ferragina and Scaiella, 2010). For
each entity description, we only use the first &
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sentences. With the word-level attention network in
Section 3.1.1, we create features that describe entity
descriptions D = [dy,da, ..., dg]. Finally, entity
descriptions for a piece of news is represented by

a list of sentence vectors D = [dy,dg,...,dE] €
RQhXE.

3.3 User Comment Encoder

For all user comments related to a news story, we
only use the first U sentences. We extract features
to describe user comments C = [cy,C2, ..., Cy]
with the word-level attention network in Sec-
tion 3.1.1. Finally, user comments for a news
story are represented by a list of sentence vectors
C = [c1,ca, ..., cy] € R#XU,

3.4 Dual Co-Attention Component

Because we want to know whether the entity de-
scription confirms/refutes the news content and
whether user comments reflect the character of
the news content, we adopt co-attention net-
work for capturing the relationship between news
content and entity descriptions, and another co-
attention network for linking the relationship be-
tween news content and user comments. Given
news content feature vectors S = [s1, S2, ...,SN] €
RN " entity description feature vectors D =
[d1,dg2,...,dg] € R2h*E and user comments fea-
ture vectors C = [cy,Ca,...,cy] € R¥*U we
use dual co-attention mechanism for interpreting
model predictions.

3.4.1 Entity Description Co-attention

First, we compute a relation matrix F
F = tanh(DW,S) ¢ REXN (4)

to capture the relationship between news content
and entity descriptions, where W, € R?"*2h i a
learnable parameter. Second, we calculate interac-
tion maps for news content H and entity descrip-
tion H,,

H, = tanh(W¢S + WqDF7) N
Hg = tanh(W4qD + W,SF)
where Wg, Wq € R2%2" are learnable parame-
ters. Third, we calculate attention weights on each
sentence in news content and entity descriptions.

ag, = softmax(wpsHy)

(6)

aq = softmax(wnaHq)

where wis and wpg € R'™2" are learnable pa-
rameters. After we get attention weights as, €
RN aq € RY™F, we generate new feature vec-
tors for news contents and entity descriptions:

s; = ag, ST
d=agD” @

Finally, we represent news content in a feature vec-
tor s; € R2" and entity descriptions in a feature
vector d € R1*2~,

3.4.2 User Comment Co-attention

We apply co-attention model as shown in Sec-
tion 3.4.1 to news content and user comments.
We represent news content in a feature vector
So € RY2% and user comments in a feature vector
¢ € R The attention weights vector for news
content and user comments are as, € R and
a. € RlXU.

3.5 Prediction Component

Our task is a binary classification task with
real/fake labels. First, we concatenate all feature
vectors f = [s7, d, s>, ¢], and feed the result into a
2-layer linear neural network. It is calculated by:

y :Wz(W1f+b1) + bo (8)

where W7 and W are learnable parameters and
b1, bg are bias terms. The prediction result § =
[yo, y1] indicates the probabilities of label 0 is y,
and label 1 is y;. We choose cross entropy as our
loss function:

L(0) = —ylog(y1) — (1 —y)log(1 —go) (9)

where 6 is all parameters in our model. We choose
Adam optimizer (Kingma and Ba, 2014) to opti-
mize all parameters 6.

4 Experiments

4.1 Datasets

We adopt two datasets in our experiment. The first
dataset is GossipCop (Shu et al., 2018), which col-
lects both news content and social context from
fact-checking website. The second dataset is
CoAID (Cui and Lee, 2020), which is a benchmark
dataset for COVID-19 misinformation. Please re-
fer to Appendix A for the statistics of the datasets.
We follow the evaluation settings as previous stud-
ies (Shu et al., 2018; Cui and Lee, 2020) to use (Ac-
curacy, F1, Precision, Recall) for GossipCop and
use (PR-AUC, F1, Precision, Recall) for CoAID.
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GossipCop CoAID
Model (Input) (# of Parameters) Accuracy  F1  Precision Recall PR-AUC  F1  Precision Recall
BiGRU (N+C+E) (28M) 0580 0367 0290 0500 0876 0782  0.769  0.804
BERT (N+C+E) (339M / 110M) 0.787 0776 0.787 0.771 0940 0877  0.901 0.859
RoBERTa (N+C+E) (384M / 125M) 0.894  0.890  0.896  0.887 0918 0877  0.901 0.859
LinkBERT (N+C+E) (330M / 110M)  0.824 0811  0.841 0.802 0927  0.880  0.903 0.863
dEFEND (N+C) (5M) 0771 0758  0.771 0754 0749 0799 0792  0.808
Dual-CAN (N+E) (33M) 0.895  0.891  0.901 0.885  0.853  0.884  0.905 0.868
Dual-CAN (N+C) (33M) 0914 0912 0913 0911 0937  0.887 0907 0872
Dual-CAN (N+C+E) (33M) 0949 0947 0946 0949 0954  0.884  0.905 0.868

Table 1: Experimental results. N, C, and E denote news content, user comments, and entity description, respectively.
BERT-based models are implemented in two methods (details in Appendix B) with different number of parameters.

4.2 Results

We compare the results with the following repre-
sentative models: BiGRU (Chung et al., 2014),
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), LinkBERT (Yasunaga et al., 2022)), and
dEFEND (Shu et al., 2019a).> Table 1 shows
our experimental results. Our Dual-CAN outper-
forms all baselines in both datasets. In addition,
our Dual-CAN uses fewer parameters than BERT-
based models. Our approach also performs better
than dEFEND (Shu et al., 2019a) when no entity
descriptions are provided. This is because we use
different preprocessing methods, and the differ-
ences between two model architectures. The bot-
tom half of Table 1 shows ablation analysis of the
proposed model. The results indicate the impor-
tance of adding entity information to the proposed
model, especially in GossipCop. However, only a
few improvements in PR-AUC when experiment-
ing with CoAID. CoAID usually are short posts that
contain few entities, which results in the limitation
of the proposed entity-aware concept. The main
source to predict whether a piece of news is fake is
the news content itself. Therefore, N+E, N+C, and
N+C+E results only have small differences because
they both contain N. The roles of C and E are to
improve the predictions.

5 Interpretability

We examine attention weights [ag, , a4, as,, 8s, | tO
find those sentences that the proposed model is fo-
cusing on when making predictions. Figure 2 illus-
trates the results. We find that our model pays a cer-
tain degree of attention to the first sentence in the
entity descriptions of both datasets (Figure 2a,2c).

3Because Shu et al. (2019a) did not release the information
for dataset separation, we use the same hyperparameter re-
ported in their work to reproduce the results. All implemental
details are provide in Appendix B
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Figure 2: Attention weights of: (a) GossipCop entity
description, (b) GossipCop user comments, (¢) CoAID
entity description, and (d) CoAID user comments. Dark
colors means higher attention weights. The vertical axis
means the index of the sentence.

Our intuition about this phenomenon is that the
first sentence always provides a brief definition of
the entity, and it would be helpful for models to
understand the given entity. On the other hand,
model’s attention weights on user comments of
both datasets are in the middle replies, as shown in
Figure 2b and Figure 2d. It follows our intuition be-
cause the sentences like “FY1. It’s a fake news.” for
clarifying the given news/post is fake news always
appears later than some discussions. Based on Fig-
ure 2d, we also find that models give little attention
weight to the twelfth or later sentences. Besides
weight distributions studies, we also did some case
studies in Appendix C. The results show that atten-
tion weights do reflect the important parts of the
input, which help us interpret the model better. For
example, we understood the importance and usage
of entity descriptions from attention weights.

6 Conclusion

We propose a dual co-attention network for fake
news detection, which improves the previous rep-
resentative model, dEFEND, by (1) adding entity
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description as external knowledge and (2) redesign-
ing co-attention architecture for using all input in-
formation. Our results support the usefulness of the
proposed Dual-CAN model. The interpretability
based on the attention weight is also discussed.

Limitations

The major limitation of the proposed model is that
when the given text (news article or social media
post) is short, and the performance of adding entity
description may not be significantly improved. It is
because such text provides few entities in the nar-
rative, and it will limit the proposed entity-aware
concept.
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We will follow the licenses of GossipCop (Shu
et al., 2018) and CoAID (Cui and Lee, 2020) to
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Datasets GossipCop  CoAID
Total news 4,273 2,162
True news 2,562 1,590
Fake news 1,711 572
User Comments 309,059 37,187
Entity Descriptions 95,150 5,666

Table 3: Dataset statistics.

and CoAID. Due to the size limits, we cannot
upload the dataset via the submission system.
Please download it via the following anonymous
link: https://drive.google.com/file/d/
1QuZeINFHqQy80F 1AV56272TyyVVg7g2HD/view?
usp=sharing.

B Implementation Detail

Below are the implementation details of the base-
line models:

* BiGRU (Chung et al., 2014): We use Glove
300d for word embedding of news content,
entity descriptions and user comments. The
word embedding of three resources are feed
into BiGRU and concatenate their results T =
[Un, V4, v]. Second, we feed T into linear
neural network described in Section 3.5 to get
final result.

e Pretrained language models (BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019),
LinkBERT (Yasunaga et al., 2022)): We
adopt three representative pretrained language
models for comparison, and implemented in
two different ways.

— Method 1
For each experiment, we feed news con-
tent, entity descriptions, and user com-
ments into three tokenizers respectively.
Afterwards, we feed input id and atten-
tion masks of each resource into three
pretrained language models respectively.
Each pretrained model handles one re-
source. Finally, we concatenate the out-
puts of three pretrained models, and pass
a linear layer to output probability of two
labels g. This method is used for Gossip-
Cop dataset in Table 1.

— Method 2
The number of parameters in Method
1 is huge, but it’s necessary for Gossip-
Cop dataset. We tried another method

to reduce the number of parameters. We
concatenate all three resources and feed
into one tokenizer. Second, we feed in-
put id and attention masks into one pre-
trained models. The final procedure is
same as the previous method. The ex-
periment results for CoAID dataset are
in Table 1, and the results are better than
Method 1’s. The experiment results for
GossipCop dataset is in Table 4. The
performances are worse than Method
1’s. We believe it’s because GossipCop
dataset’s data are too long for a single
pretrained model. Therefore, we tried
Longformer (Beltagy et al., 2020) which
accept longer input. The performance be-
comes better, but this methods uses more
parameters.

* dEFEND (Shu et al., 2019a): dEFEND is
one of the representative fake news detection
methods. It is based on co-attention model to
increase explainability.*

Table 2 reports the hyperparameters used in the
proposed Dual-CAN. In the ablation study, we re-
move the original data of entity description E or
user comments C, and replace them with padding
token <PAD>. Therefore, the model architecture
remains the same as Section 3 stated. We have sub-
mitted the code for review, and it will be released
on GitHub.

C Case Study of Interpretability

We analyzed individual sentences and words which
have higher attention weight, in order to figure out
the explanability of the attention weight.

For sentence-level analysis, entity descriptions
that define an entity would have higher attention
weights. Here are two example entity descriptions
that have higher attention weights:

1. {Dataset: GossipCop, id: 587, attention
weight: 0.036 >average 0.01}: “IMDb (an
abbreviation of Internet Movie Database) is
an online database of information related to
films, television series, home videos,...”

“Because Shu et al. (2019a) did not release the informa-
tion for dataset separation, we use the same hyperparameter
reported in their work to reproduce the results. We will release
the datasets for reproduction.
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GossipCop
Model (Input) (# of Parameters) ~ Accuracy ~ F1  Precision  Recall

BERT (N+C+E) (110M) 0.643 0.587 0.645 0.599
RoBERTa (N+C+E) (125M) 0.698 0.631 0.774 0.646
LinkBERT (N+C+E) (110M) 0.702 0.694 0.694 0.693
Longformer (N+C+E) (148M) 0.752 0.742 0.758 0.723

Table 4: Method 2 experiment results of GossipCop dataset. N, C, and E denote news content, user comments, and
entity description, respectively.

2. {Dataset: CoAlID, id: 48, attention weight:
0.182 >average 0.05}: “The Centers for Dis-
ease Control and Prevention (CDC) is the
national public health agency of the United
States.”

3. {Dataset: CoAID, id: 1304, attention
weight: 0.119 > average 0.05}: “Getty Im-
ages, Inc. is a British-American visual media
company and is a supplier of stock images, ed-
itorial photography, video and music for busi-
ness and consumers, with a library of over
477 million assets.”

Moreover, we can see some correlation between
highlighted entity descriptions and news content
that contain them. For example, the news sentence
which contains entity (2,3), both have higher atten-
tion weight than average.

1. {Dataset: CoAlID, id: 48, attention weight:
0.33 >average 0.25}: “enters for disease con-
trol and prevention, cdc twenty four seven,
saving lives protecting people centers for dis-
ease control and prevention”

2. {Dataset: CoAID, id: 1304, attention
weight: 0.33 > average 0.25}: “getty images
the antimalarial drug hydroxychloroquine is
being widely promoted as a cure for covid-19
but we still lack good data on its true benefits.”

Case studies indicate that our model performs
like it is doing “fact-checking”, which is an use-
ful and important strategy for fake news detection.
Meanwhile, entity descriptions are essential for
fact-checking. Therefore, with the good usage of
entity descriptions, fake news detection can achieve
better performance, same as the ablation studies in
Section 4.2 shown.

For word-level analysis, we discovered similar
results as (Lu and Li, 2020) did. Some fake news
contains emotional words or words that catch peo-
ple’s attention like “Breaking”or “warn”.
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Abstract

We propose a new commonsense reasoning
benchmark to motivate commonsense reason-
ing progress from two perspectives: (1) Eval-
uating whether models can distinguish knowl-
edge quality by predicting if the knowledge is
enough to answer the question; (2) Evaluating
whether models can develop commonsense
inference capabilities that generalize across
tasks. We first extract supporting knowledge
for each question and ask humans to anno-
tate whether the auto-extracted knowledge is
enough to answer the question or not. Af-
ter that, we convert different tasks into a uni-
fied question-answering format to evaluate the
models’ generalization capabilities. We name
the benchmark Commonsense Inference with
Knowledge-in-the-loop Question Answering
(CIKQA). Experiments show that with our
learning paradigm, models demonstrate en-
couraging generalization capabilities. At the
same time, we also notice that distinguish-
ing knowledge quality remains challenging for
current commonsense reasoning models.

1 Introduction

Understanding human language requires both lan-
guage knowledge (e.g., grammar and semantics)
and world knowledge, which can be further di-
vided into factual and commonsense knowledge
(Katz and Fodor, 1963). Recently, the commu-
nity has made great progress in helping machines
acquire and apply language and factual knowl-
edge. However, how to help machines acquire
and infer over commonsense is still unclear. To
answer this question, many commonsense rea-
soning datasets (Roemmele et al., 2011; Sak-
aguchi et al., 2020; Talmor et al., 2019; Zellers
et al., 2019; Lin et al., 2020) have been pro-
posed. Even though they target different knowl-
edge types, modalities, and formats, they often

* This work was done when the second author was vis-
iting HKUST.

follow a standard supervised learning setting that
aims at helping machines solve a specific task with
training data. However, two limitations of this
learning paradigm have restricted the development
of commonsense reasoning systems.

First, there is no clear separation between
knowledge and inference. As discussed in Elazar
et al. (2021), a common phenomenon is that
larger training data will lead to better perfor-
mance, mainly because richer knowledge is cov-
ered. However, due to the large scale of com-
monsense knowledge, it is infeasible to annotate
a large enough training set for each task, and the
responsibility of the training data should be teach-
ing models how to make inferences rather than
acquire commonsense knowledge. Several recent
works have explored using structured knowledge
for commonsense reasoning tasks (Lin et al., 2019;
Lv et al., 2020; Paul and Frank, 2020). However,
as these works did not clearly analyze the cover-
age of the structured knowledge (i.e., knowledge
graphs (KGs)), it is still unclear what the perfor-
mance means, better knowledge coverage, or bet-
ter inference capability. To investigate what is be-
hind this learning process, we propose to equip
each question with auto-extracted knowledge and
ask humans to annotate whether the knowledge is
sufficient to answer the question. By doing so,
we could evaluate whether models can know if
the provided knowledge is good or not and how
well they can conduct inference over the provided
knowledge to solve the task.

Second, supervised learning may force the
model to learn the distribution of the training data
rather than a universal inference model. As a re-
sult, the model may perform well on the test set
that follows the same distribution but fail to gen-
eralize (Kejriwal and Shen, 2020). Previously, as
different tasks have different formats, it is hard
to evaluate the generalization ability of common-
sense reasoning models. Following the trend of
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Precedence (2)

I make a call

Commonsense
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—

Knowledge Retrieval

| | depart away ]

[ | eat food ]

—

Human Verification x

Task 1: Identify whether the knowledge
is sufficient for answering the question.

WsC
\3{
COPA Question: Bob sees John rests on a bench and Questi&g: Bob sees John|rests on a benchjand
he falls into sleep. Who falls into sleep? :> he falls into sleep.] Who falls into sleep?
CKBC Candidates: (A) Bob; (B) John / Answer: B Candidates: (A) Bob; (B) John / Answer: B

Unified Format (i.e., QA)

Multiple Commonsense
reasoning tasks

QA paired with supporting

Task 2: Learn a generalizable inference
model over the provided knowledge that

knowledge could generalize across tasks.

Figure 1: CIKQA demonstration. All tasks are converted into a unified format such that we can easily evaluate
the generalization capability of all models. We also equip all questions with auto-extracted knowledge graphs from
existing KGs and ask humans to annotate whether the knowledge is gold or not. In this example, we expect models
to first identify the quality of the knowledge and then conduct inference over the knowledge to solve the question.

using a unified format (i.e., question answering)
for different tasks (Khashabi et al., 2020), we pro-
pose to convert various commonsense reasoning
tasks into a unified QA format such that we can
easily and fairly evaluate the generalization ability
of learned commonsense reasoning models.

Combining these two lines of effort, we pro-
pose a new commonsense inference benchmark
Commonsense Inference with Knowledge-in-the-
loop QA (CIKQA). An example is shown in Fig-
ure 1. We first convert several popular common-
sense reasoning tasks into a unified QA format and
equip them with the relevant knowledge from ex-
isting commonsense knowledge graphs. We lever-
age human annotation to label whether the pro-
vided knowledge is correct and enough! to answer
the question. The CIKQA benchmark can moti-
vate us to answer two questions: (1) Whether cur-
rent models can distinguish the knowledge is gold
or not; (2) Can current commonsense inference
models generalize across different commonsense
reasoning tasks?

Experiments with several recent knowledge-
based commonsense reasoning models show that
even though current deep models could learn to
conduct simple inferences after training with a
few examples when gold knowledge is provided,
they still cannot learn to distinguish gold knowl-
edge very well. Moreover, although current mod-

'In the rest of the paper, we denote such knowledge as the
gold knowledge.

els demonstrate encouraging generalization abil-
ity across the three tasks we consider, they still
struggle with complex inference (e.g., abductive
reasoning). We hope that our benchmark® can
motivate more advanced commonsense inference
methods in the future.

2 Dataset Construction

In CIKQA, to encourage a generalizable com-
monsense inference model, we follow previous
work (Khashabi et al., 2020; Cohen et al., 2020;
Wu et al., 2020; Du and Cardie, 2020) to unify
all selected tasks as a binary question answering
problem, and equip each question with a support-
ing knowledge graph G retrieved from existing
commonsense KGs. We leverage crowd-sourcing
workers to annotate whether the knowledge is gold
(i.e., accurate and enough) for answering the ques-
tion. With that, we can evaluate whether mod-
els know how to distinguish gold and knowledge
and whether they can learn the generalizable in-
ference with the help of the knowledge. In total,
CIKQA contains 15 thousand instances from four
kinds of commonsense reasoning tasks. Details
about task selection, format unification, knowl-
edge extraction, and annotation are as follows.

2.1 Task Selection

In CIKQA, we select the following four popular
commonsense reasoning tasks:

2 Available at https://github.com/CogComp/CIKQA.
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Task Name

Original Assertion

| Transformed Question

| Answer

HardPCR The fish ate the worm. It was | The fish ate the worm. It was hun- | (A) Fish; (B) Worm
hungry. gry. What was hungry?
CommonsenesQA || What is a place that someone | What is a place where someone can | (A) Toy store; (B) Shelf
can go buy a teddy bear? go buy a teddy bear?
COPA I drank from the water fountain. | I drank from the water fountain. | (A) I was thirsty.; (B) I felt
What was the cause of this? nauseous.
ATOMIC PersonX buys the bike. Before PersonX buys the bike, what | (A) To be social.; (B) To
did PersonX want? have transportation.

Table 1: Demonstration of the original assertion, transformed questions, and answers. Correct and wrong answers

are indicated in blue and red, respectively.

1. HardPCR (Zhang et al., 2021): The hard pro-
noun coreference resolution (HardPCR) task is
one of the most famous commonsense reason-
ing tasks. For each question, a target pronoun
and two candidate mentions are provided, and
the task is to select the correct mention that
the pronoun refers to. Careful expert annota-
tions are conducted to get rid of the influence of
all simple linguistic rules, and the models are
required to solve the problem with common-
sense reasoning. We include instances from
WSC (Levesque et al., 2012), DPR (Rahman
and Ng, 2012), and WinoGrande (Sakaguchi
et al.,, 2020). To create a question regarding
the target pronoun, we first find the sentence
that contains the target pronoun and then deter-
mine whether the participating pronoun refers
to a person or an object.

2. CommonsenseQA (Talmor et al., 2019) is
a multiple-choice question answering dataset.
For each question-answer pair, four relevant but
wrong concepts are used as the other candi-
dates, and the models are required to select the
correct one out of five candidates. In CIKQA,
we randomly sample a negative answer to make
it a binary choice task, which is consistent with
other datasets.

3. COPA (Roemmele et al., 2011) focuses on eval-
uating the understanding of event causality.
Two follow-up events are provided for a target
event, and models are asked to predict the one
caused by or the reason for the target event.

4. ATOMIC (Sap et al., 2019): is a common-
sense knowledge graph, which we convert into
a completion problem. Given a head concept
(e.g., “eat food”) and a relation (e.g., “cause”),
we want to predict the tail concept, focusing on
predicting the edges of ATOMIC.

In COPA and ATOMIC, where the task is to
predict the relations between two events or states
(e.g., “PersonX eats”’-Causes-“PersonX is full”),
for each triplet, we randomly sample another event
or state as the negative tail and ask the model to
select the correct one. To make the task challeng-
ing and avoid sampling irrelevant events or states,
we restrict the sampled negative event or state to
be connected with the head of a different triplet
(e.g., “PersonX is hungry” from the triplet “Per-
sonX eats”-CausedBy-‘“PersonX is hungry”). For
each relation, we write a pattern to generate the
question. For example, for the “Causes” relation,
we will ask “What can be caused by the event ‘Per-
sonX eats’?”. Examples of instances in the orig-
inal datasets and their transformed questions and
candidate answers are presented in Table 1.

2.2 Supporting Knowledge Extraction

As discussed in Section 1, a limitation of existing
commonsense reasoning benchmarks is that there
is no clear boundary between knowledge and in-
ference. As such, itis unclear what is learned from
the training data, the knowledge, how to perform
inference, or a combination of both. We propose
to equip each question with supporting knowledge
to address this issue and encourage models to learn
inference rather than knowledge from the training
data. The question is selected as part of the dataset
only if we find supporting knowledge to answer
the question. Note that this procedure serves as
an improved evaluation setup than purely super-
vised learning and not as a solution to common-
sense reasoning. This section introduces the se-
lected commonsense knowledge graphs and then
introduces how we extract the corresponding com-
monsense knowledge for each question.
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2.2.1 Commonsense KG Selection

Many commonsense knowledge graphs were de-
veloped to enhance machines’ commonsense rea-
soning abilities, including ConceptNet (Liu and
Singh, 2004), ATOMIC (Sap et al., 2019),
GLUCOSE (Mostafazadeh et al., 2020), and
ASER (Zhang et al., 2020a). Among these four,
ConceptNet, ATOMIC, and GLUCOSE were con-
structed via crowd-sourcing, while ASER was
constructed automatically with information ex-
traction techniques. Besides ATOMIC, which is
used as one of the tasks, we use the other KBs as
supporting knowledge resources.

2.2.2 Supporting Graph Extraction

Here we introduce how to extract the supporting
knowledge from external commonsense knowl-
edge bases. For each question, we need to obtain
a sub-graph from supporting knowledge graphs
to contain the relevant commonsense knowledge
about the question. The sub-graph extraction pro-
cess includes the following three steps: (1) Pre-
processing: Convert each question into several key
sentences; (2) Matching: Match the sentences into
nodes in the KG; (3) Extraction: Retrieve the rel-
evant sub-graphs from the entire KG. In what fol-
lows, we give some more details on each of the
steps.

Data Pre-processing: For each question and the
associated candidate answers, we first replace the
question words (e.g., “What”) with the two candi-
date answers such that they become two declara-
tive sentences. For instance, if the question is “The
fish ate the worm. It was hungry. Who is hun-
gry?” and the candidates are “Fish” and “Worm,”
we will convert the question into the declarative
sentence: “The fish is hungry” and “The worm is
hungry.” As a result, we will get three sentences
for this question: “The fish ate the worm,” “The
fish is hungry,” and “The worm is hungry.”

KG Matching: After getting the declarative sen-
tences containing the question and key answers,
we map them to nodes in knowledge graphs to
extract the relevant knowledge. Considering that
each sentence may have multiple words and it is
often hard to find an exact match, we adopt an
embedding-based fuzzy matching technique. For
each sentence and node in the KG, we treat them
as a sentence and get the corresponding repre-
sentations with SimCSE (Gao et al., 2021). For
each input sentence, SimCSE encodes the sen-
tence into a vector. A close distance between two

vectors indicates that the two sentences are simi-
lar to each other. We use cosine similarity on the
obtained representations to measure the similarity
between two sentences.? Since there are 287 thou-
sand nodes in GLUCOSE and 194 million nodes
in ASER, it is computationally infeasible to com-
pute the cosine similarity between sentences pair
by pair. Thus we use an approximation. For each
extracted sentence, we first apply Faiss (Johnson
et al., 2017), a large-scale similarity-based match-
ing algorithm that first clusters all KG nodes in the
vector space to increase the matching efficiency
when finding the top N nodes in the KG. We en-
code all the nodes of the graph and index them us-
ing Faiss (Johnson et al., 2017). Then, we can per-
form fast and quick retrieval of the most-similar
nodes with each query sentence. After that, we
sort the /V nodes based on the cosine similarity to
find the top K similar nodes. We set N and K
to be 60 and 1, respectively. On average, it takes
25 seconds to retrieve the relevant nodes for each
question.

Graph Extraction: Next, we extract the sub-
graph that contains all the relevant nodes. We de-
note the extracted m nodes as ni, no, ..., Ny, and
for each of them, we find K similar nodes from the
KG. The resulting matched node sets are denoted
as N1, N3, ..., N,,. For any pair of nodes n € N;
and n’ € N (i # j), if there exists a path in the
KG between n and n’, we will keep that path. Af-
ter adding all paths together, we will get the final
sub-graph. On average, constructing a graph for
each question takes less than two seconds.
Knowledge Quality Annotation: Since our ex-
traction method is automatic, some of the sub-
graphs may be irrelevant or insufficient for an-
swering the questions. We use crowdsourcing to
annotate whether the extracted knowledge is gold
(i.e., accurate and enough), five per example. The
average Inter-annotator agreement (Cohen’s kappa
statistic) is 0.83, indicating our annotation’s high
quality. In the end, we apply a strict standard (at
least four of five annotators need to vote for gold)
to select the gold knowledge.

2.3 CIKQA Statistics

We report the dataset statistics in Table 2. In
total, CIKQA contains 14,599 instances, among
which Hard PCR and ATOMIC provide the most

3We also tried other techniques such as string match,
ROUGE (Lin, 2004), and BLEURT (Sellam et al., 2020), but
found them to be either inaccurate or too slow for our scale.
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# Instance by Knowledge Resource

Task Name H ASER | ConceptNet | GLUCOSE H # Total Instance | Avg Sub-graph Size | # Gold Instance
HardPCR 2,030 202 2, 143 4,375 2.85 670
CommonsenseQA 530 31 598 3.19 59
COPA 103 41 149 293 3.03 78
ATOMIC 5,655 212 3,466 9,333 2.67 2,200
Total || 8318 | 486 5,795 14,599 | 2.75 | 3,007

Table 2: CIKQA statistics. “Avg Sub-graph Size” is the average graph size measured by the number of edges.
“# Gold Instance” means the number of instances supported by different knowledge resources and annotated gold

(i.e., Accurate and Enough) knowledge.

questions because their original datasets are much
larger than others. According to the annotation,
20.59% of the instances contain gold knowledge.
Based on our analysis, annotators hold a very strict
standard for selecting the gold knowledge. We
randomly split the dataset into training, develop-
ment, and testing sets for each task with a standard
8:1:1 splitting. As a result, we get 11,678 training,
1,459 development, and 1,462 testing instances.

3 Experiment Setup

We present the performance of the following com-
monsense inference models on CIKQA:

(1) Vanilla LM: We use the language model (LM)
based multiple-choice (MC) model as the basic
baseline. For each candidate answer, we concate-
nate it with the question and feed it to the model.
After getting the sentence representation, a linear
layer is used to obtain a score and trained with a
cross-entropy loss.

(2) KagNet: As one of the pioneering works that
utilized structured knowledge for solving com-
monsense reasoning tasks, KagNet (Lin et al.,
2019) first uses a graph convolution network to
encode the knowledge graph and then apply an
LSTM based hierarchical attention mechanism to
encode the knowledge paths that start with the
nodes corresponding to the question and end with
nodes corresponding to the answer. At the same
time, KagNet encodes the question and answers
with pre-trained LMs. In the end, it concatenates
all representations for the final prediction.

(3) Graph-Based Reasoning (GBR): Instead of
only encoding paths starting with the question
nodes and ending with answer nodes, in GBR (Lv
et al., 2020), they propose to run a depth-first al-
gorithm over the knowledge graph to generate a
sequence of paths as the supporting knowledge
paths.

(4) Multi-Head Knowledge Attention (MHKA):

To further utilize the knowledge, MHKA (Paul
and Frank, 2020) uses a transformer network to
model the paths from the question nodes and an-
swer nodes, then concatenates the knowledge and
context representation for the final prediction.
(5) Graph-to-Text (G2T): In the end, we also
evaluate a simple yet effective approach of com-
bining structured knowledge and language mod-
els: Graph-to-Text (Bian et al., 2021), which first
verbalizes knowledge into a sentence and then
concatenates the knowledge sentence and target
question together. On top of that, a transformer-
based model is used to encode the input sentence
and make the final prediction.

Implementation Details We implement all ex-
periments with Huggingface (Wolf et al., 2019).
We select BERT-base (Devlin et al., 2019) as the
base language model for all models.
size is set to 16. All models are trained for 10,000
steps®, and the best-performing checkpoints on
the dev set are evaluated. For our model, we set
both the number of random walk paths and the
walk length to five. Considering that the auto-
extracted knowledge could contain noise or miss
certain knowledge, we add a “gold knowledge”
setting, where only examples with the gold knowl-
edge are used for training and testing, for all mod-
els as the upper bound of their model. All other
hyper-parameters are the same as the base lan-
guage model. All models are trained with GTX
2080, and the average running time is 12 hours.

4 Result Analysis

We first conduct analysis experiments to evalu-
ate to what extent the provided knowledge could
help existing models. For each model, we train
it with different numbers of training instances and
report the average performance and standard de-

* All models converge at 10,000 steps.
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Figure 2: Learning curves of all evaluated models on
all instances of CIKQA. We evaluate all models with
the full dataset.

viation of five trials. Experiment results with all
instances and the gold subset of CIKQA, where
only instances with gold knowledge are used for
training and testing, are presented in Figure 2
and 3, respectively. From the results, we can make
the following observations. First, when explic-
itly including the knowledge, all inference models
outperform the baseline model with no support-
ing knowledge, especially G2T. When the auto-
extracted and gold knowledge is provided, G2T
outperforms the baseline Vanilla LM model by
4.17 and 15.34 accuracy, respectively. It supports
our assumption that learning all knowledge from
the limited training data is hard, and external struc-
tured knowledge could help. At the same time,
we also notice a significant gap between auto-
extracted knowledge and gold knowledge. For
example, if gold knowledge is available, models
could learn to answer the questions with only a
few examples. This indicates that the knowledge
quality can significantly impact models’ perfor-
mance, which further shows the importance of dis-
tinguishing whether the knowledge is gold or not
automatically. Last but not least, we can see that
G2T outperforms other inference models in most
settings, which shows that with the help of cur-
rent large-scale LMs, jointly encoding questions
and knowledge is more efficient and a more effec-
tive strategy than acquiring them separately. Due
to the simplicity and efficiency of G2T, we will
conduct the rest analysis experiments with G2T.

N
o)

Accuracy

(=)
(=]

Chance Performance

w
[

Vanilla_LM
—J— KagNet_gold
GBR_gold
—¥— MHKA_gold
—#— G2T_gold

w
(=}

45

10' 10° 10’ 10
# Training Instances

Figure 3: Learning curves of all evaluated models on
the gold subset of CIKQA, where only instances with
gold knowledge are used for training and testing.

4.1 Distinguishing the Gold Knowledge

Humans can say “I do not know” when they find
out that they cannot answer a question with their
knowledge. To investigate whether current deep
models have a similar capability, we use G2T as
an example to test whether these deep models can
distinguish the gold knowledge. For each (ques-
tion, answer, and knowledge) triplet, we train and
test G2T with annotated knowledge quality la-
bels. To address the imbalanced distribution prob-
lem, we randomly select the same number of “Not
Gold” examples as the “Gold” ones to make the
dataset balanced. From the results in Figure 4,
we can see that the performance of G2T can be
improved slightly with the increase of training
data. However, after seeing thousands of exam-
ples, it still can only achieve 0.65 accuracy on a bi-
nary classification problem. It shows that knowing
when to say “I do not know” is still a challenging
task for current deep models, which is consistent
with the observations in previous literature that
deep models cannot understand the reasons and
knowledge they used to answer questions (Zhang
et al., 2020b; Sanh et al., 2022). We hope that
CIKQA could motivate more future work on this
important research problem.

4.2 Generalization Ability

An important assumption and motivation behind
the unified problem design of CIKQA is that even
though the commonsense could be enormous, the
inference rules over commonsense knowledge can
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Testing Task

— |

Training Task o PCR T CommonsenseQA | COPA | ATOMIC
Hard PCR i 37.50 = 5230 | 75.00 — 53.24 | 44.13 — 53.32
CommonsenseQA || 50.00 — 50.14 - 62.50 — 56.67 | 56.34 — 70.56
COPA 459555126 | 6250 — 58.33 . 49.77 — 62.96
ATOMIC 39.19 5076 | 50.00 —76.67 | 62.50 —73.33 -

(a) Full Dataset (Vanilla LM (without knowledge)— G2T (with knowledge))

Training Task ‘ Testing Task

| Hard PCR | CommonsenseQA | COPA [ ATOMIC
Hard PCR - 46.67 — 51.67 63.33 — 56.67 51.85 — 55.78
CommonsenseQA || 49.32 — 50.32 - 50.00 — 75.00 60.39 — 91.08
COPA 52.51 — 54.79 56.67 — 87.50 - 53.01 — 76.06
ATOMIC 50.46 — 51.35 68.33 — 93.75 56.67 — 87.50 -

(b) Gold Subset (Vanilla LM (without knowledge)— G2T (with knowledge))

Table 3: Generalization ability demonstration. We report the performance on both the full dataset and the gold
dataset (i.e., only questions with gold knowledge are selected for training and testing) to show the generalization
ability. Strong and moderate generalization settings are indicated with the green and orange background, respec-

tively.
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Figure 4: The learning curve of G2T on the gold knowl-
edge identification task.

be limited. As a result, even though we could
not learn all the commonsense from limited train-
ing data, we can learn how to conduct inference
with several tasks and then generalize to others.
In this section, we conduct experiments with both
the “Without Knowledge” and “With Knowledge”
models to show that we can gain such generaliza-
tion ability across different tasks with our unified
formulation. We conduct experiments on two set-
tings: (1) Full Set: We train and test the model
with the whole dataset; (2) Gold Subset: We only
train and test the model on questions where the
supporting graph is annotated as gold. We train
the model with questions from a specific task and

test it on all tasks. The results are in Table 3.

From the results, we can see that the knowledge
can help models to generalize well among Com-
monsenseQA, COPA, and ATOMIC. The only ex-
ception is HardPCR. This is mainly because the
inference needed for solving HardPCR is more
complex than the other tasks, where we not only
need to find the relevant knowledge but also need
to replace the target pronouns with the entity in
the provided knowledge. As shown in Figure 5,
two paths can be found relevant to question: (1)
“I am drunk”— Co_Occurrence—*“1 hit someone”;
(2) “I am drunk”— Co_Occurrence—*That is not
fair”— Co_Occurrence—‘You kick me”. For the
correct inference, we need to know when there is
a conflict, we should trust the one-hop inference
more because the additional node in the two-hop
path may introduce extra noise. As a compari-
son, for other tasks, the main inference we need
is to find the relevant paths, which is relatively
easy. How to train a model that can learn to con-
duct such complex reasoning is a problem worth
exploring in the future.

In general, the observed generalization ability
is encouraging because if we can learn a good
model on CIKQA, based on the assumption that
there are limited types of inference, we can po-
tentially solve any commonsense reasoning task
as long as the needed inference types are covered
by CIKQA. At the same time, we also notice that
models typically generate better when gold knowl-
edge is provided, further proving the importance
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HardPCR
You kick me

lCo_Occurrence )

[ That is not fair ]

Somebody hits me Co_Occurrence (4)
Precedence (1) 2 I wash my hand
e’ T am drunk
cu"'e" Co_Occurrence (2), Precedence (2)
!
/0 Co_Occurrence (2)
(1falldown | T hit someone I start eating

Question: Olga kicked Sara because she
was drunk. Who was drunk?
Candidates: (A) Olga; (B) Sara

Answer: A

Candidates: (A) eat; (B) run
Answer: A

CommonsenseQA

| I feel better
Co_Occurrence (4)
Co_Occurrence (3) Tam eating

Question: After | urinate and flush the toilet
and wash my hands, what should | do next?

COPA ATOMIC

The rain stops She is very informative

Result (5) Co_Occurrence (2)

1 will go

Co_Occurrence (3)

I take a walk

(She explains everything |

Co_Occurrence (3)

She answers my question

Question: The rain subsided. What
happened as a result?

Candidates: (A) | went for a walk; (B) |
browsed the internet

Answer: A

Question: PersonX answers PersonY questions.
As a result, how does PersonX feel?
Candidates: (A) influential; (B) informative
Answer: B

Figure 5: CIKQA Case Study. Mapped nodes for the question/answers are in blue/pink. Other nodes are white.
Edge weights are in brackets. We only show the relevant parts of the graphs for clear representation.

of the gold knowledge identification task.

5 Related Work

To help machines understand commonsense, the
community has devoted great efforts to construct-
ing commonsense knowledge bases with either
crowdsourcing (e.g., ConceptNet (Liu and Singh,
2004) and ATOMIC (Sap et al., 2019)) or infor-
mation extraction techniques (e.g., ASER (Zhang
et al., 2020a)). Typically, crowd-sourced knowl-
edge bases are of higher quality, and the auto-
constructed ones have broader coverage. Besides
acquiring commonsense knowledge, the commu-
nity also developed many commonsense reasoning
datasets to train and test models’ commonsense
reasoning abilities. Even though these datasets
may have different formats (e.g., slot fitting in
Winogrande (Sakaguchi et al., 2020) and question
answering in CommonsenseQA (Talmor et al.,
2019)), knowledge types (e.g., causal common-
sense in COPA (Roemmele et al., 2011) and nu-
merical commonsense in NumerSense (Lin et al.,
2020)), or modalities (e.g., visual commonsense
in VCR (Zellers et al., 2019) and textual common-
sense in many others), they follow a standard su-
pervised learning setting, and aim at helping ma-
chines to solve a specific commonsense task in an
end-to-end manner. Given this setting, it is of-
ten difficult to tell what has been learned during
the training. Was it used to acquire commonsense
knowledge, learn to conduct commonsense infer-
ence, or both? Such ambiguity limits our progress
in solving these commonsense reasoning tasks. In
this work, we connect the efforts on common-
sense acquisition and inference by creating a com-
monsense inference benchmark CIKQA , where
models can focus on learning to identify the gold
knowledge and perform inference over the sup-
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porting commonsense knowledge.

Answering questions in natural language based
on a knowledge base (KB) is a mature research
topic in the NLP community, which is also known
as the KBQA problem (Clark et al., 1999; Yih
et al., 2015, 2016; Usbeck et al., 2017; Cui et al.,
2017). Previous work mainly focuses on factual
knowledge, which is stored in the triplets format.
The main challenge is to parse the question and
then precisely and effectively identify the correct
path over a large-scale KB to make the inference.
Compared with inference over factual knowledge,
inference over commonsense knowledge brings
the following unique challenges: (1) Common-
sense is a kind of preference rather than fixed
knowledge. As a result, the ideal commonsense
reasoning process could involve the comparison of
multiple candidates. For example, both “drink cof-
fee” and “drink bear” could happen in the morn-
ing, but a normal person will prefer “drink coffee;”
(2) Beyond named entities, commonsense knowl-
edge also covers daily entities and events, and thus
it is difficult to find an exact node from the com-
monsense KB that matches the question, and we
may need to conduct inference based on the partial
match (i.e., the extracted nodes are relevant but not
identical).

6 Conclusion

In this paper, we present CIKQA, a unified com-
monsense inference benchmark. Specifically, we
first convert several popular commonsense tasks
into a unified QA format and then equip each ques-
tion with a supporting commonsense knowledge
graph. We also leverage humans to annotate the
quality of auto-extracted knowledge. Experiments
show that even though models can better learn how
to perform commonsense inference with a few ex-



amples and significantly outperform the baseline
method that does not use structured knowledge in
the data-scarce setting, identifying the gold knowl-
edge is still a challenging problem. More in-
terestingly, with our unified formulation, models
demonstrate the encouraging generalization abil-
ity across tasks. As both the format unification
and supporting graph extraction are automatic, we
can easily extend to other commonsense reasoning
tasks in the future.
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A common limitation of existing semi-parametric
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these commonsense knowledge graphs is an im-
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Abstract

Scarcity of large-scale datasets, especially for
resource-impoverished languages encouraged
exploration of data-efficient methods for hate
speech detection. In this work, we progress
implicit and explicit hate speech detection us-
ing an input-level data augmentation technique,
task reformulation using entailment and cross-
learning across five languages. Our proposed
data augmentation technique EasyMixup, im-
proves the F1 performance across languages by
0.5-9% . We also observe substantial F1 gains
of 1-8% by reformulating hate speech detec-
tion as Entailment-style problem. We
further probe the contextual models and ob-
serve that higher layers encode implicit hate
while lower layers focus on explicit hate, high-
lighting the importance of token-level under-
standing for explicit and context-level for im-
plicit hate speech detection. !

1 Introduction

Deep learning based methods (Badjatiya et al.,
2017; Zhang et al., 2018; Kshirsagar et al., 2018)
have shown impressive results in detecting hate
speech. Transformer based models (Caselli et al.,
2021; Tekiroglu et al., 2020; Aluru et al., 2020;
Mozafari et al., 2019; Dutta et al., 2022) have fur-
ther pushed the state-of-the-art by leveraging large
amount of unlabeled data in a self-supervised man-
ner. Various hate speech detection datasets have
been contributed in textual (Gibert et al., 2018;
Davidson et al., 2017; Founta et al., 2018), au-
dio (Gupta et al., 2022) and visual (Gomez et al.,
2020) domains. However, these algorithms are
data-hungry and motivate development of algo-
rithms which are data-efficient.

To tackle this, we introduce an input-level
data augmentation technique EasyMixup and im-
prove hate speech detection in monolingual and
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multilingual settings. EasyMixup is inspired
by mixup based augmentation techniques which
are broadly categorized into input-level mixup (Yun
et al., 2019; Kim et al., 2020; Uddin et al., 2021;
Walawalkar et al., 2020) and hidden-level mixup
(Verma et al., 2019). EasyMixup follows the
input-level paradigm and leverages a simple ob-
servation that the label of a hateful instance is
preserved on concatenation with a hateful or non-
hateful instance. Similarly, lab