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Abstract

Temporal knowledge graphs (TKGs) extrapola-
tion reasoning predicts future events based on
historical information, which has great research
significance and broad application value. Exist-
ing methods can be divided into embedding-
based methods and logical rule-based meth-
ods. Embedding-based methods rely on learned
entity and relation embeddings to make pre-
dictions and thus lack interpretability. Logi-
cal rule-based methods bring scalability prob-
lems due to being limited by the learned log-
ical rules. We combine the two methods to
capture deep causal logic by learning rule em-
beddings, and propose an interpretable model
for temporal knowledge graph reasoning called
adaptive logical rule embedding model for
inductive reasoning (ALRE-IR). ALRE-IR can
adaptively extract and assess reasons contained
in historical events, and make predictions based
on causal logic. Furthermore, we propose
a one-class augmented matching loss for op-
timization. When evaluated on ICEWS14,
ICEWS0515 and ICEWS18 datasets, the per-
formance of ALRE-IR outperforms other state-
of-the-art baselines. The results also demon-
strate that ALRE-IR still shows outstanding
performance when transferred to related dataset
with common relation vocabulary, indicating
our proposed model has good zero-shot reason-
ing ability.1

1 Introduction

Knowledge graphs (KGs) are a form of structured
human knowledge. They represent events as triples
(subject, relation, object), where subject and object
are entities. Entities usually are objects and abstract
concepts in the real world, and relations represent
relationships between entities. KGs have caused
great research both in academia and industry (Dong
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1Our code is released at https://github.com/mxadorable/
ALRET-IR.

et al., 2014; Nickel et al., 2015; Wang et al., 2017;
Hogan et al., 2021), and have been widely used in
many real-world applications including relation ex-
traction (Min et al., 2013; Zeng et al., 2015), entity
linking (Hua et al., 2015; Mendes et al., 2011), and
question answering (Luo et al., 2018; Yih et al.,
2015). However, most of the knowledge graphs are
incomplete (Shi and Weninger, 2018; Toutanova
and Chen, 2015), which affects their effectiveness
and limits the performance of KG-based applica-
tions. Reasoning over KGs aims to infer new con-
clusions based on existing data and predict the
missing events, which can effectively alleviate this
problem. Traditional knowledge graphs contain
only static events, and there is a large amount
of available event data with temporal correlations,
where entities interact differently over time. There-
fore, many temporal knowledge graphs (TKGs)
composed of entity interaction data with tempo-
ral attributes have emerged (Boschee et al., 2015;
Gottschalk and Demidova, 2018, 2019).TKGs ex-
tend static triples with timestamp to represent dy-
namic events in the form of quadruples (subject,
relation, object, timestamp), where timestamp rep-
resents valid time of static triple. Compared with
traditional static KGs, TKGs have complex tem-
poral dynamic characteristics, which increase diffi-
culty of reasoning on TKGs.

Reasoning over a TKG primarily has two set-
tings, interpolation (Goel et al., 2020) and extrap-
olation (Trivedi et al., 2017). Given events within
time interval [t0, tT ], interpolation attempts to infer
missing events that happened in [t0, tT ], while ex-
trapolation predicts future missing events for time
t > tT . Extrapolation reasoning learns hidden
connections between events from observed histor-
ical KGs and then predicts new events at future
timestamps (Korkmaz et al., 2015; Muthiah et al.,
2015; Phillips et al., 2017), which can be applied
in practical scenarios such as disaster relief (Sig-
norini et al., 2011) and financial analysis (Bollen
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et al., 2011).This paper focuses on extrapolation
reasoning task.

Recently, many research efforts have been put
into extrapolation reasoning over TKGs and real-
ize excellent prediction performance (Tao et al.,
2021). These methods can be divided into two cate-
gories: embedding-based methods and logical rule-
based symbolic methods. Embedding-based meth-
ods such as RE-Net (Jin et al., 2020), CyGNet (Zhu
et al., 2021), TIE (Wu et al., 2021) and RE-GCN
(Li et al., 2021) can capture complex information
in TKG, but the black-box property of embeddings
make them lack interpretability and are not suitable
for many practical applications. Some researchers
propose to create logical rules for reasoning to en-
hance credibility and utility, such as Streamlearner
(Omran et al., 2019) and Tlogic (Liu et al., 2022).
They employ statistical-based measures to assess
confidence of rules and make predictions based
on learned rules. However, the learned rules are
limited, which makes the model have scalability
problems and is not suitable for large-scale datasets
in reality.

To alleviate the above problems, we propose an
adaptive logical rule embedding model for induc-
tive reasoning (ALRE-IR) on temporal knowledge
graphs. It can effectively capture deep structure
of TKG and mine potential logical rules. Logical
rules are represented by a sequence of relations.
Therefore, relations are the core features we focus
on when mining rules, and entities are just tools
for extracting relation paths. First, we extract re-
lation paths from historical subgraphs and learn
embeddings of relation paths that contain historical
semantics. We then match these relation paths with
current events to obtain rules and assess confidence
of the rules based on interpretable causal logic. Fi-
nally, the quadruple can be scored according to
confidence of the rules. We design training tasks
from a coarse-grained quadruple perspective and
a fine-grained rule perspective, respectively, and
propose a one-class augmented matching loss to
optimize our proposed adaptive logical rule em-
bedding model. During the inference process, our
model can adaptively extract and learn relation path
features based on historical information, assess
the confidence of corresponding rules, and predict
missing entities. Furthermore, our trained model
can be applied to new datasets with a common
relation vocabulary for zero-shot reasoning.

In summary, this paper makes the following four

contributions:
(1) An interpretable temporal knowledge graph

reasoning method is developed, which can perform
effective inductive reasoning.

(2) An adaptive logical rule embedding model
is proposed, which can autonomously extract and
assess rules based on historical features.

(3) A one-class augmented matching loss is de-
signed to train the model from a coarse-grained
quadruple perspective and a fine-grained rule per-
spective, respectively.

(4) Thorough experimental studies are con-
ducted, and experimental results show that our pro-
posed ALRE-IR model outperforms state-of-the-art
baselines.

2 Related Work

2.1 Static Knowledge Graph (KG) Reasoning

Common static KG reasoning models mainly focus
on knowledge representation learning, that is, learn-
ing low-dimensional vector representations of enti-
ties and relations. These models are mainly divided
into three categories: translation based models, se-
mantic matching based models, and neural network
based models. Translation based models regard the
relation as a translation vector from a subject entity
to an object entity, such as TransE (Bordes et al.,
2013), TransH (Wang et al., 2014), and TransR (Lin
et al., 2015). Semantic matching based models (e.g.
ComplEx (Trouillon et al., 2016), DistMult (Yang
et al., 2015) and RotatE (Sun et al., 2019)), assume
that the score of a triple can be factorized into sev-
eral tensors, and use triangular norm to measure the
rationality of facts. Neural network based models
use deep neural networks to learn network embed-
dings. For example, ConvE (Dettmers et al., 2018)
and ConvKB (Nguyen et al., 2018) use convolu-
tional neural networks to learn interactions between
entities and relation. In addition, some models uti-
lize graph neural networks which have outstanding
performance in graph representation learning to
embed KG, such as R-GCN (Schlichtkrull et al.,
2018), A2N (Bansal et al., 2019), and RGHAT
(Zhang et al., 2020).

2.2 Temporal Knowledge Graph (TKG)
Reasoning

TKG reasoning can have two settings: extrapola-
tion reasoning and interpolation reasoning. For
interpolation reasoning, researchers complete miss-
ing events in past timestamps by adding temporal
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Figure 1: Rule extraction based on relation paths.

information to the static KG representation learn-
ing method. TTransE (Leblay and Chekol, 2018)
is an extension of TransE, which embeds temporal
information into score function. HyTE (Dasgupta
et al., 2018) improves TransH by replacing the unit
normal vector of the hyperplane projection with the
normal vector related to timestamp. TA-DistMult
(Garcia-Duran et al., 2018) uses recurrent neural
networks to embed time into relation embeddings.

Unlike interpolation reasoning, extrapolation rea-
soning predicts new events in the future based
on historical facts. Existing methods for extrapo-
lating reasoning can be divided into embedding-
based methods and logical rule-based methods.
Embedding-based methods include RE-NET (Jin
et al., 2020), CyGNet (Zhu et al., 2021), RE-GCN
(Li et al., 2021) and xERTE (Han et al., 2021).
They capture temporal information either by learn-
ing embeddings for each timestamp, or learning
evolutional embeddings of entities and relations
over time. Although these methods can capture
complex features, they rely on trained embeddings
and cannot make inductive predictions for events
containing new entities, relations, or timestamps.
Recently, some researchers have proposed logi-
cal rule-based interpretable methods, such as Any-
BURL(Meilicke et al., 2020), StreamLearner (Om-
ran et al., 2019) and TLogic (Liu et al., 2022).
These methods mine logical rules from datasets
through random walks, and design measures to
assess confidence of candidate logical rules. There-
fore, quality of the logical rules they learn depends
largely on the measure chosen. Furthermore, these
methods apply learned rules for reasoning and can-
not adapt to new patterns of logical rules.

3 Preliminaries

Temporal Knowledge Graph (TKG). A TKG con-
sists of dynamic events, an event is represented in
the form of a quadruple (s, r, o, t) consisting of a
subject entity s ∈ E, a relation r ∈ Υ, an object
entity o ∈ E and a timestamp t ∈ Γ. E and Υ
denote entity set and relation set respectively, and
Γ represents the set of timestamps.
Link Prediction. Given a missing temporal
quadruple (event), link prediction aims to infer
the missing part, such as predicting object entity
given (s, r, ?, t) or predicting subject entity given
(?, r, o, t) or predicting relation given (s, ?, o, t).
For each quadruple, the training objective function
is optimized to make the correct quadruple score
higher than the incorrect quadruple, it is generally
defined as a score function g(s, r, o, t) ∈ R.
Temporal logical rules. We predict future events
by mining logical causal relationships between
events. As shown in Figure 1, we take an event
(e1, r8, e5, t) as an example, and mine temporal log-
ical rules contained in it according to the historical
information in the previous m timestamps. Figure
1(a) represents a subgraph composed of events that
occurred in the previous m timestamps. Based on
this subgraph, we mine all rules that might lead to
the current event. Figure 1(b) shows all paths from
e1 to e5, we can extract relations to get four possi-
ble logical rules in Figure 1(c). Each rule Rt(p, r)
consists of a path p ∈ P t

(s,o) and a relation r ∈ Υ,
p represents the historical reason and r represents
the result at the current timestamp.

4 Method

We propose an interpretable model for temporal
knowledge graph reasoning called adaptive logi-
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Figure 2: Architecture of the proposed model.

cal rule embedding model for inductive reasoning
(ALRE-IR). It uses relation paths to represent logi-
cal rules implicit in the knowledge graph, and cap-
tures complex semantic features in the knowledge
graph by learning embeddings of relation paths. It
can adaptively extract possible rules, learn rules’
embeddings, score rules based on interpretable
causal logic, and finally make predictions based
on relative confidence of rules. Our inductive rea-
soning model is composed of three parts as follows:

Encoding, which walks out all historical relation
paths for each input quadruple, learns embeddings
of all relation paths.

Decoding, which scores quadruples according to
all the temporal logical rules associated with them.

Training, which proposes a one-class aug-
mented matching loss to optimize the model, so
that the model can adaptively learn reasonable log-
ical rules.

The overall architecture of the model is shown
in Figure 2, details of the model will be elaborated
as follows.

4.1 Encoding

Existing representation learning based temporal
knowledge reasoning methods make predictions by
learning evolutional embeddings of entities. We
propose to infer missing links according to causal
logical rules, and encode historical information to
find the reason that leads to the event. In this part,
we mine relation logical rules contained in histor-
ical subgraphs, and learn embeddings of relation
paths.

4.1.1 Relation Paths Extraction

We take entities as nodes and relations as edges,
and construct a relation graph according to all
events from timestamp t−m to t− 1. For events
(s, r, o, t), we take the k-hop neighbors around
node s and node o respectively to get two sub-
graphs, and take the intersection of the two sub-
graphs. Then we remove independent nodes and
nodes whose distance from node s or node o is
greater than k. By doing this, we can obtain a sub-
graph containing all paths between node s and node
o whose length does not exceed k + 1. After that,
we extract all paths between node s and node o on
the subgraph, and remove entities to get relation
paths.

4.1.2 Relation Paths Embedding

We learn relation path sequence embeddings to
capture logical semantics implied in the relation
paths, which reflect spatial logical correlation of
the two entities.

In our approach, we exploit Gated Recurrent
Unit (GRU), a popular variant of RNNs, to capture
features of relation paths. Gated recurrent neural
networks (Gated RNNs) have been successfully
applied in processing data with sequence character-
istics, i.e., data that conform to temporal, logical,
or other orderings. RNNs can capture relationships
between sequential data, and mine sequential infor-
mation and semantic information in the data. The
reason why RNNs can solve the sequence prob-
lem is that it can remember information at each
moment. The hidden layer at each moment is not
only determined by the input layer at this moment,
but also by the output of the hidden layer at the
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previous moment. A simple recurrent unit can be
represented as:

ht = f(W · xt +U · ht−1 + b) (1)

where xt is the input vector at timestamp t, ht is
the hidden states at timestamp t, W and U are
two trainable weight parameters, and f(·) is an
activation function.

The relation paths we extract are of variable
length, and GRU can easily process such sequences
and get embeddings for each path. GRU controls
the flow of information through two learnable gates,
called update gate and reset gate. The update gate
controls historical memory information to be re-
tained, and the reset gate controls information to
be forgotten. The specific formula of GRU model
is as follows:

zt = σ(Wz · xt +Uz · ht−1 + bz) (2)

rt = σ(Wr · xt +Ur · ht−1 + br) (3)

h̃t = tanh(W · xt +U · (rt ⊙ ht−1) + b) (4)

ht = zr ⊙ h̃t + (1− zr)⊙ ht−1 (5)

where zt is the update gate and rt is the reset gate.
h(t−1) represents the hidden state at timestamp
t − 1, which acts as the neural network memory,
containing information of the previous input. σ is
the sigmoid function.

4.2 Decoding
4.2.1 Confidence Estimation of rules
Relation paths extracted based on events (s, r, o, t)
represent possible “reasons” of events. According
to the “result” r, we find reasonable ones from
these reasons, i.e. find possible matching rules.

For an event (s, r, o, t), we get all relation paths
between the subject entity s and object entity o,
and the corresponding embeddings Pt

(s,o). Tak-
ing the path pi ∈ P t

(s,o) as “reason” and relation r

as “result”, a rule Rt(p, r) is obtained. Then, we
estimate the rule confidence by capturing the inter-
action between path pi and relation r. We define
two confidence estimation functions as:
Similarity matching:

f(pi, r) = cos(pi, r) (6)

where cos represents cosine similarity. This func-
tion measures interaction score of path and relation
using cosine similarity.
Concatenation combination:

f(pi, r) = σ(W(pi∥r)) (7)

where σ is the sigmoid function, ∥ represents con-
catenation operation. This function concatenates
path and relation embeddings, capturing their in-
teraction score with a linear projection, and W
represents a projection matrix.

4.2.2 Score function
We predict the missing quadruple (s, r, ?, t) based
on the learned path embeddings. For a candi-
date target entity o, the corresponding quadruple is
(s, r, o, t). The score function is defined as:

g(s, r, o, t) = maxpi∈Pt
(s,o)

f(pi, r) (8)

Taking entity s as the starting node and entity o
as the ending node, we extract relation paths that
represent all possible reasons of the current event.
Combine these paths with relation r to generate a
set of rules. The rule with the highest confidence
indicates that the relation path in this rule is the
most reasonable “reason” for the current quadruple,
and we use confidence of this rule as the score of
the quadruple.

4.3 Training
In this subsection we introduce an objective func-
tion for training. For relation r, we train the model
to find matching paths in historical events (correct
rules). However, the biggest difficulty is that we do
not know which path-relation pair is matched, i.e.,
there is no correct rule for training. To this end, we
design training tasks from a coarse-grained quadru-
ple perspective and a fine-grained rule perspective,
respectively, and propose a one-class augmented
matching loss.

4.3.1 Training from quadruple perspective
From the quadruple perspective, similar to
embedding-based methods, we design a main loss
function according to the quadruple score, in order
to let the correct quadruple score higher and the
wrong quadruple score lower. The loss function is
soft-margin loss as:

L1 =
∑

(s,r,o,t)∈Q⋃
Q′

log(1 + exp(l · g(s, r, o, t)))

(9)

l =

{
1, (s, r, o, t) ∈ Q
−1, (s, r, o, t) ∈ Q′ (10)

where Q is the set of valid quadruples, and
Q′ denotes the set of invalid triples as Q′ =
{(s, r, o′, t)|o′ ∈ E − o}.

7308



: target relation r

: rule in positive quadruple

: path in positive quadruple

: rule in negative quadruple

: path in negative quadruple

+= +=

(a) View of scoring rules 

(b)View of matching path and relation

For positive quadruple For negative quadruple

Score Score

Figure 3: Training from quadruple perspective.

From the decoder, we know that score of the
quadruple is determined by the rule with highest
confidence it contains.

We find that all the rules drawn from the wrong
quadruple must be wrong, but we cannot determine
which rules drawn from the correct quadruple are
correct. As shown in Figure 3(a), the training task
is to make the correct quadruple score higher, that
is, the soft positive rule with the highest score is
regarded as a positive example to obtain a higher
confidence. Similarly, for the wrong quadruple, the
hard negative rule with the highest confidence is
regarded as a negative example to obtain a lower
confidence. From the view of matching reason path
and result relation r, this task is to make the path in
the positive example close to the relation r, and the
path in the negative example away from the relation
r, as shown in Figure 3(b). In short, this training
task is to make the soft positive rules have higher
confidence, make the hard negative rules that are
easy to misjudgment have lower confidence, and
ignore other negative rules and uncertain rules.

4.3.2 Training from rule perspective
From the fine-grained rules perspective, we add an-
other auxiliary training task to handle rules ignored
in the main task. Inspired by one-class problem,
we train the model only with negative samples. By
negative sampling, we can obtain a sufficient num-
ber of negative quadruplets, each of which contains
multiple negative rules that can be determined to
be negative. As shown in Figure 4, the relative
confidence of possible positive rules is increased
by decreasing confidence of negative rules, thereby
improving prediction accuracy of the model.

Score

Figure 4: Training from rule perspective.

If the similarity matching function is applied to
estimate confidence of the rule, the loss function
here is defined as the cosine loss:

L2 =
∑

(s,r,o,t)∈Q⋃
Q′

cosloss(p, r) (11)

cosloss(p, r) =

{
1− cos(p, r), y = 1
max(0, cos(p, r)), y = −1

(12)

If the concatenation combination function is ap-
plied, the loss function is the soft-margin loss:

L2 =
∑

(s,r,o,t)∈Q⋃
Q′

log(1 + exp(l · g(s, r, o, t)

(13)
Then the overall one-class augmented matching

loss is defined as:

L = αL1 + (1− α)L2 (14)

where α ∈ [0, 1].

4.4 Inference
Our method can directly use the trained model to
extract historical features and predict missing entity
without complex rule application process. First,
we select candidate entities (all entities reachable
within k hops with s as the source entity node)
for the query (s, r, ?, t), and generate candidate
quadruples based on the candidate entities. Then,
we apply the trained encoder to extract relation
paths for the query, form rules and assess their
confidence. Finally, we score quadruples according
to the confidence of rules. The candidate entity
corresponding to the quadruple with the highest
score is the predicted target entity.

5 Experiment

5.1 Datasets
We conduct experiments on Integrated Crisis Early
Warning System2 (ICEWS) dataset. ICEWS com-
monly used for temporal knowledge graph link

2https://dataverse.harvard.edu/dataverse/icews
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Data Entities Relations Training Validation Test Time Granules
ICEWS14 7,128 230 63,685 13,823 13,222 365
ICEWS18 23,033 256 539,286 67,538 63,110 304
ICEWS0515 10,488 251 272,115 17,535 20,466 4,017

Table 1: Statistics of the datasets.

Method ICEWS14 ICEWS18 ICEWS0515
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult 0.2767 0.1816 0.3115 0.4696 0.1017 0.0452 0.1033 0.2125 0.2873 0.1933 0.3219 0.4754
ComplEx 0.3084 0.2151 0.3448 0.4958 0.2101 0.1187 0.2347 0.3987 0.3169 0.2144 0.3574 0.5204
AnyBURL 0.2967 0.2126 0.3333 0.4673 0.2277 0.1510 0.2544 0.3891 0.3205 0.2372 0.3545 0.5046
TTransE 0.1343 0.0311 0.1732 0.3455 0.0831 0.0192 0.0856 0.2189 0.1571 0.0500 0.1972 0.3802
TA-DistMult 0.2647 0.1709 0.3022 0.4541 0.1675 0.0861 0.1841 0.3359 0.2431 0.1458 0.2792 0.4421
DE-SimplE 0.3267 0.2443 0.3569 0.4911 0.1930 0.1153 0.2186 0.3480 0.3502 0.2591 0.3899 0.5275
TNTComplEx 0.3212 0.2335 0.3603 0.4913 0.2123 0.1328 0.2402 0.3691 0.2754 0.1952 0.3080 0.4286
CyGNet 0.3273 0.2369 0.3631 0.5067 0.2493 0.1590 0.2828 0.4261 0.3497 0.2567 0.3909 0.5294
RE-NET 0.3828 0.2868 0.4134 0.5452 0.2881 0.1905 0.3244 0.4751 0.4297 0.3126 0.4685 0.6347
xERTE 0.4079 0.3270 0.4567 0.5730 0.2931 0.2103 0.3351 0.4648 0.4662 0.3784 0.5231 0.6392
TLogic 0.4304 0.3356 0.4827 0.6123 0.2982 0.2054 0.3395 0.4853 0.4697 0.3621 0.5313 0.6743
RE-GCN 0.4435 0.3351 0.5081 0.6316 0.3484 0.2309 0.3983 0.5816 0.4923 0.3824 0.5571 0.7054
ALRE-IR 0. 5401 0.4279 0.6116 0.7179 0.3841 0.2566 0.4372 0.6100 0.6018 0.4897 0.6777 0.7750
ALRE-IR w/i CE 0.6384 0.5380 0.7091 0.7907 0.4537 0.3778 0.4810 0.6661 0.6479 0.5588 0.7048 0.7803

Table 2: Performance comparison for entity prediction.

prediction, which contains international event infor-
mation. We select three subsets in ICEWS dataset,
namely ICEWS0515, which contains data from
2005 to 2015, ICEWS14 which contains data in
2014, and ICEWS18 which contains data in 2018.
We divide each dataset into training set, validation
set and test set, and for fair comparison, we used
the data splits provided by Liu et al. (2022). Table 1
provides statistics of all datasets used.

5.2 Baselines
To demonstrate effectiveness of our proposed
ALRE-IR model, we compare experimental results
with a wide selection of static models and temporal
models.
Static models. We select some static knowledge
graph representation learning models that ignore
time information, including DistMult (Yang et al.,
2015), ComplEX (Trouillon et al., 2016), and Any-
BURL (Meilicke et al., 2020).
Temporal models. We also compare some tem-
poral reasoning models of knowledge graphs, in-
cluding TTransE (Leblay and Chekol, 2018), DE-
SimplE (Goel et al., 2020), TNTComplEx (Lacroix
et al., 2020), TA-DistMult (Garcia-Duran et al.,
2018),RE-NET (Jin et al., 2020), CyGNet (Zhu
et al., 2021), xERTE (Han et al., 2021), TLogic
(Liu et al., 2022) and RE-GCN (Li et al., 2021).
For RE-GCN (Li et al., 2021), we reproduce the
experiments. And for other baselines, we list the
results reported in TLogic (Liu et al., 2022).

Due to time urgency of news events, related

events may appear on the same day. Datasets that
roughly label temporal information in units of days
hinder the model’s ability to extract historical infor-
mation. Therefore, we also try to use partial events
in current timestamp to provide some hints during
inference, named as ALRE-IR w/i CE. We sort
events within the same timestamp according to the
order in which they appear in the dataset, mask the
later events, and use the earlier events as known
historical events to assist in reasoning.

5.3 Results
Experimental results are shown in Table 2. All
models perform best on ICEWS0515, followed by
ICEWS14, and the worst on ICEWS18. It can
be seen from Table 1 that the number of entities
and events in ICEWS18 dataset is large, so the
TKG structure formed is complex and dense, which
brings a lot of noise to inference. In contrast, the
TKG composed of ICEWS0515 is easier to handle.

For comparison models, three static inference
models DistMult, ComplEX, and AnyBURL do not
consider temporal information and thus perform
worst. TTransE, DE-SimplE, TNTComplEx and
TA-DistMult are interpolation inference models,
which cannot handle events in future timestamps
and perform poorly. RE-NET and CyGNet fail to
make predictions on entities which do not exist
in the training set. xERTE achieves better perfor-
mance than RE-NET and CyGNet, since it extracts
historical subgraph according to the query and per-
forms attention propagation to reason on the sub-
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Model ALRE-IR RE-GCN ALRE-IR RE-GCN
Test ICEWS14 ICEWS0515
Train ICEWS14 ICEWS0515 ICEWS14 ICEWS0515 ICEWS14 ICEWS0515
MRR 0.5401 0.5056 0.4435 0.6018 0.5867 0.4923
Hits@1 0.4279 0.3894 0.3351 0.4897 0.4650 0.3824
Hits@3 0.6116 0.5757 0.5081 0.6777 0.6659 0.5571
Hits@10 0.7179 0.6917 0.6316 0.7750 0.7920 0.7054

Table 3: Zero-shot reasoning where rules learned on train dataset are transferred and applied to test dataset.

graph. The two best performing models are logical
rule-based TLogic and embedding-based RE-GCN.
Our proposed ALRE-IR outperforms the above two
models on all datasets. The measure used in TLogic
to assess the confidence of logical rules are de-
signed based on statistical methods. Instead, we
use the learned path embeddings to evaluate the
rule confidence according to causal logic. The dis-
tance between embedding vectors can well reflect
the similarity between paths and relations. RE-
GCN leverages graph convolutional networks to
learn evolutional representations of entities and re-
lations, achieving better performance than TLogic.
Both TLogic and our proposed ALRE-IR can trans-
fer the trained model for inductive reasoning on
datasets with common relation vocabulary, but RE-
GCN cannot do this.

Logical rule-based methods can effectively pre-
dict events that contain rules mined from the train-
ing set, but are slightly less effective for unseen
rules. As shown in Table 2, hits@1 of RE-GCN
on ICEWS14 is slightly lower than TLogic, but
Hits@3 and Hits@10 are higher than TLogic.
Embedding-based RE-GCN learns entity evolu-
tional representations and predicts events based
on distances between vector representations. The
learned vector representations can well reflect the
latent relationships between entities, so that correct
quadruples can get higher scores. But they ignore
the important logical relationships contained in the
knowledge graph, making it difficult to obtain ac-
curate prediction. Our proposed model combines
advantages of the two methods, learns causal path
embedding to mine underlying logic, improves the
model’s accurate prediction ability, and enhances
robustness to unseen rules, thereby achieving better
performance.

Furthermore, the outstanding performance of
ALRE-IR w/i CE shows that there is a strong cor-
relation between events occurring within the same
timestamp, which can assist the model in making
real-time predictions.
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Figure 5: Result on ICEWS14 dataset under different
scales of training samples.

5.4 Zero-shot reasoning

Our proposed ALRE-IR model can be transferred
to any new dataset that shares a common relation-
ship with the training dataset for zero-shot reason-
ing. To evaluate the zero-shot reasoning perfor-
mance of ALRE-IR, we conduct experiments on
ICEWS0515 and ICEWS14, and the results are
shown in Table 3. The ALRe-IR model trained on
ICEW0515 is applied to ICEWS14 for reasoning.
The prediction performance is slightly worse than
the ALRE-IR model trained on ICEWS14, but still
better than the best baseline RE-GCN. Similar per-
formance is achieved when the model is trained on
ICEWS14 and tested on ICEW0515.

5.5 Proportions of the training data

We evaluate performance of the proposed ALRE-
IR model under different scales of training samples,
and the results are shown in Figure 5. We divide the
training set by timestamp and evaluate model’s per-
formance when trained with events within the pre-
vious 50, 100, 150, 200, and 261 timestamps (full
training set), respectively. When trained with the
events only within the previous 50 timestamps, the
model underfitted and performed poorly. But when
we train the model with the previous 100 times-
tamp events, it achieves similar performance to the
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model trained with the full training set. It shows
that our model can achieve good performance with
only a small number of training samples.

5.6 Error analysis

To analyze errors of our proposed model in TKG
reasoning, we randomly sample 100 inaccurately
predicted test quadruples and summarize three
types of errors. (1) Same relation paths: The model
scores the quadruples based on similarity between
the historical relationship path and the current re-
lationship. When the same reasonable historical
relationship path is mined for different quadruples,
they will obtain the same score. (2) Time insen-
sitivity: Due to insufficient use of temporal infor-
mation, time of the event occurrence is incorrectly
predicted, that is, future events are predicted at the
current moment. (3) Immediate response events:
Urgent related events may occur on the same day.
Time interval of events in the dataset is one day,
which prevents us from capturing key historical
events that occurred on the same day.

Due to space limitations, we report more results
including implementation, detailed analysis and
case study in Appendices.

6 Conclusion

We propose an interpretable model for temporal
knowledge graph reasoning called ALRE-IR. It can
autonomously extract and assess rules based on his-
torical features, and make prediction with rules. We
design training tasks from a coarse-grained quadru-
ple perspective and a fine-grained rule perspective,
respectively, and propose a one-class augmented
matching loss for optimization. ALRE-IR can be
transferred to perform zero-shot reasoning on any
new dataset with common relation vocabulary. Ex-
perimental results demonstrate that our proposed
ALRE-IR performs better than the state-of-the-art
baselines.

Limitations

Although our proposed ALRE-IR model has shown
better performance than state-of-the-art baselines,
there are some limitations. We do not fully con-
sider temporal information when mining logical
rules. We only focus on logical causality of his-
torical paths and current events, while ignoring
specific time when the “result” event occurred. Re-
garding this issue, we consider adding temporal in-
formation in path encoding, taking time difference

between the relation edge in the path and current
relation edge as temporal feature, and encoding
both the semantic feature and temporal feature to
improve prediction performance.
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A Appendix

A.1 Implementations
We randomly initialize relation embeddings with
dimension of 200. The initial hyperparameter of
α is set to 0.5 and increases by 0.1 every training
epoch until it reaches 1. The maximum length k
of the rules is set as 3, and the optimal historical
event intervals m on the ICEWS0515, ICEWS14
and ICEWS18 datasets are set to 5, 3, and 3, re-
spectively. We use Adam optimizer to optimize all
parameters, and the initial learning rate is set as
0.001. We use early stopping to avoid overfitting.
We train the model for 200 epochs and stop train-
ing if the validation loss does not decrease for 10
consecutive epochs.

We adopt a time-aware filtering strategy (Han
et al., 2021) to filter out the quadruples valid at
current timestamp among the candidate negative
quadruples. When extracting rules, we treat the
knowledge graph as an undirected graph. MRR,
Hit@1, Hit@3 and Hit@10 are employed as the
metrics.
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Method ICEWS14 ICEWS0515
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ALRE-IR w/i SM 0.5401 0.4279 0.6116 0.7179 0.6018 0.4897 0.6777 0.7750
ALRE-IR w/i CC 0.3886 0.2927 0.4264 0.5477 0.4332 0.3292 0.4824 0.5920

Table 4: Results with different confidence estimation functions.

Method ICEWS14 ICEWS0515
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ALRE-IR w/i M 0. 5401 0.4279 0.6116 0.7179 0.6018 0.4897 0.6777 0.7750
ALRE-IR w/i A 0.4196 0.3405 0.4608 0.5388 0.4610 0.3739 0.5036 0.5969

Table 5: Results with different score functions.

A.2 Detailed Analysis

The results in this section are obtained on datasets
ICEWS14 and ICEWS0515, with similar results
on the ICEWS18 dataset.

A.2.1 Confidence estimation function
In this paper, two rule confidence evaluation meth-
ods, similarity matching and concatenation combi-
nation, are proposed. In order to evaluate these two
methods, we conduct experiments on ICEWS14
and ICEWS0515 datasets respectively, and the re-
sults are reported in Table 4. ALRE-IR w/i SM and
ALRE-IR w/i CC represent models that employ
similarity matching and concatenation combination
to evaluate rule confidence, respectively. It can be
seen from Table 4 that ALRE-IR w/i CC performs
significantly worse than ALRE-IR w/i SM on both
datasets. It indicates that similarity-based measures
can better reflect causal association between paths
and relations, so we adopt similarity matching on
three datasets to evaluate the confidence of rules.

A.2.2 Score function
When scoring a quadruple, the score function intro-
duced in this paper takes highest confidence of all
rules as the score of the quadruple, named ALRE-
IR w/i M. We also try another way, that is, av-
eraging all path embeddings to get a global path
embedding, and taking confidence of the rule com-
posed of global paths and relations as the score of
the quadruple, named ALRE-IR w/i A. We con-
duct experiments on ICEWS14 and ICEWS0515
datasets, and the results are shown in Table 5. It is
clearly to see that averaging all path embeddings
works poorly, because not all paths contribute to
the current event.

A.3 Case study

Table 6 shows prediction results for two queries
(Uhuru Muigai Kenyatta, Demand,?,t) and (South

Korea, Sign formal agreement,?,t) on the
ICEWS14 dataset. The table shows the paths from
the subject entity to candidate object entities, the
rules composed of relation paths, and the scores of
the corresponding rules. ALRE-IR aims to find the
target entity corresponding to the most reasonable
rule.
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Query Path and rule Score Target entity

(Uhuru Muigai Kenyatta,
Demand,?,t)

P: Citizen (Kenya)
Demandmeeting−−−−−−−−−−→

t−1
Uhuru Muigai Kenyatta

R: Demand meeting⇒ Demand−1
0.2699 Citizen (Kenya)

(
√

)
P: Uhuru Muigai Kenyatta Threaten−−−−−−→

t−1
Citizen(Kenya)

R: Threaten⇒ Demand
0.0597

P: Police(Kenya) Demand−−−−−→
t−1

Citizen(Kenya)
Demandmeeting−−−−−−−−−−→

t−1
Uhuru Muigai Kenyatta

R: Demand|Demand meeting⇒ Demand−1

0.0356 Police(Kenya)

P: William Ruto
makeanappeal−−−−−−−−−→

t−2
Citizen (Kenya)

Demandmeeting−−−−−−−−−−→
t−1

Uhuru Muigai Kenyatta

R: Make an appeal |Demand meeting⇒ Demand−1

-0.1009 William Ruto

(South Korea, Sign formal
agreement,?,t)

P: South Korea
Express intent to cooperate−−−−−−−−−−−−−−−−−→

t−1
China

R: Express intent to cooperate⇒Sign formal agreement
0.4960

China(
√

)
P: South Korea

Express intent to cooperate economically−−−−−−−−−−−−−−−−−−−−−−−−−→
t−2

China

R: Express intent to cooperate economically⇒
Sign formal agreement

0.2850

P: South Korea
Engage innegotiation−−−−−−−−−−−−−→

t−2
China

R: Engage in negotiation⇒Sign formal agreement
0.1165

P: South Korea
Express intent to provide economic aid−−−−−−−−−−−−−−−−−−−−−−−→

t−2

International Government Organizations
R: Express intent to provide economic aid⇒
Sign formal agreement

0.3470
International
Government
Organizations

P: South Korea
Express intent to provide humanitarian aid−−−−−−−−−−−−−−−−−−−−−−−−−−−→

t−2

Sierra Leone
R: Express intent to provide humanitarian aid⇒
Sign formal agreement

0.2140 Sierra Leone

P: North Korea
Occupy territory−−−−−−−−−−→

t−1
South Korea

R: Occupy territory⇒Sign formal agreement−1
0.0065 North Korea

Table 6: Entity prediction visualization on ICEWS14. Since the dataset does not provide accurate time, we use t to
denote the time of the event.
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