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Abstract

Relation extraction has the potential for large-
scale knowledge graph construction, but cur-
rent methods do not consider the qualifier at-
tributes for each relation triplet, such as time,
quantity or location. The qualifiers form hyper-
relational facts which better capture the rich
and complex knowledge graph structure. For
example, the relation triplet (Leonard Parker,
Educated At, Harvard University) can be fac-
tually enriched by including the qualifier (End
Time, 1967). Hence, we propose the task of
hyper-relational extraction to extract more spe-
cific and complete facts from text. To support
the task, we construct HyperRED, a large-scale
and general-purpose dataset. Existing models
cannot perform hyper-relational extraction as
it requires a model to consider the interaction
between three entities. Hence, we propose Cu-
beRE, a cube-filling model inspired by table-
filling approaches and explicitly considers the
interaction between relation triplets and qual-
ifiers. To improve model scalability and re-
duce negative class imbalance, we further pro-
pose a cube-pruning method. Our experiments
show that CubeRE outperforms strong base-
lines and reveal possible directions for future
research. Our code and data are available at
github.com/declare-lab/HyperRED.

1 Introduction

Knowledge acquisition is an open challenge in arti-
ficial intelligence research (Lenat, 1995). The stan-
dard form of representing the acquired knowledge
is a knowledge graph (Hovy et al., 2013), which
has broad applications such as question answering
(Yih and Ma, 2016; Chia et al., 2020) and search
engines (Xiong et al., 2017). Relation extraction
(RE) is a task that has the potential for large-scale
and automated knowledge graph construction by
extracting facts from natural language text. Most
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    Head Entity    Relation Label    Tail Entity    Qualifier Label    Value Entity

Leonard Parker received his PhD from Harvard University in 1967.

Educated At

Academic 
Degree

End Time

Legend

Extracted Facts:
(Leonard Parker, Educated At, Harvard University, End Time, 1967)
(Leonard Parker, Educated At, Harvard University, Academic Degree, PhD)

Figure 1: A sample from our HyperRED dataset for the
proposed task of hyper-relational extraction.

relation extraction methods focus on binary rela-
tions (Bach and Badaskar, 2007) which consider
the relationship between two entities, forming a re-
lation triplet consisting of the head entity, relation
and tail entity respectively.

However, knowledge graphs commonly contain
hyper-relational facts (Guan et al., 2019) which
have qualifier attributes for each relational triplet,
such as time, quantity, or location. For instance,
Wen et al. (2016) found that the Freebase knowl-
edge graph contains hyper-relational facts for 30%
of entities. Hence, extracting relation triplets may
be an oversimplification of the rich and complex
knowledge graph structure. As shown in Figure 1,
a relation triplet can be attributed to one or more
qualifiers, where a qualifier is composed of a quali-
fier label and value entity. For example, the relation
triplet (Leonard Parker, Educated At, Harvard
University) can be factually enriched by specify-
ing the qualifier of (End Time, 1967), forming the
hyper-relational fact (Leonard Parker, Educated
At, Harvard University, End Time, 1967).

Hyper-relational facts generally cannot be sim-
plified into the relation triplet format as the qual-
ifiers are attributed to the triplet as a whole and
not targeted at a specific entity in the triplet. Fur-
thermore, attempting to decompose the hyper-
relational structure to an n-ary format would lose
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the original triplet information and be incompatible
with the knowledge graph schema (Rosso et al.,
2020). On the other hand, hyper-relational facts
have practical benefits such as improved fact ver-
ification (Thorne et al., 2018) and representation
learning for knowledge graphs (Galkin et al., 2020).
Thus, it is necessary to extract relation triplets to-
gether with qualifiers to form hyper-relational facts.

In this work, we propose the task of hyper-
relational extraction to jointly extract relation
triplets with qualifiers from natural language sen-
tences. To support the task, we contribute a general-
purpose and large-scale hyper-relational extraction
dataset (HyperRED) which is constructed through
distant supervision (Mintz et al., 2009) and partially
refined through human annotation. Our dataset dif-
fers from previous datasets in two distinct ways: (1)
Compared to existing datasets for binary relation
extraction (Zhang et al., 2017; Han et al., 2018),
HyperRED enables richer information extraction
as it contains qualifiers for each relation triplet in
the sentence. (2) While datasets for n-ary relation
extraction (Jia et al., 2019) are restricted to the
biomedical domain, HyperRED covers multiple do-
mains and has a hyper-relational fact structure that
is compatible with the knowledge graph schema.

Unfortunately, to the best of our knowledge,
there are no existing models for hyper-relational
extraction. Currently, a popular end-to-end method
for binary relation extraction is to cast it as a table-
filling problem (Miwa and Sasaki, 2014). Gener-
ally, a two-dimensional table is used to represent
the interaction between any two individual words
in a sentence. However, hyper-relational extraction
requires the model to consider the interactions be-
tween two entities in the relation triplet, as well as
the value entity for the qualifier. Thus, we extend
the table-filling approach to a third dimension, cast-
ing it as a cube-filling problem. On the other hand,
a naive cube-filling approach faces two issues: (1)
Computing the full cube representation is computa-
tionally expensive and does not scale well to longer
sequence lengths. (2) The full cube will be sparsely
labeled with a vast majority of entries as negative
samples, causing the model to be biased in learning
(Li et al., 2020) and hence underperform.

To tackle these two issues, we propose a simple
yet effective cube-pruning technique that filters the
cube entries based on words that are more likely
to constitute valid entities. Our experiments show
that cube-pruning significantly improves the com-

putational efficiency and simultaneously improves
the extraction performance by reducing the nega-
tive class imbalance. In addition to our cube-filling
model which we refer to as CubeRE, we also in-
troduce two strong baseline models which include
a two-stage pipeline and a generative sequence-to-
sequence (Sutskever et al., 2014) model.

In summary, our main contributions include: (1)
We propose the task of hyper-relational extraction
to extract richer and more complete facts by jointly
extracting each relation triplet with the correspond-
ing qualifiers; (2) To support the task, we provide
a large-scale and general-purpose dataset known
as HyperRED. (3) As there is no existing model
for hyper-relational extraction, we propose a cube-
filling model known as CubeRE, which consistently
outperforms baseline extraction methods.

2 HyperRED: A Hyper-Relational
Extraction Dataset

Our goal is to construct a large-scale and general-
purpose dataset for extracting hyper-relational facts
from natural language text. However, it is seldom
practical to assume to have an ample amount of
high-quality labeled samples in real applications,
especially for complex tasks such as information
extraction. Hence, we propose a weakly supervised
(Craven and Kumlien, 1999) data setting which en-
ables us to collect a larger and more diverse training
set than would be otherwise possible. To minimize
the effect of noisy samples in evaluation, we then
perform human annotation for a portion of the col-
lected data and allocate it as the held-out set. In the
following sections, we first introduce the process of
collecting the distantly supervised data, followed
by the human-annotated data portion.

2.1 Distantly Supervised Data Collection

To collect a large and diverse dataset of sentences
with hyper-relational facts, we employ distant su-
pervision which falls under the weakly supervised
setting. Distant supervision automatically collects
a dataset of relational facts by aligning a text corpus
with facts from an existing knowledge graph. Simi-
lar to Elsahar et al. (2018), we first extract and link
entities from the corpus to an existing knowledge
graph, and resolve any coreference cases to the pre-
viously linked entities. To align hyper-relational
facts from the knowledge graph to the text corpus,
we detect if the entities that comprise each fact are
also present in each sentence. Each sentence with
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Type Proportion Example Sentence Hyper-Relational Facts

Time 48% Tennyson was an ASCAP member from 1950. (Tennyson, member of, ASCAP, start time, 1950)

Quantity 19% Szewczyk played 37 times for Poland, scoring (Szewczyk, member of sports team, Poland, number of matches played, 37)
3 goals. (Szewczyk, member of sports team, Poland, number of points, 3)

Role 12% John Sculley is a former Apple CEO. (John Sculley, employer, Apple, position held, CEO)

Part-Whole 11% The Ohio Senate is the upper house of the Ohio (Ohio, legislative body, Ohio General Assembly, has part, Ohio Senate)
General Assembly, the Ohio state legislature.

Location 9% Donner was elected at the 1931 election as (Donner, candidacy in election, 1931 election, electoral district, Islington West)
Conservative MP for Islington West.

Table 1: General typology and distribution of frequent qualifier labels for the HyperRED dataset, shown with
example sentences and the corresponding hyper-relational facts.

aligned facts is collected as part of the distantly su-
pervised dataset. To ensure that the large-scale text
corpus can be well-aligned with the knowledge
graph, we perform distant supervision between
English Wikipedia and Wikidata (Erxleben et al.,
2014), which is the central knowledge graph for
Wikipedia. Following Elsahar et al. (2018), we use
the introduction sections of Wikipedia articles as
the text corpus as they generally contain the most
important information.

Entity Extraction and Linking The distant su-
pervision process relies on matching entities in a
sentence with facts from the knowledge graph. To
detect and identify the named entities in the arti-
cles, we use the DBpedia Spotlight (Mendes et al.,
2011) entity linker. For the extraction of temporal
and numerical entities, we use the spaCy 1 tool.

Coreference Resolution As Wikipedia articles
often use pronouns to refer to entities across sen-
tences, it is necessary to resolve such references.
We employ the Stanford CoreNLP tool (Manning
et al., 2014) for this task.

Hyper-Relational Alignment To extend the dis-
tant supervision paradigm to hyper-relational facts,
we jointly match based on the entities that com-
prise each hyper-relational fact. Formally, let
f = (ehead, r, etail, q, evalue) be a possible hyper-
relation fact consisting of the head entity, relation,
tail entity, qualifier label and value entity, respec-
tively. Given a corpus of text articles, each article
contains a set of sentences {si, ..., sn}, where each
sentence si has Ei entities that are linked to the
knowledge graph. For each hyper-relational fact f
in the knowledge graph, it is aligned to the sentence
si if the head entity ehead, tail entity etail and value
entity evalue are all linked in the sentence. Hence,
we obtain a set of aligned facts for each sentence:
{(si, f) | ehead ∈ Ei, etail ∈ Ei, evalue ∈ Ei}.

1https://spacy.io

Following Riedel et al. (2010), we remove any sen-
tence that does not contain aligned facts.

2.2 Human-Annotated Data Collection

Although distant supervision can align a large
amount of hyper-relational facts, the process can in-
troduce noise in the dataset due to possible spurious
alignments and incompleteness of the knowledge
graph (Nickel et al., 2016). However, it is not fea-
sible to completely eliminate such noise from the
dataset due to the annotation time and budget con-
straints. Hence, we select a portion of the distantly
supervised data to be manually labeled by human
annotators. To provide a solid evaluation setting for
future research works, the human-annotated data
will be used as the development and testing set. We
include the development set in the annotated por-
tion as it is necessary for hyperparameter tuning
and model selection.

The goal of the human annotation stage is to
identify correct alignments and remove invalid
alignments. During the process, the annotators
are tasked to review the correctness of each aligned
fact, where an aligned fact consists of the sentence
si and hyper-relational fact f . The alignment may
be invalid if the relation triplet of the fact is not se-
mantically expressed in the sentence, based on the
Wikidata relation meaning. For instance, given the
sentence “Prince Koreyasu was the son of Prince
Munetaka who was the sixth shogun.”, the relation
triplet (Prince Koreyasu, Occupation, shogun) is
considered invalid as the sentence did not explic-
itly state if “Prince Koreyasu” became a shogun.
Similarly, the alignment may be invalid if the qual-
ifier of the fact is not semantically expressed in the
sentence, based on the Wikidata definition of the
qualifier label. For example, given the sentence
“Robin Johns left Northamptonshire at the end of
the 1971 season.”, the hyper-relational fact (Robin
Johns, member of sports team, Northamptonshire,
Start Time, 1971) has an invalid qualifier as the
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Dataset #Train #Dev #Test #Facts |R| |Q|
TACRED 37,311 10,233 6,277 68,586 41 0
NYT24 56,196 5,000 5,000 17,624 24 0
NYT29 63,306 7,033 4,006 18,479 29 0
HyperRED 39,840 1,000 4,000 44,372 62 44

Table 2: Comparison of existing sentence-level datasets
with HyperRED. “#Fact” denotes the unique facts, |R|
and |Q| denote the unique relation labels and qualifier
labels, respectively. To our knowledge, HyperRED is
the first RE dataset to include hyper-relational facts.

label should be changed to “End Time”. Hence, the
annotation is posed as a multi-class classification
over each alignment with three classes: “correct”,
“invalid triplet” or “invalid qualifier”. Appendix A
has the annotation guide and data samples.

Each alignment sample is annotated by two pro-
fessional annotators working independently. There
are 6780 sentences annotated in total and the inter-
annotator agreement is measured using Cohen’s
kappa with a value of 0.56. The kappa value is com-
parable with previous relation extraction datasets
(Zhang et al., 2017), demonstrating that the annota-
tions are of reasonably high quality. For each sam-
ple with disagreement, a third annotator is brought
to judge the final result. We observe that 76% of
samples are annotated as “correct”, which indicates
a reasonable level of accuracy in the distantly super-
vised data. To reduce the long-tailed class imbal-
ance (Zhang et al., 2019), we use a filter to ensure
that all relation and qualifier labels have at least
ten occurrences in the dataset. Although it can be
more realistic to include challenging samples such
as long-tailed class samples or negative samples in
the dataset, we aim to address such challenges in a
future dataset version release.

2.3 Data Analysis
To provide a better understanding of the HyperRED
dataset, we analyze several aspects of the dataset.

Qualifier Typology The qualifiers of the hyper-
relational facts can be grouped into several broad
categories as shown in Table 1. Notably, the ma-
jority of the qualifiers fall under the “Time” cat-
egory, as it can be considered a fundamental at-
tribute of many facts. The remaining qualifiers are
distributed among the “Quantity”, “Role”, “Part-
Whole” and “Location” categories. Hence, the
HyperRED dataset is able to support a diverse ty-
pology of hyper-relational facts.

Size and Coverage The statistics of HyperRED
are shown in Table 2. We find that in terms of size

and number of relation types, HyperRED is com-
parable to existing sentence-level datasets, such as
TACRED (Zhang et al., 2017), NYT24 and NYT29
(Nayak and Ng, 2020). Table 1 also demonstrates
that HyperRED can serve as a general-purpose
dataset, covering several domains such as business,
sports and politics. Appendix C has more details.

3 CubeRE: A Cube-Filling Approach

3.1 Task Formulation

Hyper-Relational Extraction Given an input
sentence of n words s = {x1, x2, ..., xn}, an
entity e is a consecutive span of words where
e = {xi, xi+1, ..., xj}, i, j ∈ {1, ..., n}. For each
sentence s, the output of a hyper-relational extrac-
tion model is a set of facts where each fact consists
of a relation triplet with an attributed qualifier. A re-
lation triplet consists of the relation r ∈ R between
head entity ehead and tail entity etail where R is
the predefined set of relation labels. The qualifier
is an attribute of the relation triplet and is com-
posed of the qualifier label q ∈ Q and the value
entity evalue, where Q is the predefined set of qual-
ifier labels. Hence, a hyper-relational fact has five
components: (ehead, r, etail, q, evalue).

Cube-Filling Inspired by table-filling ap-
proaches which can naturally perform binary
relation extraction in an end-to-end fashion, we
cast hyper-relational extraction as a cube-filling
problem, as shown in Figure 2. The cube contains
multiple planes where the front-most plane is a
two-dimensional table containing the entity and
relation label information, while the following
planes contain the corresponding qualifier informa-
tion. Each entry on the table diagonal represents a
possible entity, while each entry outside the table
diagonal represents a possible relation triplet. For
example, the entry “Educated At” represents a
relation between the head entity “Parker” and the
tail entity “Harvard”. Each table entry ytij can
contain the null label ⊥, an entity or relation label,
i.e., ytij ∈ Y t = {⊥,Entity} ∪R.

The following planes in the cube represent the
qualifier dimension, where each entry represents a
possible qualifier label and value entity word for
the corresponding relation triplet. For instance, the
entry “Academic Degree” in the qualifier plane for
“PhD” corresponds to the relation triplet (Parker,
Educated At, Harvard), hence forming the hyper-
relational fact (Parker, Educated At, Harvard, Aca-
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demic Degree, PhD). Each qualifier entry yqijk can
contain the null label ⊥ or a qualifier label, i.e.,
yqijk ∈ Y q = {⊥} ∪Q. Note that the cube-filling
formulation also supports hyper-relational facts
that share the same relation triplet, as the different
qualifiers can occupy separate planes in the qual-
ifier dimension and still correspond to the same
relation triplet entry.

3.2 Model Architecture
Our model known as CubeRE first encodes each
input sentence using a language model encoder to
obtain the contextualized sequence representation.
We then capture the interaction between each pos-
sible head and tail entity as a pair representation
for predicting the entity-relation label scores. To
reduce the computational cost, each sentence is
pruned to retain only words that have higher entity
scores. Finally, we capture the interaction between
each possible relation triplet and qualifier to predict
the qualifier label scores and decode the outputs.

3.2.1 Sentence Encoding
To encode a contextualized representation for each
word in a sentence s, we use the pre-trained BERT
(Devlin et al., 2019) language model:

{h1, h2, ..., hn} = BERT({x1, x2, ..., xn}) (1)

where hi denotes the contextualized representation
of the i-th word in the sentence.

3.2.2 Entity-Relation Representation
To capture the interaction between head and tail
entities, we concatenate each possible pair of
word representations and project with a dimension-
reducing feed-forward network (FFN):

gij = FFNpair(hi ⊕ hj) (2)

Thus, we construct the table of categorical proba-
bilities over entity and relation labels by applying
an FFN and softmax over the pair representation:

P (ŷtij) = Softmax(FFNt(gij)) (3)

where ŷtij denotes the predicted table entry corre-
sponding to the relation between the i-th possible
head entity word and j-th possible tail entity word.
Note that we use the concatenation operation in
Equation 2 instead of the averaging operation or
other representation methods (Baldini Soares et al.,
2019) as the concatenation operation is simple and
shown to be effective in recent RE works (Wang
et al., 2021a; Wang and Lu, 2020).
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Parker received his PhD from Harvard
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received
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Figure 2: An example of cube-filling for hyper-
relational extraction. The front-most plane is a two-
dimensional table that contains entity and relation infor-
mation. It extends to the third dimension where each
plane represents a possible qualifier label and value en-
tity word that corresponds to the relation triplet entry.

3.2.3 Cube-Pruning
To predict the qualifier of a hyper-relational fact,
the model needs to consider the interaction between
each possible relation triplet and value entity, where
the relation triplet contains a head entity and a tail
entity. For a sentence with n words, there are n3

interactions that do not scale well for longer in-
put sequences. Hence, we propose a cube-pruning
method to consider only interactions between the
top m words in terms of entity score. Consequently,
the model will only consider the interaction be-
tween the top-m most probable words of the po-
tential head entities, tail entities, and value entities
respectively. This reduces the number of interac-
tions to m3 where m is a fixed hyperparameter.
The cube-pruning method also has the benefit of al-
leviating the negative class imbalance by reducing
the proportion of entries with the null label, and
we analyze this effect in Section 5.1. To detect the
most probable entity words, we obtain the respec-
tive entity scores from the diagonal of the table ŷt

containing the entity and relation scores (i.e., the
front-most plane in Figure 2):

Φentity
i = P (ŷtii), i ∈ {1, ..., n} (4)

The entity scores are then ranked to obtain the
pruned indices {1, ...,m} which will be applied
to each dimension of the cube representation.
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To capture the hyper-relational structure between
relation triplets and qualifier attributes, we use a
bilinear interaction layer between each possible
pair representation and word representation. The
categorical probability distribution over qualifier
labels for each possible relation triplet and value
entity is then computed as:

P (ŷqi′j′k′) = Softmax(g⊺i′j′ U hk′) (5)

where i′, j′, k′ ∈ {1, ...,m} are the pruned indices
and U is a trainable bilinear weight matrix.

3.2.4 Training Objective
The training objective for the entity-relation table
is computed using the negative log-likelihood as:

Lt = − 1

n2

n∑

i=1

n∑

j=1

logP (ŷtij) (6)

The training objective for the qualifier dimension
is computed using the negative log-likelihood as:

Lq = − 1

m3

m∑

i′=1

m∑

j′=1

m∑

k′=1

logP (ŷqi′j′k′) (7)

To enable end-to-end training, the overall cube-
filling objective is aggregated as the sum of losses:

L = Lt + Lq (8)

3.2.5 Decoding
To decode the hyper-relational facts from the pre-
dicted scores, we implement a simple and efficient
method and provide the pseudocode in Appendix D.
As it is intractable to consider all possible solutions,
a slight drop in decoding accuracy is acceptable.
A key intuition is that if a valid qualifier exists,
this indicates that a corresponding relation triplet
also exists. Hence, we first decode the qualifier
scores (Equation 5) to determine the span positions
of the head entity, tail entity and value entity in
each hyper-relational fact. Consequently, we can
determine the relation and qualifier label from the
corresponding entries in the relation scores (Equa-
tion 3) and qualifier scores respectively.

To handle entities that may contain multiple
words, we consider adjacent non-null qualifier en-
tries to correspond to the same head entity, tail
entity, and value entity, hence belonging to the
same hyper-relational fact. This assumption holds
true for 97.14% of facts in the dataset. To find
and merge the adjacent non-null entries, we use the

nonzero operation which is more computationally
efficient compared to nested for-loops. For each
group of adjacent entries that correspond to the
same hyper-relational fact, we determine the rela-
tion label by averaging the corresponding relation
scores. Similarly, we determine the qualifier la-
bel by averaging the corresponding qualifier scores.
When using cube-pruning, we map the pruned in-
dices back to the original indices before decoding.
Appendix E has the model speed comparison.

4 Experiments

4.1 Experimental Settings

Evaluation Similar to other information extrac-
tion tasks, we use the Micro F1 metric for evalu-
ation on the development and test set. For a pre-
dicted hyper-relational fact to be considered correct,
the whole fact f = (ehead, r, etail, q, evalue) must
match the ground-truth fact in terms of relation
label, qualifier label and entity bounds.

Hyperparameters For the encoding module, we
use the BERT language model, specifically the un-
cased base and large versions. We train for 30
epochs with a linear warmup for 20% of training
steps and a maximum learning rate of 5e-5. We
employ AdamW as the optimizer and use a batch
size of 32. For model selection and hyperparame-
ter selection, we evaluate based on the F1 on the
development set. We use m = 20 for cube-pruning
and Appendix B has more experimental details.

4.2 Baseline Methods

As there are no existing models for hyper-relational
extraction, we introduce two strong baselines that
leverage pretrained language models. The pipeline
baseline is based on a competitive table-filling
model for joint entity and relation extraction, while
the generative baseline is extended from a state-of-
the-art approach for end-to-end relation extraction.

Pipeline Baseline As pipeline methods can serve
as strong baselines for information extraction tasks
(Zhong and Chen, 2021), we implement a pipeline
method for hyper-relational extraction. Concretely,
we first train a competitive relation extraction
model architecture UniRE (Wang et al., 2021a)
to extract relation triplets from each input sentence.
Separately, we train a span extraction model based
on BERT-Tagger (Devlin et al., 2019) that is condi-
tioned on the input sentence and a relation triplet
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Model Parameters Dev Test

Precision Recall F1 Precision Recall F1

Generative Baseline (Base) 140M 63.79 ± 0.27 59.94 ± 0.68 61.80 ± 0.37 64.60 ± 0.47 59.67 ± 0.35 62.03 ± 0.21
Pipeline Baseline (Base) 132M 69.23 ± 0.30 58.21 ± 0.57 63.24 ± 0.44 69.00 ± 0.48 57.55 ± 0.19 62.75 ± 0.29
CubeRE (Base) 115M 66.14 ± 0.88 64.39 ± 1.23 65.24 ± 0.82 65.82 ± 0.84 64.28 ± 0.25 65.04 ± 0.29

Generative Baseline (Large) 400M 67.08 ± 0.49 65.73 ± 0.78 66.40 ± 0.47 67.17 ± 0.40 64.56 ± 0.58 65.84 ± 0.25
CubeRE (Large) 343M 68.75 ± 0.82 68.88 ± 1.03 68.81 ± 0.46 66.39 ± 0.96 67.12 ± 0.69 66.75 ± 0.65

Table 3: Evaluation results for hyper-relational extraction on the HyperRED dataset.

to extract the value entities and corresponding qual-
ifier label. However, as both stages fine-tune a pre-
trained language model, the pipeline method dou-
bles the number of trainable parameters compared
to an end-to-end method which only fine-tunes one
pretrained language model. To avoid an unfair com-
parison as larger models are more sample-efficient
(Kaplan et al., 2020), we use DistilBERT (Sanh
et al., 2019) in both stages of the pipeline.

Generative Baseline Inspired by the flexibility
of language models for complex tasks such as in-
formation extraction and controllable structure gen-
eration (Shen et al., 2022), we propose a generative
method for hyper-relational extraction. Compared
to a pipeline method, a generative method can
perform hyper-relational extraction in an end-to-
end fashion without task-specific modules (Paolini
et al., 2021). Similar to existing generative methods
for relation extraction (Huguet Cabot and Navigli,
2021; Chia et al., 2022), we use BART (Lewis et al.,
2020) which takes the sentence as input and out-
puts a structured text sequence that is then decoded
to form the extracted facts. For instance, given
the sentence “Parker received his PhD from Har-
vard.”, the sequence-to-sequence model is trained
to generate “Head Entity: Parker, Relation: edu-
cated at, Tail Entity: Harvard, Qualifier: academic
degree, Value: PhD.” The generated text is then
decoded through simple text processing to form the
hyper-relational fact (Parker, Educated At, Harvard,
Academic Degree, PhD).

4.3 Main Results

We compare CubeRE with the baseline models
and report the precision, recall, and F1 scores
with standard deviation in Table 3. The results
demonstrate the general effectiveness of our model
as CubeRE has consistently higher F1 scores on
both the base and large model settings. While the
pipeline baseline relies on a two-stage approach
that is prone to error propagation, CubeRE can per-
form hyper-relational extraction in an end-to-end
fashion. Hence, CubeRE is able to detect more

Model Precision Recall F1

Generative Baseline 69.96 ± 0.31 64.56 ± 0.21 67.15 ± 0.09
Pipeline Baseline 75.94 ± 0.66 66.41 ± 0.72 70.85 ± 0.13
CubeRE 72.45 ± 0.66 69.64 ± 0.53 71.01 ± 0.16

Table 4: Evaluation results on HyperRED considering
only the triplet component of hyper-relational facts.

valid hyper-relational facts, which is demonstrated
by the higher recall and F1 scores. Compared to
the generative baseline, our cube-filling approach
is able to explicitly consider the interaction be-
tween relation triplets and qualifiers to better ex-
tract hyper-relational facts. Furthermore, we argue
that CubeRE is more interpretable than the genera-
tive baseline as it can compute the score for each
possible relation triplet and qualifier. Hence, Cu-
beRE can also be more controllable as it is possible
to control the number of predicted facts by applying
a threshold to the triplet and qualifier scores.

4.4 Triplet-Based Evaluation

To further investigate the differences in model per-
formance, we also report the results when consider-
ing only the triplet component of hyper-relational
facts in Table 4. The results show that CubeRE
has comparable performance to the pipeline base-
line when considering only relation triplets. Hence,
this suggests that the performance improvement
in hyper-relational extraction is most likely due to
more accurate qualifier extraction. Compared to the
pipeline baseline which has two separate encoders
for triplet extraction and conditional qualifier ex-
traction, CubeRE learns a shared representation of
the input sentence that is guided by both the triplet
and qualifier losses facilitating the interaction be-
tween relation triplets and qualifiers. The triplet-
qualifier interaction is important as most qualifier
labels are relatively relation-specific2. This allows
CubeRE to extract the qualifiers more accurately,
resulting in better overall performance.

2Please refer to Appendix C for the qualifier analysis.
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Figure 3: The effect of pruning threshold m on Dev F1.
The model without pruning is indicated as m = ∞.

5 Analysis

In this section, we study the effect of cube-pruning
and identify directions for future research. Further
analysis is shown in Appendix F.

5.1 Effect of Pruning
In addition to improving the computational effi-
ciency of CubeRE as discussed in Section 3.2.3,
our cube pruning method may also improve the ex-
traction performance of the model. During training,
the cube-filling approach faces the issue of having
mostly null entries, thus biasing the learning pro-
cess with negative class imbalance (Li et al., 2020).
By pruning the cube to consider only the entries
associated with higher entity scores, the propor-
tion of null entries is reduced, hence alleviating
the class imbalance issue. This is supported by the
trend in Figure 3, as relaxing the pruning thresh-
old m leads to reduced F1 scores. On the other
hand, overly strict pruning will reduce the recall,
negatively affecting the overall performance.

5.2 Model Performance Breakdown
To identify directions for future research in hyper-
relational extraction, we analyze the model perfor-
mance separately for each general qualifier cate-
gory. As shown in Table 4, there is a variance in
model performance across qualifier categories that
cannot be fully explained by their proportion in the
dataset. For instance, although the “Time” cate-
gory comprises a majority of the qualifiers, it does
not have the highest performance. This suggests
that future research may focus on areas such as
temporal reasoning, which is an open challenge for
language models (Vashishtha et al., 2020; Dhingra
et al., 2022). In addition, CubeRE demonstrates
strong performance across all categories which sug-
gests that it can serve as a general extraction model
for different qualifiers.

6 Related Work

Knowledge Graph Construction In addition to
extraction from natural language text, the under-

Time Quantity Role Part-Whole Location

60

80

100

F
1

(%
)

Generative Baseline
Pipeline Baseline
CubeRE

Figure 4: Model performance breakdown based on the
general categories of qualifiers as shown in Table 1.

lying facts for knowledge graphs can also be ex-
tracted from semi-structured websites (Lockard
et al., 2018), tables (Dong et al., 2020) or link
prediction (Wang et al., 2017). However, textual
extraction may be a more pressing challenge due
to the vast amount of unstructured textual data on
the web (Lockard et al., 2020). Hence, this work
focuses on extracting facts from unstructured text.

Relation Extraction Although relation extrac-
tion is a well-established task, most methods
only consider the relation between two entities.
There have been several directions to extract more
complex facts, such as n-ary relation extraction
or document-level relation extraction (Yao et al.,
2019). However, n-ary relation extraction (Jia
et al., 2019; Akimoto et al., 2019) has a limited
scope as the available datasets address the biomed-
ical domain. On the other hand, document-level
(Tan et al., 2022a) and cross-document relation
extraction (Yao et al., 2021) are fundamentally lim-
ited by the binary relation structure which does
not consider hyper-relational information. Al-
though dialogue-level relation extraction (Chen
et al., 2020) may have a more complex structure
consisting of utterances and speaker information,
current datasets (Welleck et al., 2019) focus on the
binary relation format. Hence, we propose to
fill the gap by contributing HyperRED, a general-
purpose and large-scale dataset for hyper-relational
extraction that is not limited to any specific domain.

Information Extraction In this work, we fo-
cus on relation extraction which falls under the
broad scope of information extraction (Bing et al.,
2015). Hence, a possible future direction is to
adapt CubeRE for extracting other types of infor-
mation such as attributes (Bing et al., 2013), events
(Wang et al., 2021b), arguments (Cheng et al., 2020,
2022), aspect-based sentiment (Xu et al., 2021;
Yu Bai Jian et al., 2021), commonsense knowledge
(Ghosal et al., 2021), or visual scene relations (An-
drews et al., 2019). Additionally, as HyperRED
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relies on distant supervision for dataset construc-
tion, it is necessary to further explore how to miti-
gate the noise in distantly supervised datasets for
information extraction tasks (Nayak et al., 2021).

Table-Filling Table-Filling is a popular approach
for entity and relation extraction tasks (Miwa and
Sasaki, 2014; Gupta et al., 2016; Zhang et al.,
2017). It has several advantages including inter-
pretability and an end-to-end formulation. Hence,
table-filling approaches are able to avoid the cas-
cading error propagation faced by pipeline models,
despite a compact parameter set. Inspired by the
benefits of table-filling, we extend the approach to
cube-filling to extract hyper-relational facts by con-
sidering qualifiers for each relation triplet. To our
knowledge, our proposed model is the first cube-
filling approach for information extraction tasks.

7 Conclusions

In this work, we propose the hyper-relational ex-
traction task for extracting richer and more com-
plete facts from natural text. To support the task,
we introduce HyperRED, a large-scale and general-
purpose dataset that is not restricted to any spe-
cific domain. As there is no available model for
hyper-relational extraction, we propose an end-to-
end cube-filling approach inspired by table-filling
methods for relation extraction. We further propose
a cube-pruning method to reduce computational
cost and alleviate negative class imbalance during
training. Experiments on HyperRED demonstrate
the effectiveness of CubeRE compared to strong
baselines, setting the benchmark for future work.

Limitations

Model Limitations Regarding the CubeRE
model, we propose a cube-pruning method to im-
prove the computational efficiency and reduce the
negative class imbalance. The cube-pruning thresh-
old is fixed, although the input can have different
sentence lengths. Hence, it may result in overly
strict pruning if the sentence is extremely long.
However, the pruning threshold is similar to the
maximum sequence length in most transformer-
based models and may need to be tuned according
to the specific dataset or application scenario. The
optimal cube-pruning threshold is selected based
on the analysis in Section 5.1. CubeRE may not
work well for overlapping or nested entity spans,
which affects 2.11% of the sentences. This can

be considered a general limitation of table-filling
methods for relation extraction, and future work
may need to consider a span-based approach (Xu
et al., 2021) to address this issue.

Data Limitations Regarding the HyperRED
dataset, the distant supervision method of data col-
lection may not align all valid facts present in the
text articles. This is due to the possible incomplete-
ness of the knowledge graph which is an open re-
search challenge (Nickel et al., 2016). On the other
hand, it is not feasible to manually annotate all
possible facts due to constraints in annotation time
and cost. Furthermore, there are a large number of
relation and qualifier labels to consider, resulting in
a challenging task for human annotators. A promis-
ing and practical method to address the challenges
in distant supervision is to adopt a human-in-the-
loop annotation scheme for RE (Tan et al., 2022b).
The annotation scheme can increase the number of
facts in a dataset by training a RE model to predict
more candidate facts for each text article, which
are then reviewed and filtered by humans. How-
ever, this model-assisted annotation approach is
not applicable to the construction of HyperRED
as it relies on existing strong RE models, whereas
there are no suitable models for hyper-relational
extraction existing prior to this work.

Ethics Statement

Model Ethics Regarding the model generaliza-
tion, we expect that the models introduced should
perform similarly for factual text articles such as
news articles from various domains, similar to the
proposed dataset. However, it may not perform
well for more casual text formats such as chat dis-
cussions or opinion pieces. On the other hand, we
note that the models extract hyper-relational facts
from the input sentences and do not guarantee the
factual correctness of the extracted facts. This is an
ethical consideration of RE models in general and
further fact verification (Nie et al., 2019) modules
are necessary before the facts can be integrated into
knowledge graphs or downstream applications.

Data Ethics For the dataset construction, we col-
lect texts and facts from Wikipedia and Wikidata
respectively, which is a common practice for dis-
tantly supervised datasets. Wikidata facts are un-
der the public domain3 while Wikipedia texts are

3https://www.wikidata.org/wiki/Wikidata:Licensing
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licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License4. Hence, we
are free to adapt the texts to construct our dataset,
which will also be released under the same license.
For the human data annotation stage, we employ
two professional data annotators, and they have
been fairly compensated. The compensation is ne-
gotiated based on the task complexity and assess-
ment of the reasonable annotation speed. Based
on the agreed annotation scheme, each annotation
batch is required to undergo quality checking where
a portion of samples are manually checked. If any
batch does not meet the acceptance criteria of 95%
accuracy, the annotators are required to fix the er-
rors before the batch can be accepted. The overall
quality of the dataset is evaluated in Section 2.1
and Section 2.2, and we analyze the dataset char-
acteristics in Section 2.3, with further analysis in
Section F.

4https://en.wikipedia.org/wiki/Wikipedia:Copyrights
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A Annotation Guide

This section explains the guideline for human anno-
tators. The task is a classification of whether each
hyper-relational fact can be reasonably extracted
from a piece of text. Each annotation sample con-
tains one sentence and one corresponding fact for
judgment. The annotator should classify each sam-
ple as “Correct” or “Invalid Triplet” or “Invalid
Qualifier”. Each hyper-relational fact has five com-
ponents with the format (head entity, relation label,
tail entity, qualifier label, value entity). The head
entity is the main subject entity of the relationship.
The relation label is the category of relationship
that is expressed between the head and tail entity.
The tail entity is the object entity of the relationship
that is paired with the head entity. The qualifier
label is the category of the qualifier information.
The value entity is the corresponding value of the
qualifier that is applied to the relation triplet (head,
relation, tail).

The value entity can contain a date, quantity, or
short piece of text which is the mentioned name of
the entity. For the annotation objective, we want to
know whether this piece of information is clearly
expressed by the given text. All the entities, rela-
tions, and qualifiers exist in the Wikidata database,
so annotators can refer to the relation or qualifier
definition at https://www.wikidata.org for clarifica-
tion. The annotation steps are as follows:

1. Read and understand the text sample which is
a continuous sequence of words. Then, con-
sider the corresponding hyper-relational fact.

2. First check the triplet (head, relation, tail)
of the fact. If the head and tail entity men-
tioned in the text do not clearly express the
relation’s meaning, then the whole fact should
be marked as “Invalid Triplet”.

3. Check the (qualifier, value) components. If the
value mentioned in the text does not clearly
express the qualifier meaning or is not directly
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Data Setting Annotation Type Sentences Facts Entities Average Sentence Length Average Entity Length

Train Distant-Supervised 39,840 39,978 32,539 31.91 words 1.67 words
Dev Human Annotated 1,000 1,220 1,912 30.30 words 1.71 words
Test Human Annotated 4,000 4,796 5,842 30.06 words 1.69 words

Table 5: Detailed statistics for the HyperRED dataset.

related to the triplet, then the fact should be
marked as “Invalid Qualifier”.

4. If there is no error in the fact, then it can be
marked as “Correct”.

For example, given the sentence “The film’s
story earned Leonard Spigelgass a nomination as
Best Story for the 23rd Academy Awards.”, the fact
(Leonard Spigelgass, nominated for, Best Story,
statement is subject of, 23rd Academy Awards) is
correct as Leonard was nominated and the main
topic is the Academy Awards. However, given the
sentence “Prince Koreyasu was the son of Prince
Munetaka who was the sixth shogun.”, the fact
(Prince Koreyasu, occupation, shogun, replaces,
Prince Munetaka) has an invalid triplet as we
don’t know if Koreyasu became a shogun. On
the other hand, given the sentence “Robin Johns
left Northamptonshire at the end of the 1971 sea-
son.”, the fact (Robin Johns, member of sports
team, Northamptonshire, Start Time, 1971) has
an invalid qualifier as the qualifier label should be
“End Time” instead of “Start Time”.

B Experiment Details

Hyperparameters Table 8 shows the details of
our experimental setup and model hyperparame-
ters. For the analysis experiments in Section 5,
we use the BERT-Base version of CubeRE and re-
port the F1 metric score on the development set of
HyperRED unless otherwise stated in the specific
subsection.

Pipeline Baseline Details For the pipeline base-
line, we use DistilBERT as the language model
encoder for both the triplet extraction and condi-
tional qualifier extraction stages. Both stages of the
pipeline are fine-tuned separately on the gold labels.
At inference time, the triplet extraction stage takes
the sentence as input and outputs the predicted rela-
tion triplets. For each predicted relation triplet, the
conditional qualifier extractor takes the sentence
and the relation triplet as input to predict the possi-
ble qualifiers where each qualifier consists of the

qualifier label and value entity. The input of the
qualifier extraction model is the concatenated sen-
tence and relation triplet. For example, the sentence
“Leonard Parker received his PhD from Harvard
University in 1967.” and relation triplet (Leonard
Parker, Educated At, Harvard University), will be
concatenated to become ‘Leonard Parker received
his PhD from Harvard University in 1967. Leonard
Parker | Educated At | Harvard University”. The
outputs of both stages are then merged to form
the predicted hyper-relational facts. Following the
BERT-Tagger, the conditional qualifier extraction
model is trained using the crossentropy loss for
sequence labeling. To encode the qualifier infor-
mation as sequence labels, we use the BIO tagging
scheme where the sequence label corresponds to
the possible qualifier label for each entity word.
For both stages which are trained separately, we
use the same epochs, learning rate and batch size
as the CubeRE model for fairness.

Generative Baseline Details The generative
baseline model can predict hyper-relational facts by
learning to generate a text sequence with a special
structured format as demonstrated in Section 4.2.
Note that if the sentence contains multiple hyper-
relational facts, the desired output sequence is sim-
ply the concatenated text sequence of the structured
text for each fact. The multiple facts can be eas-
ily decoded from the structured text format with
simple text processing such as regex. As the input
and output of the model are text sequences which
do not violate the model vocabulary, the generative
baseline can be trained using a standard sequence-
to-sequence modeling objective. For training, we
use the same epochs, learning rate and batch size
as the CubeRE model for fairness.

C Dataset Details

Dataset Statistics Table 5 shows the detailed
statistics of HyperRED, such as the number of
unique facts and entities, as well as the average
number of words in each sentence. Table 9 and
Table 10 show the set of relation and qualifier
labels respectively. For the construction of the
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Model Parameters Dev Test

Precision Recall F1 Precision Recall F1

Generative Baseline 140M 63.79 ± 0.27 59.94 ± 0.68 61.80 ± 0.37 64.60 ± 0.47 59.67 ± 0.35 62.03 ± 0.21
Pipeline Baseline 132M 69.23 ± 0.30 58.21 ± 0.57 63.24 ± 0.44 69.00 ± 0.48 57.55 ± 0.19 62.75 ± 0.29
CubeRE 115M 66.14 ± 0.88 64.39 ± 1.23 65.24 ± 0.82 65.82 ± 0.84 64.28 ± 0.25 65.04 ± 0.29

Pipeline Baseline (Medium) 221M 69.70 ± 1.08 62.33 ± 0.50 65.80 ± 0.54 69.38 ± 0.39 61.96 ± 0.54 65.46 ± 0.32

Generative Baseline (Large) 400M 67.08 ± 0.49 65.73 ± 0.78 66.40 ± 0.47 67.17 ± 0.40 64.56 ± 0.58 65.84 ± 0.25
CubeRE (Large) 343M 68.75 ± 0.82 68.88 ± 1.03 68.81 ± 0.46 66.39 ± 0.96 67.12 ± 0.69 66.75 ± 0.65

Pipeline Baseline (Large) 680M 70.58 ± 0.78 66.58 ± 0.66 68.52 ± 0.32 69.21 ± 0.55 64.27 ± 0.24 66.65 ± 0.28

Table 6: Evaluation results for hyper-relational extraction on the HyperRED dataset.

Model Training Time Inference Speed Memory Usage

Generative 1.93 hrs 37 samples/s 3.9 GB
Pipeline 2.41 hrs 181 samples/s 5.5 GB
CubeRE 3.08 hrs 160 samples/s 6.6 GB

Table 7: Comparison of the computational cost for the
Generative, Pipeline and CubeRE models.

Experimental Detail

GPU Model Nvidia V100
CUDA Version 11.3
Python Version 3.7.12
PyTorch Version 1.11.0
Wikidata Version 20170503
Long-Tailed Threshold 10
Pruning Threshold 20
Maximum Sequence Length (words) 80
FFN Hidden Size 150
Learning Rate Decay 0.9
Adam Epsilon 1e-12
Adam Weight Decay Rate 1e-5

Table 8: List of experimental details.
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Figure 5: Histogram distribution of number of relation
labels covered by each qualifier label.

dataset, we use the Wikidata which has 594,088
hyper-relational facts and introductions from En-
glish Wikipedia which has 4,650,000 articles.

Distant Supervision Example In this section,
we demonstrate the distant supervision process for
fact alignment with a sentence example. Given
the input sentence “Leonard Parker received his
PhD from Harvard University in 1967.”, we first

perform entity linking which detects the entity men-
tions and their Wikipedia IDs: {(Leonard Parker,
Q3271532), (PhD, Q752297), (Harvard University,
Q13371)}. As the entity linker does not consider
dates or numbers, we use the spaCy tool to ex-
tract such spans: {(1967, Date)}. Hence, the set of
linked entities in the sentence is {(Leonard Parker,
Q3271532), (PhD, Q752297), (Harvard University,
Q13371), (1967, Date)}. To address the case if
the sentence contains unresolved pronouns such as
“he” or “she”, we use the Stanford CoreNLP tool
to detect and resolve such cases to a suitable entity
in the set of linked entities above. For each hyper-
relational fact the in Wikidata knowledge graph,
we attempt to align it to the sentence based on the
entities in the fact. If the head entity, tail entity and
value entity are all present in the linked entities set
of the sentence, then it is a successful alignment.
For example, given the fact (Leonard Parker, Ed-
ucated At, Harvard University, End Time, 1967)
where the head entity, tail entity and value entity
is (Leonard Parker, Q3271532), (Harvard Univer-
sity, Q13371) and (1967, Date) respectively, the
fact is successfully aligned with the sentence as the
three entities are present in the set of linked entities.
If any entities are missing from the set of linked
entities, the alignment is unsuccessful and we do
not include it in the dataset. If any sentence does
not have any successfully aligned facts, we do not
include it in the dataset.

Annotation Challenges The human annotation
of the dataset may be imperfect due to complex-
ity of the hyper-relational fact structure, diversity
of relation and qualifier labels, and possible am-
biguous facts. The hyper-relational facts require
annotators to joint consider the relation triplet and
qualifier which is more challenging compared to
previous datasets which commonly consider the
relation between two entities. On the other hand,
the annotators are also required to consider the
definitions of a large set of relation and qualifier
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labels. This may pose difficult when some relations
or qualifiers are similar in meaning. Lastly, there
may be ambiguous cases where multiple entities
are mentioned in relation to a topic and it is not
clear which entity is the main subject.

Relation-Specific Qualifiers To investigate the
link between relation triplets and qualifiers, we plot
a histogram distribution in Figure 5. A majority
(32) of the qualifier labels are each linked to a small
number of relation labels (1-5), which suggests that
most qualifiers are highly relation-specific. For ex-
ample, the “electoral district” qualifier label is only
linked to the “candidacy in election” and “position
held” relation labels. On the other hand, a few (3)
qualifier labels are each linked to a large number
(16+) of relation labels, and not specific to any
particular relation. For example, the “end time”
qualifier is linked to 35 relation labels. Hence, it
is generally important to consider the interaction
between relation triplets and qualifiers in extracting
hyper-relational facts. However, it is not trivial to
predict the qualifier only based on the relation, as
some qualifier labels are relation-agnostic and it
also requires the model to consider the value entity.

D Decoding Algorithm

Algorithm 1: Pseudocode of our decoding
algorithm in a PyTorch-like style.
# y_t: Input entity-relation scores (Eq.3)
# y_q: Input qualifier scores (Eq.5)

facts = [] # Output hyper-relational facts
groups = [] # Hyper-relational span groups

# Find and merge adjacent non-null entries
for i,j,k in y_q.argmax(-1).nonzero():

entry = (i,i+1,j,j+1,k,k+1)
for spans in groups:

if is_adjacent(spans, entry):
merge(spans, entry)
break

else:
groups.append(entry)

# Aggregate relation and qualifier scores
for spans in groups:

i,i2,j,j2,k,k2 = spans
r_scores = y_t[i:i2,j:j2]
r_label = r_scores.mean(0,1).argmax()
q_scores = y_q[i:i2,j:j2,k:k2]
q_label = q_scores.mean(0,1,2).argmax()
facts.append((spans,r_label,q_label))

We include the pseudocode algorithm of the pro-
posed decoding method in Algorithm 1. Note that
we can use the nonzero operation to find and merge
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Figure 6: The effect of training data size on Dev F1.
The training set of HyperRED is distantly supervised,
while the development and test set are human-annotated.

adjacent non-null entries as it returns the entries
sorted in lexicographic order. This ensures that the
order of entries seen in consecutive order if they
correspond to the same hyper-relational fact.

E Model Costs

Table 7 shows a comparison of total training time,
inference speed in samples per second and GPU
memory usage for the different models. We ob-
serve that CubeRE has a comparable computational
cost with the generative and pipeline models. This
result that our cube-pruning method is effective
in ensuring that the model is computationally effi-
cient and practical in real applications. Note that
we compute the statistics for the two-stage pipeline
model by summing the time taken and memory
used by both stages.

F Further Analysis

Additional Pipeline Results For a fair compar-
ison of main results in Section 4.3, we do not in-
clude the pipeline baseline in the large model set-
ting as it would have 680M parameters which is
much more than the other models. On the other
hand, we also do not include a BERT-Base version
of the pipeline baseline in the main results, as it
would have 221M parameters which is not com-
parable to both the base and large model settings.
Hence, we only include the pipeline baseline using
DistilBERT in the main result discussion as it has
a comparable parameter count to the base model
setting. However, we include the pipeline baseline
with BERT-Base in Table 6 for reference.

Effect of Pruning The main effect of cube-
pruning is to reduce the sparsity of the cube entries
by retaining the entries which are most likely to
be valid entities. To quantify the effect on sparsity,
we measure the cube without pruning to consist
of 99.9900% null entries on average. When using
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pruning threshold m = 20, the cube consists of
99.9098% null entries on average. Hence, there
is a roughly tenfold increase in the proportion of
non-null entries when using pruning.

Effect of Training Data Size The HyperRED
training set consists of distantly supervised data
which enables large-scale and diverse model train-
ing. However, there may be noisy samples that
affect the model performance. Hence, we aim to
study whether the quantity of data can overcome
noise in the training set. As shown in Figure 6, we
observe a strictly increasing trend when the size
of the training set is increased from 20% of the
original size to 100% of the original size. Thus,
the results suggest that the quantity of data is still
a beneficial factor for model performance despite
some noise in the distantly supervised training set.
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Wiki ID Label Description

P6 head of government head of the executive power of this town, city, municipality, state, country, or other governmental body
P17 country sovereign state of this item (not to be used for human beings)
P19 place of birth most specific known (e.g. city instead of country, or hospital instead of city) birth location of a person, animal or fictional cha racter
P26 spouse the subject has the object as their spouse (husband, wife, partner, etc.). Use "unmarried partner" (P451) for non-married companions
P27 country of citizenship the object is a country that recognizes the subject as its citizen
P31 instance of that class of which this subject is a particular example and member
P35 head of state official with the highest formal authority in a country/state
P39 position held subject currently or formerly holds the object position or public office
P40 child subject has object as child. Do not use for stepchildren
P47 shares border with countries or administrative subdivisions, of equal level, that this item borders, either by land or water. A single common point is enough.
P54 member of sports team sports teams or clubs that the subject represents or represented
P69 educated at educational institution attended by subject
P81 connecting line railway line(s) subject is directly connected to
P97 noble title titles held by the person
P102 member of political party the political party of which a person is or has been a member or otherwise affiliated
P106 occupation occupation of a person; see also "field of work" (Property:P101), "position held" (Property:P39)
P108 employer person or organization for which the subject works or worked
P115 home venue home stadium or venue of a sports team or applicable performing arts organization
P118 league league in which team or player plays or has played in
P127 owned by owner of the subject
P131 located in the administrative the item is located on the territory of the following administrative entity.

territorial entity
P137 operator person, profession, or organization that operates the equipment, facility, or service
P156 followed by immediately following item in a series of which the subject is a part
P159 headquarters location city, where an organization’s headquarters is or has been situated. Use P276 qualifier for specific building
P161 cast member actor in the subject production
P166 award received award or recognition received by a person, organisation or creative work
P175 performer actor, musician, band or other performer associated with this role or musical work
P176 manufacturer manufacturer or producer of this product
P179 part of the series series which contains the subject
P194 legislative body legislative body governing this entity; political institution with elected representatives, such as a parliament/legislature or council
P197 adjacent station the stations next to this station, sharing the same line(s)
P241 military branch branch to which this military unit, award, office, or person belongs, e.g. Royal Navy
P276 location location of the object, structure or event. In the case of an administrative entity as containing item use P131.
P279 subclass of next higher class or type; all instances of these items are instances of those items; this item is a class (subset) of that item.
P361 part of object of which the subject is a part
P414 stock exchange exchange on which this company is traded
P449 original broadcaster network(s) or service(s) that originally broadcasted a radio or television program
P463 member of organization, club or musical group to which the subject belongs. Do not use for membership in ethnic or social groups
P466 occupant person or organization occupying property
P488 chairperson presiding member of an organization, group or body
P551 residence the place where the person is or has been, resident
P641 sport sport that the subject participates or participated in or is associated with
P669 located on street street, road, or square, where the item is located.
P710 participant person, group of people or organization (object) that actively takes/took part in an event or process (subject).
P725 voice actor performer of a spoken role in a creative work such as animation, video game, radio drama, or dubbing over
P749 parent organization parent organization of an organization, opposite of subsidiaries (P355)
P793 significant event significant or notable events associated with the subject
P800 notable work notable scientific, artistic or literary work, or other work of significance among subject’s works
P1037 director / manager person who manages any kind of group
P1327 partner in business or sport professional collaborator
P1346 winner winner of a competition or similar event, not to be used for awards
P1365 replaces person, state or item replaced. Use "structure replaces" (P1398) for structures.
P1376 capital of country, state, department, canton or other administrative division of which the municipality is the governmental seat
P1411 nominated for award nomination received by a person, organisation or creative work (inspired from "award received" (Property:P166))
P1441 present in work this (fictional or fictionalized) entity or person appears in that work as part of the narration
P1535 used by item or concept that makes use of the subject (use sub-properties when appropriate)
P1923 participating team like ’Participant’ (P710) but for teams. For an event like a cycle race or a football match you can use this property to list the teams
P3450 sports season of property that shows the competition of which the item is a season. Use P5138 for "season of club or team" .

league or competition
P3602 candidacy in election election where the subject is a candidate
P3701 incarnation of incarnation of another religious or supernatural being
P5800 narrative role narrative role of this character (should be used as a qualifier with P674 or restricted to a certain work using P642)
P6087 coach of sports team sports club or team for which this person is or was on-field manager or coach

Table 9: List of relation labels in HyperRED.
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P17 country sovereign state of this item (not to be used for human beings)
P25 mother female parent of the subject. For stepmother, use "stepparent" (P3448)
P31 instance of that class of which this subject is a particular example and member
P39 position held subject currently or formerly holds the object position or public office
P81 connecting line railway line(s) subject is directly connected to
P102 member of political party the political party of which a person is or has been a member or otherwise affiliated
P131 located in the administrative the item is located on the territory of the following administrative entity.

territorial entity
P155 follows immediately prior item in a series of which the subject is a part, preferably use as qualifier of P179
P175 performer actor, musician, band or other performer associated with this role or musical work
P197 adjacent station the stations next to this station, sharing the same line(s)
P249 ticker symbol identifier for a publicly traded share of a particular stock on a particular stock market or that of a cryptocurrency
P276 location location of the object, structure or event. In the case of an administrative entity as containing item use P131.
P413 position played on position or specialism of a player on a team

team / speciality
P453 character role specific role played or filled by subject – use only as qualifier of "cast member" (P161), "voice actor" (P725)
P512 academic degree academic degree that the person holds
P518 applies to part part, aspect, or form of the item to which the claim applies
P527 has part part of this subject; inverse property of "part of" (P361). See also "has parts of the class" (P2670).
P577 publication date date or point in time when a work was first published or released
P580 start time time an event starts, an item begins to exist, or a statement becomes valid
P582 end time time an item ceases to exist or a statement stops being valid
P585 point in time time and date something took place, existed or a statement was true
P642 of qualifier stating that a statement applies within the scope of a particular item
P670 street number number in the street address. To be used as a qualifier of Property:P669 "located on street"
P708 diocese administrative division of the church to which the element belongs
P768 electoral district electoral district this person is representing, or of the office that is being contested.
P805 statement is subject of (qualifying) item that describes the relation identified in this statement
P812 academic major major someone studied at college/university
P1114 quantity number of instances of this subject
P1129 national team appearances total number of games officially played by a sportsman for national team
P1310 statement disputed by entity that disputes a given statement
P1346 winner winner of a competition or similar event, not to be used for awards
P1350 number of matches matches or games a player or a team played during an event.

played/races/starts
P1352 ranking subject’s numbered position within a competition or group of performers
P1365 replaces person, state or item replaced. Use "structure replaces" (P1398) for structures.
P1416 affiliation organization that a person or organization is affiliated with (not necessarily member of or employed by)
P1545 series ordinal position of an item in its parent series (most frequently a 1-based index), generally to be used as a qualifier
P1686 for work qualifier of award received (P166) to specify the work that an award was given to the creator for
P1706 together with qualifier to specify the item that this property is shared with
P2453 nominee qualifier used with «nominated for» to specify which person or organization was nominated
P2868 subject has role role/generic identity of the item ("subject"), also in the context of a statement.
P3831 object has role (qualifier) role or generic identity of the value of a statement ("object") in the context of that statement
P3983 sports league level the level of the sport league in the sport league system
P5051 towards qualifier for "adjacent station" (P197) to indicate the terminal station(s) of a transportation line or service in that direction

Table 10: List of qualifier labels in HyperRED.
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