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Abstract

Multilingual neural machine translation aims
to translate multiple language pairs in a sin-
gle model and has shown great success thanks
to the knowledge transfer across languages
with the shared parameters. Despite promis-
ing, this share-all paradigm suffers from in-
sufficient ability to capture language-specific
features. Currently, the common practice is to
insert or search language-specific networks to
balance the shared and specific features. How-
ever, those two types of features are not suffi-
cient enough to model the complex common-
ality and divergence across languages, such as
the locally shared features among similar lan-
guages, which leads to sub-optimal transfer,
especially in massively multilingual translation.
In this paper, we propose a novel token-level
feature mixing method that enables the model
to capture different features and dynamically
determine the feature sharing across languages.
Based on the observation that the tokens in
the multilingual model are usually shared by
different languages, we insert a feature mix-
ing layer into each Transformer sublayer and
model each token representation as a mix of dif-
ferent features, with a proportion indicating its
feature preference. In this way, we can perform
fine-grained feature sharing and achieve bet-
ter multilingual transfer. Experimental results
on multilingual datasets show that our method
outperforms various strong baselines and can
be extended to zero-shot translation. Further
analyses reveal that our method can capture
different linguistic features and bridge the rep-
resentation gap across languages.1

1 Introduction

Multilingual neural machine translation (MNMT)
(Ha et al., 2016; Johnson et al., 2017) handles sev-
eral translation directions in a single model. These

∗Corresponding Author
1Our code is available at https://github.com/

raburabu91/HiTrans

multilingual models have been shown to be capa-
ble of facilitating the knowledge transfer across
different languages (Lakew et al., 2018; Tan et al.,
2019; Zhang et al., 2020) and enabling translations
between language pairs unseen in training (John-
son et al., 2017; Al-Shedivat and Parikh, 2019; Gu
et al., 2019; Zhang et al., 2020). Due to the above
advantages, MNMT is appealing and has drawn
much attention in recent years.

The success of MNMT comes at the cost of insuf-
ficient ability to capture language-specific features
(Zhang et al., 2021). Since the model parameters
are shared across languages, the MNMT model
tends to preserve the shared features but ignore the
language-specific ones. Therefore, researchers re-
sort to language-specific modeling to capture and
balance those two types of features. Some works
attempt to insert additional language-specific mod-
ules into the original MNMT model (Wang et al.,
2019; Bapna and Firat, 2019; Zhang et al., 2020,
2021). However, those methods are sensitive to the
structure and location of language-specific modules
and require specialized manual design. To avoid
this problem, other works turn to search language-
specific networks in the MNMT model (Lin et al.,
2021; Xie et al., 2021). Those methods generally
adopt the multi-stage training strategy to find and
fine-tune the language-specific parameters, which
increases the training complexity, especially in mas-
sively multilingual translation settings.

Another pitfall of the above methods is that divid-
ing the features into shared and language-specific
ones may not be sufficient to model the complicated
commonality and divergence across languages. Pre-
vious studies (Tan et al., 2019; Oncevay et al., 2020)
have shown that similar languages generally share
more commonality, and clustering them together
can boost their translation performance. Moreover,
Lin et al. (2021) also demonstrates that there are
some overlaps between the language-specific net-
works of similar languages. These observations
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indicate that there are some locally shared features
among similar languages which are important to
the multilingual transfer. However, those features
are not effectively used in the current language-
specific models, which motivates us to model more
fine-grained features of different languages to facil-
itate the multilingual transfer.

In this work, we propose a novel token-level
cross-lingual feature mixing method that enables
the model to adaptively determine the feature shar-
ing during training. Based on the observation that
the tokens in multilingual vocabulary are usually
shared by different languages, we assume that each
token representation contains a mix of lexical and
linguistic features, with a feature proportion in-
dicating its feature preference. Specifically, we
employ a set of linear transformations to capture
different features, on which we perform weighted
feature aggregation with the specific feature pro-
portion. By varying the feature proportions, we can
retain the locally shared features and control the
knowledge sharing across different languages. Our
main contributions are summarized as follows:

• We propose a method that can perform fine-
grained feature extraction and aggregation in
the MNMT model without explicit shared
and specific division, and can dynamically de-
termine the feature sharing across languages
with the adaptive feature proportions.

• We study the feature proportions and the rep-
resentation space learned by our method, and
find that our method can implicitly character-
ize a mix of linguistic features and narrow the
representation gap across languages.

• We conduct extensive experiments on several
multilingual datasets in different translation
scenarios. Experimental results and in-depth
analyses show that our method outperforms
the language-specific models, especially in
massively multilingual translation, and can be
easily extended to boost zero-shot translation
and alleviate the off-target issue.

2 Related Work

Our work closely relates to the language-specific
modeling in MNMT. Early studies focus on increas-
ing the shared parts of separate bilingual models
for better knowledge transfer. These works include

sharing encoders (Dong et al., 2015), sharing at-
tention layers (Firat et al., 2016) and sharing de-
coders (Zoph and Knight, 2016). Later, Ha et al.
(2016) and Johnson et al. (2017) develop a uni-
versal MNMT model with an artificial language
token added to the source sentence to indicate
the target language. While the share-all paradigm
generally captures the commonality of languages
but ignores the specific features of each language.
To this end, researchers turn to language-specific
modeling for better balance between sharing and
specific, including redesigning parameter sharing
strategies (Blackwood et al., 2018; Sachan and Neu-
big, 2018; Wang et al., 2019; Vázquez et al., 2019),
training separate models for different language
clusters (Tan et al., 2019), inserting lightweight
adapters (Bapna and Firat, 2019), routing shared
or language-specific path (Zhang et al., 2021), di-
viding general and specific networks or neurons
(Lin et al., 2021; Xie et al., 2021) and parameter
differentiation (Wang and Zhang, 2021). However,
these methods do not make full use of the locally
shared features across similar languages, leading
to sub-optimal cross-lingual transfer, especially in
massively multilingual translation. Instead, we pro-
pose a feature mixing method which is a variant of
Mixture-of-Experts (MoE) models (Shazeer et al.,
2017; Lepikhin et al., 2020). We discuss two gating
mechanisms and analyze the impact of the location
and sparsity of the MoE layer (CLM module) on
multilingual translation performance.

Our work is also related to zero-shot translation.
Some studies resort to forming language-agnostic
representations. Arivazhagan et al. (2019a) and
Pham et al. (2019) introduce auxiliary training ob-
jectives to align the representations of different lan-
guages. Pan et al. (2021) bridges the cross-lingual
representations with additional dictionary and con-
trastive learning. Liu et al. (2021) disentangles
the positional information by relaxing the struc-
tural constraint. Other studies explore to enhance
the language-specific features in translation. Wang
et al. (2019) and Yang et al. (2021) employ an ad-
ditional target language prediction task to train the
model to distinguish different languages. Philip
et al. (2020) adopt monolingual adapter to model
the language-specific features. Our work contin-
ues in these directions, but with a special focus on
combining different feature mixing models in the
encoder and decoder to build a language-agnostic
encoder and language-aware decoder.
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(a) Language-specific model (b) sCLM model (c) mCLM model

Figure 1: Comparison of language-specific, sCLM and mCLM model. The residual connection and layer normaliza-
tion are not visualized here for brevity.

3 Method

Our main idea is to model the commonality and
divergence of different languages in a fine-grained
way to retain more shared features, especially those
locally shared by similar languages to facilitate
the multilingual transfer. To achieve this, each
language is considered to contain a mix of differ-
ent features rather than solely the shared and spe-
cific ones, as shown in Figure 1. Specifically, we
first project each token representation into differ-
ent subspaces with a set of linear transformations
to capture different features and calculate the cor-
responding feature proportion based on the token
representation itself. Then we take the weighted
averaging of different linear transformations as the
feature-mixed representation. The proportion indi-
cates the importance of each feature and determines
the knowledge sharing across different languages.

3.1 Feature Proportion

Our proposed method is motivated by the obser-
vation that the token (e.g. word or subword) in
the multilingual vocabulary usually contains sev-
eral different lexical and linguistic features. On the
one hand, a token shared by different languages
naturally embodies different lexical and semantic
meanings. On the other hand, a token also contains
various contextual and structural information be-
cause its representation is essentially learnt from
all the tokens in the sentence. Inspired by Jiang
et al. (2020), we assume that each token holds a
mix of those lexical and linguistic features with a
certain proportion indicating its feature preference
in different languages. Specifically, given a token
representation x ∈ Rd and k features, we param-
eterize the feature proportion P(x) with a linear
transformation followed by a softmax function. We
also add a smoothing parameter α to prevent the

output P(x) from collapsing towards 0 or 1:

P(x) = (1− α) · softmax(xP ) + α/k (1)

where P ∈ Rd×k is the feature projection weight,
α ∈ (0, 1) smooths the probability so as to activate
all the features.

3.2 Adaptive Token-level Feature Mixing
Previous studies (Bapna and Firat, 2019; Zhang
et al., 2020, 2021) employ individual parameters
for each language pair to capture the language-
specific features. However, those methods are weak
in their ability to capture the locally shared fea-
tures among similar languages. To solve this prob-
lem, we take the weighted aggregation of different
features based on a specific proportion P(x) as
the language-specific representations. In this way,
the feature sharing across different languages can
be controlled by varying their feature proportions.
Specifically, we consider linear transformations
{Wj}kj=1 for k features on the i-th input token rep-
resentation hi, the weighted aggregation of linear
transformations can be written as follows:

h̃i =
k∑

j=1

hiWj · Pj(hi) (2)

where Wj is the linear transformation used to
model the j-th feature and Pj(hi) denotes the pro-
portion on the j-th feature for representation hi.2 In
multilingual translation, the token representations
in each source input naturally contain the target
language information since a target language token
is added to the source sentence. This indicates the
feature proportions of the same token can also be
different when translated into different languages.

2To make the number of parameters manageable, we sepa-
rately maintain a set of linear transformations in the encoder
and the decoder, and share them across all the encoder or
decoder sublayers.
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This property makes our method more flexible to
capture the specific features in different conditions.

Our feature mixing method can be seen as a
heuristic variation of Mixture-of-Experts (MoE)
models (Shazeer et al., 2017; Lepikhin et al.,
2020). However, compared to previous MoE mod-
els which are the sparse combination of the gating
mechanism, we adopt a soft and smoothed gating
network to retain all the potential shared features
and replace the non-linear experts with linear ones
for lower memory cost and fast training speed.

3.3 Cross-lingual Mixing Model
Based on the token-level feature mixing strategy,
we introduce our cross-lingual mixing (CLM) mod-
ule and its implementation in Transformer. Given
the input representation h, CLM calculates the fea-
ture proportion P(h) and the weighted averaging
representation h̃ as Equations 1 and 2. To make our
CLM module optional and plug-able into any part
of the Transformer network, we apply a residual
connection followed by layer normalization (LN).
The CLM module is finally formulated as follows:

z = LN(h+ h̃) (3)

Since the tokens have different representations at
each Transformer sublayer, their corresponding fea-
ture proportions are also different. To this end, we
inject CLM modules into each sublayer and distin-
guish the feature projection weight P across differ-
ent Transformer layers. Considering that the token
may have various feature proportions in different
languages, we propose two variants of CLM model
according to the feature projection weight settings:

sCLM shares a single feature projection weight
Ps ∈ Rd×k across all the language pairs. This
strategy may ease the proportion allocation in our
method as it is highly input dependent.

mCLM employs a set of language-specific fea-
ture projection weights {Pm ∈ Rd×k}Nm=1 for dif-
ferent language pairs. Although this strategy in-
volves more parameters than sCLM, we hope that
different proportion weights will make it more flex-
ible in proportion allocation.

4 Experiments

4.1 Datasets
We evaluate our method in English-to-many and
many-to-English translation scenarios. We also ex-
tend our method to zero-shot translation based on

the observations in English-centric translation. For
en-xx and xx-en translation, we test our method
on the OPUS-100 and WMT benchmarks. For
zero-shot translation, we evaluate our method on
three datasets: IWSLT-17, Europarl and WMT-5.
The detailed data descriptions are listed in Ap-
pendix A.1. We apply byte pair encoding (BPE)
algorithm (Sennrich et al., 2016) using Sentence-
Piece (Kudo and Richardson, 2018)3 to preproess
multlingual sentences with a joint vocabulary of
64K for OPUS-100/WMT-14 and 32K for IWSLT-
17/Europarl/WMT-5.

4.2 Baselines

To make our evaluation convincing, we re-
implement the original MNMT model and several
previous works for comparison.

Multilingual (Johnson et al., 2017) The unified
model which handles multiple languages in a sin-
gle encoder-decoder model by adding a special
language token to the source sentence.

+Adapter (Bapna and Firat, 2019) A set of light-
weight adapters are injected into the vanilla MNMT
model. The dimension of the projection layer is set
to 128 and we train the model from scratch.

+CLSR (Zhang et al., 2021) This method em-
ploys a series of hard binary gates conditioned on
token representations to dynamically choose the
shared and language-specific paths.

Deep Transformer (Zhang et al., 2020) This
method improves the model capacity by increasing
the model depth to build a strong baseline. For fair
comparisons, the model depth (for both encoder
and decoder) are set to 26 and 8 for OPUS-100 and
WMT-14, respectively.

4.3 Training and Evaluation

We employ Transformer-Base setting (Vaswani
et al., 2017) in all our experiments on the open-
source Fairseq implementation (Ott et al., 2019)4.
The detailed model settings are in Appendix B. We
insert the CLM modules into both encoder and de-
coder for en-xx translation but decoder only for
xx-en translation based on the ablation study in
Section 4.4.

We report the detokenized case-sensitive BLEU
offered by SacreBLEU (Post, 2018)5. Follow-
ing Zhang et al. (2021), we split the language

3https://github.com/google/sentencepiece
4https://github.com/pytorch/fairseq
5Signature: BLEU+case.mixed+numrefs.1+smooth.exp+

tok.13a+version.1.5.1.
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Model Model Size
en-xx xx-en

Low Med High All WR Low Med High All WR

Multilingual 76.96M 26.54 25.72 20.89 24.38 – 33.42 32.87 28.91 31.73 –
+Adapter 224.81M +2.64 +3.25 +2.67 +2.85 93.62 +1.37 +2.36 +1.60 +1.78 88.30
+CLSR 136.08M +2.35 +2.29 +1.73 +2.12 94.68 +1.64 +1.14 +0.98 +1.25 88.30

Deep Transformer 224.09M +3.50 +4.58 +3.49 +3.86 96.81 +1.51 +1.77 +3.66 +2.31 86.17

sCLM♢ 225.49M +3.56 +4.33 +3.13 +3.67 96.81 +2.34 +2.56 +2.56 +2.49 97.87
mCLM♢ 224.63M +2.43 +3.79 +2.82 +3.01 94.68 +2.61 +2.14 +1.68 +2.14 92.55

Table 1: Translation quality for en-xx and xx-en on the OPUS-100 dataset. sCLM♢ and mCLM♢ represent the best
sCLM and sCLM model, respectively. To match Adapter in parameters, the feature number k in sCLM♢ is 280/560
for en-xx/xx-en translation, while 194/388 in mCLM♢. Best results are highlighted in bold.

Model Model Size
en-xx xx-en

Low Med High All WR Low Med High All WR

Multilingual 76.91M 16.35 19.05 25.07 20.32 – 23.08 25.67 27.70 25.46 –
+Adapter 97.37M +0.89 +1.06 +1.12 +1.03 100.0 +0.23 +0.66 +0.39 +0.39 76.92
+CLSR 93.75M +0.44 +0.52 +0.64 +0.54 100.0 +0.17 +0.56 +0.33 +0.32 92.31

Deep Transformer 91.63M +0.63 +1.06 +1.17 +0.79 100.0 +0.68 +0.80 +0.17 +0.54 76.92

sCLM♢ 95.49M +0.85 +0.86 +1.01 +0.92 100.0 +1.00 +1.11 +0.84 +0.96 100.0
mCLM♢ 98.09M +0.76 +1.00 +1.22 +1.00 100.0 +0.58 +0.99 +0.68 +0.71 100.0

Table 2: Translation quality for en-xx and xx-en on the WMT-14 dataset. The feature number k in the two CLM
models are 35/70 for en-xx/xx-en translation. Best results are highlighted in bold.

pairs in OPUS-100 and WMT-14 into three groups
(Low/Med/High) according to their data size. We
report the average BLEU for each group and Win
Ratio (WR) indicating the proportion of language
pairs on which our method beats the original
MNMT model. In zero-shot translation, we also
report the off-target rate to measure the accuracy
of translating into the right target language.

4.4 Results

Results on OPUS-100. The results are summa-
rized in Table 1. The comparisons between the
multilingual baseline and our method suggest that
the two variants of the CLM model can improve
translation performance for both en-xx and xx-
en directions in most language pairs (up to +3.67
BLEU & 96.81 WR on en-xx and +2.49 BLEU &
97.87 WR on xx-en). Moreover, our sCLM♢ also
yields competitive results to the strong baseline
with deeper architecture. Compared to +Adapter,
our sCLM♢ and mCLM♢ achieve better transla-
tion performances and WR scores with similar pa-
rameters. The results show that adding an adapter
module to capture language-specific features may
not be sufficient in massively multilingual settings.
Compared with +CLSR, our method also performs
better, showing that the feature mixing strategy is

more efficient than directly modeling and balanc-
ing the shared and language-specific features of
different language pairs.

Results on WMT-14. The results are summa-
rized in Table 2. Similar to Table 1, our method
exceeds the multilingual baseline in all language
pairs and beats the Deep Transformer model, con-
firming the effectiveness of our method. One no-
ticeable difference is that the improvements on xx-
en translation brought by +Adapter and +CLSR are
not large. By contrast, our method achieves more
remarkable BLEU gains and 100% WR scores. An-
other difference is that our method does not sur-
pass +Adapter on en-xx directions. We ascribe this
to the smaller number of similar language pairs
in WMT-14, where the feature mixing may cause
interference across languages, leading to perfor-
mance degradation in some language pairs.

Ablation Study. To study the efficacy of each
component in the CLM module, we evaluate mod-
els of different settings on the OPUS-100 dataset.
The results are summarized in Table 3 and we make
the following observations:

• When removing the gating mechanism from
CLM modules, the language-specific model
LS fails to surpass the multilingual baseline in
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Model Enc Dec Model Size en-xx xx-en

Low Med High All WR Low Med High All WR

Multilingual 76.96M 26.54 25.72 20.89 24.38 – 33.42 32.87 28.91 31.73 –
LS ✓ ✓ 126.25M -1.91 +0.02 -0.19 -0.69 37.23 -1.46 -1.38 -0.93 -0.92 23.70

sCLM ✓ ✓ 126.85M +2.59 +2.44 +1.92 +2.32 96.81 +0.17 +0.27 +1.66 +0.70 75.75
sCLM-E ✓ 101.90M +0.48 +0.99 +1.02 +0.83 84.04 +1.79 +1.16 +1.10 +1.35 96.81
sCLM-D ✓ 101.90M +0.63 +1.10 +1.05 +0.92 86.17 -1.15 -0.79 +0.71 -0.41 59.57

mCLM ✓ ✓ 180.56M +2.02 +3.22 +2.49 +2.58 94.68 +1.53 +1.80 +1.97 +1.77 88.30
mCLM-E ✓ 128.75M +1.33 +1.87 +1.65 +1.62 90.43 +1.83 +1.65 +1.28 +1.59 91.49
mCLM-D ✓ 128.75M +1.45 +1.96 +1.63 +1.68 88.30 +0.26 +0.68 +0.87 +0.60 78.72

Dedicated ✓ ✓ 153.70M +1.93 +2.81 +2.17 +2.30 90.43 +1.01 +1.45 +1.80 +1.42 85.11

Table 3: Ablation study on OPUS-100 dataset. “✓” denotes the corresponding CLM modules are inserted in the
encoder or the decoder. “LS”: a language-specific model which removes the gating mechanism from CLM modules
and makes the linear transformations {Wj}kj=1 language-specific. Specially, we keep the number of features and
languages the same. “Dedicated”: the combination of sCLM-E and mCLM-D. Best results are highlighted in bold.

most language pairs. The performance differ-
ence between LS and +Adapter shows that the
structure and location of the language-specific
modules have a large impact on the transla-
tion performance and the gating mechanism is
important to mitigate the performance decline.

• For en-xx translation, the CLM modules are
important to both the encoder and the decoder,
while for xx-en translation, it tends to bring
better performances when the CLM modules
are only inserted into the encoder.

• Replacing the shared feature projection
weight Ps with language-specific ones Pm

(sCLM vs. mCLM) can further enhance the
translation quality, especially on xx-en transla-
tion. We conjecture that the xx-en translation
shares the same target language (English), so
it is hard for sCLM to capture the specific
characteristics of each language pair with the
shared proportion weight, as the feature pro-
portions are similar to each other. By contrast,
mCLM employs different projection weights
for each language pair, making it more flexible
to model the differences across language pairs.
The performance of the Dedicated model to
some extent proves our conjecture.

More Comparisons. To further illustrate the su-
periority of our method, we quantify the trade-off
between adapter/CLM capacity and performance
gains on the OPUS-100 dataset.6 The results are

6The adapter capacity is changed by varying
the bottleneck dimensions in the range of DA =
{32, 48, 64, 80, 96, 112, 128}, while the CLM capacity
is changed by varying the number of features k in CLM mod-
ules in the range of NF = {74, 94, 114, 134, 154, 174, 194}.
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Figure 2: Comparisons of Adapter, CLSR, sCLM and
mCLM under different model sizes.

depicted in Figure 2. We also plot CLSR in the
figure for a comprehensive comparison. sCLM con-
sistently outperforms Adapter and CLSR on both
en-xx and xx-en translations under the similar num-
ber of parameters. Moreover, sCLM achieves the
best results with 20%-30% parameter reduction
compared with Adapter. While mCLM only shows
its superiority on xx-en translation due to the in-
creased parameters. We also compare the decoding
speed of each method in Appendix C.1.

5 Analysis

5.1 Feature Proportion Similarity

In our method, each token representation is en-
coded by aggregating all the features with a spe-
cific proportion. We explore whether CLM learns
to allocate those feature proportions according to
linguistic characteristics or not. We study the pro-
portion allocation of sCLM for en-xx translation
on the OPUS-100 testset. Specifically, we calcu-
late the cosine similarity of different language pairs
with their average token-level feature proportions
(ATP) in both the encoder and the decoder. For
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lang
it ru hi tr

enc dec enc dec enc dec enc dec

1 es pt uk uk ur ne ko ja
2 pt ca mk bg ta mr ja tk
3 fr es sk be ug gu ml eo
4 gl gl de mk tg cs bs et
5 ca fr bg ky bn si pl uz

Table 4: Languages with top-5 similar ATP vector.

instance, given the testset of language pair l, Dl,
the ATP in the encoder is formulated as follows:

ATPl
e =

∑
X∈Dl

Pe∑
X∈Dl

|X||Nenc|
(4)

where |X| is the length of the input sentence X ,
Nenc represents the set of all the CLM modules
in the encoder, and Pe denotes the total feature
proportion of all the tokens in sentence X , which
is given by Pe =

∑
x∈X

∑
m∈Nenc

Pm(x). For
each language pair l, we select the languages with
the top-5 cosine similarity. Results for several lan-
guages are presented in Table 4 (see Appendix C.2
for full results) and we have two major findings:

• sCLM captures the relationship in the lan-
guage branch well. As shown in Table 4, for
languages from branches such as Romance
(It) and Slavic (Ru), their most similar lan-
guages generally come from the same lan-
guage branch. These results show that sCLM
can implicitly capture not only the similarities
between languages but also the differences
among language branches despite they all be-
long to the Indo-European family. Moreover,
languages from the same branch differ in their
similar languages, suggesting that sCLM can
characterize the specific features of languages
by varying their feature proportions.

• sCLM can also capture the word order di-
vergence. The dominant word order for most
languages in our experiments is SVO, while
for languages such as from Indic (Hi) or Tur-
kic (Tr) branch, SOV is usually the dominant
type. As shown in Table 4, sCLM selects
those of the same word order (SOV) as their
most similar languages despite they belong
to different language families or even do not
share the same scripts. For example, the most
similar language for Tr (Turkish) in the en-
coder and decoder are Ko (Korean) and Ja

(Japanese), respectively. Another explanation
for this result is that those three languages are
all exclusively concatenative languages.

In addition to the above findings, we also ob-
serve that sCLM can capture regional and cultural
influences. For example, Ms (Malay), Id (Indone-
sian) and Vi (Vietnamese) share more similarities
because they are close to each other in geographical
location. Zh (Chinese) and Ja (Japanese) are more
similar in the decoder due to cultural influences.
These observations show that sCLM can charac-
terize complex relationships across languages and
fuse those information together well.

5.2 Representation Analyses
To interpret the superiority of our method over base-
lines, we delve into the encoder representations in-
curred by models on xx-en translations. We first
employ the accuracy of similarity search tasks as
a quantitative indicator of cross-lingual represen-
tation alignment following Pan et al. (2021), and
then we visualize some sentence representations
for further study and comparison.

5.2.1 Similarity Search
The data computing representations come from
TED (Qi et al., 2018) and Flores (Goyal et al.,
2021) as they provide multi-way translations in
which sentences from each language are semanti-
cally equivalent to each other. For TED, we con-
struct a multi-way parallel testset of 2296 samples
covering 15 languages. For Flores, we select the
first 100 sentences from each language resulting in
a multi-way testset of 75 languages. The detailed
descriptions of the two testsets are presented in
Appendix A.2.

We conduct experiments in both English-Centric
and Zero-Shot scenarios, and report the average
top-1 accuracy of sentence similarity research on
each dataset. The sentence representations are cal-
culated by averaging the encoder outputs. The
results are listed in Table 5.

English-Centric: Since English has never been
seen by the encoder for xx-en translation, there is
no available projection weight for mCLM to en-
code English sentences. Therefore, we only show
the results of sCLM in this scenario. Our sCLM
achieves notable accuracy improvements on both
TED and Flores testset, suggesting that sCLM gen-
eralizes well to English with the shared projection
weight and narrows the representation gap between

10103



(a) Multilingual baseline (b) sCLM (c) mCLM

Figure 3: t-SNE visualizations of the encoder representations of 14 low-resource languages on xx-en translation
encoded by Multilingual baseline, sCLM and mCLM.

Model English-Centric Zero-Shot

TED Flores TED Flores

Multilingual 20.5% 39.1% 80.5% 74.8%
sCLM 36.4% 58.3% 84.8% 80.0%
mCLM – – 84.2% 75.1%

Table 5: The averaged sentence similarity search top-1
accuracy on TED and Flores testsets in English-Centric
and Zero-Shot scenarios.

English sentences and their semantic equivalents
in other languages.

Zero-Shot: The overall accuracy follows the rule
that Multilingual < mCLM < sCLM, showing that
the two proposed models can boost the cross-
lingual representation alignment. One noticeable
observation is that the improvements of mCLM on
Flores are not as large as those on TED. We further
visualize the sentence representations to explain
this point and study the differences between the
two proposed models.

5.2.2 Visualization and Comparison
To further study representation space learned by
our sCLM and mCLM, we visualize the encoder
representations on xx-en translation by reducing
the 512-dim representations to 2-dim with t-SNE
(Van der Maaten and Hinton, 2008). We use Flores
devtest dataset for visualization as it covers lan-
guages of different data sizes. For clarity, we split
the 74 non-English languages into three groups
(Low/Med/High). We also visualize the represen-
tations of the multilingual baseline for compari-
son. The visualizations on low-resource languages
are depicted in Figure 3 and the results on med-
and high-resource languages are presented in Ap-
pendix C.3. We make the following observations:

• For the baseline model, most sentences from
high-resource languages are clustered to their
semantic equivalents in other languages while
med-resource especially low-resource lan-
guages possess their own distinct clusters.

• For sCLM, sentences from low- and med-
resource languages start to be assigned to their
semantic clusters and the clustering results on
high-resource languages are better than the
multilingual baseline.

• For mCLM, it strengthens the trend that sen-
tences from low-resource languages incline
to form their individual clusters, despite the
better clustering results in high-resource lan-
guages. These observations may explain the
improvement gaps between TED and Flores
(3.7% vs. 0.3%) in Zero-Shot scenario in Ta-
ble 5 since all the languages in TED are high-
resource.

These observations show the differences be-
tween our sCLM and mCLM models. sCLM im-
proves the translations in the sense that it bridges
the representation gap across languages while
mCLM maps the representations of different lan-
guages into distinct subspaces, especially for low-
resource languages. We argue that the represen-
tations learned by sCLM are more appealing as it
clusters sentences based on their semantic similari-
ties. Compared to high-resource languages, the rep-
resentations in low- and med-resource languages
are still not clustered well which need further re-
search.

5.3 Extension to Zero-shot Translation
Recent studies (Arivazhagan et al., 2019a; Liu
et al., 2021) show that zero-shot translation can
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Dataset Pivot Multilingual +sCLM-E +mCLM-D

IWSLT-17 19.80 15.28 (7.23) 17.68 (5.48) 18.77 (2.46)
Europarl multiway 24.01 20.76 (0.78) 22.79 (0.51) 22.94 (0.50)
Europral w/o overlap 26.84 23.51 (0.67) 25.64 (0.52) 25.68 (0.46)
Europarl full 28.76 27.32 (0.51) 28.17 (0.49) 28.10 (0.49)
WMT-5 14.70 5.41 (51.0) 6.12 (48.4) 9.17 (25.0)

Table 6: Translation results on zero-shot directions. The
average off-target rates (%) calculated by off-the-shelf
LangID model from FastText (Joulin et al., 2016) are
reported in brackets.

be boosted by facilitating the encoder to learn
language-agnostic representations. Based on the
observations in Section 5.2, we apply the CLM
models to zero-shot translation. Specifically, we
insert sCLM into the encoder to encourage the
language-independent representations. Moreover,
we also use mCLM to enhance the ability to distin-
guish different target languages in the decoder. In
Table 6, our method substantially improves zero-
shot translation quality and reduces the off-target
translations even in the very challenging case of
WMT-5, where languages are from different lan-
guage branches and do not share scripts. In addi-
tion, our method also shows competitive results to
the pivot models via English. These results demon-
strate the strong transfer ability of our method.

5.4 About Sparsity

To verify whether all the features are essential to the
representations, we study the sparsity by selecting
the top-w important features for each token rep-
resentation and pruning others. The performance
of sCLM with different w are plotted in Figure 4.
The performance on en-xx translation remarkably
degrades only when w < 14, suggesting that some
features are not important to the translation qual-
ity and can be pruned. Similar results can also
be observed on xx-en translation. However, the
degradation comes earlier (w < 54) than en-xx
translation, showing that sCLM is more sensitive
to the sparsity on xx-en translation.

6 Conclusion

In this paper, we propose a token-level cross-
lingual feature mixing method that can capture
different features and dynamically determine the
feature sharing across languages. We employ a
set of linear transformations to capture different
features and aggregate them with specific propor-
tions for each token representation. In this way,
we can perform fine-grained feature sharing and
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Figure 4: ∆BLEU score along with the increase of w in
en-xx and xx-en translation on OPUS-100 dataset.

achieve better multilingual transfer. Experimen-
tal results on multilingual datasets show that our
method outperforms various strong baselines and
can be extended to zero-shot translation. Further
analyses reveal that our method can capture several
different linguistic features and bridge the repre-
sentation gap across languages. In future work, we
plan to further study how to narrow the representa-
tion gap across low-resource languages for better
translation performance and knowledge transfer.

Limitations

Despite effective, our method has the following
limitations. An obvious limitation is that we em-
ploy additional parameters to model different fea-
tures to ease the implementation of our method in
massively multilingual translation. However, it in-
creases the training cost and slows down the decod-
ing speed. Another limitation is that although our
method can bridge the representation gap across
languages, the sentence representations in low-
resource language still incline to possess their dis-
tinct clusters. In the future, we plan to improve the
representation space of low-resource languages in
the multilingual translation.
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A Dateset Details

A.1 Training Data

We perform en-xx and xx-en translations on the
OPUS-100 and WMT-14 benchmarks, and zero-
shot translations are evaluated on IWSLT-17, Eu-
roparl and WMT-5 datasets. We give detailed de-
scriptions of these dataset used in this work.

OPUS-100. We collect 94 language pairs from
(Zhang et al., 2020)’s release7 by discarding those
without valid/test sets. We use the official valid/test
sets for evaluation.

WMT-14. We use the same training/valid/test
sets as Zhang et al. (2021) except that we limit
the training sentence pairs in each direction to 10M
by random sampling.

IWSLT-17. We select 3 language pairs (En ↔
{It, Nl, Ro}) from the official dataset8, and perform
6 zero-shot translations between the 3 non-English
langauges. The datasets are described in Table 7.

Europarl. We use the training/valid/test datasets
released by (Liu et al., 2021) and conduct experi-
ments under three conditions following Liu et al.
(2021).

WMT-5. We collect 4 language pairs from WMT-
14: En-De (4.5M), En-Hi (0.3M), En-Ru (10M)
and En-Zh (10M). We study this challenging case
where the training data is imbalanced and the lan-
guages involved in zero-shot directions are differ-
ent in scripts. We evaluate the zero-shot perfor-
mance on the Flores devtest which contains 1012
sentences in each direction.

A.2 Evaluation Data

We employ the TED testset and Flores devtest for
representation analysis in Section 5.2, and we give
more detailed descriptions.

TED. We construct a multi-way parallel testset
of 2296 samples covering 15 languages including
Arabic, Czech, German, English, Spanish, French,
Italian, Japanese, Korean, Dutch, Romanian, Rus-
sian, Turkish, Vietnamese and Chinese. Note that
the languages in TED are all high-resource in the
OPUS-100 dataset.

7https://object.pouta.csc.fi/OPUS-100/v1.0/
opus-100-corpus-v1.0.tar.gz

8https://sites.google.com/site/
iwsltevaluation2017

Language Pair train valid test

En-It 231.6K 929 1566
En-Nl 237.2K 1003 1777
En-Ro 220.5K 914 1678
It-Ro 217.5K 914 1643
Nl-Ro 206.9K 913 1680
It-Nl 233.4K 1001 1669

Table 7: Statistics of IWSLT-17 dataset.

Language

Low am, be, ha, ig, kk, kn, ky, mr, my, oc, or, ps, te,
zu

Med af, as, az, cy, ga, gl, gu, hi, ka, km, ku, ml, ne,
pa, ta, tg, ur, uz, xh

High ar, bg, bn, bs, ca, cs, da, de, el, es, et, fa, fi, fr,
he, hr, hu, id, is, it, ja, ko, lt, mk, ms, mt, nl, no,
pl, pt, ro, ru, sk, sl, sr, sv, th, tr, uk, vi, zh

Table 8: Languages in Flores devtest set used for simi-
larity search.

Flores. For Flores, we select the first 100 sen-
tences from the devtest for each language resulting
in a multi-way testset of 75 languages. We split the
languages into three groups (Low/Med/High) ac-
cording to their data size in the OPUS-100 dataset.
The detailed statistics are listed in Table 8.

B Implementation Details

For fair comparison, we employ Transformer base
in all our experiments, which consists 6 stacked
encoder/decoder layers and 8 attention heads, with
the model size dmodel of 512 and feed-forward di-
mension dffn of 2048.

For model training, we use the temperature-
based sampling strategy to balance the training data
distribution with a temperature of T = 5 (Arivazha-
gan et al., 2019b), and set share-all-embeddings in
Fairseq to save parameters. All the model parame-
ters are optimized using Adam optimizer (Kingma
and Ba, 2014) (β1 = 0.9, β2 = 0.98) with label
smoothing of 0.1. The learning rate is scheduled as
Vaswani et al. (2017) with a warm-up step of 4000
and a peak learning rate of 0.0005. The dropout
rate is set to 0.1 and the smoothing parameter α in
Equation 1 is set to 0.05. We train all models with
a batch of 4096 and set update_freq in Fairseq to
4. The training sequence length is limited to 100
and all the MNMT models are trained for 120K
steps on 4 Nvidia RTX A6000 GPUs. We add a
target language token l to the source sentence to
indicate the language to translate into following
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Model Model Size en-xx xx-en Decoding Speed
(tokens/s)

All WR All WR

Multilingual 76.96M 24.38 – 31.73 – 1873
+Adapter 224.81M +2.85 93.62 +1.78 88.30 1726
+CLSR 136.08M +2.12 94.68 +1.25 88.30 1380

sCLM-top 179.87M +2.91 96.81 +1.62 94.68 1564
mCLM-top 224.61M +3.13 95.74 +1.83 91.49 1590

sCLM 179.89M +3.19 95.74 +1.91 97.87 1143
mCLM 224.63M +3.01 94.68 +2.14 92.55 1240

Table 9: Comparisons of translation quality and decoding speed on the OPUS-100 training data. The bottleneck
dimension in Adapter is set to 128. The feature number k is set to 194 in sCLM models for both en-xx and xx-en
translation, while k is set to 134/154 in mCLM models for en-xx and xx-en translation, respectively.

Johnson et al. (2017). However, the language to-
ken l is altered to denote the source language in
our experiments when performing xx-en translation
following Zhang et al. (2021).

We average the last 5 checkpoints for evaluation.
We perform beam search decoding with beam size
of 4 and length penalty of 1.0.

C More Results

C.1 Comparisons on Performance and Speed
We compare the translation performance and de-
coding speed of our methods with all the baselines.
For fair comparisons, we build another CLM vari-
ant (CLM-top) in which the CLM modules are only
introduced in each feed-forward sublayer similar
to Adapter. The results are listed in Table 9. We
give two major findings:

• Compared with the original CLM models, the
CLM-top models suffer from slight degrada-
tion in most cases, showing that it is better to
introduce CLM modules in all the sublayers.
Despite that, the CLM-top models can achieve
similar or better performance compared with
Adapter and CLSR. These results further show
the effectiveness of our method.

• The decoding speed is related to both the
amount of the CLM modules in Transformer
and the number of features in each CLM mod-
ule. Compared with Adapter, all the CLM
models slow down the decoding speed due to
the token-level feature mixing.

C.2 Detailed Results on Feature Proportion
Similarity

We show the top-5 similar languages for each lan-
guage based on their feature proportion similarity.

The results in the encoder and the decoder are listed
in Tables 10 and 11, respectively.

C.3 Visualization of Sentence Representations
The visualizations on med- and high-resource lan-
guages are depicted in Figures 5 and 6, respectively.
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Code Language Genus Family Similar Languages Code Language Genus Family Similar Languages
af Afrikaans Germanic Indo-European fy nl de nn nb sq Albanian Albanian Indo-European it es pl ro pt
da Danish Germanic Indo-European sv nb no nl nn br Breton Celtic Indo-European as cy bn pl it
de German Germanic Indo-European nl ru da fr nb cy Welsh Celtic Indo-European fy km nn kk as
fy Western Frisian Germanic Indo-European af nn pa ne li ga Irish Celtic Indo-European fr ru gd sh mt
is Icelandic Germanic Indo-European no sv da nl bs gd Gaelic Celtic Indo-European ga km af or nn
li Limburgan Germanic Indo-European fy tk yi ku ky el Greek Greek Indo-European si cs pl mk sk
nl Dutch Germanic Indo-European de sv da no ru ja Japanese Japanese Japanese ko ml bn si th
no Norwegian Germanic Indo-European sv da is nb nl ko Korean Korean Korean ja ml th si bn
nb Norwegian Bokmål Germanic Indo-European da nn sv no de rw Kinyarwanda Bantoid Niger-Congo be fy oc ne km
nn Norwegian Nynorsk Germanic Indo-European nb da sv fy no xh Xhosa Bantoid Niger-Congo zu et ru es ku
sv Swedish Germanic Indo-European da no nb is nl zu Zulu Bantoid Niger-Congo xh fy kk wa ne
yi Yiddish Germanic indo-European li fy as ne ky ig Igbo Igboid Niger-Congo cy fy li km ky
as Assamese Indic Indo-European ne or gu pa bn az Azerbaijani Turkic Altaic ug tt ur uz am
bn Bengali Indic Indo-European ml ko hi ja as kk Kazakh Turkic Altaic ky be or ne fy
gu Gujarati Indic Indo-European ne pa or as km ky Kyrgyz Turkic Altaic be kk nn fy ne
hi Hindi Indic Indo-European ur ta ug tg bn tk Turkmen Turkic Altaic li ku fy ky ps
mr Marathi Indic Indo-European or bn hi ml uk tr Turkish Turkic Altaic ko ja ml bs pl
ne Nepali Indic Indo-European gu pa as or fy tt Tatar Turkic Altaic az ug uz ur tg
or Oriya Indic Indo-European pa gu as ne kn ug Uyghur Turkic Altaic az ur tt hi uz
pa Panjabi Indic Indo-European ne gu or as fy uz Uzbek Turkic Altaic tt ug az ur tg
si Sinhala Indic Indo-European ml el ko ja bn am Amharic Semitic Afro-Asiatic az tg ur ug hi
ur Urdu Indic Indo-European hi tg ug az ta ar Arabic Semitic Afro-Asiatic af ru es it pt
fa Persian Iranian Indo-European ko vi uk ml hi he Hebrew Semitic Afro-Asiatic hr pl bs uk sr
ku Kurdish Iranian Indo-European ta hi uz ur tg mt Maltese Semitic Afro-Asiatic fr it sh de es
ps Pashto Iranian Indo-European gu or ne pa as ha Hausa West Chadic Afro-Asiatic ur tg az ug hi
tg Tajik Iranian Indo-European ur hi ug az am et Estonian Finnic Uralic fi ru de cs uk
ca Catalan Romance Indo-European es gl it pt sr fi Finnish Finnic Uralic et hu pl cs uk
es Spanish Romance Indo-European pt gl it ca fr hu Hungarian Ugric Uralic fi cs et pl sk
fr French Romance Indo-European it es pt ru de km Central Khmer Khmer Austro-Asiatic gu be nn fy oc
gl Galician Romance Indo-European pt es ca it ro vi Vietnamese Viet-Muong Austro-Asiatic ms id th ko uk
it Italian Romance Indo-European es pt fr gl ca mg Malagasy Barito Austronesian ms id fr ru es
oc Occitan Romance Indo-European be km fy se pt id Indonesian Malayo-Sumbawan Austronesian ms vi th mg uk
pt Portuguese Romance Indo-European es gl it ca fr ms Malay Malayo-Sumbawan Austronesian id vi th mg uk
ro Romanian Romance Indo-European it es ca gl pt kn Kannada Southern Dravidian Dravidian or ne as pa kk
be Belorusian Slavic Indo-European ky ru kk km oc ml Malayalam Southern Dravidian Dravidian si ko ja bn ta
bg Bulgarian Slavic Indo-European ka mk uk pl bs ta Tamil Southern Dravidian Dravidian hi ml ur bn ku
bs Bosnian Slavic Indo-European hr sr sl pl mk te Telugu Southern-central Dravidian Dravidian ta ml or ne as
cs Czech Slavic Indo-European sk sl pl hr bs eu Basque Basque Basque it et es pt ru
hr Croatian Slavic Indo-European bs sr sl pl cs my Burmese Burmese-Lolo Sino-Tibetan kn or ta kk as
mk Macedonian Slavic Indo-European bg ka bs sr hr zh Chinese Chinese Sino-Tibetan lv ru lt fr bn
pl Polish Slavic Indo-European cs sk uk sl bs th Thai Kam-Tai Tai-Kadai vi ko ms ja ml
ru Russian Slavic Indo-European uk mk sk de bg lt Lithuanian Baltic Indo-European lv sh ru fr et
sh Serbo-Croatian Slavic Indo-European lv ru lt sk sl lv Latvian Baltic Indo-European lt sh ru fr et
sk Slovak Slavic Indo-European cs sl pl hr bs ka Georgian Kartvelian Kartvelian bg mk uk bs sr
sl Slovenian Slavic Indo-European sk cs hr bs sr eo Esperanto - - it uk es ca pl
sr Serbian Slavic Indo-European bs hr sl mk pl se Northern Sami - - fy km pa oc be
uk Ukrainian Slavic Indo-European pl ru mk bs bg wa Wallon - - ne oc fy km pa

Table 10: Top-5 languages similar to anchor language according to the cosine similarity of feature proportions in
the sCLM encoder on en-xx translation. The languages are categorized based on the typological knowledge base
WALS (Dryer and Haspelmath, 2013).
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Code Language Genus Family Similar Languages Code Language Genus Family Similar Languages
af Afrikaans Germanic Indo-European fy li nl nn nb sq Albanian Albanian Indo-European ro et sl cs sk
da Danish Germanic Indo-European no sv nb nn is br Breton Celtic Indo-European cy oc ku se wa
de German Germanic Indo-European nl da nb no sv cy Welsh Celtic Indo-European br oc se ku af
fy Western Frisian Germanic Indo-European af li nn oc nb ga Irish Celtic Indo-European gd de nb oc se
is Icelandic Germanic Indo-European sv no da nb et gd Gaelic Celtic Indo-European ga oc cy se ig
li Limburgan Germanic Indo-European fy af wa nn oc el Greek Greek Indo-European ro ka he th no
nl Dutch Germanic Indo-European af de da no sv ja Japanese Japanese Japanese zh ko ta th si
no Norwegian Germanic Indo-European da sv nb nn is ko Korean Korean Korean th ja si zh ta
nb Norwegian Bokmål Germanic Indo-European nn da no sv af rw Kinyarwanda Bantoid Niger-Congo tk li fy af zu
nn Norwegian Nynorsk Germanic Indo-European nb no da af sv xh Xhosa Bantoid Niger-Congo zh sh tk et mt
sv Swedish Germanic Indo-European da no nb is nn zu Zulu Bantoid Niger-Congo xh tk ig ku oc
yi Yiddish Germanic indo-European gu li af ky kn ig Igbo Igboid Niger-Congo zu tk gd rw li
as Assamese Indic Indo-European bn gu hi he nn az Azerbaijani Turkic Altaic tr uz tk gu et
bn Bengali Indic Indo-European as he gu si hi kk Kazakh Turkic Altaic ky be ru uk fy
gu Gujarati Indic Indo-European ne as hi bn pa ky Kyrgyz Turkic Altaic kk be ru uk uz
hi Hindi Indic Indo-European ne mr gu cs si tk Turkmen Turkic Altaic ku oc tr zu cy
mr Marathi Indic Indo-European hi ne cs gu sk tr Turkish Turkic Altaic az tk eo et uz
ne Nepali Indic Indo-European hi gu mr nn pa tt Tatar Turkic Altaic uz kk ky tg he
or Oriya Indic Indo-European hi gu kn ko pa ug Uyghur Turkic Altaic ps ur hi uz ky
pa Panjabi Indic Indo-European km gu ne ko ja uz Uzbek Turkic Altaic tg ky az tt tk
si Sinhala Indic Indo-European ml ko he th hi am Amharic Semitic Afro-Asiatic ky gu uz az or
ur Urdu Indic Indo-European fa he hi th ar ar Arabic Semitic Afro-Asiatic fa he ur de th
fa Persian Iranian Indo-European ar ur th he de he Hebrew Semitic Afro-Asiatic bn si ka ro bg
ku Kurdish Iranian Indo-European cy br oc se tk mt Maltese Semitic Afro-Asiatic it fr sh wa lv
ps Pashto Iranian Indo-European nn gu ug zu oc ha Hausa West Chadic Afro-Asiatic tg ig ku ms tk
tg Tajik Iranian Indo-European uz be ky ru uk et Estonian Finnic Uralic fi ms id ro sq
ca Catalan Romance Indo-European es gl pt it fr fi Finnish Finnic Uralic et eu no id hu
es Spanish Romance Indo-European gl pt ca it fr hu Hungarian Ugric Uralic et fi eo cs es
fr French Romance Indo-European ca pt es it gl km Central Khmer Khmer Austro-Asiatic pa se gu oc nb
gl Galician Romance Indo-European pt es ca it fr vi Vietnamese Viet-Muong Austro-Asiatic ms id et ka no
it Italian Romance Indo-European pt ca es gl fr mg Malagasy Barito Austronesian sh fr fi de lv
oc Occitan Romance Indo-European wa se cy gl ca id Indonesian Malayo-Sumbawan Austronesian ms vi et he fi
pt Portuguese Romance Indo-European gl es ca it fr ms Malay Malayo-Sumbawan Austronesian id vi et ka fi
ro Romanian Romance Indo-European ca pt gl es it kn Kannada Southern Dravidian Dravidian te or km nn ne
be Belorusian Slavic Indo-European uk ru ky kk tg ml Malayalam Southern Dravidian Dravidian si ko vi ta hi
bg Bulgarian Slavic Indo-European mk ru uk ka he ta Tamil Southern Dravidian Dravidian ko gu ja ml hi
bs Bosnian Slavic Indo-European hr sr sl sk sh te Telugu Southern-central Dravidian Dravidian kn vi hi ml ko
cs Czech Slavic Indo-European sk sl pl hr bs eu Basque Basque Basque fi eo id ms gl
hr Croatian Slavic Indo-European bs sr sl sk sh my Burmese Burmese-Lolo Sino-Tibetan gu or eo oc tk
mk Macedonian Slavic Indo-European bg ru uk ka he zh Chinese Chinese Sino-Tibetan ja th ko bn ta
pl Polish Slavic Indo-European sk cs hr sl bs th Thai Kam-Tai Tai-Kadai ko zh si ru uk
ru Russian Slavic Indo-European uk bg be mk ky lt Lithuanian Baltic Indo-European lv sh eo ru cs
sh Serbo-Croatian Slavic Indo-European hr sr bs sl sk lv Latvian Baltic Indo-European lt sh et nb ru
sk Slovak Slavic Indo-European cs sl pl hr bs ka Georgian Kartvelian Kartvelian bbg mk ru he nl
sl Slovenian Slavic Indo-European hr bs sr sk cs eo Esperanto - - ca es gl oc pt
sr Serbian Slavic Indo-European bs hr sl sk sh se Northern Sami - - oc cy ku nn br
uk Ukrainian Slavic Indo-European ru bg be mk th wa Wallon - - oc af ku nn li

Table 11: Top-5 languages similar to anchor language according to the cosine similarity of feature proportions in
the sCLM decoder on en-xx translation.
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(a) Multilingual baseline (b) sCLM (c) mCLM

Figure 5: t-SNE visualizations of the encoder representations of 19 med-resource languages on xx-en translation
encoded by Multilingual baseline, sCLM and mCLM.

(a) Multilingual baseline (b) sCLM (c) mCLM

Figure 6: t-SNE visualizations of the encoder representations of 41 high-resource languages on xx-en translation
encoded by Multilingual baseline, sCLM and mCLM.
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