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Abstract

We introduce MedicalSum, a transformer-based
sequence-to-sequence architecture for summa-
rizing medical conversations by integrating
medical domain knowledge from the Unified
Medical Language System (UMLS). The novel
knowledge augmentation is performed in three
ways: (i) introducing a guidance signal that
consists of the medical words in the input se-
quence, (ii) leveraging semantic type knowl-
edge in UMLS to create clinically meaningful
input embeddings, and (iii) making use of a
novel weighted loss function that provides a
stronger incentive for the model to correctly
predict words with a medical meaning. By ap-
plying these three strategies, MedicalSum takes
clinical knowledge into consideration during
the summarization process and achieves state-
of-the-art ROUGE score improvements of 0.8-
2.1 points (including 6.2% ROUGE-1 error re-
duction in the PE section) when producing med-
ical summaries of patient-doctor conversations.

1 Introduction

The volume of data created in healthcare has grown
considerably as a result of record keeping and reg-
ulatory requirements policies (Kudyba, 2010). The
documentation requirements for electronic health
records (EHR) have been shown to be a signifi-
cant factor contributing to physician burnout (van
Buchem et al., 2021; Tran et al., 2020). As a result,
the automatic creation of medical documentation
has been proposed as one way to address this issue.

To date, there have been several attempts at au-
tomatically generating summaries of clinical en-
counters. Enarvi et al. (2020) employed a trans-
former model for summarizing doctor-patient con-
versations. Joshi et al. (2020) developed models to
summarize dialogue snippets between two to ten
physician-patient turns long. Finally, Jeblee et al.
(2019) and Lacson et al. (2006) utilized extractive

∗∗This work was conducted at Microsoft.

methods to identify the most important utterances
which are combined to form the final summary.

The summaries generated by current summariza-
tion models are not straightforwardly controllable
(Li et al., 2018). Dialogue summarization is also
challenging because casual conversation can in-
clude interruptions, repetitions, and sudden topic
transitions (Khalifa et al., 2021), and generally does
not follow the structure of a written document (Zhu
and Penn, 2006). These challenges can lead to
problems, such as the omission of key information,
or the hallucination of unsupported information.
Summaries for medical documentation must also
use the correct medical terminology expected by
physicians (Knoll et al., 2022).

Figure 1: Distinct output from the baseline model
and the MedicalSum model, with formatting tokens
removed. MedicalSum generates a clinical summary
that contains relevant medical facts.

To help address this problem, we propose a novel
knowledge-augmented transformer model that uses
medical knowledge to guide the summarization pro-
cess in various ways to increase the likelihood of
relevant medical facts being included in the sum-
marized output (An example of such output is in
Figure 1). Key paper contributions include: (i) We
are the first, to the best of our knowledge, to pro-
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pose the usage of medical knowledge from a clini-
cal Metathesaurus (UMLS (Bodenreider, 2004)) in
the summarization process of a transformer-based
model in order to generate ‘medically focused’ clin-
ical note summaries. (ii) We answer the question of
how to incorporate structured medical knowledge
in medical documentation generation by designing
3 specific signals over medical entities. (iii) By
leveraging these methods the MedicalSum model
achieves ROUGE-1 and ROUGE-L improvement
between 0.8% and 2.1% in all experiments on med-
ical note summarization.

2 Related Work

There are two main approaches for summarization.
Extractive methods (Kupiec et al., 1995) where the
summary is created from passages that are copied
from the source text and abstractive (Chopra et al.,
2016) methods where phrases and words not in the
source text can be used to create the summary.

Neural Abstractive Summarization: For the
task of abstractive summarization, sequence-to-
sequence (seq-to-seq) summarization models have
achieved state-of-the-art results (Sutskever et al.,
2014). Furthermore, different architectures have
been proposed to improve the performance of a seq-
to-seq model. In Enarvi et al. (2020), the authors
incorporated a transformer-based (Vaswani et al.,
2017) encoder-decoder architecture in order to pro-
duce highly-accurate summaries. In addition, in
See et al. (2017), a pointing mechanism was used
for copying words from the source document.

Guided Summarization: Several studies have
focused on including guidance signals in the stan-
dard seq-to-seq architecture. Zhu et al. (2020) pro-
posed the usage of relational triples (subject, rela-
tion, object). Narayan et al. (2021) and He et al.
(2020) included a set of keywords that are incorpo-
rated into the generation process. Finally, Dou et al.
(2021) created a guided summarization framework
that can support different external guidance signals.

Medical Summarization: Pivovarov and El-
hadad (2015) introduced a summarization model
which was focused on creating accurate summaries
for clinical data. Enarvi et al. (2020) used a pointer-
generator transformer model to accurately generate
notes from doctor-patient conversations. Finally,
Joshi et al. (2020) used a variation of the pointer-
generator model that leveraged shared medical ter-
minology between source and target to distinguish
important words from unimportant words.

3 Dataset

For the training of the MedicalSum model, we have
to select a large enough dataset that would pro-
vide the necessary data for the medical signals to
meaningfully affect the performance of the model.
However, there are no publicly available large-scale
datasets for medical summarization and thus we
have to use a proprietary one. We use English data
consisting of recently recorded Family Medicine
patient-doctor visits. The speaker-diarized conver-
sation transcripts corresponding to the audio files
were obtained using an automatic speech recog-
nizer system and medical professionals created the
associated clinical notes.

The reports for family medicine are organized
under three sections that correspond to three broad
areas of a medical note: (i) History of Present Ill-
ness (HPI) which captures the reason for the visit.
(ii) Physical Examination (PE) which captures find-
ings from a physical examination. (iii) Assessment
and Plan (AP) which captures the assessment by
the doctor and the treatment plan. Table 1 shows
detailed statistics of our dataset.

Train Valid Test A.W
AP 42106 648 2525 2586
HPI 43092 657 2551 2584
PE 39815 635 2442 2633

RAD 91544 2000 600 49

Table 1: Number of reports/encounters for the
train/validation/test set of each section of the family
medicine reports and the MEDIQA third task; A.W is
average word count in those encounters.

As the above-mentioned dataset contains pa-
tients’ private medical information it cannot be
made publicly available, and that is the reason that
we decided to experiment with a public dataset as
well to allow for a more open comparison. We
tackle the third task of the MEDIQA 2021 chal-
lenge (Ben Abacha et al., 2019) on summarization
of radiology reports (RAD) (Johnson et al., 2019).
From Table 1, it can be observed that the input doc-
uments in the MEDIQA dataset are much smaller
than the documents of the family medicine dataset.
However, we include it in order to have an evalua-
tion of the models and the baseline on an external
dataset. Our experiments are consistent with the
datasets’ intended use, as they were created for
research purposes and we did not notice any indi-
cation of offensive content in the datasets.
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4 Method

4.1 MedicalSum: Medical Guided
Transformer Pointer Generator Model

We adopt the transformer self-attention model from
(Vaswani et al., 2017) in the encoder and in the de-
coder to create context-dependent representations
of the inputs. Both encoder and decoder consist of
six layers of self-attention with 8 attention heads
and each decoder layer attends to the top of the
encoder stack after the self-attention. We use the
base model size of 8 attention heads with a to-
tal of 512 token outputs and a 2048-dimensional
feed-forward network. Furthermore, each encoder
and decoder layer contains a position-wise feed-
forward network that consists of two transforma-
tions and a ReLU activation in between. A simpli-
fied image of the MedicalSum model can be found
in Figure 2. The details of each added component
are discussed in the following sections.

4.2 Pointer-Generator
We implement the pointer generator mechanism as
described in (Enarvi et al., 2020; See et al., 2017).
We choose to use a single attention head to attend to
the tokens that are good candidates for copying. In
(Garg et al., 2019) it was stated that the penultimate
layer seems to naturally learn alignments, so we
use its first attention head for pointing.

4.3 Medical Guidance Signal
We include a medical guidance signal in the sum-
marization process, that consists of all the medical
terms in the input sequence that could be identi-
fied in UMLS using the MedCAT toolkit (Kraljevic
et al., 2021), by introducing two encoders (that
share weights) that encode the input text and the
guidance signal respectively (Dou et al., 2021).

Each encoder layer for the input and the guid-
ance signal consists of a self-attention block and a
feed-forward block. Each decoder layer consists of
a self-attention block, a cross-attention block with
the medical guidance signal, in order to inform the
decoder which sections of the source document are
important, a cross-attention block with the encoded
input where the decoder attends to the whole source
document based on the guidance-aware representa-
tions and a feed-forward block.

As MedicalSum focuses on the creation of sum-
maries on medical data, we create a medical guid-
ance signal with all the words with a medical mean-
ing (as they are written in the input text). We
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Figure 2: Illustration of MedicalSum a transformer
sequence-to-sequence model with a pointer-generator
and guidance mechanism.

believe that this signal will be beneficial to the
performance of the model as a guidance signal
which is created as a set of individual keywords
{w1, ..., wn}, can help the model to focus on spe-
cific desired aspects of the input (Dou et al., 2021).
We chose to identify medical entities with UMLS
as it is a compendium of many biomedical vocab-
ularies (e.g. MeSH (Dhammi and Kumar, 2014),
ICD-10 (WHO, 2004)) and thus it contains all the
major standardized clinical terminologies.

4.4 Semantic Type Embeddings

We introduce a new embedding matrix called S ∈
RDs×d into the input layer where d is the trans-
former hidden dimension and Ds = 50 is the num-
ber of UMLS semantic types used by our model.
It should be noted that in the S matrix, each row
represents the unique semantic type in UMLS that
a word can be identified with.

To incorporate the S embedding matrix into the
input embedding layer, all the words with a clinical
meaning defined in UMLS are identified and their
corresponding semantic type is extracted. By in-
troducing the semantic type embedding, the input
vector for each word wj is updated to:

u
(j)′
input = p(j) + Ewj + S⊤swj (1)
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where swj ∈ RDs is a 1-hot vector correspond-
ing to the semantic type of the medical word wj

and p(j) ∈ Rd is the position embedding of the jth

token in the sentence. Finally, E ∈ Rd×D is the
token embedding matrix where D is the size of the
model’s vocabulary and wj ∈ RD is a 1-hot vector
corresponding to the jth input token. It should be
noted that the semantic type vector is set to a zero-
filled vector for words that do not have a clinical
meaning

4.5 Medical Weighted Loss Function
We update the loss function of the summarization
task to provide a stronger incentive to correctly pre-
dict medical words. In our summarization model
we use the cross-entropy loss of the Fairseq li-
brary (Ott et al., 2019) for the target word xt for
each timestep t. We modify the loss function to
a weighted loss function where the weight for all
the medical words is higher in order to provide a
stronger incentive to the model to correctly predict
the words with a medical meaning. Specifically,
the summarization loss is updated to :

loss = −logP (xt) ∗ wt (2)

where wt = 1 for all the non-medical words and
wt = 1 + α for all the medical words, where α is
an additional weight value for these words.

4.6 Discussion
Previous work (UmlsBERT (Michalopoulos et al.,
2021)) introduced a semantic type embedding, for
the medical words that could be tokenized into a
single token. Our semantic type signal extends the
semantic policy for all the medical words (i.e multi-
token words). Also, our medical guidance signal is
the first attempt to ‘guide’ a summarization model
by combining the dual-encoder architecture with
structured medical information. Finally, our loss
function, which incorporates a different weight for
the medical terms, has not been used in prior work.

5 Experiments

5.1 Results
We report the results of the comparison of our pro-
posed MedicalSum model with the baseline pointer
generator model (Enarvi-PG) (Enarvi et al., 2020).
We also experiment with a model which contains
only the guidance signal (MedicalSumguidance), a
model that only includes the semantic type embed-
ding (MedicalSumsemantic), and a model with the

medical weighted loss function (MedicalSumloss).
These models are trained for a maximum of 20k
steps using the Fairseq library (Ott et al., 2019)
on PyTorch 1.5.0 on V100 GPU with 32G GB of
system RAM on Ubuntu 18.04.3 LTS.

5.1.1 Hyperparameter tuning
We provide the search strategy and the bound for
each hyperparameter: the batch size is set between
4 and 8, and the α parameter of the medical weight
loss is tested with the values 0.01, 0.1, and 0.2.
The best values are chosen based on the validation
set micro ROUGE-1 F1 values, using the scoring
code with the same setting, that is provided with
the family medicine dataset For the Enarvi-PG,
MedicalSum, and the models with each individual
medical signal, the batch size is set to 4 and the
medical weight loss parameter to 0.01.

We run our model on three different (random)
seeds and we provide the average scores and stan-
dard deviation. We compare the models on the
ROUGE-1 F1 score (the overlap of unigram) and
ROUGE-L F1 score (the lengths of the longest com-
mon subsequences) between the summary and the
output of the model.

5.1.2 Summarization model comparison
The mean and standard deviation of ROUGE-1 F1
and ROUGE-L F1 for all the competing models
on the test set of each dataset are reported in Ta-
ble 2 (we also provide the results on the valida-
tion set in Appendix A.2). MedicalSum outper-
forms the Enarvi-PG baseline on all the datasets.
It achieves an improvement between 0.8% (on the
publicly available radiology dataset) and 2.1% (on
the PE section, where the ROUGE-1 improvement
from 66.11 to 68.22 is a 6.2% reduction in er-
ror). These results indicate that the combination
of all three previously mentioned medical signals
can indeed boost the performance of a medical
summarization model. We also provide a qualita-
tive review of summaries produced by each model
variant in Appendix A.1, where we observe that
MedicalSum can generate clinical notes with desir-
able medical terms missing from the output of the
baseline Enarvi-PG model. MedicalSumsemantic,
MedicalSumloss model, and the Enarvi-PG base-
line model have similar running times (117K sec-
onds for the family medicine and 64K seconds
for the radiology dataset). MedicalSum and the
MedicalSumguidance are slower (by 4%) due to the
second ‘guidance’ encoder.
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TEST
Model Micro F1 HPI PE AP RAD

Enarvi-PG
Rouge-1 48.04 ± 0.4 66.11 ± 0.3 43.02 ± 0.4 27.01 ± 0.2
Rouge-L 34.21 ± 0.3 63.15 ± 0.2 36.19 ± 0.3 25.01 ± 0.3

MedicalSumloss
Rouge-1 48.64 ± 0.2 67.37 ± 0.2 43.85 ± 0.4 27.34 ± 0.2
Rouge-L 34.32 ± 0.3 63.77 ± 0.3 36.67 ± 0.5 25.37 ± 0.2

MedicalSumguidance
Rouge-1 48.79 ± 0.3 68.02 ± 0.2 43.72 ± 0.5 27.57 ± 0.2
Rouge-L 35.14 ± 0.3 64.17 ± 0.2 36.65 ± 0.3 25.66 ± 0.2

MedicalSumsemantic
Rouge-1 48.90 ± 0.2 67.80 ± 0.3 43.64 ± 0.4 27.56 ± 0.3
Rouge-L 34.79 ± 0.2 63.93 ± 0.2 36.42 ± 0.2 25.39 ± 0.3

MedicalSum
Rouge-1 48.98 ± 0.3 68.22 ± 0.2 44.54 ± 0.3 27.77 ± 0.3
Rouge-L 35.22 ± 0.3 64.48 ± 0.3 37.34 ± 0.2 26.06 ± 0.2

Table 2: Results of mean ± standard deviation for each model on the test set; best values are bolded

We chose to compare our model with the Enarvi-
PG model (Enarvi et al., 2020), as it has achieved
state-of-the-art results in a similar medical summa-
rization dataset. In addition, in their experimenta-
tion setup, they actually compared their model with
other summarization models like the model of (See
et al., 2017) and showcased that their model out-
performed it in the task of medical summarization.

We did not re-do the experiments multiple times
with different splits in order to be consistent with
the literature in terms of testing. For both datasets
the splits were provided by the team who created
them and creating new splits will not provide a
fair comparison with other (current and future) re-
search models that will be tested on these datasets.
However, we run each model multiple times (with
different random seeds) and we provide the aver-
age scores and standard deviation for the testing
and the validation set in order to be sure that the
improvement was not due to the random seed.

5.1.3 Ablation Study

In order to understand the effect that each medical
signal has on the model performance, we conduct
an ablation test where the performance of three
variations of the MedicalSum model are compared,
where each model is allowed access to only one of
the medical signals. The results of this comparison
are listed in Table 2.

We observe that for every dataset, MedicalSum
achieves its best performance when all the med-
ical signals are available, and each model that
has access to any of the medical signals outper-
forms the baseline model. The guidance signal
(MedicalSumguidance) appears to have the most
positive effect as it can guide the model to the

most important sections of each input. Also, en-
riching the input embedding with semantic infor-
mation (MedicalSumsemantic) appears to boost the
performance of the model as it forces the embed-
dings of words that are associated with the same
semantic type to become more similar in the em-
bedding space. The medical weight loss model
(MedicalSumloss) appears to have the least im-
provement but it still outperformed the baseline.

6 Conclusion and Future Work

In this paper, we present MedicalSum, a novel ap-
proach for medical summarization. MedicalSum
can provide external medical guidance that helps
key information pass the model’s decision process
and appear in the summary. Furthermore, its novel
weighted loss function provides a stronger incen-
tive to the model to correctly predict words with
a medical meaning. MedicalSum can also cre-
ate more meaningful input embeddings by forc-
ing the embeddings of the words that are associ-
ated with the same semantic type to become more
similar. Our analysis shows that these features
allowed MedicalSum to produce more accurate AI-
generated medical documentation. Future work in-
cludes examining additional guidance signals (e.g.,
relational triples), and exploring UMLS hierarchi-
cal associations.

This work is the first to show how external medi-
cal domain (UMLS) knowledge can effectively im-
prove the performance of a medical note-generation
model. Leveraging external knowledge may be-
come an important component of scaling and im-
proving future medical AI systems that automati-
cally generate medical documentation to combat
physician burnout and improve patient care.
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Limitations

In this paper, we present MedicalSum, a novel
medical conversation summarization model which
achieves state-of-the-art ROUGE score improve-
ments by integrating structured medical knowledge
into the summarization process of a contextual
word embedding model. However, one of the ob-
stacles for adopting such a model in any system
lies in the computing cost of training. For example,
our MedicalSum model was trained on V100 GPU
with 32G GB of system RAM on Ubuntu 18.04.3
LTS, and we acknowledge that investing in these
types of computational resources is not a viable
option for many research groups, let alone regular
healthcare providers. In addition, another limita-
tion of our work is that relies on the existence of
an external medical metathesaurus (UMLS) and
thus our model may not be easily adapted to other
languages for which a detailed medical database
(such as the UMLS for the English language) may
not exist.

Ethical Consideration

Medical Note generation by abstractive summariza-
tion is crucial for reducing physician burnout due
to the vast amount of documentation requirements
for electronic health records (EHR). Traditionally,
clinical professionals review clinical documents
and manually create the appropriate summaries by
following specific guidelines. Models such as our
MedicalSum model could help to reduce physician
burnout, as well as enable physicians to devote
more quality time and attention to their patients.

However, we need to be aware of the risks of
over-relying on any automatic abstractive summa-
rization model. No matter how efficient a summa-
rization model is, it is still possible to omit key
information or to hallucinate unsupported informa-
tion. This is especially of concern in the medical
domain, as inaccuracies could have a significant
adverse effect on future patient health outcomes.
Thus we believe that any automatic summarization
model should only be used to assist, not replace
trained clinical professionals.
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A Appendix

A.1 Qualitative Model Output Comparison

We qualitatively evaluate some of the differences in
summaries produced by each model variant and il-
lustrate how each feature contributes to the creation
of accurate medical summaries.

Table 3 shows a sample target summary and
we compare it with the output of the Enarvi-PG
model and the medical signals of MedicalSum. It
should be noted that the only criteria for choosing
these examples is that they should contain medi-
cal entities. Some of the shorter input texts con-
tain no medical entities, and we do not include
those here as they would not showcase the differ-
ences between the baseline and the guided med-
ical summarization model. We observe that the
summary from the pointer generator (Enarvi-PG)
baseline model does not include the following
medical information: (i) the medicines: ibupro-
fen, Advil, or Aleve and (ii) x-rays. However,

the MedicalSumguidance model has included in its
summary the medical entities x-ray and NSAID
(Non-steroidal anti-inflammatory drugs) as they
are identified as medical entities and are part of the
guidance signal. In addition, the MedicalSumloss

model has included the x-ray token as a result of
providing a stronger incentive to predict ‘medical’
words by passing a higher weight to the words
that have a medical meaning. The MedicalSum
model includes all the previously mentioned medi-
cal words as it takes advantage of all the medical
signals.

Another example that showcases the strength
of the medical signals can be found in Table
4. The summary from the Enarvi-PG model
lacks two important medical facts: (i) oph-
thalmic drops, and (ii) Dyslipidemia. However,
the MedicalSumguidance and the MedicalSumloss

models have included the word ‘Dyslipidemia’
as it is identified as a medical word. The
MedicalSumsemantic model has also included the

model output

target-
summary

ASSESSMENT AND PLAN –lf1– Acute left hip pain . –lf1– The patient has been
experiencing acute left hip pain since . The pain is in her sacroiliac joint on her left
side . I have prescribed a short course of prednisone to take in the morning after
breakfast . I have instructed her not to take ibuprofen , Advil , or Aleve . I have
also instructed her to apply heat to her back . we can get an x-ray of her lower back.

Enarvi-PG
ASSESSMENT AND PLAN –lf2– 1 . Left hip pain . –lf1– . I recommend the
patient take a short course of prednisone . I have advised her to apply heat to the
affected area . –lf2– 2 . Preventative care .–lf2– Instructions –lf1–

Medical-
Sumsemantic

Assessment and Plan : –lf2– 1 . Acute left hip pain . –lf1– the left hip pain is sciatic
pain. I recommend the patient take a short course of prednisone for 10 days . She
can take it in the morning after breakfast . I also recommend she take a shower
going to the kitchen daily . I also recommend she can also try applying heat to the
affected area .

Medical-
Sumguidance

ASSESSMENT AND PLAN –lf2– 1 . Acute left hip pain . –lf1– I have prescribed
a short course of prednisone . I advised the patient to take this in the morning after
breakfast . I advised the patient to apply heat to the affected area for 10 days .advised
the patient to avoid NSAIDs . I have ordered an x-ray of the lower back .

Medical-
Sumloss

ASSESSMENT AND PLAN –lf2– 1 . Acute left hip pain . –lf1– I have prescribed
her a short course of prednisone . If her symptoms do not improve , I will refer her
to physical therapy to strengthen the muscle of her back . –lf2– 2 . Preventative care
. –lf1– The patient is due for a x-ray .

MedicalSum

ASSESSMENT AND PLAN –lf1– 1 . Acute left hip pain . –lf1– I suspect the left
hip pain is sciatic pain . I will order an x-ray of the left hip . I have instructed the
patient to apply heat to the lower back and see unusual daily chores . I advised the
patient to avoid NSAIDs I recommended that she perform acute exercise when she
is acutely inflamed after 10 days.

Table 3: First example of distinct output from summarization models of different medical signals
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model output

target-
summary

The left eye swelling with burning and itching has been present for 2 weeks . I
will prescribe olopatadine 0.2 percent ophthalmic drops . If the symptoms do not
improve , the patient will return and consider bacterial cause .–lf2– Dyslipidemia .

Enarvi-PG
ASSESSMENT AND PLAN : The patient has allergic conjunctivitis of left eye .
–lf1– - Patient Education and Counseling : The patient was advised to keep wiping
green and thick mucus from the eye

Medical-
Sumsemantic

ASSESSMENT AND PLAN : –f1– 1 . Allergic conjunctivitis of left eye. –f1– The
patient was advised to continue using his eye drops .

Medical-
Sumguidance

ASSESSMENT/PLAN –f1– Allergic conjunctivitis . I recommended that the patient
continue daily loratadine .–lf2– Dyslipidemia

Medical-
Sumloss

ASSESSMENT/PLAN –lf1– Allergic conjunctivitis –lf1– –lf1– Medical Treatment
: The patient will continue to take loratadine –lf2– Dyslipidemia

MedicalSum
ASSESSMENT/PLAN –f1– Allergic conjunctivitis . –f1– - Medical Treatment :
The patient will continue daily loratadine and eye drops .–lf2– Dyslipidemia

Table 4: Second example of distinct output from summarization models of different medical signals

medical concept ‘eye drops’ as a replacement for
‘ophthalmic drops’. ‘Eye’ and ‘ophthalmic’ have
the same semantic type in UMLS and thus the
model has the ability to learn their medical meaning
even if one of these words (ophthalmic) is not pop-
ular in the training set. Finally, the MedicalSum
model includes all of the previously mentioned
medical words.

These examples demonstrate how, in addition to
improving ROUGE scores, the MedicalSum model
also generates clinical summaries that contain more
relevant medical facts. In particular, they showcase
that a guided medical summarization model can
help with the omission of key information, which
is especially of concern in the medical domain,
because if medical key information is missing from
the output, future readers may not have the ability
to make an accurate diagnosis.

A.2 Validation Set Comparison
In order to have a complete comparison with the
baseline model, we present in Table 5 the mean and
standard deviation of ROUGE-1 F1 and ROUGE-L
F1 for all the competing models on the validation
set of each dataset. MedicalSum outperforms the
Enarvi-PG baseline on all the datasets. Also, Medi-
calSum achieves its best performance when all the
medical signals are available, and each model that
has access to any of the medical signals outper-
forms the baseline model. The results in Table 5
(validation set) and in Table 2 (test set) showcase
the positive effect of the medical signals on the
performance of a medical summarization model.

Model Micro F1 HPI PE AP RAD
VALID

Enarvi-PG
Rouge-1 48.17 ± 0.3 67.44 ± 0.2 43.23 ± 0.4 29.91 ± 0.3
Rouge-L 34.88 ± 0.3 64.68 ± 0.2 36.39 ± 0.3 29.95 ± 0.3

MedicalSumloss
Rouge-1 49.29 ± 0.2 67.89 ± 0.2 44.02 ± 0.3 30.32 ± 0.3
Rouge-L 34.94 ± 0.3 64.33 ± 0.3 36.70 ± 0.2 30.14 ± 0.3

MedicalSumguidance
Rouge-1 49.55 ± 0.3 68.18 ± 0.3 44.32 ± 0.4 30.35 ± 0.2
Rouge-L 35.14 ± 0.3 64.66 ± 0.2 37.01 ± 0.3 30.81 ± 0.2

MedicalSumsemantic
Rouge-1 49.39 ± 0.3 68.02 ± 0.2 44.16 ± 0.4 30.30 ± 0.2
Rouge-L 34.99 ± 0.4 64.41 ± 0.3 36.90 ± 0.5 30.50 ± 0.2

MedicalSum
Rouge-1 49.68 ± 0.2 68.37 ± 0.3 44.98 ± 0.3 30.63 ± 0.3
Rouge-L 35.43 ± 0.2 64.83 ± 0.2 37.90 ± 0.2 31.45 ± 0.3

Table 5: Results of mean ± standard deviation for each model on the validation set; best values are bolded
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