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Abstract

Commonsense question answering (CQA) aims
to choose the correct answers for commonsense
questions. Most existing works focus on ex-
tracting and reasoning over external knowledge
graphs (KG). However, the noise in KG prevents
these models from learning effective represen-
tations. In this paper, we propose a Knowledge
Enhanced Graph Contrastive Learning model
(KE-GCL) by incorporating the contextual de-
scriptions of entities and adopting a graph con-
trastive learning scheme. Specifically, for QA
pairs we represent the knowledge from KG
and contextual descriptions. Then, the repre-
sentations of contextual descriptions as con-
text nodes are inserted into KG, forming the
knowledge-enhanced graphs. Moreover, we
design a contrastive learning method on graphs.
For knowledge-enhanced graphs, we build their
augmented views with an adaptive sampling
strategy. After that, we reason over graphs to
update their representations by scattering edges
and aggregating nodes. To further improve
GCL, hard graph negatives are chosen based
on incorrect answers. Extensive experiments
on two benchmark datasets demonstrate the ef-
fectiveness of our proposed KE-GCL, which
outperforms previous methods consistently1.

1 Introduction

Commonsense question answering (CQA) is an
emerging task in the domain of machine reading
comprehension with the long-term goal for eval-
uating the language understanding of machines.
The CQA task aims to choose answers for natural
language questions about commonsense. Figure 1
shows an example to illustrate the definition of the
CQA task. To solve this task, external knowledge
graphs (KGs) of commonsense, such as ConceptNet
(Speer et al., 2017) where numerous triplets are

∗Corresponding author.
1Code and datasets are available at https://github.

com/hlhqbzd/KE-GCL.
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Figure 1: A CQA example from CommonsenseQA
dataset. Here, contextual descriptions of entities from
Wiktionary are used to enhance the KG from ConceptNet
for noise reduction. The entities in red are strong noise.

provided to represent relations between entities, are
used in reasoning for the correct answers.

To take advantage of the commonsense knowl-
edge, a few works (Weissenborn et al., 2017; San-
toro et al., 2017; Mihaylov and Frank, 2018; Bauer
et al., 2018; Asai et al., 2019) directly retrieve and
model the relevant evidence to infer answers. With
the great success of graph neural networks (GNNs)
(Li et al., 2016; Gilmer et al., 2017; Kipf and
Welling, 2017; Schlichtkrull et al., 2018; Veličković
et al., 2018; Xu et al., 2019), recent studies (Lin
et al., 2019; Qiu et al., 2019; Wang et al., 2019;
Xiong et al., 2019; Feng et al., 2020; Lv et al.,
2020; Yasunaga et al., 2021) focus on devising
exquisite graph networks with task-dependent at-
tention mechanism to model KGs for effective rea-
soning. However, previous methods ignore the
noise, i.e., irrelevant or distracting entities in the
KG, resulting in unsatisfactory performance. Take
the example in Figure 1. Compared with those
between "Steak House" and the other four choices,
the relational path between "Steak House" and the
choice "Restaurant" is irrelevant to the question.
Moreover, the choices with identical relations of
"AtLocation" are difficult to be discerned. In other
words, the choices whose topology is similar to that
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of the correct answer are strong noise. Therefore,
the noise problem should be considered seriously.

To address the aforementioned noise problem,
we adopt two schemes. One is enhancing KG with
textual descriptions. As we all know, KG repre-
sents the topology among entities. By incorporating
contextual meanings, we could further capture the
semantic nuances of entities. Thus, it would be ben-
eficial for reducing the negative effect of distracting
entities in KGs. Take Figure 1 as an example; with
the enhancement of entity descriptions, we undoubt-
edly exclude distractors (A, D, and E) which are
semantically conflict with the location specified in
the question ("near south of the U.S."). Then, we
derive the correct answer C ("Mexico"). The other
scheme uses graph contrastive learning (GCL). In-
tuitively, the KG of the QA pair with the correct
answer is often topologically similar to those with
distractors. This inherent noise could hinder the
graph reasoning. To this end, we construct graph
positive pairs with negative counterparts based on
the GCL framework.

In this paper, we propose an end-to-end model,
Knowledge Enhanced Graph Contrastive Learning
(KE-GCL) for CQA task. First, we concatenate
the given QA pair (i.e., a question with its current
choice) with the Wiktionary2 descriptions obtain-
ing the contextual representation. And we extract
subgraphs from ConceptNet3 obtaining the graph
embeddings. We then insert the contextual rep-
resentation as a node into the graph and perform
attention-based fusion, obtaining the knowledge-
enhanced graph.

Second, we incorporate GCL scheme into our
KE-GCL model. To produce the augmented view of
the graph, we introduce an adaptive graph augmen-
tation strategy. We adaptively drop out irrelevant
edges and mask unimportant node features. The
sampling probabilities for nodes and edges are deter-
mined by topological connectivity and contextual
relevance. Furthermore, to achieve efficient mes-
sage propagation in graph reasoning, we devise a
graph attention network (GAT) (Veličković et al.,
2018) based reasoning module, by scattering the
connected edges and aggregating the adjacent nodes.
The knowledge-enhanced graph and its augmented
view jointly perform reasoning. Thus, we obtain
the final graph representations.

Third, to enhance the training signals, we build

2https://www.wiktionary.org/
3https://github.com/commonsense/conceptnet5

positive and negative pairs for computing graph
contrastive loss. Specifically, for the positive pair,
we use the graph augmented view of the correct
answer. For the negative pairs, we take the graph
and its augmented counterparts of other incorrect
choices as hard negatives. We set the other graphs
in the mini-batch as common negatives. Thus, we
train KE-GCL model with a combination of two
losses. One is the answer prediction loss and the
other is the graph contrastive loss.

Major contributions are summarized as follows:
1) We propose a novel KE-GCL model with a

GCL scheme for CQA task. The augmented graph
view is generated by adaptively sampling strategy.
Hard negatives are chosen based on incorrect an-
swers.

2) We present enhancing the KG with contextual
descriptions of entities. A knowledge-enhanced
graph is built based on contextual representation.
Graph representations are effectively updated via
scattering edges and aggregating nodes.

3) We conduct extensive experiments on two
benchmark datasets. Experimental results show-
case that our KE-GCL achieves better performance
compared to the strong baselines consistently.

2 Related Works

KG-aware Methods for CQA. CQA task requires
strong capability of knowledge utilization and graph
reasoning. Earlier works (Weissenborn et al., 2017;
Santoro et al., 2017; Mihaylov and Frank, 2018;
Bauer et al., 2018; Asai et al., 2019) inclined to
retrieve the reasoning paths between the question
and choice entities in the KGs. However, these
works were short of knowledge coverage. Recent
studies (Lin et al., 2019; Qiu et al., 2019; Wang et al.,
2019; Xiong et al., 2019; Feng et al., 2020; Lv et al.,
2020; Yasunaga et al., 2021) devoted to utilizing
GNNs to encode KGs and aggregate messages
from nodes for effective graph reasoning. For
instance, Feng et al. (2020) extended the message
passing of Relational GCN (Schlichtkrull et al.,
2018) to improve the interpretability and scalability
of graphs. Lv et al. (2020) retrieved the evidence
from ConceptNet and Wikipedia, and constructed
heterogeneous graphs for these sources to perform
graph-based inference. Yasunaga et al. (2021) used
pretrained language models (PLMs) to calculate
the relevance between the KG nodes and the QA
context, and then performed joint reasoning. These
methods over-emphasized the effect of GNNs, but
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Figure 2: The framework of our KE-GCL model. 1) We represent the QA pair (𝑞, 𝑐3) with its Wiktionary
descriptions (𝑑𝑞 , 𝑑𝑐3 ) as the context, and the corresponding subgraph G3 from ConceptNet is retrieved (§ 3.2.1).
2) We insert the context node z𝐶3 into the graph and perform an attentive knowledge fusion (§ 3.2.2), forming a
knowledge-enhanced graph �̃�3. 3) The graph view �̂�3 for �̃�3 is generated through adaptive augmentation (§ 3.3.1).
4) We perform edge-scattered reasoning over graphs obtaining graph representations z�̃�3 , z�̂�3 (§ 3.3.2). 5) We predict
the answer (§ 3.4) and compute the combination loss in a mini-batch (§ 3.5).

ignored the inherent noise existing in the KGs. In
contrast, our work mainly focuses on incorporating
contextual descriptions to address the noise problem
in the KGs for efficient reasoning.

Graph Contrastive Learning. Graph con-
trastive learning is an extension of contrastive learn-
ing (CL) on graph-structured data (You et al., 2020;
Zhu et al., 2021a). The basic idea of CL is to pull
semantically similar samples close and keep dissim-
ilar samples apart (Hadsell et al., 2006). Recently,
CL has become an emerging topic in self-supervised
representation learning, e.g., visual representations
in CV (Chopra et al., 2005; Zhuang et al., 2019;
Tian et al., 2020; Chen et al., 2020; Henaff, 2020;
Caron et al., 2020; He et al., 2020; Misra and
Maaten, 2020) and sentence representations in NLP
(Mnih and Kavukcuoglu, 2013; Gao et al., 2021;
Zhang et al., 2021; Yan et al., 2021; Meng et al.,
2021). Inspired by CL, some works (Velickovic
et al., 2019; Peng et al., 2020; Hassani and Khasah-
madi, 2020; Qiu et al., 2020; Zhu et al., 2021b;
Yang et al., 2022) implemented graph-oriented ap-
plications. They constructed graph views through
stochastic augmentations, and then learnt effective
graph representations by contrasting positive graph
pairs with negative counterparts. For instances,
Velickovic et al. (2019) extended deep InfoMax
(Hjelm et al., 2018) to graphs and achieved sig-
nificant performance on node representations. To
provide the graphs with more global information,
Hassani and Khasahmadi (2020) performed graph
augmentation via graph diffusion kernels. Yang
et al. (2022) conducted GCL among views gener-
ated in different spaces including the hyperbolic

space and the Euclidean space. However, all these
methods concentrated on unsupervised graph repre-
sentation learning. In contrast, our work leverages
the GCL scheme into the CQA task to improve
the graph representations and enhance the training
signals.

3 Our Proposed KE-GCL

The KE-GCL model framework is shown in Fig-
ure 2. We elaborate on the details as follows.

3.1 Problem Formulation
Formally, the CQA task can be defined as follow.
Given a question 𝑞 and a candidate answer set C
with 𝑀 choices, i.e., C = {𝑐1, 𝑐2, . . . , 𝑐𝑀 }, we
need to choose, from the candidate set C, the best
matching one for the given question 𝑞.

3.2 Knowledge Enhancement
3.2.1 Knowledge Representation
Context Encoder. Similar to Xu et al. (2021), we
obtain the contextual descriptions of entities for the
current QA pair (𝑞, 𝑐𝑖). These two descriptions
are denoted as 𝑑𝑞 and 𝑑𝑐𝑖 , respectively. Then,
we utilize PLMs as the context encoder to extract
hidden representations. Thus, the QA pair and
its descriptions are mapped into contextual hidden
representation z𝐶𝑖 as follows,

z𝐶𝑖 = 𝑓𝐶
(
𝑞 ⊕ 𝑐𝑖 ⊕ 𝑑𝑞 ⊕ 𝑑𝑐𝑖

)
(1)

where 𝑓𝐶 is the context encoder and ⊕ denotes
concatenation operator.

78



Graph Embedding. From the ConceptNet
knowledge source, we retrieve the knowledge graph
G𝑖 for the QA pair (𝑞, 𝑐𝑖) based on Yasunaga
et al. (2021), which is the subgraph related to
the entities in 𝑞 and 𝑐𝑖. We use the pretrained
entity weights from Feng et al. (2020) to initial-
ize node embeddings 𝑉𝑖 = {𝑣𝑖,1, 𝑣𝑖,2, ..., 𝑣𝑖,𝑛}. For
the edges, we concatenate one-hot vectors of two
node types and their edge relational type to ini-
tialize the edge embeddings, i.e., [𝑢𝑠 ⊕ 𝑟𝑠𝑡 ⊕ 𝑢𝑡 ].
Then we use a two-layer MLP to encode the
edge triplets into edge embeddings, denoted as
𝐸𝑖 =

{
𝑒𝑖,1, 𝑒𝑖,2, · · · , 𝑒𝑖,𝑚

}
. Thus, the directed

graph is given as 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖), 𝑖 ∈ [1, 𝑀] with 𝑛
nodes and 𝑚 edges.

3.2.2 Graph-oriented Knowledge Fusion
We perform knowledge fusion through node in-
sertion and attention. Specifically, the node
embeddings after insertion are updated as �̃�𝑖 =
{𝑣𝑖,0, 𝑣𝑖,1, . . . , 𝑣𝑖,𝑛}. Here, the context node em-
bedding 𝑣𝑖,0 = 𝑓𝑀 (z𝐶𝑖 ), where the mapping 𝑓𝑀 is
a two-layer MLP. Moreover, those nodes related
to the QA pair (𝑞, 𝑐𝑖) are linked to the inserted
node 𝑣𝑖,0, and the number of edges increases to
�̃�. Thus the edge embeddings are updated as
�̃�𝑖 =

{
𝑒𝑖,1, 𝑒𝑖,2, · · · , 𝑒𝑖,�̃�

}
. Then, we use attention

mechanism to improve the knowledge fusion. The
contextual representation z𝐶𝑖 is used as a query to
attend all the nodes. For each node 𝑣𝑖,𝑞 ∈ �̃�𝑖, the
attentive representation �̃�𝑖,𝑞 is given as,

�̃�𝑖,𝑞 = softmax

(
𝑓𝑄 (z𝐶𝑖 ) · 𝑣T

𝑖,𝑞√︁
𝐷𝑔

)
· 𝑣𝑖,𝑞 (2)

where the mapping 𝑓𝑄 is a MLP and 𝐷𝑔 is the
dimension of node embedding. Thus, we obtain
the knowledge-enhanced graph �̃�𝑖 = (�̃�𝑖 , �̃�𝑖), 𝑖 ∈
[1, 𝑀] with 𝑛 + 1 nodes and �̃� edges.

3.3 Graph Contrastive Learning
3.3.1 Adaptive Graph Augmentation
Based on the knowledge-enhanced graph �̃�𝑖, we
construct an augmented view �̂�𝑖 for GCL through
node-feature masking and edge dropping. Firstly,
we define the influence of each node �̃�𝑖,𝑞 ∈ �̃�𝑖 as,

𝜌�̃�𝑖,𝑞 = 𝑓𝑇 (�̃�𝑖,𝑞) + 𝑓𝑅 (�̃�𝑖,𝑞 , z𝐶𝑖 ) (3)

in which 𝑓𝑇 (·) and 𝑓𝑅 (·, ·) represent the topological
connectivity and contextual relevance, respectively.
The topological connectivity is calculated by PageR-
ank algorithm (Brin and Page, 1998), which weighs

those nodes with more in-degrees. The contextual
relevance is measured by cosine similarity, i.e.,

𝑓𝑅 (�̃�𝑖,𝑞, z𝐶𝑖 ) = \ (�̃�𝑖,𝑞, z𝐶𝑖 ) =
�̃�⊤𝑖,𝑞z𝐶𝑖�̃�𝑖,𝑞 · z𝐶𝑖  (4)

which captures the semantic relevance with the
contextual representation z𝐶𝑖 . Here, \ (·, ·) denotes
the cosine similarity between two vectors.

Secondly, we assume those dimensions fre-
quently appearing in influential nodes should be
important. Thus, the importance weight of dimen-
sion 𝑑 for any node in �̃�𝑖 is calculated as,

𝛾𝑖,𝑑 = log
∑︁
�̃�∈�̃�𝑖

|�̃� [𝑑] | · 𝜌�̃� (5)

Then we normalize the weight 𝛾𝑖,𝑑 as the probabil-
ity for whether to mask the node dimension.

For each edge 𝑒 in �̃�𝑖, its importance depends
on the importance weight of tail node �̃�𝑡 which the
edge points to, denoted as [𝑒 = log 𝜌�̃�𝑡 . Likewise,
we normalize the weight [𝑒 as the probability for
whether to drop edge 𝑒. Thus, we obtain the aug-
mented view �̂�𝑖 = (�̂�𝑖 , �̂�𝑖) of �̃�𝑖 through sampling
with these normalized probabilities.

3.3.2 Graph Reasoning
Both the knowledge-enhanced graph �̃�𝑖 and its aug-
mented view �̂�𝑖 are performed the same reasoning
in this section. Taking the former �̃�𝑖 = {�̃�𝑖 , �̃�𝑖}
as an example, we reason over the graph via edge
scattering and attention-based node aggregating.

Specifically, to utilize the edge information, for
each node �̃�𝑡 ∈ �̃�𝑖, we obtain its initial hidden
representation ℎ (0)𝑡 by scattering those edges which
point to the node �̃�𝑡 ,

ℎ (0)𝑡 =
∑︁
𝑠∈N𝑡

𝑒𝑠𝑡 + �̃�𝑡 (6)

where N𝑡 represents the neighbors of �̃�𝑡 . Then
we use GAT to propagate and aggregate messages
between nodes. In each layer ℓ ∈ [1, 𝐿], we update
the representation of �̃�𝑡 as follows,

ℎ (ℓ+1)
𝑡 = ∥𝑈𝑢=1ReLU ©

«
∑︁

𝑠∈N𝑡∪{𝑡 }
𝛼𝑢
𝑠𝑡𝑊

𝑢ℎ (ℓ )𝑠
ª®
¬

(7)

where 𝑈 is the number of attention heads, 𝑊𝑢 is
the corresponding linear projection matrix, and ∥
is the concatenation operator for multiple heads. In
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addition, 𝛼𝑢
𝑠𝑡 is the attentive weight that scales each

message from �̃�𝑠 to �̃�𝑡 , which is given as,

𝛼𝑢
𝑠𝑡 =

exp
(
𝛾𝑢𝑠𝑡

)
∑

𝑠′∈N𝑡∪{𝑡 } exp
(
𝛾𝑢𝑠′𝑡

) (8)

and 𝛾𝑢𝑠𝑡 = LeakyReLU
(
𝑊⊤

ℓ

[
ℎ (ℓ )𝑠 , ℎ (ℓ )𝑡

] )
reflects

the relevant importance between these two nodes,
and𝑊ℓ is a linear projection matrix in the ℓ-th layer.

After 𝐿-layer graph reasoning, we choose the
hidden states of the context node as the pooling of
the entire knowledge graph, i.e.,

z�̃�𝑖 = Pool
(
ℎ (𝐿)0 , ℎ (𝐿)1 , · · · , ℎ (𝐿)𝑛

)
= ℎ (𝐿)0 . (9)

With the above adaptive graph augmentation
and graph reasoning, we are ready for constrastive
learning, which will be illustrated in Section 3.5.

3.4 Answer Prediction
For the choice 𝑐𝑖, we calculate its probability of
being the correct answer using contextual represen-
tation z𝐶𝑖 and graph representation z�̃�𝑖 ,

𝑃 (𝑐𝑖 | 𝑞) = 𝑔𝑖 ⊙
[
z𝐶𝑖 𝑊𝐶 , z�̃�𝑖 𝑊 �̃�

]
, (10)

in which, the symbol ⊙ denotes the element-wise
product; 𝑊𝐶 and 𝑊 �̃� denote the linear projection
matrices. In addition, the gate 𝑔𝑖 is given as,

𝑔𝑖 = softmax
(
MLP( [z𝐶𝑖 , z�̃�𝑖 ])

)
. (11)

The gate 𝑔𝑖 is to control the importance weight of the
context and the graph. For answer prediction, we
calculate the probabilities for all candidate choices,
and choose the most plausible answer with maxi-
mum probability score, i.e., argmax𝑐𝑖∈C 𝑝(𝑐𝑖 | 𝑞).
3.5 Training Objective
We train our KE-GCL model in an end-to-end
fashion by minimizing the total loss L𝑇 as follows,

L𝑇 = L𝐶𝐸 + _L𝐶𝐿 (12)

where L𝐶𝐸 and L𝐶𝐿 denote the answer prediction
loss and the graph contrastive loss, respectively. In
addition, _ is a tunable hyper-parameter to control
the importance weight of GCL objective.

For the answer prediction loss, a standard cross-
entropy loss is utilized to maximize the probability
of the correct answer 𝑐𝑖 ,

L𝐶𝐸 = − log
exp (𝑃(𝑐𝑖 | 𝑞))∑

𝑐𝑖′ ∈C exp (𝑃(𝑐𝑖′ | 𝑞)) . (13)

For the graph contrastive loss, we describe the
details in the following section.

3.5.1 Graph Contrastive Loss
We devise the graph contrastive loss based on the
InfoNCE (Van den Oord et al., 2018). Moreover,
we incorporate hard negatives to improve GCL.
Intuitively, for a given question, the knowledge
graph of candidate choices and their augmented
views usually share some nodes and edges. Thus,
there exist certain similarities among these graphs.

To this end, we set our hard negatives from two
sources. One is the knowledge-enhanced graphs of
those QA pairs with incorrect answers; the other
is their corresponding augmented views. Formally,
for a question 𝑞 and its correct answer 𝑐𝑖, the
graph representation is given as z𝑖�̃� using Eq. (9).
Similarly, the graph representation of its augmented
view is obtained as z𝑖�̂� . Then, the positive set
is defined as P = {z�̃�𝑖 , z�̂�𝑖 }. Furthermore, with
above intuition, we give our hard negative set as
N𝐻 = {z�̃�𝑗 : 𝑗 ≠ 𝑖}⋃{z�̂�𝑗 : 𝑗 ≠ 𝑖}. In addition,
all QA pairs and their augmented views except the
question under consideration are taken as common
negatives. The common negative set is defined
as N𝐶 = {𝜻 �̃�𝑘 }

⋃{𝜻 �̂�𝑘 }, in which two versions of
𝜻 𝑘 denote the corresponding graph representations
of 𝑘-th QA pair in the mini-batch. Here, 𝑘 ∈
[1, 𝑀 (𝑁 − 1)] and 𝑁 denotes the mini-batch size.
Then, our negative set is composed of two sets, the
hard negative set and common negative set.

Consequently, we design our graph contrastive
loss as follows,

L𝐶𝐿 = − log
𝑇P

𝑇P + 𝛽𝑇N𝐻 + 𝑇N𝐶

(14)

in which the positives contribution term is given as

𝑇P = exp\
(
z�̃�𝑖 ,z�̂�𝑖

)
/𝜏
, (15)

the hard negatives contribution term is defined as

𝑇N𝐻 =
𝑁∑︁

𝑗=1, 𝑗≠𝑖
exp\

(
z�̃�𝑖 ,z�̃�𝑗

)
/𝜏+

𝑁∑︁
𝑗=1, 𝑗≠𝑖

exp\
(
z�̃�𝑖 ,z�̂�𝑗

)
/𝜏
,

(16)
and the term for common negatives contribution is
formulated as

𝑇N𝐶 =
𝑁 (𝑀−1)∑︁

𝑘=1
exp\

(
z�̃�𝑖 ,Z �̃�

𝑘

)
/𝜏 +

𝑁 (𝑀−1)∑︁
𝑘=1

exp\
(
z�̃�𝑖 ,Z �̂�

𝑘

)
/𝜏
.

(17)
In addition, 𝛽 is the weighting factor for the hard
negatives and 𝜏 denotes the temperature factor.
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Dataset Train Dev Test # Choices
CommonsenseQA 9,741 1,221 1,140 5

OpenBookQA 4,957 500 500 4

Table 1: Statistics of CommonsenseQA and Open-
BookQA datasets used in our evaluation.

4 Experiments and Results
4.1 Datasets and Metric
We evaluate our model on two benchmark datasets,
i.e., CommonsenseQA (Talmor et al., 2019) and
OpenbookQA (Mihaylov et al., 2018). The Com-
monsenseQA dataset creates questions from Con-
ceptNet entities and relations, and contains 12,102
questions. CommonsenseQA involves a 5-way mul-
tiple choice QA task that requires reasoning with
commonsense knowledge. The official test set of
CommonsenseQA is not publicly available, there-
fore we perform experiments on the in-house (IH)
data split used in Kagnet4 (Lin et al., 2019). The
OpenBookQA is built based on elementary sci-
ence knowledge from an open book of 1,326 science
facts, and contains 5,957 questions. It is a 4-way
multiple choice QA task. We use the official data
split of OpenbookQA5. The statistics of these two
datasets are collected in Table 1. To evaluate the
performance of CQA models, we use the Accuracy
(i.e., Acc) as the metric.

4.2 Baselines
We compare our KE-GCL with state-of-the-art
baselines, which are briefly reviewed as follows. 1)
RoBERTa-Large (w/o KG) (Liu et al., 2019b) is
based on an optimized BERT. The vanilla version
only feeds the QA pair as the input and uses hidden
states of the special token [CLS] to predict an-
swers. 2) Relation Network (RN)6 (Santoro et al.,
2017) adapts multi-relational graph encoding. 3)
RGCN (Schlichtkrull et al., 2018) is developed to
deal with the highly multi-relational data of realistic
knowledge bases. 4) GconAttn (Wang et al., 2019)
presents a combination of techniques and utilizes
external knowledge to improve the performance. 5)
KagNet (Lin et al., 2019) is based on GCNs and
LSTMs with a hierarchical path-based attention
mechanism. 6) MHGRN (Feng et al., 2020) adopts
the multi-hop graph relation network to perform rea-

4https://github.com/INK-USC/KagNet
5https://github.com/allenai/OpenBookQA
6In the experimental settings of RN, mean pooling is for

1-hop and attentive pooling is for 2-hop.

soning by unifying path-based methods and GNNs.
7) QA-GNN (Yasunaga et al., 2021) performs joint
reasoning over the QA context and KG with a joint
graph representation.

4.3 Implementation Details
For a fair comparison, we apply the same backbones
using the Huggingface implementations7 (Wolf
et al., 2020) of PLMs, i.e., RoBERTa-Large for
CommonsenseQA, and RoBERTa-Large and Aris-
toRoBERTa8 (Clark et al., 2020) for OpenBookQA.
The hop size of retrieved subgraphs is set to 2. For
the context encoder, we set the context dimension to
1024 and the max sequence length to 128. For the
graph reasoning module, we set the graph dimen-
sion 𝐷𝑔 to 200 and the number of GAT layers to
3. To control the influence of constraints in graph
contrastive learning, we set the hyper-parameters _,
𝛽 and 𝜏 to 0.1, 2 and 0.2, respectively. The learning
rate is set to 10−5 for the context encoder and 10−3

for other model components, the dropout rate is set
to 0.2. We use RAdam (Liu et al., 2019a) as the
model optimizer. We train the model in 30 epochs
with an early stopping strategy, which takes about
13 hours using two GPUs (GeForce RTX 2080Ti)
for a complete training procedure. In addition, we
apply the gradient accumulation strategy (with a
mini-batch size of 2) to achieve an equivalent effect
of a batch size of 128. The reported results are the
average on five runs with different random seeds.

4.4 Main Results
The experimental results on the two datasets Com-
monsenseQA and OpenBookQA are reported in
Table 2 and Table 3, respectively. On these two
datasets, our KE-GCL model consistently outper-
forms the other baseline models9. We observe that
almost all the knowledge-aware models achieve
performance gains over vanilla PLMs, which con-
firms the effectiveness of incorporating external
knowledge in CQA task. Compared with the pre-
vious best model QA-GNN, our KE-GCL model
surpasses its test performance by an average accu-
racy of 1.08% on the CommonsenseQA, (0.83%
and 0.64%) on OpenBookQA datasets, respectively.

7https://github.com/huggingface/
transformers

8AristoRoBERTa provides textual science facts for each
question in OpenbookQA.

9We have also conducted experiments on CommonsenseQA
with other backbones like ALBERT (Lan et al., 2019) and
XLNet (Yang et al., 2019), but the results underperformed by
0.85~1.5 accordingly.
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Method IHdev-Acc IHtest-Acc
RoBERTa-Large† (w/o KG) (Liu et al., 2019b) 70.70(±0.32) 67.23(±0.48)
+ RN (1-hop) (Santoro et al., 2017) 74.57 (±0.91) 69.08 (±0.21)
+ RN (2-hop) (Santoro et al., 2017) 73.65 (±3.09) 69.59 (±3.80)
+ RGCN (Schlichtkrull et al., 2018) 72.69 (±0.19) 68.41 (±0.66)
+ GconAttn (Wang et al., 2019) 72.61 (±0.39) 68.59 (±0.96)
+ KagNet (Lin et al., 2019) 73.47 (±0.22) 69.01 (±0.76)
+ MHGRN (Feng et al., 2020) 74.45 (±0.10) 71.11 (±0.81)
+ QA-GNN (Yasunaga et al., 2021) 76.54 (±0.21) 73.41 (±0.92)
+ KE-GCL (Ours) 77.89 (±0.37) 74.49 (±0.31)

Table 2: Performance comparison on the in-house development (IHdev) and in-house test (IHtest) sets of
CommonsenseQA. The symbol “†” means that our reproduced result using the released code on the dataset.

Method RoBERTa-Large AristoRoBERTa
Fine-tuned LMs (w/o KG) 64.80 (±2.37) 78.40 (±1.64)
+ RN (1-hop) (Santoro et al., 2017) 63.65 (±2.31) 73.15 (±1.63)
+ RN (2-hop) (Santoro et al., 2017) 65.20 (±1.18) 75.35 (±1.39)
+ RGCN (Schlichtkrull et al., 2018) 62.45 (±1.57) 74.60 (±2.53)
+ GconAttn (Wang et al., 2019) 64.75 (±1.48) 71.80 (±1.21)
+ MHGRN (Feng et al., 2020) 66.85 (±1.19) 80.60 (±0.00)
+ QA-GNN (Yasunaga et al., 2021) 67.80 (±2.75) 82.77 (±1.56)
+ KE-GCL (Ours) 68.63 (±1.24) 83.41 (±1.93)

Table 3: Performance comparison on the official test set of OpenBookQA.

This demonstrates the effectiveness of our model
for enhancing KG with contextual descriptions. An-
other finding is that in the OpenBookQA dataset,
when changing the PLM from RoBERTa-Large to
AristoRoBERTa, the performance is significantly
improved. In addition, its performance still out-
performs other baselines. This indicates that our
KE-GCL model can effectively integrate the ad-
ditional science facts to make better predictions.

4.5 Ablation Study

To further investigate the effectiveness of the indi-
vidual components in our KE-GCL, we conduct
extensive ablation studies on the CommonsenseQA
IHdev set. The results are reported in Table 4.

Knowledge Enhancement. We perform abla-
tion on knowledge enhancement. When KGs from
ConceptNet are removed ("w/o ConceptNet"), the
performance decreases by 3.41%. However, when
the contextual descriptions from Wiktionary are
further removed ("w/o Either"), the performance
significantly drops by 7.86%. It demonstrates the
crucial role of enhancing KGs with contextual de-
scriptions. These descriptions empower KGs with

Module Setting Acc
Our KE-GCL Full Modules 77.89

Knowledge Enhancement
w/o ConceptNet 74.48 (3.41↓)
w/o Wiktionary 75.14 (2.75↓)
w/o Either 70.03 (7.86↓)

Graph Augmentation
w/o TC 77.27 (0.62↓)
w/o CR 77.02 (0.87↓)
w/o Either 76.78 (1.11↓)

Graph Reasoning
w/o Edge Scatter 77.55 (0.34↓)
w/o GAT 77.14 (0.75↓)
w/o Either 75.96 (1.93↓)

Graph Contrastive Learning w/o L𝐶𝐿 75.66 (2.23↓)
w/o Hard Neg 77.12 (0.77↓)

Table 4: Ablation study of our KE-GCL model on the
CommonsenseQA IHdev set.

contextual understanding, which are beneficial for
better knowledge coverage and answer inference.

Graph Augmentation. We perform ablation on
the adaptive sampling strategy in graph augmenta-
tion. "w/o TC" and "w/o CR" are short for removing
topological connectivity and contextual relevance
when computing the sampling weights of nodes
and edges, respectively. We observe that contextual
relevance contributes more than the other. A possi-
ble reason is that those nodes with high contextual
relevance is more likely to be intrinsically associ-
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QA Example Model Predicted Choice Predicted Score

Q1: Where can you find a snake in tall grass?
A. tree B. in a jar C. pet shops D. field E. tropical forest

RoBERTa-Large B. in a jar ( ) [0.18, 0.24, 0.18, 0.21, 0.19]
QA-GNN A. tree ( ) [0.41, 0.11, 0.09, 0.18, 0.21]
KE-GCL D. field ( ) [0.13, 0.11, 0.17, 0.46, 0.13]

Q2: Sally was afraid of danger and always double checked what?
A. fight enemy B. secure C. being safe D. safety E. vicinity

RoBERTa-Large C. being safe ( ) [0.14, 0.01, 0.45, 0.23, 0.17]
QA-GNN D. safety ( ) [0.09, 0.12, 0.34, 0.44, 0.00]
KE-GCL D. safety ( ) [0.02, 0.02, 0.28, 0.67, 0.01]

Q3: What kind of service is my body a part of when I’m no longer here?
A. bodycam B. home C. coffin D. funeral E. graveyard

RoBERTa-Large A. bodycam ( ) [0.83, 0.02, 0.00, 0.08, 0.07]
QA-GNN D. funeral ( ) [0.05, 0.21, 0.08, 0.39, 0.27]
KE-GCL B. home ( ) [0.12, 0.40, 0.19, 0.23, 0.06]

Q4: Where could you go to between 1000 and 10000 restaurant?
A. big city B. town C. small town D. Canada E. yellow pages

RoBERTa-Large D. Canada ( ) [0.00, 0.12, 0.00, 0.73, 0.15]
QA-GNN B. town ( ) [0.08, 0.51, 0.33, 0.01, 0.07]
KE-GCL B. town ( ) [0.21, 0.33, 0.27, 0.19, 0.00]

Table 5: Case study of the predicted choices and scores from 3 different models. The correct choices are underlined.

ated with the correct answer. Additionally, in "w/o
Either" setting, we randomly sample nodes and
edges for the augmented graph, leading to a decline
of 1.11%. It further showcases the effectiveness of
our adaptive sampling strategy.

Graph Reasoning. We perform ablation on the
graph reasoning module, and dissect it into edge
scatter and GAT components, denoted as "w/o Edge
Scatter" and "w/o GAT", respectively. In both "w/o
GAT" and "w/o Edge Scatter" settings, there is a
slight decrease in the performance. However, when
the entire reasoning module is removed ("w/o Ei-
ther"), the performance suffers a decline of 1.93%,
which is more serious than simply pooling these
two effects together. This proves that our graph
reasoning module can learn proper graph represen-
tations to infer answers via efficiently aggregating
valuable messages from both nodes and edges.

Graph Contrastive Learning. We perform ab-
lation on GCL. "w/o L𝐶𝐿" means we remove the
objective for contrastive learning from the total loss
L𝑇 , and "w/o Hard Neg" denotes we stop weighing
hard negative graph pairs (i.e., those with incorrect
choices) from all negatives in the mini-batch. In
"w/o L𝐶𝐿" setting, the performance drops heavily
by 2.23%. It confirms the important role of GCL in
our model, because it can differentiate correct an-
swers from other distractors by contrasting positive
graph pairs with negative counterparts. Moreover,
we find a 0.77% drop in "w/o Hard Neg" setting,
which shows that setting hard negatives can bring
further improvements for GCL.

To sum up, each component in our KE-GCL
contributes to the entire performance of CQA task.

4.6 Attention Visualization
To illustrate the effectiveness of our graph augmen-
tation strategy, we visualize the attention weights of
a case from CommonsenseQA dataset. Specifically,

Figure 3: The attention heatmaps for the knowledge-
enhanced graph and its augmented view are shown from
left to right. The given question is "Where is a human
likely to go as a result of being hungry?", and its correct
answer is "eat in restaurant".

the attention weight is obtained from the context
node to its 1-hop neighbors in the last layer of
GAT. For the heatmaps in Figure 3, the QA pair
is given as "Where is a human likely to go as a
result of being hungry?" and "eat in restaurant".
And the attention weights are shown on the side-
bar for the knowledge-enhanced graph (left) and
its augmented view (right). We observe that after
augmentation, the context node gives more weights
to "Eat in restaurant" which indicates the correct
answer. While it pays less attention to other nodes
such as "Sate your hunger" and "Make bread" which
could be noisy for answer prediction. This demon-
strates that our sampling strategy can effectively
alleviate the noise in the graph. Thus, during graph
reasoning, the model is inclined to focus on those
favorable nodes for better answer prediction.

4.7 Case Study

We randomly select four cases from Common-
senseQA dataset in Table 5. The first two examples
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Figure 4: Effect of the factor 𝛽 for hard negatives.

are of our correct prediction, and the other two exam-
ples are of our failed prediction. As for the correct
cases, only our KE-GCL model makes the right
prediction in the first example. The vanilla baseline
without any external knowledge, i.e., RoBERTa-
Large, produces a confusing result with a nearly
uniform distribution. With the structural knowl-
edge from ConceptNet, QA-GNN gives the strong
but incorrect confidence to choice A ("tree"). The
reason might be that the entity of "tree" is more
closely related to the the entity of “tall grass” in the
KG. In the second example, both QA-GNN and our
KE-GCL model give the correct answer. However,
in our solution, the gap between the correct choice
D ("safety") and the disturbing choice C ("being
safe") is further enlarged compared with QA-GNN.
It indicates that the GCL strategy helps the model
capture the nuances of similar choices.

As for the failure cases, only QA-GNN answers
correctly in the third example. It seems that our KE-
GCL model have not fully perceived the negation
meanings contained in the question ("no longer").
Thus, the understanding deviation leads to a wrong
prediction of choice B ("home"). In the last ex-
ample, all these three models failed in prediction.
The commonsense semantics lies in the hidden cor-
relations between the number of restaurants and
the corresponding choices. It reveals that there is
still room for our KE-GCL model to understand
numbers and handle numeric problems.

4.8 Effect of Hard Negatives in GCL
To investigate the impact of hard negatives in GCL,
we evaluate our KE-GCL model with different val-
ues of weighing factor 𝛽 in Eq. (14) on Common-
senseQA and OpenbookQA datasets. As shown
in Figure 4, we can notice that when the weighing
factor 𝛽 = 2.0, the model achieves the best perfor-

mance on both datasets. It demonstrates that setting
appropriate hard negatives in GCL can indeed bring
positive gains. On the one hand, when the value of
𝛽 is small (i.e., < 2.0), the performance is relatively
stable with a slight increase. On the other hand,
when the value of weighing facto 𝛽 climbs to more
than 2.0, the performance sharply decreases. The
model pays too much attention to the hard negatives.
Therefore, the gradient for the positive graph pair is
heavily weakened during back-propagation, result-
ing in the difficulty of optimizing the contrastive
objective.

5 Conclusion and Future Work

In this paper, we propose a novel KE-GCL model
for CQA task, which leverages contextual descrip-
tions and GCL to reduce the noise in the KG. First,
we integrate contextual descriptions into the KG,
forming the knowledge-enhanced graph. Then, we
devise an adaptive sampling strategy to generate the
augmented view of the graph. Moreover, we reason
over graphs via edge scattering and node aggrega-
tion. Finally, to further enhance the effect of GCL,
we take graph pairs of incorrect answers as hard
negatives. Extensive experiments on benchmark
datasets verify that our KE-GCL model outper-
forms the baselines consistently. In the future, we
will consider how to apply the GCL scheme in
the few-shot or unsupervised scenarios for various
CQA tasks.

Limitations

There remains at least one limitation in this study.
Since our KE-GCL model is based on graph con-
trastive learning, a memory bank is needed for
storing large volumes of negative graph pairs in the
mini-batch. Therefore, using a larger mini-batch
size to boost our KE-GCL’s performance requires
more GPU computation resources.
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