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Abstract
This work introduces a natural language infer-
ence (NLI) dataset that focuses on the validity
of statements in legal wills. This dataset is
unique because: (a) each entailment decision
requires three inputs: the statement from the
will, the law, and the conditions that hold at the
time of the testator’s death; and (b) the included
texts are longer than the ones in current NLI
datasets. We trained eight neural NLI models
in this dataset. All the models achieve more
than 80% macro F1 and accuracy, which in-
dicates that neural approaches can handle this
task reasonably well. However, group accu-
racy, a stricter evaluation measure that is cal-
culated with a group of positive and negative
examples generated from the same statement
as a unit, is in mid 80s at best, which suggests
that the models’ understanding of the task re-
mains superficial. Further ablative analyses
and explanation experiments indicate that all
three text segments are used for prediction, but
some decisions rely on semantically irrelevant
tokens. This indicates that overfitting on these
longer texts likely happens, and that additional
research is required for this task to be solved.

1 Introduction

Natural language inference (NLI) in the legal do-
main has not been widely investigated, despite its
importance and potential. One such important NLI
application is validity assessment of legal docu-
ments such as wills. Legal procedures for creating
and executing wills are evolving rapidly. Process-
ing a will via probate is a costly, time-consuming
process that can be exacerbated by errors or by
challenges to validity. These problems will likely
increase as people increasingly employ electronic
wills. Developing natural language techniques that
can determine a will’s validity at creation and ex-
ecution can increase validity, conserve legal re-
sources, and effectuate the author’s intent. To this
end, this work explores how NLI models can be em-
ployed to evaluate the validity of will statements.

NLI in general deals with determining whether
a premise entails, contradicts, or is neutral to the
hypothesis given. Our project made two impor-
tant changes to this approach to fit legal docu-
ments. First, our dataset contains three input types:
statements from wills (as hypotheses), laws (as
premises), and conditions, which are circumstances
at the time of probate (e.g., eligibility of the tes-
tator or witnesses). This adaptation is necessary
as will statements’ validity cannot be evaluated
without considering both circumstances at the time
of probate (“conditions”) and relevant legal rules
(“laws”). Also, we switched the labels from entail-
ment, contradict, neutral to support, refute, unre-
lated to better represent the relation between will
statements and laws.
The major contributions of this work are:

• We create an open-access annotated dataset
with 1,014 data points, generated from 23 pub-
licly available wills. In addition to the three-
tuple setting unique to the legal domain, this
dataset also contains texts considerably longer
than in other open-domain NLI datasets, such
as SNLI (Bowman et al., 2015). The average
length of our texts is 269 tokens, while the
average lengths of premises and hypotheses
in SNLI are 8 and 14 tokens, respectively.

• We demonstrate that validity assessment of
legal will statements can be handled reason-
ably well with state-of-the-art NLI models
when trained on our dataset. However, low
scores in group accuracy, which is a stricter
evaluation measure calculated with a group
of positive and negative examples generated
from the same statement as a unit, indicate
that work remains before NLI models fully
understand legal language.

• We explain how the trained models utilize our
dataset via ablation tests that remove various
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pieces of information at prediction time (laws,
conditions, or both), and through post-hoc
explainability analyses using LIME (Ribeiro
et al., 2016). Our analyses indicate that in
most cases the NLI classifiers use meaningful
phrases from all three pieces of text, indicat-
ing the models do capture useful information.
However, in some situations, the models use
features that are not intuitive for humans, in-
dicating that the task is incomplete.

2 Related Work

Natural language inference (NLI), also known as
Recognizing Textual Entailment (RTE), determines
entailment relations between a pair of sentences:
a premise and a hypothesis. Their relationship is
either: a) entailment, if a premise entails a hypoth-
esis; b) contradiction, if a premise contradicts a
hypothesis; or c) neutral, if a premise neither en-
tails nor contradicts a hypothesis. NLI has been
a key framework in natural language processing
since Dagan et al. (2006) proposed the RTE chal-
lenge.

Numerous datasets exist for general NLI tasks.
For example, the Stanford Natural Language In-
ference (SNLI) Corpus (Bowman et al., 2015)
dataset contains about 570,000 pairs of sentences
(premises and hypotheses) generated from Flickr
image captions. More recently, datasets for domain-
specific NLI tasks are being introduced. SciNLI
(Sadat and Caragea, 2022) is drawn from scientific
texts. It contains 107,412 sentence pairs extracted
from papers in natural language processing and
computational linguistics.

There have been a few NLI-related resources
for the legal domain, including IFlyLegal (Wang
et al., 2019), StAtutory Reasoning Assessment
(SARA) dataset (Holzenberger et al., 2020), Graph-
based Causal Inference (GCI) framework (Liu et al.,
2021), and ContractNLI (Koreeda and Manning,
2021). One IFlyLegal module was developed for
natural language article inference; it provides rel-
evant legal articles when asked legal questions.
SARA contains rules extracted from the US Inter-
nal Revenue Code and natural language questions.
GCI generates causal graphs based on fact descrip-
tions. Though the framework was not specifically
designed for law, Liu et al. (2021) demonstrated
that it can be utilized for legal text analysis. Con-
tractNLI is a dataset consisting of 607 legal con-
tracts designed to handle document-level natural

language inference.
Our work differs from these existing NLI works

in two ways: (a) it contains three types of input
information; and (b) it operates in a pragmatic mid-
dle space with respect to text length: larger than
datasets with sentence-level texts, which are in-
sufficient to capture legal details, but shorter than
document-level inference datasets.

3 Dataset

Our dataset includes three types of entries (will
statements, applicable law, and facts representing
external state) rather than the usual two types. Va-
lidity often depends upon such external circum-
stances. Thus, a will statement can be legally valid
under some facts, but not others. Hence, a will can
change from valid to invalid or vice versa; wills
must, at minimum, be evaluated when executed
(drafted and signed) and when probated (where a
court determines whether to implement its provi-
sions). For example, if a will contains a statement
appointing a specific person as executor, that per-
son’s eligibility must be verified. This requires
information about both the law and the person’s
circumstances at probate time. For example, ac-
cording to Tennessee Code section 40-20-115, any
person who has been imprisoned cannot be an ex-
ecutor. Thus, to assess eligibility of a Tennessee
executor in Tennessee, one must know whether
they have been in prison at probate time.

3.1 Data Collection

Our data was collected from the U.S. Wills and
Probates datasets in Ancestry, which contains doc-
uments in the public domain.1 We chose 23 wills
based on three criteria: 1) whether the wills were
handwritten; 2) the wills’ execution and probation
dates; and 3) where the wills were executed and
probated. We excluded handwritten wills due to the
difficulty of OCR text recognition. Execution and
probation dates can affect interpretation of wills;
we excluded wills executed before 1970 and pro-
bated before 2000. Lastly, we only collected wills
from Tennessee, because including wills from mul-
tiple states would require analyzing each state’s
laws governing wills. Tennessee had the greatest
number of wills meeting our criteria.

All collected wills were anonymized. Personal
information was replaced with special tokens de-
noting the type of information (such as [Person-

1Court documents are in the public domain in the US.
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Figure 1: A demonstration of the annotation procedure. Given a law and condition, each statement is evaluated
for validity. Support: it is supported by the law and condition provided; Refute: refuted by the law and condition.
Unrelated: not relevant to the law. When a statement and a law are unrelated to each other, a condition is not
required for classification. However, it is still assigned one of the conditions from either support or refute case.
The goal is to prevent NLI models from depending on contextual difference (i.e., “texts without conditions are all
unrelated cases”) rather than features when making predictions.

n], [Address-n], [Number-n], where n identi-
fied each person or object in the will. (Suntwal
et al. (2019) suggested this anonymization method).
Anonymization was performed manually to prevent
including personal information in the dataset.

3.2 Annotation

Each will statement was annotated as support, re-
fute, or unrelated based on a given condition and
law. (Our annotators set hypothetical conditions
when necessary to categorize statements.)

Importantly, each statement was annotated mul-
tiple times. A statement was annotated once
as support, once as refute, and thrice as unre-
lated.2 This ensured that every statement was
labeled with all three classes in the same ratio
(support:refute:unrelated=1:1:3). Also, annotat-
ing statements three times more with “unrelated”
than support and refute enabled including a greater
range of laws in the dataset. Formally, our annota-
tion procedure included the following steps:

(1) preprocessing: extracting texts from collected
wills using OCR3, and copying statements into the
dataset;

(2) for each statement, identifying the Tennessee
2A few exceptions occurred when:

a) it was impossible to create a case where the statement
was refuted. In such cases, statements were not annotated as
"refute."
b) a statement had more than one relevant legal rule. Such
statements were annotated twice as support, twice as refute,
and once as unrelated.

3The collected wills were scanned documents, so OCR
was necessary to extract machine-readable text.

legal provision that supported, refuted, or was un-
related to the statement’s validity;

(3) adding a condition specifying external circum-
stances relevant to validity;

(4) repeating these steps to generate five annota-
tions per statement;

(5) anonymizing all statements by replacing per-
sonal information with special tokens.

Figure 1 demonstrates the annotation procedure
with examples.

Two annotators participated in the task. One is a
law student, and annotation was supervised by au-
thor Bambauer, a law professor. The other annota-
tor does not have legal training, but ongoing discus-
sions and reviews ensured the uniform quality. The
annotators contributed equally. Annotators worked
individually but shared annotation guidelines. Af-
ter the annotation was complete, cross-annotation
was conducted on 200 randomly selected items
(100 items from each annotator’s set; each annota-
tor worked blinded on items drawn from the other
annotator’s set) to check inter-annotator agreement.
We calculated Kappa agreement score based on
the cross-annotation result, and the score is 0.91
(rounded to hundredth).

After the annotation was complete, the dataset
was split into training, development, and test sets.
There are 1014 data points in our dataset, split
50:25:25% (train: 504, development: 255, test:
255). When splitting, a group containing anno-
tations from a single statement (one support, one
refute, and three unrelated) was treated as a single
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a) Texts (statement+condition+law)

b) Statements c) Conditions d) Laws

Figure 2: Histograms demonstrating the length distribution of a) full texts (i.e., statement+condition+law), b)
statements, c) conditions, and d) laws in terms of token counts. Token counts are plotted on the X-axis; the Y-axis
indicates the number of texts/statements/conditions/laws for each bin.

Datasets Texts Tokens
Train 504 135218
Development 255 69643
Test 255 68042
Total 1014 272903

Table 1: The number of texts and tokens contained in
each dataset and in total

unit. Each annotator’s work was equally repre-
sented in all three datasets. All 23 wills appear in
more than one of the train, dev, and test partitions.
However, given the nature of the will statements
from the wills and how they were annotated, data
leakage is unlikely. Will statements are indepen-
dent and generally do not convey information about
other statements from the same wills. Summary
statistics are in Table 1 and Figure 2.

3.3 Characteristics of the Dataset

Our dataset has two characteristics distinguishing it
from other datasets: a) texts are composed of three
input types, and b) texts contain a large number of
tokens.

First, our task requires a third input type: a condi-
tion, since validity often depends upon conditions.

Second, our texts tend to contain a large number
of tokens. 44% of our texts contain 200 or more
tokens. The average token number was 269.14; 79
texts contain more than 512 tokens (the threshold
for most NLI models). Popular NLI datasets are
shorter.

3.4 Implementation

We trained multiple NLI models with our dataset to
assess their performance: four transformer models
and four sentence-transformer models. The trans-
former models include bert-base-uncased (Devlin
et al., 2018), distilbert-base-uncased (Sanh et al.,
2019a), roberta-large-mnli (Liu et al., 2019), and
longformer-base-4096 (Beltagy et al., 2020). Bert-
base-uncased and dilstilbert-base-uncased were
trained to set baselines on the task. In addition
to the baseline models, we used roberta-large-
mnli and longformer-base-4096. Among sentence-
transformer models (Reimers and Gurevych, 2019),
four pretrained models with top average perfor-
mances (based on the Model Overview page4) were
chosen: all-mpnet-base-v25, multi-qa-mpnet-base-

4https://www.sbert.net
5https://huggingface.co/sentence-transformers/

all-mpnet-base-v2
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dot-v16, all-distilroberta-v1 (Sanh et al., 2019b)7,
and all-MiniLM-L12-v2 (Wang et al., 2020)8.

To distinguish between statements, laws, and
conditions in the concatenated texts, we prefixed
each with a special token: [STATE], [LAW], and
[COND].

Both transformer models and sentence-
transformer models were trained on PyTorch
1.11.0 with Cuda 11.3. All transformer models
were trained using the Trainer class provided
by HuggingFace. Learning rates and training
epochs were tuned on the development partition.
Sentence-transformer models were trained with
Sentence Transformer Fine-Tuning (SetFit)
proposed by Wasserblat (2021). It was slightly
adapted to fit the multi-class classification task,
but its fundamentals remain intact. SetFit utilizes
sentence pairs generated within the same class
as training data. It fits the model with the data
to minimize the Softmax Loss. Once the model
is fitted, it is used to encode the training and
development (or test, when it is a testing phase)
datasets. The encoded data is used to fit the
Logistic Regression classifier (with ‘liblinear’
solver) which, finally, makes predictions.

All models except for longformer-base-4096
were trained and evaluated on the truncated datasets
due to the models’ token number limitations. The
models can only process texts with 512 or fewer to-
kens without truncation (all-MiniLM-L12-v2: 256
tokens; all-mpnet-base-v2: 384 tokens; other mod-
els, except longformer-base-4096: 512 tokens).
When truncating datasets, the ratio of average to-
ken numbers among three input types (statements,
laws, and conditions) was considered to prevent
losing excessive information from a single type of
input.

4 Results and Analysis

4.1 Evaluation Measures
We report results using standard accuracy, preci-
sion, recall, and F1 scores. To ensure all labels are
well represented, precision, recall, and F1 scores
were computed with Macro average. Additionally,
as suggested by Elazar et al. (2021), we introduce
a new measure called group accuracy (GA). GA

6https://huggingface.co/sentence-transformers/
multi-qa-mpnet-base-dot-v1

7https://huggingface.co/sentence-transformers/
all-distilroberta-v1

8https://huggingface.co/sentence-transformers/
all-MiniLM-L12-v2

is calculated with a group of positive and nega-
tive examples from the same statement (rather than
each text) as a unit. If a group has one or more
incorrect predictions, the group is incorrect. If a
model correctly understands a will statement, it
should perform equally well on all examples from
the same statement.

4.2 Results from Trained Models

Table 2 shows the models’ performances on our
test partition. Overall, the models demonstrated
good performances. Each achieved more than 80%
in all metrics but group accuracy. Roberta-large-
mnli showed the best performance. It achieved over
96% in all metrics but group accuracy (84.31%),
suggesting it can handle the task reasonably well.
However, the large difference between accuracy
and group accuracy suggests that the models’ un-
derstanding of the task is superficial.

Accuracy for the unrelated label was higher
than for support and refute in all models except
all-mpnet-base-v2 and multi-qa-mpnet-base-dot-
v1. This higher accuracy for unrelated label may
be partially attributable to the gap between accu-
racy and group accuracy, as it would inflate overall
accuracy. However, since the gap between accuracy
and group accuracy is not significantly smaller for
all-mpnet-base-v2 and multi-qa-mpnet-base-dot-v1
(i.e., the models where accuracy for unrelated was
not higher than the other labels), it is more likely
that the gap originated from the strictness of group
accuracy and the models’ superficial understanding
of will statements.

Further, roberta-large-mnli (trained with trun-
cated inputs) showed better performance than
longformer-base-4096 (trained with full length in-
puts). This suggests that models with token number
limitations can still perform well with long inputs
when truncated properly.

4.3 Experiment with Different Input Lengths

To investigate whether the models’ performance
was affected by input length and/or input trunca-
tion, we varied input lengths. Inputs were classified
into three categories by length: a) short (equal or
less than 192 or 256 tokens); b) regular (larger than
192 or 256 tokens and equal or less than 384 or
512); and c) long (larger than 384 or 512)9. The

9For all-mpnet-base-v2 model, 192 and 384 were used as
dividing points instead of 256 and 512, as its maximum token
length is 384.
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Model Precision Recall F1 Accuracy GA
Transformers models
bert-base-uncased 81.47 82.20 81.81 87.06 49.02
distilbert-base-uncased 82.37 82.59 82.48 87.06 50.98
longformer-base-4096 94.09 93.69 93.85 94.90 74.51
roberta-large-mnli 96.67 96.25 96.42 96.86 84.31
Sentence-Transformers models
all-MiniLM-L12-v2 81.50 84.54 82.64 85.49 50.98
all-disilroberta-v1 83.43 85.99 84.22 87.06 49.02
multi-qa-mpnet-base-dot-v1 91.48 94.13 92.65 93.73 74.51
all-mpnet-base-v2 92.93 95.05 93.82 94.90 76.47

Table 2: Results of all classifiers trained on our dataset using five measures: precision, recall, F1, accuracy, and
group accuracy (GA in table, see Section 4.1). Precision, recall, and F1 scores were computed with Macro average.
Group accuracy is calculated with positive and negative examples generated from the same statement as a unit. If a
group contains one or more incorrect predictions, the group is considered incorrect.

Model Precision Recall F1 Accuracy
all-mpnet-base-v2 (sample n = 52)
token <= 192 93.75 93.15 92.91 94.23
192 < token <= 384 90.48 89.10 89.63 94.23
384 < token 86.35 89.49 87.08 88.46
longformer-base-4096 (sample n = 20)
token <= 256 95.24 88.89 90.77 95.00
256 < token <= 512 80.56 71.67 70.93 80.00
512 < token 73.81 66.67 66.93 75.00
roberta-large-mnli (sample n = 20)
token <= 256 100 100 100 100
256 < token <= 512 94.87 85.00 88.76 90.00
512 < token 94.44 93.33 93.27 95.00

Table 3: Results with different input lengths. Models generally performed worse when token numbers in inputs
were larger. Roberta-large-mnli performed better than longformer-base-4096 in predicting long inputs (token > 512)
despite truncation. Roberta-large-mnli also showed better performance on long inputs than regular inputs, indicating
input truncation did not worsen the model’s performance.

number of inputs in each category varied. To con-
trol the impact of varying sample size, categories
with larger sample sizes were reduced by random
sampling to match the smallest sample size. For
this experiment, we used the three models with best
performance on the full dataset.

Table 3 shows the results. Models generally
performed worse with larger input token numbers.
All three models performed best with inputs with
smaller token numbers. One interesting finding
is that roberta-large-mnli performed better than
longformer-base-4096 in predicting inputs with
large token numbers (n > 512) despite truncation.
Roberta-large-mnli showed better performance on
long inputs than regular inputs, indicating trunca-
tion did not negatively affect the model’s perfor-

mance. This finding aligns with the observation
from the overall results that models with token num-
ber limitation can still show good performances on
long inputs when properly truncated. However,
results differed with a smaller token number limita-
tion. All-mpnet-base-v2 performed worst on long
inputs (where truncation occurred), indicating trun-
cation negatively impacted performance.

4.4 Results from Ablation Experiment

To determine whether the models correctly rely on
all three types of texts (statements, conditions, and
laws), we conducted an ablation experiment, train-
ing the models with datasets lacking one (law or
condition) or two types (law+condition) of inputs.
Poliak et al. (2018) suggested a similar experiment
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Model Precision Recall F1 Accuracy GA
Statements and laws
all-mpnet-base-v2 75.64 76.47 75.98 81.96 27.45
longformer-base-4096 75.72 75.98 75.79 82.75 37.25
roberta-large-mnli 77.93 77.51 77.55 84.31 39.22
Statements and conditions
all-mpnet-base-v2 46.67 57.13 44.80 44.31 0.00
longformer-base-4096 58.00 49.44 51.30 58.82 0.00
roberta-large-mnli 37.63 41.72 38.08 56.86 0.00
Statements only
all-mpnet-base-v2 36.76 35.94 34.04 36.47 0.00
longformer-base-4096 18.17 33.33 23.52 54.51 0.00
roberta-large-mnli 18.17 33.33 23.52 54.51 0.00

Table 4: Results from the ablation experiment where three models were trained with datasets lacking one (law or
condition) or two types (law+condition) of inputs. Results demonstrate that the models’ performances deteriorate if
one or more input type(s) is omitted. Thus, both types of inputs affect the models’ performances, though laws have
larger impact than conditions.

to this one to set hypothesis-only baselines. We
used the three models with the best performances
on the full dataset for this experiment.

Table 4 shows the results. Performance dete-
riorated if any input type was omitted. Among
the models trained on partial data, those trained
with statements and laws performed better, with
F1 scores over 75%. However, group accuracy
dropped to the 30s or even 20%s, indicating ac-
tual understanding decreased considerably. Models
trained with statements and conditions performed
significantly worse. Results ranged between 38%
and 52% for F1, and group accuracy dropped to
0. Models trained only with statements performed
worst, with F1 scores dropping to 35% or lower.

This degradation from partial data shows includ-
ing both conditions and laws positively affects the
models’ performance. Models use all three types
of inputs when making predictions10. Laws have
more impact on performance than conditions, since
deterioration in results without laws was more sig-
nificant than from models trained without condi-

10A reviewer suggested an experiment where laws and con-
ditions are packed into premises and treat the task as nor-
mal NLI. A pilot experiment with the best performing model
(roberta-large-mnli) found a slight deterioration in perfor-
mance when laws and conditions were combined as premises
(precision: 93.09, recall: 93.89, F1: 93.41, accuracy: 94.12,
GA: 74.51; see Table 2 for comparison with main result). The
biggest difference came from GA score (74.51 vs. 84.31).
This lowered GA score implies that the model’s understand-
ing worsened when conditions and laws were combined into
premises. Given this preliminary result, it is likely that three-
way distinction in input types positively contributes to the
model’s performance. Nevertheless, as the performance differ-
ence is not significantly large, further investigation is needed.

tions. This is realistic, since laws set the parameters
within which conditions operate to make a given
provision valid or invalid.

4.5 Understanding Results with LIME

To clarify model behavior, we used Local Inter-
pretable Model-Agnostic Explanations (LIME) to
explain our classifiers’ predictions (Ribeiro et al.,
2016). We implemented LIME on predictions
made by the best performing model (roberta-large-
mnli, fine-tuned on our data). The LIME results
revealed that the model tends to correctly rely on
all three texts (statements, laws, conditions) for a
prediction, and uses meaningful features in many
cases. However, sometimes the model utilized fea-
tures that are not intuitive for humans.

4.5.1 A Correct Example
Figure 3 shows a case where the model made a
correct prediction based on features sensible to hu-
mans. Figure 3’s text is a statement saying two or
more witnesses witnessed the testator signing the
will and signed in each other’s presence. It includes
a condition stating that one of the two witnesses
was ineligible to serve under Tennessee law, and
the law specifying witness eligibility in Tennessee.
The given condition and the law invalidate the will
statement, rendering it as refute. The model cor-
rectly predicted the outcome based on tokens such
as ineligible, witnesses, One, testament, and 2. The
top two tokens with greatest impact on the model’s
prediction were ineligible and witnesses, with im-
portance score of 0.60 and 0.14, respectively. It is
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Figure 3: Examples of LIME explanations showing a case where the model (roberta-large-mnli) makes correct
predictions based on features sensible to humans.

Figure 4: An example of a LIME explanation showing a case where the model (roberta-large-mnli) makes an
incorrect prediction based on the tokens such as Making, and, and the which bear little semantic relevancy to the
gist of the text.

understandable that these tokens have high scores,
as they are the keywords ("One out of two (2) wit-
nesses is ineligible") which provide grounds for
revoking a will statement.

4.5.2 An Incorrect Example

Figure 4 shows a case where the model made an in-
correct prediction based on irrelevant tokens. The
intent of the will statement is to excuse the Execu-
tor from filing inventory. This is not contradicted by
the condition and law, requiring the model to clas-
sify the text as support. Nevertheless, the model
incorrectly classified it as unrelated. The reason
for the incorrect prediction is that the model (prob-
ably) relied on irrelevant tokens such as Making,
and, and the, which bear little semantic relevancy
to the text, versus more relevant tokens such as
inventories and excuses when making the predic-
tion. This is likely due to overfitting induced by
longer texts. This LIME explanation shows that
even the best performing model still has room for
improvement.

5 Future Work

This work can be expanded in several directions.
First, it can be extended to cover multiple states by
adapting the models or adding more data. Future
work can investigate if models trained on a single
state’s data can be adapted to evaluate data from
other states. Also, wills from multiple states could
be added to the dataset. We expect the augmented
dataset would enhance the models’ performance on
evaluating wills from other states.

This work can be expanded to other legal do-
mains. Models trained on our data can be adapted
to similar tasks in other legal domains.

Lastly, this work can be extended by investigat-
ing novel transformer models. Given the unique-
ness of our dataset with regard to the number of
inputs and text length, it is likely that further exper-
iment and modification is needed to handle such
characteristics.
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6 Conclusion

This work presented an annotated dataset for natu-
ral language inference (NLI) in the legal domain,
consisting of 1,014 data points generated from
23 publicly available wills. The dataset is novel
for two reasons: it included texts with three in-
put types (statement, law, and condition) rather
than two (premise and hypothesis) in the tradi-
tional NLI, and included texts are longer than in
general NLI datasets. The NLI models trained on
our dataset showed reasonable performance in as-
sessing the validity of will statements. Ablative
experiments demonstrated that the models’ perfor-
mances worsen if any input type (condition, law,
or both) is omitted. This suggests that the models
utilize all three input types. The LIME implemen-
tation reveals that even the best performing model
makes errors in some cases by using semantically
irrelevant tokens. Our open-access dataset is pub-
licly available at: https://github.com/ml4ai/
nli4wills-corpus

Limitations

Our dataset consists of a relatively small number
of data points (1,014 texts). Annotating will state-
ments with relevant laws and conditions is a highly
demanding, time intensive task. A larger size of
dataset would likely further improve the models’
performances.

Our dataset only includes wills executed and
probated in Tennessee, with execution after 1970
and probate after 2000. Due to these restrictions,
our framework might produce incorrect results on
inputs from wills from different settings. Supple-
menting the dataset with wills from more diverse
settings would address this limitation. Even though
the scope is limited to a single state (Tennessee),
our study demonstrates that transformer models
trained on the dataset can evaluate the validity of
statements from wills with reasonable accuracy.
Future additions to our dataset will be available
at the same URL: https://github.com/ml4ai/
nli4wills-corpus

This work does not involve humans in the loop.
Considering how crucial accuracy is for the task
(i.e., legal validity evaluation), the work would
have benefited much from involving domain ex-
perts. Even though our study discovered that the
state-of-the-art transformer models can show good
performances (over 85% accuracy in all 8 models)
without human interaction, it was also found that

the models’ understanding on the task is rather su-
perficial (GAs ranging from 49-85% in Table 2).
Including humans-in-the-loop could be a solution
for enhancing the models’ understanding on the
task.

Ethics Statement

We collected legal wills from Ancestry as a part of
our dataset creation process. The wills probated in
court are in the public domain in the US, and we did
not violate Ancestry’s Terms and Conditions when
collecting wills. We also anonymized the wills
by replacing any personal identifiable information
contained in the documents with special tokens.

Our datasets and codes are released to public.
We believe our released datasets and codes would
contribute to society by promoting further NLI en-
deavors in the legal domain. The resources could
potentially assist with people reviewing wills, but
they should not be considered as legal advice. To
avoid any confusion, we placed a disclaimer that
the users must not rely on any information provided
from our resources when making legal decisions
and should instead consult with an attorney.
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