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Abstract

Compositional image retrieval (CIR) is a chal-
lenging retrieval task, where the query is com-
posed of a reference image and a modification
text, and the target is another image reflecting
the modification to the reference image. Due to
the great success of the pre-trained vision-and-
language model CLIP and its favorable applica-
bility to large-scale retrieval tasks, we propose
a CIR model HyCoLe-HNM with CLIP as the
backbone. In HyCoLe-HNM, we follow the
contrastive pre-training method of CLIP to per-
form cross-modal representation learning. On
this basis, we propose a hybrid compositional
learning mechanism, which includes both im-
age compositional learning and text composi-
tional learning. In hybrid compositional learn-
ing, we borrow a gated fusion mechanism from
a question answering model to perform compo-
sitional fusion, and propose a heuristic negative
mining method to filter negative samples. Priv-
ileged information in the form of image-related
texts is utilized in cross-modal representation
learning and hybrid compositional learning. Ex-
perimental results show that HyCoLe-HNM
achieves state-of-the-art performance on three
CIR datasets, namely FashionIQ, Fashion200K,
and MIT-States.

1 Introduction

In this paper, we explore the task of compositional
image retrieval (CIR). As shown in Figure 1, CIR
is aimed at retrieving a target image slightly differ-
ent from a reference image, where the difference is
described by a modification text. The key to CIR is
to learn the cross-modal composition process from
(reference image, modification text) pairs to target
images. In the existing CIR models, this is usually
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Figure 1: Compositional image retrieval.

realized by fusing and matching image representa-
tions obtained from pre-trained vision models with
text representations obtained from pre-trained lan-
guage models (Perez et al., 2018; Vo et al., 2019;
Chen and Bazzani, 2020; Dodds et al., 2020; Lee
et al., 2021; Kim et al., 2021a; Wen et al., 2021;
Anwaar et al., 2021). However, these pre-trained
models are pre-trained on uni-modal data, which
implies that visual concepts embodied in image rep-
resentations are not aligned with semantic concepts
embodied in text representations. As a result, ap-
plying these models to CIR yields limited benefit,
which necessitates the application of pre-trained
vision-and-language (V&L) models.

CLIP (Radford et al., 2021), a recently-proposed
V&L model pre-trained on 400M image-text pairs,
has exhibited strong zero-shot performance on im-
age classification. Empirical studies (Kim et al.,
2021b; Shen et al., 2022) showed that it is sub-
optimal to apply CLIP in a zero-shot manner to
complex V&L tasks requiring cross-modal reason-
ing, such as visual question answering (VQA), vi-
sual entailment, and V&L navigation. Meanwhile,
Shen et al. (2022) also showed that state-of-the-
art (SOTA) performance can be achieved on these
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tasks by integrating and fine-tuning CLIP. Due to
the requirement for cross-modal compositionality,
we believe that CIR is as complex as VQA. There-
fore, we use CLIP as the backbone of our proposed
CIR model, and fine-tune it together with the rest
model components. There are indeed some other
pre-trained V&L models than CLIP, such as AL-
BEF (Li et al., 2021) and BLIP (Li et al., 2022).
These models use a single encoder to encode image-
text combinations through cross-modal attention
mechanisms, which is computationally expensive
during retrieval if there are many candidate images.
However, CLIP uses two encoders to separately en-
code images and texts so that we can encode all can-
didate images in advance and calculate matching
scores as simple dot products, which is applicable
to large-scale retrieval tasks.

Based on CLIP, we propose a novel CIR model
named HyCoLe-HNM, which features hybrid com-
positional learning and heuristic negative mining.
On the one hand, unlike the existing CIR models,
which mostly focus on image compositional learn-
ing, we propose a hybrid compositional learning
mechanism, which includes both image compo-
sitional learning and text compositional learning.
Specifically, we not only learn the compositional
matching between reference images and target im-
ages, but also utilize image-related texts as privi-
leged information to learn the compositional match-
ing between reference texts and target texts. On the
other hand, to facilitate the contrastive optimization
of hybrid compositional learning, we also propose a
heuristic negative mining method to filter negative
samples so that only the negative samples relevant
to the positive ones are retained. Specifically, we
enforce a heuristic rule to identify relevant negative
samples, and thereby reduce the space complex-
ity of negative samples from O(N3) to O(N2).
Compared with hard negative mining methods, the
heuristic negative mining method is not only more
efficient, but also achieves better performance in
the ablation experiments.

For optimal performance, when implementing
HyCoLe-HNM, we innovatively integrate some ap-
proaches originally aimed at other tasks. Specifi-
cally, following the contrastive pre-training method
of CLIP, we utilize the above mentioned privileged
information to perform cross-modal representation
learning. Besides, we also borrow a gated fusion
mechanism from a question answering (QA) model
to perform compositional fusion. Experimental re-

sults show that by applying these approaches to
HyCoLe-HNM, we achieve SOTA performance on
multiple CIR datasets.

2 Model

In this section, we propose our CIR model HyCoLe-
HNM. First, we provide a task definition of CIR.
Then, we present a cross-modal representation
learning method. Next, we propose a hybrid com-
positional learning mechanism and a heuristic neg-
ative mining method, from which HyCoLe-HNM
takes its name. Finally, we describe the training
and inference of HyCoLe-HNM.

2.1 Task Definition

CIR is to retrieve a target image t from a set of
candidate images according to a reference image r
and a modification text m, where m describes the
change from r to t. We assume that a reference text
r̃ and a target text t̃, which separately embody the
semantics of r and t, are provided as privileged in-
formation for training. For example, r̃ and t̃ can be
image-related captions. However, such information
is not available for inference.

2.2 Cross-Modal Representation Learning

To map images and texts into a joint representation
space, we utilize privileged information in the form
of image-related texts to jointly train an image en-
coder and a text encoder through cross-modal rep-
resentation learning. As shown in Figure 2a, we
use an image encoder to encode reference images
and target images, and use a text encoder to encode
reference texts and target texts. To benefit from
V&L pre-training, we use CLIP as the backbone of
both encoders. Specifically, we use the image part
of CLIP, which is a vision transformer (ViT) (Doso-
vitskiy et al., 2020), as the backbone of the image
encoder, and use the text part of CLIP, which is a
GPT-like (Radford et al., 2018) language model,
as the backbone of the text encoder. Besides, we
also add a linear projection layer after the back-
bone of each encoder, and apply L2 normalization
to the output of each linear projection layer. The
output dimensionality of both linear projection lay-
ers is d, which is the dimensionality of the joint
representation space.

To learn the joint representation space, we adopt
the InfoNCE loss (Oord et al., 2018) used in the
contrastive pre-training of CLIP, and apply it to
both the reference side and the target side. Specif-
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(a) Cross-modal representation learning. (b) Hybrid compositional learning.

Figure 2: Our proposed HyCoLe-HNM model. Components with the same color share parameters.

ically, given a mini-batch of N reference image-
text pairs {(r1, r̃1), . . . , (rN , r̃N )}, we treat them
as positive samples, and generate N2−N negative
samples by replacing the text r̃i in each positive
sample (ri, r̃i) separately with the other N − 1
texts {r̃1, . . . , r̃N}− {r̃i}. For each of the positive
samples and negative samples, we calculate the co-
sine similarity between the image representation
and the text representation, and thereby construct
a reference image-text matching (RITM) similar-
ity matrix SRITM ∈ RN×N , where the element at
the i-th row and the j-th column corresponds to the
sample (ri, r̃j). Analogously, given a mini-batch of
N target image-text pairs {(t1, t̃1), . . . , (tN , t̃N )},
we construct a target image-text matching (TITM)
similarity matrix STITM ∈ RN×N . Obviously, the
diagonal elements in the two matrices correspond
to the positive samples, while the off-diagonal el-
ements correspond to the negative samples. On
this basis, we minimize the following RITM loss
LRITM and TITM loss LTITM so that in the
learned joint representation space, an image and a
text are close to each other if they are paired, and
apart from each other if not:

LRITM =
1

N
tr
(
−log

(
softmax(

SRITM

τRITM
)
))

+

1

N
tr
(
−log

(
softmax(
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τRITM
)
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−log
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TITM
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where τRITM and τTITM are trainable tempera-
tures, tr(·) denotes calculating matrix trace, and
softmax(·) is calculated along each row.

2.3 Hybrid Compositional Learning and
Heuristic Negative Mining

The existing CIR models mostly focus on image
compositional learning, which is to learn the com-
positional matching between reference images and
target images conditioned on modification texts.
In our proposed CIR model, besides image com-
positional learning, we also utilize privileged in-
formation in the form of image-related texts to
perform text compositional learning, which is to
analogously learn the compositional matching be-
tween reference texts and target texts, and thus
name this mechanism hybrid compositional learn-
ing. As shown in Figure 2b, based on cross-modal
representation learning, we use a fusion module
to fuse modification text representations separately
into reference image representations and reference
text representations, which can be seen as compo-
sitional fusion. To implement the fusion module,
we borrow the following gated fusion mechanism
from Wang et al. (2018), which was originally pro-
posed to address the task of QA, and apply L2
normalization to its output:

f(x, y) = norm
(
g ⊙ h+ (1− g)⊙ x

)

g = sigmoid(Wg[x; y;x⊙ y;x− y] + bg)

h = gelu(Wh[x; y;x⊙ y;x− y] + bh)

1275



(a) Reference-based negative mining. (b) Modification-based negative mining. (c) Target-based negative mining.

Figure 3: Our proposed heuristic negative mining method.

where Wg and Wh are trainable weight matrices,
bg and bh are trainable bias vectors, f(x, y) denotes
fusing y into x, ⊙ denotes element-wise multipli-
cation, norm(·) denotes L2 normalization, and [; ]
denotes vector concatenation.

As in cross-modal representation learning, we
also adopt the InfoNCE loss in hybrid composi-
tional learning. Specifically, in image composi-
tional learning, given a mini-batch of N (refer-
ence image, modification text, target image) triples
{(r1,m1, t1), . . . , (rN ,mN , tN )}, we treat them
as positive samples, and generate N3−N negative
samples by enumerating the other possible triples
{r1, . . . , rN} × {m1, . . . ,mN} × {t1, . . . , tN} −
{(r1,m1, t1), . . . , (rN ,mN , tN )}. However, most
of these negative samples are easy negatives, which
are irrelevant to the positive samples and thus have
little effect on the contrastive optimization. There-
fore, we filter these negative samples to only re-
tain the hard negatives, which are relevant to the
positive samples. Instead of applying hard nega-
tive mining methods, we propose a more efficient
heuristic negative mining method, which is to iden-
tify relevant negative samples by enforcing a heuris-
tic rule: a negative sample is relevant if and only
if it is different from a positive sample in either
the reference image, the modification text, or the
target image. As shown in Figure 3, we implement
this rule as the following three operations, which
reduce the space complexity of negative samples
from O(N3) to O(N2):

• Reference-based negative mining. For each
positive sample, we select the N − 1 negative
samples that only differ in the reference im-
age. This operation yields N2 −N relevant
negative samples in total.

• Modification-based negative mining. For
each positive sample, we select the N − 1
negative samples that only differ in the mod-
ification text. This operation yields N2 −N

relevant negative samples in total.

• Target-based negative mining. For each pos-
itive sample, we select the N − 1 negative
samples that only differ in the target image.
This operation yields N2 −N relevant nega-
tive samples in total.

For each of the positive samples and relevant
negative samples, we first fuse the modification
text representation into the reference image repre-
sentation, and then calculate the cosine similarity
between the fusion result and the target image rep-
resentation. In this way, for the above three op-
erations, we construct three image compositional
matching (ICM) similarity matrices SR−ICM ∈
RN×N , SM−ICM ∈ RN×N , and ST−ICM ∈
RN×N , where the elements at the i-th row and
the j-th column separately corresponds to the sam-
ples (rj ,mi, ti), (ri,mj , ti), and (ri,mi, tj). Ob-
viously, the diagonal elements in the three matrices
correspond to the positive samples, while the off-
diagonal elements correspond to the relevant neg-
ative samples. On this basis, we minimize the fol-
lowing ICM loss LICM so that the compositional
matching between a reference image and a target
image conditioned on a modification text is pro-
moted if the modification text reflects the change
from the reference image to the target image, and
suppressed if not:
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(3)

where τICM is a trainable temperature.
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Analogously, in text compositional learn-
ing, given a mini-batch of N (reference
text, modification text, target text) triples
{(r̃1,m1, t̃1), . . . , (r̃N ,mN , t̃N )}, we apply the
same method as in image compositional learn-
ing to construct three text compositional match-
ing (TCM) similarity matrices SR−TCM ∈ RN×N ,
SM−TCM ∈ RN×N , and ST−TCM ∈ RN×N , and
thereby minimize the following TCM loss LTCM :
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where τTCM is a trainable temperature.
Since our proposed CIR model features hybrid

compositional learning and heuristic negative min-
ing, we name it HyCoLe-HNM.

2.4 Training and Inference
To train HyCoLe-HNM, we minimize the following
total loss L through gradient descent:

L = LICM + αLTCM + β(LRITM + LTITM ) (5)

where the loss scaling factors α and β are hyper-
parameters. To effectively fine-tune CLIP, we set
the backbone learning rate as the product of the
global learning rate and a backbone activity ra-
tio γ, which is another hyper-parameter. From a
knowledge perspective, γ controls the trade-off be-
tween the knowledge transferred from CLIP and
that embodied in the training data. For inference,
we encode all candidate images in advance and
cache the resulting representations. On this basis,
for each given (reference image, modification text)
pair, we perform compositional fusion, calculate
the cosine similarity between the fusion result and
each candidate image representation as the match-
ing score, and thereby rank all candidate images
according to the resulting matching scores.

3 Related Works

3.1 Image Retrieval
Given a query, image retrieval methods can retrieve
the most similar images to the query, from an im-
age database. In real-life scenarios, users may use

different types of queries to search for an image.
Conventional image retrieval methods are based on
the assumption that the input query is of a single
type or modality. Some examples include queries
of type image (Dubey, 2021; Liu et al., 2016), text
(Tan et al., 2019; Lu et al., 2019; Messina et al.,
2021; Wang et al., 2016), attribute (Zhao et al.,
2017) and sketch (Sangkloy et al., 2016; Raden-
ovic et al., 2018; Sain et al., 2021).

3.2 Compositional Learning

The main idea behind compositional learning is to
develop a complex concept by combining multiple
primitive concepts (Misra et al., 2017). Compo-
sitional learning is widely explored in different
cross-modal tasks, such as image captioning (Zhou
et al., 2020; Zhang et al., 2021) and VQA (Antol
et al., 2015; Zhou et al., 2021).

Recently, CIR has gained a lot of attention more
specifically for fashion product search (Wu et al.,
2021). Augmenting an image query with addi-
tional modification text input for image retrieval
has been the main line of work in this area. TIRG
(Vo et al., 2019) applies compositional learning to
image retrieval, using a residual gating mechanism
to fuse image and text representations. To com-
pose the vision and language content, VAL (Gu
et al., 2021) plugs composite transformers into con-
volution layers at different depths of the network.
MAAF (Dodds et al., 2020) concatenates image
and text tokens and passes them into a Transformer
encoder-like architecture. Hosseinzadeh and Wang
(2020) apply self-attention to image and text rep-
resentations independently and use cross-attention
fusion between the two representations. To change
the image content and style based on the modifica-
tion text, CoSMo (Lee et al., 2021) applies content
modulator (CM) and style modulator (SM) to the
reference image.

JVSM (Chen and Bazzani, 2020) jointly learns
image-text representations as well as compositional
representations in a unified embedding space using
a multi-task learning framework. Similar to our
method, privileged information is used at training
time. However, unlike our method which is based
on both cross-modal (image-text) and uni-modal
(text-text) compositional learning, they only use
cross-modal compositionality at training time. Al-
though using the cross-modal compositional learn-
ing plays the main role in the performance of the
proposed method, we show that language composi-
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tionality further improves the results.

3.3 Vision-and-Language Pre-Training

The recent success of Transformer-based language
model pre-training (Lan et al., 2019; Clark et al.,
2019) has inspired vision-and-language (V&L) pre-
training in different tasks, such as VQA, image
captioning, visual commonsense reasoning and im-
age retrieval (Chen et al., 2020b; Sun et al., 2021;
Li et al., 2020; Radford et al., 2021). The main
objective of V&L pre-training is to construct a
cross-modal representation space to help improve
the generalizability and sample efficiency of down-
stream tasks by training on large-scale image-text
datasets.

V&L pre-training has also been applied to CIR.
CIRPLANT (Liu et al., 2021) uses the pre-trained
V&L model OSCAR (Li et al., 2020) as the com-
position module. The method achieves SOTA per-
formance on the authors’ created CIRR dataset.
However, its performance on FashionIQ (Wu et al.,
2021) is sub-optimal, apparently due to the domain
shift between the pre-training dataset and Fash-
ionIQ.

Recently, CLIP (Radford et al., 2021) has been
proposed to learn visual concepts with language
supervision. It follows a late fusion design where
image and text representations, encoded by inde-
pendent image and text encoders, are learned using
a contrastive loss. Due to the success of CLIP in
different V&L tasks (Shen et al., 2022), we employ
pre-trained CLIP as a backbone model for the pro-
posed method. Experimental results show that the
proposed CLIP-based text-guided image retrieval
method achieves SOTA performance on different
datasets.

3.4 Learning with Privileged Information

Privileged information refers to the information
which is available at training time but not at test
time. The paradigm of learning with privileged
information was first formulated by Vapnik and
Vashist (2009). The privileged information is used
in different tasks such as object detection (Hoffman
et al., 2016; Mordan et al., 2018), semantic segmen-
tation (Lee et al., 2018) and image super-resolution
(Lee et al., 2020) to train a stronger model. Re-
cently, side information in the form of attributes or
image caption has been used to improve the per-
formance of image retrieval methods (Wu et al.,
2021; Chen and Bazzani, 2020). Similar to these

methods, we use the attributes provided for each
image as privileged information.

4 Experiments

4.1 Experimental Settings

4.1.1 Datasets
To verify the effectiveness of HyCoLe-HNM, we
conduct experiments on three CIR datasets, namely
FashionIQ (Wu et al., 2021), Fashion200K (Han
et al., 2017), and MIT-States (Isola et al., 2015).
We pre-process these datasets into a unified format,
where each data sample consists of a reference im-
age, a reference text, a target image, a target text,
and a modification text (refer to Appendix A for
the data statistics and examples of each dataset).
Besides, we also adopt recall-at-K (R@K) as uni-
fied evaluation metrics on these datasets, which is
the percentage of data samples whose target image
appears in the top-K retrieved images.

4.1.2 Implementation Details
We use PyTorch (Paszke et al., 2019) to imple-
ment HyCoLe-HNM, use Ray’s Tune (Liaw et al.,
2018) to perform hyper-parameter optimization,
and use HuggingFace’s Transformers (Wolf et al.,
2019) to load CLIP. We construct HyCoLe-HNM
separately with three versions of CLIP, namely
CLIP-ViT-B/32, CLIP-ViT-B/16, and CLIP-ViT-
L/14. For optimization, we apply an AdamW opti-
mizer (Loshchilov and Hutter, 2019) with an initial
learning rate of 0.0001, a weight decay factor of
0.01, and a mini-batch size of 64. The trainable
temperatures τRITM , τTITM , τICM , and τTCM

are initialized to e−1, the loss scaling factors α and
β are separately set to 0.4 and 0.1, and the back-
bone activity ratio γ is set to 0.001. We optimize
the model for 64 epochs on a single NVIDIA V100
GPU, where a cosine schedule is used to anneal the
learning rate after 6 warm-up epochs. Besides, to
improve the efficiency, we also apply mixed pre-
cision training and gradient checkpointing. For
evaluation, we follow Vo et al. (2019) to group can-
didate images, and thereby treat candidate images
in the same group as identical.

4.2 Experimental Results

4.2.1 FashionIQ
FashionIQ is a dataset of fashion images, which
fall into three categories, namely dresses, shirts,
and tops&tees. This dataset is organized as (refer-
ence image, target image) pairs, where each pair
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Model Dresses Shirts Tops&Tees Average

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 (R@10+R@50)/2

JVSM 10.7 25.9 12.0 27.1 13.0 26.9 11.9 26.63 19.27
FILM 14.23 33.34 15.04 34.09 17.30 37.68 15.52 35.04 25.28

Relationship 15.44 38.08 18.33 38.63 21.10 44.77 18.29 40.49 29.39
TIRG 20.02 44.55 25.73 49.88 26.72 54.82 24.16 49.75 36.96
VAL 22.53 44.00 22.38 44.15 27.53 51.68 24.15 46.61 35.38

CoSMo 25.64 50.30 24.90 49.18 29.21 57.46 26.53 52.31 39.42
CIRPLANT 17.45 40.41 17.53 38.81 21.64 45.38 18.87 41.53 30.20

MAAF 23.8 48.6 21.3 44.2 27.9 53.6 24.33 48.8 36.57

HyCoLe-HNM (CLIP-32) 38.25 64.04 41.17 66.29 48.75 74.86 42.72 68.39 55.55
HyCoLe-HNM (CLIP-16) 39.34 65.38 45.00 69.09 50.13 76.64 44.82 70.37 57.60
HyCoLe-HNM (CLIP-14) 41.38 68.92 46.52 71.34 54.67 77.41 47.52 72.55 60.03

Table 1: Performance comparison on FashionIQ with JVSM (Chen and Bazzani, 2020), FiLM (Perez et al., 2018),
Relationship (Santoro et al., 2017), TIRG (Vo et al., 2019), VAL (Chen et al., 2020a), CosMo (Lee et al., 2021),
CIRPLANT (Liu et al., 2021) and MAAF (Dodds et al., 2020).

comes with two human-written relative captions,
and each image comes with an attribute set. For
each pair, we denote the relative captions by z1 and
z2, denote the attribute set of the reference image
by {u1, . . . , up}, and denote that of the target im-
age by {v1, . . . , vq}. We generate “z1, z2.” as the
modification text, generate “is u1, . . . , up.” as the
reference text, and generate “is v1, . . . , vq.” as
the target text. We optimize HyCoLe-HNM on all
training samples, and evaluate it on the test samples
of each category. As shown in Table 1, HyCoLe-
HNM outperforms the existing CIR methods by a
large margin. Some retrieval examples are shown
in Figure 4a.

4.2.2 Fashion200K

Model R@1 R@10 R@50

Han et al. 6.3 19.9 38.3
Show and Tell 12.3 40.2 61.8
Param Hashing 12.2 40.0 61.7

Relationship 13.0 40.5 62.4
FiLM 12.9 39.5 61.9
TIRG 14.1 42.5 63.8

TIRG+BERT 19.9 51.7 71.8
ComposeAE 22.8 55.3 73.4

JVSM 19.0 52.1 70.0
VAL 22.9 50.8 72.7

CoSMo 23.3 50.4 69.3

HyCoLe-HNM (CLIP-32) 22.1 66.9 87.5
HyCoLe-HNM (CLIP-16) 23.5 69.7 90.4
HyCoLe-HNM (CLIP-14) 26.2 72.4 91.3

Table 2: Performance comparison on Fashion200K
with Han et al. (2017), Show and Tell (Vinyals et al.,
2015), Param Hashing (Noh et al., 2016), Relationship,
FiLM, TIRG, TIRG+BERT (Anwaar et al., 2021), Com-
poseAE, JVSM, VAL, and CoSMo.

Fashion200K is another dataset of fashion images,

which fall into five categories, namely pants, skirts,
dresses, tops, and jackets. Similar to FashionIQ,
each image in this dataset comes with an attribute
set. Following Vo et al. (2019), we traverse all
possible image pairs in each category to select (ref-
erence image, target image) pairs. Specifically, we
select an image pair (i1, i2) if the attribute set of
i1 differs from that of i2 in only one attribute. In
this case, we denote the different attribute of i1
by u, and denote that of i2 by v. We generate “is
not u, is v.” as the modification text, and generate
the reference text and the target text in the same
way as in FashionIQ. We optimize HyCoLe-HNM
on all training samples, and evaluate it on the test
samples provided by Vo et al. (2019). As shown in
Table 2, for R@10 and R@50, HyCoLe-HNM out-
performs the existing CIR models by a large mar-
gin. For R@1, HyCoLe-HNM is comparable with
the SOTA CIR models when using the base CLIPs
(CLIP-ViT-B/32 and CLIP-ViT-B/16), but much
better when using the large CLIP (CLIP-ViT-L/14).
Some retrieval examples are shown in Figure 4b.

4.2.3 MIT-States
MIT-States is a dataset of object images, where
each image comes with a noun specifying the ob-
ject name and an adjective describing the object
state. Following Vo et al. (2019), we traverse all
possible image pairs to select (reference image, tar-
get image) pairs. Specifically, we select an image
pair (i1, i2) if i1 and i2 have the same noun but
different adjectives. In this case, we denote the
noun by o, denote the adjective of i1 by u, and
denote that of i2 by v. We generate “is not u, is
v.” as the modification text, generate “u o.” as the
reference text, and generate “v o.” as the target
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Model R@1 R@5 R@10

Show and Tell 11.9 31.0 42.0
Att as Operator 8.8 27.3 39.1

Relationship 12.3 31.9 42.9
FiLM 10.1 27.7 38.3
TIRG 12.2 31.9 43.1

TIRG+BERT 13.3 34.5 46.8
ComposeAE 13.9 35.3 47.9

MAAF 12.7 32.6 44.8
Locally Bounded 14.7 35.3 46.6

HyCoLe-HNM (CLIP-32) 16.1 38.5 50.9
HyCoLe-HNM (CLIP-16) 17.8 42.2 54.6
HyCoLe-HNM (CLIP-14) 19.5 44.4 56.8

Table 3: Performance comparison on MIT-States with
Show and Tell, Att as Operator (Nagarajan and Grau-
man, 2018), Relationship, FiLM, TIRG, TIRG+BERT,
ComposeAE, MAAF, and Locally Bounded (Hossein-
zadeh and Wang, 2020).

text. With the data splitting provided by Vo et al.
(2019), we optimize HyCoLe-HNM on all training
samples, and evaluate it on all test samples. As
shown in Table 3, HyCoLe-HNM outperforms the
existing CIR models, where the advantage is more
significant when using the large CLIP than when
using the base CLIPs. Some retrieval examples are
shown in Figure 4c.

4.3 Ablation Study

Model Overall Performance

FashionIQ Fashion200K MIT-States

HyCoLe-HNM 52.16 59.55 35.19

w/o Text
Compositional

Learning
51.53 59.29 35.02

w/o Heuristic
Negative Mining 36.42 52.55 34.58

w/o Gated Fusion 41.72 55.58 32.97

w/o Privileged
Information 51.25 58.71 34.53

Frozen CLIP 47.29 51.93 31.95

Fully-Trainable
CLIP 34.97 55.05 23.83

Table 4: Results of ablation experiments. The original
HyCoLe-HNM is constructed with CLIP-ViT-B/32.

To probe the performance contribution from each
design point of HyCoLe-HNM, we conduct the
following five ablation experiments. As shown in
Table 4, in each ablation experiment, we change the
corresponding design point, and report the resulting
overall performance on each dataset, which is the
average value of the required R@Ks on the test

samples of that dataset.

• For the hybrid compositional learning mech-
anism, which includes both image composi-
tional learning and text compositional learn-
ing, we disable text compositional learning by
setting the loss scaling factor α to 0, which is
applied to the TCM loss LTCM . As a result,
we observe a slight performance drop on all
datasets.

• For the heuristic negative mining method,
which is based on heuristic rules and thus
more efficient than hard negative mining meth-
ods, we replace it with a hard negative min-
ing method. As a result, we observe a sig-
nificant performance drop on FashionIQ and
Fashion200K, and a slight one on MIT-States.

• For the gated fusion mechanism, which is bor-
rowed from a QA model to implement the
fusion module, we replace it with a simple
addition operation. As a result, we observe a
significant performance drop on all datasets.

• For privileged information, which is in the
form of image-related texts and applied to
cross-modal representation learning and text
compositional learning, we disable its applica-
tion by setting the loss scaling factors α and
β to 0, which are separately applied to the
TCM loss LTCM and the sum of the RITM
loss LRITM and the TITM loss LTITM . As a
result, we observe a slight performance drop
on all datasets.

• For the fine-tuning of CLIP, which is con-
trolled by the backbone activity ratio γ, we
examine two extreme cases. On the one hand,
we freeze CLIP by setting γ to 0. On the other
hand, we make CLIP fully-trainable by setting
γ to 1. As a result, we observe a significant
performance drop on all datasets in both cases.

5 Conclusions

In this paper, we propose the CIR model HyCoLe-
HNM, where we use the pre-trained V&L model
CLIP as the backbone, utilize privileged infor-
mation in the form of image-related texts to per-
form cross-modal representation learning and hy-
brid compositional learning, borrow a gated-fusion
mechanism from a QA model to perform composi-
tional fusion, and filter negative samples through
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(a) FashionIQ.

(b) Fashion200K.

(c) MIT-States.

Figure 4: Retrieval examples from FashionIQ, Fashion200K, and MIT-States. For each example, the query image
and the modification text are shown on the left, and the retrieved images are ranked by their matching scores and
shown on the right with the target image highlighted.

heuristic negative mining. Experimental results
show that HyCoLe-HNM achieves SOTA perfor-
mance on three CIR datasets, namely FashionIQ,
Fashion200K, and MIT-States. In the future, we
plan to re-rank the top few candidate images re-
trieved by HyCoLe-HNM through certain cross-
modal attention mechanisms, which we believe can
further improve performance.

6 Limitations

Besides conducting experiments on FashionIQ,
Fashion200K, and MIT-States, which are all com-
prised of natural images, we also conduct experi-
ments on another CIR dataset CSS (Vo et al., 2019),
which is comprised of synthetic images. However,
on CSS, the performance of HyCoLe-HNM is infe-
rior to that of TIRG (R@1: 67.3% vs 73.7%). Since

the backbone of HyCoLe-HNM is CLIP, which is
pre-trained on natural image-text pairs, we conjec-
ture that the reason behind this under-performance
is the domain shift between the natural images used
to pre-train CLIP and the synthetic images in CSS
used to train HyCoLe-HNM.
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A Appendix

Statistics FashionIQ Fashion200K MIT-States

Number of Training Samples 17965 42707540 9790710

Number of Training Images 25097 108366 43207

Number of Test Samples 6007 30960 2397080

Number of Test Images 8570 3356 10546

Average Length of Reference Text (words) 11.38 4.32 2.0

Average Length of Target Text (words) 11.38 4.32 2.0

Average Length of Modification Text (words) 10.66 5.0 5.0

Table 5: Datasets statistics of FashionIQ, Fashion200k and MIT-States.

Field FashionIQ Fashion200K MIT-States

Reference Image

Reference Text
is wash, long sleeve,
clean, print shift, bell,
scoop, tunic.

is green, seamed, a-line,
dress. ripe fig.

Target Image

Target Text
is clean, wash, sheath, v-
neck, sleeveless, stretch,
zipper, york.

is pink, seamred, a-line,
dress. unripe fig.

Modification Text
is solid black with no
sleeves, is black with
straps.

is not green, is pink. is not ripe, is unripe.

Table 6: Data examples of FashionIQ, Fashion200k and MIT-States.
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