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Abstract

Dense retrievers encode queries and documents
and map them in an embedding space using
pre-trained language models. These embed-
dings need to be high-dimensional to fit train-
ing signals and guarantee the retrieval effective-
ness of dense retrievers. However, these high-
dimensional embeddings lead to larger index
storage and higher retrieval latency. To reduce
the embedding dimensions of dense retrieval,
this paper proposes a Conditional Autoencoder
(ConAE) to compress the high-dimensional em-
beddings to maintain the same embedding dis-
tribution and better recover the ranking fea-
tures. Our experiments show that ConAE is
effective in compressing embeddings by achiev-
ing comparable ranking performance with its
teacher model and making the retrieval system
more efficient. Our further analyses show that
ConAE can alleviate the redundancy of the em-
beddings of dense retrieval with only one linear
layer. All codes of this work are available at
https://github.com/NEUIR/ConAE.

1 Introduction

As the first stage of numerous multi-stage IR and
NLP tasks (Nogueira et al., 2019; Chen et al., 2017;
Thorne et al., 2018), dense retrievers (Xiong et al.,
2021a) have shown lots of advances in conduct-
ing semantic searching and avoiding the vocabu-
lary mismatch problem (Robertson and Zaragoza,
2009). Dense retrievers usually encode queries
and documents as high-dimensional embeddings,
which are necessary to guarantee retrieval effective-
ness during training (Ma et al., 2021; Reimers and
Gurevych, 2021). Nevertheless, high dimensional
embeddings usually exhaust the memory to store
the index and lead to longer retrieval latency (Indyk
and Motwani, 1998; Meiser, 1993).

The research of building efficient dense retrieval
systems has been stimulated recently (Min et al.,

2021). To reduce the dimensions of document
embeddings, existing work reserves the principle
dimensions or compresses query and document
embeddings for building more efficient retriev-
ers (Yang and Seo, 2021; Ma et al., 2021).

There are two challenges in compressing embed-
dings of dense retrievers: The compressed embed-
dings should share a similar distribution with the
original embeddings, making the low-dimensional
embedding space uniform and the document em-
beddings distinguishable; All the compressed em-
beddings should have the ability to maintain the
maximal information for matching related queries
and documents during retrieval, which helps better
align the related query-document pairs.

This paper proposes a Conditional Autoencoder
(ConAE), which aims to build efficient dense re-
trieval systems by reducing the embedding dimen-
sions of queries and documents. ConAE first en-
codes high-dimensional embeddings into a low-
dimensional embedding space and then gener-
ates embeddings that can be aligned to related
queries or documents in the original embedding
space. In addition, ConAE designs a conditional
loss to regulate the low-dimensional embedding
space to mimic the embedding distribution of high-
dimensional embeddings. Our experiments show
that ConAE is effective to compress the high-
dimensional embeddings and avoid redundant rank-
ing features by achieving comparable retrieval per-
formance with vanilla dense retrievers and better
visualizing the embedding space with t-SNE.

2 Related Work

Dense retrievers use a bi-encoder architecture to
encode queries and documents and map them in
an embedding space for retrieval (Karpukhin et al.,
2020; Xiong et al., 2021b,a; Lewis et al., 2020;
Zhan et al., 2021; Li et al., 2021; Yu et al., 2021).

5692

https://github.com/NEUIR/ConAE


To learn an effective embedding space, dense re-
trievers are forced to maintain high-dimensional
embeddings to fit training signals.

The most direct way to reduce the dimension
of embeddings is that retaining parts of the dimen-
sions of high-dimensional embeddings (Yang and
Seo, 2021; Ma et al., 2021). Some work uses the
first 128 dimensions to encode both queries and
documents (Yang and Seo, 2021) or utilizes PCA to
retain the primary dimensions to recover most infor-
mation from the raw embeddings (Ma et al., 2021).
Other work (Ma et al., 2021) proposes a super-
vised method, which uses neural networks to com-
press the high-dimensional embeddings as lower-
dimensional ones. These supervised models pro-
vide a better dimension reduction way than unsuper-
vised models by avoiding missing too much infor-
mation. To optimize the encoders, some work (Ma
et al., 2021) continuously trains dense retrievers
with the contrastive training strategies (Karpukhin
et al., 2020; Xiong et al., 2021a).

3 Methodology

This section introduces our Conditional Autoen-
coder (ConAE). We first introduce the preliminar-
ies of dense retrieval (Sec. 3.1), and then describe
the architecture of ConAE (Sec. 3.2).

3.1 Preliminary of Dense Retrieval
Given a query q and a document collection D =
{d1, . . . , dj , . . . , dn}, dense retrievers (Xiong
et al., 2021b,a; Karpukhin et al., 2020) employ pre-
trained language models (Devlin et al., 2019; Liu
et al., 2019) to encode q and d as K-dimensional
embeddings, hq and hd.

Then we can calculate the retrieval score f(q, d)
of q and d with dot product f(hq, hd) = hq · hd.
Then we contrastively train query and document
encoders by maximizing the retrieval probability
P (d+|q, {d+} ∪ D−) of the relevant document
d+ (Xiong et al., 2021b,a):

P (d+|q, {d+} ∪D−) =
ef(hq,hd+

)

ef(hq,hd+
) +

∑
d−∈D−

ef(hq,hd− )
,

(1)

where d− is the document sampled from the irrel-
evant document set D− (Karpukhin et al., 2020;
Xiong et al., 2021a).

3.2 Dimension Compression with ConAE
In this subsection, we introduce ConAE to com-
press the K-dimensional embeddings hq and hd of

both queries and documents to the L-dimensional
embeddings heq and hed.

Encoder. We first get the initial representations
hq and hd for query q and document d from exist-
ing dense retrievers, such as ANCE (Xiong et al.,
2021a). Then these K-dimensional embeddings
can be compressed to low dimensional ones with
two different linear layers, Linearq and Lineard:

he
q = Linearq(hq);h

e
d = Lineard(hd). (2)

heq and hed are L-dimensional embeddings. The
dimension L can be 256, 128 or 64, which is much
lower than the dimension K of hq and hd.

Then we use KL divergence to regulate encoded
embeddings to mimic the initial embedding distri-
butions of queries and documents:

LKL =
∑

q

∑

d∈Dtop

P (d|q,Dtop) · log
P (d|q,Dtop)

Pe(d|q,Dtop)
, (3)

where Pe(d|q,Dtop) is calculated with E.q. 1, using
the encoded embeddings heq and hed. Dtop consists
of the top-ranked documents, which are searched
by the teacher retriever–ANCE.

Decoder. The decoder module maps the encoded
embeddings heq and hed into the original embedding
space by aligning the compressed embeddings heq
and hed with hq and hd. It aims at optimizing en-
coder modules to maximally maintain ranking fea-
tures from the initial representations hq and hd of
query and document.

Firstly, we use one linear layer to project heq and
hed to K-dimensional embeddings, ĥq and ĥd:

ĥq = Linear(he
q); ĥd = Linear(he

d). (4)

Then we respectively train the decoded embeddings
ĥq and ĥd to align with hq and hd in the original
embedding space using two max margin losses Lq

and Ld. The max margin loss is widely used in
previous neural IR research to optimize the ranking
scores (Xiong et al., 2017; Dai et al., 2018).

The first loss Lq is used to optimize the decoded
query representation ĥq:

Lq =
∑

q

1 + tanh f(ĥq, hd−)− tanh f(ĥq, hd+), (5)

and we can also optimize the decoded document
representation ĥd with the second loss function Ld:

Ld =
∑

q

1 + tanh f(hq, ĥd−)− tanh f(hq, ĥd+). (6)
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Dataset #Doc #Queries
Train Dev Test

MS MARCO 8,841,823 452,939 50,000 6,980
NQ 21,015,323 79,168 8,757 3,610
TREC DL 8,841,823 - - 43
TREC-COVID 171,332 - - 50

Table 1: Data Statistics.

Training Loss. Finally, we train our conditional
autoencoder model with the following loss L:

L = LKL + λLq + λLd, (7)

where λ is a hyper-parameter to weight the autoen-
coder losses.

4 Experimental Methodology

This section describes the datasets, evaluation met-
rics, baselines and implementation details of our
experiments.

Dataset. Four datasets are used to evaluate the
retrieval effectiveness of different dimension re-
duction models, including MS MARCO (Passage
Ranking) (Nguyen et al., 2016), NQ (Kwiatkowski
et al., 2019), TREC DL (Craswell et al., 2020)
and TREC-COVID (Roberts et al., 2020). In our
experiments, we randomly sample 50,000 queries
from the raw training set of MS MARCO as the
development set and use MS MARCO (Dev) as the
testing set. The dimension reduction models that
are trained on MS MARCO are also evaluated on
two benchmarks, TREC DL and TREC-COVID,
aiming to evaluate their generalization ability. All
data statistics are shown in Table 1.

Evaluation Metrics. NDCG@10 is used as
the evaluation metric on three benchmarks, MS
MARCO, TREC DL and TREC-COVID. MS
MARCO also uses MRR@10 as the primary eval-
uation metric (Nguyen et al., 2016). For the NQ
dataset, the hit accuracy on Top20 and Top100 is
used as the evaluation metric, which is the same as
previous work (Karpukhin et al., 2020).

Baselines. In our experiments, we compare
ConAE with two baselines from previous work (Ma
et al., 2021), Principle Component Analysis (PCA)
and CE. PCA reduces the embedding dimension
by retaining the principle dimensions that can keep
most of the variance within the original represen-
tation. CE model uses two linear layers Wq and
Wd without biases to transform dense representa-
tions of queries and documents into lower embed-
dings (Ma et al., 2021). We also start from CE
models and continuously train the whole model to

implement our ANCE models to generate query
and document embeddings of different dimensions.

Implementation Details. The rest describes our
implementation details. All embedding dimension
reduction models base on one of the best dense
retrievers ANCE (Xiong et al., 2021a) and build
document index with exact matching (flat index),
which is implemented by FAISS (Johnson et al.,
2019). During training ConAE, we set the hyper-
parameter λ as 0.1 and search Top100 documents
using vanilla ANCE to construct the Dtop collec-
tion for each query. For our CE and ANCE models,
we sample 7 negative documents for each query to
contrastively train these models and sample 1 nega-
tive document to train ConAE. In our experiments,
we set the batch size to 2 and accumulate step to
8 for ANCE. The batch size and accumulate step
are 128 and 1 for other models. All models are
implemented with PyTorch and tuned with Adam
optimizer. The learning rates of ANCE and other
models are set to 2e− 6 and 0.001, respectively.

5 Evaluation Result

Four experiments are conducted in this section to
study the effectiveness of ConAE in reducing em-
bedding dimensions for dense retrieval.

5.1 Overall Performance

The performance of different dimension reduction
models is shown in Table 2. PCA, CE and ConAE
are based on ANCE (Teacher), which freezes the
teacher model and only optimizes the dimension
projection layers. ANCE starts from CE and con-
tinuously tunes all parameters in the model.

Compared with PCA and CE (Ma et al., 2021),
ConAE achieves the best performance on almost
of datasets, which shows its effectiveness in com-
pressing dense retrieval embeddings. ConAE
can achieve comparable performance with ANCE
(Teacher) using 128-dimensional embeddings to
build the document index on MS MARCO, which
reduces the retrieval latency (from 17.152 ms to
3.942 ms per query) and saves the index storage
(from 26.0G to 4.3G) significantly. It demonstrates
that ConAE is effective to alleviate the redundancy
of the embeddings learned by dense retrievers.

Among all baselines, PCA shows significantly
worse ranking performance on MS MARCO, in-
dicating that embedding dimensions of dense
retrievers are usually nonorthogonal. ConAE-
128 achieves more than 11% improvements than
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Method MS MARCO NQ TREC DL TREC-COVID
Latency(ms) MRR@10 NDCG@10 Rec@1000 Top20 Top100 NDCG@10 NDCG@10

Teacher-768 17.152 0.3302 0.3877 0.9584 0.8224 0.8787 0.6489 0.6529
ANCE-256 6.159 0.3145 0.3709 0.9545 0.8188 0.8765 0.6455 0.5722
PCA-256 6.296 0.2440 0.2940 0.9257 0.8042 0.8715 0.5118 0.2601
CE-256 7.344 0.2959 0.3472 0.9333 0.8066 0.8726 0.5916 0.4110
ConAE-256 7.158 0.3294 0.3864 0.9560 0.8053 0.8723 0.6438 0.6405
ANCE-128 3.419 0.3092 0.3667 0.9527 0.8069 0.8709 0.6514 0.5612
PCA-128 3.525 0.2348 0.2838 0.9170 0.7875 0.8620 0.4795 0.2523
CE-128 4.530 0.2917 0.3438 0.9345 0.7934 0.8668 0.6170 0.4692
ConAE-128 3.942 0.3245 0.3816 0.9523 0.8064 0.8687 0.6380 0.6381
ANCE-64 3.041 0.2773 0.3295 0.9217 0.7687 0.8474 0.6003 0.4731
PCA-64 2.627 0.1855 0.2259 0.8540 0.6698 0.7928 0.3788 0.2174
CE-64 3.046 0.2551 0.3036 0.9042 0.7404 0.8341 0.5561 0.3968
ConAE-64 3.087 0.2862 0.3376 0.9222 0.7604 0.8460 0.5877 0.5006

Table 2: Performance of Different Dimension Reduction Models. We start from ANCE (Teacher), reduce the
embedding dimension and evaluate their retrieval effectiveness. The document indices are built with flat index and
the sizes of MS MARCO indices are 26.0G, 8.5G, 4.3G and 2.2G for 768, 256, 128 and 64 dimensional embeddings.

(a) Teacher (t-SNE). (b) ConAE-128 (t-SNE). (c) ConAE-64 (t-SNE). (d) Teacher (ConAE).

Figure 1: Embedding Visualization of Different Dense Retrievers. Figure 1(a), 1(b) and 1(c) are plotted with t-SNE
with 768, 128 and 64 dimensional embeddings. In Figure 1(d), we directly use ConAE w/o Decoder to visualize the
document embedding space of ANCE. The “•” in “dark orange” color denotes the golden document that ranked 2nd
by ConAE-64 and 1st by other models. For other documents, darker blue ones are more relevant to the query.

Method MS MARCO TREC-COVID TREC DL
MRR@10 NDCG@10 NDCG@10

ConAE-256 0.3294 0.6405 0.6438
w/o Decoder 0.3271 0.6546 0.6377
w/o KL 0.3276 0.6218 0.6491
ConAE-128 0.3245 0.6381 0.6380
w/o Decoder 0.3203 0.6525 0.6266
w/o KL 0.3234 0.6365 0.6367
ConAE-64 0.2862 0.5006 0.5877
w/o Decoder 0.2846 0.4703 0.5951
w/o KL 0.2822 0.4658 0.5759

Table 3: Retrieval Performance of Different Ablation
Models. ConAE w/o Decoder and ConAE w/o KL use
LKL and Lq + Ld to train the distillation models.

CE and performs much better on TREC-COVID,
demonstrating its ranking effectiveness and gener-
alization ability. ANCE can further improve the
retrieval performance of CE by continuously train-
ing the query and document encoders, which adapts
the teacher model to the low-dimensional version.

5.2 Ablation Study

This subsection conducts ablation studies in Table 3
to investigate the effectiveness of different modules
in our ConAE model.

The different modules in ConAE play differ-
ent roles. Compared with ConAE w/o Decoder,
ConAE w/o KL usually shows better retrieval ef-
fectiveness on the two benchmarks MS MARCO
and TREC DL, which ask the model to retrieve can-
didates from the same data source. It demonstrates
that our autoencoder architecture can reserve more
ranking features to fit the training supervision of
MS MARCO. On the other hand, ConAE w/o
Decoder shows stronger generalization ability by
outperforming ConAE w/o KL on TREC-COVID,
which belongs to a different domain. The source of
the generalization ability of ConAE w/o Decoder
may come from finer-grained training signals from
our teacher model. The annotated training signals
usually face the hole rate problem (Xiong et al.,
2020) and using neural IR models to denoise the
training signals has shown strong effectiveness in
training neural IR models (Qu et al., 2021).

ConAE combines both KL and autoencoder ar-
chitectures to fully use training signals and regulate
the distribution of compressed embedding, which
usually achieves better retrieval performance.
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5.3 Embedding Visualization with ConAE

We randomly sample one case from MS MARCO
and visualize the embedding space of query and
retrieved documents in Figure 1.

We first employ t-SNE (van der Maaten and Hin-
ton, 2008) to visualize the embedding spaces of
ANCE (Teacher) and ConAE. As shown in Fig-
ure 1(b), ConAE-128 conducts a more meaningful
visualization results: the related query-document
pair is closer and the other documents are dis-
tributed around the golden document according
to their relevance to the query. The visualization
of ANCE (Teacher) is slightly distorted and dif-
ferent from our expectations, which is mainly due
to its redundancy. The redundant features usually
mislead t-SNE to overfit these ranking features,
thus reducing the embedding dimension of dense
retrievers to 128 provides a possible way to alle-
viate redundant features and better visualize the
embedding space of dense retrievers using t-SNE.
Besides, ConAE-64 shows decreased retrieval per-
formance than ConAE-128 (Sec. 5.1). As shown
in Figure 1(c), it mainly derives from that ConAE-
64 loses some ranking features with the limited
embedding dimensions.

The other way to visualize the embedding space
is using ConAE w/o Decoder to project the em-
bedding to a 2-dimensional coordinate. It uses KL
divergence to optimize the 2-dimensional embed-
dings to mimic the relevance score distribution of
teacher models. As shown in Figure 1(d), the dis-
tributions of documents are distinguishable, which
provides an intuitive way to analyze the ranking-
oriented document distribution. In addition, the
query is usually far away from the documents. The
main reason lies that the relevance scores are calcu-
lated by dot product and the embedding norms are
meaningful to distinguish the relevant documents.

5.4 Retrieval Performance with HNSW

Besides exact searching, we also show retrieval
results of different dimension reduction methods
in Table 4, which are implemented by the approxi-
mate nearest neighbor (ANN) search, Hierarchical
Navigable Small World (HNSW). Using HNSW,
the retrieval efficiency can be further improved, es-
pecially for high-dimensional embeddings. ConAE
keeps its advanced retrieval performance again with
less than 1ms retrieval latency.

Dim. Method Latency MS MARCO
(ms) MRR@10 NDCG@10

768 ANCE 2.056 0.3295 0.3869

256
PCA 1.016 0.2427 0.2924
CE 1.646 0.2948 0.3461
ConAE 1.478 0.3257 0.3818

128
PCA 0.702 0.2340 0.2829
CE 1.047 0.2906 0.3424
ConAE 0.978 0.3209 0.3770

64
PCA 0.616 0.1844 0.2246
CE 0.860 0.2545 0.3030
ConAE 0.983 0.2837 0.3344

Table 4: ANN Retrieval Effectiveness of Different Mod-
els. The ANN index is built with HNSW.

6 Conclusion

This paper presents ConAE, which reduces the em-
bedding dimension of dense retrievers. Our experi-
ments show that ConAE can achieve comparable
retrieval performance with the teacher model, sig-
nificantly reduce the index storage and accelerate
the searching process. Our further analyses show
that the high-dimensional embeddings of dense re-
trievers are usually redundant and ConAE helps to
alleviate such redundancy and visualize the embed-
ding space more intuitively and effectively.

Limitations

In this paper, we mainly focus on compressing the
embeddings of dense retrievers in an additional
stage between query/document encoding and index
building. As a result, we fix query and document
embeddings of dense retrievers and project high-
dimensional embeddings to low-dimensional ones
using only one linear layer. Thus, the effectiveness
of ConAE is limited by the number of learnable pa-
rameters. Even though ConAE shows comparable
performance with ANCE (Teacher), joint modeling
the query/document encoder, dimension reduction
module and index building still show strong poten-
tial to achieve better retrieval performance.
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