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Abstract
In this paper, we investigate to which extent
contextual neural language models (LMs) im-
plicitly learn syntactic structure. More con-
cretely, we focus on constituent structure as
represented in the Penn Treebank (PTB). Us-
ing standard probing techniques based on di-
agnostic classifiers, we assess the accuracy of
representing constituents of different categories
within the neuron activations of a LM such as
RoBERTa. In order to make sure that our probe
focuses on syntactic knowledge and not on im-
plicit semantic generalizations, we also experi-
ment on a PTB version that is obtained by ran-
domly replacing constituents with each other
while keeping syntactic structure, i.e., a seman-
tically ill-formed but syntactically well-formed
version of the PTB. We find that 4 pretrained
transfomer LMs obtain high performance on
our probing tasks even on manipulated data,
suggesting that semantic and syntactic knowl-
edge in their representations can be separated
and that constituency information is in fact
learned by the LM. Moreover, we show that
a complete constituency tree can be linearly
separated from LM representations.1

1 Introduction

Over the last years, neural language models (LMs),
such as BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019), RoBERTa (Liu et al., 2019b), and
DistilBERT (Sanh et al., 2020), have delivered un-
matched results in multiple key Natural Language
Processing (NLP) benchmarks (Wang et al., 2018).
Despite the impressive performance, the black-box
nature of these models makes it difficult to ascer-
tain whether they implicitly learn to encode linguis-
tic structures, such as constituency or dependency
trees.

There has been a considerable amount of re-
search conducted on questioning which types of lin-
guistic structure are learned by LMs (Tenney et al.,

1Code for our experiments is available at https://
github.com/davidarps/constptbprobing

2019b; Conneau et al., 2018; Liu et al., 2019a). The
motivation behind asking this question is two-fold.
On the one hand, we want to better understand
how pre-trained LMs solve certain NLP tasks, i.e.,
how their input features and neuron activations con-
tribute to a specific classification success. A second
motivation is an interest in distributional evidence
for linguistic theory. That is, we are interested
in assessing which types of linguistic categories
emerge when training a contextual language model,
i.e., when training a model only on unlabeled text.
The research in this paper is primarily motivated
by this second aspect, focusing on syntactic struc-
ture, more concretely on constituency structure.
We investigate, for instance, for pairs of tokens in
a sentence whether a LM implicitly learns which
constituent (NP, VP, . . . ) the two tokens belong to
as their lowest common ancestor (LCA). We use
English Penn Treebank data (PTB, Marcus et al.,
1993) to conduct experiments.

A number of studies have probed LMs for de-
pendency structure (Hewitt and Manning, 2019;
Chen et al., 2021) and constituency structure (Ten-
ney et al., 2019b). We probe constituency structure
for the following reasons. In contrast to depen-
dency structure, it can be richer concerning the
represented abstract syntactic information, since it
directly assigns categories to groups of tokens. On
the other hand, not all dependency labels are rep-
resented in a standard constituency structure; but
they can be incorporated as extensions of the cor-
responding non-terminal nodes (see, e.g., the PTB
label NP-SBJ in App. A.1). To quantify the gain
that we get from probing constituency rather than
dependency trees, we compare the unlabeled brack-
etings in the syntactic trees in both formalisms on
the PTB (Marcus et al., 1993; de Marneffe et al.,
2006), where an unlabeled bracketing is the yield
of a subtree. We find that while 97% of the brack-
etings in a dependency tree are also present in a
constituency tree, only 54% of the bracketings in
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the constituency tree are present in the dependency
tree. This shows that constituent trees can contain
much more fine-grained hierarchical information
than dependency trees. A further reason for focus-
ing on constituency structure is that this is the type
of structure most linguistic theories use.

We use diagnostic classifiers (Hupkes et al.,
2018) and perform model-level, layer-level and
neuron-level analyses. Most work on diagnostic
classifiers performs mean pool over representa-
tions when probing for a relationship between two
words (Durrani et al., 2020). We empirically show
that mean pool results in lossy representation, and
we recommend concatenation of representations as
a better way to probe for relations between words.

A difficulty when probing a LM for whether cer-
tain categories are learned is that we cannot be sure
that the LM does not learn a different category in-
stead that is also predictive for the category we
are interested in. More concretely, when probing
for syntax, one should make sure that it is not se-
mantics that one finds and considers to be syntax
(since semantic relations influence syntactic struc-
ture). This point was also observed by Gulordava
et al. (2018) and, more recently, Hall Maudslay and
Cotterell (2021). Therefore, before probing the LM
for syntactic relations, we manipulate our data by
replacing a subset of tokens with other tokens that
appear in similar syntactic contexts, thereby ob-
taining nonsensical text that still has a reasonable
syntactic structure. We then conduct a series of
experiments that show that even for these nonsen-
sical sentences, contextual LMs implicitly repre-
sent constituency structure. Lastly, we questioned
whether a full syntactic tree can be reconstructed
using the linear probe. We achieve a labeled F1
score of 82.6% for RoBERTa when probing on the
non-manipulated dataset in comparison to 51.4%
with a random representation baseline.

The contributions of our work are as follows:

• We find that constituency structure is linearly
separable at various granularity levels: At the
model level, we find that four different LMs
achieve similar overall performance on our
syntactic probing tasks, but make slightly dif-
ferent predictions. At the layer level, the mid-
dle layers achieve the best results. At the neu-
ron level, syntax is heavily distributed across
neurons.

• We use perturbed data to separate the effect
of semantics when probing for syntax, and

we find that different sets of neurons capture
syntactic and semantic information.

• We show that a simple linear probe is effec-
tive in analyzing representations for syntac-
tic properties and we show that a full con-
stituency tree can be linearly separated from
LM representations.

The rest of the paper is structured as follows.
The next section introduces related work. We de-
fine our linguistic probing tasks in Sec. 3. Sec. 4
introduces our experimental methodology. Sec. 5,
6, and 7 discuss our experiments and their results,
and Sec. 8 concludes.

2 Related work

Syntactic information in neural LMs An im-
portant recent line of research (Adi et al., 2017;
Hupkes et al., 2018; Zhang and Bowman, 2018;
Blevins et al., 2018; Hewitt and Manning, 2019;
Hewitt and Liang, 2019; Reif et al., 2019; Tenney
et al., 2019a; Manning et al., 2020; Hall Maudslay
et al., 2020; Li et al., 2020; Newman et al., 2021;
Hewitt et al., 2021; Belinkov, 2022; Sajjad et al.,
2022b; Dalvi et al., 2022) has focused on finding la-
tent hierarchical structures encoded in neural LMs.
A common line of work on interpreting models use
a probing classifier to gauge the amount of linguis-
tic knowledge learned in the representation (Alain
and Bengio, 2016; Belinkov et al., 2020; Conneau
et al., 2018).

An ample body of research exists on probing
the sub-sentential structure of contextualized word
embeddings. Peters et al. (2018) probed neural net-
works to see to what extent span representations
capture phrasal syntax. Tenney et al. (2019b) de-
vised a set of edge probing tasks to get new insights
on what is encoded by contextualized word embed-
dings, focusing on the relationship between spans
rather than individual words. This enables them to
go beyond sequence labeling problems to syntactic
constituency, dependencies, entity labels, and se-
mantic role labeling. Their results on syntactic con-
stituency are in line with our findings. The major
difference is that we employ simpler probes while
achieving similar results. Moreover, we separate
the effect of semantics using corrupted data and we
reconstruct full constituent trees using our probing
setup. Most recently, Wu et al. (2020) propose a
parameter-free probing technique to analyze LMs
via perturbed masking. Their approach is based on
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accessing the impact that one word has on predict-
ing another word within a sequence in the Masked
Language Model task. They have also shown that
LMs can capture syntactic information with their
self-attention layers being capable of surprisingly
effective learning.

Hewitt and Manning (2019) demonstrated, by
using a structural probe, that it is possible to find a
linear transformation of the space of the LM’s ac-
tivation vectors under which the distance between
contextualized word vectors corresponds to the dis-
tance between the respective words in the depen-
dency tree. In a similar vein, Chen et al. (2021) in-
troduced another structural probe, Poincaré probe
and have shown that syntactic trees can be better
reconstructed from the intermediate representation
of BERT in a hyperbolic subspace.

Syntactic and semantic knowledge Gulordava
et al. (2018) and Hall Maudslay and Cotterell
(2021) recently argued that the work on probing
syntax does not fully separate the effect of seman-
tics while probing syntax. Both modify datasets
such that the sentences become semantically non-
sensical while remaining syntactically well-formed
in order to assess, based on this data, whether a
LM represents syntactic information. Gulordava
et al. (2018) modify treebanks in four languages by
replacing content words with other content words
that have matching POS and morphological fea-
tures. They focus on the question if agreement
information in the nonce sentences can be recov-
ered from RNN language models trained on regular
data. Hall Maudslay and Cotterell (2021) replaced
words with pseudowords in a dependency treebank,
and quantified how much the pseudowords affect
the performance of syntactic dependency probes.
We followed a similar setup to separate out the
effect of syntax from semantics. In contrast to
Hall Maudslay and Cotterell (2021), we replace
words with other words (not pseudowords) that oc-
cur in a similar syntactic context but are different
semantically. This way, the LM has seen most or
all words from the semantically nonsensical sen-
tences in pretraining and has learned their syntactic
properties.

Fine-grained LM analysis Durrani et al. (2020)
used a unified diagnostic classifier approach to
perform analyses at various granularity levels, ex-
tending Dalvi et al. (2019a). We follow their ap-
proach and perform model-level, layer-level and

neuron-level analyses (Sajjad et al., 2022a). We
additionally extend their approach by proposing
an improved way to probe representations of two
words. Previous work has mainly used a bilin-
ear probe to investigate syntax. We select a linear
model for our experiments. Selecting a weak model
ensures that the representations learn the linguis-
tic property, and the probe is not relying on the
strength of the classification model used.

3 Diagnostic Tasks and Constituency
trees

In this section, we define three classification tasks
that are aimed at making different properties of con-
stituency structure explicit. More specifically, the
goal of these tasks is to make explicit if and how the
LMs encode syntactic categories, such as S, NP,
VP, PP. The first task, lowest common ancestor
prediction, focuses on constituents that span large
portions of the sentence. The second task, chunk-
ing, focuses on constituents with smaller spans.
The third task focuses on complete syntactic trees.
Lowest common ancestor (LCA) prediction Let
s = w0, . . . , wn be a sentence. Given combined
representations of two tokens wi, wj with j ≥ i,
predict the label of their lowest common ances-
tor in the constituency tree. LCA prediction is a
multiclass classification task with 28 target classes
(for the PTB). In the example in Fig. 1, luxury and
maker have the LCA NP: the lowest node dominat-
ing both words has label NP (ignoring the function
tag SBJ). The task also predicts LCA of two iden-
tical tokens. In this case, the lowest phrasal node
above the token is the target label (for example, VP
is the target label for sold).
Chunking For each token wi, predict whether it is
the beginning of a phrase (B), inside a phrase (I),
the end of a phrase (E) or if the token constitutes
a single-token phrase (S). A token can be part of
more than one phrase, and in this case we consider
the shortest possible phrase only. For example,
1,214 in Fig. 1 has label B because it marks the
beginning of a noun phrase. We also propose a
version of this task with finer labels that combine
B,I,E,S with the different phrase labels. In the
detailed tagset, 1, 214 receives the label B-NP.
Reconstructing full constituent trees Vilares et al.
(2020) considered constituency parsing as a multi-
label sequence labeling problem. For each token
wi, three labels are predicted: First, the label of
the LCA of the token pair (wi, wi+1). Second, the
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Figure 1: Example tree from the PTB. The line below the text shows gold labels for the simple chunking task. The
bottom line shows label pairs from which the complete tree can be reconstructed.

depth of the LCA of (wi, wi+1) in the tree, rela-
tive to the depth of (wi−1, wi). Third, if the first
token is a single-word constituent, and the label of
the internal tree node directly above wi. (Tokens
in multiword constituents make up > 90% of the
data and receive a negative label.). For the first two
classifications, see Fig. 1. We build separate lin-
ear classifiers for each of these tasks and use their
predictions to reconstruct full constituent trees.

4 Methods

Diagnostic classification A common method to
reveal linguistic representations learned in contex-
tualised embeddings is to train a classifier, a probe,
using the activations of the trained LM as features.
The classifier performance provides insights into
the strength of the linguistic property encoded in
contextualised word representations. For all our ex-
perimental setups, we employ the NeuroX toolkit
(Dalvi et al., 2019b) for diagnostic classification,
as it confers several mechanisms to probe neural
models on the level of both neurons and layers.
Layer-level probing We probe the activations of
individual layers with linear classifiers to measure
the linear separability of the syntactic categories at
this layer. The performance at each layer serves as
a proxy to how much information it encodes with
respect to a given syntactic property.
Neuron-level probing Layer-wise probing cannot
account for all syntactic abstractions encoded by
individual neurons in deep networks. Some groups
of neurons that are spread across many layers might
robustly respond to a given linguistic property with-
out being exclusively specialized for its detection.
By operating also at the level of the neurons, we
aim at separating the most salient neurons across
the network that learn a given linguistic property.

We conduct a linguistic correlation analysis, as
proposed by Dalvi et al. (2019a). This consists in
augmenting the linear classifier with elastic net reg-
ularization (Zou and Hastie, 2005). The classifier
is then trained by minimizing the loss function in
Eq. 1:

L(θ) = −∑
j logPθ(tsj |sj)

+λ1∥θ∥1 + λ2∥θ∥22
(1)

where (θ) are the trained weights of the classifier
and λ1∥θ∥1 and λ2∥θ∥22 correspond to L1 and L2

regularization. Elastic net regularization strikes a
balance between selecting very focused features
(neurons) (L1) versus distributed features (L2)
shared across many properties. The input neurons
to the linear classifier are ranked by saliency with
respect to the classification task.
Input Representation We combine the represen-
tation vectors xi, xj ∈ Rr of two tokens in LCA
prediction and parse tree reconstruction via con-
catenation (concat(xi, xj) ∈ R2r). In all experi-
ments, concat produced significantly better results
than elementwise averaging or a variant of the max-
imum. We cover the latter methods in Apps. A.3
and A.6.

5 Experimental Setup

5.1 Data

We use data from the English Penn Treebank (PTB,
Marcus et al., 1993) for all our experiments. As
preprocessing, we remove punctuation and null el-
ements from the trees. The original dataset makes
use of fine-grained category labels that consist of
the syntactic category and function tags. Function
tags indicate grammatical (such as SBJ for sub-
ject) or adverbial (LOC for locative) information.

6741



For chunking, the label distribution is relatively
balanced. For LCA prediction, we remove all func-
tion tags to keep the number of target labels small.
Most of the token pairs have a relatively large dis-
tance in the constituent tree, and their LCA is a
node very high in the tree (typically with a label
for some kind of sentence, such as S or SBAR). In
addition, some phrase labels are less frequent than
others (see App. A.4). We train and evaluate on the
standard PTB training/development split.

5.1.1 Syntactic and semantic knowledge

To ensure that the probing classifier captures syn-
tactic properties and not semantic properties, we
use the original PTB data as well as two modified
versions of the PTB with semantically nonsensical
sentences that have the same syntactic structure as
the original data. The modified versions of the PTB
are obtained by making use of the dependency PTB
(de Marneffe et al., 2006):

1. Record the dependency context of each token
in the dataset. The dependency context con-
sists of (i) the POS tag, (ii) the dependency
relation of the token to its head, and (iii) the
list of dependency relations of the token to its
dependents.

2. Replace a fraction of tokens with other tokens
that also appear in the dataset in the same
dependency context.

Two versions are created, replacing either a third
or two thirds of the tokens. See Table 1 for two
examples. When creating manipulated datasets,
we separate the training and evaluation data. To
create manipulated training data, we look for token
replacements in the training split of the PTB (PTB
sections 0-18). For manipulated evaluation data,
we look for token replacements in the development
and test splits of the PTB (sections 19-24). This
ensures that the training and evaluation data do not
mix, and at the same time, meanings of the newly
created sentences are as diverse as possible.

5.2 Probing Classifier Settings

We use linear classifiers trained for 10 epochs with
Adam optimization, an initial learning rate of 0.001
and regularization parameters λ1 = λ2 = 0.001.
The contextualized representations for an input to-
ken is created by averaging the representations of
its subword tokens of the LM tokenizer.

5.3 Transformer Models

We train structural probes on three 12-layered pre-
trained transformer models; the base versions of
BERT (uncased, Devlin et al., 2019), XLNet (cased,
Yang et al., 2019), and RoBERTa (Liu et al., 2019b),
and a 6-layered model; DistilBERT (uncased, Sanh
et al., 2020). This provides an opportunity to com-
pare the syntactic knowledge learned in models
with different hyperparameter settings and pretrain-
ing objectives.

5.4 Baselines

We use three baselines to put the results of our
probes into context.
Random BERT The first baseline is used in all
experiments. It evaluates how much information
about linguistic context is accumulated in the LM
during pretraining (Belinkov, 2022). The model
for this baseline has the same neural architecture,
vocabulary and (static) input embeddings as BERT
base, but all transformer weights are randomized.
Selectivity To evaluate if the the probe makes lin-
guistic information explicit or just memorizes the
tasks, we use the control task proposed by He-
witt and Liang (2019) and described in App. A.2.
The difference between control task performance
and linguistic task performance is called selectivity.
The higher the selectivity, the more one can be sure
that the classifier makes linguistic structure inside
the representations explicit and does not memorize
the task. This baseline is used for the chunking and,
in a modified version, the LCA experiments.
Individual tokens This baseline evaluates how
much the representation of each token, in contrast
to token pairs, contributes to the overall perfor-
mance. This baseline is used only for the LCA
experiments. We train two classifiers using the rep-
resentation of either the first token in the pair or
the second token and evaluate the performance on
the diagnostic tasks. The trees in the PTB are right-
branching. The left token in most cases is closer to
the LCA node than the right token, thus we expect
that the classifier trained on only the left token has
a better overall performance.

6 Results for LCA prediction and
chunking

We experimented using four pretrained models.
Due to the limited space and the consistency of
results, we reported the analysis for the RoBERTa
model only in most of the cases. The complete re-
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orig. Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.
.33 Pierre Berry, 5,400 years old, shall join the board as a nonexecutive director Nov. 29.
.67 Mesnil Vitulli, 9.76 beers state-owned, ca succeed either board as a cash-rich director October 213,000.

orig. Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.
.33 Mr. Vinken is growth without Elsevier Hills, each Dutch publishing group.
.67 Tata Helpern s chairman plus Elsevier Ohls, a Dutch snaking group.

Table 1: Examples for the manipulated data. Replaced words are printed in boldface.

train/test RoBERTa
task sel. ∆Random

LCA
concat

orig./orig. 82.8 58.3 23.4
.33/orig. 81.1 62.2 27.3
.33/.33 79.7 56.8 25.6
.67/orig. 79.3 61.5 25.3
.67/.67 77.4 59.9 23.1

chunking
simple

orig./orig. 96.0 13.7 22.2
.33/orig. 95.3 15.0 26.2
.33/.33 94.4 13.1 25.8
.67/orig. 94.5 14.2 23.6
.67/.67 93.3 13.6 23.2

chunking
detailed

orig./orig. 91.2 9.4 32.3
.33/orig. 90.5 10.4 32.8
.33/.33/ 89.2 10.1 33.1
.67/orig. 89.3 8.8 36.5
.67/.67 87.1 6.7 36.1

Table 2: Results on different datasets. For each task,
there are different setups where the model is trained and
evaluated on the unchanged treebank (orig.), and two
versions with either a third (0.33) or two thirds (0.67)
of the tokens replaced. ’task’ shows the performance on
test set. ’sel.’ shows the selectivity (difference to control
task), and ∆Random shows the performance difference
to the Random BERT model.

sults of all models are shown in appendix sections
A.5 and A.6. In the following, we assess the over-
all performance of the probing classifiers on both
linguistic tasks. Then, we evaluate how changing
the semantic structure of the data influences the
probing classifiers. Lastly, we show some insights
into layer-level and neuron-level experiments.

6.1 Overall performance

Tab. 2 shows the performance of the classifiers
trained on non-manipulated data using all neurons
of the network (orig./orig.). We observed high per-
formance for each diagnostic task. The differences
to the baselines show that the knowledge about the
task is indeed learned in the representation.
LCA prediction The best results are achieved
when concatenating token representations (82.8%
acc.). For other representation methods, see
App. A.6. We additionally consider single word
representations from the word pair as input. The
left token representations are better predictors

(66.5% acc. on orig./orig.) than those from the
right token (40.8%). The large differences between
concat and the baselines shows that the probe is not
memorizing the task, and that information relevant
for predicting LCA is acquired during pretraining.
Chunking Chunking detailed (91.2% acc.) is a
harder task than chunking simple (96.0%). Al-
though the classifier for the detailed tagset shows
relatively low selectivity in comparison to chunk-
ing simple, the overall selectivity is high enough to
claim that the knowledge about these probing tasks
is learned in the representation. The difference to
the random BERT model is higher for chunking de-
tailed than for chunking simple, which shows that
fine-grained syntactic knowledge is indeed learnt
during pretraining.

6.2 Does the probe learn syntax or semantics?

The high performance of the classifiers serves as a
proxy to the amount of syntactic knowledge learned
in the representations. But Hall Maudslay and Cot-
terell (2021) argued that due to the presence of
semantic cues in the data, high performance of a
syntactic probe may not truly reflect the learning
of syntax in the model. To investigate this, we
manipulated our diagnostic task data (Sec. 5.1) to
separate syntax from semantics, and then trained
the probing classifiers on the manipulated data.

The second column in Table 2 shows variations
of the manipulated data. The classification per-
formance dropped slightly on the diagnostic tasks
at 0.33/orig. Moreover, the classifier performed
slightly better when evaluating on original data
(∗/orig.) compared to manipulated data (such as
.33/.33). There are two possible reasons for this:
First, the probing classifiers may still rely on se-
mantic knowledge, even when trained on the ma-
nipulated data; second, it is possible that the manip-
ulated data contains syntactically ill-formed sen-
tences. Nonetheless, performance and differences
to baselines are reasonably high and give good rea-
son to believe that the classifiers are able to extrap-
olate syntactic knowledge even from semantically
nonsensical data. We now proceed with summa-
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Figure 2: Acc. of layer-wise retraining probing classi-
fiers on RoBERTa (left) and BERT (right) representa-
tions for non-manipulated data.

0.01 0.10 0.20 0.30 0.40 0.500.6

0.7

0.8

0.9

1.0

top
random
bot

0.01 0.10 0.20 0.30 0.40 0.500.6

0.7

0.8

0.9

1.0

top
random
bot

Figure 3: Acc. for simple (left) and detailed (right)
chunking tagsets, on top, random and bottom neurons
for RoBERTa on non-manipulated data. The horizontal
axis plots the fraction of neurons that is selected from
all layers.

rizing what our experiments tell about syntactic
knowledge in specific layers/neurons of the LM.

6.3 Layer-wise results

Fig. 2 shows how syntactic knowledge is dis-
tributed across all layers. The embedding layer
performed worse while middle layers showed the
best results, i.e., syntactic information is better rep-
resented in the middle layers. The highest layers
are more heavily influenced by the pretraining ob-
jective, which explains the consistent performance
drop across models and tasks on the last layers.

Comparing layer-wise performance with the
overall performance, none of the individual lay-
ers outperformed the classifier trained on all lay-
ers for chunking. In the case of LCA prediction,
the performance of layers 4-5 in RoBERTa (6-8 in
BERT) are better than the overall performance on
all layers. Comparing models, we observed that
RoBERTa learns the syntactic knowledge much
earlier in the network compared to BERT (see the
relatively sharp rise of performance in the lower
layers of RoBERTa).

6.4 Neuron-level results

In this section we carry out a more fine-grained
neuron-level analysis of the representations. Lin-
guistic correlation analysis (Dalvi et al., 2019a)
provides a ranking of neurons with respect to the
diagnostic task.

0 2 4 6 8 10 120

20

(a) BERT

0 2 4 6 8 10 120

20

(b) XLNet

0 2 4 6 8 10 120

20

(c) RoBERTa

Figure 4: Spread of neurons relevant for recognizing S
in LCA prediction, across layers.

0 2 4 6 8 10 120

20

Figure 5: Spread of neurons in RoBERTa across layers
that are relevant for identifying NPs in LCA prediction

Minimum Subset of Neurons We evaluated
the neuron ranking by training classifiers using
top/bottom/random N% neurons. Fig. 3 shows the
accuracy curves for the chunking task. The perfor-
mance margin between different selected neurons
is very low. This shows that syntactic information
can be extracted from any relatively small subset of
neurons i.e. 20−30% of neurons suffice for a prob-
ing classifier to perform with the same accuracy as
when trained on full representations. Neuron rank-
ing on combined representations does not work
well: In some cases, performance on a fraction of
randomly selected neurons is worse than perfor-
mance on the same fraction of neurons ranked as
important (see App. A.7).
Distribution of Neurons for LCA prediction
Training on subsets of the neurons for LCA predic-
tion is problematic, because the neuron ranking list
contains neurons from both token representations.
Even though, the distribution of salient neurons
across layers yields interesting insights. Fig. 4
presents the spread of top selected neurons for S.
As in Sec. 6.3, we found again that top neurons
learning syntactic properties come from the mid-
dle layers. For 12-layer LMs, we see a trend that
neurons from the positional encoding in the em-
bedding layer are utilized to identify distant tokens
with LCA S. When comparing the salient neurons
selected from each layer, we observe that for iden-
tifying S, neurons from the highest layers are less
relevant than when identifying NPs (Fig. 5). This
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might be due to the comparatively high structural
diversity we find in NPs.2

Neurons learning Syntax vs. Semantics Com-
paring the neuron rankings of chunking classifiers
trained on the different datasets shows that there is
relatively little overlap between the different groups
of highest-ranking neurons (see App. A.8). This
means that the probing classifiers focus on different
neurons when training on manipulated data, com-
pared to the original data. Presumably, the probe
focuses more on syntactic and less on semantic
information when trained on manipulated data.

7 Reconstructing full Parse Trees

With the insights gained in the previous section, we
test if full constituency trees can be linearly sepa-
rated from LM representations. For this, we train 3
linear classifiers that take as input the concatenated
representations of two adjacent tokens and predict
the three labels described in Sec. 3. The classifiers
for this task take as input not the full LM representa-
tion from all layers, but instead the concatenations
of every third layer for the 12-layer LMs, and every
second layer for the 6-layer LM. This way, the in-
put dimensionality of the classifier is restricted, but
the probe can use information from different parts
of the LM. The probe is trained (evaluated) on all
38k (5.5k) sentences of the training (development)
split of the PTB. We find that the constituency trees
reconstructed from different LMs are of high qual-
ity (Tab. 3, App. A.9). We achieve a labeled F1
score of 82.6 on the non-manipulated dataset for
RoBERTa (80.5 for XLNet, 80.4 for BERT) which
is 31 points better than the random BERT base-
line. This outperforms the result from Vilares et al.
(2020) for BERT by 2.2 points. They also use a
linear classifier, but their classifier receives as input
only the final layer representation of BERT for the
first token in the token pair.

When comparing trees reconstructed from differ-
ent LMs against each other, we find however that
they are quite different. For example, comparing
the sentence-level F scores for trees reconstructed
from XLNet to those from RoBERTa yields a Pear-
son correlation of 0.52 only (compared to 0.64 for
DistilBERT and BERT, see App. A.10 for the full
comparison). This shows that different syntactic
properties are linearly separable from the represen-

2All models are more accurate in LCA prediction when
the two tokens are more distant, see App. A.6. Large distance
between tokens correlates with LCA nodes close to the root
of the syntactic tree, where the LCA often has label S.

RoBERTa ∆Random

orig. 82.6 31.2
.33/orig. 80.9 31.3
.33/.33 77.8 31.7
.67/orig. 78.3 30.4
.67/.67 72.8 28.1

Table 3: Labeled F1 scores for all datasets for recon-
structing full parse trees

tations of different LMs. These results are not a
shortcoming of our probe. We reconstructed parse
trees from RoBERTa for the same dataset twice,
and a comparison of the two sets of trees gave a
labeled F1 score of 96.3. We conclude from this
that LMs trained on different data and towards dif-
ferent objectives, such as RoBERTa and XLNet,
implicitly make different syntactic generalizations.
This insight might have implications for parsing
(which is not in the scope of our paper): combining
embeddings from both LMs might improve parsing
results, compared to using just one LM, as usually
done.

8 Conclusions

Our experiments have shown that different pre-
trained LMs encode fine-grained linguistic infor-
mation that is also present in constituency trees.
More specifically, LMs are able to identify proper-
ties of different types of constituents, such as S, NP,
VP, PP. Good results on the chunking task show
that the classifiers are able to combine knowledge
about the kind of constituents that a token is part
of, and knowledge of the position of a token in
the constituent. Using the sequence labeling tasks
presented in Vilares et al. (2020), we have shown
that full constituency trees are linearly separable
from four different pretrained LMs with high qual-
ity - even for semantically nonsensical data. In line
with Gulordava et al. (2018), we observe a mod-
erate performance drop between performance on
the original and nonce dataset. The performance
drop is smaller than in Hall Maudslay and Cot-
terell (2021). who use English pseudowords which
the LM has probably never encountered. We use
English words whose syntactic and semantic prop-
erties are already well-established inside the LM.

In future work, we plan to extend this syntac-
tic probing approach to other languages and other
syntactic annotation schemes (for instance Hock-
enmaier and Steedman, 2007; Evang et al., 2021).
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Limitations

Our work investigates the question whether syntac-
tic structure is linearly separable from LM repre-
sentations. However, we make no claim about the
question if the syntactic concepts we probe for are
actually relevant for LM predictions.

We demonstrate the effectiveness of our method
for one high-resource language, namely English.
While our methodology is in principle language-
agnostic, our study requires high-performing LMs
as well as large amounts of annotated data. Both
are available for only a relatively small set of lan-
guages. More specifically, we found in pilot ex-
periments that supervised probing in general and
separating syntactic and semantic knowledge in
particular is very data-hungry. While high probe
performance on the original data required less than
10k sentences of training data, the performance
difference between original and semantically ma-
nipulated data shrank with increasing the size of the
training data from 10k sentences to 38k sentences.
Consequently, in order to have reliable findings, our
experiments require large datasets which reflects
into the need of sufficient computational resources.
For a general discussion of the limitations of su-
pervised probing classifiers, we refer to (Belinkov,
2022).
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A Appendix

A.1 Constituency and Dependency Trees
Here, you see the constituency tree (above the sentence) and the dependency tree (below) for a simple
sentence, following the annotation scheme of the PTB and its dependency version. More fine-grained
hierarchical structure is encoded in the node labels of the constituency structure. For example, the
constituency tree assigns the label VP to the spans walking on the moon and am walking on the moon.
However, these spans are not reflected by particular entities in the dependency tree.

S

VP

VP

PP-LOC

NP

NN
moon

DT
the

IN
on

VBG
walking

VBP
am

NP-SBJ

PRP
I

ROOT
aux

nsubj
dobj

det

case

A.2 Control tasks and Selectivity
To ascertain that our structural probe learns complex structural generalization and does not memorize
structural information from the task, following Hewitt and Liang (2019), we design two control tasks
(CT). This consists in randomizing the labels of syntactic categories, creating a new dataset. In our
implementation, the distribution of randomly selected labels approximates the class distribution in the
training set. For chunking, a numerical target label is assigned randomly to each word type. We slightly
modify this baseline to be able to handle token pairs. For LCA prediction, we assign a random numeric
label to each pair of word types. For example, the word pair (the, sold) in Fig. 1 always receives the label
1, regardless of the context where it occurs. And since the dataset contains more word type pairs than
individual word types, the control task setup is inherently more complex for LCA prediction than the one
for chunking.

A.3 Token combination methods
For LCA prediction, w conducted experiments using three different combination methods: (i) con-
catenation (concat(xi, xj) ∈ R2r, see Sec.4); (ii) element-wise average avg(xi, xj) ∈ Rr; and (iii)
element-wise signed absolute maximum maxs of two scalars m,n. maxs(wi, wj) ∈ Rr prefers strong
positive and negative neuron activations while keeping the sign of the activation value in the combined
vector:

maxs(m,n) =

{
m if |m| > |n|
n otherwise

(2)

Averaging is the most lossy combination: Large positive or negative neuron activations are canceled
out if they are not shared between both vectors. Concatenation is the only lossless combination. The
concatenation result concat(xi, xj) ∈ R2r has a larger dimensionality than the other combination
methods.
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A.4 Label distributions for the different probing tasks

B I E S

VP 13.77% 1.24% 0.07% 0.96%
NP 12.53% 8.83% 12.27% 4.05%
PP 9.73% 0.25% 0.00% 0.03%
NP-SBJ 2.96% 1.73% 3.11% 2.46%
SBAR 1.14% 0.10% 0.00%
ADJP 0.82% 0.21% 0.50% 0.38%
QP 0.51% 0.75% 0.85% 0.00%
ADVP 0.35% 0.04% 0.27% 1.57%
NP-TMP 0.28% 0.07% 0.29% 0.14%
S 0.25% 0.29%
NP-PRD 0.18% 0.18% 0.18% 0.03%
NP-ADV 0.16% 0.01% 0.16% 0.01%
NP-LGS 0.12% 0.16% 0.13% 0.02%
NP-EXT 0.08% 0.01% 0.03% 0.03%
NX 0.06% 0.06% 0.06% 0.03%
NAC 0.05% 0.04% 0.00% 0.00%
WHPP 0.04%
CONJP 0.04% 0.02% 0.04% 0.00%
WHNP 0.03% 0.01% 0.04% 0.75%
UCP 0.03% 0.06% 0.02%
SQ 0.02% 0.01%
NP-LOC 0.02% 0.00% 0.02% 0.04%
NP-TTL 0.02% 0.01% 0.02% 0.01%
NP-HLN 0.02% 0.02% 0.01% 0.00%
SINV 0.01% 0.00%
FRAG 0.01% 0.01% 0.00%
WHADVP 0.01% 0.00% 0.01% 0.18%
LST 0.01%
WHADJP 0.00% 0.00% 0.00%
X 0.00% 0.00% 0.00% 0.00%
SBARQ 0.00% 0.00%
NP-MNR 0.00% 0.00% 0.00%
NP-CLR 0.00% 0.00% 0.02%
INTJ 0.00% 0.00% 0.00% 0.01%
NP-TPC 0.00% 0.00% 0.00% 0.00%
NP-VOC 0.00% 0.00% 0.00%
NP-DIR 0.00% 0.00%
ADVP—PRT 0.00%

(a) Label distribution for the detailed chunking tagset. Empty
cells indicate that the combination of chunking label and phrase
label is not present in the training data. Cells rounded to 0.00%
indicate labels that are exceptionally rare in the training data.

S 39.20%
VP 25.37%
NP 22.66%
PP 5.35%
SBAR 2.65%
SINV 2.51%
ADJP 0.68%
ADVP 0.38%
QP 0.37%
FRAG 0.29%
UCP 0.13%
SQ 0.09%
WHNP 0.08%
NX 0.08%
SBARQ 0.05%
PRN 0.02%
WHADVP 0.02%
NAC 0.02%
CONJP 0.01%
WHPP 0.01%
X 0.01%
RRC 0.00%
INTJ 0.00%
LST 0.00%
ADVP—PRT 0.00%
WHADJP 0.00%
PRT—ADVP 0.00%
PRT 0.00%

(b) Label distribution for LCA prediction.

B I E S PCT
43.3% 14.1% 18.1% 10.7% 13.8%

(c) B: beginning, I: inside, E: end, S: Single, PCT: punctuation:
punctuation is not considered for evaluation

Table 4: Label distributions for the different probing tasks
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A.5 Chunking results

task train/test
DistilBERT BERT XLNet
task sel. task sel. task sel.

chunking simple orig./orig. 95.3 14.1 95.2 13.4 94.3 17.1
.33/orig. 94.1 14.9 94.4 14.9 93.9 18.7
.33/.33 93.7 15.2 93.7 14.5 92.8 17.8
.67/orig. 93.6 14.4 93.4 14.0 92.6 17.8
.67/.67 92.6 14.7 92.4 16.0 91.3 17.1

chunking detailed orig./orig. 90.3 8.7 90.6 9.4 91.1 16.5
.33/orig. 89.3 10.4 89.3 10.7 89.6 15.9
.33/.33/ 88.1 10.6 87.9 10.7 87.8 14.2
.67/orig. 88.5 9.7 88.1 9.7 87.9 13.8
.67/.67 86.3 8.5 86.1 8.8 86.4 12.8

(a) Results for chunking experiments with DistilBERT, BERT and XLNet

B I E S

B 108594 1238 65 1026
I 1683 33345 1504 217
E 119 836 46980 570
S 999 222 662 24597

(b) Confusion matrix for chunking experiments with RoBERTa.
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(c) Accuracy per category for the most frequent labels in the detailed tagset. All beginnings of frequent constituents are
recognized with high accuracy. The classifier is also able to distinguish between different kinds of NPs, such as NP without
further specification, subject NPs (NP-SBJ) or temporal and local NPs (NP-TMP,NP-LOC)

Table 5: Results for chunking
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A.6 LCA prediction results

task train/test RoBERTa DistilBERT BERT XLNet
task sel. task sel. task sel. task sel.

concat orig./orig. 82.9 58.3 81.0 55.2 81.4 59.0 83.1 67.8
.33/orig. 81.1 62.2 79.4 52.9 80.7 60.9 81.2 68.0
.33/.33 79.7 56.8 78.0 51.8 79.5 56.6 79.7 61.8
.67/orig. 79.3 61.5 78.6 58.2 79.5 65.2 80.9 59.9
.67/.67 77.4 59.9 75.9 53.3 77.5 61.5 78.2 61.4

maxs orig./orig. 69.3 42.7 68.6 40.1 63.4 39.7 70.5 54.5
.33/orig. 68.1 46.3 69.0 42.0 61.9 41.4 66.0 48.2
.33/.33 66.5 45.2 66.4 36.2 60.3 39.6 60.1 43.2
.67/orig. 65.8 45.0 64.5 41.6 61.0 43.6 59.2 37.8
.67/.67 62.3 43.9 63.3 38.0 59.0 39.4 55.1 32.0

avg orig./orig. 63.9 36.9 66.8 38.8 62.3 38.4 57.5 42.3
.33/orig. 64.3 37.2 66.1 38.7 63.9 39.3 58.9 45.0
.33/.33 62.0 36.8 64.1 31.3 61.8 37.1 54.8 34.5
.67/orig. 63.4 37.2 63.4 36.5 62.9 41.7 57.3 38.4
.67/.67 59.6 36.5 61.3 34.0 59.4 37.2 51.5 27.1

(a) LCA prediction results. The performance gains of concat wrt. avg and maxs are not matched by higher performance in
the control task for concat. Thus concat shows not only the best task performance but also the highest selectivity for LCA
prediction.

NP VP S SBAR PP ADJP ADVP

NP 87681 4229 7716 508 2299 337 393
VP 7817 99200 8389 1089 2228 121 755
S 5503 3776 159212 1575 691 93 346
SBAR 193 286 168 5849 212 10 4
PP 1754 848 331 189 18974 187 91
ADJP 629 384 59 5 4 1861 153
ADVP 50 104 38 20 0 1 2035

(b) Confusion matrix for LCA prediction for the most frequent constituents labels for RoBERTa when trained and evaluated
on non-manipulated data. The columns represent predicted values, rows represent actual values. Some categories are better
represented in the probing classifiers than others. For example, prepositional phrases are recognized quite reliably, but adjectival
phrases are confused for VPs and NPs in a number of cases. NPs are frequently confused with all other categories. The reason
might be that a variety of different phenomena are collected under NP, such as appositions and relative clauses.

left right

RoBERTa 66.5 40.8
DistilBERT 68.0 43.6
BERT 64.8 40.9
XLNet 62.1 40.7

(c) Results for single-token baseline on LCA
prediction
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(d) For LCA prediction, all models are more accurate when the distance
between two tokens is higher

Figure 6: Results for LCA prediction
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A.7 Neuron-level results for LCA prediction
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Figure 7: Accuracy for RoBERTa probes when trained on fractions of top, random or bottom neurons identified
by linguistic correlation analysis (Durrani et al., 2020). The classifiers are trained on LCA prediction, using
concatenated representations. Fractions on the x-axis refer to the dimensions of concatenated representations. Thus,
the absolute number of considered neurons is twice as high as in the respective plots for chunking in Fig. 3.

A.8 Neuron orderings for different datasets

% neurons orig. & .33 orig. & .67 .33 & .67

1% 21.2% 16.2% 15.2%
2% 18.1% 15.6% 23.1%
3% 17.4% 12.7% 20.4%
5% 19.8% 16.6% 21.2%
10% 25.4% 20.7% 26.6%
20% 35.7% 29.6% 34.4%
30% 42.6% 38.1% 43.7%
50% 59.1% 56.4% 59.4%

Table 6: Overlap of fractions of top neurons for chunking (simple tagset) when classifiers are trained on different
datasets. For each dataset, a neuron ranking list is obtained. This table shows the size of the fraction of neurons that
are ranked among the most salient x% of neurons for two different datasets. For example, 21.2% of the 1% most
salient neurons for the original dataset are also among the 1% most salient neurons for the .33 dataset.

A.9 Results for parse tree reconstructions from all language models

RoBERTa BERT DistilBERT XLNet Random BERT

orig./orig. 82.58 80.42 79.88 80.52 51.36
.33/orig. 80.88 77.73 77.65 78.99 49.60
.33/.33 77.84 73.97 74.09 75.23 46.13
.67/orig. 78.30 74.63 74.81 75.37 47.95
.67/.67 72.77 69.63 69.72 69.91 44.71

Table 7: Labeled F1 scores for all datasets and models for reconstructing full parse trees
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A.10 Comparing parse trees reconstructed from different models

RoBERTa vs.
XLNet

RoBERTa vs.
BERT

BERT vs. XL-
Net

DistilBERT
vs. BERT

DistilBERT vs.
RoBERTa

DistilBERT
vs. XLNet

orig. 81.83 82.80 80.39 83.17 82.34 80.19
.33/orig. 79.71 80.21 77.60 81.60 80.53 77.88
.33/.33 76.02 76.52 73.99 78.72 76.78 74.30
.67/orig. 76.54 77.08 74.07 78.68 77.78 74.40
.67/.67 71.75 72.83 69.56 75.01 73.45 69.89

Table 8: Labeled F scores for comparing constituent trees predicted by different models against each other. The
comparison of trees predicted by DistilBERT and BERT yields the highest F scores, hence trees reconstructed from
these models are most similar.

RoBERTa BERT DistilBERT

BERT 0.59
DistilBERT 0.57 0.64
XLNet 0.52 0.52 0.51

Table 9: Pearson correlation of sentence-level F scores for different LMs on original data. The correlations between
F scores are lowest when comparing XLNet to BERT, RoBERTa and DistilBERT. The correlations are highest
between the latter three models.
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A.11 Examples for reconstructed parse trees
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Figure 8: Example for reconstructing parse trees: The subject phrase of sentence 23 from the development set.
In the RoBERTa prediction, the SBAR and S nodes of the relative clause are conflated to an SBAR node. In the
RoBERTa prediction with .67 of the tokens replaced, the short chunks are correctly recognized, but the VP of the
relative clause is structured differently.
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Gold tree from PTB
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Figure 9: Example for reconstructing parse trees: Sentence 4 from the development set. For the RoBERTa prediction,
the unary leaf chain NP → QP is not predicted because it cannot be predicted by our version of the sequence labeling
algorithm. Apart from that, the or-NP is not recognized as a single NP. In the RoBERTa prediction for the sentence
with .67 of the tokens replaced, the VP is recognized correctly even though there is an agreement mismatch (did
rejected). Diverging from the prediction for original data, the or-NP is reconstructed correctly
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A.12 Computing infrastructure and experiment runtime
All experiments where run on an Nvidia Titan XP GPU. For a 12-layer model, the full set of chunking
experiments takes 4 hours. This includes extracting the full neuron activation values for the training and
evaluation data, all control task experiments and all experiments on the linguistic task. The full set of LCA
prediction experiments for a 12-layer model takes around 15 hours when using all ways of combining
input representations (concat, avg, maxs ). Compared to the chunking experiments, an additional step is
combining the activation values of token pairs. The full set of experiments for reconstructing parse trees
takes around 3 hours when using a 12-layered language models and all datasets. Experiments with the
6-layer model DistilBERT take half the time. The reported time includes time where the GPU itself is not
active, e.g. times where representations are combined and written to harddrive. All experiments were
powered with electricity from renewable energy sources.
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