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Introduction

Welcome to SemEval-2022!

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyze diverse semantic phenomena in text, with the aims of extending the current sta-
te of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2022 is the sixteenth workshop in the series of International Workshops on Semantic Evalua-
tion. The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004), focused
on word sense disambiguation, each time expanding in the number of languages offered, the number
of tasks, and also the number of teams participating. In 2007, the workshop was renamed to SemEval,
and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond word sense
disambiguation. In 2012, SemEval became a yearly event. It currently takes place every year, on a two-
year cycle. The tasks for SemEval-2022 were proposed in 2021, and next year’s tasks have already been
selected and are underway.

SemEval-2022 is co-located (hybrid) with The 2022 Annual Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL-2022) on July 14 - 15. This year’s SemEval
included the following 12 tasks:

¢ Lexical semantics

— Task 1: CODWOE - COmparing Dictionaries and WOrd Embeddings
— Task 2: Multilingual Idiomaticity Detection and Sentence Embedding

— Task 3: Presupposed Taxonomies - Evaluating Neural-network Semantics (PreTENS)
* Social factors & attitudes

— Task 4: Patronizing and Condescending Language Detection
— Task 5: MAMI - Multimedia Automatic Misogyny Identification

— Task 6: iSarcasmEval - Intended Sarcasm Detection in English and Arabic
* Discourse, documents, and multimodality

— Task 7: Identifying Plausible Clarifications of Implicit and Underspecified Phrases in In-
structional Texts

— Task 8: Multilingual news article similarity

— Task 9: R2VQ - Competence-based Multimodal Question Answering
* Information extraction

— Task 10: Structured Sentiment Analysis
— Task 11: MultiCoNER - Multilingual Complex Named Entity Recognition
— Task 12: Symlink - Linking Mathematical Symbols to their Descriptions
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This volume contains both task description papers that describe each of the above tasks and system de-
scription papers that present the systems that participated in the tasks. A total of 12 task description
papers and 221 system description papers are included in this volume.

SemEval-2022 features two awards, one for organizers of a task and one for a team participating in a
task. The Best Task award recognizes a task that stands out for making an important intellectual contri-
bution to empirical computational semantics, as demonstrated by a creative, interesting, and scientifically
rigorous dataset and evaluation design, and a well-written task overview paper. The Best Paper award
recognizes a system description paper (written by a team participating in one of the tasks) that advances
our understanding of a problem and available solutions with respect to a task. It need not be the highest-
scoring system in the task, but it must have a strong analysis component in the evaluation, as well as a
clear and reproducible description of the problem, algorithms, and methodology.

2022 has been another particularly challenging year across the globe. We are immensely grateful to the
task organizers for their perseverance through many ups, downs, and uncertainties, as well as to the lar-
ge number of participants whose enthusiastic participation has made SemEval once again a successful
event! Thanks also to the task organizers who served as area chairs for their tasks, and to both task orga-
nizers and participants who reviewed paper submissions. These proceedings have greatly benefited from
their detailed and thoughtful feedback. Thousands of thanks to our assistant organizers Siddharth Singh
and Shyam Ratan for their extensive, detailed, and dedicated work on the production of these procee-
dings! We also thank the members of the program committee who reviewed the submitted task proposals
and helped us to select this exciting set of tasks, and we thank the NAACL 2022 conference organizers
for their support. Finally, we most gratefully acknowledge the support of our sponsor: the ACL Special
Interest Group on the Lexicon (SIGLEX).

The SemEval-2022 organizers: Guy Emerson, Natalie Schluter, Gabriel Stanovsky, Ritesh Kumar, Alexis
Palmer, and Nathan Schneider
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Abstract

Word embeddings have advanced the state of
the art in NLP across numerous tasks. Under-
standing the contents of dense neural represen-
tations is of utmost interest to the computa-
tional semantics community. We propose to
focus on relating these opaque word vectors
with human-readable definitions, as found in
dictionaries. This problem naturally divides
into two subtasks: converting definitions into
embeddings, and converting embeddings into
definitions. This task was conducted in a mul-
tilingual setting, using comparable sets of em-
beddings trained homogeneously.

1 Introduction

Word embeddings are a success story in NLP. They
have been equated to distributional semantics mod-
els (Lenci, 2018; Boleda, 2020), a theory of seman-
tics which relates the meaning of words to their
distribution in context (Harris, 1954). Recently
introduced contextualized word embeddings (e.g.
Devlin et al., 2019) have set a new state of the art on
a wide variety of tasks. For this reason, they have
attracted much research interest. Do they depict
consistent semantic spaces and are they theoreti-
cally valid (Mickus et al., 2020b; Yenicelik et al.,
2020)? What limitations are to be expected in these
models (Bender and Koller, 2020)? Can they scale
up in performance (Brown et al., 2020)?

Word embeddings are dense vector representa-
tions of meaning which are not easily intelligible
to a human observer. Many techniques have been
employed to make embedding spaces more inter-
pretable. A promising approach consists in con-
verting these opaque vectors into human readable
definitions, as one could find in a dictionary: ac-
curately translating a dense, opaque vector repre-
sentation into an equivalent human-readable piece
of text would allow us to peer into the black box

*Work conducted while at ATILF
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Figure 1: Logo for CODWOE shared task

of modern neural network architectures. This av-
enue of research, known as definition modeling,
was pioneered by Noraset et al. (2017). One may
however question whether the task is at all feasible:
there is no guarantee that the information content
of a dictionary definition is similar to that which
is described by real-valued vectors inferred from
word distributions.

The SemEval Shared Task on Comparing Dictio-
naries and Word Embeddings (CODWOE) sets out
to study whether embeddings and dictionaries en-
code similar information. We present the task and
relevant state of the art in Section 2. We describe
the data collected and presented to participants in
Section 3. In Section 4, we discuss the metrics
used to rank participant submissions. Our baseline
model is presented in Section 5. We list results
from participants’ submissions in Section 6 and
provide a more in-depth discussion in Section 7.

2  What we are fishing for

What is in a word embedding? Are word embed-
dings semantic descriptions, in the same sense that

Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1 - 14
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dictionary definitions are? If so, embeddings and
definitions must be translatable into one another.
The CODWOE shared task was set up to test this.
The shared task participants investigated whether a
word vector—e.g. cod—contains the same infor-
mation as the corresponding dictionary definition—
viz. “any of various bottom-dwelling fishes (family
Gadidae, the cod family) that usually occur in cold
marine waters and often have barbels and three
dorsal fins>!

We decompose this research problem into two
tracks: the first corresponds to the vector-to-
sequence task of Definition Modeling, the second
to the sequence-to-vector Reverse Dictionary task.
The task of definition modeling consists in using
the vector representation of cod to produce the
associated gloss, “any of various bottom-dwelling
fishes (family Gadidae, the cod family) that usually
occur in cold marine waters and often have bar-
bels and three dorsal fins". The reverse dictionary
task is the mathematical inverse: reconstruct an
embedding cod from the corresponding gloss.

These two tracks display a number of interesting
characteristics. These tasks are obviously useful
for explainable Al, since they involve converting
human-readable data into machine-readable data
and back. They also have a theoretical significance:
both glosses and word embeddings are represen-
tations of meaning, and therefore involve the con-
version of distinct non-formal semantic representa-
tions. From a practical point of view, the ability to
infer word-embeddings from dictionary resources,
or dictionaries from large un-annotated corpora,
would prove a boon for many under-resourced lan-
guages.

2.1 Track 1: Definition Modeling

The first track consists in an application of Defini-
tion Modeling. As training material, participants
have access to a set of data points, each of which
consists of a source word embedding and a cor-
responding target word definition (see Figure 2).
Participants are tasked with generating new defini-
tions for an unseen test set of embeddings.
Definition Modeling is a recent addition in NLG
tasks (Noraset et al., 2017) which seeks to do just
that. It has since then gained traction (Gadetsky
et al., 2018; Mickus et al., 2019; Li et al., 2020;
Zhang et al., 2020a, a.o0.). Other languages than
English have also been studied, including Chi-

I From Merriam-Webster.

nese (Yang et al., 2019), French (Mickus et al.,
2020a), Wolastogey (Bear and Cook, 2021), and
more (Kabiri and Cook, 2020). At its very in-
ception, Definition Modeling was suggested as a
means of evaluating the content of distributional
semantic models (Noraset et al., 2017). In practice
however, different researchers rarely use compa-
rable sets of embeddings (Mickus et al., 2020a),
effectively making proper comparisons across sys-
tems impossible as they use distinct inputs. To
fill this gap, we created a dataset of comparable
embeddings from different languages and neural ar-
chitectures, trained as homogeneously as possible
on comparable data; see 3.2 below.

2.2 Track 2: Reverse Dictionary

Reverse dictionaries (a.k.a. retrograde dictionaries)
are lexical resources that flip the usual structure of
dictionaries, allowing users to query words based
on the definitions they would expect them to have.
One of the major challenges of such resources con-
sists in providing definition glosses that match with
users’ expectations. As a consequence, a trend of
research in NLP has focused on producing dynamic
reverse dictionaries, that would interpret input def-
initions and map them back to the corresponding
word. We refer the reader to the comprehensive
review of Siddique and Sufyan Beg (2019), and
provide here mainly highlights.

An early strand of research focused on augment-
ing definitions using synonyms or other seman-
tically related words, such as hypernyms or hy-
ponyms. This approach has been applied to mul-
tiple languages, from Turkish to English and to
Japanese (Shaw et al., 2013; Bila et al., 2004;
El Khalout and Oflazer, 2004). Building on this
query-augmentation approach, we find works fo-
cused on integrating richer lexical resources, such
as WordNet, the Oxford dictionary, The Integral
Dictionary, or LDA vector spaces (Dutoit and
Nugues, 2002; Thorat and Choudhari, 2016; Mén-
dez et al., 2013; Calvo et al., 2016).

A related trend of research is that of Zanzotto
et al. (2010) and Hill et al. (2016), who use dictio-
naries as benchmarks for compositional semantics.
Zanzotto et al. (2010) used a shallow neural net-
work to implement a compositional distributional
semantics model and use dictionaries as their train-
ing data. Hill et al. (2016) instead employ a LSTM
to parse the full definition gloss and use the hidden
state at the last time-step to predict the word be-



ing defined. In both cases, replacing the definition
gloss with a user’s query would lead to a reverse
dictionary system. Since then, a number of works
have attempted to implement reverse dictionaries
using neural language models. The WantWords
system (Zhang et al., 2020b; Qi et al., 2020) is
based on a BILSTM architecture, and incorporates
auxiliary tasks such as part-of-speech prediction
to boost the performance. Yan et al. (2020) seeks
to replace the learned neural language models in
Hill et al. (2016) or WantWords with a pre-trained
model such as BERT (Devlin et al., 2019) and its
multilingual variants, which allows them to use
their system in a cross-lingual setting—querying
in a language to obtain an answer in another. Most
recently, Malekzadeh et al. (2021) used a neural
language model based approach to implement a
Persian reverse dictionary.

With respect to the CODWOE shared task, our
interest lies in reconstructing the word embed-
ding of the word being defined, rather than find-
ing the corresponding word—an approach more
closely related to that of Zanzotto et al. (2010) and
Hill et al. (2016). Under this slight reformulation,
the sequence-to-vector Reverse Dictionary task is
strictly the inverse of the vector-to-sequence task of
Definition Modeling. Hence we define the Reverse
Dictionary task as computing the components of a
target word vector using as input a human-readable
definition. To solve this task, participants have ac-
cess to a set of data points, each of which consists
of a source word definition and a corresponding
target word embedding, as training materials.

3 What’s in the nets: Data used

The definition modeling and reverse dictionary
tasks both require a parallel dataset, where dic-
tionary definitions are aligned with corresponding
word embeddings. The task is held in a multilin-
gual setting. We provide data in English, French,
Russian, Italian and Spanish. We selected these
languages to facilitate the collection of compara-
ble data: all these languages possess comparable
large scale resources, including online dictionaries
as well as corpora that can be used to train compa-
rable embeddings. Our datasets are made available
online at https://codwoe.atilf.fr/.
The aim of both tracks of CODWOE is to com-
pare the semantic contents of definitions and em-
beddings. As a consequence, we ask participants to
refrain from using external data such as pretrained

with examples  without
en 0 806297
es 0 132583
fr 431793 573313
it 16127 86959
ru 122282 485208

Table 1: DBnary: number of items per language

N. Sents. N. Tokens N. Bytes
it 78761031 955474050 5001829910
es 78973969 975762257 5001999992
fr 82082118 1004767254 5001999368
en 97622760 1035154295 5001999755
ru 79526583 1035661601 10036395727

Table 2: Embeddings: corpus statistics

models and lexical resources: including such exter-
nal data would introduce another source of seman-
tic information, and obfuscate the results from this
shared task.

3.1 Dictionary data

As a source of dictionary definitions, we primar-
ily use the DBnary dataset (Sérasset, 2012),2 an
RDF-formatted version of some of the existing Wik-
tionary projects.> DBnary includes data for all of
our selected languages. One sub-dataset per lan-
guage is constructed. Definitions are selected ac-
cording to corpus frequency and part-of-speech of
the word being defined. We solely select nouns,
adjectives, verbs and adverbs.

Table 1 presents the number of usable items in
DBnary. Not all languages contain examples of
usage. A brief regular expression lookup suggests
that around 20K examples of usage can be found in
the Spanish version of Wiktionary, while English
yields at least 200K. We therefore discard the En-
glish version of DBnary and replace it by a manual
parse, from which we also retrieve examples of
usage.

3.2 Embeddings data

We have collected similar amounts of data for
each language (Table 2) to use as training corpora.
The sources we use to constitute these corpora
are selected to be generally comparable: each cor-

2http ://kaiko.getalp.org/about—-dbnary/
3See https://www.wiktionary.org/



pus contains 2.5G data parsed and cleaned from
Wikipedia,* 2.2G from the OpenSubtitles OPUS
corpus (Lison and Tiedemann, 2016),5 as well as
0.3G in books from various genres, drawn from
LiberLiber® for Italian, Wikisource for Spanish and
Russian, and Gutenberg’ for English and French.

We focus on three embedding architectures:
word2vec models (Mikolov et al., 2013) trained
with gensim (Rehiifek and Sojka, 2010), the ELEC-
TRA model of Clark et al. (2020), and character-
based embeddings. The word2vec and ELECTRA
models were selected so as to provide some com-
parison between static and contextual embeddings;
both are trained with default hyperparameters aside
from output vector size, which we set to 256. As
for the ELECTRA models, given that we need con-
texts to derive token representations, we train the
models only in English, French and Russian. The
Spanish and Italian Wiktionary projects contain
too few examples of usage. For French and Rus-
sian, we derive contextualized embeddings of a
word to be defined from usage examples in DBnary
datasets. Since the English DBnary dataset does
not contain examples of usage, we extracted them
from the original Wiktionary dumps.

The character-based embeddings are included
to provide baseline expectations for non-semantic
representations—as we can expect spelling to be
more or less arbitrary with respect to word mean-
ing (Saussure, 1916).8 In practice, these embed-
dings are computed through a simple LSTM-based
auto-encoder: the word is passed into an LSTM
encoder as a sequence of characters, we sum all
output hidden states, and use these summed hid-
den states to initialize an LSTM decoder, whose
objective is to reconstruct the input word. As a
character-based representation, we can therefore
use the summed output hidden states, as they are
tailored to contain all the information necessary
to reconstruct the spelling of the corresponding
word.? The datasets used to trained the models

4See here: https://dumps.wikimedia.org/

5See https://opus.nlpl.eu/

oCt. https://www.liberliber.it/online/

7See here: https://www.gutenberg.org/

8 Nonetheless, see Gutiérrez et al. (2016), Kutuzov (2017),
Dautriche et al. (2017) or Pimentel et al. (2019), all of which
question this assumption.

9Given that we implement this module ourselves, we use a
Bayesian Optimization algorithm (Snoek et al., 2012) to select
hyperparameters for our five character auto-encoder. We use
this process to decide learning rate, weight decay, dropout,
B1 and B2 parameters of the AdamW optimizer, batch size,
number of epochs over the full dataset, as well as whether to

word  POS gloss

sminuire V far figurare qualcosa o qualcuno
come meno importante o rile-
vante

(a) Example definition in Italian

"id": "it.42",

"word": "sminuire"

"gloss": "far figurare...",
"pos": "v",

"electra": [0.4, 0.2, ...],
"sgns": [0.2, 0.4, .1y
"char": [0.3, 1.4, 1,

(b) Corresponding JSON snippet

Figure 2: Toy example data point in the Italian dataset

correspond to the set of all word types attested in
our base corpora described in Table 2. All models
achieve a 99% reconstruction accuracy.

3.3 Datasets

We construct one dataset per language. Each
language-specific dataset is split in five: a trial
split (200 datapoints per language), a training split
(43 608 datapoints), a validation split (6375 data-
points), a definition modeling testing split (6221
datapoints) and a reverse-dictionary testing split
(6208 datapoints). Splits are constructed such that
there are no overlap in the embeddings. Dataset
splits are formatted as JSON files.

Each file consists of a list of JSON dictionary no-
tations. JSON items contain a unique identifier for
the data point, the word being defined, definition,
part of speech, and all word vectors. A depiction of
the sort of items included in our datasets is shown
in Figure 2. Sub-figure 2a summarizes the data
presented as a JSON item in Sub-figure 2b.

Participants had access to the trial, train and vali-
dation splits of all languages. Test splits were made
available at the beginning of the evaluation period.

4 The scales we use

We now turn to the metrics of our shared task.

share a single weight matrix for encoder and decoder character
embeddings.



4.1 Reverse Dictionary Metrics

The Reverse Dictionary task, as we have re-framed
it here, consists in reconstructing embeddings. To
that end, we consider three measures of vector sim-
ilarity. First is MSE (mean squared error), which
measures the difference between the components
of the reconstructed and target embeddings. Mean-
squared error is however not very easy to interpret
on its own. Second is cosine: the reconstructed and
target embeddings should have a cosine of 1. It is
hard to place specific expectations for what a ran-
dom output would produce, as this essentially dif-
fers from architecture to architecture: for instance,
Transformer outputs are known to be anisotropic,
so we shouldn’t expect two random ELECTRA
embeddings to be orthogonal (Ethayarajh, 2019;
Timkey and van Schijndel, 2021, a.o.).

As neither MSE nor cosine provides us with a
clear diagnosis tool comparable across all targets,
we also include a ranking based measure: we com-
pare the cosine of the reconstructed embedding p;
and the target embedding 7; to the cosine of the
reconstruction p; and all other targets ?j in the test
set, and evaluate the proportion of such targets that
would yield a closer association—yviz., the num-
ber of cosine values greater than cos(p;, %;). More
formally, we can describe this ranking metric as:

)3 ‘ﬂcos(‘ i)>cos(p;, ;)
i Test set Pt Pl

Ranki p;) =
anking(p;) #Test set

)

4.2 Definition Modeling Metrics

A common trope in NLG is to stress the dearth of
adequate automatic metrics. Most of the metrics
currently existing focus on token overlap, rather
than semantic equivalence. The very popular
BLEU and ROUGE metrics (Papineni et al., 2002;
Lin, 2004) measure the overlap rate in n-grams of
various lengths (usually 1-grams to 4-grams).

To alleviate this, researchers have suggested us-
ing external resources, such as lists of synonyms
and stemmers (Banerjee and Lavie, 2005) or pre-
trained language models (Zhao et al., 2019). The
reliance of these augmented metrics on external
resources is problematic. Different languages will
use different resources with varying degrees of
quality—and this will necessarily impact scores,
introducing a confounding factor for any analysis
down the line. In the extreme case, if these re-
sources are not available for a particular language,
then the metric will have to be discarded. Even as-

suming the availability of the required external re-
sources, none of these improved metrics is entirely
satisfactory. In the case of synonymy-aware met-
rics such as METEOR (Banerjee and Lavie, 2005),
we can stress that syntactically different sentences
can express the same meaning, but would not be
captured by such metrics. Embeddings-based met-
rics such as MoverScore (Zhao et al., 2019) are very
recent, and therefore less well understood; more-
over concerns can be raised about whether using
a method derived from neural networks trained on
text will prove of any help in studying the meaning
of texts generated by other neural networks.

One alternative frequently used by the NLG com-
munity is perplexity, which weighs the probability
that the model would generate the target. This last
alternative is however not suited to a shared task
setup, as it requires us to have access to the ac-
tual neural networks trained by participants so we
can investigate the probability distributions they
model—unlike the other metrics we mentioned
thus far, which only require model outputs.

In short, none of the currently available NLG
metrics are fully satisfactory. Some are not ap-
plicable given the shared task format, some de-
pend on external resources of varying quality, and
some merely measure formal similarity, rather than
semantic equivalence. Our approach is therefore
twofold: on the one hand, we select multiple met-
rics with the expectation that each might shed light
on one specific factor; on the other hand, we encour-
age participants to go beyond automatic scoring for
the evaluation of their model.

As for which metrics we select, we narrow our
choice to three. First is a basic BLEU score (Pa-
pineni et al., 2002) between a production p; and
the associated target ¢;; our reasoning here is that
as it is one of the most basic metrics, it is a consis-
tent default choice. Second is the maximum BLEU
score between a production p; and any of the tar-
gets t;,tj...t, for which the definiendum is the
same as that of p;. This second metric is designed
to not penalize models that rely solely on SGNS
or char embeddings: as the input would always
be the same, deterministic models would always
produce the same definition p; = pj=...= pn. 10
To distinguish between our two BLEU variants, we
refer to the former as S-BLEU (or Sense-BLEU),

100ne way of bypassing this problem would be to include a
source of noise, as is done in GAN architectures (Goodfellow
et al., 2014). This would still leave open the question of how
to optimally align the outputs to the possible targets.



and the latter as L-BLEU (or Lemma-BLEU).

Given that some definitions in our dataset can
be very short, we also apply a smoothing to both
BLEU-based metrics. In practice, BLEU computes
an overlap of n-grams of size m and under; by
default, m = 4. This overlap is a geometric mean
across all n-gram sizes 1...m. If a definition d
contains less than m tokens, then any associated
production for which d is used as a target will
contain O overlapping n-grams of size m. The use
of a geometric mean then entails that the BLEU
score for any production associated to d will be
0. To circumvent this limitation of BLEU, it is
common to use some form of smoothing. Here, for
any n-gram size i that would yield an overlap of
0 (i.e., 1 such that #d < i1 < m), we replace the
overlap count with a pseudocount of 1/log#d.

Lastly, we include MoverScore (Zhao et al.,
2019), using a multilingual DistilBERT model as
the external resource. The fact that this model is
multilingual means that we can use it for all five
languages of interest. Embedding-based methods
have the potential to overcome some of the limita-
tions of purely token-based metrics, which is why
we deem them worth including in our setup.

The second part of our approach for evaluating
submissions consists in encouraging participants
to not rely solely on the automatic scoring system
of their outputs. Concretely, we provide partici-
pants with a richly annotated trial dataset, which
contains frequency and hand-annotated semantic
information, and strongly suggest participants to
use it for a manual evaluation of their system. We
include the presence of a manual evaluation as a
criterion to evaluate the quality of a system descrip-
tion paper, and plan to formally recognize the most
enlightening evaluations conducted by participants.

Neither our selection of metrics nor our insis-
tence on manual evaluation solves the evaluation is-
sues of NLG systems. We duly note the importance
of this question, and plan to conduct a follow-up
evaluation campaign on the CoDWoE submissions.

5 Testing the waters: baseline
architectures

We implement simple neural network architec-
ture baselines to lower the barrier to entry to
this shared task. They are based on the Trans-
former architecture of Vaswani et al. (2017) and
designed to be as simple as possible. Our code is
publicly available at https://github.com/
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Figure 3: Baseline architectures for the CoDWOoE shared
task

TimotheeMickus/codwoe.

We illustrate our Reverse Dictionary baseline
architecture in Figure 3a. It consists in feeding the
input gloss (bos, Wy, ..., W,,eds) into a simple
Transformer encoder, and then summing all the
hidden representations to produce the prediction p;.
In practice, the summed hidden states are passed
into a small non-linear feed-forward module to
derive the prediction:

pi =W, (ReLU (Z ﬁt)) )
I3

Our Definition Modeling baseline is presented in
Figure 3b. It consists in a simple Transformer en-
coder, where earlier time-step representations are
prevented from attending to later time-step rep-
resentations. To provide information about the
definiendum to the model, we use the definiendum
embedding d; as the input for the first time-step
instead of a start-of-sequence token. We train the
models with teacher-forcing: i.e., during training
we ignore the definientia p}, ..., p}' that the model
produces; instead we feed it the target wy,..., wy,
attested in the training set at each time-step. During
inference, we feed the model with its own predic-
tion. This creates a train-test mismatch, which we
alleviate by using a beam-search. We stop gen-
eration when all beams have produced an end-of-
sequence token.

For both tracks, we train one model for each dis-
tinct pair of language and embedding architecture.
We start by re-tokenizing the datasets using sen-
tence piece with a vocabulary size of 15000. This
is done in order to mitigate the effects of different



Team en es fr it ru

Myv SB LB | Mv SB LB Mv SB LB | Mv SB LB Mv SB LB
BIl. SGNS 0.084 0.030 0.040 ' 0.065 0.035 0.052 0.046 0.030 0.041 0.107 0.053 0.076 0.112 0.039 0.054
BI. char 0.047 0.026 0.033 | 0.059 0.031 0.043 0.022 0.028 0.037 = 0.046 0.029 0.038 0.072 0.025 0.037
BI. Electra 0.065 0.031 0.039 0.043 0.031 0.039 0.101 0.032 0.041
Locchi 0.049 0.022 0.027 | 0.038 0.020 0.026 0.071 0.008 0.012
LingJing 0.045 0.004 0.005 | 0.023 0.013 0.020 —0.113 0.003 0.005 -0.012 0.018 0.029 —0.010 0.011 0.014
BLCU-ICALL | 0.135 0.031 0.040 | 0.128 0.039 0.056 0.042 0.027 0.037 0.117 0.066 0.099 0.148 0.048 0.065
IRB-NLP 0.094 0.033 0.042 0.093 0.045 0.064 0.056 0.028 0.033 | 0.077 0.010 0.015 0.080 0.027 0.036
RIGA 0.093 0.026 0.032 | 0.107 0.031 0.045 0.075 0.024 0.030  0.093 0.012 0.018 0.094 0.031 0.043
lukechan1231 | 0.071 0.022 0.027 | 0.068 0.025 0.036 0.054 0.021 0.026 0.101 0.037 0.054 0.109 0.029 0.040
Edinburgh 0.104 0.031 0.038 0.101 0.035 0.053 0.026 0.029 0.038 0.107 0.060 0.092 0.109 0.049 0.072
talent404 0.128 0.033 0.043

Table 3: Participants’ best scores on the Definition Modeling track. Highest participant scores per metric are

displayed in bold font.

vocabulary sizes when training our Transformer
baselines, and make the models overall easier to
compare across different languages.

We set hyperparameters using a Bayesian Opti-
mization procedure, with 100 hyperparameter con-
figurations tested and 10 initial random samples.
For the Reverse dictionary models, we tune the fol-
lowing hyper-parameters: learning rate, weight de-
cay penalty, the B, and B, hyperparameters of the
Adam optimizing algorithm, dropout rate, length
of warmup, batch size,!' number of heads in the
multi-head attention layers, and number of stack
layers. For the Definition Modeling systems, we
also include a label smoothing parameter to tune.
Models are trained over up to 100 epochs; training
is stopped early if no improvement of at least 0.1%
is observed during 5 epochs. In all cases, we decay
the learning rate after the warmup following a half
cosine wave, such that the learning rate reaches 0
at the end of the 100 epochs.

6 How whale did it go? Shared task
results.

Scores attained by participants are shown in Ta-
bles 3 and 4. In Table 3, “Mv”, “SB” and “LB”
refer to Moverscore, Sense-BLEU and Lemma-
BLEU respectively; in Table 4, each sub-table cor-
responds to a different architecure, and “rnk” refers
to the cosine ranking metric (cf. Section 4).

In total, we received 159 valid submissions from
15 different users; out of which 11 teams produced

U practice, we first manually find the largest batch size
that fits on our GPU, and then let the model select the number
of batches it should accumulate gradient on.

a submission paper. 9 of these teams tackled the
Definition Modeling, and 10 addressed the reverse
dictionary track. Competition rankings are estab-
lished by ranking each submission received, select-
ing for each participant the best performance on all
metrics, and finally taking the average best rank.
Some participants’ submissions were faulty and
could not be processed by the evaluation website
scoring program.

Among the system descriptions we received, two
focused solely on definition modeling. Kong et al.
(2022, BLCU-ICALL) use a multitasking frame-
work for definition modeling, based on a gener-
ation and a reconstruction objectives. Mukans
et al. (2022, RIGA) focus on what are the effects
of model size and duration of training on GRUs
and LSTMs for definition modeling, and whether
MoverScore corroborates human judgment.

Five submissions specifically focus on the re-
verse dictionary task. Bendahman et al. (2022,
BL.research) compare the performances of MLP-
based to LSTM-based networks for reverse dic-
tionary. Li et al. (2022, LingJing) study pretrain-
ing objectives for the reverse dictionary track. Ar-
doiz et al. (2022, MMG) pay specific attention to
how the not-so-satisfactory quality of the Spanish
dataset impacts results on Spanish reverse dictio-
nary. Cerniavski and Stymne (2022, Uppsala) study
whether foreign language entries can improve the
performance of the English reverse dictionary base-
line model. Wang et al. (2022, 1cademy) introduce
multiple technical tweaks for reverse dictionary,
such as a dynamic weight averaging loss, language-
specific tags and residual cutting.



Team en es fr it ru
MSE  cos rnk MSE  cos rnk MSE  cos rnk MSE  cos rnk MSE  cos rnk
Baseline 0.911 0.151 0.490 0.930 0.204 0.499 1.141 0.198 0.491 @ 1.125 0.204 0.477 0.577 0.253 0.490
Locchi 0.875 0.204 0.394 1.087 0.274 0.386
BL.research | 0.895 0.166 0.312 @ 0.910 0.252 0.253 1.107 0.212 0.314 @ 1.111 0.246 0.247 0.566 0.298 0.290
LingJing 0.862 0.243 0.329 = 0.858 0.353 0.251 1.030 0.328 0.282 = 1.039 0.360 0.230 0.528 0.424 0.187
MMG 0.911 0.403 0.167
chlrbgus321 | 0.854 0.248 0.319
IRB-NLP 0.964 0.260 0.231 = 0.883 0.367 0.197 1.068 0.342 0.193 | 1.076 0.380 0.165 0.568 0.421 0.150
Edinburgh 0.864 0.241 0.326 = 0.860 0.347 0.271 1.026 0.312 0.302 = 1.031 0.374 0.197 0.538 0.383 0.247
theOne 0.900 0.185 0.500
JSI 0.909 0.156 0.499 @ 0.913 0.223 0.495 1.122 0.216 0.498 @ 1.196 —0.004 0.499 0.615 0.006 0.499
lcadamy 0.915 0.194 0374 0906 0.262 0.375 1.100 0.228 0.439 = 1.097 0.260 0.384 0.578 0.335 0.291
(a) SGNS Reverse Dictionary track results
Team en es fr it ru
MSE  cos rnk MSE  cos rnk MSE  cos rnk MSE  cos rnk MSE  cos rnk
Baseline 0.148 0.790 0.502 = 0.570 0.806 0.498 0.395 0.759 0.499 | 0.363 0.727 0.497 0.135 0.826 0.495
Locchi 0.141 0.798 0.483 0.355 0.734 0.478
BL.research | 0.143 0.795 0.450 = 0.510 0.824 0.412 0.366 0.770 0.428 = 0.359 0.728 0.417 0.132 0.830 0.410
LingJing 0.176 0.782 0.486 = 0.583 0.824 0.500 0.411 0.752 0.502 ' 0.438 0.681 0.496 0.184 0.791 0472
IRB-NLP 0.162 0.770 0.419  0.526 0.819 0.403 0.390 0.756 0.421 = 0.366 0.724 0.383 0.140 0.824 0.357
Edinburgh 0.143 0.795 0.500 = 0.467 0.839 0.424 0.335 0.789 0.428 @ 0.334 0.747 0.428 0.116 0.852 0.389
theOne 0.143 0.796 0.500
lcadamy 0.168 0.792 0.478 0.557 0.820 0.410 0.391 0.769 0.416 | 0.364 0.739 0.438 0.156 0.836 0.377
(b) Char Reverse Dictionary track results
Team en fr ru
MSE  cos rnk MSE  cos rnk MSE  cos rnk
Baseline 1.413 0.843 0.498 | 1.153 0.856 0.498 0.874 0.721 0.491
Locchi 1.301 0.843 0.478
BL.research | 1.326 0.844 0.434  1.112 0.858 0.442 0.864 0.721 0.399
LingJing 1.509 0.846 0.478 | 1.271 0.859 0.478 0.828 0.734 0.420
IRB-NLP 1.685 0.828 0.432 = 1.339 0.847 0.429 0911 0.724 0.345
Edinburgh 1.310 0.847 0.490 = 1.066 0.862 0.476 0.828 0.735 0.417
theOne 1.340 0.846 0.500

(c) ELECTRA Reverse Dictionary track results

Table 4: Participants’ best scores on the Reverse Dictionary track. Highest participant scores per metric are
displayed in bold font.

The last four submissions addressed both tracks.
Chen and Zhao (2022, Edinburgh) propose to
project embeddings and definitions on a shared
representational space. Korenci¢ and Grubisic¢
(2022, IRB-NLP) take inspiration from Noraset
et al. (2017) to address definition modeling, and ex-
periment with pooling strategies over Transformer
embeddings for the reverse dictionary track. Tran
et al. (2022, JSI) focus on comparing the effects
of adding LSTM and BiLSTM layers on top of
a Transformer model, as well as zero-shot cross-

lingual generalization. Srivastava and Harsha Vard-
han (2022, TLDR) propose two Transformer-based
architectures for the two tracks, leveraging con-
trastive learning and unsupervised pretraining.

Looking at Tables 3 and 4, we see that the metrics
we chose in section 4 are not always aligned. On
the Definition Modeling track (Table 3), while the
multitask framework of Kong et al. (2022, BLCU-
ICALL) yields generally the most consistent per-
formance, it is often outmatched in specific setups.
For instance, BLEU-based metrics favor the shared



projection technique of Chen and Zhao (2022, Ed-
inburgh) in Russian and French, while the pooling
strategies of Korenc¢i¢ and Grubisi¢ (2022, IRB-
NLP) appear especially effective on the Spanish
dataset. As for the Reverse Dictionary track (Ta-
ble 4), the strongest contender is generally the Ed-
inburgh team, although the IRB-NLP team almost
systematically produces the highest cosine ranking
score. Interestingly, BLCU-ICALL, IRB-NLP and
Edinburgh all rely on multi-task learning. Note
however that the SGNS targets seem to depict a
rather different picture, where the pretraining ob-
jectives of Li et al. (2022, LingJing) bring about
some of the best results.

7 A deeper dive into our results

When looking at the competition results, two trends
emerge. First, the baseline architectures from Sec-
tion 5 remain quite competitive with solutions pro-
posed by participants. Second, scores are generally
unsatisfactory, especially in the definition model-
ing track: we do not see a clear divide between char
embeddings and distributional semantic representa-
tions. The NLG metrics are, in absolute terms, low
compared to modern NLP standards and results
reported elsewhere on other definition modeling
benchmarks. As for the reverse dictionary track,
we see that across all submissions, at least a third
of the test set is closer (in terms of cosine distance)
to the production than the intended target.

Participants have suggested multiple reasons for
these hardships. In particular, Ardoiz et al. (2022,
MMG) highlight that the automated data compi-
lation in DBnary (Sérasset, 2012) is of an unsat-
isfactory quality. Similar remarks can be made
with respect to the embeddings, which are trained
on rather small corpora. Other submissions such
as Mukans et al. (2022, RIGA), Chen and Zhao
(2022, Edinburgh), Korenci¢ and Grubisi¢ (2022,
IRB-NLP) highlight the limited applicability of
mainstream NLG metrics, as we ourselves have
discussed in Section 4.!> One last remark is the
limited size of our dataset, discussed by the Ed-
inburgh and RIGA teams. All these remarks sug-
gest avenues for future research: in particular, the
release of the full dataset should alleviate some
of the concerns with respect to dataset size. The
MMG team also suggest some concrete preprocess-
ing steps to handle some of the issues they identify
in the proposed definitions.

128ee also Mickus et al. (2021) for a discussion.

In terms of solutions explored, we can stress that
teams have adopted a variety of strategies and ar-
chitectures: systems used Transformer, RNN and
CNN components, often leveraging or exploring
multilingualism (Tran et al. 2022, JSI; Cerniavski
and Stymne 2022, Uppsala; Wang et al. 2022,
Icademy; Bendahman et al. 2022, BL.research),
multitasking, or multiple training objectives (Kong
et al. 2022, BLCU-ICALL; 1cadamy; Korenci¢
and Grubisi¢ 2022, IRB-NLP; Srivastava and Har-
sha Vardhan 2022, TLDR; Chen and Zhao 2022,
Edinburgh). Multi-task training tends to yield var-
ied yet competitive results for our data. No prepon-
derant architecture emerges from the system de-
scriptions; we note that multiple submissions based
their work on other contextualized embedding ar-
chitectures, trained from scratch on the CODWOE
dataset (Wang et al. 2022, 1cademy; Li et al. 2022,
Lingling). The comprehensive review of architec-
tures by team lcadamy suggests nonetheless that
Transformers might be less suited to this shared
task than recurrent models.

7.1 Manual analyses

As for manual evaluations, Kong et al. (2022,
BLCU-ICALL) provide a thorough review of the
errors produced by their model. Mukans et al.
(2022, RIGA) provide some example outputs of
their models, while Srivastava and Harsha Vardhan
(2022, TLDR) and Wang et al. (2022, 1cademy) in-
clude ablation studies. The most thorough analysis,
however, is that of Chen and Zhao (2022, Edin-
burgh), who provide both quantitative and quali-
tative (PCA-based) analyses across embedding ar-
chitectures, languages, and trial dataset features.
Korenci¢ and Grubisi¢ (2022, IRB-NLP) provide
an extremely well documented review of their sys-
tems performances, along multiple analyses of the
embeddings proposed for the shared tasks, ranging
from 2D down-projection visualizations to descrip-
tive statistics of components. We refer the reader
to the respective system papers for a more thor-
ough review and focus here on a few promising
approaches to summarize trends that emerge from
these manual analyses.

Current metrics are not satisfactory. The IRB-
NLP team highlight that the BLEU scores reported
on the shared task are dramatically lower than what
is generally expected in the literature; the Edin-
burgh team even shows that the S-BLEU scores ob-
tained by non-sensical glosses such as “, or .”



can end up among the highest scores for some lan-
guages. The Reverse Dictionary metrics can also
be sensitive to different aspects of the embeddings,
as shown by the IRB-NLP team: this can lead to
very different rankings of model productions, es-
pecially when comparing the cosine-based ranking
metric to the cosine and MSE metrics. BLEU-
based scores are also often sensitive to the length
of the production, the target, or both, as shown by
both the Edinburgh and the Riga teams.

Erroneous productions abound. Related to the
previous remark, many Definition Modeling sys-
tems produce irrelevant or under-specified glosses,
for which the proposed metrics are not satisfactory.
For instance, the BLCU-ICALL report 52% irrele-
vant glosses and 23.5% under-specified glosses,
from a manual evaluation of 200 productions.
Other participating teams, such as RIGA or IRB-
NLP, also display generated glosses with varying
degress of semantic accuracy.

Embeddings contain more than semantics.
The Edinburgh team highlights how different lin-
guistic features retrieved from the trial dataset can
significantly impact the scores they observe. They
also highlight that char embeddings are separable
by length, and that the Electra embeddings are clus-
tered according to their frequency.

Not all setups are created equal. The Uppsala
team report that Russian seems to be the most ef-
fective data source in their multilingual transfer
experiments. The IRB-NLP team stresses that vec-
tor component distributions across languages and
architectures as well as gloss length across lan-
guages can take very different values, and they also
include 2D visualization suggesting the Electra em-
beddings tend to form neat cluster not observed for
SGNS embeddings. Scores also vary quite a lot
across setups (cf. Tables 3 and 4).

8 Conclusions and future perspectives

The CODWOE shared task was constructed so that
participants’ submissions would be likely to have
linguistic significance. Yet, it is not trivial to tease
apart the various factors that lead to the overall
low results we observed. While the inadequacy of
mainstream NLG metrics and the limitations of the
dataset certainly play a role, they do not resolve
the fundamental issue that we wished to investigate
with CODWOE. Whether word embeddings and

10

dictionaries contain the same information is not a
solved research problem.

This has two immediate consequences: firstly,
one can question the use of definition modeling as
an evaluation tool for embeddings, as suggested
by the seminal work of Noraset et al. (2017). The
CODWOE shared task results indicate that the met-
rics currently used in the field are rife with caveats;
in the controlled setup we have proposed here, par-
ticipants rarely, if ever, found that character-based
embeddings starkly contrasted with distributional
semantic representations.

Second, one can question whether definition
modeling and reverse dictionary are fit for build-
ing lexical resources for under-tooled languages:
the crosslingual route proposed by Bear and Cook
(2021) seems more practical than training models
from scratch, even with relatively large datasets.
Our embeddings were trained on corpora compa-
rable in size to the 1B Words benchmark (Chelba
et al., 2013): while modern text corpora are now
several orders of magnitude larger, this dataset re-
mained a landmark for several years. Our defini-
tions were selected from DBnary (Sérasset, 2012),
which focuses the largest Wiktionary projects.

Overall, the CODWOE shared task has been a
success: we were able to show that the task at hand
was far from trivial and we drew significant interest
towards the issues addressed in the Definition Mod-
eling and Reverse Dictionary literature. In future
work, we plan to investigate better ways to perform
NLG evaluation for the Definition Modeling task
(in particular relying on human annotations) and
we plan to focus on existing embeddings trained
from very large corpora.
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Abstract

This paper describes our system for the Se-
mEval2022 task of matching dictionary glosses
to word embeddings. We focus on the Reverse
Dictionary Track of the competition, which
maps multilingual glosses to reconstructed vec-
tor representations. More specifically, models
convert the input of sentences to three types of
embeddings: SGNS, Char, and Electra. We pro-
pose several experiments for applying neural
network cells, general multilingual and multi-
task structures, and language-agnostic tricks to
the task. We also provide comparisons over
different types of word embeddings and abla-
tion studies to suggest helpful strategies. Our
initial transformer-based model achieves rel-
atively low performance. However, trials on
different retokenization methodologies indicate
improved performance. Our proposed Elmo-
based monolingual model achieves the highest
outcome, and its multitask, and multilingual
varieties show competitive results as well.

1 Introduction

Reverse dictionary Task is defined as word genera-
tion based on user descriptions (Hill et al., 2016).
Following competition rules, pre-trained models
and external information should be avoided, and
large-scale language models are unsuitable for the
task. Our paper is devoted to the performance com-
parison of different neural network structures, mul-
tilingual and multitask tricks, and elaborating on
language-agnostic or bidirectional structure help-
fulness. The competition (Mickus et al., 2022)
has significant potential in contributing pretraining
process acceleration, low-resource language model
development, and commonsense using. Further-
more, the task is of high importance for explain-
able Al and natural language processing since it
models direct mapping from human-readable data
to machine-readable data.

* The two authors contributed equally to this work.
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Known word representation methods using dic-
tionaries, knowledge databases, or glosses have
been a common approach for years. Related mod-
els can be divided into two major groups. In the
former, category methods highly rely on large-scale
model construction. Levine et al. (2019) develop
SenseBert, introducing super-senses from Word-
net (Miller, 1995) into general Bert model. Ernie
(Sun et al., 2019) combines node embeddings from
knowledge graph and matched entities to enhance
word representations. KnowBert (Peters et al.,
2019) subsumes the entity connection and Bert
models, which are trained together. There are simi-
lar research works relevant to the topic (Wang et al.,
2021, 2020; Yin et al., 2020). Still, their mod-
els’ performances are dependent on the basic large-
scale language model trained by sentence samples.
In the latter group, traditional dependency-based
language models learn directly from word depen-
dency and glosses. They have two major disadvan-
tages: incompatibility with modern language mod-
els and relatively low performance (Tissier et al.,
2017; Levy and Goldberg, 2014; Wieting et al.,
2015). There is ambiguity about whether recent
embeddings and dictionary glosses are mappable
from each other.

The paper specifically focuses on progressing
utilization of the glosses, different word represen-
tations, and languages. First, we discuss ablation
studies for language-agnostic trick, bidirectional,
multilingual, and multitask models and explain the
experimental results. Second, we apply and ana-
lyze different re-tokenization methods. Finally, we
give instructive conclusions about encoder struc-
tures, distinctive word representation relations, and
cross-lingual dictionary performance based on our
experiment results. We find that (1) transformer-
based model performance is inferior to other mod-
els for its high complexity, (2) bidirectional models
with similar parameter size outperform the unidirec-
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tional model because of their better understanding
of context-environments even in the low-resource
condition, and (3) different word embeddings have
a potential relations and can be collaboratively
learnt from glosses using a multitask learning struc-
ture. We make our codes and results publicly avail-
able!.

2 Task Description

The competition, comparing dictionaries and word
embeddings, proposes definition modeling (No-
raset et al., 2017) and reverse dictionary sub-tracks
(Hill et al., 2016). These sub-tracks are designed
to test the equivalency of dictionary glosses and
word embedding representations. This paper fo-
cuses on the reverse dictionary direction. The task
refers to word recalling using gloss input and pro-
vides word representations that are separately gen-
erated by word2vec (SGNS) (Mikolov et al., 2013),
character (Wieting et al., 2016), and Electra (Clark
et al., 2020) embeddings as training data. External
data and large-scale language models are strictly
restricted from this competition since the models
might learn the word embeddings majorly from the
sentence samples instead of the dictionary glosses.
The words matched with the dictionary glosses are
hidden in the datasets, implying that dependency-
based word representation algorithms cannot be
applied directly.

3 Methodology

To clarify, we affirm that we only refer to the model
structures instead of the trained models when we
mention Elmo and MBert in the section and use no
external data.

3.1 Language Model Structure

Baseline monolingual models with five distinctive
structures were trained: RNN, LSTM, Bi-RNN,
Elmo, and Transformer.

We experiment how bidirectional and different
feature generator cell structures help.

RNN is the classical deep learning model deal-
ing with ordinal or sequential data (Zaremba et al.,
2014). Its major disadvantage is the vanishing and
exploding gradient issue. Nevertheless, the model
is fast to converge and works well on smaller sen-
tences. Our experiments show that RNN, having
similar results to the LSTM-based model, performs
slightly better than the transformer-based one.

Uhttps://github.com/ravenouse/Revdict_1Cademy
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LSTM is another classical and widely-used fea-
ture generator structure in natural language process-
ing. The comparison of LSTM-based and RNN-
based models can suggest whether vector represen-
tation of glosses suffers from the long-term depen-
dencies problem. Earlier works (Jozefowicz et al.,
2015) demonstrate that variants of LSTM achieve
similar performances in the majority of natural lan-
guage processing tasks. We select the classical
LSTM structure for the experiments.

Transformer (Vaswani et al., 2017) is a mile-
stone feature extractor allowing deeper neural net-
work design for natural language processing tasks.
However, given the much smaller size of the com-
petition data, it performs relatively worse compared
to the expectation.

3.2 Multitask Structure

Although character embedding generation has a
similar algorithm to general word embedding meth-
ods, it focuses on character representation and
is mightier to better tackle the Out Of Vocabu-
lary (OOV) problem. We applied Mean Squared
Loss (MSE Loss) and Dynamic Weight Averag-
ing (DWA) (Liu et al., 2019) as a basic multitask
structure for predicting word2vec, Char, and Elec-
tra embedding together. It achieves competitive
performance in both tasks.

DWA (Liu et al., 2019) is designed for keeping
different tasks converging at the same pace. N
denotes the number of tasks, 7" adjusts the weight-
changing sensitivity according to loss difference of
the tasks, L, (¢ — 1) and r,, (¢ — 1) represent the loss
and the training speed of task » at (¢ — 1)th step.
w;(t) is the loss weight of task i at 7th step. The
key update equations can be expressed as follows:

Nexp(ri(t —1)/T)

MO St nm Y
_Lu(t-1)
ra(t—=1) = m (2)

3.3 Retokenize Algorithm

We tried 3 widely-used retokenization algorithms
for vocabulary generation including Byte Pair En-
coding (BPE) (Sennrich et al., 2015), WordPiece
Model (Schuster and Nakajima, 2012), and Uni-
gram Language Model (ULM) (Kudo, 2018). BPE
is a greedy algorithm that can not model word rela-
tion probability successfully. WordPiece considers
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Figure 1: Sketch Map of the multilingual and multitask Elmo-based model structure.

word co-occurrence probability and is influenced
by the source data. ULM assumes that all subwords
are independent and the probability of a subword
sequence is the multiple of its element subwords’
probability.

3.4 Multilingual Structure

We applied two basic multilingual structures for
the task: mBert (Pires et al., 2019) and adding
the language tag. MBert has a shared vocabu-
lary for all source languages. The results show
that mBert can successfully model similar gram-
mar structure, and sentences with similar meanings
have akin representations using mBert. By apply-
ing mBert structure, we can estimate how these
important conclusions would work for the reverse
vocabularies task. We add the language tag as the
first token to improve models’ ability to separate
different languages’ representations.

We speculate that language-agnostic representa-
tions might aid multilingual models in achieving
better performance. Residual connection cutting
trick proposed by (Liu et al., 2020) was tried, to
test how the research findings would work for our
specific task.

3.5 Selected Model Design

Following experiment results and ablation studies,
our best model is the monolingual Elmo with Word-
Piece tokenizer. The Multitask and multilingual
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tricks have proved to achieve competitive results
with the Elmo language model. Adding language
tokens achieves a better performance than the plain
mBert structure while the Residual Cutting trick
does not. It implies that the language-specific infor-
mation is beneficial for the multilingual word repre-
sentations of the reverse dictionaries task. Adding
language tokens has demonstrated to help the Elmo-
based multilingual model as well. The most promis-
ing multilingual and multitask Elmo-based model
structure is shown in Figure 1.

4 Results and Discussion

4.1 Implementation Details

We apply Bidirectional RNN and Elmo (Peters
et al., 2018) models with the same parameter size
to find whether bidirectional structure helps. We
selected AdamW (Loshchilov and Hutter, 2017)
as optimizer. All monolingual models share the
same hyper-parameters: the number of layers - 4,
the hidden/input size - 256, and the dropout rate -
0.3. WordPiece tokenization was used as the best
model design. We follow Devlin et al. (2019) to set
the [CLS] token as the first token for monolingual
models. We keep the [CLS] token when adding
language tokens but set the language token as the
first token instead.



Word Representations SGNS Char Electra
Monolingual Models MSE COS RANK | MSE COS RANK | MSE COS RANK
RNN+WordPiece 1.000 0.249 0.310 | 0.158 0.778 0.442 | 1.454 0.832 0.433
LSTM+WordPiece 0.990 0.228 0375 | 0.148 0.791 0.458 | 1.491 0.831 0.449
Transformer+WordPiece  1.042 0.214 0.367 | 0.194 0.780 0.453 | 1.796 0.827 0.486
BiRNN-+WordPiece 0.989 0.221 0395 | 0.150 0.791 0.454 | 1.483 0.832 0.449
Elmo+WordPiece 1.041 0.252 0.282 | 0.161 0.772 0430 | 1.512 0.829 0.434
Elmo+BPE 1.037 0250 0.250 | 0.162 0.774 0.443 | 1.537 0.822 0.436
Elmo+ULM 1.022 0.265 0.259 | 0.157 0.781 0.430 | 1.525 0.829 0.432
Elmo+WordPiece+DWA 0.985 0.246 0.298 | 0.142 0.799 0.447 | 1.514 0.827 0.428

Table 1: Experiment results on English resource test data using the monolingual models. Check section 2 for word
algorithm representations’ abbreviation. Check section 3 for details of monolingual models.

4.2 Main Results

Reverse dictionary results are evaluated using three
metrics: mean squared error (MSE) between the
reconstructed and reference embeddings, cosine
similarity (COS) between the reconstructed embed-
ding and the reference embedding, and the cosine-
based ranking (RANK) between the reconstructed
and reference embeddings, measuring the number
of other test items having higher cosine with the
reconstructed embedding than with the reference
embedding(Mickus et al., 2022).

4.2.1

We show monolingual models’ results in Table 1.
As depicted, our proposed model demonstrates
competitive if not the best results across the metrics.
English, for having the most detailed dictionary
data, is selected to present monolingual models’

performance?.

Monolingual Model Performance

We notice that the transformer-based model has
inferior performance on the task. The competition
provides a low-resource data set that can explain
poorer outcomes for models with high complex-
ity. We tried unidirectional and bidirectional mod-
els with similar feature extractors and parameter
sizes. The results confirm that bidirectional mod-
els perform better and benefit from grasping the
context-environment more accurately.

4.2.2 Multilingual Model Performance

We show two ablation experiment results to ex-
plain the influence of adding language tags and
residual connection removal. First, experiment re-
sults of the Transformer-based multilingual model
on SGNS embedding can suggest the benefits of

2¢heck Table 5
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language tags and curbing residual connection sep-
arately or jointly. Second, we propose experimen-
tal results of the original and adjusted Elmo-based
multilingual models. The latter subsumes added
language tokens. Such a comparison would clarify
whether adding language tokens lead to a general
improvement across different languages and word
representations.

Electra word representations of Spanish and Ital-
ian are not available, implying no related exper-
imental results. The outcomes demonstrate that
multilingual models benefit from language-specific
information but not from language-agnostic struc-
ture. Adding language tags has proved a positive
influence on various language models.

4.3 Ablation Study
4.3.1 Tokenizer

We tried three widely-used tokenizers for our pro-
posed model: BPE, ULM, and WordPiece. Both
ULM and WordPiece show competitive perfor-
mance in transformer- and Elmo-based structures.
BPE has relatively low performance since the data
resource is insufficient and has higher resource re-
quests.

4.3.2 Multitask Model

According to the performance comparison in Ta-
ble 1, DWA helps the Elmo model achieve better
performance and reconstructs three-word represen-
tations simultaneously. It demonstrates that differ-
ently learned word representations have an internal
relation and can be learned together using a shared
bottom structure.



Languages EN Es PR ™ w0
Multilingual Models MSE COS RANK ‘ MSE COS RANK ‘ MSE COS RANK ‘ MSE COS RANK ‘ MSE COS RANK
Transformer 1.023 0.201 0.400 | 0.977 0.300 0.310 | 1.051 0.278 0.338 | 1.143 0.280 0.340 | 0.564 0.318 0.363
Transformer+RC 1.029 0.199 0417 | 1.005 0.298 0.329 | 1.069 0.253 0.374 | 1.189 0.267 0.364 | 0.601 0.279 0.409
Transformer+ALT 1.043 0.215 0.397 | 1.014 0.308 0.310 | 1.103 0.280 0.350 | 1.158 0.276 0.341 | 0.603 0.326 0.337
Transformer+RC+ALT 1.011 0.159 0.500 | 0.955 0.266 0.422 | 1.044 0.271 0360 | 1.129 0264 0376 | 0.561 0.308 0.371

Table 2: Experiment results on SGNS word representation using the multilingual Transformer-based models. Check
section 3 for details of multilingual models. RC represents the Residual Cutting trick. ALT represents the Adding

Language Token trick.

Word Representations SGNS Char Electra
Multilingual Models MSE COS RANK ‘ MSE COS RANK | MSE COS RANK
Elmo_EN 1.023 0.238 0.317 | 0.177 0.759 0.447 | 1.555 0.818 0.440
Elmo+ALT_EN 1.014 0.246 0.300 | 0.164 0.762 0.449 | 1.540 0.825 0.441
Elmo_ES 0953 0342 0.234 | 0.532 0.810 0.405 NA NA NA
Elmo+ALT_ES 0.960 0.351 0.235 | 0.511 0.822 0.393 NA NA NA
Elmo_IT 1.094 0.343 0.218 | 0.355 0.720 0.403 NA NA NA
Elmo+ALT_IT 1.106 0.343 0.214 | 0.354 0.735 0.387 NA NA NA
Elmo_FR 1.001 0.313 0.255 | 0388 0.752 0411 | 1.298 0.845 0.445
Elmo+ALT_FR 1.004 0.321 0.246 | 0.387 0.757 0.411 | 1.228 0.859 0.439
Elmo_RU 0.547 0357 0247 | 0.145 0.816 0.398 | 0.891 0.729 0.386
ELmo+ALT_RU 0.563 0.368 0.232 | 0.137 0.828 0.400 | 0.887 0.728  0.384

Table 3: Experiment results of the multilingual ELmo-based models. ALT represents the Adding Language Token

trick.

4.3.3 Difficulty of Reconstructing Different
Word Representations

Compared with the Char and Electra, we find that
the SGNS is harder to learn from the gloss corpus,
suggesting that the contextualized information of
words in sentences might be missing from the pure
dictionary glosses. Additionally, the result along
with (Kaneko and Bollegala, 2021) indicates dictio-
nary corpus can be a promising way to remove the
unfair biases rooted in large corpus learned word
embeddings.

4.3.4 Difficulty of Learning Different
Languages

Languages Gloss Num Dict.Size Avg.Gloss Len Elmo SGNS COS

English 43608 29042 11.7 0.252
French 43608 40028 14.3 0.333
Italian 43608 40126 13.6 0.352
Spanish 43608 46761 14.8 0.362
Russia 43608 57137 11.3 0.387

Table 4: Language Vocabulary Size Ablation Study.
Dict. Size means the number of non-repeating tokens
shown in the glosses. Avg. Gloss Len means the aver-
age token numbers contained in a gloss.

Our results of experiments show a strong posi-
tive correlation between language’s tokens dictio-
nary size and the models’ achievable performance
Table 4.

There are several possible reasons for the ob-
servation. First, as the language model dictionary
size decreases, the models’ and glosses’ ability to
explain the slight differences between words, es-
pecially the polysemies and synonyms, decreases.
Second, a smaller dictionary size indicates that the
covered tokens in the language model are a rela-
tively incomplete part of words of the language.

Noted that the second explanation above does
not consider the intrinsic differences between lan-
guages. The morphologically rich languages, like
Russian, tend to have larger vocabulary sizes and
bring many unknown words that influence perfor-
mance negatively (Jurafsky and Martin, 2020).

5 Conclusion

The paper proposes a model showing competitive
results in most cases of the reverse dictionaries task.
Several conclusions are provided about the reverse
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dictionaries task by the paper based on the abla-
tion studies. First, the transformer-based model,
for its high complexity, performs worse compared
to RNN- or LSTM-based models. Multilingual
transformer-based model benefits from specifying
languages and including language-related gram-
mar positional information. Second, bidirectional
models with similar parameter sizes outperform the
unidirectional one since they better grasp the con-
text in low-resource conditions. Third, different
word representations are potential connections and
can be collaboratively learned from glosses using
a multitask learning structure. SGNS embedding
is much harder to model compared to Character
embedding and Electra embedding.
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Check Table 5 for experiment results of the mono-
lingual models.

B Appendix: B

Check Table 6 for selected multilingual models’
performance.



Word Representations SGNS Char Electra
Monolingual Models MSE COS RANK | MSE COS RANK | MSE COS RANK

Language English
RNN+WordPiece 1.000 0.249 0.310 | 0.158 0.778 0.442 | 1.454 0.832 0.433
LSTM+WordPiece 0.990 0.228 0.375 | 0.148 0.791 0458 | 1.491 0.831 0.449
Transformer+WordPiece 1.042 0.214 0.367 | 0.194 0.780 0.453 | 1.796 0.827 0.486
BiRNN+WordPiece 0.989 0.221 0.395 | 0.150 0.791 0.454 | 1.483 0.832 0.449
Elmo+WordPiece 1.041 0.252 0.282 | 0.161 0.772 0.430 | 1.512 0.829 0.434
Language Spanish
RNN-+WordPiece 0.936 0.358 0.225 | 0.512 0.822 0.402 NA NA NA
LSTM+WordPiece 0.928 0.334 0.287 | 0.497 0.829 0418 NA NA NA
Transformer+WordPiece 1.011 0.307 0.313 | 0.577 0.828 0.432 NA NA NA
BiRNN+WordPiece 0.939 0.315 0.329 | 0511 0.826 0.423 NA NA NA
Elmo+WordPiece 0.968 0.362 0.207 | 0.520 0.820 0.396 NA NA NA
Language French
RNN+WordPiece 0.975 0.329 0.254 | 0.379 0.761 0408 | 1.272 0.856 0.444
LSTM+WordPiece 0.971 0.303 0.329 | 0.361 0.772 0420 | 0.191 0.862 0.457
Transformer+WordPiece 1.057 0.273 0.366 | 0.461 0.771 0.430 | 1.523 0.856 0.488
BiRNN+WordPiece 0.984 0.290 0.361 | 0.366 0.770 0.424 | 1.202 0.863 0.454
Elmo+WordPiece 1.007 0.333 0.239 | 0.373 0.763 0.402 | 1.341 0.850 0.437

Language Italian

RNN+WordPiece 1.078 0.353 0.218 | 0.345 0.741 0.391 NA NA NA
LSTM+WordPiece 1.077 0324 0.276 | 0.340 0.744 0413 NA NA NA
Transformer+WordPiece 1.160 0.256 0.373 | 0.377 0.731 0.419 NA NA NA
BiRNN+WordPiece 1.086 0.309 0.303 | 0.338 0.747 0415 NA NA NA
Elmo+WordPiece 1.106 0.352  0.200 | 0.354 0.736 0.384 NA NA NA
Language Russian
RNN+WordPiece 0.537 0.388 0.226 | 0.132 0.832 0.391 | 0.899 0.727 0.372
LSTM+WordPiece 0.547 0.338 0.346 | 0.131 0.834 0401 | 0.885 0.728 0.400
Transformer+WordPiece 0.565 0.315 0.377 | 0.156 0.827 0411 | 1.071 0.707 0473
BiRNN+WordPiece 0.551 0.321 0.397 | 0.135 0.831 0403 | 0919 0.727 0410
Elmo+WordPiece 0.557 0.387 0.217 | 0.134 0.831 0.390 | 0.904 0.723 0.362

Table 5: Appendix A. Experiment results of the monolingual models. Check section 2 for word algorithm
representations’ abbreviation. Check section 3 for details of monolingual models.

Word Representations SGNS Char Electra

Monolingual Models MSE COS RANK | MSE COS RANK | MSE COS RANK
Language English

Elmo+WordPiece 1.041 0.252 0.282 | 0.161 0.772 0.430 | 1.512 0.829 0434

Elmo + WordPiece + DWA 0985 0.246 0.298 | 0.142 0.799 0.447 | 1.514 0.827 0.428

Language French

Elmo+WordPiece 1.007 0.333 0.239 | 0373 0.763 0.402 | 1.341 0.850  0.437
Elmo + WordPiece + DWA 0937 0.327 0.243 | 0.364 0.770 0.406 | 1.315 0.854 0.428

Language Russian

Elmo+WordPiece 0.557 0.387 0217 | 0.134 0.831 0.390 | 0.904 0.7226  0.362
Elmo + WordPiece + DWA  0.534 0.388 0.189 | 0.127 0.838 0.376 | 0.908 0.7235 0.364

Table 6: Appendix B. The table shows the selected multilingual models’ performance. Check section 2 for word
algorithm representations’ abbreviation. Check section 3 for details of monolingual models.

22



BLCU-ICALL at SemEval-2022 Task 1: Cross-Attention Multitasking
Framework for Definition Modeling

Cunliang Kong', Yujie Wang?, Ruining Chong', Liner Yang';
Hengyuan Zhang', Erhong Yang', Yaping Huang?
!School of Information Science, Beijing Language and Culture University
2School of Computer and Information Technology, Beijing Jiaotong University
cunliang.kong@outlook.com

Abstract

This paper describes the BLCU-ICALL sys-
tem used in the SemEval-2022 Task 1 Com-
paring Dictionaries and Word Embeddings, the
Definition Modeling subtrack, achieving 1st
on Italian, 2nd on Spanish and Russian, and
3rd on English and French. We propose a
transformer-based multitasking framework to
explore the task. The framework integrates
multiple embedding architectures through the
cross-attention mechanism, and captures the
structure of glosses through a masking lan-
guage model objective. Additionally, we also
investigate a simple but effective model ensem-
bling strategy to further improve the robust-
ness. The evaluation results show the effec-
tiveness of our solution. We release our code
at: https://github.com/ blcuicall/SemEval2022-
Task1-DM.

1

Word embeddings (Mikolov et al., 2013a; Penning-
ton et al., 2014; Yogatama et al., 2015) are dense
and low dimensional vectors used in many NLP
tasks because they are found to be useful repre-
sentations of words and often lead to better per-
formance in various tasks. In recent years, large
pretrained language models (PLMs), such as BERT
(Devlin et al., 2019) and GPT (Petroni et al., 2019)
families of models, have taken the NLP field by
storm, achieving state-of-the-art performance on
many tasks (Min et al., 2021). The contextual em-
beddings generated by PLMs are proven to capture
syntax and semantic features of words (Jawahar
et al., 2019; Turton et al., 2020). But for human
beings, word embeddings containing these infor-
mation is still a black box and unexplainable.
There have been many efforts devoted to eval-
uating the word embeddings’ lexical information,
such as the word similarity (Landauer and Dumais,
1997; Downey et al., 2007) and analogical relation

Introduction
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Figure 1: Architecture of the Cross-Attention Multitask-
ing Framework.

(Mikolov et al., 2013c¢) tasks. However, these tasks
can only serve as indirect evaluation methods. In
light of this, Noraset et al. (2017) proposed the task
of definition modeling to evaluate whether a word
embedding can be employed to generate a dictio-
nary gloss. Since the gloss is a direct and explicit
statement of word meaning, this task provides a
more transparent view.

The SemEval-2022 Task 1 Comparing Dictio-
naries and Word Embeddings (Mickus et al., 2022)
aims at comparing the two types of semantic de-
scriptions: dictionary glosses and word embed-
dings. The subtrack 1 is a definition modeling task,
which requires models to generate glosses from
word embeddings. The task provides data from 5
languages (English, Spanish, French, Italian, Rus-
sian) as well as static, character, and contextual
embeddings.

Our team propose a transformer-based (Vaswani
et al., 2017) Cross-Attention Multitasking Frame-
work to explore the task and apply the framework
to all 5 languages. We integrate the multiple embed-

Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 23 - 28
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Train Dev. Test SGNS Character Electra Gloss

Emb. Emb. Emb. Len.

English 43,608 6,375 6,221 v v v 11.73
Spanish 43,608 6,375 6,221 v v X 14.84
French 43,608 6,375 6,221 v v v 14.31
Italian 43,608 6,375 6,221 v v X 13.58
Russian 43,608 6,375 6,221 v v v 11.32

Table 1: Detailed statistics of the dataset. The last column lists the average length of glosses in the training set.

ding architectures through a cross-attention mech-
anism, which allows the model to query all the
embeddings at each time step during generation.
To better capture the structure of glosses, we em-
ploy an additional masking language model (MLM)
(Devlin et al., 2019) into the framework. We also
investigate the ensemble strategies to further en-
hance the robustness.

Therefore, the contributions of our system lie in:

* We propose the Cross-Attention Multitasking
Framework as a novel solution to the defini-
tion modeling task.

¢ The evaluation results show the effectiveness
of our solution. Our system achieves 1st on
Italian, 2nd on Spanish and Russian, and 3rd
on English and French.

2 Background

The definition modeling subtrack provides partic-
ipants with a multilingual dataset in the form of
{E, g}, where E is a set including SGNS (Mikolov
et al., 2013b), character (Kim et al., 2016), and
Electra (Clark et al., 2020) embeddings, and g is
a dictionary gloss. This task takes E as the input,
and requires models to generate g. Note that all the
embeddings have 256 dimensions, and the Electra
embeddings are only available for 3 of the 5 lan-
guages. More detailed statistics of the dataset are
listed in Table 1.

Many previous work used additional data to im-
prove the performance of generation, such as exam-
ple sentences (Gadetsky et al., 2018; Chang et al.,
2018; Ishiwatari et al., 2019; Kong et al., 2020) and
semantic features (Yang et al., 2020). Some studies
also investigated how to employ PLMs for this task
(Reid et al., 2020; Bevilacqua et al., 2020; Huang
et al., 2021; Kong et al., 2022).

Differently, to keep the results linguistically sig-
nificant and easily comparable, the SemEval-2022
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Task 1 prohibits the usage of external data and
PLMs. Therefore, our system focuses on effec-
tively integrating all given embeddings and model-
ing the glosses.

3 System Overview

Figure 1 illustrates the entire architecture of our
system, which is a Cross-Attention Multitasking
Framework based on transformer. The framework
consists of two objectives, namely the generation
and reconstruction objectives. This section intro-
duces the system in detail.

3.1 The Generation Objective

The generation objective serves as a standard trans-
former decoder, which generates the gloss as the
following language model:

P(g|E;0) =[] P(gilg<t. E:0), (D
t

where g; is the ¢-th token in the gloss, and 0 is the
set of parameters. The model is then optimized
using the following loss function:

Lgen(0) = =Y log P(g|E; 0),
geD

(@)

where D is the training dataset.

In the above operations, a crucial challenge is
to integrate multiple embeddings corresponding to
one word. We assume that the SGNS, character,
and Electra embeddings contain different lexical
features, and better results can be obtained by com-
prehensively considering all the information. To
achieve that, we feed the set E, including all these
embeddings, into the cross-attention mechanism:

T

vy
where H is the hidden-states obtained from by self-
attention, and dj, is the dimension of the hidden-
states. This operation ensures the given embed-
dings are adaptively integrated at each time-step.

Cross-Attn(H, E, E) = softmax( )JE (3)



3.2 The Reconstruction Objective

Our system is a language model specially designed
for dictionary glosses. We further enhance this
model by incorporating a reconstruction objective.
We corrupt each gloss g by randomly substitut-
ing or blanking some words. And then we obtain
a corrupted version g. We input g into our system
and obtain g by solving a self-supervised task of:

P(g|g;0) =[] P(gtlg<t.§:6). 4
t

Note that we share exactly the same parameters
0 as in the generation objective. The model is
optimized by the following loss function:

ﬁrec(e) = - Z logP(g|§; 0)7

geb

(&)

The goal of the reconstruction objective is to
better model the glosses. Therefore, we don’t use
the given embeddings in this operation. In prac-
tice, we feed a zero vector into the cross-attention
mechanism to mask it out as Cross-Attn(H, 0, 0).

3.3 Training and Ensembling

We train the entire multitasking framework by
jointly minimizing the weighted sum of both loss
functions:

L= Egen + )\ﬁrem (6)

where ) is a hyper-parameter.

Model ensembling is proven to be effective to
improve the robustness (Allen-Zhu and Li, 2020).
In our work, we adopt a simple but effective model
ensembling strategy. We train a series of models
initialized by different random seeds, and then vote
with the trained models during inference.

4 Experimental Setup

4.1 Implementation Details

Many neural network-based generation systems
struggle with the OOV (out-of-vocabulary) prob-
lem. To alleviate the problem, we apply the Senten-
cePiece algorithm (Kudo and Richardson, 2018) to
glosses to reduce the vocabulary size. We use the
tokenizers! toolkit for implementation and set the
size to 10k for all 5 languages.

Our system is a 3-layer, 8-head transformer-
based model implemented by the Pytorch library
(Paszke et al., 2019). We use the Adam optimizer

'tokenizers: https://github.com/huggingface/tokenizers.
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(Kingma and Ba, 2015) with 51 = 0.9, 82 = 0.98
and ¢ = 107%. We adopt the Noam Optimizer
proposed by (Vaswani et al., 2017) with an initial
learning rate of 1le—7, a maximum learning rate
of 1le—3, and a minimum learning rate of 1le—9.
We set the warmup steps to 4000 and batch size
to 128. The maximum epochs is set to 500. And
we set an early stop strategy in the patience of 5
epochs. To avoid gradient exploding, we clipped
the gradient norm within 0.1. We also employ label
smoothing technique (Pereyra et al., 2017) with a
smoothing value of 0.1 during training. For the
gloss corruption in the reconstruction objective, we
follow Devlin et al. (2019) to randomly delete and
blank words with a uniform probability of 0.2. And
the X (in Equation 6) is set to 1. For model ensem-
bling, we train 5 models with different seeds. Due
to the time constraints, our official submission has
aresult of ensembling three models on English, and
results of single models on the reset of 4 languages.
We submitted the results of ensembling 5 models
in the post-evaluation phase.

For each language, we use the development set
released by organizers for model selection. We
select the best epoch using the summary of BLEU
(Papineni et al., 2002) and MoverScore (Zhao et al.,
2019) on the development set.

4.2 Evaluation Metrics

The definition modeling subtrack uses three met-
rics, which are MoverScore (Zhao et al., 2019),
BLEU (Papineni et al., 2002) , and lemma-level
BLEU respectively. Readers can refer to the task
paper (Mickus et al., 2022) for more details.

5 Results and Analysis

In this section, we present the evaluation results and
discuss our analysis of the generated definitions.

5.1 Main Results

Table 2 presents the evaluation scores on all 5
languages. Results show that our system signif-
icantly outperforms the baseline models in terms of
the sentence BLEU and lemma-level BLEU. This
indicates the effectiveness of our proposed cross-
attention multitasking framework. However, the
SGNS and Char are strong baselines in terms of the
MoverScore, and our system only outperforms the
baselines on English. We speculate that our results
have more coincide words with references, but are
not fluent enough, which leads to a low score from



| Models S-BLEU L-BLEU MvSc.
SGNS 0.00125  0.00250  0.10339

Char 0.00011  0.00022  0.08852

EN | Electra 0.00165  0.00215  0.08798
CAMF 0.03127  0.03957 0.13475
Ensemble  0.03106  0.03906 0.13273

SGNS 0.01536  0.02667 0.20130

ES Char 0.01505  0.02471  0.19933
CAMF 0.03914  0.05606 0.12778
Ensemble  0.03925  0.05624 0.13121

SGNS 0.00351  0.00604 0.18478

Char 0.00280  0.00706  0.18579

FR | Electra 0.00219  0.00301  0.17391
CAMF 0.02679  0.03691  0.04193
Ensemble  0.02700  0.03738  0.04455

SGNS 0.02591  0.04081  0.20527

IT Char 0.00640  0.00919  0.15920
CAMF 0.06646  0.09926 0.11717
Ensemble  0.06812  0.10147 0.12233

SGNS 0.01520  0.02112  0.34716

Char 0.01313  0.01847  0.32307

RU | Electra 0.01189  0.01457 0.33577
CAMF 0.04843  0.06548  0.14820
Ensemble  0.05192  0.07074 0.15702

Table 2: Evaluation results of different models in 5
languages. The SGNS, Char, Electra are baseline mod-
els provided by the organizers. The CAMF (Cross-
Attention Multilingual Framework) is the model of offi-
cial submission. And the Ensemble is an ensemble of
5 models submitted in the post-evaluation. Bold and
underline mark the best and second scores, respectively.

the pretrained model used by MoverScore.

We also observe that model ensembling has
brought the improvement of performance. It can
be seen from the table that the Ensemble model
outperforms the CAMF on 4 of the 5 languages,
except for a slight decline on English. This may be
due to the randomness of the parameter initializa-
tion. We also argue that better performance can be
obtained by applying hyper-parameter searching
algorithms and ensembling more models.

5.2 Error Analysis

In order to qualitatively analyze the definitions gen-
erated by our system, we randomly select several
items from the English test set and manually anno-
tate the error types following Noraset et al. (2017).
In total, we extract 200 items, of which 197 contain
some degree of error. We illustrate the error types
and examples in Table 3. Note that each item may
contain multiple errors, so the sum of the percent-
ages in the table is greater than 100%.

From the table, we observe that the quality of
English definitions generated by our system still
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(1) Redundancy and overusing common phrases: 42.00%

word explosion

reference | A sudden outburst.

hypothesis | A sudden, sudden, or destruction.

(2) Self-reference: 2.00%

word discover

reference | To reveal (information); to divulge, make
known.

hypothesis | To make a conclusion of; to discover.

(3) Wrong Part-Of-Speech: 5.50%

word genius

reference | ingenious, brilliant, very clever, or original.

hypothesis | A person or thing that is extraordinary.

(4) Under-specified: 23.50%

word mayor

reference | The leader of a city.

hypothesis | A person who is a member of authority.

(5) Opposite: 2.00%

word solid

reference | Excellent , of high quality , or reliable.

hypothesis | Having no size or value.

(6) Close Semantics: 17.00%

word bed

reference | The time for going to sleep or resting in bed.

hypothesis | The state or quality of being a room.

(7) Incorrect: 52.00%

word smooth

reference | Lacking projections or indentations; not
serrated.

hypothesis | Having the shape of a tree.

Table 3: Error types and examples.

need to be improved. Error types (1) to (3) are
problems from the system, and types (4) to (6) are
shortcomings in the embeddings. As we can see,
the former accounts for a much larger proportion
than the latter. The 52% incorrectness indicated by
type (7) shows that many glosses generated by our
system are irrelevant to the word. And the dataset
released in this task will support significant future
work on the definition modeling task.

6 Conclusion

In this paper, we present the implementation of the
BLCU-ICALL system submitted to the SemEval-
2022 Task 1, Definition Modeling subtrack. We
propose a Cross-Attention Multitasking Frame-
work that leverages multiple embedding architec-
tures and jointly trains two objectives. We also
investigate a simple but effective ensembling strat-
egy to enhance the robustness. In future efforts, we
plan to further improve our system to better handle
the problems of redundancy and incorrect glosses.
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Abstract

This paper introduces the result of Team
LingJing’s experiments in SemEval-2022 Task
1 Comparing Dictionaries and Word Embed-
dings (CODWOE)'. This task aims at compar-
ing two types of semantic descriptions, includ-
ing the definition modeling and reverse dictio-
nary track. Our team focuses on the reverse
dictionary track and adopts the multi-task self-
supervised pre-training for multilingual reverse
dictionaries. Specifically, the randomly initial-
ized mDeBERTa-base model is used to per-
form multi-task pre-training on the multilin-
gual training datasets. The pre-training step is
divided into two stages, namely the MLM pre-
training stage and the contrastive pre-training
stage. As a result, all the experiments are
performed on the pre-trained language model
during fine-tuning. The experimental results
show that the proposed method has achieved
good performance in the reverse dictionary
track, where we rank the 1-st in the Sgns tar-
gets of the EN and RU languages. All the ex-
perimental codes are open-sourced at https:
//github.com/WENGSYX/Semeval.

1 Introduction

The CODWOE shared task invites the participants
to compare two types of semantic descriptions: dic-
tionary glosses and word embedding representa-
tions. The intuitions come from the questions: “Are
these two types of representation equivalent? Can
we generate one from the other?”. To study this
question, the CODWOE proposes two sub-tracks:
a definition modeling track (Noraset et al., 2017),
where participants have to generate glosses from
vectors, and a reverse dictionary track (Hill et al.,
2016), where participants have to generate vectors
from glosses. These two tracks are fairly challeng-
ing (Hill et al., 2016), where more efficient meth-
ods are required to be designed for implementation.

*These authors contribute equally to this work.
"https://codwoe.atilf.fr/

29

" A meal consisting of food normally eaten in the morning,
which may typically include eggs , sausages, toast, bacon, etc. "

word
Gloss

sgns: [0.9233651757, -0.526638031, 2.0892603397, ... ...],56
char: [-0.1214295924, -0.2428643405, 0.2625943422, ... ...],5¢
electra: [0.3655579984, -0.1910238415, 0.0170905143,... ... Jas6

word
Embedding

Figure 1: An example of the reverse dictionary task.
Given the word gloss, it is required to generate the
vectors of their corresponding Sgns, Char, and Electra,
respectively.

These tasks are also useful for explainable Al, since
they involve converting human-readable data into
machine-readable data and back (Li et al., 2021).
In this paper, we focus on the reverse dictionary
track. As shown in Figure 1, given the gloss “A
meal consisting of food normally eaten in the morn-
ing, which may typically include eggs, sausages,
toast, bacon, etc.”, the reverse dictionary task re-
quires us to generate corresponding three sets of
256-dimensional word vectors. The Sgns (Mikolov
et al., 2013) , char (Vakulenko et al., 2017), and
Electra (Gonzélez et al., 2020) are skip-gram with
negative sampling embeddings, character-based
embeddings, and Transformer-based contextual-
ized embeddings, respectively.

It is noted that this task comprises datasets in 5
languages: English, Spanish, Italian, French, and
Russian. The reverse dictionary task is difficult
due to the significant inborn differences between
word vectors and glosses and the vast differences
between languages (Bosc and Vincent, 2018).

To solve the above problems, we use a multi-task
self-supervised pre-training approach with Masked
language modeling (MLM) (Taylor, 1953; Devlin
et al., 2019) and contrastive learning (Reimers and
Gurevych, 2019; Su et al., 2021). On the one hand,
MLM can better capture the semantic representa-
tion of the input text (Liu et al., 2019). On the other
hand, contrast learning can further improve the per-
formance of downstream regression tasks (Jaiswal
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et al., 2020). Specifically, we use a randomly ini-
tialized mDeBERTa-base (He et al., 2021) model to
perform MLM pre-training on five text datasets in
different languages. Contrastive pre-training (Gao
et al., 2021) is then performed using vectors with
and without dropout (Srivastava et al., 2014). Af-
terward, the model is fine-tuned using the Reverse
Dictionary dataset. The experimental results show
that the proposed method has achieved good perfor-
mance in the reverse dictionary track. We achieve
the top three results on the Sgns evaluation metrics
in all languages. Specifically, we get first place in
English and Russian, second place in Spanish and
French, and third place in Italian.

2 Main method

In this section, we will elaborate on the main
methods for the reverse dictionary track. As the
pre-training method can enhance the performance
of semantic representation (Qiu et al., 2020), we
adopt masked language modeling (MLM) task (De-
vlin et al., 2019) and contrastive pre-training task
(Jaiswal et al., 2020) for implementing this regres-
sion task.
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Masked language modeling (MLM) task consists
of giving the model a random masked sentence and
optimizing the weights inside the model to output
the unmasked sentence on the other side. We im-
plement the MLM pre-training method with the
same original setting as BERT (Devlin et al., 2019).
What’s more, we adopt the standard implementa-
tions of the MLM from the website?.

Masked language modeling task

2.2 Contrastive pre-training task

Our method follows the SimCSE (Gao et al.,
2021) method, where the self-supervised model
is adopted for the contrastive pre-training task. For
the self-supervised part, we use dropout to add
noise to the text twice, thus constructing a pair of
positive samples, and pairs of negative samples are
sentences processed with the dropout in the batch.
The above processes can be formulated as the equa-
tion (1)

exp (sim (ﬁh hi) /T>
Sy exp (sim (i by ) /1)

where the h; represents the hidden feature of the
positive sample, while the /; is the hidden feature

,CCL = —log (1)

“https://github.com/lucidrains/mlm-pytorch
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of the negative drop-out sample. The 7 is a temper-
ature hyper-parameter and sim(, ) means the cosine
similarity function.

2.3 Multi-task pre-training

Multi-task learning is known to fully enhance the
performance of the single task with multiple related
tasks to be designed and optimized (Sanh et al.,
2021). We combine the above two pre-training task
to the multi-task objectives, where the final loss
function can be represented as follows

L= Lyvim + Lot )

2.4 Downstream fine-tuning

[Batch _Size, 256]
[0.9233, .., 2.4412, 1.4825, 1.8073]

[0.9233, .., 2.4412,1.4825, 1.8073]
Regression
Task
Averaged Pooling (Kernel_Size = 3) }
{} [Batch_Size, 768]

Pooling Layer 1 [

Averaged Pooling (Dim = 1)

Pooling Layer 2 [

Encoder Context
(Pre-trained Through
Self-supervised Multi-task)

Input A meal consisting of food normally eaten in the morning

Figure 2: Main structure of the proposed method.

Concretely, given the input sentence, the seman-
tic representation can be obtained through the con-
text encoder with pre-training. As shown in the
Figure 2, we use the pre-trained language model
through self-supervised multi-task pre-training as
the backbone for the regression task. Once obtain-
ing the final representation of the pre-trained lan-
guage model, two pooling layers (Lin et al., 2013)
are designed to get the useful features with the prob-
able size. The mean pooling layer is added on top
of the pre-trained model for squeezing the features.
Another pooling layer (with the kernel_size=3) is
added before the final regression task.

3 Experimental setup

3.1 Data Description

The CODWOE shared task provides datasets in five
different languages (EN, ES, FR, IT, RU). For these
datasets of five languages, each dataset has 43,608



training sets, 6375 dev sets and 4208 test sets. Each
language contains multiple embeddings contain-
ing “Char” and “Sgns”, while English, French and
Russian have the embedding “Electra”. We will
introduce these datasets as follows.

Char corresponds to character-based embeddings,
computed with an auto-encoder on the spelling
of a word. In addition, the “gloss” key in each
dataset is the source in the reverse dictionary track.
We need to use “gloss” to generate the associated
embeddings.
Sgns corresponds to skip-gram with negative sam-
pling embeddings (aka. word2vec (Mikolov et al.,
2013)).
Electra corresponds to the Transformer-based
(Vaswani et al., 2017) contextualized embeddings.
Moreover, the organizers want the shared task to
be as linguistically relevant as possible and hope
to provide a fair competition environment for all
participants. The organizer forbids the use of exter-
nal resources and pre-trained language models in
CODWOE.

3.2 Evaluation metrics

In this task, the performance of the system is eval-
uated through three evaluation indicators (Mickus
et al., 2022).

Mean squared error (MSE) between the submis-
sion’s reconstructed embedding and the reference
embedding.

Cosine similarity (Cossim) between the submis-
sion’s reconstructed embedding and the reference
embedding.

0j

MSE = %2;;1( )2
>ieq Ai X B
Vi1 (i) x /30 (Bi)?

where the A and B refer to two matrices that need
to be calculated.

Cossim =

Cosine-based ranking® between the submission’s
reconstructed embedding and the reference embed-
ding; i.e., how many other test items have a cosine
similarity with the reconstructed embedding higher
than that with the reference embedding.

3Specific implementations can refer to https://
github.com/WENGSYX/Semeval.
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3.3 Method introduction

The Baseline provided by the organizer* uses

the encoder structure of the Transformer (Vaswani
et al., 2017; Wolf et al., 2020) framework. After
each token passes through the embedding layer,
positional encoding will be added to indicate the
location structure of the token. Then it will be input
to the encoder based on the transformer and finally
output to the linear layer to make the dimension of
the matrix consistent with the label.

In addition, the organizer has made some im-
provements to the baseline.

1. The principled way of selecting hyper-
parameters (using Bayesian Optimization
(Snoek et al., 2012; Frazier, 2018)).

A sentence-piece re-tokenization, to ensure
the vocabulary is of the same size for all lan-
guages.

. The beam-search (Wiseman and Rush, 2016;
Freitag and Al-Onaizan, 2017) decoding for
the definition modeling pipeline.

Our method uses the randomly initialized mDe-
BERTa (He et al., 2021) model. The mDeBERTa
improves the BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) models using disen-
tangled attention and enhanced mask decoder. It
shares the base model with 12 layers and 768 hid-
den size, which is pre-trained on the multilingual
corpus. It has 86M backbone parameters with a vo-
cabulary containing 250K tokens which introduce
190M parameters in the Embedding layer. It sup-
ports most languages around the world, since it is
believed that there should be some shared semantic
features between different languages®.

3.4 Implementation details

We use the hugging-face® (Wolf et al., 2020) frame-
work and train the model based on the Pytorch
(Paszke et al., 2019). During training, we em-
ploy the AdamW optimizer (Loshchilov and Hutter,
2017). The default learning rate is set to le-5 with
the warm-up (He et al., 2016). Four 3090 GPUs
are used for all experiments.

*Specific implementation can refer to https:
//github.com/TimotheeMickus/codwoe/tree/
main/baseline_archs

SPlease refer: https:/ai.glossika.com/blog/a-map-to-the-
syntax-of-all-spoken-languages

®https://github.com/huggingface/transformers



Experimental Items Baseline Ours
Language MSE Cosine Ranking MSE Cosine Ranking
English 0.91092 0.15132 0.49030 0.86239 0.24310 0.32907
Espana 0.92996 0.20406 0.49912 0.85770 0.35275 0.25101
French 1.14050 0.19774 0.49052 1.02968 0.32799 0.28213
Italian 1.12536 0.20430 0.47692 1.03945 0.35955 0.22995
Russian 0.57683 0.25316 0.49008 0.52827 0.42440 0.18711

Table 1: Results of the Sgns track.

Experimental Items Baseline Ours
Language MSE Cosine Ranking MSE Cosine Ranking
English 0.14776 0.79006 0.50218 0.47103 0.00331 0.48599
Espana 0.56952 0.80634 0.49778 0.50121 0.85770 0.35275
French 0.39480 0.75852 0.49945 0.96678 0.00809 0.51862
Italian 0.36309 0.72732 0.49663 0.88129 -0.02992 0.49603
Russian 0.13498 0.82624 0.49451 0.47905 0.00479 0.47228

Table 2: Results of the Char track.

On the MLM pre-training task, we alternately
carry out the pre-training tasks of long text and
short text. After mixing the data sets of five dif-
ferent languages, we train them for 40 epochs. In
detail, we classify all data sets with a text length of
30. In each epoch, firstly, samples with text length
less than or equal to 30 are trained with a maximum
length of 32 tokens (including <CLS> and <SEP>)
and the batch size is set to 70. Then we change the
maximum length to 160 tokens and set the batch
size to 18 for training the remaining samples.

Referring to the settings of WWM (Cui et al.,
2021; Joshi et al., 2020), we use the text mask rate
with a probability of 20%, and adopt that the 1, 2,
3, 4 n-gram masking length with a probability of
85%, 5%, 5%, and 5%.

In contrastive pre-training, we repeatedly inte-
grate a sample into the model twice. During this
period, because our model has dropout, it will
add noise to the input, so that the output of the
two times is distinct. As a result, our method can
be improved in the sentence representation ability
through self-supervised.

Based on the pre-trained language model, we
fine-tune with the maximum length of all samples
to 100 tokens, the batch size to 50 (there will be 2
* 50 samples for each step to be calculated by the
model at the same time). The number of training
epochs is 40.

4 Results and discussions

In this section, we introduce the experimental re-
sults of the Sgns, the Char and the Electra tracks.
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The online results and further discussions are also
presented.

4.1 Experimental results

The experimental results of the Sgns, Char and
Electra can be found in the Table 1, 2 and 3. Specif-
ically, for the Sgns track, we outperform the experi-
ments of each baseline according to all the metrics.
The reason may be that the pre-training method
with MLM and contrastive learning can well pro-
vide well-formed vector space representations be-
tween samples. As for the Char and Electra track,
the baseline is better than ours. It may be because
the word and contextual character features are hard
to be captured due to the smaller corpus. In the
future, we will explore more efficient methods to
perform well definition modeling in these tracks.

4.2 Official online results

As shown in Table 4, we achieve the top three
results on the Sgns evaluation metrics in all lan-
guages. Specifically, we get first place in English
and Russian, second place in Spanish and French,
and third place in Italian. Our method is effective
on the Electra evaluation metrics, but not the best.
Our team ranks the second place, fourth and fourth
place in Russian, English, and French, respectively.
Our approach does not achieve good results on the
char metric, which represents the character level.
This result may be that it is difficult for the model to
capture semantics while maintaining high precision
letter-level fine-grained word vector learning.



Experimental Items Baseline Ours
Language MSE Cosine Ranking MSE Cosine Ranking
English 1.41287 0.84283 0.49849 1.50876 0.84592 0.47773
French 1.15348  0.85629 0.49784 1.27066  0.85859 0.47762
Russian 0.87358  0.72086 0.49120 0.82773  0.73397 0.42020
Table 3: Results of the Electra track.
Online Sgns Char Electra
TEAM EN ES FR IT RU EN ES FR IT RU EN FR RU
LingJing(ours) 1 2 2 3 1 7 5 5 6 5 4 4 2
pzchen 2 4 3 2 3 3 1 1 1 1 1 1 1
IRB-NLP 3 1 1 1 2 4 3 4 2 2 5 3 3
Locchi 4 / / 4 / 1 / / 4 / 3 / /
Nihed_Bendahman_ 5 5 4 6 4 2 2 2 3 4 2 2 4
zhwa3087 6 6 5 5 5 6 4 3 5 3 / / /
theOne 7 / / / / 5 / / / / 6 / /
tthhanh 8 7 6 7 6 / / / / / / / /
Table 4: Results of the online official Rank.
5 Conclusion Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

In this paper, it is mainly introduced that in order
to solve the reverse dictionary track in Semeval-22
CODWOE, the Lingling team makes the model
have the ability of semantic understanding through
the MLM task with contrastive learning in the ran-
domly initialized mDeBERTa model. After that,
we report the performance of our model in COD-
WOE, and obtain the best performance in English
and Russian tasks of Sgns dataset, which proves
that our method is effective. In the future, we will
further study how to make full use of the character-
istics of different languages and make the model
embed the text into a more accurate vector space.

Acknowledgement

This work is supported by the National Key R&D
Program of China (2018YFB1305200), the Na-
tional Natural Science Fund of China (62171183).

References

Tom Bosc and Pascal Vincent. 2018. Auto-encoding
dictionary definitions into consistent word embed-
dings. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1522-1532, Brussels, Belgium. Association
for Computational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and
Ziqing Yang. 2021. Pre-training with whole word
masking for chinese bert.

33

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Peter I. Frazier. 2018. A tutorial on bayesian optimiza-
tion.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation.
CoRR, abs/1702.01806.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

José Angel Gonzalez, Lluis-F Hurtado, and Ferran
Pla. 2020. Transformer based contextualization of
pre-trained word embeddings for irony detection
in twitter. Information Processing & Management,

57(4):102262.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770-778.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand



phrases by embedding the dictionary. Transactions
of the Association for Computational Linguistics,
4:17-30.

Ashish Jaiswal, Ashwin Ramesh Babu, Moham-
mad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. 2020. A survey on contrastive self-
supervised learning. CoRR, abs/2011.00362.

Mandar Joshi, Danqgi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving Pre-training by Representing and
Predicting Spans. Transactions of the Association
for Computational Linguistics, 8:64-77.

Lei Li, Yongfeng Zhang, and Li Chen. 2021. Person-
alized transformer for explainable recommendation.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4947-4957, Online. Association for Computational
Linguistics.

M. Lin, Q. Chen, and S. Yan. 2013. Network in network.
Computer Science.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017.
weight decay regularization in adam.
abs/1711.05101.

Fixing
ArXiv,

Timothee Mickus, Denis Paperno, Mathieu Constant,
and Kees van Deemter. 2022. SemEval-2022 Task
1: Codwoe — comparing dictionaries and word em-
beddings. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. In /CLR.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and
Doug Downey. 2017. Definition modeling: Learning
to define word embeddings in natural language. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAT’17, page 3259-3266.
AAALI Press.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

34

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
CoRR, abs/2003.08271.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin
Yong, Harshit Pandey, Rachel Bawden, Thomas
Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Stella Biderman, Leo Gao, Tali Bers,
Thomas Wolf, and Alexander M. Rush. 2021. Multi-
task prompted training enables zero-shot task gener-
alization.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
2012. Practical bayesian optimization of machine
learning algorithms. In Proceedings of the 25th Inter-
national Conference on Neural Information Process-
ing Systems - Volume 2, NIPS’12, page 2951-2959,
Red Hook, NY, USA. Curran Associates Inc.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929-1958.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen
Ou. 2021. Whitening sentence representations
for better semantics and faster retrieval. CoRR,
abs/2103.15316.

Wilson L. Taylor. 1953. “cloze procedure”: A new
tool for measuring readability. Journalism Quarterly,
30(4):415-433.

Svitlana Vakulenko, Lyndon Nixon, and Mihai Lupu.
2017. Character-based neural embeddings for tweet
clustering. SocialNLP 2017, page 36.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000-6010, Red Hook, NY,
USA. Curran Associates Inc.



Sam Wiseman and Alexander M. Rush. 2016. Sequence-
to-sequence learning as beam-search optimization.
CoRR, abs/1606.02960.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

35



IRB-NLP at SemEval-2022 Task 1: Exploring the Relationship Between
Words and Their Semantic Representations

Damir Korenci¢*
Division of Electronics
Ruder Boskovi¢ Institute
Zagreb, Croatia
damir.korencic@irb.hr

Abstract

What is the relation between a word and its de-
scription, or a word and its embedding? Both
descriptions and embeddings are semantic rep-
resentations of words. But, what information
from the original word remains in these repre-
sentations? Or more importantly, which infor-
mation about a word do these two representa-
tions share? Definition Modeling and Reverse
Dictionary are two opposite learning tasks that
address these questions. The goal of the Defini-
tion Modeling task is to investigate the power
of information laying inside a word embedding
to express the meaning of the word in a hu-
manly understandable way — as a dictionary
definition. Conversely, the Reverse Dictionary
task explores the ability to predict word embed-
dings directly from its definition. In this paper,
by tackling these two tasks, we are exploring
the relationship between words and their se-
mantic representations. We present our find-
ings based on the descriptive, exploratory, and
predictive data analysis conducted on the COD-
WOE dataset. We give a detailed overview
of the systems that we designed for Defini-
tion Modeling and Reverse Dictionary tasks,
and that achieved top scores on SemEval-2022
CODWOE challenge in several subtasks. We
hope that our experimental results concerning
the predictive models and the data analyses we
provide will prove useful in future explorations
of word representations and their relationships.

1 Introduction

The COmparing Dictionaries and WOrd Em-
beddings (CODWOE) task (Mickus et al., 2022) is
aimed at explaining two different types of seman-
tic descriptions of words: dictionary glosses and
word embeddings. A dictionary gloss is a brief tex-
tual explanation of a word and a word embedding
is a vector representation that captures the word’s
semantic and syntactic properties (Smith, 2020).

*Equal contribution.
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In order to investigate the relationship between
these two types of descriptions, two complemen-
tary subtracks were put together: 1. Definition
Modeling (DEFMOD) track, where correct glosses
need to be generated from word embedding vectors
(Noraset et al., 2017); and 2. Reverse Dictionary
(REVDICT) track, where correct embedding vec-
tors should be generated from dictionary glosses
(Hill et al., 2016). The datasets for both tracks
cover five different languages: English (EN), Span-
ish (ES), French (FR), Italian (IT), and Russian
(RU).

The key challenge of the CODWOE task is that it
needs to be performed without external data, which
precludes the use of pretrained models and vectors.
Additionally, the training dataset is relatively small
in comparison to the datasets on which models are
typically trained.

Our strategy was to adapt an RNN-based de-
coder model (Noraset et al., 2017) for the DEFMOD
track, and to use a transformer-based encoder (De-
vlin et al., 2019) for the REVDICT track. With the
limited amount of available data in mind, we hy-
pothesized that models should not be large. There-
fore we aimed to limit the model complexity by
reducing the number of parameters, for example
by using a subword tokenizer (Kudo and Richard-
son, 2018), which yields a smaller dictionary of
optimized subword fragments. All of the models
we used were built for a single language, and their
structure and parameters were optimized either it-
eratively or by way of Bayesian hyperparameter
optimization (BHO) (Snoek et al., 2012).

We conducted data analyses of the CODWOE
datasets and analyses of the developed machine
learning models. We performed a statistical and
visual analysis of the pretrained CODWOE embed-
dings, i.e., of their distributions and relationships.
DEFMOD analyses include an analysis of model per-
formance factors and a qualitative analysis of gener-
ated glosses. In the REVDICT predictive analysis,
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Table 1: Aggregated language-level ranks of our team
for the DEFMOD (DM) and REVDICT (RD) tracks (and
the number of teams competing in a subtask).

TASK EN ES FR IT RU

DM-all 209) 1) 16) 5 5(6)
RD-sgns 39 1) 16) 1(7) 2(6)
RD-char 4(7) 305) 4(0B) 20) 205
RD-electra 5 (6) 3@4) 34)

we investigate the impact of many different settings
on models’ performance defined in terms of dis-
tance and similarity scores between predicted and
target vectors.

We show that our adaptation of the DEFMOD ar-
chitecture (Noraset et al., 2017) can perform com-
petitively and that the use of multiple word embed-
dings can clearly improve the generation of word
glosses. For REVDICT, we demonstrate that our
approaches achieve top performance in terms of
ranking, which makes them suitable for informa-
tion retrieval applications. Our models perform
competitively and our results on the CODWOE chal-
lenge can be found in Table 1. We make the code of
our models and data analyses publicly available'.

2 Background

2.1 Related Work

Definition Modeling The Definition Modeling
(DEFMOD) task, first introduced in Noraset et al.,
2017, is focused on the prediction of dictionary
word glosses from word embeddings. Noraset et al.
(2017) experimented on two English dictionaries
and proposed a successful architecture based on
RNN.

Subsequent work on Definition Modeling fo-
cused on variations of the problem of prediction
of a word gloss from the word sense. These ap-
proaches consider gloss prediction based on sense-
specific word embeddings (Gadetsky et al., 2018;
Kabiri and Cook, 2020; Zhu et al., 2019), and on
a word-based context indicating the word sense
(Bevilacqua et al., 2020; Gadetsky et al., 2018;
Mickus et al., 2019; Yang et al., 2020; Zhang et al.,
2020). The proposed approaches are based ei-
ther on RNNs (Gadetsky et al., 2018; Kabiri and
Cook, 2020; Zhang et al., 2020; Zhu et al., 2019)
or Transformers (Bevilacqua et al., 2020; Mickus
et al., 2019). All of the previous approaches rely
on word embeddings pre-trained on large corpora,
most commonly word2vec (Mikolov et al., 2013).

"https://github.com/dkorenci/
codwoe—irb-nlp/
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Sense-aware approaches that take embeddings as
input make use of either sense-aware word em-
beddings (Gadetsky et al., 2018; Kabiri and Cook,
2020) or of decomposition of word embeddings
into sense-specific vectors (Zhu et al., 2019).

The initially proposed architecture of Noraset
et al. (2017) is often used as a baseline solution.
The most commonly used measure of model perfor-
mance is the BLEU (Papineni et al., 2002) metric.
Although there is some overlap in used datasets,
most experiments rely on a specific dataset. The
reported model performances vary greatly. Noraset
et al. (2017) report BLEU of 31 and 23, depending
on the dictionary. Subsequent experiments report,
for the same approach, BLEU scores that range
from as little as 11 (Gadetsky et al., 2018) to as
much as 60 (Kabiri and Cook, 2020). The varia-
tion can be great even for the same language and
experimental setup (Kabiri and Cook, 2020). The
original approach of Noraset et al. (2017) remains
competitive in the sense-aware setting, with the
sense-aware approaches achieving BLEU increases
that range between 1 — 2 (Gadetsky et al., 2018;
Kabiri and Cook, 2020; Zhang et al., 2020) and
5 — 6 (Kabiri and Cook, 2020; Yang et al., 2020;
Zhang et al., 2020), depending on the setting.

While we view the Definition Modeling pri-
marily as a theoretically interesting task, poten-
tial applications include explainability of word em-
beddings and automatic generation of dictionaries,
which might be of interest in low-resource settings.

Reverse Dictionary The Reverse Dictionary
(REVDICT)is atask of finding the right word when
a word description is given (Bilac et al., 2004; Du-
toit and Nugues, 2002; Zock and Bilac, 2004). It
is the formulation of the tip-of-the-tongue prob-
lem (TOT) (Brown and McNeill, 1966) that occurs
during text synthesis. It is a condition in which a
person knows a lot about the word, such as its mean-
ing and origin, but is unable to recall it. REVDICT
is a complex task. There are countless variations of
input definitions that should lead to the same one-
word concept. This complexity comes in part from
the representation of the one-word concepts in the
human mind. People tend to relate concepts on
the conceptual and lexical level and form a highly
connected network of abstractions (Zock and Bilac,
2004).

Therefore, a natural approach to solving
REVDICT is to form a semantic network with
nodes (one-word concepts) and edges (associ-



ations) to search for the target word (Thorat
and Choudhari, 2016; Zock and Bilac, 2004).
REVDICT can be realized directly by compar-
ing the input definitions with all the definitions
in the dictionary and returning the most similar
ones, without taking into account any semantic or
grammatical information (EI-Kahlout and Oflazer,
2004). However, REVDICT systems that include
semantics give better results, such as in Méndez
et al., 2013 and Calvo et al., 2016 where words are
represented as vectors in a semantic space.

Recent REVDICT approaches utilize deep learn-
ing (DL) to map arbitrary-length definition phrases
to the vector representation of the target word (Hill
etal., 2016; Malekzadeh et al., 2021; Qi et al., 2020;
Yan et al., 2020). The success of DL approaches in-
dicates that REVDICT can be solved implicitly, i.e.
by directly learning from given data, and doesn’t
require an explicit injection of domain knowledge.
According to this observation, the DL approach is
a good choice for solving the REVDICT task.

2.2 Dataset

The CODWOE datasets (Mickus et al., 2022) cover
five languages (EN, ES, FR, IT, RU) and are de-
rived from the Dbnary lexical data’. Each data
point corresponds to a single word and contains
word embedding vectors and the word gloss. Three
types of embedding are used, labeled as sgns
(pretrained word2vec), electra (contextual pre-
trained embeddings) and char (character-based
embeddings). Pretrained embeddings are based on
large corpora containing approximately 1B tokens.

Each dataset is divided into three sections: train-
ing, validation (development), and test. Datasets
for training and validation have 43.608 and 6.375
samples, respectively. Each track also has a sep-
arate set of test data. The DEFMOD test dataset
has 6.221 samples while the REVDICT has 6.208
samples.

More detailed statistics and analyses of the
dataset can be found in the Appendices, including
the gloss statistics (Table 5) and embedding vector
statistics (Table 11). Descriptive analysis of the em-
bedding vectors shows large variation in values that
depend on a language and an embedding type (Fig-
ures 3 and 4). Additionally, an exploratory analysis
showed that the embeddings for different languages
are easily separable (Figures 6 and 5). Interestingly,
patterns of vector-based word similarity seem to

http://kaiko.getalp.org/about—dbnary/
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differ significantly across embedding types, and in
this regard there are no visible relations between
different embeddings (Figure 7).

3 System overview

Both the DEFMOD and the REVDICT models rely
on unigram subword tokenizers (Kudo, 2018)
trained on glosses from the train datasets.

3.1 Definition Modeling

Our approach to the challenging task of Definition
Modeling on a limited dataset consists of prepro-
cessing the input data, extracting the semantic infor-
mation from the dataset, and controlling the model
size and complexity.

The inspection of the learning data revealed that
the gloss texts are often long since they consist of
several alternative definitions. We opted to include
only one definition per learning example. Our in-
tuition is that this approach, also taken in (Noraset
et al., 2017), alleviates the learning problem by
inducing the model to learn shorter and atomic def-
initions. The approach should also reduce noise
(since the number of alternative definitions in a
gloss is arbitrary).

The inspection of glosses also revealed the pres-
ence of lexicographic labels that precede the gloss
definitions. These labels, present for all languages
except English, convey data about, for example,
word semantics (ex. geography, history) or tem-
poral category (ex. archaic). We chose to remove
these labels since they introduce noise (the pres-
ence and the amount of labels appears arbitrary),
increase the dictionary size, and thus make the
learning problem harder.

To construct the dictionary we use the unigram
subword tokenizer (Kudo, 2018) implemented as
part of the SentencePiece tool (Kudo and Richard-
son, 2018). The reasons for using the subword
tokenization were the expected improvement in per-
formance for low-resource tasks (Kudo, 2018) and
the reduction in the number of model parameters
corresponding to token embeddings.

Since we opted for a deep learning model de-
pending on token embeddings, we initialized the
token embeddings with GloVe vectors (Pennington
et al., 2014) trained on the dataset of normalized
and cleaned atomic glosses. To demonstrate that
the GloVe vectors capture a degree of word seman-
tics, we aggregated the vectors on a gloss level
using tf-idf weighting. Then we inspected, for each



“target” gloss from a sample of English glosses,
other dataset glosses ordered by cosine similarity
to the target. This revealed that GloVe similarity
corresponds to the similarity in gloss meaning. Ad-
ditionally, we found that the models initialized with
GloVe vectors achieve a lower final loss.

Machine learning model We decided to use an
adaptation of the RNN-based model of (Noraset
et al., 2017), that proved competitive in a num-
ber of experimental settings. In the context of the
DEFMOD task, the model takes as input one or more
word embeddings (sgns, electraor char)and
produces a gloss (a sequence of tokens) that should
correspond to the word’s correct gloss.

From the input embeddings, we form two vec-
tors, the seed vector s that is used to initialize the
RNN, and the context vector c. For both the seed
and the context vectors we consider using a single
embedding, concatenation of embeddings, and a
nonlinear transformation of the concatenation. At
each position in the sequence the context vector is
passed as input, together with the RNN’s output,
to the special GRU-like gated cell (Noraset et al.,
2017). The output of the gated cell is then trans-
formed (via linear transformation and softmax ac-
tivation) to produce token-level probabilities. The
gated cell can learn to effectively combine the se-
mantic context with the RNN-level features in guid-
ing the generation process (Noraset et al., 2017).
The network architecture we use is labeled as S+G
in Noraset et al. (2017).

The described model performs conditional gen-
eration of tokens in a sequence, which is a standard
approach in RNN-based language modeling. The
probability of a gloss g is factorized under the as-
sumption that each token g; depends on the previ-
ous tokens, the seed embbedding s, and the context
c:

||
plgls, ) = [ [ plgilgo:i1, s, ¢)
i=1

In (Noraset et al., 2017), the context is equal to
the seed, i.e., the input word embedding. In our
case, both the seed and the context can either be
a single embedding or a function of multiple em-
beddings. This approach enables us to leverage the
information from several word embeddings in a
flexible way. For example, sgns embeddings can
be used as a seed while the context can be formed
by passing all the embeddings through a multilayer
perceptron. Another important difference is that
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we use the unigram subword tokenization (Kudo,
2018). Finally, we experiment with using both
LSTM and GRU as the network’s RNN compo-
nents.

3.2 Reverse Dictionary

We approach REVDICT as a supervised vector re-
gression task and employ an end-to-end deep learn-
ing solution. Our model is based on a transformer
architecture (Vaswani et al., 2017) used as a def-
inition sentence encoder, and a fully connected
feed-forward network used as an output regression
module.

The transformer is used to produce useful rep-
resentations from given inputs, where the inputs
are tokenized definition sentences. For each sub-
word token in the input sequence, the transformer
gives a representation in the form of a vector. Our
REVDICT systems implement three different ap-
proaches for aggregating the output vectors pro-
duced by the transformer: 1. sum, where we sum
the representations given for each token in the in-
put sequence; 2. average, where we average the
representations given for each token in the input
sequence; and 3. eos, where we use only the repre-
sentation of the last token in the input sequence, i.e.
end-of-sequence (eos) token. The output module
further transforms these representations into word
embedding vectors.

Additionally, we utilize a multi-task learning
(Caruana, 1997; Ruder, 2017) approach. To sup-
port multi-task learning, we implemented multiple
output regression modules that simultaneously pre-
dict different types of embedding vectors from the
same representations produced by a single encoder.
Multi-task learning is used during the model train-
ing phase and only output from one output module
makes final predictions. The motivation for using a
multi-task learning approach is to benefit from in-
ductive transfer between tasks that could improve
the results of predicting a single task (Caruana,
1997).

4 Model Selection and Experimental
Setup

In this section we describe the technical details of
data preprocessing and model selection that com-
prise our methods of constructing the DEFMOD and
REVDICT models. The conceptual description of
the methods is given in Section 3.



4.1 Definition Modeling

Our choices regarding the technical details of data
preprocessing and model construction were guided
by what we will call development experiments.
These experiments consisted of training the model
on the train set, and observing both the final de-
velopment set loss and the quality of the produced
glosses.

Output gloss quality was assessed using a sep-
arate “trial” dataset - a small dataset of 200 items
provided by the organizers, containing gloss in-
formation consisting of the embedding vector, the
original word, and the gloss text. The assessment
was performed for English glosses only and aimed
to assess the quality of the generated text, and the
similarity of the output and the original glosses.
A choice was deemed an improvement if it led
to the improvement of development loss and ei-
ther improved the generated glosses or caused no
degradation in gloss quality. The development of
the final algorithm was performed iteratively and
heuristically. However, the overall improvement
over the iterations is confirmed by the results of the
test set evaluations.

Dataset transformation The transformation of
the original dataset is performed by creating un-
ambiguous training examples and removing the
uninformative data that makes the problem harder.

In the original dataset a gloss definition of-
ten consists of several equivalent but differently
phrased definitions. We divided the dictionary
glosses into atomic definitions by splitting the text
strings around the ““;” character. This heuristic was
motivated by gloss sample analysis and the inspec-
tion of a sample of atomic glosses revealed that it
works in the majority of cases. Each atomic gloss
in the new dataset was paired with all the embed-
ding vectors of the original gloss.

In order to remove lexicographical labels from
the beginning of the glosses’ text, simple language-
specific regular expressions and removal rules were
formed based on gloss sample analysis. This ap-
proach proved to be effective for a large majority
of glosses.

To perform further normalization we addition-
ally lowercased all the glosses and removed the
punctuation from the end of texts. The code used
to preprocess the original dataset, the new dataset,
and the transformation log can be found in the code
repository. We note that both the SentencePiece dic-
tionary and the GloVe vectors used for DEFMOD are
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derived from the transformed dataset. The statistics
of the transformed glosses are presented in Table 6

Dictionary We used the unigram subword tok-
enizer (Kudo, 2018) available as part of the Sen-
tencePiece tool (Kudo and Richardson, 2018). and
trained it using the default parameters. Experi-
ments in Gowda and May (2020) suggest that a vo-
cabulary of 8000 subwords is a good default choice
for several languages in the case of machine trans-
lation. Additionally, our development experiments
showed that English models using a vocabulary
of 8000 subwords are superior to 10000 subword
models. Therefore we decided to set the number
of unigram tokens to 8000 in case of English, and
to 8500 in case of other, highly inflected languages
expected to have a higher number of distinct suf-
fixes.

Pretrained token embeddings GloVe embed-
dings (Pennington et al., 2014) of the subword
tokens, introduced to initialize the tokens with
corpus-level semantic information, were con-
structed as follows. The model was trained on
the set of transformed glosses, and the embedding
size was fixed to 256 (the size of the gloss embed-
dings). The number of training iterations was set
to 50, the “cutoff” parameter x,,, was set to 10,
while all the other parameters retained their default
values. No frequency-based vocabulary pruning
was performed.

Machine learning model We fixed the maxi-
mum sequence length of the RNN models to 64
subword tokens. Our intuition is that this allevi-
ates the learning problem and could lead to mod-
els focused on generating shorter but more correct
glosses.

The models were optimized using the AdamW
algorithm (Loshchilov and Hutter, 2017) and the
standard categorical cross-entropy loss. The train-
ing process was stopped after a fixed number of
epochs, or if the best solution did not improve by
more than 0.1% over 10 epochs. During inference,
the optimal solution was constructed using the
beam search algorithm implementation provided
by the competition organizers>.

We iteratively improved the models using the
described development experiments, i.e., relying
on the development set loss and analysis of model

*https://github.com/TimotheeMickus/
codwoe/



Table 2: Characteristics of our REVDICT (RD) ap-
proaches (BS = batch size; ME = max epochs; HP =
hyperparameter optimization points; S = scheduler; L =
loss; MT = multi-task learning).

RD | BS ME HP S L MT
1 1024 20 30 CS MSE no
2 2048 20 30 CS MSE no
3 4096 20 30 CS MSE no
4 8192 20 30 CS MSE no
5 2048 150 10 PS MSE no
6 2048 150 10 PS MSE yes

glosses produced for the trial dataset. We experi-
mented with several architectural elements and hy-
perparameters: the formulation of the seed (RNN
init. value) and context (gate input) of the network,
RNN cell type, dropout, learning rate (LR) and LR
scheduler, and the number of training epochs.

The most successful variant is constructed by
using the concatenation of all the gloss embeddings
as the context and the sgns embedding as the seed.
This variant uses input dropout of 0.1 and network
dropout of 0.3. The input dropout is applied to the
seed and context vectors, as well as to the word
embeddings. The network dropout is applied to the
output of the RNN (final layer) and to the output
of the gate cell. The chosen learning rate is 0.001,
and the “plateau” LR scheduler is used — LR is
multiplied by 0.1 if there is no improvement over
5 epochs.

For the context vector, we tried single embed-
dings and the combined embeddings merged via a
multilayer perceptron. Both variants proved infe-
rior to the concatenation of all vectors. The merged
seed vector proved no different from the single em-
bedding seed, so we opted for the simpler solution.
Both the development experiments and the results
showed no difference between the LSTM and the
GRU cell.

Analysis of errors revealed that models some-
times produce a deformed output (very short or non-
alphabetic string), and that this almost never occurs
simultaneously for two distinct models. Therefore
a way of heuristic model improvement is to com-
bine it with another fallback model to be used in
case of deformed outputs. We combined a model
with a concatenated context and a model with a
single-embedding context, or two models with dis-
tinct RNN cell types. A more detailed analysis of
the model variants can be found in Appendix A.2.
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4.2 Reverse Dictionary

We conducted various development experiments
before deciding on the final configuration of our
REVDICT solutions. In all of the experiments, we
used the entire set of train data to train the model,
and the entire set of validation (development) data
for scoring. We used Mean Squared Error (MSE)
as a loss function during training. We tested the
effect of cosine loss if added to MSE with differ-
ent coefficients, but we obtained the best results
without cosine loss. We also used MSE for scoring
models during Bayesian hyperparameter optimiza-
tion (BHO).

To determine the optimal model size, we
searched the space of two transformer hyperpa-
rameters: the number of heads and the number of
layers. We used a grid search approach with these
values v € {1,2,4,8} for both hyperparameters.
Additionally, we used BHO (Snoek et al., 2012) to
find the optimal model for each grid point. How-
ever, the increase in model size did not increase the
performance of the model. These results were in
line with the expectations we had due to the small
size of the datasets. Accordingly, we decided to
use a transformer with two heads and two layers.
Additionally, we experimented with the maximum
length of the input sequence and achieved better
validation performance with 256 tokens than 512
with tokens.

We compared performance with and without to-
ken embeddings initialization with GloVe vectors.
Contrary to our expectations, there was no signifi-
cant difference in validation performance between
these two options, so we skipped the GloVe ini-
tialization in the REVDICT system settings. An-
other development experiment we conducted was
to find the optimal method for aggregating the out-
put vectors produced by the transformer, described
in Section 3.2. We found that the average method
gives the best results in all cases. Furthermore, we
examined the influence of the number of layers in
the output module on the final prediction. Accord-
ing to the results, there is no benefit in increasing
the number of layers in the output module, so we
chose a single-layer fully connected network. We
also chose Rectified Linear Unit (ReLU) activation
function for the output regression module, because
it yielded better performance than hyperbolic tan-
gent (Tanh) activation.

Finally, we made six different solutions for
REVDICT task. All of these solutions used a two-



Table 3: Results for the IRB-NLP team systems on the DEFMOD task. MoverScore, BLEU, and lemma-BLEU
results are given for each of the five languages. Best result across all teams and models is given, followed by the
results of our two best systems. Overall best results of our team are bolded and the rankings can be found in Table 1.

EN ES FR IT RU
MVR BLEU IBLEU MVR BLEU IBLEU MVR BLEU IBLEU MVR BLEU IBLEU MVR BLEU IBLEU
BEST 0.135 0.033 0.043 0.128 0.045 0.064 0.075 0.029 0.038 0.117 0.066 0.099 0.148 0.049 0.072
IRBv3 0.089 0.032 0.040 0.093 0.045 0.064 0.055 0.026 0.032 0.074 0.009 0.014 0.080 0.027 0.035
IRBv4 0.094 0.033 0.042 0.092 0.044 0.062 0.056 0.028 0.033 0.077 0.010 0.015 0.078 0.027 0.036

head transformer architecture, where each head
consists of two layers. We used a vocabulary size
of 8000 tokens and a maximum sequence length of
256 tokens. The unigram SentencePiece tokenizers
used were trained on lowercased but otherwise un-
modified glosses contained in a train set. We used
the average method for combining an encoder’s
output representations and fed them to the output
module, which is a single fully-connected layer
with RELU activation functions. We varied five hy-
perparameters between solutions (Table 2): batch
size, max. epochs, number of BHO points, sched-
uler type, and learning approach. We used the Co-
sine Annealing with Linear Warmup scheduler (CS)
for the first four solutions, and the Plato scheduler
(PS) for the final two solutions. We utilized BHO
(Snoek et al., 2012) to automatically search for op-
timal hyperparameters and submitted for testing
only models with the best MSE validation scores.

5 Results

Definition Modeling On the DEFMOD task, the
models were evaluated using three metrics: BLEU
score (Papineni et al., 2002), lemma-level BLEU
score, and MoverScore (Zhao et al., 2019). While
the BLEU score is based on matching token
n-grams between the reference and the model-
produced text, MoverScore calculates a measure
of distance between texts embedded in a semantic
space, i.e., between two sets of contextual word
embeddings computed using a transformer model.

Table 3 contains scores for two of our best model
configurations, “version 3" and “version 4”. Both
model configurations are described in detail at the
end of Section 4.1. While version 3 models are
based on GRU RNN and trained using 300 training
epochs, version 4 models are built with either GRU
or LSTM and 450 epochs. The fallback strategy,
which yields slight performance gains, is also used.
These results are presented and analyzed in a more
detailed manner in Appendix A.2.

Results in Table 3 show that our models are com-
petitive with other teams’ models on English, Span-
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ish and French, especially in terms of the BLEU
scores. MoverScore results are weaker than those
produced by the top models, but rank among the
upper half of the systems except for Italian and Rus-
sian, languages for which our models’ performance
is below average. Rankings aggregated across all
the scores, displayed in Table 1, reflect the above
observations and show that the models we produced
can perform quite competitively.

Our approach shows inter-language variation,
both in relative (ranks) and absolute (score values)
terms. The full results provided by the organizers*
show that this is also true for other teams — for ex-
ample, few of the high-performing models perform
markedly better for Italian and Russian than for
other languages. However, some approaches yield
more stable results across all languages.

All of the models yielded by the CODWOE shared
task perform weakly in terms of BLEU. Namely,
the BLEU scores of the existing DEFMOD ap-
proaches commonly achieve BLEU scores in the
range of 20 to 30 (Kabiri and Cook, 2020; Noraset
et al., 2017), with some settings yielding BLEU
as high as 60 (Kabiri and Cook, 2020). The ex-
periments with the weakest reported BLEU scores
(Gadetsky et al., 2018; Kabiri and Cook, 2020) re-
ports BLEU scores of approx. 12, while the best
CODWOE scores are below BLEU 10.

CODWOE DEFMOD models perform better in
terms of MoverScore, a metric designed for ma-
chine summarization (Zhao et al., 2019). An analy-
sis of a number of summarization systems showed
that MoverScore values range between 15 and 24,
with an absolute minimum of 10 and an average
slightly below 20 (Fabbri et al., 2021). In compar-
ison, top CODWOE systems reach scores between
12 and 15, except in the case of French, which puts
them on the lower end of the summarization scale.

We hypothesize that the main reason for the de-
scribed weak performance is comparatively small
amount of CODWOE training data (for each indi-

*https://github.com/TimotheeMickus/
codwoe/



Table 4: Results for the IRB-NLP team systems on the REVDICT task. The best result over all teams and models is
given (BEST), followed by the best results of our team (IRB-all) and results of our two specific approaches, IRB-v1
and IRB-v6. Finally, the ranks of our team are given (and the number of teams competing in a subtask).

EN ES

FR IT RU

MSE COS RNK MSE

COS RNK

MSE COS RNK MSE COS RNK MSE COS RNK

BEST 0.854
IRB-all 0.964
IRB-vl 1.024
IRB-v6 1.119
IRB-rnk 9 (9)

0.260 0.231
0.260 0.231
0.250 0.247
0.214 0.262
19) 1(9)

0.858
0.883
0.941
1.020
3(D

0.403
0.367
0.362
0.354
2(7)

sgns

2(7)

0.167
0.197
0.197
0.201

1.026
1.068
1.068
1.319
3(6)

0.342
0.342
0.342
0.255
1(6)

0.193
0.193
0.214
0.262
1(6)

1.031
1.076
1.076
1.318
3(7)

0.380 0.165
0.380 0.165
0.380 0.165
0.339 0.187
1(7) 1(7)

0.528
0.568
0.568
0.653
4 (6)

0.424 0.150
0.421 0.150
0.412 0.161
0.381 0.150
2(6) 1(6)

BEST 0.141
IRB-all 0.162
IRB-vl 0.169
IRB-v6 0.172
IRB-rnk 5 (7)

0.798 0.419
0.770 0.419
0.761 0.438 0.526 0.819
0.765 0.444 0.635 0.784
7(7) 1(7) 3(5) 50B) 1(5)

0.467
0.526

0.839
0.819

char

0.403
0.403
0.407
0.420

0.335
0.390
0.409 0.744
0.434 0.734
3(5) 4(0)

0.789
0.756

0.416
0.421
0.425
0.421
2(5)

0.334
0.366

0.747 0.383
0.724 0.383
0.366 0.724 0.397
0.399 0.711 0.383
5(6) 5(6) 1(6)

0.116
0.140

0.852 0.357
0.824 0.357
0.145 0.818 0.361
0.144 0.821 0.357
3(5) 405 1)

BEST 1.301
IRB-all 1.685
IRB-vl 1.723 0.821 0.438
IRB-v6 1.988 0.792 0.432
IRB-rnk 6(6) 6(6) 1(6)

0.847 0.432

electra 0.828 0.432

1.066 0.862
1.339 0.847
1.339 0.847 0.447
1.566 0.825 0.429
44 44 14

0.429
0.429

0.828 0.735 0.345
0.911 0.724 0.345
0.911 0.724 0.350
1.049 0.702 0.345
44 34 14

vidual language), as well as the lack of word em-
beddings pre-trained on a large outside corpus.
Namely, most of the other DEFMOD approaches
use at least 2—3 times more training data, both in
terms of the number of (embedding, text) examples,
and the overall number of tokens (Bevilacqua et al.,
2020; Gadetsky et al., 2018; Mickus et al., 2019;
Noraset et al., 2017; Yang et al., 2020; Zhang et al.,
2020; Zhu et al., 2019). Additionally, these ap-
proaches make use of the pre-trained word embed-
dings that carry the semantic information extracted
from a huge corpus.

As for the representativeness of the test data, the
visual analysis performed in A.1 shows that the
distribution of test gloss embeddings matches the
train distribution well. Another factor that poten-
tially influences performance is word rarity. We
observed that the English test examples contain a
significant amount of rare words (such as “pelta”,
“akimbo”, “gothy”, or “dungarees”), while some
DEFMOD experiments explicitly focus on the most
frequent words (Noraset et al., 2017).

The greatest performance gains for the models
we used come from using all three vector embed-
dings to form a context vector. This suggests that
future approaches can benefit from leveraging sev-
eral distinct embeddings types as input for gloss
generation.

We believe that the question of the influence
of various factors on the performance of DEFMOD
systems is important and under-explored. These
factors include model structure and parameters, per-
formance metric, dataset size (both for training and

pre-training), and the semantic relation between
training and test data. Closely related is the ques-
tion of the nature of semantic generalization that
DEFMOD systems are capable of — what kind of ex-
amples (and relations contained within them) can
inform a successful inference of glosses for unseen
embeddings.

Further performance-related analyses can be
found in Appendix A.2. Appendix A.3 contains a
qualitative analysis of glosses that shows that gener-
ated glosses can capture varying levels of semantic
properties of the correct glosses. We hypothesize
that these variations in similarity are hard to capture
with metrics such as MoverScore and BLEU.

Reverse Dictionary We used the following met-
rics for internal validation of our REVDICT solu-
tions (described in Section 4.2): Mean Squared
Error MMSE), Cosine Similarity (COS), and Cen-
tral Kernel Alignment (CKA) (Cortes et al., 2012;
Kornblith et al., 2019). COS measure has noted
drawbacks (Heidarian and Dinneen, 2016). There-
fore, we use the linear CKA similarity measure
to gain another perspective on model performance.
Validation scores can be found in Appendix B.2, Ta-
ble 12. It is evident that each subsequent approach
gives better validation results than the previous
ones.

Test predictions were scored by the following
metrics: MSE, COS, and Cosine-Based Ranking
(RNK). The RNK measure is defined as the propor-
tion of test samples with cosine similarity to the
model output embedding higher than the ground
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Figure 1: Example of two different predictions for
ground truth vector Vg7, where predicted vector V;
has better MSE and COS scores than V5, and V5 has bet-
ter RNK score than V;. The rest of the points represent
vectors of other test samples.
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truth embedding. The final results of our solutions
can be found in Table 13 (see Appendix B.2). Here,
each subsequent approach has lower scores than the
previous ones, which is the complete opposite of
the validation results. This suggests potential over-
fitting to the dev dataset that could be the result of
BHO. However, this is contrary to expectations as
the last two solutions have three times fewer BHO
points and should not overfit to the dev dataset. The
reason for this phenomenon is unclear and needs
further investigation. Finally, the best REVDICT
results for each team can be found in Appendix B.2
(Table 14 for MSE, Table 15 for COS, and Table
16 for RNK). The test results and overall rankings
of our solutions are summarized in Table 4.

Compared to other solutions, our systems have
average or below-average performance in terms of
MSE and COS test scores. However, they perform
significantly better than the other approaches in
terms of RNK test scores, from which we conclude
that our solutions are better suited for the retrieval
task. This is an interesting situation which we elab-
orate with the following example, shown in Figure
1. It depicts two different predictions, V; and V53,
the first with better MSE and COS scores, and the
second with a better RNK score. The second solu-
tion prefers a vector subspace with a lower density
of test samples even if the absolute distance from
the correct vector is greater. With a smaller set of
possible surrounding solutions, retrieving the vec-
tor Vg from the vector V5 is more precise than
retrieving it from the vector V7.
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6 Conclusion

Definition Modeling and Reverse Dictionary are
two opposite learning tasks for exploring the rela-
tionship between different semantic representations
of words. CODWOE SemEval task (Mickus et al.,
2022) is designed to investigate these tasks on five
different languages using three different types of
word embeddings.

We propose an adaptation of an existing
DEFMOD model and analyze its performance and
the glosses generated by the model. We believe
that DEFMOD is a theoretically interesting problem
and that further investigations should focus on dis-
covering which types of semantic generalization
the models are able to perform, and how this gen-
eralization ability is influenced by both the data
and the models’ structure. The existing DEFMOD
experiments are largely incomparable since they
are based on different data and setups. We believe
that a contribution of the CODWOE task is the cre-
ation of a multilingual evaluation setting, as well as
the use of the flexible MoverScore as an evaluation
metric.

Our REVDICT systems are based on deep re-
gression models based on transformer architecture
that achieved top scores for the difficult-to-predict
sgns (word2vec) embeddings. In most cases our
REVDICT solutions perform significantly better
then the other systems in terms of the RNK score.
These results imply that our solutions could be the
appropriate approach for retrieving the right word
from its description, a problem crucial for solving
the TOT problem (Brown and McNeill, 1966) in
machine-assisted text synthesis.

In summary, the models that we produced for
the CODWOE task perform competitively when com-
pared to other participants’ models, and can there-
fore serve as a reasonable starting point for future
tackling of DEFMOD and REVDICT problems. We
believe that the promising directions for future op-
timizations include the construction of multilingual
and multi-task models, as well as investigations of
the influence of the external data, primarily in the
form of huge pre-training corpora.
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A Appendix - Analysis of DEFMOD Data and Models

A.1 Train and Test Data

Motivated by the weak performance of DEFMOD models (see Section 5), we examined whether the
distributions of train and test data are comparable. To this end we created 2D projections of sgns and
electra embedding for all five languages using the t-SNE method (Van der Maaten and Hinton, 2008).

The projections, depicted in Figure 2, show that the train and test distributions of the embeddings match
well. It is therefore reasonable to expect that the distributions of the gloss texts are similar as well, as the
gloss semantics expectedly matches the semantics of the corresponding words. However, this conjecture
should be confirmed experimentally, for example by per-gloss aggregation of pretrained word embeddings
extracted from huge corpora.

Figure also shows that the e 1 ect ra vectors are more separable than the sgns vectors. The separability
of the embedding vectors varies across languages, probably influenced by the corpora used for pre-training
of the embeddings. We note that the observations about the train and test embedding distributions are also
applicable to the REVDICT problem aimed at the prediction of the embeddings from gloss texts.

Basic gloss statistics can be found in Table 5. There exists a large variation in gloss size between
languages, e.g., the longest gloss from the ES dataset is almost twice the size of the longest EN gloss. In
addition, the longest glosses in the validation (development) datasets are significantly smaller then those
in the train datasets, on average 42.55% smaller. The dictionary size’ column in the table is the number
of distinct tokens in each dataset. Dictionary sizes vary, for example, EN dictionary is approximately
half the size of the RU dictionary. Differences between the gloss and dictionary sizes suggest that it is
reasonable to use a separate model for each language.

Basic statistics of the transformed dataset can be found in Table 6. As expected, the transformed glosses
are significantly smaller then the glosses in the original dataset. For example, the median transformed
gloss size is on average 29.25% smaller.

Lang. Split Dict. size #Tokens #Glosses Gloss size

mean st.dev min 25 median 75 max
EN train 29.046 511.531  43.608 11.73  7.98 1 6.0 10.0 15.0 129
EN dev 9478  76.073 6.375 1193 798 6.0 10.0 150 70
ES train 46.765 647.093  43.608 14.84 13.07 7.0 11.0 18.0 257
ES dev 15.464  91.943 6.375 1442 1222 7.0 11.0 17.0 159
FR train 40.032 623.978  43.608 1431 9.74 8.0 12.0 18.0 159
FR dev 12.760  91.475 6.375 1435 991 8.0 12.0 180 113
IT train 40.130 592.409  43.608 13.58 11.01 6.0 11.0 18.0 202
IT dev 14.069  87.531 6.375 13.73 11.61 6.0 11.0 18.0 130
RU train 57.141 492978  43.608 1130 7.78 6.0 9.0 14.0 169
RU dev 15.498  70.392 6.375 11.04 7.22 6.0 90 140 74

GG VG VI Uy

Table 5: Statistics of the gloss and dictionary sizes for the original train and validation (development) datasets. Sizes
are calculated by counting the number of whitespace-delimited tokens.

A.2 DEFMOD Models’ Performance

Here we append Section 5 with a more fine-grained analysis of the DEFMOD models. Table 8 contains
the models’ performances. As can be seen, the largest gains are achieved by using all of the embedding
vectors as input for gloss generation (context=allvec). There exists a negligible difference between the
LSTM and GRU RNNs, with GRU performing slightly better. Using a fallback model always slightly
improves the MoverScore of a model. In Table 8 the architecture of the fallback model is the architecture
of the main model with the corresponding parameter replaced with the value in the *fallback’ column.
Interestingly, using contextual e Lect ra vectors does not help, i.e., the sgns (word2vec) vectors which
are not context-aware perform comparably. This is true even when only a single embedding is used, i.e.,
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Lang. Split Dict. size #Tokens #Glosses Gloss size

mean stdev min 25 median 75 max
EN train 25921 456.673  58.792 7777  6.97 1 30 6.0 10.0 128
EN dev 8.892  68.145 8.403 8.11 7.06 3.0 6.0 11.0 69
ES train 40.024 595.879 44543 1338 12.01 6.0 10.0 16.0 168
ES dev 13.723  84.303 6.493 1298 11.32 6.0 10.0 16.0 158
FR train 33.963 487.013  46.537 1047 9.18 4.0 80 14.0 155
FR dev 11.216  71.021 6.786 1047 9.22 4.0 8.0 140 101
IT train 39.124 452.028  45.080 10.03  9.03 4.0 7.0 13.0 195
IT dev 13.805 67.211 6.621 10.15 9.40 4.0 7.0 13.0 109
RU train 56.467 428.787  50.843 843 6.99 4.0 7.0 11.0 142
RU dev 15.241 61.074 7.509 8.13 6.44 4.0 6.0 11.0 72

e N e S e

Table 6: Statistics of the gloss and dictionary sizes for the transformed train and validation (development) datasets.
Sizes are calculated by counting the number of whitespace-delimited tokens.

when context equals electra. The equality of sgns and electra is unexpected since both the train
and test datasets contain polysemous e lectra vectors and words with multiple senses.

It is also interesting to consider the influence of the training data on the model’s performance. We
hypothesize that a DEFMOD model’s score on a single test example is positively correlated with the
semantic closeness of the example to the examples in the train set. To test this hypothesis we calculate
Spearman correlation between test MoverScore and BLEU on one, and the cosine similarity of the test
embedding and most similar train embeddings. This is done for the best-performing submitted model
from Table 8. We also calculate the average scores on two sets of 10% test examples that are least similar
and most similar to the train examples. Since the embeddings (sgns and electra) were built on large
outside corpora, it is reasonable to believe that they capture semantic similarity of the associated words
and glosses. Surprisingly, the results show a lack of consistent and strong correlation and the correlations
range from weakly negative to weakly positive, depending on both the language and the embedding type.
This lack of correlation could be caused by many factors, including the nature of the model, the nature of
the pretrained embeddings, and the semantics of the cosine similarity measure.

The future extensions and improvements of the proposed analysis could reveal the nature of the train
data necessary for the DEFMOD models to successfully generalize, and perhaps point to a similarity
measure that reveals more fine-grained properties of such a generalization.

Table 7: Correlation between the best DEFMOD model’s scores on one, and the closeness of the test examples to the
train set on the other side. The unit of correlation is an example from the test set, and its similarity to the train set is
calculated as the average cosine similarity with the 10 most similar train embeddings. The last two columns contain
average model scores on 10% of the least and most train-similar test examples.

Correlation of Score and Similarity Avg. Score for Similarity Percentile

MVR BLEU MVR BLEU

LANG-EMB spearman p p-value spearman p p-value bottom 10% top 10% bottom 10% top 10%

EN-SGNS 0.0458 0.0003 0.0019 0.8831  0.0852 0.1004 0.0328 0.0297
EN-ELKT 0.0096 0.4508 0.0186 0.1414  0.0889 0.1182 0.0293 0.0503
FR-SGNS -0.0625 0.0000 -0.1270 0.0000  0.0801 0.0427 0.0363 0.0222
FR-ELKT 0.0433 0.0006 0.0838 0.0000  0.0387 0.0760 0.0214 0.0322
RU-SGNS 0.0758 0.0000 0.0353 0.0054  0.0754 0.0947 0.0310 0.0279
RU-ELKT 0.0000 0.9979 -0.0063 0.6217  0.0748 0.0677 0.0279 0.0244
ES-SGNS 0.0458 0.0003 0.0019 0.8831  0.1084 0.1052 0.0523 0.0552
IT-SGNS -0.0528 0.0000 0.0047 0.7084  0.1082 0.0783 0.0111 0.0128
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Figure 2: t-SNE projections of the sgns and electra vectors from the train (green) and test (red) datasets. Color
intensity is proportional to data density.

ES-SGNS IT-SGNS
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A.3 Qualitative Analysis of Generated Glosses

The DEFMOD models achieve weak results in comparison to the previous state-of-art approaches, which is
probably due to the comparably small amount of training and pretraining data. Here we demonstrate that
the generated glosses can nevertheless capture a degree of the semantics of the correct glosses.

Table 9 shows four categories of semantic similarity between the correct and model-generated glosses,
in descending order (highest similarity first). These categories include hits or near hits (correct glosses),
“near misses” (glosses that capture a significant amount of the original meaning), somewhat similar
glosses, and complete misses. Several examples demonstrate that the subword-based models can produce
syntactically incorrect glosses.

Table 10 contains generated glosses for different senses of the word “consider”, which demonstrate that
the model was able to approximate, to a degree, the semantics of the senses.

A principled analysis of the generated and correct glosses, based on a well defined semantic annotation
scheme, might prove revealing but it would be time-consuming and impractical. Therefore it would be
of interest to automatize such efforts. It would be interesting to explore if this can be done using large
pretrained transformers able to measure fine-grained semantic similarity.

Table 9: Glosses generated by the top submitted DEFMOD model, alongside the correct glosses. The examples are
ordered by descending semantic similarity between the correct and the generated gloss.

Word True Gloss / Generated Gloss

lamebrain A fool
A fool , idiot

sentiment A general thought , feeling , or sense
A feeling or feeling of thinking

available Capable of being used for the accomplishment of a purpose
Able to be used

model A representation of a physical object , usually in miniature
An act of designing
supernumerary Of an organ or structure : additional to what is normally present
Having four wings
navy Belonging to the navy ; typical of the navy
To be armed

fuzzy Vague or imprecise
lacking
co-opt To absorb or assimilate into an established group

To conceal
misinformation Information that is incorrect
prejudice

cutthroat Ruthlessly competitive , dog-eat-dog
Very large

discretional  discretionary
Of or pertaining to

abundantly  In an abundant manner ; in a sufficient degree ; in large measure
In a very manner
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Glosses generated by the top submitted DEFMOD model, alongside the correct glosses, for the multiple
senses of the word “consider”.

Table 10

Word True Gloss (describing the sense) / Generated Gloss

consider To assign some quality to
To hold the opinion
consider To look at attentively
To make something certain
consider To have regard to ; to take into view or account ; to pay due attention to ; to respect
To hold into
consider To think of doing
To permit
consider To debate ( or dispose of ) a motion
To make something certain

B Appendix - Analysis of REVDICT Data and Models

B.1 Data Analysis

Here we analyze the properties of the pretrained embedding vectors assigned to the words defined by
the glosses. We start by analyzing the numeric values contained in the vectors. Basic statistics of vector
elements can be found in Table 11. It is noticeable that there are large variations in value depending on
the language and the embedding type. For example, there is a significant difference between maximum
values, especially between electra and sgns. To further investigate the vector elements, we visualize
the shapes of their distributions for train datasets (Figure 3 and 4). Distribution shapes look similar for
dev datasets.

Next, we explore the vector data by reducing dimensionality to the 2D space using the Pairwise
Controlled Manifold Approximation Projection (PaCMAP) algorithm (Wang et al., 2020). Figure 5 shows
the distributions of all three types of embeddings in the train and validation (development) datasets for
English, French, and Russian. We also visualize distributions of sgns (word2vec) and char embeddings
for all languages, in Figure 6. As can be seen, the vector distributions vary greatly between the embedding
types. Additionally, for all the embedding types, the vectors of different languages occupy a distinct area
and are easily separable.

We further investigate the relationships between different embeddings in the following way. We first
cluster the values of the electra vectors with k-means algorithm. We set the number of clusters to five
and assign a different color to each cluster. We retain the electra cluster-based color of the samples
(glosses) while visualizing the vectors of other embedding types, as shown in Figure 7. It can be clearly
seen that the el ect ra-based clusters are not preserved for other embedding types.

B.2 Model Performance

Here we present validation and test scores for our six REVDICT solutions described in Section 4.2. We
use the following metrics for internal validation of our REVDICT solutions: Mean Squared Error (MSE),
Cosine Similarity (COS) and Central Kernel Alignment (CKA) (Cortes et al., 2012; Kornblith et al., 2019).
Validation scores for each REVDICT approach can be found in Table 12. The last three rows contain the
total scores for each metric and each of our REVDICT solutions. A total score is the sum of the values of
all datasets and we use it for a simple comparison of solutions. It is evident that each subsequent approach
gives better validation results than the previous ones.

Test predictions are scored by these metrics: MSE, COS, and Cosine-Based Ranking (RNK). The RNK
measure is defined as the proportion of test samples with cosine similarity to the model output embedding
higher than the ground truth embedding. The final results for all our solutions can be found in Table 13.
Here, each subsequent approach has lower scores than the previous ones, which is the complete opposite
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lang split vector min mean max abs-min abs-mean abs-max
en train  sgns -8.66 0.012 833 2.40-08 0.641 8.66
en train char -548 0.081 31.10 6.60-09 0.341 31.10
en train electra -126.26 0.033 85.62 1.00-10 0.598 126.26
en dev  sgns -7.02 0.013 7.30 9.51-08 0.657 7.30
en dev  char -548 0.083  7.31 8.75-08 0.341 7.31
en dev electra -4824 0.028 52.19 1.00-09 0.587 52.19
it train  sgns -9.41 -0.014 9.72  6.60-09 0.700 9.72
it train  char -13.37  0.013 20.02 1.62-07 0.553 20.02
it dev  sgns -8.22 -0.013 7.82 1.02-07 0.706 8.22
it dev  char -9.95 0.008 16.23  3.96-07 0.551 16.23
fr train  sgns -10.38 -0.013 939  1.59-08 0.682 10.38
fr train  char -23.42 0306 11.07 1.12-08 0.574 2342
fr train electra  -46.24  0.045 89.07 3.00-10 0.644 89.07
fr dev  sgns -7.57 -0.017 7.81 3.51-07 0.666 7.81
fr dev  char -14.60 0307 7.80 2.62-07 0.574 14.60
fr dev electra -42.73 0.045 5129 9.00-10 0.655 51.29
es train  sgns -979 -0.018 9.72  2.15-08 0.653 9.79
es train char -15.03 0577 1337 2.27-07 0.822 15.03
es dev  sgns -9.32 -0.021 7.22  8.86-08 0.658 9.32
es dev  char -13.19 0577 1140 2.28-06 0.820 13.19
ru train  sgns -7.82  0.002 8.08 1.17-07 0.446 8.08
ru train char -16.87 0.139  8.04 8.00-10 0.311 16.87
ru train electra  -30.24 -0.017 22.56 1.75-08 0.788 30.24
u dev  sgns -8.06 0.002 791 7.94-08 0.439 8.06
ru dev  char -11.86  0.140 8.01 3.05-07 0.310 11.86
ru dev electra -22.53 -0.017 21.70 4.75-08 0.789 22.53

Table 11: Statistics of the elements of the embedding vectors from the train and validation (development) datasets.

of the validation results. This suggests potential overfitting to the dev dataset that could be the result of
Bayesian hyperparameter optimization (BHO). However, this is contrary to expectations as the last two
solutions have three times fewer BHO points and should not overfit to the dev dataset. The reason for this

phenomenon is unclear and needs further investigation.

The best REVDICT results for each team can be found in Table 14 for MSE score, Table 15 for
COS score, and Table 16 for RNK score. When compared to other solutions, our systems have low to
average performance according to the MSE scores. For the COS scores, our systems have very good
performance on sgns (word2vec) vectors, and low performance on other embedding types. In terms of
the RNK (ranking) our systems almost always yield the top performance, and this result is consistent

across languages and embedding types.
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en.sgns en.char en.electra it.sgns it.char frsgns  frchar frelectra es.sgns es.char ru.sgns ru.char ru.electra

Figure 3: Distributions of vector elements in train datasets.

-2

-3
en.sgns en.char en.electra it.sgns it.char frsgns  frchar frelectra es.sgns es.char ru.sgns ru.char ru.electra

Figure 4: Distributions of vector elements in train datasets within the interval [-3,3].
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METRICS RD3 RD4 RDS5S RD6

mse-en-sgns 0.521  0.428

mse-en-char
mse-en-electra 0.612 0.560  0.439
mse-it-sgns 0.650 0.670
mse-it-char

mse-fr-sgns 0.629  0.585 0.514
mse-fr-char 0.211

mse-fr-electra 0.518

mse-cs-sgns
mse-es-char 0.338  0.323 0.291

mse-ru-sgns 0.236  0.268  0.207 0.162
mse-ru-char 0.051
mse-ru-clectra
cos-en-sgns 0.549
cos-en-char 0.875  0.871

cos-en-electra | 0.895 0.896 0.900 00915
cos-it-sgns 0.510 0.527 0.521
cos-it-char 0.824

cos-fr-sgns 0.490 0.508 0.522
cos-fr-char 0.870  0.866

cos-fr-electra 0.904

cos-es-char 0.883  0.887
COS-ru-sgns 0.599 0.582 0.618

cos-ru-char 0.935

cos-ru-electra
cka-en-sgns

cka-en-char
cka-en-electra
cka-it-sgns

cka-it-char

cka-fr-sgns

cka-fr-char

cka-fr-electra
cka-es-sgns

cka-es-char

cka-ru-sgns
cka-ru-char
cka-ru-electra
TOTAL mse 5425 5.153

TOTAL cos 9.573  9.657

TOTAL cka 11.784 12.186 12.140 12.290

Table 12: Validation scores for all our REVDICT (RD) approaches. For each score, comparative results are shown
in color. Green is used for the best and red for the worst-performing solution per row (a metric defines whether
higher or lower values are better). The total score is the sum of the values over all datasets and embeddings.
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METRICS RD1 RD2 RD3 RD4 RDS RD6 BEST

mse-en-sgns 1.024 1.085
mse-en-char 0.169 0.172
mse-en-electra 1.768 1.863

mse-it-sgns 1.156  1.211
mse-it-char
mse-fr-sgns
mse-fr-char 0409 0419 0418
mse-fr-electra
mse-es-Sgns
mse-es-char
mse-ru-sgns
mse-ru-char
mse-ru-electra
cos-en-sgns
cos-en-char 0.761
cos-en-electra  0.821

cos-it-sgns

1.147

1.358
0.965

0.601

0.961
0.245  0.231

0.818
0.370  0.361

0.812
0.361

cos-it-char 0.713  0.717 | 0.721

cos-fr-sgns 0.336  0.333 0.330 0.319

cos-fr-char
cos-fr-electra 0.837 0.844

COs-es-sgns 0.361

cos-es-char 0.812 0.816  0.803
COS-ru-sgns 0.411 0406 0.399

cos-ru-char 0.818 0.822  0.820
cos-ru-electra

rnk-en-sgns 0.247
rnk-en-char 0.438
rnk-en-electra 0.438
rnk-it-sgns

rnk-it-char 0.397  0.390
rnk-fr-sgns 0.214  0.203
rnk-fr-char 0.425
rnk-fr-electra  0.447
rnk-es-sgns

rnk-es-char 0.407  0.409
rnk-ru-sgns 0.161  0.153
rnk-ru-char 0.361  0.365
rnk-ru-electra 0.350  0.355

0.821
0.702

0.712

0.252
0.438
0.438

0.397
0.229
0.431
0.444

0.407

0.351

TOTAL mse 10.504 10.634
TOTAL cos 7971 7931 7951
TOTAL rnk 4276 4.275 4.268 4.293

Table 13: Test results for all our REVDICT (RD) approaches. For each score, comparative results are shown in
color. Green is used for the best and red for the worst-performing solution per row (a metric defines whether higher
or lower values are better). The total score is the sum of the values over all datasets and embeddings.
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Figure 5: Distributions of all three embedding types in train (2nd row) and validation (development, 1st row) datasets
after dimensionality reduction to 2D space. sgns (word2vec, 1st column), char (2nd column), and electra
(3rd column) embeddings are depicted for English (orange), French (green), and Russian (blue).

TEAM EN ES FR IT RU

sgns char electra sgns char electra | sgns char | sgns char electra
0 0.909
1 0.162 0.883 0.526 | 1.068 0.390 1.076 0.366 | 0.568 0.140 JO9TINN
2
3
5 0.143
6 0.143 1.340
7 0.906 | 0.557 | 1.100 0.391 1.097 0.364 | 0.578 0.156
10 1.087 0.355

0.510 0.366 0.566 0.132 0.864

1.271

Table 14: MSE test scores for each team in REVDICT task. The results of our team are bold (team 1). For each
task, comparative results are shown in color. Green is used for the best and red for the worst-performing solution
per column.

FR
electra sgns char

IT RU

char electra

electra char

sgns sgns

0
1 0.367 0.724 0.824 0724
2
3
5 0.383 [0.852 0735
6

0.769 0260 0.739 | 0.335 0.836

0.274 0.734
0.246 0.728

0.770 0.858 0.298 0.830

0.824
0.353 0.824

Table 15: COS test scores for each team in REVDICT task. The results of our team are bold (team 1). For each
task, comparative results are shown in color. Green is used for the best and red for the worst-performing solution
per column.
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Figure 6: Distributions of sgns (1st column) and char (2nd column) embeddings in train (2nd row) and validation
(development, 1st row) datasets after dimensionality reduction to 2D space. The embeddings are depicted for
English (blue), Spanish (orange), French (green), Italian (red), and Russian (violet).

TEAM EN ES FR IT RU
electra | sgns char char electra | sgns char char electra

0.271 0.424 | 0.302

0428 | 0.247 0389 [0417

7 0.375 0.410 0.384 0438 | 0.291 0.377

10 0.394 0.483 0.478

12 0.312  0.450 0.253 0412 | 0.314 0.428 0442 | 0.247 0.417 | 0290 0.410 0.399
13 0.329 0.486 0.251 0.230

Table 16: RNK test scores for each team in REVDICT task. The results of our team are bold (team 1). For each
task, comparative results are shown in color. Green is used for the best and red for the worst performing solution per
column.
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TLDR at SemEval-2022 Task 1: Using Transformers to Learn Dictionaries
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Abstract

We propose a pair of deep learning models,
which employ unsupervised pretraining, atten-
tion mechanisms and contrastive learning for
representation learning from dictionary defini-
tions, and definition modeling from such rep-
resentations. Our systems, the Transformers
for Learning Dictionaries and Representations
(TLDR), were submitted to the SemEval 2022
Task 1: Comparing Dictionaries and Word Em-
beddings (CODWOE), where they officially
ranked first on the definition modeling sub-
task, and achieved competitive performance on
the reverse dictionary subtask. In this paper
we describe our methodology and analyse our
system design hypotheses.

1 Introduction

Dictionaries are some of the linguistically richest
resources available for a language, in addition to
being extremely clean and unbiased in comparison
to most naturally occurring language data, which
is noisy and shows domain specific bias based on
its source. Thus, there has been considerable in-
terest towards using NLP models to harness this
knowledge, especially for low-resource languages.
Broadly there are two sets of approaches towards
the same - the first is to use dictionaries for repre-
sentation learning and using these representations
for transfer learning in other tasks, such as in the
work by Bosc and Vincent (2018) where they use
an LSTM based auto-encoder to learn rich rep-
resentations from dictionary definitions such that
the definitions can also be generated back from
the representations. Tissier et al. (2017) also used
dictionary definitions to build sets of ‘strong’ and
‘weak’ pairs of words to get improved word repre-
sentations with greater interpretability by moving
words which show a stronger semantic-relatedness
closer together in the embedding space.

t Authors contribute equally to this work.
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The second approach has been to move in the op-
posite direction, such as in the work by Chang and
Chen (2019) where the authors try to map contextu-
alized word representations to their dictionary defi-
nitions in an effort towards word-sense disambigua-
tion. This has been further explored by Noraset
et al. (2016), where they use an RNN based lan-
guage model to generate definitions for representa-
tions. Recent work by Bevilacqua et al. (2020) im-
proves upon this by leveraging pre-trained encoder-
decoder models like BART (Lewis et al., 2019) in
order to generate the definitions of words. These
pre-trained language models, significantly outper-
form the RNN based models. The ability to gen-
erate definitions for representations makes these
contextual representations of words explainable.

NLP has advanced leaps and bounds within the
past decade, with a major push coming from the
advent and utilization of transfer learning via rep-
resentation learning techniques such as Word2Vec
(Mikolov et al., 2013a) and ELMO (Peters et al.,
2018). The more recent methods to employ trans-
fer learning use large pretrained language models,
such as BERT (Devlin et al., 2019) and XLLM (Con-
neau et al., 2020). These models are jointly used
with unsupervised training objectives such as MLM
and Causal-LM, to transform natural language into
information rich meaning representations which
are then used for many different downstream tasks.
We aim to replicate the same in our experiments to
give a better prior for the model, before it learns to
generate desired representations.

One of the characteristics common to all the lan-
guage models mentioned above is that they are all
based on transformers. Transformers use the multi-
headed attention and self-attention mechanisms to
learn extremely effective language representations.
Transformers also scale well since unlike their pre-
decessors, the RNN, they process information in
parallel and thus are much faster.

For SemEval 2022’s Task 1, Comparing Dictio-

Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 60 - 67
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naries and Word Embeddings (Mickus et al., 2022),
the participants were asked to design systems for
the following two subtasks;

1. Subtask 1: Reconstruct SGNS (Mikolov
etal., 2013b), character and ELECTRA (Clark
et al., 2020) embeddings from their dictionary
glosses.

2. Subtask 2: Reconstruct the dictionary glosses
from their SGNS, character and ELECTRA
embeddings.

The subtasks are called the Reverse Dictionary
and Definition Modeling subtasks respectively. The
first subtask is evaluated on the Mean Squared Er-
ror (MSE), Cosine Similarity and Cosine Ranking
between the generated representations and the gold
representations. The second subtask is evaluated on
Mover score, Sense level BLEU score (S-BLEU)
and Lemma level BLEU score (L-BLEU).

In this system description paper we detail our
model architectures, training, evaluation and test-
ing methodologies, and try to analyse our hypothe-
ses and their impact on the final scores. For the
reverse dictionary subtask we designed a simple
BERT-like model, pretrained it on the MLM ob-
jective, and finetuned it for the subtask on a com-
bination of cosine embedding loss and MSE loss,
alongside negative sampling of the dataset to add
a contrastive loss to the overall objective function.
For the definition modeling subtask we designed a
model based on transformer decoders for natural
language generation, with masked self-attention
over the inputs in addition to multi-head attention
over the representations from the three embeddings
spaces. We submitted our systems for evaluation
over English data and our systems demonstrated
very good performance in the contest itself, with
the definition model system outperforming all other
submissions and taking first place, and the the re-
verse dictionary system achieving the fifth, sixth
and seventh place on the character, ELECTRA and
SGNS targets respectively. Lastly, we also show
some post-contest improvements on the reverse dic-
tionary system. The code for our experiments has
been open sourced and is available on GitHub.!

2 Subtask 1: Reverse Dictionary

2.1 Data Preprocessing

We maintain the data splits provided by the task
organizers (43608 training samples, 6375 dev sam-

"https://www.github.com/Tam AdiSri/tldr-semeval22

61

ples and 6221 test samples) with each sample con-
taining the dictionary gloss and its SGNS, character
and ELECTRA representations. All models were
trained on the training split, with the best model
picked from evaluation over the dev split.

The dictionary glosses were lower-cased and
stripped of all whitespace characters except those
essential to maintaining word boundaries for to-
kenization. We also padded and truncated all se-
quences to a maximum sequence length of 256
tokens.

For contrastive learning we performed negative
sampling to augment each gloss-embedding pair
with three other embeddings from the same seman-
tic space and the same data split.

2.2 System Overview

We designed our system around three hypotheses
- firstly, using pretraining would work better than
starting from scratch since it would give the model
a good prior for the downstream tasks (transfer
learning). Secondly, training individual models for
each representation would outperform training a
single multitask model, as the representations do
not reside in a common semantic space. Thirdly,
optimizing over a combination of losses for each
of the metrics that we’re being evaluated upon, i.e.
MSE loss for MSE, Cosine Embedding (CE) loss
for cosine similarity, contrastive loss for cosine-
rank, would work better than using any of them

individually.
} Contrastive Loss }
A
Output Vector
Linear Layer

Feed Forward Layer

f

Multi-Head Attention Layer

0
|

Gloss Sequence

( CE +MSE Loss

6x

Transformer Encoder

Negative Samples

Figure 1: System architecture for the Reverse Dictionary
subtask.

The foundation of our representation learner is
based on the DistilBert (Sanh et al., 2019) archi-
tecture and comprises of a stack of 6 transformer



encoders, with 12 attention heads each, hidden di-
mension of 3072 and embedding dimension of 768.

We start by pretraining the model via unsuper-
vised masked-language-modeling (Devlin et al.,
2018) over only the texts from the dictionary
glosses in the task dataset. Individual instances
of this pretrained model are then appended with a
linear layer of dimension 256 to project outputs in
the required dimensions, and fine-tuned for each
semantic space, optimized over the following loss
function;

L = e~ 198(P0) 4 MSE(4(g), vp) +
—10g pl) * CE( (g)av )
,10g pz) * CL

(D
(g) Un0, Unl, Un?)

where, ¢(g) is the sentence embedding for a
gloss g, vy, is the true (or positive) embedding, vy,
vpn1 and vyo are the negative samples and pg, p; and
po are trainable parameters for weighting the dif-
ferent loss functions. MSE and CE are the Mean
Squared Error and Cosine Embedding Loss re-
spectively, which function as the reconstruction
loss between the generated representation and true
representation. Lastly, CL is the Contrastive Loss
between the generated representations and the false
representations from negative sampling. The equa-
tions for the three are given below;

d
1
MSE( - 2
SE(a,b) = d; 2)
CE(a,b) = 1— 20 3)
’ |a|b]

2
CL(p,no,n1,n2) = » |1 —CE(p,n;) (4

i=0

where a, b, p and n are all vectors of size d.

2.3 Experimental Setup

We used Pytorch (Paszke et al., 2019) and the Hug-
gingFace (Wolf et al., 2019) library to write our ex-
periments in Python. Though the HuggingFace li-
brary does provide ready-to-go pretrained language
models, they were not used in our experiments or
submissions. We did however use a ready-made
pretrained tokenizer from the library to tokenize
our texts.” This was permitted by the organizers

“https://huggingface.co/distilbert-base-uncased
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and we believed would be a significant advantage
over training a new tokenizer from scratch, consid-
ering that the dataset is rather small and homoge-
neous in its linguistic variation. All models were
trained on Nvidia’s GTX-1080 Ti and RTX-2080
Ti GPUs.

We pretrained our model on the unsupervised
MLM objective, with a learning rate (LR) of 5e — 5,
masking probability of 0.15, and an effective batch
size of 64 samples. For fine-tuning we use an LR of
5e — 3 with a linear LR scheduler and an effective
batch size of 64 samples per batch. Any remaining
hyperparameters were left as their default values.
We selected the language model that attained the
lowest perplexity score (55.25) over the dev split.

For models that were multitask trained, instead
of a single output layer (as shown in figure 1) we
have three output layers (one for projecting into
each semantic space), all receiving the same output
vector from the transformer encoders below them.

While finetuning we train all models for 50
epochs in total, and select a model for each se-
mantic space and metric based on the epoch that
attains the best score over the dev split. The same
model is used for producing results over the test
split.

2.4 Results and Analysis

The experiments here were designed with the intent
to evaluate the three modeling hypotheses outlined
at the beginning of section 2.2, with tests on pre-
training, mutitasking and the objective function.
The results for these experiments are given in ta-
bles 1, 3 and 4.

Repr. Metric | Pretrained RndlInit.

sgns mse 0.8990793  0.8987827
sgns cos 0.1805207 0.1799421
sgns rnk 0.5004269 0.5004292
char mse 0.1465276  0.1454727
char cos 0.7897581 0.7916019
char rnk 0.5004282 0.5004290
electra mse 1.5150244 1.3510013
electra cos 0.8452746 0.8455241
electra rnk 0.5000801 0.5000807

Table 1: Comparison between using pretraining versus
starting from a randomly initialized model.

As we can see from table 1, there is no signif-
icant difference (mostly under le — 4) between



Repr. | MSE CSim. Rank PreTr. MitTsk. Objs.
sgns | 558.96838 0.18531 0.50043 CE
sgns 0.89953  0.17866 0.50043 v MSE, CE, CL
char. | 125.12206 0.79565 0.50043 CE
char. 0.14337  0.79560 0.50043 v MSE, CE, CL
electra | 49.98565 0.84564 0.50008 CE
electra | 1.34014  0.84563 0.50008 v MSE, CE, CL

Table 2: Best submissions on the Reverse Dictionary leaderboard.

finetuning a pretrained model versus training the
model from scratch. We did however notice that
our pretrained models seemed to converge in fewer
epochs than when the models were trained from
scratch, indicating that the pretraining did have
some positive effect.

Repr. Metric | Individual Multitask
sgns mse 0.8984921 0.8990793
sgns cos 0.1786035 0.1805207
sgns rnk 0.5004290 0.5004269
char mse 0.1431219 0.1465276
char cos 0.7955332 (.7897581
char rnk 0.5004292 0.5004282
electra mse 1.3292400 1.5150244
electra cos 0.8451633 0.8452746
electra rnk 0.5000672 0.5000801

Table 3: Comparison between individual models for
each semantic space versus a single multitask model.

Table 3 displays the results of our tests compar-
ing a single multitask model for all three semantic
spaces versus training individual models for each.
Again the results are quite inconclusive whether
one reliably outperforms the other, however con-
sidering differences of over le — 3 to be significant
(as they affect the leaderboard rankings) we can
see that individual models outperform multitask
models on a greater number of metrics.

Finally, from the ablation tests in table 4 we can
clearly see that while optimizing over the combi-
nation of losses or MSE alone gives comparable
scores, optimizing over CE loss alone causes the
MSE score to worsen manyfold. This seems to
imply that MSE contributes significantly more than
CE and CL losses to the performance of the models.
The scores also demonstrate that tuning over MSE
tends to improve the MSE metric, while tuning
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over CE improves the cosine similarity, agreeing
with our hypothesis about the same. Contrary to
our expectations however, we can also observe that
adding contrastive learning by negative sampling
does not improve the cosine-ranking by much.

3 Subtask 2: Definition Modeling

Cross-Entropy Loss

Output
Probabilities

Softmax

Linear Layer

-

/

Feed Forward Layer

f

Multi-Head Attention Layer 3x

Transformer Decoder

KA vA QT
Linear Layer Masked Self-Attention Layer
A K T /
Outy tIT ki
utput Tokens
| sGNs [character [ELECTRA| (shifted right)

Figure 2: System architecture for the definition model-
ing subtask.

3.1 Data Preprocessing

The dictionary glosses were first normalized for
punctuation and then tokenized using the Moses
scripts (Koehn et al., 2007). We then learn a sub-
word tokenizer on the training data, in order to cre-
ate a fixed vocabulary of subwords. The Moses to-
kenized sentences were used to learn Byte Pair En-
codings (BPE) with a vocabulary size of 10,000 us-
ing the subword-nmt library (Sennrich et al., 2016).



Repr. Metric | All Losses Only MSE Only CE

sgns mse 0.8991734  0.8956623 694685.50
sgns cos 0.1787637 0.1547712  0.1852663
sgns rnk 0.5004290 0.5004290 0.5004290
char mse 0.1430358 0.6462155 169896.47
char cos 0.7955229  0.3045915 0.7955511
char rnk 0.5004290 0.5004294  0.5004290
electra mse 1.3285819 3.5256984  82728.45

electra cos 0.8451307 0.0650083  0.8453690
electra rnk 0.5000807  0.5000807 0.5000808

Table 4: Ablation tests on the reverse dictionary objective function.

3.2 System Overview

The definition modeling problem is posed as one
of text generation, generating the definition D,
of a word w, autoregressively, given the seman-
tic representation of the word in the form a vector
vx. Therefore, we maximise the likelihood of the
definition D, = {wy, w1, .., wy, }, where w; corre-
sponds to the ith word of the definition, given the
vector v.

n

P(D./v.) = [ [ P(wi/wo, .wi_1,v.)
=0

)

The definition modeling architecture that has
been used in this system is a transformer de-
coder, whose output softmax layer approximates
the above likelihood.

In a vanilla transformer-seq2seq architecture
(Vaswani et al., 2017), the decoder in the self-
attention layer projects the decoder states into three
matrices called Query (Q), Key (K) and Value (V)
and using the below equation, attention values are
computed.

T

Q-K
Vd

This is followed by a cross-attention layer where
the decoder attends to the encoder states by pro-
jecting the encoder states as the Keys, Values and
using the decoder states as the Queries.

In our model, since the input vectors are not in
the same space as the decoder embeddings, a linear
layer is used to learn a projection between them.
The output of this layer is then projected into the
Key (K) and Value (V') matrices which are used

Amn.(Q, K, V') = Softmax ( > -V (6)
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along with the decoder self-attention outputs to
compute the cross attention values.

(N

where VUsgns»> Uchars Velectra represent the SGNS,
character, ELECTRA vectors respectively and &
denotes concatenation.

f = linear(vsgns @D Vchar © velectra)

K=f-wk
V=fwY (8)
QZO-WQ

where WX, WV are the matrices learnt to
project the output of linear layer (f) to Key, Value
matrices and W is the matrix to project the output
of the decoder self-attention layer o to the Query
matrix.

3.3 Experimental Setup

The experiments for the defmod subtask were car-
ried out using the Fairseq framework (Ott et al.,
2019) in Python. All the models were trained on
Nvidia GTX 1080 Ti GPUs.

The transformer decoder model consists of 3
decoder layers, with each layers consisting of 8
attention heads and an embedding dimension of
512 with the input and the output embeddings of the
decoder being tied. The model is trained using label
smoothed cross entropy loss with label smoothing
of 0.2. A learning rate of 5e-4 using an inverse
square root scheduler with a weight decay of 0.0001
was used to optimize over a batch size of 4096
tokens.

The model was trained for over 50 epochs and
the checkpoint with the least validation perplexity



Word | Gloss Predicted Gloss
S A farming operation ; a farm , or . L.
farming | . e . . The act or process of producing food
instance of farming on a piece of land .
The chance of suffering harm ; danger , peril , Something that causes trouble or
hazard | . . .
risk of loss . destruction
hardware ‘ Equipment . ‘ Of or relating to a computer system
. The process of change from one form , state , .
transition The act or process of converting
style or place to another .
hastily ‘ In a hasty manner ; quickly or hurriedly ‘ In a hurried manner

Table 5: Examples of generated glosses.

was selected to generate definitions for the test set
using beam search with a beam size of 10.

3.4 Results and Analysis

The ablation study results in table 6 shows the im-
pact of each vector, namely SGNS, char and ELEC-
TRA, against the best performing model where
features were extracted using a concatenation of all
three.

Repr. Mover Score S-BLEU L-BLEU
All 0.12847 0.03278  0.04250
Electra 0.11008 0.02957  0.03629
Char 0.10403 0.02884  0.03643
SGNS 0.03622 0.01743  0.02114

Table 6: DefMod scores using all vs individual repre-
sentations

We can clearly see that the ELECTRA repre-
sentations outperform char and SGNS, with the
SGNS vectors falling significantly behind on all
three metrics. It can also be observed that by con-
catenating all three representations and extracting
useful features using attention significantly boosts
performance. This allows one to infer that char and
SGNS vectors do contain semantic information that
ELECTRA does not.

The submission utilizing all representations out-
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performed all other submissions in the defmod sub-
task and ranked first for English.

3.4.1 Observations Post Dataset Release

After the passing of the task deadline, the orga-
nizers released the full dataset, complete with all
annotations. With this data we were able to make
further observations about our model by comparing
the generated glosses to the actual glosses in the
dataset. A few examples are shown in table 5. Ex-
amples marked in red indicate wrong or irrelevant
definitions, and the ones marked in green describe
the relevant ones.

From the generated glosses in green, we can
see that the model shows a remarkably good map-
ping between the words and their representations,
and makes close approximations of their meanings
when generating glosses. In the example of farm-
ing, we can see that the model is able to correctly
associate the act of farming with that of producing
food. The words hazard and transition are also
correctly associated with trouble (danger) and con-
version (change) respectively, demonstrating that
the model is able to recall similar concepts. The
model shows good language proficiency as well,
with syntactically correct utterances.

In case of words like hardware, which have mul-
tiple meanings, we can see that the model outputs
one of the secondary definitions that it has learnt



from the dataset. From this, we can infer that in
the absence of appropriate context (i.e. how the
word is being used in a sentence), the model has
difficulty in disambiguating the word’s meaning,
although it still recognizes the word and picks one
of the correct definitions.

Finally, the model tends to learn definition tem-
plates from the training data, such as “Of, pertain-
ing to" or “Of or relating”, that it reuses during
generation. As a result of being a sequence to se-
quence model, it also occasionally exhibits degen-
erate repetition, as seen in the “alt-left" example.

4 Conclusion

In this paper, we explored a variety of approaches
towards dictionary definitions and embeddings gen-
eration, especially under the constraint of being
unable to use external monolingual data. We have
analyzed the effectiveness of each of these methods,
performing ablation studies showing the impact
that various objective functions like MSE, cosine
embedding loss and contrastive loss have in recon-
structing representations from text, and coming
up with an attention mechanism utilizing all the
provided representations to generate definitions to
produce exceptional results.

As part of future work, we plan to explore the
performance of our models in multilingual settings.
We would also use test the performance of these
models against pre-trained language models like
BART, BERT etc. to gauge the impact language
model pre-trainig since we did not have enough
monolingual data in the tasks to train them. Finally,
we plan to experiment with a joint training mech-
anism where instead of training on each subtask
independently, the models can inform and improve
each other by collaboratively learning both the sub-
tasks.
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Abstract

This paper presents a novel and linguistic-driven
system for the Spanish Reverse Dictionary task of
SemEval-2022 Task 1. The aim of this task is the
automatic generation of a word using its gloss. The
conclusion is that this task results could improve if
the quality of the dataset did as well by incorporat-
ing high-quality lexicographic data. Therefore, in
this paper we analyze the main gaps in the proposed
dataset and describe how these limitations could be
tackled.

1 Introduction

The CODWOE (Comparison of Word Glosses and
Word Embeddings) task at SemEval-2022 (Mickus
et al., 2022) encouraged participants to analyze the
relation between two types of semantic descrip-
tions, word embeddings and dictionary glosses, by
proposing two sub-tasks: Reverse Dictionary (RD)
(Hill et al., 2016), in which participants must gener-
ate vectors from glosses, and Definition Modeling
(DM) (Noraset et al., 2017), in which participants
must generate glosses from vectors. These sub-
tasks aim to be useful for explainable Artificial In-
telligence (Al) by including human-readable and
machine-readable data.
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Given the didactic nature of these tasks, the out-
put generated by these models should be as accurate
as the most prestigious dictionaries. Hence, the pro-
cess of selecting a quality dataset is a critical phase,
as Garg et al. (2020) state: ‘““a small number of
data examples prevents an effective convergence to
the task, while noisy data leads to incorrect conver-
gence”. In this case, tasks require that the glosses
used in the training represent the exact meaning of
the word being defined in the context that the em-
beddings were extracted. However, as per our un-
derstanding, coherence, rigour and lexicographical
prestige of the provided dataset should be improved;
although accessing a prestigious dictionary is not
an easy task.

A Reverse Dictionary takes a description in nat-
ural language and generates a list of words satis-
fying it (Siddique and Sufyan Beg, 2018). First
RD were Information Retrieval systems for Turkish
(El-Kahlout and Oflazer, 2004) and Japanese (Bilac
et al., 2004). Other approaches used lexical graphs
(Thorat and Choudhari, 2016; Ortega-Martin, 2021)
that capture the relationships between the words of
the definition itself and between these and others
similar to them at different levels (synonymy, hyper-
onymy, etc.). Other systems create a vector space
from these lexical resources, such as Wordnet (Du-
toit and Nugues, 2002; Calvo et al., 2016; Méndez
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ID: Definition

es.train.212: “Biologia.— Se dice de los microorganismos que no aceptan los colorantes habituales.”
es.train.250: ‘“Zoologia.— Cualquiera de los colibries del género Chlorostilbon .”

es.train.119: “Servirse , darse ayuda mutuamente .

es.train.120: “Trabajar ( uso pronominal de ... )”

ER]

Table 1: Examples of glosses

et al., 2013). As in many other NLP fields, more
recently have appeared approaches based on Neural
Networks (NNs) such as Long Short-Term Memory
(LSTMs) (Malekzadeh et al., 2021; Zhang et al.,
2020b) or Transformers (Qi et al., 2020; Yan et al.,
2020). Language Models (LMs) based on Recurrent
Neural Networks (RNNs) (Hill et al., 2016) have
also been used. Finally, from a linguistic point of
view, Shaw et al. (2011) add syntactic knowledge,
Zock and Schwab (2008) try to replicate the model
of the mental dictionary and Zhang et al. (2020b)
use morphological knowledge in their system.

Definition Modeling is a relatively new task
based on using distributed word representations to
generate its definition. Noraset et al. (2017) use an
RNN to compute the probability of a word being
part of the definition. Different approaches have
been proposed to this Natural Language Generation
(NLG) task. Usually these new methods are heav-
ily focused on the importance of the context of the
word being defined, like fine-tuning a BART model
to define groups of words (Bevilacqua et al., 2020),
using attention and a Skip-gram model to smooth
the problems of word selection in the generation
step (Gadetsky et al., 2018), or exploring new ways
to understand the embeddings and their capabilities,
resulting these in a new task named “usage mod-
eling” (Zhang et al., 2020a). There have been few
attempts to use pure linguistics traits to improve
definition generation, like accounting polysemy as
a generative target using multi-sense word embed-
dings (Kabiri and Cook, 2020) or using sememes to
condense the semantic core of generated sentences
(Yang et al., 2020).

This paper has the following structure. Chapter 2
contains a review of the data along with some lin-
guistic knowledge we consider relevant. In chapter
3 the RD approach and results are presented. Fi-
nally, chapter 4 contains the conclusions and future
work. Our contributions are the following:

* We point out the main problem of this task, the
lack of high-quality lexicographic data.
* We present the third best model for the Spanish

“sgns” embeddings Reverse Dictionary task,
which due to the use of external resources is
not valid for the challenge.

* We compare various approaches for the pre-
vious task, analysing different preprocessing
strategies, model architectures, loss functions
and embedding initialization tactics.

2 Data analysis

This section contains a review of the Spanish dataset
structure, an introduction about relevant lexicogra-
phy concepts and the RD task preprocessing tech-
niques.

2.1 The data

The dataset can be used for both subtasks. It is
stored in a JSON file where each element contains
four or five keys: its "ID”, its “gloss” or defini-
tion, the character-based embeddings (“char”), the
Word2Vec Skip-gram Negative Sampling embed-
dings (”’sgns”) and, just for some languages, the
"ELECTRA” (Clark et al., 2020) embeddings. All
of these embeddings have a dimensionality of 256.
For the development of the Spanish RD model
“sgns” embeddings were used, since it was con-
sidered that using a more static approach such as
“char” would lower the performance of the model
and "ELECTRA” embeddings were not available.
However, as it will be explained later, the model
was found out to be scalable to other embedding
types and languages. Table 1! contains some words
from the Spanish dataset that will be useful in the
subsequent analysis.

2.2 Linguistic analysis

Even though this is not a linguistic paper, there are
lexicographic concepts that should be explained in
order to reach a deeper understanding of the dataset
flaws. One of the most common approaches to

! Appendix A contains the translation of these examples
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classify lexical dictionaries distinguishes between
general dictionaries (also known as usage dictio-
naries) and specific dictionaries (this classification
includes, to name a few, encyclopedic, synonym
and scientific dictionaries). Therefore, given the
significant number of different possible uses of the
CODWOE tasks, the dataset should only include
generic term definitions found in usage dictionaries,
not specific ones.

In second place, there is no consensual standard
structure for definitions. However, two principles
must be followed (del Teso Martin, 1987).

1. The definitions must specify the hyperonym of
the word being defined.

2. The definition should explain the main distinc-
tion between the class and its instance.

In other words, the definition has to include a hy-
peronym which clusters the word being defined into
a category (for instance, “person who...”, “a block
of rock that...”) and the definition should specify
the specific traits of its meaning (following the last
examples, “...plays badminton”, “...shines even at
night”).

Lastly, a given definition is not the only way that
a word could be defined, but just a context related
meaning. This is why, from our perception, static
embeddings should be avoided in modern Natural
Language Processsing (NLP) tasks. For that reason,
"ELECTRA” embeddings, used in other languages
but not available for Spanish, could be more repre-
sentative than “sgns” or “char” embeddings. Fur-
thermore, these contextual embeddings should have
been extracted from solid examples of use which
represent the exact meaning of the gloss.

2.3 Dataset review

Dataset review revealed that glosses did not only go
against the previously explained notions, but also
lack coherence and exactitude. As seen in table 1,
many definitions include the category which they
belong (for instance, “Zoology”), or some gram-
matical information (“pronominal use”). Although
dictionaries usually include this kind of informa-
tion, it should not be in the definition (Garcia and
José, 2017).

Another drawback is that the dataset combines
generic and specific definitions. Generic defini-
tions usually can be found in usage dictionaries like

“DLE” for Spanish or “Oxford Dictionary” for En-
glish, meanwhile specific definitions include terms
from a certain domain, like zoology or linguistics.
In our opinion, using specific definitions in this
phase of the task just add noise to the training and
evaluation.

It should also be noted that the terms glosses
have not global coherence, and most of them do not
follow the hyperonym and main distinction princi-
ples. There are plenty of synonym definitions (not
optimal for these tasks as the definition length is
too low) and encyclopedic definitions (which add a
lot of noise as they have to fully describe the word
being defined). Data could be improved if basic
lexicographic notions were applied, but it is under-
stood that being a multilingual dataset and given
the available resources, CODWOE team has done a
great work.

2.4 Data preprocessing

Data was preprocessed by deleting stopwords and
category words (a term at the beginning of the defi-
nition that indicates its semantic category). In the
second RD approach, the lexical graph, which is
explained in section 3, words from the definitions
were also lemmatized using the Spacy Spanish mod-
els lemmatizer 2. Evaluation showed that the defini-
tions preprocessing has been the most useful factor
in the RD task, which indicates that the quality of
the original definitions is what has penalized the
model the most.

3  Our approach

4L

512x256x256

Transformer encoder
layer

Linear layer

fffj ReLU

512 x 8 attention
heads

Figure 1: Model architecture

For the RD task, model was trained trying to
make the definition embeddings as similar as possi-
ble as the defined word ones, focusing just on Span-
ish “sgns” (Word2Vec Skip-gram Negative Sam-
pling embeddings of 256 dims) embeddings, al-

https://spacy.io/api/lemmatizer
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Definition —> _ Sentence Output
Preprocessing Embeddings Model Embeddings
Remove
Stopwords and Lemmatization

category words

Figure 2: Full Reverse Dictionary pipeline

though system architecture was found scalable to
other languages and embedding types. After test
phase the model was applied also to Spanish “char”
and to English “sgns” embeddings, achieving pro-
portionally similar results which will be mentioned
later.

Different tactics to initialize definition embed-
dings were also used. In our first approach we
use Sentence-Transformers (Reimers and Gurevych,
2019). The “distiluse-base-multilingual-cased-v23
was found to be the most appropriate model for
Spanish tasks. Secondly, a lexical graph was built
with the training dataset, in such a way that each
defined word is related to the words in its defini-
tion. Then a SAGE Graph Neural Network (GNN)
(Hamilton et al., 2017) with 2 SAGE layers with
dimensions of sizes 256, 512 and 512 was used to
perform message passing from every defined word
to the words in its definition. To train this GNN
we used 1 negative example for every positive edge,
and trained the model for 50 epochs. Adam with
0.001 as learning rate was used as optimizer.

More than one model architecture were com-
pared. As seen in figure 1, the final model was
built with a Transformer encoder and an additional
Multi-Layer Perceptron (MLP) with two linear lay-
ers with dimensions of sizes 512, 256, 256 and a
ReLU layer between them, which during evalua-
tion in the development set achieved better results
than models based just on Transformer encoders
or MLPs. Adam was used as optimizer. During
training two loss functions from PyTorch were com-
pared: Cosine Embedding Loss and Mean Square
Error (MSE) Loss, which correspond to two of the
task evaluation metrics. Regarding the hyperparam-
eters, the following optimized the evaluation on the
development set: 8 attention heads, 6 encoder lay-

*https://huggingface.
co/sentence-transformers/
distiluse-base-multilingual-cased

ers, batch size=2048, learning rate=0.001. Model
converges after around 10 epochs. Models were
trained using 4 Nvidia Tesla v100 32GB.

As seen in figure 2, during training and predic-
tion the process was the following. For a given
sentence, stopwords and category tokens were re-
moved. In the lexical graph model every remaining
word was also lemmatized. After that the sentence
embeddings are initialized, either with the Sentence-
Transformers model, either by the mean of the lex-
ical graph embeddings of every word in the defi-
nition. These initial embeddings are fed into the
model along with some negative examples for the
Cosine Embedding Loss model, receiving these a
target label of 0. In the case of MSE Loss, negative
sampling was not performed.

As stated in the CODWOE task guidelines, Re-
verse Dictionary submissions were evaluated using
three metrics:

* mean squared error between the predicted em-
bedding and the word embedding.

* cosine similarity between the predicted embed-
ding and the word embedding.

* cosine-based ranking between the predicted
embedding and the word embedding, which
means how many other predicted embeddings
have a higher cosine similarity with the target
word than the right predicted one.

Since the Sentence-Transformer model was faster
at generating the initial definition embeddings, it
was used to initialize the definition embeddings in
the final training and predictions. We understand
that because of this our results in the task are not
valid. However, the lexical graph approach can
achieve almost similar results without the use of
external data.

As seen in table 2, two different loss functions
were used separately during training. Therefore,

71



MSE | Cosine Similarity | Cosine-based ranking
Cosine Embedding Loss | 2.0157 0.4029 0.1665
Mean Square Error Loss | 0.9106 0.2274 0.5003

Table 2: Reverse Dictionary results

two models were eventually presented. During eval-
uation, the first model trained with Cosine Embed-
ding Loss reached more than 0.4 in cosine score
and 0.16 in cosine ranking, which we consider re-
markable and, according to the rankings*, better
than the top result for these particular Spanish em-
beddings. However, this model reached more than
2 in MSE, which considerably worsens the baseline
(0.92) and the top results (0.85). On the other hand,
the MSE Loss trained model slightly improves the
baseline test MSE (0.91) and cosine score (0.22) but
worsens the cosine ranking score. Other attempts
to combine both loss functions did not success and
achieved worse results in each of the evaluation
metrics.

In the end, these results were found to be scalable
to another languages and embedding types by using
this same model architecture, and encountering in
the way the same issues as for the Spanish “sgns’
embeddings, that is, trouble combining MSE and
cosine metrics. A Cosine Embedding Loss model
for English ’sgns” embeddings achieves 0.34 cosine
and 1.58 MSE, and using Spanish “char” embed-
dings it reached 0.84 cosine and 1.66 MSE. As for
the case of Spanish ’sgns”, compared to the top-
ranked participants, a better cosine was achieved in
exchange of a worse MSE. This leads to the opin-
ion that the system architecture is easily scalable
to other inputs, but it suffers from the same issues
that with other languages and embeddings: a higher
cosine similarity score can be achieved by using Co-
sine Embedding Loss, but in exchange of a worse
MSE score.

’

4 Conclusions

For these tasks a combination of Machine Learning
techniques and linguistic knowledge was proposed,
in order to achieve good results and to understand
the problems and the future challenges of these
tasks.

In this paper, the main gaps in the dataset from a

4https ://competitions.codalab.org/
competitions/34022#results

lexicographic perspective and its lack of coherence
and exactitude were explained, and then a prepro-
cessing solution was proposed, which was finally
used in the RD system to avoid the problems that
the dataset could carry in the model. Eventually,
MMBG team has presented a novel approach with
an architecture that is easily scalable to other lan-
guages and embedding types. We understand that
due to the use of external resources our results in
the task are not valid for the challenge. However,
we would like to remark that the lexical graph ap-
proach, which in the end we did not submit due to
speed issues, achieved almost similar results.

These tasks are considered to represent an excel-
lent starting point for research on the relationships
between dictionaries and word embeddings. Both
subtasks in general and our research on them in
particular open up many options for further inves-
tigation. In our case, our intention is to use more
linguistic knowledge at different levels, further ex-
ploring the power of linguistic graphs and putting
into practice what we have learned in the Reverse
Dictionary task to create quality Definition Model-
ing systems.

References

Bevilacqua, M., Maru, M., and Navigli, R. (2020).
Generationary or “how we went beyond word
sense inventories and learned to gloss”. In Pro-
ceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing
(EMNLP), pages 7207-7221.

Bilac, S., Watanabe, W., Hashimoto, T., Tokunaga,
T., and Tanaka, H. (2004). Dictionary search
based on the target word description. In Proc. of
the Tenth Annual Meeting of The Association for
Natural Language Processing (NLP2004), pages
556-559.

Calvo, H., Méndez, O., and Moreno-Armendariz,
M. A. (2016). Integrated concept blending with
vector space models. Computer Speech & Lan-
guage, 40:79-96. ISBN: 0885-2308 Publisher:
Elsevier.

72



Clark, K., Luong, M.-T., Le, Q. V., and Manning,
C. D. (2020). Electra: Pre-training text encoders
as discriminators rather than generators. arXiv
preprint arXiv:2003.10555.

del Teso Martin, E. (1987). En torno a la definicién
lexicografica. Contextos, (10):29-56.

Dutoit, D. and Nugues, P. (2002). A lexical database
and an algorithm to find words. In ECAI 2002:
15th European Conference on Artificial Intelli-
gence, July 21-26, 2002, Lyon France: Including
Prestigious Applications of Intelligent Systems
(PAIS 2002): Proceedings, volume 77, page 450.
10S Press.

El-Kahlout, I. D. and Oflazer, K. (2004). Use of
wordnet for retrieving words from their meanings.
In Proceedings of the global Wordnet conference
(GWC2004), pages 118-123.

Gadetsky, A., Yakubovskiy, 1., and Vetrov, D.
(2018). Conditional generators of words defi-
nitions. arXiv preprint arXiv:1806.10090.

Garcia, J. and José, E. (2017). Forma y funcién del
diccionario: hacia una teoria general del ejemplo
lexicogréfico. Forma y funcion del diccionario,
pages 1-151.

Garg, S., Vu, T., and Moschitti, A. (2020). Tanda:
Transfer and adapt pre-trained transformer mod-
els for answer sentence selection. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7780-7788.

Hamilton, W., Ying, Z., and Leskovec, J. (2017).
Inductive representation learning on large graphs.
Advances in neural information processing sys-
tems, 30.

Hill, F.,, Cho, K., Korhonen, A., and Bengio, Y.
(2016). Learning to understand phrases by em-
bedding the dictionary. Transactions of the Asso-
ciation for Computational Linguistics, 4:17-30.

Kabiri, A. and Cook, P. (2020). Evaluating a multi-
sense definition generation model for multiple
languages. In International Conference on Text,
Speech, and Dialogue, pages 153—-161. Springer.

Malekzadeh, A., Gheibi, A., and Mohades, A.
(2021). Predict: Persian reverse dictionary. arXiv
preprint arXiv:2105.00309.

Méndez, O., Calvo, H., and Moreno-Armendariz,
M. A. (2013). A reverse dictionary based on
semantic analysis using wordnet. In Mexican In-
ternational Conference on Artificial Intelligence,
pages 275-285. Springer.

Mickus, T., Paperno, D., Constant, M., and van
Deemter, K. (2022). SemEval-2022 Task 1: Cod-
woe — comparing dictionaries and word embed-
dings. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-
2022). Association for Computational Linguis-
tics.

Noraset, T., Liang, C., Birnbaum, L., and Downey,
D. (2017). Definition modeling: Learning to de-
fine word embeddings in natural language. In
Thirty-First AAAI Conference on Artificial Intel-
ligence.

Ortega-Martin, M. (2021). Grafos de vinculacion
semdntica a partir del definiens del DUE. PhD
thesis, Universidad Complutense de Madrid.

Qi, F, Zhang, L., Yang, Y., Liu, Z., and Sun, M.
(2020). Wantwords: an open-source online re-
verse dictionary system. In Proceedings of the
2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstra-
tions, pages 175-181.

Reimers, N. and Gurevych, 1. (2019). Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Shaw, R., Datta, A., VanderMeer, D., and Dutta,
K. (2011). Building a scalable database-driven
reverse dictionary. IEEE Transactions on Knowl-
edge and Data Engineering, 25(3):528-540.

Siddique, B. and Sufyan Beg, M. M. (2018). A
review of reverse dictionary: Finding words from
concept description. In International Confer-
ence on Next Generation Computing Technolo-
gies, pages 128-139. Springer.

Thorat, S. and Choudhari, V. (2016). Implementing
a reverse dictionary, based on word definitions,
using a node-graph architecture. arXiv preprint
arXiv:1606.00025.

Yan, H., Li, X., and Qiu, X. (2020). Bert for
monolingual and cross-lingual reverse dictionary.
arXiv preprint arXiv:2009.14790.

73



Yang, L., Kong, C., Chen, Y., Liu, Y., Fan, Q.,
and Yang, E. (2020). Incorporating sememes
into chinese definition modeling. IEEE/ACM

Transactions on Audio, Speech, and Language
Processing, 28:1669—-1677.

Zhang, H., Du, Y., Sun, J., and Li, Q. (2020a). Im-
proving interpretability of word embeddings by
generating definition and usage. Expert Systems
with Applications, 160:113633.

Zhang, L., Qi, F., Liu, Z., Wang, Y., Liu, Q., and
Sun, M. (2020b). Multi-channel reverse dictio-
nary model. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, volume 34, pages
312-319.

Zock, M. and Schwab, D. (2008). Lexical access
based on underspecified input. In COLING 2008:
Proceedings of the Workshop on cognitive As-
pects of the Lexicon (COGALEX 2008), pages
9-17.

Appendix A Translation of Table 1

es.train.212: “Biology.— Said of microorganisms
that do not accept the usual dyes .”

es.train.250: “Zoology.— Any of the hummingbirds
of the genus Chlorostilbon .”

es.train.119: “To serve, to help each other.”
es.train.120: “Work ( pronominal use of ... )”
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Abstract

This paper presents a winning submission to the
SemEval 2022 Task 1 on two sub-tasks: reverse
dictionary and definition modelling. We lever-
age a recently proposed unified model with
multi-task training. It utilizes data symmet-
rically and learns to tackle both tracks concur-
rently. Analysis shows that our system per-
forms consistently on diverse languages, and
works the best with sgns embeddings. Yet, char
and electra carry intriguing properties. The two
tracks’ best results are always in differing sub-
sets grouped by linguistic annotations. In this
task, the quality of definition generation lags
behind, and BLEU scores might be misleading.

1 Introduction

We describe the University of Edinburgh’s partici-
pation in SemEval 2022 Task 1 on comparing dic-
tionaries and word embeddings (CODWOE), orga-
nized by Mickus et al. (2022).' The task features
two directions: reverse dictionary and definition
modelling. The former is to construct the embed-
ding of a word given its definition gloss, and the
latter is to generate the definition from a word em-
bedding. The organizers provide datasets of word
embedding-definition pairs across three types of
embeddings and five languages. The training data
has a size of 43.6k for each language, which is
smaller than the data released in prior research (Hill
et al., 2016; Chang et al., 2018). However, it pro-
vides a precious chance for a comprehensive study
of lower-resourced reverse dictionary and defini-
tion modelling on languages other than English, as
well as on different embedding architectures.

As our system architecture, we use a recently
proposed unified model, which deals with both
tracks concurrently and achieves superior results
(Chen and Zhao, 2022). The model enables multi-
task training by using word embeddings and defi-
nitions symmetrically. We also create ensembles

"https://competitions.codalab.org/competitions/34022
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and handcrafted phrases. Our code implementation
builds on the organizers’ and is publicly available.”

We submit to both reverse dictionary and def-
inition modelling tracks, and cover all language
and embedding combinations. Furthermore, we
examine model generations and scores from three
aspects: embedding architectures, languages, and
linguistic annotations, aiming to figure out how
these affect performance, subject to the models we
have adopted. We finally show the information cap-
tured by different word embeddings and discuss
the limitations in task evaluation and ranking.

Regarding the shared task outcome, we are the
team with the most “gold medals”: out of 18 sub-
tracks, we attain first place in 8, second place in
4 and third place in 4. Our final ranks in the sub-
tracks are detailed in Table 1.

Langauge en es fr it ru
Reverse sgns 2 4 3 3
dicti char 3 1 1 1 1
tenonaty I erectra 1 na 1 n/a 1
Definition modelling | 4 3 2 2 1

Table 1: Our ranks in each sub-track.

2 Background

2.1 Datasets

The organizers provide datasets for five languages:
English (en), Spanish (es), French (fr), Italian (if),
and Russian (ru). Also, they supply 256d word
embeddings from three architectures:

* sgns: static (non-contextualized) embeddings
learned using skip-gram with negative sam-
pling (Mikolov et al., 2013);

* char: character-based embeddings from an
autoencoder trained on the spelling of a word;

* electra: contextualized embeddings produced
by a generator-discriminator model (Clark
et al., 2020).

Zhttps://github.com/PinzhenChen/UnifiedRevdicDefmod
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Despite that electra is not available for es and it, the
data still covers 13 combination. All embedding
architectures are trained on comparable corpora for
all languages. Participants are not allowed to use
any external resources, and words are provided as
embeddings rather than actual words.

For each language, data is split into train, valida-
tion, test, and trial sets, at sizes 43.6k, 6,4k, 6.2k,
and 0.2k. Human annotations are included in the
trial split for analysis, but only word embeddings
and definition glosses can be used for training. The
snippet below exemplifies a single data instance
with all possible fields. Training, validation, and
test sets consist of only the bolded key-value pairs;
all fields are found in the tiny trial set.

{"id":"en.trial.2",

"sgns": [2.08729, 0.26177, ...],
"char": [0.38789, 0.197186, ...],
"electra”: [-1.47715, -0.47424, ..],
"gloss": "A mixture of other substances or things .",
"word": "cocktail",

"pos": "noun",

"example": "a cocktail of illegal drugs",
"type": "hypernym-based",

"counts": 4187,

"f_rnk": 13245,

"concrete": 1,

"polysemous": 0}

2.2 Evaluation metrics and ranking

Reverse dictionary is evaluated by three metrics:

* MSE: mean squared error between references
and generated embeddings;

* cosine: cosine similarity between references
and generated embeddings;

* ranking score: a percentage score measuring
how many other test instances have a higher
cosine similarity with a generated embedding
than its reference does.

The definition modelling performance is measured
by three too:

» sense-BLEU: sentence-BLEU implemented
in NLTK with smoothing method 4 (Papineni
et al., 2002; Chen and Cherry, 2014);

* lemma-BLEU: the maximum sense-BLEU be-
tween a generated gloss and all possible refer-
ences of the same word and part of speech;

* MoverScore: a neural distance measure based
on multilingual BERT (Zhao et al., 2019).

Finally, participants are ranked by rank scores
instead of scalar numbers from the above metrics.
A rank score is simply the rank of a particular sub-
mission among all submissions. For each sub-track,
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the average rank score of all three metrics is used
to rank each team.

3 System Overview

3.1 Model Architecture

We select Chen and Zhao (2022)’s model as our
system architecture because it has demonstrated
great success on previous datasets for reverse dic-
tionary and definition modelling. It is a “unified”
model as it learns both tasks simultaneously, based
on the intuition that a word and its corresponding
definition share the same meaning, thus can be cast
into the same neural semantic space.

We attach a diagram of this architecture as Fig-
ure 1. Technically, the model encodes glosses
or word embeddings as the input, maps it into a
shared representation, then generates embeddings
or glosses accordingly. The shared representation
serves as an autoencoding of both a word and its
definition. Specifically, Linear layers (L) trans-
form embeddings, and Transformer (Vaswani et al.,
2017) blocks (T") encode or decode definitions.

Embedding, Emby, ¢ Definition, Def,, ¢

A
[ Linear Layer ] Transformer Block ]
Lout Tout

)

Transformer Block
Tin

T

Definition, Defj,

Shared Linear L'ayer

[

Lshare

Cinear Layer
I-in
A

[ [ )

Embedding, Embj,

_______ Definition e _______ Embedding
Modelling Reconstruction
Reyerse - - Definition. _____
Dictionary Reconstruction

Figure 1: Chen and Zhao’s illustration of the unified model.

3.2 Multi-task training

At the bottom of Figure 1, four trainable objec-
tives are depicted: definition modelling, reverse
dictionary, along with word embedding and defi-
nition reconstruction. The first two are CODWOE
tasks, and the rest are auxiliary autoencoding tasks.
Besides, another objective is to bring the vector
representations of a word and its definition close
in the shared layer. Our overall objective function
combines the five objectives with equal weights.



3.3 Ensembling for reverse dictionary

Ensembling is a commonly employed technique
to enhance machine learning performance. Specif-
ically for reverse dictionary, we perform average
ensembling: for each test instance, its final predic-
tion is obtained by averaging all the corresponding
predictions from different models. We ludicrously
ensemble up to 21 models, of the same unified
architecture, trained with various random seeds.

3.4 Handcrafting for definition modelling

Upon our initial inspection of definition modelling
on the trial set, the generated definitions are mostly
meaningless hallucinations, scoring a very low
sense-BLEU of about 3. To understand how in-
dicative BLEU is in this case, we handcraft a non-
sensical n-gram submission. The rule is that for
each test instance, we simply concatenate the most
frequent bigram with the most frequent unigram,
computed on all definitions in the training data.
The phrases we prepare for each language are:

fr it
’ ,Or. ‘ dela. ‘ )(. ‘ )(. ‘ B., ‘

cn €S ru

4 Experiments and Results

4.1 Experimental setup

We tokenize glosses by whitespaces, add tokens
into an open vocabulary, and embed them using
one-hot. Word embeddings are used as provided.
Loss functions are cross-entropy for tokens and
MSE for embeddings. We also try cosine similarity

for embeddings, but the model fails to converge.
For definition modelling, we do not combine vari-
ous embeddings as the input; this might put us at
disadvantage in the team ranking.

While Transformer components are connected
to form a unified model, most hyperparameters re-
main the same as in the provided baseline, which
we specify in Appendix A. Following the original
work, we tie Transformer embeddings and add a
residual connection. We follow the same configu-
rations for all language-embedding combinations.
Training a unified model on an Nvidia GeForce
RTX 2080 Ti takes roughly three hours.

4.2 Results

During the evaluation, we submit the provided base-
line and our unified model. Also, we add ensem-
bles of 17 and 21 models, as well the handcrafted
n-grams. The submission scores, computed by
the task organizers, are reported in Table 2 and 3.
In the direction of reverse dictionary, the unified
model steadily beats the baseline; ensembling adds
a cherry on top for some languages but not all.

In definition modelling, our n-grams surpass
genuine models on en BLEU scores, and even rank
first in fr sense-BLEU among all participants’ en-
tries. This implies that either BLEU scores are not
informative, or the model outputs are as embarrass-
ing as the n-grams. On contrary, MoverScore is ef-
fective in downing the n-grams, probably by penal-
izing disfluency or semantic mismatch. Sadly, our
manual review suggests that most model-generated

en es fr it ru
MSE cosine rank | MSE cosine rank | MSE cosine rank | MSE cosine rank | MSE cosine rank
baseline 0.884 0.189 0.439]0.905 0.241 0.462| 1.06 0.275 0.360| 1.10 0.245 0.451|0.561 0.295 0.432
unified 0.871 0.241 0.326|0.868 0.339 0.271| 1.03 0.312 0.302| 1.05 0.371 0.197|0.553 0.327 0.340
ensemble 17 | 0.864 0.225 0.374]0.860 0.347 0.271| 1.03 0.305 0.334| 1.03 0.373 0.206|0.538 0.381 0.251
ensemble 21 | 0.865 0.225 0.374|0.860 0.347 0.271| 1.03 0.306 0.330| 1.03 0.374 0.205|0.538 0.383 0.247
(a) sgns as target embeddings
en es fr it ru
MSE cosine rank | MSE cosine rank | MSE cosine rank | MSE cosine rank | MSE cosine rank
baseline 0.161 0.795 0.500|0.551 0.820 0.499]0.404 0.764 0.495(0.400 0.720 0.499|0.144 0.829 0.496
unified 0.143 0.795 0.500|0.480 0.834 0.431]0.347 0.782 0.448|0.337 0.745 0.428|0.119 0.849 0.395
ensemble 17 |0.142 0.795 0.500|0.467 0.839 0.424|0.336 0.788 0.4290.334 0.747 0.429|0.116 0.851 0.390
ensemble 21 [0.142 0.795 0.500|0.467 0.839 0.425[0.335 0.789 0.428 |0.334 0.747 0.429|0.116 0.852 0.389
(b) char as target embeddings
en fr ru
MSE cosine rank |MSE cosine rank | MSE cosine rank
baseline 1.34 0.842 0.497| 1.18 0.853 0.497|0.898 0.718 0.498
unified 1.32 0.844 0.495|1.08 0.861 0.476|0.846 0.731 0.421
ensemble 17 | 1.31 0.847 0.490| 1.07 0.862 0.479|0.829 0.735 0.417
ensemble 21 | 1.31 0.847 0.491| 1.07 0.861 0.480|0.829 0.734 0.419

(c) electra as target embeddings

Table 2: Reverse dictionary test performance, measured by MSE (J.), cosine similarity (1), and ranking score ({.).
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source en es fr it ru

embed. | MvSc s-B 1-B [ MvSc s-B 1-B | MvSc s-B I-B [ MvSc s-B I-B | MvSc s-B 1-B
n-grams | n/a_|-0.004 3.06 3.81|-0.032 2.73 3.67|-0.176 2.95 3.56|-0.164 1.80 2.74|-0.006 2.65 331
baseline 0.100 291 3.67] 0.088 3.47 5.28|-0.019 2.34 3.38| 0.046 4.62 697 0.109 4.91 7.14
unified | 8™ | 0.098 3.01 3.80| 0.101 3.42 5.14|-0.064 1.59 238 0.107 6.01 9.17 | 0.095 4.59 6.82
baseline | 0.101 2.47 3.02| 0.064 2.06 2.88]-0.186 0.11 0.11] 0.019 2.09 2.99| 0.092 4.01 5.87
unified | ™ | 0.104 2.83 3.40| 0065 2.14 2.96| 0.026 2.42 3.82| 0.044 2.93 4.29|0.085 4.80 7.24
basefine | 10070 253 326 P 0.075 138 1.93 P 0.090 3.78 5.45
unified | €M | 0.094 2.75 3.43 va 20.045 1.60 2.29 wa 0.088 4.08 5.86

Table 3: Definition modelling test results, in MoverScore (1), sense-BLEU (1), and lemma-BLEU (7).
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Figure 2: Visualization of gold and output embedding distributions across languages and embedding architectures.

glosses are inaccurate. The dissatisfying results
might be due to the modest training data size.

5 Performances across embeddings

Reverse dictionary MSE and cosine are incom-
parable across different embedding types, whereas
ranking scores can tell which embedding archi-
tecture is preferred for indexing and retrieving a
word. A random baseline ranking score is 0.5, and
most char and electra figures, unfortunately, fall
between 0.4 and 0.5. On the other hand, sgns is
more useful as its baseline scores start at around
0.45, and our models can improve these up to 0.25.

We employ principal component analysis (PCA)
to reduce the gold and output embeddings to 2 di-
mensions. Then in Figure 2 we visualize en, fr, and
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ru, which come with all embeddings. The unified
model usually outputs to a larger space than the
baseline, hinting at a positive correlation between
output spread and performance. Gold electra has
the most isotropic space, but neither model could
imitate the distribution. Char has a crescent shape
with several clusters inside, which is unlikely to be
cosine-friendly. These problems are alleviated on
sgns, which witnesses the best ranking scores.

Definition modelling Sgns is again the winner,
as models trained with it reach the top in many
metrics. Char is also favourable. This is counter-
intuitive as electra should be fitter, for it retains
more sense-specific knowledge. A possible reason
is that electra needs to go through more training
data than sgns and char to reach perfection.



6 Performances across languages

As seen in the result and rank tables, our system’s
behaviour is relatively consistent on various lan-
guages, except that English is more challenging.
Assuming that the datasets are of similar quality,
it is questionable to conclude that our model suits
other languages more than English. Moreover, Fig-
ure 2 confirms that the English embeddings are not
more peculiar than those of other languages.

We guess that other teams have focused on En-
glish (e.g. only submitted English), as it is a centred
language in the research community. Instead, our
hyperparameter search is based on the average loss
from all languages, neglecting that the losses are
not directly comparable.

7 Performances across linguistic features

We look into the unified model’s trial set predic-
tions, to interpret how scores vary across diverse
linguistic annotations: polysemy, part of speech
(POS), word length in characters, definition length
in words, and word frequency. For categorical fea-
tures, we group data by annotations; for numerical
features, we divide the data into three subsets, by
percentile ranges: 0-33, 33-67, and 67-100. Statis-
tics of the subsets are in Table 4. We list cosine
similarity for reverse dictionary, and lemma-BLEU
for definition modelling. A generic discovery is
that, the best scores of the two tracks emerge in
differing subsets, regardless of what the feature is.

Linguistic feature | Category / Range | No. of instances
Polysemy Yes 63
No 135
Adj 56
Adv 11
Part-of-speech Verb 37
Noun 96
Word frequency 67— 11145 67
(frequency rank in | 11146 — 44416 66
the whole corpus) | 44417 — 905726 67
3-5 85
Word length 6-17 60
8-17 55
1-6 71
Definition length 7-10 65
11-39 64

Table 4: Statistics of the different subsets grouped by features.

Polysemy Table 5 exhibits the results for the
words with either one or multiple definitions. It
is slightly easier to achieve better cosine similarity
for unambiguous words. Polysemous words have
better BLEU, and electra has worse BLEU than
sgns. This is illogical, as defining a polysemous
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word is harder, especially without context. We hy-
pothesize that BLEU is not reflective, and electra
embeddings might be of sub-optimal quality.

Polysemy sgns char electra
cosine I-B | cosine I-B | cosine 1-B
Yes 0.232 4.34 | 0.804 3.20 | 0.836 3.61
No 0.360 2.82| 0.813 2.53 | 0.845 3.09

Table 5: Performances across polysemy annotations for en.

Part of speech Next, numbers for the four POS
tags that exist in en trial, are laid out in Table 6.
Strong cosine similarity is associated with verbs,
although cosine numbers are close, except for ad-
verbs. Adverbs, which have a small sample size,
dominate high lemma-BLEU, perhaps because they
are the least ambiguous.

sgns char electra
POS cosine I-B | cosine 1-B | cosine 1-B
Adj | 0319 3.36| 0.801 2.76 | 0.811 2.81
Adv | 0.134 6.56 | 0.798 5.45| 0.815 5.93
Verb | 0.383 3.20| 0.839 2.50| 0.853 3.83
Noun | 0.314 2.97 | 0.806 2.53 | 0.860 2.99

Table 6: Performance across POS tags for en.

Word length We then make three partitions ac-
cording to different word length ranges. Results
in Table 7 suggest that shorter words have higher
cosine, while longer words have higher lemma-
BLEU. Numbers are closer for sgns and electra;
we further investigate on char in Section 8.1.

Word sgns char electra
length | cosine 1-B | cosine 1-B | cosine I-B
short | 0.332 3.19| 0.845 258 | 0.817 3.10
medium | 0.314 3.19 | 0.842 2.74 | 0.867 3.41
long 0.327 3.66 | 0.694 3.00 | 0.854 3.33

Table 7: Performances across word lengths for en.

Definition length Likewise in Table 8, we sep-
arate the trial data by the gold definition length.
Much higher BLEU is seen when the model defines
words linked with a shorter gold gloss, as generat-
ing a shorter sequence is easier. As we anticipate,
when the model produces word embeddings for
longer glosses, results are better too, potentially
because more information can be encoded.

Definition sgns char electra
length | cosine 1-B | cosine I-B |cosine I-B
short 0.280 4.51| 0.796 3.60 | 0.824 4.89
medium | 0.318 3.48| 0.814 2.73 | 0.848 2.76
long 0.361 1.83| 0.822 1.80| 0.856 1.93

Table 8: Performances across definition lengths for en.



Word frequency Finally, Table 9 summarizes
the results of the low, medium, and high frequency
word groups. From the results, we cannot establish
an explicit trend across different task directions,
embeddings, or word frequencies. This implies
that the embedding quality and model performance
might be word frequency-agnostic.

Frequency sgns char electra
cosine I-B | cosine I-B | cosine I-B
low 0.250 3.53 | 0.805 2.82| 0.850 3.30
medium | 0.348 3.54 | 0.786 2.76 | 0.864 3.38
high 0.357 2.89| 0.839 2.66| 0.814 3.10

Table 9: Performances across word frequencies for en.

8 Qualitative Analysis and Discussions

8.1 Observing the crescent with a telescope

After PCA retains the most distinguishing com-
ponents, Figure 2 shows interesting patterns, es-
pecially for char. We randomly label 25 English
words and present them in Figure 3 and Figure 4,
respectively for char and electra. The sub-clusters
in char’s crescent are perfectly in tune with word
lengths; for electra, more frequent words are closer
to the origin. We do not notice a clear trend for
sgns, for which a plot is attached as Figure 5.

We attribute the distinct patterns to the train-
ing paradigms: character-level word autoencoding
for char, and contextualized modelling for electra.
This accounts for the largest cosine gap on char be-
tween long and short words, seen earlier in Table 7.
Intuitively, it is more difficult to train char autoen-
codings for longer words, so, in turn, embeddings
for longer words possess inferior quality.

Within char embeddings, words are grouped by
lengths, so we may utilize this for word retrieval
in future work. Nonetheless, we are unsure of how
length or frequency information aids sense-based
tasks, like definition generation in our context.
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Figure 3: Gold English char embeddings with word labels.
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Figure 5: Gold English sgns embeddings with word labels.

8.2 Sense-BLEU with no sense

We design a sanity check on the representative-
ness of BLEU. On the English trial set, we remove
punctuation marks and NLTK-defined stop words
from both references, and our unified model’s def-
initions generated from sgns. Sense-BLEU drops
from 3.31 to 0.39, and surprisingly, it worsens to 0
with smoothing disabled. Evidently, sense-BLEU
and thereby lemma-BLEU are hugely inflated by
functional tokens as well as smoothing.

8.3 Evaluating task evaluation and ranking

We point out the limitations associated with the
evaluation and ranking process, which can bene-
fit from a rethink. First, as shown above, the two
BLEU metrics may not be practical. Second, some
metrics are correlated, i.e., cosine with the ranking
score, and sense-BLEU with lemma-BLEU. These
problems are amplified by the team ranking pro-
tocol, which averages a team’s ranks in individual
metrics to produce a final standing. It might not be
meaningful to compare the individual metric ranks,
not to mention averaging them since metrics are
not equally weighted.

Nonetheless, we are not in a knowledgeable posi-
tion to propose a better approach, other than clum-
sily displaying ranks in individual metrics.
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A Hyperparameters

vocabulary size

Hyperparameter Value

learning rate le-4

optimizer Adam

betal, beta2 0.9, 0.999

weight decay le-6

batch size 256

decoding beam size 6

early stopping 5 non-improving validations
embedding loss mean squared error
token loss cross-entropy
Transformer depth 4

Transformer head 4

Transformer dropout 0.3

linear dropout 0.2

shared layer dim. 256

word embed. sgns, char, electra
word embed. dim. 256

definition embed. one-hot

definition embed. dim. | 256

open, all training tokens

Table 10: Model hyperparameters.
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Abstract

Described are our two entries "emukans" and
"guntis" for the definition modeling track of
CODWOE SemEval-2022 Task 1. Our ap-
proach is based on careful scaling of a GRU re-
current neural network, which exhibits double
descent of errors, corresponding to significant
improvements also per human judgement. Our
results are in the middle of the ranking table
per official automatic metrics.

1 Introduction

The definition modeling track of SemEval-2022
Task 1: CODWOE - COmparing Dictionaries
and WOrd Embeddings (Mickus et al., 2022)
challenged participants to generate dictionary
glosses from individual word embedding vectors.
This paper describes two CODWOE submissions,
"emukans" and "guntis", where the first focuses
on the automatic CODWOE scores, but the second
attempts to gauge the relationships between scaling
laws, the automated metrics, and human evaluation.
Our submissions achieved competitive results (see
Figure 3) on the MoverScore official metric - scor-
ing 1st for French, 2nd for Spanish, and 3rd for
Russian.

Our approach was to apply classical recur-
rent networks, such as Long Short-term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Units (GRU) (Cho et al., 2014),
to definition modeling and investigate how model
scaling impacts performance. The scaling effect
is well investigated for transformers, but not so
much for RNNs. Recently, the main focus in deep
learning has skewed from searching for new model
architectures to investigating how various factors
impact the training process and overall system per-
formance (Nakkiran et al., 2019; Kaplan et al.,
2020; Gordon et al., 2021). The main factors are:
the amount of data, the amount of compute, and
the size of the model (parameter count). In the

Gus Strazds
gs15014 @students.lu.lv
University of Latvia
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competition the data amount is fixed and no use of
external data is permitted, thus we investigate how
scaling model size and training time impacts train-
ing progress and model performance for recurrent
models.

In our experiments we did observe deep double
descent effects: epoch-wise double descent with
respect to both cross-entropy loss and prediction
accuracy on a validation data set, more pronounced
with increasing model size.

We also investigated the automatic metrics used
for evaluating submissions and their correlation
with human evaluation, focusing primarily on the
MoverScore metric (Wei Zhao, 2019). MoverScore
does correlate with human evaluation, but not nec-
essarily very strong, at least for this dataset. We
find that the double descent effect seen with re-
spect to prediction accuracy can also be observed
for MoverScore.

2 Background

The CODWOE shared task invites participants to
compare two types of semantic descriptions: dictio-
nary glosses and word embedding representations.
The task consists of 2 subtracks: definition model-
ing and reverse dictionary. In definition modeling
participants have to generate glosses from word
embedding representations. The reverse dictionary
task is the inverse: reconstruct a word embedding
from the corresponding gloss. Considering results
achieved by the baseline models provided by the
organisers, we decided to participate only in the
definition modeling track, as it seems the more
challenging task, with more room for potential im-
provement.

For the definition modeling track, inputs are 256-
dimensional embedding vectors and outputs are
plain text. Data is provided for 5 languages: En-
glish, French, Spanish, Italian and Russian. Every
language is scored separately. We submitted for all
5 languages. The provided word embedding vec-

Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 82 - 87
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tors are of 3 types: CHAR, SGNS, and ELECTRA.

3 System overview

For the definition modeling task, we used classi-
cal recurrent networks, experimenting with both
LSTM and GRU architectures. We added an initial
fully connected input layer to scale a given word
embedding vector to higher dimensions. We used
the ADAM optimizer (Kingma and Ba, 2014) in
the training process. The learning rate was set in
the range € [le-5, 3e-5, 1e-4]. A linear learning
rate decay schedule with warm-up over 0.01 was
used. No preprocessing was applied to training
data. The code is available on GitHub !

The very first step is creating a tokenizer and
building its vocabulary. We use SentencePiece to-
kenization (Kudo and Richardson, 2018), trained
on the training dataset only. We carried out experi-
ments across a range of vocabulary sizes.

We used a classical approach and a decoder only
part of standard seq2seq (sequence to sequence)
recurrent neural network models without attention.
The GRU/LSTM state vector is initialized from
the given defmod embedding vector. In our case,
we use a single word embedding vector type. For
the first time step we pass a single <seq> token
to model as input. The model outputs a single
predicted token and a new state vector. To avoid
exploding gradients, the outputs of the model are
normalized. The token selected by the model is
appended to the generated gloss, and is also used
as input to the model for the next time step. This
process is repeated until reaching the iteration limit.

At every time step, the model can make mis-
takes. If the initial part of the input sequence fed to
a seq2seq model is bad, most likely the subsequent
output sequence will also be wrong. To mitigate
this accumulation of errors and speed up the train-
ing process, we use the teacher forcing technique
(Williams and Zipser, 1989). With teacher forcing,
the model is trained by supplying input tokens from
the target sequence of the dataset and using the net-
work’s one-step-ahead predictions to do multi-step
sampling. We also tried a more advanced teacher
forcing technique: scheduled sampling (Duckworth
et al., 2020), where input sequence tokens are given
ground-truth values only with some probability.
Unfortunately, scheduled sampling did not give
good results - the loss plot was very noisy. It is
likely that the CODWOE definition modeling task

"https://github.com/emukans/codwoe

&3

itself is a very hard task with too much variability
relative to the amount of provided training data;
scheduled sampling might be better suited for lan-
guage model fine-tuning when the model weights
are pretrained on a large corpus and already corre-
late fairly well with natural language syntax and
semantics.

After each training epoch, the model is evaluated
on a validation dataset using the same cross-entropy
loss function as used for training. We also use an ac-
curacy metric for evaluating model performance, as
it correlates with perplexity and human judgement
for large language models. The accuracy is calcu-
lated by dividing the count of correctly predicted
tokens (under teacher-forcing) by the number of
total tokens.

For "emukans" submissions, model training is
stopped using early stopping (Prechelt, 2012) based
on the accuracy score for the validation data, while
"guntis" submissions were intentionally trained
long past the overfitting point to observe scaling
and double descent effects.

4 Experimental setup

For our experiments, we have 5 Tesla v100 16GB
GPUs provided by our institute. During the compe-
tition, our focus was on exploring different training
effects and model tuning. Most of the experiments
were focused on primary factors of "scaling laws":
model size and the amount of compute (training
epochs).

For simplicity and consistency of presentation,
in most of the following tables and figures (all ex-
cept for Figure 3) we report experimental perfor-
mance evaluated against a trial dataset provided by
the CODWOE organizers, which consists of only
200 glosses. Apart from the automatic metrics,
our focus was on (informal) manual evaluation of
generated glosses.

4.1 Vocabulary size

The vocabulary of distinct tokens available for use
by an NLP model is generally built during a data
preparation stage, and the size of this vocabulary is
a key factor in model performance. Therefore we
started our experiments by tuning the size of the
vocabulary.

We build our token vocabulary from the train-
ing dataset only. Taking into account the relatively
small training dataset - only 43k glosses and 18k
unique words, we reasoned that the token vocabu-



Vocab
size  MoverScore S-BLEU L-BLEU

250 0.09702 0.02504  0.02508
500 0.10662 0.02452  0.02455
800 0.11754 0.02469  0.02470
1500 0.13045 0.02726  0.02726
3000 0.13379 0.02679  0.02681
5000 0.13625 0.02593  0.02596
15000 0.09638 0.02053  0.02056

Table 1: Influence of vocabulary size on the automatic
metrics

lary size should be fairly small. Therefore we set
our hypothesis as the following:

Hypothesis 1 (H1): Optimal vocabulary size is
around 10% of the unique word tokens.

During initial training experiments, we noticed a
tendency of the model to repeat the same gloss for
many different word embeddings. We speculate
that repeating such "most popular’ glosses might
give the model higher chances of matching fre-
quently occurring words or phrases in the dataset.
In the vocabulary size optimization experiment,
we used the GRU model with 2 layers, hidden di-
mension 768, and 30 tokens limit during training.
Table 1 summarizes our results on the trial set. We
selected vocabulary size 1500 as it has the highest
BLEU scores, relatively good MoverScore and the
most promising glosses during manual evaluation.
1500 tokens are 8.3%, the result is close to 10%,
confirming hypothesis 1 experimentally.

4.2 Model size scaling

Recent trends in deep learning suggest that bigger
models increase performance on most tasks (Brown
etal., 2020; Rae et al., 2021). However, the focus in
these cited papers is given to Transformer (Vaswani
et al., 2017), Convolutional (ConvNets) or Resid-
ual networks (ResNets). Classical recurrent neural
networks (RNN) such as GRU or LSTM have been
left out of the mainstream investigation of scaling
effects. In the following experiments, we show that
scaling RNNs also gives similar positive effects
as for other network architectures. Our approach
could be formulated with the following hypothesis:

Hypothesis 2 (H2): Scaling RNNs in depth or
width improves their performance.

We summarize our experiments in tables 2, 3
and 4. The results tentatively confirm hypothesis

Layers MoverScore S-BLEU L-BLEU
1 0.11458 0.02564  0.02561
2 0.11312 0.02427  0.02426
4 0.12454 0.02548  0.02548

Table 2: Scaling GRU model layers with fixed hidden
size: 3072 dim.

Hidden MoverScore S-BLEU L-BLEU
512 0.10851 0.02439  0.02437
1024 0.10880 0.02342  0.02341
3072 0.11312 0.02427  0.02426
4096 0.11071 0.02453  0.02450

Table 3: Scaling hidden dimensions for 2 layer GRU
model.

2. We observe that no matter how one scales the
model, in width (higher hidden dimension) or depth
(more layers), the performance does increase in
both cases. Of course, these results are only for
relatively small models fitting into our compute
capacity (trained using a single Nvidia V100 GPU).

4.3 Double descent

Classical machine learning theory says that increas-
ing the model size or training time beyond some
optimum, while keeping the amount of data con-
stant, will eventually lead to the model overfitting.
(i.e., bigger models would give worse performance
than optimally sized smaller models). Recently, a
new effect was discovered (Nakkiran et al., 2019)
which contradicts, or amends, this traditional wis-
dom. The double descent effect states that increas-
ing the model size (i.e., model-wise double de-
scent) or compute resources invested into training
(i.e., epoch-wise double descent) indeed leads to
overfitting at first, but further increasing the size of
the model or the training time can, at some critical
point, reverse the trend, so that performance starts
increasing again.

During our model scaling experiments we aimed

Hidden MoverScore S-BLEU L-BLEU
1024 0.07284 0.02018  0.02014
2048 0.11915 0.02430  0.02427
3072 0.12454 0.02548  0.02548

Table 4: Scaling hidden dimensions for 4 layer GRU
model.
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Figure 2: Automatic metric change during the 4-layer
model training. The scores are calculated on the trial
dataset.

to replicate the double descent effect and bring the
model quality to a new level after initial overfit-
ting. Since our compute resources were limited
and we could not scale our model size endlessly,
we investigate the following hypothesis:
Hypothesis 3 (H3): Training the GRU model
longer leads to an epoch-wise double descent ef-
fect.

For our experiments, besides automatic evalua-
tion metrics for the defmod task we introduced also
an accuracy score.

Definition 1 (Accuracy): Percent of correctly pre-
dicted tokens when all previous input tokens are
correct.

In figure 1 are 3 plots for 1-, 2- and 4-layer GRU
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models. The 4-layer model shows a clear epoch-
wise double descent effect. We can also observe
that, as previously demonstrated for other kinds of
models, the effect occurs only when the model size
is big enough relative to the training set. The 1-
and 2-layer models are apparently too small for this
training set and the task complexity.

Figure 2 is for the same 4-layer model, but in
this case plotting scores on the metrics used for
the CODWOE defmod task. We can see some
correlation with the accuracy plot in figure 1, but
these metrics seem to be less sensitive overall.

In the table 5 we illustrate the continuing gloss
quality improvement according to human judge-
ment after the first accuracy spike in the automatic
metrics (epoch 5). Glosses become semantically
closer to the original word. Hence, we conclude
that hypothesis 3 is empirically confirmed.

5 Results

Our team "emukans" and "guntis" placed in the
middle of the final ranking table. However, if we in-
spect the scores in figure 3, we see that our solution
(a green line) does outperform others in some met-
rics for some languages (i.e., top score for French,
2nd for Spanish, 3rd for Russian).

Analysing our submission results, we noticed
that MoverScore can give even negative scores and
is quite variable from one example to another. The
score is generally very low if the generated gloss
length differs substantially (either too long or too



Word Ground-truth Epoch Predicted MoverScore
scraggy Lean or thin, scrawny. 5 A slightly used to slightly. 0.11885
193  Adorned with one or more 0.06659
gauntlets
315  Ase, slender, thin . 0.12597
coal A glowing or charred piece of 5 slightly; to slightly. 0.00863
coal, wood, or other solid fuel.
193 A blust or furnished vehicle . 0.17182
315 supply with energy, especially of 0.10929
a person’s size.
beautiful Pleasant; clear. 5 having been (a person); to sug- 0.11287
gest or despons.
193 sufficient attention or thought, 0.03470
especially concerning the avoid-
ance of harm.
315 suitable or proper; extraordinary; 0.19444
epic.
thirsty ~ Craving something. 5 having been used to suggest or 0.04727
slightly.
193 Causing by a sensation of alco- -0.02330
hol or narcotics.
315  Causing by anger or excitement. 0.05691

Table 5: The evolution of gloss prediction during training. N.B. The word in column one is informational only, it
was not available in the train/dev datasets and was not used during training nor prediction.
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Figure 3: Best MoverScore results for all participants in
all languages.

short) from the length of the ground-truth gloss,
irrespective of whether a human can perceive some
semantic alignment between the two.

Analysing the available data, we see that many of
the glosses are relatively short: up to 20 tokens (but
there are also very long examples). We conjecture
that one strategy for increasing MoverScore might
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be to simply limit all generated glosses to 20 tokens
or less.

6 Conclusion

In this competition, we tried a classical recurrent
neural network approach for the CODWOE defini-
tion modeling task, and obtained positive results.

Several topics require deeper investigation. A
good metric for automatically measuring how se-
mantically close are two sentences is still an un-
solved problem. MoverScore is still too far from
human judgement. Taking into account even the
best scores for the definition modeling task, the
task is still in very early stages, and models that are
trained only on the provided data cannot generate
any practically useful outputs. This could possibly
be addressed with much larger training datasets, or
by allowing the use of external data (or of large
pretrained language models). In general, it seems
that a word semantic could not be represented us-
ing a single vector. The task requires more context
to capture the semantics. Maybe the task could be
changed to generating a gloss for a set of synonyms
or semantically close words.
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Abstract

We present the Uppsala University system for
SemEval-2022 Task 1: Comparing Dictionar-
ies and Word Embeddings (CODWOE). We ex-
plore the performance of multilingual reverse
dictionaries as well as the possibility of utiliz-
ing annotated data in other languages to im-
prove the quality of a reverse dictionary in the
target language. We mainly focus on character-
based embeddings. In our main experiment,
we train multilingual models by combining the
training data from multiple languages. In an ad-
ditional experiment, using resources beyond the
shared task, we use the training data in Russian
and French to improve the English reverse dic-
tionary using unsupervised embeddings align-
ment and machine translation. The results show
that multilingual models occasionally but not
consistently can outperform the monolingual
baselines. In addition, we demonstrate an im-
provement of an English reverse dictionary us-
ing translated entries from the Russian training
data set.

1 Introduction

In a reverse dictionary, one can look up a gloss, an
explanation of a word’s meaning, to find the most
relevant word or word form. The applications of
reverse dictionaries are numerous, as they can help
language learners in expanding their vocabulary,
authors and writers in looking for the most suitable
word, and avid cruciverbalists in taking on some of
the most challenging crosswords.

Reverse dictionary modelling has seen ap-
proaches ranging from traditional information re-
trieval using relevance scores (Zock and Bilac,
2004) to ones involving node-graph architectures
(Zhang et al., 2020). As a general rule, the quality
of a reverse dictionary appears to largely depend
on the availability of annotated data. However, an-
notated data are scarcely available and expensive to
produce for low-resource languages. We therefore
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explore the viability of multilingual approaches to
improve the quality of a reverse dictionary.

This work is performed in the context of the
reversed dictionary subtask of the SemEval 2022
task 1, COmparing Dictionaries and WOrd Em-
beddings (Mickus et al., 2022). Unlike standard
reverse dictionaries, the target is to predict a word
embedding vector for each gloss, rather than a word
form. Three types of word embeddings are avail-
able: character-based embeddings (char), Skip-
grams (sgns), and contextual embeddings (electra).
No additional resources are allowed in the shared
task. In this paper, we do present additional ex-
periments, though, where we also used an external
machine translation engine. While five languages
were made available in the shared task, we mainly
focus on English, but also give some results for
Russian and French.

The main research question of this study is thus
whether the performance of a monolingual reverse
dictionary can be improved using data in other lan-
guage(s) in a low supervision setup. We first ex-
plore what are the most suitable type of embed-
dings for a Transformer-based reverse dictionary.
Having found the best-performing embeddings, we
use them to train a joint model for multilingual re-
verse dictionary, which can map glosses to words
in multiple languages. Finally, we use the training
data in French and Russian to improve the qual-
ity of an English reverse dictionary by means of
unsupervised embeddings alignment and machine
translation.

We did not submit our results in the evaluation
period since in one of the experiments we used
a pre-trained neural machine translation model,
which is prohibited in the shared task. Nevertheless,
we report the performance of our jointly trained
multilingual models on the test sets, as no addi-
tional data or pre-trained models were involved
in training. For character-level embeddings, our
best multilingual models, when tested on English,
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would rank 25th in terms of mean squared error
(MSE), 20th in terms of cosine similarity (COS),
and 9th in terms of cosine-based ranking (CRK);
on French: 22nd (MSE), 10th (COS), 3rd (CRK);
on Russian: 7th (MSE), 7th (COS), 13th (CRK).

2 Related Work

Recent research has explored bilingual and cross-
lingual reverse dictionaries, the task of which is to
map a gloss in a source language to a word in target
language. An implementation by Qi et al. (2020) in-
volved a machine translation API and bilingual dic-
tionaries to re-direct a query in the source language
through the target language pipeline. Yan et al.
(2020) implemented the first cross-lingual reverse
dictionary based on mBERT (Devlin et al., 2019),
a Transformer-based language model trained on
Wikipedia articles in 104 languages. Their study
revealed that unaligned cross-lingual reverse dic-
tionary achieves best performance when mBERT
is tuned on unaligned multilingual data; its quality
is substantially worse than that of a monolingual
model. Yan et al. (2020) thus concluded that it
remains unclear how multilingual data is to be uti-
lized to improve the quality of unaligned reverse
dictionary, which is to be explored in this project.

Joint multilingual models, which are trained on
multiple languages at once, offer a solution for low-
resource languages that often have little to none
annotated data. This has for example been explored
for dependency parsing, with positive results (Kon-
dratyuk and Straka, 2019; Smith et al., 2018).

Cross-lingual embeddings are of central impor-
tance in word meaning similarity across languages
(Jimenez et al., 2017), and are thus a crucial com-
ponent of cross-lingual reverse dictionaries. As
noted by Ruder et al. (2019), the applicability of
cross-lingual embeddings relies on their quality,
which, in turn, depends on the availability of bilin-
gual corpora and dictionaries. Nevertheless, an
unsupervised cross-lingual embeddings alignment
method proposed by Lample et al. (2018) enables
high quality cross-lingual embeddings with no or
little supervision, further allowing for unsupervised
machine translation. Unsupervised cross-lingual
embeddings alignment thus offers a solution for
both mapping the word embeddings and its glosses
from one language to another.
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3 System Description

We focus on the strategies of utilizing the data in
foreign languages to improve reverse dictionary
rather than the choosing of most suitable model.
Therefore, we use the SemEval 2022 task 1 base-
line system, a Transformer-based architecture with
all parameters unchanged for all of our models.

31

The methodology adopted can be divided into a
preparatory step and two main experiments. The
initial step sought to learn the most suitable type
of embeddings for a Transformer-based English
reverse dictionary. A baseline model was trained
and tested three times on each type of embedding
to learn whether there were notable deviations be-
tween the runs and the official baseline scores of
the shared task. This was done to select the best
performing type of embedding to be used in further
experiments, thus avoiding spending the computa-
tional resources on numerous models with different
embeddings.

The two main experiments build on the research
of He et al. (2017), as they investigate joint train-
ing of multilingual models as well as cross-lingual
embedding alignment. In the first experiment, the
French and Russian training sets are concatenated
to the English training set, one or both at a time.
The joint models are then trained with a joint de-
velopment set containing entries in all languages
used in training. We choose the source languages,
namely French and Russian, so as to investigate
whether the similarities between the source and tar-
get language, such as shared words, similar script,
and typological proximity can affect the perfor-
mance of a multilingual reverse dictionary.

In the second experiment, the embeddings of
source entries (in French and Russian) are firstly
aligned to the target embedding space (English)
with no supervision using the MUSE library (Lam-
ple et al., 2018). To ensure a fully unsupervised
setup, the refinement and evaluation steps involv-
ing bilingual corpora are disabled. The alignment
is conducted in five epochs using all standard pa-
rameters. In the process, the target embeddings are
anchored. Their values are not updated in order
to preserve the quality of the pre-trained embed-
dings. Secondly, the glosses of the first 4,500' en-
tries from the now-aligned source training set are

Methodology

'A relatively small number of glosses were translated due
to the limited access to the tool used for machine translation.



Embeddings MSE o COS o CRK o
sgns 1.193  0.009 0.259 0.007 0.405 0.012
char 0.156 0.014 0.810 0.003 0.469 0.003

electra 1.846 0.172 0.840 0.001 0.483 0.002

Table 1: The baseline performance of a Transformer-based English reverse dictionary trained on different types of
pre-trained embeddings, averaged over 3 runs. The standard deviation (o) shows the fluctuation of the scores over

the three runs.

translated and attached to the target (English) train-
ing set. Since the word forms are masked in the
training data, we were unable to train an unsuper-
vised machine translation model. The glosses are
thus translated using a pre-trained neural machine
translation model, namely Watson API. Lastly, the
translated glosses are tokenized using the spaCy
tokenizer to mirror the tokenization in the original
data sets provided by the organizers of the shared
task.

3.2 Evaluation

All models are primarily evaluated on the trial data
set. This is due to the fact that Experiment 2 used a
pre-trained machine translation model, which goes
against the rules of the contest. We, however, ad-
ditionally evaluate our jointly trained multilingual
models on the test set, as the model does not use
any additional resources.

The models were evaluated based on the three
official metrics of the shared task: mean squared
error (MSE), cosine similarity (COS), and cosine-
based ranking (CRK) (Mickus et al., 2022).

4 Results and Discussion

4.1 Choice of Embeddings

The performance of the baseline models trained
on the English training data set with different em-
beddings can be seen in Table 1. The scores are
highly similar to the baselines published by Mickus
et al. (2022) and are primarily included to estimate
the stability of the performance of a Transformer
architecture on each type of embeddings.
Individually, each type of embedding achieves
the highest score on one of the parameters, with
char achieving lowest MSE, electra securing high-
est cosine similarity, and sgns having best cosine-
based ranking. Overall, char embeddings demon-
strate the most stable and good performance across
all three parameters. The char embeddings also

2https://developer.ibm.com/components/watson-apis/

had a relatively low standard deviation between
runs for all metrics, as opposed to electra on MSE.

The results seem to have several implications.
Firstly, the three evaluation parameters favour diver-
gent information encoded by the three types of em-
beddings. Most notably, character-level informa-
tion stored in char embeddings substantially mini-
mizes MSE of the predicted embeddings of a word.
This might be because character-level embeddings
are effective in addressing out-of-vocabulary words
(Polatbilek, 2020). In other words, they seem to
enable the Transformer model to learn the map-
ping between glosses and characters that add up to
words denoting the glosses. However, such map-
ping suffers from a major limitation, as character-
level embeddings do not differentiate between the
senses of a word. Most effective in handling this
task are the contextualized embeddings (electra),
for they encode a word depending on the surround-
ing context. Depending on the context, the sense
might differ, thus leading to completely different
values in the embeddings space. It can thus be
argued that both character-level and contextual-
ized features are important for a reverse dictionary
model; an ideal solution could perhaps utilize using
both types of embeddings for fine-grained retrieval
of words.

Seeing as char embeddings had a good and sta-
ble performance overall, we further explore them
in the following experiments.

4.2 Multilingual Model

The performance of multilingual models jointly
trained for two or three languages at a time is re-
ported in Tables 2 and 3.

The multilingual models perform similarly to the
monolingual baselines. As can be seen from com-
paring the models’ performance across trial and
test sets, some differences are likely due to chance
and fall within the range of a standard deviation
reported in 1. Nevertheless, it is rather surprising
that the English reverse dictionary seems to bene-
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‘ English (E) H French (F) | Russian (R) ‘
| Metric | E (Base) ~ E+F E+R  E+F+R | F(Base) F+E  F+E+R | R(Base) R+E  R+E+F |

MSE | 0.17893 0.18897 0.14708 0.19417 | 0.39491 0.43406 0.51295 | 0.13858 0.15327 0.25199
COS | 0.79591 0.78978 0.80659 0.79472 | 0.78361 0.77169 0.77499 | 0.84409 0.83503 0.83073
CRK | 045771 0.46748 0.49775 0.48978 | 047125 0.45235 0.45225 | 0.42565 0.41385 0.40665

Table 2: The performance of a multilingual reverse dictionary jointly trained on char embeddings in the source and
target language evaluated on the trial set. The performance of multilingual model (joint) is reported alongside its
monolingual baseline.

‘ English (E) H French (F) | Russian (R) ‘
| Metric | E (Base)  E+F E+R  E+F+R | F(Base) F+E  F+E+R | R(Base) R+E  R+E+F |

MSE | 0.17893 0.22773 0.17821 0.21932 | 0.45808 0.50001 0.53045 | 0.16775 0.16075 0.24864
COS | 0.79591 0.76452 0.78445 0.77336 | 0.77978 0.75831 0.76917 | 0.84044 0.83220 0.83349
CRK | 0.45771 0.45639 0.46198 0.46480 | 0.45006 0.42284 0.43047 | 0.42073 0.40115 0.40776

Table 3: The performance of a multilingual reverse dictionary jointly trained on char embeddings in the source and
target language evaluated on the test set. The performance of multilingual model (joint) is reported alongside its
monolingual baseline.

fit from the Russian data more than it does from 4.3 Embeddings Alignment and Machine
the French data. In addition, when trained on both Translation
English and Russian, the model performs better on

. The last experiment involved unsupervised embed-
Russian.

dings alignment and machine translation of the

glosses from source language (French and/or Rus-

sian) to target language (English). During align-

In the case of multilingual models, it might be  meng, the target embeddings were anchored to re-
productive to focus on the lack of losses rather  (ain the values of the pre-trained embeddings. How-
than the lack of gains. The results indicate that the  ever, due to system constraints, the target embed-
performance of Transformer-based English reverse ding values changed from ten decimal points to five.
dictionary remains unaffected by both a relatively Ty address this and to see whether this could affect
close language (French), and a distant language  the results in a negative way, an additional model
(Russian). This might be due to the fact that the a5 trained with the restored original values (with
high-quality pre-trained embeddings exist in differ- ey decimal points) of the embeddings in English,
ent vector spaces. Despite the fact that the data are  hile the source (French and Russian) embeddings
concatenated, the Transformer architecture learns  ere kept at five decimal points. The results are

to differentiate between the two and only retrieve  presented in Table 4 alongside the baseline results.

words from the relevant vector space. Alignment without translation of glosses in most

cases affected the model in a negative way, as it

only introduced noisy foreign data. However, the

The shared space of models like mBERT is ar-  machine translated glosses attached to the aligned
guably the main reason why the joint tuning of  values from source language seemed to have a pos-
models on data in multiple languages at once leads itive effect on the English reverse dictionary when
to best performance of a cross-lingual reverse dic-  the source language was Russian. In the case of
tionary for Yan et al. (2020). Overall, itis debatable ~ French, the approach failed completely. The reten-
whether there is reason to train a multilingual re-  tion of the original embedding values as opposed
verse dictionary on several unaligned languages.  to the last five digits being lost led to mixed results.
Such a model takes longer to train and tune, oc- Though in most cases the difference is small and
cupies more space, and does not offer much apart ~ might have occurred by chance, the results could
from the convenience of not having to switch be-  also indicate that it is crucial for the source and tar-
tween multiple models. get embeddings to be similar in terms of the quality
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| English + French |

English + Russian ‘

| Metric | Baseline | Al AI+T AI+TR | Al  AMT AI+TR |
MSE | 0.156 |0.184 0.71 0.184 |0.162 0.135 0.171
COS | 0810 |0.799 0.810 0801 |0.807 0.811 0.810
CRK | 0469 | 0474 0500 0483 | 0477 0.501 0.463

Table 4: The performance of a Transformer-based English reverse dictionary trained on aligned and joined data (Al),
aligned with target embeddings cut off past five digits and machine translated glosses (Al+T), as well as aligned
with recovered target embeddings and machine translated glosses (Al+TR).

in a cross-lingual space.

A rather surprising finding of the experiment
was the improvement of an English reverse dictio-
nary using the data in Russian. Contrary to the
findings of Yan et al. (2020), a more substantial im-
provement for English was observed with a distant
source language, which uses a completely differ-
ent script. The Russian language has been previ-
ously proposed as a generally good source language
across several tasks and target languages, though
(Turc et al., 2021). As for this experiment, perhaps
the alignment produced with no supervision was of
higher quality with Russian, allowing to correctly
project the foreign source entries in the target space.
It is also possible, though unlikely, that the trans-
lations of glosses from Russian to English were of
higher quality than those of French to English.

5 Conclusions

This project has investigated whether an English
reverse dictionary can be improved using data in
foreign languages. This research question was ad-
dressed by firstly determining the most suitable
type of embeddings for a Transformer-based re-
verse dictionary. Secondly, multilingual joint mod-
els were trained to see the affects on the perfor-
mance of English as target language and two source
languages, namely French and Russian. Lastly, the
embeddings from source language were aligned to
the target embedding space, followed by machine
translation of the respective glosses.

Three key findings emerged. Firstly, character-
level features lead to best performance of an En-
glish Transformer-based reverse dictionary. Sec-
ondly, multilingual reverse dictionaries perform
comparably with monolingual ones, as no substan-
tial improvement or decline was observed. Thirdly,
an English reverse dictionary can be improved us-
ing the available data in foreign languages, such
as French and Russian, though the improvement
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is rather small. In the reported experimental setup,
Russian was found to be a more suitable source lan-
guage in enhancing an English reverse dictionary.

There are numerous possible extensions of the
present study. One could, for instance, recreate the
study in a fully supervised or fully unsupervised set-
up so as to see to what extent the lack of supervision
affected the results. It would also be interesting to
investigate whether combinations of embeddings,
e.g. contextual and character-level, would lead to
better performance of reverse dictionary models.
Overall, the improvements recorded in this study
were, arguably, hardly significant. It may therefore
be productive to search for more successful ways
of using data in foreign languages in creating or
improving reverse dictionaries.
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Abstract

This paper describes our two deep learning
systems that competed at SemEval-2022
Task 1 “CODWOE:  Comparing
Dictionaries and WOrd Embeddings”. We
participated in the subtask for the reverse
dictionary which consists in generating
vectors from glosses. We use sequential
models that integrate several neural
networks, starting from Embeddings
networks until the use of Dense networks,
Bidirectional Long Short-Term Memory
(BiLSTM) networks and LSTM networks.
All glosses have been preprocessed in order
to consider the best representation form of
the meanings for all words that appears. We
achieved very competitive results in reverse
dictionary with a second position in English
and French languages when using
contextualized embeddings, and the same
position for English, French and Spanish
languages when using char embeddings.
Our source code can be found at GitHub®.

Introduction

Distributed representations of words (or word
embeddings) (Bengio et al., 2003; Mikolov et al.,
2013; Pennington, Socher and Manning, 2014)
have shown to provide useful features for various
tasks in natural language processing (NLP) and
computer vision. While there seems to be a
consensus concerning the usefulness of word
embeddings and how to learn them, this is not yet
clear with regard to representations that carry the
meaning of a full sentence. That is, how to capture

! https://github.com/jIn-brtn/BL.Research-at-
SemEval-2022-Task-1
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the relationships among multiple words and
phrases in a single vector remains a question to be
solved.

Much recent research in computational
semantics has focused on learning representations
of arbitrary-length phrases and sentences. The
reverse dictionary represents one of the most
common cases to solve this problem of learning
sequence representations. That said, the reverse
dictionary is the task to find the proper target word
given the word description (Hill er al., 2016;
Hedderich et al., 2019; Zhang et al., 2019; Yan, Li
and Qiu, 2020). For example, the composed
meaning of the words in a dictionary definition (4
mixture of other substances or things) should
correspond to the meaning of the word that define
it (cocktail). As mentioned by Hill e al. (2016), this
bridge between lexical and phrasal semantics is
useful because high quality vector representations
of single words can be used as a target when
learning to combine the words into a coherent
phrasal representation.

In this paper, we present our contributions to
solve the reverse dictionary problem using very
specific neural architectures and applying
supervised learning. For more information on task
1 of SemEval-2022 as described by its organizers,
we invite the reader to consult the paper of Mickus,
Timothee et al. (2022).

Our approaches require a model able of learning
to map between arbitrary-length phrases and fixed-
length continuous-valued word vectors. For this
purpose, we experiment with two broad classes of
neural language models (NLMs): Recurrent Neural
Networks (RNNs) with (Bidirectional) Long-Short

Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 94 - 100
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Term Memory (BiLSTM and LSTM), which
naturally encode the order of input words (or
characters), and simpler (feedforward) lexical units
embedding models. These lexical units can be bag-
of-words (BOW) or a sequence of characters.

After having described in section 2 in more
detail the problem to be solved in the SemEval-
2022 evaluation campaign and the data provided,
we present in section 3 the previous works of
reverse dictionary. Then, in section 4, we present
our neural architectures with all data preprocessing
having been performed. Thereafter, in section 5, we
describe the experimental setup implemented
before presenting the results in section 6 and
concluding in section 7.

2 Background

2.1 Problem Description

The CODWOE shared task? consists of compare
two types of semantic descriptions: dictionary
glosses and word embedding representations. The
problem can be defined as follows: given a
definition, can we generate the embedding vector
of the target word? That said, there are several
questions to be solved: (1) How should we
compare two very different types of semantic
representation? 2) Will contextualized
embeddings help better define polysemous
(ambiguous) words that have multiple senses? and
(3) Can we have the same evaluation performances
of the same neural architecture for different natural
languages? In other words, five natural languages
are studied in this task, namely: English, French,
Spanish, Italian and Russian language. Our goal is
to answer the following question: can the same
model or the same neural network architecture be
beneficial for all languages?

2.2 Data Description

The organizing members of the reverse
dictionary task proposed different JSON files that
contain definitions and their vector representations.
Each JSON file describes information about a one
natural language for a list of five languages,
namely: French, English, Spanish, Italian and
Russian language. The corpus is therefore
multilingual. Before having the test corpus, the
data have been split in different sets: trial, train, and
development corpus. All the models we will

2 https://competitions.codalab.org/competitions/34022
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present have been trained and validated on train
and development corpus.

Before describing the data, we can do a quick
focus on the size of these data. As we mentioned,
the data are split into 3 groups. For each language,
the trial dataset contains 200 elements pairs
(definitions and their embedding vectors), the train
dataset contains 43,608 elements pairs, and the
development dataset contains 6,375 elements pairs.
Regarding the test corpus, we have 6,208
definitions for each language. The organizers have
provided different vector representations for the
definitions. All these representations are
continuous vectors (embedding vectors). They
have 256 dimensions and are built with well-
known three techniques:

e ‘"char" corresponds to character-based
embeddings, computed using an auto-
encoder on the spelling of a word.

"sgns" corresponds to Skip-Gram with
negative sampling embeddings, aka.
Word2Vec (Mikolov et al., 2013).

"electra" corresponds to Transformer-based
contextualized embeddings.

As mentioned above, all datasets of SemEval-
2022 task 1 are multilingual. This is an important
point because we can imagine and create a system
that manages these multilingual datasets, or several
systems specialized in one language. We will
explore this option in the “Experimental Setup”.

3 Related Work

In the field of natural language processing, word
embeddings have been the subject of several
research problems for many years. Indeed, a text
contains various information, and the idea is to
resorb the target information in a continuous vector
representation. Embedding’s methods improve
significatively the results against standard
statistical approaches and justified the interest
these last years. In order to create embeddings, the
scientific research community is experimenting
with two approach types: unsupervised and
supervised learning of embeddings.

The unsupervised approaches are the most
common and consist in using a pretrained language
model on a large corpus such as Word2Vec
(Mikolov et al., 2013) or Glove (Pennington,
Socher and Manning, 2014). From the word



embeddings we can obtained, we must then choose
a technique in order to find the right combination
of words that will best convey the desired
information. For example, it’s possible to apply
combinations such as: average, sum, or centroid to
obtain a vector that reflect the representation for a
sequence of words. We can find an example of
centroid usage with Lwin and Nwet (2019) for
news summarization extraction or a centroid vector
weighted by IDF (Inverse Document Frequency)
(Arora, Liang and Ma, 2017).

For the supervised approaches to produce
sequence text vector representation, the idea is
consisting of modeling the link between a content
and an embedding representation. The reverse
dictionary is a common case of sequence or short
content representation. Some  state-of-the-art
models are used to perform this task, for example
neural networks LSTM (Sherstinsky, 2018) and
Bert (Pre-training of Deep Bidirectional
Transformers for Language Understanding)
(Devlin et al., 2018). Notably in the paper of Yan,
Li and Qiu (2020), they experiment with word
generation from a definition wusing Bert
multilingual architecture. As it’s mentioned in their
paper, the use of a Bert model is a great idea and
can, at least, achieves state-of-the-art performances
for both monolingual and cross-lingual reverse
dictionary task. Even better, the proposed
framework here can perform cross-lingual reverse
dictionary task without aligned data.

We can also talk about the work of Morinaga and
Yamaguchi (2020), Malekzadeh, Gheibi and
Mohades (2021) which are based on a Long Short-
Term Memory (LSTM) architecture. With always
our objective to produce a vector of a
contextualized text, the LSTM offers great
prospect in this field of research. Indeed, the
recurrent neural network architecture of the LSTM
allow models to perform on sequential data which
is exactly our case study in this task.

4 System Overview

In this section, we describe the models we
proposed in the CODWOE — Reverse dictionary
shared task. In order to keep comparable and
linguistically significant the results submitted by
the different participants, the organizers of

3 https://www.tensorflow.org/
4 https://keras.io/
5 https://stanfordnlp.github.io/stanza/

CODWOE disallowed any use of external
resources, including standard datasets as well as
pretrained models that could be used for this task
(such as Word2 Vec models or contextual pretrained
models based on Transformer’s architectures like
Bert). Given this condition, we decided to explore
the sequential models, and particularly the LSTM
and BiLSTM models. All the following models’
architecture we created are based on TensorFlow®
and Keras* (Chollet and others, 2015) libraries.

4.1 Data preprocessing

Before introducing our models, we want to
mention that we have performed preprocessing on
the content data. By using Stanza® (Qi et al., 2020),
we lemmatized all definitions and removed all
punctuations. We decided to do this to minimize
alternative words for the same concept and help our
models to correctly process the vocabulary.

To optimize our workflow, we worked on the
data before and independently from the neural
network architectures. In this way, we built new
files based on the lemmatization of the main
corpus. This process is possible because all
languages are covered by Stanza®.

4.2 Baseline Model

In this section, we will introduce our first model,
called: Baseline Model. This model is intentionally
simple in order to create baseline scores and
introduce manipulation on the datasets. The figure
1 presents our first architecture.

input text
Max sentence size (Ms) A mixture of other substances or things

Text vectorization
Shape : (Ms)

Embedding

Shape : (Ms, 128)

Flatten
Shape : (Ms x 128)

Dense
Shape : (256)

Figure 1 : Baseline Model Architecture.

®https://stanfordnlp.github.io/stanza/available_models.
html



As you can see on the figure 1, our model created
with Keras contains four different layers and starts
with the text vectorization. This first layer will
transform the input text in a vector to be process by
the next layers. To perform this operation, we must
give an identifier to each different word in our
corpus. After that, each sentence will be
represented as a vector of identifiers. To be
processed, the vector of a sentence must have the
same size for all sentences. That said, we take the
maximum sentence size (Ms in figure 1) and
normalize all the vectors by adding zero values in
the end.

Now, each vector’s sentence is ready to be
processed by the embedding layer. This layer turns
positive integers (indexes) into dense vectors of
fixed size. After this operation, the flatten layer will
change the dimensionality of the data from two
dimensions to one dimension without losing any
value. The shape of this layer will be the
multiplication of the two dimensions of the
previous layer. Finally, we model the output data
by using a fully connected layer (Dense layer) with
256 dimensions to match with the gloss
embeddings gave by the organizers.

4.3 Advanced Model

LSTMs are a Recurrent Neural Networks
(RNN) (Medsker and Jain, 2001) which have an
internal memory that allows them to store the
information learned during training. LSTMs are
frequently used in the reverse dictionary task
(Sherstinsky, 2018) and in word and sentence
embeddings tasks in general (Augustyniak,
Kajdanowicz and Kazienko, 2019; Liu et al,
2020), as they can learn long-term dependencies
between existing words in the sentence and thus
compute context representation vectors for each
word. BiLSTM for its part, is a variant of LSTMs,
it allows a bidirectional representation of words
(Augustyniak, Kajdanowicz and Kazienko, 2019).

Our second model, named Advanced Model, is
therefore a BILSTM-LSTM network. As for the
baseline model, we use a sequential model which
can be provided by Keras. The figure 2 presents our
second architecture. This last one starts with a text
vectorization layer, followed by an Embedding
layer and a dense layer producing vectors of the
words passed as an input, the vectors have (length
of the longest sentence, 128) dimensions. Then we
added a BiLSTM layer, which takes a recurrent
layer (the first LSTM of our network) which in turn
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takes the “merge mode” as an argument. This mode
specifies how the forward and reverse outputs
should be combined; in our case the average of the
outputs is taken.

input text

Max sentence size (Ms) A mixture of other substances or things

Text vectorization
Shape : (Ms)
Embedding
Shape : (Ms, 128)

Dense

Shape : (Ms, 128)

BiLSTM

Shape : (Ms, 192)

Dense

Shape : (Ms, 192)

LSTM

Shape : (256)

Dense

Shape : (256)

Figure 2 : Advanced Model Architecture.

To these three layers, we added another fully
connected Dense layer and a LSTM layer of 256
dimensions corresponding to the dimensions of the
output vectors and a final Dense layer with the
same dimensions as illustrated in figure 2. We use
the Softmax as an activation function. For the
hyper-parameters to train the model, we use the
following: epochs = 10; batch size = 192; learning
rate = le-3 and AdamW as an optimizer.

5 Experimental Setup

In this section, we describe different variants we
tested. Since there were 3 types of vector
representations proposed to us in this shared task,
we used the same architectures to produce the 3
types of vectors. However, the data format given as
input to the model is not the same for the 3 types.
For the ‘electra’ and ‘sgns’ representation types, we
prepare a vocabulary containing the words of the
glosses of the ‘training dataset’, the words of this
vocabulary were obtained by following the
preprocessing described in section 4.1.

For the ‘char’ vector type, we construct a
vocabulary of all the characters used in the glosses
without preprocessing the data. The idea being that,



for the ‘char’ type representation, the model
encodes the characters of the glosses into vectors
and then produce the vectors encoding the glosses
based on the vectors of the characters constituting
the glosses.

The model that we propose is a monolingual
model, i.e., we trained it separately on the training
dataset of each language provided. However, in
order to evaluate the impact of using a multilingual
model, we trained the same neural networks on five
languages (with character vector) at the same time
and compared the results obtained with those
obtained by the monolingual models.

For the ‘sgns’ and ‘electra’ representation types,
we built a vocabulary containing the words of all
glosses on the five languages, which contains in
total 121,147 words. We did the same with the
‘char’ vectors but with preparing a vocabulary of
characters instead containing 405 characters, in
total. The table 1 describes the vocabulary size for
each monolingual model and for multilingual
model.

Vocab Type

Model Type Language Words Chars
English 21,001 139
Monolingual Frenf:h 24,089 170
Model Spanish 29,383 229
Italian 25,414 162
Russian 29,289 212

Multilingual All

Model languages 121,147 405

Table 1: Vocabulary size of models.

We can see that there are common words
between the different languages since the
multilingual model has a vocabulary of 121,147
words instead of 129,176. That said, there are 8,029
common words between at least two language
vocabularies. Moreover, we find that the
vocabulary of the Spanish language is the best
represented in the train dataset.

6 Results and Analysis

In this section, we present the performance
results on using architectures that we described in
section 4 and try to give clue to understand them.
Our main goal was to outperform the organizers’
baseline model and results (Mickus, Timothee et
al., 2022).
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For our first model (our baseline), the model is
not better than the state-of-the-art models for this
task. However, we can analyze an interesting point:
this simple model surprisingly produces better
results on the rank cosine (Rank) measure. To
illustrate this remark, we can look the model results
in table 2. On results for the MSE measure, only 3
cases outperform the organizers’ baseline model.
Moreover, every rank cosine measure is better. At
this point, we can reach our first analyze, it’s hard
to perform in the MSE and Cosine (Cos) with, at
the same time, trying to obtain good results in Rank
(and vice-versa). This analyze is supported by the
following table 3 based on advanced model.

Language | Emb-type | MSE Cos Rank
char 0.216 | 0.709 | 0.449

EN electra 1.638 | 0.805 | 0.433
sgns 1.217 | 0.165 0.311

char 0.501 | 0.690 | 0.428

FR electra 1.394 | 0.813 0.441
sgns 1.867 | 0.166 | 0.314

ES char 0.632 | 0.787 | 0.411
sgns 1.089 | 0.251 0.253

IT char 0.691 | 0.572 | 0.417
sgns 1.329 | 0.245 | 0.246

char 0.165 | 0.787 | 0.409

RU electra 0.946 | 0.694 | 0.398
sgns 0.690 | 0.219 | 0.289

Table 2: Our Baseline model results.

Language | Emb-type | MSE Cos Rank
char 0.143 | 0.795 | 0.500

EN electra 1.326 | 0.843 | 0.500
sgns 0.895 | 0.153 | 0.500

char 0.365 | 0.769 | 0.500

FR electra 1.112 | 0.857 | 0.500
sgns 1.106 | 0.211 0.500

ES char 0.510 | 0.824 | 0.500
sgns 0.910 | 0.227 | 0.500

T char 0.358 | 0.728 | 0.500
sgns 1.111 | 0.227 | 0.500

char 0.132 | 0.829 | 0.500

RU electra 0.864 | 0.719 | 0.500
sgns 0.566 | 0.298 | 0.425

Table 3; Advanced model results.

With our second model, the results are
completely opposite. We performed in MSE and
Cosine measure. With these two measures, we’re



doing better than the organizers’ baseline model.
On the other hand, the Rank cosine seems to be
stuck on 0.5. We can also compare our results with
the other participants. Our BiLSTM-LSTM
architecture is efficient on ‘char’ and ‘electra’
embeddings. For example, in ‘char’ with English,
French and Spanish languages, we obtain the
second-best score over the seven participants in
SemEval-2022 campaign at task 1. We can
conclude this analyze for the advanced architecture
with this open-ended question: Why our
architecture performs on English, French and
Spanish but seam to give worse results on the
Italian and Russian languages?

As we mentioned earlier, we tried to create a
multilingual model. Unfortunately, after trained
this model on all five languages and test on French
Character embeddings, the model gave us poor
results: 0.67 for MSE and 0.48 for Cosine measure.
These are the worst results we’ve had in this
competition, so we decided to drop this architecture
and focus on the models presented in the system
overview section.

Given the set of results obtained, we find that the
best cosine score was obtained by using electra
(contextualized) vector embeddings and the best
MSE score was obtained by using character vector
embeddings. More generally, the use of BiLSTM-
LSTM architecture neural network has been
beneficial in having results that surpass baselines
when cosine and MSE are used as evaluation
measures.

7 Conclusion

In this paper, we have presented our
contributions to solve the task 1 problem of the
semeval-2022 evaluation campaign. We studied the
effects of training sentence embeddings with
supervised data by testing on five different
languages, namely: English, French, Spanish,
Italian and Russian language. We showed that
models learned with char embeddings or
contextualized embeddings can perform better than
models learned with Skip-Gram word embeddings.
By exploring various architectures, we showed that
the combination of Embedding/Dense/BiLSTM/
Dense/LSTM layers can be beneficial than the
simple use of Embedding layer.

We believe that the neural architecture of our
advanced model can be used to solve other tasks
such as Definition Modeling (Noraset et al., 2017),
where the objective would be to reverse the
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inputs/outputs of the model, or other natural
language processing tasks where the objective is to
add a specific output layer to adopt the specific
problem like sequence classification, for example.
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Abstract

The reverse dictionary is a sequence-to-vector
task in which a gloss is provided as input,
and the model is trained to output a seman-
tically matching word vector. The reverse
dictionary is useful in practical applications
such as solving the tip-of-the-tongue prob-
lem, helping new language learners, etc. In
this paper, we evaluate the Transformer-based
model with the added LSTM layer for the task
at hand in a monolingual, multilingual, and
cross-lingual zero-shot setting. Experiments
are conducted in five languages in the COD-
WOE dataset, namely English, French, Italian,
Spanish, and Russian. Our work partially im-
proves the current baseline of the CODWOE
competition and offers insight into the feasi-
bility of the cross-lingual methodology for the
reverse dictionary task. The code is available
at https://github.com/honghanhh/codwoe2021.

1

The CODWOE 2021 shared task on dictionary
glosses and word embedding representations, orga-
nized as part of the SemEval workshop, presented
one of the first opportunities to systematically study
and compare these semantic descriptions by two
sub-tracks: model definition and reverse dictionary.

While definition modeling consists in using the
vector representation of e.g. “giraffe” to produce
the associated gloss, e.g. “a tall, long-necked, spot-
ted ruminant of Africa”, the reverse dictionary is
the mathematical inverse: reconstruct an embed-
ding for the word “giraffe” from the corresponding
gloss. In this paper, we dive into the reverse dic-
tionary task modelling to learn the ability to infer
word embeddings from dictionary resources.

A reverse dictionary is useful in real-world ap-
plications. First of all, it can effectively solve the
tip-of-the-tongue problem (Brown and McNeill,
1966): the inability to retrieve a word from memory.
People who suffer from this problem such as copy-
writers, novelists, researchers, students, etc. can
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quickly and easily find the words they need thanks
to reverse dictionary. Furthermore, new language
learners who grasp a limited number of words can
also take advantage of the reverse dictionary to
express correctly. Besides, it plays an important
role in word selection for anomia patients (Benson,
1979), who can recognize and describe an object
but fail to name it due to neurological disorder.
The contributions of this paper are as follows:

1. We evaluate the performance of the
Transformer-based model with an additional
LSTM, BiLSTM, and the combination of
both additional layers on separate languages
as well as the performance of a multilingual
model trained on the concatenated corpus
containing text for all five given languages.

. We analyze the effectiveness of zero-shot
learning by training the model on a partic-
ular language and apply it for prediction on
the rest.

This paper is organised as follows: Section 2
presents the related works in reverse dictionary.
Next, we introduce our methodology in Section 3,
and the experimental details in Section 4. The re-
sults are discussed in Section 5, before we conclude
and present future works in Section 6.

2 Related Work

The reverse dictionary systems tend to employ two
distinct approaches. The first approach takes ad-
vantage of sentence matching (Bilac et al., 2004;
Zock and Bilac, 2004; Méndez et al., 2013; Shaw
et al., 2011) to return the words whose dictionary
definitions are most similar to the corresponding
gloss.

The second approach focuses on neural language
models to encode the glosses into a vector repre-
sentation and returns the words with the closest
embeddings to the vector of the glosses (Hill et al.,

Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 101 - 106
July 14-15, 2022 ©2022 Association for Computational Linguistics



(=
T

‘ Embeddings ‘

——

l Concatenation l

seq
(D) et

Vector
(sgnsichar/elecira)

len(gloss)

len(vocab)

Model 1: Baseline with
additional LSTM layer

Vector
(sgnsichar/elecira)

=

Embeddings

len(gloss)

len(vocab)

Model 2: Baseline with
additional BI-LSTM layer

]

len(vocab)

Model 3: Baseline with concatenation
of LSTM and BI-LSTM layers

Figure 1: The overall model architecture.

2016; Kartsaklis et al., 2018; Morinaga and Ya-
maguchi, 2018; Hedderich et al., 2019; Pilehvar,
2019). As aresult, the performance depends largely
on the word representation’s quality. However,
many words are low-frequency and usually have
poor embeddings regarding Zipf’s law.

To tackle the above issue, a multi-channel re-
verse dictionary model has been proposed (Zheng
et al., 2020; Qi et al., 2020). The system includes a
sentence encoder (e.g. a BILSTM (Hochreiter and
Schmidhuber, 1997), BERT (Devlin et al., 2018))
with attention (Bahdanau et al., 2014), and diverse
characteristic predictors that are useful to find the
target words with poor representations and exclude
wrong words with similar embeddings to the target
words, for example, antonyms.

In terms of production, OneLook! and Reverse-
Dictionary? are two successful commercial En-
glish reverse dictionary systems. However, their
architectures are undisclosed and their performance
is far from perfect. Meanwhile, open-sourced
WantWords® (Qi et al., 2020) is a rising star with
state-of-the-art (SOTA) performance in English and
even competitive results in a cross-lingual Chinese-
English and English-Chinese setting.

3 Methodology

As the competition does not allow the use of ex-
ternal data or pretrained language models in order

"https://onelook.com/thesaurus/
https://reversedictionary.org/
*https://wantwords.thunlp.org/

to make approaches easily comparable, we start
by experimenting with the simplest form of Trans-
former, a deep learning model that adopts the self-
attention mechanism, differentially weighting the
significance of each part of the input data. This is
also the baseline shared by CODWOE’s organiz-
ers. Then we experiment by adding an additional
LSTM layer (Model 1), BiLSTM layer (Model 2),
and combining the prediction from these two men-
tioned layers (Model 3). The overall architecture is
presented in Figure 1.

The objective of the model is to map the glosses
to the vector representation of the word that the
gloss defines. The target embeddings are learned
by a skip-gram with negative sampling (sgns) ap-
proach (word2vec). During training, the input is
the gloss, which is tokenized using the Byte Pair
Encoding (BPE) algorithm* and then converted
into word embeddings. The positional encoding
is applied to each embedding to inject meaning-
ful information about the position of the tokens in
the sequence. After that, they are fed into a Trans-
former Encoder, which is a stack of four identical
encoder blocks. As illustrated in Figure 2, each
block includes the following layers in the same or-
der: a multi-head self-attention layer that explores
the word correlations followed by a normalization
layer (both of them are surrounded by a residual
connection), and then a linear layer followed by a
second normalization layer (both of them are also

“We employ the SentencePiece library:
github.com/google/sentencepiece

https://
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surrounded by a residual connection). A dropout
layer is then added to avoid overfitting. In the
baseline model suggested by the CODWOE'’s orga-
nizers, the results from the above architecture are
then passed into a linear layer to achieve the final
model.

Nx

Figure 2: Transformer encoder (Vaswani et al., 2017).

We propose three settings regarding three differ-
ent models constructed from the baseline architec-
ture. We hypothesize that with an additional LSTM
or BiLSTM layer, we can improve the modeling
of the word-level sequential context, same as in
(Wang et al., 2019), and therefore improve the per-
formance of the model. In Model 1, we add one
additional LSTM layer after the linear one. We
take advantage of the BILSTM layer in Model 2 to
capture the information bidirectionally. We com-
bine the result from the two mentioned layers by
averaging their weights in Model 3. In the final
step, we fed the LSTM or BiLSTM outputs into a
linear layer to obtain the final vector representation.
During the prediction phase, for each new data ex-
ample, we feed the gloss into the trained model to
obtain the vector presentation similar to the sgns.

The proposed three models are first tested in
a monolingual setting, to determine which archi-
tecture achieves the best performance. Next, we
explore if the target sgns embedding spaces may al-
ready be aligned to some degree across languages,
even though the CODWOE organizers did not ex-
plicitly mention any cross-lingual alignment in the
shared task description. We first attempt a multi-
lingual experiment to examine the degree to which
training in multiple languages affects performance.
Finally, the best performing monolingual models
are tested in a zero-shot cross-lingual setting, where
we train the model in a specific language and eval-
uate it in different languages that the model has
never seen before. The implementation details are
in Section 4.2.

4 Experimental Setup
4.1 Dataset

The experiments were conducted on the dataset
from the CODWOE 2021 competition. The data
consists of glosses for five languages (English -
en, Spanish - es, French - fr, Italian - it, and Rus-
sian - ru and three different word embedding rep-
resentations for each gloss. In this paper, we focus
only on skip-gram with negative sampling (sgns)
embeddings trained on around 1 billion sentences
in total with 50% of the sentences coming from
Wikipedia, 40% coming from open subtitles, and
the rest drawn from the corpora (e.g. Wikisource,
gutenberg.org). All sentences were tokenized with
the default NLTK’s® tokenizer.

Each language contains 3 different sets, includ-
ing the training set with 43,608 samples, the de-
velopment set with 6,375 samples, and a test set
containing 6,208 samples. Although the number of
samples for each set is distributed equally among
languages, a word can have a different number of
glosses (polysemy), and vice versa, a gloss can
belong to more than one word (synonymy).

Note that the training and development data hide
the exact words matching each gloss and only
release their sngs, char, and electra embeddings.
However, on the full test set, the words are pro-
vided.

4.2 Experimental Settings

Due to time limitations, we have not conducted
any hyperparameter search on the development
sets over the space of possible model configura-
tions, such as embedding dimension, learning rate,
weight decay, size of hidden layers, etc. Alterna-
tively, we decided to use a standard configuration
based on previous research as well as suggested by
the competition organizers for all the experiments.
The configuration is presented in Table 1.

All models were implemented with Pytorch and
trained on GPUs from Google Colab®. Further
tuning and optimization will be left for future work.

4.3 Evaluation Metrics

The performance of the reverse dictionary system
is evaluated by Mean squared error (MSE), Co-
sine similarity, and Cosine-based ranking (Dinu
and Ionescu, 2012). These are the evaluation met-
rics suggested in the CODWOE 2021 competition,

Shttps://www.nltk.org/
®https://colab.research.google.com/
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Table 1: Model configuration.

Settings ‘ Values
Number of heads 4
Number of encoder layers 4
Number of epoches 20
Learning rate le-4
Weight decay le-6
Drop out 0.3
Optimizer AdamW
Max length 512
Patience 5

which hereby facilitates the comparison between
our approaches and the baseline. Further details
about each evaluation metric can be found on the
CODWOE 2021 website. Here, in this research,
we aim to minimize the MSE and the cosine-based
ranking, and maximize the cosine similarity.

5 Results

The test set results of our approach on the reverse
dictionary task are presented in Table 2. We com-
pare our three different models (LSTM, BiLSTM,
and combined) with the baseline as well as with the
winning approach on this shared task. In addition,
we also present the results for a multilingual LSTM
trained in all available languages.

In terms of MSE, the performance of the
Transformer-based model with an additional LSTM
layer is the most competitive for all languages
except English when compared to our other ap-
proaches, namely BiLSTM and combined LSTM
and BiLSTM. This model surpasses the baseline
in Spanish and French according to most criteria.
Meanwhile, the combination of the LSTM and BiL-
STM layers after the Transformer encoder layer
offers the best results on the English dataset, out-
performing the baseline in terms of MSE. We also
investigate a multilingual configuration where we
train in all languages and employ the model on
each language’s test set. The results for the mul-
tilingual model are substantially lower compared
to all other monolingual settings according to the
MSE score. Compared to the best solution in the
CODWOE competition proposed by WENGSYX
team’, the gap between our solution and theirs is
on average 0.1 in terms of the MSE score.

In terms of Cosine similarity, the model with an
additional LSTM layer proves to have better perfor-
mance in English, Spanish, and French compared

"https://competitions.codalab.org/
competitions/34022#results

Table 2: The evaluation results on the test dataset. We
compare our models with additional LSTM, BiLSTM
and combined LSTM and BiLSTM with the shared task
baseline and the winning approach. We also test our
multilingual approach trained on all languages of the
train set. All the results above the baseline are in bold.

Language ‘ Model ‘ MSE Cosine Ranking
en LSTM 0913  0.156 0.499
en BiLSTM 0.938 0.125 0.517
en combined 0.909 0.139 0.513
en multilingual LSTM | 1.184  0.003 0.501
en Baseline 0911 0.151 0.490
en #1 solution 0.862 0.243 0.329
es LSTM 0914 0.223 0.499
es BiLSTM 1.031  0.005 0.498
es combined 0.947 0.138 0.495
es multilingual LSTM | 0.978  0.207 0.452
es Baseline 0.930 0.204 0.499
es #1 solution 0.858 0.353 0.251
fr LSTM 1.123  0.216 0.498
fr BiLSTM 1.283  0.010 0.502
fr combined 1.169  0.093 0.498
fr multilingual LSTM | 1.404 -0.005 0.524
fr Baseline 1.140  0.198 0.491
fr #1 solution 1.030 0.328 0.282
it LSTM 1.201  -0.010 0.500
it BiLSTM 1.287 -0.004 0.501
it combined 1.208 -0.008 0.500
it multilingual LSTM | 1.305 -0.008 0.494
it Baseline 1.125 0.204 0.477
it #1 solution 1.040  0.360 0.230
ru LSTM 0.616  0.006 0.500
ru BiLSTM 0.795 -0.020 0.499
ru combined 0.650 -0.016 0.499
ru multilingual LSTM | 0.934  -0.004 0.522
ru Baseline 0.577 0.253 0.490
ru #1 solution 0.528 0.424 0.187

to other tested models. This model also surpasses
the baseline model on Spanish and French test sets.
In addition, the multilingual model also achieves a
slightly better Cosine similarity than the baseline
on the Spanish test set.

In terms of Cosine ranking, all models demon-
strate a slightly higher ranking in comparison to
the baseline on the Spanish test set, with the multi-
lingual model achieving the best ranking. In other
languages, the baseline model performs the best.

Overall, training the additional LSTM layer on a
multilingual training set does not seem to improve
the results compared to the monolingual settings,
the only exception being the performance of the
multilingual model on the Spanish test set in terms
of Cosine ranking.

Given the fact that the Transformer-based model
with an additional LSTM performs the best in a
monolingual setting, we use this model for the
zero-shot cross-lingual experiments. The results
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Table 3: Cross-lingual zero-shot evaluation on test set.

Train set‘ Metrics ‘ en es fr it ru
MSE 0913 0914 1208 1.201 0.616

en Cosine | 0.156 0.223 -0.020 -0.010 0.006
Ranking | 0.499 0.499 0.500 0.500 0.500

MSE 0.963 0914 1.208 1.201 0.616

es Cosine | -0.004 0.223 -0.020 -0.010 0.006
Ranking | 0.501 0.499 0.500 0.500 0.500

MSE 0962 0916 1.123 1.198 0.615

fr Cosine | -0.004 0.215 0.216 -0.005 0.002
Ranking | 0.500 0.499 0.498 0.499 0.501

MSE 0962 0916 1.208 1.201 0.615

it Cosine | -0.004 0.215 -0.024 -0.010 0.002
Ranking | 0.501 0.499 0.501 0.500 0.501

MSE 0.964 0913 1204 1.196 0.616

ru Cosine | -0.004 0.222 -0.021 -0.010 0.006
Ranking | 0.501 0.500 0.500 0.500 0.500

for these experiments are displayed in Table 3. The
first column indicates the language used for train-
ing and development, the second column displays
the evaluation metrics including MSE, Cosine sim-
ilarity, and Cosine ranking. The rest demonstrate
the evaluation results of each metric on a specific
test dataset per language. For example, in the first
row where the training set is en, we train on the
English training and development set and predict
each of the five language’s test sets.

In general, if the model is trained on a language
matching the language of the test data, it performs
better except in the French corpus. However, the in-
teresting exception is that, for example, the Spanish
test set, on which all models, no matter on which
language they were trained, offer very consistent
performance according to all measures. It is also
interesting that the models trained in English and
Spanish have exactly the same results on French,
Italian, and Russian test sets. This might suggest
that these models were not able to make sense of
the examples in the test set and that their perfor-
mance is on par with a random baseline. Further
analysis of this behavior will be left for the future.

6 Conclusion

In this paper, we have investigated the performance
of monolingual and multilingual Transformer-
based models on the reverse dictionary problem, a
sequence-to-vector task where a word representa-
tion needs to be constructed from the correspond-
ing gloss. We have experimented with two addi-
tions to the original architecture, namely adding
either an additional LSTM or a BiILSTM layer on
top of the original architecture. We have also ex-

plored whether combining these two architectures
improves the performance. Besides that, we ex-
plored the cross-lingual performance of the mono-
lingual models and compared them to monolingual
and multilingual classifiers.

On the task of reconstructing sgns embeddings,
the monolingual Transformer-based model with an
additional LSTM layer in most cases offers the best
performance for English, Spanish, and French ac-
cording to MSE and Cosine similarity. The model
also offers competitive performance in terms of
MSE for Italian and Russian compared to the base-
line. Therefore, the results to some extent confirm
the initial hypothesis that with an additional LSTM
layer, we can improve the modeling of the word-
level sequential context. Nevertheless, the improve-
ments are worse than expected and the multilingual
and zero-shot experiments yield unexpected results
that require further analysis. We can therefore sum-
marize our findings by saying that the reverse dic-
tionary task of restoring sgns embeddings seems to
be very challenging, and none of our models (and
also other models in the competition) were able
to successfully solve it, at least according to the
scores achieved during the competition.

This means that there remains a lot of room for
improvement. In the future, we would like to in-
vestigate the effect of different text representations
on the performance of the model, e.g., by feeding
the model graph representations. Combinations of
several text representations will also be explored.
Furthermore, the effectiveness of multilingual mod-
els compared to monolingual ones should be addi-
tionally explored. Despite zero-shot learning not
working well in our studies, it is worth evaluating
the performance of one-shot learning and few-shot
learning with the hypothesis that the models can
understand new concepts from only one or a few ex-
amples. Further experiments on the topic of adapt-
ing the Transformer architecture for the specific
task at hand will also be conducted.
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Abstract

This paper presents the shared task on Mul-
tilingual Idiomaticity Detection and Sentence
Embedding, which consists of two Subtasks:
(a) a binary classification task aimed at identi-
fying whether a sentence contains an idiomatic
expression, and (b) a task based on semantic
text similarity which requires the model to ade-
quately represent potentially idiomatic expres-
sions in context. Each Subtask includes differ-
ent settings regarding the amount of training
data. Besides the task description, this paper
introduces the datasets in English, Portuguese,
and Galician and their annotation procedure,
the evaluation metrics, and a summary of the
participant systems and their results. The task
had close to 100 registered participants organ-
ised into twenty five teams making over 650
and 150 submissions in the practice and evalu-
ation phases respectively.

1 Introduction

Multiword Expressions (MWESs) are a challenge
for natural language processing (NLP), as their
linguistic behaviour (e.g., syntactic, semantic) dif-
fers from that of generic word combinations (Bald-
win and Kim, 2010; Ramisch and Villavicencio,
2018). Moreover, MWEs are pervasive in all do-
mains (Biber et al., 1999), and it has been estimated
that their size in a speaker’s lexicon of any language
is of the same order of magnitude as the number of
single words (Jackendoff, 1997; Erman and Warren,
2000), thus being of crucial interest for language
modelling and for the computational representation
of linguistic expressions in general.

One distinctive aspect of MWEs is that they fall
on a continuum of idiomaticity (Sag et al., 2002;
Fazly et al., 2009; King and Cook, 2017), as their
meaning may or may not be inferred from one of
their constituents (e.g., research project being a
type of ‘project’, vs. brass ring meaning a ‘prize’).

In this regard, obtaining a semantic representation
of a sentence which contains potentially idiomatic
expressions involves both the correct identification
of the MWE itself, and an adequate representation
of the meaning of that expression in that particular
context. As an example, it is expected that the
representation of the expression big fish will be
similar to that of important person in an idiomatic
context, but closer to the representation of large
fish when conveying its literal meaning.

Classic approaches to representing MWEs ob-
tain a compositional vector by combining the rep-
resentations of their constituent words, but these
operations tend to perform worse for the idiomatic
cases. In fact, it has been shown that the degree of
idiomaticity of a MWE can be estimated by mea-
suring the distance between a compositional vector
(obtained from the vectors of its components) and a
single representation learnt from the distribution of
the MWE in a large corpus (Cordeiro et al., 2019).

Recent approaches to identify and classify
MWESs take advantage of the contextualised repre-
sentations provided by neural language models. On
the one hand, some studies suggest that pre-training
based on masked language modeling does not prop-
erly encode idiomaticity in word representations
(Nandakumar et al., 2019; Garcia et al., 2021b,a).
However, as these embeddings encode contextual
information, supervised approaches using these rep-
resentations tend to obtain better results in different
tasks dealing with (non-)compositional semantics
(Shwartz and Dagan, 2019; Fakharian and Cook,
2021; Zeng and Bhat, 2021).

As such, this shared task'-? presents two Sub-
tasks: i) Subtask A, to test a language model’s

ITask website: https://sites.google.com/view/semeval
2022task2idiomaticity

2GitHub:https://github.com/H-
TayyarMadabushi/SemEval_2022_Task2-idiomaticity
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ability to detect idiom usage, and ii) Subtask B, to
test the effectiveness of a model in generating rep-
resentations of sentences containing idioms. Each
of these Subtasks are further presented in two set-
tings: Subtask A in the Zero Shot and One Shot
settings so as to evaluate models on their ability to
detect previously unseen MWEs, and Subtask B in
the Pre Train and the Fine Tune settings to evalu-
ate models on their ability to capture idiomaticity
both in the absence and presence of training data.
Additionally, we provide strong baselines based
on pre-trained transformer-based language models
and release our codetr which participants can build
upon.

2 Related Tasks

The computational treatment of MWESs has been
of particular interest for the NLP community, and
several shared tasks with different objectives and
resources have been carried out.

The SIGLEX-MWE Section® has organised var-
ious shared tasks, starting with the exploratory
Ranking MWE Candidates competition at the
MWE 2008 Workshop, aimed at ranking MWE
candidates in English, German and Czech.* More
recently, together with the PARSEME community,
they have conducted three editions of a shared task
on the automatic identification of verbal MWEs
(Savary et al., 2017; Ramisch et al., 2018, 2020).
In these cases, the objective is to identify both
known and unseen verb-based MWESs in running
text and to classify them under a set of predefined
categories. Interestingly, these PARSEME shared
tasks provide annotation guidelines and corpora
for 14 languages, and include 6 categories (with
additional subclasses) of verbal MWEs.

The Detecting Minimal Semantic Units and their
Meanings (DiMSUM 2016) shared task (Schneider
et al., 2016) consisted of the identification of mini-
mal semantic units (including MWE:s) in English,
and labelling some of them according to a set of
semantic classes (supersenses).

Focused on the interpretation of noun com-
pounds, the Free Paraphrases of Noun Compounds
shared task of SemEval 2013 (Hendrickx et al.,
2013) proposed to generate a set of free paraphrases
of English compounds. The paraphrases should be
ranked by the participants, and the evaluation is

*https://multiword.org/
4http://multiword.sourceforge.net/
mwe2008

performed comparing these ranks against a list of
paraphrases provided by human annotators.

Similarly, the objective of the SemEval 2010
shared task on The Interpretation of Noun Com-
pounds Using Paraphrasing Verbs and Preposi-
tions (Butnariu et al., 2010) was to rank verbs and
prepositions which may paraphrase a noun com-
pound adequately in English (e.g., olive oil as ‘oil
extracted from olive’, or flu shot as ‘shot to prevent
fln’).

Apart from these competitions, various studies
have addressed different tasks on MWEs and their
compositionality, such as: classifying verb-particle
constructions (Cook and Stevenson, 2006), iden-
tifying light verb constructions and determining
the literality of noun compounds (Shwartz and Da-
gan, 2019), identifying and classifying idioms in
running text (Zeng and Bhat, 2021), as well as
predicting the compositionality of several types of
MWEs (Lin, 1999; McCarthy et al., 2003; Reddy
et al., 2011; Schulte im Walde et al., 2013; Salehi
et al., 2015).

3 Dataset Creation

The dataset used in this task extends that introduced
by Tayyar Madabushi et al. (2021), also including
Galician data along with Portuguese and English.
Here we describe the four step process used in
creating this dataset.

The first step was to compile a list of 50 MWEs
across the three languages. We sourced the MWEs
in English and Portuguese from the Noun Com-
pound Senses dataset (consisting of adjective-noun
or noun-noun compounds) (Garcia et al., 2021b),
which extends the dataset by Reddy et al. (2011)
and provides human-judgements for compositional-
ity on a Likert scale from 0 (non-literal/idiomatic)
to 5 (literal/compositional). To ensure that the test
set is representative of different levels composition-
ality, we pick approximately 10 idioms at each level
of compositionality (0-1, 1-2, ...). For Galician,
we extracted noun-adjective compounds from the
Wikipedia and the CC-100 corpora (Wenzek et al.,
2020) using the following procedure: First, we
identified those candidates with at least 50 occur-
rences in the corpus. They were randomly sorted,
and a native speaker and language expert of Gali-
cian selected 50 compounds from the list. The lan-
guage expert was asked to take into account both
the compositionality of the compounds (including
idiomatic, partly idiomatic, and literal expressions),
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and their ambiguity (trying to select potentially id-
iomatic examples, i.e. compounds which can be
literal or idiomatic depending on the context).

In the second step of the dataset creation pro-
cess, in English and Portuguese, annotators were
instructed to obtain between 7 and 10 examples for
each possible meaning of each MWE from news
stories available on the web, thus giving between
20 and 30 total examples for each MWE. Each
example consisted of three sentences: the target
sentence containing the MWE and the two adjacent
sentences. Annotators where explicitly instructed
to select high quality examples, where neither of
the two adjacent sentences were empty and, prefer-
ably, from the same paragraph. They were addi-
tionally required to flag examples containing novel
meanings, so such new meanings of MWESs could
be incorporated into the dataset. Sentences contain-
ing MWE:s in Galician were directly obtained from
the Wikipedia and the CC-100 corpora due to the
sparsity of Galician data on the web. During this
annotation step, we follow the method introduced
by Tayyar Madabushi et al. (2021), and add two
additional labels: ‘Proper Noun’ and ‘Meta Usage’.
‘Meta Usage’ represents cases wherein a MWE is
used literally, but within a metaphor (e.g. life vest
in “Let the Word of God be our life vest to keep us
afloat, so as not to drown.”).

In the third phase, across all three languages,
each possible meaning of each MWE was assigned
a paraphrase by a language expert. For example,
the compositional MWE mailing list had the as-
sociated paraphrase ‘address list” added, whereas
the idiomatic MWE elbow room had the associated
paraphrases ‘joint room’, ‘freedom’ and ‘space’
added to correspond to each of its possible mean-
ings. Language experts focused on ensuring that
these paraphrases were as short as possible, so the
resultant adversarial paraphrases could be used to
evaluate the extent to which models capture nu-
anced differences in each of the meanings.

The final phase of the process involved the anno-
tation of each example with the correct paraphrase
of the relevant MWE. This was carried out by two
annotators, and any disagreements were discussed
(in the case of Galician, in the presence of a lan-
guage expert) and cases where annotators were not
able to agree were discarded.

3.1 The Competition Dataset

We use the training and development splits from
Tayyar Madabushi et al. (2021) with the addition
of Galician data, and use the test split released
by them as the evaluation split during the initial
practice phase of the competition. We create an
independent test set consisting of examples with
new MWEs, and this set was used to determine the
teams’ final rankings. The labels for the evaluation
and test sets are not released. We note that the
competition is still active (in the ‘post-evaluation’
phase), and open for submissions from anyone>.

Since one of the goals of this task is to measure
the ability of models to perform on previously un-
seen MWEs (Zero Shot) and on those for which
they have very little training data (One Shot), we
extract, where available, exactly one idiomatic and
one compositional example associated with each
MWE in the test data, which is released as associ-
ated One Shot training data.

The final dataset consisted of 8,683 entries and
the breakdown of the dataset is shown in Table 1.
For further details on the training, development and
practice evaluation splits, we direct readers to the
work by Tayyar Madabushi et al. (2021). It should
be noted that this original dataset does not contain
data from Galician and so the only training data
available in Galician was the One Shot training
data. This was to evaluate the ability of models to
transfer their learning across languages, especially
to one that is low resourced.

Language
Split | English | Portuguese | Galician | All
train 3487 1290 63 4840
dev 466 273 0 739
eval 483 279 0 762
test 916 713 713 2342
All 5352 2555 776 8683

Table 1: Breakdown of the full dataset by language and
data split.

4 Task Description and Evaluation
Metrics

SemEval-2022 Task 2 aims to stimulate research
into a difficult area of NLP, that of handling non-
compositional, or idiomatic, expressions. Since
this is an area of difficulty for existing language

Shttps://competitions.codalab.org/
competitions/34710
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models, we introduce two Subtasks; the first Sub-
task relates to idiomaticity detection, whilst the sec-
ond relates to idiomaticity representation, success
in which will require models to correctly encode id-
iomaticity. It is hoped that these tasks will motivate
the development of language models better able
to handle idiomaticity. Since we wish to promote
multilingual models, we require all participants to
submit results across all three languages. Both Sub-
tasks are available in two settings, and participants
are given the flexibility to choose which settings
they wish to take part in.

4.1 Subtask A: Idiomaticity Detection

The first Subtask is a binary classification task,
where sentences must be correctly classified into
‘idiomatic’ (including ‘Meta Usage’) or ‘non-
idiomatic’ / literal (including ‘Proper Noun’). Each
example consists of the target sentence and two con-
text sentences (sourced from either side of the tar-
get sentence) along with the relevant MWE. Some
examples from this Subtask are shown in Table 2.

This Subtask is available in two settings: Zero
Shot and One Shot. In the Zero Shot setting, the
MWE:s in the training set are disjoint from those
in the development and test sets. Success in this
setting will require models to generalise to unseen
MWE:s at inference time. In the One Shot setting,
we include in the training set one idiomatic and one
non-idiomatic example for each MWE in the devel-
opment and test sets. This breakdown is shown in
Table 3.

We use macro F1 score between the gold labels
and predictions as the evaluation metric for this
Subtask, due to the imbalanced datasets.

4.2 Subtask B: Idiomaticity Representation

The second Subtask is a novel idiomatic semantic
textual similarity (STS) task, introduced by Tay-
yar Madabushi et al. (2021), where, given two in-
put sentences, models must return an STS score
between 0 (least similar) and 1 (most similar), indi-
cating the similarity of the sentences. This requires
models to correctly encode the meaning of non-
compositional MWEs (idioms) such that the encod-
ing of a sentence containing an idiomatic phrase
(e.g. “I initially feared that taking it would make
me a guinea pig.”) and the same sentence with the
idiomatic phrase replaced by a (literal) paraphrase
(e.g. “Iinitially feared that taking it would make me
a test subject.”) are semantically similar to each
other. Notice also that these two sentences, which

mean the same thing, must necessarily be equally
similar to any other third sentence. We choose this
third sentence to be the sentence with the idiomatic
phrase replaced by an incorrect literal paraphrase
(e.g. “I initially feared that taking it would make
me a pig.”). Such a sentence is the ideal adversarial
example, and ensures that we test if models are
making use of an incorrect meaning of the MWE
in constructing a sentence representation.

Data for this Subtask is generated in the fol-
lowing manner: MWE:s in sentences are replaced
by the literal paraphrase of one of its associated
meanings. For example, the MWE ‘guinea pig’ in
the sentence “I initially feared that taking it would
make me a guinea pig.” is replaced by one of the
literal paraphrases ‘test subject’ or ‘pig’ (see Ta-
ble 4). Crucially, these replacements can either be
with the correct paraphrase, or one that is incorrect.
As such, there are two cases:

* The MWE has been replaced by its correct
paraphrase. In this case, the similarity should
be 1.
sim(E,E_) =1

* The MWE has been replaced by its incorrect
paraphrase. In this case, we require the model
to give equivalent semantic similarities be-
tween this and the sentence where the MWE
has been replaced by its correct paraphrase,
and this and the original sentence.
sim(E, E_,;) = sim(E_¢, E_j)

Importantly, the task requires models to be con-
sistent. Concretely, the STS score for the similarity
between a sentence containing an idiomatic MWE
and that same sentence with the MWE replaced
by the correct paraphrase must be equal to one as
this would imply that the model has correctly in-
terpreted the meaning of the MWE. In the case
where we consider the incorrect paraphrase, we
check for consistency by requiring that the STS
between the sentence containing the MWE and a
sentence where the MWE is replaced by the incor-
rect paraphrase is equal to the STS between the
sentence where the MWE is replaced by the correct
paraphrase and one where it is replaced by the in-
correct one. Notice, that all this does, is to require
the model to, once again, interpret the meaning of
the MWE to be the same (or very similar) to the
correct literal paraphrase of that MWE. More for-
mally, we require models to output STS scores for
each example E such that:
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Language MWE Sentence Label

English old hat Serve our favorite bourbon whiskeys in an old hat and we’d still probably take a sip | 1
or two.

English old hat But not all of the accouterments of power are old hat for the president. 0

Portuguese | forga bruta Forca Bruta vai reunir alguns dos homens mais fortes do mundo. 1

Portuguese | forca bruta Gardner é conhecido por ser impulsivo e usar os poderes com grande impacto, de | 0
forma instintiva, com for¢a bruta.

Galician porta grande | A esquerda da porta grande, en terra, observamos a tumba de “Don Manuel Lépez | 1
Vizcaino.

Galician porta grande | Os dous dominadores da Copa Galicia 2017 regresaron pola porta grande ao certame | 0
autonémico na sta quinta xornada.

Table 2: Examples for Subtask A. Note that the label 1 is assigned to non-idiomatic usage, which includes proper

nouns, as in the Portuguese example.

Language
Train Split | MWEs | English | Portuguese | Galician | All
Zero Shot 236 3327 1164 0 4491
One Shot 250 160 126 63 349
Total 486 3487 1290 63 4840

Table 3: Breakdown of the training data into zero shot
and one shot. Note that the MWE:s in the zero shot and
one shot data are disjoint.

Vig(sim(E, B =1;
(D
sim(E, E_j) = sim(E_., Eﬁi)>

In Equation 1 above, E_,. represents an example
containing the MWE F/, wherein that MWE is re-
placed by its correct contextual paraphrase. E_;
on the other hand, represents the example wherein
the MWE E is replaced by one of its incorrect con-
textual paraphrases. Examples for this Subtask are
shown in Table 4.

Since this task relies on models’ ability to cor-
rectly assign STS scores for sentences with do not
contain idiomatic MWEs, we additionally include
standard STS data in our test data. This has the
added benefit of preventing models from overfit-
ting on the MWE dataset. We include this STS
evaluation data from the STS Benchmark dataset
(Cer et al., 2017) in English and the ASSIN2 STS
dataset (Real et al., 2020) in Portuguese. There
is no available STS data for Galician, so none is
included. We use the Spearman’s rank correlation
coefficient between the two sets of STS scores gen-
erated by models as the evaluation metric in this
Subtask. We do not use Pearson correlation as it
has been shown to be a poor indicator of perfor-
mance on STS tasks (Reimers et al., 2016).

This Subtask is also available in two settings: the
Pre Train setting and the Fine Tune setting. In the

Pre Train setting, we require that models are not
trained on idiomatic STS data. However, models
can be trained (including “fine-tuned”) on any other
training objective (such as during the pre-training
of language models). The Fine Tune setting, on the
other hand, allows all training regimes, including
the fine-tuning on any idiomatic STS dataset.

4.3 Baselines

In order to generate baseline results, we used pre-
trained transformer-based (Vaswani et al., 2017)
language models. We use multilingual BERT (De-
vlin et al., 2019) to benefit from cross-lingual trans-
fer. For both settings in Subtask A, we simply Fine
Tune the pre-trained model on the training data
provided. For the Zero Shot setting, we include
the context sentences, whereas in the One Shot set-
ting, we exclude the context sentences but add the
MWE as a second sentence. This is based on the
best-performing approaches found by Tayyar Mad-
abushi et al. (2021).

For Subtask B Pre Train, we introduce single
tokens for each MWE in the data. This is moti-
vated by the ‘idiom principle’ (Sinclair and Sinclair,
1991), which hypothesises that humans process id-
ioms by treating them as a single unit. Since BERT
embeddings cannot be directly used for STS, we
create a sentence transformer model (Reimers and
Gurevych, 2019) using multilingual BERT with
these added tokens, and train it on the English and
Portuguese STS data. Importantly, the new tokens
introduced for MWEs are randomly initialised and
no continued pre-training is performed. As such,
they serve to ‘break compositionality’ rather than
to create more effective representations of MWE:s.
This breaking of compositionality has been shown
to be effective by Tayyar Madabushi et al. (2021).

For the Fine Tune setting, the same approach
is taken, although no training is done on the STS
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Sentence (E) Correct Replacement (Ewwe—.) | Wrong Replacement (Ewwe—i) | Expected

And finally, the snow falls | And finally, the snow falls | And finally, the snow falls jjizgg”;i ;-lz'nL(E o E)
again, this time in a thick, wet | again, this time in a thick, | again, this time in a thick, o Tem
blanket that encapsulates ev- | damp blanket that encapsu- | killjoy that encapsulates every-

erything. | lates everything. | thing. .
I initially feared that taking it | I initially feared that taking it | I initially feared that taking it mg ?C));lzmw )
would make me a guinea pig. | would make me a test subject. | would make me a pig. o e

Table 4: Examples for Subtask B. For brevity we only include examples in English.

data, and instead we Fine Tune on the training
data provided. This lack of training on the STS
data is intentional as we intend to establish the
effectiveness of the MWE based training data, and
are reflected by the comparatively lower scores on
the STS subsection of the test data (Table 8).

It should be noted that these baseline methods
that make use of multilingual BERT are particu-
larly strong when compared to typical ‘baselines’.
This is intentional as we aim to promote the de-
velopment of models that are comparable to the
current state-of-the-art.

5 Participating Systems and Results

Twenty five teams in total participated, with the
most participants to Subtask A Zero Shot (20). The
results for the individual Subtasks are given in Ta-
ble 5, Table 6, Table 7 and Table 8. Here we discuss
the methods used by the best-performing teams as
well as some interesting approaches. Full details
of methods used by participants is given in Ap-
pendix A.

5.1 Subtask A Zero-Shot

Of the twenty teams that submitted to this setting,
12 reported using transformer-based approaches.
The best-performing team (clay) used different
masking strategies during pretraining, and per-
formed finetuning with data augmentation (includ-
ing back-translation, Edunov et al., 2018) as well
as using soft-label finetuning (a knowledge distil-
lation approach). The team in second (yxb) used a
multilingual T5 model (Xue et al., 2021) with vari-
ous data augmentation techniques including: back-
translation; synonym replacement; random inser-
tion, swap, and deletion. They also used an alterna-
tive loss function for unbalanced data, called focal
loss (Lin et al., 2017). The third team (NER4ID;
Tedeschi and Navigli, 2022) used a dual-encoder ar-
chitecture to encode the MWE and its context, then
predicted idiomaticity by looking at the similarity
score. This approach has a precedent in previous

work that hypothesises the semantic similarity be-
tween a MWE and its context to be a good indicator
of idiomaticity (Liu and Hwa, 2018). They also im-
plemented named entity recognition as an interme-
diate step which they found provided great improve-
ments. Interestingly, two teams (UAlberta; Hauer
et al., 2022, and Unimelb_AIP) used unsupervised
approaches, i.e. not using any of the provided train-
ing data. UAlberta were able to beat the baseline
using translation information from resources such
as Open Multilingual Wordnet (Bond and Foster,
2013) and BabelNet (Navigli and Ponzetto, 2010).
They hypothesised that for idiomatic MWEs, the in-
dividual words are less likely to share mult-synsets
with their translations. They also used a POS tagger
for identifying proper nouns.

5.2 Subtask A One Shot

The best-performing team (HIT; Chu et al., 2022)
used XLM-R (Conneau et al., 2020), and added
‘[SEP]’ tokens around the relevant MWE in the
target sentence, unless it was capitalised, in which
case they excluded these tokens. This is an alter-
native approach to that of Tayyar Madabushi et al.
(2021), where the MWEs were added as a second
sentence. They also used R-Drop (Wu et al., 2021)
as a regularisation method. The second best team
(kpfriends; Sik Oh, 2022) used an ensemble of
checkpoints with soft-voting. They also started
with XLM-RoBERTa (large) trained on CoNLL.
Interestingly, this team had the largest difference
in performance across the two settings of Subtask
A (coming in 16th in the Zero Shot setting). The
third best team (UAlberta; Hauer et al., 2022) used
a transformer-based classifier with additional fea-
tures of glosses for the individual words of the rele-
vant MWE. They hypothesised that this would help
for determining compositionality, since the mean-
ing of compositional MWEs could be deduced from
the glosses of the individual words. An interesting
approach was taken by MaChAmp (van der Goot,
2022), who used multi-task learning across multi-
ple SemEval tasks (2, 3, 4, 6, 10, 11, 12), pretrain-
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Language

Ranking | Team English | Portuguese | Galician All
1 clay 0.9016 0.8277 0.9278 | 0.8895
2 yxb 0.8948 0.8395 0.7524 | 0.8498
3 NER4ID (Tedeschi and Navigli, 2022) 0.8680 0.7039 0.6550 | 0.7740
4 HIT (Chu et al., 2022) 0.8242 0.7591 0.6866 | 0.7715
5 Hitachi (Yamaguchi et al., 2022) 0.7827 0.7607 0.6631 0.7466
6 OCHADAI (Pereira and Kobayashi, 2022) 0.7865 0.7700 0.6518 | 0.7457
7 yjs 0.8253 0.7424 0.6020 | 0.7409
8 CardiffNLP-metaphors (Boisson et al., 2022) | 0.7637 0.7619 0.6591 0.7378
9 Mirs 0.7663 0.7617 0.6429 | 0.7338
10 Amobee 0.7597 0.7147 0.6768 | 0.7250
11 HYU (Joung and Kim, 2022) 0.7642 0.7282 0.6293 | 0.7227
12 Zhichun Road (Cui et al., 2022) 0.7489 0.6901 0.5104 | 0.6831
13 TEENLP 0.7564 0.6933 0.5108 | 0.6776
14 UAlberta (Hauer et al., 2022) 0.7099 0.6558 0.5646 0.6647
15 Helsinki-NLP (Itkonen et al., 2022) 0.7523 0.6939 0.4987 | 0.6625
16 daminglu123 (Lu, 2022) 0.7070 0.6803 0.5065 | 0.6540
”””” baseline (Tayyar Madabushi et al., 2021) [ 0.7070 | 0.6803 [ 0.5065 | 0.6540
"~ 17 | kpfriends (Sik Oh,2022) | 07256 | 0.6739 | 0.4918 | 0.6488
18 Unimelb_AIP 0.7614 0.6251 0.5020 | 0.6436
19 YNU-HPCC (Liu et al., 2022) 0.7063 0.6509 0.4805 | 0.6369
20 Ryan Wang 0.5972 0.4943 0.4608 | 0.5331
N/A JARVix (Jakhotiya et al., 2022)° 0.7869 0.7201 0.5588 | 0.7235

Table 5: Results for Subtask A Zero Shot. The evaluation metric is macro F1 score, and the ranking is based on the

‘All” column.

ing a Rebalanced mBERT (RemBERT) (Chung
et al., 2020) model across all of the tasks, then re-
training a model for each specific task. Since for
this task we do not allow the use of additional data,
we do not include this team in the ranking, but their
score is reported for reference.

5.3 Subtask B Pre Train

No teams reported using non-transformer-based
approaches for this setting. The best-performing
team (drsphelps; Phelps, 2022) used a modifica-
tion of the baseline with BERT for Attentive Mim-
icking (BERTRAM) (Schick and Schiitze, 2020)
to generate embeddings as replacements for the
randomly-initialised one token embeddings used
by the baseline. This method takes both form and
context into account, thus not assuming total non-
compositionality as the one-token method does. It
should be noted that every team in this setting im-
proved upon the baseline result.

5.4 Subtask B Fine Tune

No teams reported using non-transformer-based
approaches for this setting. The best-performing
team (YNU-HPCC; Liu et al., 2022) used a pre-
trained Sentence-BERT (Reimers and Gurevych,

®Not ranked due to only submitting to the ‘post-evaluation’
phase.

2019) model, then finetuned using multiple neg-
atives ranking loss (Henderson et al., 2017) and
triplet loss. The second best team (drsphelps;
Phelps, 2022) used an identical approach to that
in Subtask B Pre Train, using BERTRAM (Schick
and Schiitze, 2020), with additional finetuning on
the training data provided. The third best team (Eat
Fish) used a multilingual model pretrained with
knowledge distillation, as well as data augmenta-
tion.

5.5 Overview of Submissions

In Figure 1 we show the models that were men-
tioned in the submissions.

The majority of participants used transformer-
based approaches, although in both settings for
Subtask A there were three teams using other ap-
proaches. In Subtask B, as mentioned previously,
no non-transformer approaches were mentioned,
which is expected since this task was designed for
the pretrain-finetune paradigm.

In Figure 2 we show the methods mentioned
in more than one submission. Data augmenta-
tion approaches were popular, the most frequently-
mentioned being back-translation (Edunov et al.,
2018). Equally as popular were approaches using
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Language

Ranking | Team English | Portuguese | Galician All
1 HIT (Chu et al., 2022) 0.9639 0.8944 0.9369 | 0.9385
2 kpfriends (Sik Oh, 2022) 0.9606 0.8993 0.9215 | 0.9346
3 UAlberta (Hauer et al., 2022) 0.9453 0.8918 0.9120 | 0.9243
4 Zhichun Road (Cui et al., 2022) 0.9344 0.8559 0.8927 | 0.9033
5 clay 0.9181 0.8423 0.9313 | 0.9022
6 YNU-HPCC (Liu et al., 2022) 09179 0.8633 0.8781 | 0.8948
7 CardiffNLP-metaphors (Boisson et al., 2022) | 0.9464 0.8385 0.8545 0.8934
8 yxb 0.8995 0.8266 0.8781 | 0.8779
9 NERA4ID (Tedeschi and Navigli, 2022) 0.9079 0.8179 0.8695 | 0.8771
10 HYU (Joung and Kim, 2022) 0.9159 0.8457 0.8287 | 0.8750
11 yjs 0.9199 0.8365 0.8294 | 0.8747
”””” baseline (Tayyar Madabushi et al., 2021) | 0.8862 | 0.8637 | 0.8162 | 0.8646
CoI2 | Mis 0.7570 | 07549 | 0.6712 | 0.7367
13 daminglul23 (Lu, 2022) 0.7486 0.7085 0.6004 | 0.7040
14 TEENLP 0.7649 0.7156 0.5134 | 0.6851
15 OCHADAI (Pereira and Kobayashi, 2022) 0.7069 0.6445 0.5235 | 0.6573
16 Ryan Wang 0.3314 0.4058 0.3779 | 0.4044
N/A MaChAmp (van der Goot, 2022) 0.7204 0.6247 0.5532 | 0.6607
N/A JARVix (Jakhotiya et al., 2022) 0.8410 0.8162 0.7918 | 0.8243

Table 6: Results for Subtask A One Shot. The evaluation metric is macro F1 score, and the ranking is based on the

‘All’ column.
Subset

Ranking | Team Idiom Only | STS Only All
1 drsphelps (Phelps, 2022) 0.4030 0.8641 0.6402
2 colorful 0.4290 0.8880 0.6262
3 Mirs 0.3750 0.8623 0.6038
4 Zhichun Road (Cui et al., 2022) 0.2826 0.8359 0.5632
5 YNU-HPCC (Liu et al., 2022) 0.2872 0.7125 0.5577
6 ALTA 0.2154 0.8608 0.5379

7777777 baseline (Tayyar Madabushi et al., 2021) |  0.2263 | 0.8311 | 0.4810

Table 7: Results for Subtask B Pre Train. The evaluation metric is Spearman correlation, and the ranking is based

on the ‘All’ column.
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RemBERT
DISC
CNN-LSTM
word2vec
BiDAF

Figure 1: Models mentioned in the submissions. In
blue are models that use transformers either wholly or
partially, whilst in red are alternative models.

alternative loss functions.

6 Methods

The primary goal of this shared task was to provide
a platform for the evaluation of a variety of methods
for the identification and represention of MWEs.
This section gives an overview of the methods that
have been successful in each of the Subtasks. In
particular, we attempt to identify the combination
of methods across submissions that have significant
potential for future development.

6.1 Subtask A

Subtask A, the identification of MWESs, comprised
two settings: Zero Shot and One Shot. Crucially,
the results from the task show that methods that
are successful in the Zero Shot setting, fail to be

"Not ranked due to using a multi-task learning approach.

8Not ranked due to only submitting to the ‘post-evaluation’
phase.
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Subset
Ranking | Team Idiom Only | STS Only All
1 YNU-HPCC (Liu et al., 2022) 0.4277 0.6637 0.6648
2 drsphelps (Phelps, 2022) 0.4124 0.8188 0.6504
3 Eat Fish 0.3688 0.8660 0.6475
4 Zhichun Road (Cui et al., 2022) 0.3956 0.5615 0.6401
””””” baseline (Tayyar Madabushi et al., 2021) | 0.3990 | 0.5961 | 0.5951
5 | ALTA | 0.2566 | 0.6156 | 0.5755

Table 8: Results for Subtask B Fine Tune. The evaluation metric is Spearman correlation, and the ranking is based

on the ‘All’ column.
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Figure 2: Methods mentioned in more than one submis-
sion.

successful in the One Shot setting and vice versa.
The two problems seem to require capabilities that
are quite distinct. This seems intuitive when trans-
lated into the kind of thinking that one might use
in identifying idioms: When one hears an idiom
for the first time, we are likely to recognise that
it sounds ‘idiom-like’ based on our prior under-
standing of idioms, whereas when we come across
an idiom that we are familiar with, we link our
existing knowledge of that idiom with the current
instance of it.

This seems to play out in the successful mod-
els in this Subtask, as the general trend amongst
the methods that were successful in the Zero Shot
setting, with one exception, is the generalisation
of models using regularisation, data augmentation
or dropout. While regularisation did feature in the
top performing model in the One Shot setting, it
seems to have been less important to generalise
models when they had access to as little as one
training example associated with each model. The
best performing linguistically motivated method —

which compares the semantic similarity between
the MWE span and that of the surrounding context
— ranked third in the Zero Shot setting, although
it performed 11 points below the best performing
method. This is of particular interest as this method
has previously been shown to be extremely pow-
erful in detecting idiomaticity in non-contextual
models.

Models successful in the One Shot setting, again
with one exception, seem to be those which are
more powerful at extracting cues from the minimal
training examples and tended to be larger, ensem-
bled or trained to a larger extent using adversarial
training. The best performing method which incor-
porated elements based on linguistic theory also
ranked third in this setting and incorporated the
gloss of each individual word in the target MWE
to aid in models’ ability to detect compositionality.

Interestingly, the use of the idiom principle in
creating single token representations for MWEs
is absent amongst the methods used for this Sub-
task. While such a comparison would have been
interesting, it is hardly surprising that this method
is not amongst those used, given that the cost of
pre-training with new MWE tokens is rather high.

6.2 Subtask B

Subtask B, the novel task of creating contextual rep-
resentations of MWEs which are consistent with
the paraphrased version of that MWE as measured
by Spearman’s rank correlation, coefficient also
had two settings: the first without associated train-
ing examples (Pre Train) and the second with (Fine
Tune). Since the sentence embeddings generated
by pre-trained language models cannot be directly
compared for similarity, such models must be al-
tered so as to be used for this Subtask. Addition-
ally, as pointed out by Tayyar Madabushi et al.
(2021), the MWESs contained within sentences can
be represented using single tokens even without
pre-training, as the ‘breaking’ of compositionality
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itself produces more accurate representations of
sentences containing MWE:s.

As such, models that perform the best on the
Pre Train setting focus on the creation of more
accurate single token representations of MWEs,
while the top performing models on the Fine Tune
setting, in general, focus on optimising sentence
similarity. This seems to be consistent with the
observation by Tayyar Madabushi et al. (2021) that
fine-tuning is indeed a reasonable way of learning
the representation of MWEs. It should be noted that
these trends are less certain since there are fewer
participants on this Subtask, some of whom do not
share their methods, and the one team that we know
used a method of learning new representations of
MWE:s is ranked first in the Pre Train setting but
ranked second in the Fine Tune setting.

7 Conclusions and Future work

We present, in this paper, ‘SemEval 2022 Task2:
Multilingual Idiomaticity Detection and Sentence
Embedding’, consisting of two Subtasks: i) Sub-
task A, to test a language model’s ability to detect
idiom usage, and ii) Subtask B, to test a model’s
ability to generate representations of sentences
containing idioms. This task, aimed at boosting
research into the detection and representation of
idiomatic expressions, had submissions from 25
teams consisting of close to 100 participants.

We additionally provide an overview and analy-
sis of the methods used by participants, which we
believe will help future research in this field. In par-
ticular, we highlight the need for distinct methods
when detecting MWEs that have been previously
seen and when detecting ones that have not. In rep-
resenting idiomatic expressions, we show, through
the novel idiomatic STS task presented here, that
models are rather effective when they have train-
ing data available, but, as demonstrated in the Pre
Train setting, more methods of encoding MWEs
are required when training data is not available.

While the top performing methods across this
task have been driven by deep neural models inde-
pendent of linguistic features, we highlight that this
does not imply that the addition of linguistically
motivated features does not lead to improvements
on the task. Instead, it points to the possibility of
integrating these methods into the more powerful
neural models in future work where an ablation
study might shed more light on the impact of each
feature.
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A Full Breakdown of Methods

All participants were invited to submit a short description of their methods, as well as to submit a paper.
In Table 9, Table 10, Table 11, and Table 12 we give all the method descriptions that were submitted.

Ranking Team Method
1 clay "domain pretraining with different masking strategies finetuning with data augmentation such as back-translation finetuning with soft label from former
checkpoint"
2 yxb "use mT5-Base use Easy Data Augmentation techniques include back-translation, synonym replacement, random insertion, random swap, random deletion
include label unbalanced loss function: focal loss use model ensemble”
3 NER4ID "Dual-encoder (Transformer-based) architecture that encodes both the potentially idiomatic expression and its context, and predicts idiomaticity by

looking at their similarity score: high similarity -> compositional, low similarity -> idiomatic. Another core contribution of our method is the use of
Named Entity Recognition as an intermediate step to pre-identify some non-idiomatic expressions; this provides great improvements."

4 HIT "1. we use the big pre-trained model, XLM-R-large. Compared with multilingual-BERT and XLM-R-base, XLM-R-large is obviously improved. 2.
Separate the exact same phrases as MWE in the target sentence with the sep token. If the phrase in the sentence is capitalized, It is more likely to be
named entities that the model can distinguish, so the sep tokens are not added around the capitalized phrases. 3. Using Regularized Dropout(r-drop) as
regularization."

5 Hitachi "Our approach is built on top of multilingual pre-trained language models, which include InfoXLLM and XLM-R. We solve the task of multilingual
idiomaticity detection as a binary classification task and follow the standard fine-tuning method except not using a special [CLS] representation for
classification. Instead, we first take an average over MWE’s span representations and subsequently feed the averaged representation into a linear layer for

classification."

6 OCHADAI "our model relies on pre-trained contextual representations from different multilingual state-of-the-art transformer-based language models (i.e., multilingual
BERT and XLM-RoBERTa), and on adversarial training, a training method for further enhancing model generalization and robustness."

7 yjs "For each input sentence in the training set, if the MWE is idiomatic then its corresponding tokens are labeled as "idiomatic" and the remaining tokens are

labeled as "literal"; if the MWE is literal then all the tokens in the sequence are labeled as "literal". Method 1: We apply a Bi-Directional Attention Flow
(BiDAF) network (Seo et al., 2017), while we use mBERT as the contextualised embedding, and we use pos tag embedding as its query input."

8 CardiffNLP-m "CardiffNLP-metaphors submitted the results of two methods in total, applied both for Task A Zero Shot and one-shot. The first method uses
xIm-roberta-large and the second uses several monolingual bert language models for English, Portuguese and Galician. For the Zero Shot settings,
bert-multilingual-base is used to label the Galician sentences, because no Galician examples were included in the training set. The embedding of the
three sentences and the embeddings of the isolated target are input of the models. We optimized the models over different training parameters on the
development set."

9 Mirs -
10 Amobee -
11 HYU "We devise four features ((i), (ii), (iii), and (iv) in the following) as input for a simple yet effective idiomaticity classifier that is a multi-layer perceptron

with one hidden layer.

First, to consider the contextualized semantics of a target sentence when influenced by its surrounding context, we concatenate the target sentence with its
(i) previous and (ii) next sentences respectively and inject the two chunks into our feature extractor (XLM-R; a bidirectional multilingual language model)
independently to generate two distinct ((i) and (ii)) features.

While constructing the aforementioned features, we also introduce two techniques to clarify the presence of a MWE in the sequence: the first highlights
the location of the MWE with a new, dedicated positional encoding, and the second appends the MWE once again at the end of the sequence.

In addition, we focus on the way of better utilizing the information existing solely in the target sentence, regarding a MWE and its context (i.e., phrases in
the target sentence except for the MWE) as separate ones.

Specifically, we derive (iii) the “context-only” representation of the target sentence by using a variant of the target sentence where the MWE is masked,
while we compute (iv) the “MWE-only” representation, which corresponds to the intrinsic meaning of the MWE irrespective of context, by inserting only
the MWE into the feature extractor.”

12 Zhichun Road "1. We use InfoXLM-Base as text encoder. (performance: infoxIm > XLM-R > Mbert) 2.We use exponential moving average (EMA) method. 3.We use
adversarial attack strategy(performance: Smart > freeLb > PGD = FGM). Finally, our approach ranked 12th."

13 TBEINLP -

14 UAlberta "Our unsupervised translation-based approach leverages translation information in multilingual resources such as OMW and BabelNet. The hypothesis is
that the translations of idiomatic MWEs tend to be non-compositional, and therefore the individual words of an MWE are less likely to share mult-synsets
with their translations. In addition, since MWEs that are named entities are usually literal, we use a part-of-speech tagger to identify proper nouns."

15 Helsinki-NLP "The system utilizes linguistically motivated features that typically characterize idiomatic expressions: non-substitutability, non-compositionality and
affectiveness. This feature model is based on pre-trained models and classification pipelines that have been integrated into the transformers library
provided by HuggingFace. The final classification combines the feature model with either sentence-transformers or a base BERT model. The system also
adds a back-translation feature and applies simple post-correction rules based on boolean features."

16 daminglul23 "We used the same model as baseline but added one more LSTM layer at last."

17 kpfriends "We experimented with various inductive training methods only using Zero Shot data provided. We are still experimenting various schemes, including
novel MWE ideas. We will share the findings in our paper.”

18 Unimelb_AIP "We tackled this task in an unsupervised way (i.e. without using any portion of the training data). First, we trained a standard CBOW word2vec model on

unlabelled data and used it to predict the top-500 words that would fit into the surrounding context of the target MWE (as performed during the training of
the CBOW model). Then, we calculated the maximum cosine similarities between the predicted words and each MWE component word, and regarded the
MWE as “literal” (“non-idiomatic”) if they are higher than the mean cosine similarity between the component words and their 500 closest words. Finally,
we ensembled five CBOW models trained with different window sizes (5, 10, 15, 20, and 30) to incorporate different levels of contextual information.
One limitation of this approach is that it often classifies proper-noun and idiomatic usages into the same class (“non-literal”; as their surrounding contexts
differ a lot from the literal usage ones), and to mitigate this problem, we always regarded MWEs as “non-idiomatic” if they contained any capital letter."

19 YNU-HPCC "As for methods of the best submission results, we added a linear layer so as to choose effective information from all of output layer that were extracted
by pre-trained model, XLM-RoBERTa, and then fine-tuned it to classify."
20 Ryan Wang "CNN-bidirectional LSTM classifier with jointly trained word embeddings trained on full passages (target and context) from Zero Shot data"
N/A JARVix "we fine-tune a pretrained XLNet on the task dataset (after evaluating multiple large language models and their majority-voting ensemble)."

Table 9: Methods used in Subtask A Zero Shot. Note: CardiffNLP-m is short for CardiffNLP-metaphors.
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Ranking Team Method

1 HIT "Mostly the same as the zero-shot. We train the One Shot model initialized from the best Zero Shot checkpoint. We additionally post-processed the
predictions based on the distribution of the labels in the One Shot train file."

2 kpfriends "More than 10 checkpoints were created per “English” and “Spanish / Galician™ and inferred separately, later ensembled using soft-voting. To stabilize
training of xIm-roberta-large, we started with pre-trained models provided by Huggingface which were xIm-roberta-large trained on CoNLL. We also had
some good results with xIm-roberta-base. We will deep dive into methodology and interesting observations / error analysis in our paper."

3 UAlberta "Our method uses a transformer-based sequence classifier that takes as an input the context sentence and the glosses of each individual word in the
target multi-word expression. The intuition is that the addition of the glosses to the input might help the classifier to detect if the meaning of the target
multi-word expression can be deduced from the definitions of the individual words, i.e., if it is compositional. Note that this method is applicable to both
settings."

4 Zhichun Road "1. We use InfoXLM-Base as text encoder. (performance: infoxm > XLM-R > Mbert) 2.We use exponential moving average (EMA) method. 3.We use
adversarial attack strategy(performance: freeLB > Smart > PGD = FGM). Finally, our approach ranked 4th."

5 clay "same as Zero Shot setting, but with more data include Zero Shot data and One Shot data"

6 YNU-HPCC "As for methods of the best submission results, we simply concated sentence and MWE and input into pre-trained model, XLM-RoBERTa. CLS from last
layer was extracted to classify."

7 CardiffNLP-m "CardiffNLP-metaphors submitted the results of two methods in total, applied both for Task A Zero Shot and one-shot. The first method uses
xIm-roberta-large and the second uses several monolingual bert language models for English, Portuguese and Galician. For the Zero Shot settings,
bert-multilingual-base is used to label the Galician sentences, because no Galician examples were included in the training set. The embedding of the
three sentences and the embeddings of the isolated target are input of the models. We optimized the models over different training parameters on the
development set. xIm-roberta-large significantly ouperforms the monolingual experimental settings on the one shot track. "

8 yxb "use mT5-Base use Easy Data Augmentation techniques include back-translation, synonym replacement, random insertion, random swap, random deletion
include label unbalanced loss function: focal loss use model ensemble”

9 NER4ID "Same as zero-shot"

10 HYU "In One Shot setting, we used the same method as in a Zero Shot setting."

11 yjs "Method 2: We used the BiDAF-based DISC architecture by (Zeng and Bhat, 2021). DISC firstly combine GLOVE embeddings and POS embeddings
with a BiDAF layer, which is then infused with mBERT by another BiDAF layer. We use both methods in the two settings, Method 1 performs better than
Method 2. In the submissions, the different results is caused by different random seeds, with/without previous and next sentences, and with/without
MWE."

12 Mirs -

13 daminglul123 "We used the same model as baseline but added one more LSTM layer at last."

14 {HEINLP -

15 OCHADAI "our model relies on pre-trained contextual representations from different multilingual state-of-the-art transformer-based language models (i.e., multilingual
BERT and XLM-RoBERTa), and on adversarial training, a training method for further enhancing model generalization and robustness."

16 Ryan Wang "CNN-bidirectional LSTM classifier with jointly trained word embeddings trained on full passages (target and context) from zero- and One Shot data"

N/A MaChAmp "Multi-task learning across SemEval tasks (2, 3, 4, 6, 10, 11, and 12). First we Pre Train a RemBERT multi-task model across all the tasks. Then we
re-train a model for each task specifically. We used the default hyperparameters of MaChAmp v0.3 for all settings, which were finetuned on the GLUE
benchmark and UD_English-EWT."

N/A JARVix "we use a relation network (Sung, et. al 2018) to find a similarity (or a dissimilarity) score between a query and it’s same MWE support set, and assign a

label accordingly. For this, we also evaluate a siamese network with a similar inference methodology."

Table 10: Methods for Subtask A One Shot. Note: Cardiff NLP-m is short for CardiffNLP-metaphors.

Ranking Team Method

1 drsphelps "Our model is a modification of the baseline system with the randomly initialised word embeddings for the one token MWESs replaced with embeddings
created using Schick and Schutze’s BERT for Attentive Mimicking (BERTRAM). BERTRAM models are trained for Portuguese and Galician alongside
the provided English model, and examples use to create the MWE emebddings are taken from the common crawl corpora for English, Portuguese, and
Galician. Further pretraining (up to 45 epochs) is done on the sentence transformers."

2 colorful -

3 Mirs -

4 Zhichun Road "1.We add CrossAttention-Module at the top of the Sentence-Bert. ( Including train and evaluate). 2.We add an extra Contrastive Loss. Finally, our
approach ranked 4th."

5 YNU-HPCC "As for methods of the best submission results, we extracted first-last-average vector and used an optimized method called CoSENT to train model. In
comparison to SBERT, it could solve the problem of difference in process of training and prediction and get a better results.”

6 ALTA -

Table 11: Methods for Subtask B Pre Train.
Ranking Team Method

1 YNU-HPCC "As for methods of the best submission results, both multiple-negatives-ranking-loss and triplet-loss function combined with pre-trained model, distiluse-
base-multilingual-cased-v1, were used to fine-tune. "

2 drsphelps "Using the models trained for the Pre Train setting, fine-tuning is performed using the provided training data, just as in the baseline system. The best
overall performance is found after fine tuning for one epoch, however training for up to 50 epochs can drastically increase Spearman Rank scores for the
idiom only data, while causing much less performance drop on the general STS data.”

3 Eat Fish "Multilingual model which was pretrained by using knowledge distillation Data augmentation Extract multiword from exist multiword package Two state
training trick"

4 Zhichun Road "1.We add CrossAttention-Module at the top of the Sentence-Bert. ( Including train and evaluate). 2.We add an extra Contrastive Loss. Finally, our
approach ranked 4th."

5 ALTA -

Table 12: Methods for Subtask B Fine Tune.
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Abstract

This paper describes the University of Helsinki
submission to the SemEval 2022 task on mul-
tilingual idiomaticity detection. Our system
utilizes several models made available by Hug-
gingFace, along with the baseline BERT model
for the task. We focus on feature engineering
based on properties that characterize idiomatic
expressions. The additional features lead to
improvements over the baseline and the final
submission achieves 15th place out of 20 sub-
missions. The paper provides an error analysis
of our model including visualisations of the
contributions of individual features.

1 Introduction

We participated in the SemEval 2022 Task 2 (Tay-
yar Madabushi et al., 2022) Subtask A, zero-shot!
setting: classification of a sentence containing a
potentially idiomatic two-word multiword expres-
sion (MWE) as idiomatic or literal. The task pro-
vided four data sets® for English, Portuguese and
Galician. Each MWE was represented by multi-
ple example sentences, accompanied by the context
(previous and next sentences). Each MWE could be
always idiomatic, always literal or anything in be-
tween. Table 1 shows examples for both idiomatic
(0) and literal (1) cases. Expanded examples (with
context) are shown in Table 6 in the Appendix.

The MWE:s in the test data do not appear in the training
data.

’Training, development, evaluation and test sets, with Gali-
cian only appearing in the final test set.

The motivation for our approach is testing lin-
guistically motivated features that reflect important
properties of idioms, such as non-compositionality,
non-substitutability, non-literal-translatability and
affectiveness (see chapter 2) and to see whether
pre-trained models can be helpful for capturing
these features. Our system uses a combination
of models: BERT fine-tuning (Tayyar Madabushi
et al., 2021), sentence embeddings (Reimers and
Gurevych, 2019) and a feature model based on the
above idiomatic properties.

2 Background and Related Work

The detection and analysis of idiomaticity has a
rich history in the literature. An important prop-
erty of idioms is non-compositionality (that is, the
meaning of the expression does not correspond to
the combination of the meaning of its components).
(Peng et al., 2014; Constant et al., 2017; Gantar
et al., 2018) Related to it are non-substitutability
(components cannot be substituted with their syn-
onyms) (Farahmand and Henderson, 2016; Senaldi
et al., 2016; Constant et al., 2017) and non-literal-
translatability (Constant et al., 2017).

Idioms tend to be semantic outliers (Feldman
and Peng, 2013; Peng et al., 2014; Salton et al.,
2016) in the sense that they violate the lexical co-
hesion of the surrounding discourse. They are also
known to be more affective (either positive or neg-
ative) (Peng et al., 2014) than literal expressions.

In addition to being relatively fixed lexically
(non-substitutability), idioms often exhibit lack of

Label Target

0 He was not a blue blood jurist issuing judicial decisions that nobody understood affecting people and corporations
that nobody knew.

1 The blue blood of the fossil-like creature is the only natural source of limulus amoebocyte lysate, a clotting agent

that is used to test batches of injectable drugs for bacterial contamination that could cause fever, organ damage

and even death.

Table 1: Idiomatic (0) and literal (1) examples from the zero_shot setting of training set for English MWE blue
blood, which can be interpreted as either idiomatic or literal.
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syntactic and/or morphological variability (Peng
etal., 2014; Constant et al., 2017). In general, quan-
tifying any variability has traditionally required
obtaining frequencies of the variants from a full
corpus, as done by Inurrieta et al. (2020). However,
as we only have a small number of examples for
each idiom, these properties are not modeled in our
approach.

Compositionality and substitutability are often
tested with techniques like backtranslation and
mask filling tasks. Backtranslation involves trans-
lating text to another (i.e. pivot) language and trans-
lating it back (Sennrich et al., 2016; Edunov et al.,
2018), and it has often been used for paraphras-
ing and data augmentation. Backtranslations have
also been used for idioms in related work, see, e.g.,
Moirén and Tiedemann (2006); Bahar Salehi and
Baldwin (2018).

Mask filling (Zhu et al., 2019; Donahue et al.,
2020) is closely related to the cloze task (Taylor,
1953), where the objective is to predict a word
missing from an expression. Mask filling has lately
been made easier as modern languages models such
as BERT (Devlin et al., 2019) and its derivatives
are themselves so-called Masked Language Mod-
els (MLM). Mask filling can be useful for testing
substitutability in context (Karidi et al., 2021; Zhu
and Bhat, 2021).

3 System Description

Our submission® considers three models: the base-

line BERT model provided by the task authors
(Tayyar Madabushi et al., 2021), sentence embed-
dings with sentence-transformers (Reimers and
Gurevych, 2019) and a feature model based on
idiomaticity features. All our components rely on
existing models and tools that have been integrated
into the transformers library provided by Hugging-
Face (Wolf et al., 2020).

The final classification combines information
from two components (either fine-tuned BERT +
feature model or sentence embeddings + feature
model). The result will be taken from the model
which has the higher label probability*. See Figure
1 for an overview.

We compare different variants of the system with
the performance of individual features and various

*Implementation and details are available at https: //
github.com/dustedmtl/semeval2022.

“While both logistic regression and BERT models produce
probabilities, the values aren’t necessarily consummerate as
BERT seems a lot more confident about the results.

Label, probability
—>| Fine-tuned BERT
Mask filling
/ Sentences /

Sentiment

—_—— A
Label, probability

Backtranslation

i

Feature model

Figure 1: Basic classification procedure for the fine-
tuned BERT + feature model combination. The feature
model combines information from a number of Hug-
gingFace models. Each model independently produces
a label and associated probability. The label is by de-
fault taken from the model that has a higher probability.
See Chapter 3.4 for the detailed classification procedure.

baselines.

3.1 Fine-tuned BERT

The baseline model provided by the task organisers
(Tayyar Madabushi et al., 2021) is based on BERT
(Devlin et al., 2019). We build three variants: a)
multilingual model (bert-base-multilingual-cased)
for all languages (equivalent to the provided base-
line), b) English model (bert-base-cased) for En-
glish data and multilingual model for non-English
(trained with all data, including English) and c)
same as case b, but multilingual model trained only
with non-English data. The BERT model was fine-
tuned with the training data, with the development
set used for validation.

3.2 Sentence Embeddings (sbert)

Sentence embeddings can be used as an alternative
baseline. We apply the distiluse-base-multilingual-
cased-vI° model provided by HuggingFace and use
the sentence-transformers python module®. The
training procedure adopts the approach used by
Tayyar Madabushi et al. (2021) by appending the
MWE to the target sentence before training, as
they found it to improve performance’. Logistic
regression is used to train a classifier on top of
the sentence embedding that we obtain from sbert.

Shttps://huggingface.
co/sentence-transformers/
distiluse-base-multilingual-cased-vl

*https://www.sbert.net

"This is not, however, equivalent to their methodology
where the MWE is treated as a single token according to the

"idiomatic principle" (i.e. stored as a single token in the mental
lexicon) (Hashempour and Villavicencio, 2020).
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Target Label Top terms Top Hassub Short Found Found
score Idx  Score

There are several theories behind the origin of the 0 s =y ey S, AN 0.008 False 3 10 -1.000

term “Double Dutch.”

Além de ter sido um fracasso de bilheteria e critica, 0 erros, person- 0540 True O 3 0.092

o filme acabou marcado pelos seus efeifos especiais, agens, efeitos,

principalmente ao antropomorfizar os gatos, que, problemas,

bem, ficam um pouco bisonhos.

animais

Table 2: Training set substitution examples. In the first row, most of the suggestions are too short and no valid
lexical substitute is found. The second example finds a component of efeito especial in plural form. The Top terms
column shows the entry corresponding to Top score in italics and the one for Foundldx/Score (if found) in bold. The
above-zero scores represent the output from the mask-filling pipeline.

Note that we do not use the context sentences in
this approach in any way.

3.3 Idiomaticity Features

Idiomaticity features are extracted using a number
of HuggingFace pipelines and pre-trained models
(see details below) for lexical substitution, senti-
ment analysis and backtranslation. Additionally,
semantic outliers and surface-form-based boolean
features are calculated. The training and classifi-
cation with the feature model is done with logistic
regression again, with boolean values converted to
integers (True = 1/ literal, False = 0 / idiomatic).

3.3.1 Lexical Substitution

Because of the limited lexical variability and non-
compositional nature of idiomatic expressions, it
should be more difficult to find lexical substitutes
for them, or their parts, than for literal expressions.

Our lexical substitution model utilizes the hug-
gingface fill-mask® pipeline with the xIm-roberta-
base® model. The pipeline will output a ranked
list of top substitutions along with their scores'?.
Three different masks are used: one for masking
the whole MWE (e.g. the expression panda car
is replaced with <mask>)'!), another for masking
the first term (<mask> car) and a third one for
masking the second term (panda <mask>)'?.

We obtain the top five candidates (individual
words) from the pipeline. We are interested in two
things: 1) how difficult it is to get a substitute in
general, and 2) how difficult it is to get the correct
substitute. The former reflects non-substitutability
and the latter non-compositionality. A valid general
substitute must only contain word characters and
be at least three characters long. No other checks
are made (such as whether the word class is cor-
rect or that the candidate is a synonym). A valid
lexical substitute will additionally need to (case-
insensitively) match either component of the MWE

as it appears in the Target sentence. Inflected forms
of the components are found by progressively stem-

$https://huggingface.co/tasks/
fill-mask

*https://huggingface.co/
xlm-roberta-base

'The mask-filling pipeline documentation doesn’t explic-
itly state what the scores represent, but it’s likely to be proba-
bility.

"The mask token is taken from the underlying model,
which in this case is <mask>.

2The pipeline (by default) does not support using multiple
mask tokens, so replacing the MWE with <mask> <mask> is
not possible.

ming the component(s) with a regular expression-
Additional tweaks are required for Portuguese be-
cause of orthographic variation (see Table 7 in the
Appendix for examples).

The features that are generated are described be-
low. Substitutions from masking individual terms
are only used for the Top score 1/2 and FS/SS fea-
tures; all other features are derived from replacing
the whole expression. Table 2 shows two examples
for the features, with more examples in Table 8 in
the Appendix.

Hassub Boolean feature: True when a valid lexi-
cal substitute is found, False otherwise.

Top score, Top score 1, Top score 2 The score of
the top candidate, from replacing the whole
expression, first term and second term, respec-
tively. These features are a proxy for general
(non-)substitutability.

Short, FS, SS The number of candidates that are
too short (less than three characters) from
masking the whole expression, first term and
second term. The reasoning is that a lack of
good suggestions is another proxy for non-
substitutability.

FoundScore The score of the first valid lexical
substitute [0-1], -1 otherwise. This one re-
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flects non-compositionality: replacement of
the MWE with one of its components.

FoundIdx The index [1-5] of the first valid lexical
substitute, 10 otherwise.

Note that the FoundScore and Foundldx features
essentially mix categorical and numeric values,
which may reduce their usefulness. Additionally,
Top terms, Top terms 1 and Top terms 2 are recorded
from the mask filling process.

3.3.2 Sentiment Analysis

The affection feature is based on sentiment clas-
sification using the cardiffnlp/twitter-xlm-roberta-
base-sentiment'> model for predicting positive,
negative or neutral sentiment. The neutral prob-
ability [0-1] is used as the value for the feature
Sentiment.

3.3.3 Backtranslation

The target sentence is translated to another lan-
guage (Portuguese for English, English for Por-
tuguese and Galician) and then back-translated to
the original language with the OPUS-MT (Tiede-
mann and Thottingal, 2020) models opus-mt-en-
roa and opus-mt-roa-en'*. The rationale is that
idiomatic expressions exhibit non-compositionality
and as such are less likely to be backtranslated cor-
rectly. The logic for locating the expression is the
same that was used for lexical substitution: the
exact form is required, with allowances for varia-
tions in Portuguese orthography. The value for the
feature Trans is True if it is found and False other-
wise. Table 7 in the Appendix shows a number of
backtranslated examples.

3.3.4 Semantic Outliers

To measure semantic coherence, sentence embed-
dings are retrieved from sentence-transformers for
the sentences/expressions. The value of the feature
is the cosine similarity between the two.

Prevdiff Cosine similarity between the Previous
and Target sentences.

Nextdiff Cosine similarity between the Next and
Target sentences.

Bhttps://huggingface.co/cardiffnlp/
twitter—-xlm-roberta-base-sentiment

“https://huggingface.co/Helsinki—~NLP/
opus—mt—en-roa and https://huggingface.co/
Helsinki-NLP/opus—mt-roa—en. The models were
chosen out of convenience, as only two models are required
for translating between the languages to either direction.

MWEdiff Cosine similarity between the MWE
and the Target sentence.

3.3.5 Surface-form features

Based on data exploration, two additional surface
features are used:

Quotes True if the MWE is enclosed in quotes, in
which case it is more likely to be idiomatic.

Caps True if the MWE is capitalized (Camel
Case). This is more likely to be a Proper
Noun.

Table 9 in the Appendix shows examples for
these features.

3.4 Final Classification

With the exception of simple baselines and major-
ity voting classifier, the final classification is done
by combining two components. For each predic-
tion, the result will be taken from the model which
has the higher probability. A number of ablation
tests were run for the feature model with the de-
velopment set to select the best set of features. In
the end, all features except Top score 1, FS and
MWEdiff were retained (where features means the
bolded items in Chapters 3.3.1 through 3.3.5).

We also added a final post-correction step based
on the results observed during development: the
boolean features may (potentially) override the la-
bel. There are two modes for this: the first one will
force the label unconditionally, the second one will
force it only if the models disagree (agree).

The potential idiomatic features are Quotes and
!Trans (Trans == False, that is, a mistranslation).
Potential literal features are Hassub and Caps. Lit-
eral features take precedence, so if an expression is
both quoted and capitalized, it is considered literal.

4 Results

4.1 Experimental Setup

Four data sets were released by the task adminis-
trators: training and developments sets, for which
gold labels were provided; an evaluation set with-
out gold labels (for which classification results
could be obtained from the competition website)
and a blind test set. The training set had more id-
iomatic (56%) and the development set more literal
(54%) sentences.

The label is overwhelmingly likely to be 1 (lit-
eral) when the surface feature Caps == True (see
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Configuration F1 EN PT Configuration F1 EN PT

Hassub 0.551 0535 0.547 Sentence transformers ~ 0.558  0.579  0.500

Trans 0.597 0.549 0.615 + features 0.646 0.655 0.615

Sentiment 0.542 0.571 0.486 BERT baseline 0.702 0.760 0.566

Majority class 0.545 0.609 0.564 + mll 0.723  0.791 0.578

Sentence transformers 0.614 0.635 0.536 + features 0.714 0.779 0.577

+ features 0713  0.735 0.629 + features + trans 0.671 0.695 0.591

BERT baseline 0.694 0.705 0.612 + features, agree 0.723 0.791 0.578

+ mll: PT from full model 0.721 0.760 0.612 + mll + features 0.720 0.794 0.577

+ ml2: PT from separate model  0.725 0.760  0.590 + mll + features, agree  0.725 0.800 0.578

+ features 0.715 0.716  0.656

+ mll + features 0.733  0.751 0.666 .

+mll + features, agree 0731 0754 0.656 Table 4: Results for the evaluation set. The feature

+ mll + features + trans 0751 0.762 0.694 model provides less improvement over the baseline. For

+ mll + features + trans, agree ~ 0.750 0.767 0.683 Portuguese, the sbert+feature model combination out-

41\-/[@2 *t' feattgres +ttrans, agree 8;‘;3 g;g; 82;% performs all BERT-based variants. Best/second best
ajority voting + trans . . . .

Majority voting + trans, agree 0.723  0.746  0.633 results are bolded/underlined.

Table 3: Results for the development set. Sections in or-
der: baselines; combinations with sentence embeddings;
BERT fine tuning models; majority voting classifiers.
For BERT models, mll uses English model for English
and and multilingual model for Portuguese (trained on
all data), while ml2 is only trained with Portuguese data.
Best/second best results are bolded/underlined, while
the best result for each section is in italics.

Figure 3 in the Appendix). We also found the fea-
tures Hassub and Quotes to be useful, so they are
used in all cases involving the feature model.

4.2 Development and Evaluation Sets

Results for the development set are shown in Ta-
ble 3 for various baselines, sentence-transformers-
based models and BERT-based models. Baselines
for the boolean Hassub and Trans are taken directly
from the feature: True=1, False=0, while for Sen-
timent above-mean scores are considered literal.
Majority class assigns the majority label (literal)
for all sentences.

The sentence embeddings + feature model yields
better results than the base BERT model, but in
general fine-tuning BERT is much better than us-
ing sentence embeddings as a fixed feature. For
the BERT-based models'>, using an English-only
model for English improves results, as does using
the /Trans boolean feature. Using the boolean fea-
tures only when the models disagree (agree) does
not seem to have much impact. As Figure 4 in
the Appendix shows, the BERT-based models are
more likely to label a sentence as literal. Finally,
the majority voting classifier (using the majority
label from all three classifiers) fares worse than
BERT+feature models.

5The baseline, multilingual 1 and 2 (mll and ml2) config-
urations refer to variants a-c in section 3.1.

Language F1
English 0.752
Portuguese  0.694
Galician 0.499
Total 0.663

Table 5: Official results for the test set.

The results for the evaluation set (in Table 4
are largely similar to those for the development
set, except for two things: 1) the /Trans feature
is detrimental to English and somewhat helpful
for Portuguese and 2) boolean features should be
used only when the underlying models disagree. In
the end, using the feature model with BERT only
slightly improves the result (0.725 > 0.723). Ad-
ditionally, sentence embeddings + feature model
approach outperforms BERT-based models for Por-
tuguese.

4.3 Test Set

The test predictions were generated with the setup
that produced the best overall results for the evalu-
ation set: different BERT models for English and
non-English combined with the feature model with
boolean features Hassub, Quotes and Caps (only
when the models disagree about the label). The
official test results in Table 5 show that the results
for Galician are not great - roughly on the level
of random chance!¢. The official baseline isn’t
much better'”, likely due Galician being a low-
resource language and lacking training data for the
pre-trained models that were used. For English

'%Without knowing the true labels, we assume a 50/50 split.
"nttps://sites.google.com/view/
semeval2022task2-idiomaticity/baselines
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and Portuguese, the results are similar to the best
results for the development set.

Regarding specific features, the results lend sup-
port to the idea that idioms are more affective, thus
sentiment analysis can be useful for detecting id-
iomaticity (see Figure 2 and Figure 6 in the Ap-
pendix). The exception here seems to be Galician,
which is probably because the sentiment model
is based on tweets. However, it is easier to get a
lexical replacement for Galician (see Figure 5a in
the Appendix). It may be possible that the Gali-
cian test sentences use simpler language - relatively
speaking.

1.0
0.8

0.6

Sentiment

0.4

0.2

0.0

EN PT
Language

Figure 2: Violin plot for sentiment per language for the
training set. The skewed sentiment distribution shows
that the label is more likely to be literal (on average) for
both English and Portuguese, if the sentiment score is
higher (neutral sentiment). However, this feature alone
is not sufficient for good performance.

Using the boolean features on top of the classifier
models can be a bit of a hit-and-miss: what works
with one dataset may be detrimental with another.
Specifically, the /Trans feature worked well on the
development set, but not on the evaluation set, and
the Hassub feature worked on both of these sets,
but not on the test set. In other words, the boolean
features may make the model less robust.

Ablation studies performed after the official end
of the competition confirm that using the Hassub
feature for the test set was not a good strategy. Fur-
thermore, a feature-only model (without sentence
embeddings or BERT) outperformed the combined
model, with the best results achieved by using
the combined model for English and feature-only
model for Portuguese and Galician. Nevertheless,
even these results do not come close to the best
models of the competition.

For detecting semantic outliers, the approach
used in this paper (similarity based on sentence-
transformers embeddings) appears to be too simple.
More refined methods, such as those measuring
lexical cohesion (Sporleder and Li, 2009) would be
required.

5 Conclusions

Our system combines a feature model based on a
number of idiomaticity features with a BERT trans-
former classifier. The feature model achieves com-
petitive results compared to the reportedly strong
baseline (Tayyar Madabushi et al., 2022), although
it does not fare nearly as well as the best systems
that competed in the subtask. Unsurprisingly, most
of the features work best for English, whether or
not the underlying BERT model is multilingual or
not.

The work shows that a classification sys-
tem utilizing idiomatic properties such as non-
compositionality, non-substitutability and affective-
ness can be implemented with readily available
transformer APIs.

Another idea for future work is to improve the
back-translation test by combining a "good" for-
ward translation model (i.e. one that tends to prop-
erly treat idiomatic expressions) with a "bad" back-
translation model (i.e. one that tends to produce
literal translations). The latter could also be done
by forcing component-wise translations in the back-
translation step to reveal non-compositionality of
the expression.
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A Appendix

A number of tables and figures are presented here.

Table 6 shows samples from the training data.
Tables 7, 8 and 9 list feature examples for substi-
tution, backtranslation and Quotes/Caps surface
features.

Figure 3 plots the boolean features Hassub,
Quotes, Caps and Trans against the literal and id-
iomatic labels for the training set. Figure 4 demon-
strates the differences in the labeling done by fine-
tuned BERT and the feature model.

Figure 5 shows counts for boolean features for
each language and data set. Illustrations for sen-
timent scores for all languages and datasets are
shown in Figure 6.

Label

Previous

Target

Next

0

Heading outside (even just for a
couple of minutes) or doing mun-
dane things like brushing your
teeth and making the bed can
help your mind accept the fact
that yes, alas, you are awake now.

Whether you’re a night owl or
early bird, though, try to make
sure you’re not diving right onto
your phone.

Your morning will start
calmer if you don’t
dive right into work
emails and scrolling.

LCG asks that Monday cus-
tomers put garbage and recycling
carts at the curb for collection
Tuesday morning.

In addition, the Lafayette Tran-
sit System office will be closed
Monday, and there will be no
Daytime, Night Owl or Para-
transit bus service Monday.

Bus and paratransit ser-
vices will resume regu-
lar schedules Tuesday.

I practiced before him in court
and stood beside him on Canal
Street during Endymion.

He was not a blue blood jurist
issuing judicial decisions that no-
body understood affecting peo-
ple and corporations that nobody
knew.

His blood was red
with a little Irish green
thrown in.

The American horseshoe crab
has outlived the dinosaurs and
survived four mass extinction
events, but its population has
been devastated in recent years,
partly due to harvesting for
biomedical production.

The blue blood of the fossil-like
creature is the only natural source
of limulus amoebocyte lysate,
a clotting agent that is used to
test batches of injectable drugs
for bacterial contamination that
could cause fever, organ damage
and even death.

The crabs are fished
from the oceans, taken
to a lab to have about
30% of their blood har-
vested, then released
back into the wild.

Table 6: Idiomatic (0) and literal (1) examples from the training set for English MWESs night owl and blue blood in
the zero_shot setting. For night owl, the second example is considered literal as the MWE refers to a company name

(Proper Noun).
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MWE Target Label BT Trans
double dutch Since settlers from other areas 1 As settlers from other parts of True
of the world could not under- the world could not understand
stand the songs, they labeled the the songs, they labeled the ac-
activity “Double Dutch.” tivity "Double Dutch".
double dutch At 6,400gns, Auldhouseburn 1 At 6,400gns, Auldhouseburn False
sold another by the same sire, sold another by the same sire,
and again in lamb to Double and again in lamb to Duplo
Dutch, to Northern Irish buyer, Dutch, to the Northern Irish
J. Cubbitt of Ballymena. buyer, J. Cubbitt of Ballymena.
circulo virtuoso Com a seguranga da imuniza- 0 Com a seguranca da imuniza- True
¢cdo em massa € os nudmeros ¢d30 em massa € os ndmeros
traduzindo sua eficacia, fica traduzindo sua eficacia, torna-
mais facil para o americano se mais facil para o ameri-
médio sentir-se confiante em cano médio sentir-se confiante
marcar sua proxima viagem, em marcar sua proxima vi-
gerando um circulo virtuoso agem, gerando um circulo virtu-
para o setor nos proximos 0so para o setor nos proximos
meses. meses.
circulo virtuoso Apesar de dizer que o Brasil 0 Apesar de dizer que o Brasil True
estd no caminho de um "circulo estd no caminho de um "circulo
virtuoso na economia’, o exec- virtuoso na economia", o exec-
utivo do banco enxerga riscos utivo do banco v€ riscos inter-
internos e externos no horizonte nos e externos no horizonte da
da renda varidvel e, por isso, renda varidvel e, portanto, evita
evita projecdes de curto prazo. projecdes a curto prazo.
amor-proprio No novo livro, sobre amor- 1 No novo livro, sobre o amor True

proprio e também validacao so-
cial, Paula Cordeiro relata como
sobreviver a era digital.

proprio e também a validacao
social, Paula Cordeiro relata
como sobreviver a era digital.

Table 7: Backtranslation examples for the training set; Target is the original sentence, BT is the backtranslated one.
The matching process occasionally requires some tweaks for Portuguese. In the third row, the Target contains the
expression circulo virtuoso without an accent, while the last row shows the translation of amor-préprio separated
with a space instead of a dash.
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Target Label Top terms Top Hassub Short Found Found

score Idx Score
There are several theories be- 0 oS, man  0.008  False 3 10 -1.000
hind the origin of the term
“Double Dutch.”
Double Dutch also derives 0 It, English, 0.385  True 1 4 0.062
from the same era, Dutch This, Dutch,
seeming a strange and convo- German
luted language hence Double
Dutch meaning indescernible,
mad and generally all round
not on foreign speak.
No video divulgado nas redes 0 som, efeito, 0214 True 1 2 0.120
sociais, € possivel perceber tamanho,
que um som faz o casal olhar aumento, ar
para o prédio da frente e ver o
efeito especial da fumaca.
Os efeitos especiais sao 0 efeitos, 0.158  True 0 1 0.158
necessdrios em cenas de equipamentos,
batalha, porém, a DC cos- personagens,
tuma abusar da técnica. dados, filmes

Table 8: Abbreviated substitution examples for the training set. The first two examples are for the English MWE
double dutch, the last two for the Portuguese MWE efeito especial. In the first row, a substitution is not found
and most of the suggested substitutions are too short, leading to a Short value of 3. In the second row, the fourth
suggestion matches the MWE. For Portuguese, the expression efeito especial is found in singular form in the first
example and in plural form in the second; the substitute suggestions must match the expression. The Top terms
column shows the entry corresponding to Top score in italics and the one for Foundldx and FoundScore (if found) in
bold. The scores represent the output from the mask-filling pipeline.

MWE Target Label Quotes Caps
double dutch Double Dutch also derives from the same era, Dutch seem- 0 False True
ing a strange and convoluted language hence Double Dutch
meaning indescernible, mad and generally all round not on
foreign speak.

double dutch  Since 1977 we have had a plethora of Foreign Ministers, to 0 False False
whom the subject of foreign affairs was double Dutch.
double dutch At 6,400gns, Auldhouseburn sold another by the same sire, 1 False True

and again in lamb to Double Dutch, to Northern Irish buyer,
J. Cubbitt of Ballymena.
night owl The researchers said experience shows "night ow!" patients 0 True False
with depression are less likely to recover and are more likely
to commit suicide.

Table 9: Quotes/Caps examples for the training set. In the second row, Caps == False as both components of double
dutch are not capitalized.
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Figure 3: Boolean features vs label for the training set. The label is overwhelmingly likely to be literal if the MWE
is Capitalized (Caps == True), while idiomatic label is more likely if the MWE is mistranslated (Trans == False). It
is generally difficult to get a valid lexical substitute (Hassub == True).
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(a) Confusion matrix for the sbert+feature model.
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(b) Confusion matrix for the BERT+feature model.

Figure 4: Confusion matrices for the development set. The fine-tuned BERT model is more likely to classify the
sentence as literal than the feature model.
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Figure 5: Counts per feature, set and language. It is relatively easier to get a valid lexical substitute for Galician.
Getting a correct backtranslation is harder for Portuguese than English, and harder still for Galician.

Training Development Evaluation Test
0.8 08 0.8 0.8
;E’ 06 *qc-; 06 E 0.6 ‘g‘ 06
£ = E =
5 04 5 04 < 04 € 04
02 0z 02 02
00 e 00 0.0 — Y — =
EN PT EN PT EN PT EN PT GL
Language Language Language Language
(a) Box plot
Training Development Evaluation Test
10 10 10 1.0
o8 08 0.8 08
g oo gos Eos Eos
£ £ E £
E 04 E 04 £ 04 € 04
& & & &
02 0z 0.2 02
0.0 00 0.0 0o
EN PT EN PT EN PT EN PT GL
Language Language Language Language
(b) Violin plot

Figure 6: Sentiment scores per set and language. The distributions are skewed for English and Portuguese, while
the sentiment scores seem uninformative for Galician. Portuguese scores are generally higher - it is more difficult
for the sentiment classifier to classify sentences as affective (either positive or negative).
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Abstract

In this paper, we describe our system for
SemEval-2022 Task 2: Multilingual Idiomatic-
ity Detection and Sentence Embedding. The
task aims at detecting idiomaticity in an input
sequence (Subtask A) and modeling represen-
tation of sentences that contain potential id-
iomatic multiword expressions (MWEs) (Sub-
task B) in three languages. We focus on the
zero-shot setting of Subtask A and propose two
span-based idiomaticity classification methods:
MWE span-based classification and idiomatic
MWE span prediction-based classification. We
use several cross-lingual pre-trained language
models (InfoXLLM, XLLM-R, and others) as our
backbone network. Our best-performing sys-
tem, fine-tuned with the span-based idiomatic-
ity classification, ranked fifth in the zero-shot
setting of Subtask A and exhibited a macro F;
score of 0.7466.

1 Introduction

SemEval-2022 Task 2 (Tayyar Madabushi et al.,
2022) involves detecting idiomaticity in a given
sentence (Subtask A) and learning effective repre-
sentations of sentences that may contain idiomatic
multiword expressions (MWESs) (Subtask B) in
three languages: English, Portuguese, and Galician.
Processing idiomaticity in a sequence correctly is
an essential task in natural language processing
(NLP), as idiomatic expressions are a key compo-
nent of natural languages. Its high performance
will contribute to various downstream tasks, such
as sentiment analysis, information retrieval, and
machine translation (Hashempour and Villavicen-
cio, 2020; Tayyar Madabushi et al., 2021).

In this work, we propose two different ap-
proaches for multilingual idiomaticity detection
(Subtask A) that take advantage of MWE span-
based features. We use several cross-lingual pre-
trained language models (InfoXLLM (Chi et al.,
2021a), XLM-R (Conneau et al., 2020), and others)
and exploit their MWE span representations for
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classification, instead of using a special classifica-
tion token ( [CLS]), which typically corresponds
to the first input token. Our concept is that these
models should be able to focus more on the id-
iomaticity of an MWE in a given sequence by using
its span representation rather than using the [CLS]
token for classification, potentially resulting in a
better detection performance.

Our main findings in the shared task are in three-
fold.

1. The span-based idiomaticity classification
method is highly effective compared to the
standard [CLS]-based sequence classifica-
tion approach adopted in various BERT (De-
vlin et al., 2019)-like models (Liu et al., 2019;
Lan et al., 2020; Clark et al., 2020).

Detecting idiomaticity in Galician with no
training data available is challenging even
with state-of-the-art cross-lingual pre-trained
language models.

. Utilizing adjacent contexts with a target sen-
tence is not always the best option for id-
iomaticity detection, even though it improves
the baseline performance.

Consequently, our best-performing system, using
the span-based classification, ranked fifth among
20 systems in the zero-shot setting of Subtask A
and showed a macro F; score of 0.7466 on the test
set.

2 Background

Idiomaticity Detection While the task of id-
iomaticity detection with respect to MWE:s is not
new, it is still considered challenging because state-
of-the-art language representation models heavily
depend on the principle of compositionality (Pel-
letier, 1994), which idioms do not follow, due to
their tokenization methods (Kudo, 2018; Sennrich

Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 135 - 144
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(b) Span prediction-based idiomaticity classification

Figure 1: Overview of two proposed approaches for detecting idiomaticity.

et al., 2016). To overcome this problem, some stud-
ies (Hashempour and Villavicencio, 2020; Garcia
et al., 2021) have regarded an MWE as a single
token motivated by the assumption that people rec-
ognize an idiom as a single token (Sinclair et al.,
1991). Alternatively, others have tried to utilize
the adjacent contexts of MWEs as inputs and have
demonstrated the effectiveness of this against tasks
targeting verb-noun constructions (Sporleder and
Li, 2009; Salton et al., 2016; King and Cook, 2018)
and noun compounds (Tayyar Madabushi et al.,
2021). This paper also utilizes adjacent contexts
for classification but proposes new idiomaticity de-
tection approaches in which the span information
of an MWE plays an important role.

Cross-lingual Pre-trained Language Models
Cross-lingual pre-trained language models have
shown promising results in multilingual NLP
tasks since the emergence of multilingual BERT
(mBERT) (Devlin et al., 2019). In general, they
are pre-trained with either multilingual masked
language modeling (Devlin et al., 2019; Conneau
and Lample, 2019; Conneau et al., 2020; Chung
etal., 2021) or translation language modeling (Con-
neau and Lample, 2019). The difference between
the two is that the former uses monolingual sen-
tences while the latter utilizes concatenated par-
allel sentences for inputs. The state-of-the-art In-
foXLM (Chi et al., 2021a) further utilized con-
trastive learning, where a model needs to distin-
guish a correct translated sample from negative
ones. Our approach uses several cross-lingual
pre-trained language models, including InfoXILLM,
XLM-R, XLLM-Align (Chi et al., 2021b), and Rem-
BERT (Chung et al., 2021), to utilize multilingual
idiomaticity data efficiently.

3 Task Description

We briefly describe a multilingual idiomaticity de-
tection task (Subtask A). Given a sentence com-
posed of n words Sgrget = (w1, . . ., wy| that con-
tains an m-word MWE W = [w}WVE oy MWE]
&’s preceding sentence Sprey, and succeeding sen-
tence Spext, the task is to classify if W is idiomatic
(0) or not (1). The task dataset is based on Tay-
yar Madabushi et al. (2021) and contains Galician
in addition to English and Portuguese. Each sam-
ple consists of S = [Sprev; Starget; Snext]» VWV, a lan-
guage type lang € {“EN”,“PT”,“GL"}, and an
idiomaticity label ypmwe € {0, 1}. In the zero-shot
setting, participants do not have any training sam-
ples for Galician and are only allowed to use the
officially provided training and development sets
for training. They must also use the same approach
for all samples except language and can submit up
to five systems for evaluation.

4 System Overview

Our system relies on cross-lingual pre-trained lan-
guage models (InfoXLLM and XLM-R and others)
and classifies samples using either span-based clas-
sification or span prediction-based classification.
We fine-tune several pre-trained language models
and obtain final predictions by using an ensemble
method. Figure 1 visualizes our approach for mul-
tilingual idiomaticity detection.!

4.1 Span-based Classification

There have been several attempts to utilize span hid-
den representations from a Transformer (Vaswani
et al., 2017)-based pre-trained language model in
various NLP tasks that can be formulated as span
classification, including named entity recognition

'Appendix A describes our approaches in detail using
equations.
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(Yamada et al., 2020; Eberts and Ulges, 2020), rela-
tion classification (Baldini Soares et al., 2019) and
propaganda technique classification (Da San Mar-
tino et al., 2020; Dimov et al., 2020; Jurkiewicz
et al., 2020). These studies have all demonstrated
the effectiveness of the span representations.

Here, we utilize this approach to solve the task
of idiomaticity detection. We first pick up the
span hidden representations of an MWE from the
Transformer-based model, take their average, and
feed the resulting vector into a linear layer for final
classification (Figure 1 (a)).

Our concept with this approach is that the model
should be able to focus more on the usage of an
MWE in terms of idiomaticity in context rather
than using a special [CLS] token for classification.
Although we do not regard an MWE as a single
token to encode, it is true that our approach is in-
spired by the idiom principle (Sinclair et al., 1991)
in the sense that our model classifies a single av-
eraged MWE span hidden representation for final
classification.

4.2 Span Prediction-based Classification

For the second approach, we propose span
prediction-based idiomaticity classification, in-
spired by BERT (Devlin et al., 2019)’s fine-tuning
approach against the SQuAD v2.0 dataset (Ra-
jpurkar et al., 2016, 2018), which contains some
unanswerable questions. In BERT’s approach, the
answer text span in a given text for answerable
questions is predicted, and the position of a [CLS]

token for questions that do not have an answer is
output. In our case, the task is to predict the MWE
span in a given sequence for idiomatic MWEs and
to output the position of a [CLS] token for non-
idiomatic MWEs. This approach is illustrated in
Figure 1 (b).

Our concept with this approach lies in the gen-
eralizability over unseen data. Predicting an id-
iomatic MWE span requires a model to differen-
tiate non-idiomatic MWESs from idiomatic ones.
This should force the model to learn semantic
knowledge on MWE:s in terms of idiomaticity and
subsequently help the model to deliver a better per-
formance on the test data.

S Experimental Setup

Models We mainly utilized InfoXLM and XLM-
R for our system submission, but we also tested
several other cross-lingual pre-trained language

Model

InfoXLM (Chi et al., 2021a)
XLM-R (Conneau et al., 2020)
XLM-Align (Chi et al., 2021b)
RemBERT (Chung et al., 2021)
mBERT (Devlin et al., 2019)

Identifier

microsoft/infoxlm-large
xlm-roberta-large
microsoft/xIm-align-base
google/rembert
bert-base-multilingual-cased

Table 1: List of cross-lingual pre-trained language mod-
els tested in this paper. Each identifier corresponds to
the model name in the transformers library.

models. Table 1 shows the list of models tested
in this paper.” We selected these models because
they are easy-to-use thanks to their availability on
the HuggingFace Hub.?

Data and Preprocessing We utilized the offi-
cial training and development sets* for training,
and no additional data was used, as stipulated
by the competition rules. We tokenized sam-
ples using pre-trained tokenizers provided by the
transformers library (Wolf et al., 2020) and
set the sequence length to 256. When using an
MWE as an additional input feature, we added it to
the second sentence following Tayyar Madabushi
et al. (2021).

Evaluation Metrics The evaluation metric for
Subtask A is a macro F; score with respect to id-
iomaticity labels.

Fine-tuning We implemented our approaches
using PyTorch (Paszke et al., 2019) and the
transformers library. We fine-tuned all mod-
els for ten epochs each using one NVIDIA Tesla
V100 (SXM2 - 32GB) with a batch size of 16 and
automatic mixed precision applied. We used an
Adam optimizer (Kingma and Ba, 2014) and saved
a checkpoint of each model every ten steps. To
minimize the effect of random seeds, we trained
all models for ten times each with different ran-
dom seeds. We then selected the best-performing
models on the basis of the macro F; scores on the
development set.’

Ensemble We fused the outputs of the fine-tuned
pre-trained language models to further boost perfor-

“We provide a brief explanation of the five cross-lingual
pre-trained language models in Appendix B and the perfor-
mance comparison in Appendix E.

*https://huggingface.co/models

4https ://github.com/H-TayyarMadabushi/
SemEval_2022_Task2-idiomaticity

>For more details on hyperparameters, please refer to Ap-
pendix C.
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System  Ensemble Method

Models Used

System 1 No Ensemble
System 2 Stacking
System 3 Majority Vote
System 4 Stacking
System 5 Majority Vote

InfoXLM for EN, XLM-R for PT & GL
InfoXLM x 4, XLM-R x 1
InfoXLM x 5, XLM-R x 1
InfoXLLM x 5, XLM-R x 1
InfoXLM x 5, XLM-R x 1

Table 2: Configurations of our submitted systems. For ensemble methods, we used predicted labels from pre-trained
language models as an input feature. For systems with stacked generalization, we trained a logistic regression model

as a meta estimator.

mance on unseen data. For submission, we use ei-
ther stacked generalization (Wolpert, 1992), where
we train a machine learning model using predic-
tions from pre-trained language models and cor-
responding idiomaticity labels and then make a
final decision with it, or naive majority voting on
predicted labels. We implemented stacked general-
ization using scikit-learn (Pedregosa et al., 2011).
Prediction labels on the development set were used
as training data for a meta estimator. To train
the estimator, we first divided the training data
into 90% for training and 10% for hold-out. We
then trained the estimator using three-fold cross-
validation (CV). We tested both a ridge classi-
fier and a logistic regression and chose the best-
performing model based on the average CV score
over the three validation folds. We subsequently
picked up the best estimator from the resulting
three models using the hold-out set. Finally, the
best estimator predicted labels for the test set using
the predictions of the pre-trained language models.

Submitted Systems We submitted the five mod-
els listed in Table 2 to the evaluation phase.® Note
that all models were fine-tuned with the span-based
classification approach following our preliminary
experiments on the development and evaluation
sets.

6 Results

Table 3 shows the official test set results for
the zero-shot setting of Subtask A. Our best-
performing model (System 2), using four InfoXLM
models and one XLM-R model with stacked gener-
alization, achieved a macro F; score of 0.7466 and
was ranked fifth among 20 teams.

Ensemble We utilized ensemble methods in four
out of five submissions, of which two use stacked

8For the detailed configurations of each model, please see
Appendix D.

Rank Team Macro Fy

1 clay 0.8895

2 yxb 0.8498

3 NER4ID 0.7740

4 HIT 0.7715

5 Hitachi (Ours) 0.7466
Baseline 0.6540

Table 3: Top five macro F; scores on test set in zero-shot
setting of Subtask A. Baseline uses mBERT following
Tayyar Madabushi et al. (2021).

Approach Macro Fy
No Ensemble  System 1 0.7354
. System 3 0.7354
Majority Vote - g0iems 07448
. System 2 0.7466
Stacking  §liem4 07452

Table 4: Macro F; test scores for our five submitted
systems. All models were trained with the span-based
classification approach. Bold indicates the best result.

generalization and the others adopt a naive majority
voting approach. Table 4 lists the results of our five
submissions on the test set. The results indicate the
effectiveness of the ensemble methods, which out-
perform the model with no ensemble methods by
0.0112 for the best-performing model using stacked
generalization. Even for the naive majority voting
approach, the performance improved or did not fall
below the result without ensembling.

Classification Approaches We verified the
efficacy of three idiomaticity classification
approaches—span-based classification, span
prediction-based classification, and conventional
[CLS]-based classification—using the same
pre-trained model (InfoXLM). We can see in
Table 5 that the span-based classification approach
exhibited by far the best average macro F; score
of 0.7303 on the test set, compared to average
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Macro F, Macro F;
Approach Development Test Feature Development Test
Span-based 0.7898 (.0138)  0.7303 (.0211) Plain 0.7859 (.0131) ~ 0.7131 (.0196)
Span prediction-based  0.7514 (.0086)  0.6245 (.0255) Plain + MWE 0.7835 (.0078) ~ 0.7315 (.0179)
[CLS]-based 0.7166 (.0675)  0.6333 (.0371) Plain + Context 0.7898 (.0138) ~ 0.7303 (.0211)
Plain + MWE + Context  0.7918 (.0141)  0.7280 (.0212)

Table 5: Average macro F; development and test scores
of three classification approaches with standard devi-
ations over ten runs in parentheses. We fine-tuned In-
foXLM and used the same hyperparameter settings and
input features for all models.

0.8
0.7
0.6
= 05
<
o 0.4
g
0.3
Approach
0.2 Span-based
o1 mmm Span prediction-based
' mmm [CLS]-based

EN
Language

Figure 2: Average macro F; scores of three idiomaticity
classification approaches on the test set grouped by lan-
guage. Error bars denote 95% confidence interval.

macro F; scores of 0.6245 and 0.6333 for the
span prediction-based and the [CLS]-based
approaches, respectively. This huge difference
stems partly from the Galician classification
performance, since we have no associated training
or development sets for Galician.

Figure 2 shows the average macro F; scores on
the test set grouped by language. The span-based
classification approach produced the highest perfor-
mance across the three languages, and the perfor-
mance variations among languages were relatively
small, with the maximum difference of 0.1245 be-
tween English and Galician. In contrast, the span
prediction-based and [CLS ] -based approaches did
not perform well on Galician samples, exhibiting
average macro F; scores of 0.4499 and 0.4858, re-
spectively. We assume that because idioms are gen-
erally language- and culture-specific’ (Aldahesh,
2013; Al-kadi, 2015), it is difficult for models fine-
tuned on English and Portuguese data to detect

7 Although Portuguese and Galician have strong historical
ties, they are categorized as two different languages (Ramallo
and Rei-Doval, 2015; Garcia, 2021).

Table 6: Average macro F; development and test scores
with standard deviations over ten runs in parentheses.
“Plain” denotes a target sentence, while “Context” rep-
resents the previous and next sentences. We fine-tuned
InfoXLM using the span-based classification approach
and used the same hyperparameter settings for all mod-
els.

idiomaticity in unseen Galician samples without
letting them know where they should be mainly
looking, as in the span-based approach.

Input Features Tayyar Madabushi et al. (2021)
reported that encoding a target sentence along with
its adjacent contexts showed the best classification
performance in the zero-shot setting among the
four possible input feature combinations: (i) a tar-
get sentence, (ii) a target sentence with its MWE
as a second sentence, (iii) a target sentence with
its adjacent contexts, and (iv) a target sentence, its
MWE and adjacent contexts. Here, we also inves-
tigated these combinations using the span-based
classification approach (Table 6). The results in-
dicate that considering a target sentence and its
adjacent contexts is not always the best option. In
our experiments, utilizing a target sentence and its
target MWE as inputs (Plain + MWE) achieved the
best average macro F score of 0.7315, followed by
Plain + Context with a macro F; score of 0.7303.
While using only a target sentence showed compa-
rable performance to the other approaches on the
development set, it ended up producing the worst
result on the test set. These results suggest that
using an additional feature along with a target sen-
tence is likely to boost detection performance, but
it is not clear which combination of input features
yields the best performance given the standard de-
viations.

7 Conclusion

In this paper, we have proposed two approaches for
detecting idiomaticity in a given sequence: span-
based classification and span prediction-based clas-
sification. While the performance of the latter was
almost on par with that of the well-known standard
sequence classification approach using a [CLS]
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hidden representation, the former outperformed it
and showed the best macro F; score of 0.74660,
which ranked fifth in the zero-shot setting of Sub-
task A. We also found that it is essential to guide
a model on which tokens to look at when no train-
ing data is available for a particular language. In
future work, we will investigate a more effective
idiomaticity detection approach against unseen lan-
guage data.
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Appendices
A Approaches

Here, we describe our two approaches in detail
using mathematical notations.

A.1 Span-based Classification

Given S, W, and ymwe, we first tokenize S
and Wyuwe using a pre-trained tokenizer and
obtain their token-level representations: &' =
[t1, ..., bwen] and W' = [V (MWE] e
then feed S’ into a Transformer-based pre-trained
language model and obtain the output hidden rep-

resentation H = [hy,... h]]. We pick up only

the hidden representation of /' and compute their
average as hywg = Wl’\ (hY™WE ... hMWVE),
Finally, we put hywg into an output linear layer
and obtain the prediction. The training objective in
this task is the binary cross-entropy loss.

A.2 Span Prediction-based Classification

Given &', a start position of ¥/ and an end po-
sition of W', we first feed S into a Transformer-
based model and then put the output representation
H to a linear classifier for classification, yielding
0O e RV*2 = [Ostart; Oena|. We finally apply the
softmax function to O and Oepq in order to ob-
tain the idiomatic MWE span probabilities. For
prediction, we first calculate the maximum scoring

span and obtain its score as s = o$@" 4 019, where

j
J must be greater than 4, and oj*" and 0§“d are

the i-th and j-th values of Oyt and o¢pq, respec-
tively. We also calculate the non-idiomatic score
as 5 = oS 4+ o4 where index 1 refers to the
index of the [CLS] token. If s > 5, W is regarded
as idiomatic. Otherwise, WV is predicted as a non-
idiomatic MWE. This task is trained with an aver-
age of the log-likelihoods of the correct start L,
and end Leng positions: Lepan = % (Lstart + Lend)-

B Cross-lingual Pre-trained Language
Models

We briefly explain the five cross-lingual pre-trained
language models tested in this paper.

* mBERT (Devlin et al., 2019): Pre-trained with
multilingual masked language modeling using
Wikipedia. Its architecture follows that of
BERT-BASE.

* XLM-R (Conneau et al., 2020): Pre-trained
with multilingual masked language modeling
using CommomCrawl, which is much larger
than Wikipedia. The architecture generally
follows that of BERT-LARGE.

e InfoXLLM (Chi et al., 2021a): Pre-trained
with multilingual masked language modeling,
translation language modeling, and the newly
proposed cross-lingual contrastive learning,
using CommonCrawl. The architecture fol-
lows that of XLM-R.

* XLM-Align (Chi et al., 2021b): Pre-trained
with multilingual masked language modeling,
translation language modeling and denoising
word alignment, using CommonCrawl and
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Wikipedia. The architecture generally follows
that of BERT-BASE.

RemBERT (Chung et al., 2021): Pre-trained
with multilingual masked language model-
ing using both CommonCrawl and Wikipedia.
The architecture is completely different from
that of XLLM-R, though it has the same number
of parameters (559M). It consists of 32 hidden
layers, 18 attention heads and Dimpjqden =
1152.

Note that all models can accommodate the three
target languages (English, Portuguese, and Gali-
cian).

C Hyperparameter Settings

Table 8 shows the hyperparameter settings. We ex-
plored various hyperparameter combinations with
respect to a pre-trained language model, a peak
learning rate, and an input feature and selected the
models with a macro F; score of 0.795 or above on
the development set. Note that we also tested XLM-
Align, RemBERT, and mBERT in our preliminary
experiments, but these did not perform well on the
development set (see Appendix E); therefore, we
did not use them in our submissions.

D Model Configurations

Table 9 lists the models used for our submissions,
while Table 10 shows the configurations of our five
submitted systems. For System 1, we used the
two different best-performing models for English
and Portuguese.® For Galician, because we did not
have any training samples provided in the zero-shot
setting, we used the same model as Portuguese, as
both Galician and Portuguese have grammatical
and lexical similarities due to their shared histor-
ical background (Ramallo and Rei-Doval, 2015;
Cascallar-Fuentes et al., 2018; Garcia, 2021).

E Performance Comparison of Five
Cross-lingual Pre-trained Language
Models

Table 7 compares average macro F; scores of five
cross-lingual pre-trained language models on the
development and test sets. Interestingly, RemBERT
produced the best result on the test set with an av-
erage macro F; score of 0.7452, though it ranked

8We selected the best-performing models based on macro
F, scores on the evaluation set.
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Macro F;
Model Development Test
InfoXLM 0.7898 (.0139)  0.7304 (.0211)
XLM-R 0.7959 (.0110) 0.7116 (.0125)
XLM-Align  0.7600 (.0096)  0.7015 (.0119)
RemBERT  0.7833 (.0090) 0.7452 (.0192)
mBERT 0.7440 (.0125) 0.7014 (.0125)

Table 7: Average macro F; development and test scores
of five cross-lingual pre-trained language models with
standard deviations over ten runs in parentheses. We
use the same hyperparameter settings for all models.

0.8 I
0.7
0.6
T 0.5
o
o 0.4 Model
=
0.3 InfoXLM
. XLM-R
0.2 s XLM-Align
01 mmm RemBERT
' mmm mBERT
Language

Figure 3: Average macro F; scores of five cross-lingual
pre-trained language models on the test set grouped by
language. Error bars denote 95% confidence interval.

third for the development set. This is presumably
because the Galician and English classification per-
formances of RemBERT are better than any other
cross-lingual pre-trained language models that we
tested (Figure 3).



Hyperparameter Candidate
Batch size 16

Epochs 10

Model (InfoXLM, XLM-R)

Peak learning rate
Input feature
Warmup steps

(0.5e-5, le-5, 1.5e-5, 2e-5, 2.5¢e-5, 3e-5)
(Plain + MWE, Plain + Context, Plain + MWE + Context)
5% of steps

Weight decay 0.01
Adam € le-8
Adam (5 0.9
Adam (2 0.999
Sequence length 256
Attention Dropout 0.1
Dropout 0.1

Table 8: Hyperparameters in our experiments. We explored various hyperparameter combinations with respect to
pre-trained language model, peak learning rate, and input feature. If not specifically mentioned in the paper, we
used hyperparameters denoted with an underline.

Model Type Hyperparameter Macro F,
Development Evaluation
LR Input Feature Seed EN PT All EN PT All
My InfoXLM 2e-5 Plain + Context 25 .800 .814 814 .862 .678 .801
M InfoXLM le-5 Plain + MWE 25 787 796 799 858 .667 .797
M XLM-R le-5 Plain + Context 42 814 746 797 850 .743 817
My InfoXLM le-5 Plain + Context 42 799 770 797 844 679 792
M InfoXLM le-5  Plain + MWE + Context 22 788 .784 796 .854 .696 .803
M InfoXLM 1.5e-5 Plain + Context 42 837 742 810 .800 .665 .762
My InfoXLM 2e-5  Plain + MWE + Context 29  .808 .806 .818 .854 .708 .812

Table 9: List of models used in our submissions and their macro F; scores on the development and evaluation sets.
Bold indicates the best result in each category, while underline indicates the second-best result.

System Approach Models Used Macro F,
EN PT GL All
System 1  No Ensemble M for EN, M3 for PT& GL .820 .733 .614 .735
System 2 Stacking My, Mo, M3, My, Ms 783 761 .663 .747
System 3 Majority Vote =~ M1, Mo, M3, My, M5, Mg 785 739 647 .735
System 4 Stacking M, Mo, Mg, My, Ms, M7 785 757 660 .745
System 5 Majority Vote M1, Mo, M3, My, M5, M7 769 753 .685 .745

Table 10: Configurations of our submitted systems and their macro F; scores on the test set. Bold indicates the best
result in each category, while underline indicates the second-best result.
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Abstract

We describe the University of Alberta systems
for the SemEval-2022 Task 2 on multilingual
idiomaticity detection. Working under the as-
sumption that idiomatic expressions are non-
compositional, our first method integrates in-
formation on the meanings of the individual
words of an expression into a binary classi-
fier. Further hypothesizing that literal and id-
iomatic expressions translate differently, our
second method translates an expression in con-
text, and uses a lexical knowledge base to de-
termine if the translation is literal. Our ap-
proaches are grounded in linguistic phenom-
ena, and leverage existing sources of lexical
knowledge. Our results offer support for both
approaches, particularly the former.

1 Introduction

In this paper, we describe the University of Alberta
systems for the task of classifying multi-word ex-
pressions (MWESs) in context as either idiomatic
or literal (Tayyar Madabushi et al., 2022). Each
instance in the data includes a MWE (e.g., closed
book), its language, and its context, composed of
the three surrounding sentences. We participate in
both the zero-shot and one-shot settings.

While the exact definitions of the two key terms
are not stated explicitly in the task description!,
it is suggested that idiomatic is synonymous with
non-compositional. The Pocket Oxford Dictionary
defines idiomatic as “not immediately comprehen-
sible from the words used,” and literal as “taking
words in their basic sense.” Therefore, we adopt
the following MWE compositionality criterion

literal = compositional = —idiomatic

where the three terms are considered to be Boolean
variables. In addition, the shared task considers all
proper noun MWEs (e.g., Eager Beaver) as literal.

"https://sites.google.com/view/
semeval2022task2-idiomaticity

J"/[CLS] This will encourage decision makers to see the N
research as more than just another fish story. [SEP]
Fish story.

Cold-blooded aquatic vertebrate. The flesh of fish
used as food. A piece of fiction that narrates a chain of
related events. A structure consisting of a room or set
of rooms at a single position along a vertical scale.

\ [SEP) )

| context
sentence

target MWE

glosses of the
words “fish” and
“story"

Figure 1: An example of defBERT input.

Our goal is to explore the idea that glosses and
translations of word senses can help decide whether
the meaning of a given MWE occurrence is compo-
sitional. Based on the above-stated compositional-
ity criterion, this in turn could facilitate idiomatic-
ity detection. In particular, we hypothesize that at
least one of the words in any idiomatic expression
is used in a non-standard sense. Following the intu-
ition that a traditional word sense disambiguation
(WSD) system can only identify senses that are
included in a given sense inventory, we propose
two methods that indirectly detect non-standard
senses by leveraging either glosses or translations
of senses from such an inventory.

Our gloss-based method follows from the intu-
ition that the meaning of a given MWE occurrence
is related to any of the existing sense glosses of its
component words only if the expression is composi-
tional. Therefore, the addition of the glosses to the
context of the expression should help the classifier
in deciding whether the MWE is used in a literal
or idiomatic sense. We implement this method by
adding the glosses of each sense of each individ-
ual word, retrieved from a lexical knowledge base,
to the input to a neural classifier which fine-tunes
multilingual BERT (mBERT; Devlin et al., 2019)
for the idiomaticity detection task. We refer to this
method as defBERT (Figure 1).

Our translation-based method follows from the
observation that compositional expressions are typ-
ically translated word-for-word (“literally’”), which
implies that each content word and its translation
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should have the same meaning. Therefore, each
such multilingual word pair should share a multi-
synset in a multi-wordnet (Hauer and Kondrak,
2020b). The procedure is as follows: (1) trans-
late the MWE in context; (2) word-align the source
and target sentences; (3) lemmatize and POS-tag
the source MWE; and (4) for each lemma in the
MWE, search for a multi-synset that contains both
the lemma and its translation. This method is unsu-
pervised, and we refer to it as MT.

Our results provide evidence that leveraging lex-
ical resources is beneficial for idiomaticity detec-
tion. In particular, our gloss-based method, when
combined with a type-based UNATT heuristic, is
among the top-scoring submissions in the one-shot
setting. The heuristic is based on the observation
that some MWEs are inherently idiomatic or literal,
regardless of their context, which is confirmed by
our analysis of the development set annotations.

2 Related Work

Early attempts to represent idiomatic MWEs in-
volve treating idiomatic phrases as individual to-
kens and learning corresponding static embeddings
(Mikolov et al., 2013). However, Cordeiro et al.
(2016) show that the effectiveness of this method
is limited by data sparsity for longer idiomatic ex-
pressions. Furthermore, Shwartz and Dagan (2019)
and Garcia et al. (2021) conclude that idiomaticity
is not yet accurately represented even by contextual
embedding models. Tayyar Madabushi et al. (2021)
create a new manually labeled dataset containing
idiomatic and literal MWEs, and propose a method
based on a pre-trained neural language model.

Regarding using lexical translations for id-
iomaticity detection, Moirén and Tiedemann
(2006) measure semantic entropy in bitext align-
ment statistics, while Salehi et al. (2014) predict
compositionality by presenting an unsupervised
method that uses Wiktionary translation, synonyms,
and definition information. We extend these ideas
by applying machine translation, and consulting a
multilingual lexical knowledge base.

Our prior work has already demonstrated the
utility of lexical translations for various semantic
tasks, including prior SemEval tasks on predict-
ing cross-lingual entailment (Hauer et al., 2020)
and contextual synonymy detection (Hauer et al.,
2021), as well as word sense disambiguation (Luan
et al., 2020), and homonymy detection (Hauer and
Kondrak, 2020a; Habibi et al., 2021).

3 Methods

In this section, we describe our methods for id-
iomaticity detection.

3.1 Baseline mBERT

We re-implemented the mBERT classifier baseline
(Devlin et al., 2019) following the methodology of
Tayyar Madabushi et al. (2021). The model takes
the context sentence and the relevant MWE as an
input, and outputs a binary label indicating the id-
iomaticity of the target MWE. The input sequence
is constructed by concatenating the MWE to the
end of the context sentence after the special [SEP]
token.

It is important to note the differences between
our re-implementation and the official baseline pro-
vided by the task organizers. In the official baseline,
the organizers add the target MWE as an additional
feature in the one-shot setting but not in the zero-
shot setting. Furthermore, the organizers include
the sentences preceding and succeeding the tar-
get sentence only in the zero-shot setting. In our
re-implementation, we add the target MWE and
exclude the preceding and succeeding sentences in
both zero-shot and one-shot settings.

3.2 Gloss-based Method

Our first method, defBERT, extends the baseline
model by adding the glosses of all possible senses
of each individual word in the target MWE to the
classifier’s input. The intuition is that the addition
of the glosses to the input should help the classifier
decide if the meaning of the target MWE can be de-
duced from the definitions of the individual words,
i.e., if it is compositional. In the example in Fig-
ure 1, the disparity between the context in which
fish story appears, and the glosses of the various
senses of the words fish and story indicates that the
MWE is idiomatic in this context.

The intuition for this method is that non-native
speakers can identify idiomatic expressions, pro-
vided they understand the standard meanings of the
words which comprise them. Suppose that the vo-
cabulary of a non-native speaker covers most of the
essential words necessary to understand a language,
but not idiomatic expressions. Even if the speaker
cannot deduce the meaning of an idiomatic expres-
sion in context, they can guess that the expression
was used in an idiomatic sense because individual
words of this expression do not make sense in the
given context.
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3.3 Translation-based Method

Our MT method is based on translating the target
MWE in context, and leverages multilingual se-
mantic resources. The intuition behind this method
is that idioms are generally specific to a particu-
lar language, and, being non-compositional, their
meanings cannot be conveyed simply by translating
the individual words.

Under this hypothesis, to classify an MWE as lit-
eral or idiomatic, we need only determine whether
the words in the MWE are translated literally. We
do this by first identifying the translation of each
word via alignment. We then consult a multilingual
wordnet, or multi-wordnet, a lexical knowledge-
base which organizes words in two or more lan-
guages into multilingual synonym sets, or multi-
synsets. Each multi-synset corresponds to a unique
concept, and contains the words which express that
concept. Given a word in context, and a transla-
tion of that word in that context, we consider the
word to be literally translated if it shares at least
one multi-synset with its translation.

For example, consider an instance in which the
MWE wedding anniversary is translated into Ital-
ian as anniversario di matrimonio. Our method
checks if either of the translation pairs (wedding,
matrimonio) and (anniversary, anniversario) share
a multi-synset in a multi-wordnet. We test two
versions of this method: in MT(all), this condition
must be satisfied for all content words in the MWE;
in MT(one), detecting a literal translation for one
word is sufficient to classify the MWE as literal. In
addition, multiple languages of translation may be
considered.

3.4 Additional Heuristics

The annotation methodology for this shared task
includes proper nouns in the literal class. We there-
fore use a part-of-speech tagger to detect proper
nouns; if any word in the MWE is tagged as a
proper noun, MT automatically classifies it as lit-
eral without further consideration.

In the one-shot setting, we also use a type-based
heuristic which we refer to as UNATT. The intu-
ition behind this heuristic is that certain MWEs
are inherently idiomatic or literal, regardless of the
context that they appear in. If the training data
has no example of an MWE in a particular class,
the heuristic exploits this fact as evidence that the
MWE should always be classified as the opposite,
attested class. For example, this heuristic always

classifies life vest as idiomatic and economic aid
as literal, as these are the only classes in which
these MWE:s appear in the training data. In prac-
tice, since UNATT returns no classification if the
training set contains instances that belong to either
class, this heuristic must be used in combination
with another method.

3.5 Combination

Our defBERT and MT methods take different views
of the data, with the former using a neural language
model and gloss information, and the latter using
translation and a lexical knowledge base. We there-
fore consider combining the two methods. In this
approach, we independently apply defBERT and
MT to a given instance. If the two methods agree,
we return the agreed-upon classification; if they
disagree, we return a default class, which is a tun-
able parameter. As with the other methods, we can
combine this method with the UNATT heuristic in
the one-shot setting.

4 Experiments

We now describe our experiments, including the
tools and resources, the experimental setup, the
results, and a discussion of our findings.

4.1 Lexical Resources

As lexical resources for sense translations and
glosses, we use two different multi-wordnets: Ba-
belNet (BN; Navigli and Ponzetto, 2010, 2012),
and Open Multilingual WordNet (OMW; Bond and
Foster, 2013). The defBERT method and the align-
ment tool access BN 4.0 via the provided Java API?.
For the MT method, we access the BN 5.0 via the
HTTP APIL. We access OMW via the NLTK inter-
face (Bird et al., 2009). For the MT method, we
consider the translation of a word to be literal if it
shares a multi-synset with the word in either BN
or OMW. For lemmatization and POS tagging, we
use TreeTagger® (Schmid, 2013).

Both BN and OMW contain English glosses for
most concepts, but the availability of glosses in
other languages varies. In particular, OMW con-
tains no Portuguese or Galician glosses. With Ba-
belNet, we experimented with two techniques: us-
ing English glosses for all languages, and using
glosses from the language of the instance, i.e. the

https://babelnet.org/guide

3We use the pre-trained models for English, Portuguese,
and Galician from https://cis.uni-muenchen.de/
~schmid/tools/TreeTagger.
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source language, when available. We refer to these
variants as defBERT-BN-en and defBERT-BN-src,
respectively. Since defBERT uses a multilingual
pre-trained language model, it can seamlessly han-
dle input from multiple languages. Furthermore,
because of the relatively poor coverage of Galician
in the lexical resources (only 54% of glosses are
available in this language), we attempt to leverage
its close relationship to Portuguese by processing
Galician as if it was Portuguese.

4.2 Translation and Word Alignment

We translate the context sentence of each MWE
with Google Translate API*. We translated English
instances into Italian, and Portuguese/Galician in-
stances into English, because of the good cover-
age of these languages in our resources. We also
conducted development experiments with transla-
tion into less related languages, as well as with
combining translation information from multiple
languages, but we observed no consistent improve-
ments.

We align each input sentence with its translation
using BabAlign (Luan et al., 2020), which consults
BabelNet to refine the alignments generated by a
base aligner, FastAlign (Dyer et al., 2013). To
further improve the alignment quality, we augment
the set of sentence-translation pairs with additional
parallel data from the OpenSubtitles parallel corpus
(Lison and Tiedemann, 2016). We note that the
English-Galician bitext is less than 1% of the size
of the other two bitexts.

4.3 mBERT and defBERT

We fine-tune the mBERT-based models using the
binary classification objective on the labeled train-
ing dataset. In the zero-shot setting, the MWEs in
the training data are disjoint from those in the devel-
opment and test splits, while in the one-shot setting,
all MWE:s in the development and test splits have
at least one example in the training data. In the
zero-shot setting, we trained the models only on
the zero-shot training set, while in the one-shot set-
ting, we trained the models on both training sets. In
particular, we fine-tuned the models for 20 epochs
with a maximum sequence length of 256, a learn-
ing rate of 2e-5, and a per device batch size of 16,
using the HuggingFace Transformers library.’

*https://cloud.google.com/translate
Shttps://huggingface.co

4.4 Development experiments

Table 1 contains the results of the following mod-
els: the official mBERT-based baseline (row 0)
as reported by the shared task organizers, our re-
implementation of the official baseline (row 1),
three variants of defBERT method which is based
on mBERT (rows 2-4), defBERT combined with
the UNATT heuristic (row 5), and the MT method
combined with defBERT (rows 6-7)°. For rows 1-5
we average the macro F1 score obtained over five
runs with random initializations.

Our experiments with defBERT explored the
impact of adding glosses to the mBERT model,
including the source and language of the glosses.
With English glosses retrieved from BabelNet, def-
BERT improves the total score over the mBERT
model in the zero-shot setting, especially on Por-
tuguese. The results also suggest that the English
glosses may be preferable to glosses in the source
language, a finding which could simplify work on
lower-resourced languages, where glosses may not
be available.

Combining the predictions of the mBERT-based
models with the UNATT heuristic improves the
one-shot F1 scores in all cases (row 5 vs. row 4).

The MT methods achieve the best results when
combined with defBERT on the development set in
the zero-shot setting: MT(one) for English (row 6),
and MT (all) for Portuguese (row 7). This demon-
strates the utility of using lexical translation infor-
mation for idiomaticity detection when annotated
training data is not available.

4.5 Error Analysis

We found that the defBERT method performs
slightly better, by about 1% F1, on literal instances
as compared to idiomatic instances in the one-shot
setting. In other words, the method is less likely
to make an error when given a literal instance. We
speculate that this is explained by the model’s con-
sistent classification of proper nouns as literal ex-
pressions. Indeed, a proper noun is identified in-
correctly in only one instance. The fraction of
idiomatic vs. literal instances is 39% in English
and 56% in Portuguese.

For the MT method, a large number of of errors
were caused by a literal translation of an idiomatic
expression by Google Translate, even though the

6 After the test output submission deadline, we discovered
errors in our implementation of the MT methods. We report
our original results for consistency with the official results.
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Development results Test results

Zero-Shot One-Shot Zero-Shot One-Shot

EN PT | EN PT EN PT GL ALL | EN PT GL ALL
0 | Baseline 66.2 639 | 87.0 86.7 | 70.7 680 50.7 654 | 886 864 8l.6 86.5
1 | mBERT 74.6 625 | 8.7 859 | 751 633 611 682 | 90.0 83.6 86.6 §87.7
2 | defBERT-BN-src 755 64.8 | 854 86.7 | 72.0 664 578 672 | 957 885 889 922
3 | defBERT-BN-en 753 664 | 87.6 86.6 | 73.4 684 597 69.5 | 950 893 879 918
4 | defBERT-OMW-en 748 645 | 87.1 845 | 71.0 656 565 665 | 924 86.7 885 90.1
5 | UNATT + defBERT - - 92.0 87.7 - - - - 945 892 912 924
6 | MT(one) + defBERT | 77.3 649 | 845 78.0 | 682 546 563 62.7 | 859 70.6 782 80.6
7 | MT(all) + defBERT | 66.4 69.2 | 73.7 78.0 | 654 625 543 621 | 803 738 739 773

Table 1: The macro F1 scores on the development and test datasets. Our official submissions are in rows 4-7.
Where not otherwise specified, defBERT is in the OMW-en configuration.

corresponding expression is not meaningful in the
target language. For example, “she was different,
like a closed book™ is translated into Italian as “era
diversa, come un libro chiuso” even though the Ital-
ian translation does not carry the meaning of a per-
son being secretive. In a few cases, the translation
would simply copy the source language expression,
yielding output which is not fully translated. In
addition, some correct lexical translations are not
in our lexical resources. Finally, a number of incor-
rect idiomatic predictions could be traced to word
alignment errors, especially in cases of many-to-
one alignments (e.g., bow tie correctly translated
as papillon).

Manual analysis performed on the development
set corroborates our hypothesis that most multi-
word expressions are inherently idiomatic (e.g.,
home run) or literal (e.g., insurance company).
Only about one-third of the expressions are am-
biguous in the sense that they can be classified as
either class depending on the context (e.g. closed
book). Our judgements are generally corroborated
by the gold labels, with the exception of proper
nouns, which are consistently marked as literal.
The UNATT heuristic (Section 3.4), which is based
on this observation, obtains a remarkable 98.3%
precision and 55.8% recall on the set of 739 in-
stances in the development set.

4.6 Test set results

The results on the test set are shown in Table 1.
Our best results are produced by defBERT-BN-en
in the zero-shot setting, and the combination of
defBERT with the UNATT heuristic in the one-
shot setting. The latter also obtains the best result
on Galician, which demonstrates its applicability
to low-resource languages, as this method only
requires English glosses.

The results of combining defBERT with MT are

well below the baseline, which may be due to a
different balance of classes in the test set, omis-
sions in lexical resources, and/or errors in our ini-
tial implementation. Another possible reason is
that modern idiomatic expressions are often trans-
lated word-for-word (“calqued”), especially from
English into other European languages. Examples
from the development set include flower child, ba-
nana republic, and sex bomb.

5 Conclusion

Our top result ranks third overall in the one-shot
setting. The corresponding method is applicable
to a wide variety of languages. It takes advan-
tage of the ability of neural language models to
seamlessly incorporate textual information such as
glosses, even if it is expressed in a different lan-
guage. These results strongly support our hypothe-
sis that the gloss information of individual words
can improve idiomaticity detection. Moreover, our
development results support the hypothesis that
non-compositional expressions can be identified
through their translations. These findings conform
with our prior work on leveraging translation for
various semantic tasks (Section 2). We hope that
this work will motivate further investigation into
the role of multilinguality in semantics.
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Abstract

We propose a unified framework that enables
us to consider various aspects of contextualiza-
tion at different levels to better identify the id-
iomaticity of multi-word expressions. Through
extensive experiments, we demonstrate that our
approach based on the inter- and inner-sentence
context of a target MWE is effective in improv-
ing the performance of related models. We also
share our experience in detail on the task of
SemEval-2022 Task 2 such that future work on
the same task can be benefited from this.

1 Introduction

Multi-word expressions (MWE:s) are a group of lin-
guistic components containing two or more words
with outstanding collocation (Baldwin and Kim,
2010; Constant et al., 2017). MWEs are valuable
in that they contribute to enriching the expressive-
ness of a language, allowing diverse interpretations
of their meaning according to the context in which
they are located. That is, the semantics of an MWE
can be originated from either (i) the direct composi-
tion of the literal definitions of its constituents (i.e.,
compositional meaning) or (ii) its conventional us-
age in the language (i.e., idiomatic meaning). For
instance, given an expression called wet blanket, its
compositional meaning is ‘a piece of cloth soaked
in liquid’, whereas its idiomatic meaning is ‘a per-
son who spoils the mood’ (see Table 1).

While MWEs function as an effective means
of improving the abundance of a language, they
are also one of the main obstacles that compli-
cate natural language processing (NLP), from the
perspective that an NLP model should be able to
precisely identify their mode. In addition, the cur-
rent trend where the goal of most NLP models
is chiefly focused on capturing compositionality
raises the question of how properly to deal with
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Category Meaning Example

And finally, the snow falls again,
this time in a thick, wet blanket
that encapsulates everything.

Compositional
(Non-idiomatic)

A piece of cloth
soaked in liquid.

When Marie brings him down to
earth, it’s not clear if she’s being
a passive-aggressive wet blanket
or if she might have a point.

. . A person who
Idiomatic .
spoils the mood.

Table 1: Comparison between the compositional and
idiomatic meanings of the expression wet blanket.

idiomatic aspects of linguistic expressions (Garcia
et al., 2021a,b; Zeng and Bhat, 2021).

An intuitive solution for mitigating the afore-
mentioned problem is an introduction of a sophisti-
cated method designed to estimate the idiomaticity
of a given expression, which enables the separate
processing of the expression according to its cat-
egory. In a similar vein, we propose a series of
techniques for better detecting the idiomaticity of a
target MWE by actively exploiting its surrounding
context in addition to considering the relationship
between metaphors and the notion of idiomaticity.

Participating in SemEval-2022 Task 2, we focus
on classifying two-noun compounds into idiomatic
and non-idiomatic. The task provides two config-
urations. In the zero-shot setting, a model’s per-
formance is evaluated on the set of sequences that
include MWEs never appeared in the training phase.
Meanwhile, in the one-shot setting, our model is
exposed to a pair of instances per each MWE dur-
ing training, one of which shows the idiomatic use
of the MWE while the other is an example for the
non-idiomatic case.! We present a unified frame-
work that can be used in both kinds, paying slightly
more attention to the one-shot setting. In extensive
experiments, we show that most of our consider-
ations lead to improvement in performance. We
also present discourse on the task specification to
promote a fair comparison between related models.

"For more details on the task’s specification, refer to the
task description paper (Tayyar Madabushi et al., 2022).
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Figure 1: Proposed framework. Two features on the left (D and ) are based on the surrounding context (Section
3.1), while the remaining two (3 and @) are originated from considering the inner-sentence context (Section 3.2).

2 Related Work

Idiomaticity detection has been widely studied in
the literature (Reddy et al., 2011; Liu and Hwa,
2019; Garcia et al., 2021a,b; Zeng and Bhat, 2021).
Above all, Tayyar Madabushi et al. (2021) present a
dataset that is the foundation of SemEval 2022 Task
2. This dataset consists of sentences that contain po-
tential idiomatic MWEs with two surrounding sen-
tences and annotations about the fine-grained set of
meanings. The authors also evaluate a model’s abil-
ity to detect idiomatic usage depending on whether
context and MWE are included. They report that
reflecting the context in the way of simply con-
catenating surrounding sentences is not generally
helpful, and that adding the corresponding MWE
at the end of the input sequence improves perfor-
mance. In the following sections, we re-examine
their findings and present our own revision.

On the other hand, we investigate the viability of
applying techniques for metaphor detection (Gao
et al., 2018; Mao et al., 2019; Lin et al., 2021) into
idiomaticity classification, inspired by the resem-
blance of the two tasks. A metaphor is a form of
figurative expression used to implicitly compare
two things seemingly unrelated on the surface at
the attribute level (Baldwin and Kim, 2010). Not
all metaphors have the property of idiomaticity, but
some idioms rely on metaphorical composition.

In practice, Choi et al. (2021) introduce two
metaphor identification theories (Metaphor Iden-
tification Procedure (MIP; Group (2007), Steen
(2010)) and Selectional Preference Violation (SPV;
Wilks (1975)) into their model to better capture

metaphors, which we expect also might be helpful
for the procedure of identifying idiomatic expres-
sions. The basic ideas of MIP and SPV are that
a metaphor can be identified when we discover
the difference between its literal and contextual
meaning, and that it can also be detected when its
semantics is distinguishable from that of its context.
To realize the concepts, for MIP, Choi et al. (2021)
employ a target word’s contextualized and isolated
representations, while for SPV, they utilize the con-
textualized representations of the target word and
the sentence including the word. We adopt some
of their ideas and customize them for our purpose,
i.e., modeling features for idiomaticity detection.

3 Proposed Method

As a participant of SemEval-2022 Task 2, we pro-
pose a framework powered on four features devised
to facilitate the detection of idiomatic expressions.
These features are computed by the same founda-
tion model,” but distinguished from each other by
what is inserted into the model as input to compute
the features. A simple linear classifier is introduced
on top of the concatenation of the four features to
finally gauge the idiomaticity of an MWE in an in-
put sequence. Figure 1 presents the overall picture
of our method.

3.1 Features Based on Surrounding Context

We first focus on the fact reported by Tayyar Mad-
abushi et al. (2021) that the surrounding context

*In this work, a “foundation model’ refers to a Transformer
encoder pre-trained on large corpora, e.g., BERT and XLM-R.
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(a.k.a. inter-sentence context), which we define as
sentences located right before and after a target sen-
tence, is uninformative in predicting idiomaticity.
We hypothesize that this disappointing outcome is
partly due to the way such context was exploited.
To be specific, given a sentence containing an
MWE and its previous and following sentences,
Tayyar Madabushi et al. (2021) propose simply
putting all the three together in order. Despite its
simplicity, this approach has an explicit drawback
that a model should automatically learn how to dis-
tinguish the target sentence from its surrounding
context. Moreover, when combined with context
without caution, the input sequence becomes much
(approximately 3x) longer than its original form,
which might cause a negative effect on performance
by merely intensifying the complexity of the prob-
lem rather than providing additional information.
To alleviate the aforementioned problems, we
suggest a new approach of combining a target sen-
tence with its context. Concretely, we first concate-
nate the target sentence with its () previous and
@ next sentences respectively (i.e., previous-target
& target-next), and then inject each chunk into our
encoder to derive vjcLs) and vpwe. By doing so,
we expect that the target sentence can be relatively
more emphasized than its context, as the target sen-
tence naturally appears twice while its context is
exposed only once. Plus, by dividing the whole
sequence into two parts, it is anticipated that the
encoder struggles less to extract useful information
from the input. Note that vjcrs) is the represen-
tation for the entire chunk, which is obtained by
taking the [CLS] embedding from the last layer
of the encoder, and that vywg is the average of
the representations of the subwords that constitute
the target MWE. Lastly, the final context-sensitive
feature is computed by conducting a linear transfor-
mation of the concatenation of vjcLs) and UMWwE.
On the other hand, we propose two extra tech-
niques in order to provide a clue on the location
of MWEs. While constructing token-level repre-
sentations for our encoder, we employ trainable
segment embeddings that draw the line between to-
kens for the target MWE and others. Moreover, the
target MWE is repeated at the end of each chunk,
following Tayyar Madabushi et al. (2021).

3.2 Features Based on Inner-Sentence Context

Second, we consider adding features dedicated to
more effectively leveraging the information em-

bedded in the target sentence, regarding the MWE
and its neighboring words as separate objects. We
import some ideas from prior work for metaphor de-
tection (Mao et al., 2019; Choi et al., 2021), exploit-
ing the conceptual relationship between metaphors
and idiomatic expressions.

Initially, we assume that similar to Metaphor
Identification Procedure (MIP), whose core idea is
that a metaphoric word’s semantics become distinct
from its lexical meaning when it is contextualized,
we consider an MWE as idiomatic when its static
and contextualized embeddings are heterogeneous.
While the contextualized representation of the tar-
get MWE is already available from the features pro-
vided in Section 3.1, we have not yet introduced the
MWE’s static representations. To implement this,
we again make use of the same encoder, however,
only the MWE itself (removed from its context) is
presented as input to the model. We call the output
of this procedure the @ MWE-exclusive representa-
tion, which becomes an ingredient for realizing the
‘idiomatic’ version of MIP. Note also that according
to Garcia et al. (2021b), static models have been
considered as competitive or even better to/than
contextualized models for idiomaticity detection.
Therefore, we aim to reinforce our framework by
employing both the options.

Meanwhile, Choi et al. (2021) use Selectional
Preference Violation (SPV) for metaphor detection,
assuming that the semantics of a metaphoric word
should be distinctive from that of its context.> We
basically adopt their idea, but revise its implemen-
tation, arguing that their implementation might be
somewhat defective. In detail, Choi et al. (2021)
compute the embeddings of a target and its con-
text exactly as we do when computing vjcrs] and
vmwe in Section 3.1. However, it is highly proba-
ble that vcLs) and vmwe contain similar informa-
tion as they are intertwined with each other by the
attention mechanism, which is undesirable when
estimating separate semantics of the target and con-
text. We thus introduce the Q) context-exclusive
representation of the target sentence by providing
our encoder with a variant of the sentence where
the target MWE is masked. When combined with
the features from the previous section, we expect
that the inner-sentence context independent from
the target MWE at all can be useful for applying
the concept of SPV into idiomaticity detection.

3This time, we limit the scope of the context as the sen-

tence emcompassing a target expression (i.e., inner-sentence
context), following Choi et al. (2021).
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Model / Lang. English Portuguese Galician Overall

Zero-shot setting

Baseline (BERT)  70.70 68.03 50.65 65.40
Baseline (XLM-R) 72.29 65.68 46.16 63.21
Ours (submitted)  76.42 72.82 62.92 7227
One-shot setting

Baseline (BERT)  88.62 86.37 81.62 86.46
Baseline (XLM-R) 88.45 85.03 84.02 86.56
Ours (submitted)  91.59 84.57 82.87 87.50
Ours (post-eval) 92.29 88.05 87.10 89.96

Table 2: Main results on the test set. Numbers are from
the best configuration (random seed) of each model.

4 Experiments

4.1 Experimental Setup

For all experiments, we present five instances per
each model with the corresponding random seeds
(42, 360, 2578, 5925, 9463). Each instance is
trained for 10 epochs, and its best checkpoint which
shows the top performance on the development
set in terms of the macro F1-score is chosen for
the inference of the test set. We use a max se-
quence length of 300, a learning rate of 3e-5 for the
AdamW (Loshchilov and Hutter, 2019) optimizer,
and a batch size of 16 for the training set and 8 for
the validation and test sets. The vectors of each rep-
resentation (vjcLs) and vmwe) have 768 dimensions
respectively and the learning rate is scheduled to
linearly decrease after the second epoch. We lever-
age XLM-R(-base) (Conneau et al., 2020) as our
foundation model.

4.2 Main Results

We compare the results of our method (submit-
ted) against those of the baseline offered by the
task organizers (Tayyar Madabushi et al., 2022).
Although the original baseline is powered on Mul-
tilingual BERT(-base), for a comparison, we also
report the performance of the baseline equipped
with XLLM-R(-base). Evaluation is conducted on
the test set, and each model’s performance is re-
ported according to the language on which it is
tested (English, Portuguese, and Galician) and the
setting it is trained (zero- and one-shot).

From Table 2, we can see that both in the zero-
and one-shot settings, our model largely outper-
forms baselines. Notice that in the zero-shot set-
ting, our model outperforms the baseline powered
on the same foundation model (XLM-R) by more
than 16% in Galician. Considering that Galician
was not included in the training data, this result con-

77 71 7066
76049 7644 76.36 70.37
70.01
70 9.97
69.53 6963

76 7760477(7”‘7
T 75.69

69.31

Macro Fl-score

75 69
@ ® © O (® E Ours @ ® © O™ (® (F Ours
Zero-Shot, Dev Zero-Shot, Test
90 90

89.33 8025
89 88.98 89.00

89

88.50 §3.44 88.54

88.18 88.22

Macro Fl1-score

@w ® © O ®
One-Shot, Dev

(F)  Ours @w ® © O™ (@® ((F Ous
One-Shot, Test (post-eval)

(A)- Context  (B)-Sent. div. (C)- Segment embedding (D) - MWE at the tail (E)+ MWEat® (F)-@

Figure 2: Ablation study.

firms that our model is more generalizable than the
baselines from the perspective of input language.

4.3 Ablation Study

We perform an ablation study to confirm whether
the elements of our framework are significant. Note
that all the results used for comparison are the av-
erage of the scores of different instances with five
random seeds. Overall, when tested on the valida-
tion set, the final version of our approach succeed
in outperforming most of the variations, especially
in the one-shot setting where our decisions for se-
lecting the final model were made. We present
more detailed analysis in the following.

First, we compare our method with the varia-
tion (A) which uses only target sentences without
surrounding context and the variation (B) which re-
flects the context by concatenating three sentences.
Tayyar Madabushi et al. (2021), where the authors
employ the variation (B), previously reported that it
is not helpful for idiomaticity detection to consider
the surrounding context of a target MWE. How-
ever, as shown in Figure 2, we find that taking the
context into account following our approach (i.e.,
separating the context into two chunks) is in fact
advantageous in all experimental settings. Further-
more, we observe that the deviation of the scores
of our method is much smaller and more stable
than that of not considering context. This implies
that if there exists a data instance not having much
information available from its target sentence, the
surrounding context of the target sentence can com-
plements the lack of information.

Contrary to our expectation, it is shown that our
method is not always better than the three varia-
tions (C), (D) and (E). The variation (C) removes
segment embeddings, the variation (D) stops the
repetition of MWEs at the tails of (D and 2), and in
the variation (E) the target MWE is recovered (not
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masked) in the computation of ‘context-exclusive’
representation (3)). We leave a detailed examina-
tion regarding these as a follow-up study.

Lastly, it turns out that the variation (F) which
removes the ‘MWE-exclusive’ representation (@),
is more favored in the zero-shot setting. Unlike
the one-shot setting, where a pair of positive and
negative examples for a particular MWEs can be
provided, the zero-shot setting requires the evalu-
ation of MWEs not presented in the training set,
which is a more harsher condition for idiomaticity
detection models. Therefore, we conjecture that
static representations for the MWEs unseen during
training become a little bit noisy in the zero-shot
setting, failing to function following our intention.

5 Discussion

5.1 Issue on Validation Set in One-shot Setting

In the one-shot setting, we expect that a pair of data
instances (one for idiomatic and the other for non-
idiomatic) per every MWE in the test set should
be provided to the model we train. Likewise, if
one wants to confirm that the validation set is rig-
orous enough to be a substitute for the test set in
the procedure of selecting hyperparameters, every
MWE in the validation set should have two corre-
sponding instances in the training set. During the
competition for SemEval 2022 Task 2, we have dis-
covered that the necessary condition holds for the
validation set in the practice phase, while it does
not hold in the evaluation phase. In other words,
the training set provided in the practice phase incor-
porated data instances that correspond to MWEs in
the validation set. However, as the training set has
been substituted with a new version, a problem has
arisen where MWEs in the newly released training
set do not match with those in the validation set.
We conjecture that this discrepancy prevents one’s
optimal actions in choosing the best models.

To prove our hypothesis, we test a variant whose
performance on the validation set is not optimal,
but has the potential of working well when eval-
uated on the test set. Specifically, we replicate
our experiments, but do not choose the best in-
stance based on validation performance. Instead,
we simply choose the model instance trained until
9 epochs and compare it to baselines. As shown in
Table 2, we find that the instance chosen based on
the validation set (i.e., ours (submitted)) is worse
than the randomly selected one (i.e., ours (post-
eval)), implying that the inappropriateness of the

Form of MWEs Validation  Test

Zero-shot setting

Original form 76.34 71.72
Inflectional form 76.36 70.01
One-shot setting

Original form 88.14 89.80
Inflectional form 89.33 88.95

Table 3: Performance gap with form changes in MWEs.

validation set in the evaluation phase might hinder
correct comparisons between submitted models.

5.2 Impact of Form Changes in MWEs

When MWEs are repeated at the end of input se-
quences in (D and @ and embedded solely in @
in our implementation, we copy them from target
sentences so that we can preserve their inflectional
form appearing in the sentences, rather than adopt-
ing their original form. To confirm the effectiveness
of this approach, we conduct an experiment where
we replace the MWEs with their original form.
From Table 3, we observe that unlike the case on
the validation set where applying inflectional form
is always helpful, it turns out that when evaluated
on the test set, employing inflectional form is not
beneficial for performance improvement, contrary
to our expectation. The idea of having utilized
the inflectional form of MWE:s is from our conjec-
ture that compositional and static representations
of MWE:s should be computed from the same form
for a fair comparison between them. However, it
seems that it is more effective to provide a model
with a MWE’s original form in addition to its inflec-
tional form such that the model can extract more
information from the both sides. We leave thorough
analysis on this phenomenon as future work.

6 Conclusion

In this work, we investigate the method of imple-
menting better idiomaticity detection models by
considering different levels of contextualization.
We propose four features grounded on the surround-
ing and inner-sentence context of a target MWE,
showing that these features are effective in improv-
ing performance. Moreover, we present a discus-
sion on the issue related to the validation set in
the one-shot setting and the impact of the form
of MWEs. As future work, we plan to develop
a method of designing the interaction between re-
lated features in a more sophisticated fashion, in-
stead of simply concatenating them.
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Abstract

This paper describes our system for SemEval-
2022 Task 2 Multilingual Idiomaticity Detec-
tion and Sentence Embedding sub-task B. We
modify a standard BERT sentence transformer
by adding embeddings for each idioms, which
are created using BERTRAM and a small num-
ber of contexts. We show that this technique
increases the quality of idiom representations
and leads to better performance on the task. We
also perform analysis on our final results and
show that the quality of the produced idiom
embeddings is highly sensitive to the quality of
the input contexts.

1 Introduction

Idiomatic expressions present a challenge to Large
Language Models (LLMs) as their meaning can-
not necessarily be derived from the composition
of their component tokens, a trait that LLMs of-
ten exploit to create representations of multi-word
expressions. The lack of compositionality leads
to poor representations for idiomatic expressions
and in turn poor performance in downstream tasks
whose data includes them.

SemEval-2022 task 2b (Tayyar Madabushi et al.,
2022) encourages the creation of better represen-
tations of idiomatic expressions across multiple
languages by presenting a Semantic Text Simi-
larity (STS) task in which correct STS scores are
required whether or not either sentence contains
an idiomatic expression. The sub-task requires the
creation of a self-consistent model in which a sen-
tence including an idiomatic expression and one
containing its literal meaning ("swan song’ and ’fi-
nal performance’) are exactly similar to each other
and equally similar to any other sentence.

To achieve this goal, we investigate whether due
to the similarity between idioms and rare-words
Schick and Schiitze’s BERT for Attentive Mim-
icking (Schick and Schiitze, 2020) (BERTRAM)
model, which was designed for use with rare-words,

can be used to explicitly learn high-quality embed-
dings for idiomatic expressions. We also inves-
tigate how many examples of each idiom are re-
quired to create embeddings that perform well on
the task, as well as how the quality of contexts fed
to the BERTRAM model effects the representations
and performance on the task.

Evaluating our model on the task shows that
externally trained idiom embeddings significantly
increase the performance on STS data containing
idioms while maintaining high performance on gen-
eral STS data. This improved performance gained
an overall spearman rank score of 0.6402 and first
place (of six entries) on the pre-train setting, and an
overall spearman rank score of 0.6504 and second
place (of five entries) on the fine-tune setting.

2 Background

Adopting the idiom principle (Sinclair, 1991) to
produce a single token representation for MWEs
has been used widely within static embedding dis-
tributional semantic models (Mikolov et al., 2013;
Cordeiro et al., 2019). Within contextualised repre-
sentation models, Hashempour and Villavicencio,
2020 show that the contextualised representations
produced by context2vec (Melamud et al., 2016)
and BERT (Devlin et al., 2019) models can be used
to differentiate between idiomatic and literal uses
of MWEs. However, the MWEs are only repre-
sented by one token in the input, before being bro-
ken into many tokens using BERTs word piece
tokenizer. Tayyar Madabushi et al., 2021 add a
token to the BERT embedding matrix and shows
that this method improves representations through
increased performance on their proposed STS task.
The embeddings they add to BERT are randomly
initialised, however, and only trained during the
fine-tun step on limited data.

'The code for creating the embeddings and the mod-
ified baseline system code can be found on GitHub:
https://github.com/drsphelps/semeval-task-2.
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| Usage | Example in Sentence ]
Idiomatic Blockchains, fundamentally, are banking because what they’re doing is allowing the
transaction of value across networks ... they’re doing it in an orthogonally different way,"
he said Wednesday in what may be his swan song in public office.
Literal Blockchains, fundamentally, are banking because what they’re doing is allowing the

transaction of value across networks ... they’re doing it in an orthogonally different way,"
he said Wednesday in what may be his bird song in public office.

Semantically Similar

Blockchains, fundamentally, are banking because what they’re doing is allowing the
transaction of value across networks ... they’re doing it in an orthogonally different way,"
he said Wednesday in what may be his final performance in public office.

Table 1: Example sentences for the Idiomatic STS data. Idiomatic and Semantically similar should be given an
STS score of 1, and be given the same score when compared to the literal use.

2.1 BERTRAM

BERT for Attentive Mimicking (BERTRAM)
(Schick and Schiitze, 2020), originally developed to
improve representations of rare words, builds upon
attentive mimicking (Schick and Schiitze, 2019)
to create embeddings, within existing embedding
spaces, for tokens that incorporate both form and
context information from a small number of exam-
ple contexts. During training the model attempt
to recreate embeddings for common words with
the existing embedding in the model treated as the
‘gold embedding’, a process known as mimicking.
Form embeddings are then learnt using trained n-
gram character embeddings, before being passed
with a context into a BERT model. The output
of the BERT model forms the embedding for that
specific context. To incorporate knowledge from
many contexts an attention layer is applied over
the outputs for each context to get the final embed-
ding. There exist other models to produce effec-
tive embeddings from a small number of contexts
(Zhao et al., 2018; Pinter et al., 2017), however,
BERTRAM is the only model that is non-bag-of-
words and incorporates both form and context in-
formation when creating the embedding.

Rare words are unsurprisingly defined by how
uncommon they are within datasets. This leads
to problems when using LLMs on tasks involving
rare words as the word pieces they are broken down
into have not been influenced enough during pre-
training to accurately represent them. Similarly,
idiomatic phrases represent a small proportion of
the usage of their constituent words, the idioms in
the development set for this task represent an aver-
age of 4.9% of the usage of their constituent words.
Therefore, the embeddings for constituent words
are not significantly effected by the usage of idioms
in the training data, leading to the model failing to
understand the idiomatic expressions. Further simi-

larities between idioms and rare-words include the
variance in compositionality, for example, unicycle
can be partially understood from its word pieces,
whereas kumgquat cannot.

3 Methodology
3.1 Embedding Creation

Due to the similarities between rare words and id-
ioms, we use BERTRAM to create representations
for idiomatic expressions. A separate BERTRAM
model is used for each nof the tasks languages. For
English, we use the pre-trained model provided
with the original paper. For Portuguese and Gali-
cian we train BERTRAM models with BERTim-
bau Base (Souza et al., 2020) and Bertinho-Base
(Vilares et al., 2021) respectively used as the
base transformers. The Portuguese and Galician
BERTRAM models that we train are trained using
almost the same training regime outlined for the
English model in the original paper, 3 epochs of
context only training, 10 epochs of form only train-
ing and 3 epochs of combined training. Due to time
and compute restrictions, we do not use One-Token
Approximation to expand the number of gold stan-
dard representations that can be used for attentive
mimicking. The Portuguese and Galician splits of
the cc100 dataset (Conneau et al., 2020; Wenzek
et al., 2020) are used to train the models, with the
entire split being used for Galician, and a 10GB
subset used for Portuguese.

Contexts for each of the idioms found in the
task data can then be created using these models.
Examples are retrieved from the relevant split in
the cc100 dataset using a grep command 2 that re-
trieves the entire line that the instance of the idiom
is found on. We investigate how changing the num-
ber of contexts used to create each embeddings

2grep -i " $val" -m250 en.txt > $val.data, where $val is
the idiom of interest
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Figure 1: Overall Spearman Rank performance on the
development set for the English and Portuguese models
at different epochs during pretraining

changes our performance on the task by creating
embeddings for each idiom with between 1-250
examples in intervals.

3.2 Model Architecture

For predicting the similarity scores, a separate
model is used for each of the languages BERT-
Base (Devlin et al., 2019) for English, BERTimbau
for Portuguese, and Bertinho-Base for Galician.
The created BERTRAM embeddings for each of
the idioms found within the task are added into the
embedding matrix of the relevant model. These
models are used within a Sentence BERT (Reimers
and Gurevych, 2019) setup, implemented using the
SentenceTransformers library, which consists of a
siamese network structure that uses mean squared
error over the cosine similarities of the input sen-
tences as it’s loss function. This allows us to use
the contextualised embedding outputs of our BERT
networks to find cosine similarity between a given
pair of sentences.

3.3 Data

This sub-task uses data in English, Portuguese and
Galician. Data is also split into general STS data
which does not necessarily contain idioms and id-
iom STS data which specifically contains idioms
and phrases which are semantically similar or liter-
ally similar. An example of idiom STS data taken
from the task description can be seen in Table 1.
English and Portuguese are the primary lan-
guages and general STS data, from STSBenchmark

Owerall
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Figure 2: Overall and Idiom STS Only Spearman Rank
on the development set whilst training on the Idiom STS
data

(Cer et al., 2017) and ASSIN2 (Real et al., 2020)
for English and Portuguese respectively, and idiom
STS data for both languages are included in the
train, dev, eval and test sets. A very small amount
(50 examples) of Galician data, comprised of idiom
STS data, is also included in the test set.

The task is split into two settings, pre-train and
fine-tune. The pre-train setting does not allow for
the use of STS score annotated data which includes
idioms, whereas any data can be used in the fine-
tune setting.

The evaluation metric used in this task is the cor-
relation between the predicted similarities and the
gold standard ones, calculated using Spearman’s
Rank Correlation Coefficient. The Spearman’s
Rank is calculated for the general STS data and
the idiom STS data separately, however, the Spear-
man’s Rank for the entire dataset is used in the final
evaluation.

3.4 Pre-train Setting

For the pre-train setting, we use the general STS
data in English and Portuguese to train the respec-
tive models. Due to a lack of available STS data
for Galician, it is trained on the Portuguese data, as
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Figure 3: Overall Spearman Rank corellation score on
the development set with different numbers of examples
used to create the idiom embeddings.

there is a high level of similarity between the two
languages.

Evaluating the models on the dev split, we in-
vestigate the optimal number of epochs for the En-
glish and Portuguese models. The results (shown
in figure 1) show that 45 epochs are optimal for
Portuguese and 35 for English. Due to a lack of
dev split data for Galician we use the result from
the Portuguese model as they are trained on the
same data.

3.5 Fine-tune Setting

For the fine-tune setting we start with the models
from the pre-train setting, and further train them on
the Idiom STS data provided as part of the task.

Again we investigate the optimal number of
epochs of training on this data (results shown in
figure 2). We find that the overall spearman rank is
highest after just a single epoch of training, with
further training considerably reducing the perfor-
mance on the general STS data, and thus on the
overall STS score. However, further training, up to
50 epochs, continues to increase the performance
of the model on Idiom STS data. Therefore, de-
pending on the application and required trade-off,
the model can be tuned to either perform better on
general STS data or idiom STS data.

3.6 Number of Examples

We also tune the number of examples given for each
idiom on the development data. Using BERTRAM
we train embeddings for each of the idioms using
a range of different numbers of examples from 1-
250. The performance of each set of embeddings
is evaluated by training the whole system for 10

epochs followed by evaluation on the dev set. Fig-
ure 3 shows the results of this experiment. The
performance increases quickly from 1-15 examples
before flattening out. The absolute highest perfor-
mance is achieved at 150 examples, and so this is
the value we use going forward.

4 Results

The final results for our system on the test data
can be seen in Table 2. These scores show signifi-
cant improvement over the baseline system and led
to our system being placed first for the pre-train
setting, and second for the fine-tune setting.

Fine-tuning has a much lower effect on the per-
formance of the system when evaluated on the test
set than compared with the dev and evaluation sets,
with only a small, but significant, rise in overall
correlation. Performance rises by only 0.0198 and
0.022 for English and Portuguese respectively, and
unlike on dev data we do not see a uniform increase
on the SR Idiom score.

4.1 Galician Performance

The performance we achieve on the Galician idiom
data is much lower than what is seen on the English
and Portuguese data. As we didn’t have access to
any development data for Galician further investi-
gation will be needed to identify the causes of this
discrepancy. Due to the smaller amount of Gali-
cian data in the cc100 corpus, some idioms did not
have the full 150 examples that were used to cre-
ate the embeddings for the English and Portuguese
idioms. Additionally, there was no Galician STS
data to train the final model on, and even though
Portuguese and Galician are very similar, the small
difference may lead to differences in the perfor-
mance.

4.2 Error Analysis and Data Issues

To perform analysis on the quality of the created
representations we calculate the Spearman’s Rank
Correlation for each of the idioms in the develop-
ment set individually. Any idioms with less than 5
occurrences in the development data are removed,
as significant correlation scores cannot be achieved
with such a low sample size.

When evaluating the performance of the idioms
individually, we can see that some of the idiomatic
expressions perform much worse than average. For
example the spearman rank for score for ‘fish story’
is just 0.190 when the embedding is trained on 10
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Setting Language(s) SR ALL SRIdiom SR STS
Pre-Train  EN 0.7445 0.4422  0.8709
Pre-Train PT 0.7087 0.4806  0.8010
Pre-Train GL 0.2924 0.2924 -
Pre-Train All 0.6402 0.4030 0.8641
Pre-Train  EN 0.5958 0.2488  0.8300
Pre-Train  PT 0.5584 0.2761  0.7745
Pre-Train  GL 0.1976 0.1976 -
Pre-Train  All 0.4810 0.2263 0.8311
" Fine-Tune EN 0.7643  0.4861 0.8344
Fine-Tune PT 0.7307 0.4643  0.7908
Fine-Tune GL 0.2859 0.2859 -
Fine-Tune All 0.6504 0.4124  0.8188
Fine-Tune EN 0.6684 04109 0.6210
Fine-Tune  PT 0.6026 0.4090 0.5523
Fine-Tune  GL 0.3842 0.3842 -
Fine-Tune  All 0.5951 0.3990 0.5961

Table 2: Final Spearman Rank (SR) scores of the system on the test set, split into idiom Semantic Text Similarity
(STS), general STS, and all datasets. Aggregated results for all languages in bold. Results for the baseline system,

also broken down into languages, are in italics.

random examples.

Analysis of these errors shows that the lower
performance can, at least in part, be attributed to
different phrase senses in the automatically col-
lected examples. Taking our above example ‘fish
story’, 3 different phrase senses can be observed in
the original randomly selected examples: a tall tale,
a literal story about fish, and as a proper noun in
the title of the film ‘A Fish Story’. This leads to a
divergence in the contexts in the examples, and the
contexts for the idiomatic uses, leading to worse
embeddings for the idiomatic phrases.

We can explore this further by producing a man-
ually collected gold standard example set, for the
English language subset of the MWEs. Taking the
original 250 examples for each idiom, we select
10 gold standard examples. To avoid overfitting
our embeddings to this task, we only manually re-
move examples where the MWE is being used as a
proper noun (e.g. the film ’A Fish Story’), or the
idiom is being misused, leaving in correct literal
and idiomatic uses of the phrase. After removing
the proper noun and misused cases, 10 random
examples are selected to form our ’gold standard’
example set.

We then compare the spearman scores achieved
when the embeddings are trained with the gold stan-
dard examples, to scores when the representations
are produced using 10 random examples when both

models are evaluated on the English split of devel-
opment set. The results for selected MWEs with
the randomly selected (auto) and manually chosen
(manual) contexts can be seen in table 3.

The manually selected examples lead to an in-
crease in performance on the Idiom STS data split
from 0.406 to 0.450. A small increase from 0.841
to 0.848 overall on the English split can also be
observed, however this performance is limited by
the general STS score which is unaffected by our
manual selection. Particularly large improvements
in spearman rank coefficient can be seen on MWEs
with multiple meanings (panda car, banana repub-
lic, fish story, etc.). Surprisingly, we actually see
the performance on some MWEs fall, however this
can likely be attributed to the random selection of
examples, and variance in the contexts used for
each idiom, especially on the MWEs which did not
have many usages removed as they are only used
in the idiomatic form (eager beaver, chain reaction,
etc.).

5 Conclusion

We build our system by augmenting BERT mod-
els for each language with single token embed-
dings learnt using BERTRAM. BERTRAM is used
due to its high performance on rare words, which
share many properties with idioms such as non-
compositionality and being rare examples of com-

162



MWE Auto Manual Change
panda car 0.399  0.851 0.452
banana republic 0.391  0.753 0.362
fish story 0.190  0.304 0.114
chain reaction  0.356  0.240 -0.116
eager beaver  0.491  0.352 -0.159

Table 3: Improvement in correlation, measured using
Spearman’s Rank Coefficient, when trained on manually
chosen examples vs. automatically collected ones.

ponent pieces. Our results, and subsequent rank-
ing at first place (of six entries) in the pre-train
setting and second place (of five entries) in the
fine-tune setting, show that BERTRAM can learn
high-quality word embeddings for idioms and that
this leads to better performance on downstream
tasks. Our error analysis shows that BERTRAM is
sensitive to the quality of examples it is shown, and
that performance can be improved even further by
manually selecting a gold set of contexts for each
idiom. Future work could look at the differences in
performance between the Portuguese and Galician
models with the goal of increasing performance
on Galician, and perform more analysis to explore
the discrepancy in performance between individual
idioms further.
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Abstract

Large Language Models have been successful
in a wide variety of Natural Language Process-
ing tasks by capturing the compositionality
of the text representations. In spite of their
great success, these vector representations fail
to capture meaning of idiomatic multi-word
expressions (MWESs). In this paper, we focus
on the detection of idiomatic expressions by
using binary classification, based on Subtask
A of SemEval-2022 Task 2 (Tayyar Mad-
abushi et al., 2022). Thereafter, we perform
the classification in two different settings:
zero-shot and one-shot, to determine if a
given sentence contains an idiom or not. N
shot classification for this task is defined by
N number of common idioms between the
training and testing sets. In this paper, we train
multiple Large Language Models in both the
settings and achieve an F1 score (macro) of
0.73 for the zero-shot setting and an F1 score
(macro) of 0.85 for the one-shot setting. An
implementation of our work can be found at
https://github.com/ashwinpathak20/
Idiomaticity_Detection_Using_Few_
Shot_Learning.

1 Introduction

Transformer-based Large Language Models
(LLMs)(Kant et al., 2018) like BERT, DistilBERT,
RoBERTa and their variants show state of art
performance on a large number of NLP tasks, yet,
they fail to capture multi-word expressions such as
idioms. This is because contextualized pre-trained
models learn compositional representations of
text at sub-word and word level to reduce the
vocabulary size.

Therefore, we evaluate how well do LLMs
identify idiomaticty by formulating the problem as
a classification task.
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In this paper, we propose an approach for
Subtask A of SemEval-2022 Task 2 (Tayyar Mad-
abushi et al., 2022). We treat the development
data as held-out development data, and report
our performance on the test data. To evaluate
how well LLMs identify idiomaticity, we use two
different settings to determine the generalizability
of the LLMs: zero-shot and one-shot setting. The
zero-shot setting is defined such that the MWEs in
the train set are mutually exclusive of the MWEs
found in the test set. For the one-shot setting, there
is only one Idiomatic and/or one Literal training
example for one MWE in the development set.
This is different from traditional definitions of
zero-shot and one-shot classification.

The rest of the paper describes the related works
in section II and the dataset used in Section III. Sec-
tion IV gives the methodology used in zero-shot
and one-shot learning. Section V describes the per-
formed experiments and Section VI discusses the
results. Section VII concludes the paper with a dis-
cussion on future research prospects and directions.

2 Related Work

Idiomaticity identification for MWEs has been
widely studied for single token representation us-
ing statistical and semantic methods (Lin, 1999;
Baldwin and Villavicencio, 2002).

Recent works use contextual representations
without any token representation for idiomaticity
identification for MWEs (Hashempour and Villav-
icencio, 2020). (Tayyar Madabushi et al., 2021)
introduces new tokens for MWEs into a contextual
pre-trained language model. However, they do not
explore the relationship of potential MWEs in a
sentence.

To this end, we present a contextual and com-
positional network incorporating latent semantic
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significance of MWEs in a sentence. Using word
embeddings for semantic similarity have been ex-
plored before (Katz and Giesbrecht, 2006). How-
ever, the challenge for the semantic usage identifca-
tion of MWEs lies in the ambiguity in meanings of
MWEs. Additionally, low frequency occurrences
of MWEs inhibit the models to effectively learn the
contextual representations as well.

Siamese Networks have been widely used for
similarity detection and difference tracking. We
propose to carry forward this idea for identification
of idioms in MWESs by comparing the literal usage
of MWE:s from their idiomatic usage. This enables
our approach to learn a contextual and composi-
tional structure within a sentence.

3 Method

SemEval 2022 task 2 Subtask A (Tayyar Mad-
abushi et al., 2021, 2022) is a task to evaluate the
extent to which models can identify idiomaticity
in text through a coarse-grained classification into
an “Idiomatic” or “Non-idiomatic” class. To better
evaluate a model’s ability to generalise and learn in
a sample efficient fashion, the scores are reported
in the zero-shot and one-shot setups.

Data

The dataset used in this report is the one pro-
vided by (Tayyar Madabushi et al., 2021). Each
of the train and development splits of this dataset
consists of samples containing a target sentence,
it’s language information, a multiword expression
(MWE), two contextual sentences that occur before
and after the target sentence, and a label associated
with the target. The label represents whether the
multiword expression was used in an idiomatic
sense or not.

The train split is further divided into zero-shot
and one-shot data, containing 4491 and 140 sam-
ples each, consisting of 236 and 100 distinct MWEs
respectively. Similarly, the development data con-
tains 739 samples made from 50 different MWE:s.
One-shot MWEs have no overlap with zero-shot
ones. However, development data MWEs are a
proper subset, as can be expected in a one-shot
classification scenario.

Zero-shot learning

For the zero-shot learning task, we use the train
data to build a classifier using large language mod-
els like BERT-multilingual-uncased, DistilBERT-
multilingual-uncased, XLM-RoBERTa-large and
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XLM-net. This task is “zero-shot” in nature as the
idioms used in the train set and the development set
are distinct. Therefore, we capture the discrepancy
in the contextual meaning for idiomaticity, that is,
we aim that our classifier distinguishes on the basis
of lack of semantic correctness of literal meaning
in the presence of an idiom in a sentence.

To make sure that idioms are not used explicitly
while pre-training in large language models, we run
a natural language inference task on BART-Large-
MNLI and RoBERTa-Large-MNLI with the hy-
pothesis as “idiom”. The macro F1 score for both
approaches is 0.51 and 0.50 respectively, which
proves that there is no semantically learnt concept
of “idiomaticity” by the model. No training data
was used for this step.

We therefore use multilingual LL.Ms to build
classifiers for this setting. We need multilingual
classifiers as the data consists of idioms in three
languages: English, Portuguese and Galician. We
further analyse the majority voting approach on the
predictions of trained classifiers (inference based
ensembling).

Qutput

Feed Forward
MNetwork

Contextual Sub-word
embeddings

Contextual Sub-word
embeddings

D

Same Weights

Figure 1: One-shot learning framework

One-shot learning

In the one-shot setting, we use the only positive
and/or the only negative training example, as avail-
able for each MWE in the development set. Note
that the actual examples in the training data are
different from those in the development set in both
settings.

As shown in Fig 1, our model relies on finding
similarity or relation scores between two input sen-
tences. We first train this model on the pretext task
of predicting whether two sentences with the same
MWE belong to the same class. To achieve this
goal, we employ contextual word embeddings to
encode two sentences into feature vectors via an



embedding function fy. The feature vectors are
then combined with an operator O(.,.) to output
O(fo(xi), fo(z;)) on two inputs x; and ;. This is
finally passed to a similarity/relation function g to
give score s; ; as,

sij = 9o(O(fo(xi), fo(x4)))

We test this framework with two underlying
models - a Siamese Neural Network (Koch et al.,
2015) and a Relation Network (Sung et al., 2018).
With the Siamese Network, the operator O(., .) is
the element-wise difference between the two in-
put feature vectors. The function gy4 is a fully
connected layer followed by sigmoid activation.
The loss in this case can be defined as, L(s; ;) =
i jlyi=y; 108(si5) + (1 — Ly=y;) log(1 — si5),
where y; and y; are the labels associated with
x; and x;. Similarly, for the Relation Network,
O(., .) becomes the concatenation operator, g, be-
comes three fully connected layers with non lin-
ear activations followed by a sigmoid activation
function. The loss in this case is the MSE loss,
L(SZ'J) = %Ei,j(si,j’ — 1(yz == yj))z. In both of
the models, x;, x; pairs are samples with matching
MWEs.

We propose a novel inference methodology for
our binary classification problem, where we also
consider a dissimilarity score 1 — s; ;, with x;, z;
belonging to support and query sets respectively.
Support set is defined to be all samples with the
same MWE as the query. We find the maximum of
similarity and dissimilarity scores for all examples
in the support set, and assign the same label or the
opposite depending on whether the maximum was
the similarity or the dissimilarity score. This helps
us with (Tayyar Madabushi et al., 2021) dataset
where one-shot training data doesn’t have samples
for both the classes (idiomatic and non-idiomatic)
for all MWEs.

4 Experiments

Zero-shot learning

We run our experiments on pre-trained mod-
els for zero-shot classification. We use Multi-
lingual BERT, Multilingual DistilBERT, BERT-
Portuguese, XL-Net and XLM-RoBERTa for ex-
haustive comparison and evaluation. We ensemble
XL-NET, XLM-RoBERTa, and Multilingual Distil-
BERT in a majority vote based setting. As per the
SemEval task, our baseline is Multilingual BERT
for classification.
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One-shot learning
For the contextual embeddings, we run our ex-
periments on pre-trained compositional multi-
lingual base models BERT, DistilBERT and XLM-
RoBERTa for exhaustive comparison and evalua-
tion. We run Siamese networks with cross entropy
loss and Relation Networks with an MSE loss.
Our hyperparameter search pointed towards a
dropout rate of 0.5, a learning rate of 2e-5 and we
found AdamW to be the best performing optimizer.

5 Results
LN Model Dev F1
EN BERT 0.65
EN DistilBERT 0.70
EN XLM-RoBERTa  0.73
EN XL-NET 0.73
EN Ensemble 0.71
PT BERT 0.64
PT DistilBERT 0.58
PT XLM-RoBERTa  0.63
PT XL-NET 0.62
PT Ensemble 0.53
EN-PT BERT 0.67
EN-PT DistilBERT 0.70
EN-PT XLM-RoBERTa 0.71
EN-PT XL-NET 0.73
EN-PT Ensemble 0.68

Table 1: Zero-shot evaluation results

LN Emb Model Siamese F1  Relation F1

EN BERT 0.79 0.85

EN DistilBERT 0.79 0.83

EN XLM-RoBERTa 0.83 0.85

PT BERT 0.81 0.84

PT DistilBERT 0.80 0.85

PT XLM-RoBERTa 0.85 0.85
EN-PT BERT 0.80 0.85
EN-PT DistilBERT 0.79 0.84
EN-PT XLM-RoBERTa 0.84 0.85

Table 2: One-shot evaluation results

Zero-shot learning

Table 1 shows Fl-scores for different configura-
tions, both ensemble and individual language mod-
els, with the baseline model being Multilingual
BERT. We observe that the ensemble model per-
forms better than the baseline in case of EN (0.71
F1 score) and EN-PT (0.68 F1 score) as compared
to PT (0.53 F1 score) data. We further observe that



Setting Language Test F1
Zero-shot EN 0.7869
Zero-shot PT 0.7201
Zero-shot GL 0.5588
Zero-shot EN,PT,GL 0.7235
One-shot EN 0.8410
One-shot PT 0.8162
One-shot GL 0.7918
One-shot EN,PT,GL 0.8243

Table 3: Test evaluation results

XL-NET outperforms other models in case of En-
glish and Portuguese inputs. Our best performing
zero-shot setting results in a 0.72 F1 score on the
test split of the dataset,, which is a significant boost
from the 0.65 F1 score in the baseline provided by
(Tayyar Madabushi et al., 2021).

One-shot learning
Table 2 reports F-1 scores for one-shot learning.
We found the best results of our Siamese and Rela-
tion network with XLM-RoBERTa (0.85 F1-score).
We also observed a better score for Portuguese
dataset as compared to English dataset on all of our
models. Our best performing relation networks get
0.82 F1 score on the test split, which is competitive
with (Tayyar Madabushi et al., 2021).

Table 3 breaks down our test set evaluation re-
sults by language. GL in the table stands for Gali-
cian, which had data only in the test split.

6 Analysis and Conclusion

In this paper we analyzed the effectiveness of large
Language Models towards identifying idiomatic-
ity in a given phrase using zero-shot and one-shot
classification tasks.

In zero-shot classification, we use inference-
level ensembling of different language models and
observe that it outperforms BERT baseline in cases
where the input language consists of English. This
highlights a high degree of disagreement amongst
the language models w.r.t Portuguese input, high-
lighting their brittleness.

For one-shot classification, through Siamese and
Relation Networks, we are able to represent the
latent semantic relationship among MWEs leading
to a much better F1 score than zero-shot classifica-
tion and competitive with prior work. We believe
that the improvement in performance of the rela-
tion network comes due to the learn-able nature
of the distance function used between query and
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support data sample, as well as our novel infer-
ence methodology which also takes into account
the dissimilarity score. Future work for one-shot
classification could aim at breaking the barrier of
0.85 F1 score we seem to have hit on the dev set
with all embedding base models.
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Abstract

This paper describes the experiments ran for
SemEval-2022 Task 2, subtask A, zero-shot
and one-shot settings for idiomaticity detec-
tion. Our main approach is based on fine-tuning
transformer-based language models as a base-
line to perform binary classification. Our sys-
tem, CardiffNLP-Metaphor, ranked 8th and 7th
(respectively on zero- and one-shot settings on
this task. Our main contribution lies in the
extensive evaluation of transformer-based lan-
guage models and various configurations, show-
ing, among others, the potential of large multi-
lingual models over base monolingual models.
Moreover, we analyse the impact of various in-
put parameters, which offer interesting insights
on how language models work in practice.

1 Introduction

Idiomatic language identification is an important
task for language understanding. Recent language
models are surprisingly accurate at distinguishing
literal and figurative use of language, but very little
work has been done on measuring their ability to
generalize across languages. Even for mainstream
languages such as English, there is still little un-
derstanding on the way language models process
idiomatic expressions (IE’s). This SemEval task
(Tayyar Madabushi et al., 2022) focuses, in partic-
ular, on multi-word expressions (MWE), adding
the challenge of representing such expressions in
models.

The Subtask A of SemEval Task 2 invited partic-
ipants to extend the range of existing experiments
for multilingual idiomatic language detection. Data
were provided in English, Portuguese, and Gali-
cian. The task is framed as a binary classification
of MWE between an idiomatic and a literal us-
age. In the zero-shot setting, no Galician example
is provided in the training and development set.
The MWE of the development, evaluation and test
sets are unseen in the training set. In the one-shot

setting, exactly one example of the MWE encoun-
tered respectively in the practicing and test phase
is added to the training data. Therefore, these set-
tings provide a challenging framework in which
language models have to learn from few or no ex-
amples.

As part of the CardiffNLP-Metaphor team, we
used a simple strategy similar to the method em-
ployed in the original paper releasing the dataset
Tayyar Madabushi et al. (2021). In particular, we
assessed the performance of monolingual and mul-
tilingual language models on the task. To this end,
we compared the performance of these models us-
ing different input formats and training parame-
ters. The best results are obtained with a XLM-
RoBERTa large (Lample and Conneau, 2019) with
7 epochs, 8 instances per batch, a maximum se-
quence length of 350, the longest three-sentence
context, and including target information (i.e., the
embedding and the position of the target in the sen-
tence). Our submitted model was based on the best
performance in the development set across both
tasks, using a wide range of different inputs and
parameters.

Our system ranked 8th with a best f1-macro
score of 0.7378 for the zero-shot competition and
7th with a score of 0.8934 for the one-shot com-
petition.! The main contributions of this paper are
the following:

* We show that the multilingual large RoOBERTa
model (Liu et al., 2019) performs better than
monolingual and base models on the one-shot
track, which differs from what was found in
the original paper (Tayyar Madabushi et al.,
2021).

* We found that XLM-RoBERTa base and large
can be unstable, also in comparison with simi-
I"The script written for our experiments is available in a

GitHub repository: https://github.com/Mionies/
CardiffNLP-SemEval-2022-Task2
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Data Total EN PT GL %Id.
tr. O-shot | 4491 3327 1164 0 56
tr. 1-shot®> | 140 87 53 0 43

dev. 739 466 273 O 45
eval. 762 483 279 O ?
test 2342 916 713 713 ?

Table 1: Dataset description. Number of example for
each language and percentage of idiomatic MWE ex-
pressions. The labels of the evaluation and test sets are
unknown.

lar models. This could also explain the differ-
ence in our conclusion and that of Tayyar Mad-
abushi et al. (2021) after exploratory runs with
large models.

* We confirm the importance of providing the
embeddings of the MWE separately to the
model, and running a relatively large amount
of epochs (up to 9 leads to improvements).
Our best model is obtained with seven epochs.

* We test various input formats, including maxi-
mum sequence length and context length, and
the impact of shuffling the training data on
the results, allowing us to discuss the results
obtained in previous experiments with this
dataset.

2 Related Work

In this task, idiomatic expressions are either frozen
(well-known) metaphors, or frozen noun com-
pounds involved in longer metaphors. This dataset
relates to other datasets labelled for metaphorical
usage of words such as the VU Amsterdam corpus
(VUAC) (Steen, 2010) used in a SemEval 2020 task
(Leong et al., 2020). However, such datasets are not
restricted to idioms or compounds. All the words
occurring in texts are labeled. This could ultimately
lead to a design of NLP tasks focusing on idioms,
but has in the main been used for the predictions
of metaphors at the word level. Other metaphor
datasets built for NLP such as the LCC corpus
(Mohler et al., 2016) may contain some MWE but
are not focusing on the specific issues posed by id-
ioms, and also include creative metaphors in their
scope.

To the best of our knowledge, there are other five
datasets particularly designed for the study of the

2One-shot addition designed for the development and the
evaluation sets

compositionality of MWE in context in English.
The idioms in context (IDIX) corpus (Sporleder
et al., 2010) includes idiomatic constructions with
non consecutive words (e.g. raise one’s eyebrows)
and the phrasal verb corpus (Tu and Roth, 2012) is
restricted to V+PRP constructions. The SemEval
2013 Task 5b on phrasal semantics is very simi-
lar to the task addressed this year, with a division
between known phrases and unknown phrases set-
tings within the binary classification task, but re-
stricted to English. More recently, the MAGPIE
corpus (Haagsma et al., 2020), a large repository
of 56,622 sentences containing potential idiomatic
expressions has been shared with the NLP commu-
nity. The selection of its initial list of idioms differ
from our dataset: after a semi automatic selection
of idiomatic expressions, a crowdsourced annota-
tion approach is adopted to determine whether the
expression is used metaphorically or literally. In
a similar design than the dataset used for Subtask
B, Zhou et al. (2021) constructed a curated dataset
of sentences pairs: one element containing an id-
iomatic expression and the second element being
the same sentences with the IEs replaced by its
literal paraphrase.

As for its connection with language models, Gar-
ciaet al. (2021) compared various language models
for probing idiomaticity in vector space models. In
this work, we go beyond the capabilities of vec-
tor space models and test the capabilities of fine-
tuning multilingual language models on the task.
The most related work to our analysis is perhaps
that done by Zeng and Bhat (2021). They proposed
a neural architecture that uses attention flow, de-
signed for the task of detecting whether a sentence
has an idiomatic expression and localizing it when
it occurs in a figurative sense.

3 Data

Our team participated in Subtask A (zero and
one-shot tracks) of the SemEval-2022, Task 2 on
Idiomaticity Detection (Tayyar Madabushi et al.,
2022). The tasks tackles binary classifiation of
MWE in three languages, with variable amount
and type of data seen in the training set by the
model. Table 1 summarizes the distribution of the
instances per language and label. The MWE are all
noun compounds, sourced from the Noun Coum-
pound Senses dataset (Cordeiro et al., 2019).The
examples consists of excerpts of text of the Web.
As shown in Table 2, literal instances in our task
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Example label Orig. label
To avoid a blood bath, prison officials ordered the gate to be opened. 0 idio.
Remind me 7o shed a crocodile tear or two over’t. 0 meta usage
Marketing consultant Katy Williams saw the potential of social media. 1 non-idio.
Deborah Loomis is [...] known for [...] Foreplay (1975) and Blood Bath (1976). | 1 prop. n.

Table 2: Examples of labelled instances with their original four labels in Tayyar Madabushi et al. (2021) and
grouping to two labels idiomatic/non-idiomatic for the SemEval binary classifiation Subtask A.

include non-idiomatic use of MWE and proper
nouns. Idiomatic instances gathers idiomatic use
and literal use within a longer metaphor.

The experiments are organized along six splits of
the data (c.f. Table 1) : training zero-shot, training
one shot for evaluation phase, training one shot for
test phase, development, evaluation and test sets.
Labels were provided to the participants for the
training and development sets. The practice and
test phase were run on Codalab.

4 System overview and experiments

4.1 System configurations

We test two different configurations to address this
binary classification task: one multilingual classi-
fier trained on all the training data at once, and one
monolingual classifier per language. For the zero-
shot setting in the monolingual classification con-
figuration, we do not have any training examples of
Galician. Therefore, we replace the Galician model
by a multilingual model trained on the English and
Portuguese examples.

We use well-known transformer-based language
models: English, Portuguese BERT and Multilin-
gual BERT (Devlin et al., 2019), XLM-RoBERTa
base and large (Conneau et al., 2020). For the
monolingual models of Galician, we use Bertinho
Vilares et al. (2021) model®, trained on Wikipedia.
The cased version of the language models is used in
all our experiments, following Tayyar Madabushi
et al. (2021) and because the target MWE contain
proper nouns.

4.2 Preprocessing

The data are preprocessed to find all the occur-
rences of the expressions and record their positions
in the three sentences provided for each instance of
the datasets.

We search for lower case and upper case oc-
currences, with words separated by a space or a

*Huggingface ID: dvilares/bertinho-gl-base-cased
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hyphen. Only in the cases where an exact match
cannot be found, we also rely on their lemmata to
identify MWEs in plural form. For this, we relied
on Stanza*, which covers the three languages of
the experiments including Galician.

We find 80% instances with only one occurrence,
and 20% with multiple occurrences in the training
and development sets. We considered contexts of
one or three sentences (the previous and following
sentence in the latter case). The positions of the
target are recorded for both contexts length. We
then generate two versions of tagged sentences,
one where only the first occurrence of the target in
the core sentence is marked and one with all the
occurrences are marked, using special tokens.

4.3 Experiments

All the experiments are done using the Simple
Transformers library® with a Quadro RTX 8000
GPU. In order to analyse the effect of several vari-
ables in the performance, we performed the follow-
ing experiments on the development set.

Experiment 1: Shuffling the training set. We
study the variation of the performances for three
seeds (1,2,3), after three shuffles of the training set
(A, B, O), for different batch sizes (8, 16, 32, 64).
Our goal is to distinguish the variations in the per-
formances due to various parameters modifications
from the variation induced by the order in which
instances are fed into the model during training.

Experiment 2: Context and input format. A
context limited to the core sentence provided for
each example (noted core-sent in Table 4) is com-
pared to the concatenation of this core sentence
with its previous and following sentence (noted 3-
sent). Different maximum sequence lengths (128,
300, 350, 400, 512) are also tested.

We further test the various ways to encode in-
formation about the target and its position in the

*https://stanfordnlp.github.io/stanza/
>Version 0.62.0, https://simpletransformers.
ai/




sentence: tagging only the first occurrence of the
target in the core sentence (first) is compared to
tagging all the occurrences of the target within the
input text (multiple); one option allows the embed-
ding of the target expression to be passed to the
model independently from the sentence (pair).®

When the tagged and the pair parameters are
both set to False, the sentence is provided to the
model without any indication concerning the target.
This baseline configuration is very interesting in
order to evaluate the impact of the topic of the text
on idiom detection. For example, in the training
data, all the occurrences of blood bath are idiomatic
except for one occurrence of a proper noun (c.f.
Table 2). Blood bath is more likely to be used
idiomatically than literately in many corpora, as
long as they are not rare domain-specific archives
on vampires relaxing habits. On the contrary, all
21 occurrences of marketing consultant are literal.

Experiment 3: Monolingual and multilingual
models. Monolingual and multilingual language
models are compared with the two configurations
introduced in Section 4.1. In this experiment, we
measure the ability of the multilingual models to
transfer knowledge across English and Portuguese
with a comparison between two additional training
methods, bringing the experiment to a comparison
between three configurations:

1. Fine-tuning monolingual BERT models for
English and Portuguese, and Galician for the
one-shot setting. Data are split by language,
three classifiers are trained.

2. Fine-tuning three multilingual models using
the same settings as in 1.

3. Fine-tuning one single monolingual model,
with all the data in the two languages for the
zero-shot track and three languages for the
one-shot track

Experiment 4: Language models size. Pre-
vious initial experiments from Tayyar Madabushi
et al. (2021) concluded that large models were not
performing better than base models, after a few
attempts. We explore further the performance of
large models in comparison with base ones under
various classifier parameters and for different shuf-
fles of the training set.

STable 7 in the Appendix includes more details about the
input formats.

Zero-shot
train set seed Batch size
8 16 32 64
1 0,70 0,75 0,74 0,69
A 2 0,70 0,73 0,73 0,38
3 0,31 0,73 0,71 0,73
1 0,31 0,73 0,74 0,71
B 2 0,72 0,74 0,72 0,72
3 0,74 0,72 0,73 0,75
1 0,73 0,73 0,72 0,71
C 2 0,72 0,75 0,71 0,68
3 0,74 0,74 0,68 0,71
One-shot
train set seed Batch size
8 16 32 64
1 0,73 0,80 0,73 0,70
A 2 0,75 0,74 0,73 0,70
3 0,31 0,75 0,74 0,73
1 0,31 0,75 0,76 0,73
B 2 0,71 0,75 0,76 0,72
3 0,73 0,78 0,71 0,71
1 0,61 0,71 0,72 0,72
C 2 0,71 0,73 0,71 0,69
3 0,70 0,76 0,75 0,71

Table 3: Experiment 1. Results of XLM-RoBERTa base
with 1 epoch, max-seq-length=128, for 3 data shuffles
and 3 random seeds. A context of 1 sentence is used,
with multiple occurrences of the target tagged, and the
MWE embedding provided separately to the classifier
(pair). Displayed scores are F1-macro for the develop-
ment set, aggregated for both English and Portuguese.

5 Results

During the exploratory phase, we tested 111 dif-
ferent parameter configurations, shuffling the data
before each run. The twenty best models (sorted
according to their performances in the one-shot set-
ting) are shown in Table 8 in the Appendix’. These
results are used in complement to the following
experiments for drawing our conclusions.
Experiment 1: Shuffling the training set. With
XLM-RoBERTa-base, Table 3 shows that the classi-
fier is very sensitive to the order in which the input
data are passed to the model. When the model
does not attribute the same label to all instances of
the development set, it may vary by 2 points for a
given random seed. The model fails to converge for

"The complete results are available in the GitHub repos-
itory of this paper https://github.com/Mionies/
CardiffNLP-SemEval-2022-Task2/blob/main/
param_optimization_shuffe/data.csv.
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Input parameters Zero-shot One-shot
Context  Occ. Tagged Pair EN PT EN,PT | EN PT EN,PT
3-sent first True True 0.758 0.646 0.737 | 0.851 0.818 0.846
3-sent multiple True True 0.743 0.627 0.722 | 0.661 0.361 0.644
3-sent - False True 0.749 0.624 0.723 | 0.806 0.789 0.810
core-sent first True True 0.735 0.650 0.718 | 0.855 0.832 0.850
core-sent multiple True True 0.744 0.603 0.708 | 0.866 0.841 0.863
core-sent - False True 0.769 0.564 0.724 | 0.826 0.853 0.841
3-sent first True False 0.740 0.688 0.741 | 0.872 0.773 0.845
3-sent multiple True False 0.281 0.361 0.313 | 0.788 0.686 0.768
core-sent first True False 0.764 0513 0.706 | 0.716 0.541 0.69
core-sent multiple True False 0.774 058  0.724 | 0.777 0.799 0.794
Below, the target not indicated to the model : Zero-shot One-shot
3-sent - False False 0.695 0.652 0.699 | 0.649 0.361 0.611
core-sent - False False 0.753 0.588 0.711 | 0.688 0.579 0.667

Table 4: Experiment 2. Contextual and input format parameters. This experiment is run with XLM-RoBERTa-base,
3 epochs, a batch size=8, max-seq-length=512, a Ir=4e-05, on 3 seeds with training set shuffle A (c.f. Experiment 1).
The results obtained with the best seed is displayed. An average over the three seeds was impossible because the
model often does not converge. The metric used is F1 macro, computed on the development set.

Languages Zero-shot

Pre-train Fine-tune | EN PT EN,PT
mono mono 0.786 0.645 0.747
multi mono 0.793 0.664 0.764
multi multi 0.76  0.686 0.748
Languages One-shot

Pre-train Fine-tune | EN EN EN,PT
mono mono 0.897 0.873 0.892
multi mono 0.835 0.783 0.829
multi multi 0.851 0.809 0.843

Table 5: Experiment 3. Mono and multilingual train-
ing data configurations for pretrained models and fine-
tuning. XLM-RoBERTa base is used. The experiment
ran with 4 epochs, a batch size=8, a Ir=2e-05 using one
seed [3] and training set shuffle A. The metric used is
F1 macro, computed on the development set.

some seeds and shuffle combinations. The problem
arises more often with a small batch size of 8, but
it also fails to converge once with batch sizes as
large as 64 in our experiment. The issue does not
disappear for a larger number of epochs. In the ex-
ploratory phase, we tried a broad range of training
hyper-parameters, and encountered this issue for
models trained with 6, 7 and 8 epochs, both with
XLM-RoBERTa base and XLLM-RoBERTza large.
The multilingual BERT language model shows
more stability. With the same datasets and param-
eters as those used in Table 3, it always obtains
a f-score >0.70 in the zero-shot track, and >0.72

in the one shot track. BERT and XLM-RoBERTa
perform comparably in the zero-shot experiment
but XLLM-RoBERTa obtains the best performance
in the one-shot setting.

Experiment 2: Context and input format. The
results are presented in Table 4. With the ex-
perimental settings chosen, it is difficult to draw
any conclusion on which context window (core-
sentence or 3-sentences) or tagging scheme (first
or multiple) is better for the task. Both Table 8
in the Appendix and the results obtained by Tay-
yar Madabushi et al. (2021) suggest that providing
the embedding of the target MWE separately to the
model (pair) improves the performance.

Among the two configurations which input the
sentences (core-sentence or three-sentences con-
texts) to the model without giving any informa-
tion about the target, one performs consistently
better than random for English examples in the de-
velopment set zero-shot, with Fl-scores of 75.3.
It suggests that performances of the model may
not mainly be due to the discrimination between
compositional and non compositional interaction
between the target and the context. The topic of
the sentence may also have an important influence,
which we did not fully analyze in this work.

Experiment 3: Monolingual and multilingual
models. The base monolingual and multilingual
settings show similar performance, in preliminary
experiments (Table 8) and Experiment 3 (Table
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Training parameters Zero-shot One-shot
shuffle length batch size model size | EN PT EN/PT | EN PT  EN/PT
A 350 8 base 0,677 0,77 | 0,877 0,867 0,879
A 350 8 large 0.785 0.673 0.761 | 0.902 0.902 0.905
B 350 8 base 0.795 0.677 0.768 | 0.888 0.882  0.89
B 350 8 large 0.776  0.698 0.762 | 0.892 0.903 0.9
C 350 8 base 0.774 0.667 0.749 | 0.868 0.825 0.859
C 350 8 large 0.782 0.677 0.756 | 0.863 0.825 0.857
A 350 16 base 0.794 0.673 0.764 | 0.868 0.885 0.879
A 350 16 large 0.807 0.689 0.778 | 0.891 0.893 0.896
A 350 32 base 0.797 0.683 0.771 | 0.871 0.857 0.871
A 350 32 large 0.775 0.723 0.768 | 0.89 0.882 0.891
A 256 8 base 0.768 0.641 0.737 | 0.898 0.768 0.895
A 256 8 large 0.777 0.719 0.768 | 0.884 0.886 0.888
A 128 8 base 0.787 0.675 0.761 | 0.866 0.897 0.882
A 128 8 large 0.784 0.685 0.764 | 0.867 0.839 0.862

Table 6: Experiment 4. Base and Large XLM-RoBERTa models comparison. The results are averaged over
three seeds. All the models are trained with 7 epochs. The input parameters are set to pair=True, multiple=True,
context=paragraph, Ir.=2e-05. The metric used is F1 macro, computed on the development set.

5). Experiment 3 is a comparison of the mod-
els, for one fixed set of parameters and one fixed
shuffle of the training set. In this case, monolin-
gual pre-training or fine-tuning with BERT outper-
forms the exclusive usage of the multilingual XLM-
RoBERTa configuration. Overall, XLM-RoBERTa
large obtains higher scores than monolingual BERT
models, base and large®, for the two settings and
languages. In conclusion, XLM-RoBERTa base is
outperformed by monolingual BERT models for
some parameters and shuffles, but XLM-RoBERTa
large attains 7 of the 10 best overall scores in the
one-shot settings, and of 5 of the 10 best results in
the zero-shot settings.

Experiment 4: Language Model Size. Table
6 and Table 8 in Appendix A both show that the
best performances reached are obtained by XLM-
RoBERTa large. The gap between the models is
clear with the one-shot track, and unclear for the
zero-shot. The pairwise comparison of the base
and large models for the zero-shot track shows that
the base model often outperforms the large one.

In the one-shot setting, a closest look at the re-
sults per seed reveals base and large models show
similar results only when a large standard deviation
between seeds affect the overall performance of the
large model °.

8Large and base models are both tested for the English
classifier during the preliminary experiments (c.f. Table 8).
°The F1-macro for EN and PT and seed [1,2,3] in shuffle

Tracks and optimal number of epochs. The
evolution of the scores between Table 3 and Table 6
shows that the one-shot setting needs more epochs
to reach its highest performances than than the zero-
shot setting. The F1-macro score increases by 2
points in the Zero-shot between 1 and 7 epochs
when it gains 10 points in the one-shot training
configuration.

6 Conclusion

In this system description paper, we explained our
method to fine-tune transformer-based language
models for the task of idiomaticity detection. Be-
yond the implementation, we also attempted to an-
swer a few practical questions on how these models
learn the task, and particularly their optimal param-
eters and input settings.

As future work, we would like to explore un-
supervised approaches (e.g. sentence embeddings
especially tuned on in-domain data such as news
corpora of English, Portuguese and Galician). We
are also planning to explore various methods to in-
put the three contextual sentences, beyond simple
concatenation as explored in this paper. Another
interesting topic for further research would be to
explore the complex compositionality relations oc-
curring also withing the idiomatic expression, as
exemplified sometimes in the examples labelled
meta-usage in this dataset.

C are 0.907, 0.764 and 0.9, the standard deviation is 0.081.
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Abstract

We present NEAMER - Named Entity
Augmented Multi-word Expression Recog-
nizer.  This system is inspired by non-
compositionality characteristics shared be-
tween Named Entity and Idiomatic Expressions.
We utilize transfer learning and locality fea-
tures to enhance idiom classification task. This
system is our submission for SemEval Task 2:
Multilingual Idiomaticity Detection and Sen-
tence Embedding Subtask A OneShot shared
task. We achieve SOTA with F1 0.9395 dur-
ing post-evaluation phase. We also observe
improvement in training stability. Lastly, we
experiment with non-compositionality knowl-
edge transfer, cross-lingual fine-tuning and lo-
cality features, which we also introduce in this

paper.
1 Introduction

Multi-Word Expressions (MWEs) are defined
as "idiosyncratic interpretations that cross word
boundaries (or spaces)" (Sag et al., 2002). Recent
advances in pre-trained language models such as
BERT (Devlin et al., 2019) have enhanced perfor-
mance of Sentence Classification task, however
tasks that specifically identify Multi-Word Expres-
sions (MWE) remain unsolved due to its specific
idiomatic properties (Garcia et al., 2021; Yu and
Ettinger, 2020). This SemEval shared task (Tay-
yar Madabushi et al., 2022) aims to understand
Multi-Word Expressions better by novel classifica-
tion and sentence similarity tasks.

Named Entity Recognition (NER) is a task to
identify Named Entities (People, Organizations
etc.) in a sentence. Multiple datasets exist that
specifically perform this task, including CoNLL-
02/03 Shared Tasks for English, German, Span-
ish and Dutch (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003). Multi-Word
Expressions and Named Entities are similar in a

Research unrelated to work

MWE Target Label

gold mine | This means that search | 0
data is a gold mine for | (Idio-
marketing strategy. matic)

gold mine | The hashtag “Qixia gold | 1
mine incident” has been | (Non-
viewed many million of | idiom-
times on the social media | atic)
site Weibo.

gold mine | The Gold Mine’s plain | 1
frontage & sparse, white- | (Non-
walled dining room sug- | idiom-
gest that it’s a quick-fix | atic)
refuelling stop rather than
a place to linger.

Table 1: Dataset samples, table from (Tayyar Madabushi
et al., 2021). Note that 3rd example is a named entity
(The Gold Mine referring to a restaurant).

way that they consist of more than one word but
they form a single semantic unit. Thus, Named
Entities could be seen as a specific type of Multi-
Word Expressions (Jackendoff, 1997; Vincze et al.,
2011). However they are different from idiomatic
expressions.

We propose NEAMER - Named Entity Aug-
mented Multi-word Expression Recognizer that
aim to utilize non-compositionality shared between
two streams of NLP research. We explore trans-
fer learning between NER and idiom classification
tasks. We also experiment with "locality features"
to augment representations of text.

We have participated in Subtask A which is a
multilingual classification task to determine if a
given sentence has correct idiomatic usage or not.
We have focused our efforts on the OneShot setting,
where the goal is to classify the target sentence uti-
lizing the ZeroShot dataset consisting of idioms not
found in test set and the OneShot dataset consist-
ing of 1 idiom-label pair for all idioms in test set.
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The dataset has been provided by task organizers
(Tayyar Madabushi et al., 2021).
Contributions of this paper are :

* NEAMER system which utilizes transfer
learning, NER and other locality features to
improve performance and stability of MWE
classification task.

* Investigation into transfer learning between
NER and idiom classification task.

» Performance and error analysis to understand
capabilities of transfer learning, cross-lingual
fine-tuning and locality features.

2 Methodology
2.1 Idiom and Named Entity

Idioms and named entities are similar in the way
that when they are comprised of multiple words,
collocated words encode extra semantics while in-
dividual words lose their semantics partially or
completely. This property is referred as non-
compositionality (Baldwin and Kim, 2010). "In
a nutshell"” means "very briefly, giving only the
main points" (Cambridge, 2022) as an idiom; in-
dividual words lose their concrete semantics and
only the combination specifies intended meaning.
Similarly, "Papa John’s" refers to "an American
pizza restaurant chain" (Wikipedia, 2022) when
used as a named entity; in this case, even gram-
matical functions of individual words are mostly
ignored. This similarity is the basis for the transfer
learning experiments we performed.

We have discussed similarities, but what about
differences? Idioms and named entities refer to
completely different usage of MWEs. Idioms are
utilized to improve fluency and understandability,
or make language more colloquial (Baldwin and
Kim, 2010). Named entities are utilized to spec-
ify name of persons, organizations and locations
(Tjong Kim Sang and De Meulder, 2003) and do
not have such social purpose. Correspondingly we
can expect certain knowledge to be easily transfer-
able between two tasks, while it may take more
epochs to obtain best final performance due to fun-
damental difference between tasks leading to neces-
sity for "unlearning" the previous fine-tuned task.
We explore the ideas in the experiments.

2.2 Transfer Learning and Stability

As discussed in Section 2.1, idioms and named en-
tities show similar non-compositionality. Thus this

is the basis for our transfer-learning experiments,
where large language models finetuned on NER
task are further trained on idiomatic expression
classification task. We investigate following ideas
in the experiments:

1. We hypothesize that disparity between task
types can bring instability. Large language models
are known to be unstable during training (McCoy
et al., 2019; Zhou et al., 2020). Language mod-
els are trained using Masked LM pre-training task.
The aim of the Masked LM task is to classify ev-
ery masked word to original word, which results
in classification of each tokens to 30,000 possible
labels. In contrast, the task at hand is much simpler,
with the aim being to classify whole sentence into
2 labels according to usage of relevant MWE. NER
task can bridge this task complexity gap since the
aim is to classify each tokens to 9 labels.

2. We hypothesize that non-compositionality
understanding of the model can be shared be-
tween tasks. NER systems need to understand
non-compositionality to correctly predict B-XXX
tags. It also predicts multiple named entities
per sentence. Thus we assert that enough non-
compositionality understanding is learnt during the
NER fine-tuning process compared to Masked LM
task where each token is predicted independently.

We additionally hypothesize that language-
specific knowledge could be improved for the
model through fine-tuning with similar language
data, which we perform experiments on.

2.3 Locality Features

We design 5 features that are closely related to
MWE usage types. Those are the following:

1. Entity - Whether an MWE contains an NER
output span, or an NER output span contains an
MWE.

2. Capitalization - Whether any word in the
MWE is intentionally capitalized (excluding the
first word in a sentence and the case where MWE
itself is explicitly capitalized in the dataset).

3. "Be a *" - Whether the MWE starts with a
be-verb and the article a/an’. Same for Portuguese.

4. "The *" - Whether the MWE starts with "the".

5. Quotation - Whether the MWE is surrounded
by quotation marks (" or ’).

We name them "locality features" because they
expand upon specific position of an MWE by look-
ing at adjacent characters. We encode locality fea-
tures using a deep neural network to give enough
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Feature Total 0 (Id-][1  (Not- Named Entity Recognition Training
iomatic) | idiomatic)

All 4491 2535 1956

" " - =
The * 720 366 354 Text L M Token-by-token

Entity 650 94 556 NIE% Egeg (:)RG

Capitalized | 634 50 584 ¢ (1ORG, BORG, -}

Quotation 165 124 41

"Be a *" 30 68 12 Idiom Classification Training

Parenthesis | 6 5 1 o

Table 2: Label statistics in ZeroShot data

Model ENG F1
mBERT-base (baseline) 70.7
xlm-roberta-base 75.5
xlm-roberta-large 79.0

Table 3: English ZeroShot F1 on validation data

significance to the features during training / infer-
ence while enabling them to learn complex rela-
tionships between the text. This is further informed
by label imbalance (excluding "The *" label, which
is balanced) shown in Table 2. We perform experi-
ments on whether or not locality features improve
the performance on the idiom classification task.

3 Experiment Setup
3.1 Model Selection

Experimental results on English ZeroShot (shown
in Table 3) were used to determine pre-trained
checkpoints with best performance. We thus se-
lected XLM-Roberta-Large (Conneau et al., 2020)
as a starting point for training OneShot models.
The list of checkpoints is: xlm-roberta-base,
xlm-roberta-large, xlm-roberta-large-finetuned-
conll03-english, xlm-roberta-large-finetuned-
conll02-spanish, xlm-roberta-large-finetune-
conll03-german, Davlan/xIlm-roberta-base-ner-hrl,
Davlan/xlm-roberta-large-ner-hrl.

3.2 Model Architecture

Our model training scheme and architecture is pre-
sented in Figure 1. We fine-tune the model on NER
task with selected language. For the experiments,
we utilize NER fine-tuned checkpoints as described
in Section 3.1 instead of actually performing NER
fine-tuning. Then, we train the NER fine-tuned
model with text and idiom (MWE) data for the
idiom classification task along with selected local-
ity features. We use two layers of fully connected

LM

Text
& EE—
MWE || Idiomatic
usage
_ Encoder of MWE
NER, locality features . {0, 1}

Figure 1: NER augmented model, see Section 3.2 for
details.

network to encode locality features that are concate-
nated to the text representation. Locality features
used are described in Section 4.5 and implemented
in Python to obtain one-hot vectors which are fed
into the fully connected network. The feature en-
coding and hidden layers of FCN are of size 200. In
comparision, LM text encoding is 768 as originally
used by XLMRobertaForSequenceClassification
class in HuggingFace. The size of encoder feature
representation is selected to enhance importance
of locality features in comparison to LM represen-
tation. We use the classification head provided by
the same XLMRobertaForSequenceClassification
class.

3.3 Training Procedure

We mostly focus on OneShot setting, using both
ZeroShot and OneShot data provided. We used a
learning rate of 2 x 107> and a batch size of 16 for
training our models. Models were trained for 24
epochs and the best checkpoints on the evaluation
data were selected. Random seeds of 0, 1, 3, 5, 42
are used for initial experiments. If any of the seeds
exhibit training failures due to instability (F1 <0.5),
we perform additional experiments with random
seeds 49, 81, 100, 121. This resulted in at least
5 checkpoints for our experiments. All provided
training data was used for training the models. We
picked checkpoints that perform best on respective
languages (EN / PT) for evaluation and submission.
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Model Success
XLM-R 55.6%
XLM-R-EngNER 100%
XLM-R-GermanNER 88.9%
XLM-R-EngNER, Augmented | 100%

Table 4: Model training success percentage.

Phase ALL | EN | PT | GL
Baseline 87.7 | 88.1 | 87.0 | 85.4
Evaluation 93.5 | 96.1 | 89.9 | 92.1
Post-Evaluation® | 94.0 | 96.1 | 91.1 | 92.8

Table 5: Best submissions.

! 'We implemented our models in HuggingFace
(Wolf et al., 2019) and Pytorch (Paszke et al., 2019).
We utilize Tesla V100 NVIDIA GPU for training.

4 Results
4.1 Model Stability

We present observed training success rate for each
of the models in Table 4. We define training fail-
ure as an observance where F1 of the checkpoint
is smaller than 0.5. We observe a very high train-
ing failure rate for the XLM-R e model (44.4%).
We assert that this is due to discrepancy between
the pre-training task of MaskedLLM and the idiom
classification task (more discussion in Section 2.2.)

4.2 Best Submissions

We show our best submissions in Table 5. Our
best official submission during evaluation phase is
ensemble of 3 checkpoints per language consist-
ing of XLM-Rjye-EngNER & SpaNER, with ex-
ception of one XLM-Rya5.-EngNER checkpointz.
Best post-evaluation submission is ensemble of
5 checkpoints per language consisting of XLM-
Riarge-EngNER & SpaNER, selected via process
described in Section 3.3. We achieved top 2
during the competition (Section 7). We are cur-
rently first place in the post-competition leader-
board (4/15/2022).

4.3 Ensemble Model Performance

We submit our models based on the ensemble
model performance shown in Table 6. Checkpoints

!Galician test data was inferred by Portuguese model for
submission.

2The checkpoints were selected according to best perfor-
mance on validation set.

3Experiment performed after end of competition.

Model ALL | EN | PT | GL
XLM-R 92.7 | 945 [ 89.5 | 92.3
XLM-RngRyg 5o | 92.5 | 96.1 | 88.4 | 90.3
XLM-RygRpng, soa | 940 | 96.1 | 91.1 | 92.8
XLM-Rygr 8 | 92.8 | 95.6 | 89.4 | 90.8

Table 6: Test data F1 performance for ensemble models.
All XLM-R models are large variant.
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Figure 2: ROC curve of XLM-Rngr on validation data
for all tasks. We observe very strong prediction rank-
ing capability for both EN and PT (AUC > 0.950) for
OneShot task.

for ensemble were selected via the process de-
scribed in Section 3.3. XLM-Rjyee + NER models
(xIm-roberta-large-finetuned-conll03-english, xIm-
roberta-large-finetuned-conll02-spanish) that repre-
sent transfer learning characteristics perform best,
with high F1 score across all languages. Interest-
ingly, locality feature augmentation does not seem
to enhance the final output compared to the transfer
learning only method. This could be due to model
checkpoints not having enough variance between
them caused by over-reliance on label imbalance.
(More discussion in Section 4.5)

4.4 Average Model Performance

The average F1 scores are presented in Table 7. We
observe that additional finetuning on English NER
data results in higher performance compared to
the baseline XLM-R,ge model. Augmentation of
the model using locality features results in a slight
performance increase. Results suggest that NER
fine-tuning assists in the idiom classification task,
while locality features help relatively less. NER
fine-tuning is helpful due to the language model
adapting to the non-compositionality expressed in
both tasks (more discussion in Section 2.2.)
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Model Average | Ensemble Model EN | PT | GL
XLM-Riarge 93.0 94.5 XLM-Ryrge-Eng, Spa | 94.0 | 87.5 | 88.5
XLM-Rjarge-Eng 94.0 96.1 XLM-Rjyrge-German | 93.6 | 87.2 | 84.2
XLM-Ryge-Eng, Aug 94.2 95.6 XLM-Ry,se-HRL 91.1 | 83.6 | 83.2
XLM-Rpyse-HRL 91.1 - XLM-Rrge-HRL 929 | 84.0 | 83.7
XLM-Ryrge-HRL 92.9 - XLM-Ryyee-HRL, 36 | 94.2 | 85.9 | 87.2
XLM-Ryyge-HRL, 36 94.2 96.1

Table 7: English test data F1

Model ALL | EN | PT | GL
XLM-Rngr | 623 | 70.8 | 67.7 | 44.4
XLM-Rnpr2M8 | 64.9 | 72.6 | 67.4 | 49.2

Table 8: ZeroShot ensemble test data F1 performance.
We note comparatively higher performance for locality
feature augmented model on English and Galician data.

4.5 Locality Features

Effect of locality features seem to be marginal,
since average F1 (Table 7) only slightly improves
in comparison with transfer-learning only model.
We also observe lower ensemble performance (Ta-
ble 6). An enhanced architecture (attention layer in
which features explicitly interact with each other)
with layer-wise learning rate tuning (to lessen the
adverse impact of a cold-start of the feature en-
coding layers) and dropout (to randomize model
training for ensemble enhancement) might be ben-
eficial. We leave it to future work.

We hypothesize that while locality features may
be a promising feature to utilize for enhanced ar-
chitectures, using it by itself may be a relatively
too simple indicator. Locality features only re-
quire looking at 1~2 specific tokens*, thus non-
compositionality expressed between the tokens
themselves is very simple compared to complexity
of MWE. An explicit NER feature may also be
already encoded in the model via NER fine-tuning
step such that no new information is provided dur-
ing training.

Lastly, we note that we achieve the best Ze-
roShot setting performance in our experiments with
XLMngr”" model which is an ensemble of 3
checkpoints (Table 8). Thus, the locality features
could be more promising in the ZeroShot setting
where there is less information regarding specific
MWE usage. We leave a thorough evaluation to
future work.

Ye. Capitalization - first letter of words in MWE, Quota-

tion -’ or " before and after MWE. Parenthesis - ( or ) before
and after MWE.

Table 9: Test data average F1 performance for HRL
model variants and English, Spanish and German NER
fine-tuned model.

4.6 Crosslingual NER Transfer Learning

XLM-Ryree-HRL is an XLM-Rjyee model trained
on NER tasks for 10 languages (Arabic, German,
English, Spanish, French, Italian, Latvian, Dutch,
Portuguese and Chinese). Rationale for fine-tuning
this model is to observe the following :

1. Impact of fine-tuning on a model from a pre-
trained model trained on NER data from multi-
ple languages. This model has been trained on
all CONLLO2 / 03 datasets for English, Spanish,
Dutch and German, as well as 8 language specific
datasets.

2. Impact of fine-tuning on a model which has
been pre-trained with capability to perform Por-
tuguese NER task. This model has been trained
on Paramopama and Second Harem (Freitas et al.,
2010) Portuguese NER datasets.

We show the results in Table 9. We observe that
while XLM-R,rge-HRL performs worse on EN F1
than the similarly fine-tuned XLM-Rjyge-English
and German, training for 36 epochs (50% epoch
increase) yields comparable performance. This
aligns with our hypothesis that task-to-task training
requires "unlearning" partial aspects of the previ-
ous task and thus may take longer to train (more
discussion in Section 2.1). XLM-Rjyge-English
was only trained on CoNLLO3 English NER task,
while HRL models were trained on NER datasets
corresponding to 10 languages - this may result in
a higher amount of NER task and language specific
knowledge that needs to be removed for the model
to train properly.

Similarly, we observe worse performance on
Portuguese and Galician results for HRL mod-
els compared to Spanish fine-tuned model. Por-
tuguese and Galician seem to require more training
epochs than English to achieve comparable per-
formance. This may be due to the difference in
dataset size per language in both the ZeroShot and
OneShot training data for idiom classification task
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Feature LM NER Aug Pred 0 | Pred 1

Capitalized (137) | 94.2 94.2 91.2 Label O (Idiomatic) 5 9

Entity (131) 93.1 93.1 90.8 Label 1 (Non-idiomatic) 0 117

"The *" (52) 86.5 92.3 92.3

"Be a *" (13) 100.0 100.0 100.0 Pred O | Pred 1

Quoted (12) 90.5 90.5 90.5 Label 0 (Idiomatic) 2 12
Label 1 (Non-idiomatic) 0 117

Table 10: Micro F1 Metrics (validation data) for each
locality feature tagged samples corresponding to XLM-
R, XLM-Rygr and XLM-Rygr™"8. We observe that
transfer learning has improved the performance for "The
*" feature. More discussion in Section 5.1.

(English:Portuguese = 2.9:1). We leave training the
models on more Portuguese idiom classification
datasets and longer epochs to future work.

We also experiment with a model fine-tuned on
CoNLL 03 German NER task. We note slightly
worse performance for German fine-tuned model
compared to models fine-tuned on highly similar
languages (English and Spanish NER fine-tuned
models). This result seems to suggest that fine-
tuning the model on same language for both NER
task and Idiom Classification task achieves best per-
formance. More experiments with many languages
from other parts of the world could be performed.

5 Error Analysis

5.1 Categorical Performance

We show the F1 metrics for the validation data per
each feature in Table 10. We find that the F1 score
of "The *" locality feature has increased by 5.8
points after transfer learning is introduced. This lo-
cality feature does not directly correspond to NER,
and is the only sample-balanced locality feature
as shown in Table 2. Thus, we argue that this is
further proof of NER transfer learning teaching
general non-compositionality to LM that is trans-
ferred to MWE classification task.

We also find that Capitalized and Entity F1
scores have stayed the same after the introduction
of NER transfer learning, and it has actually de-
creased by 2~3 points after locality feature aug-
mentation. We also observe a recall decrease of
0.214 (0.357 -> 0.143) as shown in Table 11. As
discussed in Section 4.5, this is due to over-reliance
on training data label imbalance.

5.2 Sample Analysis

We list the prediction improvements between
base XLM-Rjyge model and NER transfer-learning

Table 11: Confusion matrix for Entity in non-augmented
models(XLM-R, XLM-Rngr) vs augmented model
(XLM-Rygr” ).

based models in Appendix A. Interestingly, we
observe that 6 out of 9 sample prediction improve-
ments for English model are also observed with
HRL, German® models. This strongly suggests that
shared characteristics are present between NER
transfer-learning based models. We also observe
that the model output changes are not associated
with named entities, strengthening our hypothesis
of general non-compositionality knowledge trans-
fer between tasks.

6 Conclusion

We present NEAMER - Named Entity Augmented
Multi-word Expression Recognizer. This system
explores how we can utilize non-compositionality
shared between Named Entity and Idiomatic Ex-
pressions. We find that the NER transfer learn-
ing variant achieves the best MWE classification
OneShot performance. We also observe high train-
ing stability. We investigate non-compositionality
knowledge transfer between tasks and obtain
promising results across experiments.

7 Rank Information

During the official evaluation phase, we were top 2
in Subtask A (One-Shot) leaderboard with F1 score
of 0.9346 (Table 5). We trained 50 checkpoints
and measured F1 on English and Portuguese sep-
arately. Checkpoints were generated via process
described in 3.3. Best English performing check-
points inferred on English test submission data,
while best Portuguese performing checkpoints in-
ferred on Galician as well as Portuguese test sub-
mission data. Finally, we ensembled best perform-
ing models on each language using different strate-
gies (including top 3, top 5, top 10) to optimize
generalization performance.

>German model is not trained on CoNLLO03 English data,
making the result more interesting.
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A Prediction Improvements

We list the classification improvements® in valida-
tion dataset observed across NER transfer learning
models in comparison to base XLM-Rjyge model.
The NER transfer learning models we compare are
English, German, and HRL (10 languages). We
find 6 samples that prediction have improved con-
sistently across all 3 models, which is 66.7% of
prediction improvements in English model.

MWE Sentence Feature
high life "This is the story of “Memo Fantasma” or “Will the Ghost,” who | "The *"
started life in the Medellin Cartel, funded the bloody rise of a paramil-
itary army, and today lives the high life in Madrid."
home run He is the only player to hit at least 30 home runs in 15 seasons and is | -
one of only four players to produce at least 17 seasons with 150 or
more hits.
health check Big Tech Show - Why your DNA may be your next health check -
pillow slip By morning most of it is on the pillow slip, and soap and water will | "The *"
clean up the rest."
pillow slip "Her pillow slip by now was very much askew; one ear pointed | -
northward, the other southeast, and she could only see out of one
eye."
dry land And God called the dry land Earth; and the gathering together of the | "The *"

waters called he Seas: and God saw that it was good.

Table 12: Improved samples due to NER fine-tuning.

®Wrong prediction in XLM-Rjarge model, but correct pre-
diction in NER transfer learning models.
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Abstract

Multiword expressions (MWEs) or idiomatic-
ity are a common phenomenon in natural lan-
guages. Current pre-trained language models
cannot effectively capture the meaning of these
MWEs. The reason is that two single words,
after combined together, could have an abruptly
different meaning than the compositionality
of the meanings of each word, whereas pre-
trained language models reply on words’ com-
positionality. We propose an improved method
of adding an LSTM layer to the mBERT model
to get better results on a text classification task
(Subtask A). Our result is slightly better than
the baseline. We also tried adding TextCNN to
mBERT and adding both LSTM and TextCNN
to mBERT. We participate in SubTask A and
find that adding only LSTM gives the best per-
formance.

1 Introduction

Machine learning has made deep impacts on var-
ious areas, such as computer vision (He et al.,
2015, 2017; Lu, 2018), computational biology
(Jumper et al., 2021; Huang et al., 2019; Lu, 2010,
2009), and natural language processing (Yang et al.,
2019b; Lewis et al., 2019; Madabushi et al., 2020)
. In natural language processing, large pre-trained
models are prevailing and have achieved great suc-
cesses. Models such as BERT (Devlin et al., 2018),
RoBERTA (Liu et al., 2019), XLLNet (Yang et al.,
2019a), ALBERT (Lan et al., 2020), Ernie (Sun
et al., 2019), etc. performed pretty well in tasks
such as sentiment analysis, commonsense reason-
ing (Lin et al., 2019; Lu, 2020), QA system (Chen
and Yih, 2020; Yu et al., 2015) and many other
tasks. However, these models are not good at cer-
tain tasks such as assessing humor and capturing
idiomaticity. This shortcoming is largely due to
natural languages’ flexibility.

In this paper, we focus on how to use large pre-
trained language models to determine whether a

multiword expression (MWE) has a trivial meaning
(Tayyar Madabushi et al., 2022), a.k.a, the com-
positionality of each word’s meaning, or it is an
idiomatic usage. We use the dataset provided in
(Tayyar Madabushi et al., 2021). In the training set,
the target MWE is given. The previous sentence,
the target sentence and the next sentence are also
given. We need to decide if the MWE has an id-
iomatic meaning or its meaning is trivial. This task
then can be treated as a text classification problem.

The rest part of this paper is organized as fol-
lows:

» We first introduce the dataset and the task with
details.

* Then we describe how we built up our pipeline
with BERT, LSTM and TextCNN.

* We give our results in section 4.

* Lastly, we provide our discussion in section
5.

2 Dataset and Task

As mentioned in (Tayyar Madabushi et al., 2021),
the dataset for Subtask A consists of naturally oc-
curring (target) sentences, previous sentences and
next sentences. The target sentence contains po-
tentially idiomatic MWEs annotated with a fine-
grained set of meanings: compositional meaning
and idiomatic meaning(s). Table 1 shows two sam-
ples from the training data. One has an idiomatic
expression, and the other not.

3 Methods

Our core pre-trained language model is mBERT
(Wolf et al., 2020). We chose mBERT over BERT
hoping that it could better fit the task’s multi-
language specification. In traditional methods, n-
gram was used to detect and group the MWEs. In

186

Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 186 - 189
July 14-15, 2022 ©2022 Association for Computational Linguistics



Table 1: Sample data for Subtask A.

previous sentence target sentence

next sentence target label (0
MWE means
idiomatic)

"The job has tradi-
tionally been non-
political, but Mrs.
Trump’s decision to
hire a Trump Or-
ganization employee
added partisanship to
the role, even though
Mr. Harleth tried to
frame his work there
as one stop in a long
career in the hospital-
ity industry."

"The White House
job was well compen-
sated — former chief
ushers say salaries
run in the $200,000
range — but the days
are long, particularly
if the president is an
early riser or a night
owl; Mr. Trump was
both."

Mr. Biden is not a
morning person, peo-
ple familiar with his
schedule say.)

0

Demography expert
Piotr Szukalski told
Dziennik Gazeta
Prawna he thinks
that deep concerns
about the spread of
the coronavirus are
to blame.

Minister of Family
and Social Policy
Marlena Malag as-
cribed the high death
rate to the pandemic
and said it would
take a long time
for the current gov-
ernment program of
family benefits in-
tended to boost the
birth rate to reverse
the negative trend.

"Commenting
data the state agency
Statistics Poland
released in Decem-
ber for 11 months
of 2020, economist
Rafal Mundry said
the number of deaths
was the highest since
World War II, and
the number of births
the lowest in 15
years."

on Dbirth rate

1

our methods, we tried to use either LSTM (Hochre-
iter and Schmidhuber, 1997) or TextCNN (Kim,
2014) to capture the MWEs. We concatenate
LSTM or TextCNN to mBERT in order to increase
the performance.

31 LST™M

Unlike RNN (Jordan, 1997), LSTM is good at re-
membering only the important parts of a sentence.
We hope it can help us group up the MWEs and
improve the performance. We add a bidirectional
LSTM layer at the output of the sequential trans-
formers. The bidirectional LSTM layer was initial-
ized as 1-layer and bidirectional, with a dropout of
0.1.

3.2 TextCNN

Similar to traditional CNN (Schmidhuber, 2015)
in computer vision, TextCNN (Kim, 2014) extracts

features from a small area of text. We suppose this
layer can help us detect the span of the MWEs so
that performance can be improved.

4 Results

We use the mBERT with 12 hidden layers. We did
experiments on dropouts with 0.1 and 0.2. As men-
tioned in Section 3, we explored of adding either a
LSTM or a CNN to the final fully connected layer
of the transformer from mBERT. Table 2 provides
our experiments and results. We were expecting
that mBERT + TextCNN could give us the best
results. But it turned out that mBERT + LSTM
performs best for Subtask A among our experi-
ments. The author has put the code for this paper
on GitHub!.

"https://github.com/daming-1lu/semeval_
2022_task2_sub_a
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Table 2: Subtask A Experiment Results

Method Zero-Shot | One-Shot
mBERT 0.6448 0.6987
+LSTM, dp=0.1 0.6546 0.6998
+LSTM, dp=0.2 0.6333 0.6613
+TextCNN, dp=0.1 0.6501 0.6827
+TextCNN, dp=0.2 0.6254 0.6309
+TextCNN+LSTM 0.6502 0.6977
+LSTM, dp=0.1(test) 0.654 0.704

5 Discussion

One reason that our method does not boost the per-
formance a lot might be that we add the LSTM or
TextCNN to the end, whose effect is limited to the
whole pipeline. Another new method, according
to (Gao et al., 2021), is that we can turn this classi-
fication problem into a masked word problem. In
PROMPT, it claims the integration is more genuine,
but choosing the prompt could be technical.

Another important reason is overfitting. We tried
to increase dropout from 0.1 to 0.2 in order to get
rid of overfitting. But the effect was opposite. Ac-
cording to (Tan et al., 2015), adding LSTM could
boost question answering tasks, whereas our task
is in fact a text classification. This might be the
reason of the tiny improvement.
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