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Abstract
Traditional machine translation (MT) metrics
provide an average measure of translation qual-
ity that is insensitive to the long tail of be-
havioral problems. Examples include transla-
tion of numbers, physical units, dropped con-
tent and hallucinations. These errors, which
occur rarely and unpredictably in Neural Ma-
chine Translation (NMT), greatly undermine
the reliability of state-of-the-art MT systems.
Consequently, it is important to have visibil-
ity into these problems during model develop-
ment. Towards this end, we introduce SALTED,
a specifications-based framework for behav-
ioral testing of NMT models. At the core of
our approach is the use of high-precision de-
tectors that flag errors (or alternatively, verify
output correctness) between a source sentence
and a system output. These detectors provide
fine-grained measurements of long-tail errors,
providing a trustworthy view of problems that
were previously invisible. We demonstrate that
such detectors could be used not just to identify
salient long-tail errors in MT systems, but also
for higher-recall filtering of the training data,
fixing targeted errors with model fine-tuning in
NMT and generating novel data for metamor-
phic testing to elicit further bugs in models.

1 Introduction

The development of Machine Translation (MT) sys-
tems is typically guided by performance metrics
(Papineni et al., 2002; Rei et al., 2020) computed
on small, curated test sets, wherein system qual-
ity is often reduced to a single number. While
metrics are useful for characterizing the average
performance of a system, they do not provide fine-
grained visibility into rarer error categories. As a
result, researchers do not have a reliable way to
gauge whether and to what extent a system may
exhibit a wide range of negative behaviors, such
as hallucinations, dropped content, or the sporadic
mistranslation of important information such as
names or physical units. However, such salient

‘long-tail’ errors undermine the reliability of MT
systems, and are increasingly important to curtail in
an era where MT output is often indistinguishable
from that of humans (Martindale et al., 2021).

A second related problem is that many of these
behaviors are rare enough that they will not be
observed on standard test sets (which typically only
number a few thousand sentence-pairs), even if
reliable detection via references is feasible. Owing
to this rarity, the detection methods that require
source-reference pairs are not useful, besides being
non-scalable. Consequently, a real missing feature
in machine translation evaluation is having fine-
grained analysis and measurements that could scale
to large, unannotated datasets. In this work, we
propose SALTED as a framework to tackle these
challenges. Our main contributions are as follows:

1. We explore Behavioral Testing (Beizer, 1995)
as a means to provide fine-grained measure-
ments of salient long-tailed errors in MT,
while addressing the challenges of rarity and
scalability in obtaining those measurements.

2. We propose an iterative, specifications-based
process for obtaining reliable measurements
through high-precision detectors and demon-
strate their utility on seven MT error classes
across both research and commercial systems.

3. We demonstrate that detectors are amenable
to multiple applications in MT, including
higher-recall training data filtering, system-
comparisons, metamorphic testing and fixing
errors through fine-tuning on synthetic data.

2 The SALTED Approach

Behavioral Testing (Beizer, 1995) concerns itself
with testing the input-output behavior of systems,
without leveraging any knowledge about the sys-
tem’s internal structure. For behavioral testing
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Property Correct Behavior Specification for Translation Violation Example

Physical units The model should translate the exact unit in the
target language (abbreviations are allowed).

yards → Meters

Currencies The model should translate the exact currency in
the target language (both symbol abbreviations and
expansions are allowed).

USD → C

Large Numbers Large Numbers in text form should appear in the
same denominations in the output.

trillions → millions

Web Terms URLs and Web Addresses should be copied as is
from the source to target, without any translation.

www.bbc.en → www.bbc.de

Numerical values The number in a numerical value should not
change beyond an allowed set of transformations
(e.g., time format change, change of separators,
decimal point change, number system change etc.).

24.70 → 2,470

Coverage The model should translate the entire semantic
content of the source sentence.

My friend Bob → Mi amigo

Hallucinations The model should not produce translated content
that is not grounded in the source sentence.

Hello → Hola ha ha ha ha

Table 1: Behavior specification: The first step in building a detector is to specify the correct expected behavior.

of Natural Language Processing (NLP) models,
CHECKLIST (Ribeiro et al., 2020) proposes a pro-
cess to construct test cases for evaluating differ-
ent linguistic capabilities, each test case being a
specified input with the associated ground truth la-
bel(s). This approach does not generalize to NMT
for several reasons; (a) there could be multiple
valid translations of the same input (b) errors are
highly contextual: the same content may be trans-
lated accurately in one sentence, but inaccurately in
another (c) errors are unstable: different model it-
erations may manifest errors in different sentences
(d) errors are rare: a particular mistranslation may
occur only once in a million sentences. Therefore,
an annotated set of test cases is not just challenging
to construct, but also instantly obsolete.

In SALTED, we propose a different approach to
behavioral testing for NMT. Instead of relying on
test cases, we translate millions of sentences and
apply detectors. Each detector is written to detect
a specific class of error, based on a specification
of correct behavior. More concretely, a detector
is an algorithm, which given an input-output sen-
tence pair returns a boolean value indicating the
presence of an error condition with very high pre-
cision. The proposed detectors lie at the extreme
non-trivial end of the precision-recall curve and
emphasize very high precision in order to make
the ensuing measurements trustworthy. At a high-
level, we construct detectors by iteratively narrow-

ing the error specifications until very high precision
is achieved on a large development set. While this
emphasis on precision means that a number of po-
tentially erroneous output instances would not be
flagged, we gain the advantage that the resulting de-
tector could now act as a trustworthy measurement
of a specific error category, a key property of useful
measurements (Hand, 2016). Further, for system
developers, such measurements now make previ-
ously invisible problems visible with high reliabil-
ity, allowing targeted model iterations for reducing
specific error types during model development.

3 Behavior Specification for MT

If we cannot specify the correct behavior, we can-
not verify output correctness (Hierons et al., 2009).
Therefore, the first step of constructing a detector
is to specify the desired behavior that the model
must satisfy with respect to the translation of cer-
tain salient content or property. Table 1 lists the
behavior specifications for all the detectors we im-
plement. We determined the 7 error classes in Table
1 owing to their disproportionate impact on user
trust, since each of these specifications if violated
could lead to serious consequences for user con-
sumption of translations1. The desired behavior
for some cases (e.g., URL translation) is unam-
biguous. However, in the case of expressions such

1Link of an example from Chemical Industry.
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as physical units or currencies, an unambiguous
specification is not readily apparent, e.g., NMT
models are quite capable of learning to translate
‘10 miles’ to ‘16 km’ from parallel data. While
this may be desirable for localization purposes, and
successful in common cases, it could lead to danger-
ous inaccuracies in rarer cases, since NMT models
shouldn’t be trusted to do mathematics consistently
and correctly, even if such conversion rules do not
vary across time. Therefore, in general, our be-
haviour specifications require that such expressions
be left semantically unchanged. This however ap-
plies only to the preservation of semantic content.
As evident from Table 1, the specification allows
changes to digit separators and to number systems
(such as those between English and Chinese) in the
case of numerical values. Further, as we show in
section 4 this step of behavior specification is itself
subject to iteration within the process of building
detectors. However, an explicit enumeration of the
boundary between desired and undesired behavior
across different salient content types or properties
provides us a useful starting point for a detector
implementation.

4 Designing Detector Algorithms

Building detectors from specifications is an itera-
tive process. A first implementation for most con-
tent types inevitably yields large numbers of false
positives. It is here that our focus on precision
over recall serves as a useful guide. In addition to
producing detectors whose results are more trust-
worthy, this principle simplifies the task, since we
can narrow in on a subset of settings that could be
detected with a high certainty of correctness. Here
we illustrate this process with an example.

4.1 Example: Physical units translation

Here, we consider the identification of errors in
the translation of physical units, such as meters,
feet, etc. for English → German translations. We
decompose the process of constructing detectors
into three steps: behavior specification, resource
construction and checking for specified behavior.
Each of these steps is iterated upon by quantify-
ing the precision of error detection through human
evaluation. The development iterations are done
on a large initial set of monolingual source sen-
tences and their translations generated by a MT
system and the development is halted when abso-
lute precision is achieved on this corpus. Finally,

a ‘test’ phase human evaluation is conducted by
varying both the monolingual data as well as the
MT system, to ascertain the final precision of the
developed detectors.

Behavior Specification In this case, we start
with the specification in Table 1, i.e., the desired
behavior is that the physical unit measurement in
the source be ‘carried through’ without changes
in the target language. For example, ‘10 feet’ get-
ting translated to ‘10 meters’ or ‘10 miles’ getting
translated to ‘16 km’ are both errors.

Token Transformation Table Entry Type

meter → meter, m dist
mm → Millimeter, Millimetern, mm dist
feet → Fuß, Füße, Fußende dist
mile → meile, meilen dist
km² → km², Quadratkilometer area
sq.ft. → sq.ft., Quadratfuß, Quadratfuße area

Table 2: A partial view of the Token Transformation
Table constructed for use in physical unit detector. Each
row comprises of allowed token transformations, along
with a token ‘type’ annotation (used in section 7).

Transformation Table Once the desired behav-
ior for the detector has been specified, the next step
is to build the relevant resources in order to facili-
tate checking for the desired behavior on an arbi-
trary sentence pair. Table 2 illustrates the resource
constructed in this case: a ‘Transformation Table’
of relevant source tokens which maps a source
token to its set of potential translations (transfor-
mations). As we will demonstrate later, building
this ‘Transformation Table’ is quite tractable for ex-
pressing tests that require checking for token-level
transformations in translations. Further, during the
process of construction of the ‘Transformation Ta-
ble’, we also annotate the type of the source token
(we explain its utility in section 7).

Checking for Specified Behavior Once the
‘Transformation Table’ has been constructed, the
detector checks for the desired behavior as fol-
lows: if a source token in the transformation ta-
ble is found in an input sequence, then the output
sequence must contain one of the possible map-
pings of the source token. We also enforce that
the source token must be delimited by space and
that the potential target tokens need not be delim-
ited by space in the output sequence. Note that by
selectively relaxing the check on the target side,
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Iteration Algorithmic Changes Precision

1 N/A, Initial Conditions 72.0
2 Numeric Measurements Only 94.0
3 Fixes in Transformation Table 100.0

Table 3: Iteration vs Precision on Physical Units De-
tector, measured using Human Evaluation on 100 cases
flagged by error by the detector

we protect against lowering detector precision due
to non-semantic/formatting changes i.e., we allow
transformations such as ‘10 km’ → ‘10km’.

Iterations vs Precision At each iteration, we ap-
ply the resulting detector on translations of a 1M
random sample of the WMT20 English monolin-
gual data (dataset/system details are presented in
section 6.1) and measure precision by conducting a
human evaluation of 100 flagged cases, selected
at random at each iteration. Table 3 shows the
resulting precision of the physical units detector
across 3 iterations. At iteration 1, we observed a
number of false positives pertaining to idiomatic ex-
pressions ("missed by a mile") and approximations
("a few yards further"), which were adequately
translated despite missing the exact unit translation.
Therefore, going from iteration 1 to 2, we narrowed
our error detection only to the cases when a physi-
cal unit was preceded by a number (either in text or
numeric form). This helped us avoid false positives
due to the alternate senses and idiomatic uses of
certain units such as feet, leading to significantly
higher precision in iteration 2. Going from iteration
2 to 3, guided again by the goal of improving preci-
sion, we added/fixed entries in the transformation
table to avoid false positives. The false positives
obtained during each iteration of the detector are
presented in appendix A.1. We halted the man-
ual iterations upon achieving 100% precision in
human evaluation. Table 4 presents an example
of physical unit error flagged using the resulting
detector. Further, we present the results of the final

‘test’ evaluation in appendix B.3.

4.2 Full Suite of Detectors

The space of detector algorithms is not at all con-
strained by how they function as long as the con-
tract of high-precision is satisfied. However, in this
work, we mainly consider two kinds of detectors,
namely token-level and sequence-level detectors.

Token-level Detectors Token-level detectors rep-
resent a generalization of the detector instance de-

scribed in Section 4. Token-level detectors rely on
language-pair specific transformation tables and
as such, are well suited for testing the transforma-
tions of source tokens pertaining to a number of
salient content types. Following the same method-
ology for constructing the Physical Units detector
from Section 4, we construct detectors for evaluat-
ing the translation of salient tokens corresponding
to three more content types in Table 1, namely
Currencies (e.g., USD, $), Large Numbers (e.g.,
millions, billions) and Web Terms (e.g., URLs
and web address terms such as https, www). Ad-
ditional implementation-level details regarding the
token-level detectors are provided in appendix B.1.

We also construct a token-level detector to test
the translation of numerical values. Here, instead
of a fixed transformation table, the transformation
table is generated on the fly per instance. For this
numerical values detector, we extract contiguous
numerical values (digits) from the input sequence,
condense the value’s representation into a single to-
ken (by removing separators) and allow for a range
of possible transformations of the numerical value,
which are then checked against the output. The
primary transformations considered are time con-
versions and date conversions. The inherent logic
in this case is the same as for previous token-level
detectors, except that instead of a transformation
table, we construct transformation functions which
are applied on the fly to generate the table. This
approach of behavioral testing the translation of nu-
merical values is quite general, unlike the explicit
construction of test cases in Wang et al. (2021).

Sequence-level Detectors Sequence-level detec-
tors do not rely on explicitly constructing language-
pair specific transformation tables/functions and
instead leverage more general mechanisms or re-
sources. Such detectors are best suited for proper-
ties wherein the correct behavior can be verified
using the artifacts computed from the input and
the output sequences. We construct detectors for
two sequence-level properties/phenomena: namely,
coverage and hallucinations.

For building the coverage detector, we mea-
sure the number of content words (non-stopwords,
non-punctuations) left unaligned using Awesome-
Aligner (Dou and Neubig, 2021), and label an in-
stance as an error if the number of unaligned con-
tent words exceeds a threshold.

For constructing the hallucination detector, we
start from the quantitative definition of hallucina-
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Detector Source-Translation Instance

Physical Unit Teacher’s hallway song and dance reminds students to stay 6 feet apart.
Lehrer Flur Lied und Tanz erinnert die Schüler zu bleiben 6 Meter auseinander.

Currency Floorpops Medina Self Adhesive Floor Tiles, £14 from Dunelm - buy now
Floorpops Medina selbstklebende Bodenfliesen, 15 C von Dunelm günstig kaufen

Numerical Value Kerridge has been an outspoken defender of his industry throughout 2020 , but it
was an angry Instagram post that may have made the most difference.
Kerridge war das ganze Jahr über ein ausgesprochener Verteidiger seiner Branche,
aber es war ein wütender Instagram-Post, der möglicherweise den größten Unter-
schied gemacht hat.

Coverage Ben Cooper QC suggested it was unfair that the conspiracy theorist was arrested on
May 30 while no arrests were made for breaches of lockdown restrictions at a

Black Lives Matter protest taking place on the same day .
Ben Cooper QC hielt es für unfair, dass der Verschwörungstheoretiker am 30.

Hallucination The Cougars are supposed to play No.
== Weblinks ==== Einzelnachweise ==

Table 4: Detector Output examples from the 100K WMT20 Monolingual-Evaluation set: All rows show errors
made by commercial systems, as flagged by various detectors. The last row shows an error by the Microsoft system,
rest show errors made by the Google system. All public APIs were accessed on January 10, 2021.

tions from Raunak et al. (2021) and adjust the
thresholds for target-repeat and oscillatory halluci-
nation detectors until high precision is achieved.

Appendix B.3 provides the results of the final
‘test’ evaluation for each of the detectors, while
Appendix B provides additional detector details.

5 Evaluations using SALTED

Having constructed seven high-precision detectors,
we now wish to apply them to commercial systems
to investigate whether we can discover any prob-
lems. We take a sample of 100K sentences from
a larger 1M monolingual corpus (detailed in Sec-
tion 6.1) and translate them with Google, Microsoft,
and Amazon’s systems by way of their paid public
APIs. Table 5 shows the raw counts of erroneous
translations while Table 4 presents some instances
of the flagged errors from different detectors.

These results demonstrate that long-tailed errors
are quite pervasive across NMT systems, despite
being very rare (only 0.3% incidence rate for
Google, based on Table 11). To further validate this
inexpensively with more data, we translate the full
1M monolingual corpus using the WMT21 News
translation task winning system, the results (both
raw counts and examples) of which are presented
in Appendix D.

Property GOOG MSFT AMZN

Coverage 165 1 8
Hallucinations 0 5 0
Physical Units 46 6 15
Currencies 4 1 0
Large Numbers 7 1 4
Web Content 0 0 0
Numerical Values 96 11 27

Total Errors 318 25 54

Table 5: Counts of Erroneous Translations found by
Detectors in the 100K WMT20 Monolingual Eval Set.

6 System Comparisons & Data Filtering

A general trend in NMT is the susceptibility of
trained systems to even small amounts of noisy data
(Ott et al., 2018). We investigate whether detectors–
optimized for error precision, rather than recall–can
work as effective filters to improve systems.

6.1 Datasets and Systems
Training and Evaluation Datasets We conduct
experiments on the WMT20 News Translation
(English-German) task benchmark (Barrault et al.,
2020). The standard WMT20 test set is used for
measuring general translation performance. For be-
havioral testing at scale using detectors, we create
a Monolingual-Evaluation set of 1M English sen-
tences randomly sampled from the WMT20 mono-
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lingual data. Due to cost constraints (e.g., in eval-
uating public NMT systems), we also sampled a
smaller 100K Monolingual-Evaluation set. Model
and training details are presented in Appendix E.

Systems We trained three systems (Table 6) each
with a different training data-filtering algorithm:

• Unfiltered (UN-F): The full English–German
parallel training dataset provided by the
WMT20 benchmark is used for training.

• Standard (STD-F): We replicate the bitext fil-
tering pipeline of Wu et al. (2020), one of the
top WMT20 systems. Here, sentence-pair fil-
tering based on maximum allowable sentence-
length ratio (1:1.3) and reverse sentence-
length ratio (1.3:1) is applied on the unfil-
tered corpus, alongside filtering sentences
greater than a maximum word length (150). A
language-id filter (Joulin et al., 2017) is also
used, which checks if the source and target
sentences are in the correct languages.

• Detector-Based (DB-F): For this system, fil-
tering as per Wu et al. (2020) is replaced by fil-
tering using the full suite of detectors, i.e. we
remove training data pairs which are flagged
as erroneous by any of the detectors described
in Section 4. However, the use of language-id
filter is the same as in Wu et al. (2020).

Comparing Systems The comparison of the Un-
filtered (UN-F) and Standard (STD-F) systems in
Table 6 shows that the unfiltered system gets higher
BLEU and lower TER on the WMT20 test set, ap-
parently indicating that filtering didn’t have any
benefits. However, when the full suite of detec-
tors is run on the 1M Monolingual-Evaluation set
outputs, the impact of filtering becomes apparent.
The Standard system incurs significantly fewer cov-
erage errors and hallucinations as well as fewer
errors in the translation of numerical values and
currencies. These measurements bring to light the
previously hidden impact of filtering since the stan-
dard metrics aren’t able to capture these trade-offs
in model behaviors, achieving only similar scores.

Data Filtering using Detectors The third col-
umn in Table 6 shows the measurements for the
system trained on data filtered using the suite of
detectors. The results show that the DB-F system
achieves higher BLEU than both the Standard and
Unfiltered systems, while yielding similar results

Measurement UN-F STD-F DB-F

Training Data 48.2M 36.9M 41.7M

BLEU ↑ 32.4 31.4 32.9
ChrF2++ ↑ 58.4 58.0 58.8
COMET ↑ 42.0 38.1 45.7
TER ↓ 54.5 55.5 54.2

Coverage ↓ 742 309 365
Hallucinations ↓ 37 0 8

Physical Units ↓ 141 151 126
Currencies ↓ 17 7 13
Large Numbers ↓ 113 60 67
Web Terms ↓ 43 39 33
Numerical Values ↓ 1,000 503 429

Table 6: Metric Based System Comparisons on the
WMT20 Test set and Detector Based system compar-
isons on the 1M Mono-Eval Set for the three systems.
Note that ↓ implies lower is better, ↑ implies otherwise.

to STD-F on the various long tail error categories.
This indicates the benefits of a more targeted ap-
proach to filtering through high-precision detectors,
which helps the model strike a better trade-off be-
tween preserving general model performance and
preventing long-tailed translation errors. However,
it is also clear that filtering alone is not sufficient
in reducing salient long-tail errors, e.g., the num-
ber of errors in the physical unit category is rel-
atively unchanged. In Section 8, we show how
SALTED could be used to inject correct model
behavior through data synthesis.

6.2 Discussion

The results show that a very targeted multi-
dimensional view of model behavior could be de-
veloped through the use of detectors, bringing visi-
bility into fine-grained model performance issues
not evident through traditional metrics. The results
also show that the same detectors could be used
as an alternative to standard corpus filtering (Wu
et al., 2020), leading to better model performance.

7 Metamorphic Testing

The low incidence rates of long-tail errors neces-
sitate large amounts of data in order to elicit them.
The SALTED framework further addresses this
problem through metamorphic testing, wherein
new test inputs are produced by modifying an input
instance in systematic ways and the outputs are
then tested for correctness through detectors.
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Sequence Type Instance Algorithm Step

Source The plesiosaur teeth it self is about 43 mm long.
Reference Der Plesiosaurier Zahn selber misst etwa 43 mm. Sentence Selection
Templatized Source The plesiosaur teeth it self is about 43 [VAL] long.
Templatized Reference Der Plesiosaurier Zahn selber misst etwa 43 [VAL]. Templatization
Meta Source Instance The plesiosaur teeth it self is about 43 feet long.
Meta Reference Instance Der Plesiosaurier Zahn selber misst etwa 43 Fuß. Type Substitutions

Table 7: Meta-Corpus instance generation example using the physical units detector in Algorithm 1.

Experiment Given a token-level detector and an
initial corpus of monolingual (source) sentences,
if a source token in the detector’s transformation
table is found in a source sentence, delimited by
space on either sides, we create new instances by
substituting that token with others of the same type
(as annotated in Table 2). For example, a sentence
with the word ‘meters’ can be changed to one with
the word ‘yards’. The new sentences can then be
translated by a system, and the detectors applied to
these novel (input, translation) pairs.

Property New Sentences Novel Cases

Physical units 204,029 4,503
Currencies 1,232,988 775
Large Numbers 7,885 42
Web Content 8,238 196

Table 8: Metamorphic Testing: New instances elicit
novel error cases in our research system.

Results and Discussion Results are presented
in Table 8. We find that SALTED metamorphic
testing elicits a number of novel bugs, providing
new data points/instances for investigating system
errors or comparing system performance. Unlike
traditional MT metamorphic tests (e.g., Gupta et al.
(2020)), the metamorphic testing enabled by the
SALTED framework leverages detectors for error
checks and is therefore high-precision by default.

8 Fixing Salient Long-Tailed Errors
While data filtering can improve models by remov-
ing erroneous data, it doesn’t guarantee that there
are sufficient correct examples of a type to learn
correct behavior from. In this section, we leverage
detectors to generate an example-dense synthetic
corpora for fixing model errors via finetuning.

Meta-Corpus Algorithm 1 describes the gener-
ation of a synthetic corpus wherein we leverage
the detectors to ensure that the generated sentence

Algorithm 1: Meta-Corpus Generator
Data: Parallel Dataset S of size n, token-level

Detector A
Result: Meta-Corpus M, Templates T of Size k
for i = 1 to n do

/* Sentence Pair Selection */
Apply Detector A on Si;
If Si has errors: continue;
/* Templatization */
Else: Templatize Si and add to T

for i=1 to k do
/* Type Substitutions */
Substitute Tk with Source-Target Token

Mappings of the same Type
Store the Generated Sentence Pairs in M

pairs are correct with respect to a particular mea-
surement. An example illustrating the steps is pre-
sented in Table 7. The algorithm consists of three
steps: a sentence-pair selection step where a sen-
tence is selected for templatization if the detector
does not deem it erroneous, a templatization step
for the tokens in the transformation table within the
selected sentence pair and finally generation of new
sentence pairs by substituting the templatized to-
kens with (source, target) tokens of the same type.

Experiment We generate a ‘meta-corpus’ (Al-
gorithm 1) using the physical units detector on a
random sample of the WMT20 training data of size
1M. We then finetune, for 3 epochs, the best check-
point of the Standard model using a 1:1 mixture of
the sentence pairs sampled from the Meta-Corpus
and the general 1M training data, filtered using the
same detector. We measure general performance
on the WMT20 test set and targeted performance
on the translation of physical units on the 100K
Mono-Evaluation set. Finetuning learning rates are
provided in Appendix E.6.

Results and Discussion The results (Table 10)
show that just 10K or 20K ‘correct’ examples, pro-
vided by the Meta-Corpus are sufficient to reduce
the number of physical unit errors flagged by the
detector, while preserving the general model perfor-
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Sequence Type Instance

Source Remind kids to keep their masks up and stay at least six feet apart.
Baseline Output Erinnern Sie Kinder, um ihre Masken zu halten und bleiben mindestens

sechs Meter auseinander.
Finetuned Output Erinnern Sie Kinder, um ihre Masken zu halten und bleiben mindestens sechs Fuß

auseinander.

Table 9: Meta-Corpus Based Finetuning: Accompanying Table 7, this example shows an case where a token-level
error (‘feet’ → ‘Meter’) was fixed (‘feet’ → ‘Fuß’) by applying finetuning using the synthetic Meta-Corpus.

Model MC Size Error Cases BLEU

Baseline None 19 31.4
Finetuned 10K 4 31.6
Finetuned 20K 2 31.4
Finetuned 50K 3 31.5

Table 10: Finetuning on Meta-Corpus leads to reduc-
tion in physical units errors. MC Size is the size of the
Meta-Corpus; BLEU scores are reported on WMT20.

mance. An example of this error fix is presented in
Table 9. A limitation of this approach is that it can
only fix mistranslations, not dropped content. In
fact, the few cases that remain in the case of Fine-
tuned model (20K) are the cases where the unit is
dropped along with a clause in the source sentence.

9 Related Work

Quality Estimation for MT The task of Qual-
ity Estimation (QE) is concerned with determining
the quality of a translation without access to any
reference (Specia et al., 2018, 2020). In particular,
sentence-level QE allows the development of mod-
els which act as metrics in the absence of references
(QE-as-a-metric). However, such QE-as-a-metric
models still focus on a combined evaluation of ade-
quacy and fluency, rendering them insensitive to the
presence of long-tailed errors. E.g., consider the
two translations in Table ??. The state-of-the-art
COMET (Rei et al., 2020) QE-as-a-metric model
(detailed in Appendix E.7) produces a score of 8.73
for the baseline output and 6.00 for the finetuned
output, even though the latter is clearly the cor-
rect translation. In Appendix F, we present further
quantitative experiments to illustrate this. Note that
SALTED correctly flags these errors.

Further, we claim that this insensitivity to a long-
tailed errors is not due to deficient modeling of the
particular neural QE model, but due to a funda-
mental limitation of leveraging neural models such

COMET (Rei et al., 2020) for evaluation as well as
error detection (Sudoh et al., 2021). Even though
the recent trend in the NLP community has been
towards learning neural metrics, we argue that this
paradigm isn’t equipped to tackle the problem of
salient long-tail evaluation since robust interpola-
tion in neural networks requires many orders of
magnitude higher number of parameters than cur-
rently employed (Bubeck and Sellke, 2021), which
implies that evaluation using neural models is likely
to remain suspect at the long-tail.

Behavioral Testing for MT A number of pre-
vious works (He et al., 2020; Gupta et al., 2020;
Sun et al., 2020; Wang et al., 2021; He et al., 2021)
have tried to construct tests for eliciting errors in
NMT systems’ behavior. We present a comparison
of SALTED against these works in appendix G.

10 Conclusions

In this paper, we have advocated for and demon-
strated the utility of a principled, specifications-
based approach to reliably flag salient long-tailed
MT errors through high-precision detectors. We in-
troduced an iterative, precision-driven process for
developing such detectors and applied it on seven
classes of MT errors, eliciting a range of errors
from state-of-the-art research and commercial sys-
tems. Although the manual development of such
detectors incurs significant cost, the resulting pay-
off is high with the constructed detectors applicable
universally across different systems and datasets.
Further, we demonstrated the utility of SALTED
for four different use cases in MT: for obtaining
reliable measurements of salient long-tailed errors
in translations of arbitrary monolingual data, for
corpus filtering, for system comparisons, and for
fixing token-level errors through a synthetically
generated meta-corpus that teaches the model to
learn correct behaviors. We hope that our work
serves as a useful step towards more reliable MT.
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11 Limitations

While our work highlighted a number of long-
tailed errors in state-of-the-art translation MT sys-
tems, a limitation of the approach is the effort
required in manually defining specifications and
then constructing detectors based on the defined
specifications. Our proposed approach might also
face hurdles in adoption since, to the best of our
knowledge, the idea of specifications without any
references is novel in large-scale MT evaluation,
and has been mainly developed and used in soft-
ware/hardware engineering research. Another lim-
itation of the work is that fixing salient long-tail
errors is only feasible when the errors are mistrans-
lations, rather than dropped content (e.g., dropped
clause or phrase). If the salient errors are gener-
ated by long chunks of source sentences remaining
untranslated by the model, then the proposed fine-
tuning approach will not improve such translations.
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A Designing Detector Algorithms

The development of detectors is a manual, rules-
driven iterative process with the goal of construct-
ing a very high precision error detector which could
be trusted as a measurement of a specific error cate-
gory. In section 4, we presented an example of this
process for a token-level detector (physical units).

A.1 False Positive Examples

We provide a few examples of the false positives
obtained in the first two iterations of constructing
the physical units detector, the precision of which
is enumerated in Table 3. Examples in Table 11
show a representative sample of the false positives
at each iteration. In the first iteration, the error cri-
teria didn’t target numeric measurements only, as a
result, we got false positives where the change of
unit didn’t imply semantic change. In the second
iteration, we got errors pertaining to an incomplete
transformation table, where ‘Morgen’ wasn’t spec-
ified as a potential translation for the unit ‘acres’.

B Full Suite of Detectors

We provide more details on the implementation of
detectors. The process of construction of detectors
remains the same as described in section 4. For
each of the detectors, the iterative process is halted
when the precision of the error detector reaches 100.
This precision is measured using human evaluation,
by randomly sampling 100 error instances obtained
by applying the detector on 1M source-translation
pairs. The sources for obtaining these translations
are obtained by randomly sampling the WMT20
monolingual data.
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Iteration Source-Translation Instance

1 Closed-circuit cameras watch over every inch of the main street.
Closed-Circuit-Kameras wachen über jeden Zentimeter der Hauptstraße.

1 The officiant of the wedding then rushed the family away from the beach, back towards a
large house several yards away.
Der Beamte der Hochzeit eilte dann die Familie vom Strand weg, zurück in Richtung eines
großen Hauses, das mehrere Meter entfernt war.

2 The city of Anaheim tweeted around 2:30 p.m. that the fire was estimated at 700 acres .
Die Stadt Anaheim twitterte gegen 14:30 Uhr, dass das Feuer auf 700 Morgen geschätzt
wurde.

2 California’s footprint was even larger: Fires there have now consumed about
3.1 million acres - a modern record.

Kaliforniens Fußabdruck war sogar noch größer: Feuer dort haben jetzt etwa
3,1 Millionen Morgen verbraucht - ein moderner Rekord.

Table 11: Examples of False Positives in the first two iterations of the physical units detector.

B.1 Token-Level Detectors
Token-level detectors rely on the construction of
transformation tables or transformation functions,
that map source tokens to their potential mappings
in the target language. In the next sections, we pro-
vide implementation-level details regarding token-
level detectors.

B.1.1 Physical Units Detector
For physical units detector, the entries in the
transformation table contain units associated with
distance (miles, meters, centimeter, millimeter,
inch, kilometre, feet, yard), area (square kilome-
tre, square metre, acres), weight (kilogram, pound),
volume (litres, cubic mm) and temperature (celsius,
fahrenheit). A number of derivative units follow au-
tomatically: e.g., an error translation of ‘km/hr’ get-
ting translated to ‘miles/hr’ could also be detected
using the entry for ‘km’ in the transformation table.

Token Transformation Table Entry Type

dollar → dollar, usd, dollars, $ text
$ → $, dollar, dollars, usd sym
rupees → |, rupie, rupien, rupee(s), rs text
|→ |, rupie, rupien, rupee, rupees, rs sym

Table 12: A partial view of the Token Transformation
Table constructed for use in currency detector. Each
row comprises of allowed token transformations, along
with a token ‘type’ annotation (either symbol or text in
this case).

B.1.2 Currency Detector

For currency detector, a partial view of the transfor-
mation table is presented in 12. The full entries in
the currency table comprise of 20 currencies. We
obtained similar false positives as for the physical
units detector in Appendix A until we didn’t allow
exceptions for idiomatic expressions (e.g., ‘pen-
nies on the dollar’) or approximations (e.g., ‘a few
dollars’).

B.1.3 Large Numbers

For the large numbers detector, we build a transfor-
mation table for the text version of larger numbers
(‘million(s)‘, ’billion(s)’, ‘trillion(s)’). We check
for their translations into both text and numeric
forms.

B.1.4 Web Terms

For the detector corresponding to web terms, we
make use of both transformation table as well as a
transformation function. We check for the correct
translation of URLs (which is copying behavior in
this case) extracted from the source as well as the
correct translation (again, copying in this case) of
web terms such as https, www and ftp. Therefore,
for this detector, the transformation table comprises
only of identity mappings and the transformation
function acting on the extracted URL is also an
identity mapping.
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B.1.5 Numerical Values Detector
The numerical values detector allows trans-
formations of the extracted numerical value
into a range of possible translations: time-
conversions (e.g., ‘2:00’ to ‘14:00’), date conver-
sions (e.g., ‘mm/dd/yyyy’ to ‘dd/mm/yyyy’), sepa-
rator changes (e.g., ‘10,000’ in English to ‘10,000’
in German) and numeric to text forms (e.g., ‘12’ to
‘zwölf’).

B.2 Sequence-Level Detectors

Language Coverage Hallucinations

Russian 5 0
Dutch 6 1
Danish 1 6
Swedish 12 0
Spanish 6 0

Table 13: Number of Erroneous Translations flagged
by the language-agnostic sequence-level detectors for
translations into multiple languages.

B.2.1 Coverage
As described in section 4.2, for implementing the
coverage detector, we make use of alignments ob-
tained through a multilingual BERT-based aligner.
To compute the number of unaligned tokens in the
source, after computing the alignments we filter the
source tokens by removing stop-words compiled
from a number of sources as well as by removing
punctuation tokens. The coverage detector then
flags a translation if the number of unaligned con-
tent tokens exceed a threshold. This threshold is
bucketized in terms of the source sentence length.
We use a threshold of 10 if the input sentence length
is less than 50 tokens, 20 if input sentence length is
between 50 and 100, 30 if the input sentence length
is between 100 and 200 and 40 otherwise.

B.2.2 Hallucinations
The hallucination detector tries to count the number
of oscillatory and natural hallucinations (Raunak
et al., 2021). The detection of oscillatory halluci-
nations is done by the following algorithm: if the
count of the most frequent bigram in the output
exceeds the count of the most frequent bigram in
the source by 4 and the count of the most frequent
output bigram exceeds 10, then it is flagged as an
oscillatory hallucination. For detecting natural hal-
lucinations, we compute the number of the unique

Source-Translation Instance

The Cougars are supposed to play No.
== Weblinks ==== Einzelnachweise ==

Ms. Williams was only seeded No.
== Weblinks ==== Einzelnachweise ==

"Geomsanaejeon" a.k.a.
== Weblinks ==== Einzelnachweise ==

Greg Brown ( No.
== Weblinks ==== Einzelnachweise ==

Downtown L. A.
== Weblinks ==== Einzelnachweise ==

Table 14: Examples of Hallucinations in one of the
Commercial Translation Systems (Microsoft). The pub-
lic API was accessed on January 10, 2021.

sources getting translated to the same output, and
the output is deemed as a natural hallucination if
5 or more source sentences, each with different
lengths translate to it. The hallucination count is
then reported by combining the number of natural
and oscillatory hallucinations. Note that both the
counts are computed independently of each other.
For example, in section 5, we found that one of the
commercial translators (Microsoft) incurs 5 natural
hallucinations, without incurring any oscillatory
hallucinations. For illustration, we present these
hallucination cases in Table 14.

Detector Error cases

Coverage 444
Hallucinations 108
Physical Units 133
Currencies 22
Large Numbers 84
Web Content 30
Numerical Values 405

Total Errors 1226

Table 15: Number of Erroneous Translations flagged
by detectors for the WMT21 News Translation task
winning system.

B.3 Test-Phase Evaluation of Detectors
To conduct a test-phase evaluation of detectors (the
development iterations are halted when absolute
precision is achieved on the large initial develop-
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ment corpus) we vary both the monolingual data as
well as the system generating the translations. We
translate a separate randomly sampled 250K mono-
lingual corpus using the WMT21 winning system
and measure the precision of each of the detectors
through human evaluation on the flagged input-
output pairs. The precision numbers are presented
below for each of the detectors. We obtain absolute
precision for each of the detectors on all except one
of the detectors: Numerical Values (92.53 percent,
with 5 false positives). These false positives from
the Numerical Values detector pertained to the han-
dling of fractions in certain non-standard forms,
which were parsed incorrectly by the detector (an
example is presented in Table 17).

Detector Error cases Precision

Coverage 70 100.0
Hallucinations 1 100.0
Physical Units 33 100.0
Currencies 4 100.0
Large Numbers 9 100.0
Web Content 7 100.0
Numerical Values 67 92.53

Table 16: Number of Erroneous Translations flagged
by detectors for the WMT21 News Translation task win-
ning system on 250K ‘Test’ Monolingual data, along-
side Precision as adjudged by human evaluation.

C Sequence-Level Detector Applications

We translate the 100K monolingual sentences into
5 different languages using a commercial system
(Microsoft) and measure the number of coverage
and hallucination errors. We find that the same
thresholds used for English-German apply well to
the languages in Table 13 too, with the flagged
outputs exhibiting the related error conditions.

D Examples from WMT21 Winning
System

In this section, we translate the 1M Monolingual
Evaluation set using the WMT21 News Translation
task winning system. Beam size of 5 was used
for generating the translations 2. We report the
detector error counts in Table 15 and examples for
different error categories in Table 19. Table 19
shows the error instances from different detectors.
Here, counts and the examples show that a range of

2https://github.com/pytorch/fairseq/tree/main/examples/wmt21

long-tail errors errors persist in the WMT21 system
as well, with a 0.12% incidence rate, similar to
that of the commercial systems.

E Experimental Details

For experiments, we use fairseq (Ott et al., 2019).
Sentencepiece (Kudo and Richardson, 2018) with
a joint token vocabulary of 32K was learned over
the training corpus. The Transformer model used,
comprising of 6 layers with embedding size 512,
FFN layer dimension 4096 and 16 attention heads,
was trained for 100 epochs, with the best check-
point selected using the loss score on the validation
set. Additional experimental details are provided
in appendix E. For, BLEU, TER, ChrF2++ evalua-
tions SacreBLEU is used (Post, 2018), for COMET
scores the implementation provided by Rei et al.
(2020) is used. All models were trained on 8 Nvidia
V100 GPUs and a beam size of 5 was used for each
evaluation.

E.1 Data Sources and Filtering
Table 18 lists the data sources used for training the
models in section 6. The Monolingual evaluation
set was sampled from one of the WMT20 mono-
lingual data sources 3. Further, the language-id
filter for the STD-F baseline in 6 was built using
the more accurate (larger) version of the fasttext
released models (Joulin et al., 2017) 4.

E.2 Transformer Training
For each of the models, a dropout of 0.1 was used
(including relu-dropout and attention-dropout in
(Ott et al., 2019)). The optimizer used was Adam
with the adam-betas parameters set to (0.9, 0.98).
Clip-norm of 1.2 was used. For each of the models
the encoder-decoder embeddings were tied. Each
of the models were trained using a maximum batch
size of 4096 tokens. Further, 3K warmup updates
were used, with the initial learning rate set to 1e-7
and the learning rate set to 1e-4. The batch size was
set to 4096 tokens, and the update frequency was
set to 200. In each case, the inverse-sqrt learning
rate scheduler was used, along with fp16 mode
training.

E.3 Sentencepiece Vocabulary
For each of the models, the 32K Unigram LM-
based sentencepiece 5 vocabulary was constructed

3https://data.statmt.org/news-crawl/en/
4https://fasttext.cc/docs/en/language-identification.html
5https://github.com/google/sentencepiece
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Sequence Type Instance

Source Just as he had lost the first set about 1.1/2 hours earlier but turned things around,
with the help of a dip in level from the fourth-seeded Zverev.

Translation So wie er etwa eineinhalb Stunden zuvor den ersten Satz verloren hatte, aber mit
Hilfe eines Levelrückgangs des an vierter Stelle gesetzten Zverev die Wende schaffte.

Table 17: False Positive Example for the Numerical Values Detector

Data Source Sentence Pairs

Europarl 1,828,521
ParaCrawl 34,371,306
Common Crawl 2,399,123
News Commentary 361,445
Wiki Titles 1,382,625
Tilde Rapid 1,631,639
WikiMatrix 6,227,188

Total 48,201,847

Table 18: The WMT20 Data sources used for training
the English-German models in section 6

by using a character coverage of 0.9995, on 3M
randomly sampled sentences from the training cor-
pus.

E.4 SacreBLEU Configuration signatures

The WMT20 En-De SacreBLEU configu-
ration signature for BLEU computation is
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|
version:2.0.0, for ChrF2++ the signature is
nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|
version:2.0.0 and for TER the signature is
nrefs:1|case:lc|tok:tercom|norm:no|punct:yes|
asian:no|version:2.0.0.

E.5 Meta-Corpus Fine-tuning

For meta corpus generation, the substitutions are
made using Algorithm 1 only on the (source, target)
pairs with one occurrence of the physical unit on
each side, i.e. only one occurrence of the physical
unit is templatized on each side, as illustrated in
table 9.

E.6 Meta-Corpus Fine-tuning

For finetuning, in each case, we use 1K warmup
updates, with warmup initial learning rate set to
1e-7 and the learning rate set to 4e-4. Rest of the
parameter details remain the same as in Appendix
E.2.

E.7 COMET QE-as-a-metric model

The COMET QE-as-a-metric model is built on top
of XLM-R (large) (Conneau et al., 2020) and is
trained on Direct Assessment (DA) scores from
WMT 17-19.

F Insensitivity Towards Long-Tailed
Errors

We add two experiments to quantitatively substanti-
ate the claim the state-of-the-art QE metrics cannot
detect salient long-tailed errors with high precision.

The first experiment is as follows: We select
100 flagged error cases (from the UN-F baseline
in Table 6), of the physical units detector (we fur-
ther verify that these are indeed salient long-tailed
errors). Note that these error cases were obtained
by applying the detector on 1M translations. We
then obtain the Comet-QE scores for each of those
1M translations. We sort the source-translation
pairs based on the Comet-QE scores, and mea-
sure how many of the flagged cases are present
in the worst-K scoring translations. We tabulate
this, i.e. how many of the flagged error cases were
present in the worst-K scoring translations in Ta-
ble 20 below. Even in the 100K worst scoring
sentences, only 3 out of 100 erroneous transla-
tions were present. This shows that the existing
state-of-the-art COMET-QE model is insensitive
to the salient long-tailed errors pertaining to phys-
ical units. Further, we find that this insensitivity
holds true across different salient long-tailed error
categories.

For the second experiment, instead of sorting
the translations based on Comet-QE scores, we
measure how many of the erroneous cases were
present in the set of translations that scored be-
low a certain threshold. Table 21 presents the
results. This shows that the erroneous cases are
spread across a range of scores.

5176



Detector Source-Translation Instance

Hallucination Lampard and Mourinho exchanged barbs as old friends became enemiesCredit :
PA : Press Association
in Lampard and Mourinho exchanged barbs as old friends became enemiesCredit
: PA : Press Association ( PA : PA : PA : PA : PA : PA : PA : PA ) Lampard

and Mourinho exchanged barbs as old friends became enemiesCredit : PA :

PA : Press Association ( PA : PA : PA )
Web Content Go to the Income Tax Department website by typing

https://www.incometaxindiaefiling.gov.in/home in the address bar of your
browser.
incometaxindiaefiling.gov.in/home in die Adressleiste Ihres Browsers.

Physical Units Scott McLaughlin came close from a free kick 30 yards out.
Scott McLaughlin kam mit einem Freistoß aus 30 Metern in die Enge.

Large Number With support from the array of diplomatic associations, A.F.S.A. has so far raised
three quarters of a million dollars , Rubin said. The funds are helping defray the
legal fees of seven witnesses, covering in full charges that were not paid by the
State Department or waived through pro-bono assistance. "It’s very moving that
current and former Foreign Service officers, most of whom don’t have much money,
have contributed to help their colleagues," John Bellinger, who served as a legal
adviser to the State Department and National Security Council during the George W.
Bush Administration, told me. He and a former C.I.A. general counsel, Jeff Smith,
represented Ambassador Taylor and Ambassador Mike McKinley. But Taylor, who
was not a member of the Foreign Service and was pulled out of retirement to return
to Ukraine after Ambassador Marie Yovanovitch was recalled, is not a member of
A.F.S.A. - and thus not eligible for its financial aid. He was in Ukraine for only
six months. Volker is also not a member of A.F.S.A. And none of the witnesses
from the White House, Department of Defense, or the Office of Management and
Budget qualifies for its aid, either.
"Es ist sehr bewegend, dass aktuelle und ehemalige Beamte des Auswärtigen
Dienstes, von denen die meisten nicht viel Geld haben, dazu beigetragen haben,
ihren Kollegen zu helfen", sagte mir John Bellinger, der während der Regierung von
George W. Bush als Rechtsberater für das Außenministerium und den Nationalen
Sicherheitsrat tätig war. Er und ein ehemaliger C.I.A. General Counsel, Jeff Smith,
vertraten Botschafter Taylor und Botschafter Mike McKinley. Aber Taylor, der kein
Mitglied des Auswärtigen Dienstes war und aus dem Ruhestand gezogen wurde,
um in die Ukraine zurückzukehren, nachdem Botschafterin Marie Yovanovitch
zurückgerufen wurde, ist kein Mitglied des A.F.S.A. - und somit nicht für seine
finanzielle Unterstützung berechtigt. Er war nur sechs Monate in der Ukraine.
Volker ist auch kein Mitglied der A.F.S.A. Und keiner der Zeugen aus dem A.F.S.A.,
dem Haushalts- und Verteidigungsministerium des Weißen Hauses, qualifiziert

Coverage James Hill of Diamond Bay loves the directive on his local church message board
: "Thou shalt wear a mask - Hygenesis 20 : 20"
thou shalt wear a mask - Hygenesis 20 : 20 "(Du sollst eine Maske tragen -
Hygenesis 20 : 20)"

Numerical Value I lost my husband - this month will be a year on the 14 - so I’m a single parent.
Ich habe meinen Mann verloren - diesen Monat wird es ein Jahr sein - also bin ich
alleinerziehend.

Table 19: Detector Output examples for the WMT21 Winning System using the 1M WMT20 Monolingual-
Evaluation set
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K Cases in K

100 0
1000 0
10000 0
100000 3

Table 20: Number of flagged Error cases present
in the K worst scoring translations, as scored by
COMET-QE (Rei et al., 2020). The erroneous sen-
tences are present very sparsely even in the lowest 100K
scoring translations.

Threshold Sentences Cases

0.1 251,518 26
0.2 346,083 36
0.3 522,128 70
0.4 649,828 79
0.5 742,194 88

Table 21: Number of flagged Error cases present in
the translations with score less than the threshold,
as scored by COMET-QE (Rei et al., 2020). The erro-
neous translations are present across a range of scores.

G Related Work

We situate SALTED among previous works in Be-
havioral testing for NMT along five dimensions in
Table 22. The five dimensions reflect the opera-
tional properties of behavioral testing methods:

1. Instance-Level: A method operating at
an instance-level requires only the source-
translation instance for an error to be adjudged.
Typically, Behavioral testing methods rely on
input modifications to test the model for errors,
thereby requiring the generation of new trans-
lations. A method which doesn’t work at the
instance-level is better suited for exploratory
uses than for obtaining targeted error measure-
ments over a given corpus.

2. Specification-Based: A specification-based
method explicitly consumes specifications of
correct model behavior. For example, Behav-
ioral testing methods which rely only on con-
sistency measures over translations generated
on an input set do not consume an explicit
output behavior specification and thereby are
hard to translate into actionable measure-
ments.

3. Modularized: A modular method allows for

fine-grained measurements of specific error
categories using the same method by sepa-
rating the concerns of the error detection al-
gorithm and the error type. For example, a
method which is not modularized is hard to
adapt to a new error type.

4. High-Precision: A high-precision method
produces very few false-positives, ensuring
that the generated measurements are trustwor-
thy.

5. Generative: A generative method allows for
the generation of new samples either for meta-
morphic testing or for data augmentation or
error correction.

Table 22 shows that compared to existing behav-
ioral testing methods, SALTED is more compre-
hensive, thereby allowing for variety of use cases.
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Method Instance-Level Modularized Specification-Based High-Precision Generative

SIT x x x x ✓
PatInv x x x x ✓
TransRepair x x x x ✓
RTI x x x x x
SALTED ✓ ✓ ✓ ✓ ✓

Table 22: A comparison of existing Behavioral Testing Methods for NMT along five dimensions. The compared
methods are: SIT (He et al., 2020), PatInv (Gupta et al., 2020), TransRepair (Sun et al., 2020) and RTI (He et al.,
2021).
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