
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1960–1967
December 7-11, 2022 ©2022 Association for Computational Linguistics

RedApt: An Adaptor for WAV2VEC 2 Encoding
Faster and Smaller Speech Translation without Quality Compromise

Jinming Zhao Hao Yang Gholamreza Haffari Ehsan Shareghi
Department of Data Science & AI, Monash University

first.last@{monash.edu}

Abstract

Pre-trained speech Transformers in speech
translation (ST) have facilitated state-of-the-
art (SotA) results; yet, using such encoders is
computationally expensive. To improve this,
we present a novel Reducer Adaptor block,
RedApt, that could be seamlessly integrated
within any Transformer-based speech encod-
ing architecture. Integrating the pretrained
WAV2VEC 2 speech encoder with RedApt
brings 41% speedup, 33% memory reduction
with 24% fewer FLOPs at inference. To our
positive surprise, our ST model with RedApt
outperforms the SotA architecture by an aver-
age of 0.68 BLEU score on 8 language pairs
from Must-C.

1 Introduction

Leveraging pre-trained speech Transformers, such
as WAV2VEC 2 (W2V2) (Baevski et al., 2020), in
speech-to-text translation (ST) systems have estab-
lished state-of-the-art (SotA) results across several
languages (Li et al., 2021; Ye et al., 2021). Mean-
while, the high computational cost of such encoders
is well-documented (Wu et al., 2022) and mainly
attributed to the self-attention mechanism inside
Transformers (Vaswani et al., 2017).

However, speech modality introduces unique
challenges compared to text: representation of raw
speech signals are orders of magnitude longer1,
while empirical findings suggest that high-quality
ST systems require much deeper encoders com-
pared to text-to-text translation (Wang et al., 2020).
Consequently, training and inference with such en-
coders is expensive, in terms of memory and time,
even for reasonably powerful hardware.2

As a mitigation, Li et al. (2021) augmented
W2V2 at the output by CNN layers to reduce the

1Speech features, e.g. Mel-Spectrogram, are lower dimen-
sional but result in worse ST quality (Ye et al., 2021).

2Training batch size for a modern ST system (Gállego
et al., 2021) could not exceed 1 on a V100 16GB GPU.

representation length, and Zhao et al. (2022) pro-
posed a Transformer-based adaptor to shrink a se-
quence. Yet, the complexity of encoding remains
high. Wu et al. (2022) proposed lower feature di-
mensions in W2V2 which improved efficiency at
the expense of performance drop. Earlier studies
focused on designing feature selection modules at
the input level by using phone labels for merging
adjacent vectors (Salesky and Black, 2020), using
dynamic sparsification mechanism (Zhang et al.,
2020), or injecting Connectionist Temporal Clas-
sification (Gaido et al., 2021) to regulate feature
passing between layers. These approaches improve
speed at inference but are limited as they rely either
on hand-crafted features, transcripts, or external
modules.3

In this work we focus on W2V2, as one of the
most widely used pre-trained speech encoder for
ST, and propose a novel block, Reducer Adap-
tor (RedApt), to reduce the computational load of
processing speech sequences through W2V2 while
improving translation quality. Our approach does
not require any additional pretraining or informa-
tion beyond the audio input, and works similar to
adaptor blocks (Houlsby et al., 2019) placed on top
of any layers of a pretrained transformer but trained
along with the underlying Transformer on ST task.

Through extensive experiments on 8 language
pairs from Must-C, we show that integrating
RedApt into WAV2VEC yields 41% speedup, 33%
memory savings, and 24% fewer FLOPs at infer-
ence time. Meanwhile, our ST model outperforms
existing SotA by 0.68 BLEU score. To the best of
our knowledge, we are the first to target the effi-
ciency of pretrained speech encoders for ST. We
hope this to facilitate further improvement across
a broader range of speech processing tasks that
require pretrained speech encoders.

3Pruning (Lai et al., 2021), quantization and knowledge
distillation (Peng et al., 2021; Chang et al., 2022) approaches
are promising directions but they have yet to be applied to ST.

1960

2 Reducer Adaptor (RedApt)

Our proposed RedApt has some key properties: (i)
can be integrated seamlessly with pretrained speech
Transformer such as WAV2VEC 2 (W2V2), (ii) flex-
ibly reduces the computational load of encoding
(both in terms of memory and time), and (iii) allows
to retain the downstream ST performance. While
beneficial for training, RedApt is in particular use-
ful in the repetitive nature of inference phase. In
this section, we will present RedApt architecture,
and show how it can be integrated into WAV2VEC

and a full speech-to-text translation (ST) system.4

2.1 Architecture of RedApt

The core idea is to pool a temporal speech sequence,
to reduce it length while learning local information
from the shrunk sequence. Suppose W2V2 fea-
ture encoder yields a sequence, a. As shown in
Figure 1 (W2V2 is omitted for brevity), RedApt
is built on two CNN blocks which are wrapped
by layer normalization, residual connection, and
GELU nonlinear activation.

The first CNN block is a pooling module to
shrink the length of a. It is parameterized with
kernel k, stride length s and padding p. The input
sequence length thus can be reduced,

n′ =
⌊
n+ 2p− k

s

⌋
+ 1 (1)

where n and n′ are the lengths of the original and
shortened sequences, respectively. After GELU
activation, we can get a′. The second CNN block
learns shared position-wise kernels within a given
window which can re-capture local information,

a′′ = a′ +GELU
(
Norm

(
CNN

(
a′
)))

(2)

The intuition is that certain information (e.g., posi-
tional awareness (Dai et al., 2020)) is lost during
pooling, and requires restoration.The inclusion of
layer normalization, residual connection, and non-
linearity follow the same rational as Transformer
blocks (Vaswani et al., 2017). The total number of
parameters for a single block of RedApt is 11.5M.

2.2 RedApt Integration into WAV2VEC 2

WAV2VEC 2 (W2V2) architecture starts with a
CNN-based feature encoder to extract features
from raw speech signals, while performing down-
sampling. A quantization module is attached on
top of the feature encoder to learn discrete latent

4Our code is available at https://github.com/
mingzi151/w2v2-st

Transformer

RedApt

Transformer

RedApt

Transformer

a2

a1

a3

N1 x

N2 x

N3 x

a1

a2

Norm

1-D Conv

Gelu

1-D Conv

Gelu

Norm

Figure 1: The RedApt architecture and integration.

speech vectors. The output of the feature encoder
is masked and forwarded into a context network,
consisting of 24 Transformer blocks and 16 self-
attention heads (for the LARGE configuration), to
learn contextualized speech representations. The
entire model is pretrained with a contrastive loss to
distinguish a true masked latent vector from those
generated by the model. After pretraining, only
the feature extractor and context network are fine-
tuned in the downstream tasks.

RedApt progressively shrinks a temporal se-
quence during the forward propagation in the
W2V2 Transformer-based encoder. Assuming an
integration of m RedApt blocks into Transformer
blocks, RedApt blocks compress a sequence by
a factor of sm. As each Transformer block has
a quadratic complexity w.r.t. the input length n0,
pooling tensors has significant benefits on mem-
ory and compute requirements of W2V2. Denoting
the sequence length at i-th layer of W2V2 as ni

and the stride size as si, the complexity of each
subsequent Transformer layer (until the next pool-
ing) is O((ni

si
)2) compared to the O(n2

0) in vanilla
Transformer block.

2.3 RedApt Integration into ST

We are motivated to capitalize on pre-trained mod-
ules, W2V2 and mBART (Liu et al., 2020), that
were trained on large unlabelled and labelled data.
Our ST model consists of the W2V2+RedApt en-
coder, and an mBART decoder. Since the goal of
our work is to enable faster signal encoding, we
train the encoder while freezing the decoder in all
experiments. Unlike Gállego et al. (2021) that use
stage-training, we train W2V2 and RedApt jointly
in one step.

1961

https://github.com/mingzi151/w2v2-st
https://github.com/mingzi151/w2v2-st

3 Experiments

In this section, we first describe our experimental
settings (§3.1). Next, we investigate the effect of
the number of RedApt blocks (§3.2) and their
positions (§3.3) on speed, memory, and translation
quality. Then, we evaluate our ST model on 8
language pairs from Must-C benchmarks (§3.4) and
analyze inference time (§3.5). Lastly, we provide
an ablation study on RedApt components (§3.6).

3.1 Experimental Settings

Dataset. We use the Must-C dataset (Cattoni et al.,
2021), a multilingual ST corpus collected from
TED talks. We experimented with 8 language pairs,
using English (EN) as source and the followings
as target: German (DE), Romanian (RO), Spanish
(ES), French (FR), Dutch (NI), Portuguese (PT),
Russian (RU), and Italian (IT). The data is pre-
processed and filtered following steps outlined in
Gállego et al. (2021). The best systems were se-
lected on dev sets, and results are reported on test
set (tst-COMMON). We use the EN-DE pair for
the detailed analysis and ablation.
Implementation Details. Similar to the modern
ST architectures (Gállego et al., 2021; Tang et al.,
2020), we use pretrained W2V2 large as our en-
coder and pretrained mBART50 decoder as the
decoder. We randomly initialize the top 3 layers of
W2V2 in experiments involving RedApt and find
that it enables faster convergence, verifying earlier
observations by Sun et al. (2021). We free W2V2
feature extractor. For full details on training con-
figurations and hardware, please refer to Appendix
A.2.
Baseline. We use the SotA ST model from Gállego
et al. (2021) as our baseline. The model uses a sim-
ilar W2V2 large encoder, along with a CNN-based
length adapter on top of the encoder which reduces
the sequence length by a factor of 8. The decoder is
similar to ours and is frozen during training for fair
comparison between the two models. This model
is denoted as W2V2+ hereafter. While RedApt
offers various degrees of layer-wise reduction, for
comparability in the translation experiments on 8
language pairs (§3.4), the configuration with the
same reduction factor (i.e., 3 blocks of RedApt)
and total encoder parameter size is used.
Metrics. We measure efficiency at inference in
terms of throughput (the number of speech data
that can be processed in a unit of time), memory
(GPU memory usage); and FLOPs (floating-point

m 0 1 2 3 4

BLEU 26.51 27.69 27.61 27.42 25.86

Throughput ↑ 1.00x 1.22x 1.26x 1.31x 1.35x

Memory ↓ 1.00x 0.80x 0.77x 0.73x 0.67x

FLOPs ↓ 1.00x 0.86x 0.84x 0.81x 0.76x

Table 1: BLEU, throughput, memory consumption, and
FLOPs at training and inference for various number
of RedApt blocks: m = {1, 2, 3, 4}, the positions of
blocks are {[15], [15, 20], [15, 18, 19], [14, 15, 18, 19]}.

operations performed given a single process, higher
FLOPs means slower inference speed). See Ap-
pendix A.4 for more details. We use BLEU5 to
evaluate translation quality.

3.2 Selecting the Number of RedApt Blocks
We examine the impact of RedApt on translation
quality and efficiency by injecting various number
of RedApt blocks, m = {0, 1, 2, 3, 4}, where 0
refers to the baseline and the rest indicate our mod-
els. As a heuristic for setting the cap on m, we use
the maximum representation length reduction that
matches that of a corresponding text transcripts
to avoid the risk of information loss. The intu-
ition is that given the same content, the length of
speech representations (after W2V2) should not be
less than that of text representations; the former
may vary depending on the degree of compression,
whereas the latter is a fixed number. This reflects
on the fact that text, unlike speech, carries only the
content information that is essential for translation
task. Further investigation of text representations
optimality compared with speech is beyond our
current focus and we leave it to future work.

Table 1 summarizes the results.6 Overall, we
achieve significant throughput speedup, memory
footprint saving and FLOPs reduction as m in-
creases, while the trend follows a law of dimin-
ishing returns. All models with m ≤ 3 retained
the same level of translation quality as the base-
line (m = 0). Particularly for m = 3, memory
consumption, throughput, and FLOPs are 0.73×,
1.27×, and 0.81× of the baseline. The gains from
reduced computational cost can be re-invested to
increase the batch size at inference and we report
the changes of these metrics as the batch size varies
in Appendix A.3. We observe a trade-off associated

5https://github.com/mjpost/sacreBLEU
6Different position configurations for each value of m are

tried and we report the best results.

1962

https://github.com/mjpost/sacreBLEU

Model Positions BLEU T.put↑ Mem↓ FLOPs↓

W2V2+ - 26.51 1.00x 1.00x 1.00x

RedApt [2,5,6] 0.7⋄ 1.47x 0.28x 0.45x
[7,9,11] 22.02 1.41x 0.45x 0.58x

[13,15,20] 27.24 1.41x 0.67x 0.76x
[14,18,20] 26.83 1.33x 0.60x 0.80x
[15,18,19] 27.42 1.31x 0.73x 0.81x
[16,18,20] 27.17 1.28x 0.76x 0.83x
[17,19,20] 26.78 1.24x 0.79x 0.85x

Table 2: Comparison of different position configura-
tions in terms of translation quality, throughput (T.put),
memory (Mem) and FLOPs, at training and inference
time. ⋄: models did not converge. Bold: Best BLEU
score. Underline: Best configuration.

with m in translation quality and efficiency, and we
set m to 3 in all our following experiments. For
brevity, we use RedApt to refer to our ST mod-
els in which RedApt blocks are injected into the
encoder, hereafter. In the next section, we will in-
vestigate various layers of placing RedApt blocks.

3.3 Selecting the Positions of RedApt Blocks

We investigated various positions of RedApt
blocks. Since it is not ideal to experiment all 24m

choices, to determine optimal positions, we apply
a backward selection mechanism starting from the
configuration of [14,15,18,19] by removing one
position, or replacing it with another position. For
selection purposes, we segment Transformer net-
works of WAV2VEC 2 to 2 buckets, i.e., low-mid
(0-11), mid-top (12-23). While we treat positions
as hyper-parameter in our work, a more princi-
pled approach could frame it as neural architec-
ture search (Elsken et al., 2019). We leave further
investigation to future work.

The majority of the models with exceptional per-
formance come from mid-high layers. Table 2
presents BLEU scores, memory usage, through-
put and FLOPs for EN-DE, with different position
configurations. We observe injecting RedApt into
lower level of W2V2 leaves a major toll on BLEU.
This verifies the earlier findings on text transform-
ers (Goyal et al., 2020) that higher layers typically
convey similar overlapping information while dis-
turbing the lower layers could result in a great deal
of information loss. Additionally, compressing se-
quences in lower levels has greater impact on the
pre-trained weights in the subsequent layers, which
can result in optimization issues.

We choose our best configuration, [13,15,20],

Model DE RO ES FR NI PT RU IT

W2V2+ 26.51 24.66 30.04 36.26 31.08 32.67 17.19 22.13

RedApt 27.24 24.34 30.49 37.59 29.82 32.65 18.08 25.73

Table 3: Translation BLEU of the SotA model (W2V2+)
and our model on 8 language pairs from Must-C.

which exhibits efficiency improvements of 1.41×
in throughput, 0.67× in memory usage and 0.76×
with FLOPs, and use it in our next translation ex-
periments on 8 language pairs.

3.4 Translation Quality on Must-C

Table 3 reports the results for the 8 Must-C lan-
guage pairs, using our best configuration (§3.3).
Our ST models outperform the baseline mod-
els (§3.1) on 5 language pairs by a large margin,
while being comparable on the rest. On average,
we observe a boost of 0.68 BLEU scores across
8 languages. We speculate that these gains could
be attributed to the positive impact of dimensional-
ity reduction on filtering out redundancy and noise
from the representations, verifying the earlier ob-
servations by Zhang et al. (2020).

3.5 Inference time for ST

In order to measure the inference time for the en-
tire ST model, we partitioned audio of EN-DE
test set into 5 buckets based on length (seconds)
Compared to the baseline, the decoding speedups
are 7%, 7%, 5%, 3%, 3% for these buckets
(0, 4), [4, 8), [8, 13), [13, 20], (20,∞), which have
1024, 896, 384, 128 and 64 examples, respectively.
As expected, the efficiency gain in encoding tends
to vanish in the full ST setup due to the depth of
the mBART decoder (i.e., 12 layers) and the auto-
regressive decoding.

3.6 Ablation of RedApt components

To study the contribution from each components of
RedApt block beyond the first CNN block (§2.1),
we conduct an ablation by removing the remaining
three components one at a time. The ablation (on
EN-DE) for our best configuration (§3.3) indicates
that removing the second CNN block leads to 0.44
BLEU decay, while removing either the GELU and
LayerNorm leads to convergence issues (neither
models converge). We report further details and
positions in Appendix A.5.

1963

4 Conclusion

We proposed a novel dimensionality reduction
block, RedApt, to improve the efficiency of pre-
trained speech encoders, e.g. WAV2VEC 2 (W2V2),
in speech translation (ST). We demonstrated that
the integration of RedApt brings 1.41×, 0.67×
and 0.76× in speedup, memory usage and FLOPs
reduction at inference. Meanwhile, compared with
SotA, our ST system on average improves trans-
lation quality by 0.68 BLEU scores over 8 Must-
C language pairs. As our future work, we will
be investigating the impact of RedApt in other
speech processing tasks (Yang et al., 2021), as
well as learning the optimal positions for inject-
ing RedApt blocks via neural architecture search.

5 Limitations

While hardware requirement is a common chal-
lenge shared across all modern ST models, it is
worth mentioning that our work requires GPUs
with 16 GB of memory for inference and 48 GB
memory for training.

6 Ethics Statement

Our work is leveraging pretrained models of lan-
guage (WAV2VEC2 for speech, mBART for text).
However, our method is not designed or intended to
rectify any of the well-documented issues of such
models. Hence, our work inherits similar potential
risks that these models pose.

References
Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,

and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in Neural Information Processing Systems,
33:12449–12460.

Roldano Cattoni, Mattia Antonino Di Gangi, Luisa Ben-
tivogli, Matteo Negri, and Marco Turchi. 2021. Must-
c: A multilingual corpus for end-to-end speech trans-
lation. Computer Speech & Language, 66:101155.

Heng-Jui Chang, Shu-wen Yang, and Hung-yi Lee.
2022. Distilhubert: Speech representation learn-
ing by layer-wise distillation of hidden-unit bert.
In ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7087–7091. IEEE.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le.
2020. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. Ad-
vances in neural information processing systems,
33:4271–4282.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
2019. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–
2017.

Marco Gaido, Mauro Cettolo, Matteo Negri, and Marco
Turchi. 2021. Ctc-based compression for direct
speech translation. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
690–696.

Gerard I Gállego, Ioannis Tsiamas, Carlos Escolano,
José AR Fonollosa, and Marta R Costa-jussà. 2021.
End-to-end speech translation with pre-trained mod-
els and adapters: Upc at iwslt 2021. In Proceedings
of the 18th International Conference on Spoken Lan-
guage Translation (IWSLT 2021), pages 110–119.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. 2020. Power-bert: Accelerating
bert inference via progressive word-vector elimina-
tion. In International Conference on Machine Learn-
ing, pages 3690–3699. PMLR.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Cheng-I Jeff Lai, Yang Zhang, Alexander H Liu, Shiyu
Chang, Yi-Lun Liao, Yung-Sung Chuang, Kaizhi
Qian, Sameer Khurana, David Cox, and Jim Glass.
2021. Parp: Prune, adjust and re-prune for self-
supervised speech recognition. Advances in Neural
Information Processing Systems, 34.

Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing
Tang, Juan Pino, Alexei Baevski, Alexis Conneau,
and Michael Auli. 2021. Multilingual speech trans-
lation from efficient finetuning of pretrained models.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
827–838.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

1964

http://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53.

Zilun Peng, Akshay Budhkar, Ilana Tuil, Jason Levy,
Parinaz Sobhani, Raphael Cohen, and Jumana Nas-
sour. 2021. Shrinking bigfoot: Reducing wav2vec
2.0 footprint. arXiv preprint arXiv:2103.15760.

Tomasz Potapczyk, Paweł Przybysz, Marcin Cho-
chowski, and Artur Szumaczuk. 2019. Samsung’s
system for the iwslt 2019 end-to-end speech transla-
tion task. In Proceedings of the 16th International
Conference on Spoken Language Translation.

Elizabeth Salesky and Alan W Black. 2020. Phone
features improve speech translation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2388–2397.

Zewei Sun, Mingxuan Wang, and Lei Li. 2021. Multi-
lingual translation via grafting pre-trained language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2735–2747.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
s2t: Fast speech-to-text modeling with fairseq. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 33–39.

Felix Wu, Kwangyoun Kim, Jing Pan, Kyu J
Han, Kilian Q Weinberger, and Yoav Artzi. 2022.
Performance-efficiency trade-offs in unsupervised
pre-training for speech recognition. In ICASSP 2022-
2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 7667–
7671. IEEE.

Shu-Wen Yang, Po-Han Chi, Yung-Sung Chuang,
Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y. Lin,
Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-Ting
Lin, Tzu-Hsien Huang, Wei-Cheng Tseng, Ko-tik

Lee, Da-Rong Liu, Zili Huang, Shuyan Dong, Shang-
Wen Li, Shinji Watanabe, Abdelrahman Mohamed,
and Hung-yi Lee. 2021. SUPERB: speech processing
universal performance benchmark. In Interspeech
2021, 22nd Annual Conference of the International
Speech Communication Association, Brno, Czechia,
30 August - 3 September 2021, pages 1194–1198.
ISCA.

Rong Ye, Mingxuan Wang, and Lei Li. 2021. End-to-
end speech translation via cross-modal progressive
training. arXiv preprint arXiv:2104.10380.

Biao Zhang, Ivan Titov, Barry Haddow, and Rico Sen-
nrich. 2020. Adaptive feature selection for end-to-
end speech translation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2533–2544.

Jinming Zhao, Hao Yang, Gholamreza Haffari, and
Ehsan Shareghi. 2022. M-adapter: Modality adap-
tation for end-to-end speech-to-text translation. In
Interspeech 2022, 23rd Annual Conference of the In-
ternational Speech Communication Association, In-
cheon, Korea, 18-22 September 2022, pages 111–115.
ISCA.

1965

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.21437/Interspeech.2021-1775
https://doi.org/10.21437/Interspeech.2021-1775
https://doi.org/10.21437/Interspeech.2022-592
https://doi.org/10.21437/Interspeech.2022-592

A Appendix

A.1 Dataset

We use all 8 language pairs from Must-C. Please
refer to Cattoni et al. (2021) for details for the
size of the datasets and train/dev/test splits. We
adopt the filtering techniques proposed in Gállego
et al. (2021). We remove instances whose audios
are over 25 seconds. We then filter out examples
whose transcriptions that 1) have speaker names
and non-textual events; 2) start with certain patterns
indicating noise. Next, we apply ASR to audios
and remove those whose ASR outputs have low
WER scores.

To diversify training data, we also apply data
augmentation on the audio data on-the-fly, an effec-
tive technique used in ST (Potapczyk et al., 2019).
We apply "tempo" and "pitch" to make the model
become invariant to speaking speeed, and "echo" to
simulate echoing. Each instance is augmented with
a probability of 0.8 where all effects are applied.
We then normalize it to zero mean and unit vari-
ance. The parameters of tempo, pitch, echo-delay
and echo-decay are to set to (0.85, 1.3), (-300, 300),
(20, 200) and (0.05, 0.2).

A.2 Training Details

All models are trained with fairseq (Ott et al., 2019)
on 4 RTX 6000 GPUs, using 16 floating point pre-
cision, for 25k updates. We use WAV2VEC 27 and
the mBart508 decoder. We limit the source and
target lengths and to 400k (i.e., 25 seconds) and
1,024 tokens, respectively. We use an Adam opti-
mizer with (Kingma and Ba, 2015) β1 = 0.99 and
β2 = 0.98. We set the dropout to 0.1, clip norm to
20, and the label smoothing value to 0.2. For the
baseline models, we use a learning rate of 5e-04
and reduce it when loss stops improving. Depend-
ing on speech lengths for each source language, we
set the average batch size being either 64, or 128.
For our models, we use a learning rate of 5e-04 for
DE and NL, 4e-04 for Fr and 3e-04 for the rest, and
we also decrease the learning rate at plateau. We
use an effective batch size of 64 for all language
pairs. We set kernel size, stride and padding for the
two CNN blocks in RedApt to <3, 2, 1> and <3,
1, 1>. We report BLEU results on single models

7https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_vox_960h_pl.pt

8https://dl.fbaipublicfiles.com/
fairseq/models/mbart50/mbart50.ft.1n.
tar.gz

Figure 2: memory usage (Upper) throughput (middle)
and FLOPs (bottom)

without checkpoint averaging.

A.3 Memory and Throughput vs. Batch Size

See Figure 2 (upper, middle) for memory usage and
throughput (bottom) for each model when we in-
crease batch size until GPU memory gets full. Our
methods have better utilization of GPU memory.

1966

https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_vox_960h_pl.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_vox_960h_pl.pt
https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.1n.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.1n.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.1n.tar.gz

A.4 Measuring Throughput and FLOPs
We set the length of raw signals as 88,000, which
is the average signals length in the training set, and
the batch size as 64 when computing throughput
and memory. We use batch size 1 for calculating
FLOPs, whose value is mainly affected by the input
length. All testings are performed on one RTX
8000 GPU.

A.5 Ablation of RedApt components
Table 4 shows the effect of removing each compo-
nents in RedApt.

Positions 2nd CNN LayerNorm GELU BLEU

13-15-20 ✓ ✓ ✓ 27.24
- ✓ ✓ 26.80
✓ - ✓ ⋄

✓ - - ⋄

15-18-19 ✓ ✓ ✓ 27.42
- ✓ ✓ 27.11
✓ - ✓ ⋄

✓ - - ⋄

Table 4: Ablation on Acoustic Pooler. ⋄: models did not
converge.

1967

