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Abstract

Differential framing of issues can lead to diver-
gent world views on important issues. This is
especially true in domains where the informa-
tion presented can reach a large audience, such
as traditional and social media. Scalable and
reliable measurement of such differential fram-
ing is an important first step in addressing them.
In this work, based on the intuition that fram-
ing affects the tone and word choices in written
language, we propose a framework for model-
ing the differential framing of issues through
masked token prediction via large-scale fine-
tuned language models (LMs). Specifically, we
explore three key factors for our framework:
1) prompt generation methods for the masked
token prediction; 2) methods for normalizing
the output of fine-tuned LMs; 3) robustness to
the choice of pre-trained LMs used for fine-
tuning. Through experiments on a dataset of
articles from traditional media outlets covering
five diverse and politically polarized topics, we
show that our framework can capture differen-
tial framing of these topics with high reliability.

1 Introduction

Issue framing refers to the ways in which informa-
tion organizations (e.g. media companies, govern-
ment institutions, etc.) package and present infor-
mation (Nelson, 2011). The framing of the infor-
mation is of great importance because it influences
readers’ understanding of the content (Kamoen
et al., 2019; Carreras et al., 2021). Issue fram-
ing can be expressed explicitly with evaluative lan-
guage (e.g., “good” or “bad”) or implicitly (e.g.,
“undocumented” vs “illegal" immigrants) (Jacoby,
2000; Zhang, 2021). Measuring the ways in which
topics are framed differently (what we term “differ-
ential framing”) is helpful in identifying the various
stances of these information organizations.

While much research has been done on qualita-
tive analysis and the effects of issue framing (e.g.,
see (Jacoby, 2000; Sniderman and Theriault, 2004;

Jerit, 2008; Zhang, 2021)). Quantitative methods
have been used for this task, though these meth-
ods usually utilize hand-crafted features such as
the tone or the choice of phrases when referring
to the same events or entities (e.g., undocumented
immigrant vs. illegal alien). These methods either
rely fully on human annotation (Matthes, 2009;
Chinn et al., 2020; Lim et al., 2018; Golez and
Karapandza, 2020; Färber et al., 2020; Gentzkow
and Shapiro, 2010; Fan et al., 2019)–which makes
them not scalable and prone to human bias– or
utilize (semi-) automatic methods by representing
the problem as a standard supervised learning task
(Spinde et al., 2020a,b, 2021; Chen et al., 2020),
relying on context-specific hand-crafted features.

To address the challenges of scale and topic-
/context-specificity, inspired by prior works on
prompt-based knowledge extraction (Petroni et al.,
2019; Roberts et al., 2020; Qin and Eisner, 2021;
Perez et al., 2021; Guo et al., 2022) which shows
that knowledge learned by LMs can be extracted
through the masked language modeling (MLM)
task, we propose a novel method that utilizes LMs
to measure differential framing in any context or
domain. Specifically, we capture the tone and word
preference of different sources by fine-tuning pre-
trained LMs on corpora from them. Through the
MLM objective, we then use these fine-tuned LMs
to predict the choice of words for each source for
different contexts, such as different issues or events.
In other words, prompting these models with sen-
tences such as “the greatest threat to the immigra-
tion system is ___”, they will output the word most
likely to complete the sentence given the associ-
ations learned from their fine-tuning texts. Com-
paring outputs from models fine-tuned on different
sources can illuminate key differences in their fram-
ing of issues.

We explore three key factors in the development
of our framework: 1) how to generate the prompts;
2) how to normalize the output of fine-tuned LMs;
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3) robustness of our method to different LMs. In
this paper, we explore differential framing in me-
dia outlets as a test case. Specifically, we capture
the tone and word preference of media outlets by
fine-tuning LMs on corpora from different outlets
and topics collected from Media Cloud, a publicly
available news API. The difference in framing be-
tween outlets is then used to rank the outlets based
on their similarity in framing. Our rankings are val-
idated through human evaluations and comparisons
with three ground truth datasets.

Our proposed framework for estimating differen-
tial framing is highly scalable and generalizable in
that it can be applied to other contexts and domains
with minor adjustments. We make our code and
data publicly available on github1.

2 Dataset Construction

Our dataset is comprised of articles in English col-
lected from Media Cloud 2, whose topic-labeling
has proved reliable (Etling et al., 2014). Specifi-
cally, we sample news articles under five diverse
topics: “Climate Change”, “Corporate Tax”, “Drug
Policy”, “Gay Marriage” and “The Affordable Care
Act”. The articles are from 10 US news outlets:
Breitbart News Network, CBS News, CNN, Fox
News, HuffPost, New York Times, NPR, USA To-
day, Wall Street Journal, and Washington Post.

We divide the dataset into training and devel-
opment (dev) sets with a 90/10 split. Due to the
length limit of LMs, we break the news articles
down to their original paragraphs; paragraphs ex-
ceeding 256 words are split greedily at the sentence
level to ensure the completeness of sentences. We
then label the paragraphs with their respective me-
dia outlets. In the final dataset, there are 531,398
instances. The statistics of these datasets are listed
in Appendix A (Table A1).

3 Methodology

As shown in Figure 1, with the fine-tuned LMs
for each source, our framework is comprised of
three steps: (1) we generate prompts for the MLM
task; (2) with the given prompts, we then leverage
the fine-tuned LMs to create representations of the
sources via prompt-based mask token prediction;
and (3) we utilize the generated representations to
measure differential framing by the sources. We

1https://github.com/guoxiaobo96/media-position
2https://mediacloud.org/

experiment with three different fine-tuned mod-
els (using the MLM task), “RoBERTa-base” (Liu
et al., 2019), “BERT-base-cased” and “BERT-base-
uncased” (Devlin et al., 2019).

3.1 Prompt Generation
For the task of prompt-based mask token prediction,
the prompt generation method will strongly influ-
ence its performance (Petroni et al., 2019; Chen
et al., 2021; Shin et al., 2020; Ben-David et al.,
2021). In this section, we explore automatic and
manual methods used for prompt generation.

We explore different automatic methods for se-
lecting prompts and masked tokens (see Appendix
B.1). The most effective method (called “bigram
outer” works as follows: inspired by work on au-
thorship attribution (e.g., (Coyotl-Morales et al.,
2006)), we rely on the words all sources have in
common. Specifically, we first create a list of bi-
grams that appear in the dev set of all sources. For
each instance in the dev set containing these bi-
grams, we generate two masked prompts (per bi-
gram), one where the mask is applied to the word
preceding the bigram, and one with the mask ap-
plied to the word following the bigram.

We also explore different manually generated
prompt patterns based on domain knowledge. Each
pattern includes topic words (“Topic”), an adjective
(“Adj”) or a noun with its corresponding indefinite
article (“Noun”), and a “To Be” auxiliary verb. We
evaluate declarative (“Topic is Adj/Noun.”), inter-
rogative (“Is topic Adj/Noun?”), and association
patterns (“Topic Adj/Noun.” or “Adj/Noun Topic.”).
We also explore question-answer and single sen-
tence patterns. For the former, we keep the whole
sentence and add a masked token after the sen-
tence to predict affirmative, unsure, and negative
responses. For the latter, we mask the “Adj” or the
“Noun” to be predicted. Different from the auto-
matic method, here we limit the possible choices
for the predicted tokens. For the question-answer
pattern, the choice of predicted token is limited to
“Yes”, “True”,“Maybe”, “No”, and “False”. For the
single sentence pattern, we limit the choice to a pair
of antonyms showing the attitude (e.g. “good” vs
“bad”). Figure 2 shows examples of these patterns.

3.2 Framing Representation Generation
With the generated prompts, we then use the fine-
tuned LMs for each source to predict the masked to-
kens. Considering that the probability of each token
is different in the non-fined-tuned pre-trained LMs,
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Figure 1: An example generation of representations for two sources. For simplicity, we generate the representations
using the top-2 predicted words and the no-normalization method.

Figure 2: Examples of manually generated prompts.
Here, the topic word is “Obamacare”, and the Adjective
is “good”. “___” is the masked token, and the tokens
in the bracket are the choices for prediction.“Y”:“Yes” ,
“T”:“True”,“M”:“Maybe”, “N”:“No”, “F”:“False”.

we explore two different methods for normalizing
the predicted probabilities. The first (called general-
normalization) divides the predicted probability of
a token from the fine-tuned LM by its predicted
probability from the non-fine-tuned LM. Similarly,
the second method (called domain-normalization)
normalizes using a domain-specific LM which is
fine-tuned on all instances in the training sets.

For the automatically generated prompts, we re-
trieve the top-K candidate words with the highest
probability and, for manually generated prompts,
we retrieve the probabilities of the pre-selected to-
kens. The differential framing of each source with
respect to the masked prompt is then represented as
a vector of the probability of these words. Note that
the vectors for the sources all have the same length
and correspond to the same words, i.e., the union
of all top-K candidate words from the sources. If a
word was not in the top-K candidate of a source, its
probability is set to 0. This allows for cross source
comparison. Figure 1 shows an example of how the
differential framing representations are generated
for two sources using the top-2 candidate words.

For each topic t we have nt vectors for each
source, where nt is the number of masked prompts
for each topic. The set of these vectors represents
the differential framing of each source with respect
to different topics.

3.3 Differential Framing Measurement

We measure the differential framing by the sources
within specific topics by first calculating the dis-
tance between each pair of sources. To do so, we
calculate the mean of the cosine distance across all

aligned differential framing representation vectors
for the specified topics across each source pair.

Next, based on their distance, we create a sim-
ilarity ranking for each source. Note that these
rankings do not have to be symmetric, in that if
source A has source B as the closest source, it does
not necessarily follow that B will have A as its clos-
est source. These rankings indicate the differential
framing similarity of each source with respect to
the others. Similar rankings suggest similar fram-
ing of the specified topics by the sources and vice
versa.

4 Experiments 3

We explore and evaluate our framework in the con-
text of differential framing of topics by different
media outlets. Appendix A describes the construc-
tion and details of the media outlets data used. We
evaluate the performance of our framework through
human evaluations and three survey-based datasets.
Appendix D.1 describes the collection of our hu-
man evaluation dataset. The construction of the
other three survey-based datasets is described in
Appendix E.1. We compare the similarity rank-
ings of the outlets predicted by our framework
with the ones generated using the four datasets de-
scribed above. Specifically, we measure the relative
rankings of the outlets based on our ground truth
datasets using a similar procedure as described
in Section 3.3: for each outlet, we calculate the
absolute distance to the other outlets (based the
ground truth data) and create a ranked list. We then
calculate the similarity between the predicted and
ground truth similarity rankings via Kendall rank
correlation coefficients (Kendall’s τ ). Kendall’s τ
is calculated for each media outlet, and the mean
of all the τ ’s is used as the evaluation score.

Here, we report the human evaluation results.
Table 1 shows the influence of prompt generation
methods. As can be seen, for all manual methods,
the single sentence achieves better performance
than the question-answer pair pattern (average τ of

3Details for reproducibility are shown in Appendix C.
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0.43 vs 0.34), showing that adjective or noun pre-
diction is a better choice compared to polar answers.
The fact that “decalarative” (avg (τ ) = 0.40) and
“interrogative” (avg (τ ) = 0.40) perform better than
“association” (avg (τ ) = 0.37) shows that sentence
structure, regardless of its type, is helpful for token
prediction. The best performing manual pattern,
“declarative-single” (0.46), achieves slightly bet-
ter performance than the automatic “bigram outer”
(0.44), showing that manually designed prompts
are slightly better than automatic ones, presumably
due to their careful design. Overall, the standard de-
viation of the manual methods is higher across the
board, which might be due to the limited number
of manually designed prompts.

mean std

declarative (manual)
q&a 0.34 0.07
single 0.46 0.07

interrogative (manual)
q&a 0.35 0.14
single 0.44 0.07

association (manual)
q&a 0.34 0.06
single 0.39 0.11

bigram outer (auto) 0.44 0.06

Table 1: Agreement (τ ) between media similarity rank-
ings using our framework and the human evaluation
dataset. “q&a” means question-answer pair pattern, and
“single” means single sentence pattern.

Table 2 shows the mean performance of each
normalization method. Both general-normalization
(0.42) and domain-normalization (0.44) achieve
much better performance than no-normalization
(0.24). This shows that it is important to normal-
ize the probabilities generated by the LMs as it
maximizes the differences between sources.

mean std
no-normalization 0.22 0.11
general-normalization 0.42 0.09
domain-normalization 0.44 0.07

Table 2: Agreement (τ ) between media similarity rank-
ings using our framework and the human evaluation
dataset.

Table 3 shows the performance of “Roberta-base”
(0.40), “BERT-base-uncased” (0.38), and “BERT-
base-cased” (0.40). The choice of LM seems to
have little effect on our framework.

Appendix D.2 shows the performance of all
different combinations for the human evaluation
dataset. Appendix E.2 shows the results of the
same experiments on the other three datasets.

mean std
RoBERTa-base 0.40 0.09
BERT-base-uncased 0.38 0.09
BERT-base-cased 0.40 0.10

Table 3: Agreement (τ ) between media similarity rank-
ings of our framework and the human evaluation dataset.

Finally, we compare the performance of our
framework against four baselines. For our frame-
work, we use the combination of three factors
achieving the best performance: “interrogative”,
“one sentence”, and domain-normalization. Two
classic baselines are based on Latent Dirichlet
allocation (LDA) and Term Frequency-Inverse
Document Frequency (TF-IDF) features. The
other two baselines utilize language models
(“RoBERTa-base”, “BERT-base-cased”, or “BERT-
base-uncased”), with one using the classification
objective (LM-c), a variant of previous work(Chen
et al., 2020), and the other using the MLM objective
(LM-m). The LDA and TF-IDF (up to trigrams) are
trained with all media outlet instances and utilized
to embed the instances. Following previous work,
LM-c is fine-tuned with the task of predicting the
source of each instance and leveraged to embed all
instances in the dev sets. For LM-m, we use our
MLM fine-tuned language models to embed the
instances in the dev sets. In all cases, we regard
the mean embedding of all instances for one media
outlet as its corresponding media embedding.

For all the baselines with the media outlet em-
beddings, we calculate the cosine distances be-
tween pairs of media outlets in a manner simi-
lar to what was described in Section 3.3, i.e., for
each outlet, we use the distance to other outlets
to create a ranked list and then use Kendall’s τ to
measure agreement with the ground truth rankings.
Appendix C.2 describes the details of the hyper-
parameters of the baselines. Table 4 shows the
mean τ across all topics. Our framework outper-
forms all baselines. Comparing the performance
of our methods and LM-m, we see that predicting
masked tokens can achieve better performance than
sentence embedding.

5 Error Analysis

To better understand what our model is capturing,
we rank the differential framing for each masked
instance and calculate the Kendall’s τ based on
the instance-level rankings. We observe that all
distributions are right-skewed distributions with a
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RoBERTa BERT-un BERT-ca
LDA 0.34(0.09) 0.34(0.09) 0.34(0.09)
TF-IDF 0.33(0.04) 0.33(0.04) 0.33(0.04)
LM-c 0.30(0.11) 0.44(0.10) 0.49(0.08)
LM-m 0.37(0.12) 0.46(0.14) 0.43(0.13)
ours 0.39(0.15) 0.50(0.18) 0.53(0.08)

Table 4: Agreement (τ ) between the human evaluation
dataset and the different methods. Results are averaged
across 5 topics. Stds are shown in parentheses.

long right tail (see figure F in Appendix F).
We further analyze the instances with the worst

and best performance of each topic and ground
truth dataset. We observe that the instances with
the worst performances (i.e., small τ ), have masked
tokens that are easy to predict by all models no
matter which articles they were fine-tuned on, by
either being a stop word or a named-entity (such
as “Nancy Pelosi”). For example, in the follow-
ing sentence: “... age-based tax credits in the bill
replacing those in ___ affordable care act are too
small”, the masked token is “the”, and all models
correctly predict it with the probability above 0.99.

We also analyze the instances which achieve the
best performance. As hypothesized, in many of the
instances the difference in the prediction can be ex-
plained by the difference in opinion of the outlets.
For example, in the sentence "President Donald
Trump’s vague platitudes about beautiful and very
___ health care for everybody...”, the masked token
is special. For the right-wing media outlets (such as
Fox and Breitbart), the models tend to predict posi-
tive tokens (such as “effective” and “affordable”),
and for the left-wing media outlets (such as CNN
and New York Times), the models will predict both
positive (“affordable”) and negative (“expensive”)
tokens.

6 Conclusion and Future Work

We present a framework for capturing differential
framing of issues using the MLM objective through
masked prompting of fine-tuned large-scale LMs.
We explore three factors: prompt generation meth-
ods, probability normalization, and robustness to
different LMs. We show that manually designed
prompts can achieve slightly better performance
than the automatically generated prompts at the
cost of volatility. We also show that the normal-
ization of outputs from the fine-tuned LMs can
greatly boost the performance of our framework.
Finally, we show that our framework is robust to
the choice of LMs. We evaluate our framework

on differential framing of issues by media outlets,
using human evaluations and three survey-based
datasets, showing that our framework’s predicted
differences in the ways in which outlets frame is-
sues mainly agree with these ground truth datasets.
Future work could investigate the applicability of
our framework to other domains.

7 Limitations

There are four main limitations to our work. The
first is the lack of interpretability for both the man-
ual and automatic prompts. For the manual prompt,
the predicted tokens are sometimes unrelated to the
prompt, which is why we limit the set of possible
tokens to be predicted. More work is needed to
understand the cause behind the prediction of such
tokens. Similarly, the prompts and the masked to-
kens generated by the automatic method are also
sometimes not relevant to the issue or topic being
investigated. The second limitation of our work
is that all experiments have been conducted in En-
glish (mainly due to a lack of appropriate ground
truth data in other languages). We do not currently
know whether our framework generalizes to other
languages. Further experiments are needed for this.
Third, again due to a lack of ground truth data, our
paper only investigates our framework in the con-
text of differential framing of issues by different
media outlets. Though our framework is designed
to be domain-agnostic, we currently do not have
the experimental results to show this. Finally, our
framework measures word-based differential fram-
ing. There are other types of differential framing
(i.e., discourse-level) that our framework cannot
currently capture.
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A Dataset Details

The statistics of the train and dev sets for each topic
and media outlet are listed in Table A1.

B Prompt Generation

B.1 Mask Method

For the prompt-based mask token prediction, the
choice of prompts and the word to be masked has a
significant effect on the quality of generated media
attitudinal representations. We explore five auto-
matic methods for selecting prompts and words to
mask:

Random sampling (RS) is the most basic
method. We choose 50% of the instances uniformly
at random and replace 10% of the words in each of
them with the special token [MASK]. In our exper-
iments, we regard the random sampling method as
the baseline for evaluating the influence of masked
tokens and prompt selection methods.

BERT attention (BERT) chooses the words to
mask based on the attention scores generated by
BERT. Specifically, for each topic, we train a clas-
sifier based on bert-base-cased to predict the label
(i.e., the media outlet) of each instance using the
train set. We then apply the classifier to predict the
label of instances in the dev set of the same topic
and extract the attention scores from the twelfth
layer of the trained classifier as the importance
measure of each token. We perform word-masking
only on the instances whose labels are correctly pre-
dicted by the model with confidence scores above
0.7 4. For each selected instance, we mask the
token with the highest importance score.

Bigram inner (BI) works as follows: (1) We
first create a list of bigrams that appear in the dev
set of at least five media outlets (2) For each in-
stance in the dev set containing these bigrams we
generate two masked prompts (per bigram), one
where the mask is applied to the first word of the bi-
gram and one with the mask applied to the second
word of the bigram.

Trigram inner (TI) is similar to bigram inner
while considering trigrams instead of bigrams.

Bigram outer (BO) works as follows: (1) We
first create a list of bigrams that appear in the dev
set of all ten media outlets (2) For each instance in
the dev set containing these bigrams we generate
two masked prompts (per bigram), one where the

4We choose 0.7 because our models achieve the best per-
formance in our small-scale experiments with this threshold

mask is applied to the word preceding the bigram
and one with the mask applied to the word follow-
ing the bigram. This is the method used in the main
paper.

We conduct a small-scale experiment on “The
Affordable Care Act” topic to evaluate the perfor-
mance of each of the aforementioned methods. The
experiment is conducted as described in Section 3
but only on one topic. As is shown in Table B1,
the Bigram outer (BO) achieves the best perfor-
mance among all methods on “SoA-s”, “SoA-t”,
and “human”.Therefore, we utilize it for our main
experiments.

B.2 Masked Prompts Statistics

In Table B2, we show the number of bigrams,
instances in the dev set, and masked prompts
(note that each instance produces one or more
masked prompts) for each topic for the bigram
outer method. We observe that other than the
“The Affordable Care Act” all topics have a similar
amount of data.

C Experiments

C.1 Computing Infrastructure

In our experiments, we utilized a Lambda machine
with 250 GB of memory, 4 RTX 8000 GPUs, and
16 CPU cores. The operation system of the ma-
chine is Ubuntu 16.04. Our experiments are con-
ducted with Python 3.8.8 with the following pack-
ages: gensim (4.0.1), grakel (0.1.8), joblib (1.0.1),
matpolitlib (3.3.4), nltk (3.6.1), numpy (1.20.1),
scikit-learn (0.24.1), scipy (1.6.2), torch (1.9.0),
transformers (4.8.2), tqdm (4.69.0), zss (1.2.0).
The CUDA version is 11.2 and the GPU Driver
Version is 460.67

C.2 Hyperparameters and Random Seed

In our experiments, all random seeds are set to be
42. We utilize the “Hugging Face” implementation
for fine-tuning the language model. During the fine-
tuning, because of the limits of the GPU memory,
we set the batch size as 16. The training epoch is
set to be 10. All the other hyper parameters for the
training process are set to be the default value of
the package.

For training the LDA baseline, we utilize the
“LdaMulticore” from “gensim”. When building
the word dictionary of the LDA baseline, we keep
the most frequent 2,000,000 words, which is the
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Climate Change Corporate Tax Drug Policy Gay Marriage The Affordable Care Act
Train Dev Train Dev Train Dev Train Dev Train Dev

Breitbart 8,267 807 8,357 756 7,765 934 7,663 1,016 6,665 732
CBS 11,515 1,680 9,002 1,026 9,313 1,273 12,320 2,268 7,968 799
CNN 12,587 1,414 12,982 1,529 13,158 1,565 13,949 1,841 16,030 1,805
Fox 8,487 450 8,526 1,284 9,445 602 6,473 695 7,272 735
HuffPost 10,272 1,102 11,044 1,087 9,780 1,117 9,385 1,054 10,138 1,132
NPR 15,260 1,509 14,730 1,997 14,934 1,503 17,285 2,036 13,057 1,281
NYTimes 3,113 322 2,678 297 3,077 271 3,803 289 4,936 452
USA Today 12,288 1,842 13,464 1,476 12,432 1,718 12,436 1,340 12,261 1,208
Wallstreet 4,914 447 4,040 433 4,403 469 6,469 635 3,003 407
Washington 9,747 1,098 8,788 816 9,545 911 7,666 861 14,459 1,947

Table A1: The statistics of the train and dev sets for each topic and media outlet.“NYTimes”: “New York Times”,
“Wallstreet”: “The Wall Street Journal”, “Washington”: “Washington Post”

SoA-t SoA-s MBR human
RS 0.29 0.26 0.26 0.48
BERT 0.28 0.23 0.25 0.60
BI 0.28 0.24 0.25 0.50
TI 0.28 0.24 0.29 0.60
BO 0.32 0.30 0.30 0.56

Table B1: Comparison of agreement (τ ) between ground
truth data and media bias estimations generated using
different mask and prompt selection methods. Agree-
ments are calculated using Kendall’s τ for the “The
Affordable Care Act” topic.

default hyper-parameters of the “Dictionary” li-
brary of “gensim”. For the “LdaMulticore”, we set
the number of topics to be 10, random seed as 42,
“workers” as 4, “passes” to be 2, and keep all the
other hyper-parameters as the default value.

For training the Tf-IDF baseline, we utilize
the “TfidfVectorizer” of “sklearn”. We set the
“ngram_range” to be “(1,3)” which means the TF-
IDF model will consider unigram, bigram, and
trigram tokens. We limit to bigrams because it
achieved the best performance. We keep all the
other parameters to be the default value.

For the LM-c baseline, we utilize a language
model for the task of predicting the source of in-
stances. We set the epoch to be 10 and test the
performance at the end of each epoch. We use
the model that achieves the best performance for
encoding the instances in the dev sets.

For the LM-m baseline, we utilize the fine-tuned
model without any change.

When conducting hierarchical clustering (see
Section G), we utilize the “AgglomerativeCluster-
ing” library from “sklearn”. We set the “linkage”
to be “complete” and keep all the default hyper-
parameters.

C.3 Steps for Reproducing our Results
As part of the supplementary material, we have
included both the code and data for reproducing our
results. After downloading the “code” and “data”,
please unzip them and put all folders from the “data”
folder in the “code” folder. To reproduce the work,
for each topic (“climate-change”, “corporate-tax”,
“drug-policy”, “gay-marriage” and “obamacare”),
please run the following three shells in sequence:
“./shell/data_collect.sh”, “./shell/train_lm.py” and
“./shell/media_encode.sh”. All these three shells
accept the name of the topic as the parameter.

To calculate the performance of base-
lines, pleases run the following three
shells:“./shell/run_mlm.sh”, “./shell/run_class.sh”,
and “./shell/get_baseline.sh”

D Human Evaluation

D.1 Dataset Construction
We rely on human annotation data for evaluating
our framework. We recruit five students from the
United States (3 undergrads and 2 doctoral; 3 fe-
male and 2 male) with knowledge of the U.S. po-
litical landscape. We choose five of the ten media
outlets (Breitbart News Network, CBS News, CNN,
Fox News, and Wall Street Journal). We first pro-
vide students with 75 sample articles (3 articles on
each of the 5 topics for each outlet) for reference.
Next, we ask the respondents to evaluate the simi-
larity among the 5 media outlets. Specifically, for
each media outlet pair (e.g. CNN and Fox News),
we ask the respondents to choose which of the two
outlets they consider ideologically closest to each
of the remaining three outlets. We also asked the
respondents to rate their confidence in each choice.

An example of the survey question is shown in
Figure D1. In this example, respondents are re-
quired to choose whether Breitbart News Network
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Climate Cor Drug SSM Care Total
# of bigrams 39 37 37 31 75 219
# of instances 1,856 2,067 1,992 1,514 4,071 11,500
# of masked prompts 4,299 5,152 5,161 3,550 13,160 31,322

Table B2: The statistics of the number of bigrams, instances in the dev set, and masked prompts for the BO prompt
and mask selection method. “Climate” : “Climate Change”, “Cor” : “Corporate Tax”, “Drug” : “Drug policy”,
“SSM” : “Gay Marriage”, “Care” : “The Affordable Care Act”.

or CBS News is more similar to CNN, Fox News,
and Wall Street Journal, along with the confidence
for their selection.

Figure D1: Example of the human evaluation

D.2 Results

In Table D1, we show the performance of each
combination of prompt generation method, nor-
malization method, and language models. We can
observe that except for the choice of LM, the perfor-
mance of our model is dependent on these choices.

E Automatic Evaluation

Except for the human evaluation, we also evaluate
the performance of our framework with three in-
dependent ground-truth datasets based on survey
data from Pew Research (Jurkowitz et al., 2020)
and Allsides.com.

E.1 Ground Truth Dataset Construction

We construct three ground truth datasets for auto-
matic evaluation purpose. Two datasets, SoA-s and
SoA-t, are based on survey data from Pew Research

(Jurkowitz et al., 2020). The raw data of the SoA-s
(source) dataset includes the share of all US adults
that read news articles from each outlet, while the
SoA-t (trust) dataset includes the share of all US
adults who trust these news outlets. Both datasets
include the share of all US adults regardless of ide-
ology and all US adults with a particular ideology.
To reduce the influence of the popularity of particu-
lar outlets, we normalize the data of each ideology
by the share of all US adults for each outlet. For ex-
ample, 47% of all U.S adults trust CNN, and 67%
of Democrats trust CNN. The normalized score for
CNN for Democrat will thus be 1.43. Table E1 two
examples for the SoA-s dataset. There are 7 differ-
ent labels showing different parties and ideologies.
The “ALL U.S. adults ” is used as the baseline for
measuring the tendency of trusting media outlets
for people with different political leanings.

The third dataset (MBR) is based on expert cura-
tion of media partisanship by Allsides.com 5. This
dataset labels each media outlet with five politi-
cal leanings, from left to right, based on editorial
review, third-party analysis, independent review,
surveys, and community feedback.

We measure the relative rankings of the outlets
using these ground truth datasets using a similar
procedure as described in Section 3.3: for each
outlet, we calculate the distance to the other outlets
(based on their ground truth political ideology la-
bels) and create a ranked list. For SoA-s and SoA-t
we use cosine distance (since these datasets pro-
vide a distribution over ideologies for each outlet),
while for MBR we look at the absolute distance
between the outlets (since this dataset provides a
single ideological score for each outlet).

E.2 Results

The Kendall’s τ between different ground truth
datasets (SoA-t and MBR) is only about 0.5. We
believe this can be seen as an upper bound for our
experiments.

5https://www.allsides.com/media-bias/media-bias-ratings
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dealarative interrogative association bigram outer
q&a single q&a single q&a single

RoBERTa
no 0.28(0.27) 0.45(0.09) 0.07(0.23) 0.46(0.1) 0.41(0.21) 0.28(0.09) 0.45(0.09)
general 0.38(0.10) 0.41(0.14) 0.44(0.17) 0.45(0.17) 0.41(0.13) 0.44(0.14) 0.49(0.16)
domain 0.42(0.11) 0.39(0.15) 0.45(0.13) 0.46(0.20) 0.38(0.10) 0.38(0.18) 0.50(0.07)

BERT-un
no 0.24(0.00) 0.54(0.16) 0.26(0.10) 0.33(0.15) 0.24(0.00) 0.26(0.04) 0.41(0.13)
general 0.35(0.06) 0.45(0.19) 0.48(0.15) 0.37(0.16) 0.30(0.12) 0.45(0.33) 0.36(0.11)
domain 0.30(0.13) 0.50(0.18) 0.46(0.15) 0.42(0.27) 0.38(0.15) 0.41(0.32) 0.48(0.08)

BERT-ca
no 0.27(0.04) 0.34(0.11) 0.23(0.14) 0.43(0.22) 0.26(0.04) 0.24(0.00) 0.34(0.08)
general 0.34(0.17) 0.49(0.11) 0.35(0.09) 0.49(0.13) 0.33(0.12) 0.54(0.06) 0.42(0.11)
domain 0.45(0.22) 0.53(0.08) 0.43(0.23) 0.58(0.16) 0.38(0.17) 0.52(0.11) 0.47(0.10)

Table D1: Agreement between media similarity rankings using our framework and the human evaluation dataset.
Agreement is calculated using Kendall’s τ (higher magnitude is better). The results show the average performance
across 5 topics. The standard deviations are shown in the brackets. “RoBERTa” : “RoBERTa-base”, “BERT-un”
: “BERT-base-uncased”, “BERT-ca” : “BERT-base-cased”. “no”: “no-normalization”, “general” : “general-
normalization” , “domain” : “domain-normalizatio”, “q&a” : question-answer pair pattern, “single” : single
sentence pattern

Original Processed
ABC News Breitbart ABC News Breitbart

All U.S. adults 33% 4% 1.00 1.00

Democrat/
Lean Dem 37% 0% 1.12 0.00

Republican/
Lean Rep 30% 8% 0.91 2.00

Liberal Dem/
Lean Dem 32% 0% 0.97 0.00

Conservative/
Moderate Dem/
Lean Dem

42% 1% 1.27 0.25

Moderate/
Liberal Rep/
Lean Rep

36% 3% 1.09 0.75

Conservative Rep/
Lean Rep 26% 11% 0.79 2.75

Table E1: Examples from the SoA-s dataset. We show
the original and processed data for ABC News and Bre-
itbart.

Table E2 shows the effect of prompt genera-
tion methods on this task. We can observe that
the single-sentence pattern achieves better perfor-
mance than the question-answer pair patterns. Dif-
ferent than the human evaluations, we see that the
performance of the automatic prompt generation
method bigram outer is better than the manual
methods. This is especially true for the declara-
tive manual method. This could be due to the lim-
ited number of manual prompts created for these
experiments.

Table E3 shows the influence of normalization
methods on this task. We can observe that two
normalization methods still achieve better perfor-
mance than the no-normalization method. When fo-
cusing on the “no-normalization” method, we can

observe that it’s only slightly better than a random
guess which suggests that it’s not a good choice for
this task.

Table E4 shows the influence of different LMs in
our framework. We see that our model is robust to
the choice of LMs, with slight differences between
the models.

In Table E5, we show the performance of all
combinations of our framework on the ground truth
datasets SoA-s, SoA-t, and MBR. Our results show
that the three factors of our framework (prompt gen-
eration, normalization, and choice of LM) should
be set together.

F Error Analysis

In Figure F1, we show the τ distributions for all
topics and datasets.

G Hierarchical Clustering

In Figure G1, we show the agglomerative hierarchi-
cal clustering result on media bias encodings gen-
erated using our framework and the SoA-source
ground truth data for the topic “The Affordable
Care Act”. We can see that the grouping of outlets
is similar for both of the clusterings, with the no-
table exception of “Wall Street Journal”. Though
“Wall Street Journal” is placed at the center of the
SoA-source dataset, our method places it closer to
the political right, along with Fox and Breitbart.
This is interesting as “Wall Street Journal” was re-
cently bought by the parent company of Fox, the
"News Corp", moving it to the ideological right. It
is possible that the shift in the audience of “Wall
Street Journal” (as captured by SoA-source) is lag-
ging. Though these statements are purely specula-
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SoA-s SoA-t MBR

declarative
q&a 0.09(0.12) 0.11(0.10) 0.12(0.09)
single 0.20(0.03) 0.20(0.04) 0.19(0.04)

interrogative
q&a 0.12(0.12) 0.14(0.10) 0.12(0.09)
single 0.24(0.05) 0.23(0.04) 0.18(0.03)

association
q&a 0.12(0.12) 0.14(0.09) 0.14(0.08)
single 0.15(0.13) 0.16(0.11) 0.16(0.10)

bigram outer 0.27(0.04) 0.27(0.05) 0.23(0.04)

Table E2: Agreement (τ ) between media similarity rankings using our framework and the three ground truth datasets.
“q&a” : question-answer pair pattern, “single” : single sentence pattern.

SoA-s SoA-t MBR
no 0.06(0.14) 0.08(0.12) 0.07(0.09)
general 0.22(0.12) 0.21(0.10) 0.21(0.08)
domain 0.22(0.11) 0.22(0.09) 0.19(0.08)

Table E3: Agreement (τ ) between media similar-
ity rankings using our framework and three ground
truth datasets. “no” : “no-normalization”, “gen-
eral” : “general-normalization”, “domain” : “domain-
normalization”.

SoA-s SoA-t MBR
RoBERTa 0.18(0.11) 0.18(0.10) 0.17(0.07)
BERT-un 0.17(0.11) 0.18(0.09) 0.17(0.08)
BERT-ca 0.17(0.11) 0.18(0.09) 0.15(0.08)

Table E4: Agreement (τ ) between media similarity
rankings using our framework and three ground truth
datasets. “RoBERTa” : “RoBERTa-base”, “BERT-
un” :“BERT-base-uncased”, “BERT-ca” : “BERT-base-
cased”.

tive.
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declarative interrogative association bigram outer
q&a single q&a single q&a single

SoA-s

RoBERTa
no -0.08(0.11) 0.13(0.12) -0.04(0.23) 0.23(0.11) 0.07(0.2) -0.02(0.05) 0.29(0.14)
general 0.16(0.09) 0.20(0.09) 0.18(0.08) 0.32(0.06) 0.23(0.11) 0.26(0.09) 0.17(0.06)
domain 0.18(0.07) 0.22(0.09) 0.17(0.1) 0.31(0.07) 0.24(0.05) 0.27(0.07) 0.25(0.11)

BERT-un
no -0.05(0.01) 0.20(0.16) -0.05(0.06) 0.26(0.13) -0.05(0.01) -0.0(0.11) 0.3(0.07)
general 0.16(0.02) 0.23(0.15) 0.15(0.05) 0.21(0.10) 0.15(0.06) 0.26(0.10) 0.31(0.07)
domain 0.17(0.05) 0.20(0.11) 0.18(0.08) 0.2(0.11) 0.17(0.08) 0.22(0.08) 0.27(0.11)

BERT-ca
no -0.06(0.01) 0.23(0.04) -0.00(0.08) 0.2(0.06) -0.07(0.01) -0.05(0.00) 0.27(0.07)
general 0.20(0.10) 0.24(0.12) 0.23(0.06) 0.22(0.06) 0.15(0.07) 0.2(0.05) 0.32(0.09)
domain 0.17(0.02) 0.18(0.07) 0.24(0.05) 0.18(0.06) 0.21(0.06) 0.21(0.04) 0.28(0.10)

SoA-t

RoBERTa
no -0.04(0.11) 0.14(0.12) -0.02(0.21) 0.2(0.07) 0.1(0.19) 0.03(0.05) 0.29(0.11)
general 0.16(0.09) 0.19(0.10) 0.19(0.08) 0.3(0.06) 0.22(0.12) 0.25(0.08) 0.15(0.06)
domain 0.18(0.10) 0.22(0.11) 0.19(0.09) 0.29(0.06) 0.23(0.04) 0.25(0.06) 0.27(0.08)

BERT-un
no -0.00(0.00) 0.17(0.16) 0.00(0.07) 0.26(0.12) -0.00(0.00) 0.04(0.08) 0.3(0.07)
general 0.16(0.06) 0.25(0.14) 0.16(0.06) 0.22(0.08) 0.16(0.03) 0.26(0.10) 0.28(0.08)
domain 0.16(0.05) 0.21(0.10) 0.17(0.06) 0.22(0.10) 0.18(0.07) 0.22(0.09) 0.27(0.11)

BERT-ca
no -0.00(0.01) 0.25(0.09) 0.05(0.10) 0.2(0.03) -0.01(0.02) 0.0(0.00) 0.27(0.06)
general 0.21(0.13) 0.21(0.11) 0.24(0.06) 0.21(0.04) 0.17(0.05) 0.19(0.05) 0.3(0.08)
domain 0.20(0.03) 0.18(0.09) 0.26(0.07) 0.18(0.09) 0.22(0.07) 0.19(0.08) 0.29(0.10)

MBR

RoBERTa
no -0.01(0.11) 0.18(0.12) -0.01(0.22) 0.14(0.13) 0.14(0.14) 0.02(0.01) 0.21(0.12)
general 0.18(0.1) 0.16(0.10) 0.20(0.11) 0.19(0.10) 0.27(0.14) 0.23(0.20) 0.24(0.07)
domain 0.19(0.06) 0.19(0.10) 0.21(0.15) 0.17(0.11) 0.2(0.06) 0.24(0.12) 0.19(0.05)

BERT-un
no 0.01(0.00) 0.16(0.15) 0.02(0.04) 0.21(0.12) 0.01(0.0) 0.06(0.07) 0.23(0.13)
general 0.18(0.04) 0.28(0.09) 0.18(0.06) 0.21(0.08) 0.16(0.08) 0.24(0.07) 0.3(0.09)
domain 0.15(0.05) 0.22(0.05) 0.17(0.05) 0.2(0.08) 0.19(0.08) 0.2(0.06) 0.2(0.09)

BERT-ca
no 0.01(0.01) 0.19(0.09) -0.00(0.1) 0.18(0.07) 0.01(0.02) 0.01(0.00) 0.25(0.07)
general 0.19(0.04) 0.18(0.08) 0.16(0.05) 0.15(0.06) 0.16(0.09) 0.22(0.06) 0.27(0.11)
domain 0.18(0.08) 0.15(0.07) 0.18(0.11) 0.15(0.08) 0.15(0.08) 0.23(0.06) 0.18(0.05)

Table E5: Agreement between media similarity rankings using our framework and the “SoA-s”, “SoA-t” and “MBR”
datasets. Agreement is calculated using Kendall’s τ (higher magnitude is better). The results show the average
performance of 5 topics. The standard deviations are shown in the brackets. “RoBERTa” : “RoBERTa-base”,
“BERT-un” :“BERT-base-uncased”, “BERT-ca” : “BERT-base-cased”, “no” : “no-normalization”, “general” :
“general-normalization”, “domain” : “domain-normalizatio” .“q&a” : question-answer pair pattern, “single” : single
sentence pattern.
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Figure F1: The distribution of Kendall’s τ for different topics and ground truth datasets
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Figure G1: Hierarchical clustering result of our framework (left) and the SoA-s dataset (right). “NYTimes” : “New
York Times”, “Wallstreet” : “The Wall Street Journal”, “Washington” : “Washington Post”. The Kendall’s τ is 0.41
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