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Abstract

In NMT we search for the mode of the model
distribution to form predictions. The mode
and other high-probability translations found
by beam search have been shown to often be
inadequate in a number of ways. This pre-
vents improving translation quality through bet-
ter search, as these idiosyncratic translations
end up selected by the decoding algorithm, a
problem known as the beam search curse. Re-
cently, an approximation to minimum Bayes
risk (MBR) decoding has been proposed as an
alternative decision rule that would likely not
suffer from the same problems. We analyse
this approximation and establish that it has no
equivalent to the beam search curse. We then
design approximations that decouple the cost of
exploration from the cost of robust estimation
of expected utility. This allows for much larger
hypothesis spaces, which we show to be benefi-
cial. We also show that mode-seeking strategies
can aid in constructing compact sets of promis-
ing hypotheses and that MBR is effective in
identifying good translations in them. We con-
duct experiments on three language pairs vary-
ing in amounts of resources available: English
into and from German, Romanian, and Nepali.1

1 Introduction

NMT systems (Sutskever et al., 2014; Bahdanau
et al., 2015) are trained to predict a conditional
probability distribution over translation candidates
of any given source sentence. After training, choos-
ing a translation for a given input requires a deci-
sion rule: a criterion to elect a ‘preferred’ transla-
tion. MAP decoding, the most common decision
rule in NMT, seeks the most probable translation
under the model (i.e., the mode of the distribution).

1Code is available at github.com/roxot/mbr-nmt.

Figure 1: NMT spreads probability roughly uniformly
over a large set of promising hypotheses (left). MBR
(right) assigns hypotheses an expected utility, revealing
clear preferences against those that are too idiosyncratic.

MAP decoding and its approximations such
as beam search (Graves, 2012) have been under
scrutiny. Stahlberg and Byrne (2019) show that
the true mode is oftentimes inadequately short or
empty. Better approximate search is known to hurt
quality (Koehn and Knowles, 2017; Murray and
Chiang, 2018; Kumar and Sarawagi, 2019), a prob-
lem known as the beam search curse. The suc-
cess of beam search depends on search biases in-
troduced by hyperparameters such as beam size
and length normalisation, which are tuned not
to correlate with the objective of MAP decoding,
but rather to strike a compromise between mode-
seeking search and properties of reasonable trans-
lations. Despite its success, a number of problems
have been observed: length bias (Cho et al., 2014;
Sountsov and Sarawagi, 2016), word frequency
bias (Ott et al., 2018), susceptibility to copy noise
(Khayrallah and Koehn, 2018; Ott et al., 2018), and
hallucination under domain shift (Lee et al., 2019;
Müller et al., 2020; Wang and Sennrich, 2020).

Eikema and Aziz (2020) argue that the inade-
quacy of the mode in NMT is a reasonable conse-
quence of the translation space being combinato-
rial and unbounded. They show that, while distri-
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butions predicted by NMT do reproduce various
statistics of observed data, they tend to spread prob-
ability mass almost uniformly over a large space
of translation candidates. This makes their precise
ranking in terms of probability mass a fragile crite-
rion for prediction. While some of these candidates
are possibly inadequate (e.g., the empty sequence),
most of them are similar to one another and ex-
hibit appreciable structural similarity to reference
translations. To make better use of the statistics pre-
dicted by NMT models, Eikema and Aziz (2020)
recommend MBR decoding (Kumar and Byrne,
2004), a decision rule that seeks the translation can-
didate which maximises an external notion of utility
(e.g., an MT evaluation metric) in expectation un-
der the model distribution. While MBR decoding
promises robustness to idiosyncratic translations,
it remains intractable, much like MAP decoding.
Eikema and Aziz (2020) propose an approximation
based on Monte Carlo (MC) sampling, which al-
though tractable in principle, requires a prohibitive
number of assessments of the utility function.

In this work, we first analyse the procedure by
Eikema and Aziz (2020) and establish that it does
not suffer from a counterpart to the beam search
curse. That is, better search does not hurt trans-
lation quality. Their approximation is, however,
computationally expensive, requiring a number of
assessments of the utility function that is quadratic
in sample size. We propose algorithms that scale
linearly, allowing us to explore large hypothesis
spaces, and considerably improve upon existing
approximations to MBR with less computation. Fi-
nally, we find that mode-seeking strategies such nu-
cleus sampling and beam search can still aid MBR
decoding by constructing compact sets of high ex-
pected utility hypotheses, relying on MBR to filter
idiosyncratic translations that may be present.

2 NMT and Decision Rules

NMT employs neural networks (NNs) to predict
a conditional probability distribution Y |θ, x over
translation candidates of any given source sentence
x. The sample space Y is the set of all sequences
of known target-language symbols (e.g., sub-word
units). NMT factorises the distribution as a chain
of random draws from Categorical distributions

Yj |θ, x, y<j ∼ Cat(f(x, y<j ; θ)) (1)

parameterised in context. The prefix translation
y<j starts empty and grows one symbol at a time

until a special end-of-sequence symbol is drawn.
At each step j, f maps from varying inputs (x, y<j)
to a probability distribution over the vocabulary.
Common choices for f include recurrent networks
(Sutskever et al., 2014; Bahdanau et al., 2015)
and Transformers (Vaswani et al., 2017). Given
a dataset of observed translation pairs, the NN pa-
rameters θ are estimated to attain a local optimum
of the regularised log-likelihood function.

After training, and for a given input, choosing a
translation requires a decision rule to map from a
distribution over translation candidates to a single
‘preferred’ translation. The most common decision
rule in NMT is MAP decoding, which outputs the
mode of the conditional distribution. Despite the
widespread intuition that MAP decoding is an obvi-
ous choice, maximum likelihood estimation (MLE)
is oblivious to our desire to form predictions.

2.1 MAP Decoding

Maximum-a-posteriori (MAP) decoding outputs
the most probable translation under the model:2

yMAP = argmax
h∈Y

log pY |X(h|x, θ) . (2)

As this is intractable, beam search (Graves, 2012;
Sutskever et al., 2014) is used. Beam search is a
pruned version of breadth-first search which main-
tains an active set of k partial translations. For large
beam size k, translation quality degrades (Koehn
and Knowles, 2017) and the exact yMAP is often
the empty sequence (Stahlberg and Byrne, 2019).
Therefore, in practice, the beam size is kept small
and the objective in Equation (2) is regularised to
up-rank longer hypotheses (Wu et al., 2016; Murray
and Chiang, 2018).

2.2 MBR Decoding

Minimum Bayes risk (MBR) decoding stems from
the principle of maximisation of expected utility
(Berger, 1985). A utility function u(y, h) measures
the benefit in choosing h ∈ Y when y ∈ Y is
the ideal decision. When forming predictions, we
lack knowledge about ideal translations and must
decide under uncertainty. MBR lets the model fill
in ‘ideal decisions’ probabilistically as we search
through the space of candidates for the one which

2The name is a historical accident, NMT models directly
parameterise the conditional distribution without the need for
a prior, and, thus, without posterior inference.
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is assigned highest utility in expectation:

yMBR = argmax
h∈Y

E[u(Y, h) | θ, x]︸ ︷︷ ︸
=:µu(h;x,θ)

. (3)

MBR has a long history in parsing (Goodman,
1996; Sima’an, 2003), speech recognition (Stol-
cke et al., 1997; Goel and Byrne, 2000), and MT
(Kumar and Byrne, 2002, 2004).

In MT, u can be a sentence-level evaluation met-
ric (e.g., METEOR (Denkowski and Lavie, 2011)
or Sentence BLEU (Chen and Cherry, 2014)). Intu-
itively, whereas the MAP prediction is the transla-
tion to which the model assigns highest probability,
no matter how idiosyncratic, the MBR prediction is
the translation that is closest (under the chosen u)
to all other probable translations.See Figure 1 for
an illustration of this concept. Seeking support
for a prediction not only in terms of probability
but also in terms of utility makes MBR decoding
robust to situations where inadequate translations
are assigned high probability, as it often happens
with the empty string (Stahlberg and Byrne, 2019),
when the training data are noisy (Ott et al., 2018),
too small (Eikema and Aziz, 2020) or distant from
the test domain (Müller and Sennrich, 2021).

It is a well-known result that for the ‘exact match’
utility, u(y, h) := 1{y}(h), the expected utility of
h is pY |X(h|x, θ), hence MBR and MAP decoding
have the same optimum under this choice (Kumar
and Byrne, 2002). This view justifies MAP decod-
ing as an instance of MBR, where decisions are
optimised with respect to a strict notion of transla-
tional equivalence. In machine translation evalua-
tion, exact match is a questionable choice of utility
function. It, for example, is unable to capture para-
phrases or any other form of semantic equivalence.

Like in MAP decoding, exhaustive enumeration
of all hypotheses is impossible, we must resort to
a finite subset H̄(x) of candidates. Unlike MAP
decoding, the objective function µu(h;x, θ) can-
not be evaluated exactly. Most approximations to
MBR decoding, from Kumar and Byrne (2004) to
recent instances (Stahlberg et al., 2017; Shu and
Nakayama, 2017; Blain et al., 2017), use k-best
lists from beam search for H̄(x) and to form a bi-
ased estimate of expected utility. Eikema and Aziz
(2020) use unbiased samples from the model for
both approximations: i) they follow the generative
story in Equation (1) to obtain N independent sam-
ples y(n) , a procedure known as ancestral sampling
(Robert and Casella, 2010); then, ii) for a hypothe-

sis h, they compute an MC estimate of µu(h;x, θ):

µ̂u(h;x,N)
MC
:=

1

N

N∑

n=1

u(y(n), h) , (4)

which is unbiased for any sample size N . Eikema
and Aziz (2020) use the same N samples as candi-
dates and approximate Equation (3) by

yN-by-N := argmax
h∈{y(1),...,y(N)}

µ̂u(h;x,N) . (5)

We note that the candidates do not need to be ob-
tained using ancestral sampling, and investigate
alternative strategies in Section 5.4. It is impor-
tant, however, to use ancestral samples to obtain an
unbiased estimate of expected utility as we show
in Section 5.1. We call this class of MBR algo-
rithms using unbiased MC estimation instances of
sampling-based MBR decoding.

3 Coarse-to-Fine MBR Decoding

A big disadvantage of MBRN-by-N is that it requires
N2 assessments of the utility function. If U is an
upperbound on the time necessary to assess the
utility function once, then MBRN-by-N runs in time
O(N2×U). For a complex utility function, this can
grow expensive even for a modest hypothesis space.
As NMT distributions have been shown to be high
entropy (Ott et al., 2018; Eikema and Aziz, 2020),
the quadratic cost prevents us from sufficiently ex-
ploring the space of translations. Therefore, we
investigate and propose more flexible algorithms.

An important property of sampling-based MBR
decoding is that MC estimation of expected utility,
Equation (4), and approximation of the hypothesis
space in Equation (5) really are two independent
approximations. Tying the two is no more than a de-
sign choice that must be reconsidered. We start by
obtaining N translation candidates from the model,
which will form the hypothesis space H̄(x). Then,
we use any number S < N of ancestral samples
for approximating expected utility in Equation (4).3

We call this version MBRN-by-S, which takes time
O(N × S × U). Compared to MBRN-by-N, this
variant is able to scale to much larger hypothesis
spaces H̄(x). In practice, however, robust MC esti-
mation for the utility of interest may still require S
that is too large for the N we are interested in.

An idea that we explore in this work is to make
use of a proxy utility that correlates with the target

3In practice, for efficiency we will use a fixed set of S
samples to estimate expected utility for each candidate.
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src Convercent erhielt $10 Millionen bei der Finanzierung im Februar von Firmen wie Sapphire Ventures und Tola Capital, womit das gesamte Kapital auf $47
Millionen angehoben wurde.

ref Convercent raised $10 million in funding in February from firms such as Sapphire Ventures and Tola Capital, bringing its total capital raised to $47 million.

Figure 2: Motivation for coarse-to-fine MBR. We sort 300 candidates sampled from the model along the x-axis
from best to worst according to a robust MC estimate (using 1,000 samples) of expected BEER under the model.
Left: feasible MC estimates (5 samples) of each candidate’s expected BEER. Right: robust and inexpensive MC
estimates (100 samples) of expected utility w.r.t. a simpler metric (skip-bigram F1). As estimates are stochastic, we
perform 100 repetitions and plot mean ± two deviations. We can see that the robust estimates (right) correlate fairly
well with the expensive ranking we intend to approximate (x-axis), despite of the simpler utility. As we can afford
more evaluations of the proxy utility, we obtain estimates of reduced variance, which leads to safer pruning.

utility but is cheaper to compute. Even when those
do not correlate perfectly, we can make use of the
proxy utility to filter the hypothesis space to a man-
ageable size T on which we can perform robust
MC estimation of expected utility. We coin this ap-
proach coarse-to-fine MBR decoding (or MBRC2F),
which filters the hypothesis space to a manageable
size in the coarse step, and performs robust MC
estimation of expected utility in the fine step:

yC2F := argmax
h∈H̄T (x)

µ̂utarget(h;x, L) (6a)

H̄T (x) := top-T
h∈H̄(x)

µ̂uproxy(h;x, S) . (6b)

Upper-bounding the complexity of the proxy util-
ity by Uproxy, the target utility by Utarget, using S
samples for MC estimation in the coarse step (6b)
and L in the fine step (6a), the complexity of this
algorithm is O(N ×S×Uproxy +T ×L×Utarget).
MBRC2F decouples robust MC estimation (large L)
from exploration (large N ) and the cost of explo-
ration from the cost of the target utility.

As illustrated in Figure 2, we can find proxy util-
ities that correlate reasonably well with our target
utility and are able to give us a rough—but useful—
ordering of the hypothesis space. Rather than using
a proxy utility, we could use the target utility itself
in the coarse-step provided we pick a small S. This,
however, most likely leads to too high variability
in the ranking, as shown in Figure 2 (left).

4 Data, Systems and Utilities

We perform experiments on three language pairs
with varying amount of resources for training: En-

glish into and from German, Romanian and Nepali.
For German-English (de-en) we use all available
WMT’18 (Bojar et al., 2018) news data except
for Paracrawl, resulting in 5.9 million sentence
pairs. We train a Transformer base model (Vaswani
et al., 2017) until convergence and average the last
10 epoch checkpoints to obtain our final model.
We test our models on newstest2018. For
Romanian-English (ro-en) we use all available
WMT’16 (Bojar et al., 2016a) news data amount-
ing to 565k sentence pairs. We train a Transformer
base model until convergence and pick the best
epoch checkpoint according to the validation loss.
We test our models on newstest2016. Finally,
for Nepali-English (ne-en) we use the data setup by
Guzmán et al. (2019). We apply the pre-processing
step of removing duplicates as in Eikema and Aziz
(2020). This results in 235k sentence pairs. We
test our models on the FLORES test set, which is
of a widely different domain than the training data.
We mimick the training setup and models used in
Guzmán et al. (2019). In all models we disable
label smoothing, as this has been found to nega-
tively impact model fit, which would compromise
the performance of MBR (Eikema and Aziz, 2020).

For computational efficiency, we opt for non-
neural evaluation metrics for use as utility function
in MBR. BEER (Stanojević and Sima’an, 2014) is
a non-neural trained metric that has shown good
correlation with human judgements in previous
WMT metrics shared tasks (Macháček and Bojar,
2014; Stanojević et al., 2015; Bojar et al., 2016b).
In experiments shown in Table 4 in Appendix B
we found that using BEER as utility function per-
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Figure 3: Estimates of expected utility for various hy-
potheses. We plot practical estimates of expected utility
(x-axis) using either ancestral, nucleus or ‘beam’ sam-
ples against an accurate MC estimate using 1,000 ances-
tral samples. The gray line depicts a perfect estimator.

formed well at pushing translation performance
higher across a range of automatic evaluation met-
rics. We therefore use BEER as the utility of
choice in our experiments and as a consequence
will consistently report corpus-level BEER scores
of MBR translations as well. We also report Sacre-
BLEU (Papineni et al., 2002; Post, 2018a) scores
where relevant to be able to detect overfitting to the
utility and for comparison with other works.

5 Experiments

5.1 Estimation of Expected Utility
We start by motivating the importance of unbiased
estimates of expected utility using ancestral sam-
ples (i.e. sampling-based MBR). In Figure 3 we
verify the biasedness of alternatives to ancestral
sampling for this computation: nucleus sampling
(Holtzman et al., 2020) and ‘beam sampling’ (i.e.,
using k-best outputs from beam search for esti-
mating expected utility; Blain et al. (2017)). We
can see, rather clearly, that estimates using nucleus
samples or beam search bias away from expected
utility under the model, while ancestral sampling
is unbiased by design and hence should be pre-
ferred when approximating the objective function
in search. Therefore, in all experiments that follow,
we shall use ancestral samples for making unbiased
estimates of expected utility, even when different
methods are used to construct the hypothesis space.

5.2 N-by-N MBR
Now, we look into scaling MBRN-by-N. Eikema and
Aziz (2020) only explored 30 by 30 approximations
to the MBR objective. Our aim is to investigate
whether MBR decoding is indeed able to scale to
better translation performance with more computa-

Figure 4: MBRN-by-N for various sizes of N using BEER
as target utility. We report both BEER and BLEU scores.

Figure 5: MBRN-by-S: we estimate the expected utility
of N hypotheses using S samples. We show average
performance over 3 runs with 1 standard deviation. The
dashed line shows MBRN-by-N performance at N = 405.

tion. In Figure 4, we explore N from 30 to 405.4

As MBR optimises a specific utility (we use BEER),
we report translation quality along both BEER and
BLEU to detect overfitting to the metric.

We find that MBR steadily improves across lan-
guage pairs as N grows larger. BLEU scores im-
prove at a similar rate to that of BEER, showing
no signs of overfitting to the utility. This is strong
empirical evidence that sampling-based MBR has
no equivalent to the beam search curse. We see this
as an important property of a decoding objective.

5.3 N-by-S MBR

MBRN-by-N couples two approximations, namely,
tractable exploration and unbiased estimation of

4A batch size of 15 is convenient on our hardware, which
is why we work with multiples of 15 in most experiments.

10982



expected utility are based on the same N ances-
tral samples. Our aim is to learn more about the
impact of these two approximations, for which we
look into MBRN-by-S. Moreover, with less than N2

assessments of utilities per decoding, we can also
investigate larger H̄(x). We explore N ranging
from 210 to 1005, while keeping the number of
samples used for approximating expected utility of
each hypothesis smaller, with S ranging from 10 to
200. We argue that S does not need to grow at the
same pace as N , as MC estimates should stabilize
after a certain point.5 See our results in Figure 5.

We find that growing N beyong 405 improves
translation quality further, even when the estimates
of expected utility are less accurate. Increasing
S also steadily improves translation quality, with
diminishing returns in the magnitude of improve-
ment. On the other hand, smaller values of S lead
to notable deterioration of translation quality and
we note higher variance in results. For all lan-
guage pairs it is possible to improve upon the best
MBRN-by-N results by considering a larger hypoth-
esis spaces and smaller S. This experiment shows
that the two approximations can be controlled in-
dependently and better results are within reach if
we explore more. On top of that, the best setting of
MBRN-by-N takes 164,025 utility assessments per
decoding, MBRN-by-S with S = 100 brings this
number down to 100,500 for the largest N consid-
ered, while improving BEER scores on all language
pairs. We note that again increasing either N or
S generally improves translation quality in our ex-
periments. This further strengthens our previous
finding that sampling-based MBR does not seem
to have an equivalent of the beam search curse.

5.4 Choice of Hypothesis Space

While our focus thus far has been on reducing the
number of target utility calls, allowing the explo-
ration of larger H̄(x), one should also take sam-
pling time in consideration. For example, we found
that in MBRN-by-N with N = 100, sampling time
made up about 60% of the total translation time
for our setup. Therefore, it is computationally at-
tractive to construct compact H̄(x) with promising
translation candidates. Ideally, for better search in
MBR, we enumerate a set of high expected util-
ity hypotheses. Up until now we have constructed
H̄(x) using ancestral samples, following Eikema

5The standard error of the mean scales with the inverse
square root of the sample size.

and Aziz (2020). Strategies like nucleus sampling
and beam search are known empirically to produce
higher quality translations than ancestral sampling
and might therefore also enumerate outcomes that
have high expected utility. We explore ancestral
sampling, nucleus sampling and beam search. In
a hyperparameter search we found p = 0.7 for
nucleus sampling to work best. For beam search
we use a length penalty of 1.2 (ne) or 0.6 (de, ro).
We compare each strategy by the expected BEER
values of the translations generated, using accurate
estimates of expected BEER (using 1,000 samples
for MC estimation). We show results in Figure 6.

We find ancestral sampling to produce hypothe-
ses across the entire range of expected BEER
scores. Nucleus sampling and beam search gen-
erally produce translations at the higher end of
expected BEER. Therefore, these seem more suit-
able for generating effective H̄(x) at smaller N .
Nucleus sampling seems to lead to the largest pro-
portion of high expected utility translations across
language pairs. Beam search has a noticeably high
proportion of poor translations for English-Nepali,
a low-resource language pair where mode-seeking
search has been observed to be less reliable. Re-
sults in the opposite direction were similar. We
explore both nucleus sampling and beam search for
constructing H̄(x) in the next experiment, as well
as combining all three strategies together.

5.5 Coarse-to-Fine MBR
We now turn to the coarse-to-fine procedure
(MBRC2F) described in Section 3.

5.5.1 Choice of Proxy Utility
We compare various proxy utilities by their effec-
tiveness as filtering strategies in obtaining high
expected utility sets, where we again use accurate
estimates of expected utility using 1,000 samples
for MC estimation. We filter the top-20 hypothe-
ses from an initial 100 hypotheses obtained using
ancestral sampling. This ensures a high variety
of expected utilities in the initial set. We also
compare each proxy utility on their runtime per-
formance. We compare both cheap estimates of
expected BEER using either 1 or 5 samples for MC
estimation (BEER-1 and BEER-5 respectively) as
well as cheap-to-compute proxy metrics: unigram
F1 using 50 samples for MC estimation (UF-50)
and skip-bigram F1 using 50 samples for MC esti-
mation (SBF-50).6 We use expected BEER using

6Skip-bigrams are bigrams that do not enforce adjacency.
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Figure 6: Proportion plots of expected utility for 3 strategies for constructing H̄(x), using 100 translation candidates
per strategy. We estimate expected utility using 1,000 samples. Results are aggregated over 100 source sentences.

Figure 7: Comparison of proxy utilities on English to German: BEER using 1, 5 or 100 samples for MC estimation,
and unigram F1 (UF) and skip-bigram F1 (SBF) each using 50 samples for MC estimation. We use each proxy
utility to filter a top-20 from 100 ancestral samples. We show the resulting expected target utilties (BEER, an
accurate estimate) (left), as well as a runtime comparison (right). Results are aggregated over 100 source sequences.

100 samples for MC estimation (BEER-100) as a
reference point. See our results on the English-
German system in Figure 2.

We surprisingly find nearly all strategies to lead
to equally good filtered sets as BEER-100 in terms
of expected BEER of the filtered set. The only
strategy that performs slightly worse than the oth-
ers is BEER-1, which is likely too noisy to be a
reliable filtering strategy. We observed very similar
results for the other five language pairs. In terms of
runtime performance we find BEER-1 to be fastest
followed by UF-50 at a 22.2x performance increase
over BEER-100.7 In follow-up experiments, we
will use UF-50 as a proxy utility, providing high
quality filtered sets at good runtime performance.

5.5.2 Coarse-to-Fine MBR Results
In Table 1 we compare MBRC2F with MBRN-by-S
using N = 405 nucleus samples (p = 0.7) to
construct the hypothesis space. We filter the top-
T = 50 hypotheses using UF-50 as proxy utility
and use L = 100 samples for MC estimation of
the top-set, following our findings in Sections 5.5.1
and 5.3 respectively. For MBRN-by-S we set S = 13
to roughly match the amount of computation avail-
able to MBRC2F, based on a 22.2x speed-up of
UF-50 relative to BEER-100 observed in Figure 7.
We find that across language pairs MBRC2F consis-
tently outperforms MBRN-by-S showing improve-

7Our Python implementations of unigram and skip-bigram
F1 are not optimized and we deem it likely that a greater
speed-up is possible with a more efficient implementation.

ments between +0.4 and +1.1 BEER and +0.2 to
+1.9 BLEU. MBRC2F thus is effective at obtaining
higher translation quality than MBRN-by-S at the
same amount of computation available for MBR.

We also explore the effects on translation quality
of changing and combining strategies for construct-
ing H̄(x). We find that using a beam of N = 405
(using the same length penalty as in Section 5.4) to
construct H̄(x) produces better results than nucleus
sampling for most language pairs. Notably, re-
ordering a large beam considerably improves over
standard beam search decoding (using the usual
beam size of 5 (ro, ne) or 4 (de)) for all language
pairs in terms of BEER and for most language pairs
in terms of BLEU scores. Combining all strategies
for creating hypothesis spaces: ancestral sampling,
nucleus sampling and beam search leads to the best
results overall. For all language pairs both BEER
and BLEU scores either improve or remain simi-
lar. This is more empricial evidence that expected
utility is a robust and reliable criterion for picking
translations: enlarging the hypothesis space or im-
proving MC estimation under reasonable choices
of hyperparameters seemingly never unreasonably
hurts translation quality, but generally improves it.

A Multi-Reference Test Set We also test three
systems from Table 1 (NxS, C2F and beam search)
on a multi-reference test set. We use the English
to German systems trained on WMT18 news data
and translate newstest2021, which has three
separate translations for each source sentence (we
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en-de en-ro en-ne

MBR H̄ BEER BLEU BEER BLEU BEER BLEU

NxS N 64.3 38.0 54.9 21.4 38.9 3.6
C2F N +1.1 +1.9 +0.4 +0.2 +0.4 +0.2

B +0.9 +1.5 +0.5 +0.5 +0.5 +0.5
all +1.3 +2.4 +0.5 +0.4 +0.6 +0.5

BS - +0.9 +2.8 -0.1 +0.1 -0.8 +0.2

de-en ro-en ne-en

MBR H̄ BEER BLEU BEER BLEU BEER BLEU

NxS N 64.8 38.7 58.5 28.0 43.1 6.3
C2F N +0.9 +1.1 +0.5 +0.7 +0.5 +0.2

B +1.0 +1.5 +0.7 +1.2 +0.5 +0.9
all +1.0 +1.4 +0.6 +1.1 +0.8 +0.8

BS - +0.5 +1.2 -0.0 +0.8 -1.0 +0.4

Table 1: Comparing MBRN-by-S, MBRC2F and beam
search (BS) in terms of BEER and BLEU performance.
We use BEER as utility, UF-50 as proxy utility, set top-
T = 50 and use L = 100 samples for MC estimation.
We use various strategies for constructing H̄(x): 405
nucleus samples (N), the 405-best list from beam search
(B) and combining both of these along with 1,005 an-
cestral samples (all). We use S = 13 in MBRN-by-S to
mimic the computational cost of MBRC2F at N = 405.
The last row shows standard beam search performance
using a typical beam size of 4 or 5 depending on the lan-
guage. MBR results are averaged over 3 runs. Standard
deviations for BEER/BLEU scores are below 0.1/0.2
(NxS), 0.1/0.1 (C2F) and 0 (BS).

use translators A, C and D). We show results in
Table 2. We find a similar pattern to that of Table 1.
MBRC2F greatly outperforms MBRN-by-S given the
same amount of available compute (see Section 5.5)
for details). MBRC2F outperforms beam search
results in terms of BEER, but is much closer to
beam search this time in terms of BLEU.

5.6 Runtime

We measure runtime performance on hypothesis
generation, sampling for MC estimation of ex-
pected utilities and decoding time seperately for
various algorithms explored in this work on the
English to German language pair. We run all ex-
periments on an Intel Xeon Bronze 3104 Processor
and a single NVIDIA GeForce 1080Ti GPU. For
generating samples and beam search outputs we set
the batch size to as large as possible, constrained
by the available GPU memory. MBR using BEER
as utility runs on CPU, while sampling and beam
search run on GPU. We mimic the MBRN-by-N and
MBRC2F setups from Table 1 using a hypothesis
space of 405 nucleus samples. We also addition-

newstest2021 BEER BLEU

NxS 63.4 40.9
C2F 64.5 42.8

BS 63.7 43.0

Table 2: English to German MBRN-by-S and MBRC2F
results on the newstest2021 multi-reference test set.
We use N = 405 nucleus samples as hypothesis space
and use the same hyperparameters as in Table 1.

MBR hyp. generation sampling decoding

NxN 6,241s 7,739s 23,156s
NxS 6,241s 383s 746s
NxSlarge 6,241s 1,825s 5,358s
C2F 6,241s 1,825s 726s

BS - - 194s

Table 3: A runtime comparison of MBR variants and
beam search. We separate the time taken for i) hy-
pothesis generation ii) sampling (for estimation of ex-
pected utility) and iii) running the decoder itself. We use
N = 405 nucleus samples, S = 13 and Slarge = 100
ancestral samples for NxS variants, and the hyperparam-
eter settings for C2F as used in Table 1.

ally include runtime results for MBRN-by-N with
N = 405 and a more expensive MBRN-by-S variant
with S = 100 (NxSlarge). For beam search we re-
port results for a beam size of 4, as has been used
throughout the paper for this language pair. Results
are shown in Table 3. As can be seen, collecting
hypotheses and unbiased sampling makes up for a
large part of the total decoding time in MBR algo-
rithms. We do note that sampling operations are
easily parallelisable and can be split across multi-
ple GPUs when available. In terms of the decoding
time itself, we can see that we greatly reduced the
amount of computation needed to perform MBR
going from 23,156 seconds of decoding time for
MBRN-by-N to only 726 seconds of decoding time
for MBRC2F. This can be attributed to the great
reduction in number of utility calls in our proposed
approximations.

6 Related Work

In recent NMT literature MBR has started being ex-
plored either in combination with MAP decoding or
replacing it altogether. Stahlberg et al. (2017) adapt
lattice minimum Bayes risk decoding (Tromble
et al., 2008) on SMT translation lattices to be
incorporated in left-to-right beam search decod-
ing in NMT, thereby proposing a hybrid decoding
scheme. They adapt lattice MBR to work on par-
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tial hypotheses and perform beam search to find
translations that are both high probability under
the NMT model and have high expected utility un-
der the SMT model. Shu and Nakayama (2017)
also combine beam search with MBR decoding to
find low risk hypotheses, after which they re-rank
all hypotheses with MBR again. They report hav-
ing to restrict the number of hypotheses as not to
degrade the effectiveness of MBR re-ranking, a
finding that is likely due to biased estimation of
expected utility, as in our work we find that increas-
ing the number of hypotheses always improves
translation quality. Blain et al. (2017) explore the
quality of k-best lists obtained from beam search
in NMT models and find that while MAP is not a
good criterion for ranking the resulting hypotheses,
re-ranking using MBR with BEER as a utility leads
to improvements on top of standard beam search
decoding (with a small beam size), in terms of both
BLEU scores as well as human evaluation scores.
Borgeaud and Emerson (2020) approach decoding
from a voting theory perspective and derive a de-
coding strategy similar to MBR. They explore a
range of utility functions, achieving similar BLEU
scores to beam search, but showing improvements
in terms of length, diversity and human judgement.

All of the above works make use of beam search
to provide both the hypothesis space as well as to
make a biased estimate of expected utility. Eikema
and Aziz (2020) are the first work in NMT that
propose to use sampling from the model to both
make unbiased estimates of expected utility, the
importance of which we confirm in experiments,
and to form the hypothesis space. The authors only
explore MBRN-by-N, however, and never explore
hypothesis spaces larger than N = 30 samples.
We show that it is beneficial to scale MBR to much
larger hypothesis spaces and that it can be benefi-
cial to construct them using mode-seeking strate-
gies. Müller and Sennrich (2021) study the proper-
ties of the sampling-based algorithm proposed in
Eikema and Aziz (2020) and explore hypothesis
spaces up to a size of N = 100 as well as multiple
utility functions. They find that MBR decoding
outputs exhibit a similar but smaller bias towards
short translations and frequent tokens compared to
beam search, but do observe that this is dependent
on the choice of utility function. They further find
that MBR decoding mitigates spurious copying and
hallucinations under domain shift. Similar to our
work, they find that MBR decoding scales well

with larger hypothesis spaces and better estimation
of expected utility. Freitag et al. (2021) explore the
use of large hypothesis spaces and a range of util-
ities, including neural utilities, on the MBRN-by-N
approximation. They find that using BLEURT as
utility leads to significantly better translations in a
human evaluation, while producing considerably
lower probability translations.

We provide a more extensive overview of his-
torical approximations to the MBR objective as
well as an overview of alternatives for tackling the
inadequacy of the mode in Appendix A.

7 Conclusion

We have shown MBR to be a robust decision rule
for NMT that can find high quality translations.
In particular, we have found that MBR, under rea-
sonable hyperparameter choices, generally leads
to improved translation quality with more compu-
tation (i.e., searching a larger search space and/or
using more samples for more accurate MC esti-
mation). Big challenges in decoding with MBR
are constructing the hypothesis space and keeping
computational cost of estimating expected utility
tractable. We have proposed effective strategies for
both, by exploring more efficient ways of forming
the hypothesis space and proposing an approxima-
tion to MBR that is linear in the size of this hypoth-
esis space. Our coarse-to-fine MBR procedure is
able to considerably reduce the number of calls to
the utility function without compromising transla-
tion quality. We have shown that sampling-based
MBR in general can outperform beam search on all
the language pairs we explored and can continue to
improve with better and more accurate search. We
believe sampling-based MBR to be a promising, al-
beit still more expensive, alternative to beam search
decoding. Unlike beam search, where it is not ob-
vious how to further improve translation quality,
sampling-based MBR is likely to benefit from im-
provements of different aspects of the algorithm.
We believe fruitful avenues of research to be among
i) clever algorithms for constructing hypothesis
spaces, ii) more robust estimates of expected util-
ity using fewer samples, iii) use of modern neural
utilities and iv) improving the modelling capacity
of NMT systems. We hope that this work moti-
vates researchers and practitioners to make more
conscious considerations of the choice of decision
rule and that it paves the way for use of tractable
sampling-based MBR decoding in NMT.
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Limitations

This work has proposed a number of algorithms for
more efficient decoding under the minimum Bayes
risk decision rule. However, in terms of runtime
performance MBR decoding is still outperformed
by beam search. MBR will likely always be more
expensive than current applications of beam search,
in which very small beam sizes are employed, since
on top of generating translation candidates, MBR
decoding will potentially need a separate set of
samples for estimating expected utility, and per-
form additional computations in the form of utility
assessments. While this currently makes MBR
less attractive in real-time translation scenarios, we
believe that the demonstrated scalability and ro-
bustness of the decoding objective makes MBR
interesting in scenarios in which translation speed
is not the highest priority. Furthermore, continued
research into algorithmic improvements to MBR
approximations and optimized implementations of
existing algorithms may make MBR attractive in
real-time translation in the future.

MBR also relies on a utility function, a hyperpa-
rameter to the decision rule (decoding algorithm).
On the one hand, this allows us to inject some do-
main expertise into the decoding algorithm. On the
other hand, in machine translation, we do not have
a gold-standard metric that we trust to judge trans-
lation quality perfectly. This means we will have
to choose a utility that we know is suboptimal, and
may have peculiarities such as bad hypotheses that
exploit certain aspects of the utility to be ranked
unreasonably high. Nonetheless, it is unlikely that
the NMT model puts a lot of mass on such transla-
tions, reducing the likelihood of encountering such
situations. We believe there are also positives to
incorporating a utility function into the decoding
algorithm: MBR can benefit from advances in the
field of machine translation evaluation, as some
recent works have already exploited (Freitag et al.,
2021; Fernandes et al., 2022).

Finally, current MBR algorithms do not permit
incremental generation of translations. A transla-
tion hypothesis can only be assessed once it’s fully
generated by the NMT model. This is a bottleneck
to its speed and doesn’t make optimal use of the
factorisation of modern-day NMT systems. We do
think this is a promising direction for future work.
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Ondřej Bojar, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Philipp Koehn, and Christof
Monz. 2018. Findings of the 2018 conference on ma-
chine translation (WMT18). In Proceedings of the
Third Conference on Machine Translation: Shared
Task Papers, pages 272–303, Belgium, Brussels. As-
sociation for Computational Linguistics.
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A Additional Related Work

A.1 Approximations to MBR
Most instances of MBR decoding in machine trans-
lation, from the original work of Kumar and Byrne
(2004) to recent instances in NMT (Stahlberg et al.,
2017; Shu and Nakayama, 2017; Blain et al., 2017),
approximate the objective function by computing
expectations not w.r.t. the model distribution, but
rather, w.r.t. a proxy distribution. This proxy is
obtained by enumeration via beam-search of a sub-
set of the sample space (e.g., a k-best list), and
renormalisation of the probabilities of the outcomes
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in this subset. This has the undesirable effect of
exaggerating differences in probability due to un-
derestimation of the normalisation constant, and,
like MAP decoding, it over-represents pathologies
around the mode. Similarly, most prior work uses
mode-seeking search to explore a tractable subset
of the hypothesis space. Mode-seeking approxi-
mations bias the decoder towards the mode mak-
ing MBR decoding less robust to idiosyncratic out-
comes in the hypothesis space (Eikema and Aziz,
2020).This is in stark contrast with our work, where
we sample from the model to construct unbiased es-
timates of expected utility, as well as to enumerate
a tractable hypothesis space.

There are cases in statistical machine translation
(SMT) where the computation of expected utility
can be factorised along a tractable directed acyclic
graph (DAG) via dynamic programming (Tromble
et al., 2008; Zhang and Gildea, 2008; DeNero et al.,
2009; Kumar et al., 2009). In such cases, the DAG
contains a much larger subset of the sample space
than any practical k-best list, still some pruning is
necessary to construct a compact DAG containing
only the most probable outcomes. These strate-
gies are only available for models and utility func-
tions that make strong Markov assumptions. For
example, Tromble et al. (2008) and DeNero et al.
(2009) develop linearisation strategies for BLEU,
and Zhang and Gildea (2008) maximise expected
trigram counts as a proxy to BLEU proper. The
idea of utilising a proxy utility is something we
also explore in this paper, though only as an inter-
mediate step to decoding with the target utility.

In some (rarer) cases, unbiased (or asymptot-
ically unbiased) samples have been used to ap-
proximate the MBR objective and/or to reduce the
search space. For example, Stanojević and Sima’an
(2015) use ancestral sampling in MBR decoding
for permutation-trees-based reordering models, and
Arun et al. (2009) use Gibbs sampling for MBR de-
coding in phrase-based MT. Unbiased samples for
estimation of expected utility or exploration of a
tractable hypothesis space are simply not common
in machine translation. In SMT, the reason is a tech-
nical one, most SMT models are not based on a left-
to-right factorisation of the joint distribution, thus
unbiased sampling requires MCMC (DeNero et al.,
2008; Blunsom et al., 2009) or expensive adaptive
rejection sampling (Aziz et al., 2013). This limi-
tation does not extend to NMT models, but NMT
most likely simply inherited from SMT the prac-

tice of using beam-search-based approximations,
at least until the work of Eikema and Aziz (2020).

A.2 Tackling the Inadequacy of the Mode

Eikema and Aziz (2020) link the inadequacy of the
mode in NMT to the entropy of the conditional dis-
tribution, or, more precisely, to the fact that NMT
models tend to spread probability mass over large
subsets of the sample space (Ott et al., 2018). It
is plausible that strategies to concentrate proba-
bility mass (e.g., reducing entropy or pruning the
support of the model) will do so by making in-
adequate translations less probable. For example,
Forster et al. (2021) find that the inadequacy of the
mode problem does not seem to affect sequence-to-
sequence models of morphological inflection, an
essentially deterministic task, whose combinato-
rial space is built upon a smaller vocabulary (i.e.,
characters instead of sub-word units), and whose
observations are typically very short (i.e., words
rather than sentences). Peters and Martins (2021)
train sparse sequence-to-sequence models (Peters
et al., 2019) which assign zero probability to many
outcomes dramatically reducing the support of the
conditional distribution over complete sequences.
They show that sparsity leads to inadequate candi-
dates such as the empty string being pruned out of
the support. They also find that label smoothing
increases the rate at which the empty string is more
probable than the beam-search output.

Meister et al. (2020) interprets the algorithmic
approximations of beam search as an inductive
bias towards outputs with uniform information den-
sity (Jaeger and Levy, 2007). They develop vari-
ants of beam search where this preference is a tun-
able hyperparameter and show that deviating from
the mode with this type of bias can lead to im-
proved translation quality. Another way to deviate
from the mode is to augment the decoding objective
with an auxiliary model. Li and Jurafsky (2016)
re-rank a k-best list using a combination of two
model probabilities, namely, pY |X(h|x, θfwd) and
pX|Y (x|h, θbwd). They think of this as maximis-
ing the mutual information (MI) between source
and translation. The motivation is that the target-
to-source component will push against inadequate
candidates, as those are unlikely to be mapped
back to the source with high probability. Bhat-
tacharyya et al. (2021) find that 100 samples from
an NMT model contain better candidates (mea-
sured in terms of BLEU) than the output of beam
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search (an observation Eikema and Aziz (2020)
also make based on 30 samples and METEOR,
instead). They propose to rerank these samples us-
ing an energy-based model trained to order candi-
dates as sentence-BLEU would. Like these works,
sampling-based MBR decoding, can be seen as a
form of explore and rank approach, however, the
ranking function in MBR is derived from the NMT
model itself, whereas both MI- and EBM-based
re-ranking involve an auxiliary trained model. For
the EBM, in particular, in the limit of a too large
hypothesis space, the beliefs of the NMT model
are completely overwritten by the EBM. MBR, in-
stead, does not overwrite the model’s beliefs, it
re-expresses those beliefs in terms of utility.

Leblond et al. (2021) recast NMT as a reinforce-
ment learning problem and learn both a policy (i.e.,
a mechanism to explore the space of translations
one word at a time from left-to-right) and a value
function (i.e., an estimate at the expected reward
of finishing a given prefix translation). For reward
they investigate what they call privileged metrics,
which require access to references (e.g., sentence-
level BLEU), and unprivileged metrics, which do
not use references but access the source (e.g., a
quality estimation score). Compared to sampling-
based MBR, their work tightly integrates search
and value estimation, thus going beyond ranking a
fixed set of candidates. The objective function of
MBR can be thought of as an ‘unprivileged metric’
in their terminology, one that is based on the NMT
model itself (and a choice of utility). But, the pol-
icy in sampling-based MBR (i.e., the NMT model)
is not trained to be aware of the evaluation metric.

B Comparing Target Utilities

We compare a number of utility functions for use in
MBR decoding. In principle any function that mea-
sures some notion of similarity across sequences
and can be reliably assessed on the sentence-level
is suitable as a utility function for MBR. As BLEU
is the predominant automatic evaluation metric on
which translation quality is assessed, we experi-
ment with a smoothed version of BLEU (Papineni
et al., 2002) that can work on the sentence-level:
sentence-BLEU (Chen and Cherry, 2014) using the
default parameters in Post (2018b). We further try
METEOR (Denkowski and Lavie, 2011) as this
was used in Eikema and Aziz (2020) and showed

Task Utility BEER BLEU METEOR ChrF++

en-de BEER 64.3 37.0 56.6 61.3
sentence-BLEU 63.3 37.5 55.9 60.2
METEOR 62.5 33.4 57.8 60.5
ChrF++ 63.2 34.9 56.9 61.4

de-en BEER 64.9 38.0 39.3 61.0
sentence-BLEU 64.3 38.3 38.9 60.3
METEOR 63.5 36.1 39.7 59.8
ChrF++ 64.4 37.2 39.5 61.5

en-ro BEER 54.8 21.0 33.9 47.8
sentence-BLEU 54.4 21.3 40.4 47.4
METEOR 54.5 20.9 40.9 47.7
ChrF++ 54.2 20.2 40.3 48.0

ro-en BEER 58.4 27.5 32.4 52.0
sentence-BLEU 57.8 27.8 32.2 51.4
METEOR 57.5 26.6 32.9 51.5
ChrF++ 58.0 27.1 32.7 52.6

en-ne BEER 38.4 3.4 11.0 26.1
sentence-BLEU 34.9 3.0 10.9 22.7
METEOR 37.3 3.4 13.2 25.3
ChrF++ 36.8 2.6 12.3 26.6

ne-en BEER 42.7 6.0 17.0 31.2
sentence-BLEU 39.9 5.7 15.1 28.4
METEOR 40.4 4.6 17.3 30.8
ChrF++ 40.6 4.8 17.0 32.0

Table 4: Comparing BEER, sentence-BLEU, METEOR
and ChrF++ as utility functions in MBRN-by-S using
N = 405 and S = 100.

good results.8 BEER (Stanojević and Sima’an,
2014) is a character-based metric that has shown
to correlate well with human judgements in many
WMT metrics tasks (Macháček and Bojar, 2014;
Stanojević et al., 2015; Bojar et al., 2016b). Finally,
we also explore ChrF++ (Popović, 2017), another
character based metric that is an improved version
of ChrF (Popović, 2015).

We perform MBRN-by-S with N = 405 and
S = 100 in order to perform the comparisons. We
measure the performance of each utility on BEER,
BLEU, METEOR and ChrF++. Our results are
shown in Table 4. As expected, using a certain
utility achieves the best performance under the lens
of that metric as well. Sometimes we find a small
deviation from this when BEER or METEOR out-
performs sentence-BLEU in terms of BLEU score.
This is likely due to sentence-BLEU only being an
approximation to BLEU itself. We find that overall
BEER seems to do best across metrics followed
by ChrF++. One attempt to quantify this more
clearly is by normalize the scores per language pair
and evaluation metric compared to the maximum
score obtained by the best scoring system for that
metric and language pair. This leads to the follow-
ing average performances per evaluation metric:

8We use a slightly different version of METEOR than in
Eikema and Aziz (2020). We use language-specific versions
rather than a language-agnostic version used in that work.
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BEER 0.978, METEOR 0.968, ChrF++ 0.964, and
sentence-BLEU 0.955. This indeed shows a slight
edge of BEER over the other utilities tested in push-
ing scores across our evaluation metrics. Herefore,
in the main paper, we have used BEER as the utility
of choice. The finding that BEER works well as a
utility function in MBR was also made before in
the work of Blain et al. (2017).
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