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Abstract
Pre-trained language models (PLMs) have
gained increasing popularity due to their com-
pelling prediction performance in diverse nat-
ural language processing (NLP) tasks. When
formulating a PLM-based prediction pipeline
for NLP tasks, it is also crucial for the pipeline
to minimize the calibration error, especially in
safety-critical applications. That is, the pipeline
should reliably indicate when we can trust its
predictions. In particular, there are various con-
siderations behind the pipeline: (1) the choice
and (2) the size of PLM, (3) the choice of uncer-
tainty quantifier, (4) the choice of fine-tuning
loss, and many more. Although prior work has
looked into some of these considerations, they
usually draw conclusions based on a limited
scope of empirical studies. There still lacks
a holistic analysis on how to compose a well-
calibrated PLM-based prediction pipeline. To
fill this void, we compare a wide range of pop-
ular options for each consideration based on
three prevalent NLP classification tasks and the
setting of domain shift. In response, we rec-
ommend the following: (1) use ELECTRA for
PLM encoding, (2) use larger PLMs if possible,
(3) use Temp Scaling as the uncertainty quanti-
fier, and (4) use Focal Loss for fine-tuning.

1 Introduction

PLMs (Qiu et al., 2020; Min et al., 2021) have
achieved state-of-the-art performance on a broad
spectrum of NLP benchmarks (Rajpurkar et al.,
2016, 2018; Wang et al., 2019a,b) and are increas-
ingly popular in various downstream applications
such as question answering (Yoon et al., 2019; Garg
et al., 2020), text classification (Arslan et al., 2021;
Limsopatham, 2021), and relation extraction (Zhou
et al., 2021; Xiao et al., 2022). Consequently, it
is paramount for PLMs to faithfully communicate
when to (or not to) rely on their predictions for
decision-making, especially in high-stakes scenar-
ios. In these cases, we need PLMs to quantify their
uncertainty accurately and calibrate well (Abdar

et al., 2021), meaning that their predictive con-
fidence should be a valid estimate of how likely
they are to make a correct prediction. Consider
an example of medical question answering (Yoon
et al., 2019; Zhang et al., 2021) where a PLM is
asked to assist doctors when diagnosing diseases.
If the PLM is 90% sure that a patient is healthy,
the predicted outcome should occur 90% of the
time in practice. Otherwise, it may adversely affect
doctors’ judgment and lead to catastrophic conse-
quences. Hence, since PLMs have become the de
facto paradigm for many NLP tasks, it is necessary
to assess their calibration quality.

When constructing a well-calibrated PLM-based
prediction pipeline for NLP tasks, various consid-
erations are involved. To name a few:

1. Due to the use of diverse pre-training datasets
and strategies, different PLMs may behave
differently regarding calibration.

2. The model size of PLMs may also affect their
capability in calibration.

3. Leveraging uncertainty quantifiers (e.g., Temp
Scaling (Guo et al., 2017) and MC Dropout
(Gal and Ghahramani, 2016)) alongside PLMs
in the pipeline may reduce calibration error.

4. Some losses (e.g., Focal Loss (Mukhoti et al.,
2020) and Label Smoothing (Müller et al.,
2019)) may fine-tune PLMs to calibrate better.

Although some of these considerations have been
studied before, the ideal choice for each consid-
eration remains obscure. On the one hand, Desai
and Durrett (2020) report unconventional calibra-
tion behavior for PLMs, which casts doubts on the
prior beliefs drawn on traditional neural networks
by Guo et al. (2017). On the other hand, exist-
ing work (Desai and Durrett, 2020; Dan and Roth,
2021) on PLMs’ empirical calibration performance
often looks at a single consideration and concludes
by comparing only one or two types of PLMs.

Therefore, in this paper, we present a compre-
hensive analysis of the four pivotal considerations
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introduced above via large-scale empirical evalua-
tions. To ensure that our analysis is applicable to
various NLP tasks and resilient to domain shift, we
set up three NLP tasks (i.e., Sentiment Analysis,
Natural Language Inference, and Commonsense
Reasoning) and prepare both in-domain and out-
of-domain testing sets for each task. In addition
to the explicit metrics of prediction and calibra-
tion error, we also utilize two evaluation tasks to
examine calibration qualities implicitly. Selective
prediction lowers prediction error by avoiding un-
certain testing points, and out-of-domain detection
checks if a pipeline is less confident on unseen do-
mains. By comparing four to five options for each
consideration, we recommend the following:

1. Use ELECTRA (Clark et al., 2020) as the
PLM to encode input text sequences.

2. Use the larger version of a PLM if possible.
3. Use Temp Scaling (Guo et al., 2017) for post

hoc uncertainty recalibration.
4. Use Focal Loss (Mukhoti et al., 2020) during

the fine-tuning stage.

Compared to prior work, our extensive empirical
evaluations also reveal the following novel obser-
vations that are unique to PLM-based pipelines:

• The calibration quality of PLMs is relatively
consistent across tasks and domains, except
XLNet (Yang et al., 2019) being the most vul-
nerable to domain shift.

• In contrast to other NLP tasks, larger PLMs
are better calibrated in-domain in Common-
sense Reasoning.

• Uncertainty quantifiers (e.g., Temp Scaling)
are generally more effective in improving cal-
ibration out-of-domain.

• Ensemble (Lakshminarayanan et al., 2017) is
less effective in PLM-based pipelines.

To encourage future work towards better uncer-
tainty quantification in NLP, we release our code
and large-scale evaluation benchmarks containing
120 PLM-based pipelines based on four metrics
(prediction and calibration error, selective predic-
tion, and out-of-domain detection). These pipelines
consist of distinct choices concerning the four con-
siderations and are tested on all three NLP tasks
under both in- and out-of-domain settings.1

1Our data and code are available at https://github.
com/xiaoyuxin1002/UQ-PLM.git.

2 Background

2.1 Problem Formulation
Datasets. In this work, we focus on utilizing PLMs
for NLP classification tasks. More specifically,
consider such a task where the training set Dtrain =
{(xi, yi)}Ntrain

i=1 consists of pairs of a text sequence
xi ∈ Xin and an associated label yi ∈ Y . Similarly,
the validation set Dval and the in-domain testing
set Din come from the same domain Xin and share
the same label space Y . We also prepare an out-
of-domain testing set Dout, which differs from the
others by coming from a distinct domain Xout.

PLM-based Pipeline. We apply a PLM M to
encode an input text sequence xi and feed the en-
coding vector to a classifier F , which outputs a
predictive distribution ui over the label space Y
via the softmax operation. Here, parameters in M
and F are fine-tuned by minimizing a loss function
ℓ on Dtrain. It is optional to modify the distribu-
tion ui post hoc by an uncertainty quantifier Q to
reduce calibration error. We define the predicted
label as ŷi = argmaxj∈{1,...,|Y|} uij with the cor-
responding confidence ĉi = uiŷi .

Calibration. One crucial goal of uncertainty
quantification is to improve calibration. That is, the
predicted confidence should match the empirical
likelihood: P (yi = ŷi | ĉi) = ĉi. We follow
Guo et al. (2017) by using the expected calibration
error (ECE) to assess the calibration performance.
The calculation of ECE is described in Section 3.1.
To reduce ECE, our main experimental evaluation
lies in examining four considerations involved in
a PLM-based pipeline: (1) the choice of PLM M
(Section 3), (2) the size of PLM M (Section 4), (3)
the choice of uncertainty quantifier Q (Section 5),
and (4) the choice of loss function ℓ (Section 6).

2.2 Related Work
Uncertainty quantification has drawn long-lasting
attention from various domains (Bhatt et al., 2021),
such as weather forecasting (Brier et al., 1950;
Raftery et al., 2005), medical practice (Yang and
Thompson, 2010; Jiang et al., 2012), and machine
translation (Ott et al., 2018; Zhou et al., 2020;
Wei et al., 2020). Researchers have approached
this question from both Bayesian (Kendall and
Gal, 2017; Depeweg et al., 2018) and frequentist
perspectives (Alaa and Van Der Schaar, 2020a,b).
They have also proposed different techniques to
improve uncertainty calibration for classification
(Kong et al., 2020; Krishnan and Tickoo, 2020) and
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regression (Kuleshov et al., 2018; Cui et al., 2020;
Chung et al., 2021) tasks. Recent work has inves-
tigated connections between uncertainty and other
properties, such as model interpretability (Antoran
et al., 2021; Ley et al., 2022), selective prediction
(Xin et al., 2021; Varshney et al., 2022a,b), and
out-of-domain generalization (Wald et al., 2021;
Qin et al., 2021).

PLMs (Qiu et al., 2020; Min et al., 2021) have
achieved state-of-the-art prediction performance
on diverse NLP benchmarks (Rajpurkar et al.,
2016, 2018; Wang et al., 2019a,b) and demon-
strated many desired properties like stronger out-
of-domain robustness (Hendrycks et al., 2020) and
better uncertainty calibration (Desai and Durrett,
2020). They typically leverage a Transformer archi-
tecture (Vaswani et al., 2017) and are pre-trained
by self-supervised learning (Jaiswal et al., 2021).

Although Guo et al. (2017) report that larger
models tend to calibrate worse, PLMs have been
shown to produce well-calibrated uncertainty in
practice (Desai and Durrett, 2020), albeit for giant
model sizes. Their unusual calibration behavior
puts the observations drawn on traditional neural
networks (Ovadia et al., 2019; Mukhoti et al., 2020)
or pre-trained vision models (Minderer et al., 2021)
in doubt. Prior work (Desai and Durrett, 2020; Dan
and Roth, 2021) on the calibration of PLMs often
explores only one or two types of PLMs and ig-
nores uncertainty quantifiers and fine-tuning losses
beyond Temp Scaling and Cross Entropy, respec-
tively. As a result, there lacks a holistic analysis
that explores the full set of these considerations in a
PLM-based pipeline. Therefore, our paper aspires
to fill this void via extensive empirical studies.

3 Which Pre-trained Language Model?

3.1 Experiment Setup

To evaluate the calibration performance of PLMs,
we consider a series of NLP classification tasks:

1. Sentiment Analysis identifies the binary sen-
timent of a text sequence. We treat the IMDb
movie review dataset (Maas et al., 2011) as in-
domain and the Yelp restaurant review dataset
(Zhang et al., 2015) as out-of-domain.

2. Natural Language Inference predicts the re-
lationship between a hypothesis and a premise.
We regard the Multi-Genre Natural Language
Inference (MNLI) dataset (Williams et al.,
2018) covering a range of genres of spoken
and written text as in-domain and the Stanford

Sentiment Natural Language Commonsense
Analysis Inference Reasoning

Xin IMDb MNLI SWAG
Xout Yelp SNLI HellaSWAG
|Y| 2 3 4
|Dtrain| 25,000 392,702 73,546
|Dval| 12,500 4,907 10,003
|Din| 12,500 4,908 10,003
|Dout| 19,000 4,923 5,021

Table 1: In- and out-of-domain datasets, label space
size, and each data split size of the three NLP tasks.

Hugging Face Model Pre-training Pre-training
Name Size Corpus Size Task

bert-base-cased 109M 16G Masked LM, NSP
xlnet-base-cased 110M 161G Permuted LM

electra-base-discriminator 110M 161G Replacement Detection
roberta-base 125M 161G Dynamic Masked LM
deberta-base 140M 85G Dynamic Masked LM

bert-large-cased 335M 16G Masked LM, NSP
xlnet-large-cased 340M 161G Permuted LM

electra-large-discriminator 335M 161G Replacement Detection
roberta-large 335M 161G Dynamic Masked LM
deberta-large 350M 85G Dynamic Masked LM

Table 2: Model size, pre-training corpus size, and pre-
training task of the five PLMs, separated into the base
(upper) and the large (lower) versions.

Natural Language Inference (SNLI) dataset
(Bowman et al., 2015) derived from image
captions only as out-of-domain.

3. Commonsense Reasoning determines the
most reasonable continuation of a sentence
among four candidates. We view the Situa-
tions With Adversarial Generations (SWAG)
dataset (Zellers et al., 2018) as in-domain and
its adversarial variant (HellaSWAG) (Zellers
et al., 2019) as out-of-domain.

For each task, we construct Dtrain, Dval, and Din
from the corresponding in-domain dataset, and Dout
from the corresponding out-of-domain dataset. The
original validation set of each dataset is split in half
randomly to form a held-out non-blind testing set
(i.e., Din or Dout). Table 1 describes the task details.

To understand which PLM delivers the lowest
calibration error, we examine five popular options:

1. BERT (Devlin et al., 2019) utilizes a bidi-
rectional Transformer architecture pre-trained
by masked language modeling (LM) and next
sentence prediction (NSP).

2. XLNet (Yang et al., 2019) proposes a two-
stream self-attention mechanism and a pre-
training objective of permuted LM.

3. ELECTRA (Clark et al., 2020) pre-trains a
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(d) In-Domain Calibration vs Out-Of-Domain Calibration

Figure 1: Calibration and (selective) prediction performance of five PLMs in three NLP tasks under two domain
settings. The calibration quality of the five PLMs is relatively consistent across tasks and domains, while XLNet is
the least robust to domain shift. ELECTRA stands out due to its lowest scores in ECE, prediction error, and RPP.

discriminative model to detect tokens replaced
by a generative model.

4. RoBERTa (Liu et al., 2019) builds on BERT
by pre-training based on dynamic masked LM
only and tuning key hyperparameters.

5. DeBERTa (He et al., 2020) further improves
RoBERTa via a disentangled attention mecha-
nism and an enhanced mask decoder.

We use the base version of each PLM, which has
a similar model size and is initialized from the
corresponding Hugging Face (Wolf et al., 2020)

pre-trained checkpoint. Table 2 details these PLMs.
After receiving the encoding vector of the classi-
fication token [CLS] for an input text sequence
from the PLM, we pass it through a classifier to
obtain a predictive distribution. Regarding the clas-
sifier configuration, we follow the default practice
in Hugging Face by utilizing a two-layer neural
network with tanh non-linear activation.

The learning rate for each model-dataset combi-
nation is tuned based on the validation set among
{5e−6, 1e−5, 2e−5, 5e−5}. We leverage AdamW
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(e) Out-Of-Domain Calibration vs Out-Of-Domain Prediction

Figure 2: Calibration and prediction performance of large and base PLMs in three NLP tasks under two domain
settings. Larger PLMs calibrate better than their respective base versions when evaluated out-of-domain, while
calibrating slightly worse in-domain with one exception in Commonsense Reasoning. If the computational budget
permits, larger PLMs constitute more powerful pipelines given their lower out-of-domain ECE along with lower
prediction error. We also observe a positive correlation between calibration and prediction error out-of-domain.

(Loshchilov and Hutter, 2018) to minimize the
cross-entropy loss on Dtrain for five epochs with
early stopping and a linearly decaying scheduler

(Goyal et al., 2017) whose warm-up ratio = 10%.
Batch size is 16, and the model gradients are
clipped to a maximum norm of 1. We perform
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our experiments on a Tesla A6000 GPU and report
the mean and one standard error by conducting six
trials with different seeds.

To explicitly evaluate calibration performance by
ECE, we first stratify N predictions into K bins of
equal width based on the sorted confidence values.
Then ECE is a weighted average of the absolute
difference between the accuracy and confidence of
each bin: ECE =

∑K
k=1

|Bk|
N |acc(Bk)−conf(Bk)|,

where acc(Bk) and conf(Bk) are the average ac-
curacy and confidence of predictions in bin Bk,
respectively. We set K = 10 in our experiments.

To implicitly assess calibration quality based
on selective prediction, we deploy the metric of
reversed pair proportion (RPP) (Xin et al., 2021).
More specifically, for a dataset of size N , RPP =
1
N2

∑N
i=1

∑N
j=1 1[ĉi < ĉj , yi = ŷi, yj ̸= ŷj ]. It

measures the proportion of prediction pairs with
a reversed confidence-error relationship. A lower
RPP indicates that the pipeline is more confident
on correct predictions.

3.2 Empirical Findings

As shown in Figure 1(a), the calibration per-
formance of all five PLMs deteriorates from in-
domain to out-of-domain. This phenomenon co-
incides with the finding made by Ovadia et al.
(2019) on traditional neural networks. In addi-
tion, the ranking among the five PLMs based
on ECE is generally consistent, which implies
that their calibration quality is transferable across
tasks and domains. More specifically, for all three
tasks under the in-domain setting, XLNet, ELEC-
TRA, RoBERTa, and DeBERTa outperform BERT
in terms of lower ECE, suggesting that a larger
pre-training corpus may improve the calibration
quality (see Table 2). When moving to the out-of-
domain setting, XLNet sees the largest increase
in ECE, which makes it an outlier in Figure 1(d).
This observation may indicate that the pre-training
task of permuted LM is vulnerable to domain shift.

ELECTRA stands out among the five exam-
ined PLMs in encoding input text sequences.
Not only does it achieve the (comparably) lowest
ECE in all three tasks under both in- and out-of-
domain settings, it also delivers the lowest predic-
tion error in Figure 1(b) and the lowest RPP for
selective prediction in Figure 1(c). We hypothesize
its success to the unique pre-training paradigm of
replaced token detection, which preserves the to-
ken distribution by avoiding the artificial [MASK]

tokens in masked LM and enhances the computa-
tional efficiency by learning from all input tokens.

4 What Model Size?

4.1 Experiment Setup

To investigate how the size of PLMs affects the
calibration performance, we compare the large ver-
sions of the five PLMs mentioned in Section 3.1
against their respective base versions. We keep the
rest of the setup the same as in Section 3.1.

4.2 Empirical Findings

Figures 2(a) and (b) demonstrate that larger PLMs
tend to produce a slightly higher ECE compared
to their respective base versions when evaluated
in-domain, while calibrating better out-of-domain.
This observation based on five PLMs verifies the
conclusion made by Dan and Roth (2021) solely
based on BERT. However, there is a notable ex-
ception that larger PLMs are significantly better
calibrated in-domain in Commonsense Reason-
ing than their respective base versions, which
implies that larger PLMs are more aware of their
uncertainties during the reasoning process.

Larger PLMs constitute more powerful PLM-
based pipelines, if computational budget per-
mits. Although sometimes they suffer slightly in
in-domain calibration compared to their smaller
counterparts, larger PLMs achieve a lower ECE
out-of-domain. They also deliver lower in- and
out-of-domain prediction errors in Figures 2(c) and
(d), respectively. In addition, we observe a positive
correlation between calibration and prediction er-
rors under the out-of-domain setting in Figure 2(e),
suggesting that pipelines calibrating well out-of-
domain are more accurate under domain shift as
well. This reflects the finding in Wald et al. (2021)
that multi-domain calibration leads to better out-of-
domain prediction performance.

5 Which Uncertainty Quantifier?

5.1 Experiment Setup

As discussed in Section 2.1, we can further adjust
the vanilla predictive distribution post hoc via an
uncertainty quantifier. Therefore, we study four
uncertainty quantifiers based on the setup in Sec-
tion 3.1 to inspect which improve the calibration
performance in our problem formulation:

1. Temp Scaling (Guo et al., 2017) learns a
scalar parameter Ttemp based on Dval and “soft-
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Figure 3: Change in calibration and prediction performance due to the use of four uncertainty quantifiers. The
effectiveness of these quantifiers in reducing ECE follows the descending order of Temp Scaling, MC Dropout,
Ensemble, and LL SVI. The drop in ECE is more significant out-of-domain. Temp Scaling is the most compelling
fine-tuning loss due to its largest reduction in ECE, preservation of prediction results, and little computational cost.

ens” the vanilla logit output with Ttemp to ob-
tain a new predictive distribution.

2. MC Dropout (Gal and Ghahramani, 2016)
approximates the expectation of a posterior
predictive distribution by averaging Tmc for-
ward passes with dropout turned on.

3. Ensemble (Lakshminarayanan et al., 2017)
averages the predictive distributions of Ten
independently trained models.

4. LL SVI (Last-Layer Stochastic Variational
Inference) (Blundell et al., 2015) implements
variational layers with reparameterized Monte
Carlo estimators based on the Bayesian-Torch
package (Krishnan et al., 2022). It approxi-
mates the expectation of a posterior predictive
distribution by averaging Tsvi forward passes
through the Bayesian classification layers.

Here, we follow Lakshminarayanan et al. (2017) by
setting Ten = 5. We use Tmc = 10 and Tsvi = 50
due to computational constraints during inference.
The dropout rate in MC Dropout is the same as the
default dropout rate of each PLM.

5.2 Empirical Findings

In Figure 3, we plot the change in calibration and
prediction performance due to the use of uncer-

tainty quantifiers compared to the vanilla results
in Section 4.1. The improvement in calibra-
tion is more significant out-of-domain. More
specifically, the degree to which these quantifiers
decrease ECE follows the descending order of
Temp Scaling, MC Dropout, Ensemble, and LL
SVI. In fact, LL SVI even hurts the calibration in
terms of an increase in ECE, suggesting that varia-
tional classifiers with reparameterized Monte Carlo
estimators cannot capture uncertainties well when
used only at the fine-tuning stage. Unlike Ovadia
et al. (2019), we find Ensemble less effective in
PLM-based pipelines, possibly because individual
learners in Ensemble are initialized from the same
pre-trained model checkpoint and, consequently,
the strong correlation among them limits the power
of Ensemble (Liu and Yao, 1999).

Meanwhile, Temp Scaling preserves prediction
results, and Ensemble lowers prediction error, as ex-
pected. Although MC Dropout and LL SVI reduce
the prediction error out-of-domain in Common-
sense Reasoning by producing sharper predictive
distributions, they usually end up being overconfi-
dent, which leads to the rise in ECE in Figure 3(a).

Temp Scaling is the most appropriate uncer-
tainty quantifier for PLM-based pipelines. Com-
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Figure 4: Calibration and out-of-domain detection performance of BERT base models fine-tuned by five losses.
Focal Loss, Label Smoothing, and MMCE are more capable of fine-tuning well-calibrated models compared to
Cross Entropy and Brier Loss. Focal Loss is the best option due to its competitively low ECE and FAR95.

pared to LL SVI, Temp Scaling diminishes ECE
and maintains the competitive prediction quality of
PLMs. Moreover, the post hoc recalibration man-
ner of Temp Scaling adds little to the computational
burden. In contrast, Ensemble or MC Dropout sig-
nificantly increases the computational cost during
fine-tuning or inference, respectively. Note that
this distinction is of great importance given the
enormous computational burdens of PLMs.

6 Which Fine-tuning Loss?

6.1 Experiment Setup

Besides cross-entropy loss, we consider four other
losses when fine-tuning a BERT base model and
compare their calibration performance based on the
setup in Section 3.1.

1. Cross Entropy (Good, 1952) is the negative
log likelihood of ground-truth classes.

2. Brier Loss (Brier et al., 1950) is the squared
difference between predictive distributions
and one-hot ground-truth vectors.

3. Focal Loss (Mukhoti et al., 2020) applies a
modulating term to cross-entropy loss to focus
model learning on hard misclassified samples.

4. Label Smoothing (Müller et al., 2019) pro-
duces targeting distributions by allocating
probability mass to non-ground-truth classes.

5. MMCE (Maximum Mean Calibration Error)
(Kumar et al., 2018) is a differentiable proxy
to regularize calibration error, usually used
alongside cross-entropy loss.

We use a smoothing factor of 0.1, and follow the
practice in Mukhoti et al. (2020) by setting the focal
hyperparameter to 5 when the predictive probabil-
ity for the ground-truth class ∈ [0, 0.2) and to 3
when the probability ∈ [0.2, 1].

In addition, we leverage out-of-domain detection
to implicitly examine the quality of uncertainty
quantification. We want models to be less confident
on Dout than on Din and, hence, report the false
alarm rate at 95% recall (FAR95) (Hendrycks et al.,
2020). This metric tells the ratio of samples in Din
whose confidence is lower than the 95th percentile
of samples in Dout.

6.2 Empirical Findings

As shown in Figure 4(a), Label Smoothing, Fo-
cal Loss, and MMCE generate better-calibrated
BERT base models compared to Cross Entropy
and Brier Loss. While models fine-tuned by Cross
Entropy, Focal Loss, or MMCE calibrate better in-
domain, Brier Loss and Label Smoothing enjoy a
decrease in ECE when evaluated out-of-domain.
This observation matches the findings in Desai and
Durrett (2020); Dan and Roth (2021) and is in-
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tuitive for Label Smoothing since it deliberately
alleviates overconfidence during fine-tuning.

Focal Loss is the most compelling fine-tuning
loss for PLM-based pipelines. Among the five ex-
amined options, Focal Loss delivers competitively
low ECE, both in- and out-of-domain for all three
tasks. Moreover, it scores the lowest in FAR95,
as illustrated in Figure 4(b), meaning that models
fine-tuned by Focal Loss are most alert to domain
shift. We note that FAR95 scores are relatively
high in Sentiment Analysis and Natural Language
Inference, probably because these pipelines also
predict well out-of-domain in Figure 2(d).

7 Conclusion

In this paper, we contribute a comprehensive anal-
ysis on how to reduce calibration error in a PLM-
based pipeline. We establish four key consider-
ations behind the pipeline and compare a broad
range of prevalent options for each consideration.
Our empirical evaluations consist of three distinct
NLP classification tasks and two different domain
settings. Based on our large-scale systematic anal-
ysis, we recommend the following:

1. Use ELECTRA for PLM encoding.
2. Use larger PLMs if possible.
3. Use Temp Scaling for post hoc recalibration.
4. Use Focal Loss during the fine-tuning stage.

Compared to existing work, we also observe the fol-
lowing novel phenomena that are unique to PLM-
based pipelines:

• The relative calibration quality of PLMs is
consistent in general across tasks and domains,
with an exception of XLNet, which is the least
robust to domain shift.

• Larger PLMs are better calibrated under the in-
domain setting in Commonsense Reasoning,
unlike in the other NLP tasks.

• Uncertainty quantifiers are generally more ef-
fective in improving calibration performance
under the out-of-domain setting.

• Ensemble is less effective in reducing cal-
ibration error when used with PLM-based
pipelines, despite their convincing perfor-
mance with traditional models.

8 Limitation

Due to computational constraints, we are unable
to pre-train PLMs from scratch with other combi-
nations of pre-training corpora and tasks. Conse-
quently, while our analysis is applicable to existing

widely-used PLMs, we do not claim its generaliza-
tion to new combinations of pre-training corpora
and tasks. We believe that this does not invalidate
our claims which are primarily targeted toward
real-world practitioners using existing PLMs. It
is possible that techniques catering to the special
needs of PLM-based pipelines (Kong et al., 2020)
can mitigate calibration error further.

Moreover, although our setup involves domain
shift, we do not focus on inspecting how the degree
of domain shift affects the calibration performance
of PLM-based pipelines. It is also interesting to
consider how to construct a well-calibrated PLM-
based pipeline for other types of NLP tasks such
as cross-lingual text classification and generation,
which we leave to future work.
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A Responsible NLP Research

In this paper, we aim to identify the best choice for
each consideration in constructing a well-calibrated
PLM-based pipeline via extensive empirical stud-
ies. Our empirical analysis involves training multi-
ple large-scale PLMs and, consequently, consumes
a fair amount of computational power. However,
we believe that the takeaways from our analysis
will benefit NLP practitioners at large, which will
write off the computational cost in the future.

In particular, the Hugging Face package lever-
aged in our experiments utilizes the Apache Li-
cense 2.0, and the Bayesian-Torch package utilizes
the BSD 3-Clause License. We focus on PLM-
based pipelines targeting English and assess them
based on six NLP datasets, which aligns with the
intended use of these datasets. We also release the
evaluation benchmarks of our empirical analysis to
illustrate the performance of different PLM-based
pipelines based on diverse metrics. The bench-
marks do not contain information that uniquely
identifies individual people or offensive content.
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