
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1886–1899
December 7-11, 2022 ©2022 Association for Computational Linguistics

ASDOT: Any-Shot Data-to-Text Generation
with Pretrained Language Models

Jiannan Xiang1, Zhengzhong Liu1,3, Yucheng Zhou2, Eric P. Xing1,3,4, Zhiting Hu2

1Carnegie Mellon University, 2UC San Diego,
3Petuum Inc., 4Mohamed Bin Zayed University of Artificial Intelligence

{jiannanx,liu,epxing}@andrew.cmu.edu, {yuz172,zhh019}@ucsd.edu

Abstract

Data-to-text generation is challenging due to
the great variety of the input data in terms of do-
mains (e.g., finance vs sports) or schemata (e.g.,
diverse predicates). Recent end-to-end neural
methods thus require substantial training ex-
amples to learn to disambiguate and describe
the data. Yet, real-world data-to-text problems
often suffer from various data-scarce issues:
one may have access to only a handful of or
no training examples, and/or have to rely on
examples in a different domain or schema. To
fill this gap, we propose Any-Shot Data-to-Text
(ASDOT), a new approach flexibly applicable
to diverse settings by making efficient use of
any given (or no) examples. ASDOT consists
of two steps, data disambiguation and sentence
fusion, both of which are amenable to be solved
with off-the-shelf pretrained language models
(LMs) with optional finetuning. In the data dis-
ambiguation stage, we employ the prompted
GPT-3 model to understand possibly ambigu-
ous triples from the input data and convert each
into a short sentence with reduced ambiguity.
The sentence fusion stage then uses an LM like
T5 to fuse all the resulting sentences into a co-
herent paragraph as the final description. We
evaluate extensively on various datasets in dif-
ferent scenarios, including the zero-/few-/full-
shot settings, and generalization to unseen pred-
icates and out-of-domain data. Experimental
results show that ASDOT consistently achieves
significant improvement over baselines, e.g., a
30.81 BLEU gain on the DART dataset under
the zero-shot setting.1

1 Introduction

Data-to-text generation (Kukich, 1983a; Reiter and
Dale, 1997) aims at generating natural language
text conditioned on structured data content such as
tables and graphs. The task has a broad range of ap-
plications such as task-oriented dialog (Wen et al.,

1Code available at https://github.com/szxiangjn/
any-shot-data2text

2015), weather forecasting (Goldberg et al., 1994;
Sripada et al., 2003), sports news reporting (Wise-
man et al., 2017), and biography generation (Lebret
et al., 2016a; Wang et al., 2018).

The problem is challenging in practice due to
the vast diversity of the input data in terms of the
domains (e.g., finance vs sports), schemata (e.g.,
the set of predicates, table structures), etc. The
inherent ambiguity makes it particularly difficult
to learn to understand and describe the data. For
instance, in the tuple <Fearless, time, 2008>
from a music domain, the predicate word time
means the release time of an album, while in <100
metres, time, 9.58> from sports it expresses
the world record time. Recent approaches based on
end-to-end neural models, e.g., by finetuning pre-
trained language models (LMs) (Puduppully et al.,
2019a; Koncel-Kedziorski et al., 2019; Zhao et al.,
2020), typically require massive training instances
to resolve the ambiguity and are not applicable to
many data-scarce scenarios.

In practice, a data-to-text problem of interest
may have a varying number of training examples,
ranging from a (small) set to only a few shots,
or even no examples at all, and sometimes may
rely on available examples out of the current do-
main to facilitate the generation. We refer to the
diverse practical scenarios as the any-shot data-to-
text problems. Recent work has studied data-to-text
solutions when limited examples are available, but
is often restricted to single specific settings. For
instance, Chen et al. (2020b) and Su et al. (2021) fo-
cused on few-shot problems but fail to apply when
no examples are accessible, while the zero-shot
neural pipeline by Kasner and Dusek (2022) re-
lies on human-crafted templates and thus could not
handle out-of-domain data.

In this paper, we develop Any-Shot Data-to-
Text (ASDOT), a new flexible approach that makes
efficient use of any given (or no) examples and
achieves stronger generation quality compared to

1886

https://github.com/szxiangjn/any-shot-data2text
https://github.com/szxiangjn/any-shot-data2text

the prior specific methods. ASDOT draws inspira-
tion from how humans describe data, namely by
first disambiguating and understanding the data
content, and then fusing and organizing the infor-
mation together into text paragraphs. As a result,
given input data (e.g., a table or graph), ASDOT

consists of two intuitive steps, i.e., data disam-
biguation and sentence fusion. Importantly, each
of the two steps is amenable to be solved with the
appropriate off-the-shelf pretrained LMs with op-
tional finetuning, enabling the unique flexibility
of ASDOT in the presence of any-shot training ex-
amples. More specifically, in data disambiguation
aiming to understand each data entry (e.g., triple
<Fearless, time, 2008>), we use the prompted
GPT-3 model (Radford et al., 2019), which has en-
coded rich commonsense and world knowledge, to
convert the triple into a short sentence (Fearless
was released in 2008) with greatly reduced
ambiguity. The subsequent sentence fusion stage
then uses another LM, such as T5 (Raffel et al.,
2020), to combine all the resulting sentences into
a coherent paragraph as the final description. The
sentence fusion as a sub-task allows us to incor-
porate any available in-/out-of-domain training ex-
amples as well as existing large weakly supervised
corpus (Kasner and Dusek, 2022) to finetune the
LM and boost the performance.

We evaluate the proposed approach in a wide
range of practical any-shot scenarios, including
(1) the zero-/few-/full-shot setting where we have
access to a varying number of training examples,
(2) the unseen-predicates setting where we describe
the data of new predicates that are never seen in
the training examples, and (3) the out-of-domain
setting where we are presented only with examples
from other domains. Extensive experiments show
that our approach consistently achieves significant
gains over the diverse previous methods specifically
designed for each of the different scenarios.

2 Related Work

Data-to-text (D2T) generation is a long-standing
problem in natural language processing with broad
applications in practice. Early research on this task
focused on rule-based and pipeline approaches (Ku-
kich, 1983b; Reiter and Dale, 1997), decomposing
the task into text planning, sentence planning, and
linguistic realisation. Recent work has developed
various neural approaches. Lebret et al. (2016b)

used a neural encoder-decoder for the task, fol-
lowed by attention (Bahdanau et al., 2015), content
selection (Puduppully et al., 2019a), entity mod-
eling (Puduppully et al., 2019b), and style imita-
tion (Lin et al., 2020) for further improved per-
formance. Recent studies have also incorporated
pretrained LMs (Kale and Rastogi, 2020b; Ribeiro
et al., 2021; Clive et al., 2021). Although previous
fully-supervised methods have achieved remark-
able performances, most of them require a large
amount of in-domain training examples, leading
to limited applicability to the common low-data
scenarios in practice.

Recent interests are aroused in zero-/few-shot
data-to-text generation problems. Chen et al.
(2020b) first formulated the few-shot setting and
incorporated a pretrained model with a pointer gen-
erator as a solution. Chen et al. (2020a) developed a
knowledge-grounded pretrained LM for both zero-
and few-shot data-to-text generation. Gong et al.
(2020) and Chen et al. (2020b) proposed to solve
the few-shot task with content matching and pro-
totype memory, respectively. There are also stud-
ies on combining templates and pretrained LM for
zero-/few-shot generation. For example, Kale and
Rastogi (2020a) trained a neural model to rewrite
templates for few-shot task-oriented dialogue. Hei-
dari et al. (2021) applied the idea of template rewrit-
ing to build a practical few-shot data-to-text system.
Most of the previous methods have each focused on
a specific setting (e.g., either zero- or few-shot). In
comparison, our work studies a wide spectrum of
any-shot scenarios with a varying number of train-
ing examples from current or different domains. Of
particular relevance to our work is the approach by
Kasner and Dusek (2022), which performs zero-
shot data-to-text generation by rephrasing given
templates. However, the approach relies on human-
written templates for data disambiguation and thus
has limited applicability to wide domains. Besides,
the approach involves several components (order-
ing, aggregation, compression) to fuse sentences,
which restricts the use of any-shot examples for
improvement. The approach thus studies only in
zero-shot settings, while our work makes a compre-
hensive study on the diverse any-shot problems.

3 Any-Shot Data-to-Text Generation

We propose ASDOT for any-shot data-to-text gen-
eration. §3.1 describes the any-shot problems. We
then provide an overview of our method (§3.2) and

1887

Prompt 2
Table: Michael | birth Place | USA

Text: Michael was born in the USA.
……

Table: Buzz Aldrin | birthPlace | Glen Ridge

New Jersey

Text:

Prompt 1
Table: Michael | birth Place | USA

Text: Michael was born in the USA.
……

Table: Apollo 11 | operator | NASA

Text:

birth
Plac

e
SelectedByNASA

Buzz Aldrin

Glen Ridge
New Jersey

Essex County
New Jersey

isPartO
f

crew
M

em
ber

operator

Apollo 11

backupPilot

William
Anders 1963

NASA

<Apollo 11, operator, NASA>

<Buzz Aldrin, birthPlace, Glen Ridge
New Jersey>

……

Data triples

Input Data

Apollo is
operated by
NASA.

Buzz Aldrin was
born in Glen
Ridge, New
Jersey.

……
……

GPT-3

Data Disambiguation Sentence Fusion

Final output
Buzz Aldrin was
born in Glen Ridge,
Essex County, New
Jersey. He went on
to become a crew
member on Apollo
11 which was
operated by NASA
in 1963. William
Anders was the
backup pilot for
Apollo 11.…

Short sentences

PLM
(e.g. T5)

Weakly-
supervised
finetuning

Any-shot
finetuning

Figure 1: An overview of our method. Our approach consists of two core steps, i.e., data disambiguation (§3.3) and
sentence fusion (§3.4). The approach first leverages a prompted GPT-3 to convert each data triple into short sentences
with reduced ambiguity. The resulting sentences are then fused by a pretrained LM with optional finetuning using
public weakly-supervised corpus or available training examples.

give details of each of the components (§3.3, 3.4).
Figure 1 illustrates our method.

3.1 The Any-Shot Data-to-Text Problems

In the data-to-text generation task, we are given
structured data (e.g., a table or graph) as in-
put, which can be represented as a set of triples
{x1,x2, ...,xn}. Each triple xi = ⟨si, pi, oi⟩,
such as <Apollo 11, operator, NASA> as in Fig-
ure 1, consists of a subject si, a predicate pi, and
an object oi, which expresses a relation between
the subject and the object. The goal of the task is
to generate a paragraph consisting of a sequence of
words y = {y1, y2, ..., ym} that can describe the
input data faithfully and fluently.

Due to the vast diversity of the content domains,
data structures, and predicate sets, etc., building
a data-to-text solution often suffers from insuf-
ficient training examples for learning to under-
stand/describe the target data. In practice, most
often we are presented with a varying number of la-
beled examples, directly or remotely related to the
target data. For instance, we may need to describe
a table from a financial report on a new website,
where we have no access to any labeled examples
(i.e., zero-shot) or have access to only a few de-
scription examples (i.e., few-shot). Besides, the
available examples may not even be in the finan-
cial domain (out of domain), or uses different table
structures (different schemata) and different table
headers (different predicates). We refer to the data-
to-text training in the various practical scenarios as
the any-shot problem. It is highly desirable to de-
velop a general approach that is widely applicable
to the different settings.

3.2 Method Overview

Intuitively, a data-to-text generation process con-
sists of two core steps, namely, (1) disambiguating
and understanding the data triples, and (2) produc-
ing the text description. Previous neural approaches
typically model the task in an end-to-end manner
and require a large number of training examples to
learn the data-to-text mapping. In contrast, we take
advantage of the task structure by formulating the
two stages and solving each with appropriate re-
sources (e.g., pretrained LMs) that are readily avail-
able. Figure 1 offers an overview of the approach.
Specifically, since each data triple is inherently am-
biguous given the compact predicate words, rich
commonsense and world knowledge is required to
correctly understand the content. For instance, in
<Apollo 11, operator, NASA>, a model would
need knowledge to determine that NASA operates
Apollo 11 rather than the other way around. There-
fore, in the data disambiguation stage, we leverage
a powerful LM—GPT-3 in our case—that contains
massive implicit knowledge in the parameters, to
convert each triple into short sentences with re-
duced ambiguity (e.g., Apollo is operated by
NASA). Once we collect a set of short sentences,
in the sentence fusion stage, we use another pre-
trained LM with optional finetuning to compose the
sentences into a well-formed paragraph. The stage
offers the flexibility to make use of any available
training example to boost performance.

3.3 Data Disambiguation

In this stage, the goal is to generate a short sentence
to describe each data triple precisely. As above, a
triple can be highly abstract and ambiguous as it

1888

compresses complex relational information into the
compact format x = ⟨s, p, o⟩, where the predicate
p is often a concise word or phrase (e.g., the pred-
icate time in triple <Fearless, time, 2008>).
To reduce the ambiguity, we want to “recover” the
missing information in the triple by augmenting
it into a complete sentence (e.g., Fearless was
released in 2008). Another advantage of con-
verting the structured triples into the free-form text
is that a text sequence is more amenable to the LMs
used in the subsequent sentence fusion stage (§3.4)
as described shortly.

As the above examples show, augmenting a triple
into a sentence naturally requires relevant external
knowledge (e.g., Fearless is an album). Training
a model specifically for the task could be expen-
sive and could easily overfit to the training domain.
Instead, we resort to the general GPT-3 model.
Specifically, as shown in Figure 1 (middle panel),
we provide GPT-3 with a few demonstrations of
converting triples into short sentences, and then
feed the target triple to elicit the desired sentence.
Appendix A shows the complete demonstrations.
We found that the same set of four demonstrations
is sufficient to be used for target data in any domain.
We thus use the same prompt consisting of those
demonstrations throughout our experiments.

Querying the GPT-3 API can be slow and expen-
sive. Given a set of target data in a domain, we
reduce the number of queries by generating tem-
plates. More concretely, for each predicate in the
set, we sample one triple containing the predicate,
and generate a sentence for the triple with GPT-3.
Then we replace the subject and object in the sen-
tence with placeholders <subject> and <object>
to get a template. For instance, the template for the
predicate birthPlace in Figure 1 is "<subject>
was born in <object>". We then use the tem-
plate to generate the sentences for all triples with
the same predicate.

It is worth noting that many existing data-to-text
approaches, ranging from the classical pipeline
solutions (Reiter and Dale, 1997) to the recent
neural methods (Kale and Rastogi, 2020a; Kas-
ner and Dusek, 2022), have also included similar
template components, while their templates are typ-
ically crafted by human annotators, making the ap-
proaches hard to apply to the diverse new domains.
In contrast, our ASDOT is fully automated with the
pretrained LMs, without the need of human efforts
nor training examples.

3.4 Sentence Fusion
In the second stage, we aim to fuse the sentences
from the last step and produce a final coherent
and fluent paragraph as the output data descrip-
tion. We naturally formulate the sentence fusion as
a sequence-to-sequence problem, and use the pre-
trained LMs, particularly T5 (Raffel et al., 2020), as
the backbone for solution. Specifically, we simply
concatenate the short sentences, prepended with
a prefix word "summarize:", and feed them into
the T5 model to obtain the output text. We pick
"summarize:" as the prefix for T5 to mimic its pre-
training configuration, since the sentence fusion
task is similar to the summarization task on which
T5 was pretrained.

A key advantage of the sentence fusion stage
is that the component permits easy finetuning
with diverse available resources. On one hand,
there are automatically constructed weak supervi-
sion datasets publicly available, such as WikiSplit
(Botha et al., 2018) mined from Wikipedia’s edit
history and DiscoFuse (Geva et al., 2019) con-
structed by rules. In our zero-/few-shot experi-
ments (§4), we finetune the sentence fusion model
with the public WikiFluent dataset (Kasner and
Dusek, 2022) which was constructed by applying
a sentence splitting model on the Wikipedia sen-
tences. On the other hand, one can also use any
labeled data-to-text examples (by first converting
with the data disambiguation stage), even if the ex-
amples are from different domains. This is because
the general sentence fusion task tends to be domain-
agnostic, since the operations to fuse sentences are
usually similar across domains, e.g., by inserting
connective words or subsuming one sentence as
the clause of another. We evaluate in our experi-
ments the out-of-domain generalization ability of
our approach.

4 Experiments

4.1 Datasets
We experiment on three widely-used data-to-text
benchmarks based on which we study various any-
shot settings.

WebNLG (Gardent et al., 2017) consists of
data-text pairs where each data is a set of triples
extracted from DBpedia and the text is written
by human to describe the data. The dataset is
split into training, validation, and test set, with
18,102/872/1,862 examples, respectively. The test
set is further split into the test-seen and test-unseen

1889

0 20 40 60 80 100
#Instances

0

10

20

30

40

50

BL
EU

FS-KG
KGPT
T5-large
Neural Pipeline
ASDOT (Ours)

(a) WebNLG

0 20 40 60 80 100
#Instances

0

10

20

30

40

BL
EU

FS-KG
KGPT
T5-large
ASDOT (Ours)

(b) DART
Figure 2: Results of zero-/few-shot learning on WebNLG (left) and DART (right), respectively. The x-axis is the
number of training examples, and the y-axis is the BLEU score. We report results of other metrics in Appendix C.
Neural Pipeline (Kasner and Dusek, 2022) is applicable only to the zero-shot setting and the specific WebNLG data
due to the need of human-written templates on the dataset. Our method show superior performances under any-shot
settings. Our approach shows consistent improvement over the baselines, especially when the training size is small.
We use paired bootstrap resampling (Koehn, 2004) which confirms that our method is superior to all the baselines at
95% statistical significance.

subsets. The instances in the test-unseen set are
from Wikipedia categories not seen in the training
set, which is used in our "unseen predicates" ex-
periments (§4.4). WebNLG contains 354 types of
predicates in total.

E2E (Novikova et al., 2017) is a data-to-text
corpus in the restaurant domain annotated by hu-
man. The dataset has 42,061/547/629 examples in
the training/validation/test sets, respectively. The
dataset is relatively easy since it only contains 7
types of predicates and has limited patterns.

DART (Novikova et al., 2017) is a large
open-domain data-to-text corpus, constructed
from WikiSQL (Zhong et al., 2017), WikiTable-
Questions (Pasupat and Liang, 2015), as well
as the WebNLG and E2E datasets. It con-
tains 62,659/2,768/5,097 examples in the train-
ing/validation/test sets, respectively, and has 4,299
different predicates in total. Note that the predi-
cates in DART include those in WebNLG and E2E.
To evaluate model generalization to unseen pred-
icates, we extract a subset of 2,71 test examples
whose predicates are completely unseen in the train-
ing/validation sets, leading to a more difficult test-
unseen set compared to that of WebNLG.

4.2 Experimental Setup

For ASDOT, the data disambiguation stage (§3.3)
uses the GPT-3 Davinci API provided by OpenAI,
with greedy decoding, maximum generation length
256 and the stop token "\n". Please refer to Ap-
pendix A for the full prompt we use. As discussed
in Section 3.3, we require only a small number of

GPT-3 queries by generating one template for each
predicate. Therefore, we query GPT-3 for 4299
times in total, generating for all the predicates in
WebNLG, E2E and DART, which costs only $23
with the GPT-3 pricing as of 10/21/2022. For the
sentence fusion stage (§3.4), we use T5 models of
varying sizes as the sentence fusion LM. In the zero-
/few-shot settings (§4.3), we finetune the T5 with
the large weakly-supervised data WikiFluent (Kas-
ner and Dusek, 2022) as mentioned in §3.4. We use
the Adam optimizer (Kingma and Ba, 2015) with
an initial learning rate of 3× 10−5, and use a batch
size of 64, for 1 epoch. When any shot of labeled
data-to-text examples are available, we further fine-
tune the sentence fusion T5 with those examples.
For the generation, we use beam search decoding
with a beam width of 5. We provide more details
of the experimental setup in the Appendix A.

Evaluation Metrics Following previous stud-
ies, we report the performance in terms of BLEU
(Papineni et al., 2002) and METEOR (Banerjee
and Lavie, 2005), as well as the recent PARENT-
F1 metric (Dhingra et al., 2019) which measures
the alignment between generated text with both
the references and input data. We also report
two embedding-based metrics BERTScore (Zhang
et al., 2019) and BLEURT (Sellam et al., 2020)
in the Appendix C. Besides, we perform human
evaluation in the few-shot setting as detailed later.

4.3 Zero-, Few-, to Full-Shot Learning
We evaluate ASDOT in the presence of a varying
number of training examples, ranging from 0, 10,

1890

Model BLEU METEOR P-F1
BestPlan 47.24 39.00 -
Pipeline-Trans 51.68 32.00 -
PlanEnc 52.78 41.00 -
DataTuner_FC 52.40 42.40 -

T5-small 56.90 43.05 65.20
58.64 43.47 66.63ASDOT-small (+1.74) (+0.42) (+1.33)

T5-base 58.53 43.89 66.82
60.34 44.37 68.17ASDOT-base (+1.81) (+0.48) (+1.35)

T5-large 60.38 44.49 68.49
61.32 44.79 69.69ASDOT-large (+0.94) (+0.30) (+1.20)

Prefix-Tuning 61.03 44.37 69.17
61.38 44.52 69.39ASDOT-Prefix (+0.35) (+0.15) (+0.22)

Model BLEU METEOR P-F1

LSTM w attention 29.66 27.00 35.00
E2E Transformer 27.24 25.00 28.00
BART-base 47.11 38.00 55.00
BART-large 48.56 39.00 57.00

T5-small 47.53 39.00 59.33
49.32 39.57 60.95ASDOT-small (+1.79) (+0.57) (+1.62)

T5-base 49.62 39.69 61.11
49.85 39.91 61.64ASDOT-base (+0.23) (+0.22) (+0.53)

T5-large 50.17 40.00 61.72
50.79 40.36 62.52ASDOT-large (+0.62) (+0.36) (+0.80)

Prefix-tuning 50.39 40.13 61.60
50.56 40.22 62.27ASDOT-Prefix (+0.17) (+0.09) (+0.67)

Table 1: Full-shot learning results on WebNLG (Left) and DART (Right). ASDOT-X denotes our approach with
T5-X as the sentence fusion model. The best scores are in bold. We also show the performance gains against
respective baseline models in blue.

20, 50, 100 to the size of the full training set. We
experiment on the WebNLG and DART datasets,
respectively. In the zero-/few-shot settings, we use
the T5-large model for our sentence fusion LM. In
the full-shot setting, we test three T5 models of dif-
ferent sizes (small - 60M parameters, base - 220M,
and large - 770M) for sentence fusion. Besides, the
recent Prefix-Tuning method (Li and Liang, 2021)
shows competitive performances on the data-to-text
generation task. We thus also incorporate it with
the T5-large architecture and report the results.

Baselines In the zero-/few-shot settings, we com-
pare with KGPT (Chen et al., 2020a), a knowledge-
grounded LM pretrained on large-scale automati-
cally constructed data-to-text corpus, as it is one
of the few methods applicable to both zero-/few-
shot data-to-text generation. Besides, we compare
with FS-KG (Li et al., 2021), a recent few-shot
data-to-text approach enhanced with representation
alignment between knowledge graphs and PLMs.
We also compare with the end-to-end model based
on T5-large, which has shown remarkable perfor-
mance on data-to-text tasks with sufficient training
examples (Ribeiro et al., 2020). Following Ribeiro
et al. (2021), for the T5 baseline, we prepend <H>,
<R> and <T> before the subjects, predicates, and
objects, respectively, and add a prefix "translate
Graph to English:" to the input. We finetune the
T5 model with available shots of training examples.
On the WebNLG dataset, we report another base-
line Neural Pipeline (Kasner and Dusek, 2022),

which is a template-based pipeline method also
trained on the WikiFluent dataset and is applica-
ble only to the zero-shot setting. However, the
method cannot be used on the DART dataset since
its templates are specifically written for WebNLG
by human.

In the full-shot setting, we further compare
with a wide range of previous full-shot state-
of-the-art data-to-text systems, including Best-
Plan (Moryossef et al., 2019), Pipeline-Trans (Cas-
tro Ferreira et al., 2019), PlanEnc (Zhao et al.,
2020), DataTuner_FC (Harkous et al., 2020) on
WebNLG, and LSTM-with-attention, End-to-End
Transformers, and BART-base/large (Nan et al.,
2020) on DART.

Automatic Evaluation The zero-/few-shot re-
sults are shown in Figure 2. Our method con-
sistently outperforms baseline models on both
datasets, demonstrating its strong zero-/few-shot
learning ability. In particular, with fewer training
examples, our ASDOT tends to outperform other
methods by a larger margin. For instance, we
achieve 16.06 higher BLEU than T5-large on 10-
shot WebNLG, and 10.53 higher on 10-shot DART.
This is because the two-stage ASDOT is designed
to excel in the low-data contexts by augmenting the
generation process with rich external knowledge
in pretrained LMs. Neural Pipeline is competi-
tive with ours, but is restricted only to the zero-
shot setting on WebNLG. DART contains more
diverse types of predicates and thus is arguably

1891

Model Faithfulness ↑ Contradict ↓ Fluency ↑
KGPT 0.64 2.34 1.00
T5-large 2.22 0.72 1.58

ASDOT 2.37 0.67 1.82

Table 2: Human evaluation results. ↑ means the higher
the better and ↓ means the lower the better. ASDOT
outperforms the baselines with p < 0.05 in Tukey’s
HSD test for all the measures.

more challenging than WebNLG. Our approach
tends to achieve stronger performance gains on the
difficult dataset.

We report the results of the full-shot setting in
Table 1. The performance gain tends to be less
significant compared to the zero-/few-shot settings
as all methods are presented with a large number
of training examples. However, our method still
achieves consistently stronger performance over
the large diversity of baselines, thanks to ASDOT’s
proper modeling of the generation process and the
incorporation of rich external implicit knowledge.

Human Evaluation We conduct a human eval-
uation to further assess our ASDOT against other
baselines under the 50-shot setting on WebNLG.
After training, we sample 50 test instances and ask
three proficient English speakers in the university
to score the model outputs. Following Chen et al.
(2020b), each generated result is evaluated on three
aspects: the number of the facts that are consistent
with the input table (Faithfulness) and contradicted
to the table (Contradict), and the language fluency,
on a 3-Likert scale (0,1,2). The results are shown
in Table 2. The Krippendorff alphas (Krippendorff,
2011) for Faithfulness, Contradict, and language
fluency are 0.49, 0.42 and 0.36, respectively, indi-
cating a fair inner-annotator agreement. Consistent
with the automatic evaluation results, we observe
that ASDOT is substantially better than the base-
lines on all the three aspects, suggesting that our
approach generates more faithful and fluent descrip-
tions.

Ablation Studies We conduct ablation studies
to investigate the effects of both the data disam-
biguation and sentence fusion stages. Table 3
shows the results. Specifically, for the sentence
fusion stage, we study the effect of the weakly-
supervised finetuning on the WikiFluent corpus
(§3.4). From the table, we can see that the perfor-
mance drops sharply without weakly-supervised
finetuning, i.e., by 8.86 BLEU points for the zero-

Model 0 10 20 50 100

KGPT 14.19 17.50 18.40 21.68 24.72
T5-large 10.46 29.10 41.38 46.24 48.68

ASDOT 43.33 45.16 47.46 49.36 49.39
- w/o weak-sup 34.47 39.38 43.67 47.56 48.16
- w/ manual templ. 42.02 43.37 46.12 48.28 48.32

Table 3: Ablation results (BLEU) for zero-/few-shot
learning on WebNLG. The w/o weak-sup row shows the
results of ASDOT without weakly supervised finetuning,
and w/ manual templ. shows the results of using hand-
crafted templates in the data disambiguation stage.

Model BLEU METEOR P-F1

BestPlan 34.41 37.00 -
Pipeline-Trans 38.92 21.00 -
PlanEnc 38.23 37.00 -

T5-small 47.34 39.95 57.99
50.75 40.63 61.20ASDOT-small (+3.41) (+0.68) (+3.21)

T5-base 51.11 41.42 60.94
54.51 42.30 64.36ASDOT-base (+3.40) (+0.88) (+3.42)

T5-large 53.97 42.37 63.81
55.74 42.94 65.90ASDOT-large (+1.77) (+0.57) (+2.09)

Prefix-Tuning 55.26 42.42 65.24
55.86 42.73 65.68ASDOT-Prefix (+0.60) (+0.31) (+0.44)

Table 4: Results on WebNLG test-unseen set.

shot setting. However, ASDOT without weak super-
vision still outperforms the baselines in most cases,
validating the strong advantage of our approach un-
der low-data settings. For the data disambiguation
stage, we investigate the impact of the automatic
templates produced by GPT-3. More concretely,
we replace the GPT-3 templates with the human-
written templates from Kasner and Dusek (2022).
The performance is similar or decreases slightly,
demonstrating that the short sentences or templates
automatically generated in the data disambiguation
stage are of competitive or slightly higher quality
than the manually created ones (perhaps due to
human errors when writing the hundreds of tem-
plates).

4.4 Generating for Unseen Predicates

We now assess the model’s capability of describing
new predicates that are never seen during training.
As mentioned in §4.1, WebNLG provides such an
official test-unseen set for the evaluation and we
construct a similar (but more difficult) test set on
DART where all the test predicates are not included
in training. We train the models on WebNLG

1892

Model BLEU METEOR P-F1

T5-small 37.65 33.27 43.79
46.60 36.91 52.17ASDOT-small (+8.95) (+3.64) (+8.38)

T5-base 46.13 36.97 49.79
50.90 37.72 54.98ASDOT-base (+4.77) (+0.75) (+5.19)

T5-large 46.37 36.49 50.32
50.70 37.25 55.49ASDOT-large (+4.33) (+0.76) (+5.17)

Prefix-tuning 47.07 36.69 49.67
51.99 38.11 57.26ASDOT-Prefix (+4.92) (+1.42) (+7.59)

Table 5: Results on DART test-unseen set.

Test set Model B M P

E2E
T5-large 33.23 35.40 60.18

35.51 35.98 60.06ASDOT (+2.28) (+0.58) (–0.12)

DART
T5-large 25.94 33.64 33.50

30.42 35.30 36.60ASDOT (+4.48) (+1.66) (+3.10)

Table 6: Out-of-Domain results. B, M and P represent
BLEU, METEOR and PARENT-F1, respectively.

and DART, and evaluate on the corresponding test-
unseen sets, respectively. As in §4.3, we compare
ASDOT with the respective end-to-end T5 mod-
els (small, base, large, prefix-tuning). We also
include the previously reported baseline results
on the WebNLG test-unseen set, including Best-
Plan (Moryossef et al., 2019), Pipeline-Trans (Cas-
tro Ferreira et al., 2019) and PlanEnc (Zhao et al.,
2020). The experimental results are shown in Ta-
ble 4 and Table 5, respectively. As can be seen,
our method achieves consistent improvements over
all the baseline methods, showing the robustness
of our method to unseen predicates given the rich
commonsense and world knowledge introduced
through the pretrained LMs in both stages. The
superior performance of ASDOT over the corre-
sponding end-to-end T5 again demonstrates the
advantage of our modularization that applies to and
improves various pretrained LMs. Similar as in
the zero-/few-shot experiments, here we observe
that on the more difficult DART test-unseen set
with more unseen predicates, our method achieves
more significant gains than on WebNLG, which
further shows the advantage of our method when
generalizing to unseen predicates.

4.5 Learning with Out-of-Domain Examples

At last, we quantitatively measure the generaliza-
tion ability of our approach across domains. To

Source <Zolder, fastest Lap, Liverpool F.C.> ; <Zolder,
Date, October 5>

Disambig Liverpool F.C. set the fastest lap in the Zolder.
Zolder was on October 5.

Fusion Liverpool F.C. set the fastest lap in the Zolder on
October 5.

Baseline Zolder’s fastest lap is Liverpool F.C. and the date
is October 5.

Human On October 5, 2008, Liverpool F.C. got the fastest
lap at a Zolder race.

Source <Aleksandra Kovac, associated Band/associated
Musical Artist, Bebi Dol> ; <Aleksandra Kovac,
associated Band/associated Musical, ArtistK2 Kovac
sisters duo>

Disambig Aleksandra Kovac is associated with Bebi Dol.
Aleksandra Kovac is associated with K2 Kovac sisters
duo.

Fusion Aleksandra Kovac is associated with Bebi Dol and the
K2 Kovac sisters duo.

Baseline Aleksandra Kovac is an associated band/associated
musical artist with Bebi Dol and the K2 Kovac sisters
duo.

Human Aleksandra Kovac is associated with the musical
artist Bebi Dol and is part of the band K2 Kovac
sisters duo.

Table 7: Qualitative examples in the out-of-domain (top)
and unseen-predicates (bottom) settings.

simulate the out-of-domain setting, we train our
model on the WebNLG dataset and evaluate it
on the test sets of DART and E2E, respectively.
The DART test set includes the instances from the
WebNLG and E2E test sets. We remove those in-
stances to avoid any in-domain test examples (w.r.t
the WebNLG training examples) and any overlap
with E2E evaluation. We compare our method with
the end-to-end finetuned T5-large model. The ex-
perimental results in Table 6 show that our method
outperforms the baseline models on both out-of-
domain test sets, echoing the conclusions in pre-
vious experiments that our approach with the two-
stage design and integration of pretrained LMs has
a superior generalization ability to handle data-to-
text generation in any-shot scenarios.

4.6 Case Study

Table 7 shows the outputs of our ASDOT (based on
T5-large) after the data disambiguation stage and
the sentence fusion stage, on two data in the out-
of-domain and unseen-predicates settings, respec-
tively. The generated words corresponding to dif-
ferent data triples are highlighted in different colors
(as in Figure 1). We also provide the results of the
T5-large baseline and the human-written references.
As can be seen, ASDOT develops a strong gener-
alization ability to out-of-domain data and unseen
predicates. In the first example, ASDOT success-
fully disambiguates the triple <Zolder, fastest
Lap, Liverpool F.C.> into "Liverpool F.C.
set the fastest lap in the Zolder" while
the T5 baseline fails to do so and simply generates

1893

"Zolder’s faster lap in Liverpool F.C.".
Also, in the second example, the baseline directly
copies "associated Band/associated Musical
Artist" in the output while ASDOT correctly con-
verts it into "is associated with".

5 Conclusion

We have proposed ASDOT to deal with the diverse
any-shot problems for data-to-text generation. AS-
DOT is composed of two stages, data disambigua-
tion that uses prompted GPT-3 to disambiguate
input data triples into short sentences, and sentence
fusion using state-of-the-art pretrained LMs to fuse
these sentences into the desired paragraphs. In the
process, ASDOT integrates rich external implicit
knowledge from the large LMs, which ensures
strong generalization capability and broad appli-
cability to zero-/few-/full-shot, unseen-predicates,
and out-of-domain training scenarios. Extensive ex-
periments show our approach consistently achieves
significant improvements over diverse baselines.

Limitations

One limitation of our approach is that the data dis-
ambiguation stage is done by the GPT-3 model
locally, i.e., the GPT-3 model only observes one
triple and does not utilize the full-table informa-
tion. In some difficult cases, the full-table context
may be needed for disambiguation. Besides, in this
work we directly use the output from GPT-3’s as the
final disambiguation results, which may be prob-
lematic since GPT-3 may not always provide the
correct templates, especially when working with
highly-specialized domains. In addition, our cur-
rent approach can only be applied to languages that
have access to large LMs.

Ethics Statement

We are aware of the ACL Code of Ethics and the
ACM Code of Ethics and Professional Conduct and
strictly adhere to the rules throughout the course of
this research.

Our research does not present any new datasets
but introduces a new algorithm for data-to-text gen-
eration, which generates text descriptions for a
given graph or table. The intended usage of the
work may potentially provide benefits to people
with difficulties in reading graphs or tables, such
as people with visual impairment. We do not antic-
ipate direct harm with the intended usage.

Similar to most generation systems, if harmful
input, such as unethical text or input designed for
adversarial attacks, exists, our approach is likely
to generate unintended output. Therefore, we do
not recommend usages of our approach outside
controlled research environment before these risks
are mitigated. We would also like to point out
that a naive deployment of our method may allow
malicious exploitation of the backbone Large LMs,
thus precautions such as a filtering mechanism need
to be implemented.

Our model makes use of the common sense rea-
soning ability of large LMs, which may reinforce
existing social stereotypes, hence care must be
taken when applying this approach to materials
(e.g. tables and graphs) that are sensitive to popula-
tions that already experience marginalization.

Computation-wise, our finetuning procedure
takes around 1836 GPU/Hours on NVIDIA
GeForce RTX 3090 Ti GPUs. Throughout the
study, our prompting module makes about 4600
API calls to Open-AI’s GPT-3 API.

References
Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Jan A Botha, Manaal Faruqui, John Alex, Jason
Baldridge, and Dipanjan Das. 2018. Learning to split
and rephrase from wikipedia edit history. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 732–737.

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552–562, Hong
Kong, China. Association for Computational Lin-
guistics.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang
Wang. 2020a. KGPT: Knowledge-grounded pre-

1894

https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/2020.emnlp-main.697

training for data-to-text generation. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 8635–
8648, Online. Association for Computational Lin-
guistics.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2020b. Few-shot NLG
with pre-trained language model. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 183–190, Online.
Association for Computational Linguistics.

Jordan Clive, Kris Cao, and Marek Rei. 2021. Con-
trol prefixes for text generation. arXiv preprint
arXiv:2110.08329.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884–4895, Florence, Italy. Asso-
ciation for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for NLG micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 179–188, Vancouver, Canada. Association for
Computational Linguistics.

Mor Geva, Eric Malmi, Idan Szpektor, and Jonathan
Berant. 2019. DiscoFuse: A large-scale dataset for
discourse-based sentence fusion. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3443–3455, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Eli Goldberg, Norbert Driedger, and Richard I Kittredge.
1994. Using natural-language processing to produce
weather forecasts. IEEE Expert, 9(2):45–53.

Heng Gong, Yawei Sun, Xiaocheng Feng, Bing
Qin, Wei Bi, Xiaojiang Liu, and Ting Liu. 2020.
TableGPT: Few-shot table-to-text generation with
table structure reconstruction and content matching.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 1978–1988,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural data-
to-text generation with semantic fidelity. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 2410–2424, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Peyman Heidari, Arash Einolghozati, Shashank Jain,
Soumya Batra, Lee Callender, Ankit Arun, Shawn

Mei, Sonal Gupta, Pinar Donmez, Vikas Bhardwaj,
et al. 2021. Getting to production with few-shot
natural language generation models. In Proceedings
of the 22nd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 66–76.

Mihir Kale and Abhinav Rastogi. 2020a. Template
guided text generation for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505–6520.

Mihir Kale and Abhinav Rastogi. 2020b. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102, Dublin, Ireland.
Association for Computational Linguistics.

Zdeněk Kasner and Ondrej Dusek. 2022. Neural
pipeline for zero-shot data-to-text generation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3914–3932, Dublin, Ireland. As-
sociation for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395, Barcelona,
Spain. Association for Computational Linguistics.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
generation from knowledge graphs with graph trans-
formers. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2284–2293.

Klaus Krippendorff. 2011. Computing krippendorff’s
alpha-reliability. Computing, 1:25–2011.

Karen Kukich. 1983a. Design of a knowledge-based re-
port generator. In 21st Annual Meeting of the Associ-
ation for Computational Linguistics, pages 145–150.

Karen Kukich. 1983b. Design of a knowledge-based
report generator. In 21st Annual Meeting of the As-
sociation for Computational Linguistics, pages 145–
150, Cambridge, Massachusetts, USA. Association
for Computational Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016a.
Neural text generation from structured data with ap-
plication to the biography domain. arXiv preprint
arXiv:1603.07771.

Rémi Lebret, David Grangier, and Michael Auli. 2016b.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

1895

https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.acl-main.18
https://doi.org/10.18653/v1/2020.acl-main.18
https://doi.org/10.18653/v1/P19-1483
https://doi.org/10.18653/v1/P19-1483
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/N19-1348
https://doi.org/10.18653/v1/N19-1348
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.coling-main.218
https://doi.org/10.18653/v1/2020.coling-main.218
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/2020.inlg-1.14
https://doi.org/10.18653/v1/2022.acl-long.271
https://doi.org/10.18653/v1/2022.acl-long.271
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://doi.org/10.3115/981311.981340
https://doi.org/10.3115/981311.981340
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Zhicheng Wei,
Nicholas Jing Yuan, and Ji-Rong Wen. 2021. Few-
shot knowledge graph-to-text generation with pre-
trained language models. In Findings of the Associa-
tion for Computational Linguistics: ACL-IJCNLP
2021, pages 1558–1568, Online. Association for
Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Shuai Lin, Wentao Wang, Zichao Yang, Xiaodan Liang,
Frank F. Xu, Eric Xing, and Zhiting Hu. 2020. Data-
to-text generation with style imitation. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1589–1598, Online. Association
for Computational Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2267–2277, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru
Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al.
2020. Dart: Open-domain structured data record to
text generation. arXiv preprint arXiv:2007.02871.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201–206, Saarbrücken, Germany. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on

Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019a.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 6908–6915.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019b.
Data-to-text generation with entity modeling. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2023–
2035, Florence, Italy. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

Leonardo FR Ribeiro, Martin Schmitt, Hinrich Schütze,
and Iryna Gurevych. 2020. Investigating pretrained
language models for graph-to-text generation. arXiv
preprint arXiv:2007.08426.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
Bleurt: Learning robust metrics for text generation.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7881–
7892.

Somayajulu Sripada, Ehud Reiter, and Ian Davy. 2003.
Sumtime-mousam: Configurable marine weather
forecast generator. Expert Update, 6(3):4–10.

Yixuan Su, Zaiqiao Meng, Simon Baker, and Nigel
Collier. 2021. Few-shot table-to-text generation with
prototype memory. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
910–917.

Qingyun Wang, Xiaoman Pan, Lifu Huang, Boliang
Zhang, Zhiying Jiang, Heng Ji, and Kevin Knight.
2018. Describing a knowledge base. arXiv preprint
arXiv:1809.01797.

1896

https://doi.org/10.18653/v1/2021.findings-acl.136
https://doi.org/10.18653/v1/2021.findings-acl.136
https://doi.org/10.18653/v1/2021.findings-acl.136
https://doi.org/10.18653/v1/2020.findings-emnlp.144
https://doi.org/10.18653/v1/2020.findings-emnlp.144
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/P19-1195
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. arXiv
preprint arXiv:1508.01745.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document genera-
tion. arXiv preprint arXiv:1707.08052.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi.
2020. Bridging the structural gap between encoding
and decoding for data-to-text generation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2481–2491.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

1897

A GPT-3 Prompt

The prefix in the prompt we use is:

Table: Michael | birth Place | USA

Text: Michael was born in the USA.

Table: First Clearing | location | On NYS

52 1 Mi. Youngsville

Text: First Clearing is located at On NYS 52 1 Mi.

Youngsville.

Table: Abilene Regional Airport | city Served |

Abilene Texas

Text: Abilene Regional Airport serves Abilene

Texas.

Table: Alfred Moore Scales | active Years

Start Date | 1875-03-04

Text: Alfred Moore Scales started to be active on

1875-03-04.

B Experimental Details

We use a batch size of 5 and a beam search size
of 5 for zero-shot and few-shot settings. For other
settings, we do model selection based on the per-
formance on the validation set, with a batch size
chosen from {2, 4, 8} and {1, 3, 5}, respectively.
We use sacreBLEU (Post, 2018) for model selec-
tion. The URL for the metrics and corpus we use
are shown in Table 8 and Table 9, respectively.

C Zero-/Few-shot Experimental Results

We show the BLEU/METEOR/PARENT-F1 scores
for zero-/few-shot experiments on WebNLG
and DART in Table 10 and Table 12, and
BERTScore/BLEURT in Table 11 and Table 13.

Metric URL

BLEU https://github.com/
moses-smt/mosesdecoder/
blob/master/scripts/
generic/multi-bleu.perl

METEOR https://www.cs.cmu.edu/
~alavie/METEOR/index.html

PARENT https://github.com/
KaijuML/parent

BERTScore https://github.com/
Tiiiger/bert_score

BLEURT https://github.com/
google-research/bleurt

SacreBLEU https://github.com/mjpost/
sacrebleu

Table 8: The URLs for the metrics we use in the experi-
ments.

Dataset URL

WebNLG https://gitlab.com/
shimorina/webnlg-dataset/
-/tree/master/webnlg_
challenge_2017

DART https://github.com/
Yale-LILY/dart

E2E https://github.com/
tuetschek/e2e-dataset

WikiFluent https://github.
com/kasnerz/
zeroshot-d2t-pipeline

Table 9: The URLs for the corpus we use in the experi-
ments.

1898

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://www.cs.cmu.edu/~alavie/METEOR/index.html
https://www.cs.cmu.edu/~alavie/METEOR/index.html
https://github.com/KaijuML/parent
https://github.com/KaijuML/parent
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
https://github.com/google-research/bleurt
https://github.com/google-research/bleurt
https://github.com/mjpost/sacrebleu
https://github.com/mjpost/sacrebleu
https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/webnlg_challenge_2017
https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/webnlg_challenge_2017
https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/webnlg_challenge_2017
https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/webnlg_challenge_2017
https://github.com/Yale-LILY/dart
https://github.com/Yale-LILY/dart
https://github.com/tuetschek/e2e-dataset
https://github.com/tuetschek/e2e-dataset
https://github.com/kasnerz/zeroshot-d2t-pipeline
https://github.com/kasnerz/zeroshot-d2t-pipeline
https://github.com/kasnerz/zeroshot-d2t-pipeline

#Instance 0 10 20 50 100

KGPT 14.19/20.78/20.67 17.50/23.13/ 25.77 18.40/23.44/26.49 21.68/25.30/29.22 24.72/26.71/46.50
T5-large 10.46/25.63/23.67 24.74/32.28/42.48 41.38/36.12/52.77 45.32/39.49/59.39 48.68/39.24/60.66

ASDOT 43.99/39.32/58.23 45.16/38.95/58.24 47.46/39.35/59.85 49.36/40.08/61.25 49.39/40.09/61.08
- w/o weak-sup 34.47/30.06/51.51 39.38/33.93/56.44 43.67/35.81/57.99 47.56/38.61/60.04 48.60/39.68/60.56
- w/ manual templ. 42.02/38.85/58.26 43.37/38.69/58.80 46.12/38.88/60.94 48.28/39.64/62.02 48.32/39.32/61.92

Table 10: WebNLG few-shot results. x / y / z denotes the model performance on BLEU / METEOR / PARENT-F1.

#Instance 0 10 20 50 100

KGPT 85.35/43.78 88.62/49.67 88.92/49.41 89.66/52.72 90.30/55.15
T5-large 84.17/40.19 93.00/67.49 92.87/65.93 93.06/66.48 93.24/67.05

ASDOT 92.43/71.93 94.39/72.45 94.69/73.48 95.03/74.62 94.99/74.66
- w/o weak-sup 92.01/66.43 93.05/67.84 93.10/67.32 93.54/68.10 93.93/68.05
- w/ manual templ. 92.36/71.01 94.17/72.08 94.27/72.91 94.58/74.11 94.61/74.33

Table 11: WebNLG few-shot results. x / y denotes the model performance on BERTScore / BLEURT.

#Instance 0 10 20 50 100

KGPT 11.15/19.30/18.92 14.91/19.74/23.76 16.83/21.30/26.67 20.16/23.14/31.13 20.31/23.82/31.35
T5-large 8.43/22.67/23.81 29.97/31.44/46.82 32.96/31.76/47.36 37.08/34.43/54.10 39.92/34.90/55.05

ASDOT 38.81/36.91/54.10 40.50/36.65/56.00 41.45/36.45/57.34 42.33/36.99/57.63 42.87/36.77/58.37
- w/o weak-sup 31.92/26.15/43.99 38.15/32.11/54.97 37.12/32.80/54.12 40.79/35.70/56.40 41.22/35.15/57.79

Table 12: DART few-shot results. x / y / z denotes the model performance on BLEU / METEOR / PARENT-F1.

#Instance 0 10 20 50 100

KGPT 84.32/43.21 87.13/48.94 88.54/49.22 89.43/52.13 89.96/53.99
T5-large 83.53/40.01 88.73/66.37 89.43/66.65 90.39/66.79 90.51/66.96

ASDOT 90.13/69.87 91.52/69.88 91.67/70.10 91.90/70.46 92.01/70.61
- w/o weak-sup 88.94/67.96 90.21/68.13 90.44/68.37 90.56/68.46 90.84/68.66

Table 13: DART few-shot results. x / y denotes the model performance on BERTScore / BLEURT.

1899

