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Abstract

Polysemy is the phenomenon where a single
word form possesses two or more related
senses. It is an extremely ubiquitous part of
natural language and analyzing it has sparked
rich discussions in the linguistics, psychology
and philosophy communities alike. With scarce
attention paid to polysemy in computational
linguistics, and even scarcer attention toward
quantifying polysemy, in this paper, we propose
a novel, unsupervised framework to compute
and estimate polysemy scores for words in
multiple languages. We infuse our proposed
quantification with syntactic knowledge in the
form of dependency structures. This informs
the final polysemy scores of the lexicon moti-
vated by recent linguistic findings that suggest
there is an implicit relation between syntax and
ambiguity/polysemy. We adopt a graph based
approach by computing the discrete Ollivier
Ricci curvature on a graph of the contextual
nearest neighbors. We test our framework
on curated datasets controlling for different
sense distributions of words in 3 typologically
diverse languages - English, French and
Spanish. The effectiveness of our framework is
demonstrated by significant correlations of our
quantification with expert human annotated
language resources like WordNet. We observe
a 0.3 point increase in the correlation coeffi-
cient as compared to previous quantification
studies in English. Our research leverages
contextual language models and syntactic
structures to empirically support the widely
held theoretical linguistic notion that syntax
is intricately linked to ambiguity/polysemy.

https://github.com/agoel00/
polysemy

1 Introduction

Polysemy is a phenomenon prevalent in everyday
language use where the same lexical unit (or word
form) is associated with multiple distinct yet re-
lated meanings (or senses). Determining which
words are polysemous can help in filtering data for

linguist studies, creation of sense corpora and the
anthropological study of language. Consider the
following sentences:

1a His aunt is his legal guardian.

2a The dog would always bark at mailmen.

2b The tree’s bark was rusty brown.

3a The mouth of the wine was dry.

3b I have three mouths to feed.

3c You can see the mouth of the river from here.

Polysemy is distinct from monosemy (a word
form with only one meaning; 1a) and homonymy
(multiple unrelated senses of the same word form;
2a-b). The polysemous senses of a word often have
metonymic (3a-b) or metaphorical (3c) relations
among them (Vicente and Falkum, 2017). Poly-
semy is a central feature of natural languages and
proliferates almost every word to varying degrees
in the lexicon of a language. Attempts (Pianta-
dosi et al., 2012) at explaining the presence of am-
biguity1 in language suggest that polysemy is a
desirable property for language systems since it al-
lows efficient communication by allowing simpler
units to be reused. Ambiguity and polysemy have
sparked debate among linguists and philosophers
for decades but relatively little attention has been
paid to analyze and measure polysemy in language
by computational linguists. While a human listener
is easily able to disambiguate the specific sense of
the word being used in context, it is notoriously
difficult for NLP systems to separate the distinct
senses of a word being used (Yenicelik et al., 2020).

Recently, there has been widespread attention on
including syntactic knowledge in various computa-
tional linguistic systems and studies - ranging from

1In the context of this paper, we use ambiguity and poly-
semy of a word form interchangeably.

10565

https://github.com/agoel00/polysemy
https://github.com/agoel00/polysemy


syntax aware language models (Zhou et al., 2020)
to syntax informed sentiment analysis (Hou et al.,
2021). Recent works have identified (Čech et al.,
2017) an intricate link between the syntactic prop-
erties of a lexical unit and its ambiguity (or lack
thereof) since the meaning of a word is influenced
by its syntactic as well as semantic context. The
fact that most open class word forms are associated
with multiple related senses hints at the possible
role that syntax plays in influencing polysemy. Syn-
tactic structures can constrain the possible contexts
a word form may be used in, thus there is an im-
plicit relation between the semantics of a lexical
unit and its associated polysemy. Motivated by
these recent linguistic findings, we operationalize
the polysemy of a word form as being influenced
by both - its semantic variability and its importance
in the syntactic network.

The level of polysemy a word possesses is highly
subjective and varies widely across annotators (Art-
stein and Poesio, 2008). To aid annotators in cre-
ating, validating and qualitatively analysing sense
inventories, having an estimate of the ambiguity a
word possesses could be very helpful. This mea-
sure then acts as a proxy to how many (or how few)
senses a word in a certain language possesses. A
quantification of polysemy is also helpful in Infor-
mation Retrieval systems as they can be used to
rank more relevant results (Krovetz, 1997). Pol-
ysemic knowledge can also help improve cross-
lingual alignment of embedding spaces and cross-
lingual transfer (Garí Soler and Apidianaki, 2021).

While recent contextual embedding models like
BERT, XLM and RoBERTa have been shown to
possess the ability of distinguishing between dif-
ferent senses of a word (Garí Soler and Apidianaki,
2021), less attention has been paid towards quanti-
fying the level of polysemy that a word represents
- a measure which is continuous and can be com-
pared across lexica. Attempts at quantifying poly-
semy either rely on large amounts of data (Pimentel
et al., 2020) and/or on carefully tuned hyperparam-
eters and embedding distortion due to dimension-
ality reduction of the contextual space of language
models (Xypolopoulos et al., 2021).

We operationalize polysemy of a word form
as a quantity influenced by its contextual seman-
tic neighbors and its syntactic role in a syntactic
network. In particular, we construct a contextual
nearest-neighbor graph of lexical units using a pre-
trained language model like BERT (Devlin et al.,

bank1 bank2
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Figure 1: An illustrative example of Ricci curvature.
The red edge (more negative) acts as a bridge connect-
ing two distinct neighborhoods (distinct senses of the
word bank) while the blue edge (more positive) is an
edge within the same neighborhood (sense cluster of the
monosemous word proton).

2019). We leverage the discrete Ricci curvature
(Ni et al., 2015) measure defined on graph edges
as an indicator of ambiguity of a word form. The
Ricci curvature can be used to determine edge roles
like bridge, cliques, etc. in a graph as illustrated in
Figure 1. Additionally, we construct a syntactic net-
work for the (ambiguous) word form based on the
dependency trees of the randomly sampled contexts
in which the word has occurred. This network acts
as another linguistic signal guiding the polysemy
measure. We rely on the ability of pretrained lan-
guage models to distinguish between word senses
(Garí Soler and Apidianaki, 2021) and the power
of graph entropy methods to identify syntactic im-
portance of word forms in the syntactic network.
We propose a syntax-aware and fully unsupervised
approach leveraging the discrete Ollivier-Ricci cur-
vature of a graph to quantify the polysemy of a
word. Our contributions can be summarized as
follows:

• We propose an approach which is fully un-
supervised and parameter-free. To the best
of our knowledge, we are the first to intro-
duce a polysemy quantification method that
leverages syntactic signals in the form of de-
pendency trees.

• We show the effectiveness of network based
approaches in linguistic research investigating
polysemy and validate previous findings on
the relationship between syntax and polysemy.

• We test our method on a set of typologically
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diverse languages - English, French and Span-
ish and find significant correlations.

The rest of the paper is organized as follows.
Section §2 discusses the background on ambiguity
in linguistics and related topics. Mathematical pre-
liminaries and the proposed method are detailed in
Section §3 and Section §4 respectively. Section §5
discusses the implementation, data, experimental
setup and the results. Limitations and future work
are discussed in Section §6.

2 Background & Related Work

Lexical Ambiguity Ambiguity of language has
been addressed as early as in the writings of Aris-
totle but relatively recent linguistic research in
the form of Zipf’s Principle of Least Effort (Bain,
1950) heralded a new understanding of human cog-
nition and language systems positing the tradeoff
between efficiency and brevity in communication
systems (Piantadosi et al., 2012). Polysemy is a
natural outcome of lexical semantic change (Bréal,
1904) by virtue of words gaining new meanings
over time.

Recent works in computational linguistics for
ambiguity mostly deal with word sense disambigua-
tion (Pasini et al., 2021; Wiedemann et al., 2019),
word-in-context tasks (Pilehvar and Camacho-
Collados, 2019) and analyzing polysemy in lan-
guage models like BERT (Garí Soler and Apidi-
anaki, 2021). While some previous works (Erk and
McCarthy, 2009; Friedrich et al., 2012) acknowl-
edge polysemy even in particular instances, rela-
tively less attention has been paid towards quantify-
ing polysemy using current NLP tools. (Pimentel
et al., 2020) measure ambiguity in language from
an information-theoretic lens but their approach
requires a large number of sentences to give a good
upper bound on ambiguity estimates. (Xypolopou-
los et al., 2021) leveraged contextual language mod-
els like BERT to estimate polysemy but they rely
on dimensionality reduction and sensitive hyperpa-
rameters.

Works like (Reif et al., 2019; Haber and Poesio,
2021) have explored the geometry of BERT em-
beddings and their relation to polysemy levels thus
highlighting the importance of neural embeddings
in the quantification of polysemy levels of lexicons.

Lexical Substitution Lexical substitution is the
task of finding relevant contextual replacements of
a word given its context. To generate good qual-
ity contextual replacements, previous works have

relied heavily on distributional semantic models
like word2vec (Mikolov et al., 2013) and special-
ized language models like context2vec (Melamud
et al., 2016). In all models, the generated substi-
tutes are ranked based on some relation with the
target word to be replaced. Recent advances in
language models like the Transformer-based BERT
(Devlin et al., 2019) and XLNet (Yang et al., 2020)
rely on the bidirectional context and the special
[MASK] token based training to generate contex-
tual substitutes. (Zhou et al., 2019) showed that
BERT performs poorly on lexical substitution and
proposed a dropout based approach which is even
more computationally expensive due to the large
number of forward passes required. Supervised
approaches (Lacerra et al., 2021) often rely on man-
ually curated databases and sense inventories like
WordNet, Wikipedia or BabelNet. (Arefyev et al.,
2020) is a recent neural lexical substitution method
which injects information about the target word
in the form of probability distribution of possible
word subtitutes based on word frequencies.

Graphs and NLP Traditional works in linguis-
tics have used language networks and graphs for
analyzing morphological complexity (Inglese and
Brigada Villa, 2021), ambiguity (Čech et al., 2017)
and phonetics (Yamshchikov et al., 2020). Recent
advances in Graph Neural Networks (GNNs) has
opened new avenues to apply network based ap-
proaches to language problems. While language
networks have been analysed before, GNNs pro-
vide an alternative to traditional methods with more
natural inductive biases for syntactic models to
work with. The combination of graphs and lan-
guage models has proved to be effective in incorpo-
rating semantics and syntax in language problems
(Marcheggiani and Titov, 2020; Ahmad et al., 2021;
Xu et al., 2021).

3 Preliminaries

3.1 Notations

Given a set of vertices V and set of edges E ⊆
V×V , an undirected graph is defined as G = (V, E).
For each node v ∈ V , N (v) denotes the set of its 1-
hop neighbors and kv = |N (v)| denotes its degree.

3.2 Ricci Curvature

Traditionally, curvature is the geometric character-
istic that measures how flat or curved an object
is. The discrete Ollivier Ricci curvature (Ni et al.,
2015) is the coarse graph generalization of curva-
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ture measures usually defined on smooth surfaces
or manifolds. For u, v ∈ V , mu and mv are proba-
bility measures of total mass 1 each centered at u
and v respectively. The Wasserstein (Earth Mover)
distance W (mu,mv) finds the optimal transporta-
tion plan ξ between probability distributions mu

and mv.

W (mu,mv) = inf
ξ

∫ ∫
d(u, v)dξ(u, v) (1)

It gives a metric to measure the minimum amount
of work required to transform one probability dis-
tribution into another. The Ricci curvature thus
becomes

κuv = 1− W (mu,mv)

d(u, v)
(2)

where d(u, v) is the number of edges in the shortest
path between u and v.

Based on (Lin et al., 2011), we define the prob-
ability measure on node v ∈ V with α ∈ [0, 1] as:

mα
v (vi) =





α if vi = v

(1-α)/kv if vi ∈ N (v)

0 otherwise

(3)

We use α = 0.5 based on previous literature
since it assigns equal weights to the node and its
neighbors. The edge Ricci curvature acts as an
indicator of the importance and structural role of an
edge in a graph. It is representative of the intrinsic
geometry and local topology of the edges in a graph.
This property of the discrete Ricci curvature has
been used to analyze the geometry of the Internet
topology (Ni et al., 2015), Graph Neural Networks
(Luo et al., 2021) and community detection (Sia
et al., 2019).

4 Proposed Approach

In this section, we introduce our proposed approach
to quantify polysemy as illustrated in Figure 2.

4.1 Semantic Module
Given a word w and its list of sentences (contexts
where it occurs), S = {s1, s2, · · · , sk}, we con-
sider each instance of the word w in its correspond-
ing sentence si as a separate lemma wi. For exam-
ple, if we have two contexts for the word bank: 1) I
went to the bank1 to deposit money, and 2) Flowers
grow along the river bank2, we consider bank1 and
bank2 as two separate lemmas during the graph
construction.

We add each instance wi of the word as a node
to a graph G and pass each sentence si ∈ S through
a lexical substitution system (Arefyev et al., 2020)
to retrieve the top contextual neighbors Ck of the
word wi, adding an edge between the nearest neigh-
bor word cik ∈ Ck and the lemma wi. The lexical
substitution model gives the most appropriate con-
textual replacement of a word in the input sentence,
thus we can derive the semantic neighbors of a
word given its context which renders the construc-
tion of the graph G possible.

We now efficiently compute the Ricci curvature
on each edge of the graph G based on the linear pro-
gramming method introduced by (Ni et al., 2015)
and Equations 2 and 3:

min
∑

y∈V
∑

x∈V d(x, y)ρxym
α
u(x),

s.t. 0 ≤ ρxy ≤ 1 ∀x, y ∈ V,∑
y∈V ρxy = 1 ∀x ∈ V,∑
x∈V ρxym

α
u(x) = mα

v (y) ∀y ∈ V,
(4)

where ρ is the transportation plan matrix.
For the graph G, we now have the edge feature

matrix E ∈ RE×1. Based on the intuition that
negative edges act as bridge across clusters, we
hypothesize that negatively curved edges connect
distinct senses of the same word w. We derive the
negative edges normalized by total edges in the
graph as:

P1 =
|E−|
|E| (5)

where |E−| is the number of negative edges in the
graph. This formulation describes the variation of
the curved edges in the graph. While we describe
here a ratio-based definition of P1, it can also be
operationalised as the variation of edge weights in
the graph, with similar results.

4.2 Syntactic Module
For the given word w and its list of contexts, we
derive the syntactic dependency trees of each sen-
tence si ∈ S. Note that, here we do not make any
distinctions between the instances of the word w
unlike in the case of the Semantic Module. The
obtained dependency trees are converted to their
corresponding adjacency matrix A with Aij = 1
if there is a dependency relation between tokens
i and j. Each adjacency matrix corresponding to
each sentence si can be converted to an unweighted,
undirected graph Di.

We then construct a single, global syntactic
graph D = {D1

⋃
D2 · · ·

⋃
Dk} where

⋃
is
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1. You can see the mouth of
the river from here. 

2. I have three mouths to
feed.

Lexical Substitution
Model

Semantic Neighbors
GraphSemantic Module, A

Syntactic Module, B

(a) Semantic graph
construction

(b) Ricci curvature
computation

(c) Graph Union
(d) Graph Entropy

Graph with node
entropy values

Figure 2: Proposed Approach for Polysemy Quantification. The set of contexts of the polysemous word is passed
through: the Semantic Module (A) and the Syntactic Module (B). In the semantic module, (a) a contextual semantic
graph is constructed with the help of a lexical substitution model and (b) Ricci curvature is computed on the graph
edges. In the syntactic module, (c) dependency trees of the input sentences are constructed and combined in a global
syntactic network using the Graph Union operator, and (d) the graph entropy is computed on the syntactic network.
Both semantic (A) and syntactic (B) modules are then combined to derive the final measure of polysemy.

the graph union operator, i.e., for two graphs
G1 = (V1, E1) and G2 = (V2, E2), G1

⋃
G2 =

(V1
⋃
V2, E1

⋃
E2). The global syntactic graph D

contains tokens as nodes and edges as syntactic
dependencies between the tokens. It thus repre-
sents the syntactic relations between input word
w and the tokens of contexts. Based on ideas pro-
posed by previous work (Čech et al., 2017) that
syntactic relations influence polysemy of words
across languages, we utilize the relations encoded
in this graph as a signal to our polysemy measure.
Inspired by recent advances in graph signal process-
ing (Wijesinghe et al., 2021; Nouranizadeh et al.,
2021; Luo et al., 2021), we compute the node en-
tropy of the word w to quantify the importance of
a node as a function of its structure.

The adjacency matrix A of the global graph D =
(V,E) contains first order links of the graph. We
define A2 = ATA to study second order links.
D represents the degree vector of the graph. We
define Dr as the normalized degree vector which
contains information about first and second order
links.

Dr = DTA2
r (6)

Here A2
r is the normalized second order adjacency

matrix defined as,

A2
r [i, j] =

A2[i, j]∑
j A

2[i, j]
(7)

Here, A2[i, j] is the i-th row and j − th column of

the second order adjacency matrix.
Following principles of information theory, the

entropy of a node, x is thus defined as

P2 = H(x) = −Px logPx

= − Dr[x]∑
xDr[x]

log
Dr[x]∑
xDr[x]

(8)

4.3 Polysemy Quantification
To derive the quantification for polysemy, we com-
bine Equations 5 and 8 as:

P = P1 · P2

P =
H(x) · |E−|

|E|
(9)

We thus derive the final measure of polysemy as
desrcibed in Equation 9. This operationalization of
polysemy in a graph-based measure incorporates
syntactic signals as well as semantic structural vari-
ation.

5 Experiments

In this section, we first describe the data used in the
current study (§5.1) followed by a description of
the flow of the proposed approach (§5.2). Next we
describe the evaluation metrics used (§5.3) and the
implementation details of the current study (§5.4).
Finally, we discuss the results of the proposed ap-
proach (§5.5) and perform an ablation study of in-
vestigating the individual contribution of semantics
and syntax towards polysemy (§5.6).
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5.1 Data

We utilize the data introduced by (Garí Soler and
Apidianaki, 2021). Sentences were sampled from
SemCor 3.0 (Miller et al., 1993) dataset controlling
for sense distributions in polysemous words that
occur at least ten times in the corpus. For each
polysemous word, we have 2 sets of sentences:

• Random senses (poly-rand): Randomly sam-
pling 10 sentences which captures the natural
distribution of the senses of a word.

• Balanced senses (poly-bal): 10 sentences of
the word containing distinct senses. This is a
controlled setting where the variation in the
senses of the word is maximized.

The original English dataset is composed of 836
polysemous words, and their corresponding 8,195
unique sentences. For French and Spanish, the
sentences are taken from the Eurosense corpus
(Delli Bovi et al., 2017) which contains texts from
Europarl automatically annotated with BabelNet
word senses (Navigli and Ponzetto, 2012). In
the multilingual corpus, we have 418 polysemous
words.

We use the Frequency and Random baselines as
described by (Xypolopoulos et al., 2021). In the
frequency baseline, words are ranked in decreasing
order of their frequency in the Wikipedia dump.
The random baseline assigns scores by sampling
from a Log Normal distribution.

5.2 Setup

We pass each sentence in the sentence pool (poly-
bal or poly-rand) through the semantic module
(§4.1) to get a contextual nearest neighbor graph
and compute P1 (Equation 5) via the Ricci cur-
vature. Parallel to this, the sentences are also
passed through the syntactic module (§4.2) to build
a global syntactic network to compute P2 (Equa-
tion 8). Finally, based on Equation 9, we compute
the polysemy score for the input word.

5.3 Evaluation

Following previous literature in polysemy quan-
tification (Xypolopoulos et al., 2021), we utilised
Spearman correlation as our evaluation metric. We
also perform significance tests of the correlation
across all languages tested.

5.4 Implementation Details

We use the Stanford Stanza library (Qi et al., 2020)
to build the dependency trees of sentences. We
use the author’s implementation of LexSubGen
(Arefyev et al., 2020) as the lexical substitution
module in our framework. To compute the Ricci
curvature on graphs, we used the implementation
based on (Ni et al., 2015).2 All other code is writ-
ten in PyTorch and uses Huggingface Transformers
library (Wolf et al., 2020).

We use language-specific models for each of the
language tested in our study. For English we use
the state-of-the-art Lexical Substitution system de-
scribed by (Arefyev et al., 2020). For languages
other than English, we rely on the Masked Lan-
guage Model prediction of the model which has
been shown to be effective for lexical substitution
by (Qiang et al., 2021). We use bert-base-uncased
(Devlin et al., 2019) for English, flaubert-base-
uncased (Le et al., 2020) for French and bert-base-
spanish-wwm-uncased (Cañete et al., 2020). We
compare our results with the model based on di-
mensionality reduction and multiresolution grids
on the reported hyperparameters proposed by (Xy-
polopoulos et al., 2021).

5.5 Results

In this section, we discuss the results of the pro-
posed quantification measure. We assume the num-
ber of senses of a word in the WordNet is a good
representative of the ambiguity it possesses (Pi-
mentel et al., 2020) and calculate its correlation
with our proposed metric. Prior work like Xy-
polopoulos et al. (2021) have used WordNet as
ground truth and empirically demonstrated that
WordNet, WordNet-reduced and domain-specific
WordNet all produce highly similar polysemy rank-
ings despite the different sense granularities they
have. Hence we report our results on the classic
WordNet data. Henceforth, we refer to the ap-
proach proposed by (Xypolopoulos et al., 2021)
as D2L8.

In Table 1, we observe that our measure shows
higher significant correlations with the WordNet
rankings on English data. For poly-rand setting,
where the natural sense distribution of a word is
captured, we observe an increment of 0.3 points in
the correlation as compared to the D2L8 baseline
which is based on the notion of multiresolution

2https://github.com/saibalmars/
GraphRicciCurvature
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Method poly-bal poly-rand
Random 0.11 0.15
Frequency 0.18 0.20
(Garí Soler and Apidianaki, 2021) 0.29 0.32
D2L8 0.30 0.27
Ours 0.62 0.60

Table 1: Spearman correlation of WordNet senses and polysemy scores on English data. Our approach improves the
correlation by 0.3 points over D2L8. Numbers in bold are statistically significant (p < 0.05)

grids where volume is approximated hierarchical
discretization of the embedding space (Nikolentzos
et al., 2017). The poly-bal data is a controlled
setting where the number of contexts is balanced.
Although the baseline was described to work on
randomly sampled sentences in English, we apply
it to the controlled setting where it achieves a much
better correlation of 0.3 and comparable to ours.

French Spanish

D2L8 Ours D2L8 Ours

poly-bal 0.48 0.45 0.48 0.62
poly-rand 0.19 0.43 0.14 0.20

Table 2: Spearman correlation of the proposed polysemy
quantification with WordNet number of senses across
different languages.

We apply our measure in a cross-lingual setting
to measure polysemy across 2 diverse languages
other than English - French and Spanish. We also
extend the baseline D2L8 to our cross-lingual set-
ting.3 Table 2 reports the Spearman correlations of
the number of senses of a word in the Multilingual
WordNet (Bond and Paik, 2012) of the language
with our proposed quantification. We observe sig-
nificant correlations across all languages and all
settings (poly-bal and poly-rand). The poly-bal
data setting shows consistently strong correlations
as compared to poly-rand setting which is quite
intuitive due to the carefully controlled sense dis-
tribution in poly-bal sentences. We note here that
since we only take 10 sentences in each context
pool (poly-bal and poly-rand), it is a highly con-
strainted setting as compared to previous works
(Xypolopoulos et al., 2021; Pimentel et al., 2020)
which randomly sampled greater than 10,000 sen-
tences for each word. Our motivation behind taking
this constrained approach is to enable our method
to perform even for low-resource languages.

3https://github.com/ksipos/
polysemy-assessment

5.6 Ablation study

We perform an ablation study in order to investi-
gate the individual contribution of Semantic and
Syntactic Module. In Table 3, we report the Spear-
man correlations of polysemy measure taken from
each module with the English WordNet rankings.

Syntax Module Semantic Module

poly-bal 0.28 0.33
poly-rand 0.48 0.46

Table 3: Spearman correlation of individual measures
from syntax and semantic modules with English Word-
Net ground truth rankings.

We observe that both semantic and syntactic
module are positively correlated with the number of
senses a word possesses. This result validates pre-
vious findings linking syntax and polysemy (Čech
et al., 2017). These results suggest that studies
in ambiguity should investigate syntax along with
semantics of an utterance.

5.7 Error Analysis

Since we rely on a lexical substitution module
(Arefyev et al., 2020), the errors in this model
might propagate into the final score. For exam-
ple, in some cases, the substitution model fails
to generate enough number of word substitutions
given the context, thus resulting in a sparse graph
where Ricci curvature might not be a good metric
to compute polysemy.

In some cases, the model also generates varia-
tions of the same semantic word, home and homes,
which can further reduce the important signals re-
quired for the model to compute a good polysemy
score.

6 Discussion

Since our method aims to quantify the tendency
of a word to have more meanings, words assigned
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higher values are assumed to be more polysemous.
While this operationalisation does not explicitly
allow for the discovery of new polysemy relations,
we observe, for example, that “accord” (6 ground
truth senses) is assigned a higher polysemy score
relative to a word like “maximum” (4 ground truth
sense). This case is interesting since WordNet pro-
vides very similar ratings for both while our method
accentuates the difference between the two, intu-
itively, giving “accord” much higher score.

Conclusion In this study, based on previous lin-
guistic evidence, we posit that including syntactic
information in the form of dependency structural
knowledge can help in the quantification of lexical
ambiguity or polysemy of a wordform. To investi-
gate this, we propose a simple operationalization
of polysemy based on the Ricci curvature of the
contextual nearest neighbors graph of a word and
the entropy of its combined syntactic network.

We show that our proposed measure shows high
correlations with number of word senses in Word-
Net across multiple languages. Our approach is
fully unsupervised, simple and grounded in pre-
viously established linguistic theories. We hope
that similar graph-based approaches can help in
creation and validation of sense inventories across
languages.

Limitations Our work acts as a proxy for the
ambiguity of a word form and the scores are con-
tinuous but it does not quantify the discrete counts
of the senses of a word. We rely on the availability
of good quality language-specific language mod-
els which can be used as the lexical substitution
model in the Semantic Module. Any errors in the
language model may propagate into our score.

We tested our framework on sentences sampled
from the SemCor 3.0 dataset which is a good re-
source for sense analysis in NLP but is naturally
limited to sentences in formal English. A lack of
diversely sourced corpora for a study in polysemy
may limit the generalizability of a quantification
measure to other domains.

Future Work We leave the utility of polysemy
quantification to improve extrinsic tasks Word
Sense Disambiguation or Word In Context for fu-
ture work. We hope that works in polysemy quan-
tification also lead to interesting linguistic analyses
about the nature of ambiguity in natural languages
and the relationship between syntactic information
like Part-Of-Speech Tags and polysemy scores of
word units.

Ethical Considerations

This study investigates polysemy and its quantifica-
tion with the help of graph algorithms and language
models which can be useful to many disciplines in
the NLP and linguistics community. We are aware
of the fact that any biases of the language model
may creep into the proposed approach.
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