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Abstract

Commonsense reasoning tasks such as com-
monsense knowledge graph completion and
commonsense question answering require pow-
erful representation learning. In this paper, we
propose to learn commonsense knowledge rep-
resentation by MICO, a Multi-alternative con-
trastIve learning framework on COmmonsense
knowledge graphs (MICO). MICO generates
the commonsense knowledge representation
by contextual interaction between entity nodes
and relations with multi-alternative contrastive
learning. In MICO, the head and tail entities
in an (h, r, t) knowledge triple are converted to
two relation-aware sequence pairs (a premise
and an alternative) in the form of natural lan-
guage. Semantic representations generated by
MICO can benefit the following two tasks by
simply comparing the distance score between
the representations: 1) zero-shot commonsense
question answering task; 2) inductive common-
sense knowledge graph completion task. Ex-
tensive experiments show the effectiveness of
our method.

1 Introduction

Commonsense reasoning is a fundamental prob-
lem in artificial intelligence. Recently in the NLP
field, much attention has been paid to common-
sense reasoning in the following two aspects. First,
more commonsense knowledge graphs (CKGs)
(Sap et al., 2019a; Fang et al., 2021) were de-
veloped to support new types of reasoning tasks,
such as commonsense knowledge graph comple-
tion (CKGC) (Malaviya et al., 2020). Another way
to evaluate machine learning models’ common-
sense reasoning capabilities is using commonsense
question answering (CQA) tasks (Zellers et al.,
2018; Sap et al., 2019b; Bisk et al., 2020). Exist-
ing approaches to deal with the above problems
commonly involve fine-tuning large pre-trained
language models, such as BERT (Kenton and
Toutanova, 2019), RoBERTa (Liu et al., 2019), and

GPT2 (Radford et al., 2019), by either incorporat-
ing the entire knowledge base for CKGC (Yao
et al., 2019; Bosselut et al., 2019) or injecting
the knowledge base to provide background knowl-
edge for zero-shot CQA (Banerjee and Baral, 2020;
Bosselut et al., 2021; Ma et al., 2021).

In fact, both CKGC and zero-shot CQA can be
formulated in a unified way, where a question can
be constructed based on the head entity and relation
in a knowledge graph, and then finding the tail
entity, which is regarded as an answer, based on the
constructed question. In this way, incorporating the
entire knowledge base for CKGC and injecting the
KG in pre-trained LMs for zero-shot CQA can be
unified as a semantic matching problem, where a
powerful representation learning for the matching
becomes the most important problem. This also
means that, after we unify them for CKGC and
CQA in the same way, we can perform zero-shot
CQA by simply leveraging the model finetuned on
the entire CKGs for CKGC.

Existing commonsense-related representation
learning usually leverage a CKG embedding frame-
work (Malaviya et al., 2020; Wang et al., 2021),
or fine-tuning a generative language model (Bosse-
lut et al., 2019). However, they were not aware
of the challenges that a typical CKG brings. First,
in a typical CKG, such as ConceptNet (Liu and
Singh, 2004) and ATOMIC (Sap et al., 2019a),
nodes are loosely structured free-from texts, which
means that previous embedding based on negative
sampling cannot substantially support sufficient
training because of sparsity. On the other hand, a
generative model can only take positive examples
for training so the capability of determining the
negative answers is limited.

In this paper, we propose a new framework
called MICO, a Multi-alternative contrastIve learn-
ing framework for COmmonsense knowledge rep-
resentation. The representations can benefit across
tasks by easily calculating the semantic distances
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Context: Jordan left their book in the library after studying all day.
Question: What will Jordan want to do next?
answer A: Ask people if they’ve seen the book
answer B: go home
answer C: Go the library and hide the book

Figure 1: An example from a CQA task (SIQA
(Sap et al., 2019b)) and related knowledge in a CKG
(ATOMIC).

with unified vector representations. In this way,
though many distinct nodes may have similar con-
cepts (Wang et al., 2021), they are still close in the
semantic space. Figure 1 shows an example of this
advantage on CQA. The entity node PersonX ask if
PersonY had seen related to the right answer is not
directly connected to the nodes PersonX leaves Per-
sonX’s book or PersonX leaves PersonY’s book but
these nodes share similar tail entity nodes. There-
fore, the right answer can be found by semantic
matching as it is close to the given context and
question in the semantic space.

To unify the form of CKGC and CQA, we follow
the idea in COPA (Roemmele et al., 2011) where
commonsense causal reasoning can be evaluated by
selecting the most plausible alternatives given the
premise. We first converts the knowledge triplets
(h, r, t) into sequence pairs (P,A) (P for premise
and A for alternative). MICO then encodes the
sequence pairs into embeddings and measures their
distance by a similarity function as we assume the
representations of related knowledge lie close in
the embedding space. Furthermore, we enhance
the representation learning by a contrastive loss
with sufficient sampling over the sparse CKG. The
alternative from the same triplet is a positive sam-
ple to the premise under the contrastive learning
framework. Alternatives from other knowledge
triples with different premises are negative sam-
ples. MICO also takes consideration of the struc-
ture from CKGs, where one head node h may con-
nect to several tail nodes t under the same relation r.
MICO dynamically selects a hard alternative from

multi-alternatives for a premise during training.
Experiments on two typical commonsense

knowledge graphs and two types of tasks, zero-shot
CQA and inductive CKGC, demonstrate the effec-
tiveness of our methodology. Our code is open-
resourced.1

2 Related Work

2.1 Commonsense Question Answering
Background knowledge is necessary for common-
sense question answering tasks. Many researches
resort to knowledge bases for background knowl-
edge. The works towards this direction can be
mainly classified into two streams: incorporat-
ing the knowledge base for zero-shot CQA (Yang
et al., 2019; Banerjee and Baral, 2020; Bosselut
et al., 2021; Ma et al., 2021) or retrieving the re-
lated knowledge from the knowledge base for task-
specific CQA (Paul and Frank, 2019; Lin et al.,
2019; Feng et al., 2020; Lv et al., 2020; Yasunaga
et al., 2021; Xu et al., 2021; Zhang et al., 2021).

Among the works in incorporating the knowl-
edge base for zero-shot CQA, COMET-DynaGen
(Bosselut et al., 2021) aggregates all paths of gener-
ated commonsense knowledge to the answers from
commonsense transformer COMET (Bosselut et al.,
2019) trained on CKGs. KTL (Banerjee and Baral,
2020) encodes the knowledge triplets from CKGs
into pre-trained LMs by learning triplet representa-
tion, aiming to complete a knowledge triplet given
the other two. Unlike KTL, we target enhancing
the relation-aware representation learning in the
form of natural language sequence pairs.

2.2 CKG Knowledge Representation
Knowledge representation from knowledge graphs
(KGs) has significantly progressed and benefited
the KG completion task. Typical methods for
KG completion tasks are mainly embedding-based,
which utilize the structural information observed
in the knowledge triplets (Nickel et al., 2011; Bor-
des et al., 2013; Wang et al., 2014; Trouillon et al.,
2016; Toutanova et al., 2015; Sun et al., 2019). Re-
cent researches also show that external information,
such as the textual description of nodes or relation
descriptions, can help boost the performance on
the task, like ConvE (Dettmers et al., 2018) and
ConvTransE (Shang et al., 2019). To transfer the
knowledge from pre-trained LMs into knowledge

1https://github.com/HKUST-KnowComp/
MICO
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Figure 2: Overview framework of MICO. The knowledge triplets are first sampled and converted into sequence
pairs. A transformer block encodes the sequence pairs into knowledge embeddings. The contrastive loss updates the
parameters of the transformer based on the contrast between the selected positive and negative tail sequences given
a head sequence.

(PersonX leaves PersonX’s book,  xWant, To find the book) 

ℎ,𝑟, 𝑡 → (𝑃, 𝐴) 𝑡, 𝑟!",ℎ → (𝑃, 𝐴)

John leaves John’s book. 
As a result, John wants to 
to find the book

John wants to find the book. 
because John
leaves John's book

P:

A:

P:

A:

Figure 3: An example of converting knowledge triplet
(h, r, t) to sequence pairs (P,A) from ATOMIC. r−1 is
the reverse relation of r.

graph completion, KG-BERT (Yao et al., 2019)
further utilize the pre-trained LMs to learn context-
aware embeddings.

However, unlike previous KGs (Miller, 1995;
Bollacker et al., 2008), commonsense knowledge
graphs, e.g., ConceptNet and ATOMIC, have
unique challenges towards the completion task.
The nodes in CKGs are non-canonicalized and free-
from text, resulting in magnitude larger and sparser
graphs (Malaviya et al., 2020). To address this
problem, previous works extract entity and relation
representation by pre-trained LMs and graph struc-
ture representation by graph neural networks GCN
(Kipf and Welling, 2017) to enhance the general-
izability over entity nodes (Malaviya et al., 2020;
Wang et al., 2021). Instead of fusing representation
from local subgraph structures in this paper, we
focus on utilizing the contrast information between
knowledge triplet contexts.

3 Methodology

In this section, we introduce the terminologies and
algorithms, and show the framework in Figure 2.

3.1 Knowledge Triplets to Sequence Pairs

A commonsense knowledge graph is denoted as
G = {V,E,R}, where V is the set of entities, E
is the set of edges, and R is the set of relations.
Knowledge triplet e ∈ E is composed by (h, r, t)
where head entity h and tail entity t are entities
from V and r is from R. h and t are connected by
r. Each entity comes with a free-form text descrip-
tion.

To convert the knowledge triplet into sequence
pairs as inputs to MICO, we substitute the rela-
tion with human-readable language templates and
connect it to entities. Typically relations are rep-
resented as specific words or short phrases in the
CKG, for example, xWant from ATOMIC and At-
Location from ConceptNet. Following Hwang et al.
(2021), we design natural language templates to
replace the original relations and connect them to
entities, forming context-aware sequences. An ex-
ample from ATOMIC is shown in Figure 3. The
template for xWant would be as a result, PersonX
wants. We also design a template for its reverse
version r−1 so it can be connected to the tail entity
to form an additional sequence pair. Details of sub-
stitute templates are listed in Appendix A.1. We de-
note the newly constructed sequence pair as (P,A).
For a premise P , there may be multiple alternatives
connected to it, denoted as {A1, A2, A3, ...}.

3.2 MICO

MICO is a multi-alternative contrastive learning
framework for commonsense knowledge represen-
tation with knowledge sequence pairs as inputs.
Recent researches have greatly progressed in se-
quence representation learning by contrastive learn-
ing (Carlsson et al., 2020; He et al., 2020; Gao et al.,
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2021), in which positive sequence pairs are consid-
ered semantic related and are close neighbors in
the embedding space. MICO follows the idea and
minimizes the distance between the premise P and
its connected alternative A.

First, a transformer encodes the constructed
sequence pairs (P,A) into embeddings to ex-
tract initial representations. Specifically, when
using BERT as the transformer, BERT-specific
start and end tokens are padded to the input se-
quence: x = x0, x1, ..., xn is converted to x =
[CLS], x0, x1, ...xn, [SEP ]. The sequence pairs
are then transformed to token pairs as Ptok and
Atok by a transformer tokenizer. To get the initial
representation, a transformer encoder encodes the
token pairs as:

Ep = Encoder(Ptok), Ea = Encoder(Atok), (1)

where Eh and Et are hidden states of the last layer.
The representation of the hidden state for the [CLS]
token is used as the representation of the input se-
quence. For the head and tail sequences, represen-
tations are:

s = Ep[0], g = Ea[0]. (2)

As we assume the sequence pairs lie close in the
embedding space, we use a similarity function to
measure the distance between sequence pairs. The
function f can be cosine similarity or dot product:

sim(s,g) = f(s,g). (3)

For a premise P , its paired alternative A is a
positive sample while alternatives paired with other
premises are negative samples in the same batch
during training. To minimize the semantic distance
between the i-th sequence pair in a batch, the con-
trastive loss is:

ℓi = − log
esim(si,g

+
i
)/τ

∑N
j=1 e

sim(si,g
+
j
)/τ ,

(4)

where N is the batch size and τ is the temperature
parameter.

Many research efforts aim to improve represen-
tation learning by generating multiple views for
the same sample as data augmentation in multi-
view contrastive learning approaches (Bachman
et al., 2019; Tian et al., 2020; Niu et al., 2022). In
CKG, a sequence head P may have multiple posi-
tive tails {A1, A2, A3, ...}. Inspired by multi-view

contrastive learning, we propose a multi-alternative
framework to utilize the multiple positive alterna-
tives for improving the learning of commonsense
knowledge representation. Specifically, we dynam-
ically sample a hard positive alternative from mul-
tiple alternatives during training.

The representations generated for the premise
with its alternatives are s and {g+

1 ,g
+
2 ,g

+
3 , ...}.

Among the multiple positive alternatives, the one
with the largest distance to the premise is selected
as the hard positive. Because we aim to minimize
the semantic similarity between the premise and
alternatives, selecting the alternative with the least
similarity would increase the training loss:

gp = min{sim(s,g+
1 ), ..., sim(s,g+

k )}, (5)

where k is the number of candidate alternatives
during training. The new contrastive loss for i-th
sequence pairs during training is:

Li = − log
esim(si,gp)/τ

esim(si,gp)/τ + δij
N∑

j=1

k∑
o=1

e
sim(si,g

+
j,o

)/τ

,

(6)

where δij ∈ {0, 1} is an indicator that equals 1
if i ̸= j, and g+

j,o is the o-th positive tail of j-th
sample in the batch.

4 Experiments

In this section, we first introduce the CKGs used as
knowledge sources, and then two kinds of evalua-
tion tasks (zero-shot CQA and inductive CKGC).
Finally, we introduce baseline methods for the two
tasks separately.

4.1 CKG

We conduct experiments on two typical common-
sense knowledge graphs, ConceptNet (Speer et al.,
2017) and ATOMIC (Sap et al., 2019a).

ConceptNet. ConceptNet has been the most
fundamental commonsense knowledge graph over
the past decade (Liu and Singh, 2004). CN-100K
was built on the knowledge triplets in ConceptNet
and first introduced in Li et al. (2016). It contains
Open Mind Common Sense (OMCS) (Singh et al.,
2002) entries in the ConceptNet5 (Speer et al.,
2017). CN-82K is a uniformly sampled version
of CN-100k dataset which contains more unseen
entities in the test split (Wang et al., 2021).
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Dataset Entities Relations Train Pair Valid Pair Test Pair Avg Degree Avg Words

ConceptNet 78,334 34 163,840 19,590 19,592 1.87 3.93
ATOMIC 304,388 9 1,221,072 48,710 48,972 2.52 6.12

Table 1: Distribution of train, valid, and test sequence pairs from ConceptNet and ATOMIC. Avg Degree is the
average number of tail sequence connected to head sequence and Avg Words is the average words number for head
sequence and tail sequence.

ATOMIC. ATOMIC (Sap et al., 2019a) contains
rich social commonsense knowledge about day-to-
day events. The dataset specifies the effects, needs,
intents, and attributes of the actors in the events,
covering nine relations and 877k knowledge tuples.
Dataset built from ATOMIC for CSKG completion
is first created in Malaviya et al. (2020).

In our experiments, we follow Wang et al. (2021)
to use CN-82K and ATOMIC. To better evaluate
the generalizability of representation from MICO,
we conduct experiments with the inductive splits
in which one of entity nodes in a knowledge triplet
from the valid and test split does not appear in
the training dataset. Statistics of the converted
sequence pairs from original datasets are shown in
Table 1.

4.2 Evaluation Tasks
Based on that CKGC and CQA can be unified into
the same form of selecting alternatives given a
premise, commonsense knowledge representations
generated from MICO are evaluated on these two
tasks.

4.2.1 Zero-shot CQA
The knowledge representation is evaluated on three
multiple-choice CQA tasks: COPA (Roemmele
et al., 2011), SIQA (Sap et al., 2019b), and CSQA
(Talmor et al., 2019). Accuracy is used as the eval-
uation metric. For each task, the query composed
by context and question can be converted into the
form as a premise. The answers are viewed as
possible plausible alternatives. In this way, the
multiple-choice question can be solved by select-
ing the closet representation pairs generated from
MICO given the query and candidate answers. We
denote the representation for query as q and candi-
date answers as {a1,a2, ...am}. The answer with
the highest score is the predicted answer i∗, where

i∗ = argmax
i=1,...,m

sim(q,ai). (7)

COPA. Choice of Plausible Alternatives is a
two-way multiple-choice commonsense reasoning

task between events. COPA consists of 1,000
questions, 500 for the development set and 500 for
the test set. To make the form of relation consistent
with the training dataset in natural language, we
substitute cause as The cause for it was that and
effect as As a result.

SIQA. The queries in Social IQA are collected
based on ATOMIC. Each question in the dataset
describes social interactions and has three
crowdsourced candidate answers. The dataset’s
development split and test split are used as
zero-shot evaluation, containing 1,954 and 2,059
questions, respectively.

CSQA. The questions in CommonsenseQA are
general questions about concepts in ConceptNet.
Each question has five candidate answers. The de-
velopment set is used as evaluation set, containing
1,221 questions.

4.2.2 Inductive CKGC
Inductive CKGC is an important task for CKG
because unseen entity nodes are introduced in real-
world CKGC from time to time and many distinct
nodes may refer to same concept due to their free-
form text description (Wang et al., 2021). In the
inductive CKGC task, at least one of the nodes
in knowledge triplets is not shown in the training
dataset. Following Wang et al. (2021), each triplet
(h, r, t) is measured in two directions: (h, r, ?) and
(t, r−1, ?). Inverse relations r−1 are added as ad-
ditional relation types. We use the MRR (mean
reciprocal rank) and Hits@10 score as the evalua-
tion metrics.

4.3 Baselines

For zero-shot CQA tasks, we compare our
method with baselines including pre-trained LMs
(RoBERTa (Liu et al., 2019), GPT2 (Radford
et al., 2019)), using pre-trained LMs as knowledge
sources (self-talk (Shwartz et al., 2020), Dou (Dou
and Peng, 2022)), and pre-trained LMs trained on
CKGs (KTL (Banerjee and Baral, 2020), COMET-
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Methods Backbone Knowledge Source COPA SIQA CSQA
dev test dev test dev

Random - - 50.0 50.0 33.3 33.3 25.0
RoBERTa-L RoBERTa-L - 54.8 58.4 39.8 40.1 31.3
GPT2-L GPT2-L - 62.4 63.6 42.8 43.3 40.4
self-talk GPT2-[Distil/XL/L] GPT2-[Distil/L/M] 66.0 - 46.2 43.9 32.4
Dou ALBERT-XXL-v2 ALBERT-XXL-v2 - - 44.1 42.0 50.9

KRL RoBERTa-L e.g., ATOMIC - - 46.6 46.4 36.8
COMET-DynaGen GPT2-M COMET - - 50.1 52.6 -

MICO RoBERTa-L ConceptNet 73.2 75.2 44.6 45.4 51.0
MICO RoBERTa-L ATOMIC 79.4 77.4 56.0 57.4 44.2

Table 2: Results on Zero-shot CQA tasks. COMET is the commonsense transformer trained on ATOMIC. For MICO,
k is set as 2. RoBERTa-L and GPT2-M have comparable parameter size. KRL is the knowledge representation
method in KTL.

DynaGen (Bosselut et al., 2021)).
For inductive CKGC tasks, we compare our

method with ConvE (Dettmers et al., 2018), Ro-
tatE (Sun et al., 2018), Malaviya (Malaviya et al.,
2020) and InductivE (Wang et al., 2021). More
details about baseline models for the two tasks are
introduced in Appendix A.2.

4.4 Implementation Details

Our experiments are run on RTX A6000. Each
experiment is run on a single GPU card. The train-
ing batch size is 196. Max sequence length for
training is 32. The learning rate is set as 1e-5 for
Bert-base and RoBERTa-base. For RoBERTa-large
(RoBERTa-L), the learning rate is set as 5e-6. We
use AdamW (Loshchilov and Hutter, 2018) opti-
mizer. For experiments with the MICO framework,
τ is set as 0.07. The valid set is evaluated by con-
strastive loss metric and used to select a best model
for further evaluation. The models are trained for
10 epochs and early stopped when the change of
validation loss is within 1%.

5 Results

5.1 Main Results

The main results include MICO on the zero-shot
CQA and the inductive CKGC.

5.1.1 Results on Zero-shot CQA
The results on CQA tasks are shown in Table 2.
Baseline systems based on pre-trained language
models such as RoBERTa-L and GPT2-L provides
strong baselines. Simply comparing the language
model score from RoBERTa-L or GPT2-L outper-
forms random guess by a large margin. This shows
that pre-trained language models are encoded with
useful knowledge which can benefit the CQA tasks.

MICO generates knowledge representation en-
coded with commonsense knowledge by the fine-
tuned LMs with self-supervision signal from CKGs.
Compared with methods such as self-talk (Shwartz
et al., 2020) and Dou (Dou and Peng, 2022), our
method outperforms all the evaluation datasets.
Self-talk and Dou utilize the pre-trained language
models as knowledge source and mine relevant
knowledge that may benefit the CQA tasks. How-
ever, such knowledge is still not sufficient. By
fintuning on CKG, MICO can successfully inject
the commonsense knowledge into pre-trained LMs
and generate meaningful representation benefiting
the CQA tasks.

MICO provides an efficient way to inject CKGs
into pre-trained LMs. MICO solely trained on
one knowledge source can achieve comparable
performance or outperforms KRL (Banerjee and
Baral, 2020) and COMET-DynaGen (Bosselut
et al., 2021). KRL encodes the knowledge triplets
into embeddings separately and then fuses two of
them to predict the third one. Compared to KRL,
MICO generates knowledge representations for se-
quence pairs, in which the relation interacts better
with node entities as they are concatenated on the
contextual level. COMET-DynaGen solves CQA
tasks by utilizing the clarifications generated from
COMET. However COMET is a generative model
and always introduces novel entities (Wang et al.,
2021), which may not be related to the query. Com-
pared to COMET-DynaGen, MICO solves the CQA
task by simply generating CKG related representa-
tions and comparing the similarity, also saving the
cost of generating multi-step clarifications.

Another finding is that the representation gen-
erated from MICO can be easily generalized to
out-of-domain datasets. SIQA achieves best results
when ATOMIC used as the knowledge source and

1344



Model ConceptNet ATOMIC
MRR Hits@10 MRR Hits@10

ConvE 0.21 0.40 0.08 0.09
RotatE 0.32 0.50 0.10 0.12
Malaviya 12.29 19.36 0.02 0.07
InductivE 18.15 29.37 2.51 5.45

MICO∗ 9.00 19.06 7.07 13.52
MICO♢ 9.08 18.73 7.52 14.46
MICO♡ 10.92 22.07 8.13 15.69

Table 3: Results on inductive CKGC. MICO∗ for
BERT-base, MICO♢ for RoBERTa-base, MICO♡ for
RoBERTa-L. k is set as 2.

CSQA achieves best results when ConceptNet used
as the knowledge source. This is because SIQA is
built based on ATOMIC and CSQA is built on Con-
ceptNet. MICO still benefits the task for COPA,
which requires commonsense knowledge but is not
closely related to the two knowledge sources. This
shows that the knowledge representation generated
by MICO can generalize across tasks.

5.1.2 Results on Inductive CKGC
MICO enhances the commonsense representation
by the contrast information between knowledge
triplets and can generalize to unseen entity nodes.
Results on the inductive CKGC task are shown
in Table 3. Previous methods such as ConvE
(Dettmers et al., 2018) and RotatE (Sun et al., 2018)
rely on relation link between entities to learn en-
tity embedding. These methods perform bad when
new entities come with no link to previous nodes
existing. Methods such as Malaviya (Malaviya
et al., 2020) or InductivE (Wang et al., 2021) apply
pre-trained LMs to initialize the node embedding
and then focus on utilizing subgraph structure to
improve the generalizability of node features by
GCN. However, the CKG is sparse and the aver-
age degree for each node is roughly around 2 for
both CKGs. Thus MICO focuses on learning the
context information of node entities and achieves
better performance on ATOMIC while comparable
on ConceptNet.

MICO achieves better performance than Induc-
tivE on ATOMIC while otherwise on Concept-
Net. The entity nodes contain 3.93 words on av-
erage in ConceptNet and 6.12 words on average
in ATOMIC. MICO encodes the node textual de-
scription by pre-trained LMs and longer word se-
quences results in better distinguishable node fea-
ture. This may explains why MICO performs better
on ATOMIC than on ConceptNet compared to In-

Backbone CKG COPA SIQA CSQA

BERT-base
- 45.9 37.1 21.5

ConceptNet 65.2 39.1 42.9
ATOMIC 71.3 48.9 40.7

RoBERTa-base
- 53.5 38.4 29.2

ConceptNet 67.7 39.8 44.7
ATOMIC 72.0 51.9 40.8

RoBERTa-L
- 56.6 39.8 31.3

ConceptNet 74.2 44.6 51.0
ATOMIC 78.4 56.0 44.2

Table 4: Backbone model study on two CKGs and eval-
uation on CQA tasks. For MICO, k is set as 2 during
training.

ductivE. InductivE relies on learning the neighbor-
ing graph structure by GCN. However in ATOMIC,
the entity nodes are more complex than those in
ConceptNet so capturing the graph structure is not
enough to learn good commonsense representation.

5.2 Ablation Study and Analysis

In this part, we analyze the influence of backbone
models, number of candidate positive tails k, and
hard positive selection in MICO. For evaluation on
CQA tasks, the results are reported on the develop-
ment set of SIQA and CSQA, and combination of
development set and test set of COPA.

5.2.1 Backbone Pre-trained LMs
The results on different backbone models are
shown in Table 4. MICO trained on different back-
bone models show consistent pattern on the three
commonsense QA tasks. First, MICO trained with
CKGs outperform baseline models without any
CKG knowledge. Second, MICO trained with Con-
ceptNet achieves better performance on CSQA and
trained with ATOMIC achieves better performance
on COPA and SIQA.

5.2.2 Hyper-parameter k

In this part, we study how the number of positive
tails k influence the effects of MICO. For simplic-
ity, we study the influence of k on two graphs with
BERT-base as the backbone model.

The performance of CQA tasks and inductive
CKGC tasks under the influence of k is shown in
Table 5 and Table 6. MICO generally performs
better on CSQA when trained on ConceptNet and
SIQA when trained on ATOMIC. This is because
the questions in each task are more related to the
knowledge in the corresponding CKG.

The performances on the inductive CKGC
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CKG k COPA SIQA CSQA

ConceptNet

1 64.9 39.3 42.1
2 65.2 39.1 42.9
3 64.7 39.2 42.8
4 64.0 39.8 43.9

ATOMIC

1 72.2 48.2 40.7
2 71.3 48.9 40.7
3 72.1 48.9 41.0
4 70.2 49.2 40.5

Table 5: Hyper-parameter study of k on two CKGs and
evaluation on zero-shot CQA tasks.

k
ConceptNet ATOMIC

MRR Hits@10 MRR Hits@10

1 8.81 18.82 6.69 12.78
2 9.00 19.06 7.07 13.52
3 9.41 19.65 7.08 13.46
4 9.21 19.22 7.14 13.58

Table 6: Hyper-parameter study of k on two CKGs and
evaluation on inductive CKGC tasks.

mostly increase as k increases. This indicates that
larger k helps the model generalize better in pair-
ing the in-domain knowledge sequences. However
for ConceptNet, the performance drops when k is
greater than 3. The limited average degree of nodes
in ConceptNet may explain this as larger k does not
induce new candidate tails. Therefore, the model
tends to fit the seen nodes better.

5.2.3 Sampling Strategy
We analyze the influence of selecting a hard posi-
tive compared with randomly sampling a positive
from candidate sets. The results are show in Table
7. The experiments are conducted on the backbone
model with BERT-base and k = 2. Compared to
random sampling, MICO mostly outperforms on
the three datasets. This indicates that the hard posi-
tive during training can benefit the generalization
of the representation. The only exception is train-
ing on ATOMIC and testing on SIQA. The possible
explanation is that there is possibly a distribution
gap between the training dataset and SIQA dataset.
However, generally our sampling strategy can im-
prove the generalizability of the representation.

6 Discussion

This section shows that transformers from MICO
can construct commonsense representations for
CKG and benefit commonsense knowledge re-
trieval given queries. One example from SIQA
and retrieved possible alternatives from ATOMIC

CKG Sampling COPA SIQA CSQA

ConceptNet Random 64.0 38.3 41.3
MICO 65.2 39.1 42.9

ATOMIC Random 71.1 49.2 40.3
MICO 71.3 48.9 40.7

Table 7: Ablation study on sampling strategy on two
CKGs and evaluation on CQA tasks. k is set as 2 during
training.

Query Jordan left their book if the library after
studying all day. As a result, Jordan wanted to

to go back and get the book
w/ to look for it at home
CKG to check the lost and the found

to pick up the item they forgot
to try to remember where they put it

take a pet along to the apartment viewing
and scares the landlord
seen

w/o resolute
CKG to contemplate circumstances and possible out-

comes
to go out and form a relationship

Table 8: Comparison of retrieved alternatives from
representations extracted RoBERTa-L with CKG
(ATOMIC) and without CKG on question from SIQA
task. Reasonable alternatives are in boldface.

is shown in Table 6. We first encode all the alter-
natives in CKG by the transformer finetuned with
ATOMIC and original transformer without any fine-
tuning. The top 5 retrieved nodes are listed by the
ranks of similarity score in descending order.

We can find that the transformer finetuned on
CKG can successfully pair the query with reason-
able alternatives from CKG compared to original
pre-trained transformer. Therefore, our method pro-
vides an efficient way to collect the related knowl-
edge from CKG and may benefit the researches
which require retrieved implicit background knowl-
edge to reason over.

However, the representation generated from
MICO still has some drawbacks as shown in the
results. “Jordan look for it at library” would be
a reasonable node instead of “Jordan look for it
at home”. This shows that the representation still
need future work to distinguish the detailed con-
cepts.

7 Conclusion

In this paper, we propose a MICO, a multi-
alternative contrastive learning framework over
commonsense knowledge graphs to learn com-
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monsense knowledge representation. The frame-
work converts the knowledge triplets into sequence
pairs and learns superior knowledge representation
through contrastive learning techniques. The gen-
erated representations perform well over zero-shot
CQA tasks and inductive CKGC tasks. Further-
more, for CQA tasks, the related knowledge can
be provided by simply retrieving the commonsense
knowledge representations of CKGs.
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Limitations

As shown in the discussion, the commonsense
knowledge representation generated from MICO
can capture the rough meanings of the whole word
sequences. While for detailed concepts, the repre-
sentation failed to distinguish since the representa-
tion is extracted from a specific token to represent
the meaning of the whole word sequence. However,
concepts are key elements in semantics so future
work is still needed to improve the representation.
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Relation rel template

xAttr PersonX is seen as
xEffect as a result, PersonX will
xWant as a result, PersonX wants
xNeed but before, PersonX needed
xReact as a result, PersonX feels
xIntent because PersonX wanted
oEffect as a result, PersonY or others will
oReact as a result, PersonY or others feel
oWant as a result, PersonY or others want

xAttr rev "PersonX is seen as", "because PersonX"
xEffect rev "PersonX will", "because PersonX"
xWant rev "PersonX wants", "because PersonX"
xNeed rev "PersonX needs", "as a result PersonX"
xReact rev "PersonX feels", "because PersonX"
xIntent rev "PersonX wanted", "as a result PersonX"
oEffect rev "PersonY or others will", "because PersonX"
oReact rev "PersonY or others feel", "because PersonX"
oWant rev "PersonY or others want", "because PersonX"

Table 9: Relation types and relation substitute templates
from ATOMIC. rev mean reverse relation.

A Appendix

A.1 Templates for Relation

For training dataset of two CSKGs, we used the
version from InductivE 2.

A.1.1 ATOMIC
In ATOMIC, there are nine relations. The substitute
template of original relations and reverse relations
are shown in Table 9. PersonX and PersonY are
substitued by "John" or "Tom" respectively.

A.1.2 ConceptNet
ConceptNet contains 34 relations, The substitute
template of original relations and reverse relations
are shown in Table 10.

A.2 Baselines

A.2.1 Commonsense Question Answering
Self-Talk (Shwartz et al., 2020). Self-Talk
inquires LMs for implicit background knowledge
to solve multiple-choice commonsense tasks. The
model uses pretrained LMs as knowledge sources.

Dou (Dou and Peng, 2022). Dou extracts the
related background knowledge embedded in pre-
trained LMs by designing fill-in-the-blank prompts
for commonsense question answering tasks. We
compare with the syntactic-based rewriting method
in which no supervision from curated-annotated
training data is used.

2https://github.com/BinWang28/InductivE

KTL (Banerjee and Baral, 2020). Two ways
are used to learn from knowledge triplets from
knowledge graphs which can be used to perform
zero-shot QA, namely knowledge representation
learning (KRL) and span masked language mod-
eling (SMLM). We compare with the KRL method.

COMET-DynaGen (Bosselut et al., 2021).
COMET-DG implements zero-shot commonsense
QA by inference over dynamically generated com-
monsense knowledge graphs as related knowledge
from COMET.

A.2.2 Inductive CSKG Completion
ConvE (Dettmers et al., 2018). ConvE stacks
the node embedding and relation embedding
and reshapes the resulting tensor into the same
dimensionality as the node embeddings by a 2D
convolution operation.

RotatE (Sun et al., 2018). RotatE utilizes
the rotation operation and defines the dis-
tance function between entities and relation as
dr(h, t) = ∥h ◦ r− t∥.

Malaviya (Malaviya et al., 2020). The method
adopts a graph convolutional neural network GCN
to learn graph structure information and a pre-
trained LMs to represent contextual knowledge.

InductivE (Wang et al., 2021). The model directly
computes entity embeddings from raw attributes
and a GCN decoder with a novel densification pro-
cess to enhance unseen entity representation with
neighboring structural information.
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Relation relation templates

AtLocation located or found at or in or on
CapableOf is or are capable of
NotCapableOf is not or are not capable of
Causes causes
CausesDesire makes someone want
CreatedBy is created by
DefinedAs is defined as
DesireOf desires
Desires desires
NotDesires do not desire
HasA has, possesses, or contains
HasFirstSubevent begins with the event or action
HasLastSubevent ends with the event or action
HasPrerequisite to do this, one requires
HasProperty can be characterized by being or having
InstanceOf is an example or instance of
IsA is a
MadeOf is made of
MotivatedByGoal is a step towards accomplishing the goal
PartOf is a part of
ReceivesAction can receive or be affected by the action
SymbolOf is a symbol of
UsedFor used for
LocatedNear is located near
RelatedTo is related to
InheritsFrom inherits from
LocationOfAction is acted at the location of
HasPainIntensity causes pain intensity of

AtLocation rev is the position of
CapableOf rev is a skill of
NotCapableOf rev is not a skill of
Causes rev because
CausesDesire rev because
CreatedBy rev create
DefinedAs rev is known as
DesireOf rev is desired by
Desires rev is desired by
NotDesires rev is not desired by
HasA rev is possessed by
HasFirstSubevent rev is the beginning of
HasLastSubevent rev is the end of
HasPrerequisite rev is the prerequisite of
HasProperty rev is the property of
InstanceOf rev include
IsA inversed includes
MadeOf rev make up of
MotivatedByGoal rev motivate
PartOf rev include
ReceivesAction rev affect
SymbolOf rev can be represented by
UsedFor rev could make use of
LocatedNear rev is located near
RelatedTo inversed is related to
InheritsFrom rev hands down to
LocationOfAction rev is the location for acting
HasPainIntensity rev is the pain intensity caused by

Table 10: Relation types and relation substitute tem-
plates from ConceptNet. rev mean reverse relation.
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