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Abstract

Multimodal named entity recognition (MNER)
on social media is a challenging task which
aims to extract named entities in free text and
incorporate images to classify them into user-
defined types. The existing semi-supervised
named entity recognition methods focus on
the text modal and are utilized to reduce la-
beling costs in traditional NER. However, the
previous methods are not efficient for semi-
supervised MNER. Because the MNER task
is defined to combine the text information
with image one and needs to consider the mis-
match between the posted text and image. To
fuse the text and image features for MNER
effectively under semi-supervised setting, we
propose a novel span-based multimodal varia-
tional autoencoder (SMVAE) model for semi-
supervised MNER. The proposed method ex-
ploits modal-specific VAEs to model text and
image latent features, and utilizes product-of-
experts to acquire multimodal features. In our
approach, the implicit relations between labels
and multimodal features are modeled by mul-
timodal VAE. Thus, the useful information of
unlabeled data can be exploited in our method
under semi-supervised setting. Experimen-
tal results on two benchmark datasets demon-
strate that our approach not only outperforms
baselines under supervised setting, but also im-
proves MNER performance with less labeled
data than existing semi-supervised methods.

1 Introduction

Multimodal named entity recognition (MNER) has
become a fundamental task to extract named enti-
ties from unstructured texts and images on social
media (Moon et al., 2018). Compared with tra-
ditional named entity recognition (NER), MNER
on social media poses the unique challenge that
bridging the semantic gap between the posted texts
and images is critical to extracting named enti-
ties. Therefore, the existing MNER models uti-
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Figure 1: The settings comparison between supervised
and semi-supervised multimodal named entity recogni-
tion. For the labeled data, the named entities and their
types are highlighted in brackets and different colors.

lized cross-modal attention module to fuse the text
and image features (Yu et al., 2020; Zhang et al.,
2021). Besides, Xu et al. (2022) proposed cross-
modal matching and alignment modules to make
the representations of the texts and images more
consistent. And to retain the useful image infor-
mation for MNER, Liu et al. (2022) exploited the
two-stage model to refine uncertain labels by fusing
the features from the texts and images.

To reduce labeling costs in MNER, semi-
supervised learning is widely utilized to exploit
the useful information of unlabeled data in text
modal. Unlike the supervised setting with ade-
quate labeled data, there are small amount of la-
beled data and large amount of unlabeled one in
semi-supervised setting as shown in Figure 1. In-
tuitive semi-supervised learning methods includ-
ing: self-training (ST) (Yarowsky, 1995) and en-
tropy minimization (EM) (Grandvalet and Bengio,
2004) use the pseudo labels generated by NER
models for unlabeled data to train models. The
NER task can be modeled as the sequence label-
ing problem, and SeqVAT (Chen et al., 2020) was
proposed to combine virtual adversarial training
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(VAT) (Miyato et al., 2019) with conditional ran-
dom field (CRF) (Lafferty et al., 2001) for semi-
supervised sequence labeling. However, the exist-
ing semi-supervised NER methods are not efficient
for MNER under semi-supervised setting. Because
the previous methods are only focused on the text
modal and MNER needs considering the semantic
correlation between the texts and images of both
labeled and unlabeled data.

To overcome the above disadvantages of the
existing methods, we propose the span-based
multimodal variational autoencoder (SMVAE)1 for
semi-supervised multimodal named entity recog-
nition. The previous MNER models fused the
sentence-level features and image ones for pre-
dicting sequence labels and had the difficulty to
model mulitmodal features of unlabeled data un-
der semi-supervised setting. Because the semantic
correlation between sentences and images should
be focused on the specific tokens. Therefore, the
proposed method splits the texts into span-level
tokens, and combines the span-level features of
texts with image features for predicting labels of all
spans in each text. SMVAE utilizes modal-specific
VAEs to model latent representations of images and
span-level texts respectively, and acquires the mul-
timodal features by applying product-of-experts
(PoE) (Hinton, 2002) on the latent representations
of two modals. The prediction probabilities and
multimodal features are exploited to reconstruct
the input features for implicitly modeling the cor-
relation between span label and multimodal fea-
tures. Therefore, the useful information of unla-
beled multimodal data can be exploited to improve
the performance on MNER. The contributions of
this manuscript can be summarized as follows:

1. We analyze that the existing semi-supervised
NER methods are not efficient for MNER un-
der semi-supervised setting. To the best of our
knowledge, we are the first one to focus on
the semi-supervised MNER problem.

2. For semi-supervised MNER, we propose the
span-based multimodal variational autoen-
coder to implicitly model the correlation be-
tween span label and multimodal features
which takes advantage of unlabeled multi-
modal data effectively.

3. We compare the proposed model with the
1When ready, the code will be published at https://

github.com/ZovanZhou/SMVAE.

semi-supervised methods and state-of-the-art
MNER models on two benchmark datasets
under semi-supervised setting. The experi-
mental results demonstrate that our model out-
performs the baseline approaches.

2 Related Work

2.1 Multimodal Named Entity Recognition

Moon et al. (2018) firstly extended the traditional
text-based named entity recognition (NER) to the
multimodal named entity recognition (MNER) by
taking the images into account. The vital chal-
lenge of MNER is to fuse the text features with
image features. Moon et al. (2018) proposed to
utilize long short term memory networks (LSTM)
to extract text features and convolution neural net-
works (CNN) to extract image features, and com-
bine them with the modality attention module to
predict sequence labels. Zhang et al. (2018) pro-
posed an adaptive co-attention network to control
the combination of text and image representations
dynamically. To extract the image regions that are
most related to the text, Lu et al. (2018) utilized the
attention-based model to fuse the text and image
features. Yu et al. (2020) proposed the uniform
multimodal transformer that enhances the interac-
tions of text and image modalities for the MNER
task. With the development of multimodal knowl-
edge graph, Chen et al. (2021) exploited the im-
age attributes and semantic knowledge to improve
the performance of MNER model. Considering
to avoid the influence of mismatch between texts
and images, Xu et al. (2022) proposed the cross-
modal alignment and matching modules to fuse the
text and image representations consistently. Be-
sides, Liu et al. (2022) designed a two-stage model
to combine the text features with image ones for
refining uncertain labels.

The above studies are under the supervised set-
ting, and we focus on the semi-supervised MNER
to reduce the labeling costs. Unlike the super-
vised learning with adequate labeled data, the semi-
supervised learning is focused on utilizing the use-
ful information of unlabeled data.

2.2 Semi-supervised Learning for Named
Entity Recognition

For traditional named entity recognition, the la-
beled data is not always adequate because of the
labeling costs. Therefore, semi-supervised learn-
ing is an important way to improve NER model
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performance without enough labeled data. Two
widely used semi-supervised learning methods self-
training (ST) (Yarowsky, 1995) and entropy min-
imization (EM) (Grandvalet and Bengio, 2004)
has been proved the effectiveness on NER (Chen
et al., 2020). Clark et al. (2018) proposed the cross-
view training method to make the predictions con-
sistently when utilizing the partial or full input.
Considering to combine virtual adversarial train-
ing (VAT) (Miyato et al., 2019) with conditional
random field (CRF) (Lafferty et al., 2001) for semi-
supervised sequence labeling, Chen et al. (2020)
proposed SeqVAT model to improve the robustness
and accuracy on NER model.

The existing methods are focused on the text
modal, and semi-supervised MNER is proposed
to take advantage of unlabeled multimodal data.
Therefore, we make efforts on semi-supervised
MNER to improve the performance of the model
without adequate labeled multimodal data.

3 Model

Before getting into the details of the proposed
model, we introduce the notations for semi-
supervised MNER. The labeled and unlabeled
datasets are denoted as Dl and Du respectively.
The unlabeled dataset Du with |Du| samples
is formulated as {(Sui ,Vu

i )}|Du|
i=1 . And the la-

beled dataset Dl with |Dl| samples is defined as
{(Sli,Vl

i, yi)}
|Dl|
i=1 where Sli and Vl

i are the text and
image of i-th sample, and yi is the task defined
label for MNER.

According to the conventional MNER stud-
ies (Moon et al., 2018), the input text is de-
noted as S = {w1, w2, . . . , wNs} and the corre-
sponding label sequence is y = {y1, y2, . . . , yNs}
for MNER. For instance, given a sentence
S = {Anyway, the, best,Benz, in, the,world},
the label sequence is annotated as y =
{O,O,O,B-PER,O,O,O} with BIO2 tagging
schema (Tjong Kim Sang and Veenstra, 1999). Un-
like the existing MNER models that combine the
whole sentence features with image features di-
rectly, we focus on the fine-grained correlation
between the phrases of sentence and the image.
Therefore, the span-level representations of each
phrase in the sentence are utilized to predict the
labels. And the label for the input text S is re-
formulated as named entity set y = {yk}Ne

k=1

where yk is a tuple (lk, rk, ȳ) and Ne is the num-
ber of named entities. (lk, rk) is the span of an

entity that corresponds to the phrase S(lk,rk) =
{wlk , wlk+1, . . . , wrk} and ȳ is the named entity
type. For instance, the label for sentence S =
{Anyway, the, best,Benz, in, the,world} is formu-
lated as y = {(4, 4,PER)}.

The SMVAE model is shown in Figure 2. For
the multimodal data, we use BERT (Devlin et al.,
2019) as text encoder to obtain the representations
of sentences and ResNet (He et al., 2016) as vi-
sual encoder to obtain the regional representations
of images. The proposed SMVAE consists of two
modal-specific VAEs to acquire the latent represen-
tations of the two modality features. And we obtain
the multimodal representations to predict the la-
bels by applying product-of-experts (PoE) (Hinton,
2002) on the latent representations of two modali-
ties. The latent representations and the labels are
combined to reconstruct the input features in the
modal-specific VAE for modeling the correlation
between span label and multimodal features implic-
itly. Therefore, the unlabeled data can be exploited
to improve the performance of MNER.

3.1 Multimodal Feature Extraction

Given the multimodal data as input, we need to pre-
process them and map them into the dense represen-
tations for deep neural networks as shown in Fig-
ure 2. We denote the input text with Ns words as
S = {w1, w2, . . . , wNs}. With the impressive per-
formance of pre-trained language models, we uti-
lize BERT (Devlin et al., 2019) to map the discrete
words of sentence into the dense distributed repre-
sentations. Before feeding the text into BERT, we
should insert special tokens [CLS] and [SEP] into
the start and end of the text. And the extended text
is formulated as S′ = {w0, w1, . . . , wNs+1} where
w0 and wNs+1 represent the special tokens respec-
tively. The text feature extraction process can be
simplified as B = BERT(S′) = {bi}Ns+1

i=0 . Consid-
ering to capture the contextual information further,
we use BiLSTM networks for extracting hidden rep-
resentations of the text. The extraction process can
be defined as Hg = BiLSTM(B; θg) = {hgi }Ns+1

i=0

and He = BiLSTM(B; θe) = {hei}Ns+1
i=0 where

θg and θe are trainable weights in BiLSTM net-
works. As mentioned above, we focus on the
span features and exploit them to predict the en-
tities in the text. The spans of the text can be
formulated as {S(i,j)|1 ≤ i ≤ j ≤ Ns} where
S(i,j) = {wi, wi+1, . . . , wj}. And the global rep-
resentations of spans are denoted as {cg(i,j)|1 ≤
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Figure 2: The overall architecture of span-based multimodal variational autoencoder for semi-supervised MNER.

i ≤ j ≤ Ns} where cg(i,j) = 1
j−i+1

∑j
k=i hgk.

The edge representations of spans are calculated
as {ce(i,j)|1 ≤ i ≤ j ≤ Ns} where ce(i,j) =[
hei ; hej ; hei − hej ; hei � hej

]
and � is the element-

wise vector product.
For the visual modality, we utilize ResNet (He

et al., 2016) to extract the regional representa-
tions of images. Before feeding the image into
ResNet, we resize the image to 224 × 224 pix-
els. The regional representations of the image
V = {v1, v2, . . . , v49} are extracted from the last
conventional layer of ResNet. We apply an aver-
age pooling layer on the regional representations,
and the global feature of the image is calculated as
Vg = 1

49

∑49
i=1 vi.

3.2 Multimodal Variational Autoencoder

To model the latent representations of the text and
image modalities, the proposed SMVAE model con-
sists of two modal-specific VAE networks named
text-VAE and image-VAE. The encoders of VAEs
contain dense layers to map the input features to
the mean vector µ and standard deviation vector σ.
For the text modality, the global representations of
spans cg are fed into text-VAE to parameterize the
mean vector µs and standard deviation vector σs.
The true posterior p(zs|cg) can be approximated
by the above parameters, and the distribution of
zs is formulated as zs ∼ q(zs|cg) = N (µs, σ

2
s).

Therefore, µs and σs are computed by µs =
FFNN(cg; θsµ), σs = FFNN(cg; θsσ) where FFNN
is short for feed-forward neural networks, and θsµ
and θsσ are trainable parameters in the encoder of

text-VAE. For the visual modality, the global im-
age features Vg are also fed into the encoder of
the image-VAE. And the mean vector µv and stan-
dard deviation vector σv for image latent repre-
sentations are calculated as µv = FFNN(Vg; θvµ),
σv = FFNN(Vg; θvσ) where θvµ and θvσ are train-
able weights in the encoder of image-VAE. We
exploit the above parameters to approximate the
true posterior p(zv|Vg), and the distribution of zv
is formulated as zv ∼ q(zv|Vg) = N (µv, σ

2
v).

To bridge the semantic gap between the text and
image representations, we need to calculate the
multimodal features for predicting the results. The
previous studies treated the text and image features
as equals and mapped the concatenated features
of the two modalities into the same latent repre-
sentations (Khattar et al., 2019). However, there
is the mismatch situation of the text and image
that will introduce the noise into the model for pre-
dicting the result. We exploit the modal-specific
VAEs to map the features of the two modalities
into the respective latent representations with in-
dependent distributions. According to the assump-
tion that two modalities are conditionally indepen-
dent given the multimodal latent representations,
the latent distribution p(zm|cg,Vg) of multimodal
representations can be simplified as the combina-
tion of two individual latent distributions p(zm|cg)
and p(zm|Vg). Therefore, we apply the product-
of-experts (Hinton, 2002) (PoE) to estimate the
multimodal latent distribution by p(zm|cg,Vg) ∝
p(zm|cg)p(zm|Vg) = q(zs|cg)q(zv|Vg). We as-
sume the latent representations are independent
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Gaussian distributions with mean and standard
deviation parameters. Therefore, the distribution
of zm is formulated as zm ∼ N (µm, σ

2
m) where

µm = µsσ2
v+µvσ2

s
σ2
sσ

2
v

and σ2
m = (σ−2

s + σ−2
v )−1.

To train the model in an end-to-end way, we uti-
lize the reparameterization strategy (Kingma and
Welling, 2014) to sample the latent representations.
The latent variable zm for multimodal representa-
tions can be calculated as zm = µm+σm�εwhere
ε ∼ N (0, I). We utilize the multimodal features to
predict the probabilities by ŷ = FFNN([zm; ce]; θo)
where θo is the trainable weights of the prediction
FFNN. Given the annotated entity set y, the all
negative instance candidates are defined as ỹ =
{(l, r,O)|(l, r, ȳ) /∈ y, 1 ≤ l ≤ r ≤ Ns, ȳ ∈ Y}
where Y is the label space and O is the label for
non-entity spans. To confirm the balanced class dis-
tribution of the samples in one batch, we randomly
select a subset ỹ′ from the candidate set ỹ with the
same size of y. The span-level cross entropy loss
for training the model is defined as

L1 =
∑

(i,j,ȳ)∈ỹ′∪y

−ȳ log ŷ(i,j) (1)

where ŷ(i,j) is the prediction probability for the
phrase S(i,j).

The decoders of SMVAE are trained to recon-
struct the representations of samples. For the text
modality, the span types are correlated to the repre-
sentations of spans. Therefore, we combine the true
labels of labeled data or prediction probabilities of
unlabeled data with the text latent representations
and feed them into the decoder of text-VAE. The
reconstructed representation of span is calculated
as ĉg = FFNN([zs; ȳ]; θsd) for labeled data where
zs = µs + σs� ε. The latent representations of im-
ages are fed into the decoder of image-VAE directly
and the reconstructed representation is calculated
as V̂

g
= FFNN(zv; θvd) where zv = µv + σv � ε.

According to the evidence lower bound (ELBO)
function of VAE (Kingma and Welling, 2014), the
training loss for SMVAE on labeled data is formu-
lated as follows:

L2 =
∑

(i,j,ȳ)∈ỹ′∪y

‖cg(i,j) − ĉg(i,j)‖
2 + ‖Vg − V̂

g‖2

+ KL(q(zs|cg(i,j))||p(zs)) + KL(q(zv|Vg)||p(zv))
(2)

where ĉg(i,j) is the reconstructed representation of
the phrase S(i,j). For the unlabeled data, the re-
constructed representation of span is calculated as

Item
Twitter-2015 Twitter-2017

Train Dev Test Train Dev Test

# Tweets 4,000 1,000 3,257 3,373 723 723
# PER entities 2,217 552 1,816 2,943 626 621
# LOC entities 2,091 522 1,697 731 173 178
# ORG entities 928 247 839 1,674 375 395
# MISC entities 940 225 726 701 150 157

Table 1: The statistical information of two MNER
benchmark datasets.

ĉg′ = FFNN([zs; ŷ]; θsd). Considering that there
are more non-entity spans than named entity ones
in a sample, we only learn the latent representations
for the latter. And the training loss for unlabeled
data is defined as follows:

L3 =
∑

1≤i≤j≤Ns
ŷ(i,j) 6=O

‖cg(i,j) − ĉg′(i,j)‖
2 + ‖Vg − V̂

g‖2

+ KL(q(zs|cg(i,j))||p(zs)) + KL(q(zv|Vg)||p(zv))
(3)

3.3 Training Procedure

After acquiring the pre-processed multimodal la-
beled and unlabeled data, we feed them into the
model to learn the latent representations of differ-
ent modalities and extract the named entities. To
train the model with different objectives at once,
we introduce the hyper-parameter to sum Equation
1, Equation 2 and Equation 3. The overall loss func-
tion for the proposed model is defined as follows:

L = λ · L1 + L2 + L3. (4)

where λ is the hyper-parameter to balance the dif-
ferent losses. We feed the multimodal data into the
model and acquire the loss according to Equation
4. To train the parameter weights of the model,
we utilize the stochastic gradient descent (SGD)
methods to update them based on the overall loss.

4 Experiments

4.1 Datasets and Experiment Settings

We compare the proposed model with the existing
methods on the two widely used MNER datasets in-
cluding: Twitter-2015 (Lu et al., 2018) and Twitter-
2017 (Zhang et al., 2018). Each sample in the
datasets is collected from Twitter and contain the
text-image pair. There are four types of named enti-
ties including: Person (PER), Location (LOC), Or-
ganization (ORG) and others (MISC) that are anno-
tated in the text. The detailed statistical information
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Methods
Twitter-2015 Twitter-2017

Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG MISC P R F1 PER LOC ORG MISC P R F1

Text
ST 73.30 46.90 16.62 0.77 56.85 46.05 50.88 83.53 48.35 53.11 17.84 63.81 62.39 63.09
EM 76.29 50.12 8.52 0.78 61.30 46.27 52.73 81.69 51.95 48.80 1.47 69.45 59.32 63.99
SeqVAT 74.17 58.21 17.58 8.04 60.92 49.32 54.51 84.82 60.19 53.87 11.11 65.26 66.45 65.85
Multimodal
UMT+ST 76.30 58.41 23.63 7.52 55.49 53.86 54.66 81.03 60.16 56.58 13.95 67.07 60.92 63.85
UMT+EM 72.91 65.85 28.51 13.92 52.59 58.03 55.17 79.94 58.74 54.02 18.00 62.84 62.84 62.84
UMT+SeqVAT 70.36 63.94 28.01 12.89 52.17 60.42 56.00 76.82 61.11 55.48 19.75 61.03 63.88 62.42
MAF+ST 77.18 52.44 12.77 0.52 57.14 51.18 54.12 82.31 51.49 52.35 9.76 70.81 58.18 63.88
MAF+EM 76.20 54.74 26.09 6.39 50.47 57.30 53.67 77.64 60.90 52.45 14.88 56.32 64.62 60.19
MAF+SeqVAT 74.00 63.54 29.96 10.34 52.67 58.41 55.39 81.66 61.81 57.03 19.61 64.15 65.43 64.79
Ours 78.33 65.44 38.04 7.90 68.92 55.76 61.65∗ 87.40 58.33 69.76 32.86 79.27 69.36 73.98∗

Table 2: Performance comparison on two MNER datasets under semi-supervised settings. The numbers with ∗
indicate the improvement of our model over all baselines is statistically significant with p 6 0.05 under t-test.

of two datasets is shown in Table 1. To compare our
model with baselines under the semi-supervised
setting, we split the original training set of each
dataset into two parts: labeled dataset Dl and un-
labeled one Du. To assume that we are working
with a small amount of labeled data, we randomly
select 100 samples from the original training set
as Dl and the remaining ones as Du. And we run
the semi-supervised experiment with five random
seeds, each with a different split of labeled and un-
labeled datasets, and report the mean performance
on test data.

In the proposed model, we utilize the
BERT-base2 version of pre-trained language model
BERT (Devlin et al., 2019) to extract text features,
and use ResNet152 (He et al., 2016) to extract im-
age features. The size of hidden layers is set to
768, and the dimension of latent variables is set
to 100 for modal-specific VAEs. We set the learn-
ing rate to 1e-5 and batch size to 8 for training
the model. And the hyper-parameter λ in Equa-

tion 4 is set to e(1− |Dl|
|Dl|+|Du| ). During the training

process, we firstly train the model with the labeled
and unlabeled set 100 epochs at most and test it on
the development set. According to the early stop-
ping strategy, we stop training the model when the
F1 score on the development set does not increase
within 10 epochs, and evaluate the best model on
the test set. All experiments are accelerated by
NVIDIA GTX 2080 Ti devices.

4.2 Compared Methods

Considering that there is no previous studies on
semi-supervised MNER, we compare the proposed

2https://github.com/google-research/bert

model with the widely used semi-supervised NER
methods. The self-training (ST) and entropy min-
imization (EM) has been demonstrated the ef-
fectiveness on the semi-supervised NER (Chen
et al., 2020). Besides, the existing state-of-the-art
method SeqVAT combine virtual adversarial train-
ing (VAT) (Miyato et al., 2019) with conditional
random field (CRF) (Lafferty et al., 2001) for semi-
supervised sequence labeling (Chen et al., 2020).
Therefore, we utilize BERT stacked with BiLSTM
and CRF layers as the baseline model while apply-
ing ST, EM and SeqVAT methods based on it.

The above baseline methods are only for text
modality. Besides, we also combine the ef-
fective MNER models with the above semi-
supervised learning methods as semi-supervised
MNER baselines. The uniform multimodal trans-
former (UMT) (Yu et al., 2020) was proposed to
enhance the interactions of text and image modal-
ities for the MNER task and achieved impressive
performance. Xu et al. (2022) proposed the gen-
eral matching and alignment for MNER (MAF)
to fuse the text and image representations consis-
tently and gained the best performance. Therefore,
the semi-supervised MNER baselines are the com-
binations of the above MNER models and semi-
supervised NER methods including: UMT+ST,
UMT+EM, UMT+SeqVAT, MAF+ST, MAF+EM
and MAF+SeqVAT.

4.3 Experimental Results

We compare SMVAE with the baseline methods
on two benchmark datasets under semi-supervised
setting, and report the metrics of F1 score (F1)
for every single type and overall precision (P), re-
call (R) and F1 score (F1). The detailed experi-
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Methods
Twitter-2015 Twitter-2017

Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG MISC P R F1 PER LOC ORG MISC P R F1

Text
BERT 84.72 79.91 58.26 38.81 68.30 74.61 71.32 90.88 84.00 79.25 61.63 82.19 83.72 82.95
BERT-CRF 84.74 80.51 60.27 37.29 69.22 74.59 71.81 90.25 83.05 81.13 62.21 83.32 83.57 83.44
BERT-BiLSTM-CRF 84.32 79.31 61.66 37.53 71.03 73.57 72.27 90.29 84.55 80.97 64.85 83.20 84.68 83.93
Multimodal
GVATT-BERT-CRF 84.43 80.87 59.02 38.14 69.15 74.46 71.70 90.94 83.52 81.91 62.75 83.64 84.38 84.01
AdaCAN-BERT-CRF 85.28 80.64 59.39 38.88 69.87 74.59 72.15 90.20 82.97 82.67 64.83 85.13 83.20 84.10
MT-BERT-CRF 85.30 81.21 61.10 37.97 70.48 74.80 72.58 91.47 82.05 81.84 65.80 84.60 84.16 84.42
UMT-BERT-CRF 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31
UMGF 84.26 83.17 62.45 42.42 74.49 75.21 74.85 91.92 85.22 83.13 69.83 86.54 84.50 85.51
UAMNer 85.14 81.66 62.46 40.95 73.02 74.75 73.87 91.86 85.71 84.25 68.73 86.17 86.23 86.20
MAF 84.67 81.18 63.35 41.82 71.86 75.10 73.42 91.51 85.80 85.10 68.79 86.13 86.38 86.25
Ours 85.82 81.56 63.20 43.67 74.40 75.76 75.07 91.96 81.89 84.13 74.07 85.77 86.97 86.37

Table 3: Performance comparison on two MNER datasets under supervised settings. The MNER models are
trained with the training set of Twitter-2015 and Twitter-2017.

mental results on Twitter-2015 and Twitter-2017
are shown in Table 2. Our model can achieve the
best results on most metrics, and the overall F1
scores of the proposed model increase 5.6% and
9.2% over baselines on two datasets respectively.
The traditional semi-supervised NER method Se-
qVAT can achieve the best results over other base-
lines on the text modality, indicating that CRF
combined with VAT for sequence modeling can
improve the performance of models effectively.
Therefore, the semi-supervised MNER methods
including UMT+SeqVAT and MAF+SeqVAT can
also gain the best overall F1 scores over than other
baselines. Besides, the semi-supervised MNER
methods can always gain better results than NER
methods on Twitter-2015 but not on Twitter-2017.
This situation verifies that the MNER baselines are
not adapted to the low-resource setting and can not
always make use of the mulitmodal features effec-
tively under this setting. Our model can outperform
the semi-supervised MNER baselines because we
utilize the span features fused with image ones,
and exploit modal-specific VAEs to jointly model
multimodal latent representations and span labels
for taking advantage of unlabeled data. Although
SeqVAT can improve the robustness of sequence
models, SMVAE can learn the multimodal latent
representations and implicit correlation between it
and labels that benefits semi-supervised MNER.

4.4 Further Discussion

To dig into the model, we conduct the analysis for
presenting it in different aspects. We discuss the ef-
fect of the labeled data percent to the original train-
ing set and latent variable dimension. To demon-
strate the effectiveness of SMVAE, we compare it
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Figure 3: The performance of SMVAE under different
settings vs. percent of the labeled data Dl to the origi-
nal training set Dl ∪Du.

with the superior MNER models under supervised
setting and conduct ablation study to verify the
usefulness of multimodal VAE.
Effect of Labeled Dataset Size. We explore the
SMVAE performance with the percent of labeled
data to the original training data under different
settings. As shown in Figure 3, the “supervised” in-
dicates SMVAE is trained with the labeled data un-
der supervised learning, and the “semi-supervised”
means that SMVAE is trained with the labeled and
unlabeled data under semi-supervised learning. Un-
der the same percent of labeled data, the perfor-
mance of semi-supervised SMVAE can outperform
the supervised learning results which demonstrates
the effectiveness of SMVAE taking advantage of
unlabeled data. And with the increase of labeled
data, the performance of the proposed model can
achieve better results on two datasets.
Supervised Setting. To verify the effectiveness
of the proposed model with adequate labeled data,
we compare SMVAE with state-of-the-art MNER
models under supervised setting. The training sets
of two datasets are used to train the model and eval-
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Settings Methods
Twitter-2015 Twitter-2017

P R F1 P R F1

Supervised
Ours 74.40 75.76 75.07 85.46 87.42 86.43
w/o MVAE 73.17 75.51 74.32 85.16 87.05 86.09

Semi-supervised
Ours 68.92 55.76 61.65 79.27 69.36 73.98
w/o MVAE 67.48 54.56 60.51 77.28 67.21 71.89

Table 4: The ablation study for SMVAE under differ-
ent settings. “w/o MVAE” indicates that we turn off
the multimodal VAE (MVAE) including text-VAE and
image-VAE, and train the model for MNER.

uate it on the test set. The conventional MNER
models including GVATT-BERT-CRF (Lu et al.,
2018), AdaCAN-BERT-CRF (Zhang et al., 2018),
UMT-BERT-CRF (Yu et al., 2020) designed the
interaction module to fuse text and image modali-
ties. Besides, Zhang et al. (2021) proposed UMGF
model to combine the fine-grained image informa-
tion with text one in the constructed graph way and
achieved the impressive performance. Recently,
MAF (Xu et al., 2022) and UMANer (Liu et al.,
2022) were proposed to make the text and image
aligned, and fuse them in a consistent way. As
shown in Table 3, SMVAE outperforms the base-
lines on most metrics, and the overall F1 scores of
it increase 0.22% and 0.12% over best baselines on
two datasets respectively. We find that all MNER
models are better than text-based NER models, in-
dicating that the image information on social media
posts is helpful to extract named entities in text.
Compared with above discriminative models, our
model can learn the modal-specific latent repre-
sentations, and fuse the text and image modality
by applying PoE on them to estimate multimodal
latent features for tackling MNER.

Ablation Study. To investigate the effectiveness
of multimodal VAE (MVAE) module in our model
under different settings, we perform comparisons
between the full model and the ablation method.
The overall results of the models on two datasets
are shown in Table 4. We find that the results of the
model without MVAE are worse than the full model
SMVAE under different settings which verifies the
effectiveness of MVAE for tackling MNER. Fur-
ther more, the ablation model performance degra-
dation under supervised setting is lower than that
under semi-supervised setting. Because there is ad-
equate labeled data to train the model under super-
vised setting and MVAE plays an important role in
SMVAE under semi-supervised setting. Under the
low-resource settings, SMVAE can exploit MVAE
module to jointly model the implicit correlation
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Figure 4: The performance of SMVAE under super-
vised setting vs. dimension of latent variable.

between multimodal representations and labels for
making use of unlabeled data effectively.
Effect of Latent Variable Dimension. The di-
mension of latent variables in MVAE is the key
hyper-parameter to affect the performance of SM-
VAE, and we discuss the effect of it to the model
under supervised setting. We set the dimension
range from 64 to 1024 and take 2 times as an adjust-
ment step. As shown in Figure 4, the performance
of the model changes with the various dimensions
of latent variable. When the dimension of latent
variable is set higher, the performance of the model
is degraded more. The multimodal latent variable
represents the fusion of text and image modality,
and the higher dimension means that more image
information is introduced into the model. When
the semantic relations of text and image in social
media posts are mismatched, the latent variable
with higher dimension introduces more noise into
the model and affects the performance on MNER.

5 Conclusion

In this manuscript, we propose the semi-supervised
multimodal named entity recognition (MNER) task
and pose the critical challenge of it compared with
traditional semi-supervised named entity recog-
nition (NER). Further more, we analyze the dis-
advantage of the existing semi-supervised NER
methods that are not sufficient to multimodal data.
Therefore, we propose the span-based multimodal
variational autoencoder to tackle semi-supervised
MNER. The proposed model exploits multimodal
VAE including two modal-specific VAEs to learn
the multimodal latent representations and jointly
model the implicit correlation between labels and
multimodal features to make use of unlabeled mul-
timodal data effectively. The experimental results
verify that our approach not only outperforms su-
pervised learning baselines, but also gains superior
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results than semi-supervised learning methods.

6 Limitations

The proposed model is limited to the length of
input sentence because it needs to predict the type
of all candidate spans during inference time. And
the number of spans is proportional to the length
of the sentence. Therefore, the inference time is
increased with the length of sentence. Besides, our
model has poor scalability to process more than
one image, and the posted Twitter message may
contain more than one image. Therefore, the future
MNER model should be able to process the text
with more images.
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