
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 214–222
December 7-11, 2022 ©2022 Association for Computational Linguistics

Language Models Understand Us, Poorly

Jared Moore
University of Washington School of Computer Science

jared@jaredmoore.org

Abstract
Some claim language models understand us.
Others won’t hear it. To clarify, I investi-
gate three views of human language under-
standing: as-mapping, as-reliability and as-
representation (§2). I argue that while be-
havioral reliability is necessary for understand-
ing, internal representations are sufficient; they
climb the right hill (§3). I review state-
of-the-art language and multi-modal models:
they are pragmatically challenged by under-
specification of form (§4). I question the Scal-
ing Paradigm: limits on resources may pro-
hibit scaled-up models from approaching un-
derstanding (§5). Last, I describe how as-
representation advances a science of under-
standing. We need work which probes model
internals, adds more of human language, and
measures what models can learn (§6).

1 Introduction

A theme of EMNLP this year is "unresolved issues
in NLP." Hence I consider what it means to under-
stand human language, whether current language
models understand and whether future models will.

Recent large language models have achieved im-
pressive results on benchmark tasks (Thoppilan
et al., 2022; Brown et al., 2020). These results
challenge ordained wisdom on the representations
necessary for language production. We’ve seen im-
proved results from multi-modal models (Saharia
et al., 2022; Ramesh et al., 2022, 2021; Shuster
et al., 2020; Radford et al., 2022; Borsos et al.,
2022), what some call foundation models (Bom-
masani et al., 2021). Some models even run images,
text, and games (Reed et al., 2022). Michael et al.
(2022) identify language understanding and scaling
as pertinent and much debated questions in NLP.

So what’s next? I identify three views on
language understanding (§2): understanding-
as-mapping, understanding-as-reliability, and
understanding-as-representation. Through exam-
ples of recent limitations of language models (§4), I

argue for understanding-as-representation because
it climbs the right hill (§3). In particular, I ques-
tion the assumption that scaling current models is
computationally feasible to lead to human-like un-
derstanding (§5). Because of the large gap between
human and model understanding, I think it is gen-
erally misapplied to say that models "understand"
(§6.1). Better applied are examples of promising
work on understanding (§6.2).

2 Views on Understanding

Some argue that there is a strict barrier which sepa-
rates human from machine understanding (Bender
and Koller, 2020; Searle, 1980). Understanding-
as-mapping puts understanding in terms of an ab-
solute mapping between form and meaning. Here,
meaning comes from what a series of forms de-
scribes. Those forms can be composed in a variety
of ways to yield different, legible meanings.1 Of-
ten, those with this view imply humans have special
access to meaning.

Others argue that we ought be rid of the dis-
tinction between human and machine understand-
ing. They imply models will close the gap soon
enough (Manning, 2022; Agüera y Arcas, 2022;
Kurzweil, 2005; Turing, 1950). Understanding-
as-reliability puts understanding as a question of
reliable communication: can one agent expect an-
other agent to respond to stimuli in a certain way?2

This view assumes that scaling alone will lead to
an agent capable of human-like language; system
internals don’t matter. For example, in the most
extreme case we can imagine a very large look-up
table with state (cf. Russell and Norvig 2021): a
mapping from every input sequence to a sensible
output sequence.

In this paper, I put understanding in terms
of internal, dynamical representation: when

1Goldberg (2015) reviews compositionality.
2Michael (2020) names this the behaviorist view.
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prompted with a stimulus, does an agent repro-
duce an internal representation similar enough
to that intended? Call this understanding-as-
representation. Many have proposed related theo-
ries (Shanahan and Mitchell, 2022; Barsalou, 2008;
Hofstadter and Sander, 2013; Jackendoff et al.,
2012; Grice, 1989). In this view, if someone un-
thinkingly blurts out the correct answer to a ques-
tion, they would not have understood. While a ther-
mostat reproduces a certain representation given
a temperature this representation is not similar to
a person’s. Some have said that models appear
not to understand because their interrogators fail
to present stimuli in a model-understandable way
(Michael 2020 summarizes). Exactly: I am con-
cerned with human language understanding–not
any possible form of understanding.

To advance a science of understanding, I argue
that as-reliability is necessary, as-representation is
sufficient, and as-mapping is neither.

I reject the premise of as-mapping that the way
we use words is separate from our meanings. While
current work in NLP poorly approximates shared
intentionality3 I disagree that this is the only route
to meaning.4 We could imagine a very large look-
up table. There is no boundary between what is
and what is not a language.5

I accept as-reliability in theory. Enough data
and parameters should yield a language-performant
agent indistinguishably similar to a human tested
on byte streams passed along a wire. Similarly,
Potts (2022) argues that a self-supervised founda-
tion model could do so. Still, I am skeptical of
what I call the Scaling Paradigm, that scale alone
is a realistic approach.

I think that hill climbing works but we’re climb-
ing the wrong hill.

3 Climbing the Right Hill

As-representation and as-reliability are compatible:
we may care about representation but more easily
look for reliability. I argue that input-output behav-
ioral tests are necessary but may not be sufficient
to attribute understanding–we may need to look
inside.6

3The meaning to which Bender and Koller (2020) says
models have no access.

4Millikan (2017) offers an account where inner representa-
tions exist but are not shared.

5Bender and Koller (2020) permit meaning in models
which ground linguistic form on images.

6Compare Churchland and Churchland (1990).

Nonetheless, Alisha, when messaging with
Bowen, has no need to look inside Bowen’s head to
verify that he understood the following exchange:

A: I’m unhappy.
B: Why aren’t you happy?

Our human bias is to assume that other agents un-
derstand until evidence proves otherwise (Weizen-
baum, 1976). This is pragmatic; until recently hu-
mans did not encounter non-human agents who
could respond somewhat reliably. Humans assume
a similarity of representation, that others have the
same inductive biases.

We can’t make that assumption with our models.
We can’t assume that a chat-bot has a bias to coo
over babies (cf. Hrdy 2009). This is why Turing’s
(1948) test doesn’t work–the smoke and mirror pro-
grams which won the Loebner prize unintentionally
parody input-output tests (Minsky, 1995). Reliabil-
ity, while useful, alone does not advance a science
of understanding. As-reliability does not tell us
which biases induce understanding. It is not causal.

Granted, humans’ internal representations are
difficult to measure, may change at each point of
access, and in AI we’ve historically leaned too
heavily on certain putative representations. Sutton
(2019) calls this a "bitter lesson."

So why talk of representation? I agree with the
"bitter lesson" but I also know that there is no such
thing as free lunch; human language occupies a
small manifold in the space of possible functions. I
don’t argue to replicate natural functions but rather
to be honest about human strengths lest we wander
off into fruitless regions of state space. To do logic,
at some internal level a system is going to have to
appear to use the parts of logic.

Advancing as-representation does not mean we
know what representations underlie human lan-
guage nor that we must use certain ones.

Advancing as-representation does mean that we
pay attention to the constraints on human language
usage (§4). We should use those to guide our bench-
mark tests for reliability. We should not get lost in
our proxies, especially what the Scaling Paradigm
assumes (§5).

4 Under-specification of Meaning

Language is dynamic (e.g. has a history), intersub-
jective (multi-agent), grounded in a large number
of modalities (senses), collectively intentional (in a
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cultural context), and more. Present models have
little, if any, data on these aspects of language.

As Bisk et al. (2020) make clear in their "world
scopes," the majority of work in NLP attempts to
learn language from internet text alone. I agree that
models have fewer data of the world than humans
(Bender and Koller, 2020). What our models see
under-specify our meanings.

Recent work has looked into such dissimilari-
ties. McCoy et al. (2021) note that while language
models use novel constructions, they copy from
training data at a high rate. McCoy et al. (2019)
and Branco et al. (2021) identify how models use
heuristics and short-cuts contrary to the human
meaning of prompts. Shaham et al. (2022) show
that a current model will not remember a game
after a long-enough context window.

Work has just begun to show limitations of multi-
modal models. Thrush et al. (2022) test for com-
positionality over images and text: current models
perform at chance. Marcus et al. (2022) and Con-
well and Ullman (2022) show many similar com-
positional issues for DALL-E 2 in comparison to
humans. Lake and Murphy (2021) note the implau-
sibility of present multi-modal models: e.g. they
cannot describe internal desires or change beliefs.

Thus my claim is not that models can’t learn
meaning. My claim is that for models to approach
human meaning they will require data on aspects
of language the field has only begun to investigate.
Consider two examples of under-specification:

Under-specification of physics. A model over
text and static images would perform poorly on a
query such as, "Can you remove this block without
causing the tower to fall?" paired with an image
where a finger points at a block that could obviously
be removed (or obviously not).

Under-specification of time. In Western con-
texts respondents associate earlier to the left and
later to the right. This is not specified in language
and is mutable (Casasanto and Bottini 2014, and
for the example). Thus I expect models which have
no notion of time to perform poorly on tests of
temporal bias such as those in Fig. 1.

5 Challenges to the Scaling Paradigm

But what of more data? The Scaling Paradigm tells
us that scale alone–more parameters, more data,
more modalities–will be enough to approximate
human language understanding. Exponential in-
creases in parameters or training data have yielded

Prompt: are each of these events temporally earlier
(A), present (B), or later (C)?

one day after
A B (C)
retfa yad eno
(C) B A

a day before
(A) B C
erofeb yad a
C B (A)

Figure 1: Stimuli to probe temporal biases. Answers
(bolded). In human subjects response times are shorter,
once trained, for pairings shown and longer when the
order of the answers is reversed. A model with similar
temporal bias should assign a higher probability to the
correct answer in the intuitive ordering (shown).

linear increases in performance (Chowdhery et al.,
2022; Kaplan et al., 2020).

Still, text doesn’t seem like enough. Merrill et al.
(2021a) argue that there aren’t enough examples
to learn meaning from form in languages of asser-
tions. Even Chowdhery et al. (2022, pg. 48) admit
to be running out of clean data for exponentially-
bigger models. Furthermore, by the age of five, the
average American child has heard between ten and
fifty million words (Sperry et al., 2019). A state-of-
the-art model sees from 10k to 100k more words
than a kid.7 For some (e.g. Linzen 2020), the argu-
ment stops there: our language models must not be
learning the correct functions because they require
more data to generalize.

Nonetheless, humans have plenty of data to com-
pare language use besides the words they hear
(Tomasello, 2003; Lakoff and Johnson, 1980). For
example, Smith et al. (2018) show that children
at first need items to be visually centered to learn
them. So the claim that models learn the wrong
function may only apply when limited to text.

What of more modalities, then? To extrapolate
on the figures of PaLM (Chowdhery et al., 2022,
§13), we only need to scale a model to about 212

billion parameters and train it for 2.59× 1026 flops
(and increase training data) for perfect performance
on a variety of English NLP tasks. For perspective,
Heim (2022) estimates the cost of PaLM at 10
million USD which, at the 100x projected, is 1
billion. These figures seem infeasible.

Furthermore, the tests in PaLM do not capture
the limits I mentioned for human-like understand-
ing (§4); we would need to add image (Ramesh
et al., 2022) and game (Reed et al., 2022) networks

7GPT-3 uses .3 trillion tokens (Brown et al., 2020),
LaMDA 2.8 trillion (Thoppilan et al., 2022), and PaLM .7
(Chowdhery et al., 2022).
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as well. I don’t know exactly what effect these
added modalities will have except that they will
increase the exponent on scale. I am wary that
the long tail of returns embraced by the Scaling
Paradigm chases an exponential.8 The primacy of
scale implies an exponentially diminishing longtail
of capability. How soon until our models become
planetary in size, as Bostrom (2014) portends?

I thus recast the debate, not as what can theoreti-
cally be learned from data (as the Scaling Paradigm
trumpets), but as the computational efficiency of
different learning approaches. To asymptotically
approach an approximation of human language
understanding, how many parameters, data, and
modalities will our models need?

These concerns about scale make me hesitant
to suggest that efforts will soon close the gap be-
tween human and machine understanding (contra
as-reliability) even as I agree that they will narrow
it (contra as-mapping).

6 Discussion

6.1 Sorta Understands != Understands

To admit models may one day understand like us
and to claim they now understand in limited do-
mains, need not lead us to give understanding over
to machines far to one end of the spectrum. These
models understand parts of language—just not in
the same way as humans understand each other.
They are not biased in the same way humans are.
Machines will make unknown mistakes unless we
can interrogate their representations.

Moreover, attributing "understanding" is conse-
quential. Some argue for granting moral rights to
robots (Gordon and Gunkel, 2021). Page describes
those decrying AI as "speciesist" (Tegmark, 2017).
Bryson (2010) argues to the contrary. But note that
understanding and moral status aren’t the same. I
urge caution over assuming the distinction between
human and machine will disappear anytime soon.

We should not let the theoretical capacities of
AI blind us to present realities. Saying that current
large language models understand is, as McDer-
mott (1976) described a while back, another case
of a "wishful mnemonic."

8While some note the exponential scales of large models
(Thompson et al., 2021; John and Musser, 2022) they may not
account for counter-measures (Patterson et al., 2022).

6.2 Pragmatic NLP

Instead of denying or abandoning understanding,
representation advances a science. It allows us to
answer: how does this system understand? How
similar are the representations of these two sys-
tems? This is what Harnad (1990) and Santoro
et al. (2022) call for. Indeed, as-representation
describes emerging trends in NLP which . . .

Probe model internals. While most benchmark
tasks focus on input-output reliability (Linzen,
2020; Zhang et al., 2021), investigating under-
standing will require functional analysis. Buck-
ner (2020) calls for us to determine a taxonomy
of the non-robust features detected by deep nets.
Beckers et al. (2020) show how to compare causal
models at multiple levels of granularity. Geiger
et al. (2021), Li et al. (2021), and Lovering and
Pavlick (2022) extend this analysis with interven-
tions to ask which representations (simpler models)
approximate large language models. Olsson et al.
(2022) find evidence for so-called induction heads
in transformer models. Johnston and Fusi (2022)
find abstract "representations" emergent from neu-
ral networks trained on similar tasks. Merrill et al.
(2021b) investigate norm growth saturation in trans-
formers as their inductive biases.

Add more of human language such as intersub-
jective, multi-agent environments. Noukhovitch
et al. (2021) find that partially-competitive agents
learn to use symbols. In a text game, Hendrycks
et al. (2021) gauge moral valence. This is as Fire-
stone (2020) describes, to use species-fair human-
machine comparisons.

We might focus on human data constraints, such
as the CHILDES database of language learning
(MacWhinney, 2000; Linzen, 2020). Hill et al.
(2020) show how the increased modality of data to
a deep network may lead to generalizability. Con-
tra strict composition, Santoro et al. (2022) argue
for the inclusion of "socio-cultural interactions."
These are similar to calls for dynamic grounding
(Chandu et al., 2021) and "common sense" (Sap
et al., 2020). For example,we need models which
not only resolve gaze (Koleva et al., 2015) but also
deploy sharing gaze to sharing in other domains.

On generalizability Mitchell (2019) asks us to
consider micro domains: "abc:abd; xxyyzz:?".
Şahin et al. (2020) propose a task with a small data-
set from Rosetta Stone. Brachman and Levesque
(2022) propose using only the kids version of
Wikipedia, KidzSearch, to reduce the number of
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entities on which to train. A language performant
agent should be able to do well in this micro-
domain alone.

Measure what models can learn. We need
more work on the tractability of meaning along
the lines of Merrill et al. (2021a) on a language of
assertions. How many different streams of data (or
"world scopes" Bisk et al. 2020) must we add to
models to make them more reliable? What kind
of scaling factors can we reasonably expect as we
include more aspects of human language?

7 Conclusion

Present language models have limited access to
meaning (§4) and scale alone may not be sufficient
to achieve human-level understanding (§5), at least
until we can guarantee similar representations or
inductive biases (§2).

Inference tasks reduce the space of possible enti-
ties implied by conventional usage. Still, we must
be assured of what they represent in order to guar-
antee their reliability. Understanding-as-mapping
would deny the distributional compositionality of
our languages and of our minds. Understanding-as-
reliability would claim our machines "get" meaning
so long as we focus only on temporally limited us-
age. Understanding-as-representation would focus
on accurate, measurable, and tractable meaning.

Limitations

This is only one perspective of many possible on
the nature of understanding. Given the short form
of this presentation I am not able to do justice to
the diverse fields–from philosophy of science to
linguistics to brain science–which I reference. I
may therefore insufficiently explain the relevant
literature to my target readers in NLP. While I have
attempted to present a well-informed prior on the
future direction of AI, my perspective is nonethe-
less uncertain; I may ultimately be incorrect.
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