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Abstract

Open information extraction (OIE) is the task
of extracting facts “(Subject, Relation, Object)”
from natural language text. We propose several
new methods for training neural OIE models in
this paper. First, we propose a novel method for
computing syntactically rich text embeddings
using the structure of dependency trees. Sec-
ond, we propose a new discriminative training
approach to OIE in which tokens in the gen-
erated fact are classified as “real” or “fake”,
i.e., those tokens that are in both the generated
and gold tuples, and those that are only in the
generated tuple but not in the gold tuple. We
also address the issue of repetitive tokens in
generated facts and improve the models’ abil-
ity to generate implicit facts. Our approach
reduces repetitive tokens by a factor of 23%.
Finally, we present paraphrased versions of the
CaRB, OIE2016, and LSOIE datasets, and show
that the models’ performance substantially im-
proves when trained on datasets augmented by
such data. Our best model beats the SOTA of
IMoJIE on the recent CaRB dataset, with an
improvement of 39.63% in F1 score.

1 Introduction

OIE (Banko et al., 2007) is a branch of informa-
tion extraction (IE) that focuses on extracting struc-
tured information (Niklaus et al., 2018) from un-
structured natural language text. This structured
information is a set of tuples of the form “(Sub-
ject, Relation, Object)”, also called facts in OIE.
For instance, given the sentence “Machine learn-
ing is a subfield of AI.”, the tuple ⟨machine learn-
ing, is a subfield of, AI⟩ can be extracted, where
the relation phrase “is a subfield of” indicates the
semantic relationship between the subject “Ma-
chine learning” and the object “AI”. OIE is use-
ful in many downstream natural language process-
ing (NLP) tasks like natural language understand-
ing (Mausam, 2016), multi-document question an-
swering and summarization (Fan et al., 2019), and

knowledge base construction from text (Soderland
et al., 2010).

Several neural OIE methods in the litera-
ture approach OIE as either a sequence label-
ing (Stanovsky et al., 2018; Roy et al., 2019; Jiang
et al., 2019; Zhan and Zhao, 2019; Hohenecker
et al., 2020) or a sequence generation problem (Cui
et al., 2018; Sun et al., 2018; Kolluru et al., 2020).
Sequence labeling approaches label each token in
the input text as either belonging to the subject,
relation, or object, while sequence generation ap-
proaches generate facts one word at a time given
the input text.

For the task of OIE, it is a common practice to
make use of part-of-speech (PoS) and dependency
tags in addition to the actual input text as a way
of incorporating syntactic information (Stanovsky
et al., 2018; Zhan and Zhao, 2019; Jia and Xiang,
2019; Sun et al., 2018; Hohenecker et al., 2020).
In such work where these tags are used, the em-
beddings for the tags are just concatenated to the
embeddings of the corresponding text tokens. This
formulation does not fully use the rich syntactic
information, especially the one that is expressed
in the structure of dependency trees. Dependency
trees’ head-dependent relations provide a good ap-
proximation of the semantic relationships between
predicates and their arguments (Jurafsky and Mar-
tin, 2009). As a result, they are directly applicable
to a wide range of applications, including IE. In
this work, we compute token representations based
on the structure of dependency trees in order to
benefit from their rich syntactic and semantic in-
formation. Furthermore, sequence generation ap-
proaches are susceptible to generating facts that
often express redundant information and are also
prone to generating repetitive text in facts. Sun
et al. (2018) and Kolluru et al. (2020) looked into
the issue of generating the same facts more than one
time, which is redundant. No work has been done
to control the generation of repetitive text in facts.
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Additionally, sequence generation approaches are
capable of introducing words that are not in the
input sentence into a generated fact. This capability
enables such approaches to generate facts that are
implicitly stated in the input sentence. However, the
approaches employed by Cui et al. (2018) and Sun
et al. (2018) are restrictive in how the models “pick”
words when generating facts, which restrains the
models’ flexibility in generating implicit facts.

In this paper, our approach uses a sequence gen-
eration approach to generate facts from natural lan-
guage text one word at a time. Unlike the previous
approaches, we compute syntactically rich vector
representations of input text tokens guided by the
structure of dependency trees. For each input sen-
tence, we construct a visibility matrix of its tokens
based on the structure of its dependency tree by con-
sidering tokens that are directly related in the depen-
dency tree as visible to each other. A graph neural
network (GNN) (Zhou et al., 2018) encoder takes
as input token embeddings and the corresponding
visibility matrix to compute new token embeddings
guided by the visibility matrix. Furthermore, we
also introduce a new method for training neural
OIE models. We add an extra module, the discrim-
inator, that takes the generated tuple as input and
classifies its tokens as either “real” or “fake”, where
“real” tokens are those that are in both the gener-
ated and gold tuples, while “fake” tokens are those
that are only in the generated tuple but not in the
gold tuple. To ensure that such a model does not
generate repetitive text, we use a coverage vector
to monitor the degree of coverage that words in the
input text have received so far. When generating
the next word at timestep t, the coverage vector at
that instant is a sum of all attention distributions
computed over the input text tokens from timesteps
0 to t−1. This coverage vector is used as part of the
input when computing the next attention distribu-
tion. Intuitively, this informs the current attention
mechanism’s decision of the previous decisions and
makes it easier to avoid repeatedly attending to
the same words in the input text, hence avoiding
generating repetitive text in a fact. As a means to
explicitly guide the model’s choice of either gener-
ating a word from a vocabulary or to “pick” a word
from the input text, we explicitly compute the prob-
ability of picking a word from a vocabulary or input
text using the model’s context vectors. Lastly, we
also investigate the effect of data-augmentation on
the performance of our models. Figure 1 illustrates

our approach. Our main contributions are briefly
summarized as follows:

• We present several new methods for training
neural OIE models. First, we propose a new
method of computing syntactically rich vector
representations of input tokens guided by the
structure of dependency trees. This is done
by using GNNs, as they are able to take into
account the graph structure of a dependency
tree.

• Second, we propose an additional module, the
discriminator, on top of the model that gener-
ates facts. The additional module performs
a binary classification of tokens in generated
facts as either “real” or “fake”. This new ap-
proach significantly improves the performance
of sequence-to-sequence neural OIE models.

• Furthermore, we reduce repetitive words in gen-
erated facts by 23%, from 36% to 13%, when
we jointly use the coverage vector and explicitly
guide the model where to pick the next word
when generating a fact.

• Finally, we present paraphrased versions
of the CaRB (Bhardwaj et al., 2019),
OIE2016 (Stanovsky and Dagan, 2016), and
LSOIE (Solawetz and Larson, 2021) datasets,
which we use to augment existing datasets.

• Our best performing model uses both the dis-
criminator and the GNN encoder, and beats the
state-of-the-art (SOTA) of IMoJIE on CaRB,
with an improvement of 39.63% in F1 score.
This model also presents competitive results on
OIE2016 and LSOIE.

2 Task Formulation

In this work, we approach OIE as a sequence gen-
eration task. As illustrated in Fig. 1, given an input
text, we use a generator to generate a tuple one
word at a time. Then, we pass the generated tuple
through the discriminator, which classifies tokens
in the tuple as either “real” or “fake”, where “real”
tokens are those that are both in the generated and
gold tuples, while “fake” tokens are in the generated
tuple but not in the gold tuple. Thus, the discrim-
inator performs binary classification of the tokens
in the generated tuple. We only consider binary
extractions from sentences.

Given a sentence-tuple pair ⟨X,Y ⟩, where X =
⟨w1, . . . , wn⟩ and Y = ⟨y1, . . . , ym⟩ are sequences
of tokens in the input sentence and expected tuple,
respectively, we define the generator’s conditional
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probability P (Y |X) = P {Y |⟨w1, . . . , wn⟩} as

∏
iP {yi | ⟨w1, . . . , wn⟩; ⟨y1, . . . , yi−1⟩} , (1)

where P (yi|⟨w1, . . . , wn⟩; ⟨y1, . . . , yi−1⟩) is the
probability of generating the i-th word, given the in-
put sequence and the entire generated sequence by
step i, andP (Y |X) is the probability of generating
an entire tuple Y , given the input sentence X .

Given a generated tuple, Y = ⟨y1, . . . , ym⟩, and
the input context vector, d∗, the discriminator seeks
to label each token in Y as either “real” or “fake”.
The input context vector is weighted average of the
vector representations of the input sequence. To
that end, we define the discriminator’s likelihood
P (L|Y ) as

∏m
i=1[σ(v

T [yi, d∗])(y
real
i =yi) (1−σ(vT [yi, d∗]))(y

real
i ̸=yi)] ,

(2)

where L= {0, 1} with 1 and 0 standing for “real”
and “fake” tokens, respectively, σ is the sigmoid
function, yi is the vector representation of the i-
th token yi in the generated tuple, d∗ is the input
context vector, v is a set of learnable parameters,
and “[, ]” is the concatenation operation.

3 Our Approach

We now define and describe the modules that we
designed to solve OIE as defined in Section 2 and
illustrated in Fig. 1.

3.1 Embedding

The embedding block maps text, pre-processed into
a sequence of tokens, to a corresponding sequence
of embedding vectors. In this paper, we consider
stacked layers of bidirectional LSTMs (BiLSTMs),
a transformer encoder (Vaswani et al., 2017), pre-
trained BERT (Devlin et al., 2018), a feedback
transformer encoder (Fan et al., 2020), and a pre-
trained ELECTRA model* (Clark et al., 2020) for
the embedding block. Unlike transformers in which
the representation at a given layer can only access
representations from lower layers rather than the
higher level representations already available, feed-
back transformers expose all previous representa-
tions to all future representations (Fan et al., 2020).
That is, the lowest representation at the current
timestep t is formed from the highest-level rep-
resentations of the past. Unlike other pre-trained
language models that are trained through masked

*https://huggingface.co/google/
electra-small-discriminator

language modelling (MLM), such as BERT, ELEC-
TRA is pre-trained by detecting replaced tokens in
the input sequence.

For a given sequence of input tokens, the embed-
ding block computes a corresponding sequence of
embedding vectors of the same length as the input
sequence. In addition to input text, we also incor-
porate PoS and dependency tree tags obtained via
the Spacy library†. We create embedding vectors
for each PoS and dependency tree tag, and con-
catenate them to the vector representation of the
corresponding input token. For words that are split
into subwords, each subword token is attributed the
same PoS and dependency tree tag as the parent
word that it belongs to.

3.2 Encoding
The encoding block computes vector representa-
tions of the input sequence guided by the structure
of the dependency tree. During the text prepossess-
ing step, we construct a visibility matrix of tokens
in the input sequence based on the proximity of
tokens in the corresponding dependency tree. The
encoder takes a sequence of vector representations
from the embedding block and the visibility matrix
as input, and gives a sequence of vector represen-
tations of the same length as the input sequence
as output. The encoding block is optional. When
the encoding block is not used, the encoder context
vector is calculated using the embedder outputs.

To take into account the graph structure of the
dependency tree when computing vector represen-
tations, we use a graph attention network (GAT)
(Veličković et al., 2018) as encoder. GATs com-
pute the vector representation of the current node
by only attending to nodes in its neighborhood. In
our case, we treat each token in the input sequence
as a node and those that it is connected to in the
dependency tree as its neighbors. Thus, the vec-
tor representation of the current node is computed
by only attending to the vector representations of
the nodes in the neighborhood as presented in the
visibility matrix. For comparison, we also use a
transformer encoder that does not take into account
the visibility matrix when computing vector repre-
sentations.

3.3 Decoding
During decoding, we adopt pointer-generator-
networks (PGNs) (See et al., 2017) and make mod-

†https://spacy.io/usage/
linguistic-features
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Figure 1: Our approach consists of
a generator and a discriminator. The
generator produces a tuple from an
input sentence. The discriminator
classifies tokens in the generated tu-
ple as either “real” or “fake”. The
generator has three components: (a)
the embedding block, (b) the en-
coding block, and (c) the decoding
block.

ifications. For example, we calculate the distribu-
tion over the entire vocabulary from a weighted
sum of the encoder and decoder context vectors,
as opposed to the concatenation of the two. When
generating the next token in a fact at timestep t,
the embedding vectors of the entire generated se-
quence so far, ⟨y1, . . . , yt−1⟩, are fed into either the
BiLSTM network, a transformer, or feedback trans-
former to generate contextualized decoder hidden
representations.

The decoder hidden representations ⟨d1, . . . ,
dt−1⟩ are then used to calculate the decoder context
vector, d∗t , which is a weighted sum of decoder
hidden representations (Bahdanau et al., 2015):
eti = vTTanh(Whdi + battn), where v, Wh, and
battn are learnable parameters, and di are decoder
hidden representations. Then, et is used to calculate
attention scores:

at = Softmax (et). (3)

The attention scores at timestep t, at, are used to
calculate the decoder context vector d∗t as weighted
sum of decoder hidden representations:

d∗t =
∑t−1

i=1 a
t
idi, (4)

where di are decoder hidden representations, and
at are attention scores over decoder hidden repre-
sentations at timestep t.
Coverage mechanism. We use a coverage vector,
ct, to keep track of how much attention each word
in the input text has received while generating a
tuple one word at a time. The coverage vector is
the sum of all attention distributions over encoder
hidden representations up to timestep t − 1: ct =∑t−1

t′=0
αt

′
, where αt

′
is the attention distribution

over encoder hidden representations. The coverage
vector is initialized as a zero vector, as on the first
timestep, no input token has been attended to.
Decoder-encoder attention. The decoder context
vector d∗t from Eq. 4, the encoder hidden represen-
tations from Section 3.2, and the coverage vector ct

are used to compute the encoder context vector h∗t ,
using attention (Bahdanau et al., 2015):

eti = vTTanh(Whhi+Wdd
∗
t+Wcc

t+battn), (5)

where v, Wh, Wd, Wc, and battn are learnable pa-
rameters, hi are encoder hidden representations,
and ct is the coverage vector. The coverage vector
is included in this computation in Eq. 5, so that the
attention mechanism is informed of previous atten-
tion decisions, hence avoiding repeatedly attending
to the same words in the input text. The atten-
tion distribution over input tokens, αt, is calculated
from et using Eq. 3. This αt and encoder hidden
states, ⟨h1, . . . , hn⟩, are then used to compute the
encoder context vector h∗t using Eq. 4.

The attention distribution αt obtained here can
be interpreted as a probability distribution over the
source words, which tells the model where to look
to produce the next word.

To compute the distribution over the entire vocab-
ulary Pvocab, we first calculate a weighted average
of the encoder context vector h∗t and decoder con-
text vector d∗t , and then feed the resulting vector
into a linear layer:

Pvocab = Softmax (V [h∗t , d
∗
t ] + bvocab), (6)

where V and bvocab are learnable parameters, and
Pvocab is the probability distribution over all words
in the vocabulary. Pvocab gives the final probability
of predicting the next word w from the vocabulary:
P (w) = Pvocab(w).

Generation probability. The generation proba-
bility at timestep t, Pgen, is calculated from the
encoder and decoder context vectors, h∗t and d∗t ,
respectively: Pgen = δ(wT

h∗h∗t + wT
d∗d

∗
t + bpgen),

where wh∗ , wd∗ , and bpgen are learnable parameters,
δ is a sigmoid function, and Pgen ∈ [0, 1].
Pgen controls whether the next word should be

generated from the vocabulary by sampling from
Pvocab (Eq. 6) or copied from the input tokens by
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sampling from the attention distribution over in-
put tokens αt. This explicitly guides the model on
where to look for the next word. For each input
batch, there is an extended vocabulary that is the
union of the vocabulary and all tokens in the input
batch. As in (See et al., 2017), this yields the fol-
lowing probability distribution over the extended
vocabulary:

P (w) = PgenPvocab + (1−Pgen)
∑

i:wi=wα
t
i. (7)

This allows the model to generate out-of-
vocabulary (OOV) words, because if w is an OOV
word, then Pvocab is zero. Similarly, if the word is
not in the input batch, then

∑
i:wi=w αt

i = 0.
Fig. 2 summarises the workflow in the generator.

3.4 Discriminator

Once the tuple has been generated, it is passed
through the discriminator along with the input con-
text vector, which classifies the tokens in the tuple
as either “real” or “fake”, where “real” tokens are
those that are in both the generated tuple and the
gold tuple, while “fake” tokens are those that are in
the generated tuple but not in the gold tuple. The
input context vector is a weighted average of the
vector representations of the tokens in the input se-
quence. Thus, the discriminator performs binary
classification of the tokens in the generated tuple
while being informed of the input sequence via the
input context vector. We consider a discriminator
that is composed of a transformer encoder and a
sigmoid layer. The transformer encoder computes
vector representations of the generated tuple. The
vector presentations are then passed through the
sigmoid layer for classification as “real” or “fake”
as in Eq. 2.

Although this approach is similar in its design
to generative adversarial networks, the generator in
this approach is trained with maximum likelihood
rather than adversarially to fool the discriminator.

3.5 Training loss

During training, the model loss is the sum of the
generator loss and discriminator loss, defined as
follows.

Generator loss. We use both the probability of
generating the next word P (w) (Eq. 7) and the
coverage mechanisms to calculate the generator’s
loss. The loss at timestep t, losst, is the sum of the
negative log likelihood of the target word and the

coverage loss:

lossgen = − logP (wt) + λ
∑

i min(αt
i, c

t
i) .

The model is penalised by the coverage loss,
λ
∑

i min(αt
i, c

t
i), if it repeatedly attends to the

same locations. We believe that a specific token
from the source sentence can only appear once in a
generated fact. As a result, if the final coverage vec-
tor is greater or less than one, then it is penalised.

Discriminator loss. For the discriminator, compute
the negative log-likelihood of Eq. 2:

lossdisc = −∑m
i=1[(y

real
i = yi) log(σ(w

T [yi,d∗]))

+ (yreali ̸= yi) log(1− σ(wT [yi,d∗]))].

4 Experiments and Results

In this section, we discuss the various experiments
that we conducted. We present descriptions of the
OIE datasets that we used and the data preparation
routines involved. We also discuss the evaluation
framework that was used and finally present the re-
sults of each experiment in terms of the F1 and area
under the precision-recall curve (AUC-PR) values.

Experiments, training, and evaluation. We set up
different combinations of the neural network (NN)
modules in blocks discussed in Section 3, and each
unique combination resulted in a different model.
Thus, we had 15 unique embedder-decoder combi-
nations, and we present results for each combina-
tion.

We run experiments for all 15 models‡ in 6
experimental setups: (a) default setup with em-
bedders and decoders only; (b) + discriminator,
where we add a discriminator to the default
setup; (c) + transformer encoder, where we add
a transformer-based encoder to the default setup;
(d) + GNN encoder, where we add a GNN-based
encoder to the default setup; (e) + transformer en-
coder + discriminator, where we add both a trans-
former-based encoder and discriminator to the de-
fault setup; and (f) + GNN encoder + discriminator,
where we add both a GNN-based encoder and dis-
criminator to the default setup.

For the models with BERT and ELECTRA em-
bedders, we used pre-trained§ bert-base-uncased

‡https://gitlab.com/Frank-Mtumbuka/
oie_package

§https://huggingface.co/google/
electra-small-discriminator

5976

https://gitlab.com/Frank-Mtumbuka/oie_package
https://gitlab.com/Frank-Mtumbuka/oie_package
https://huggingface.co/google/electra-small-discriminator
https://huggingface.co/google/electra-small-discriminator


and electra-small-discriminator versions, re-
spectively. Due to resource constraints¶, the pa-
rameters of the pretrained models were frozen. All
configurations for different module combinations
are in Appendix E.

All models were trained by minimizing the loss
defined in Section 3.5. During training, we define a
teacher-forcing ratio and randomly choose whether
to use teacher forcing or not depending on the value
of the randomly generated number compared to
the teacher-forcing ratio. The confidence of the
extracted fact was calculated by multiplying the
probabilities of all tokens in the fact. The check-
points that were saved after each epoch were then
evaluated on the test partition of each dataset using
the CaRB (Bhardwaj et al., 2019) evaluation frame-
work. The saved checkpoints did not include the
discriminator, as the discriminator was only being
used during training.

Datasets. Our models were trained and evalu-
ated on three benchmark OIE datasets: OIE2016
(Stanovsky and Dagan, 2016), CaRB (Stanovsky
and Dagan, 2016), and LSOIE (Solawetz and Lar-
son, 2021). In Appendix A , we provide detailed
descriptions of the datasets and their statistics.

Results. In Table 1, we evaluate our models on
CaRB under the experimental setups described in
the experiments subsection. We note that in each ex-
perimental setup, the model resulting from the com-
bination of an ELECTRA embedder and a feedback
transformer decoder outperforms other combina-
tions. The best model on CaRB has an ELECTRA
embedder, GNN encoder, feedback transformer,
and a discriminator. This model achieves an F1

value of 0.747 and an AUC-PR value of 0.740.
Based on the results in Appendix C, we note

that the best model on CaRB also achieves the best
results on OIE2016. The model achieves an F1

value of 0.619 and an AUC-PR value of 0.639. Fur-
thermore, our best model achieves an F1 value of
0.517 and an AUC-PR value of 0.525 on LSOIE.
The detailed results and analyses of similar experi-
ments on OIE2016 and LSOIE are in Appendices C
and D, respectively. Note that we cannot directly
compare our results to the previous works by Zhan
and Zhao (2019) and Solawetz and Larson (2021)
on OIE2016 and LSOIE, respectively, as they use
different evaluations. Solawetz and Larson (2021)
report the best F1 and AUC-PR values on LSOIE

¶The models were trained on one GeForce GTX TITAN
XP GPU.

of only 0.380 and 0.220, respectively.

Results on augmented datasets. We trained the
best model from Table 1 on paraphrased and mixed
versions of CaRB. When training the model on
the mixed dataset, each batch was made of equal
portions of the paraphrased and original versions.
After training, the model was evaluated on the orig-
inal test set of CaRB dataset. We note that the
model performs poorly when trained only on the
paraphrased dataset. However, when trained on the
mixed dataset, the model performs better than when
trained on just the original dataset. Table 2 presents
the results.

Comparison to other systems. In Table 3, we com-
pare our best performing model to previous OIE
systems on CaRB. The results from other systems
are quoted directly from previous works, which
share the same experimental settings and can di-
rectly be compared with. We compare our best per-
forming model to results reported by Kolluru et al.
(2020) (IMoJIE) under the same settings. From this
comparison, our best performing model beats the
SOTA model IMoJIE with 39.63% in F1 value on
CaRB.

5 Results Analysis and Ablation Studies

In this section, we discuss the results presented in
Section 4. We also present a detailed analysis of
the contributions of each experimental setup.

Performance across experimental setups. We
considered 6 experimental setups, which we have
defined in Section 4. Table 5 presents the average
performance of all models in each setup on CaRB
based on the results presented in Table 1. We note
that each experimental setup introduced significant||

improvement in performance compared to the con-
trol experimental setup, default. The setup with
the GNN encoder only, + GNN encoder, achieves
the best average performance in F1. It improves
on the default setup with 11.69%. The setup with
both the GNN encoder and discriminator, + GNN
encoder + discriminator, achieves the best average
performance in AUC-PR. It improves on the de-
fault setup with 6.53%. Furthermore, we note that
models in the + GNN encoder setup perform better
than models in the + transformer encoder setup
with 1.56% and 2.19% improvements in average
F1 and AUC-PR values, respectively. To that end,

||Significance tests for the results in Table 1 are presented
in Appendix B.
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BiLSTM Transformer Feedback Transformer BERT ELECTRA
F1 AUC-PR F1 AUC-PR F1 AUC-PR F1 AUC-PR F1 AUC-PR

(a)
BiLSTM 0.395 0.410 0.442 0.423 0.453 0.477 0.433 0.434 0.445 0.444

Transformer 0.438 0.389 0.508 0.475 0.599 0.549 0.567 0.553 0.685 0.670
Feedback Transformer 0.504 0.400 0.620 0.602 0.706 0.672 0.701 0.673 0.717 0.691

(b)
BiLSTM 0.452 0.420 0.463 0.435 0.474 0.457 0.460 0.458 0.456 0.463

Transformer 0.632 0.399 0.661 0.482 0.680 0.552 0.675 0.569 0.700 0.696
Feedback Transformer 0.541 0.404 0.692 0.676 0.711 0.700 0.710 0.699 0.726 0.719

(c)
BiLSTM 0.410 0.415 0.451 0.435 0.466 0.457 0.467 0.459 0.478 0.463

Transformer 0.648 0.401 0.669 0.484 0.683 0.562 0.687 0.565 0.699 0.651
Feedback Transformer 0.516 0.419 0.701 0.682 0.718 0.685 0.723 0.690 0.728 0.704

(d)
BiLSTM 0.418 0.432 0.465 0.445 0.476 0.469 0.469 0.464 0.468 0.466

Transformer 0.656 0.412 0.684 0.498 0.703 0.572 0.699 0.568 0.709 0.693
Feedback Transformer 0.527 0.423 0.714 0.699 0.728 0.695 0.731 0.698 0.739 0.714

(e)
BiLSTM 0.471 0.439 0.483 0.455 0.485 0.468 0.488 0.480 0.475 0.482

Transformer 0.457 0.417 0.528 0.482 0.610 0.563 0.614 0.589 0.719 0.715
Feedback Transformer 0.560 0.423 0.640 0.622 0.722 0.711 0.737 0.715 0.745 0.738

(f)
BiLSTM 0.473 0.441 0.484 0.456 0.495 0.478 0.489 0.481 0.477 0.484

Transformer 0.459 0.419 0.529 0.483 0.620 0.573 0.615 0.590 0.721 0.717
Feedback Transformer 0.562 0.425 0.641 0.623 0.732 0.721 0.738 0.716 0.747 0.740

Table 1: Results from different module combinations on the CaRB dataset. The columns and rows represent
embedders and decoders , respectively. (a) default setup, (b) + discriminator setup, (c) + transformer encoder setup,
(d) + GNN encoder setup, (e) + transformer encoder + discriminator setup, and (f) + GNN encoder + discriminator
setup. The results in bold indicate the best performance in each setup.

Dataset F1 AUC-PR
Para-phrased 0.509 0.524

Original 0.747 0.740
Mixed 0.753 0.751

Table 2: Performance of our best model from Table 1,
(ELECTRA + GNN encoder + discriminator), when
trained on paraphrased, original and mixed versions of
CaRB.

System Metric
F1 AUC-PR

Stanford-IE 0.230 0.134
OLLIE 0.411 0.225

OpenIE-4 0.516 0.295
OpenIE-5 0.485 0.257
ClausIE 0.451 0.224

CopyAttention 0.354 0.204
IMoJIE 0.535 0.333

Our best model 0.747 0.740

Table 3: How our best performing model compares to
other systems on the CaRB dataset and evaluation frame-
work. The results of previous systems are directly quoted
from (Kolluru et al., 2020), because they share the same
experimental settings and can be directly compared. Re-
sults in bold indicate the best performance.

we see that the GNN encoder that computes embed-
dings of the input sequence based on the structure
of the dependency tree performs better than the
transformer encoder, which does not take into ac-
count the structure of the dependency tree when
computing embeddings. Additionally, the best per-
formance is achieved when the GNN encoder is
used jointly with the discriminator.

Taking syntactic information into account when
computing embeddings not only improves model
performance but also improves extraction in some
cases. For example, given a sentence “The twins

who came are identical but are uniquely man-
nered.”, the best model with the transformer en-
coder, which does not consider the topology of
the dependency tree, yields ⟨who, are, uniquely
mannered⟩, whereas the extraction with the GNN
encoder, which does consider the topology of the
dependency tree, yields ⟨The twins, are, uniquely
mannered⟩. This example shows that syntax can be
useful in OIE. Thus, we conclude that taking into
account the dependency tree’s structure when com-
puting embeddings and the discriminative training
approach are the main cause of the high boost in
the performance of our models. This is consistently
shown on all three benchmark datasets.

Performance of modules. We also looked into the
average performance of the modules in the embed-
der and decoder blocks. Table 6 summarises the
analysis based on results in Table 1. Considering
all models, we note that models with a pre-trained
ELECTRA model achieve the best average values
of 0.653 and 0.625 in F1 and AUC-PR, respectively.
Furthermore, models with the feedback transformer
decoder achieve the best average values of 0.676
and 0.636 in F1 and AUC-PR, respectively. The
feedback transformer performs well, and this is
largely owing to its ability to capture the input’s
sequential property, which is critical for tuple gen-
eration. However, the other components that we
introduce in this paper boost performance signifi-
cantly as well. For instance, in F1, the +GNN en-
coder setup achieves the best average performance
by 11.69% over the default setup. In AUC-PR, the
+ GNN encoder + discriminator setup achieves the
best average performance by 6.53% over the default
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Model S ∩ T Repetition in T
-(coverage mechanism + gen prob) 89% 36%
+(coverage mechanism + gen prob) 65% 13%

Table 4: Results on our best model’s ability to introduce
new words from the vocabulary into the generated tu-
ple, and to avoid generating repetitive tokens on CaRB.
-(coverage mechanism + gen prob) is the best model
without both generation probability and coverage mech-
anisms and +(coverage mechanism + gen prob) is the
opposite.

setup.

Token repetition. In this work, the core tools that
control the repetition of tokens during decoding
are the generation probability and coverage mech-
anisms that we have defined in Section 3.3. As
such, to check whether these tools are effective,
we run our best model with and without the tools
and the compute the average percentage of repet-
itive tokens and the model’s ability to introduce
new words from the vocabulary. When the best
model is run on 50 samples from the test partition
with and without both generation probability and
coverage mechanisms. We compute the number
of tokens that are both in the source sentence S
and the generated tuple T , S ∩ T , in both settings
to measure the model’s ability to introduce words
from the vocabulary. Similarly, we also compute a
percentage of repetitive tokens in T . Table 4 sum-
marizes the results. From Table 4, we note that
the percentage of tokens in |S ∩ T | drops by 24%
when using both generation probability and cov-
erage mechanisms. This implies that the model
copies fewer tokens from the source sentence, and
introduces more tokens from the vocabulary, hence
the improved ability to generate implicit facts. Fur-
thermore, the repetitive tokens reduce by 23%. To
that end, the results confirm that both generation
probability and coverage mechanisms are effective
in controlling repetitive tokens, and improving the
models’ ability to generate implicit facts. This is
the first work to look into redundancy at fact level.
Sun et al. (2018) and Kolluru et al. (2020) look into
redundant information as an issue of generating the
same facts multiple times.

6 Related Work

In the recent past, neural OIE models have been de-
veloped, and they tackle OIE as either sequence
labeling or sequence generation. The former
(Stanovsky et al., 2018; Roy et al., 2019; Jiang
et al., 2019; Zhan and Zhao, 2019; Hohenecker

Experimental Setup Avg. F1 Avg. AUC-PR
Default 0.548 0.522

+ Transformer Encoder 0.603 0.538
+ Discriminator 0.602 0.542
+ GNN Encoder 0.612 0.550

+ Transformer Encoder + Discriminator 0.582 0.553
+ GNN Encoder + Discriminator 0.585 0.556

Table 5: Average performance of all models under differ-
ent experimental setups on CaRB. Default represents the
setup where all models are comprised of just embedders
and decoders.

Module Avg. F1 Avg. AUC-PR

(i)

BiLSTM 0.506 0.416
Transformer 0.576 0.525

BERT 0.612 0.578
Feedback Transformer 0.615 0.574

ELECTRA 0.635 0.625

(ii)
BiLSTM 0.462 0.452

Transformer 0.629 0.543
Feedback Transformer 0.676 0.636

Table 6: Average performance different modules in dif-
ferent blocks for all experiments on CaRB. (i) for the
embedders, and (ii) for the decoders. The best average
performance for each block is shown in bold.

et al., 2020) involves tagging each word in the input
text with an appropriate tag that indicates whether
the word belongs to either the subject, relation, or
object. Methods that approach OIE as sequence
generation generate facts one word at a time. These
include CopyAttention (Cui et al., 2018), Logician
(Sun et al., 2018), and IMoJIE (Kolluru et al., 2020).
CopyAttention is an encoder-decoder model en-
hanced with copying and attention mechanisms. Lo-
gician is another encoder-decoder model that uses
coverage attention and gated-dependancy attention
to extract facts from Chinese text. IMoJIE outputs
a variable number of different facts per sentence.
The next fact from a sentence is best determined
in context of all other facts extracted from it so far.
Hence, IMoJIE uses a decoding strategy that gener-
ates facts in a sequential fashion, one after another,
each one being aware of all the ones generated prior
to it.

Our work substantially differs from previous OIE
works. Firstly, we are the first to compute embed-
dings of input sequences based on the structure of
the corresponding dependency trees. This is done
by first forming a visibility matrix based on which
words are directly related in the dependency tree.
Then, a GNN encoder computes syntactically rich
embeddings of the input sequences controlled by
the formed visibility matrices. This formulation
is different from previous approaches where the
embeddings of PoS and dependency tags are just
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concatenated to the embeddings of the according
text tokens at embedding level. Secondly, this is
the first work that uses an additional module that
classifies tokens in the generated tuple as either
“real” or “fake” during training. Thirdly, unlike
previous neural approaches that tackle OIE as se-
quence generation, we consider the entire generated
sequence by timestep t, ⟨y1, . . . , yt−1⟩, to compute
a decoder context vector, as discussed in Eqs. 3–4 in
Section 3.3. Additionally, Sun et al. (2018) and Kol-
luru et al. (2020) consider redundant information
as the issue of generating the same facts multiple
times, while we consider redundancy at token level
in generated facts. Furthermore, Cui et al. (2018)
and Sun et al. (2018) are restrictive in how the
models “pick” words when generating facts, which
restrains the models’ flexibility in generating facts.
Cui et al. (2018) only limit the sample space only
to the source sentence, and Sun et al. (2018) only
consider the source sentence and keywords, while
we consider the source sentence and the entire vo-
cabulary.

7 Summary and Outlook

This work has shown that computing syntactically
rich embeddings of text based on the structure of
dependency trees significantly improves the per-
formance of neural OIE models and the quality of
extractions. Furthermore, the novel discriminative
training method for OIE models boosts models’ per-
formance. Additionally, we show that generation
probability and coverage mechanisms substantially
improve the models’ ability to introduce new words
into generated facts and reduce repetitive tokens in
generated facts. Finally, we have presented para-
phrased versions of OIE2016, CaRB, and LSOIE,
and shown that the models’ performance substan-
tially improves when trained on datasets augmented
by such data. Our approach, syntactically rich dis-
criminative training, beats the SOTA of IMoJIE on
the latest CaRB benchmark dataset: the model im-
proves the F1 score of IMoJIE by 39.63%. This
model also presents competitive results on other
benchmark datasets: OIE2016 and LSOIE.

In future work, we will build on this work and in-
vestigate further whether the proposed approaches
could also be beneficial to sequence labelling ap-
proaches for OIE. Furthermore, models trained
on original OIE datasets perform poorly on para-
phrased versions of the datasets. This is clear from
the results shown in Table 2. Under normal condi-

tions, one would expect to identify the same sets of
facts from all paraphrased versions of the same sen-
tence. This is not true of the OIE models, and the
phenomenon shows that models do not understand
sentence meaning. Future studies could build on
this to look into how OIE models can better capture
sentence meanings.

8 Limitations

Like any other research, the work described in this
paper has some space for improvement. First, we
limited ourselves to binary relations that are de-
scribed in a single sentence. However, in the real
world, we are constantly confronted with content
that spans many sentences and relationships that
span multiple sentences. In future research, the con-
cepts and approaches outlined in this paper could
be expanded to include n-ary relations that span
many sentences. Second, models trained on origi-
nal datasets perform poorly on paraphrased datasets.
This is clear from the results shown in Table 2. Un-
der normal conditions, one would expect to identify
the same sets of facts from all paraphrased versions
of the same sentence. This is not true of the OIE
models, and the phenomenon shows that models do
not understand sentence meaning. Future studies
could build on this to look into how OIE models can
better capture sentence meanings. Finally, we used
the formulation for constructing syntactically rich
vector representations as well as the new discrimi-
native training approach to only train sequence gen-
eration OIE models. It could be examined further
in future research whether the proposed methodolo-
gies could also be advantageous to OIE sequence
labelling approaches.
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A Datasets’ Descriptions and Statistics.

OIE2016 has a total of 5,078 training samples;
it is small, which makes it hard to train models
that generalize to unseen problem instances. For
training purposes, OIE2016 was augmented with
samples from another dataset created by Cui et al.
(2018). This resulted in a huge dataset of more than
36M training samples. This augmented dataset was
then trimmed to 1.7M training samples using pre-
processing steps presented in (Hohenecker et al.,
2020). LSOIE is constructed from QA-SRL BANK
2.0 (FitzGerald et al., 2018) and contains over 70K
sentences and over 150K extraction tuples. CaRB
is an improved dataset compared to OIE2016 and
is crowdsourced. It was annotated by NLP experts,
and it is more accurate than OIE2016 (Bhardwaj
et al., 2019). In addition to binary and explicit ex-
tractions, CaRB also comes with implicit as well
as n-ary extractions. The n-ary extractions were
truncated to bear some resemblance to the binary
extractions that we considered in this work. For
example, in the sentence “A year later, he was ap-
pointed Attorney-General for Ireland and on this oc-
casion was sworn of the Privy Council of Ireland”,
we have the subject “he”, relation “was appointed”,
and objects “Attorney-General”, “for Ireland”, and
“A year later”. From this, we formulate a truncated
tuple ⟨he, was appointed, Attorney-General for Ire-
land a year later⟩.

In each extraction, we introduced special tokens
into the vocabulary to mark the beginning and end
of either subject, relation, or object. “⟨arg0⟩” and
“⟨/arg0⟩” were used to indicate the start and end
of a subject span, respectively, while “⟨rel⟩” and
“⟨/rel⟩” were used to indicate the start and end
of a relation span, respectively, and “⟨arg1⟩” and
“⟨/arg1⟩” were used to indicate the start and end of
an object span, respectively.

In addition to the original versions of the CaRB,
OIE2016, and LSOIE datasets, we also generate
paraphrased versions, which we use to train our
models. We only paraphrase the training sets of the
datasets and keep the test sets. We use Parrot** to
paraphrase samples. Parrot generates paraphrased
versions that are adequate and fluent, while being
as different as possible from the original versions
on the surface lexical form. We paraphrased the
datasets, so that we get more and diverse data for
training our models. Furthermore, as paraphrased

**https://github.com/
PrithivirajDamodaran/Parrot_Paraphraser

samples convey the same meaning as the original
samples but with a different lexical form, models
trained on this data have a better ability to capture
implicit relations.

B Significance of Various Experimental
Setups on CaRB

We further investigated whether the improvements
brought about by each experimental configuration
in Table 1 are substantial rather than a random oc-
currence. For this, we perform a paired t-test on
each new experimental configuration and the de-
fault setup, taking into account all paired F1 and
AUC-PR values.

First, the paired t-test produced p values smaller
than .05, p < .05, in both F1 and AUC-PR when
the + transformer encoder setup was compared to
the default setup. This means that the default setup
has a less than 5% chance of outperforming the
+ transformer encoder setup. Second, when the
+ discriminator and + transformer encoder + dis-
criminator setups are individually matched with
the default setup, both F1 and AUC-PR have p val-
ues of less than .03, p < .03. This means that
the default setup has a less than 3% chance of
outperforming either the + discriminator setup or
the + transformer encoder + discriminator setup.
Finally, when the + GNN encoder and + GNN
encoder + discriminator setups are individually
paired with the default setup, both F1 and AUC-PR
produce p values of less than .01, p < .01. This
means that the default setup has less than a 1%
chance of outperforming either the + GNN encoder
or + GNN encoder + discriminator setup.

Based on the above deliberations, each exper-
imental setup significantly improved the default
setup in terms of F1 and AUC-PR compared to the
default setup. Additionally, the + GNN encoder
setup outperforms the + transformer encoder setup.
The + GNN encoder setup generates syntactically
richer embeddings than the + transformer encoder
setup. Furthermore, the + GNN encoder + dis-
criminator setup produces the best results, which
can be attributed to the formulation for computing
embeddings based on the dependency tree’s struc-
ture as well as the discriminative training technique.
Finally, these patterns may be seen in the results
shown in Tables 7 and 12, which were derived
from the OIE2016 and LSOIE datasets, respectively.
These advancements were not coincidental.
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C OIE2016 Results and Analysis

In this section, we present results of our models
on the OIE2016 dataset. All models were trained
and evaluated in all six experimental setups dis-
cussed in Section 4. We used the CaRB evaluation
framework.

Results. Table 7 presents the results of evaluating
our models on the OIE2016 dataset under the ex-
perimental setups described in the experiments sub-
section. Note that in each experimental setup, the
model resulting from the combination of an ELEC-
TRA embedder and a feedback transformer decoder
outperforms other combinations. The best model
on the OIE2016 dataset has an ELECTRA embed-
der, GNN encoder, feedback transformer, and a
discriminator. The model achieves an F1 value of
0.619 and an AUC-PR value of 0.639. Note that
we cannot directly compare our results to the pre-
vious work by Zhan and Zhao (2019), because the
evaluation framework used is different.

Performance across experimental setups. Ta-
ble 8 presents the average performance of all mod-
els in each experimental setup on OIE2016 based
on the results presented in Table 7. We note that
each experimental setup introduced considerable
improvement in performance compared to the con-
trol experimental setup, default. The setup with
the GNN encoder only, + GNN encoder, achieves
the best average performance in F1. It improves
on the default setup with 18.90%. The setup with
both the GNN encoder and discriminator, + GNN
encoder + discriminator, achieves the best aver-
age performance in AUC-PR. It improves on the
default setup with 13.74%. Furthermore, we note
that models in the + GNN encoder setup perform
better than models in the + transformer encoder
setup with 2.32% and 4.08% improvements in av-
erage F1 and AUC-PR values, respectively. To that
end, we see that the GNN encoder that computes
embeddings of the input sequence based on the
structure of the dependency tree performs better
than the transformer encoder that does not take into
account the structure of the dependency tree when
computing embeddings. Additionally, the best per-
formance is achieved when the GNN encoder is
used jointly with the discriminator. Thus, we con-
clude that taking into account the dependency tree’s
structure when computing embeddings and the dis-
criminative training approach are the main cause of
the high boost in the performance of our models.

Performance of modules. We also looked into the
average performance of the modules in the embed-
der and decoder blocks. Table 9 summarises the
analysis based on results in Table 7. Considering all
models, the models with a pre-trained ELECTRA
model achieve the best average values of 0.545
and 0.550 in F1 and AUC-PR, respectively. Fur-
thermore, models with the feedback transformer
decoder achieve the best average values of 0.563
and 0.564 in F1 and AUC-PR, respectively.

Token repetition. Our best model from Table 7
is run on 50 samples from the test partition of the
OIE2016 dataset with and without both generation
probability and coverage mechanisms. We compute
the number of tokens that are both in the source sen-
tence S and the generated tuple T , S ∩ T , in both
settings to measure the model’s ability to introduce
words from the vocabulary. Similarly, we also com-
pute a percentage of repetitive tokens in T . Table 10
summarises the results. From Table 10, we note
that that the percentage of tokens in |S ∩ T | drops
by 18% when using both generation probability and
coverage mechanisms. This implies that the model
copies fewer tokens from the source sentence, and
introduces more tokens from the vocabulary, hence
the improved ability to generate implicit facts. Fur-
thermore, the repetitive tokens reduce by 23.70%.
To that end, the results confirm that both generation
probability and coverage mechanisms are effective
in controlling repetitive tokens, and improving the
models’ ability to generate implicit facts.

Performance on augmented dataset. We trained
the best model from Table 7 on paraphrased and
mixed versions of the OIE2016 dataset. After train-
ing, the model was evaluated on the original test
set of the OIE2016 dataset. We note that the perfor-
mance of the model improves when trained on the
mixed dataset. Table 11 summarises the results.

D LSOIE Results and Analysis

In this section, we present results of our models on
the LSOIE dataset. We considered all experimen-
tal setups discussed in Section 4, and we used the
CaRB evaluation framework.

Results. In Table 7, we present the results of eval-
uating our models on the LSOIE dataset under all
our experimental setups. We note that in each ex-
perimental setup, the model resulting from the com-
bination of an ELECTRA embedder and a feedback
transformer decoder outperforms other combina-
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BiLSTM Transformer Feedback Transformer BERT ELECTRA
F1 AUC-PR F1 AUC-PR F1 AUC-PR F1 AUC-PR F1 AUC-

PR

(a)
BiLSTM 0.411 0.438 0.420 0.441 0.421 0.445 0.420 0.446 0.425 0.449

Transformer 0.439 0.446 0.440 0.447 0.469 0.466 0.471 0.469 0.485 0.471
Feedback Transformer 0.472 0.499 0.487 0.498 0.491 0.502 0.494 0.515 0.497 0.521

(b)
BiLSTM 0.431 0.450 0.460 0.455 0.467 0.466 0.469 0.468 0.472 0.470

Transformer 0.497 0.451 0.510 0.488 0.549 0.523 0.560 0.555 0.595 0.602
Feedback Transformer 0.546 0.554 0.568 0.572 0.577 0.579 0.599 0.585 0.600 0.626

(c)
BiLSTM 0.469 0.468 0.470 0.471 0.485 0.475 0.489 0.477 0.491 0.483

Transformer 0.504 0.470 0.510 0.476 0.522 0.502 0.562 0.520 0.687 0.660
Feedback Transformer 0.531 0.527 0.554 0.536 0.575 0.550 0.599 0.584 0.601 0.607

(d)
BiLSTM 0.470 0.471 0.471 0.476 0.488 0.487 0.492 0.489 0.493 0.491

Transformer 0.528 0.482 0.531 0.489 0.570 0.523 0.581 0.556 0.597 0.604
Feedback Transformer 0.548 0.556 0.569 0.576 0.585 0.590 0.594 0.597 0.616 0.633

(e)
BiLSTM 0.444 0.463 0.452 0.466 0.472 0.469 0.481 0.477 0.486 0.487

Transformer 0.491 0.453 0.501 0.472 0.535 0.494 0.551 0.501 0.562 0.567
Feedback Transformer 0.541 0.526 0.551 0.540 0.566 0.540 0.582 0.563 0.599 0.592

(f)
BiLSTM 0.454 0.472 0.472 0.477 0.479 0.488 0.487 0.485 0.493 0.489

Transformer 0.521 0.473 0.529 0.481 0.573 0.524 0.581 0.567 0.592 0.607
Feedback Transformer 0.568 0.556 0.569 0.579 0.586 0.590 0.602 0.596 0.619 0.639

Table 7: Results from different module combinations on the OIE2016 dataset. The columns and rows represent
embedders and decoders, respectively. (a) default setup, (b) + discriminator setup, (c) + transformer encoder setup,
(d) + GNN encoder setup, (e) + transformer encoder + discriminator setup, and (f) + GNN encoder + discriminator
setup. The results in bold indicate the best performance in each setup.

Experimental Setup Avg. F1 Avg. AUC-PR
Default 0.456 0.470

+ Transformer Encoder 0.530 0.514
+ Discriminator 0.527 0.523
+ GNN Encoder 0.542 0.533

+ Transformer Encoder + Discriminator 0.521 0.507
+ GNN Encoder + Discriminator 0.542 0.535

Table 8: Average performance of all models under differ-
ent experimental setups on OIE2016. Default represents
the setup where all models are comprised of just embed-
ders and decoders.

Module Avg. F1 Avg. AUC-PR

(i)

BiLSTM 0.492 0.487
Transformer 0.504 0.496

BERT 0.534 0.526
Feedback Transformer 0.523 0.512

ELECTRA 0.545 0.550

(ii)
BiLSTM 0.464 0.470

Transformer 0.431 0.508
Feedback Transformer 0.563 0.564

Table 9: Average performance different modules in dif-
ferent blocks for all experiments on OIE2016. (i) for the
embedders, and (ii) for the decoders. The best average
performance for each block is shown in bold.

tions. The best model on LSOIE has an ELECTRA
embedder, GNN encoder, feedback transformer,
and a discriminator. The model achieves an F1

value of 0.517 and an AUC-PR value of 0.525.

Performance across experimental setups. Ta-
ble 13 presents the average performance of all mod-

Model S ∩ T Repetition in T
-(coverage mechanism + gen prob) 85% 39.50%
+(coverage mechanism + gen prob) 67% 15.80%

Table 10: Results on our best model’s ability to introduce
new words from the vocabulary into the generated tuple,
and to avoid generating repetitive tokens on OIE2016.
-(coverage mechanism + gen prob) represents the best
model without both generation probability and coverage
mechanisms and +(coverage mechanism + gen prob)
represents the opposite.

Dataset F1 AUC-PR
Para-phrased 0.419 0.449

Original 0.619 0.639
Mixed 0.701 0.699

Table 11: Performance of our best model from Table 7,
(ELECTRA + GNN Encoder + Discriminator), when
trained on paraphrased, original, and mixed versions of
the OIE2016 dataset.

els in each experimental setup on OIE2016 based
on the results in Table 12. We note that each ex-
perimental setup introduced considerable improve-
ment in performance compared to the control ex-
perimental setup, default. The setup with the GNN
encoder only, + GNN encoder, achieves the best av-
erage performance in F1. It improves on the default
setup with 7.73%. The setup with both the GNN
encoder and discriminator, + GNN encoder + dis-
criminator, achieves the best average performance
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BiLSTM Transformer Feedback Transformer BERT ELECTRA
F1 AUC-PR F1 AUC-PR F1 AUC-PR F1 AUC-PR F1 AUC-

PR

(a)
BiLSTM 0.375 0.381 0.380 0.391 0.391 0.415 0.405 0.421 0.412 0.429

Transformer 0.428 0.433 0.431 0.438 0.438 0.446 0.448 0.550 0.452 0.457
Feedback Transformer 0.456 0.467 0.457 0.472 0.462 0.480 0.475 0.492 0.487 0.501

(b)
BiLSTM 0.410 0.397 0.416 0.413 0.429 0.423 0.434 0.431 0.440 0.433

Transformer 0.428 0.440 0.435 0.448 0.446 0.455 0.451 0.458 0.456 0.462
Feedback Transformer 0.435 0.470 0.458 0.476 0.474 0.486 0.480 0.500 0.496 0.519

(c)
BiLSTM 0.423 0.399 0.432 0.401 0.435 0.422 0.441 0.434 0.446 0.450

Transformer 0.433 0.421 0.439 0.435 0.447 0.444 0.463 0.455 0.479 0.471
Feedback Transformer 0.459 0.461 0.463 0.467 0.472 0.475 0.490 0.485 0.595 0.504

(d)
BiLSTM 0.430 0.413 0.445 0.432 0.439 0.455 0.444 0.454 0.450 0.456

Transformer 0.438 0.443 0.451 0.456 0.480 0.467 0.493 0.475 0.499 0.485
Feedback Transformer 0.469 0.479 0.471 0.499 0.481 0.489 0.499 0.496 0.509 0.524

(e)
BiLSTM 0.413 0.401 0.424 0.414 0.437 0.425 0.445 0.439 0.460 0.449

Transformer 0.427 0.431 0.452 0.446 0.455 0.457 0.459 0.461 0.462 0.463
Feedback Transformer 0.465 0.463 0.467 0.468 0.473 0.479 0.499 0.481 0.507 0.502

(f)
BiLSTM 0.427 0.415 0.438 0.436 0.449 0.446 0.452 0.449 0.469 0.466

Transformer 0.439 0.445 0.454 0.458 0.458 0.470 0.463 0.481 0.471 0.486
Feedback Transformer 0.471 0.475 0.474 0.492 0.487 0.492 0.502 0.496 0.517 0.525

Table 12: Results from different module combinations on the LSOIE dataset. The columns and rows represent
embedders and decoders, respectively. (a) default setup, (b) + discriminator setup, (c) + transformer encoder setup,
(d) + GNN encoder setup, (e) + transformer encoder + discriminator setup, and (f) + GNN encoder + discriminator
setup. The results in bold indicate the best performance in each setup.

Experimental Setup Avg. F1 Avg. AUC-PR
Default 0.433 0.452

+ Transformer Encoder 0.461 0.448
+ Discriminator 0.446 0.454
+ GNN Encoder 0.467 0.468

+ Transformer Encoder + Discriminator 0.456 0.452
+ GNN Encoder + Discriminator 0.465 0.469

Table 13: Average performance of all models under dif-
ferent experimental setups on LSOIE. Default represents
the setup where all models are comprised of just embed-
ders and decoders.

in AUC-PR. It improves on the default setup with
3.81%. Furthermore, we note that models in the
+ GNN encoder setup perform better than models
in the + transformer encoder setup with 1.19% and
4.48% improvements in average F1 and AUC-PR
values, respectively. To that end, we see that the
GNN encoder that computes embeddings of the
input sequence based on the structure of the de-
pendency tree performs better than the transformer
encoder that does not take into account the struc-
ture of the dependency tree when computing em-
beddings. Additionally, the best performance is
achieved when the GNN encoder is used jointly
with the discriminator. Thus, we conclude that tak-
ing into account the dependency tree’s structure
when computing embeddings and the discrimina-
tive training approach are the main cause of the
high boost in the performance of our models.

Performance of modules. We also looked into

Module Avg. F1 Avg. AUC-PR

(i)

BiLSTM 0.435 0.435
Transformer 0.444 0.447

BERT 0.463 0.470
Feedback Transformer 0.453 0.457

ELECTRA 0.478 0.0.470

(ii)
BiLSTM 0.430 0.426

Transformer 0.452 0.458
Feedback Transformer 0.482 0.487

Table 14: Average performance different modules in
different blocks for all experiments on LSOIE. (i) for the
embedders, and (ii) for the decoders. The best average
performance for each block is shown in bold.

the average performance of the modules in the em-
bedder and decoder blocks. Table 14 summarises
the analysis based on results in Table 12. Con-
sidering all models, the models with a pre-trained
ELECTRA model achieve the best average values
of 0.478 and 0.477 in F1 and AUC-PR, respectively.
Furthermore, models with the feedback transformer
decoder achieve the best average values of 0.482
and 0.487 in F1 and AUC-PR, respectively.

Token repetition. Our best model from Table 12
is run on 50 samples from the test partition of the
LSOIE dataset with and without both generation
probability and coverage mechanisms. We compute
the number of tokens that are both in the source sen-
tence S and the generated tuple T , S ∩ T , in both
settings to measure the model’s ability to introduce
words from the vocabulary. Similarly, we also com-
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Model S ∩ T Repetition in T
-(coverage mechanism + gen prob) 82% 34%
+(coverage mechanism + gen prob) 68% 11%

Table 15: Results on our best model’s ability to introduce
new words from the vocabulary into the generated tuple,
and to avoid generating repetitive tokens on LSOIE. -
(coverage mechanism + gen prob) represents the best
model without both generation probability and coverage
mechanisms and +(coverage mechanism + gen prob)
represents the opposite.

Dataset F1 AUC-PR
Para-phrased 0.401 0.424

Original 0.517 0.525
Mixed 0.610 0.605

Table 16: Performance of our best model from Table 12,
(ELECTRA + GNN encoder + discriminator), when
trained on paraphrased, original, and mixed versions of
the LSOIE dataset.

pute a percentage of repetitive tokens in T . Table 15
summarizes the results. From Table 15, we note
that that the percentage of tokens in |S ∩ T | drops
by 14% when using both generation probability and
coverage mechanisms. This implies that the model
copies fewer tokens from the source sentence, and
introduces more tokens from the vocabulary, hence
the improved ability to generate implicit facts. Fur-
thermore, the repetitive tokens reduce by 23%. To
that end, the results confirm that both generation
probability and coverage mechanisms are effective
in controlling repetitive tokens, and improving the
models’ ability to generate implicit facts.

Performance on augmented dataset. We trained
the best model from Table 12 on paraphrased and
mixed versions of the LSOIE dataset. After training,
the model was evaluated on the original test set of
the LSOIE dataset. We note that the performance
of the model improves when trained on the mixed
dataset. Table 16 summarises the results.

E Hyperparameters

Table 17 summarizes the hyperparameters for all
the modules that were used in our experiments.
These were determined over a number of initial
experiments, and kept constant throughout all train-
ing runs conducted for this paper.

model block number of layers
BiLSTM decoder 3
BiLSTM embedder 3
Discriminator 6
ELECTRA embedder 12
Feedback Transformer 6
GAT encoder 3
Transformer 6

hyperparameter value
batch size 128
dropout rate 0.3
dependency tag embedding size 100
embedder/decoder hidden size 256
feedback transformer heads 8
feedback transformer hidden size 512
learning rate 0.0005
maximum gradient norm 2
weight decay λ 10−5

PoS embedding size 100
transformer heads 6
transformer query/key/value size 50
transformer encoder hidden size 512
vocabulary size 30522

Table 17: The hyperparameters that were used through-
out all our experiments.

F Generator’s Workflow

Fig. 2 summarises the workflow in the generator
module.
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Figure 2: Illustration of the work-
flow in the generator module dis-
cussed in Sections 3.1–3.3. As
the encoder is optional, the output
of the embedder is used to com-
pute the encoder context vector h∗

t ,
when it is not used. The decoder
context vector d∗t is computed by
attending to the vector representa-
tions of the tokens in the entire gen-
erated tuple by timestep t. Both
the encoder and decoder context
vectors are used to compute the
generation probability and the dis-
tribution over the entire vocabulary
as discussed in Section 3.3.
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