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Abstract

Clinical trials are essential for drug develop-
ment but are extremely expensive and time-
consuming to conduct. It is beneficial to study
similar historical trials when designing a clin-
ical trial. However, lengthy trial documents
and lack of labeled data make trial similarity
search difficult. We propose a zero-shot clin-
ical trial retrieval method, called Trial2Vec,
which learns through self-supervision without
the need for annotating similar clinical trials.
Specifically, the meta-structure of trial doc-
uments (e.g., title, eligibility criteria, target
disease) along with clinical knowledge (e.g.,
UMLS knowledge base 1) are leveraged to au-
tomatically generate contrastive samples. Be-
sides, Trial2Vec encodes trial documents con-
sidering meta-structure thus producing com-
pact embeddings aggregating multi-aspect in-
formation from the whole document. We show
that our method yields medically interpretable
embeddings by visualization and it gets 15%
average improvement over the best baselines
on precision/recall for trial retrieval, which is
evaluated on our labeled 1600 trial pairs. In
addition, we prove the pretrained embeddings
benefit the downstream trial outcome predic-
tion task over 240k trials. 2

1 Introduction

Clinical trials are essential for developing new med-
ical interventions (Friedman et al., 2015). Many
considerations come into the design of a clinical
trial, including study population, target disease,
outcome, drug candidates, trial sites, and eligibil-
ity criteria, as in Table 1. It is often beneficial to
learn from related clinical trials from the past to de-
sign an optimal trial protocol (Wang et al., 2022b).
However, accurate similarity search based on the
lengthy trial documents is still in dire need.

1https://www.nlm.nih.gov/research/umls/index.
html

2Software is available at https://github.com/
RyanWangZf/Trial2Vec.

Table 1: An example of the meta-structure of clinical
trial document drawn from ClinicalTrials.gov.

Title Effects of Electroacupuncture With Different Fre-
quencies for Major Depressive Disorder

Description Two groups of subjects will be included 55 sub-
jects in electroacupuncture with 2Hz group...

Eligibility
Criteria

1. Inclusion Criteria:
1.1. Patients suffering from MDD in accordance
with the diagnostic criteria;
1.2. Hamilton Depression Scale score is between
21 and 35 (mild to moderate MDD);...
2. Exclusion Criteria:
2.1 Patients with bipolar disorder;
2.2 Patients with schizophrenia or other mental
disorders; ...

Outcome
Measures

1. Change in anxiety and depression severity
measure by Self-rating depression scale
2. Change in the severity of depression measure
by Hamilton depression scale ..

Disease Major Depressive Disorder
Intervention electroacupuncture
... ...

Self-supervision based pretraining has delivered
promising performances for many NLP and CV
tasks with fine-tuning (Devlin et al., 2019; Liu
et al., 2019; He et al., 2021; Bao et al., 2021; Wang
et al., 2022c). Nevertheless, we find there was few
work on zero-shot document retrieval as most ad-
dress document retrieval in a supervised fashion
(Humeau et al., 2019; Khattab and Zaharia, 2020;
Guu et al., 2020; Karpukhin et al., 2020; Lin et al.,
2020; Luan et al., 2021; Wang et al., 2021; Hofstät-
ter et al., 2020; Li et al., 2020; Zhan et al., 2021;
Hofstätter et al., 2021b,a; Jiang et al., 2022) or im-
prove document pre-training for further supervision
(Beltagy et al., 2020; Zaheer et al., 2020; Ainslie
et al., 2020; Zhang et al., 2021).

Recently, a burgeoning body of research (Gao
et al., 2021; Wu et al., 2021; Wang et al., 2022a)
proposes to execute self-supervised learning to
train semantic-meaningful sentence embeddings
free of labels. However, there are still challenges
to apply them for document similarity search:
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• Lengthy documents. These zero-shot BERT re-
trieval methods all work on short sentences (usu-
ally below 10 words) similarity search while trial
documents are often above 1k words. Simply en-
coding lengthy trials by truncating and averaging
embeddings of all remaining tokens inevitable
leads to poor retrieval quality.

• Inefficient contrastive supervision. These un-
supervised methods take simple instance discrim-
inative contrastive learning (CL) within batch,
e.g., SimCSE (Gao et al., 2021) takes one sen-
tence into the encoder twice to get the positive
pairs and all other sentences as the negative. This
paradigm has low supervision efficiency to re-
quire a large batch size, large data, and long
training time, which is infeasible for learning
from long trial documents.

In this work, we propose Clinical Trial TO
Vectors, Trial2Vec, a zero-shot trial document
similarity search using self-supervision. We de-
sign a trial encoding framework considering the
meta-structure to rid the risk that semantic mean-
ing vanishes due to the uniform average of token
embeddings. Meanwhile, the meta-structure is uti-
lized to generate contrastive samples for efficient
supervision. Medical knowledge is introduced to
further enhance the negative sampling for CL. Our
main contributions are:

• We are the first to study the trial-to-trial retrieval
task by proposing a label-free SSL model which
is able to encode long trials into semantic mean-
ingful embeddings without labels.

• We propose a data-efficient CL method on med-
ical knowledge and trial meta-structure, which
is promising to be extended to further zero-shot
structured document retrieval.

• We demonstrate the superiority of Trial2Vec on
a trial relevance dataset of 1600 trials annoated by
domain experts. Also, we show Trial2Vec can
assist better downstream trial outcome prediction
on a dataset of 240k trials.

2 Related works

2.1 Text & document retrieval
General texts. Early information retrieval meth-
ods depend on manual engineering (Robertson and
Zaragoza, 2009; Yang et al., 2017). By contrast,
dense retrieval methods based on distributional
word representations, e.g., Word2Vec (Mikolov

et al., 2013), Glove (Pennington et al., 2014),
Doc2Vec (Le and Mikolov, 2014), etc., become
popular crediting to their superior performance.
The advent of deep models, especially the contex-
ualized encoders like BERT (Devlin et al., 2019),
encourages an explosion of neural retrieval meth-
ods (Van Gysel et al., 2016; Zamani et al., 2018;
Guo et al., 2016; Dehghani et al., 2017; Onal et al.,
2018; Reimers and Gurevych, 2019; Chang et al.,
2019; Nogueira and Cho, 2019; Chen et al., 2021;
Lin et al., 2020; Xiong et al., 2020; Karpukhin
et al., 2020; Yates et al., 2021). However, most of
them are based on supervised training on sentence
pairs from general texts, e.g., SNLI (Bowman et al.,
2015). When label is expensive to acquire, as in the
clinical trial case, we need zero-shot learning mod-
els. Although, there arose some works to perform
post-processing on pretrained BERT embeddings
to improve their retrieval quality (Li et al., 2020;
Su et al., 2021), their performances are far from
optimal without specific training.
Clinical trials. Traditional clinical trial query
search systems (Tasneem et al., 2012; Tsatsaro-
nis et al., 2012; Jiang and Weng, 2014; Park et al.,
2020) are established on protocol databases. Con-
trast to dense retrieval, these methods rely on entity
matching with rules thus not flexible enough. Re-
cent works (Roy et al., 2019; Rybinski et al., 2020,
2021) propose supervised neural ranking for clini-
cal trial query search. However, all of them work
on matching trial titles or relevant segments with an
input user query. While Trial2Vec can also assist
query search, it is the first to encode complete trial
documents for the trial-level similarity search.

2.2 Text contrastive learning

Contrastive learning is a heated discussed topic
recently in NLP and CV (Chen et al., 2020a,b;
Chen and He, 2021; Carlsson et al., 2020; Zhang
et al., 2020; Wu et al., 2020; Yan et al., 2021; Gao
et al., 2021; Wang et al., 2020b; Wang and Sun,
2022). CL is one main topic under the SSL do-
main. It sheds light on reaching comparable per-
formance as supervised learning free of manual
annotations. While CL has been applied to en-
hance downstream NLP applications like text clas-
sification (Li et al., 2021; Zhang et al., 2022), a
few (Wang et al., 2020a; Zhang et al., 2020; Yan
et al., 2021; Yang et al., 2021) are able to do zero-
shot retrieval. Nonetheless, all focus on enhancing
sentence embeddings by manipulating text only
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Figure 1: Overview of the proposed Trial2Vec framework. Top left: the training strategy that accounts for
unlabeled input trial documents with meta-structure along with an external medical knowledge database, e.g.,
UMLS. Top right: The contrastive supervision splits into meta-structure and knowledge guided, respectively.
Bottom left: our method hierarchically encodes trials into local and global embeddings on the trial meta-structure.
Bottom right: The encoded trial-level embeddings can be used to trial search, query trial search and downstream
tasks.

therefore are suboptimal when facing lengthy docu-
ments. By contrast, Trial2Vec uses the document
meta-structure with domain knowledge to obtain
and facilitate document embeddings.

3 Method

In this section, we present the details of Trial2Vec.
The main idea is to jointly learn the global and local
representations from trial documents considering
their meta-structure. Specifically, observed in Ta-
ble 1, trial document consists of multiple sections
while the key attributes (e.g., title, disease, inter-
vention, etc.) occupy a small portion of the whole
document. This motivates us to design a hierar-
chical encoding and the corresponding contrastive
learning framework. The overview is illustrated
in Fig. 1. Our method generates local attribute
embeddings using the TrialBERT backbone sepa-
rately, then aggregating local embeddings with a
learnable attention module to obtain the global trial

embeddings that emphasize significant attributes.
We present the pretraining of backbone encoder in
§3.1; then we describe the hierarchical encoding
process based on the backbone encoder in §3.2; the
hierarchical constrastive learning methods consid-
ering meta-structure and medical knowledge are
elucidated in §3.3; at last, we elicit the applications
of the proposed framework in §3.4.

3.1 Backbone encoder: TrialBERT

We leverage the BERT architecture as the backbone
encoder in the framework. In detail, we use the
WordPiece tokenizer together with the BioBERT
(Lee et al., 2020) pretrained weights as the start
point. We continue the pretraining with Masked
Language Modeling (MLM) loss on three trial-
related data sources: ClinicalTrial.gov 3, Medical

3https://clinicaltrials.gov/
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Encyclopedia 4, and Wikipedia Articles 5, see Ta-
ble 6, to get TrialBERT. ClinicalTrials.gov is a
database that contains around 400k clinical trials
conducted in 220 countries. Medical Encyclope-
dia has 4K high-quality articles introducing termi-
nologies in medicine. We also retrieve relevant
Wikipedia articles corresponding to the 4k termi-
nologies of Medical Encyclopedia.

3.2 Global and local embeddings by
Trial2Vec

TrialBERT embeddings pretrained with MLM on
clinical corpora still hold weak semantic mean-
ing. Meanwhile, previous sentence embedding
BERTs all take an average pooling over token
embeddings, which causes the semantic meaning
vanishing when applied to lengthy clinical trials.
Therefore, we propose Trial2Vec architecture that
exploits the global and local embeddings for trial
based on its meta-structure.

We split the attributes of a trial into two distinct
sets: key attributes and contexts. The first com-
ponent includes the trial title, intervention, condi-
tion, and main measurement, which are sufficient
to retrieve a pool of coarsely relevant trial candi-
dates; the second includes descriptions, eligibility
criteria, references, etc., which differentiate trials
targeting similar diseases or interventions because
they provide the multi-facet details regarding dis-
ease phases, study designs, targeted populations,
etc. According to this design, local embeddings
{vatt}Ll=1 ∈ RL×D are produced separately on
each key attribute. On the other hand, a context em-
bedding is obtained by encoding the context texts
vctx ∈ RD. Note that the above encoding is all
conducted by the same encoder.

We further refine the local embeddings by con-
text embeddings and aggregate them to yield the
global trial embedding vg ∈ RD. The refinement
is performed by multi-head attention, as

vg = MultiHeadAttn(vctx, {vl}Ll ,W), (1)

which relocates the attention over key attributes to
enhance discrminative power of the yielded global
embedding.

3.3 Hierarchical contrastive learning
For data-efficient contrastive learning, we utilize
the meta-structure & medical knowledge for con-
trasting local and global embeddings hierarchically.

4https://medlineplus.gov/encyclopedia.html
5https://www.wikipedia.org/

Global contrastive loss. The first objective is to
maximize the semantic in trial embeddings for sim-
ilarity search. Instead of doing in-batch instance-
wise contrastive loss like SimCSE, we propose to
sample informative negative pairs by exploiting the
trial meta-structure. As shown by Fig. 1, some
trials may be linked by a common attribute like
disease or intervention. Denote a trial consisting of
several attributes by

x = {xtitle, xintv, xdise, xout, xctx}, (2)

we can build an informative negative sample by
replacing its title with a trial which also targets for
disease xdise by

x− = {xtitle−, xintv, xdise, xout, xctx}. (3)

Meanwhile, we apply a random attribute dropout
towards x to formulate a positive sample as

x+ = {xtitle, xdise, xout, xctx}. (4)

InfoNCE loss is utilized in a batch of B trials as

Lg = −
B∑

i=1

log
exp(ψ(vgi,v

+
gi))∑

v−gi∈V
−
i
exp(ψ(vgi,v

−
gi))

, (5)

where the negative sample set V−
i = {v−

gi} ∪
{vgj}j ̸=i; ψ(·, ·) measures the cosine similarity
between two vectors. The global contrastive loss
here encourages the model to capture the attribute
of interest by discriminating the subtle differences
of input trial attributes, which prevent the seman-
tic meanings from vanishing due to the average
pooling over all trial texts.
Local contrastive loss. In addition to the global
trial embeddings, we put supervision on local em-
beddings to inject medical knowledge into the
model. Unlike general texts, two medical texts
can be overlapped word-wise dramatically but still
describe two distinct things6, which is challenging
for similarity computing. To strengthen TrialBERT
discriminative power for medical texts, we extract
key medical entities in each text as 7

E(xatt) = {e1, e2, e3, e4}, (6)

6For instance, replacing Olaparib in "A Phase I, Open-
Label, 2 Part Multicentre Study to Assess the Safety and Ef-
ficacy of Olaparib" with another intervention like Vitamin D
renders a total different study topic.

7Done by SciSpacy https://scispacy.apps.allenai.
org/.
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then a positive sample is built by mapping one
entity e1 to its canonical name or a similar entity
under the same parental conception ê1 defined by
UMLS as

E(xatt+) = {ê1, e2, e3, e4}. (7)

Similarly, negative sample is built by deletion or
replacing one entity with another dissimilar one.
InfoNCE loss is therefore used by

Ll = −
B∑

i=1

log
ψ(vli,v

+
li )∑

V−
li
exp(ψ(vli,v

−
li ))

. (8)

We at last jointly optimize the global and con-
trastive losses as

L = Lg + Ll. (9)

3.4 Application of global & local embeddings
The hierarchical contrastive learning offers extraor-
dinary flexibility of Trial2Vec for various down-
stream tasks in zero-shot learning. At first, the
global trial embeddings vg can be directly used
for similarity search by comparing trial pair-wise
cosine similarities. The computed trial embeddings
can also help identify and discover research topics
when we apply visualization techniques. On the
other hand, we can also execute query search using
partial attributes crediting to the contrastive learn-
ing between local and global embeddings. When
we need do trial-level predictive tasks, e.g., trial ter-
mination prediction, a classifier can be attached to
the pretrained global trial embeddings and learned;
the backbone TrialBERT is also capable of offering
short medical sentence retrieval because of local
contrastive learning.

4 Experiments

In this section, we conduct five types of experi-
ments to answer the following research questions:

• Exp 1 & 2. How does Trial2Vec perform in
complete and partial retrieval scenarios?

• Exp 3. How do the proposed SSL tasks / embed-
ding dimension contribute to the performance?

• Exp 4. Is the trial embedding space interpretable
and aligned with medical ontology?

• Exp 5. How useful do well-trained Trial2Vec
contribute to downstream tasks, e.g., trial out-
come prediction, after fine-tuned?

• Exp 6. Qualitative analysis of the retrieval results
and what are the differences of Trial2Vec and
baselines?

Table 2: Statistics of trial status in ClinicalTrials.gov
database where we conclude Approved & Completed as
completion; Suspended, Terminated, and Withdrawn as
the termination for trial outcome prediction.

Approved Completed Suspended Terminated Withdrawn
174 210,237 1,658 22,208 10,439
Available Enrolling Unavailable Not recruiting Recruiting
237 3,662 45,128 18,171 60,362

Completion Termination Summary Others
210,411 34,305 244,716 127,560

4.1 Dataset & Setup
Trial Similarity Search. We created a labeled
trial dataset to evaluate the retrieval performance
where paired trials are labeled as relevant or not.
We keep 311,485 interventional trials from the to-
tal 399,046 trials. We uniformly sample 160 trials
as the query trials. To overcome the sparsity of
relevance, we take advantage of TF-IDF (Salton
et al., 1983) to retrieve ranked top-10 trials as the
candidate to be labeled, resulting in 1,600 labeled
pairs of clinical trials. Unlike general documents,
the clinical trial document contains many medical
terms and formulations. We recruited clinical infor-
matics researchers, and each is assigned 400 pairs
to label as relevant or not using label {1, 0}. To
keep labeling processes in line, we specify the min-
imum annotation guide for judging relevance: (1)
same disease; or (2) same intervention and similar
diseases (e.g., cancer on distinct body parts). We
use precision@k (prec@k), recall@k (rec@k), and
nDCG@5 to evaluate and report performances.

prec@k =
# of relevant trials in the top k results

k
,

(10)

rec@k =
# of relevant trials in the top k results

# of relevant trials in all candidate trials
.

(11)

Trial termination prediction. We can take the pre-
trained Trial2Vec embeddings for predicting the
trial outcomes, i.e., if the trial will be terminated or
not. We add one additional fully-connected layer
on the tail of Trial2Vec. The targeted outcomes
are in the status section of clinical trials, described
by Table 2. We formulate the outcome prediction
as a binary classification problem to predict the
Completion or Termination of trials where we get
210,411 and 34,305 trials as positive and negative
labeled, respectively. We take 70% of all as the
training set and 20% as the test set; the remaining
10% is used as the validation set for tuning and
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Table 3: Precision/Recall and nDCG of the retrieval models on the labeled test set. Values in parenthesis show 95%
confidence interval. Best values are in bold.

Method Prec@1 Prec@2 Prec@5 Rec@1 Rec@2 Rec@5 nDCG@5
TF-IDF 0.5132(0.063) 0.4386(0.045) 0.3828(0.057) 0.1871(0.038) 0.3172(0.026) 0.6147(0.044) 0.5480(0.034)
BM25 0.7015(0.044) 0.5640(0.041) 0.4246(0.032) 0.3358(0.038) 0.4841(0.050) 0.7666(0.031) 0.7312(0.033)
Word2Vec 0.7492(0.071) 0.6476(0.044) 0.4712(0.033) 0.3008(0.054) 0.4929(0.042) 0.7939(0.041) 0.7712(0.032)
BERT 0.7264(0.050) 0.6219(0.060) 0.4324(0.027) 0.3257(0.051) 0.4896(0.054) 0.7611(0.041) 0.7370(0.047)
BERTWhiten 0.7476(0.094) 0.6630(0.045) 0.4525(0.029) 0.3672(0.045) 0.5832(0.042) 0.8355(0.021) 0.8129(0.024)
BERTSimCSE 0.6788(0.039) 0.5995(0.035) 0.4714(0.021) 0.2824(0.034) 0.4566(0.035) 0.8098(0.025) 0.7308(0.038)
MonoT5Med 0.6799(0.068) 0.5810(0.061) 0.4439(0.051) 0.2904(0.032) 0.4657(0.049) 0.7570(0.037) 0.7171(0.043)
Trial2Vec 0.8810(0.026) 0.7912(0.049) 0.5055(0.039) 0.4216(0.046) 0.6465(0.060) 0.8919(0.030) 0.8825(0.029)

early stopping. We utilize three metrics for eval-
uation: accuracy (ACC), area under the Receiver
Operating Characteristic (ROC-AUC), and area un-
der Precision-Recall curve (PR-AUC).

4.2 Baselines & Implementations

We take the following baselines for retrieval: TF-
IDF (Salton et al., 1983; Salton and Buckley, 1988),
BM25 (Trotman et al., 2014), Word2Vec (Mikolov
et al., 2013), BERT-Whitening (Huang et al., 2021;
Su et al., 2021), BERT-SimCSE (Gao et al., 2021),
and MonoT5 (Roberts et al., 2021; Pradeep et al.,
2022). Details of these methods can be seen in
Appendix A.

We keep all methods’ embedding dimensions at
768. We start from a BERT-base model to continue
pre-training on clinical domain corpora, yielding
our TrialBERT, which supports as the backbone
for BERT-Whitening and BERT-SimCSE for fair
comparison. We take 5 epochs with batch size
100 and the learning rate 5e-5. In the second SSL
training phase, AdamW optimizer with a learning
rate of 2e-5, batch size of 50, and weight decay of
1e-4 is used. Experiments were done with 6 RTX
2080 Ti GPUs.

4.3 Exp 1. Complete Trial Similarity Search

Since labels are unavailable in the training phase,
we only chose unsupervised/self-supervised base-
lines. Results are shown by Table 3. Trial2Vec
outperforms all baselines with a great margin. It
has around 15% improvement on each metrics than
the best baselines on average. For baselines, all ex-
cept for TF-IDF have similar performance. When
k is small, the precision gap between Trial2Vec
and baselines is large; when k is large, all meth-
ods encounter precision reduction. That is because
the pool of candidate trials are 10 but the num-
ber of positive pairs for each are often less than
5, which limits the maximum of the numerator of
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Figure 2: Performance of Trial2Vec on the partial re-
trieval scenarios. We use a different part of the trial
as queries to retrieve similar trials, including keyword
kw, intervention intv, disease dz, context ctx. Error bars
indicate the 95% confidence interval of results.

prec@k in Eq. (10). Likewise, Trial2Vec also
shows stronger performance in rec@k because it
is discounted by the maximum number of positive
pairs.

Interestingly, the state-of-the-art sentence
BERTs, e.g., BERT-whitening and BERT-simCSE,
have limited improvement over original BERT and
even Word2Vec. Unlike general documents, clin-
ical trials may be overlapped in much content but
still be irrelevant if the key entities are different.
This special characteristic causes the assumption
of a document with similar passage is relevant
(Craswell et al., 2020) used in general document
retrieval but invalidated in clinical trial retrieval.
Without well-designed SSL, it is hard for these
methods to learn these subtle differences. More-
over, clinical trial documents are often much longer
than the general documents in those open datasets.
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mensions on retrieval quality by Trial2Vec: embed-
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Figure 5: 2D visualization of the trial-level embeddings obtained by Trial2Vec (dimension reduced by t-SNE). It
can be seen trials are automatically classified into clusters by topic (diseases) in the embedding space. For example,
a series of tumor-related trials (e.g., Breast and Pancreatic Cancers) are on the bottom of the embedding space.

Table 4: Trial outcome prediction performances of base-
lines and Trial2Vec, after fine-tuned.

Method ACC ROC-AUC PR-AUC
TF-IDF 0.8571(0.002) 0.7194(0.004) 0.2960(0.008)
Word2Vec 0.8574(0.002) 0.7189(0.005) 0.2906(0.007)
TrialBERT 0.8559(0.002) 0.7277(0.006) 0.3109(0.006)
Trial2Vec 0.8622(0.002) 0.7332(0.004) 0.3137(0.007)

There are 622.4 words per trial on average, while
the general STS benchmark has below 15 words
per sample, e.g., STS-12: 10.8, STS-13: 8.8, STS-
14: 9.1, etc (Cer et al., 2017). We also observed
the simple negative sampling strategy of SimCSE
is insufficient to learn effective long document em-
beddings. In comparison, Trial2Vec leverages
the meta-structure of clinical trials to focus on the

most informative attributes, with additional context-
based refinement, producing embeddings superior
in semantic representation.

4.4 Exp 2. Partial Query Trial Retrieval

We further investigate the partial trial retrieval sce-
nario where users intend to find similar trials with
short and incomplete descriptions, e.g., partial at-
tributes. Results are illustrated by Fig 2. We
start by measuring how well Trial2Vec only uti-
lizes the title for trial retrieval. It is witnessed that
using title is sufficient to yield comparable perfor-
mance as the best baseline for complete retrieval
shown in Table 3. Nonetheless, we identify that
concatenating keywords or intervention with the
title reduces performance. Combining title and
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Table 5: Case studies comparing the retrieval performance of the Trial2Vec with baseline models. Due to the space
limits, only title and NCT ID of trials are given.

Query Trial TF-IDF TrialBERT Trial2Vec

[NCT02972294] HiFIT Study :
Hip Fracture: Iron and Tranex-
amic Acid (HiFIT)

[NCT01221389] Study Using
Plasma for Patients Requiring
Emergency Surgery (SUPPRES)

[NCT04744181] Patient Blood
Management In CARdiac sUrgi-
cal patientS (ICARUS)

[NCT01535781] Study of the
Effect of Tranexamic Acid Ad-
ministered to Patients With Hip
Fractures. Can Blood Loss be
Reduced?

[NCT01590342] Diclofenac for
Submassive PE (AINEP-1)

[NCT04006145] A Phase 2
Study of Elobixibat in Adults
With NAFLD or NASH

[NCT04156854] Intravas-
cular Volume Expansion to
Neuroendocrine-Renal Function
Profiles in Chronic Heart Failure

[NCT00247052] Non Steroidal
Anti Inflammatory Treatment for
Post Operative Pericardial Effu-
sion

disease yields similar performance as involving
all attributes. This phenomenon signifies that the
disease plays a vital role in trial similarity and is
always recommended to be involved in query trial
retrieval.

4.5 Exp 3. Ablation Studies
We conducted ablation studies to measure how SSL
tasks and embedding dimensions contribute to fi-
nal results. Results are shown by Fig. 3, where
we remove one Task for each setting and reeval-
uate. Here, att mc and ctx mc corresponds to the
global contrastive loss by negative sampling on key
attributes and contexts, respectively; semantic mc
indicates the local contrastive loss. We observe
that ctx mc is very important. Without it, only at-
tributes of trials are included in the training and
inference of Trial2Vec, thus resulting in a signifi-
cant performance drop. However, even only using a
small segment of trials (the attributes), Trial2Vec
still reaches similar performance as BERT-SimCSE
that receives the whole trial document as inputs.
This demonstrates the importance of picking high-
quality negative samples during the CL process.
Similarly, we observe other two tasks also improve
the retrieval quality.

Fig. 4 illustrates the retrieval performance on
different embedding dimensions. We identify that
reducing embedding dimension does not affect the
performance of Trial2Vec much, i.e., one can
choose a small embedding dimension (e.g., 128)
without suffering much performance degradation
while saving lots of storage and computational re-
sources.

4.6 Exp 4. Embedding Space Visualization
Fig. 5 plots the 2D visualization of the embed-
ding space of Trial2Vec using t-SNE (Van der
Maaten and Hinton, 2008) where around 2k trials
uniformly sampled from 300k trials. The tag texts

illustrate the target diseases of trials with different
colors. We observe that these trials embeddings
show interpretable clusters corresponding to target
disease categories. More discussions about this
visualization can be referred to Appendix B.

4.7 Exp 5. Trial Termination Prediction

Results are illustrated by Table 4. Compared with
the shallow models, BERT-based methods gain bet-
ter performance, which credits the deep architec-
ture of transformers with stronger learning capa-
bility. Trial2Vec takes a hierarchical encoding
for trial documents on meta-structure thus better
revealing the trial characteristics, which plays a
central role in predicting its potention outcomes.

4.8 Exp 6. Case Study

We perform a qualitataive analysis of similarity
search results and two baselines. Results are shown
in Table 5. These two case studies show that TF-
IDF and BERT models all tend to put attention on
frequent words in query trials, e.g., blood and iron
in case study 1; and heart failure in case study 2.
This bias comes from the average pooing taken
onto all token embeddings. The top-1 relevant
clinical trial retrieved by Trial2Vec, on the other
hand, provides a more similar trial thanks to the
hierarchical encoding and specific local and global
contrastive learning. We add more explanations
regarding these cases in Appendix C.

5 Conclusion

This paper investigated utilizing BERT with self-
supervision for encoding trial into dense embed-
dings for similarity search. Experiments show our
method can succeed in zero-shot trial search un-
der various settings. The embeddings are also
useful for trial downstream predictive tasks. The
qualitative analysis, including embedding space vi-
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sualization and case studies, further verifies that
Trial2Vec gets a medically meaningful under-
standing of clinical trials.
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Limitations

The empirical evaluation of this method is mainly
done on the clinical trial documents drawn from
ClinicalTrials.gov which were fully written in En-
glish. It might be the best fit when this method is
applied to documents in other languages. Although
we have tried our best to collect trial relevance
datasets, it is still possible that the datasets used for
evaluation are not able to cover all cases.

The proposed framework encodes trial docu-
ments into compact embeddings for search. It en-
counters failure cases some time as wrong trials are
retrieved. It should be used with discretion when
applied to clinical trial research or by individual
volunteers who intend to look for trials research.
Retrieved results in practice should be used under
the supervision with professional clinicians.
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Table 6: List of text corpora used for continual pretrain-
ing of TrialBERT.

Corpus Number of words

ClinicalTrials.gov 240M
Medical Encyclopedia 3M
Wikipedia Articles 11M

A Baselines for clinical trial similarity
search

• TF-IDF (Salton et al., 1983; Salton and
Buckley, 1988). It is short for term fre-
quency–inverse document frequency that has
been widely used for information retrieval sys-
tems for decades. One can use TF-IDF for
document retrieval by concatenating scores of
all words in this document then computing
cosine distance between document vectors.

• BM25 (Trotman et al., 2014). A bag-of-words
retrieval method commonly used in practice.
We run it based on the rank-bm25 package 8

with its default hyperparameters.

• Word2Vec (Mikolov et al., 2013). It is
a classic dense retrieval method by build-
ing distributed word representations by self-
supervised learning methods (CBOW). We
take an average pooling of word representa-
tions in a document for retrieval by cosine
distance. We use gensim 9 to run this method.

• BERT. We take an average pooling over all
token embeddings at the last layer of it for sim-
ilarity computation. We take the TrialBERT
pretrained on all the clinical trial documents.

• BERT-Whitening (Huang et al., 2021; Su
et al., 2021). This is an unsupervised
post-processing method that uses anisotropic
BERT embeddings (Ethayarajh, 2019; Li
et al., 2020) to improve semantic search. We
take the average of last and first layer of its
BERT embeddings following Su et al. (2021).

• BERT-SimCSE (Gao et al., 2021). It is a
contrastive sentence representation learning
method stemming from InfoNCE loss. It sim-
ply takes other samples in batch as negative
samples.

8https://pypi.org/project/rank-bm25/
9https://radimrehurek.com/gensim/models/

doc2vec.html

• MonoT5-Med (Pradeep et al., 2022). It was
proposed in (Roberts et al., 2021) for match-
ing patient descriptive texts and clinical trial
documents via T5 model (Raffel et al., 2020)
based on prompts. We use its version fine-
tuned on Med Marco dataset (Koopman and
Zuccon, 2016).

B Embedding space visualization

From Fig. 5, trial embeddings are clearly clustered
into topics with self-supervised learning, which
provides a great help for topic mining and discovery
for the existing clinical trials. For instance, we can
find that cancers that happen on different body parts
are near to each other on the bottom of the embed-
ding space (Prostate Cancer, Breast Cancer, Pan-
creatic Cancer, Colorectal Cancer, etc.). Also, the
diseases which are related to brain function, e.g.,
Alzheimer’s Disease, Parkinson’s Disease, Major
Depressive Disorder, etc. Other examples include
Covid19, Influenza, Pulmonary Disease, etc.

The reason is that we explicitly utilize the knowl-
edge from attributes of trials for negative sample
building, which endows the embedding space the
ability to discriminate trials’ similarity. These
similar trials can also have similar characteris-
tics like having similar recruiting criteria or tar-
geting similar outcome measures, which are cap-
tured by Trial2Vec by refining the embeddings
of attributes by detailed descriptions. Based on
this observation, we can infer that such medically
meaningful trial embeddings would be beneficial
to downstream tasks on clinical trials, e.g., trial
outcome prediction.

C Case Study

For the first case, the query trial is [NCT02972294],
which studies using Tranexamic acid and Iron Iso-
maltoside to reduce the occurrence of Anemia
and blood transfusion in hip fracture cases. We
show the top-1 retrieved by three methods on the
right. Trial found by TF-IDF studies the efficiency
of plasma in patients with Hemorrhagic shock;
BioBERT finds a trial about patients undergoing
heart surgery who have Anaemia to test if a cor-
rection of iron reduces red blood cell transfusion
requirements. Trial2Vec finds a trial that studies
Tranexamic acid effect in blood loss in hip fracture
operations. Trial2Vec result is highly relevant to
the query trial as it has the identical drug on blood
loss of the same type of operation.
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In the second example, the query trial tries
to investigate the benefits of Diclofenac for Nor-
motensive patients with acute symptomatic Pul-
monary Embolism and Right Ventricular Dysfunc-
tion. TF-IDF finds an irrelevant study on the ef-
ficacy and safety of Elobixibat for adults with
NAFLD or NASH. TrialBERT also retrieves an
irrelevant study on Intravascular Volume Expan-
sion to Neuroendocrine-Renal Function Profiles
in Chronic Heart Failure. On the other hand,
Trial2Vec digs out a trial that studies the same
type of drug with a similar purpose as the target’s:
evaluating the efficiency of NSAID (Diclofenac)
to the evolution of postoperative (cardiac surgery)
pericardial effusion.
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