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Abstract

Large NLP models have recently shown im-
pressive performance in language understand-
ing tasks, typically evaluated by their fine-
tuned performance. Alternatively, probing
has received increasing attention as being a
lightweight method for interpreting the intrin-
sic mechanisms of large NLP models. In prob-
ing, post-hoc classifiers are trained on “out-of-
domain” datasets that diagnose specific abili-
ties. While probing the language models has
led to insightful findings, they appear disjointed
from the development of models. This paper
explores the utility of probing deep NLP mod-
els to extract a proxy signal widely used in
model development – the fine-tuning perfor-
mance. We find that it is possible to use the
accuracies of only three probing tests to predict
the fine-tuning performance with errors 40% -
80% smaller than baselines. We further discuss
possible avenues where probing can empower
the development of deep NLP models.

1 Introduction

Large-scale neural models have recently demon-
strated state-of-the-art performance in a wide va-
riety of tasks, including sentiment detection, para-
phrase detection, linguistic acceptability, and en-
tailment detection (Devlin et al., 2019; Radford
et al., 2019; Peters et al., 2018). Developing sys-
tems for these tasks usually involves two stages: a
pre-training stage, where the large neural models
gain linguistic knowledge from weak supervision
signals in massive corpora, and a fine-tuning stage,
where the models acquire task-specific knowledge
from labeled data. The fine-tuning results are
widely used to benchmark the performances of
neural models and refine the models’ development
procedures.

However, these fine-tuning results are summary
statistics and do not paint the full picture of deep
neural models (Ethayarajh and Jurafsky, 2020; Ben-
der and Koller, 2020). As researchers are increas-

ingly concerned about interpreting the intrinsic
mechanisms of deep neural models, many data-
driven assessment methods have been developed.
These assessments usually follow the route of com-
piling a targeted dataset and running post-hoc anal-
yses. Until now, one of the most popular inter-
pretation methods is referred to as probing. To
probe a neural model, one uses a predictor to obtain
the labels from the representations that are embed-
ded using the neural model. Probing analyses on
deep neural models revealed some low-dimensional
syntactic structures (Hewitt and Manning, 2019),
common-sense knowledge (Petroni et al., 2019)
and (to some extent) human-like abilities, including
being surprised upon witnessing linguistic irregu-
larity (Li et al., 2021) and reasoning about space
and time (Aroca-Ouellette et al., 2021).

From the viewpoint of data-driven assessments,
both fine-tuning and probing can reveal the abilities
of deep neural networks, but they appear to steer
towards different directions:

In-domain vs. out-of-domain. Fine-tuning uses
in-domain data – we evaluate the models on the
same distributions as those in deployment. Probing,
however, uses out-domain data: instead of simu-
lating the deployment environment, the targeted
datasets focus on diagnosing specific abilities.

Inclusive vs. specific. In fine-tuning, edge cases
should be included, so the unexpected behavior af-
ter deployment can be minimized (Ribeiro et al.,
2020) and the fine-tuning results can be stable
(Zhang et al., 2021). On the contrary, the probing
datasets are more specialized, so smaller datasets
suffice.1

High performances vs. faithful interpretations.
While fine-tuning methods are mainly studied from
an algorithmic perspective to enhance the perfor-

1Another viewpoint for the dataset requirement can be
derived from learning theory. Loosely speaking, optimizing
more parameters requires more data to reach stable results.
Fine-tuning involves more parameters than probing. Zhu et al.
(2022) provides a more quantitative discussion.
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mance of language models, probing methods aim
at assessing the faithfulness of language models.
To fulfill the former objective, fine-tuning is accom-
panied by efforts in pre-training, collecting more
data, building better representations, and explor-
ing novel model architectures (He et al., 2021; Sun
et al., 2021; Wang et al., 2021b; Jiang et al., 2020).
Conversely, the latter goal is pursued by borrowing
inspirations from a variety of other sources, includ-
ing psycholinguistic assessment protocols (Futrell
et al., 2019; Li et al., 2022a), information theory
(Voita and Titov, 2020; Pimentel and Cotterell,
2021; Zhu and Rudzicz, 2020), and causal anal-
ysis (Slobodkin et al., 2021; Elazar et al., 2021).

In short, probing assessments are more special-
ized (therefore more flexible) and less computation-
ally expensive. In contrast, the performance scores
of fine-tuning assessments are more relevant to the
design and training of deep neural models. Can
probing be used in the development of deep neu-
ral models? This question involves two aspects:

• Feasibility: Are probing results relevant in the
model development?

• Operation: How to set up probing analyses to
get these useful results?

This paper attempts to answer both. For feasi-
bility, we show that a crucial feedback signal in
model development, the fine-tuning performance,
can be predicted via probing results, indicating a
positive answer to the feasibility question.

For operation, we run extensive ablation studies
to simplify the probing configurations, leading to
some heuristics to set up probing analyses. We start
with a battery of probing tasks and evaluate the util-
ities both task-wise and layer-wise (§5.2 - §5.3).
We then reduce the number of probing configura-
tions, showing that as few as 3 configurations can
predict fine-tuning results with RMSEs between
40% and 80% smaller than the control baseline
(§5.5). To further answer the operation question,
we run ablation studies on different probing config-
urations, including probing methods (§5.6) and the
number of data samples (§5.7). We also analyze
the uncertainty of the results (§5.8). Our analysis
shows the possibility of using probing in develop-
ing high-performance deep neural models.

All codes are open-sourced at
https://github.com/SPOClab-ca/
performance_prediction.

2 Related Work

Performance prediction Xia et al. (2020) pro-
posed a framework that predicts task performance
using a collection of features, including the hy-
perparameters of the model and the percentage of
text overlap between the source and target datasets.
Srinivasan et al. (2021) extended this framework
into a multilingual setting. Ye et al. (2021) consid-
ered the reliability of performance – an idea similar
to that of Dodge et al. (2019). This paper differs
from the performance prediction literature in the set
of features – we use the probing results as features
– and more importantly, we aim at showing that the
probing results can improve the interpretability in
the development procedures of large models.

Out-of Domain generalization The out-of-
domain generalization literature provides a vari-
ety of methods to improve the performance of out-
of-domain classification. We defer to Wang et al.
(2021a) for a summary. Gulrajani and Lopez-Paz
(2020) ran empirical comparisons on many algo-
rithms, and some theoretical analyses bound the
performance of out-of-domain classification (Li
et al., 2022b; Minsker and Mathieu, 2019). In our
setting, the probing and the fine-tuning datasets
can be considered different domains, but our anal-
ysis predicts the out-of-domain performance. A
similar setting was presented in Kornblith et al.
(2019), which studied the correlation between the
performance on ImageNet and the performance of
transfer learning on a variety of image domains.
Our setting focuses on text domains, and use spe-
cialized, small-sized probing datasets.

Probing, and the utility of LODNA The prob-
ing literature reveals various abilities of deep neu-
ral models, as summarized by Rogers et al. (2020);
Manning et al. (2020); Belinkov (2021); Pavlick
(2022). There have been some discussions on the
utility of probing results. Baroni (2021) argued that
these linguistic-oriented deep neural network anal-
yses (LODNA) should treat deep neural models as
algorithmic linguistic theories; otherwise, LODNA
has limited relevance to theoretical linguists. Re-
cent literature in LODNA drew interesting findings
by comparing the mechanisms in which algorithms
and humans respond to external stimuli, including
the relative importance of sentences (Hollenstein
and Beinborn, 2021). Probing results, when used
jointly with evidence from datasets, can also be
used to predict the inductive bias of neural models
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(Lovering et al., 2021; Immer et al., 2021). As we
show, probing results can explain the variance in
and even predict the fine-tuning performance of
neural NLP models.

Fine-tuning and probing There have been mul-
tiple papers that explored fine-tuning and probing
paradigms. Probing is used as a post-hoc method
to interpret linguistic knowledge in deep neural
models during pre-training (Liu et al., 2019a), fine-
tuning (Miaschi et al., 2020; Mosbach et al., 2020;
Durrani et al., 2021; Yu and Ettinger, 2021; Zhou
and Srikumar, 2021), and other stages of model
development (Ebrahimi et al., 2021). From a per-
formance perspective, probing can sometimes re-
sult in higher performance metrics (e.g., accuracy)
than fine-tuning (Liu et al., 2019a; Hall Maudslay
et al., 2020) and fine-tuning can benefit from addi-
tional data (Phang et al., 2018). We take a different
perspective, considering how the probing and fine-
tuning results relate to each other, and more impor-
tantly, how the signals of probing can be helpful
towards developing large neural models.

3 Methods

We present the overall analysis method and eval-
uation metric in this section. §5 elaborates the
detailed experiment settings.

Predicting fine-tuning performance A deep
neural model M can be fine-tuned on task t to
achieve performance At. Let S ∈ RN be the test
accuracies of probing classifications on model M ,
using N configurations. For example, a deep neu-
ral model M = RoBERTa can be fine-tuned to
reach performance At = 0.85 on a t = RTE task.
With post-hoc classifiers applied to the 12 layers
of M , we can probe for 12 test accuracies on a
probing task (e.g., detecting the past vs. present
tense), which constitute of S.2

To find the pattern across a diverse category
of models, we regress over K models (we will
describe in §4.3). The collected probing results
{S(k)}Kk=1 can be used to predict the fine-tuning
performance {A(k)

t }Kk=1 via regression. Formally,
this procedure optimizes for N + 1 parameters,
θ ∈ RN+1 so that:

θ∗ = argminθΣk||θTS(k) −A(k)
t ||2 (1)

2Following the default implementation of linear regression,
we include an additional dimension in S(k) to multiply with
the bias term, so S(k) ∈ RN+1 in the following equations.

This procedure has closed-form solutions that
are implemented in various scientific computation
toolkits (e.g., R and scipy). The minimum reach-
able RMSE is therefore:

RMSE =

√
1

K
Σk||θ∗TS(k) −A(k)

t ||2 (2)

RMSE-reduction While RMSE can evaluate the
quality of this regression, it is insufficient for mea-
suring the informativeness of S due to the discrep-
ancy among the fine-tuning tasks t. Suppose we
have two tasks, t1 and t2, where the probing re-
sults S can support high-precision regressions to
RMSE = 0.01 on both tasks. However, on t1, even
features drawn from random distributions3 might
be sufficient to reach RMSE = 0.02, while on the
more difficult task, t2, random features could only
reach RMSE = 0.10 maximum. The probing re-
sults S is more useful for t2 than t1, but RMSE
itself does not capture this difference.

Considering this, we should further adjust
against a baseline, the minimum reachable RMSE
using random features.

θc∗ = argminθΣk||θT ε(k) −A(k)
t ||2, (3)

where the random features ε are drawn from
N (0, 0.1). Overall, the RMSE and the reduction
from the baseline are computed as:

RMSEc =

√
1

K
Σk||θTc∗ε(k) −A(k)

t ||2

(4)

RMSE_reduction =
RMSEc − RMSE

RMSEc
× 100

(5)

In the experiments, all RMSE and RMSEc val-
ues follow 5-fold cross validation. We report the
RMSE_reduction as the score that measures the
utility of S.

4 Evaluation tasks and datasets

4.1 Fine-tuning tasks
We consider 6 binary classification tasks in GLUE
(Wang et al., 2019) as fine-tuning tasks: RTE con-
sists of a collection of challenges recognizing tex-
tual entailment. Given two sentences, the model

3Considering the small data sizes (i.e., the total number
of models studied), even the “random features” drawn from
random noises contain artefacts – patterns that can be used to
regress the results.
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decides whether a sentence entails the other. COLA
(Warstadt et al., 2019) requires the model to de-
termine if a sentence is linguistically acceptable.
MRPC (Dolan and Brockett, 2005) requires the
model to identify if a pair of sentences are para-
phrases. SST2 (Socher et al., 2013) asks the model
to output the sentiment positivity of movie reviews.
QNLI contains questions and answers parsed from
SQuAD (Rajpurkar et al., 2016). This task requires
the model to decide whether the answer answers
the question. QQP4 tests if the model can correctly
output whether a pair of Quora questions are syn-
onymous.

4.2 Probing tasks

We use 7 probing tasks from SentEval (Conneau
and Kiela, 2018) which can be approximately
grouped in two categories, syntactic and seman-
tic:

• Syntactic: bigram shift (BShift), and tree
depth (TreeDepth)

• Semantic: past present (Tense), subject num-
ber (SubjNum), object number (ObjNum), se-
mantic odd-man out (SOMO), and coordina-
tion inversion (CoordInv)

These probing tasks span across a range of linguis-
tic abilities. In general, layers closer to the inputs
(lower layers) in BERT contain more surface-level
information, whereas higher layers contain more
syntactic and semantic information (Tenney et al.,
2019; Jawahar et al., 2019), but the actual location
of different linguistic features may vary (Miaschi
et al., 2020). The SentEval datasets are usually
hundreds of times larger than what would be suf-
ficient to support statistically significant compar-
isons (Zhu et al., 2022), so we randomly sample
1200 data points per class, corresponding to around
1% of the original SentEval data.

4.3 Pre-trained Language Models

We use several most widely used pre-trained lan-
guage models for fine-tuning and probing. We refer
to the models by their names on the Huggingface
Model Hub.5

roberta-base (Liu et al., 2019b) pretrains
BERT (Devlin et al., 2019) on over 160GB of
English corpora, using improved techniques in-
cluding dynamic masking, large mini-batches and

4https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

5https://huggingface.co/

masked language modeling without next-sentence-
prediction.
xlm-roberta-base (Conneau et al., 2020)

is pre-trained on 2.5TB of Common Crawl data
from over 100 languages. The multiple languages
sources improve the transferability across lan-
guages while compromising only a little accuracy
on the English GLUE tasks (compared to the mono-
lingual RoBERTa).
albert-base-v2 (Lan et al., 2020) shares

parameters across layers and decomposes the vo-
cabulary matrices into smaller matrices. These
parameter-reducing techniques reduce the computa-
tion resource requirements, which allows the model
pretraining to further scale-up.
microsoft/deberta-base (He et al.,

2021) uses separate attention vectors to model the
content and the positions of each word. During fine-
tuning, DeBERTa adds adversarial perturbations to
the normalized embeddings.
xlnet-base-cased (Yang et al., 2019) mod-

els different permutation orders of the contexts dur-
ing pre-training. XLNet additionally uses atten-
tions to keep track of previous states, allowing the
model to process the contexts extending beyond
fixed lengths.
Corrupted models. To increase the diver-

sity of models, we corrupt the language models
on a masked language modeling task by MLM
fine-tuning on scrambled Wikipedia6 for 500, 1k,
2k, 4k, and 6k steps. This “model augmentation”
procedure does not apply to XLNet because scram-
bling the corpus produces a permutation of context,
which XLNet already models. In total, there are 25
language models, each containing 12 layers.

4.4 Fine-tuning methods

For all fine-tuning classifications, we use the Au-
toModelForSequenceClassification framework by
huggingface Transformers (Wolf et al., 2020). The
model is trained with an AdamW optimizer with a
collection of initial learning rates7 and a batch size
of 4. Since the GLUE tasks do not publicize the
test set labels, we use the best dev set performance
as the fine-tuning results. For reproducibility, we
fix the random seed to 42 in PyTorch (Paszke et al.,
2019). Additional details, including runtime and
computation resources, are in Appendix A.

6wikitext-2-v1 from huggingface datasets.
71e-4, 3e-5, 1e-5, 3e-6, 1e-6, 3e-7. Note that most highest-

performing classification runs are reached with either 1e-5 or
3e-6.
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Figure 1: Fine-tuning performance. The color coding
reflects the number of corruption steps on scrambled
wikipedia, with 0 corresponding to the “vanilla” lan-
guage models.

4.5 Probing methods
There are many methods to probe a neural network.
In this paper, we use a post-hoc classifier to predict
a target (“probing task target”) from the represen-
tations of the first token (CLS). We run through a
collection of scikit-learn (Pedregosa et al., 2011)
classifiers,8 choose the best one by the dev accu-
racy, and take its test accuracy as the probing result
S. Additional details, including runtime and com-
putation resources, are in Appendix A.

5 Experiments

5.1 Fine-tuning performance
As an exploratory analysis, Figure 1 plots the dis-
tributions of the GLUE fine-tuning performances.
The additional corruption steps result in more sig-
nificant fine-tuning performance drops on RTE and
MRPC than other tasks. Moreover, on QQP, the
dev accuracies of roberta-base (and its cor-
rupted models) are larger than 0.90, while most
other models have around 0.80 dev accuracies.

5.2 Which probing task is most informative?
We start with testing the predictability of using
the results from only one probing task. For each
probing task, we concatenate the 12 probing results
as features and predict the fine-tuning performance
using linear regression.9

Table 1 shows the percentage of RMSE reduc-
tion from baseline, using all layers from one prob-
ing task. There is no definitive answer towards

8Logistic Regression, MLP with 10 and 20 hidden nodes,
Random Forest with 100 and 10 estimators, Decision Tree,
and SVM. There are 7 classifiers in total.

9lm method in the caret R package.

“which probing task best predicts all fine-tuning
tasks” but, depending on the linguistic abilities that
each task targets, there are some regularities. For
example, the ‘number counting’ probing tasks do
not predict the fine-tuning performances on RTE,
the textual entailment recognition task. In other
fine-tuning tasks (COLA, QNLI, MRPC, SST2,
QQP), however, each probing task shows positive
RMSE reduction, signaling the ability to predict
fine-tuning performance.

5.3 Which layers are the most indicative?

In the regression experiments of §5.2, we consid-
ered each feature equally important. However, a
one-way ANOVA shows that some layers are more
indicative than others, as Table 2 shows. For exam-
ple, the probing results of tree_depth (at layer 1)
and object_number (at layer 1) explain significant
variance on all fine-tuning tasks.

Note that the layers with the most predictabil-
ity should not be confused with those containing
the richest linguistic knowledge. The former corre-
sponds to the probing results that explain the most
variances, while the latter corresponds with probing
with the highest accuracy.

5.4 Only one layer per probing task

Instead of probing all 12 layers, could using the
probing results from only one layer for each prob-
ing task be beneficial? Following Table 2, we use
the layers that are shown to explain significant por-
tions of variance for the most fine-tuning tasks.10

The results are also included in Table 1. When
reducing the number of features into around half
(12 to 7), “one layer per probing task” can reduce
more RMSE in RTE and SST2.11 However, the
results in other fine-tuning tasks indicate that alter-
native feature selection methods might help find a
more predictive feature set.

5.5 Can we predict with only 3 features?

This experiment further reduces the number of fea-
tures used while maximizing the MSE reductions.
We iterate through all possible combinations of the

10Namely, layers 5, 6, 1, 5, 1, 1, 1 from the 7 probing tasks
respectively.

11Note that the ANOVA in §5.3 use all data samples, so the
choice of the features contain information propagated from the
validation set. To ensure fair comparisons, we do not include
the results from “one-layer-per-task” setting when finding the
highest RMSE reductions in subsequent analysis. The results
from this setting do not outperform the bold-font results even
once, though.
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RTE COLA MRPC SST2 QNLI QQP Average

All layers one task (§5.2)
BShift 6.24 52.80 53.18 29.78 55.29 51.64 41.49

CoordInv 2.10 66.59 18.18 44.24 56.35 56.57 40.67
ObjNum 2.19 44.20 28.02 53.15 60.64 72.38 43.33

SOMO 30.90 44.75 29.39 29.28 38.64 55.68 38.11
Tense 3.07 48.42 34.65 22.29 41.37 75.58 37.56

SubjNum -19.66 78.56 34.48 47.75 64.74 51.50 42.90
TreeDepth 4.37 53.03 9.54 46.98 62.79 54.67 38.56

One layer per task (§5.4) 36.12 62.66 25.78 49.87 59.79 26.73 43.49

Only three features (§5.5)
41.69 75.66 47.56 72.59 80.52 76.77 65.80

CoordInv_1 ObjNum_2 TreeDepth_1 SubjNum_1 SubjNum_2 TreeDepth_6 N/A
TreeDepth_1 SubjNum_2 SOMO_4 BShift_ 3 Tense_8 Tense_8 N/A

BShift_12 TreeDepth_12 ObjNum_7 CoordInv_10 CoordInv_9 Tense_12 N/A

Table 1: RMSE reduction from baseline. A larger value shows the probing results more indicative of the fine-tuning
performance. A small (or even negative) value means the probing results are not informative, compared to random
features. The bold-font configurations are those with the highest RMSE reductions for predicting each fine-tuning
task (i.e., within each column).

RTE COLA MRPC SST2 QNLI QQP

bigram shift (BShift) 4,5 2,4,5 2,4,5,9 2,5,6 2,4,5 2,4,5
coordination inversion (CoordInv) 5,6,12 1,2,4,6 1,6 1,4,6 1,4-6 2-4,6

object number (ObjNumber) 1 1,3,8,11 1,3 1,3-5,8,11 1,3,8,11 1-5,12
semantic odd man out (SOMO) 4,5,8,12 2-6 3,4 3,5,6 2-6 2,5-9,12

past present (Tense) 1 1,3,5 1,5,6 1,11 1,3,5,8 1-5,8-11
subject number (SubjNum) None 1,3-6,9 1 1,4 1 1,2,3,4

tree depth (TreeDepth) 1 1 1 1,3,5 1 1-3,7,8,11

Table 2: Layers with significant probing results (p < .05 from one-way ANOVA) with residual dof = 12.

12× 7 = 84 probing features for each fine-tuning
task and report the largest RMSE reduction in pre-
dicting the fine-tuning performance.

Table 1 shows the results and the correspond-
ing features. The prediction with three features
can reduce the most RMSE on RTE, SST2, QNLI,
and QQP. On COLA and MRPC, the RMSE re-
ductions by the top three features are at most 6%
smaller than those of the best previous configura-
tions, which involved many more probing features.

The results show the utility of probing. It is
possible to predict the fine-tuning performances
by probing on as few as three configurations (each
configuration using one probing task on one layer).

5.6 Ablation: probing configuration

To further simplify the probing procedure, we run
this ablation study. Instead of probing using a bat-
tery of post-hoc classifiers (as mentioned in §4.5),
we test if the probing results from each individual
classifier can reproduce the findings of §5.2 - §5.5.

Table 3 shows the maximum MSE reductions
using different choices of probes. A perhaps sur-

prising finding is that the probes selected from
the “highest-accuracy” criterion do not always pro-
duce the most valuable results. To predict fine-
tuning performances, directly specifying the prob-
ing method as MLP-20 or RandomForest-100 may
be instead more recommended.

As a side note, among the 48 results presented
in Table 3, only 9 are not achieved by the “best-3-
features” methods (including the 2 shown in Table
1). This contrast emphasizes the importance of
feature selection when configuring probes.

5.7 Ablation: dataset size

The findings in §5.2 - §5.6 show that as few as
1,200 samples per class (around 1% of total data)
are sufficient to provide useful findings. What if
we further reduce the sizes of probing datasets?
Here, we repeat §5.2 and §5.5 with probing results
from only 400 samples per class. While we can
also reduce RMSE with only 400 samples per class,
probing results are generally not as useful as those
from 1,200 samples. Among the 48 configurations,
the probing results from 400 samples have worse
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RTE COLA MRPC SST2 QNLI QQP Average

Highest-accuracy probe in §5.2 - §5.5 41.69 78.56 53.18 72.59 80.52 76.77 67.22

Specify one probing method (§5.6)
DecisionTree 51.98 68.48 54.31 70.90 74.35 52.85 62.15

LogReg 45.28 78.34 44.87 70.26 83.13 73.98 65.98
MLP-10 48.50 72.12 45.88 65.87 73.82 81.97 65.69
MLP-20 47.37 74.94 63.79 69.22 79.10 82.67 69.52

RandomForest-10 50.64 74.08 50.17 68.20 75.19 59.66 62.99
RandomForest-100 53.94 79.20 53.21 71.60 83.25 72.72 68.99

SVM 51.71 74.01 57.92 71.44 76.78 73.03 67.48

Table 3: Maximum RMSE reductions using different probing configurations. The bold-font numbers are the
maximum values in each column.

RMSE reductions in 11 configurations, but better
in 5. Detailed results are included in Table 4.

5.8 Uncertainty analysis

Our method involves comparing the maximum
RMSE reductions against the baseline (regress-
ing from features drawn from Gaussian) RMSEc,
which may be affected by the random seeds. Here
we describe an error analysis on the baseline re-
gressor results of §5.2 - §5.5.

We run N = 100 Monte Carlo simulations on
each configuration of regression from 3, 7, and
12 features, respectively, record the RMSEc, and
analyze the uncertainty. We use the variation of
RMSEc (as measured by Std(RMSEc)) relative to
the scale (as measured by Mean(RMSEc)) to de-
scribe the uncertainty. As shown in Table 5, the un-
certainty remains relatively stable across the choice
of regression tasks but increases with the number of
features. This result favors the use of fewer probing
results as features.

Note that these uncertainty values are nontriv-
ial. Let us take COLA as an example. To regress
the fine-tuning performance, a 3-feature setting
can achieve 75.66% RMSE reduction compared to
RMSEc, but RMSEc itself has 5.46% uncertainty.
This translates to around 7.22% uncertainty for the
RMSE-reduction results (Table 1).

Can we reduce the uncertainty by using alter-
native evaluation metrics like the RMSE, or the
percentage of explained variance (ExplVar), in-
stead of introducing a control task? In addition to
the adjustment for dataset artifacts, the control task
provides a baseline to understand the utility. While
the RMSE is always positive and ExplVar is al-
most always above 90%, RMSE reduction itself
provides a clearer picture of the utility of probing

features.

5.9 Can the probing results distinguish the
originating language models?

Since the 25 models come from only 5 language
models (RoBERTa, XLM, ALBERT, DeBERTa,
XLNet), one may wonder if the “model augmen-
tation” procedure “shuffles” the language models
sufficiently – if yes, then it would be hard to distin-
guish the originating language models.

We use 5-class logistic regression from scikit-
learn. For any combination of three features, we
compute the accuracy following 5-fold cross valida-
tion. On all combinations of 3 features, the probing
features can reach 0.0027 accuracy (sd=0.0109)
better than the random features. This is statistically
significant.12 However, the maximum reachable
accuracy is 0.08, whereas even a trivial predictor al-
ways outputting “RoBERTa” has an expected 0.24
accuracy (there are 6 RoBERTa models out of 25).
The small accuracies show that our “model aug-
mentation” procedure (§4.3) produces sufficiently
distinct models.

6 Discussion

Can probing results generalize to non-
classification tasks? All fine-tuning tasks
and probing tasks in this paper are text-based
classification problems. In the interpretable NLP
literature, the probing analyses can also apply to
other categories of deep neural networks including
translation (Belinkov et al., 2017; Zhang and
Bowman, 2018). This generalization across
different neural network is intuitive since probing
examines the linguistic knowledge encoded in
the representations. If a neural model encodes

12One-sample one-sided t-test on dof = 571, 703.

11540



RTE COLA MRPC SST2 QNLI QQP Average

All layers one task
BShift 21.00 53.66 19.65 35.60 51.32 57.55 39.80

CoordInv 4.49 31.28 22.83 38.93 6.30 25.51 21.56
ObjNum 29.51 56.10 39.94 65.95 72.30 70.54 55.72

SOMO -5.09 -7.14 16.09 9.36 -0.71 46.36 9.81
Tense 1.30 51.79 33.63 13.52 49.43 73.01 37.11

SubjNum 9.89 76.32 47.19 48.62 65.36 49.42 49.47
TreeDepth -11.49 66.06 28.98 27.13 59.93 43.10 35.62

Only three features
47.38 77.84 56.70 72.27 82.01 71.08 67.88

Tense_1 SubjNum_1 BShift_2 SubjNum_1 SubjNum_1 Tense_3 N/A
SubjNum_11 BShift_6 ObjNum_7 Tense_2 SubjNum_8 BShift_4 N/A
CoordInv_12 TreeDepth_8 SOMO_9 CoordInv_6 BShift_9 BShift_8 N/A

Table 4: RMSE reduction from baseline, using probing results with 400 data samples per class. The colored
results are different from (better than or worse than) the results with 1,200 data samples (Table 1) by more than the
estimated uncertainty margins in §5.8, i.e., 5% and 15% for 3 and 12 features, respectively.

3 features 7 features 12 features

RTE 5.71% 9.00% 15.16%
COLA 5.46% 10.00% 13.60%
MRPC 5.21% 9.47% 15.63%

SST2 5.03% 9.41% 14.70%
QNLI 5.37% 10.01% 14.07%
QQP 5.80% 9.29% 14.97%

Table 5: The relative uncertainties ( Std(MSEc)
Mean(MSEc)

) using
3, 7, and 12 features to regress the 6 fine-tuning task
performances.

both rich syntactic information (as illustrated by
high probing scores in Tense, SubjNum, etc.),
and semantic information (as illustrated by high
probing scores in BShift, SOMO, etc.) then we
will not be surprised when observing that this
neural model achieves a high BLEU score. That
said, the extent to which probing results remain
predictive for BLEU score needs further analysis,
which we leave for future works.

Probing is computational-friendly Compared
to fine-tuning, probing evaluations require less
computation. Fine-tuning the 6 GLUE tasks takes
around 30 GPU hours in total, while probing the 7
tasks (all 12 layers) takes 0.7 GPU hours to cache
and 1.3 CPU hours to probe. We elaborate the com-
putational budgets in Appendix A. Probing is far
more efficient because it does not need to change
the parameters in the neural model, and we only
need one pass through the neural model and cache
the representations. Fine-tuning needs the gradi-
ents to update the parameters in the neural models.
There are some methods to reduce the computation

costs,13 and we note that probing is competitive as
well, in terms of computational time.

Fine-tuning tasks need more specifications
Currently, the most popular leaderboards for natu-
ral language understanding constitute fine-tuning
tasks. A criticism towards these leaderboards is
underspecification (D’Amour et al., 2020) – the
short descriptions of the tasks can hardly be inclu-
sive enough to specify the precise abilities required
to complete the tasks. To further understand the
underspecification problem, researchers recently
developed probing datasets (McCoy et al., 2019;
Warstadt et al., 2020). Probing results on these
datasets have been (indirectly) used in developing
deep neural models – performance prediction is a
more direct application.

Fine-grained evaluations improve transparency
Leaderboard tasks should be customized to the
users (Ethayarajh and Jurafsky, 2020). The diver-
sity of probing datasets offers flexible choices to
NLP researchers, supporting the diversified consid-
erations to the consumers. Some recently proposed
fine-grained leaderboards allow researchers to an-
swer questions like “where does model A outper-
form model B” (Ma et al., 2021; Narayan et al.,
2021; Ruder et al., 2021; Liu et al., 2021a). The

13One approach involves using momentum to accelerate the
convergence (Kingma and Ba, 2015; Dozat, 2016) Alterna-
tively, the memory usage can be reduced (Gomez et al., 2017;
Behrmann et al., 2019). Empirically, limiting the precisions
can also accelerate optimization (Shin et al., 2021). Specially-
designed structures including Adapters (Houlsby et al., 2019)
and LoRA (Hu et al., 2022) are effective as well. Prefix tuning
and prompt tuning are lightweight alternatives to fine-tuning
(He et al., 2022; Le Scao and Rush, 2021; Li and Liang, 2021).
Liu et al. (2021b) summarizes many approaches related to
prompt.
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probing literature can provide many more datasets
for building diverse leaderboards.

Incorporating probing in model developments
While the developers are already busy, probing can
still bring in benefits to the big model develop-
ments, mostly through a multi-dimensional feed-
back mechanism. The probing datasets introduce
targeted knowledge that complement the training
datasets of big NLP models. During developments,
the model developers can select good model check-
points to resume or proceed with the help of the
probing evaluation scores.

7 Conclusion

This paper shows that analyzing probing results
can be relevant to developing deep NLP models
via predicting a proxy signal, i.e., fine-tuning per-
formance. We show that as few as three prob-
ing accuracy scores can be useful to predict fine-
tuning results with RMSEs 40% - 80% smaller
than baselines. This can dramatically improve the
efficiency of deep learning pipelines. Given sev-
eral ablation studies, we recommend MLP-20 and
RandomForest-100 over other probing methods
and show that the probing results from as few as
400 per class may still contain predictability. Prob-
ing analysis contain rich resources, and we show
their results are closely related to fine-tuning perfor-
mances. We call for further applications of probing
into the developments of deep NLP models.

8 Limitations

The evaluation of large language models using only
perplexity is uni-dimensional. Evaluations using
fine-tuning tasks requires modifying many param-
eters, hence more costly than probing. Our paper
aims at paving the path towards multidimensional
evaluations of model parameters within computa-
tional budget, so instead of providing a fixed recipe
(including fixing the probing datasets and specify-
ing which layers to probe), we provide a general
framework and use experiments to show the in-
formativeness and potential utility of the probing
results. While probing results are shown to be
informative in our experiments, many other meth-
ods (e.g., LoRA and prefix-tuning) could optimize
similar numbers of parameters. The empirical veri-
fications of other methods are left to future work.
Similarly, the problem settings considered in this
paper are all classification problems. We believe

this should generalize to other problem settings
(e.g., BLEU score on sequential tasks), yet the em-
pirical verifications are left to future work.
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A Additional experimental details

On the effects of random seeds Literature has
shown that the choice of random seeds could affect
the fine-tuning results a lot (Dodge et al., 2020),
and we do not attempt to model this effect. Instead,
by fixing the random seed before any results are
observed, we effectively control for the effect of
random seeds in fine-tuning. An alternative experi-
ment setup involves running multiple random seeds
– in this case, we will need a mixed-effect model
instead of a simple regression model to factor out
the effect of random seeds.

Computation budget for fine-tuning The com-
putation budget for fine-tuning varies for the tasks
(primarily due to the sizes of the datasets). The
time usages for different language models do not
differ much – around 16 minutes for RTE, 17 min-
utes for MRPC, 45 minutes for COLA, 6.5 hours
for SST2, 7 hours for QNLI, 18 hours for QQP.
If we normalize by the sizes of the datasets, fine-
tuning takes between 2 and 6 minutes of GPU time
(on an RTX 6000 card; we refer to it as “GPU”
henceforth) per 1,000 data samples.

Computation budget for probing Before prob-
ing, we cache the representations of SentEval
data (taking around 60 hours GPU time) to avoid
the feed-forward pass, which is the most time-
consuming part. Note that we cached the whole
SentEval data and then subsample 1,200 per class
(around 1%). Caching only the subsampled 1%
would take 40 minutes on GPU.

The probing classifications take around 16 hours
of CPU time (on an M1 chip; we refer to it as
“CPU” henceforth) for each of the 25 models. This
includes 7 (probing tasks) × 12 (layers) × 7 (prob-
ing methods) = 588 (probing configurations).

Consider a configuration of one probing method,
12 layers, and 7 probing tasks. Acquiring 84 prob-
ing features would take 40 minutes (caching) + 80
minutes (probing), which is about two hours, where
only 1/3 of the two hours need GPU.

Computation in analysis For §5.5, the feature
selection procedure takes between 350 and 450

RTE COLA MRPC SST2 QNLI QQP

All layers one task (§5.2)
BShift .0353 .0091 .0160 .0050 .0040 .0227

CoordInv .0336 .0054 .0187 .0044 .0024 .0218
ObjNum .0427 .0069 .0174 .0036 .0034 .0141

SOMO .0274 .0074 .0173 .0054 .0040 .0195
Tense .0430 .0092 .0176 .0055 .0038 .0100

SubjNum .0489 .0035 .0176 .0044 .0026 .0180
TreeDepth .0378 .0073 .0207 .0039 .0031 .0204

One layer per task (§5.4) .0380 .0068 .0201 .0048 .0029 .0383

Only three features (§5.5) .0331 .0053 .0149 .0028 .0019 .0125

Table 6: RMSE values complementing the RMSE re-
duction values in Table 1.

seconds for one fine-tuning task when running in
RStudio on a laptop (with i7 CPU; we refer to it
as RStudio henceforth). All 6 fine-tuning tasks
take around 1 hour. Note that this procedure takes
around 1/3 time on the M1 CPU.

For §5.6, the computation cost is 7 times that of
§5.2 to §5.5, totaling around 7 hours.

For §5.7, the probing time is around 15 hours.
Subsequent analysis time on RStudio equals §5.2
to §5.5, i.e., around 1 hour.

For §5.8, a Monte Carlo simulation for the un-
certainty analysis takes around 15 minutes for all 6
fine-tuning tasks on CPU.

For §5.9, running through the features to find the
top 3 for distinguishing the language models take
50 minutes on CPU.

B RMSE values

Table 6 shows the RMSE values complementing
the RMSE reduction values in Table 1. All values
appear small in magnitude, but note that compara-
ble scales of RMSE values can be achieved by the
random features as well.
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