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Abstract

Most existing pre-trained language representa-
tion models (PLMs) are sub-optimal in senti-
ment analysis tasks, as they capture the senti-
ment information from word-level while under-
considering sentence-level information. In
this paper, we propose SentiWSP, a novel
Sentiment-aware pre-trained language model
with combined Word-level and Sentence-level
Pre-training tasks. The word level pre-training
task detects replaced sentiment words, via a
generator-discriminator framework, to enhance
the PLM’s knowledge about sentiment words.
The sentence level pre-training task further
strengthens the discriminator via a contrastive
learning framework, with similar sentences as
negative samples, to encode sentiments in a sen-
tence. Extensive experimental results show that
SentiWSP achieves new state-of-the-art perfor-
mance on various sentence-level and aspect-
level sentiment classification benchmarks. We
have made our code and model publicly avail-
able at https://github.com/XMUDM/SentiWSP.

1 Introduction

Sentiment analysis plays a fundamental role in
natural language processing (NLP) and powers
a broad spectrum of important business applica-
tions such as marketing (HaCohen-Kerner, 2019)
and campaign monitoring (Sandoval-Almazán and
Valle-Cruz, 2020). Two typical sentiment analy-
sis tasks are sentence-level sentiment classifica-
tion (Xu et al., 2019; Yin et al., 2020; Tang et al.,
2022) and aspect-level sentiment classification (Li
et al., 2021b).

Recently, pre-trained language representation
models (PLMs) such as ELMo (Peters et al., 2018),
GPT (Radford et al., 2018, 2019), BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019) and XL-
Net (Yang et al., 2019) have brought impressive per-
formance improvements in many NLP problems,
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including sentiment analysis. PLMs learn a robust
encoder on a large unlabeled corpus, through care-
fully designed pre-training tasks, such as masked
token or next sentence prediction.

Despite their progress, the application of general
purposed PLMs in sentiment analysis is limited,
because they fail to distinguish the importance of
different words to a specific task. For example, it is
shown in (Kassner and Schütze, 2020) that general
purposed PLMs have difficulties dealing with con-
tradictory sentiment words or negation expressions,
which are critical in sentiment analysis. To ad-
dress this problem, recent sentiment-aware PLMs
introduce word-level sentiment information, such
as token sentiments and emoticons (Zhou et al.,
2020), aspect word (Tian et al., 2020), word-level
linguistic knowledge (Ke et al., 2020), and im-
plicit sentiment-knowledge information (Li et al.,
2021b). These word-level pre-training tasks, e.g.,
sentiment word prediction and word polarity predic-
tion, mainly learn from the masked words and are
not efficient to capture word-level information for
all input words. Furthermore, sentiment expressed
in a sentence is beyond the simple aggregation of
word-level sentiments. However, general purposed
PLMs and existing sentiment-aware PLMs under-
consider sentence-level sentiment information.

In this paper, we propose a novel sentiment-
aware pre-trained language model called
SentiWSP, to combine word-level pre-training
and sentence-level pre-training. Inspired by
ELECTRA (Clark et al., 2020), which pre-trains
a masked language model with significantly less
computation resource, we adopt a generator-
discriminator framework in the word-level
pre-training. The generator aims to replace
masked words with plausible alternatives; and the
discriminator aims to predict whether each word in
the sentence is an original word or a substitution.
To tailor this framework for sentiment analysis, we
mask two types of words for generation, sentiment
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words and non-sentiment words. We increase the
portion of masked sentiment words so that the
model focuses more on the sentiment expressions.

For sentence-level pre-training, we design a con-
trastive learning framework to improve the encoded
embeddings by the discriminator. The query for
the contrastive learning is constructed by masking
sentiment expressions in a sentence. The positive
example is the original sentence. The negative ex-
amples are selected firstly from in-batch samples
and then from cross-batch similar samples using
an asynchronously updated approximate nearest
neighboring (ANN) index. In this way, the dis-
criminator, which will be used as the encoder for
downstream tasks, learns to distinguish different
sentiment polarities even if they are superficially
similar.

Our main contributions are in three folds: 1).
SentiWSP strengthens word-level pre-training via
masked sentiment word generation and detection,
which is more sample-efficient and benefits various
sentiment classification tasks; 2). SentiWSP com-
bines word-level pretraining with sentence-level
pre-training, which has been underconsidered in
previous studies. SentiWSP adopts contrastive
learning in the pre-training, where sentences are
progressively contrasted with in-batch and cross-
batch hard negatives, so that the model is empow-
ered to encode detailed sentiment information of a
sentence; 3). We conduct extensive experiments on
sentence-level and aspect-level sentiment classifi-
cation tasks, and show that SentiWSP achieves new
state-of-the-art performance on multiple bench-
marking datasets.

2 Related Work

Pre-training and Representation Learning Pre-
training models has shown great success across var-
ious NLP tasks (Devlin et al., 2019; Yang et al.,
2019; Liu et al., 2019). Existing studies mostly
use a Transformer-based (Vaswani et al., 2017) en-
coder to capture contextual features, along with
masked language model (MLM) and/or next sen-
tence prediction (Devlin et al., 2019) as the pre-
training tasks. Yang et al. (2019) propose XL-
Net which is pre-trained using a generalized au-
toregressive method that enables learning bidirec-
tional contexts by maximizing the expected like-
lihood over all permutations of the factorization
order. ELECTRA (Clark et al., 2020) is a generator-
discriminator framework, where the generator per-

forms the masked token generation and the dis-
criminator performs replaced token detection pre-
training task. It is more efficient than MLM be-
cause the discriminator models over all input to-
kens rather than the masked tokens only. Our work
improves ELECTRA’s performance on sentiment
analysis tasks, by specifying masked sentiment
words at word-level pre-training, and combining
sentence-level pre-training.

In addition to the pre-training models that en-
code token representations, sentence-level and
passage-level representation learning have under-
gone rapid development in recent years. A surge
of work demonstrates that contrastive learning is
an effective framework for sentence- and passage-
level representation learning (Meng et al., 2021;
Wei et al., 2021; Gao et al., 2021; Li et al., 2021a).
The common idea of contrastive learning is to pull
together an anchor and a “positive” sample in the
embedding space, and push apart the anchor from
“negative” samples. Recently, COCO-LM (Meng
et al., 2021) creates positive samples by masking
and cropping tokens from sentences. Gao et al.
(2021) demonstrate that constructing positive pairs
with only standard dropout as minimal data aug-
mentation works surprisingly well on the Natural
Language Inference (NLI) task. Karpukhin et al.
(2020) investigate the impact of different nega-
tive sampling strategies for passage representation
learning based on the task of passage retrieval and
question answering. ANCE (Xiong et al., 2021)
adopts approximate nearest neighbor negative con-
trastive learning, a learning mechanism that selects
hard negatives globally from the entire corpus, us-
ing an asynchronously updated Approximate Near-
est Neighbor (ANN) index. Inspired by COCO-
LM (Meng et al., 2021) and ANCE (Xiong et al.,
2021), we construct positive samples by masking
a span of words from a sentence, and construct
cross-batch hard negative samples to enhance the
discriminator at sentence-level pre-training.

Pre-trained Models for Sentiment Analysis In
the field of sentiment analysis, BERT-PT (Xu et al.,
2019) conducts post-training on the corpora which
belong to the same domain of the downstream
tasks to benefit aspect-level sentiment classifica-
tion. SKEP (Tian et al., 2020) constructs three
sentiment knowledge prediction objectives in or-
der to learn a unified sentiment representation for
multiple sentiment analysis tasks. SENTIX (Zhou
et al., 2020) investigates domain-invariant senti-

4985



Inferencer

Trainer

ANN
Negatives

Query

[CLS] A smart sassy exceptionally charming romantic 
comedy [SEP]
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Figure 1: Framework overview of SentiWSP.

ment knowledge from large-scale review datasets,
and utilizes it for cross-domain sentiment classifi-
cation tasks without fine-tuning. SentiBERT (Yin
et al., 2020) proposes a two-level attention mech-
anism on top of the BERT representation to cap-
ture phrase-level compositional semantics. Senti-
LARE (Ke et al., 2020) devises a new pre-training
task called label-aware masked language model
to construct knowledge-aware language represen-
tation. SCAPT (Li et al., 2021b) captures both
implicit and explicit sentiment orientation from re-
views by aligning the representation of implicit
sentiment expressions to those with the same senti-
ment label.

3 Sentiment-Aware Word-Level and
Sentence-Level Pre-training

The overall framework of SentiWSP is depicted in
Figure 1. SentiWSP consists of two pre-training
phases, namely Word-level pre-training (Sec. 3.1,
and Sentence-level pre-training (Sec. 3.2), before
fine-tuning (Sec. 3.3) on a downstream sentiment
analysis task.

In word-level pre-training, an input sentence
flows through a word-masking step, followed by
a generator to replace the masked words, and a
discriminator to detect the replacements. The gen-
erator and discriminator are jointly trained in this
stage. Then, the training of discriminator continues
in sentence-level pre-training. Each input sen-
tence is masked at sentiment words to construct a
query, while the original sentence is treated as the
positive sample. Their embeddings encoded by the
discriminator are contrasted to two types of nega-
tive samples constructed in an in-batch warm-up

training step and a cross-batch approximate nearest
neighbor training step. Finally, the discriminator is
fine-tuned on the downstream task.

Compared with previous studies, the discrimina-
tor in SentiWSP has three advantages. (1) Instead
of random token replacement and detection, Sen-
tiWSP masks a large portion of sentiment words,
and thus the discriminator pays more attention to
word-level sentiments. (2) Instead of pure masked
token prediction, SentiWSP incorporates context
information from all input words via a replacement
detection task. (3) SentiWSP combines sentence-
level sentiments with word-level sentiments by pro-
gressively contrasting a sentence with missing sen-
timents to a superficially similar sentence.

3.1 Word-Level Pre-training
Word masking Different from previous random
word masking (Devlin et al., 2019; Clark et al.,
2020), our goal is to corrupt the sentiment of the
input sentence.

In detail, we first randomly mask 15% words,
the same as ELECTRA (Clark et al., 2020). Then,
we use SentiWordNet (Baccianella et al., 2010) to
mark the positions of sentiment words in a sen-
tence, and mask the sentiment words until a certain
proportion pw of sentiment words are hidden. We
empirically find that the sentiment word masking
proportion pw = 50% achieves the best results.

In the example in Figure 1 (left), the sentiment
words “sassy” and “charming” are masked while
“smart” is not masked, “comedy” is masked as a
random non-sentiment word.

Generator Next, a generator G processes the
masked sentence and generates a corrupted sen-
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tence. As in ELECTRA (Clark et al., 2020), the
generator is a small sized Transformer. Formally,
the sentence is a sequence of words, i.e., s =
[w1, w2, . . . , wn], the mask indicators are denoted
as m = [m1,m2, . . . ,mn],mt ∈ {0, 1}, we ob-
tain smask from the word masking step. For masked
out words, the word is replaced by “MASK", i.e.,
∀mt = 1, wt = [“MASK”]. The generator G
encodes the input to contextualized representations
hG(smask) = [h1, . . . , hn].

For a given position t, (in our case only positions
where wt = [“MASK”]), the generator G outputs
a probability pG

(
wt | smask

)
for generating a par-

ticular token wt with a softmax layer:

pG
(
wt |smask)= exp

(
eTthG(smask)t

)
∑

wj
exp

(
eTj hG(smask)t

) (1)

where et denotes word embeddings for word wt.
We then replace the current word wt with a

random sample strategy based on pG
(
wt | smask

)
.

Sampling introduces randomness and thus it is ben-
eficial for training the discriminator. On the con-
trary, selecting the word with the highest probabil-
ity is likely to generate the original word, and the
training for discriminator will be more challeng-
ing as the discriminator is likely to be trapped to
distinguish an original word from a substitution.
Formally, the replacing process can be defined
as ∀mt = 1, ŵt ∼ pG

(
wt | smask

)
. We denote

the corrupted sequence as srep = [w
rep
1 , . . . , w

rep
n ],

where ∀mt = 1, w
rep
t = ŵt.

Discriminator For the corrupted sentence, the
discriminator D, i.e., a larger sized Transformer,
encodes the corrupted sentence to hD(srep), and
predicts whether each word wt comes from the
data or the generator, using a sigmoid output layer:

D(srep, t) = σ
(
eTt hD(srep)t

)
(2)

We jointly train the generator and the discriminator.
The generator G is trained by maximal likelihood
estimation, and the discriminator D is trained by
cross entropy.

min
θG,θD

∑

s∈X
LG (s, θG) + λLD (s, θD) (3)

LG =
∑

mt=1

− log pG
(
wt | smask)

LD =

n∑

i=1

−I(wrep
i = wi) logD(srep, i)

−
(
1− I(wrep

i = wi)
)
log (1−D(srep, i))

where X denotes a large corpus of raw text and λ
is the coefficient of the discriminator loss.

3.2 Sentence-Level Pre-training

For sentence-level pre-training, we follow the con-
trastive framework in Chen et al. (2020). The goal
of contrastive learning is to learn effective repre-
sentations by pulling together similar samples (i.e.,
the positive samples) and pushing away different
samples (i.e., the negative samples).

One critical question in contrastive learning is
how to construct a pair of query (anchor) and posi-
tive/negative samples, i.e.,

(
qi, d

+
i

)
,
(
qi, d

−
i

)
. As

the example shown in Figure 1 (right), given a
sentence si from corpus C, we first mask out a cer-
tain percentage (70% in this research) of sentiment
words in the sentence to construct qi, and treat the
raw sentence as the positive example d+i .

In-batch warm-up training Then we fetch the
already trained (in word-level pre-training) discrim-
inator model D and conduct a warm-up sentence-
level training with in-batch negatives. In detail, We
feed the input

(
qi, d

+
i

)
to the encoder D to get the

representations fi and f+i , and train the encoder to
minimize the distance between the positive pairs
within a mini-batch using the neg log-likelyhood
loss defined as:

min
θD

−
∑

i∈B
log

exp(sim
(
fi, f

+
i

)
/τ)

∑|B|
j=1 exp(sim

(
fi, f

+
j

)
/τ)

(4)

where τ is a temperature hyperparameter, |B| de-
notes size of the mini-batch B, sim (·, ·) denotes
cosine similarity between two vectors.

Cross-batch approximate nearest neighbor
training Since in-batch negatives are unlikely
to provide informative samples, we use the Ap-
proximate nearest neighbor Negative Contrastive
Estimation, (ANCE) (Xiong et al., 2021) to se-
lect “hard” negative samples from the entire cor-
pus, to improve the discriminator’s distinguishing
power, using an asynchronously updated Approx-
imate Nearest Neighbor (ANN) index. In detail,
after the warm-up training of the model D, we use
it to infer the sentence embedding on the entire
corpus C and then use ANN search to retrieve top-
k negative examples closest to each query. Then
we sample t negative examples as hard-negative
examples from the top-k negatives. The hyperpa-
rameters k and t are set to 100 and 7, respectively.
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Model
Sentence-level Aspect-level

IMDB SST-5 Yelp-2 Yelp-5 MR Restaurant14 Laptop14
Acc Acc Acc Acc Acc Acc MF1 Acc MF1

BERT (Devlin et al., 2019) 93.87 53.37 97.74 70.16 87.52 83.77 76.06 78.53 73.11
XLNet (Yang et al., 2019) 96.21 56.33 97.41 70.23 89.45 84.93 76.70 80.00 75.88
RoBERTa (Liu et al., 2019) 94.68 54.89 97.98 70.12 89.41 86.07 79.21 81.03 77.16
BERT-PT (Xu et al., 2019) 93.99 53.24 97.77 69.90 87.30 85.86 77.99 78.46 73.82
TransBERT (Li et al., 2019) 94.79 55.56 96.73 69.53 88.69 86.38 78.95 80.06 75.43
SentiBERT (Yin et al., 2020) 94.04 56.87 97.66 69.94 88.59 83.71 75.42 76.87 71.74
SentiLARE (Ke et al., 2020) 95.71 58.59 98.22 71.57 90.82 88.32 81.63 82.16 78.70
SENTIX (Zhou et al., 2020) 94.78 55.57 97.83 \ \ 87.32 \ 80.56 \
SCAPT (Li et al., 2021b) \ \ \ \ \ 89.11 83.79 82.76 79.15
ELECTRA (Clark et al., 2020) 95.62 57.89 97.87 71.27 90.81 87.32 81.63 82.13 78.25
SentiWSP 96.26 59.32 98.25 71.69 92.41 88.75 82.85 83.69 80.82

Table 1: Overall performance of different models on sentiment classification tasks, “Acc” and “MF1” denote
accuracy and macro-F1 score, respectively.

To maintain an up-to-date ANN index two op-
erations are required: (1) inference: refresh the
embeddings of all sentences in the corpus with
the updated model D; and (2) indexing: rebuild
the ANN index with the updated embeddings. Al-
though indexing is efficient (Johnson et al., 2021),
inferential computing for each batch is expensive
as it needs to be passed forward across the entire
corpus. In order to balance the time cost between
inference and indexing, we use an asynchronous
refresh mechanism similar to Guu et al. (2020)
and update the ANN index every m steps. As illus-
trated in the top right part in Figure 1, we construct
a trainer to optimize D, and an inferencer that uses
the latest checkpoint (e.g., checkpoint k − 1) to re-
calculate the encoding fk−1 of the entire corpus and
and update ANNfk−1 . Then, the trainer optimizes
a cross-entropy objective function with negative
samples generated from ANNfk−1 and the original
positive example pair

(
qi, d

+
i

)
.

min
θD

∑

i∈Bk

− log
(
sim(fi, f

+
i )

)
(5)

−
∑

j∼ANN
fk−1

log(1− sim(fi, fj))

where Bk is the mini-batch batch at checkpoint
k, fi, f+i , fj indicate the discriminator D’s embed-
dings of the query, positive, and negative samples
generated from the asynchronously updated ANN,
respectively.

3.3 Fine-tuning
After the pre-training, we fine-tune our model on
downstream sentiment analysis tasks. For sentence-

level sentiment classification task, we format the
input sequence as: [CLS], e1, . . . , en, [SEP ], and
take the representation at the [CLS] token to pre-
dict the sentiment label y, which indicates the sen-
timent polarity of the sentence.

For aspect-level sentiment classification
task, we format the input sequence as:
[CLS],a1, . . . ,am, [SEP ], e1, . . . , en, [SEP ].
where a1, . . . ,am denotes the phrase of a partic-
ular aspect. We fetch the representation at the
[CLS] token to predict the sentiment label y of
the sentence in the aspect.

4 Experiment

4.1 Datasets

For SentiWSP pre-training, we use the same En-
glish Wikipedia corpus as Devlin et al. (2019). We
select 2 million sentences with a maximum length
of 128 for the word-level pre-training, and select
500,000 sentences which have 20%-30% propor-
tion of sentiment words for the sentence-level pre-
training.

After pre-training, we fine-tune our model
on sentence-level sentiment classification bench-
marks including Stanford Sentiment Treebank
(SST) (Socher et al., 2013), IMDB (Maas et al.,
2011), Movie Review (MR) (Pang and Lee, 2005),
and Yelp-2/5 (Zhang et al., 2015). For aspect-
level sentiment classification tasks, we choose Se-
mEval2014 Task 4 in laptop (Laptop14) and restau-
rant (Restaurant14) domains (Pontiki et al., 2014).
Table 3 shows the statistics of these datasets, in-
cluding the amount of training, validation, and test
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Model
Sentence-level Aspect-level

IMDB SST-5 Yelp-2 Yelp-5 MR Restaurant14 Laptop14
Acc Acc Acc Acc Acc Acc MF1 Acc MF1

SentiWSP-base 95.57 58.12 98.08 71.09 90.46 87.14 81.33 82.12 78.34
w/o WP 95.46 57.64 98.02 70.82 90.17 86.82 80.02 81.83 77.87
w/o SP 95.41 57.97 98.01 70.78 90.12 86.75 79.98 81.75 77.54
w/o WP,SP 94.98 57.17 97.59 70.67 89.82 86.13 79.53 81.35 77.23

SentiWSP-large 96.26 59.32 98.25 71.69 92.41 88.75 82.85 83.69 80.82
w/o WP 96.12 58.67 98.21 71.31 91.87 87.87 82.13 82.97 79.35
w/o SP 96.17 58.34 98.17 71.35 91.77 87.56 81.85 82.89 79.13
w/o WP,SP 95.62 57.89 97.87 71.27 90.81 87.32 81.63 82.13 78.25

Table 2: The ablation study results. SP and WP represent sentence-level pre-training and word-level pre-training,
respectively. The model without both pre-training is the original ELECTRA model.

Dataset Train/Valid/Test Length #C

SST 8,544 / 1,101 / 2,210 19.2 5
MR 8,534 / 1,078 / 1,050 21.7 2
IMDB 22,500 / 2,500 / 25,000 279.2 2
Yelp-2 504,000 / 56,000 / 38,000 155.3 2
Yelp-5 594,000 / 56,000 / 50,000 156.6 5
Res14 2,163 / 150 / 638 25.6 3
Lap14 3,452 / 150 / 676 30.2 3

Table 3: Statistics of datasets used in our experiments.
#C indicates the number of target classes in each dataset.

splits, the average length and the number of classes.
Since there is no validation set in MR, IMDB, and
yelp-2/5, we randomly select a subset from the
training set for validation.

4.2 Baselines

We compare our model with both general pur-
posed pre-trained models and sentiment-aware pre-
trained models. For general purposed pre-trained
models, we choose BERT (Devlin et al., 2019),
XLNet (Yang et al., 2019), and RoBERTa (Liu
et al., 2019) as baselines. For sentiment-aware
pre-trained models, we choose BERT-PT (Xu
et al., 2019), SentiBERT (Yin et al., 2020), Sen-
tiLARE (Ke et al., 2020), SENTIX (Zhou et al.,
2020), and SCAPT (Li et al., 2021b). We also im-
plement TransBERT (Li et al., 2019), in the same
transfer manner as SentiLARE.*

*We choose review-level sentiment classification on Yelp
Dataset Challenge 2019 as the transfer task of TransBERT
and the sentiment classification downstream tasks as the target
tasks of TransBERT.

4.3 Implementation Details

During pre-training, we use the AdamW optimizer
and linear learning rate scheduler, and we set the
max sequence length to 128. The learning rate is
initialized with 2e-5 and 1e-5 for the base and large
model, respectively. For word-level pre-training,
we use ELECTRA (Clark et al., 2020) initialize
G and D. We set the proportion of sentiment
word mask to pw = 0.5 and we keep other hyper-
parameters the same as ELECTRA. For sentence-
level pre-training, we follow the settings of un-
supervised SimCSE (Gao et al., 2021) to do the
warm-up training, and set the proportion of senti-
ment word mask ps = 0.7. The detailed batch size
and training steps for different level of pre-training
are listed in Appendix A.

For fine-tuning, we use the hyperparameters
from Clark et al. (2019) for the most parts. We
fine-tune 3-5 epochs for sentence-level sentiment
classification and 7-10 epochs for aspect-level sen-
timent classification tasks. The learning rate of
the base and large model for the fine-tunning is
set to 2e-5 and 1e-5, respectively. We use a linear
learning rate scheduler with 10% warm-up steps.

4.4 Comparative Results

We list the performance of different models in Ta-
ble 1. According to the results, we have several
findings: (1) SentiWSP consistently outperforms
all baselines on sentence-level classification tasks,
which demonstrates the superiority of SentiWSP to
capture sentence-level semantics. (2) On the aspect-
level sentiment classification tasks, the proposed
SentiWSP boosts the ACC by 0.93 and increases
MF1 by 1.67 on Laptop14 dataset. It also achieves
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Model pw IMDB MR

SentiWSP-only WP 0 95.59 90.83
SentiWSP-only WP 0.3 96.13 91.67
SentiWSP-only WP 0.5 96.17 91.77
SentiWSP-only WP 0.7 95.98 91.07
SentiWSP-only WP 1 95.97 91.26

Table 4: Acc obtained by additionally masking pw of
sentiment words in word-level pre-training, on IMDB
and MR.

a competitive performance on Resturant14 dataset,
i.e., the second best among all competitors. (3)
SentiWSP is significantly better than ELECTRA,
on both sentiment analysis tasks, on all datasets.
This observation verifies the effectiveness of the
proposed sentiment-aware pretraining strategy.

4.5 Ablation Study

To further investigate the effectiveness of the com-
bining word-level and sentence-level pre-training,
we conduct an ablation study with different model
sizes (details in Appendix A). From the results (Ta-
ble 2) we have the following observations: (1) With-
out sentence-level pre-training and word-level pre-
training (i.e., “w/o WP,SP"), SentiWSP degrades
to ELECTRA. It performs worst in terms of all
metrics. This proves the necessity of tailoring pre-
training paradigms for sentiment analysis tasks. (2)
The full version of SentiWSP produced the best re-
sults across different tasks and datasets. Word-level
pre-training and sentence-level pre-training capture
sentiment information at different granularity, and
combining multi-granularity pre-training is benefi-
cial. (3) Comparing sentence-level pre-training
and word-level pre-training, SentiWSP without
sentence-level pre-training is generally worse than
SentiWSP without word-level pre-training. The
performance decline is consistent on Aspect-level
sentiment classification task. We think the reason is
that the global context is essential for analyzing as-
pect sentiments, while focusing only on word-level
information leads to less robust prediction.

4.6 Impacts of Hyper-parameters

In this section, we explore the impact of different
hyper-parameters for the proposed model on IMDB
and MR datasets.
Word masking. For word-level pre-training, we
experiment with replacing different proportions of
sentiment words pw (Table 4). From the table,

Model ps IMDB MR

SentiWSP-only SP 0.3 96.02 91.18
SentiWSP-only SP 0.5 95.86 91.36
SentiWSP-only SP 0.7 96.12 91.87
SentiWSP-only SP 1 95.89 91.61

Table 5: Acc obtained by additionally masking ps

of sentiment words in sentence-level pre-training, on
IMDB and MR.

Model k IMDB MR

In-batch N/A 95.85 91.60
ANCE 1 95.97 91.69
ANCE 3 96.15 91.87
ANCE 5 96.12 91.79
ANCE 7 96.26 92.41
ANCE 10 96.27 92.12
ANCE 13 96.19 91.83

Table 6: Acc obtained by using only in-batch negative
samples and top-k cross-batch negative samples.

we find that the model performs the worst when
pw = 0 (i.e., the same mask strategy as ELEC-
TRA) , which verifies our assumption that extra
sentiment word masking is beneficial for the model
to encode sentiment information. Besides, we find
that masking and replacing 50% of the sentiment
words yields the best result. We argue the reason
is that replacing 50% sentiment words is difficult
enough for the model to learn meaningful features,
while keeping half of the original sentiment words
provides useful clues for the model to detect other
sentiment words.
Sentence-level positive sample construction.
Similar to the word-level experiment, we mask dif-
ferent proportions of sentiment words to construct
positive samples for sentence-level pre-training. As
shown in Table 5, the best performance is achieved
by masking 70% of the sentiment words. The un-
derlying reason is that, the ideal positive sample
should resemble the query, yet the augmentation
can provide additional information for the model
to learn meaningful representations. We believe
70% of sentiment word masking is a good balanc-
ing point. It is worthy to point out that, even the
worst performances, i.e., when ps = 0.5 on IMDB
and ps = 0.3 on MR, are better than most of the
competitors in Table 1.
Negative sample size. In Table 6, we report
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Loss Similarity IMDB MR

Triplet Dot Product 96.05 91.95
Triplet Cosine 96.16 92.12
NLL Dot Product 96.21 92.27
NLL Cosine 96.26 92.41

Table 7: The impact of loss and similarity functions in
sentence-level pre-training.

the results with different negative samples in the
sentence-level pre-training. From the table we have
two findings: (1) when only in-batch negative sam-
ples are used, the model performs worst. We argue
the reason is that in-batch negatives are too simple
for the model to distinguish from a positive sample,
and continue training on these “easy” negatives
does not make further improvements. (2) When
we increase the cross-batch negative sample size
from 1 to 10, the model is provided with more in-
formative negative samples. Therefore, the model
can learn more detailed sentiment information and
the accuracy is improved. However, when we use a
large amount of cross-batch negative samples (e.g.,
13), the negative samples vary in quality, and thus
the model suffers from less similar negatives.
Similarity and loss function. For sentence-level
pre-training, we compare two commonly adopted
similarity functions, i.e., cosine distance and dot
product, to measure the similarity between two
sentence embeddings. The difference between dot
product and cosine distance is that dot product does
not incorporate L2 normalization. We also compare
two widely used loss functions, i.e., Negative Log-
Likelihood (NLL) loss and Triplet loss (Schroff
et al., 2015), in contrastive learning and ranking
problems. The difference between NLL loss and
Triplet loss is that Triplet loss compares a positive
example and a negative one directly with respect
to a query. We report the comparisons in Table 7.
From the table we have two observations: (1) With
different loss functions, the cosine distance appears
to be a more accurate measurement for sentence
similarity and outperforms the dot product. (2) The
NLL loss produces better results, with different
similarity functions, than the Triplet loss.

4.7 Training Loss Convergence
Our final model is trained on 4 NVIDIA Tesla A100
GPUs with a total training time of fewer than 24
hours. For word-level pre-training, we can observe
from Figure 3 that the generator and discrimina-
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Figure 2: Training loss of sentence-level pre-training.
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Figure 3: Training loss of the word-level pre-training.

tor compete in joint training and gradually con-
verge within 20, 000 steps. For sentence-level pre-
training, we can observe from Figure 2 that when
the hard-negative example is refreshed every 2000
steps, the loss of the model increases temporarily,
which indicates that our ANN search can form a
more demanding test for the model and improve
the model’s capability on these hard testing cases
in the following steps.

5 Conclusion

In this paper, we introduce SentiWSP, which im-
proves pre-training models on sentiment analy-
sis task, by capturing the sentiment information
from word-level and sentence-level simultaneously.
Extensive experimental results on five sentence-
level sentiment classification benchmarks show that
SentiWSP establishes new state-of-the-art perfor-
mance on all of them. We conduct experiment
on two aspect-level sentiment classification bench-
marks. The results show that SentiWSP beats most
existing models on Restaurant14 and achieves new
state-of-the-art on Laptop14. We further analyze
several hyper-parameters that may affect the model
performance, and show that SentiWSP can achieve
satisfying performance with respect to different
hyper-parameter settings.

Limitations

SentiWSP, as most of the current state-of-the-
art pre-training models, requires relatively large
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computation resources. As shown in Table 2,
SentiWSP-large performs better than SentiWSP-
base, the performance divergence is more signif-
icant on the MR dataset. We also observe some
bad cases when sentiment expressions are implicit
suggested in a sentence, i.e., with very few senti-
ment words, SentiWSP has difficulty in masking
and generating, and constructing positive samples.
In the future, we plan to devise an adaptive masking
mechanism for sentiment words.
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A Pre-train details

We provide detailed hyper-parameter settings in
Table 8 Table 8.

Parameter base large

Word-level
pretraining

Batch size 128 64
Warm up steps 1500 1500

Max steps 20000 20000

In-batch
Warm up

Batch size 64 32
Warm up steps 500 500

Max steps 2000 2000

Sentence-level
pretraining

Batch size 64 32
Iteration steps 2000 2000
Max iterations 4 4

Max steps 8000 8000

Table 8: SentiWSP pre-training.
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