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Abstract

Conversation disentanglement aims to group
utterances into detached sessions, which is a
fundamental task in processing multi-party con-
versations. Existing methods have two main
drawbacks. First, they overemphasize pairwise
utterance relations but pay inadequate atten-
tion to the utterance-to-context relation mod-
eling. Second, a huge amount of human an-
notated data is required for training, which is
expensive to obtain in practice. To address
these issues, we propose a general disentangle
model based on bi-level contrastive learning.
It brings closer utterances in the same session
while encourages each utterance to be near its
clustered session prototypes in the representa-
tion space. Unlike existing approaches, our
disentangle model works in both supervised
settings with labeled data and unsupervised set-
tings when no such data is available. The pro-
posed method achieves new state-of-the-art per-
formance results on both settings across several
public datasets.

1 Introduction

Multi-party conversations generally involve three
or more speakers in a single dialogue, in which
the speaker utterances are interleaved, and multi-
ple topics may be discussed concurrently (Aoki
et al., 2006). This causes inconvenience for dia-
logue participant to digest the utterances and re-
spond to a particular topic thread. Conversation
disentanglement is the task of separating these en-
tangled utterances into detached sessions, which is
a prerequisite of many important downstream tasks
such as dialogue information extraction (Fei et al.,
2022a,b), state tracking (Zhang et al., 2019; Wu
et al., 2022), response generation (Liao et al., 2018,
2021b; Ye et al., 2022a,b), and response ranking
(Elsner and Charniak, 2008; Lowe et al., 2017).

There has been substantial work on the conver-
sation disentanglement task. Most of them empha-
size on the pairwise relation between utterances in

Session 1

Session 2

lolcat
Can I wget mms://mms-icanal-odc.online.no/norsk-
ripub/ autodistribusjon/NRK3_201111092212_KOID…

usr13 lolcat: Sure, why not?

dr_willis lolcat: try it and see? if not theres programs like
streamtuner, or vlc, or others that capture streams…
…

Gremuc
hnik

Hi! Quick question: I don't like Unity, but I do like
GNOME3. Will Ubuntu 12.04 offer GNOME3 without
Unity, the regular "original" GNOME3

OttScorp try LXDE Gremuchnik :-)

ArNezT Gremuchnik: may be you can use ubuntu no-effect
from login menu :)

OttScorp Ubuntu plans on sticking with Unity
L1nuxR
ules

gremuchink although I cant answer your question,
you can install and use any desktop in Linux

usr13 lolcat: Oh, yea, myabe you need streamripper or
something. But if you just want to watch it, try gxine

OttScorp Or perhaps http://forum.videohelp.com/threads/25704
5-How-to-record-streaming...

Figure 1: An example piece of conversation from the
Ubuntu IRC corpus. There are distribution patterns in
both utterance level and session level.

a two-step manner. They predict the relationship
between utterance pairs as the first step, followed
by clustering utterances into sessions as the sec-
ond. In the first step, early works (Elsner and Char-
niak, 2008, 2010) utilize handmade features and
discourse cues to predict whether two utterances
belong to the same session or whether there is a
reply-to relation. The recent development in deep
learning inspires the use of neural network such as
LSTM or CNN to learn abstract features of utter-
ances in training (Mehri and Carenini, 2017; Jiang
et al., 2018). More recently, a number of methods
show that BERT in combination with handcrafted
features or heuristics remains a strong baseline (Li
et al., 2020b; Zhu et al., 2021; Ma et al., 2022). In
the second step, the most popular clustering meth-
ods use a greedy approach to group utterances by
adding pairs (Wang and Oard, 2009; Zhu et al.,
2020). There are also some variations incorporat-
ing voting mechanism (Kummerfeld et al., 2019),
bipartite graph matching (Zhu et al., 2021) or addi-
tional tracking models (Wang et al., 2020).

An obvious drawback of such two-step approach
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is that the pairwise relation prediction might not
capture enough contextual information as the con-
nection between two utterances depends on the
contexts in many cases (Liu et al., 2020). Also, fo-
cusing on pairwise relations leads to a short-sighted
local view. To mitigate this, there are methods try-
ing to introduce additional conversation loss (Li
et al., 2020b, 2022) or session classifier (Liu et al.,
2021) to group utterances in the same session to-
gether. We also see methods leveraging relational
graph convolution network (Ma et al., 2022) or
masking mechanism in Transformers (Zhu et al.,
2020). More directly, end-to-end methods (Tan
et al., 2019; Liu et al., 2020) capture the context
information contained in detached sessions and cal-
culate the matching degree between a session and
an utterance. However, many of such methods are
conducted in an online manner which only consid-
ers the preceding context. It may lead to biased
session representations, introduce noisy utterances
to sessions and consequently accumulate errors.

Meanwhile, most of these methods rely heavily
upon human-annotated session labels or reply-to
relations, which are expensive to obtain in practice.
Although there have been a few attempts to tackle
this issue, a more general framework that can han-
dle both supervised and unsupervised learning is
yet to come. For example, Liu et al. (2021) de-
sign a deep co-training scheme with message-pair
classifier and session classifier. However, various
data augmentation procedures based on heuristics
are required for good performance. Chi and Rud-
nicky (2021) propose a zero-shot disentanglement
solution based on a related response selection task.
Still, it relies on a closely related dataset that comes
from the same Ubuntu IRC source inside DSTC8.

Recently, contrastive learning (Hadsell et al.,
2006) has brought prosperity to numbers of ma-
chine learning tasks by introducing unsupervised
representation learning. Substantial performance
gains have been reported in computer vision (He
et al., 2020; Chen et al., 2020) and NLP works
(Yan et al., 2021; Gao et al., 2021). They believe
that good representation should be able to identify
semantically close neighbors while distinguishing
from non-neighbors. Intuitively, in multi-party con-
versation, utterances in the same session should
semantically resemble each other while be far apart
from utterances in other sessions. Instead of hand-
crafted features such as speaker, mention and time
difference etc, it provides another option for auto-

matically learn discriminative representations.
In this work, we design a Bi-level Contrastive

Learning scheme (Bi-CL) to learn discriminative
representations of tangled multi-party dialogue ut-
terances. It not only learns utterance level differ-
ences across sessions, but more importantly, it en-
codes session level structures discovered by clus-
tering into the learned embedding space. Specifi-
cally, we introduce session prototypes to represent
each session for capturing global dialogue struc-
ture and encourage each utterance to be closer to
their assigned prototypes. Since the prototypes
can be estimated via performing clustering on the
utterance representations, it also supports unsu-
pervised conversation disentanglement under an
Expectation-Maximization framework. We evalu-
ate the proposed model under both supervised and
unsupervised settings across several public datasets.
It achieves new state-of-the-art on both.

The contribution is summarized as follows:
• We design a bi-level contrastive learning

scheme to learn better utterance level and ses-
sion level representations for disentanglement.

• We delve into the conversation nature to har-
vest evidence which supports our model to dis-
entangle dialogues without any supervision.

• Experiments show that the proposed Bi-CL
model significantly outperforms several state-
of-the-art models both on the supervised and
unsupervised settings across datasets.

2 Related Work

2.1 Conversation Disentanglement
Previous methods on conversation disentanglement
are mostly performed in a supervised fashion,
which can be coarsely organized into two lines: (1)
two-step methods which first obtain the pairwise
relations among utterances and then disentangle
them with a clustering algorithm; and (2) end-to-
end approaches which directly assign utterances
into different sessions.

The majority of efforts follow the two-step
pipeline. Great attention has been devoted to the
first step. Early works rely heavily on handcrafted
features to represent the utterances for pairwise
relation prediction. For example, Elsner and Char-
niak (2008, 2010) used the speaker, time, mentions,
shared word count etc. to train a linear classifier
for utterance pair coherence. More recent works
utilized neural networks to train classifiers. For
instance, Mehri and Carenini (2017) and Guo et al.
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(2018) leveraged LSTM to predict either the same-
session or reply-to probabilities between utterances,
while Jiang et al. (2018) combined the output of a
hierarchical CNN on utterances with other features
to capture the interactions. More recently, Gu et al.
(2020) and Li et al. (2020b) used BERT to learn the
similarity score in a fixed length context window.
For the second step, there has also been progress in
exploring an optimal clustering algorithm. Greedy
decoding has been a popular choice (Elsner and
Charniak, 2010; Jiang et al., 2018). There are also
works that train a separate classifier to assign ut-
terance to a thread (Mehri and Carenini, 2017) or
design advanced algorithms like bipartite graph
matching (Zhu et al., 2021).

On the downside, the pairwise relations, which
are predicted typically without considering enough
session context, are local and may not reflect how
utterances interact in reality. Hence, the clustering
step may be undermined subsequently. This mo-
tivates end-to-end solutions that aim at assigning
the target utterance in each time step with respect
to the existing threads or preceding utterances (Liu
et al., 2020). Similarly, Yu and Joty (2020) used
attention to capture utterance interactions and grad-
ually assign each utterance to its replied-to parent
with a pointer module. However, such online man-
ner not only limits the scope of session context but
also leads to error accumulation.

There are also studies that work in an unsu-
pervised fashion to avoid the reliance on human-
annotation. For example, Liu et al. (2021) designed
both message-pair classifier and session classifier
to form a co-training algorithm. Chi and Rudnicky
(2021) proposed to train a closely-related response
selection model for zero-shot disentanglement. The
former needs pseudo labeled data to warm-up the
training, while the latter gains from training data
of the same source. More importantly, a general
framework that can handle both supervised and su-
pervised learning is yet to come. In our work, we
target at building such a flexible model.

2.2 Contrastive Learning

Contrastive learning learns effective representation
by pulling semantically close neighbors together
and pushing apart non-neighbors (Hadsell et al.,
2006). Recent advances are largely driven by in-
stance discrimination tasks. For example, in the
field of computer vision, such methods consist of
two key components: image transformation and

contrastive loss. The former aims to generate mul-
tiple representations about the same image, by data
augmentation (Ye et al., 2019; Chen et al., 2020),
patch perturbation (Misra and Maaten, 2020), or
using momentum features (He et al., 2020). While
the latter aims to bring closer samples from the
same instance and separate samples from different
instances. In the field of natural language process-
ing, contrastive learning has also been widely ap-
plied, such as for language model pre-trainining
(Yan et al., 2021; Gao et al., 2021).

Despite their improved performance, these in-
stance discrimination methods share a common
weakness: the representation is not encouraged to
encode the global semantic structure of data (Caron
et al., 2020). This is because it treats two samples
as a negative pair as long as they are from different
instances, regardless of their semantic similarity
(Li et al., 2020a). Hence, there are methods which
simultaneously conduct contrastive learning at both
the instance- and cluster-level (Li et al., 2021; Shen
et al., 2021). Likewise, we emphasize leveraging
bi-level contrastive objects to learn better utterance
level and session level representations.

3 Method

The definition of the conversation disentanglement
task and details of our model are sequentially pre-
sented in this section. Starting from the supervised
setting for a clear view, we gradually extend to the
unsupervised setting.

3.1 Task Formulation

Given a multi-party conversation history with n
utterances U = {u1, u2, ..., un} in chronological
order, our goal is to disentangle them into detached
sessions S = {s1, s2, ..., sk}, where each si is a
non empty subset of U , and S is a partition of U .
Each utterance includes an identity of speaker and
a message sent by this user.

The task has been popularly formulated as a
reply-to relation identification problem to find the
parent utterance for every ui ∈ U . It has also
been modeled as sequentially assigning each ui to
already detached sessions in S or create a new ses-
sion for S. Here, instead of separating local pair
and global cluster modeling, we opt for learning
more discriminative representations for utterances
to push them into different sessions.
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lolcat: Can I wget mms://mms-icanal-odc.online.no/ nor
sk-ripub/autodistribusjon/NRK3_20...

usr13: lolcat: Sure, why not?
dr_willis: lolcat: try it and see? if not theres programs
like streamtuner, or vlc, or others that…
…
Gremuchnik: Hi! Quick question: I don't like Unity, but I
do like GNOME3. Will Ubuntu 12.04 offer GNOME3 …
OttScorp: try LXDE Gremuchnik :-)
ArNezT: Gremuchnik: may be you can use ubuntu no-
effect from login menu :
OttScorp: Ubuntu plans on sticking with Unity
L1nuxRules: gremuchink although I cant answer your
question, you can install and use any desktop in Linux
usr13: lolcat: Oh, yea, myabe you need streamripper or
something. But if you just want to watch it, try gxine
OttScorp: or perhaps http://forum.videohelp.com/zthrea
ds/257045-How-to-record-streaming-WMV-ASF-MMS...

Encoder

Encoder

… …

𝒉 𝒗𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠
…

…

𝒑! 𝒑"

𝒗#

𝒗#

u𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙

𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙

Figure 2: Overview of the proposed Bi-CL framework. It incorporates utterance level contrastive loss to discriminate
utterances, and uses session level contrastive loss to encourage them flocking around session centers.

3.2 Utterance Encoder

The utterance encoder aims to capture the seman-
tics of a given utterance and its connection to sur-
rounding context. Similar to (Liu et al., 2020), we
leverage a hierarchical Bi-LSTM structure similar
to (Serban et al., 2017) as illustrated in Figure 2.

For the utterance-level encoder, given each utter-
ance ui, we tokenize it into tokens {t1, t2, ..., t|ui|}
and take the Glove embeddings (Pennington et al.,
2014). We input these into a bidirectional LSTM
and then use a linear transformation with non-linear
activation to get the hidden states:

⟨h1, ...,h|ui|⟩ = δ(W1 ·BiLSTM(⟨t1, ..., t|ui|⟩)),
ui = SelfAttention(h1, · · · ,h|ui|),

where W1 is the weight matrix that merges the two
direction embeddings of each token, and we use
ReLU as the activation δ. We omit the bias term
for space limitation. The self-attention mechanism
(Lin et al., 2017) is adopted to obtain utterance
vectors that represent the overall semantics.

For the context-level encoder, we leverage an-
other bidirectional LSTM to allow utterances to
interact with their surroundings and acquire con-
textual information. Hence, we feed in the lo-
cal utterance embedding sequence ⟨u1, ...,un⟩ and
obtain the contextual utterance representations
⟨h′

1, ...,h′
n⟩. It naturally captures information in

the utterance itself, in its surrounding utterances
and the relative temporal sequence implicitly as:

⟨h′
1, ...,h′

n⟩ = BiLSTM(⟨u1, ...,un⟩).

To further utilize the speaker and mention infor-
mation of each utterance, we simply concatenate
each h′

i with a padded, multi-hot mention vector
mi ∈ R50 where the j-th dimension is 1 if the
speaker of uj is the same as that of ui or mentioned
in ui. This will give the final utterance representa-
tions ⟨v1, ..., vn⟩.

3.3 Bi-Level Losses

With encoder network ready at hand, the key is
to introduce good objectives for back-propagating
the right learning signals. When we have session
labels for training data in the supervised learning
setting, we aim to train the model so that ideally,
(a) utterances in the same ground truth session will
be embedded closer while utterances in different
sessions will be pulled away; and (b) utterances
in each session should be near its session center,
or say, prototype. Correspondingly, we introduce
utterance-level contrastive loss and session-level
contrastive loss to encourage these for learning.

3.3.1 Utterance-level Contrastive Loss

Inspired from the contrastive learning scheme
(Khosla et al., 2020) under supervised setting, we
contrast an utterance with other utterances in same
or different sessions to capture the local structure.
Suppose the training dataset U contains |U| utter-
ances in total and y(i) denotes the ground truth
session assignment of ui, we define the utterance-
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level contrastive loss as:

Lu =

|U|∑

i=1

−1

|Y(i)|
∑

j∈Y(i)

log
exp(vi · vj/τ1)∑

l∈N (i,j)

exp(vi · vl/τ1)
,

where τ1 is the temperature hyper parameter, Y(i)
contains all the positive utterances that have the
same session assignment with ui, and N (i, j) con-
tains the set of negative utterances that have differ-
ent session assignment with ui, combined with the
current positive utterance uj . Mathematically, we
have Y(i) ≡ {j ∈ U : y(j) = y(i), j ̸= i}, and
N (i, j) ≡ {l ∈ U : y(l) ̸= y(i)} ∪ {j}. Ideally,
we could use all negative samples as many papers
have shown increased performance with increasing
number of negatives (He et al., 2020; Henaff, 2020),
we set a relatively large number for balancing our
computation efficiency.

3.3.2 Session-level Contrastive Loss
In session level, we introduce prototypes to repre-
sent each session, and minimize the distance from
each utterance to its session prototype while max-
imize the distances from the utterance to other
session prototypes. This incorporates global di-
alogue semantic structure into the resulting repre-
sentations. When session labels are available in the
supervised setting, suppose si = {u1, u2, ..., uq},
we directly define the prototype p for session si:

p =
1

|q|

q∑

j=1

vj .

Therefore, for each conversation U in the train-
ing set, we define the session-level contrastive loss:

Ls = −
|U |∑

i=1

log
exp(vi · pi/τ2)∑

pl

exp(vi · pl/τ2)
,

where pi is the ground truth session prototype for
ui and τ2 is the temperature hyper parameter.

3.4 Disentangle Sessions
Besides guiding the learning process with bi-level
contrastive objects, our disentanglement task natu-
rally involves the session assignment goal. There-
fore, the foremost issue is to decide how many ses-
sions the conversation contains. With supervised
data, we train a light-weight network to predict K
for each conversation. We leverage a two layer
feed-forward network enriched with non-linearity.

It takes as input the dialogue utterances as well as
meta information such as number of speakers ns

and turn number n. The output logits indicate a
distribution of the possible K values.

dU = SelfAttention(v1, · · · , vn),
q = δ(W2 · δ(W3 · [dU ; ns; n])),

P (K = k|U) =
exp(qk)∑M
l=1 exp(ql)

,

where M is the global maximum session number,
and q ∈ RM . We train the network parameters
including W2, W3 via the K prediction loss:

Lk = −
∑

U∈U
log(P (K = k̂|U)),

where k̂ is the ground truth K for conversation U .
In inference, we select the most likely value of K
for the K-Means algorithm and constrain K <= n.

During training, we also perform K-Means to
cluster utterances to mitigate the gap between train-
ing and inference. Suppose we obtain a parti-
tion S′ = {s′1, s′2, ..., s′k̂} for the conversation U
by K-Means, we compute the cluster centroids
{c′1, c′2, ..., c′

k̂
} by averaging the embeddings of

cluster members. We then run Hungarian Algo-
rithm (Kuhn, 1955) to match clusters with sessions,
hence align the calculated prototypes with these
centroids, e.g. pi to c′i. We further introduce a
centroid matching loss:

Lm =
∑

U∈U

1

k̂

k̂∑

i=1

∥pi − c′i∥,

which ensures that utterance embeddings are clus-
tered according to their ground truth sessions.

To sum up, the final objective for supervised
training is as below:

Lsupervised = Lu + αLs + βLk + γLm, (1)

where α, β, γ are hyper-parameters to adjust the
contribution of different factors.

3.5 Unsupervised Extension
In the unsupervised setting, we mainly update the
bi-level losses Lu and Ls for representation learn-
ing while omit the Lk and Lm losses. In the session
level, since we do not know the session labels any-
more, we directly estimate the session assignment
by clustering utterance embeddings, and then max-
imize the data log-likelihood. Inspired from (Li
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et al., 2020a), we perform the two steps iteratively
to form an Expectation-Maximization framework.
The following shows our objective under the frame-
work. More derivation details can be found in Ap-
pendix A.

In a specific iteration, suppose we obtain clus-
ter results as {c1, ..., cm} by running K-Means on
conversation U , maximizing log-likelihood estima-
tion corresponds to finding the utterance encoder
network parameters that minimizes the loss:

−
|U |∑

i=1

log
exp(vi · ci/ϕi)∑m
l=1 exp(vi · cl/ϕl)

,

where ϕ denotes the concentration level of the fea-
ture distribution around a cluster centroid c. It en-
courages utterances to flock around the centroids.

In practice, we cluster the utterances M times
with different number of clusters K = {km}Mm=1,
to achieve a more robust probability estimation of
prototypes. Hence the updated session level loss is
calculated as:

L′
s = − 1

M

|U |∑

i=1

M∑

m=1

log
exp(vi · ci/ϕi)∑km
l=1 exp(vi · cl/ϕl)

,

since the number of utterances in conversation U
is limited, we set ϕ to a small constant τ ′2.

In the utterance-level, we make use of heuris-
tics to construct positive and negative samples for
contrastive learning. The assumption is that one
speaker mostly participates in only one session 1,
and utterances in different conversations are nat-
urally in different sessions. Suppose the speaker
of ui is s(i) in the conversation Ui, we update the
utterance level contrastive loss as below:

L′
u =

|U|∑

i=1

−1

|Y ′(i)|
∑

j∈Y ′(i)

log
exp(vi · vj/τ ′1)∑

l∈N ′(i,j)
exp(vi · vl/τ ′1)

,

where Y ′(i) ≡ {j ∈ Ui : s(j) = s(i), j ̸= i}, and
N ′(i, j) ≡ {l ∈ U/Ui}∪{j}. To sum up, the final
objective for unsupervised training is as below:

Lunsupervised = L′
u + ηL′

s, (2)

where η is a hyper-parameter to adjust the contri-
bution of different factors.

After the representation learning, we may use
various methods to decide the session number k

1Only 20% of speakers will join multiple sessions on the
Ubuntu IRC dataset.

for each conversation, such as the Elbow algo-
rithm (Thorndike, 1953), or Silhouette algorithm
(Rousseeuw, 1987). Empirically, we find the Elbow
algorithm works slightly better. Based on the pre-
dicted K, we simply run the K-Means clustering
to obtain the session assignments.

4 Experiments

4.1 Dataset

We train and evaluate our models on two large-scale
annotated datasets. The first dataset is the Ubuntu
IRC dataset (Kummerfeld et al., 2019), which con-
sists of 153/10/10 intermingled dialogues in the
train/validation/test set. Each dialogue is extracted
from the Ubuntu IRC technical support channel
and has a length of 250 or 500. Following (Liu
et al., 2020), we cut each dialogue into dialogue
segments of length 50, reorder the ground truth
session labels, and get 1,737/134/104 dialogues
in the train/validation/test split. The maximum
session number is 14 for the Ubuntu IRC dataset.
The second dataset is the Movie Dialogue dataset
(Liu et al., 2020). The dialogues are generated
by extracting sessions from 869 movie scripts and
manually intermingling the sessions. There are
29,669/2,036/2,010 dialogues train/validation/test
split. The maximum session number is 6.

4.2 Training Details

We initialize the word embeddings with 300-
dimensional Glove vectors (Pennington et al.,
2014) and set the hidden state size of BiLSTM
to be 300. The utterance embedding size after the
co-attention layer will also be 300. The maximum
length of an utterance after tokenization is set to 50.
In supervised training, the hyperparameter α and
β that controls the weights are configured as 0.4
empirically, while γ is set to 0.2. We adopt a batch
size of 16 and use Adam Optimizer (Kingma and
Ba, 2015) with an initial learning rate of 5e-5. We
run ten epochs until convergence. In unsupervised
training, the hyper parameters will be the same
and η is set to 0.4. While certain hyper-parameters
such as Glove embedding size are set according
to the default practice of previous works, other
hyper-parameters such as batch size and maximum
sequence length are determined empirically. In par-
ticular, the weight parameters α, β, γ, and η are
tuned with grid search.
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Ubuntu IRC Movie Dialogue

NMI ARI Shen− F NMI ARI Shen− F
Su

pe
rv

is
ed

Weighted SP* 0.253 0.026 0.333 0.184 0.041 0.523
CISIR* 0.466 0.034 0.408 0.205 0.065 0.538
BERT* 0.546 0.082 0.439 0.256 0.110 0.569
Transition 0.611 0.198 0.538 0.329 0.248 0.650
DialBERT 0.675 0.245 0.605 0.362 0.180 0.597

+ cov 0.696 0.275 0.615 0.328 0.180 0.608
+ feature 0.671 0.216 0.586 - - -
+ future context 0.671 0.226 0.591 0.358 0.174 0.587

StructBERT 0.678 0.371 0.675 0.446 0.327 0.695
w/max-pooling 0.677 0.379 0.681 0.448 0.327 0.695

Bi-CL (Ours) 0.624 0.360 0.707 0.575 0.382 0.747

U
ns

up
er

vi
se

d Co-Training 0.540 0.182 0.456 0.290 0.217 0.592
- pseudo data 0.531 0.168 0.409 0.279 0.201 0.576

Zeroshot 0.597 0.212 0.578 - - -
+ augment data 0.639 0.292 0.642 - - -

Bi-CL (Ours) 0.607 0.345 0.704 0.581 0.366 0.689
w/Silhouette 0.606 0.343 0.704 0.562 0.352 0.698

Table 1: Results on the Ubuntu IRC Dataset and the Movie Dialogue Dataset. * indicates that the statistics are
taken from (Liu et al., 2020). Note the results of DialBERT + feature on the Movie Dialogue Dataset is not available
since the dataset does not provide the corresponding features.

4.3 Metrics

We adopted three popular metrics to evaluate the
disentanglement result: Normalized Mutual Infor-
mation (NMI), Adjusted Random Index (ARI) (Hu-
bert and Arabie, 1985), and Shen-F score (Shen-F)
(Shen et al., 2006). Both NMI and ARI measures
the similarity between the ground truth clusters and
the predicted clusters for each conversation and a
higher value indicates higher degree of matching.
The difference is that ARI is based on counting
pairwise links between utterances that exist in both
ground truth and predictions, while NMI is more
about the cluster level since it uses entropy condi-
tioned on clusters. Shen-F is a F-1 score to mea-
sure how well utterances in the same ground truth
cluster are grouped in the predicted clusters, and a
higher value indicates higher cluster quality.

4.4 Baseline Models

We evaluate on both supervised and unsupervised
settings. The baselines include both the traditional
two-stage based and end-to-end approaches.

Supervised Baselines: The majority of methods
need supervision. Weighted SP (Shen et al., 2006)
adopts a single pass greedy decoding to add and
cluster utterances sequentially based on normalized
TF-IDF vectors. CISIR (Jiang et al., 2018) uses Hi-
erarchical CNN to encode utterances and compute
score of pairs. Transition (Liu et al., 2020) is an

end-to-end online approach where each utterance
is encoded and compared with the existing session
states to determine assignments. DialBERT (Li
et al., 2020b) gains from hierarchical Pre-Trained
model for better performance. StructBERT (Ma
et al., 2022) emphasizes structural characteristics
in modeling and is the current state-of-the-art.

Unsupervised Baselines: When no labeled data
is available, Co-Training (Liu et al., 2021) lever-
ages a message-pair classifier and session classifier
to build up a co-training scheme. Zeroshot (Chi
and Rudnicky, 2021) learns from a closely related
response selection task.

4.5 Main Results
We report the main results for all compared meth-
ods in Table 1. Generally speaking, the proposed
Bi-CL method performs better than all the other
baselines on both the Ubuntu IRC and Movie Di-
alogue datasets in most evaluation metrics. Note
that some of these baselines are based on large-
scale pre-trained language model BERT which has
shown superior performance on various NLP tasks,
our model is only based on the relatively light-
weight bidirectional LSTM model. This situation,
in some sense, signals the effectiveness of our bi-
level contrastive learning design.

More specifically, under the supervised setting,
the proposed Bi-CL method constantly outperforms
other methods on the Movie Dialogue dataset
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Ubuntu IRC Movie Dialogue

NMI ARI Shen− F NMI ARI Shen− F
Su

pe
rv

is
ed

Bi-CL 0.624 0.360 0.707 0.575 0.382 0.747
w/gold K 0.611 0.379 0.716 0.614 0.421 0.763
- Lu 0.548 0.266 0.656 0.508 0.335 0.736
- Ls 0.566 0.323 0.684 0.541 0.340 0.731
- Lm 0.596 0.345 0.697 0.542 0.341 0.731
- Lk 0.612 0.282 0.643 0.133 0.100 0.589

U
ns

up
. Bi-CL 0.607 0.345 0.704 0.581 0.366 0.689

w/gold K 0.608 0.374 0.714 0.609 0.420 0.763
- L′

u 0.516 0.158 0.571 0.360 0.161 0.624
- L′

s 0.607 0.337 0.640 0.570 0.354 0.683

Table 2: Ablation study on different design components of the proposed Bi-CL method under both settings.

across all metrics. It also performs the best on
the Ubuntu IRC dataset regarding the metric Shen-
F. This demonstrates the effectiveness of our Bi-
level contrastive learning design for conversation
disentanglement. We notice that DialBERT and
StructBERT obtain better NMI results on Ubuntu
IRC than our method. This is because these meth-
ods have special designs to model pairwise rela-
tions in a more fine-grained manner, by utilizing
additional dialogue features such as the time of
each utterance in Ubuntu IRC. Our model omits
such data-specific features for model generalizabil-
ity. In StructBERT, the ground truth reference
dependencies are leveraged for structural charac-
terization, hence we observe the best ARI perfor-
mance. However, our model indeed surpasses the
others on Shen-F. Although the margin between
the result of our model (0.707) and that of Struct-
BERT w/max-pooling (0.681) is smaller than the
relatively large margin between the results of Tran-
sition, DialBERT, and StructBERT, our model’s
gain is shown to be statistically significant. We
conduct a significance test by running our model in
the same setting for 10 times and obtain standard
deviation of NMI (0.00426), ARI (0.00286), and
Shen-F (0.00186). With the significance level of
0.05, our result for Shen-F is significantly superior
to the most competitive baseline.

Under the unsupervised setting, our model again
excels except for NMI in Ubuntu IRC. This might
be because the model Zeroshot has access to more
augmented data from the same data source. How-
ever, it still performs worse than Bi-CL in ARI and
Shen-F. Note that our model outperforms the base-
lines with a significant margin on the Movie Di-
alogue dataset. Again, this implies our model’s
generalizability. The model Zeroshot does not have

results on the Movie Dialogue dataset. It relies on
same source data to train response selection model,
but such data is not available. We also put the our
model’s results with Silhouette algorithm as the K
predictor. There is a slight drop in performance,
which can be attributed to the lower prediction ac-
curacy presented on Table 3.

A common pattern shared across the above set-
tings is that while the baselines’ results are typi-
cally much higher in Ubuntu IRC than in Movie
Dialogue, Bi-CL performs stably across the two
datasets. This is consistent with our previous obser-
vation that Bi-CL is independent of many features
in Ubuntu IRC that are heavily utilized but often
not available for other data sources. Moreover, the
performance gap between the supervised and un-
supervised versions of Bi-CL is relatively small,
suggesting that it also relies less on labels. These
demonstrate the potential of the model to be applied
widely.

4.6 More Analysis

We further carry out ablation studies on various
design components and provide more analysis on
the prediction of session number K.

4.6.1 Ablation Study
We conduct ablation studies to investigate how
each model component affects its effectiveness. As
shown in Table 2, we observe that in the supervised
setting, removing Lk leads to the most significant
performance drop, with the gaps of 0.442, 0.282
and 0.158 in NMI, ARI and Sehn-F on the Movie
Dialogue. This is because it makes predicting K
degenerate into a random guess. Also, we observe
that Lu has the second most impact. For example,
it reaches the lowest performance on Ubuntu IRC
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regarding NMI and ARI. Removing the other com-
ponents has a smaller impact and the model can
still generate reasonable result.

In unsupervised setting, removing L′
u under-

mines the model significantly on ARI since it
removes pairwise contrastive learning on the
utterance-level that helps to model local relations.
Removing L′

s tends to have a milder impact, but
it still undermines the results to a certain extent.
The above results imply that the utterance-level
loss captures local pairwise relations well and the
session-level loss also has positive contribution to
learning cluster-friendly utterance representations.

Ubuntu IRC Movie Dialogue

ACC MAE ACC MAE

Supervised 0.272 1.389 0.682 0.330
Silhouette 0.166 2.085 0.251 1.074
Elbow 0.203 1.731 0.227 1.195

Table 3: Accuracy (ACC) and Mean Absolute Error
(MAE) of the predictions given by the K predictors.

4.6.2 Prediction of K
Predicting the session number K is crucial for our
model since it directly affects the clustering results.
We hence replace the predicted K with the ground
truth K in training and inference, resulting in a
moderate performance boost (w/gold K) in both
settings as shown in Table 3. We also observe that
the performance gaps between model using pre-
dicted K and ground truth K. This show that the
model with the predicted K can still generate rela-
tively satisfactory results and the performance of
K prediction is relatively good. We show the ACC
and MAE of predicted K in Table 3. It indicates
that the supervised predictor works better which is
reasonable, and the unsupervised methods such as
Silhoutte and Elbow perform similarly. This might
be because both of them only work on utterance
features. Introducing other side information from
conversation might further boost the performance.

Another observation is that NMI on Ubuntu IRC
has a decrease when gold K value is adopted in
supervised setting. While it is counter-intuitive, it
may actually be caused by large number of sessions
that contains only one utterance in this dataset.

5 Conclusion

We studied disentanglement on multi-party conver-
sations and proposed a general model that works in

both supervised and unsupervised learning settings.
It is trained with a Bi-Level contrastive learning
mechanism to bring utterances in the same session
closer and encourage utterances to flock around
their session centers. At the same time, we aim
to pull utterances from different sessions further
apart by contrasting each utterance with negative
samples. The obtained representations naturally
fit to the clustering scheme for session predictions.
Consequently, K means is used during inference
to predict the sessions. Our model is evaluated
on the largest benchmark dataset Ubuntu IRC and
the latest benchmark dataset Movie Dialogue. Ex-
perimental results show new SOTA performance
results and advancements compared to previous
works. Additionally, the stability of our model
across different datasets, as well as different train-
ing schemes with or without session labels, shows
its potential to be applied in a general setting,

6 Limitations

Our work has the following limitations. Firstly,
although bidirectional LSTM is more light-weight
and obtains reasonable performance for our task,
an easy extension is to explore how pre-trained lan-
guage models such as BERT would further affect
the performance (Liao et al., 2021a). Secondly,
the prediction of session number K is only based
on conversation utterances. More advanced ses-
sion number estimation model would be devised
to capture more side information for more accu-
rate K prediction. An alternative approach is to
adopt different clustering algorithm such as CISIR
(Jiang et al., 2018) that does not require the predic-
tion of cluster number but instead has a universal,
empirically determined threshold that controls the
cluster size. Last but not least, our model has not
been applied to dialogues of length longer than 50,
and we have not verified its effectiveness of mod-
eling longer dependency. This entails our future
effort to adapt our model to a more general setting
with longer conversation, more threads, and more
complicated dialogue structures.
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A Appendix

Prototypical Contrastive Learning was originally
introduced in (Li et al., 2020a) to learn image rep-
resentations. An Expectation-Maximization frame-
work is constructed, where the E step estimates the
distribution of the prototypes via K-Means cluster-
ing and the M step maximizes the likelihood of the
network parameters. Similarly, consider a dialogue
with n utterances U = ⟨u1, ..., un⟩ that are embed-
ded as ⟨v1, ..., vn⟩. Denote the embedding network
parameters as θ, the objective is to find the optimal
parameters θ∗ that maximizes the log likelihood of
the utterance representations:

θ∗ = argmax
θ

|U |∑

i=1

log p(vi|θ).

Define the set of prototypes in the dialogue as
C = {cj}mj=1, which are the centroids of the clus-
ters generated by the K-Means algorithm applied
on the utterance embeddings. The likelihood for
utterance ui can be written as the summation of the
joint probability for ui being observed and belong
to each prototype cj . Hence, we have:

θ∗ = argmax
θ

|U |∑

i=1

log
∑

cj∈C
p(vi, cj |θ)

=

|U |∑

i=1

log
∑

cj∈C
Q(cj)

p(vi, cj |θ)
Q(cj)

≥
|U |∑

i=1

∑

cj∈C
Q(cj) log

p(vi, cj |θ)
Q(cj)

,

where Jensen’s inequality is applied and we have
Q(cj) = p(cj |vi, θ). By ignoring the constant
−∑n

i=1

∑
cj∈C Q(cj) logQ(cj), the transformed

objective becomes to maximize:

L =

|U |∑

i=1

∑

cj∈C
Q(cj) log p(vi, cj |θ). (A.1)

A.1 E step

In this step, we estimate Q(cj) = p(cj |vi, θ),
which is the likelihood for ui to be allocated to
the cluster with cj as the centroid. We model
p(cj |vi, θ) as 1(ui ∈ cj), which is 1 if ui is al-
located to the cluster corresponding to cj by the
K-means algorithm, and 0 otherwise.

A.2 M step
In this step, we model Equation A.1 and derive the
maximization objective. Note that:

p(vi, cj |θ) = p(vi|cj , θ)p(cj |θ)

=
1

m
· p(vi|cj , θ),

since we assume any unseen utterance has an equal
probability to belong to any session (p(cj |θ) = 1

m ).
Additionally, we assume that the distribution

of an utterance ui around each prototype cj is
an isotropic Gaussian distribution. Therefore, we
have:

p(vi|cj , θ) =
exp− (vi−cj)2

2σ2
j∑m

l=1 exp−
(vi−cl)2

2σ2
l

.

We apply l2 normalization to vi and cl, so that
(vi − cl)2 = 2− 2vi · cl. As a result, we have:

|U |∑

i=1

∑

cj∈C
Q(cj) log p(vi, cj |θ)

=

|U |∑

i=1

∑

cj∈C
1(ui ∈ cj) log

1

m
p(vi|cj , θ)

=

|U |∑

i=1

log
1

m

exp (vi · ci/ϕi)∑m
l=1 exp (vi · cl/ϕl)

,

where ϕl indicates the concentration level of the
utterance embedding around cl. Here, ϕl is set as a
constant across different prototypes since there are
limited number of utterances in the dialogue.

To further enable the learning of contrastive fea-
tures on different granularity, we cluster the utter-
ance embeddings M times with cluster number
ranging from 1 to M and update the network pa-
rameters with prototypes that encodes hierarchical
structure. Consequently, we can write the optimal
parameter as:

θ∗ = argmin
θ

− 1

M

|U |∑

i=1

M∑

m=1

exp (vi · ci/τ ′2)∑m
l=1 exp (vi · cl/τ ′2)

,

where τ ′2 is a small constant.
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